Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -120,7 +120,7 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
120 |
metadata = extract_metadata_llm(st.session_state.pdf_path)
|
121 |
|
122 |
# Display extracted-metadata
|
123 |
-
if isinstance(metadata, dict):
|
124 |
st.subheader("π Extracted Document Metadata")
|
125 |
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
|
126 |
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
|
@@ -129,7 +129,6 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
129 |
else:
|
130 |
st.error("Metadata extraction failed. Check the LLM response format.")
|
131 |
|
132 |
-
|
133 |
# Embedding Model
|
134 |
model_name = "nomic-ai/modernbert-embed-base"
|
135 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
@@ -194,7 +193,6 @@ if query:
|
|
194 |
st.markdown("### Extracted Relevant Contexts")
|
195 |
st.json(contexts["relevant_contexts"])
|
196 |
|
197 |
-
|
198 |
st.subheader("context_relevancy_evaluation_chain Statement")
|
199 |
st.json(final_response["relevancy_response"])
|
200 |
|
|
|
120 |
metadata = extract_metadata_llm(st.session_state.pdf_path)
|
121 |
|
122 |
# Display extracted-metadata
|
123 |
+
if isinstance(metadata, dict):
|
124 |
st.subheader("π Extracted Document Metadata")
|
125 |
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
|
126 |
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
|
|
|
129 |
else:
|
130 |
st.error("Metadata extraction failed. Check the LLM response format.")
|
131 |
|
|
|
132 |
# Embedding Model
|
133 |
model_name = "nomic-ai/modernbert-embed-base"
|
134 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
|
|
193 |
st.markdown("### Extracted Relevant Contexts")
|
194 |
st.json(contexts["relevant_contexts"])
|
195 |
|
|
|
196 |
st.subheader("context_relevancy_evaluation_chain Statement")
|
197 |
st.json(final_response["relevancy_response"])
|
198 |
|