Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from sklearn.linear_model import LinearRegression
|
|
| 6 |
import random
|
| 7 |
import base64
|
| 8 |
import joblib
|
|
|
|
| 9 |
from reportlab.lib.pagesizes import letter
|
| 10 |
from reportlab.pdfgen import canvas
|
| 11 |
from io import BytesIO
|
|
@@ -17,7 +18,6 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
|
|
| 17 |
refine_landmarks=True,
|
| 18 |
min_detection_confidence=0.5)
|
| 19 |
|
| 20 |
-
|
| 21 |
# Functions for feature extraction
|
| 22 |
def extract_features(image, landmarks):
|
| 23 |
red_channel = image[:, :, 2]
|
|
@@ -117,7 +117,87 @@ def build_table(title, rows):
|
|
| 117 |
return html
|
| 118 |
|
| 119 |
|
| 120 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
def generate_pdf(html_content):
|
| 122 |
buffer = BytesIO()
|
| 123 |
c = canvas.Canvas(buffer, pagesize=letter)
|
|
@@ -160,12 +240,16 @@ def analyze_face(input_data):
|
|
| 160 |
landmarks = result.multi_face_landmarks[
|
| 161 |
0].landmark # Fixed: Use integer index
|
| 162 |
features = extract_features(frame_rgb, landmarks)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
test_values = {}
|
| 164 |
r2_scores = {}
|
| 165 |
|
| 166 |
for label in models:
|
| 167 |
if label == "Hemoglobin":
|
| 168 |
-
prediction = models[label].predict(
|
| 169 |
test_values[label] = prediction
|
| 170 |
r2_scores[label] = 0.385
|
| 171 |
else:
|
|
|
|
| 6 |
import random
|
| 7 |
import base64
|
| 8 |
import joblib
|
| 9 |
+
import pandas as pd
|
| 10 |
from reportlab.lib.pagesizes import letter
|
| 11 |
from reportlab.pdfgen import canvas
|
| 12 |
from io import BytesIO
|
|
|
|
| 18 |
refine_landmarks=True,
|
| 19 |
min_detection_confidence=0.5)
|
| 20 |
|
|
|
|
| 21 |
# Functions for feature extraction
|
| 22 |
def extract_features(image, landmarks):
|
| 23 |
red_channel = image[:, :, 2]
|
|
|
|
| 117 |
return html
|
| 118 |
|
| 119 |
|
| 120 |
+
# Build health card layout
|
| 121 |
+
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
| 122 |
+
from datetime import datetime
|
| 123 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
| 124 |
+
|
| 125 |
+
html = f"""
|
| 126 |
+
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
| 127 |
+
|
| 128 |
+
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
| 129 |
+
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
| 130 |
+
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
| 131 |
+
<h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
|
| 132 |
+
</div>
|
| 133 |
+
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
|
| 134 |
+
<div>Report Date: {current_date}</div>
|
| 135 |
+
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
|
| 136 |
+
</div>
|
| 137 |
+
</div>
|
| 138 |
+
<div style="display: flex; align-items: center;">
|
| 139 |
+
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
| 140 |
+
<div>
|
| 141 |
+
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else "Lab Test Results"}</h2>
|
| 142 |
+
<p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}</p>
|
| 143 |
+
<p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
|
| 144 |
+
</div>
|
| 145 |
+
</div>
|
| 146 |
+
</div>
|
| 147 |
+
|
| 148 |
+
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
| 149 |
+
{test_results['Hematology']}
|
| 150 |
+
{test_results['Iron Panel']}
|
| 151 |
+
{test_results['Liver & Kidney']}
|
| 152 |
+
{test_results['Electrolytes']}
|
| 153 |
+
{test_results['Vitals']}
|
| 154 |
+
</div>
|
| 155 |
+
|
| 156 |
+
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
|
| 157 |
+
<h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
|
| 158 |
+
<div style="color: #444; line-height: 1.6;">
|
| 159 |
+
{summary}
|
| 160 |
+
</div>
|
| 161 |
+
</div>
|
| 162 |
+
|
| 163 |
+
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
| 164 |
+
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
| 165 |
+
📥 Download Report
|
| 166 |
+
</button>
|
| 167 |
+
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
| 168 |
+
📞 Find Labs Near Me
|
| 169 |
+
</button>
|
| 170 |
+
</div>
|
| 171 |
+
</div>
|
| 172 |
+
|
| 173 |
+
<style>
|
| 174 |
+
@media print {{
|
| 175 |
+
body * {{
|
| 176 |
+
visibility: hidden;
|
| 177 |
+
}}
|
| 178 |
+
#health-card, #health-card * {{
|
| 179 |
+
visibility: visible;
|
| 180 |
+
}}
|
| 181 |
+
#health-card {{
|
| 182 |
+
position: absolute;
|
| 183 |
+
left: 0;
|
| 184 |
+
top: 0;
|
| 185 |
+
width: 100% !important;
|
| 186 |
+
max-width: none !important;
|
| 187 |
+
margin: 0 !important;
|
| 188 |
+
box-shadow: none !important;
|
| 189 |
+
border: none !important;
|
| 190 |
+
}}
|
| 191 |
+
button {{
|
| 192 |
+
display: none !important;
|
| 193 |
+
}}
|
| 194 |
+
}}
|
| 195 |
+
</style>
|
| 196 |
+
"""
|
| 197 |
+
return html
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# Function to generate PDF from HTML content using reportlab
|
| 201 |
def generate_pdf(html_content):
|
| 202 |
buffer = BytesIO()
|
| 203 |
c = canvas.Canvas(buffer, pagesize=letter)
|
|
|
|
| 240 |
landmarks = result.multi_face_landmarks[
|
| 241 |
0].landmark # Fixed: Use integer index
|
| 242 |
features = extract_features(frame_rgb, landmarks)
|
| 243 |
+
|
| 244 |
+
# Convert features to pandas DataFrame if the model was trained with column names
|
| 245 |
+
features_df = pd.DataFrame([features], columns=["feature1", "feature2", "feature3"])
|
| 246 |
+
|
| 247 |
test_values = {}
|
| 248 |
r2_scores = {}
|
| 249 |
|
| 250 |
for label in models:
|
| 251 |
if label == "Hemoglobin":
|
| 252 |
+
prediction = models[label].predict(features_df)[0]
|
| 253 |
test_values[label] = prediction
|
| 254 |
r2_scores[label] = 0.385
|
| 255 |
else:
|