Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
|
|
4 |
import chromadb
|
5 |
from langchain.document_loaders import PDFPlumberLoader
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain_experimental.text_splitter import SemanticChunker
|
8 |
from langchain_chroma import Chroma
|
9 |
-
from langchain.chains import LLMChain
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
from langchain_groq import ChatGroq
|
|
|
12 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
13 |
|
14 |
# ----------------- Streamlit UI Setup -----------------
|
@@ -18,8 +20,9 @@ st.title("Blah-1")
|
|
18 |
# ----------------- API Keys -----------------
|
19 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
20 |
|
21 |
-
# -----------------
|
22 |
-
|
|
|
23 |
|
24 |
# ----------------- Initialize Session State -----------------
|
25 |
if "pdf_loaded" not in st.session_state:
|
@@ -33,22 +36,41 @@ if "processed_chunks" not in st.session_state:
|
|
33 |
if "vector_store" not in st.session_state:
|
34 |
st.session_state.vector_store = None
|
35 |
|
36 |
-
# -----------------
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ----------------- PDF Selection -----------------
|
45 |
-
#st.subheader("PDF Selection")
|
46 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
49 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
50 |
if uploaded_file:
|
51 |
-
st.session_state.pdf_path = "temp.pdf"
|
52 |
with open(st.session_state.pdf_path, "wb") as f:
|
53 |
f.write(uploaded_file.getbuffer())
|
54 |
st.session_state.pdf_loaded = False
|
@@ -62,7 +84,7 @@ elif pdf_source == "Enter a PDF URL":
|
|
62 |
try:
|
63 |
response = requests.get(pdf_url)
|
64 |
if response.status_code == 200:
|
65 |
-
st.session_state.pdf_path = "temp.pdf"
|
66 |
with open(st.session_state.pdf_path, "wb") as f:
|
67 |
f.write(response.content)
|
68 |
st.session_state.pdf_loaded = False
|
@@ -79,11 +101,20 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
79 |
with st.spinner("π Processing document... Please wait."):
|
80 |
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
81 |
docs = loader.load()
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Embedding Model
|
85 |
model_name = "nomic-ai/modernbert-embed-base"
|
86 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs
|
87 |
|
88 |
# Prevent unnecessary re-chunking
|
89 |
if not st.session_state.chunked:
|
@@ -99,6 +130,7 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
99 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
100 |
with st.spinner("π Initializing Vector Store..."):
|
101 |
st.session_state.vector_store = Chroma(
|
|
|
102 |
collection_name="deepseek_collection",
|
103 |
collection_metadata={"hnsw:space": "cosine"},
|
104 |
embedding_function=embedding_model
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
4 |
+
import pdfplumber
|
5 |
import chromadb
|
6 |
from langchain.document_loaders import PDFPlumberLoader
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
from langchain_experimental.text_splitter import SemanticChunker
|
9 |
from langchain_chroma import Chroma
|
10 |
+
from langchain.chains import LLMChain
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from langchain_groq import ChatGroq
|
13 |
+
import re
|
14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
15 |
|
16 |
# ----------------- Streamlit UI Setup -----------------
|
|
|
20 |
# ----------------- API Keys -----------------
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
22 |
|
23 |
+
# ----------------- ChromaDB Persistent Directory -----------------
|
24 |
+
CHROMA_DB_DIR = "/mnt/data/chroma_db" # Hugging Face Spaces persistent storage
|
25 |
+
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
26 |
|
27 |
# ----------------- Initialize Session State -----------------
|
28 |
if "pdf_loaded" not in st.session_state:
|
|
|
36 |
if "vector_store" not in st.session_state:
|
37 |
st.session_state.vector_store = None
|
38 |
|
39 |
+
# ----------------- Extract Metadata (Title, Author, Emails, Affiliations) -----------------
|
40 |
+
def extract_metadata(pdf_path):
|
41 |
+
"""Extract metadata such as Title, Author, Emails, and Affiliations."""
|
42 |
+
with pdfplumber.open(pdf_path) as pdf:
|
43 |
+
metadata = pdf.metadata or {}
|
44 |
|
45 |
+
# Extract title
|
46 |
+
title = metadata.get("Title", "").strip()
|
47 |
+
if not title and pdf.pages:
|
48 |
+
text = pdf.pages[0].extract_text()
|
49 |
+
title = text.split("\n")[0] if text else "Untitled Document"
|
50 |
+
|
51 |
+
# Extract author
|
52 |
+
author = metadata.get("Author", "").strip()
|
53 |
+
if not author and pdf.pages:
|
54 |
+
author_matches = re.findall(r"By ([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "")
|
55 |
+
author = author_matches[0] if author_matches else "Unknown Author"
|
56 |
+
|
57 |
+
# Extract emails
|
58 |
+
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
|
59 |
+
email_str = ", ".join(emails) if emails else "No emails found"
|
60 |
+
|
61 |
+
# Extract affiliations
|
62 |
+
affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "")
|
63 |
+
affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found"
|
64 |
+
|
65 |
+
return title, author, email_str, affiliation_str
|
66 |
|
67 |
# ----------------- PDF Selection -----------------
|
|
|
68 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
69 |
|
70 |
if pdf_source == "Upload a PDF file":
|
71 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
72 |
if uploaded_file:
|
73 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
74 |
with open(st.session_state.pdf_path, "wb") as f:
|
75 |
f.write(uploaded_file.getbuffer())
|
76 |
st.session_state.pdf_loaded = False
|
|
|
84 |
try:
|
85 |
response = requests.get(pdf_url)
|
86 |
if response.status_code == 200:
|
87 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
88 |
with open(st.session_state.pdf_path, "wb") as f:
|
89 |
f.write(response.content)
|
90 |
st.session_state.pdf_loaded = False
|
|
|
101 |
with st.spinner("π Processing document... Please wait."):
|
102 |
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
103 |
docs = loader.load()
|
104 |
+
|
105 |
+
# Extract metadata
|
106 |
+
title, author, email_str, affiliation_str = extract_metadata(st.session_state.pdf_path)
|
107 |
+
|
108 |
+
# Display extracted metadata
|
109 |
+
st.subheader("π Extracted Document Metadata")
|
110 |
+
st.write(f"**Title:** {title}")
|
111 |
+
st.write(f"**Author:** {author}")
|
112 |
+
st.write(f"**Emails:** {email_str}")
|
113 |
+
st.write(f"**Affiliations:** {affiliation_str}")
|
114 |
|
115 |
# Embedding Model
|
116 |
model_name = "nomic-ai/modernbert-embed-base"
|
117 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
118 |
|
119 |
# Prevent unnecessary re-chunking
|
120 |
if not st.session_state.chunked:
|
|
|
130 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
131 |
with st.spinner("π Initializing Vector Store..."):
|
132 |
st.session_state.vector_store = Chroma(
|
133 |
+
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
|
134 |
collection_name="deepseek_collection",
|
135 |
collection_metadata={"hnsw:space": "cosine"},
|
136 |
embedding_function=embedding_model
|