Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,7 +47,6 @@ def train_model(output_range):
|
|
| 47 |
model = LinearRegression().fit(X, y)
|
| 48 |
return model
|
| 49 |
|
| 50 |
-
|
| 51 |
# Load models
|
| 52 |
try:
|
| 53 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
@@ -160,10 +159,13 @@ def save_results_to_pdf(test_results, filename):
|
|
| 160 |
return f"Error saving PDF: {str(e)}", None
|
| 161 |
|
| 162 |
# Build health card layout
|
| 163 |
-
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
| 164 |
from datetime import datetime
|
| 165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
| 166 |
|
|
|
|
|
|
|
|
|
|
| 167 |
html = f"""
|
| 168 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
| 169 |
|
|
@@ -203,22 +205,14 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
| 203 |
</div>
|
| 204 |
|
| 205 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
| 206 |
-
<
|
| 207 |
📥 Download Report
|
| 208 |
-
</
|
| 209 |
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
| 210 |
📞 Find Labs Near Me
|
| 211 |
</button>
|
| 212 |
</div>
|
| 213 |
</div>
|
| 214 |
-
<style>
|
| 215 |
-
@media print {{
|
| 216 |
-
/* Hide input sections during print */
|
| 217 |
-
.gradio-container {{ display: block; }}
|
| 218 |
-
/* Keep only the health card visible */
|
| 219 |
-
#health-card {{ display: block; }}
|
| 220 |
-
}}
|
| 221 |
-
</style>
|
| 222 |
"""
|
| 223 |
return html
|
| 224 |
|
|
@@ -246,7 +240,7 @@ def analyze_face(input_data):
|
|
| 246 |
result = face_mesh.process(frame_rgb)
|
| 247 |
if not result.multi_face_landmarks:
|
| 248 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
| 249 |
-
landmarks = result.multi_face_landmarks[0].landmark
|
| 250 |
features = extract_features(frame_rgb, landmarks)
|
| 251 |
test_values = {}
|
| 252 |
r2_scores = {}
|
|
@@ -264,14 +258,12 @@ def analyze_face(input_data):
|
|
| 264 |
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
| 265 |
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
| 266 |
brightness_std = np.std(gray) / 255
|
| 267 |
-
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
|
| 268 |
-
100:150, 100:150].size else 0.5
|
| 269 |
hr_features = [brightness_std, green_std, tone_index]
|
| 270 |
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
| 271 |
skin_patch = frame_rgb[100:150, 100:150]
|
| 272 |
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
| 273 |
-
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
|
| 274 |
-
cv2.COLOR_RGB2GRAY)) / 255
|
| 275 |
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
| 276 |
spo2 = spo2_model.predict([spo2_features])[0]
|
| 277 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
|
@@ -281,8 +273,7 @@ def analyze_face(input_data):
|
|
| 281 |
build_table("🩸 Hematology",
|
| 282 |
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
| 283 |
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
| 284 |
-
("Platelet Count", test_values["Platelet Count"],
|
| 285 |
-
(150, 450))]),
|
| 286 |
"Iron Panel":
|
| 287 |
build_table("🧬 Iron Panel",
|
| 288 |
[("Iron", test_values["Iron"], (60, 170)),
|
|
@@ -312,18 +303,6 @@ def analyze_face(input_data):
|
|
| 312 |
_, buffer = cv2.imencode('.png', frame_rgb)
|
| 313 |
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 314 |
|
| 315 |
-
# Use global patient details
|
| 316 |
-
global current_patient_details
|
| 317 |
-
health_card_html = build_health_card(
|
| 318 |
-
profile_image_base64,
|
| 319 |
-
test_results,
|
| 320 |
-
summary,
|
| 321 |
-
current_patient_details['name'],
|
| 322 |
-
current_patient_details['age'],
|
| 323 |
-
current_patient_details['gender'],
|
| 324 |
-
current_patient_details['id']
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
# Generate PDF and return for download
|
| 328 |
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
| 329 |
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
|
@@ -333,9 +312,20 @@ def analyze_face(input_data):
|
|
| 333 |
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
| 334 |
shutil.copy(pdf_filepath, temp_pdf_path)
|
| 335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
return health_card_html, temp_pdf_path
|
| 337 |
|
| 338 |
-
|
| 339 |
# Modified route_inputs function
|
| 340 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
| 341 |
if mode == "Image" and image is None:
|
|
@@ -355,7 +345,6 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
| 355 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
| 356 |
return health_card_html, pdf_file_path
|
| 357 |
|
| 358 |
-
|
| 359 |
# Create Gradio interface
|
| 360 |
with gr.Blocks() as demo:
|
| 361 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
|
|
|
| 47 |
model = LinearRegression().fit(X, y)
|
| 48 |
return model
|
| 49 |
|
|
|
|
| 50 |
# Load models
|
| 51 |
try:
|
| 52 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
|
|
| 159 |
return f"Error saving PDF: {str(e)}", None
|
| 160 |
|
| 161 |
# Build health card layout
|
| 162 |
+
def build_health_card(profile_image, test_results, summary, pdf_filepath, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
| 163 |
from datetime import datetime
|
| 164 |
current_date = datetime.now().strftime("%B %d, %Y")
|
| 165 |
|
| 166 |
+
# Use a relative path for the download link to work in Gradio
|
| 167 |
+
pdf_filename = os.path.basename(pdf_filepath) if pdf_filepath else "health_report.pdf"
|
| 168 |
+
|
| 169 |
html = f"""
|
| 170 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
| 171 |
|
|
|
|
| 205 |
</div>
|
| 206 |
|
| 207 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
| 208 |
+
<a href="/file=/tmp/{pdf_filename}" download="{pdf_filename}" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s; text-decoration: none;">
|
| 209 |
📥 Download Report
|
| 210 |
+
</a>
|
| 211 |
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
| 212 |
📞 Find Labs Near Me
|
| 213 |
</button>
|
| 214 |
</div>
|
| 215 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
"""
|
| 217 |
return html
|
| 218 |
|
|
|
|
| 240 |
result = face_mesh.process(frame_rgb)
|
| 241 |
if not result.multi_face_landmarks:
|
| 242 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
| 243 |
+
landmarks = result.multi_face_landmarks[0].landmark
|
| 244 |
features = extract_features(frame_rgb, landmarks)
|
| 245 |
test_values = {}
|
| 246 |
r2_scores = {}
|
|
|
|
| 258 |
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
| 259 |
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
| 260 |
brightness_std = np.std(gray) / 255
|
| 261 |
+
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
|
|
|
|
| 262 |
hr_features = [brightness_std, green_std, tone_index]
|
| 263 |
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
| 264 |
skin_patch = frame_rgb[100:150, 100:150]
|
| 265 |
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
| 266 |
+
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
|
|
|
|
| 267 |
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
| 268 |
spo2 = spo2_model.predict([spo2_features])[0]
|
| 269 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
|
|
|
| 273 |
build_table("🩸 Hematology",
|
| 274 |
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
| 275 |
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
| 276 |
+
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
|
|
|
|
| 277 |
"Iron Panel":
|
| 278 |
build_table("🧬 Iron Panel",
|
| 279 |
[("Iron", test_values["Iron"], (60, 170)),
|
|
|
|
| 303 |
_, buffer = cv2.imencode('.png', frame_rgb)
|
| 304 |
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
# Generate PDF and return for download
|
| 307 |
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
| 308 |
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
|
|
|
| 312 |
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
| 313 |
shutil.copy(pdf_filepath, temp_pdf_path)
|
| 314 |
|
| 315 |
+
# Pass pdf_filepath to build_health_card
|
| 316 |
+
health_card_html = build_health_card(
|
| 317 |
+
profile_image_base64,
|
| 318 |
+
test_results,
|
| 319 |
+
summary,
|
| 320 |
+
temp_pdf_path, # Pass the PDF path
|
| 321 |
+
current_patient_details['name'],
|
| 322 |
+
current_patient_details['age'],
|
| 323 |
+
current_patient_details['gender'],
|
| 324 |
+
current_patient_details['id']
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
return health_card_html, temp_pdf_path
|
| 328 |
|
|
|
|
| 329 |
# Modified route_inputs function
|
| 330 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
| 331 |
if mode == "Image" and image is None:
|
|
|
|
| 345 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
| 346 |
return health_card_html, pdf_file_path
|
| 347 |
|
|
|
|
| 348 |
# Create Gradio interface
|
| 349 |
with gr.Blocks() as demo:
|
| 350 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|