Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -81,7 +81,10 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
81 |
#torch_dtype=torch.bfloat16,
|
82 |
#use_safetensors=False,
|
83 |
)
|
84 |
-
|
|
|
|
|
|
|
85 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
86 |
|
87 |
pipe.to(device=device, dtype=torch.bfloat16)
|
@@ -105,9 +108,9 @@ def infer_30(
|
|
105 |
num_inference_steps,
|
106 |
progress=gr.Progress(track_tqdm=True),
|
107 |
):
|
108 |
-
pipe.text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
109 |
-
pipe.text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
110 |
-
pipe.text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
111 |
torch.set_float32_matmul_precision("highest")
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -156,9 +159,9 @@ def infer_60(
|
|
156 |
num_inference_steps,
|
157 |
progress=gr.Progress(track_tqdm=True),
|
158 |
):
|
159 |
-
pipe.text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
160 |
-
pipe.text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
161 |
-
pipe.text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
162 |
torch.set_float32_matmul_precision("highest")
|
163 |
seed = random.randint(0, MAX_SEED)
|
164 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -205,9 +208,9 @@ def infer_90(
|
|
205 |
num_inference_steps,
|
206 |
progress=gr.Progress(track_tqdm=True),
|
207 |
):
|
208 |
-
pipe.text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
209 |
-
pipe.text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
210 |
-
pipe.text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
211 |
torch.set_float32_matmul_precision("highest")
|
212 |
seed = random.randint(0, MAX_SEED)
|
213 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
81 |
#torch_dtype=torch.bfloat16,
|
82 |
#use_safetensors=False,
|
83 |
)
|
84 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
85 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
86 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
87 |
+
|
88 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
89 |
|
90 |
pipe.to(device=device, dtype=torch.bfloat16)
|
|
|
108 |
num_inference_steps,
|
109 |
progress=gr.Progress(track_tqdm=True),
|
110 |
):
|
111 |
+
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
112 |
+
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
113 |
+
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
114 |
torch.set_float32_matmul_precision("highest")
|
115 |
seed = random.randint(0, MAX_SEED)
|
116 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
159 |
num_inference_steps,
|
160 |
progress=gr.Progress(track_tqdm=True),
|
161 |
):
|
162 |
+
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
163 |
+
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
164 |
+
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
165 |
torch.set_float32_matmul_precision("highest")
|
166 |
seed = random.randint(0, MAX_SEED)
|
167 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
208 |
num_inference_steps,
|
209 |
progress=gr.Progress(track_tqdm=True),
|
210 |
):
|
211 |
+
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
212 |
+
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
213 |
+
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
214 |
torch.set_float32_matmul_precision("highest")
|
215 |
seed = random.randint(0, MAX_SEED)
|
216 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|