Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,287 Bytes
3a30f4d c145edb 4cb7a22 ff7f5af 413e290 ff7f5af 90d64c3 ff7f5af 6f708fa 90d64c3 cc5db28 90d64c3 cc5db28 90d64c3 dfeabbd 2662f4d ff7f5af 79eef31 5e5c66e d6e6cce ff7f5af 2662f4d ff7f5af 2662f4d f977e03 e05222e 2f6f1b4 ff7f5af 22371d1 ff7f5af 413e290 dfeabbd ff7f5af 2662f4d dfeabbd ff7f5af 2662f4d c145edb 2662f4d 5e5c66e ff7f5af 5e5c66e ff7f5af ddec57b ff7f5af ddec57b 5e5c66e ab86ad9 ff7f5af 5e5c66e 79eef31 957155d 5e5c66e 957155d 5e5c66e 957155d 5e5c66e 957155d c145edb 5e5c66e c145edb f1a0bd5 d8ab2f5 413e290 c145edb e95c348 a0eb807 e95c348 c145edb ff7f5af 5e5c66e ff7f5af 5e5c66e fbad067 ff7f5af 53396b4 ff7f5af 09f419b ff7f5af 2662f4d 413e290 938368a e95c348 2662f4d c145edb 5e5c66e aba4c44 5e5c66e d6e6cce 5e5c66e 8e44b23 5e5c66e 1813431 5e5c66e c145edb 5e5c66e 2c2e0dd 5e5c66e c145edb 5e5c66e 1813431 5e5c66e ff7f5af c145edb 5e5c66e 2c2e0dd 5e5c66e 8e44b23 5e5c66e c145edb 5e5c66e 1813431 5e5c66e c145edb 5e5c66e ff7f5af 5e5c66e ff7f5af 5e5c66e c145edb 5e5c66e c145edb 5e5c66e c145edb 5e5c66e ff7f5af c145edb 5e5c66e c145edb 5e5c66e c145edb 5e5c66e c145edb 2662f4d 413e290 ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af c145edb ff7f5af c145edb ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af c145edb ff7f5af c145edb ff7f5af 2662f4d ff7f5af c145edb ff7f5af c145edb ff7f5af 2662f4d ff7f5af c145edb ff7f5af c145edb ff7f5af 2662f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import subprocess
subprocess.run(['sh', './spaces.sh'])
import spaces
@spaces.GPU(required=True)
def install_dependencies():
subprocess.run(['sh', './flashattn.sh'])
install_dependencies()
import os
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
torch.backends.cuda.matmul.allow_tf32 = False # torch 2.8
torch.backends.cudnn.allow_tf32 = False # torch 2.8
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
#torch.backends.fp32_precision = "ieee" torch 2.9
#torch.backends.cuda.matmul.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.conv.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.rnn.fp32_precision = "ieee" torch 2.9
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
import json
import gradio as gr
import numpy as np
import random
import datetime
import threading
import io
from PIL import Image
import imageio.v3 as iio
# For HDR
import pillow_avif
import cv2
from google.oauth2 import service_account
from google.cloud import storage
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from image_gen_aux import UpscaleWithModel
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
gcs_client = None
print(GCS_BUCKET_NAME)
if GCS_SA_KEY:
print('Got key length: ',len(GCS_SA_KEY))
if GCS_SA_KEY and GCS_BUCKET_NAME:
try:
credentials_info = json.loads(GCS_SA_KEY) # New, safer way
credentials = service_account.Credentials.from_service_account_info(credentials_info)
gcs_client = storage.Client(credentials=credentials)
print("✅ GCS Client initialized successfully.")
except Exception as e:
print(f"❌ Failed to initialize GCS client: {e}")
def upload_to_gcs(image_bytes, filename, content_type):
if not gcs_client:
print("⚠️ GCS client not initialized. Skipping upload.")
return
if image_bytes is None:
print(f"⚠️ No image bytes for {filename}. Skipping upload.")
return
try:
print(f"--> Starting GCS upload for {filename}...")
bucket = gcs_client.bucket(GCS_BUCKET_NAME)
blob = bucket.blob(f"stablediff/{filename}")
# We already have the bytes, just upload them
blob.upload_from_string(image_bytes, content_type=content_type)
print(f"✅ Successfully uploaded {filename} to GCS.")
except Exception as e:
print(f"❌ An error occurred during GCS upload: {e}")
def srgb_to_linear_tensor(img_tensor_srgb):
"""Converts a PyTorch sRGB tensor [0, 1] to a linear tensor."""
# Assumes input is in [0, 1] range
linear_mask = (img_tensor_srgb <= 0.04045).float()
non_linear_mask = (img_tensor_srgb > 0.04045).float()
linear_part = img_tensor_srgb / 12.92
non_linear_part = torch.pow((img_tensor_srgb + 0.055) / 1.055, 2.4)
img_linear = (linear_part * linear_mask) + (non_linear_part * non_linear_mask)
return img_linear
def linear_to_srgb_tensor(img_tensor_linear):
"""Converts a PyTorch linear tensor [0, 1] to sRGB."""
# Clamp to prevent negative values from torch.pow
img_tensor_linear = img_tensor_linear.clamp(min=0.0)
srgb_mask = (img_tensor_linear <= 0.0031308).float()
non_srgb_mask = (img_tensor_linear > 0.0031308).float()
srgb_part = img_tensor_linear * 12.92
non_srgb_part = 1.055 * torch.pow(img_tensor_linear, 1.0/2.4) - 0.055
img_srgb = (srgb_part * srgb_mask) + (non_srgb_part * non_srgb_mask)
return img_srgb.clamp(0.0, 1.0)
def srgb_to_linear(tensor_srgb):
"""Converts a batched sRGB PyTorch tensor [0, 1] to a linear tensor."""
return torch.where(
tensor_srgb <= 0.04045,
tensor_srgb / 12.92,
((tensor_srgb + 0.055) / 1.055).pow(2.4)
)
def create_hdr_avif_bytes(image_tensor_fp32):
"""
Converts a float32 sRGB tensor [-1, 1] to 10-bit HDR AVIF bytes.
"""
if image_tensor_fp32 is None:
return None
try:
# 1. Convert sRGB [-1, 1] tensor to Linear [0, 1] tensor
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1)
linear_tensor = srgb_to_linear_tensor(srgb_tensor_0_1)
# 2. Convert linear float tensor to 16-bit uint numpy array [H, W, 3]
# We use 16-bit as a container for our 10-bit data
linear_tensor_16bit = (linear_tensor.clamp(0, 1) * 65535.0).round()
hdr_16bit_array = linear_tensor_16bit.to(torch.uint16).cpu().permute(0, 2, 3, 1).numpy()[0]
# 3. Save to bytes using imageio, forcing 10-bit YUV444 format for HDR
return iio.imwrite(
"<bytes>",
hdr_16bit_array,
format_hint=".avif",
codec="av1", # Use AV1 codec
out_pixelformat="yuv444p10le" # Force 10-bit, 4:4:4 chroma
)
except Exception as e:
print(f"❌ Failed to encode HDR AVIF: {e}")
return None
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3
class FlashAttentionProcessor(AttnProcessor2_0):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None, # This will be present for cross-attention
attention_mask=None,
temb=None, # This might be present in some attention mechanisms, pass through if not used directly
**kwargs,
):
# Determine if it's self-attention or cross-attention
# For self-attention, encoder_hidden_states is None or identical to hidden_states
is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1]
# SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim)
# However, attention can be within a transformer block which might internally reshape.
# Ensure your inputs (query, key, value) are properly shaped for the kernel.
# The kernel expects (Batch, Heads, Sequence, Dim_Head)
query = attn.to_q(hidden_states)
if is_cross_attention:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
else: # Self-attention
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
scale = attn.scale
query = query * scale
b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim
h = attn.heads
d = c // h # dim_per_head
# Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel
q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
out_reshaped = torch.empty_like(q_reshaped)
# Call the Flash Attention kernel
fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
# Reshape output back to (Batch, Sequence, Heads * Dim_Head)
out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
out = attn.to_out(out)
return out
@spaces.GPU(duration=120)
def compile_transformer():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
def load_model():
vae = AutoencoderKL.from_pretrained(
"ford442/stable-diffusion-3.5-large-bf16",
subfolder="vae",
torch_dtype=torch.float32 # Load VAE in full precision
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
transformer=None, # Load transformer separately
use_safetensors=True,
#vae=vae
)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
pipe.to(device=device, dtype=torch.bfloat16)
pipe.vae=vae.to(device=device)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
return pipe, upscaler_2
pipe, upscaler_2 = load_model()
fa_processor = FlashAttentionProcessor()
for name, module in pipe.transformer.named_modules():
if isinstance(module, AttnProcessor2_0):
module.processor = fa_processor
#compiled_transformer = compile_transformer()
#spaces.aoti_apply(compiled_transformer, pipe.transformer)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=45)
def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384,
output_type="latent" # <-- Get latents, not an image
).images
# 2. Manually decode with our float32 VAE
latents_fp32 = sd_image.to(torch.float32)
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32
with torch.no_grad():
# This is our high-precision sRGB tensor in range [-1, 1]
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample
print('-- got fp32 image tensor --')
# 3. Create 8-bit PIL Image from the tensor (for Gradio display)
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1)
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8")
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit)
print('-- got 8-bit PIL image for display --')
# 4. Create 16-bit PIL Image from the same tensor (for Upscaler)
# Pillow 10+ can create an 'RGB' mode image from a uint16 array
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16")
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit)
print('-- got 16-bit PIL image for upscaling --')
# 5. Run the 16-bit upscaling (4x)
# We feed the high-precision 16-bit PIL image to the upscaler
with torch.no_grad():
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256)
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
print('-- got 4K 16-bit upscaled PIL image --')
torch.cuda.empty_cache()
# 6. Convert the 4K 16-bit PIL back to a float32 tensor
upscaled_16bit_numpy = np.array(upscale_2)
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
# 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
# We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear
# Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1)
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1)
print('-- got 4K HDR AVIF bytes for upload --')
# 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload)
return sd_image_pil_8bit, upscaled_avif_bytes, prompt
@spaces.GPU(duration=70)
def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384,
output_type="latent" # <-- Get latents, not an image
).images
# 2. Manually decode with our float32 VAE
latents_fp32 = sd_image.to(torch.float32)
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32
with torch.no_grad():
# This is our high-precision sRGB tensor in range [-1, 1]
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample
print('-- got fp32 image tensor --')
# 3. Create 8-bit PIL Image from the tensor (for Gradio display)
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1)
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8")
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit)
print('-- got 8-bit PIL image for display --')
# 4. Create 16-bit PIL Image from the same tensor (for Upscaler)
# Pillow 10+ can create an 'RGB' mode image from a uint16 array
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16")
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB')
print('-- got 16-bit PIL image for upscaling --')
# 5. Run the 16-bit upscaling (4x)
# We feed the high-precision 16-bit PIL image to the upscaler
with torch.no_grad():
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256)
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
print('-- got 4K 16-bit upscaled PIL image --')
torch.cuda.empty_cache()
# 6. Convert the 4K 16-bit PIL back to a float32 tensor
upscaled_16bit_numpy = np.array(upscale_2)
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
# 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
# We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear
# Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1)
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1)
print('-- got 4K HDR AVIF bytes for upload --')
# 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload)
return sd_image_pil_8bit, upscaled_avif_bytes, prompt
@spaces.GPU(duration=120)
def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384,
output_type="latent" # <-- Get latents, not an image
).images
# 2. Manually decode with our float32 VAE
latents_fp32 = sd_image.to(torch.float32)
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32
with torch.no_grad():
# This is our high-precision sRGB tensor in range [-1, 1]
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample
print('-- got fp32 image tensor --')
# 3. Create 8-bit PIL Image from the tensor (for Gradio display)
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1)
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8")
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit)
print('-- got 8-bit PIL image for display --')
# 4. Create 16-bit PIL Image from the same tensor (for Upscaler)
# Pillow 10+ can create an 'RGB' mode image from a uint16 array
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16")
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB')
print('-- got 16-bit PIL image for upscaling --')
# 5. Run the 16-bit upscaling (4x)
# We feed the high-precision 16-bit PIL image to the upscaler
with torch.no_grad():
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256)
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
print('-- got 4K 16-bit upscaled PIL image --')
torch.cuda.empty_cache()
# 6. Convert the 4K 16-bit PIL back to a float32 tensor
upscaled_16bit_numpy = np.array(upscale_2)
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
# 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
# We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear
# Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1)
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1)
print('-- got 4K HDR AVIF bytes for upload --')
# 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload)
return sd_image_pil_8bit, upscaled_avif_bytes, prompt
def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
# 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload)
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Define filenames
sd_filename_png = f"sd35ll_{timestamp}.png"
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif"
# 2. Convert the 8-bit PIL image to PNG bytes for upload
img_byte_arr = io.BytesIO()
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
sd_png_bytes = img_byte_arr.getvalue()
# 3. Start threads to upload both
# Upload the 1K 8-bit PNG
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png"))
# Upload the 4K 10-bit HDR AVIF
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif"))
png_thread.start()
avif_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
# 4. Return the 8-bit PIL image to Gradio
return sd_image_pil, expanded_prompt
def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
# 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload)
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Define filenames
sd_filename_png = f"sd35ll_{timestamp}.png"
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif"
# 2. Convert the 8-bit PIL image to PNG bytes for upload
img_byte_arr = io.BytesIO()
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
sd_png_bytes = img_byte_arr.getvalue()
# 3. Start threads to upload both
# Upload the 1K 8-bit PNG
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png"))
# Upload the 4K 10-bit HDR AVIF
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif"))
png_thread.start()
avif_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
# 4. Return the 8-bit PIL image to Gradio
return sd_image_pil, expanded_prompt
def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
# 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload)
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Define filenames
sd_filename_png = f"sd35ll_{timestamp}.png"
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif"
# 2. Convert the 8-bit PIL image to PNG bytes for upload
img_byte_arr = io.BytesIO()
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
sd_png_bytes = img_byte_arr.getvalue()
# 3. Start threads to upload both
# Upload the 1K 8-bit PNG
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png"))
# Upload the 4K 10-bit HDR AVIF
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif"))
png_thread.start()
avif_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
# 4. Return the 8-bit PIL image to Gradio
return sd_image_pil, expanded_prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1,
placeholder="Enter your prompt", container=False,
)
run_button_30 = gr.Button("Run30", scale=0, variant="primary")
run_button_60 = gr.Button("Run60", scale=0, variant="primary")
run_button_110 = gr.Button("Run100", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, type="pil")
save_consent_checkbox = gr.Checkbox(
label="✅ Anonymously upload result to a public gallery",
value=True, # Default to not uploading
info="Check this box to help us by contributing your image."
)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)
run_button_30.click(
fn=run_inference_and_upload_30,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
run_button_60.click(
fn=run_inference_and_upload_60,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
run_button_110.click(
fn=run_inference_and_upload_110,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |