Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -50,16 +50,15 @@ if "vector_store" not in st.session_state:
|
|
| 50 |
|
| 51 |
# ----------------- Metadata Extraction -----------------
|
| 52 |
def extract_metadata_llm(pdf_path):
|
| 53 |
-
"""Extracts metadata using LLM"""
|
| 54 |
with pdfplumber.open(pdf_path) as pdf:
|
| 55 |
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
|
| 56 |
|
| 57 |
-
# Define
|
| 58 |
metadata_prompt = PromptTemplate(
|
| 59 |
input_variables=["text"],
|
| 60 |
template="""
|
| 61 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
| 62 |
-
|
| 63 |
- If no data is found for a field, return `"Unknown"` instead.
|
| 64 |
- The response must be valid JSON.
|
| 65 |
|
|
@@ -81,28 +80,34 @@ def extract_metadata_llm(pdf_path):
|
|
| 81 |
"""
|
| 82 |
)
|
| 83 |
|
| 84 |
-
|
| 85 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
| 86 |
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
|
| 90 |
-
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
|
| 91 |
-
|
| 92 |
try:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
| 96 |
-
for field in required_fields:
|
| 97 |
-
if field not in metadata_dict:
|
| 98 |
-
metadata_dict[field] = "Unknown"
|
| 99 |
except json.JSONDecodeError:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
return metadata_dict
|
| 108 |
|
|
|
|
| 50 |
|
| 51 |
# ----------------- Metadata Extraction -----------------
|
| 52 |
def extract_metadata_llm(pdf_path):
|
| 53 |
+
"""Extracts metadata using LLM instead of regex."""
|
| 54 |
with pdfplumber.open(pdf_path) as pdf:
|
| 55 |
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
|
| 56 |
|
| 57 |
+
# Define metadata prompt
|
| 58 |
metadata_prompt = PromptTemplate(
|
| 59 |
input_variables=["text"],
|
| 60 |
template="""
|
| 61 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
|
|
|
| 62 |
- If no data is found for a field, return `"Unknown"` instead.
|
| 63 |
- The response must be valid JSON.
|
| 64 |
|
|
|
|
| 80 |
"""
|
| 81 |
)
|
| 82 |
|
| 83 |
+
# Run LLM Metadata Extraction
|
| 84 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
| 85 |
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
| 86 |
|
| 87 |
+
# Handle JSON extraction from LLM response
|
|
|
|
|
|
|
|
|
|
| 88 |
try:
|
| 89 |
+
# Try parsing directly as JSON
|
| 90 |
+
metadata_dict = json.loads(metadata_response["metadata"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
except json.JSONDecodeError:
|
| 92 |
+
# Fallback: Extract JSON using regex
|
| 93 |
+
json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
|
| 94 |
+
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
metadata_dict = json.loads(json_text)
|
| 98 |
+
except json.JSONDecodeError:
|
| 99 |
+
metadata_dict = {
|
| 100 |
+
"Title": "Unknown",
|
| 101 |
+
"Author": "Unknown",
|
| 102 |
+
"Emails": "No emails found",
|
| 103 |
+
"Affiliations": "No affiliations found"
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
# Ensure all required fields exist
|
| 107 |
+
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
| 108 |
+
for field in required_fields:
|
| 109 |
+
if field not in metadata_dict or not metadata_dict[field].strip():
|
| 110 |
+
metadata_dict[field] = "Unknown"
|
| 111 |
|
| 112 |
return metadata_dict
|
| 113 |
|