Spaces:
Sleeping
Sleeping
File size: 6,972 Bytes
efa60b3 80c829c 49f0804 66128ac b3f2d3d efa60b3 80c829c 0e52653 80c829c 0e52653 80c829c 49f0804 0ca9296 49f0804 80c829c 0ca9296 80c829c 8174974 0ca9296 66128ac 80c829c 8174974 b35a08e 49f0804 b35a08e 49f0804 b35a08e 66128ac 8333387 07994df 8333387 07994df 80c829c 29a8952 8333387 29a8952 8333387 80c829c 29a8952 80c829c 29a8952 8333387 29a8952 ef8cc0f 8174974 80c829c e16b3ce 29a8952 e3ac22d 8174974 80c829c 8333387 8174974 8333387 8174974 80c829c 29a8952 e6fc2f8 80c829c e6fc2f8 8333387 e6fc2f8 29a8952 e3ac22d 29a8952 8333387 29a8952 80c829c 29a8952 ef8cc0f 29a8952 ef8cc0f 80c829c e3ac22d e16b3ce d40453d e3ac22d 80c829c e3ac22d 223059a e3ac22d 8333387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
from transformers import pipeline
# Load Models
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
# Tasks
candidate_tasks = [
"change mobile plan", "top up balance", "report service outage",
"ask for billing support", "reactivate service", "cancel subscription",
"check account status", "upgrade device"
]
# Emotion Tiers
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
# Utilities
def refine_emotion_label(text, model_emotion):
text_lower = text.lower()
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
exclamations = text.count("!")
upper_words = sum(1 for w in text.split() if w.isupper())
signal_score = sum([
any(word in text_lower for word in urgent_keywords),
exclamations >= 2,
upper_words >= 1
])
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2:
return "urgency"
return model_emotion
def get_emotion_label(result, text):
sorted_emotions = sorted(result[0], key=lambda x: x['score'], reverse=True)
return refine_emotion_label(text, sorted_emotions[0]['label'])
def get_emotion_score(emotion):
if emotion.lower() in urgent_emotions:
return 1.0
elif emotion.lower() in moderate_emotions:
return 0.6
else:
return 0.2
def generate_response(intent, human=True):
if human:
prompt = (
f"You are a telecom customer service agent. For the customer intent '{intent}', generate a professional 3-part response:\n"
"1. Greeting (e.g., Thank you for contacting us...)\n"
"2. Current plan summary (e.g., You're currently on Plan X at Β₯X/month. We suggest Plan Y with XXGB for Β₯Y/month.)\n"
"3. Close with a question (e.g., Would you like to switch?)"
)
else:
prompt = (
f"As a telecom assistant, generate a full 3-part structured response for customer intent: '{intent}'.\n"
"Include greeting, summary of their current plan and a better offer (fictional), and end with a follow-up question."
)
result = text_generator(prompt, max_new_tokens=120, do_sample=False)
return result[0]['generated_text'].strip()
# App UI Setup
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
st.sidebar.title("π Customer Selector")
if "customers" not in st.session_state:
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []}
if "chat_sessions" not in st.session_state:
st.session_state.chat_sessions = {}
selected_customer = st.sidebar.selectbox("Choose a customer:", list(st.session_state.customers.keys()))
if selected_customer not in st.session_state.chat_sessions:
st.session_state.chat_sessions[selected_customer] = {
"chat": [], "system_result": None,
"agent_reply": "", "support_required": "", "user_input": ""
}
session = st.session_state.chat_sessions[selected_customer]
st.title("Smart Customer Support Assistant (for Agents Only)")
# Conversation Window
st.markdown("### Conversation")
for msg in session["chat"]:
avatar = "π€" if msg['role'] == 'user' else ("π€" if msg.get("auto") else "π¨βπΌ")
with st.chat_message(msg['role'], avatar=avatar):
st.markdown(msg['content'])
# Input & Analysis
col1, col2 = st.columns([6, 1])
with col1:
user_input = st.text_input("Enter customer message:", key="customer_input")
with col2:
if st.button("Analyze"):
if user_input.strip():
session["chat"].append({"role": "user", "content": user_input})
emotion_result = emotion_classifier(user_input)
emotion_label = get_emotion_label(emotion_result, user_input)
emotion_score = get_emotion_score(emotion_label)
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
content_score = 0.0
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
content_score += 0.4
if any(label in ["top up balance", "reactivate service"] for label in top_intents):
content_score += 0.4
final_score = 0.5 * emotion_score + 0.5 * content_score
if final_score < 0.5 and top_intents:
intent = top_intents[0]
response = generate_response(intent, human=True)
session["chat"].append({"role": "assistant", "content": response, "auto": True})
session["system_result"] = None
session["support_required"] = "π’ Automated response handled this request."
else:
session["system_result"] = {
"emotion": emotion_label,
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
"intents": top_intents
}
session["support_required"] = "π΄ Human support required."
session["agent_reply"] = ""
st.rerun()
# Support Tag
if session["support_required"]:
st.markdown(f"### {session['support_required']}")
# Agent Reply Console
st.subheader("Agent Response Console")
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"], key="agent_reply_box")
if st.button("Send Reply"):
if session["agent_reply"].strip():
session["chat"].append({"role": "assistant", "content": session["agent_reply"], "auto": False})
session["agent_reply"] = ""
session["system_result"] = None
session["support_required"] = ""
st.experimental_rerun()
# Human Needed View
if session["system_result"] is not None:
st.markdown("#### Customer Status")
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
st.markdown("#### Detected Customer Needs")
for intent in session["system_result"]["intents"]:
suggestion = generate_response(intent, human=True)
st.markdown(f"**β’ {intent.capitalize()}**")
st.code(suggestion)
# End Button
if st.button("End Conversation"):
session["chat"] = []
session["system_result"] = None
session["agent_reply"] = ""
session["support_required"] = ""
session["user_input"] = ""
st.success("Conversation ended and cleared.")
st.rerun()
|