File size: 16,553 Bytes
24a059f
 
e109361
24a059f
 
d24563e
aeeda1a
24a059f
13e4c4d
 
7fcd557
c308901
13e4c4d
d24563e
13e4c4d
 
 
d24563e
e109361
fb73da9
e109361
fb73da9
e109361
 
 
 
 
13e4c4d
 
 
 
 
6bcbc7b
e109361
 
 
 
 
13e4c4d
24a059f
8b80c42
9f7748a
8b80c42
 
 
2f1a209
 
 
 
 
 
 
 
 
d67bb93
8b80c42
d67bb93
8b80c42
 
2f1a209
 
 
 
8b80c42
2f1a209
8b80c42
 
 
 
 
 
 
 
 
 
 
 
d30a8bb
 
8b80c42
d67bb93
8b80c42
2f1a209
d67bb93
9f7748a
e109361
 
 
 
 
 
 
 
 
 
 
9f7748a
1fe4357
d24563e
 
 
13e4c4d
 
d24563e
 
 
13e4c4d
 
d24563e
 
 
8f89713
104bf5a
8f89713
 
aabd188
8f89713
aabd188
 
 
 
 
 
 
 
 
 
8f89713
 
 
 
 
 
 
 
 
 
 
 
1fe4357
8f89713
 
 
 
 
 
1fe4357
 
 
 
 
2f1a209
8f89713
 
 
e109361
1f0c8bc
b8ab1fc
7bdeca8
e359f0e
 
a1ee136
 
 
45d118c
7bdeca8
a1ee136
d55e531
 
a1ee136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c755c1e
a1ee136
 
 
 
07aee39
7098daa
ea94a6e
d55e531
a1ee136
7098daa
 
a1ee136
 
 
 
 
 
09f2be6
a1ee136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b1517
a1ee136
cda6947
a1ee136
 
 
 
 
 
93b1517
07aee39
93b1517
 
 
07aee39
93b1517
 
a1ee136
 
 
 
 
 
 
 
 
 
 
 
 
d55e531
a1ee136
 
 
23f10f8
fa8abad
d55e531
a1ee136
 
cda6947
a1ee136
 
 
 
 
cda6947
a1ee136
 
c755c1e
a1ee136
 
 
 
c755c1e
a1ee136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b75ebe
a1ee136
 
 
 
23f10f8
a1ee136
 
 
1f20775
 
a1ee136
 
1f20775
a1ee136
 
1f20775
 
a1ee136
1f20775
 
a1ee136
1f20775
 
a1ee136
1f20775
 
a1ee136
 
1f20775
 
 
 
 
 
 
 
 
79be5a0
fa8abad
 
5dc58a0
87904ff
e359f0e
87904ff
e359f0e
87904ff
3ab70ce
 
87904ff
 
 
 
 
c912ab6
 
3ab70ce
c912ab6
3ab70ce
87904ff
e359f0e
87904ff
ecfd2b0
7e020a6
ecfd2b0
e359f0e
d51aeb7
ecfd2b0
f630bf2
 
 
 
 
 
5de4f09
 
 
f630bf2
ecfd2b0
 
 
 
 
 
 
 
 
 
 
5d7850e
 
40a6d25
 
 
 
 
5d7850e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6ca2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ede32f
d24563e
73c3f03
35ad686
5dc58a0
35ad686
 
5dc58a0
 
514663d
35ad686
5dc58a0
35ad686
 
 
3d8b2b7
ecfd2b0
 
 
 
3ab70ce
ecfd2b0
 
3ab70ce
ecfd2b0
 
 
 
 
 
 
 
 
 
 
09f2be6
5ede32f
09f2be6
ecfd2b0
 
5376412
5dc58a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder

LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable is not set or invalid.")

def initialize_leaderboard_file():
    """
    Ensure the leaderboard file exists and has the correct headers.
    """
    if not os.path.exists(LEADERBOARD_FILE):
        pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ]).to_csv(LEADERBOARD_FILE, index=False)
    elif os.stat(LEADERBOARD_FILE).st_size == 0:
        pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ]).to_csv(LEADERBOARD_FILE, index=False)

def clean_answer(answer):
    if pd.isna(answer):
        return None
    answer = str(answer)
    clean = re.sub(r'[^A-Da-d]', '', answer)
    return clean[0].upper() if clean else None


def update_leaderboard(results):
    """
    Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
    """
    new_entry = {
        "Model Name": results['model_name'],
        "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
        "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
        "Correct Predictions": results['correct_predictions'],
        "Total Questions": results['total_questions'],
        "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
    }

    try:
        # Update the local leaderboard file
        new_entry_df = pd.DataFrame([new_entry])
        file_exists = os.path.exists(LEADERBOARD_FILE)
        
        new_entry_df.to_csv(
            LEADERBOARD_FILE,
            mode='a',  # Append mode
            index=False,
            header=not file_exists  # Write header only if the file is new
        )
        print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")

        # Push the updated file to the Hugging Face repository using HTTP API
        api = HfApi()
        token = HfFolder.get_token()
        
        api.upload_file(
            path_or_fileobj=LEADERBOARD_FILE,
            path_in_repo="leaderboard.csv",
            repo_id="SondosMB/ss",  # Your Space repository
            repo_type="space",
            token=token
        )
        print("Leaderboard changes pushed to Hugging Face repository.")
        
    except Exception as e:
        print(f"Error updating leaderboard file: {e}")



def load_leaderboard():
    if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
        return pd.DataFrame({
            "Model Name": [],
            "Overall Accuracy": [],
            "Valid Accuracy": [],
            "Correct Predictions": [],
            "Total Questions": [],
            "Timestamp": [],
        })
    return pd.read_csv(LEADERBOARD_FILE)

def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
    try:
        ground_truth_path = hf_hub_download(
            repo_id="SondosMB/ground-truth-dataset",
            filename="ground_truth.csv",
            repo_type="dataset",
            use_auth_token=True
        )
        ground_truth_df = pd.read_csv(ground_truth_path)
    except FileNotFoundError:
        return "Ground truth file not found in the dataset repository.", load_leaderboard()
    except Exception as e:
        return f"Error loading ground truth: {e}", load_leaderboard()

    if not prediction_file:
        return "Prediction file not uploaded.", load_leaderboard()

    try:
        #load predition file
        predictions_df = pd.read_csv(prediction_file.name)
         # Validate required columns in prediction file
        required_columns = ['question_id', 'predicted_answer']
        missing_columns = [col for col in required_columns if col not in predictions_df.columns]
        if missing_columns:
            return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
                    load_leaderboard())

        # Validate 'Answer' column in ground truth file
        if 'Answer' not in ground_truth_df.columns:
            return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name if model_name else "Unknown Model",
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        if add_to_leaderboard:
            update_leaderboard(results)
            return "Evaluation completed and added to leaderboard.", load_leaderboard()
        else:
            return "Evaluation completed but not added to leaderboard.", load_leaderboard()
  
    except Exception as e:
        return f"Error during evaluation: {str(e)}", load_leaderboard()

initialize_leaderboard_file()

# Function to set default mode
# Function to set default mode
import gradio as gr

# # Custom CSS to match website style
# # Define CSS to match a modern, professional design
# # Define enhanced CSS for the entire layout
css_tech_theme = """
body {
    font-family: 'Roboto', sans-serif;
    background-color: #f4f6fa;
    color: #333333;
    margin: 0;
    padding: 0;
}

/* Header Styling */
header {
    text-align: center;
    padding: 60px 20px;
    background: linear-gradient(135deg, #6a1b9a, #64b5f6);
    color: #ffffff;
    border-radius: 12px;
    margin-bottom: 30px;
    box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
}

header h1 {
    font-size: 3.5em;
    font-weight: bold;
    margin-bottom: 10px;
}

header h2 {
    font-size: 2em;
    margin-bottom: 15px;
}

header p {
    font-size: 1em;
    line-height: 1.8;
}

.header-buttons {
    display: flex;
    justify-content: center;
    gap: 15px;
    margin-top: 20px;
}

.header-buttons a {
    text-decoration: none;
    font-size: 1.5em;
    padding: 15px 30px;
    border-radius: 30px;
    font-weight: bold;
    background: #ffffff;
    color: #6a1b9a;
    transition: transform 0.3s, background 0.3s;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}

.header-buttons a:hover {
    background: #64b5f6;
    color: #ffffff;
    transform: scale(1.05);
}

/* Pre-Tabs Section */

.pre-tabs {
    text-align: center;
    padding: 40px 20px;
    background: linear-gradient(135deg, #ffffff, #f9fafb);
    border-top: 5px solid #64b5f6;
    border-bottom: 5px solid #6a1b9a;
}

.pre-tabs h2, .post-tabs h2 {
    font-size: 3em; /* Increase the size for better visibility */
}

.pre-tabs p, .post-tabs p {
    font-size: 2.5em; /* Adjust paragraph text size */
}

.pre-tabs h2 {
    color: #333333;
    margin-bottom: 15px;
}

.pre-tabs p {
    color: #555555;
    line-height: 1.8;
}

/* Tabs Section */
.tabs {
    margin: 0 auto;
    padding: 20px;
    background: #ffffff;
    border-radius: 12px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
    /* max-width: 1300px; /* change 1 */ */
}

/* Post-Tabs Section */
.post-tabs {
    text-align: center;
    padding: 40px 20px;
    background: linear-gradient(135deg, #64b5f6, #6a1b9a);
    color: #ffffff;
    border-radius: 12px;
    margin-top: 30px;
}

.post-tabs h2 {
    font-size: 3.4em;
    margin-bottom: 15px;
}

.post-tabs p {
    font-size: 2em;
    line-height: 1.8;
    margin-bottom: 20px;
}

.post-tabs a {
    text-decoration: none;
    font-size: 1.1em;
    padding: 15px 30px;
    border-radius: 30px;
    font-weight: bold;
    background: #ffffff;
    color: #6a1b9a;
    transition: transform 0.3s, background 0.3s;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}

.post-tabs a:hover {
    background: #6a1b9a;
    color: #ffffff;
    transform: scale(1.05);
}

/* Footer */
footer {
    background: linear-gradient(135deg, #6a1b9a, #8e44ad);
    color: #ffffff;
    text-align: center;
    padding: 40px 20px;
    margin-top: 30px;
    border-radius: 12px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
}

footer h2 {
    font-size: 1.5em;
    margin-bottom: 15px;
}

footer p {
    font-size: 0.8em;
    line-height: 1.6;
    margin-bottom: 20px;
}
/* Link Styling */
.social-links {
    display: flex;
    justify-content: center;
    gap: 15px; /* Space between links */
}

.social-link {
    display: inline-block;
    text-decoration: none;
    color: #ffffff;
    background-color: #6a1b9a; /* Purple button background */
    padding: 10px 20px;
    border-radius: 30px;
    font-size: 16px;
    font-weight: bold;
    transition: all 0.3s ease;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}

.social-link:hover {
    background-color: #8c52d3; /* Darker shade on hover */
    box-shadow: 0 6px 15px rgba(0, 0, 0, 0.2);
    transform: translateY(-2px);
}

.social-link:active {
    transform: translateY(1px);
    box-shadow: 0 3px 8px rgba(0, 0, 0, 0.1);
}
"""

# Create the Gradio Interface

with gr.Blocks(css=css_tech_theme) as demo:
    # Header Section
    gr.Markdown("""
    <header>
        <h1>πŸ† Mobile-MMLU Challenge</h1>
        <h2>πŸš€ Pushing the Limits of Mobile LLMs</h2>
    </header>
    """)
#     # Pre-Tabs Section
    gr.Markdown("""
    <section class="pre-tabs">
    <h2>Why Participate?</h2>
    <p>
    The Mobile-MMLU Benchmark Competition offers a unique opportunity to evaluate your LLMs in real-world mobile scenarios. Join the challenge to drive innovation, showcase your expertise, and shape the future of mobile AI.
    </p>

    </section>
    """)
    
 # Tabs Section
    with gr.Tabs(elem_id="tabs"):
        # Overview Tab
        with gr.TabItem("πŸ“– Overview"):
            gr.Markdown("""
            <div class="tabs">
            <h2>About the Competition</h2>
            <p>The <strong>Mobile-MMLU Benchmark Competition</strong> is a premier challenge designed to evaluate and advance mobile-optimized Large Language Models (LLMs). It provides an unparalleled opportunity to showcase your model's ability to handle diverse, real-world scenarios while pushing the boundaries of mobile intelligence.</p>
            <p>With a dataset spanning <strong>80 distinct fields</strong> and featuring <strong>16,186 questions</strong>, this competition emphasizes practical application. From education and healthcare to technology and daily life, the questions are crafted to mimic real-world challenges and test the adaptability, accuracy, and efficiency of mobile-compatible LLMs.</p>
            <h3>Why Compete?</h3>
            <p>Participating in this competition allows you to:
            <ul>
            <li>🌟 Showcase your expertise in LLM development and optimization for mobile platforms.</li>
            <li>πŸš€ Benchmark your model’s performance against others in a highly competitive environment.</li>
            <li>πŸ“ˆ Contribute to advancements in AI for mobile technology, shaping the future of user-centric AI systems.</li>
            </ul></p>
                <h3>How It Works</h3>
                <ul>
                    <li>1️⃣ <strong>Download the Dataset:</strong> Access the dataset and instructions on our 
                    <a href="https://github.com/your-github-repo" target="_blank">GitHub page</a>.</li>
                    <li>2️⃣ <strong>Generate Predictions:</strong> Use your LLM to answer the dataset questions. 
                    Format your predictions as a CSV file.</li>
                    <li>3️⃣ <strong>Submit Predictions:</strong> Upload your predictions on this platform.</li>
                    <li>4️⃣ <strong>Evaluation:</strong> Submissions are scored based on accuracy.</li>
                    <li>5️⃣ <strong>Leaderboard:</strong> View real-time rankings on the leaderboard.</li>
                </ul>
            </div>
            """)  
            
        with gr.TabItem("πŸ“€ Submission"):
            with gr.Markdown("""
            <div class="submission-section">
            <h2>Submit Your Predictions</h2>
            <p>Upload your prediction file and provide your model name to evaluate and submit to the leaderboard.</p> </div>"""):
            with gr.Row(elem_id="submission-fields"):
                file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
                model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
            with gr.Row(elem_id="submission-results"):
                overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
            with gr.Row(elem_id="submission-buttons"):
                eval_button = gr.Button("Evaluate")
                submit_button = gr.Button("Prove and Submit to Leaderboard", visible=False)
                eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
            def handle_evaluation(file, model_name):
                # Check if required inputs are provided
                if not file:
                    return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
                if not model_name or model_name.strip() == "":
                    return "Error: Please enter a model name.", 0, gr.update(visible=False)
                    # Perform evaluation
                status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard=False)
                if leaderboard.empty:
                    overall_accuracy = 0
                else:
                    overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
        # Show the submit button after evaluation
        return status, overall_accuracy, gr.update(visible=True)
    def handle_submission(file, model_name):
        # Handle leaderboard submission
        status, _ = evaluate_predictions(file, model_name, add_to_leaderboard=True)
        return f"Submission to leaderboard completed: {status}"
    eval_button.click(
        handle_evaluation,
        inputs=[file_input, model_name_input],
        outputs=[eval_status, overall_accuracy_display, submit_button],
    )
    submit_button.click(
        handle_submission,
        inputs=[file_input, model_name_input],
        outputs=[eval_status],
    )
    


        with gr.TabItem("πŸ… Leaderboard"):
            leaderboard_table = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard",
                interactive=False,
                wrap=True,
            )
            refresh_button = gr.Button("Refresh Leaderboard")
            refresh_button.click(
                lambda: load_leaderboard(),
                inputs=[],
                outputs=[leaderboard_table],
            )

     # Post-Tabs Section
    gr.Markdown("""
    <section class="post-tabs">
        <h2>Ready to Compete?</h2>
        <h3>
            Submit your predictions today and make your mark in advancing mobile AI technologies. 
            Show the world what your model can achieve!
        <h3>
    </section>
    """)

    # Footer Section
    gr.Markdown("""
    <footer>
        <h2>Stay Connected</h2>
        <p>
            Follow us on social media or contact us for any queries. Let's shape the future of AI together!
        </p>
        <div class="social-links">
        <a href="https://website.com" target="_blank" class="social-link">🌐 Website</a>
        <a href="https://github.com/VILA-Lab/Mobile-MMLU" target="_blank" class="social-link">πŸ™ GitHub</a>
    </div>
    </footer>
    """)

demo.launch()