Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import requests
|
4 |
import pdfplumber
|
5 |
import chromadb
|
|
|
6 |
from langchain.document_loaders import PDFPlumberLoader
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
from langchain_experimental.text_splitter import SemanticChunker
|
@@ -10,7 +11,6 @@ from langchain_chroma import Chroma
|
|
10 |
from langchain.chains import LLMChain
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from langchain_groq import ChatGroq
|
13 |
-
import re
|
14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
15 |
|
16 |
# ----------------- Streamlit UI Setup -----------------
|
@@ -21,7 +21,7 @@ st.title("Blah-1")
|
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
22 |
|
23 |
# ----------------- ChromaDB Persistent Directory -----------------
|
24 |
-
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
25 |
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
26 |
|
27 |
# ----------------- Initialize Session State -----------------
|
@@ -36,9 +36,9 @@ if "processed_chunks" not in st.session_state:
|
|
36 |
if "vector_store" not in st.session_state:
|
37 |
st.session_state.vector_store = None
|
38 |
|
39 |
-
# -----------------
|
40 |
def extract_metadata(pdf_path):
|
41 |
-
"""
|
42 |
with pdfplumber.open(pdf_path) as pdf:
|
43 |
metadata = pdf.metadata or {}
|
44 |
|
@@ -46,13 +46,14 @@ def extract_metadata(pdf_path):
|
|
46 |
title = metadata.get("Title", "").strip()
|
47 |
if not title and pdf.pages:
|
48 |
text = pdf.pages[0].extract_text()
|
49 |
-
|
|
|
50 |
|
51 |
# Extract author
|
52 |
author = metadata.get("Author", "").strip()
|
53 |
if not author and pdf.pages:
|
54 |
-
|
55 |
-
author =
|
56 |
|
57 |
# Extract emails
|
58 |
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
|
@@ -77,25 +78,6 @@ if pdf_source == "Upload a PDF file":
|
|
77 |
st.session_state.chunked = False
|
78 |
st.session_state.vector_created = False
|
79 |
|
80 |
-
elif pdf_source == "Enter a PDF URL":
|
81 |
-
pdf_url = st.text_input("Enter PDF URL:")
|
82 |
-
if pdf_url and not st.session_state.pdf_loaded:
|
83 |
-
with st.spinner("π Downloading PDF..."):
|
84 |
-
try:
|
85 |
-
response = requests.get(pdf_url)
|
86 |
-
if response.status_code == 200:
|
87 |
-
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
88 |
-
with open(st.session_state.pdf_path, "wb") as f:
|
89 |
-
f.write(response.content)
|
90 |
-
st.session_state.pdf_loaded = False
|
91 |
-
st.session_state.chunked = False
|
92 |
-
st.session_state.vector_created = False
|
93 |
-
st.success("β
PDF Downloaded Successfully!")
|
94 |
-
else:
|
95 |
-
st.error("β Failed to download PDF. Check the URL.")
|
96 |
-
except Exception as e:
|
97 |
-
st.error(f"Error downloading PDF: {e}")
|
98 |
-
|
99 |
# ----------------- Process PDF -----------------
|
100 |
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
101 |
with st.spinner("π Processing document... Please wait."):
|
@@ -117,10 +99,15 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
117 |
model_name = "nomic-ai/modernbert-embed-base"
|
118 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
119 |
|
|
|
|
|
|
|
|
|
120 |
# Prevent unnecessary re-chunking
|
121 |
if not st.session_state.chunked:
|
122 |
text_splitter = SemanticChunker(embedding_model)
|
123 |
document_chunks = text_splitter.split_documents(docs)
|
|
|
124 |
st.session_state.processed_chunks = document_chunks
|
125 |
st.session_state.chunked = True
|
126 |
|
@@ -140,6 +127,7 @@ if not st.session_state.vector_created and st.session_state.processed_chunks:
|
|
140 |
st.session_state.vector_created = True
|
141 |
st.success("β
Vector store initialized successfully!")
|
142 |
|
|
|
143 |
# ----------------- Query Input -----------------
|
144 |
query = st.text_input("π Ask a question about the document:")
|
145 |
|
|
|
3 |
import requests
|
4 |
import pdfplumber
|
5 |
import chromadb
|
6 |
+
import re
|
7 |
from langchain.document_loaders import PDFPlumberLoader
|
8 |
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
from langchain_experimental.text_splitter import SemanticChunker
|
|
|
11 |
from langchain.chains import LLMChain
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain_groq import ChatGroq
|
|
|
14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
15 |
|
16 |
# ----------------- Streamlit UI Setup -----------------
|
|
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
22 |
|
23 |
# ----------------- ChromaDB Persistent Directory -----------------
|
24 |
+
CHROMA_DB_DIR = "/mnt/data/chroma_db" # Ensure persistence
|
25 |
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
26 |
|
27 |
# ----------------- Initialize Session State -----------------
|
|
|
36 |
if "vector_store" not in st.session_state:
|
37 |
st.session_state.vector_store = None
|
38 |
|
39 |
+
# ----------------- Improved Metadata Extraction -----------------
|
40 |
def extract_metadata(pdf_path):
|
41 |
+
"""Extracts title, author, emails, and affiliations from PDF."""
|
42 |
with pdfplumber.open(pdf_path) as pdf:
|
43 |
metadata = pdf.metadata or {}
|
44 |
|
|
|
46 |
title = metadata.get("Title", "").strip()
|
47 |
if not title and pdf.pages:
|
48 |
text = pdf.pages[0].extract_text()
|
49 |
+
title_match = re.search(r"(?i)title[:\-]?\s*(.*)", text or "")
|
50 |
+
title = title_match.group(1) if title_match else text.split("\n")[0] if text else "Untitled Document"
|
51 |
|
52 |
# Extract author
|
53 |
author = metadata.get("Author", "").strip()
|
54 |
if not author and pdf.pages:
|
55 |
+
author_match = re.search(r"(?i)by\s+([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "")
|
56 |
+
author = author_match.group(1).strip() if author_match else "Unknown Author"
|
57 |
|
58 |
# Extract emails
|
59 |
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
|
|
|
78 |
st.session_state.chunked = False
|
79 |
st.session_state.vector_created = False
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# ----------------- Process PDF -----------------
|
82 |
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
83 |
with st.spinner("π Processing document... Please wait."):
|
|
|
99 |
model_name = "nomic-ai/modernbert-embed-base"
|
100 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
101 |
|
102 |
+
# Convert metadata into a retrievable chunk
|
103 |
+
metadata_text = f"Title: {title}\nAuthor: {author}\nEmails: {email_str}\nAffiliations: {affiliation_str}"
|
104 |
+
metadata_doc = {"page_content": metadata_text, "metadata": {"source": "metadata"}}
|
105 |
+
|
106 |
# Prevent unnecessary re-chunking
|
107 |
if not st.session_state.chunked:
|
108 |
text_splitter = SemanticChunker(embedding_model)
|
109 |
document_chunks = text_splitter.split_documents(docs)
|
110 |
+
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
|
111 |
st.session_state.processed_chunks = document_chunks
|
112 |
st.session_state.chunked = True
|
113 |
|
|
|
127 |
st.session_state.vector_created = True
|
128 |
st.success("β
Vector store initialized successfully!")
|
129 |
|
130 |
+
|
131 |
# ----------------- Query Input -----------------
|
132 |
query = st.text_input("π Ask a question about the document:")
|
133 |
|