Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -50,16 +50,15 @@ if "vector_store" not in st.session_state:
|
|
50 |
|
51 |
# ----------------- Metadata Extraction -----------------
|
52 |
def extract_metadata_llm(pdf_path):
|
53 |
-
"""Extracts metadata using LLM"""
|
54 |
with pdfplumber.open(pdf_path) as pdf:
|
55 |
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
|
56 |
|
57 |
-
# Define
|
58 |
metadata_prompt = PromptTemplate(
|
59 |
input_variables=["text"],
|
60 |
template="""
|
61 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
62 |
-
|
63 |
- If no data is found for a field, return `"Unknown"` instead.
|
64 |
- The response must be valid JSON.
|
65 |
|
@@ -81,28 +80,34 @@ def extract_metadata_llm(pdf_path):
|
|
81 |
"""
|
82 |
)
|
83 |
|
84 |
-
|
85 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
86 |
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
87 |
|
88 |
-
#
|
89 |
-
json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
|
90 |
-
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
|
91 |
-
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
96 |
-
for field in required_fields:
|
97 |
-
if field not in metadata_dict:
|
98 |
-
metadata_dict[field] = "Unknown"
|
99 |
except json.JSONDecodeError:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
return metadata_dict
|
108 |
|
|
|
50 |
|
51 |
# ----------------- Metadata Extraction -----------------
|
52 |
def extract_metadata_llm(pdf_path):
|
53 |
+
"""Extracts metadata using LLM instead of regex."""
|
54 |
with pdfplumber.open(pdf_path) as pdf:
|
55 |
first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."
|
56 |
|
57 |
+
# Define metadata prompt
|
58 |
metadata_prompt = PromptTemplate(
|
59 |
input_variables=["text"],
|
60 |
template="""
|
61 |
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
|
|
62 |
- If no data is found for a field, return `"Unknown"` instead.
|
63 |
- The response must be valid JSON.
|
64 |
|
|
|
80 |
"""
|
81 |
)
|
82 |
|
83 |
+
# Run LLM Metadata Extraction
|
84 |
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
85 |
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
86 |
|
87 |
+
# Handle JSON extraction from LLM response
|
|
|
|
|
|
|
88 |
try:
|
89 |
+
# Try parsing directly as JSON
|
90 |
+
metadata_dict = json.loads(metadata_response["metadata"])
|
|
|
|
|
|
|
|
|
91 |
except json.JSONDecodeError:
|
92 |
+
# Fallback: Extract JSON using regex
|
93 |
+
json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
|
94 |
+
json_text = json_match.group(1) if json_match else metadata_response["metadata"]
|
95 |
+
|
96 |
+
try:
|
97 |
+
metadata_dict = json.loads(json_text)
|
98 |
+
except json.JSONDecodeError:
|
99 |
+
metadata_dict = {
|
100 |
+
"Title": "Unknown",
|
101 |
+
"Author": "Unknown",
|
102 |
+
"Emails": "No emails found",
|
103 |
+
"Affiliations": "No affiliations found"
|
104 |
+
}
|
105 |
+
|
106 |
+
# Ensure all required fields exist
|
107 |
+
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
108 |
+
for field in required_fields:
|
109 |
+
if field not in metadata_dict or not metadata_dict[field].strip():
|
110 |
+
metadata_dict[field] = "Unknown"
|
111 |
|
112 |
return metadata_dict
|
113 |
|