Spaces:
Build error
Build error
File size: 10,510 Bytes
d244e18 8b24191 d244e18 15ed0e7 de30673 412e4a3 d244e18 15ed0e7 d244e18 a9e6c3b d244e18 f2f7dda d244e18 9476a94 4d8d888 15ed0e7 a4e4b71 15ed0e7 3371395 d244e18 a9e6c3b 8b24191 aeca549 0240de7 15ed0e7 aeca549 0240de7 2c2a658 0240de7 aeca549 0240de7 8b24191 0240de7 8b24191 0240de7 8b24191 de30673 a28a9dc c90c2ec f172bb5 d38433c 3b2fd03 b604a12 15ed0e7 bca3677 44e6288 bca3677 a620e89 b604a12 a28a9dc d244e18 006ee88 15ed0e7 c98699f 15ed0e7 8ec9856 94c2133 97424be a601e7b d244e18 15ed0e7 d244e18 412e4a3 c98699f 412e4a3 3f05b9b 412e4a3 3f05b9b d244e18 3f05b9b d244e18 3f05b9b 15ed0e7 d244e18 3f05b9b d244e18 3f05b9b d244e18 412e4a3 d244e18 40a5413 d244e18 3f05b9b 0f11a05 40a5413 229a73d 0f11a05 40a5413 229a73d 0f11a05 40a5413 229a73d 72bb6cb 95ff438 229a73d 72bb6cb 95ff438 229a73d 72bb6cb 95ff438 229a73d 72bb6cb 95ff438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import streamlit as st
import os
import json
import requests
import pdfplumber
import chromadb
import re
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah-1", layout="centered")
# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()
st.title("Blah")
# ----------------- ChromaDB Persistent Directory -----------------
CHROMA_DB_DIR = "/mnt/data/chroma_db"
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# ----------------- Metadata Extraction -----------------
def extract_metadata_llm(pdf_path):
"""Extracts metadata using LLM instead of regex."""
with pdfplumber.open(pdf_path) as pdf:
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
# Define metadata prompt
metadata_prompt = PromptTemplate(
input_variables=["text"],
template="""
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
- If no data is found for a field, return `"Unknown"` instead.
- The response must be valid JSON.
Example output:
```json
{
"Title": "Example Paper Title",
"Author": "John Doe, Jane Smith",
"Emails": "[email protected], [email protected]",
"Affiliations": "School of AI, University of Example"
}
```
Now, extract the metadata from this document:
```
{text}
```
"""
)
# Run LLM Metadata Extraction
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
metadata_response = metadata_chain.invoke({"text": first_page_text})
# Handle JSON extraction from LLM response
try:
# Try parsing directly as JSON
metadata_dict = json.loads(metadata_response["metadata"])
except json.JSONDecodeError:
# Fallback: Extract JSON using regex
json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
try:
metadata_dict = json.loads(json_text)
except json.JSONDecodeError:
metadata_dict = {
"Title": "Unknown",
"Author": "Unknown",
"Emails": "No emails found",
"Affiliations": "No affiliations found"
}
# Ensure all required fields exist
required_fields = ["Title", "Author", "Emails", "Affiliations"]
for field in required_fields:
if field not in metadata_dict or not metadata_dict[field].strip():
metadata_dict[field] = "Unknown"
return metadata_dict
# ----------------- Step 1: Choose PDF Source -----------------
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file:
st.session_state.pdf_path = "/mnt/data/temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_loaded:
with st.spinner("π Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "/mnt/data/temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
with st.spinner("π Processing document... Please wait."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.json(docs[0].metadata)
# Extract metadata
metadata = extract_metadata_llm(st.session_state.pdf_path)
# Display extracted-metadata
if isinstance(metadata, dict):
st.subheader("π Extracted Document Metadata")
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
else:
st.error("Metadata extraction failed. Check the LLM response format.")
# Embedding Model
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
# Convert metadata into a retrievable chunk
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
# Prevent unnecessary re-chunking
if not st.session_state.chunked:
text_splitter = SemanticChunker(embedding_model)
document_chunks = text_splitter.split_documents(docs)
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
st.session_state.processed_chunks = document_chunks
st.session_state.chunked = True
st.session_state.pdf_loaded = True
st.success("β
Document processed and chunked successfully!")
# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
with st.spinner("π Initializing Vector Store..."):
st.session_state.vector_store = Chroma(
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
st.session_state.vector_created = True
st.success("β
Vector store initialized successfully!")
# ----------------- Query Input -----------------
query = st.text_input("π Ask a question about the document:")
if query:
with st.spinner("π Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("β
Context retrieved successfully!")
# ----------------- Run Individual Chains Explicitly -----------------
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
# ----------------- Display All Outputs -----------------
st.markdown("### Context Relevancy Evaluation")
st.json(response_crisis["relevancy_response"])
st.markdown("### Picked Relevant Contexts")
st.json(relevant_response["context_number"])
st.markdown("### Extracted Relevant Contexts")
st.json(contexts["relevant_contexts"])
st.subheader("context_relevancy_evaluation_chain Statement")
st.json(final_response["relevancy_response"])
st.subheader("pick_relevant_context_chain Statement")
st.json(final_response["context_number"])
st.subheader("relevant_contexts_chain Statement")
st.json(final_response["relevant_contexts"])
st.subheader("RAG Response Statement")
st.json(final_response["final_response"])
|