Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
# Smart Customer Support Assistant (Enhanced UI Version)
|
2 |
-
# Note:
|
3 |
|
4 |
import streamlit as st
|
5 |
from transformers import pipeline
|
6 |
import re
|
7 |
|
8 |
-
# ------------------------------
|
9 |
-
# Load models (now includes 3rd: text generation)
|
10 |
-
# ------------------------------
|
11 |
emotion_classifier = pipeline(
|
12 |
"text-classification",
|
13 |
model="j-hartmann/emotion-english-distilroberta-base",
|
@@ -16,9 +13,6 @@ emotion_classifier = pipeline(
|
|
16 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
17 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
18 |
|
19 |
-
# ------------------------------
|
20 |
-
# Candidate tasks / prompts
|
21 |
-
# ------------------------------
|
22 |
candidate_tasks = [
|
23 |
"change mobile plan",
|
24 |
"top up balance",
|
@@ -30,22 +24,23 @@ candidate_tasks = [
|
|
30 |
"upgrade device"
|
31 |
]
|
32 |
|
33 |
-
def generate_response(intent):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
44 |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
|
45 |
|
46 |
-
# ------------------------------
|
47 |
-
# Emotion processing
|
48 |
-
# ------------------------------
|
49 |
def refine_emotion_label(text, model_emotion):
|
50 |
text_lower = text.lower()
|
51 |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
|
@@ -72,9 +67,6 @@ def get_emotion_score(emotion):
|
|
72 |
else:
|
73 |
return 0.2
|
74 |
|
75 |
-
# ------------------------------
|
76 |
-
# UI: Sidebar for customer selection
|
77 |
-
# ------------------------------
|
78 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
79 |
st.sidebar.title("📁 Customer Selector")
|
80 |
if "customers" not in st.session_state:
|
@@ -82,7 +74,6 @@ if "customers" not in st.session_state:
|
|
82 |
customer_names = list(st.session_state.customers.keys())
|
83 |
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
|
84 |
|
85 |
-
# Load or init selected customer's session
|
86 |
if "chat_sessions" not in st.session_state:
|
87 |
st.session_state.chat_sessions = {}
|
88 |
if selected_customer not in st.session_state.chat_sessions:
|
@@ -94,14 +85,12 @@ if selected_customer not in st.session_state.chat_sessions:
|
|
94 |
}
|
95 |
session = st.session_state.chat_sessions[selected_customer]
|
96 |
|
97 |
-
# ------------------------------
|
98 |
-
# Main Interface
|
99 |
-
# ------------------------------
|
100 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
101 |
|
102 |
st.markdown("### Conversation")
|
103 |
for msg in session["chat"]:
|
104 |
-
|
|
|
105 |
st.markdown(msg['content'])
|
106 |
|
107 |
col1, col2 = st.columns([6,1])
|
@@ -129,8 +118,8 @@ if analyze_clicked and user_input.strip():
|
|
129 |
|
130 |
if final_score < 0.5 and top_intents:
|
131 |
intent = top_intents[0]
|
132 |
-
response = generate_response(intent)
|
133 |
-
session["chat"].append({"role": "assistant", "content": response})
|
134 |
session["system_result"] = None
|
135 |
session["support_required"] = "🟢 Automated response handled this request."
|
136 |
else:
|
@@ -148,7 +137,7 @@ st.subheader("Agent Response Console")
|
|
148 |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"])
|
149 |
if st.button("Send Reply"):
|
150 |
if session["agent_reply"].strip():
|
151 |
-
session["chat"].append({"role": "assistant", "content": session["agent_reply"]})
|
152 |
session["agent_reply"] = ""
|
153 |
session["system_result"] = None
|
154 |
session["support_required"] = ""
|
@@ -160,6 +149,13 @@ if session["system_result"] is not None:
|
|
160 |
|
161 |
st.markdown("#### Detected Customer Needs")
|
162 |
for intent in session['system_result']['intents']:
|
163 |
-
suggestion = generate_response(intent)
|
164 |
st.markdown(f"**• {intent.capitalize()}**")
|
165 |
st.code(suggestion)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Smart Customer Support Assistant (Enhanced UI Version)
|
2 |
+
# Note: Enhanced UI with role avatars, structured suggestions, and end chat functionality
|
3 |
|
4 |
import streamlit as st
|
5 |
from transformers import pipeline
|
6 |
import re
|
7 |
|
|
|
|
|
|
|
8 |
emotion_classifier = pipeline(
|
9 |
"text-classification",
|
10 |
model="j-hartmann/emotion-english-distilroberta-base",
|
|
|
13 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
14 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
15 |
|
|
|
|
|
|
|
16 |
candidate_tasks = [
|
17 |
"change mobile plan",
|
18 |
"top up balance",
|
|
|
24 |
"upgrade device"
|
25 |
]
|
26 |
|
27 |
+
def generate_response(intent, human=True):
|
28 |
+
if human:
|
29 |
+
prompt = (
|
30 |
+
f"Write a customer service message for intent '{intent}'. Structure into: "
|
31 |
+
"1. Greeting, 2. Description of customer's current service (Plan X ¥X/GB, etc.) and a suitable new option, "
|
32 |
+
"3. A polite closing question. Use placeholder data (Plan X, ¥X, etc.)."
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
prompt = (
|
36 |
+
f"Reply to the following user request automatically: '{intent}'. Directly resolve the request in one helpful message. "
|
37 |
+
"If it's plan change, suggest suitable options. Use placeholders (Plan A ¥X/5GB, Plan B ¥Y/15GB, etc.)."
|
38 |
+
)
|
39 |
+
return text_generator(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text']
|
40 |
|
41 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
42 |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
|
43 |
|
|
|
|
|
|
|
44 |
def refine_emotion_label(text, model_emotion):
|
45 |
text_lower = text.lower()
|
46 |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
|
|
|
67 |
else:
|
68 |
return 0.2
|
69 |
|
|
|
|
|
|
|
70 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
71 |
st.sidebar.title("📁 Customer Selector")
|
72 |
if "customers" not in st.session_state:
|
|
|
74 |
customer_names = list(st.session_state.customers.keys())
|
75 |
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
|
76 |
|
|
|
77 |
if "chat_sessions" not in st.session_state:
|
78 |
st.session_state.chat_sessions = {}
|
79 |
if selected_customer not in st.session_state.chat_sessions:
|
|
|
85 |
}
|
86 |
session = st.session_state.chat_sessions[selected_customer]
|
87 |
|
|
|
|
|
|
|
88 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
89 |
|
90 |
st.markdown("### Conversation")
|
91 |
for msg in session["chat"]:
|
92 |
+
avatar = "👤" if msg['role'] == 'user' else ("🤖" if msg.get("auto") else "👨💼")
|
93 |
+
with st.chat_message(msg['role'], avatar=avatar):
|
94 |
st.markdown(msg['content'])
|
95 |
|
96 |
col1, col2 = st.columns([6,1])
|
|
|
118 |
|
119 |
if final_score < 0.5 and top_intents:
|
120 |
intent = top_intents[0]
|
121 |
+
response = generate_response(intent, human=False)
|
122 |
+
session["chat"].append({"role": "assistant", "content": response, "auto": True})
|
123 |
session["system_result"] = None
|
124 |
session["support_required"] = "🟢 Automated response handled this request."
|
125 |
else:
|
|
|
137 |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"])
|
138 |
if st.button("Send Reply"):
|
139 |
if session["agent_reply"].strip():
|
140 |
+
session["chat"].append({"role": "assistant", "content": session["agent_reply"], "auto": False})
|
141 |
session["agent_reply"] = ""
|
142 |
session["system_result"] = None
|
143 |
session["support_required"] = ""
|
|
|
149 |
|
150 |
st.markdown("#### Detected Customer Needs")
|
151 |
for intent in session['system_result']['intents']:
|
152 |
+
suggestion = generate_response(intent, human=True)
|
153 |
st.markdown(f"**• {intent.capitalize()}**")
|
154 |
st.code(suggestion)
|
155 |
+
|
156 |
+
if st.button("End Conversation"):
|
157 |
+
session["chat"] = []
|
158 |
+
session["system_result"] = None
|
159 |
+
session["agent_reply"] = ""
|
160 |
+
session["support_required"] = ""
|
161 |
+
st.success("Conversation ended and cleared.")
|