1inkusFace commited on
Commit
09f419b
·
verified ·
1 Parent(s): 4318fff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -61,11 +61,12 @@ def upload_to_ftp(filename):
61
  pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
62
 
63
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
64
-
 
65
  pipe = StableDiffusion3Pipeline.from_pretrained(
66
  #"stabilityai # stable-diffusion-3.5-large",
67
  "ford442/stable-diffusion-3.5-large-bf16",
68
- # vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
69
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
70
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
71
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
@@ -76,10 +77,12 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
76
  #torch_dtype=torch.bfloat16,
77
  #use_safetensors=False,
78
  )
 
79
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
 
80
  pipe.to(device=device, dtype=torch.bfloat16)
81
  #pipe.to(device)
82
-
83
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
84
 
85
  MAX_SEED = np.iinfo(np.int32).max
@@ -102,6 +105,7 @@ def infer_30(
102
  seed = random.randint(0, MAX_SEED)
103
  generator = torch.Generator(device='cuda').manual_seed(seed)
104
  print('-- generating image --')
 
105
  sd_image = pipe(
106
  prompt=prompt,
107
  prompt_2=prompt,
 
61
  pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
62
 
63
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
64
+ #vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
65
+ vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True)
66
  pipe = StableDiffusion3Pipeline.from_pretrained(
67
  #"stabilityai # stable-diffusion-3.5-large",
68
  "ford442/stable-diffusion-3.5-large-bf16",
69
+ #vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
70
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
71
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
72
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
 
77
  #torch_dtype=torch.bfloat16,
78
  #use_safetensors=False,
79
  )
80
+
81
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
82
+
83
  pipe.to(device=device, dtype=torch.bfloat16)
84
  #pipe.to(device)
85
+ pipe.vae=vaeX
86
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
87
 
88
  MAX_SEED = np.iinfo(np.int32).max
 
105
  seed = random.randint(0, MAX_SEED)
106
  generator = torch.Generator(device='cuda').manual_seed(seed)
107
  print('-- generating image --')
108
+
109
  sd_image = pipe(
110
  prompt=prompt,
111
  prompt_2=prompt,