Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -28,10 +28,18 @@ if "vector_store" not in st.session_state:
|
|
28 |
st.session_state.vector_store = None
|
29 |
if "documents" not in st.session_state:
|
30 |
st.session_state.documents = None
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if pdf_source == "Upload a PDF file":
|
36 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
37 |
if uploaded_file:
|
@@ -39,6 +47,7 @@ if pdf_source == "Upload a PDF file":
|
|
39 |
with open(pdf_path, "wb") as f:
|
40 |
f.write(uploaded_file.getbuffer())
|
41 |
st.success("β
PDF Uploaded Successfully!")
|
|
|
42 |
|
43 |
elif pdf_source == "Enter a PDF URL":
|
44 |
pdf_url = st.text_input("Enter PDF URL:")
|
@@ -51,17 +60,12 @@ elif pdf_source == "Enter a PDF URL":
|
|
51 |
with open(pdf_path, "wb") as f:
|
52 |
f.write(response.content)
|
53 |
st.success("β
PDF Downloaded Successfully!")
|
|
|
54 |
else:
|
55 |
st.error("β Failed to download PDF. Check the URL.")
|
56 |
-
pdf_path = None
|
57 |
-
except Exception as e:
|
58 |
-
st.error(f"Error downloading PDF: {e}")
|
59 |
-
pdf_path = None
|
60 |
-
else:
|
61 |
-
pdf_path = None
|
62 |
|
63 |
# Step 2: Process PDF and Create Vector Store (Only if Not Processed)
|
64 |
-
if pdf_path and st.session_state.
|
65 |
with st.spinner("Loading and processing PDF..."):
|
66 |
loader = PDFPlumberLoader(pdf_path)
|
67 |
docs = loader.load()
|
@@ -73,7 +77,7 @@ if pdf_path and st.session_state.vector_store is None:
|
|
73 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
74 |
text_splitter = SemanticChunker(embedding_model)
|
75 |
documents = text_splitter.split_documents(docs)
|
76 |
-
st.session_state.documents = documents
|
77 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
78 |
|
79 |
# Step 4: Setup Vectorstore
|
@@ -85,7 +89,8 @@ if pdf_path and st.session_state.vector_store is None:
|
|
85 |
)
|
86 |
vector_store.add_documents(documents)
|
87 |
num_documents = len(vector_store.get()["documents"])
|
88 |
-
st.session_state.vector_store = vector_store # Store
|
|
|
89 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
90 |
|
91 |
# Step 5: Query Input (Only allow if vector store exists)
|
@@ -137,13 +142,5 @@ if st.session_state.vector_store:
|
|
137 |
st.subheader("π₯ RAG Final Response")
|
138 |
st.success(final_response['final_response'])
|
139 |
|
140 |
-
# Step 10: Display Workflow Breakdown
|
141 |
-
st.subheader("π **Workflow Breakdown:**")
|
142 |
-
st.json({
|
143 |
-
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
144 |
-
"Relevant Contexts": relevant_response["context_number"],
|
145 |
-
"Extracted Contexts": final_contexts["relevant_contexts"],
|
146 |
-
"Final Answer": final_response["final_response"]
|
147 |
-
})
|
148 |
else:
|
149 |
st.warning("π Please upload or provide a PDF URL first.")
|
|
|
28 |
st.session_state.vector_store = None
|
29 |
if "documents" not in st.session_state:
|
30 |
st.session_state.documents = None
|
31 |
+
if "processed" not in st.session_state:
|
32 |
+
st.session_state.processed = False # Prevent redundant processing
|
33 |
+
|
34 |
+
# Step 1: Choose PDF Source (Horizontal radio buttons)
|
35 |
+
pdf_source = st.radio(
|
36 |
+
"Upload or provide a link to a PDF:",
|
37 |
+
["Upload a PDF file", "Enter a PDF URL"],
|
38 |
+
index=0,
|
39 |
+
horizontal=True
|
40 |
+
)
|
41 |
+
|
42 |
+
pdf_path = None
|
43 |
if pdf_source == "Upload a PDF file":
|
44 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
45 |
if uploaded_file:
|
|
|
47 |
with open(pdf_path, "wb") as f:
|
48 |
f.write(uploaded_file.getbuffer())
|
49 |
st.success("β
PDF Uploaded Successfully!")
|
50 |
+
st.session_state.processed = False # Reset processing
|
51 |
|
52 |
elif pdf_source == "Enter a PDF URL":
|
53 |
pdf_url = st.text_input("Enter PDF URL:")
|
|
|
60 |
with open(pdf_path, "wb") as f:
|
61 |
f.write(response.content)
|
62 |
st.success("β
PDF Downloaded Successfully!")
|
63 |
+
st.session_state.processed = False # Reset processing
|
64 |
else:
|
65 |
st.error("β Failed to download PDF. Check the URL.")
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Step 2: Process PDF and Create Vector Store (Only if Not Processed)
|
68 |
+
if pdf_path and not st.session_state.processed:
|
69 |
with st.spinner("Loading and processing PDF..."):
|
70 |
loader = PDFPlumberLoader(pdf_path)
|
71 |
docs = loader.load()
|
|
|
77 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
78 |
text_splitter = SemanticChunker(embedding_model)
|
79 |
documents = text_splitter.split_documents(docs)
|
80 |
+
st.session_state.documents = documents
|
81 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
82 |
|
83 |
# Step 4: Setup Vectorstore
|
|
|
89 |
)
|
90 |
vector_store.add_documents(documents)
|
91 |
num_documents = len(vector_store.get()["documents"])
|
92 |
+
st.session_state.vector_store = vector_store # Store in session state
|
93 |
+
st.session_state.processed = True # Mark as processed
|
94 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
95 |
|
96 |
# Step 5: Query Input (Only allow if vector store exists)
|
|
|
142 |
st.subheader("π₯ RAG Final Response")
|
143 |
st.success(final_response['final_response'])
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
else:
|
146 |
st.warning("π Please upload or provide a PDF URL first.")
|