1inkusFace commited on
Commit
2f6f1b4
·
verified ·
1 Parent(s): 790b6a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -34,7 +34,7 @@ from diffusers import AutoencoderKL
34
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
35
 
36
  from PIL import Image
37
- '''
38
  torch.backends.cuda.matmul.allow_tf32 = False
39
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
40
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
@@ -44,7 +44,7 @@ torch.backends.cudnn.benchmark = False
44
  torch.backends.cuda.preferred_blas_library="cublas"
45
  torch.backends.cuda.preferred_linalg_library="cusolver"
46
  torch.set_float32_matmul_precision("highest")
47
- '''
48
  hftoken = os.getenv("HF_AUTH_TOKEN")
49
 
50
  # code = r'''
@@ -81,7 +81,7 @@ pipe = StableDiffusion3Pipeline.from_single_file(
81
  "https://huggingface.co/1inkus/sd35-large-UltraReal-bf16-DDUF/blob/main/sd3-bf16-large.dduf",
82
  #tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3"),
83
  use_safetensors=True,
84
- devive_map='cuda',
85
  ) #.to(device=device)
86
 
87
  ### pipe = StableDiffusion3Pipeline.from_pretrained(
@@ -113,7 +113,7 @@ pipe = StableDiffusion3Pipeline.from_single_file(
113
  #pipe.to(device=device) #, dtype=torch.bfloat16)
114
  #pipe.to(device)
115
  #pipe.vae=vaeX.to('cpu')
116
- upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
117
 
118
  MAX_SEED = np.iinfo(np.int32).max
119
 
@@ -159,7 +159,7 @@ def infer_30(
159
  #pyx.upload_to_ftp(sd35_path)
160
  upload_to_ftp(sd35_path)
161
  # pipe.unet.to('cpu')
162
- upscaler_2.to(torch.device('cuda'))
163
  with torch.no_grad():
164
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
165
  print('-- got upscaled image --')
@@ -210,7 +210,7 @@ def infer_60(
210
  #pyx.upload_to_ftp(sd35_path)
211
  upload_to_ftp(sd35_path)
212
  # pipe.unet.to('cpu')
213
- upscaler_2.to(torch.device('cuda'))
214
  with torch.no_grad():
215
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
216
  print('-- got upscaled image --')
@@ -261,7 +261,7 @@ def infer_90(
261
  #pyx.upload_to_ftp(sd35_path)
262
  upload_to_ftp(sd35_path)
263
  # pipe.unet.to('cpu')
264
- upscaler_2.to(torch.device('cuda'))
265
  with torch.no_grad():
266
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
267
  print('-- got upscaled image --')
@@ -312,7 +312,7 @@ def infer_100(
312
  #pyx.upload_to_ftp(sd35_path)
313
  upload_to_ftp(sd35_path)
314
  # pipe.unet.to('cpu')
315
- upscaler_2.to(torch.device('cuda'))
316
  with torch.no_grad():
317
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
318
  print('-- got upscaled image --')
 
34
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
35
 
36
  from PIL import Image
37
+
38
  torch.backends.cuda.matmul.allow_tf32 = False
39
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
40
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
 
44
  torch.backends.cuda.preferred_blas_library="cublas"
45
  torch.backends.cuda.preferred_linalg_library="cusolver"
46
  torch.set_float32_matmul_precision("highest")
47
+
48
  hftoken = os.getenv("HF_AUTH_TOKEN")
49
 
50
  # code = r'''
 
81
  "https://huggingface.co/1inkus/sd35-large-UltraReal-bf16-DDUF/blob/main/sd3-bf16-large.dduf",
82
  #tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3"),
83
  use_safetensors=True,
84
+ devive_map='auto',
85
  ) #.to(device=device)
86
 
87
  ### pipe = StableDiffusion3Pipeline.from_pretrained(
 
113
  #pipe.to(device=device) #, dtype=torch.bfloat16)
114
  #pipe.to(device)
115
  #pipe.vae=vaeX.to('cpu')
116
+ upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cuda'))
117
 
118
  MAX_SEED = np.iinfo(np.int32).max
119
 
 
159
  #pyx.upload_to_ftp(sd35_path)
160
  upload_to_ftp(sd35_path)
161
  # pipe.unet.to('cpu')
162
+ #upscaler_2.to(torch.device('cuda'))
163
  with torch.no_grad():
164
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
165
  print('-- got upscaled image --')
 
210
  #pyx.upload_to_ftp(sd35_path)
211
  upload_to_ftp(sd35_path)
212
  # pipe.unet.to('cpu')
213
+ #upscaler_2.to(torch.device('cuda'))
214
  with torch.no_grad():
215
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
216
  print('-- got upscaled image --')
 
261
  #pyx.upload_to_ftp(sd35_path)
262
  upload_to_ftp(sd35_path)
263
  # pipe.unet.to('cpu')
264
+ #upscaler_2.to(torch.device('cuda'))
265
  with torch.no_grad():
266
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
267
  print('-- got upscaled image --')
 
312
  #pyx.upload_to_ftp(sd35_path)
313
  upload_to_ftp(sd35_path)
314
  # pipe.unet.to('cpu')
315
+ #upscaler_2.to(torch.device('cuda'))
316
  with torch.no_grad():
317
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
318
  print('-- got upscaled image --')