Update app.py
Browse files
app.py
CHANGED
|
@@ -118,8 +118,10 @@ def infer_30(
|
|
| 118 |
torch.set_float32_matmul_precision("highest")
|
| 119 |
seed = random.randint(0, MAX_SEED)
|
| 120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
| 121 |
print('-- generating image --')
|
| 122 |
sd_image = pipe(
|
|
|
|
| 123 |
prompt=prompt,
|
| 124 |
prompt_2=prompt,
|
| 125 |
prompt_3=prompt,
|
|
@@ -168,8 +170,10 @@ def infer_60(
|
|
| 168 |
torch.set_float32_matmul_precision("highest")
|
| 169 |
seed = random.randint(0, MAX_SEED)
|
| 170 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
| 171 |
print('-- generating image --')
|
| 172 |
sd_image = pipe(
|
|
|
|
| 173 |
prompt=prompt,
|
| 174 |
prompt_2=prompt,
|
| 175 |
prompt_3=prompt,
|
|
@@ -180,6 +184,7 @@ def infer_60(
|
|
| 180 |
num_inference_steps=num_inference_steps,
|
| 181 |
width=width,
|
| 182 |
height=height,
|
|
|
|
| 183 |
generator=generator,
|
| 184 |
max_sequence_length=512
|
| 185 |
).images[0]
|
|
@@ -217,8 +222,10 @@ def infer_90(
|
|
| 217 |
torch.set_float32_matmul_precision("highest")
|
| 218 |
seed = random.randint(0, MAX_SEED)
|
| 219 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
| 220 |
print('-- generating image --')
|
| 221 |
sd_image = pipe(
|
|
|
|
| 222 |
prompt=prompt,
|
| 223 |
prompt_2=prompt,
|
| 224 |
prompt_3=prompt,
|
|
@@ -229,6 +236,7 @@ def infer_90(
|
|
| 229 |
num_inference_steps=num_inference_steps,
|
| 230 |
width=width,
|
| 231 |
height=height,
|
|
|
|
| 232 |
generator=generator,
|
| 233 |
max_sequence_length=512
|
| 234 |
).images[0]
|
|
|
|
| 118 |
torch.set_float32_matmul_precision("highest")
|
| 119 |
seed = random.randint(0, MAX_SEED)
|
| 120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 121 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 122 |
print('-- generating image --')
|
| 123 |
sd_image = pipe(
|
| 124 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
| 125 |
prompt=prompt,
|
| 126 |
prompt_2=prompt,
|
| 127 |
prompt_3=prompt,
|
|
|
|
| 170 |
torch.set_float32_matmul_precision("highest")
|
| 171 |
seed = random.randint(0, MAX_SEED)
|
| 172 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 173 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 174 |
print('-- generating image --')
|
| 175 |
sd_image = pipe(
|
| 176 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
| 177 |
prompt=prompt,
|
| 178 |
prompt_2=prompt,
|
| 179 |
prompt_3=prompt,
|
|
|
|
| 184 |
num_inference_steps=num_inference_steps,
|
| 185 |
width=width,
|
| 186 |
height=height,
|
| 187 |
+
# cross_attention_kwargs={"scale": 0.75},
|
| 188 |
generator=generator,
|
| 189 |
max_sequence_length=512
|
| 190 |
).images[0]
|
|
|
|
| 222 |
torch.set_float32_matmul_precision("highest")
|
| 223 |
seed = random.randint(0, MAX_SEED)
|
| 224 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 225 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 226 |
print('-- generating image --')
|
| 227 |
sd_image = pipe(
|
| 228 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
| 229 |
prompt=prompt,
|
| 230 |
prompt_2=prompt,
|
| 231 |
prompt_3=prompt,
|
|
|
|
| 236 |
num_inference_steps=num_inference_steps,
|
| 237 |
width=width,
|
| 238 |
height=height,
|
| 239 |
+
# cross_attention_kwargs={"scale": 0.75},
|
| 240 |
generator=generator,
|
| 241 |
max_sequence_length=512
|
| 242 |
).images[0]
|