Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,37 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load
|
5 |
emotion_classifier = pipeline(
|
6 |
"text-classification",
|
7 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
8 |
-
top_k=3
|
9 |
)
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
urgent_emotions = {"anger", "annoyance", "disgust", "frustration", "sadness"}
|
13 |
moderate_emotions = {"confusion", "concern", "nervousness", "fear"}
|
14 |
low_emotions = {"neutral", "approval", "excitement", "joy", "curiosity"}
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def assess_priority(emotion):
|
17 |
if emotion in urgent_emotions:
|
18 |
return "π΄ High", "β
Immediate human support is recommended."
|
@@ -21,33 +40,38 @@ def assess_priority(emotion):
|
|
21 |
else:
|
22 |
return "π’ Low", "β No human support needed. Automated response is sufficient."
|
23 |
|
24 |
-
# Streamlit
|
25 |
-
st.set_page_config(page_title="AI Customer
|
26 |
-
st.title("π AI Customer Emotion &
|
27 |
|
28 |
-
# User input
|
29 |
user_input = st.text_area("Please enter the customer's message or conversation:", height=150)
|
30 |
|
31 |
-
|
32 |
-
if st.button("Analyze Emotion"):
|
33 |
if user_input.strip() == "":
|
34 |
st.warning("Please enter a message to analyze.")
|
35 |
else:
|
36 |
-
with st.spinner("Analyzing
|
37 |
-
|
|
|
38 |
emotion_results = emotion_classifier(user_input)
|
39 |
top_emotion = emotion_results[0][0]
|
40 |
emotion_label = top_emotion['label']
|
41 |
emotion_score = top_emotion['score']
|
42 |
-
|
43 |
-
# Determine priority level
|
44 |
priority_level, recommendation = assess_priority(emotion_label)
|
45 |
|
46 |
-
|
47 |
-
st.subheader("π Emotion Analysis Results")
|
48 |
st.write(f"**Primary Emotion**: {emotion_label}")
|
49 |
st.write(f"**Confidence Score**: {emotion_score:.2f}")
|
50 |
|
51 |
st.subheader("ποΈ Support Priority Recommendation")
|
52 |
st.write(f"**Priority Level**: {priority_level}")
|
53 |
st.success(recommendation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load models
|
5 |
emotion_classifier = pipeline(
|
6 |
"text-classification",
|
7 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
8 |
+
top_k=3
|
9 |
)
|
10 |
|
11 |
+
intent_classifier = pipeline(
|
12 |
+
"zero-shot-classification",
|
13 |
+
model="facebook/bart-large-mnli"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Define emotion priority rules
|
17 |
urgent_emotions = {"anger", "annoyance", "disgust", "frustration", "sadness"}
|
18 |
moderate_emotions = {"confusion", "concern", "nervousness", "fear"}
|
19 |
low_emotions = {"neutral", "approval", "excitement", "joy", "curiosity"}
|
20 |
|
21 |
+
# Define candidate customer intents
|
22 |
+
candidate_tasks = [
|
23 |
+
"change data plan",
|
24 |
+
"upgrade phone",
|
25 |
+
"top up balance",
|
26 |
+
"report network issue",
|
27 |
+
"ask for billing help",
|
28 |
+
"request human support",
|
29 |
+
"check account status",
|
30 |
+
"suspend service",
|
31 |
+
"reactivate number",
|
32 |
+
"cancel subscription"
|
33 |
+
]
|
34 |
+
|
35 |
def assess_priority(emotion):
|
36 |
if emotion in urgent_emotions:
|
37 |
return "π΄ High", "β
Immediate human support is recommended."
|
|
|
40 |
else:
|
41 |
return "π’ Low", "β No human support needed. Automated response is sufficient."
|
42 |
|
43 |
+
# Streamlit App Interface
|
44 |
+
st.set_page_config(page_title="AI Customer Support Analyzer", layout="centered")
|
45 |
+
st.title("π AI Customer Emotion & Intent Analyzer")
|
46 |
|
|
|
47 |
user_input = st.text_area("Please enter the customer's message or conversation:", height=150)
|
48 |
|
49 |
+
if st.button("Analyze"):
|
|
|
50 |
if user_input.strip() == "":
|
51 |
st.warning("Please enter a message to analyze.")
|
52 |
else:
|
53 |
+
with st.spinner("Analyzing..."):
|
54 |
+
|
55 |
+
# --- Emotion Classification ---
|
56 |
emotion_results = emotion_classifier(user_input)
|
57 |
top_emotion = emotion_results[0][0]
|
58 |
emotion_label = top_emotion['label']
|
59 |
emotion_score = top_emotion['score']
|
|
|
|
|
60 |
priority_level, recommendation = assess_priority(emotion_label)
|
61 |
|
62 |
+
st.subheader("π Emotion Analysis")
|
|
|
63 |
st.write(f"**Primary Emotion**: {emotion_label}")
|
64 |
st.write(f"**Confidence Score**: {emotion_score:.2f}")
|
65 |
|
66 |
st.subheader("ποΈ Support Priority Recommendation")
|
67 |
st.write(f"**Priority Level**: {priority_level}")
|
68 |
st.success(recommendation)
|
69 |
+
|
70 |
+
# --- Intent Detection ---
|
71 |
+
task_result = intent_classifier(user_input, candidate_tasks)
|
72 |
+
top_tasks = task_result['labels'][:3]
|
73 |
+
top_scores = task_result['scores'][:3]
|
74 |
+
|
75 |
+
st.subheader("βοΈ Detected Possible Customer Intents")
|
76 |
+
for label, score in zip(top_tasks, top_scores):
|
77 |
+
st.write(f"πΈ **{label}** (confidence: {score:.2f})")
|