Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# Smart Customer Support Assistant (Enhanced UI Version)
|
2 |
-
# Note: Core analysis logic remains unchanged, now with text generation
|
3 |
|
4 |
import streamlit as st
|
5 |
from transformers import pipeline
|
@@ -31,8 +31,8 @@ candidate_tasks = [
|
|
31 |
]
|
32 |
|
33 |
def generate_response(intent):
|
34 |
-
prompt = f"
|
35 |
-
output = text_generator(prompt, max_new_tokens=
|
36 |
return output
|
37 |
|
38 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
@@ -68,28 +68,37 @@ def get_emotion_score(emotion):
|
|
68 |
return 0.2
|
69 |
|
70 |
# ------------------------------
|
71 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# ------------------------------
|
73 |
-
st.set_page_config(page_title="Smart Customer Support Assistant", layout="centered")
|
74 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
75 |
|
76 |
-
# Session state to store chat
|
77 |
-
if 'chat' not in st.session_state:
|
78 |
-
st.session_state.chat = []
|
79 |
-
if 'system_result' not in st.session_state:
|
80 |
-
st.session_state.system_result = None
|
81 |
-
if 'agent_reply' not in st.session_state:
|
82 |
-
st.session_state.agent_reply = ""
|
83 |
-
if 'support_required' not in st.session_state:
|
84 |
-
st.session_state.support_required = ""
|
85 |
-
|
86 |
-
# Always show conversation
|
87 |
st.markdown("### Conversation")
|
88 |
-
for msg in
|
89 |
with st.chat_message(msg['role']):
|
90 |
st.markdown(msg['content'])
|
91 |
|
92 |
-
# Input row with button aligned right
|
93 |
col1, col2 = st.columns([6,1])
|
94 |
with col1:
|
95 |
user_input = st.text_input("Enter customer message:", key="user_input")
|
@@ -97,7 +106,6 @@ with col2:
|
|
97 |
analyze_clicked = st.button("Analyze")
|
98 |
|
99 |
if analyze_clicked and user_input.strip():
|
100 |
-
# Run analysis pipeline
|
101 |
emotion_result = emotion_classifier(user_input)
|
102 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
103 |
emotion_score = get_emotion_score(emotion_label)
|
@@ -112,46 +120,42 @@ if analyze_clicked and user_input.strip():
|
|
112 |
content_score += 0.4
|
113 |
|
114 |
final_score = 0.5 * emotion_score + 0.5 * content_score
|
115 |
-
|
116 |
-
st.session_state.chat.append({"role": "user", "content": user_input})
|
117 |
|
118 |
if final_score < 0.5 and top_intents:
|
119 |
intent = top_intents[0]
|
120 |
response = generate_response(intent)
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
else:
|
125 |
-
|
126 |
"emotion": emotion_label,
|
127 |
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
|
128 |
"intents": top_intents
|
129 |
}
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
st.markdown(f"### {st.session_state.support_required}")
|
135 |
|
136 |
-
# Always show agent input box
|
137 |
st.subheader("Agent Response Console")
|
138 |
-
|
139 |
if st.button("Send Reply"):
|
140 |
-
if
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
if st.session_state.system_result is not None:
|
148 |
st.markdown("#### Customer Status")
|
149 |
-
st.markdown(f"- **Emotion:** {
|
150 |
-
st.markdown(f"- **Tone:** {
|
151 |
|
152 |
st.markdown("#### Detected Customer Needs")
|
153 |
-
for intent in
|
154 |
suggestion = generate_response(intent)
|
155 |
st.markdown(f"**β’ {intent.capitalize()}**")
|
156 |
-
if st.button(suggestion, key=f"btn_{intent}"):
|
157 |
-
|
|
|
1 |
# Smart Customer Support Assistant (Enhanced UI Version)
|
2 |
+
# Note: Core analysis logic remains unchanged, now with text generation and customer selection
|
3 |
|
4 |
import streamlit as st
|
5 |
from transformers import pipeline
|
|
|
31 |
]
|
32 |
|
33 |
def generate_response(intent):
|
34 |
+
prompt = f"Generate a polite and helpful customer service response for the request '{intent}'. Include a greeting, summary of current status like plan or balance using anonymized placeholders (e.g. Plan X, Β₯X), a suitable recommendation, and end with a question offering assistance."
|
35 |
+
output = text_generator(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text']
|
36 |
return output
|
37 |
|
38 |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
|
|
|
68 |
return 0.2
|
69 |
|
70 |
# ------------------------------
|
71 |
+
# UI: Sidebar for customer selection
|
72 |
+
# ------------------------------
|
73 |
+
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
74 |
+
st.sidebar.title("π Customer Selector")
|
75 |
+
if "customers" not in st.session_state:
|
76 |
+
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []}
|
77 |
+
customer_names = list(st.session_state.customers.keys())
|
78 |
+
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
|
79 |
+
|
80 |
+
# Load or init selected customer's session
|
81 |
+
if "chat_sessions" not in st.session_state:
|
82 |
+
st.session_state.chat_sessions = {}
|
83 |
+
if selected_customer not in st.session_state.chat_sessions:
|
84 |
+
st.session_state.chat_sessions[selected_customer] = {
|
85 |
+
"chat": [],
|
86 |
+
"system_result": None,
|
87 |
+
"agent_reply": "",
|
88 |
+
"support_required": ""
|
89 |
+
}
|
90 |
+
session = st.session_state.chat_sessions[selected_customer]
|
91 |
+
|
92 |
+
# ------------------------------
|
93 |
+
# Main Interface
|
94 |
# ------------------------------
|
|
|
95 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
st.markdown("### Conversation")
|
98 |
+
for msg in session["chat"]:
|
99 |
with st.chat_message(msg['role']):
|
100 |
st.markdown(msg['content'])
|
101 |
|
|
|
102 |
col1, col2 = st.columns([6,1])
|
103 |
with col1:
|
104 |
user_input = st.text_input("Enter customer message:", key="user_input")
|
|
|
106 |
analyze_clicked = st.button("Analyze")
|
107 |
|
108 |
if analyze_clicked and user_input.strip():
|
|
|
109 |
emotion_result = emotion_classifier(user_input)
|
110 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
111 |
emotion_score = get_emotion_score(emotion_label)
|
|
|
120 |
content_score += 0.4
|
121 |
|
122 |
final_score = 0.5 * emotion_score + 0.5 * content_score
|
123 |
+
session["chat"].append({"role": "user", "content": user_input})
|
|
|
124 |
|
125 |
if final_score < 0.5 and top_intents:
|
126 |
intent = top_intents[0]
|
127 |
response = generate_response(intent)
|
128 |
+
session["chat"].append({"role": "assistant", "content": response})
|
129 |
+
session["system_result"] = None
|
130 |
+
session["support_required"] = "π’ Automated response handled this request."
|
131 |
else:
|
132 |
+
session["system_result"] = {
|
133 |
"emotion": emotion_label,
|
134 |
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
|
135 |
"intents": top_intents
|
136 |
}
|
137 |
+
session["support_required"] = "π΄ Human support required."
|
138 |
|
139 |
+
if session["support_required"]:
|
140 |
+
st.markdown(f"### {session['support_required']}")
|
|
|
141 |
|
|
|
142 |
st.subheader("Agent Response Console")
|
143 |
+
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"])
|
144 |
if st.button("Send Reply"):
|
145 |
+
if session["agent_reply"].strip():
|
146 |
+
session["chat"].append({"role": "assistant", "content": session["agent_reply"]})
|
147 |
+
session["agent_reply"] = ""
|
148 |
+
session["system_result"] = None
|
149 |
+
session["support_required"] = ""
|
150 |
+
|
151 |
+
if session["system_result"] is not None:
|
|
|
152 |
st.markdown("#### Customer Status")
|
153 |
+
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
|
154 |
+
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
|
155 |
|
156 |
st.markdown("#### Detected Customer Needs")
|
157 |
+
for intent in session['system_result']['intents']:
|
158 |
suggestion = generate_response(intent)
|
159 |
st.markdown(f"**β’ {intent.capitalize()}**")
|
160 |
+
if st.button(f"Use suggestion: {suggestion}", key=f"btn_{selected_customer}_{intent}"):
|
161 |
+
session["agent_reply"] = suggestion
|