File size: 17,921 Bytes
24a059f e109361 24a059f d24563e aeeda1a 24a059f 13e4c4d 7fcd557 c308901 13e4c4d d24563e 13e4c4d d24563e e109361 fb73da9 e109361 fb73da9 e109361 13e4c4d 6bcbc7b e109361 13e4c4d 24a059f 8b80c42 9f7748a 8b80c42 2f1a209 d67bb93 8b80c42 d67bb93 8b80c42 2f1a209 8b80c42 2f1a209 8b80c42 d30a8bb 8b80c42 d67bb93 8b80c42 2f1a209 d67bb93 9f7748a e109361 9f7748a 1fe4357 d24563e 13e4c4d d24563e 13e4c4d d24563e 8f89713 104bf5a 8f89713 1fe4357 8f89713 1fe4357 2f1a209 8f89713 e109361 1f0c8bc b8ab1fc 7bdeca8 e359f0e ea94a6e d55e531 7098daa 45d118c 7bdeca8 673f0ca d55e531 ea94a6e 7bdeca8 d55e531 7098daa b8ab1fc 7098daa ea94a6e 7098daa fa8abad d55e531 7098daa d55e531 ea94a6e d55e531 7098daa d55e531 7098daa ea94a6e 7098daa ea94a6e d55e531 7098daa d55e531 ea94a6e d55e531 7098daa ea94a6e 7098daa cda6947 7098daa d55e531 7098daa d55e531 fa8abad d55e531 cda6947 7098daa cda6947 ea94a6e d55e531 7098daa ea94a6e 7098daa ea94a6e 7098daa ea94a6e 7098daa 79be5a0 fa8abad 5376412 e359f0e 5376412 e359f0e 5376412 e359f0e 5376412 e359f0e 5376412 e359f0e 5376412 e359f0e 7ccc1b7 5376412 7e020a6 5376412 e359f0e d51aeb7 5376412 ea94a6e 5376412 ea94a6e 5376412 ea94a6e 7bdeca8 d51aeb7 5376412 e359f0e 5376412 c2fa8d0 3be6b18 c2fa8d0 3be6b18 5376412 fca838b 7fcd557 3be6b18 1fe4357 c2fa8d0 7fcd557 d24563e 5376412 73c3f03 35ad686 514663d 35ad686 5376412 7fcd557 5376412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder
LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
elif os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
return clean[0].upper() if clean else None
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboard.csv",
repo_id="SondosMB/ss", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
def load_leaderboard():
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Valid Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
})
return pd.read_csv(LEADERBOARD_FILE)
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
predictions_df = pd.read_csv(prediction_file.name)
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
}
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
initialize_leaderboard_file()
# Function to set default mode
# Function to set default mode
import gradio as gr
# # Ensure CSS is correctly defined
# css_tech_theme = """
# body {
# background-color: #f4f6fa;
# color: #333333;
# font-family: 'Roboto', sans-serif;
# line-height: 1.8;
# }
# .center-content {
# display: flex;
# flex-direction: column;
# align-items: center;
# justify-content: center;
# text-align: center;
# margin: 30px 0;
# padding: 20px;
# }
# h1, h2 {
# color: #5e35b1;
# margin: 15px 0;
# text-align: center;
# }
# img {
# width: 100px;
# height: 100px;
# }
# """
# # Create the Gradio Interface
# with gr.Blocks(css=css_tech_theme) as demo:
# gr.Markdown("""
# <div class="center-content">
# <h1>π Mobile-MMLU Benchmark Competition</h1>
# <h2>π Welcome to the Competition</h2>
# <p>
# Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions,
# view the leaderboard, and track your performance!
# </p>
# <hr>
# </div>
# """)
# with gr.Tabs(elem_id="tabs"):
# with gr.TabItem("π Overview"):
# gr.Markdown("""
# **Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields**.
# ---
# ## What is Mobile-MMLU?
# Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
# ---
# ## How It Works
# 1. **Download the Dataset**
# Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
# 2. **Generate Predictions**
# Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
# 3. **Submit Predictions**
# Upload your predictions on this platform.
# 4. **Evaluation**
# Submissions are scored on accuracy.
# 5. **Leaderboard**
# View real-time rankings on the leaderboard.
# ---
# """)
# with gr.TabItem("π€ Submission"):
# with gr.Row():
# file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
# with gr.Row():
# overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
# eval_button = gr.Button("Evaluate")
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
# def handle_evaluation(file, model_name, add_to_leaderboard):
# status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
# if leaderboard.empty:
# overall_accuracy = 0
# else:
# overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
# return status, overall_accuracy
# eval_button.click(
# handle_evaluation,
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
# outputs=[eval_status, overall_accuracy_display],
# )
# with gr.TabItem("π
Leaderboard"):
# leaderboard_table = gr.Dataframe(
# value=load_leaderboard(),
# label="Leaderboard",
# interactive=False,
# wrap=True,
# )
# refresh_button = gr.Button("Refresh Leaderboard")
# refresh_button.click(
# lambda: load_leaderboard(),
# inputs=[],
# outputs=[leaderboard_table],
# )
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
# demo.launch()
import gradio as gr
# Custom CSS to match website style
# Define CSS to match a modern, professional design
# Define enhanced CSS for the entire layout
css_tech_theme = """
body {
font-family: 'Roboto', sans-serif;
background-color: #f4f6fa;
color: #333333;
margin: 0;
padding: 0;
}
/* Header Styling */
header {
text-align: center;
padding: 60px 20px;
background: linear-gradient(135deg, #6a1b9a, #64b5f6);
color: #ffffff;
border-radius: 12px;
margin-bottom: 30px;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
}
header h1 {
font-size: 3.5em;
font-weight: bold;
margin-bottom: 10px;
}
header h2 {
font-size: 2em;
margin-bottom: 15px;
}
header p {
font-size: 1.2em;
line-height: 1.8;
}
.header-buttons {
display: flex;
justify-content: center;
gap: 15px;
margin-top: 20px;
}
.header-buttons a {
text-decoration: none;
font-size: 1.1em;
padding: 15px 30px;
border-radius: 30px;
font-weight: bold;
background: #ffffff;
color: #6a1b9a;
transition: transform 0.3s, background 0.3s;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.header-buttons a:hover {
background: #64b5f6;
color: #ffffff;
transform: scale(1.05);
}
/* Pre-Tabs Section */
.pre-tabs {
text-align: center;
padding: 40px 20px;
background: linear-gradient(135deg, #ffffff, #f9fafb);
border-top: 5px solid #64b5f6;
border-bottom: 5px solid #6a1b9a;
}
.pre-tabs h2 {
font-size: 2.5em;
color: #333333;
margin-bottom: 15px;
}
.pre-tabs p {
font-size: 1.2em;
color: #555555;
line-height: 1.8;
}
/* Tabs Section */
.tabs {
margin: 0 auto;
padding: 20px;
background: #ffffff;
border-radius: 12px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
max-width: 1200px;
}
/* Post-Tabs Section */
.post-tabs {
text-align: center;
padding: 40px 20px;
background: linear-gradient(135deg, #64b5f6, #6a1b9a);
color: #ffffff;
border-radius: 12px;
margin-top: 30px;
}
.post-tabs h2 {
font-size: 2.5em;
margin-bottom: 15px;
}
.post-tabs p {
font-size: 1.2em;
line-height: 1.8;
margin-bottom: 20px;
}
.post-tabs a {
text-decoration: none;
font-size: 1.1em;
padding: 15px 30px;
border-radius: 30px;
font-weight: bold;
background: #ffffff;
color: #6a1b9a;
transition: transform 0.3s, background 0.3s;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.post-tabs a:hover {
background: #6a1b9a;
color: #ffffff;
transform: scale(1.05);
}
/* Footer */
footer {
background: linear-gradient(135deg, #6a1b9a, #8e44ad);
color: #ffffff;
text-align: center;
padding: 40px 20px;
margin-top: 30px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
}
footer h2 {
font-size: 1.8em;
margin-bottom: 15px;
}
footer p {
font-size: 1.1em;
line-height: 1.6;
margin-bottom: 20px;
}
footer .social-links {
display: flex;
justify-content: center;
gap: 15px;
margin-top: 20px;
}
footer .social-links a {
text-decoration: none;
font-size: 1.1em;
padding: 10px 20px;
border-radius: 8px;
font-weight: bold;
background: #ffffff;
color: #6a1b9a;
transition: transform 0.3s, background 0.3s;
}
footer .social-links a:hover {
background: #64b5f6;
color: #ffffff;
transform: scale(1.1);
}
"""
# Gradio Interface
with gr.Blocks(css=css_tech_theme) as demo:
# Header Section
gr.Markdown("""
<header>
<h1>π Mobile-MMLU Benchmark Competition</h1>
<h2>π Push the Boundaries of Mobile AI</h2>
<p>
Test and optimize mobile-compatible Large Language Models (LLMs) with cutting-edge benchmarks
across 80 fields and over 16,000 questions.
</p>
<div class="header-buttons">
<a href="#overview">Learn More</a>
<a href="#submission">Submit Predictions</a>
<a href="#leaderboard">View Leaderboard</a>
</div>
</header>
""")
# Pre-Tabs Section
gr.Markdown("""
<section class="pre-tabs">
<h2>Why Participate?</h2>
<p>
The Mobile-MMLU Benchmark Competition is a unique opportunity to test your LLMs against
real-world scenarios. Compete to drive innovation and make your mark in mobile AI.
</p>
</section>
""")
# Tabs Section
with gr.Tabs(elem_id="tabs"):
# Overview Tab
with gr.TabItem("π Overview"):
gr.Markdown("""
<div class="tabs">
<h2>About the Competition</h2>
<p>
The **Mobile-MMLU Benchmark Competition** is an exciting challenge for mobile-optimized
LLMs. Compete to achieve the highest accuracy and contribute to advancements in mobile AI.
</p>
<h3>How It Works</h3>
<ul>
<li>1οΈβ£ <strong>Download the Dataset:</strong> Access the dataset and instructions on our
<a href="https://github.com/your-github-repo" target="_blank">GitHub page</a>.</li>
<li>2οΈβ£ <strong>Generate Predictions:</strong> Use your LLM to answer the dataset questions.
Format your predictions as a CSV file.</li>
<li>3οΈβ£ <strong>Submit Predictions:</strong> Upload your predictions on this platform.</li>
<li>4οΈβ£ <strong>Evaluation:</strong> Submissions are scored based on accuracy.</li>
<li>5οΈβ£ <strong>Leaderboard:</strong> View real-time rankings on the leaderboard.</li>
</ul>
</div>
""")
# Submission Tab
with gr.TabItem("π€ Submission"):
gr.Markdown("<div class='tabs'><h2>Submit Your Predictions</h2></div>")
with gr.Row():
file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
with gr.Row():
overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
eval_button = gr.Button("Evaluate")
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
def handle_evaluation(file, model_name, add_to_leaderboard):
return "Evaluation complete. Model added to leaderboard.", 85.0
eval_button.click(
handle_evaluation,
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
outputs=[eval_status, overall_accuracy_display],
)
# Leaderboard Tab
with gr.TabItem("π
Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
# Post-Tabs Section
gr.Markdown("""
<section class="post-tabs">
<h2>Ready to Compete?</h2>
<p>
Submit your predictions today and make your mark in advancing mobile AI technologies.
Show the world what your model can achieve!
</p>
<a href="#submission">Start Submitting</a>
</section>
""")
# Footer Section
gr.Markdown("""
<footer>
<h2>Stay Connected</h2>
<p>
Follow us on social media or contact us for any queries. Let's shape the future of AI together!
</p>
<div class="social-links">
<a href="https://twitter.com" target="_blank">Twitter</a>
<a href="https://linkedin.com" target="_blank">LinkedIn</a>
<a href="https://github.com" target="_blank">GitHub</a>
</div>
</footer>
""")
# Launch the interface
demo.launch() |