Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,6 +47,7 @@ def train_model(output_range):
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
|
|
50 |
# Load models
|
51 |
try:
|
52 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
@@ -114,7 +115,7 @@ def build_table(title, rows):
|
|
114 |
html += '</tbody></table></div>'
|
115 |
return html
|
116 |
|
117 |
-
# Function to save the health report to PDF
|
118 |
def save_results_to_pdf(test_results, filename):
|
119 |
try:
|
120 |
# Create a PDF document
|
@@ -145,11 +146,11 @@ def save_results_to_pdf(test_results, filename):
|
|
145 |
|
146 |
# Add title
|
147 |
flowables.append(Paragraph("Health Report", title_style))
|
148 |
-
flowables.append(Spacer(1, 12))
|
149 |
|
150 |
-
#
|
151 |
for label, value in test_results.items():
|
152 |
-
|
|
|
153 |
flowables.append(Spacer(1, 12))
|
154 |
|
155 |
# Build the PDF
|
@@ -158,15 +159,14 @@ def save_results_to_pdf(test_results, filename):
|
|
158 |
except Exception as e:
|
159 |
return f"Error saving PDF: {str(e)}", None
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
def build_health_card(profile_image, test_results, summary):
|
164 |
from datetime import datetime
|
165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
166 |
|
167 |
-
# Build the Health Card HTML
|
168 |
html = f"""
|
169 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
|
|
170 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
171 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
172 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
@@ -174,18 +174,25 @@ def build_health_card(profile_image, test_results, summary):
|
|
174 |
</div>
|
175 |
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
|
176 |
<div>Report Date: {current_date}</div>
|
|
|
177 |
</div>
|
178 |
</div>
|
179 |
<div style="display: flex; align-items: center;">
|
180 |
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
181 |
<div>
|
182 |
-
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">
|
|
|
|
|
183 |
</div>
|
184 |
</div>
|
185 |
</div>
|
186 |
|
187 |
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
188 |
-
{test_results}
|
|
|
|
|
|
|
|
|
189 |
</div>
|
190 |
|
191 |
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
|
@@ -199,19 +206,144 @@ def build_health_card(profile_image, test_results, summary):
|
|
199 |
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
200 |
📥 Download Report
|
201 |
</button>
|
|
|
|
|
|
|
202 |
</div>
|
203 |
</div>
|
204 |
"""
|
205 |
return html
|
206 |
|
207 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
209 |
if mode == "Image" and image is None:
|
210 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
211 |
if mode == "Video" and video is None:
|
212 |
return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
|
213 |
-
|
214 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
216 |
return health_card_html, pdf_file_path
|
217 |
|
@@ -228,15 +360,20 @@ with gr.Blocks() as demo:
|
|
228 |
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
|
229 |
|
230 |
gr.Markdown("### Image/Video Input")
|
231 |
-
mode_selector = gr.Radio(label="Choose Input Mode",
|
|
|
|
|
232 |
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
|
233 |
-
video_input = gr.Video(label="Upload Face Video",
|
|
|
234 |
submit_btn = gr.Button("🔍 Analyze")
|
235 |
with gr.Column():
|
236 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
237 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
238 |
|
239 |
-
submit_btn.click(fn=route_inputs,
|
|
|
|
|
240 |
|
241 |
-
# Launch Gradio
|
242 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
50 |
+
|
51 |
# Load models
|
52 |
try:
|
53 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
|
115 |
html += '</tbody></table></div>'
|
116 |
return html
|
117 |
|
118 |
+
# Function to save the health report to PDF
|
119 |
def save_results_to_pdf(test_results, filename):
|
120 |
try:
|
121 |
# Create a PDF document
|
|
|
146 |
|
147 |
# Add title
|
148 |
flowables.append(Paragraph("Health Report", title_style))
|
|
|
149 |
|
150 |
+
# Add test results to the report
|
151 |
for label, value in test_results.items():
|
152 |
+
line = f"{label}: {value}"
|
153 |
+
flowables.append(Paragraph(line, body_style))
|
154 |
flowables.append(Spacer(1, 12))
|
155 |
|
156 |
# Build the PDF
|
|
|
159 |
except Exception as e:
|
160 |
return f"Error saving PDF: {str(e)}", None
|
161 |
|
162 |
+
# Build health card layout
|
163 |
+
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
|
|
164 |
from datetime import datetime
|
165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
166 |
|
|
|
167 |
html = f"""
|
168 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
169 |
+
|
170 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
171 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
172 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
|
|
174 |
</div>
|
175 |
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
|
176 |
<div>Report Date: {current_date}</div>
|
177 |
+
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
|
178 |
</div>
|
179 |
</div>
|
180 |
<div style="display: flex; align-items: center;">
|
181 |
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
182 |
<div>
|
183 |
+
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else "Lab Test Results"}</h2>
|
184 |
+
<p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}</p>
|
185 |
+
<p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
|
186 |
</div>
|
187 |
</div>
|
188 |
</div>
|
189 |
|
190 |
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
191 |
+
{test_results['Hematology']}
|
192 |
+
{test_results['Iron Panel']}
|
193 |
+
{test_results['Liver & Kidney']}
|
194 |
+
{test_results['Electrolytes']}
|
195 |
+
{test_results['Vitals']}
|
196 |
</div>
|
197 |
|
198 |
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
|
|
|
206 |
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
207 |
📥 Download Report
|
208 |
</button>
|
209 |
+
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
210 |
+
📞 Find Labs Near Me
|
211 |
+
</button>
|
212 |
</div>
|
213 |
</div>
|
214 |
"""
|
215 |
return html
|
216 |
|
217 |
+
# Initialize global variable for patient details
|
218 |
+
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
|
219 |
+
|
220 |
+
# Modified analyze_face function
|
221 |
+
def analyze_face(input_data):
|
222 |
+
if isinstance(input_data, str): # Video input (file path in Replit)
|
223 |
+
cap = cv2.VideoCapture(input_data)
|
224 |
+
if not cap.isOpened():
|
225 |
+
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
|
226 |
+
ret, frame = cap.read()
|
227 |
+
cap.release()
|
228 |
+
if not ret:
|
229 |
+
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
|
230 |
+
else: # Image input
|
231 |
+
frame = input_data
|
232 |
+
if frame is None:
|
233 |
+
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
234 |
+
|
235 |
+
# Resize image to reduce processing time
|
236 |
+
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
237 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
238 |
+
result = face_mesh.process(frame_rgb)
|
239 |
+
if not result.multi_face_landmarks:
|
240 |
+
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
241 |
+
landmarks = result.multi_face_landmarks[0].landmark # Fixed: Use integer index
|
242 |
+
features = extract_features(frame_rgb, landmarks)
|
243 |
+
test_values = {}
|
244 |
+
r2_scores = {}
|
245 |
+
|
246 |
+
for label in models:
|
247 |
+
if label == "Hemoglobin":
|
248 |
+
prediction = models[label].predict([features])[0]
|
249 |
+
test_values[label] = prediction
|
250 |
+
r2_scores[label] = 0.385
|
251 |
+
else:
|
252 |
+
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
|
253 |
+
test_values[label] = value
|
254 |
+
r2_scores[label] = 0.0
|
255 |
+
|
256 |
+
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
257 |
+
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
258 |
+
brightness_std = np.std(gray) / 255
|
259 |
+
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
|
260 |
+
100:150, 100:150].size else 0.5
|
261 |
+
hr_features = [brightness_std, green_std, tone_index]
|
262 |
+
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
263 |
+
skin_patch = frame_rgb[100:150, 100:150]
|
264 |
+
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
265 |
+
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
|
266 |
+
cv2.COLOR_RGB2GRAY)) / 255
|
267 |
+
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
268 |
+
spo2 = spo2_model.predict([spo2_features])[0]
|
269 |
+
rr = int(12 + abs(heart_rate % 5 - 2))
|
270 |
+
|
271 |
+
test_results = {
|
272 |
+
"Hematology":
|
273 |
+
build_table("🩸 Hematology",
|
274 |
+
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
275 |
+
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
276 |
+
("Platelet Count", test_values["Platelet Count"],
|
277 |
+
(150, 450))]),
|
278 |
+
"Iron Panel":
|
279 |
+
build_table("🧬 Iron Panel",
|
280 |
+
[("Iron", test_values["Iron"], (60, 170)),
|
281 |
+
("Ferritin", test_values["Ferritin"], (30, 300)),
|
282 |
+
("TIBC", test_values["TIBC"], (250, 400))]),
|
283 |
+
"Liver & Kidney":
|
284 |
+
build_table("🧬 Liver & Kidney",
|
285 |
+
[("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
|
286 |
+
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
|
287 |
+
("Urea", test_values["Urea"], (7, 20))]),
|
288 |
+
"Electrolytes":
|
289 |
+
build_table("🧪 Electrolytes",
|
290 |
+
[("Sodium", test_values["Sodium"], (135, 145)),
|
291 |
+
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
|
292 |
+
"Vitals":
|
293 |
+
build_table("❤️ Vitals",
|
294 |
+
[("SpO2", spo2, (95, 100)),
|
295 |
+
("Heart Rate", heart_rate, (60, 100)),
|
296 |
+
("Respiratory Rate", rr, (12, 20)),
|
297 |
+
("Temperature", test_values["Temperature"], (97, 99)),
|
298 |
+
("BP Systolic", test_values["BP Systolic"], (90, 120)),
|
299 |
+
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
|
300 |
+
}
|
301 |
+
|
302 |
+
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
|
303 |
+
|
304 |
+
_, buffer = cv2.imencode('.png', frame_rgb)
|
305 |
+
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
306 |
+
|
307 |
+
# Use global patient details
|
308 |
+
global current_patient_details
|
309 |
+
health_card_html = build_health_card(
|
310 |
+
profile_image_base64,
|
311 |
+
test_results,
|
312 |
+
summary,
|
313 |
+
current_patient_details['name'],
|
314 |
+
current_patient_details['age'],
|
315 |
+
current_patient_details['gender'],
|
316 |
+
current_patient_details['id']
|
317 |
+
)
|
318 |
+
|
319 |
+
# Generate PDF and return for download
|
320 |
+
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
321 |
+
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
322 |
+
|
323 |
+
if pdf_filepath:
|
324 |
+
# Copy the PDF to a temporary directory for Gradio to serve it
|
325 |
+
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
326 |
+
shutil.copy(pdf_filepath, temp_pdf_path)
|
327 |
+
|
328 |
+
return health_card_html, temp_pdf_path
|
329 |
+
|
330 |
+
|
331 |
+
# Modified route_inputs function
|
332 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
333 |
if mode == "Image" and image is None:
|
334 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
335 |
if mode == "Video" and video is None:
|
336 |
return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
|
337 |
+
|
338 |
+
# Store patient details globally for use in analyze_face
|
339 |
+
global current_patient_details
|
340 |
+
current_patient_details = {
|
341 |
+
'name': patient_name,
|
342 |
+
'age': patient_age,
|
343 |
+
'gender': patient_gender,
|
344 |
+
'id': patient_id
|
345 |
+
}
|
346 |
+
|
347 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
348 |
return health_card_html, pdf_file_path
|
349 |
|
|
|
360 |
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
|
361 |
|
362 |
gr.Markdown("### Image/Video Input")
|
363 |
+
mode_selector = gr.Radio(label="Choose Input Mode",
|
364 |
+
choices=["Image", "Video"],
|
365 |
+
value="Image")
|
366 |
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
|
367 |
+
video_input = gr.Video(label="Upload Face Video",
|
368 |
+
sources=["upload", "webcam"])
|
369 |
submit_btn = gr.Button("🔍 Analyze")
|
370 |
with gr.Column():
|
371 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
372 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
373 |
|
374 |
+
submit_btn.click(fn=route_inputs,
|
375 |
+
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
|
376 |
+
outputs=[result_html, result_pdf])
|
377 |
|
378 |
+
# Launch Gradio for Replit
|
379 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|