1inkusFace commited on
Commit
9cdd054
·
verified ·
1 Parent(s): 8148039

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -37
app.py CHANGED
@@ -1,15 +1,15 @@
1
  import spaces
2
  import os
3
 
4
- os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
5
- os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
6
  alloc_conf_parts = [
7
  'expandable_segments:True',
8
  'pinned_use_background_threads:True' # Specific to pinned memory.
9
  ]
10
- os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
11
- os.environ["SAFETENSORS_FAST_GPU"] = "1"
12
- os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
13
 
14
  import gradio as gr
15
  import numpy as np
@@ -27,14 +27,14 @@ import time
27
  from image_gen_aux import UpscaleWithModel
28
  from huggingface_hub import hf_hub_download
29
  import datetime
30
- import cyper
31
 
32
  from diffusers import AutoencoderKL
33
  #from models.transformer_sd3 import SD3Transformer2DModel
34
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
35
 
36
  from PIL import Image
37
-
38
  torch.backends.cuda.matmul.allow_tf32 = False
39
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
40
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
@@ -44,10 +44,10 @@ torch.backends.cudnn.benchmark = False
44
  torch.backends.cuda.preferred_blas_library="cublas"
45
  torch.backends.cuda.preferred_linalg_library="cusolver"
46
  torch.set_float32_matmul_precision("highest")
47
-
48
  hftoken = os.getenv("HF_AUTH_TOKEN")
49
 
50
- code = r'''
51
  import torch
52
  import paramiko
53
  import os
@@ -68,9 +68,9 @@ def upload_to_ftp(filename):
68
  print(f"Uploaded {filename} to FTP server")
69
  except Exception as e:
70
  print(f"FTP upload error: {e}")
71
- '''
72
 
73
- pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
74
 
75
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
76
  #vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
@@ -82,11 +82,11 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
82
  #vae=None,
83
  #vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
84
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
85
- text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
86
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
87
- text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
88
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
89
- text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
90
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
91
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
92
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
@@ -95,9 +95,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
95
  #torch_dtype=torch.bfloat16,
96
  #use_safetensors=False,
97
  )
98
- text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
99
- text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
100
- text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
101
 
102
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
103
 
@@ -122,9 +122,9 @@ def infer_30(
122
  num_inference_steps,
123
  progress=gr.Progress(track_tqdm=True),
124
  ):
125
- pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
126
- pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
127
- pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
128
  seed = random.randint(0, MAX_SEED)
129
  generator = torch.Generator(device='cuda').manual_seed(seed)
130
  print('-- generating image --')
@@ -147,7 +147,8 @@ def infer_30(
147
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
148
  sd35_path = f"sd35ll_{timestamp}.png"
149
  sd_image.save(sd35_path,optimize=False,compress_level=0)
150
- pyx.upload_to_ftp(sd35_path)
 
151
  # pipe.unet.to('cpu')
152
  upscaler_2.to(torch.device('cuda'))
153
  with torch.no_grad():
@@ -156,7 +157,8 @@ def infer_30(
156
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
157
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
158
  downscale2.save(upscale_path,optimize=False,compress_level=0)
159
- pyx.upload_to_ftp(upscale_path)
 
160
  return sd_image, prompt
161
 
162
  @spaces.GPU(duration=70)
@@ -171,9 +173,9 @@ def infer_60(
171
  num_inference_steps,
172
  progress=gr.Progress(track_tqdm=True),
173
  ):
174
- pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
175
- pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
176
- pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
177
  seed = random.randint(0, MAX_SEED)
178
  generator = torch.Generator(device='cuda').manual_seed(seed)
179
  print('-- generating image --')
@@ -196,16 +198,18 @@ def infer_60(
196
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
197
  sd35_path = f"sd35ll_{timestamp}.png"
198
  sd_image.save(sd35_path,optimize=False,compress_level=0)
199
- pyx.upload_to_ftp(sd35_path)
 
200
  # pipe.unet.to('cpu')
201
  upscaler_2.to(torch.device('cuda'))
202
  with torch.no_grad():
203
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
204
  print('-- got upscaled image --')
205
- downscale2 = upscale2.resize((upscale2.width // 2, upscale2.height // 2),Image.LANCZOS)
206
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
207
  downscale2.save(upscale_path,optimize=False,compress_level=0)
208
- pyx.upload_to_ftp(upscale_path)
 
209
  return sd_image, prompt
210
 
211
  @spaces.GPU(duration=100)
@@ -220,9 +224,9 @@ def infer_90(
220
  num_inference_steps,
221
  progress=gr.Progress(track_tqdm=True),
222
  ):
223
- pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
224
- pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
225
- pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
226
  seed = random.randint(0, MAX_SEED)
227
  generator = torch.Generator(device='cuda').manual_seed(seed)
228
  print('-- generating image --')
@@ -245,16 +249,18 @@ def infer_90(
245
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
246
  sd35_path = f"sd35ll_{timestamp}.png"
247
  sd_image.save(sd35_path,optimize=False,compress_level=0)
248
- pyx.upload_to_ftp(sd35_path)
 
249
  # pipe.unet.to('cpu')
250
  upscaler_2.to(torch.device('cuda'))
251
  with torch.no_grad():
252
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
253
  print('-- got upscaled image --')
254
- downscale2 = upscale2.resize((upscale2.width // 2, upscale2.height // 2),Image.LANCZOS)
255
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
256
  downscale2.save(upscale_path,optimize=False,compress_level=0)
257
- pyx.upload_to_ftp(upscale_path)
 
258
  return sd_image, prompt
259
 
260
  @spaces.GPU(duration=110)
@@ -269,6 +275,9 @@ def infer_100(
269
  num_inference_steps,
270
  progress=gr.Progress(track_tqdm=True),
271
  ):
 
 
 
272
  seed = random.randint(0, MAX_SEED)
273
  generator = torch.Generator(device='cuda').manual_seed(seed)
274
  print('-- generating image --')
@@ -283,6 +292,7 @@ def infer_100(
283
  num_inference_steps=num_inference_steps,
284
  width=width,
285
  height=height,
 
286
  generator=generator,
287
  max_sequence_length=512
288
  ).images[0]
@@ -290,16 +300,18 @@ def infer_100(
290
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
291
  sd35_path = f"sd35ll_{timestamp}.png"
292
  sd_image.save(sd35_path,optimize=False,compress_level=0)
293
- pyx.upload_to_ftp(sd35_path)
 
294
  # pipe.unet.to('cpu')
295
  upscaler_2.to(torch.device('cuda'))
296
  with torch.no_grad():
297
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
298
  print('-- got upscaled image --')
299
- downscale2 = upscale2.resize((upscale2.width // 2, upscale2.height // 2),Image.LANCZOS)
300
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
301
  downscale2.save(upscale_path,optimize=False,compress_level=0)
302
- pyx.upload_to_ftp(upscale_path)
 
303
  return sd_image, prompt
304
 
305
  css = """
 
1
  import spaces
2
  import os
3
 
4
+ # os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
5
+ # os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
6
  alloc_conf_parts = [
7
  'expandable_segments:True',
8
  'pinned_use_background_threads:True' # Specific to pinned memory.
9
  ]
10
+ # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
11
+ # os.environ["SAFETENSORS_FAST_GPU"] = "1"
12
+ # os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
13
 
14
  import gradio as gr
15
  import numpy as np
 
27
  from image_gen_aux import UpscaleWithModel
28
  from huggingface_hub import hf_hub_download
29
  import datetime
30
+ #import cyper
31
 
32
  from diffusers import AutoencoderKL
33
  #from models.transformer_sd3 import SD3Transformer2DModel
34
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
35
 
36
  from PIL import Image
37
+ /*
38
  torch.backends.cuda.matmul.allow_tf32 = False
39
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
40
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
 
44
  torch.backends.cuda.preferred_blas_library="cublas"
45
  torch.backends.cuda.preferred_linalg_library="cusolver"
46
  torch.set_float32_matmul_precision("highest")
47
+ */
48
  hftoken = os.getenv("HF_AUTH_TOKEN")
49
 
50
+ # code = r'''
51
  import torch
52
  import paramiko
53
  import os
 
68
  print(f"Uploaded {filename} to FTP server")
69
  except Exception as e:
70
  print(f"FTP upload error: {e}")
71
+ # '''
72
 
73
+ # pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
74
 
75
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
76
  #vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
 
82
  #vae=None,
83
  #vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
84
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
85
+ # text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
86
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
87
+ # text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
88
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
89
+ # text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
90
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
91
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
92
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
 
95
  #torch_dtype=torch.bfloat16,
96
  #use_safetensors=False,
97
  )
98
+ #text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
99
+ #text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
100
+ #text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
101
 
102
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
103
 
 
122
  num_inference_steps,
123
  progress=gr.Progress(track_tqdm=True),
124
  ):
125
+ #pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
126
+ #pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
127
+ #pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
128
  seed = random.randint(0, MAX_SEED)
129
  generator = torch.Generator(device='cuda').manual_seed(seed)
130
  print('-- generating image --')
 
147
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
148
  sd35_path = f"sd35ll_{timestamp}.png"
149
  sd_image.save(sd35_path,optimize=False,compress_level=0)
150
+ #pyx.upload_to_ftp(sd35_path)
151
+ upload_to_ftp(sd35_path)
152
  # pipe.unet.to('cpu')
153
  upscaler_2.to(torch.device('cuda'))
154
  with torch.no_grad():
 
157
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
158
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
159
  downscale2.save(upscale_path,optimize=False,compress_level=0)
160
+ #pyx.upload_to_ftp(upscale_path)
161
+ upload_to_ftp(upscale_path)
162
  return sd_image, prompt
163
 
164
  @spaces.GPU(duration=70)
 
173
  num_inference_steps,
174
  progress=gr.Progress(track_tqdm=True),
175
  ):
176
+ #pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
177
+ #pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
178
+ #pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
179
  seed = random.randint(0, MAX_SEED)
180
  generator = torch.Generator(device='cuda').manual_seed(seed)
181
  print('-- generating image --')
 
198
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
199
  sd35_path = f"sd35ll_{timestamp}.png"
200
  sd_image.save(sd35_path,optimize=False,compress_level=0)
201
+ #pyx.upload_to_ftp(sd35_path)
202
+ upload_to_ftp(sd35_path)
203
  # pipe.unet.to('cpu')
204
  upscaler_2.to(torch.device('cuda'))
205
  with torch.no_grad():
206
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
207
  print('-- got upscaled image --')
208
+ downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
209
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
210
  downscale2.save(upscale_path,optimize=False,compress_level=0)
211
+ #pyx.upload_to_ftp(upscale_path)
212
+ upload_to_ftp(upscale_path)
213
  return sd_image, prompt
214
 
215
  @spaces.GPU(duration=100)
 
224
  num_inference_steps,
225
  progress=gr.Progress(track_tqdm=True),
226
  ):
227
+ #pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
228
+ #pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
229
+ #pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
230
  seed = random.randint(0, MAX_SEED)
231
  generator = torch.Generator(device='cuda').manual_seed(seed)
232
  print('-- generating image --')
 
249
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
250
  sd35_path = f"sd35ll_{timestamp}.png"
251
  sd_image.save(sd35_path,optimize=False,compress_level=0)
252
+ #pyx.upload_to_ftp(sd35_path)
253
+ upload_to_ftp(sd35_path)
254
  # pipe.unet.to('cpu')
255
  upscaler_2.to(torch.device('cuda'))
256
  with torch.no_grad():
257
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
258
  print('-- got upscaled image --')
259
+ downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
260
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
261
  downscale2.save(upscale_path,optimize=False,compress_level=0)
262
+ #pyx.upload_to_ftp(upscale_path)
263
+ upload_to_ftp(upscale_path)
264
  return sd_image, prompt
265
 
266
  @spaces.GPU(duration=110)
 
275
  num_inference_steps,
276
  progress=gr.Progress(track_tqdm=True),
277
  ):
278
+ #pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
279
+ #pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
280
+ #pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
281
  seed = random.randint(0, MAX_SEED)
282
  generator = torch.Generator(device='cuda').manual_seed(seed)
283
  print('-- generating image --')
 
292
  num_inference_steps=num_inference_steps,
293
  width=width,
294
  height=height,
295
+ # cross_attention_kwargs={"scale": 0.75},
296
  generator=generator,
297
  max_sequence_length=512
298
  ).images[0]
 
300
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
301
  sd35_path = f"sd35ll_{timestamp}.png"
302
  sd_image.save(sd35_path,optimize=False,compress_level=0)
303
+ #pyx.upload_to_ftp(sd35_path)
304
+ upload_to_ftp(sd35_path)
305
  # pipe.unet.to('cpu')
306
  upscaler_2.to(torch.device('cuda'))
307
  with torch.no_grad():
308
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
309
  print('-- got upscaled image --')
310
+ downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
311
  upscale_path = f"sd35ll_upscale_{timestamp}.png"
312
  downscale2.save(upscale_path,optimize=False,compress_level=0)
313
+ #pyx.upload_to_ftp(upscale_path)
314
+ upload_to_ftp(upscale_path)
315
  return sd_image, prompt
316
 
317
  css = """