Update app.py
Browse files
app.py
CHANGED
@@ -118,8 +118,10 @@ def infer_30(
|
|
118 |
torch.set_float32_matmul_precision("highest")
|
119 |
seed = random.randint(0, MAX_SEED)
|
120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
121 |
print('-- generating image --')
|
122 |
sd_image = pipe(
|
|
|
123 |
prompt=prompt,
|
124 |
prompt_2=prompt,
|
125 |
prompt_3=prompt,
|
@@ -168,8 +170,10 @@ def infer_60(
|
|
168 |
torch.set_float32_matmul_precision("highest")
|
169 |
seed = random.randint(0, MAX_SEED)
|
170 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
171 |
print('-- generating image --')
|
172 |
sd_image = pipe(
|
|
|
173 |
prompt=prompt,
|
174 |
prompt_2=prompt,
|
175 |
prompt_3=prompt,
|
@@ -180,6 +184,7 @@ def infer_60(
|
|
180 |
num_inference_steps=num_inference_steps,
|
181 |
width=width,
|
182 |
height=height,
|
|
|
183 |
generator=generator,
|
184 |
max_sequence_length=512
|
185 |
).images[0]
|
@@ -217,8 +222,10 @@ def infer_90(
|
|
217 |
torch.set_float32_matmul_precision("highest")
|
218 |
seed = random.randint(0, MAX_SEED)
|
219 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
220 |
print('-- generating image --')
|
221 |
sd_image = pipe(
|
|
|
222 |
prompt=prompt,
|
223 |
prompt_2=prompt,
|
224 |
prompt_3=prompt,
|
@@ -229,6 +236,7 @@ def infer_90(
|
|
229 |
num_inference_steps=num_inference_steps,
|
230 |
width=width,
|
231 |
height=height,
|
|
|
232 |
generator=generator,
|
233 |
max_sequence_length=512
|
234 |
).images[0]
|
|
|
118 |
torch.set_float32_matmul_precision("highest")
|
119 |
seed = random.randint(0, MAX_SEED)
|
120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
121 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
122 |
print('-- generating image --')
|
123 |
sd_image = pipe(
|
124 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
125 |
prompt=prompt,
|
126 |
prompt_2=prompt,
|
127 |
prompt_3=prompt,
|
|
|
170 |
torch.set_float32_matmul_precision("highest")
|
171 |
seed = random.randint(0, MAX_SEED)
|
172 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
173 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
174 |
print('-- generating image --')
|
175 |
sd_image = pipe(
|
176 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
177 |
prompt=prompt,
|
178 |
prompt_2=prompt,
|
179 |
prompt_3=prompt,
|
|
|
184 |
num_inference_steps=num_inference_steps,
|
185 |
width=width,
|
186 |
height=height,
|
187 |
+
# cross_attention_kwargs={"scale": 0.75},
|
188 |
generator=generator,
|
189 |
max_sequence_length=512
|
190 |
).images[0]
|
|
|
222 |
torch.set_float32_matmul_precision("highest")
|
223 |
seed = random.randint(0, MAX_SEED)
|
224 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
225 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
226 |
print('-- generating image --')
|
227 |
sd_image = pipe(
|
228 |
+
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
229 |
prompt=prompt,
|
230 |
prompt_2=prompt,
|
231 |
prompt_3=prompt,
|
|
|
236 |
num_inference_steps=num_inference_steps,
|
237 |
width=width,
|
238 |
height=height,
|
239 |
+
# cross_attention_kwargs={"scale": 0.75},
|
240 |
generator=generator,
|
241 |
max_sequence_length=512
|
242 |
).images[0]
|