Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,7 +47,6 @@ def train_model(output_range):
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
50 |
-
|
51 |
# Load models
|
52 |
try:
|
53 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
@@ -160,10 +159,13 @@ def save_results_to_pdf(test_results, filename):
|
|
160 |
return f"Error saving PDF: {str(e)}", None
|
161 |
|
162 |
# Build health card layout
|
163 |
-
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
164 |
from datetime import datetime
|
165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
166 |
|
|
|
|
|
|
|
167 |
html = f"""
|
168 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
169 |
|
@@ -203,22 +205,14 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
203 |
</div>
|
204 |
|
205 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
206 |
-
<
|
207 |
📥 Download Report
|
208 |
-
</
|
209 |
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
210 |
📞 Find Labs Near Me
|
211 |
</button>
|
212 |
</div>
|
213 |
</div>
|
214 |
-
<style>
|
215 |
-
@media print {{
|
216 |
-
/* Hide input sections during print */
|
217 |
-
.gradio-container {{ display: block; }}
|
218 |
-
/* Keep only the health card visible */
|
219 |
-
#health-card {{ display: block; }}
|
220 |
-
}}
|
221 |
-
</style>
|
222 |
"""
|
223 |
return html
|
224 |
|
@@ -246,7 +240,7 @@ def analyze_face(input_data):
|
|
246 |
result = face_mesh.process(frame_rgb)
|
247 |
if not result.multi_face_landmarks:
|
248 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
249 |
-
landmarks = result.multi_face_landmarks[0].landmark
|
250 |
features = extract_features(frame_rgb, landmarks)
|
251 |
test_values = {}
|
252 |
r2_scores = {}
|
@@ -264,14 +258,12 @@ def analyze_face(input_data):
|
|
264 |
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
265 |
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
266 |
brightness_std = np.std(gray) / 255
|
267 |
-
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
|
268 |
-
100:150, 100:150].size else 0.5
|
269 |
hr_features = [brightness_std, green_std, tone_index]
|
270 |
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
271 |
skin_patch = frame_rgb[100:150, 100:150]
|
272 |
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
273 |
-
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
|
274 |
-
cv2.COLOR_RGB2GRAY)) / 255
|
275 |
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
276 |
spo2 = spo2_model.predict([spo2_features])[0]
|
277 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
@@ -281,8 +273,7 @@ def analyze_face(input_data):
|
|
281 |
build_table("🩸 Hematology",
|
282 |
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
283 |
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
284 |
-
("Platelet Count", test_values["Platelet Count"],
|
285 |
-
(150, 450))]),
|
286 |
"Iron Panel":
|
287 |
build_table("🧬 Iron Panel",
|
288 |
[("Iron", test_values["Iron"], (60, 170)),
|
@@ -312,18 +303,6 @@ def analyze_face(input_data):
|
|
312 |
_, buffer = cv2.imencode('.png', frame_rgb)
|
313 |
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
314 |
|
315 |
-
# Use global patient details
|
316 |
-
global current_patient_details
|
317 |
-
health_card_html = build_health_card(
|
318 |
-
profile_image_base64,
|
319 |
-
test_results,
|
320 |
-
summary,
|
321 |
-
current_patient_details['name'],
|
322 |
-
current_patient_details['age'],
|
323 |
-
current_patient_details['gender'],
|
324 |
-
current_patient_details['id']
|
325 |
-
)
|
326 |
-
|
327 |
# Generate PDF and return for download
|
328 |
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
329 |
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
@@ -333,9 +312,20 @@ def analyze_face(input_data):
|
|
333 |
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
334 |
shutil.copy(pdf_filepath, temp_pdf_path)
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
return health_card_html, temp_pdf_path
|
337 |
|
338 |
-
|
339 |
# Modified route_inputs function
|
340 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
341 |
if mode == "Image" and image is None:
|
@@ -355,7 +345,6 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
355 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
356 |
return health_card_html, pdf_file_path
|
357 |
|
358 |
-
|
359 |
# Create Gradio interface
|
360 |
with gr.Blocks() as demo:
|
361 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
|
|
50 |
# Load models
|
51 |
try:
|
52 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
|
159 |
return f"Error saving PDF: {str(e)}", None
|
160 |
|
161 |
# Build health card layout
|
162 |
+
def build_health_card(profile_image, test_results, summary, pdf_filepath, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
163 |
from datetime import datetime
|
164 |
current_date = datetime.now().strftime("%B %d, %Y")
|
165 |
|
166 |
+
# Use a relative path for the download link to work in Gradio
|
167 |
+
pdf_filename = os.path.basename(pdf_filepath) if pdf_filepath else "health_report.pdf"
|
168 |
+
|
169 |
html = f"""
|
170 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
171 |
|
|
|
205 |
</div>
|
206 |
|
207 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
208 |
+
<a href="/file=/tmp/{pdf_filename}" download="{pdf_filename}" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s; text-decoration: none;">
|
209 |
📥 Download Report
|
210 |
+
</a>
|
211 |
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
212 |
📞 Find Labs Near Me
|
213 |
</button>
|
214 |
</div>
|
215 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
"""
|
217 |
return html
|
218 |
|
|
|
240 |
result = face_mesh.process(frame_rgb)
|
241 |
if not result.multi_face_landmarks:
|
242 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
243 |
+
landmarks = result.multi_face_landmarks[0].landmark
|
244 |
features = extract_features(frame_rgb, landmarks)
|
245 |
test_values = {}
|
246 |
r2_scores = {}
|
|
|
258 |
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
259 |
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
260 |
brightness_std = np.std(gray) / 255
|
261 |
+
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
|
|
|
262 |
hr_features = [brightness_std, green_std, tone_index]
|
263 |
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
264 |
skin_patch = frame_rgb[100:150, 100:150]
|
265 |
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
266 |
+
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
|
|
|
267 |
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
268 |
spo2 = spo2_model.predict([spo2_features])[0]
|
269 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
|
|
273 |
build_table("🩸 Hematology",
|
274 |
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
275 |
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
276 |
+
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
|
|
|
277 |
"Iron Panel":
|
278 |
build_table("🧬 Iron Panel",
|
279 |
[("Iron", test_values["Iron"], (60, 170)),
|
|
|
303 |
_, buffer = cv2.imencode('.png', frame_rgb)
|
304 |
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
# Generate PDF and return for download
|
307 |
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
308 |
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
|
|
312 |
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
313 |
shutil.copy(pdf_filepath, temp_pdf_path)
|
314 |
|
315 |
+
# Pass pdf_filepath to build_health_card
|
316 |
+
health_card_html = build_health_card(
|
317 |
+
profile_image_base64,
|
318 |
+
test_results,
|
319 |
+
summary,
|
320 |
+
temp_pdf_path, # Pass the PDF path
|
321 |
+
current_patient_details['name'],
|
322 |
+
current_patient_details['age'],
|
323 |
+
current_patient_details['gender'],
|
324 |
+
current_patient_details['id']
|
325 |
+
)
|
326 |
+
|
327 |
return health_card_html, temp_pdf_path
|
328 |
|
|
|
329 |
# Modified route_inputs function
|
330 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
331 |
if mode == "Image" and image is None:
|
|
|
345 |
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
346 |
return health_card_html, pdf_file_path
|
347 |
|
|
|
348 |
# Create Gradio interface
|
349 |
with gr.Blocks() as demo:
|
350 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|