Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load
|
5 |
emotion_classifier = pipeline(
|
6 |
"text-classification",
|
7 |
model="j-hartmann/emotion-english-distilroberta-base",
|
@@ -10,25 +10,23 @@ emotion_classifier = pipeline(
|
|
10 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
11 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
12 |
|
|
|
13 |
candidate_tasks = [
|
14 |
-
"change mobile plan",
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"ask for billing support",
|
18 |
-
"reactivate service",
|
19 |
-
"cancel subscription",
|
20 |
-
"check account status",
|
21 |
-
"upgrade device"
|
22 |
]
|
23 |
|
|
|
24 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
25 |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
|
26 |
|
|
|
27 |
def refine_emotion_label(text, model_emotion):
|
28 |
text_lower = text.lower()
|
29 |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
|
30 |
exclamations = text.count("!")
|
31 |
-
upper_words = sum(1 for
|
32 |
signal_score = sum([
|
33 |
any(word in text_lower for word in urgent_keywords),
|
34 |
exclamations >= 2,
|
@@ -38,8 +36,8 @@ def refine_emotion_label(text, model_emotion):
|
|
38 |
return "urgency"
|
39 |
return model_emotion
|
40 |
|
41 |
-
def get_emotion_label(
|
42 |
-
sorted_emotions = sorted(
|
43 |
return refine_emotion_label(text, sorted_emotions[0]['label'])
|
44 |
|
45 |
def get_emotion_score(emotion):
|
@@ -52,17 +50,15 @@ def get_emotion_score(emotion):
|
|
52 |
|
53 |
def generate_response(intent, human=True):
|
54 |
prompt = (
|
55 |
-
f"You are a telecom customer service assistant. For the customer intent '{intent}', generate a 3-part response
|
56 |
-
"
|
57 |
-
"[
|
58 |
-
"
|
59 |
-
"[Middle: mention the customer is currently on Plan X (¥X/month), and suggest switching to Plan Y with XXGB at ¥Y/month. Use fictional placeholder values.]
|
60 |
-
"
|
61 |
"[End: ask if they'd like to proceed with the new plan or need more details.]"
|
62 |
)
|
63 |
result = text_generator(prompt, max_new_tokens=100, do_sample=False)
|
64 |
return result[0]['generated_text'].strip()
|
65 |
|
|
|
66 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
67 |
st.sidebar.title("📁 Customer Selector")
|
68 |
|
@@ -71,71 +67,68 @@ if "customers" not in st.session_state:
|
|
71 |
if "chat_sessions" not in st.session_state:
|
72 |
st.session_state.chat_sessions = {}
|
73 |
|
74 |
-
|
75 |
-
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
|
76 |
|
77 |
if selected_customer not in st.session_state.chat_sessions:
|
78 |
st.session_state.chat_sessions[selected_customer] = {
|
79 |
-
"chat": [],
|
80 |
-
"
|
81 |
-
"agent_reply": "",
|
82 |
-
"support_required": "",
|
83 |
-
"user_input": ""
|
84 |
}
|
85 |
|
86 |
session = st.session_state.chat_sessions[selected_customer]
|
87 |
-
|
88 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
89 |
|
|
|
90 |
st.markdown("### Conversation")
|
91 |
for msg in session["chat"]:
|
92 |
avatar = "👤" if msg['role'] == 'user' else ("🤖" if msg.get("auto") else "👨💼")
|
93 |
with st.chat_message(msg['role'], avatar=avatar):
|
94 |
st.markdown(msg['content'])
|
95 |
|
|
|
96 |
col1, col2 = st.columns([6, 1])
|
97 |
with col1:
|
98 |
user_input = st.text_input("Enter customer message:", key="customer_input")
|
99 |
with col2:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
if session["support_required"]:
|
137 |
st.markdown(f"### {session['support_required']}")
|
138 |
|
|
|
139 |
st.subheader("Agent Response Console")
|
140 |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"], key="agent_reply_box")
|
141 |
if st.button("Send Reply"):
|
@@ -146,17 +139,18 @@ if st.button("Send Reply"):
|
|
146 |
session["support_required"] = ""
|
147 |
st.experimental_rerun()
|
148 |
|
|
|
149 |
if session["system_result"] is not None:
|
150 |
st.markdown("#### Customer Status")
|
151 |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
|
152 |
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
|
153 |
-
|
154 |
st.markdown("#### Detected Customer Needs")
|
155 |
-
for intent in session[
|
156 |
suggestion = generate_response(intent, human=True)
|
157 |
st.markdown(f"**• {intent.capitalize()}**")
|
158 |
st.code(suggestion)
|
159 |
|
|
|
160 |
if st.button("End Conversation"):
|
161 |
session["chat"] = []
|
162 |
session["system_result"] = None
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load Models
|
5 |
emotion_classifier = pipeline(
|
6 |
"text-classification",
|
7 |
model="j-hartmann/emotion-english-distilroberta-base",
|
|
|
10 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
11 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
12 |
|
13 |
+
# Tasks
|
14 |
candidate_tasks = [
|
15 |
+
"change mobile plan", "top up balance", "report service outage",
|
16 |
+
"ask for billing support", "reactivate service", "cancel subscription",
|
17 |
+
"check account status", "upgrade device"
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
+
# Emotion Tiers
|
21 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
22 |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
|
23 |
|
24 |
+
# Utilities
|
25 |
def refine_emotion_label(text, model_emotion):
|
26 |
text_lower = text.lower()
|
27 |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
|
28 |
exclamations = text.count("!")
|
29 |
+
upper_words = sum(1 for w in text.split() if w.isupper())
|
30 |
signal_score = sum([
|
31 |
any(word in text_lower for word in urgent_keywords),
|
32 |
exclamations >= 2,
|
|
|
36 |
return "urgency"
|
37 |
return model_emotion
|
38 |
|
39 |
+
def get_emotion_label(result, text):
|
40 |
+
sorted_emotions = sorted(result[0], key=lambda x: x['score'], reverse=True)
|
41 |
return refine_emotion_label(text, sorted_emotions[0]['label'])
|
42 |
|
43 |
def get_emotion_score(emotion):
|
|
|
50 |
|
51 |
def generate_response(intent, human=True):
|
52 |
prompt = (
|
53 |
+
f"You are a telecom customer service assistant. For the customer intent '{intent}', generate a 3-part response:\n"
|
54 |
+
"[Greeting: polite welcome.]\n"
|
55 |
+
"[Middle: mention the customer is currently on Plan X (¥X/month), and suggest switching to Plan Y with XXGB at ¥Y/month. Use fictional placeholder values.]\n"
|
|
|
|
|
|
|
56 |
"[End: ask if they'd like to proceed with the new plan or need more details.]"
|
57 |
)
|
58 |
result = text_generator(prompt, max_new_tokens=100, do_sample=False)
|
59 |
return result[0]['generated_text'].strip()
|
60 |
|
61 |
+
# App UI Setup
|
62 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
63 |
st.sidebar.title("📁 Customer Selector")
|
64 |
|
|
|
67 |
if "chat_sessions" not in st.session_state:
|
68 |
st.session_state.chat_sessions = {}
|
69 |
|
70 |
+
selected_customer = st.sidebar.selectbox("Choose a customer:", list(st.session_state.customers.keys()))
|
|
|
71 |
|
72 |
if selected_customer not in st.session_state.chat_sessions:
|
73 |
st.session_state.chat_sessions[selected_customer] = {
|
74 |
+
"chat": [], "system_result": None,
|
75 |
+
"agent_reply": "", "support_required": "", "user_input": ""
|
|
|
|
|
|
|
76 |
}
|
77 |
|
78 |
session = st.session_state.chat_sessions[selected_customer]
|
|
|
79 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
80 |
|
81 |
+
# Conversation Window
|
82 |
st.markdown("### Conversation")
|
83 |
for msg in session["chat"]:
|
84 |
avatar = "👤" if msg['role'] == 'user' else ("🤖" if msg.get("auto") else "👨💼")
|
85 |
with st.chat_message(msg['role'], avatar=avatar):
|
86 |
st.markdown(msg['content'])
|
87 |
|
88 |
+
# Input & Analysis
|
89 |
col1, col2 = st.columns([6, 1])
|
90 |
with col1:
|
91 |
user_input = st.text_input("Enter customer message:", key="customer_input")
|
92 |
with col2:
|
93 |
+
if st.button("Analyze"):
|
94 |
+
if user_input.strip():
|
95 |
+
session["chat"].append({"role": "user", "content": user_input})
|
96 |
+
emotion_result = emotion_classifier(user_input)
|
97 |
+
emotion_label = get_emotion_label(emotion_result, user_input)
|
98 |
+
emotion_score = get_emotion_score(emotion_label)
|
99 |
+
|
100 |
+
intent_result = intent_classifier(user_input, candidate_tasks)
|
101 |
+
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
|
102 |
+
|
103 |
+
content_score = 0.0
|
104 |
+
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
|
105 |
+
content_score += 0.4
|
106 |
+
if any(label in ["top up balance", "reactivate service"] for label in top_intents):
|
107 |
+
content_score += 0.4
|
108 |
+
|
109 |
+
final_score = 0.5 * emotion_score + 0.5 * content_score
|
110 |
+
|
111 |
+
if final_score < 0.5 and top_intents:
|
112 |
+
intent = top_intents[0]
|
113 |
+
response = generate_response(intent, human=True)
|
114 |
+
session["chat"].append({"role": "assistant", "content": response, "auto": True})
|
115 |
+
session["system_result"] = None
|
116 |
+
session["support_required"] = "🟢 Automated response handled this request."
|
117 |
+
else:
|
118 |
+
session["system_result"] = {
|
119 |
+
"emotion": emotion_label,
|
120 |
+
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
|
121 |
+
"intents": top_intents
|
122 |
+
}
|
123 |
+
session["support_required"] = "🔴 Human support required."
|
124 |
+
session["agent_reply"] = ""
|
125 |
+
st.rerun()
|
126 |
+
|
127 |
+
# Support Tag
|
|
|
128 |
if session["support_required"]:
|
129 |
st.markdown(f"### {session['support_required']}")
|
130 |
|
131 |
+
# Agent Reply Console
|
132 |
st.subheader("Agent Response Console")
|
133 |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"], key="agent_reply_box")
|
134 |
if st.button("Send Reply"):
|
|
|
139 |
session["support_required"] = ""
|
140 |
st.experimental_rerun()
|
141 |
|
142 |
+
# Human Needed View
|
143 |
if session["system_result"] is not None:
|
144 |
st.markdown("#### Customer Status")
|
145 |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
|
146 |
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
|
|
|
147 |
st.markdown("#### Detected Customer Needs")
|
148 |
+
for intent in session["system_result"]["intents"]:
|
149 |
suggestion = generate_response(intent, human=True)
|
150 |
st.markdown(f"**• {intent.capitalize()}**")
|
151 |
st.code(suggestion)
|
152 |
|
153 |
+
# End Button
|
154 |
if st.button("End Conversation"):
|
155 |
session["chat"] = []
|
156 |
session["system_result"] = None
|