Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,14 +27,13 @@ candidate_tasks = [
|
|
27 |
def generate_response(intent, human=True):
|
28 |
if human:
|
29 |
prompt = (
|
30 |
-
f"Write a customer service message for intent '{intent}'
|
31 |
-
"
|
32 |
-
"
|
33 |
)
|
34 |
else:
|
35 |
prompt = (
|
36 |
-
f"
|
37 |
-
" Use direct language and include relevant details like plan options or links, with placeholder values."
|
38 |
)
|
39 |
return text_generator(prompt, max_new_tokens=80, do_sample=True)[0]['generated_text']
|
40 |
|
@@ -81,7 +80,8 @@ if selected_customer not in st.session_state.chat_sessions:
|
|
81 |
"chat": [],
|
82 |
"system_result": None,
|
83 |
"agent_reply": "",
|
84 |
-
"support_required": ""
|
|
|
85 |
}
|
86 |
session = st.session_state.chat_sessions[selected_customer]
|
87 |
|
@@ -95,12 +95,15 @@ for msg in session["chat"]:
|
|
95 |
|
96 |
col1, col2 = st.columns([6,1])
|
97 |
with col1:
|
98 |
-
user_input = st.text_input("Enter customer message:",
|
99 |
with col2:
|
100 |
analyze_clicked = st.button("Analyze", use_container_width=True)
|
101 |
|
102 |
-
if analyze_clicked and user_input.strip():
|
|
|
103 |
session["chat"].append({"role": "user", "content": user_input})
|
|
|
|
|
104 |
emotion_result = emotion_classifier(user_input)
|
105 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
106 |
emotion_score = get_emotion_score(emotion_label)
|
@@ -159,4 +162,5 @@ if st.button("End Conversation"):
|
|
159 |
session["system_result"] = None
|
160 |
session["agent_reply"] = ""
|
161 |
session["support_required"] = ""
|
|
|
162 |
st.success("Conversation ended and cleared.")
|
|
|
27 |
def generate_response(intent, human=True):
|
28 |
if human:
|
29 |
prompt = (
|
30 |
+
f"Write a customer service message for intent '{intent}' using 3 clearly separated segments: "
|
31 |
+
"[Greeting] + [You currently have Plan X with ¥X/month. We recommend Plan Y offering XXGB at ¥Y/month.] + [Would you like to switch now?] "
|
32 |
+
"Use placeholder numbers and express one sentence per section."
|
33 |
)
|
34 |
else:
|
35 |
prompt = (
|
36 |
+
f"Resolve customer request: '{intent}' in one short sentence directly addressing their need. Use clear and polite tone with placeholder plan/price."
|
|
|
37 |
)
|
38 |
return text_generator(prompt, max_new_tokens=80, do_sample=True)[0]['generated_text']
|
39 |
|
|
|
80 |
"chat": [],
|
81 |
"system_result": None,
|
82 |
"agent_reply": "",
|
83 |
+
"support_required": "",
|
84 |
+
"user_input": ""
|
85 |
}
|
86 |
session = st.session_state.chat_sessions[selected_customer]
|
87 |
|
|
|
95 |
|
96 |
col1, col2 = st.columns([6,1])
|
97 |
with col1:
|
98 |
+
session["user_input"] = st.text_input("Enter customer message:", value=session["user_input"])
|
99 |
with col2:
|
100 |
analyze_clicked = st.button("Analyze", use_container_width=True)
|
101 |
|
102 |
+
if analyze_clicked and session["user_input"].strip():
|
103 |
+
user_input = session["user_input"]
|
104 |
session["chat"].append({"role": "user", "content": user_input})
|
105 |
+
session["user_input"] = ""
|
106 |
+
|
107 |
emotion_result = emotion_classifier(user_input)
|
108 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
109 |
emotion_score = get_emotion_score(emotion_label)
|
|
|
162 |
session["system_result"] = None
|
163 |
session["agent_reply"] = ""
|
164 |
session["support_required"] = ""
|
165 |
+
session["user_input"] = ""
|
166 |
st.success("Conversation ended and cleared.")
|