Rammohan0504 commited on
Commit
4a6af8c
·
verified ·
1 Parent(s): 3b104ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -13
app.py CHANGED
@@ -10,7 +10,7 @@ import joblib
10
  from datetime import datetime
11
  import shutil
12
  from reportlab.lib.pagesizes import letter
13
- from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
14
  from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
15
  from reportlab.lib import colors
16
 
@@ -33,7 +33,6 @@ def extract_features(image, landmarks):
33
 
34
  return [red_percent, green_percent, blue_percent]
35
 
36
-
37
  def train_model(output_range):
38
  X = [[
39
  random.uniform(0.2, 0.5),
@@ -55,8 +54,7 @@ try:
55
  spo2_model = joblib.load("spo2_model_simulated.pkl")
56
  hr_model = joblib.load("heart_rate_model.pkl")
57
  except FileNotFoundError:
58
- print(
59
- "Error: One or more .pkl model files are missing. Please upload them.")
60
  exit(1)
61
 
62
  models = {
@@ -81,7 +79,6 @@ models = {
81
  "Temperature": train_model((97, 99))
82
  }
83
 
84
-
85
  # Helper function for risk level color coding
86
  def get_risk_color(value, normal_range):
87
  low, high = normal_range
@@ -92,7 +89,6 @@ def get_risk_color(value, normal_range):
92
  else:
93
  return ("Normal", "✅", "#d4edda")
94
 
95
-
96
  # Function to build table for test results
97
  def build_table(title, rows):
98
  html = (
@@ -119,7 +115,6 @@ def build_table(title, rows):
119
  html += '</tbody></table></div>'
120
  return html
121
 
122
-
123
  # Function to save the health report to PDF
124
  def save_results_to_pdf(test_results, filename):
125
  try:
@@ -164,7 +159,6 @@ def save_results_to_pdf(test_results, filename):
164
  except Exception as e:
165
  return f"Error saving PDF: {str(e)}", None
166
 
167
-
168
  # Build health card layout
169
  def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
170
  from datetime import datetime
@@ -220,7 +214,6 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
220
  """
221
  return html
222
 
223
-
224
  # Initialize global variable for patient details
225
  current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
226
 
@@ -245,8 +238,7 @@ def analyze_face(input_data):
245
  result = face_mesh.process(frame_rgb)
246
  if not result.multi_face_landmarks:
247
  return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
248
- landmarks = result.multi_face_landmarks[
249
- 0].landmark # Fixed: Use integer index
250
  features = extract_features(frame_rgb, landmarks)
251
  test_values = {}
252
  r2_scores = {}
@@ -257,8 +249,7 @@ def analyze_face(input_data):
257
  test_values[label] = prediction
258
  r2_scores[label] = 0.385
259
  else:
260
- value = models[label].predict(
261
- [[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
262
  test_values[label] = value
263
  r2_scores[label] = 0.0
264
 
 
10
  from datetime import datetime
11
  import shutil
12
  from reportlab.lib.pagesizes import letter
13
+ from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
14
  from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
15
  from reportlab.lib import colors
16
 
 
33
 
34
  return [red_percent, green_percent, blue_percent]
35
 
 
36
  def train_model(output_range):
37
  X = [[
38
  random.uniform(0.2, 0.5),
 
54
  spo2_model = joblib.load("spo2_model_simulated.pkl")
55
  hr_model = joblib.load("heart_rate_model.pkl")
56
  except FileNotFoundError:
57
+ print("Error: One or more .pkl model files are missing. Please upload them.")
 
58
  exit(1)
59
 
60
  models = {
 
79
  "Temperature": train_model((97, 99))
80
  }
81
 
 
82
  # Helper function for risk level color coding
83
  def get_risk_color(value, normal_range):
84
  low, high = normal_range
 
89
  else:
90
  return ("Normal", "✅", "#d4edda")
91
 
 
92
  # Function to build table for test results
93
  def build_table(title, rows):
94
  html = (
 
115
  html += '</tbody></table></div>'
116
  return html
117
 
 
118
  # Function to save the health report to PDF
119
  def save_results_to_pdf(test_results, filename):
120
  try:
 
159
  except Exception as e:
160
  return f"Error saving PDF: {str(e)}", None
161
 
 
162
  # Build health card layout
163
  def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
164
  from datetime import datetime
 
214
  """
215
  return html
216
 
 
217
  # Initialize global variable for patient details
218
  current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
219
 
 
238
  result = face_mesh.process(frame_rgb)
239
  if not result.multi_face_landmarks:
240
  return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
241
+ landmarks = result.multi_face_landmarks[0].landmark # Fixed: Use integer index
 
242
  features = extract_features(frame_rgb, landmarks)
243
  test_values = {}
244
  r2_scores = {}
 
249
  test_values[label] = prediction
250
  r2_scores[label] = 0.385
251
  else:
252
+ value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
 
253
  test_values[label] = value
254
  r2_scores[label] = 0.0
255