licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
5233
############################################################################### # Build methods for ATC algorithm # ############################################################################### """ ATC algorithm module contains build and update methods """ module atc_methods using ..PowerModelsADA "solve distributed OPF using ATC algorithm" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf(data, model_type, optimizer, atc_methods; kwargs...) end "initialize the ATC algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ATC parameters data["parameter"] = Dict( "alpha" => Float64(get(kwargs, :alpha, 1.05)), "beta" => Float64(get(kwargs, :beta, 1)), "beta_max" => Float64(get(kwargs, :beta_max, 1e6))) end "build PowerModel object for the ATC algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_atc) end "ATC algorithm objective function" function objective_atc(pm::AbstractPowerModel) ## ATC parameters beta = pm.data["parameter"]["beta"] ## data shared_variable_local = pm.data["shared_variable"] shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ## objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] objective += (beta * (v - v_central))^2 + v_dual * (v - v_central) end end end return objective end "update the ATC algorithm data after each iteration" function update_method(data::Dict{String, <:Any}) ## ATC parameters alpha = data["parameter"]["alpha"] beta = data["parameter"]["beta"] beta_max = data["parameter"]["beta_max"] ## data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = data["dual_variable"] ## update dual variable ## update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_primal = shared_variable_local[area][variable][idx] v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx] = v_dual + 2 * beta^2 * (v_primal - v_central) end end end ## update ATC parameter if beta < beta_max data["parameter"]["beta"] *= alpha end calc_mismatch!(data, central=true) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end post_processors = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable") end """ solve_dopf_atc(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level = true, print_optimizer_info::Bool=false, alpha::Real=1000, beta::Real = 1) Solve the distributed OPF problem using ATC algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : print mismatch after each iteration and result summary - alpha::Real=1.05 : algorithm parameter - beta::Real=1.0 : algorithm parameter """ solve_dopf_atc = atc_methods.solve_method # export the algorithm methods module and solve method export atc_methods, solve_dopf_atc
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
46208
############################################################################### # Base method for all distributed OPF algorithms # ############################################################################### "" function solve_pmada_model(data::Dict{String,<:Any}, model_type::Type, optimizer, build_method; ref_extensions=[], solution_processors=[], relax_integrality=false, multinetwork=false, multiconductor=false, kwargs...) if multinetwork != _IM.ismultinetwork(data) model_requirement = multinetwork ? "multi-network" : "single-network" data_type = _IM.ismultinetwork(data) ? "multi-network" : "single-network" end if multiconductor != ismulticonductor(data) model_requirement = multiconductor ? "multi-conductor" : "single-conductor" data_type = ismulticonductor(data) ? "multi-conductor" : "single-conductor" end pm = instantiate_pmada_model(data, model_type, build_method; ref_extensions=ref_extensions, kwargs...) result = optimize_model!(pm, relax_integrality=relax_integrality, optimizer=optimizer, solution_processors=solution_processors) return result end "" function instantiate_pmada_model(data::Dict{String,<:Any}, model_type::Type, build_method; kwargs...) return _IM.instantiate_model(data, model_type, build_method, ref_add_core!, _pmada_global_keys, pm_it_sym; kwargs...) end "" function build_pmada_ref(data::Dict{String,<:Any}; ref_extensions=[]) return _IM.build_ref(data, ref_add_core!, _pmada_global_keys, pm_it_name; ref_extensions=ref_extensions) end """ solve_dopf(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using fully distributed algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize_method::Function : initialize the algorithm parameters and shared variables - update_method::Function : update the algorithm after each iteration - build_method::Function : problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - multiprocessors::Bool=false : enable multiprocessors using available workers. Multiprocessors feature requires loading the PowerModelsADA and the optimizer packages on all the processors using @everywhere using <package_name>. - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) # arrange and get areas id arrange_areas_id!(data) areas_id = get_areas_id(data) diameter = get_diameter(data) if length(areas_id) < 2 error("Number of areas is less than 2, at least 2 areas is needed") end # decompose the system into subsystems data_area = Dict{Int64, Any}() for area in areas_id data_area[area] = decompose_system(data, area) end solve_dopf(data_area, model_type, optimizer, dopf_method; print_level, multiprocessors=multiprocessors, diameter=diameter, all_areas=areas_id, kwargs...) end function solve_dopf(data::String, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) data = parse_file(data) solve_dopf(data, model_type, optimizer, dopf_method; print_level=print_level, multiprocessors=multiprocessors, kwargs...) end function solve_dopf(data::Dict{Int64, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) if !multiprocessors solve_dopf_sp(data, model_type, optimizer, dopf_method; print_level, kwargs...) else solve_dopf_mp(data, model_type, optimizer, dopf_method; print_level, kwargs...) end end """ solve_dopf_sp(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using fully distributed algorithm on single-processor. # Arguments: - data::Dict{Int64, <:Any} : dictionary contains area data in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize_method::Function : initialize the algorithm parameters and shared variables - update_method::Function : update the algorithm after each iteration - build_method::Function : problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf_sp(data_area::Dict{Int64, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, kwargs...) # get areas ids areas_id = get_areas_id(data_area) # initilize distributed power model parameters for area in areas_id dopf_method.initialize_method(data_area[area], model_type; kwargs...) end # get global parameters max_iteration = get(kwargs, :max_iteration, 1000) # initialize the algorithms global counters iteration = 1 flag_convergence = false # start iteration while iteration <= max_iteration && !flag_convergence # solve local problem and update solution info = @capture_out begin Threads.@threads for area in areas_id result = solve_pmada_model(data_area[area], model_type, optimizer, dopf_method.build_method, solution_processors=dopf_method.post_processors) update_data!(data_area[area], result["solution"]) end end # share solution with neighbors, the shared data is first obtained to facilitate distributed implementation for area in areas_id # sender subsystem for neighbor in data_area[area]["neighbors"] # receiver subsystem shared_data = prepare_shared_data(data_area[area], neighbor) receive_shared_data!(data_area[neighbor], deepcopy(shared_data), area) end end # calculate mismatches and update convergence flags Threads.@threads for area in areas_id dopf_method.update_method(data_area[area]) end # print solution print_iteration(data_area, print_level, [info]) # check global convergence and update iteration counters flag_convergence = update_global_flag_convergence(data_area) iteration += 1 end print_convergence(data_area, print_level) return data_area end """ solve_dopf_mp(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using fully distributed algorithm on multiprocessors. Multiprocessors feature requires loading the PowerModelsADA and the optimizer packages on all the processors using @everywhere using <package_name>. # Arguments: - data::Dict{Int64, <:Any} : dictionary contains area data in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize_method::Function : initialize the algorithm parameters and shared variables - update_method::Function : update the algorithm after each iteration - build_method::Function : problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf_mp(data_area::Dict{Int64, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, kwargs...) # lookup dictionaries for worker-area pairs areas_id = get_areas_id(data_area) worker_id = Distributed.workers() number_workers = length(worker_id) k = 1 area_worker = Dict() for i in areas_id if k > number_workers k = 1 end area_worker[i] = worker_id[k] k += 1 end worker_area = Dict([i => findall(x -> x==i, area_worker) for i in worker_id if i in values(area_worker)]) # initiate communication channels comms = Dict(0 => Dict(area => Distributed.RemoteChannel(1) for area in areas_id)) for area1 in areas_id comms[area1] = Dict() for area2 in [0; areas_id] if area1 != area2 comms[area1][area2] = Distributed.RemoteChannel(area_worker[area1]) end end end # initilize distributed power model parameters for area in areas_id dopf_method.initialize_method(data_area[area], model_type; kwargs...) put!(comms[0][area], data_area[area]) end # get global parameters max_iteration = get(kwargs, :max_iteration, 1000) # initialize the algorithms global counters iteration = 1 global_flag_convergence = false global_counters = Dict{Int64, Any}() # share global variables Distributed.@everywhere keys(worker_area) begin comms = $comms areas_id = $areas_id worker_area = $worker_area area_worker = $area_worker dopf_method = $dopf_method model_type = $model_type optimizer = $optimizer area_id = worker_area[myid()] data_local = Dict{Int64, Any}(area => take!(comms[0][area]) for area in area_id) end # start iteration while iteration <= max_iteration && !global_flag_convergence Distributed.@everywhere keys(worker_area) begin for area in area_id # solve local problem and update solution result = solve_pmada_model(data_local[area], model_type, optimizer, dopf_method.build_method, solution_processors=dopf_method.post_processors) update_data!(data_local[area], result["solution"]) # send data to neighboring areas for neighbor in data_local[area]["neighbors"] shared_data = prepare_shared_data(data_local[area], neighbor) put!(comms[area][neighbor], shared_data) end end end Distributed.@everywhere keys(worker_area) begin for area in area_id # receive data to neighboring areas for neighbor in data_local[area]["neighbors"] received_data = take!(comms[neighbor][area]) receive_shared_data!(data_local[area], received_data, neighbor) end # calculate and share mismatches dopf_method.update_method(data_local[area]) counters = Dict("option"=> data_local[area]["option"], "counter" => data_local[area]["counter"], "mismatch" => data_local[area]["mismatch"]) if data_local[area]["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] counters["dual_residual"] = data_local[area]["dual_residual"] end put!(comms[area][0], deepcopy(counters)) end end # receive the mismatches from areas for area in areas_id counters = take!(comms[area][0]) global_counters[area] = counters end # print progress print_iteration(global_counters, print_level) # update flag convergence and iteration number global_flag_convergence = update_global_flag_convergence(global_counters) iteration += 1 end # receive the final solution Distributed.@everywhere keys(worker_area) begin for area in area_id # send the area data put!(comms[area][0], data_local[area]) end end for area in areas_id data_area[area] = take!(comms[area][0]) end # close the communication channels for i in keys(comms) for j in keys(comms[i]) close(comms[i][j]) end end print_convergence(data_area, print_level) return data_area end """ solve_dopf_coordinated(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using distributed algorithm with central coordinator. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize\\_method_local::Function : initialize the local algorithm parameters and shared variables - initialize\\_method_coordinator::Function : initialize the coordinator algorithm parameters and shared variables - update\\_method_local::Function : update the local data after each iteration - update\\_method_coordinator::Function : update the coordinator data after each iteration - build\\_method_local::Function : local problem formulation - build\\_method_coordinator::Function : coordinator problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - multiprocessors::Bool=false : enable multiprocessors using available workers. Multiprocessors feature requires loading the PowerModelsADA and the optimizer packages on all the processors using @everywhere using <package_name>. - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous\\_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf_coordinated(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) # arrange and get areas id arrange_areas_id!(data) areas_id = get_areas_id(data) if length(areas_id) < 2 error("Number of areas is less than 2, at least 2 areas is needed") end # decompose the system into subsystems data_area = Dict{Int64, Any}(0 => decompose_coordinator(data)) for area in areas_id data_area[area] = decompose_system(data, area) end solve_dopf_coordinated(data_area, model_type, optimizer, dopf_method; print_level=print_level, multiprocessors=multiprocessors, kwargs...) end function solve_dopf_coordinated(data::String, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) data = parse_file(data) solve_dopf_coordinated(data, model_type, optimizer, dopf_method; print_level=print_level, multiprocessors=multiprocessors, kwargs...) end function solve_dopf_coordinated(data::Dict{Int64, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, kwargs...) if !multiprocessors solve_dopf_coordinated_sp(data, model_type, optimizer, dopf_method; print_level=print_level, kwargs...) else solve_dopf_coordinated_mp(data, model_type, optimizer, dopf_method; print_level=print_level, kwargs...) end end """ solve_dopf_coordinated_sp(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using distributed algorithm with central coordinator on single-processors. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize\\_method_local::Function : initialize the local algorithm parameters and shared variables - initialize\\_method_coordinator::Function : initialize the coordinator algorithm parameters and shared variables - update\\_method_local::Function : update the local data after each iteration - update\\_method_coordinator::Function : update the coordinator data after each iteration - build\\_method_local::Function : local problem formulation - build\\_method_coordinator::Function : coordinator problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous\\_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf_coordinated_sp(data_area::Dict{Int64, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, kwargs...) # get areas ids areas_id = get_areas_id(data_area) deleteat!(areas_id, areas_id .== 0) # initilize distributed power model parameters dopf_method.initialize_method_coordinator(data_area[0], model_type; kwargs...) for area in areas_id dopf_method.initialize_method_local(data_area[area], model_type; kwargs...) end ## get global parameters max_iteration = get(kwargs, :max_iteration, 1000) # initialize the algorithms global counters iteration = 0 flag_convergence = false # start iteration while iteration <= max_iteration && !flag_convergence # solve local area problems in parallel info1 = @capture_out begin Threads.@threads for area in areas_id result = solve_pmada_model(data_area[area], model_type, optimizer, dopf_method.build_method_local, solution_processors=dopf_method.post_processors_local) update_data!(data_area[area], result["solution"]) end end # share solution of local areas with the coordinator for area in areas_id # sender subsystem shared_data = prepare_shared_data(data_area[area], 0, serialize = false) receive_shared_data!(data_area[0], deepcopy(shared_data), area) end # solve coordinator problem info2 = @capture_out begin result = solve_pmada_model(data_area[0], model_type, optimizer, dopf_method.build_method_coordinator, solution_processors=dopf_method.post_processors_coordinator) update_data!(data_area[0], result["solution"]) end # share coordinator solution with local areas for area in areas_id # sender subsystem shared_data = prepare_shared_data(data_area[0], area, serialize = false) receive_shared_data!(data_area[area], deepcopy(shared_data), 0) end # update local areas and coordinator problems after dopf_method.update_method_coordinator(data_area[0]) for area in areas_id dopf_method.update_method_local(data_area[area]) end # print solution print_iteration(data_area, print_level, [info1; info2]) # check global convergence and update iteration counters flag_convergence = data_area[0]["counter"]["flag_convergence"] iteration += 1 end print_convergence(data_area, print_level) return data_area end """ solve_dopf_coordinated_mp(data::Dict{String, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, multiprocessors::Bool=false, mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, save_data::Vector{String}=[], kwargs...) Solve OPF problem using distributed algorithm with central coordinator on multiprocessors. Multiprocessors feature requires loading the PowerModelsADA and the optimizer packages on all the processors using @everywhere using <package_name>. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - dopf_method::Module : module contains the distributed algorithm methods as follows: - initialize\\_method_local::Function : initialize the local algorithm parameters and shared variables - initialize\\_method_coordinator::Function : initialize the coordinator algorithm parameters and shared variables - update\\_method_local::Function : update the local data after each iteration - update\\_method_coordinator::Function : update the coordinator data after each iteration - build\\_method_local::Function : local problem formulation - build\\_method_coordinator::Function : coordinator problem formulation - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - save_data::Vector{String}=[] : vector contains the keys of the dictionaries to be saved at each iteration in "previous\\_solution". For example, save_data=["solution", "shared_variable", "mismatch"] - kwargs = includes algorithm-specific and initialization parameters """ function solve_dopf_coordinated_mp(data_area::Dict{Int, <:Any}, model_type::DataType, optimizer, dopf_method::Module; print_level::Int64=1, kwargs...) # lookup dictionaries for worker-area pairs areas_id = get_areas_id(data_area) deleteat!(areas_id, areas_id .== 0) worker_id = Distributed.workers() number_workers = length(worker_id) k = 1 area_worker = Dict() for i in areas_id if k > number_workers k = 1 end area_worker[i] = worker_id[k] k += 1 end worker_area = Dict([i => findall(x -> x==i, area_worker) for i in worker_id if i in values(area_worker)]) # initiaiate communication channels comms = Dict(0 => Dict(area => Distributed.RemoteChannel(1) for area in areas_id)) for area1 in areas_id comms[area1] = Dict() for area2 in [0; areas_id] if area1 != area2 comms[area1][area2] = Distributed.RemoteChannel(area_worker[area1]) end end end # initilize distributed power model parameters dopf_method.initialize_method_coordinator(data_area[0], model_type; kwargs...) for area in areas_id dopf_method.initialize_method_local(data_area[area], model_type; kwargs...) put!(comms[0][area], data_area[area]) end ## get global parameters max_iteration = get(kwargs, :max_iteration, 1000) # initialize the algorithms global counters iteration = 0 flag_convergence = false # share global variables Distributed.@everywhere keys(worker_area) begin comms = $comms areas_id = $areas_id worker_area = $worker_area area_worker = $area_worker dopf_method = $dopf_method model_type = $model_type optimizer = $optimizer area_id = worker_area[myid()] data_local = Dict(area => take!(comms[0][area]) for area in area_id) end # start iteration while iteration <= max_iteration && !flag_convergence Distributed.@everywhere keys(worker_area) begin for area in area_id # solve local problem and update solution result = solve_pmada_model(data_local[area], model_type, optimizer, dopf_method.build_method_local, solution_processors=dopf_method.post_processors_local) update_data!(data_local[area], result["solution"]) # send data to coordinator shared_data = prepare_shared_data(data_local[area], 0) put!(comms[area][0], shared_data) end end # share solution of local areas with the coordinator for area in areas_id received_data = take!(comms[area][0]) receive_shared_data!(data_area[0], received_data, area) end # solve coordinator problem result = solve_pmada_model(data_area[0], model_type, optimizer, dopf_method.build_method_coordinator, solution_processors=dopf_method.post_processors_coordinator) update_data!(data_area[0], result["solution"]) dopf_method.update_method_coordinator(data_area[0]) # share coordinator solution with local areas for area in areas_id shared_data = prepare_shared_data(data_area[0], area) put!(comms[0][area], shared_data) end Distributed.@everywhere keys(worker_area) begin for area in area_id # receive data to neighboring areas received_data = take!(comms[0][area]) receive_shared_data!(data_local[area], received_data, 0) # calculate mismatches and update convergence flags dopf_method.update_method_local(data_local[area]) end end # print solution print_iteration_coordinator(data_area, print_level, []) # check global convergence and update iteration counters flag_convergence = data_area[0]["counter"]["flag_convergence"] iteration += 1 end if number_workers > 1 Distributed.@everywhere keys(worker_area) begin for area in area_id # send the area data put!(comms[area][0], data_local[area]) end end for area in areas_id data_area[area] = take!(comms[area][0]) end end for i in keys(comms) for j in keys(comms[i]) close(comms[i][j]) end end print_convergence(data_area, print_level) return data_area end "initialize dopf parameters" function initialize_dopf!(data::Dict{String, <:Any}, model_type::DataType; kwargs...) # options data["option"] = Dict{String, Any}() data["option"]["tol"] = get(kwargs, :tol, 1e-4) data["option"]["max_iteration"] = get(kwargs, :max_iteration, 1000) data["option"]["mismatch_method"] = get(kwargs, :mismatch_method, "norm") data["option"]["model_type"] = model_type data["option"]["termination_method"] = get(kwargs, :termination_method, "global") data["option"]["termination_measure"] = get(kwargs, :termination_measure, "mismatch") # counters data["counter"] = Dict{String, Any}() data["counter"]["iteration"] = Int64(1) data["counter"]["flag_convergence"] = false data["counter"]["convergence_iteration"] = Int64(0) areas_id = get_areas_id(data) area_id = get_area_id(data) # mismatch data["mismatch"] = Dict{String, Any}() data["neighbors"] = [area for area in areas_id if area != area_id] # distributed termination method if data["option"]["termination_method"] in ["local", "distributed"] areas_id = string.(areas_id) area_id = string(area_id) deleteat!(areas_id, areas_id .== area_id) all_areas = string.(get(kwargs, :all_areas, [])) data["shared_flag_convergence"] = Dict(area => Dict(area_ => false for area_ in all_areas) for area in areas_id) data["received_flag_convergence"] = Dict(area => Dict(area_ => false for area_ in all_areas) for area in areas_id) data["shared_convergence_iteration"] = Dict(area => 0 for area in areas_id) data["received_convergence_iteration"] = Dict(area => 0 for area in areas_id) data["counter"]["local_flag_convergence"] = false data["option"]["diameter"] = get(kwargs, :diameter, size(all_areas)[1]) end # last solution initialization_method = get(kwargs, :initialization_method, "flat") data["solution"] = initialize_all_variable(data, model_type, initialization_method) # previous solutions save_data = get(kwargs, :save_data, []) if !isempty(save_data) data["previous_solution"] = Dict{String, Any}([str=>Vector{Dict}() for str in save_data]) end end "update the area data solution dictionary" function update_solution!(pm::AbstractPowerModel, solution::Dict{String, <:Any}) solution["solution"] = pm.data["solution"] for variable in keys(solution["solution"]) for idx in keys(solution["solution"][variable]) solution["solution"][variable][idx] = JuMP.value(PowerModelsADA._var(pm, variable, idx)) end end end "update primal variables after obtaining a solution at each iteraton" function update_shared_variable!(pm::AbstractPowerModel, solution::Dict{String, <:Any}) solution["shared_variable"] = pm.data["shared_variable"] for area in keys(solution["shared_variable"]) for var in keys(solution["shared_variable"][area]) for idx in keys(solution["shared_variable"][area][var]) solution["shared_variable"][area][var][idx] = solution["solution"][var][idx] end end end end "save last solution in previous_solutions vector" function save_solution!(data::Dict{String, <:Any}) if haskey(data, "previous_solution") for str in keys(data["previous_solution"]) push!(data["previous_solution"][str], deepcopy(data[str])) end end end "update iteration" function update_iteration!(data::Dict{String, <:Any}) data["counter"]["iteration"] += 1 end """ calc_mismatch!(data::Dict{String, <:Any}; central::Bool=false) calculate the mismatch and return the area data dictionary with the mismatch as seen by the area. Set central=true if the algorithm uses the optimality condition of a central coordinator. """ function calc_mismatch!(data::Dict{String, <:Any}; central::Bool=false) area_id = string(get_area_id(data)) mismatch_method = data["option"]["mismatch_method"] shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] mismatch = Dict{String, Any}([ area => Dict{String, Any}([ variable => Dict{String, Any}([ idx => central ? (shared_variable_local[area][variable][idx] - (shared_variable_received[area][variable][idx] +shared_variable_local[area][variable][idx] )/2) : (shared_variable_local[area][variable][idx] - shared_variable_received[area][variable][idx]) for idx in keys(shared_variable_local[area][variable])]) for variable in keys(shared_variable_local[area])]) for area in keys(shared_variable_local) if area != area_id && area in keys(shared_variable_received) ]) if mismatch_method == "norm" mismatch[area_id] = LinearAlgebra.norm([value for area in keys(mismatch) if area != area_id for variable in keys(mismatch[area]) for (idx,value) in mismatch[area][variable]], 2) elseif mismatch_method == "max" || mismatch_method == "maximum" mismatch[area_id] = LinearAlgebra.maximum([abs(value) for area in keys(mismatch) if area != area_id for variable in keys(mismatch[area]) for (idx,value) in mismatch[area][variable]]) end data["mismatch"] = mismatch end """ calc_dual_residual!(data::Dict{String, <:Any}; central::Bool=false) calculate the dual redidual as seen by the area. Set central=true if the algorithm uses the optimality condition of a central coordinator. """ function calc_dual_residual!(data::Dict{String, <:Any}; central::Bool=false) area_id = string(get_area_id(data)) mismatch_method = data["option"]["mismatch_method"] alpha = data["parameter"]["alpha"] shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] if data["counter"]["iteration"] == 1 dual_dual_residual = Dict{String, Any}([ area => Dict{String, Any}([ variable => Dict{String, Any}([ idx => central ? -alpha* (shared_variable_local[area][variable][idx]+shared_variable_received[area][variable][idx])/2 : -alpha* shared_variable_local[area][variable][idx] for idx in keys(shared_variable_local[area][variable])]) for variable in keys(shared_variable_local[area])]) for area in keys(shared_variable_local)]) else previous_shared_variable_local = data["previous_solution"]["shared_variable"][end] previous_shared_variable_received = data["previous_solution"]["received_variable"][end] dual_dual_residual = Dict{String, Any}([ area => Dict{String, Any}([ variable => Dict{String, Any}([ idx => central ? -alpha * ((shared_variable_local[area][variable][idx]+shared_variable_received[area][variable][idx])/2 - (previous_shared_variable_local[area][variable][idx] +previous_shared_variable_received[area][variable][idx] )/2) : -alpha * (shared_variable_local[area][variable][idx] - previous_shared_variable_local[area][variable][idx]) for idx in keys(shared_variable_local[area][variable])]) for variable in keys(shared_variable_local[area])]) for area in keys(shared_variable_local) ]) end if mismatch_method == "norm" dual_dual_residual[area_id] = LinearAlgebra.norm([value for area in keys(dual_dual_residual) if area != area_id for variable in keys(dual_dual_residual[area]) for (idx,value) in dual_dual_residual[area][variable]]) elseif mismatch_method == "max" || mismatch_method == "maximum" dual_dual_residual[area_id] = LinearAlgebra.maximum([abs(value) for area in keys(dual_dual_residual) if area != area_id for variable in keys(dual_dual_residual[area]) for (idx,value) in dual_dual_residual[area][variable]]) end data["dual_residual"] = dual_dual_residual end # "get the parameter for each consistency variable as a dictionary" # function get_parameter(data::Dict{String, <:Any}, parameter::String) # if haskey(data, parameter) # return data[parameter] # else # return Dict{String, Any}([area => Dict{String, Any}([variable => Dict{String, Any}([idx => data["parameter"][parameter] for idx in keys(data[parameter][area][variable])]) for variable in keys(data[parameter][area])]) for area in keys(data[parameter])]) # end # end "check flag convergance using mismatch and dual residual" function flag_convergance(data::Dict{String, <:Any}) area_id = string(data["area"]) termination_measure = data["option"]["termination_measure"] tol = data["option"]["tol"] mismatch = data["mismatch"][area_id] if termination_measure in ["dual_residual", "mismatch_dual_residual"] tol_dual = data["option"]["tol_dual"] dual_residual = data["dual_residual"][area_id] flag_convergence = (mismatch < tol && dual_residual < tol_dual) else flag_convergence = mismatch < tol end return flag_convergence end "check the shared variables of a local area are within tol" function update_flag_convergence!(data::Dict{String, <:Any}) area_id = string(data["area"]) areas_id = string.(get_areas_id(data)) deleteat!(areas_id, areas_id .== area_id) iteration = data["counter"]["iteration"] flag_convergence = flag_convergance(data) if data["option"]["termination_method"] == "global" # the convergence flag is communicated globally if flag_convergence && !data["counter"]["flag_convergence"] data["counter"]["convergence_iteration"] = iteration end data["counter"]["flag_convergence"] = flag_convergence else # the convergence flag is decided locally # Rule 1 if flag_convergence && !data["counter"]["local_flag_convergence"] data["counter"]["convergence_iteration"] = iteration data["counter"]["local_flag_convergence"] = flag_convergence for area in keys(data["shared_flag_convergence"]) data["shared_flag_convergence"][area][area_id] = flag_convergence end end # Rule 2 all_areas = string.(collect(keys(data["shared_flag_convergence"][areas_id[1]]))) shared_convergence_iteration = maximum([data["counter"]["convergence_iteration"] ; [data["received_convergence_iteration"][area] for area in areas_id] ]) for area1 in areas_id data["shared_convergence_iteration"][area1] = shared_convergence_iteration for area2 in all_areas if area2 != area_id data["shared_flag_convergence"][area1][area2] = reduce( | , [data["received_flag_convergence"][area][area2] for area in areas_id]) end end end # Rule 3 global_flag_convergence = reduce( & , [ val for (area, val) in first(data["shared_flag_convergence"])[2]]) if global_flag_convergence && (shared_convergence_iteration + data["option"]["diameter"] <= iteration) data["counter"]["flag_convergence"] = global_flag_convergence end end end # "calculate the global mismatch based on local mismatch" # function calc_global_mismatch(data_area::Dict{Int, <:Any}) # mismatch_method = first(data_area)[2]["option"]["mismatch_method"] # termination_measure = first(data_area)[2]["option"]["termination_measure"] # termination_method = first(data_area)[2]["option"]["termination_method"] # if termination_method == "global" # if mismatch_method == "norm" # if termination_measure in ["dual_residual", "mismatch_dual_residual"] # mismatch = LinearAlgebra.norm([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) # dual_residual = LinearAlgebra.norm([data_area[i]["dual_residual"][string(i)] for i in keys(data_area) if i != 0]) # return LinearAlgebra.maximum([mismatch, dual_residual]) # else # return LinearAlgebra.norm([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) # end # elseif mismatch_method == "max" || mismatch_method == "maximum" # if termination_measure in ["dual_residual", "mismatch_dual_residual"] # mismatch = LinearAlgebra.maximum([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) # dual_residual = LinearAlgebra.maximum([data_area[i]["dual_residual"][string(i)] for i in keys(data_area) if i != 0]) # return LinearAlgebra.maximum([mismatch, dual_residual]) # else # return LinearAlgebra.maximum([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) # end # end # else # if termination_measure in ["dual_residual", "mismatch_dual_residual"] # return LinearAlgebra.maximum([[data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]; [data_area[i]["dual_residual"][string(i)] for i in keys(data_area) if i != 0]]) # else # return LinearAlgebra.maximum([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) # end # end # end "calculate the global mismatch based on local mismatch" function calc_global_mismatch(data_area::Dict{Int, <:Any}) mismatch_method = first(data_area)[2]["option"]["mismatch_method"] if mismatch_method == "norm" return LinearAlgebra.norm([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) elseif mismatch_method == "max" || mismatch_method == "maximum" return LinearAlgebra.maximum([data_area[i]["mismatch"][string(i)] for i in keys(data_area) if i != 0]) end end "calculate the global mismatch based on local mismatch" function calc_global_dual_residual(data_area::Dict{Int, <:Any}) mismatch_method = first(data_area)[2]["option"]["mismatch_method"] if mismatch_method == "norm" return LinearAlgebra.norm([data_area[i]["dual_residual"][string(i)] for i in keys(data_area) if i != 0]) elseif mismatch_method == "max" || mismatch_method == "maximum" return LinearAlgebra.maximum([data_area[i]["dual_residual"][string(i)] for i in keys(data_area) if i != 0]) end end "check the flag convergence for all areas and return a global variables" function update_global_flag_convergence(data_area::Dict{Int64, <:Any}) if first(data_area)[2]["option"]["termination_method"] == "global" termination_measure = first(data_area)[2]["option"]["termination_measure"] mismatch = calc_global_mismatch(data_area) tol = first(data_area)[2]["option"]["tol"] if termination_measure in ["dual_residual", "mismatch_dual_residual"] tol_dual = first(data_area)[2]["option"]["tol_dual"] dual_residual = calc_global_dual_residual(data_area) return mismatch < tol && dual_residual < tol_dual else mismatch = calc_global_mismatch(data_area) tol = first(data_area)[2]["option"]["tol"] return mismatch < tol end else return reduce( &, [data_area[i]["counter"]["flag_convergence"] for i in keys(data_area)]) end end "print iteration information" function print_iteration(data::Dict{Int64, <:Any}, print_level::Int64, info_list::Vector=[]) if print_level > 0 iteration = first(data)[2]["counter"]["iteration"]-1 mismatch = calc_global_mismatch(data) println("Iteration = $iteration, mismatch = $mismatch") if print_level > 1 for info in info_list println(info) end end end end "print iteration information" function print_iteration_coordinator(data::Dict{Int64, <:Any}, print_level::Int64, info_list::Vector=[]) if print_level > 0 iteration = data[0]["counter"]["iteration"]-1 mismatch = data[0]["mismatch"]["0"] println("Iteration = $iteration, mismatch = $mismatch") if print_level > 1 for info in info_list println(info) end end end end # function print_iteration(mismatch::Dict, iteration::Int64, print_level::Int64, info_list::Vector=[]) # if print_level > 0 # mismatch = LinearAlgebra.norm([mismatch[i] for i in keys(mismatch)]) # println("Iteration = $iteration, mismatch = $mismatch") # if print_level > 1 # for info in info_list # println(info) # end # end # end # end "print final solution status" function print_convergence(data::Dict, print_level::Int64) if print_level > 0 iteration = first(data)[2]["counter"]["iteration"]-1 mismatch = calc_global_mismatch(data) tol =first(data)[2]["option"]["tol"] flag_convergence = update_global_flag_convergence(data) if flag_convergence println("*******************************************************") println("") println("Consistency achieved within $tol mismatch tolerance") println("Number of iterations = $iteration") objective = calc_dist_gen_cost(data) println("Objective function value = $objective") println("") println("*******************************************************") else println("*******************************************************") println("") println("Consistency did not achieved within $tol mismatch tolerance and $iteration iteration") println("Shared variables mismatch = $mismatch") println("") println("*******************************************************") end end end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
12743
############################################################################### # Methods for data wrangling and extracting information from data # ############################################################################### "assign area to the system data using a dictionary with (bus => area) integers pairs" function assign_area!(data::Dict{String, <:Any}, partition::Dict) for i in keys(data["bus"]) data["bus"][i]["area"] = partition[parse(Int64,i)] end end "assign area to the system data using a CVS file with buses and area ID" function assign_area!(data::Dict{String, <:Any}, partition_path::String) partition_mat = DelimitedFiles.readdlm(partition_path, ',', Int, '\n') # explicit conversion from Matrix{Int64} to Vector{Pair{Int64, Int64}} partition = Vector{Pair{Int64, Int64}}([ Pair{Int64, Int64}(row[1], row[2]) for row in eachrow(partition_mat) ]) assign_area!(data, partition) end "assign area to the system data using a vector with (bus => area) pairs" function assign_area!(data::Dict{String, <:Any}, partition::Vector{Pair{Int64, Int64}}) assign_area!(data, Dict(partition)) end "assign area to the system data using a matrix with [bus, area] columnsor rows" function assign_area!(data::Dict{String, <:Any}, partition::Array{Int64, 2}) if size(partition)[2] != 2 && length(data["bus"]) != 2 partition = partition' if size(partition)[2] != 2 #through error error("Partitioning data does not contain correct area assignments") end end assign_area!(data, Dict(partition[i,1] => partition[i,2] for i in 1:size(partition)[1] )) end """ decompose_system(data::Dict{String, <:Any}) decompose a system into areas defined by bus area. """ function decompose_system(data::Dict{String, <:Any}) areas_id = get_areas_id(data) data_area = Dict([i => decompose_system(data, i) for i in areas_id]) return data_area end "obtain an area decomposition with area ID" function decompose_system(data::Dict{String, <:Any}, area_id::Int64) # identify local buses local_bus = get_local_bus(data, area_id) neighbor_bus = get_neighbor_bus(data, area_id) ## add virtual generators virtual_gen = add_virtual_gen(data, neighbor_bus, area_id) ## area data data_area = Dict{String, Any}() data_area["area"] = area_id data_area["name"]= "$(data["name"])_area_$area_id" data_area["source_version"] = data["source_version"] data_area["source_type"] = data["source_type"] data_area["baseMVA"] = data["baseMVA"] data_area["per_unit"] = data["per_unit"] data_area["bus"] = Dict([j => bus for (j,bus) in data["bus"] if bus["bus_i"] in [local_bus;neighbor_bus] && bus["bus_type"] != 4]) data_area["branch"] = Dict([j => branch for (j,branch) in data["branch"] if (branch["f_bus"] in local_bus || branch["t_bus"] in local_bus) && branch["br_status"] == 1]) data_area["gen"] = merge(Dict([i => gen for (i,gen) in data["gen"] if gen["gen_bus"] in local_bus && gen["gen_status"] == 1]), virtual_gen) data_area["shunt"] = Dict([i => shunt for (i,shunt) in data["shunt"] if shunt["shunt_bus"] in local_bus]) data_area["load"] = Dict([i => load for (i,load) in data["load"] if load["load_bus"] in local_bus]) data_area["storage"]= Dict([i => storage for (i,storage) in data["storage"] if gen["storage_bus"] in local_bus]) data_area["switch"]=Dict([i => switch for (i,switch) in data["switch"] if gen["switch_bus"] in local_bus]) data_area["dcline"]= Dict([i => dcline for (i,dcline) in data["dcline"] if dcline["f_bus"] in local_bus || dcline["t_bus"] in local_bus ] ) return data_area end "obtain system coordinator data" function decompose_coordinator(data::Dict{String, <:Any}) areas_id = get_areas_id(data) # identifylocal buses boundary_bus = unique(reduce(vcat, [get_neighbor_bus(data, area_id) for area_id in areas_id])) ## area data data_coordinator = Dict{String,Any}() data_coordinator["area"] = 0 data_coordinator["name"]= "$(data["name"])_coordinator" data_coordinator["source_version"] = data["source_version"] data_coordinator["source_type"] = data["source_type"] data_coordinator["baseMVA"] = data["baseMVA"] data_coordinator["per_unit"] = data["per_unit"] data_coordinator["bus"] = Dict([j => bus for (j,bus) in data["bus"] if bus["bus_i"] in boundary_bus]) data_coordinator["branch"] = Dict([j => branch for (j,branch) in data["branch"] if branch["f_bus"] in boundary_bus && branch["t_bus"] in boundary_bus && data["bus"]["$(branch["f_bus"])"]["area"] != data["bus"]["$(branch["t_bus"])"]["area"] ]) data_coordinator["gen"] = Dict{String,Any}() data_coordinator["shunt"] = Dict{String,Any}() data_coordinator["load"] = Dict{String,Any}() data_coordinator["storage"]= Dict{String,Any}() data_coordinator["switch"]= Dict{String,Any}() data_coordinator["dcline"]= Dict{String,Any}() return data_coordinator end "add virtual generators at the neighboring buses of an area" function add_virtual_gen(data::Dict{String, <:Any}, neighbor_bus::Vector, area_id::Int64) max_gen_ind = maximum([parse(Int,i) for i in keys(data["gen"])]) virtual_gen = Dict{String, Any}() cost_model = data["gen"][string(max_gen_ind)]["model"] max_flow = 10*sum(load["pd"] for (i,load) in data["load"]) if cost_model == 1 for i in neighbor_bus virtual_gen[string(i+max_gen_ind)] = Dict("ncost" => 2, "qc1max" => 0.0, "pg" => 0, "model" => cost_model, "shutdown" => 0.0, "startup" => 0.0, "qc2max" => 0.0, "ramp_agc" => 0.0, "qg" => 0.0, "gen_bus" => i, "pmax" => max_flow, "ramp_10" => 0.0, "vg" => 1.05, "mbase" => data["baseMVA"], "source_id" => Any["gen", max_gen_ind+i], "pc2" => 0.0, "index" => i+max_gen_ind, "cost" => [0.01; 0.0; 0.02; 0.0], "qmax" => max_flow, "gen_status" => 1, "qmin" => -max_flow, "qc1min" => 0.0, "qc2min" => 0.0, "pc1" => 0.0, "ramp_q" => 0.0, "ramp_30" => 0.0, "pmin" => -max_flow, "apf" => 0.0) end else for i in neighbor_bus virtual_gen[string(i+max_gen_ind)] = Dict("ncost" => 3, "qc1max" => 0.0, "pg" => 0, "model" => cost_model, "shutdown" => 0.0, "startup" => 0.0, "qc2max" => 0.0, "ramp_agc" => 0.0, "qg" => 0.0, "gen_bus" => i, "pmax" => max_flow, "ramp_10" => 0.0, "vg" => 1.05, "mbase" => data["baseMVA"], "source_id" => Any["gen", max_gen_ind+i], "pc2" => 0.0, "index" => i+max_gen_ind, "cost" => [0.0; 0.0; 0.0], "qmax" => max_flow, "gen_status" => 1, "qmin" => -max_flow, "qc1min" => 0.0, "qc2min" => 0.0, "pc1" => 0.0, "ramp_q" => 0.0, "ramp_30" => 0.0, "pmin" => -max_flow, "apf" => 0.0) end end return virtual_gen end # "add virtual bus at the tie-lines with other areas" # function _add_virtual_bus!(data::Dict{String, <:Any}, neighbor_bus::Vector, area_id::Int) # max_bus_ind = maximum([parse(Int,i) for i in keys(data["bus"])]) # vmax = first(data["bus"])[2]["vmax"] # vmin = first(data["bus"])[2]["vmin"] # virtual_bus = Dict{String, Any}() # for i in neighbor_bus # bus_area = data["bus"][string(i)]["area"] # base_kv = data["bus"][string(i)]["base_kv"] # common_lines = [idx for (idx,branch) in data["branch"] if (branch["f_bus"] == i && data["bus"][string(branch["t_bus"])]["area"] == area_id) || (branch["t_bus"] == i && data["bus"][string(branch["f_bus"])]["area"] == area_id) ] # for j in common_lines # bus_id = parse(Int64, j) + max_bus_ind # virtual_bus[string(bus_id)] = Dict{String, Any}("zone" => bus_area, "bus_i" => bus_id, "bus_type" => 1, "vmax" => vmax, "source_id" => Any["bus", bus_id], "area"=> bus_area, "vmin" => vmin, "index" => 0.0, "va" => 1.0, "vm" => 0.0, "base_kv" => base_kv) # end # end # return virtual_bus # end """ arrange area ID from 1 to number of areas. This step is necessary when having area number 0 and using central coordinator """ function arrange_areas_id!(data::Dict{String, <:Any}) areas_id = get_areas_id(data) new_areas_id = collect(1:length(areas_id)) area_id_lookup = Dict(areas_id[i] => i for i in new_areas_id) for (i,bus) in data["bus"] bus["area"] = area_id_lookup[bus["area"]] end end "helper function to get all areas IDs" get_areas_id(data::Dict{String, <:Any})::Vector{Int64} = unique([bus["area"] for (i, bus) in data["bus"]]) "helper function to get all areas IDs" get_areas_id(data::Dict{Int, <:Any})::Vector{Int64} = collect(keys(data)) "helper function to get all areas IDs" get_areas_id(pm::AbstractPowerModel)::Vector{Int64} = get_areas_id(pm.data) "helper function to get the area ID" get_area_id(data::Dict{String, <:Any})::Int64 = get(data,"area", NaN) "helper function to get the area ID" get_area_id(pm::AbstractPowerModel)::Int64 = get_area_id(pm.data) "helper functions to get the area's local buses" get_local_bus(data::Dict{String, <:Any}, area::Int64)::Vector{Int64} = [bus["bus_i"] for (i,bus) in data["bus"] if bus["area"] == area] "helper functions to get the area's local buses" get_local_bus(pm::AbstractPowerModel, area::Int64)::Vector{Int64} = get_local_bus(pm.data, area) "helper functions to get the area's neighbor buses" function get_neighbor_bus(data::Dict{String, <:Any}, local_bus::Vector)::Vector{Int64} neighbor_bus = Vector{Int64}() for (i,branch) in data["branch"] if branch["br_status"] == 1 if branch["f_bus"] in local_bus && !(branch["t_bus"] in local_bus) push!(neighbor_bus,branch["t_bus"]) elseif !(branch["f_bus"] in local_bus) && branch["t_bus"] in local_bus push!(neighbor_bus,branch["f_bus"]) end end end return neighbor_bus end "helper functions to get the area's neighbor buses" get_neighbor_bus(pm::AbstractPowerModel, local_bus::Vector)::Vector{Int64} = get_neighbor_bus(pm.data, local_bus) "helper functions to get the area's neighbor buses" get_neighbor_bus(data::Dict{String, <:Any}, area::Int64)::Vector{Int64} = get_neighbor_bus(data, get_local_bus(data,area)) "helper functions to get the area's neighbor buses" get_neighbor_bus(pm::AbstractPowerModel, area::Int64)::Vector{Int64} = get_neighbor_bus(pm.data, area) "helper functions to all areas buses in a dicrionary" function get_areas_bus(data::Dict{String, <:Any}) areas_id = get_areas_id(data) areas_bus = Dict{Int64, Vector{Int64}}() for area in areas_id areas_bus[area] = [bus["bus_i"] for (idx,bus) in data["bus"] if bus["area"]==area] end areas_bus[0] = [bus["bus_i"] for (idx,bus) in data["bus"]] return areas_bus end "helper functions to all areas buses in a dicrionary" get_areas_bus(pm::AbstractPowerModel) = get_areas_bus(pm.data) "get the shared buses and branches between an area and all other areas" function get_shared_component(data::Dict{String, <:Any}, area_id::Int64) areas_id = get_areas_id(data) areas_bus = get_areas_bus(data) shared_branch = Dict{Int64, Any}() shared_bus = Dict{Int64, Any}() for area in areas_id if area != area_id shared_branch[area] = Vector{Int64}(unique([parse(Int64,idx) for (idx,branch) in data["branch"] if branch["br_status"] == 1 && ((branch["f_bus"] in areas_bus[area] && branch["t_bus"] in areas_bus[area_id]) || (branch["f_bus"] in areas_bus[area_id] && branch["t_bus"] in areas_bus[area])) ])) else shared_branch[area] = Vector{Int64}(unique([parse(Int64,idx) for (idx,branch) in data["branch"] if branch["br_status"] == 1 && xor(branch["f_bus"] in areas_bus[area], branch["t_bus"] in areas_bus[area]) ])) end shared_bus[area] = Vector{Int64}(unique(vcat([branch["f_bus"] for (idx,branch) in data["branch"] if parse(Int64,idx) in shared_branch[area]], [branch["t_bus"] for (idx,branch) in data["branch"] if parse(Int64,idx) in shared_branch[area]] ))) end shared_bus[0] = Vector{Int64}(unique([idx for area in areas_id for idx in shared_bus[area]])) shared_branch[0] = Vector{Int64}(unique([idx for area in areas_id for idx in shared_branch[area]])) return shared_bus, shared_branch end "get the shared buses and branches between defined area and all other areas" get_shared_component(pm::AbstractPowerModel, area::Int64) = get_shared_component(pm.data, area) "get the shared buses and branches between defined area and all other areas" function get_shared_component(data::Dict{String, <:Any}) area = get_area_id(data) get_shared_component(data, area) end "get the shared buses and branches between defined area and all other areas" get_shared_component(pm::AbstractPowerModel) = get_shared_component(pm.data)
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
1517
############################################################################### # Methods for sharing data between areas # ############################################################################### "prepare the shared data with or without serialization" function prepare_shared_data(data::Dict{String, <:Any}, to_area::Int64; serialize::Bool=false) shared_data_key = filter(x -> startswith(string(x), "shared"), keys(data)) shared_data = Dict([key => get(data[key], string(to_area), Dict()) for key in shared_data_key]) if serialize shared_data = _serialize_shared_data!(shared_data) end return shared_data end function _serialize_shared_data!(shared_data::Dict{String, <:Any}) io = IOBuffer() Serialization.serialize(io, shared_data) return take!(io) end "deserialize and store the received data in the local data dictionary" function receive_shared_data!(data::Dict{String, <:Any}, shared_data::Vector, from_area::Int64) shared_data = Serialization.deserialize(IOBuffer(shared_data)) receive_shared_data!(data, shared_data, from_area) end "store received data in the local data dictionary" function receive_shared_data!(data::Dict{String, <:Any}, shared_data::Dict{String, <:Any}, from_area::Int64) for shared_data_key in keys(shared_data) key = "received_$(shared_data_key[8:end])" if haskey(data, key) data[key][string(from_area)] = shared_data[shared_data_key] end end end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
2060
############################################################################### # Export PowerModelsADA methods # ############################################################################### # PowerModelsADA methods export solve_dopf, solve_dopf_sp, solve_dopf_mp, solve_dopf_coordinated, solve_dopf_coordinated_sp, solve_dopf_coordinated_mp, solve_local!, solve_pmada_model, instantiate_pmada_model, build_pmada_ref, assign_area!, # partition_system!, decompose_system, decompose_coordinator, calc_mismatch!, calc_dual_residual!, calc_global_mismatch, update_solution!, update_shared_variable!, update_flag_convergence!, update_iteration!, update_global_flag_convergence, save_solution!, prepare_shared_data, receive_shared_data!, arrange_areas_id!, get_diameter, get_areas_id, get_area_id, get_local_bus, get_neighbor_bus, get_areas_bus, get_shared_component, variable_names, variable_shared_names, initialize_dopf!, initialize_solution!, initialize_all_variable, initialize_shared_variable, objective_min_fuel_and_consensus!, variable_opf, constraint_opf, calc_number_shared_variables, calc_number_areas_variables, calc_number_all_variables, calc_number_variables, calc_dist_gen_cost, compare_solution, print_iteration, print_convergence, _pmada_global_keys # Distributed algorithms modules export admm_methods, atc_methods, app_methods, admm_coordinated_methods, atc_coordinated_methods, adaptive_admm_methods, adaptive_admm_coordinated_methods # JuMP optimizer initlization import JuMP: optimizer_with_attributes export optimizer_with_attributes # PowerModels types powermodels = names(_PM) powermodels = filter(x -> endswith(string(x), "PowerModel"), powermodels) powermodels = filter(x -> !occursin("Abstract", string(x)), powermodels) for type in powermodels @eval import PowerModels: $(type) @eval export $(type) end # PowerModels functions export AbstractPowerModel, parse_file, ids, ref, var, con, sol, nw_ids, nws, optimize_model!, nw_id_default, ismultinetwork, update_data!, silence
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
1774
############################################################################### # OPF problem variable, objective, and constraints # ############################################################################### "define OPF problem variable" function variable_opf(pm::AbstractPowerModel) _PM.variable_bus_voltage(pm) _PM.variable_gen_power(pm) _PM.variable_branch_power(pm) _PM.variable_dcline_power(pm) end "define objective function using PowerModels and algorithm-specific objective" function objective_min_fuel_and_consensus!(pm::AbstractPowerModel, objective_method::Function=no_objective) # if subsystem has generator minimize the cost of generator and consistency otherwise minimize consistency only if isempty(pm.data["gen"]) objective = objective_method(pm) else _PM.objective_min_fuel_and_flow_cost(pm) objective = JuMP.objective_function(pm.model) + objective_method(pm) end JuMP.@objective(pm.model, Min, objective) end "no objective function case" function no_objective(pm::AbstractPowerModel) # do nothing end "define OPF problem constraints" function constraint_opf(pm::AbstractPowerModel) _PM.constraint_model_voltage(pm) for i in ids(pm, :ref_buses) _PM.constraint_theta_ref(pm, i) end for i in ids(pm, :bus) _PM.constraint_power_balance(pm, i) end for i in ids(pm, :branch) _PM.constraint_ohms_yt_from(pm, i) _PM.constraint_ohms_yt_to(pm, i) _PM.constraint_thermal_limit_from(pm, i) _PM.constraint_thermal_limit_to(pm, i) _PM.constraint_voltage_angle_difference(pm, i) end for i in ids(pm, :dcline) _PM.constraint_dcline_power_losses(pm, i) end end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
5431
############################################################################### # Helper methods for all distributed algorithms # ############################################################################### # partition_system! function is removed due to a compiling issue of the KaHyPar package with Windows # """ # partition_system!(data::Dict, n::Int64; configuration::Symbol=:edge_cut, print_info::Bool=false) # Partition a system into n areas using KaHyPar partition algorithm # # Arguments: # - data::Dict{String, <:Any} : dictionary contains case in PowerModel format # - n::Int : number of areas # - configuration::Symbol=:edge_cut : partition meteric (:edge_cut or :connectivity) # - print_info::Bool=false : print partition algorithm information # """ # function partition_system!(data::Dict, n::Int64; configuration::Symbol=:edge_cut, print_info::Bool=false) # nbus = length(data["bus"]) # nbranch = length(data["branch"]) # bus_index = [x.second["index"] for x in data["bus"]] # branch_index = [x.second["index"] for x in data["branch"]] # sort!(bus_index) # sort!(branch_index) # W = zeros(nbus,nbranch) # for (i,branch) in data["branch"] # f_bus = findfirst(x->x==branch["f_bus"], bus_index) # t_bus = findfirst(x->x==branch["t_bus"], bus_index) # indx = branch["index"] # W[f_bus,indx] = 1 # W[t_bus,indx] = 1 # end # W = SparseArrays.sparse(W) # h = KaHyPar.HyperGraph(W) # info = @capture_out begin # partitions = KaHyPar.partition(h, n, configuration=configuration) # end # partitions = Dict([bus_index[i]=>partitions[i]+1 for i in 1:nbus]) # for (i,bus) in data["bus"] # bus["area"] = partitions[bus["index"]] # end # if print_info # println(info) # end # end "calculate distributed solution operation cost" function calc_dist_gen_cost(data_area::Dict{Int, <:Any}) gen_cost = 0 # Calculate objective function for i in keys(data_area) gen_cost += _PM.calc_gen_cost(data_area[i]) end return gen_cost end "compare the distributed algorithm solution with PowerModels centralized solution" function compare_solution(data::Dict{String, <:Any}, data_area::Dict{Int, <:Any}, model_type::DataType, optimizer) # Solve Centralized OPF Central_solution = _PM.solve_opf(data, model_type, optimizer) # Calculate objective function Obj_distributed = calc_dist_gen_cost(data_area) Obj_centeral = Central_solution["objective"] # Calculate optimality gap Relative_Error = abs(Obj_distributed - Obj_centeral)/ Obj_centeral * 100 return Relative_Error end # used in previous versions with ALADIN algorithm # "get the number of variables in each area" # function calc_number_areas_variables(data::Dict{String, <:Any}, model_type::DataType) # areas_id = get_areas_id(data) # data_area = Dict{Int64, Any}() # num_variables = Dict{Int64, Any}() # for area in areas_id # data_area = decompose_system(data, area) # num_variables[area] = calc_number_all_variables(data_area, model_type) # end # return num_variables # end # "get the number of shared variable in a area" # function calc_number_shared_variables(data::Dict{String, <:Any}, model_type::DataType) # areas_id = get_areas_id(data) # area_id = get_area_id(data) # shared_variable = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", "flat") # num_variables = calc_number_variables(shared_variable) # return num_variables # end # "get the number of shared variable in all area" # function calc_number_system_shared_variables(data::Dict{String, <:Any}, model_type::DataType) # areas_id = get_areas_id(data) # num_variables = Dict() # for area in areas_id # data_area = decompose_system(data, area) # num_variables[area] = calc_number_shared_variables(data_area, model_type) # end # return num_variables # end # "get the number of variables in an area" # function calc_number_all_variables(data::Dict{String, <:Any}, model_type::DataType) # variables = initialize_all_variable(data, model_type) # num_variables = calc_number_variables(variables) # return num_variables # end # "get the number of variables" # function calc_number_variables(data::Dict{String, <:Any}) # num_variables = 0 # for (key,val) in data # if isa(val, Dict{String, <:Any}) # num_variables += calc_number_variables(val) # else # num_variables += length(val) # end # end # return num_variables # end "get the communication network diameter" function get_diameter(data) areas_id = get_areas_id(data) narea = length(areas_id) data_area = decompose_system(data) for i in areas_id initialize_dopf!(data_area[i], DCPPowerModel) end D = zeros(Int64, narea,narea) for id1 in 1:narea for id2 in 1:narea if id2 in data_area[id1]["neighbors"] D[id1, id2] = 1 else D[id1, id2] = narea end end end for k in 1:narea for i in 1:narea for j in 1:narea if D[i,j] > D[i,k] + D[k,j] D[i,j] = D[i,k] + D[k,j] end end end end return maximum(D) end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
8692
############################################################################### # Variable initialization and updating for all distributed OPF algorithms # ############################################################################### # Template for variable shared "initialize shared variable dictionary" function initialize_shared_variable(data::Dict{String, <:Any}, model_type::DataType, from::Int64 ,to::Vector{Int64}, dics_name::String="shared_variable", initialization_method::String="flat", value::Float64=0.0) bus_variables_name, branch_variables_name = variable_shared_names(model_type) shared_bus, shared_branch = get_shared_component(data, from) if initialization_method in ["previous", "previous_solution", "warm", "warm_start"] if !haskey(data, dics_name) error("no previous solutions exist to use warm start") else variables_dics = data[dics_name] end elseif occursin("dual",dics_name) variables_dics = Dict([ string(area) => Dict( vcat( [variable => Dict([string(idx) => 0.0 for idx in shared_bus[area]]) for variable in bus_variables_name], [variable => Dict([string(idx) => 0.0 for idx in shared_branch[area]]) for variable in branch_variables_name] ) ) for area in to]) else variables_dics = Dict([ string(area) => Dict( vcat( [variable => Dict([string(idx) => initial_value(variable, initialization_method, value) for idx in shared_bus[area]]) for variable in bus_variables_name], [variable => Dict([string(idx) => initial_value(variable, initialization_method, value) for idx in shared_branch[area]]) for variable in branch_variables_name] ) ) for area in to]) end return variables_dics end function initialize_shared_variable(data::Dict{String, <:Any}, model_type::DataType, from::Int64 ,to::Int64, dics_name::String="shared_variable", initialization_method::String="flat") initialize_shared_variable(data, model_type, from, [to], dics_name, initialization_method) end """ initial_value(variable::String, initialization_method::String="flat", value::Float64=0.0) assign initial value based on initialization method # Arguments: - variable::String : variable names - initialization_method::String="flat" : ("flat", "previous_solution", "constant") - value::Float64=0.0 : return value if initialization_method = "constant" """ function initial_value(variable::String, initialization_method::String, value::Float64=0.0)::Float64 if initialization_method in ["flat" , "flat_start"] return initial_value(variable) else initialization_method in ["constant"] return value end end function initial_value(variable::String)::Float64 if variable in ["vm", "w", "wr"] return 1.0 else return 0.0 end end # function previous_value(data::Dict{String, <:Any}, variable::String, idx::String)::Float64 # if variable in ["vm", "va"] # return data["bus"][idx][variable] # elseif variable in ["w"] # if haskey(data["bus"][idx], "w") # return data["bus"][idx]["w"] # else # return data["bus"][idx]["vm"]^2 # end # elseif variable in ["pf", "pt", "qf", "qt","wr", "wi", "vv", "ccm", "cs", "si", "td"] # if haskey(data["branch"][idx], variable) # return data["branch"][idx][variable] # else # error("no previous solutions exist to use warm start or the PowerModel is not supported") # end # elseif variable in ["pg", "qg"] # return data["gen"][idx][variable] # else # error("no previous solutions exist to use warm start or the PowerModel is not supported") # end # end """ initialize_all_variable(data::Dict{String, <:Any}, model_type::DataType, dics_name::String="solution", initialization_method::String="flat") return a dictionary contains all the problem variables. can be used to store the solutions. # Arguments: - data::Dict{String, <:Any} : area data - model_type::DataType : power flow formulation (PowerModel type) - dics_name::String="solution" : location of existing dicrionary to be used to worm start the output - initialization_method::String="flat" : "flat" or "worm" initialization """ function initialize_all_variable(data::Dict{String, <:Any}, model_type::DataType, initialization_method::String="flat") bus_variables_name, branch_variables_name, gen_variables_name = variable_names(model_type) all_variables = Dict{String, Any}() for variable in bus_variables_name all_variables[variable] = Dict([idx => initial_value(variable, initialization_method) for idx in keys(data["bus"])]) end for variable in branch_variables_name all_variables[variable] = Dict([idx => initial_value(variable, initialization_method) for idx in keys(data["branch"])]) end for variable in gen_variables_name all_variables[variable] = Dict([idx => initial_value(variable, initialization_method) for idx in keys(data["gen"])]) end return all_variables end function initialize_solution!(data::Dict{String, <:Any}, model_type::DataType, initialization_method::String="flat") data["solution"] = initialize_all_variable(data, model_type, initialization_method) end "return JuMP variable object from PowerModel object" function _var(pm::AbstractPowerModel, key::String, idx::String) bus_variables_name, branch_variables_name, gen_variables_name = variable_names(typeof(pm)) idx = parse(Int64,idx) if key in bus_variables_name || key in gen_variables_name var = _PM.var(pm, Symbol(key), idx) elseif key in branch_variables_name branch = _PM.ref(pm, :branch, idx) f_bus = branch["f_bus"] t_bus = branch["t_bus"] if key in ["pf", "qf"] var = _PM.var(pm, Symbol(key[1]), (idx, f_bus, t_bus)) elseif key in ["pt", "qt"] var = _PM.var(pm, Symbol(key[1]), (idx, t_bus, f_bus)) else var = _PM.var(pm, Symbol(key), (f_bus, t_bus)) end end return var end "identifythe shared bus and branch variables names" function variable_shared_names(model_type::DataType) if model_type <: Union{DCPPowerModel, DCMPPowerModel} return ["va"], ["pf"] elseif model_type <: NFAPowerModel return [], ["pf"] elseif model_type <: DCPLLPowerModel return ["va"], ["pf", "pt"] elseif model_type <: LPACCPowerModel return ["va", "phi"], ["pf", "pt", "qf", "qt", "cs"] elseif model_type <: ACPPowerModel return ["va", "vm"], ["pf", "pt", "qf", "qt"] elseif model_type <: ACRPowerModel return ["vr", "vi"], ["pf", "pt", "qf", "qt"] elseif model_type <: ACTPowerModel return ["w", "va"], ["pf", "pt", "qf", "qt", "wr", "wi"] elseif model_type <: Union{SOCWRPowerModel, SOCWRConicPowerModel, SDPWRMPowerModel, SparseSDPWRMPowerModel } return ["w"], ["pf", "pt", "qf", "qt", "wr", "wi"] elseif model_type <: QCRMPowerModel return ["vm", "va" , "w"], ["pf", "pt", "qf", "qt", "wr", "wi", "vv", "ccm", "cs", "si", "td"] else error("PowerModel type is not supported yet!") end end "identifyall the variables names" function variable_names(model_type::DataType) if model_type <: Union{DCPPowerModel, DCMPPowerModel} return ["va"], ["pf"], ["pg"] elseif model_type <: NFAPowerModel return [], ["pf"], ["pg"] elseif model_type <: DCPLLPowerModel return ["va"], ["pf", "pt"], ["pg"] elseif model_type <: LPACCPowerModel return ["va", "phi"], ["pf", "pt", "qf", "qt", "cs"], ["pg", "qg"] elseif model_type <: ACPPowerModel return ["va", "vm"], ["pf", "pt", "qf", "qt"], ["pg", "qg"] elseif model_type <: ACRPowerModel return ["vr", "vi"], ["pf", "pt", "qf", "qt"], ["pg", "qg"] elseif model_type <: ACTPowerModel return ["w", "va"], ["pf", "pt", "qf", "qt", "wr", "wi"], ["pg", "qg"] elseif model_type <: Union{SOCWRPowerModel, SOCWRConicPowerModel, SDPWRMPowerModel, SparseSDPWRMPowerModel } return ["w"], ["pf", "pt", "qf", "qt", "wr", "wi"], ["pg", "qg"] elseif model_type <: QCRMPowerModel return ["vm", "va" , "w"], ["pf", "pt", "qf", "qt", "wr", "wi", "vv", "ccm", "cs", "si", "td"], ["pg", "qg"] elseif model_type <: AbstractPowerModel error("PowerModel type is not supported yet!") else error("model_type $model_type is not PowerModel type!") end end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
5683
using PowerModelsADA import HiGHS import Ipopt using Distributed using Test ## default setup for solvers milp_solver = optimizer_with_attributes(HiGHS.Optimizer, "output_flag"=>false) nlp_solver = optimizer_with_attributes(Ipopt.Optimizer, "tol"=>1e-6, "print_level"=>0) silence() ## load test systems data_14 = parse_file("../test/data/case14.m") data_RTS = parse_file("../test/data/case_RTS.m") @testset "PowerModelsADA" begin ## assign area test @testset "assign area to busses" begin assign_area!(data_14, "../test/data/case14_2areas.csv") area_bus = get_areas_bus(data_14) area_1 = [1, 2, 3, 4, 5] area_2 = [6, 7, 8, 9, 10, 11, 12, 13, 14] @test sort(area_bus[1]) == area_1 @test sort(area_bus[2]) == area_2 end ## decompose system test @testset "decmpose system into subsystems" begin @testset "data_RTS" begin data_area = decompose_system(data_RTS) bus_size = [28, 28, 27] gen_size = [35, 38, 33] branch_size = [42, 42, 41] load_size = [17, 17, 17] neighbor_size = [4, 4, 2] test_bus = [length(data_area[i]["bus"]) for i in 1:3] test_gen = [length(data_area[i]["gen"]) for i in 1:3] test_branch = [length(data_area[i]["branch"]) for i in 1:3] test_load = [length(data_area[i]["load"]) for i in 1:3] @test test_bus == test_bus @test gen_size == test_gen @test branch_size == test_branch @test load_size == test_load end end @testset "serialize shared data" begin data_area = decompose_system(data_14) for i in [1,2] admm_methods.initialize_method(data_area[i], QCRMPowerModel) end shared_data = prepare_shared_data(data_area[1], 2; serialize=true) receive_shared_data!(data_area[2], shared_data, 1) @test data_area[1]["shared_variable"]["2"] == data_area[2]["received_variable"]["1"] end # ## paritiotioning test # @testset "partition system" begin # @testset "case_RTS" begin # partition_system!(data_RTS, 3) # test_count = [count(c -> c["area"] == k, [bus for (i,bus) in data_RTS["bus"]]) for k in 1:3] # test_count_24 = count(==(24), test_count) # test_count_25 = count(==(25), test_count) # @test test_count_24 == 2 # @test test_count_25 == 1 # end # end ## ADMM test @testset "admm algorithm with DC power flow" begin data_area = solve_dopf_admm("../test/data/case14.m", DCPPowerModel, nlp_solver; alpha=1000, tol=1e-3, max_iteration=1000, print_level=0, multiprocessors=true, termination_method="local", mismatch_method="max", termination_measure="dual_residual") error = compare_solution(data_14, data_area, DCPPowerModel, milp_solver) @test isapprox(error, 0, atol=1e-3) end @testset "coordinated admm algorithm with AC polar power flow" begin data_area = solve_dopf_admm_coordinated("../test/data/case14.m", ACPPowerModel, nlp_solver; alpha=1000, tol=1e-3, max_iteration=1000, print_level=0, multiprocessors=true, mismatch_method="max",termination_measure="dual_residual") dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 8081.52, atol=5) end # ## Adaptive ADMM test @testset "adaptive admm algorithm with DC power flow" begin data_area = solve_dopf_adaptive_admm(data_14, DCPPowerModel, milp_solver; alpha=1000, tol=1e-3, max_iteration=1000, print_level=0) dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 7642.59, atol=5) end @testset "adaptive coordinated admm algorithm with AC polar power flow" begin data_area = solve_dopf_adaptive_admm_coordinated(data_14, SOCWRPowerModel, nlp_solver; alpha=1000, tol=1e-3, max_iteration=1000, print_level=0) dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 8075.12, atol=5) end ## ATC test @testset "coordinated atc algorithm with SOC relaxation of power flow" begin data_area = solve_dopf_atc_coordinated(data_14, SOCWRPowerModel, nlp_solver; alpha=1.1, tol=1e-3, max_iteration=1000, print_level=0) dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 8075.12, atol=5) end @testset "atc algorithm with DC power flow" begin data_area = solve_dopf_atc(data_14, DCPPowerModel, milp_solver; alpha=1.1, tol=1e-3, max_iteration=1000, print_level = 0) dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 7642.59, atol=5) end ## APP test @testset "app algorithm with DC power flow" begin data_area = solve_dopf_app(data_14, DCPPowerModel, milp_solver; alpha=1000, tol=1e-3, max_iteration=2, print_level = 0) data_area = solve_dopf_app(data_area, DCPPowerModel, milp_solver; alpha=1000, tol=1e-3, max_iteration=1000, print_level = 1, initialization_method="previous") dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 7642.59, atol =5) end ## ALADIN test @testset "aladin algorithm with AC polar power flow" begin sigma = Dict{String, Real}("va" => 100, "vm" => 50, "pf" => 1, "pt" => 1, "qf" => 1, "qt" => 1, "pg" => 1, "qg" => 1) data_area = solve_dopf_aladin_coordinated(data_14, ACPPowerModel, nlp_solver; tol=1e-2, max_iteration=20, print_level=0, p=100, mu=1000, r_p=1.5, r_mu=2, q_gamma=0, sigma=sigma) dist_cost = calc_dist_gen_cost(data_area) @test isapprox(dist_cost, 8081.53, atol =5) end end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
3362
# PowerModelsADA.jl Status: [![CI](https://github.com/mkhraijah/PowerModelsADA.jl/workflows/CI/badge.svg)](https://github.com/mkhraijah/PowerModelsADA.jl/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/mkhraijah/PowerModelsADA.jl/branch/main/graph/badge.svg?token=371LK4OBZG)](https://codecov.io/gh/mkhraijah/PowerModelsADA.jl) [![Documentation](https://github.com/mkhraijah/PowerModelsADA.jl/workflows/Documentation/badge.svg)](https://mkhraijah.github.io/PowerModelsADA.jl/) </p> ## Overview [`PowerModelsADA.jl`](https://github.com/mkhraijah/PowerModelsADA.jl) (Power Models Alternating Distributed Algorithms) provides a framework to solve Optimal Power Flow (OPF) problems using alternating distributed algorithms. The package allows to use different distributed algorithms. `PowerModelsADA` is built on top of [`PowerModels.jl`](https://github.com/lanl-ansi/PowerModels.jl) and [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) to model and solve the subproblems. ## Distributed Algorithms The `PowerModelsADA` framework is designed to easily incorporate new alternating distributed algorithms. The framework provides means to decompose a test case into multiple areas, model the subproblems associated with each area using `PowerModels`, solve the supropblems in parallel using multi-threading or multi-processing via [`Distributed Computing`](https://docs.julialang.org/en/v1/manual/distributed-computing/), communicate the shared data between the areas, and calculate the mismatches to decide if the termination criteria are satisfied. The current version of `PowerModelsADA` implements four distributed algorithms: - Alternating Direction Method of Multipliers (ADMM) - Analytical Target Cascading (ATC) - Auxiliary Problem Principle (APP) - Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) `PowerModelsADA` can be extended to include variations of the existing algorithms or new user-defined algorithms. More details about the formulations and algorithm implementations are shown in [Technical Specifications](https://mkhraijah.github.io/PowerModelsADA.jl/dev/specification/) ## Installation `PowerModelsADA` can be installed using the Julia package manager with ```julia using Pkg Pkg.add("PowerModelsADA") ``` ## Examples An example demonstrating how to code up and solve the OPF problem with distributed algorithms is found in [Quick Start Guide](https://mkhraijah.github.io/PowerModelsADA.jl/dev/quickguide/) section of the documentation. ## Contributions Contributions and enhancements of `PowerModelADA` are welcomed and encouraged. Please feel free to fork this repository and share your contributions to the main branch with a pull request. ## Citation If you find `PowerModelsADA` useful for your work, please cite our [paper](https://ieeexplore.ieee.org/document/10262198): ```bibtex @ARTICLE{alkhraijah2023powermodelsada, author={Alkhraijah, Mohannad and Harris, Rachel and Coffrin, Carleton and Molzahn, Daniel K.}, journal={IEEE Transactions on Power Systems}, title={PowerModelsADA: A Framework for Solving Optimal Power Flow using Distributed Algorithms}, year={2023}, volume={}, number={}, pages={1-4}, doi={10.1109/TPWRS.2023.3318858} } ``` ## Acknowledgments This work is partially supported by the NSF AI Institute for Advances in Optimization (Award #2112533).
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
309
# Adaptive Alternating Direction Method of Multipliers (Adaptive ADMM) ```@meta CurrentModule = PowerModelsADA ``` ```@docs solve_dopf_adaptive_admm solve_dopf_adaptive_admm_coordinated ``` ```@autodocs Modules = [PowerModelsADA.adaptive_admm_methods, PowerModelsADA.adaptive_admm_coordinated_methods] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
255
# Alternating Direction Method of Multipliers (ADMM) ```@meta CurrentModule = PowerModelsADA ``` ```@docs solve_dopf_admm solve_dopf_admm_coordinated ``` ```@autodocs Modules = [PowerModelsADA.admm_methods, PowerModelsADA.admm_coordinated_methods] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
230
# Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) ```@meta CurrentModule = PowerModelsADA ``` ```@docs solve_dopf_aladin_coordinated ``` ```@autodocs Modules = [PowerModelsADA.aladin_coordinated_methods] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
167
# Auxiliary Problem Principle (APP) ```@meta CurrentModule = PowerModelsADA ``` ```@docs solve_dopf_app ``` ```@autodocs Modules = [PowerModelsADA.app_methods] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
234
# Analytical Target Cascading (ATC) ```@meta CurrentModule = PowerModelsADA ``` ```@docs solve_dopf_atc solve_dopf_atc_coordinated ``` ```@autodocs Modules = [PowerModelsADA.atc_methods, PowerModelsADA.atc_coordinated_methods] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
6037
# Comparison Results The results of using `PowerModelsADA`v0.1.1 on 9 test cases from **[PGLib-OPF](https://github.com/power-grid-lib/pglib-opf)** is shown here. We benchmark three distributed algorithms with 5 power flow formulations. ### Simulation Setup We run the three distributed algorithms on a high-performance computing service with a 16-core CPU and 16GB of RAM. We produced the results shown here using `Julia` v1.8, and [`Ipopt`](https://github.com/jump-dev/Ipopt.jl) solver. We report the results that achieved the $l_2$-norm of the mismatches less than 0.01 (radians and per unit) within 10,000 iterations and the absolute value of the relative error less than 1% of the central solution from `PowerModels.jl`. We tune the ADAs parameters by selecting large values and gradually reducing the values until reaching a good solution. For the ADMM and APP, we started with $\alpha = 10^6$ and divided by 10 for the next run, while for the ATC we started with $\alpha =1.2$ and subtracted 0.099 for the next run. ### Polar Form ACOPF | **Algorithm** | | **ADMM** | | **ATC** | | **APP** | | |------------- |:-----:|---------: |------:|--------: |------:|---------: |------:| | **Case name** |**Area**| **Time** |**Itr.**| **Time** |**Itr.**| **Time** |**Itr.**| | 14_ieee | 2 | 1.13 | 14 | 1.70 | 28 | 5.36 | 31 | | 24\_ieee_rts | 4 | 21.02 | 97 | 7.82 | 67 | 37.84 | 207 | | 30_ieee | 3 | 2.18 | 24 | 3.89 | 43 | 2.33 | 25 | | 30pwl | 3 | 7.40 | 24 | 4.08 | 36 | 10.73 | 49 | | 39_epri | 3 | 20.14 | 89 | 239.80 | 1261 | 179.63 | 873 | | 73\_ieee_rts | 3 | 14.37 | 61 | 18.61 | 58 | 23.02 | 83 | | 179_goc | 3 | 31.42 | 66 | 62.06 | 81 | 76.82 | 166 | | 300_ieee | 4 | 21.51 | 66 | 651.26 | 920 | 28.16 | 77 | | 588_sdet | 8 | 295.05 | 871 | 3133.82 | 1971 | 437.17 | 1283 | ### Rectangular Form ACOPF | **Algorithm** | | **ADMM** | | **ATC** | | **APP** | | |------------- |:-----:|---------: |------:|--------: |------:|---------: |------:| | **Case name** |**Area**| **Time** |**Itr.**| **Time** |**Itr.**| **Time** |**Itr.**| | 14_ieee | 2 | 1.04 | 14 | 1.75 | 28 | 2.80 | 33 | | 24\_ieee_rts | 4 | 11.45 | 95 | 8.19 | 66 | 23.70 | 206 | | 30_ieee | 3 | 3.20 | 22 | 3.53 | 40 | 3.36 | 24 | | 30pwl | 3 | 1.07 | 10 | 6.82 | 59 | 6.13 | 48 | | 39_epri | 3 | 11.40 | 86 | 323.25 | 1243 | 12.12 | 95 | | 73\_ieee_rts | 3 | 10.38 | 60 | 21.85 | 58 | 19.76 | 116 | | 179_goc | 3 | 47.25 | 122 | 63.58 | 83 | 64.74 | 170 | | 300_ieee | 4 | 17.89 | 44 | 1088.83 | 900 | 33.34 | 94 | | 588_sdet | 8 | 401.70 | 1031 | 3838.72 | 1977 | 473.00 | 1181 | ### DC Approximation | **Algorithm** | | **ADMM** | | **ATC** | | **APP** | | |------------- |:-----:|---------: |------:|--------: |------:|---------: |------:| | **Case name** |**Area**| **Time** |**Itr.**| **Time** |**Itr.**| **Time** |**Itr.**| | 14_ieee | 2 | 1.24 | 15 | 0.79 | 45 | 1.24 | 21 | | 24\_ieee_rts | 4 | 12.02 | 174 | 2.61 | 60 | 14.05 | 199 | | 30_ieee | 3 | 1.41 | 21 | 0.35 | 45 | 1.44 | 20 | | 30pwl | 3 | 1.53 | 18 | 0.34 | 42 | 1.38 | 20 | | 39_epri | 3 | 4.90 | 69 | 6.181 | 69 | 4.51 | 64 | | 73\_ieee_rts | 3 | 6.81 | 75 | 4.88 | 55 | 6.77 | 79 | | 179_goc | 3 | 4.56 | 37 | 3.24 | 27 | 5.21 | 44 | | 300_ieee | 4 | 3.60 | 26 | 11.31 | 58 | 6.03 | 36 | | 588_sdet | 8 | 106.01 | 656 | 18.535 | 655 | 185.20 | 1156 | ### SOCP Relaxation | **Algorithm** | | **ADMM** | | **ATC** | | **APP** | | |------------- |:-----:|---------: |------:|--------: |------:|---------: |------:| | **Case name** |**Area**| **Time** |**Itr.**| **Time** |**Itr.**| **Time** |**Itr.**| | 14_ieee | 2 | 1.29 | 12 | 2.16 | 39 | 0.98 | 12 | | 24\_ieee_rts | 4 | 3.85 | 39 | 4.18 | 32 | 4.94 | 51 | | 30_ieee | 3 | 1.32 | 12 | 3.96 | 33 | 1.46 | 13 | | 30pwl | 3 | 1.30 | 11 | 4.53 | 29 | 1.42 | 13 | | 39_epri | 3 | 5.34 | 41 | 8.53 | 47 | 16.12 | 119 | | 73\_ieee_rts | 3 | 0.51 | 3 | 8.03 | 23 | 0.45 | 3 | | 179_goc | 3 | 7.56 | 16 | 20.87 | 23 | 3.54 | 8 | | 300_ieee | 4 | 5.64 | 11 | 51.75 | 42 | 7.18 | 14 | | 588_sdet | 8 | 87.89 | 131 | 145.32 | 53 | 85.91 | 130 | ### QC Relaxation | **Algorithm** | | **ADMM** | | **ATC** | | **APP** | | |------------- |:-----:|---------: |------:|--------: |------:|---------: |------:| | **Case name** |**Area**| **Time** |**Itr.**| **Time** |**Itr.**| **Time** |**Itr.**| | 14_ieee | 2 | 2.09 | 15 | 4.37 | 24 | 4.47 | 15 | | 24\_ieee_rts | 4 | 15.53 | 55 | 22.07 | 50 | 19.10 | 66 | | 30_ieee | 3 | 11.05 | 32 | 12.66 | 33 | 9.89 | 30 | | 30pwl | 3 | 1.73 | 9 | 11.25 | 29 | 2.68 | 14 | | 39_epri | 3 | 31.80 | 85 | 82.02 | 104 | 36.31 | 101 | | 73\_ieee_rts | 3 | 2.59 | 7 | 1268.75 | 1009 | 2.81 | 7 | | 179_goc | 3 | 49.63 | 24 | 118.34 | 24 | 77.16 | 39 | | 300_ieee | 4 | 18.52 | 11 | 602.90 | 60 | 57.31 | 27 | | 588_sdet | 8 | 321.28 | 177 | 500.23 | 56 | 316.85 | 177 |
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
2451
# Data Structure ```@meta CurrentModule = PowerModelsADA ``` ## Input Data ### Case `PowerModelsADA` uses a dictionary of dictionaries to store the case data and the subproblem data. The case data dictionary is similar to the one in `PowerModels` with area assignment for each bus. The buses in the data dictionary must contain an area key with more than one distinct area ID. The subproblem data is similar to the case data with additional information. The area data contains the area-specific data and the distributed algorithm parameters. To load a data file, we use `parse_file` function as follow: ```julia case_path = "test/data/case14.m" data = parse_file(case_path) ``` ### Partitioning To check the areas ID in a data dictionary, use `get_areas_id(data)` to get all areas' IDs in `data`. If the data dictionary doesn't contain more than one area, we can partition the system manually using `assign_area!` function. An example of partition file is shown in [partition example](https://github.com/mkhraijah/PowerModelsADA.jl/blob/main/test/data/case14_2areas.csv). ```@docs assign_area! ``` Before running the distributed algorithm, `PowerModelsADA` internally decomposes the original system into subsystems using `decompose_system` function. the function decouples the tie-lines between two areas by introducing dummy buses and virtual generators at the tie-lines' ends. ```@docs decompose_system ``` ## Output Data The output of the distributed algorithms is stored in a dictionary. The dictionary's keys are the areas ID, and the dictionary's values are the areas data dictionary with the results stored in `solution` dictionary. ## Saving Iterations Data To save a specific data during the distributed algorithm (e.g., store the `"shared_variable"` dictionary each iteration), use the option `save_data::Vector{String}=[]` in the solve function and add the key of the data (e.g., `save_data=["shared variable"]`). The output of the solve function will contain a dictionary with a key called `"previous_solution"` that contains vectors of the selected stored data ordered by the iteration number. ## Generation Cost To calculate the objective function of the central algorithm use `calc_dist_gen_cost`. ```@docs calc_dist_gen_cost ``` To compare the distributed algorithm objective function value with the central OPF, use `compare_solution` to get the absolute value of the relative error. ```@docs compare_solution ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
4339
# PowerModelsADA.jl ```@meta CurrentModule = PowerModelsADA ``` ## Overview [`PowerModelsADA.jl`](https://github.com/mkhraijah/PowerModelsADA.jl) (Power Models Alternating Distributed Algorithms) provides a framework to solve Optimal Power Flow (OPF) problems using alternating distributed algorithms. The package allows to use different distributed algorithms. `PowerModelsADA` is built on top of [`PowerModels.jl`](https://github.com/lanl-ansi/PowerModels.jl) and [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) to model and solve the subproblems. ## Distributed Algorithms The `PowerModelsADA` framework is designed to easily incorporate new alternating distributed algorithms. The framework provides means to decompose a test case into multiple areas, model the subproblems associated with each area using `PowerModels`, solve the supropblems in parallel using multi-threading or multi-processing via [`Distributed Computing`](https://docs.julialang.org/en/v1/manual/distributed-computing/), communicate the shared data between the areas, and calculate the mismatches to decide if the termination criteria are satisfied. The current version of `PowerModelsADA` implements four distributed algorithms: - Alternating Direction Method of Multipliers (ADMM) - Analytical Target Cascading (ATC) - Auxiliary Problem Principle (APP) - Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) The specifications of the distributed algorithms are contained in modules within `PowerModelsADA` and can be used with the algorithms' solve functions. The distributed algorithms variations and solve functions are listed below. | **Algorithm** | **Module** | **Solve Function** | |------------------------------------|-------------------------------------|----------------------------------------| | ADMM (fully distributed) | `admm_methods` | `solve_dopf_admm` | | ADMM (with a coordinator) | `admm_coordinated_methods` | `solve_dopf_admm_coordinated` | | Adaptive ADMM (fully distributed) | `adaptive_admm_methods` | `solve_dopf_adaptive_admm` | | Adaptive ADMM (with a coordinator) | `adaptive_admm_coordinated_methods` | `solve_dopf_adaptive_admm_coordinated` | | ATC (fully distributed) | `atc_methods` | `solve_dopf_atc` | | ATC (with a coordinator) | `atc_coordinated_methods` | `solve_dopf_atc_coordinated` | | APP | `app_methods` | `solve_dopf_app` | | ALADIN (with a coordinator) | `aladin_coordinated_methods` | `solve_dopf_aladin_coordinated` | `PowerModelsADA` can be extended to include variations of the existing algorithms or new user-defined algorithms. More details about the formulations and algorithm implementations are shown in [Technical Specifications](https://mkhraijah.github.io/PowerModelsADA.jl/dev/specification/) ## Installation `PowerModelsADA` can be installed using the Julia package manager with ```julia using Pkg Pkg.add("PowerModelsADA") ``` ## Examples An example demonstrating how to code up and solve the OPF problem with distributed algorithms is found in [Quick Start Guide](https://mkhraijah.github.io/PowerModelsADA.jl/dev/quickguide/) section of the documentation. ## Contributions Contributions and enhancements of `PowerModelADA` are welcomed and encouraged. Please feel free to fork this repository and share your contributions to the main branch with a pull request. ## Citation If you find `PowerModelsADA` useful for your work, please cite our [paper](https://ieeexplore.ieee.org/document/10262198): ```bibtex @ARTICLE{alkhraijah2023powermodelsada, author={Alkhraijah, Mohannad and Harris, Rachel and Coffrin, Carleton and Molzahn, Daniel K.}, journal={IEEE Transactions on Power Systems}, title={PowerModelsADA: A Framework for Solving Optimal Power Flow using Distributed Algorithms}, year={2023}, volume={}, number={}, pages={1-4}, doi={10.1109/TPWRS.2023.3318858} } ``` ## Acknowledgments This work is partially supported by the NSF AI Institute for Advances in Optimization (Award #2112533).
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
189
# Library ```@meta CurrentModule = PowerModelsADA ``` ```@autodocs Modules = [PowerModelsADA] Pages = ["base.jl", "data.jl", "data_sharing.jl", "opf.jl", "util.jl", "variables.jl"] ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
5256
# User-Defined Algorithm ```@meta CurrentModule = PowerModelsADA ``` To define a new algorithm, we need to define a module for the new algorithm that contains the main solve function in addition to three algorithm-specific functions. The three algorithm-specific are: initialize, build, and update. You can follow the example in the [template file](https://github.com/mkhraijah/PowerModelsADA.jl/blob/main/example/template.jl). The module of `xx` algorithm should be defined and exported as `xx_methods` as follows: ```julia """ template for xx distributed algorithm """ module xx_methods using ..PowerModelsADA ### functions ### end # export the algorithm methods module and call method export xx_methods, solve_dopf_xx ``` The solve function is the main method to use the `xx` algorithm. The function takes the data, power flow formulation (`model_type`), JuMP solver object, and algorithm's parameters as required. The solve function should use the pre-defined algorithm flow as follows: ```julia "solve distributed OPF using xx algorithm" function solve_method(data, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, parameters...) solve_dopf(data, model_type, optimizer, xx_methods; mismatch_method=mismatch_method, tol=tol, max_iteration=max_iteration, print_level=print_level, parameters...) end ``` The first algorithm-specific function is the initialize function. The function takes the area data file and adds to it the required parameters, counters, and shared variables. There are multiple built-in functions in `PowerModelsADA` that can be used to define the shared and received variables, as well as the dual variables. Note that the initialization function should include the `initialize_dopf!` to define the counters and convergence flags. We use `kwargs` with the `...` to combine the algorithm's parameters and pass them to the `initialize_method`. ```julia "initialize the xx algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::Type; kwargs...) # initiate primal and dual shared variables data["shared_variable"] = Dict(to_area=> variable_name=> variable_index=> value) data["received_variable"] = Dict(from_area=> variable_name=>variable_index=> value) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # xx parameters data["parameter"] = Dict("alpha"=> get(kwargs, :alpha, 1000)) end ``` The second function is the build function, which builds the `PowerModels` object of the subproblem. The subproblems typically have the same variables and constraints as the central OPF problem and differ in the objective functions. To build a subproblem with the same variables and constraints as the central OPF problem with a specific objective function, we need to define the objective function using the template shown below. The objective function definition takes the `PowerModels` object and returns a `JuMP` expression. You can use the internal helper function `_var` to obtain the `JuMP` model variables' object defined in the `PowerModels` object. ```julia "build PowerModel using xx algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_function) end "set the xx algorithm objective" function objective_function(pm::AbstractPowerModel) # to get the JuMP object of the active power of generator 1 use: pg1 = _var(pm, :pg, 1) ### objective = pg1 ### return objective end ``` ```@docs _var ``` The last function is to update the area dictionary after communicating the shared variables results with other areas. ```julia "update the xx algorithm before each iteration" function update_method(data::Dict{String, <:Any}) ### update subproblem parameters for the next iteration ### ### you can use predefined function to calculate the mismatches, check convergence, save progress etc. calc_mismatch!(data, central=true) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end ``` The final step is defining the post-processing functions and global keys. The post-processing functions perform tasks to the `PowerModels` object after solving the subproblem. `PowerModelsADA` comes with two post-processing functions. The first function updates the solution dictionary, and the second function updates the shared variables dictionary. The global keys are the keys that are used in the data area dictionary (related to the `xx` algorithm) and should be explicitly given by extending the existing `_pmada_global_keys` set of strings. ```julia post_processors = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable") ``` This is a general way to define a distributed algorithm that is fully distributed with the same main algorithm flow as the pre-defined algorithms. For other algorithm flows, the solve function needs to be defined fully instead of using the pre-define function `solve_dopf`.
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
374
# Quick Start Guide To solve the OPF problem using the ADMM use the solve function `solve_dopf_admm`. The solve function stores the result in a data dictionary contains subsystems information. ```julia using PowerModelsADA using Ipopt model_type = ACPPowerModel result = solve_dopf_admm("test/data/case_RTS.m", model_type, Ipopt.Optimizer; print_level=1, alpha=1000) ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
128
# Technical Specifications TODO ## Power Flow Formulation TODO ## Optimization Solver TODO ## Distributed Algorithm TODO
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
docs
6808
# Tutorial `PowerModelsADA` solves OPF problems using either a pre-defined distributed algorithm or a user-defined algorithm. This page shows examples of solving the OPF problem using the pre-defined algorithms and how to define a new alternating distributed algorithm. The distributed algorithm-specific functions are stored in modules. Each module contains at least three main functions: initialize, build, and update functions. Each module also contains a solve function that solves the OPF by passing the case, solver, and power flow model. The distributed algorithm module and solve function are: | **Algorithm** | **Module** | **Solve Function** | |------------------------------------|-------------------------------------|----------------------------------------| | ADMM (fully distributed) | `admm_methods` | `solve_dopf_admm` | | ADMM (with a coordinator) | `admm_coordinated_methods` | `solve_dopf_admm_coordinated` | | Adaptive ADMM (fully distributed) | `adaptive_admm_methods` | `solve_dopf_adaptive_admm` | | Adaptive ADMM (with a coordinator) | `adaptive_admm_coordinated_methods` | `solve_dopf_adaptive_admm_coordinated` | | ATC (fully distributed) | `atc_methods` | `solve_dopf_atc` | | ATC (with a coordinator) | `atc_coordinated_methods` | `solve_dopf_atc_coordinated` | | APP | `app_methods` | `solve_dopf_app` | | ALADIN (with a coordinator) | `aladin_coordinated_methods` | `solve_dopf_aladin_coordinated` | ## Run Distributed Algorithm To solve the OPF problem, we need first to import the `PowerModelsADA` package and an optimization solver. In this case we use the NLP solver `Ipopt`. You can install the solver using `using Pkg; Pkg.add("Ipopt")`. Then run the following code: ```julia ## Import package using PowerModelsADA using Ipopt ``` Next, we need to upload a test case. We will use IEEE 14-bus system in `/test/data/` folder in MATPOWER format. The file can be loaded using `parse_file` from `PowerModels` package. The test system needs to be divided into multiple distinct areas. This can be checked by looking into `data["bus"][bus_id]["area"]`. ```julia ## Read case with partition file and return dictionary of the partitioned case case_path = "test/data/case14.m" partition_file_path = "test/data/case14_2areas.csv" data = parse_file(case_path) assign_area!(data, partition_file_path) ``` Now, the case study is loaded and ready to be used to solve the OPF problem using distributed algorithms. We first need to define parameters, load the solver, and select a power flow formulation `model_type` as follows: ```julia ## Settings and optimizer initiation max_iteration = 1000 tol = 1e-4 alpha = 1000 optimizer = optimizer_with_attributes(Ipopt.Optimizer, "print_level"=>0) ``` PowerModelsADA supports the following power flow models: ### Exact power flow ```julia model_type = ACPPowerModel # AC power flow model with polar bus voltage variables. model_type = ACRPowerModel # AC power flow model with rectangular bus voltage variables. ``` ### Approximations ```julia model_type = DCPPowerModel # Linearized 'DC' power flow model. model_type = LPACCPowerModel # LP AC power flow approximation. ``` ### Convex relaxations ```julia model_type = SOCWRPowerModel # Second-order cone relaxation of bus injection model of AC power flow. model_type = QCRMPowerModel # Quadratic-Convex relaxation of the AC power flow. model_type = SDPWRMPowerModel # Semidefinite relaxation of AC power flow. model_type = SparseSDPWRMPowerModel # Sparsity-exploiting semidefinite relaxation of AC power flow. ``` To solve the OPF problem using ADMM algorithm using the solve function, we use the following: ```julia data_area = solve_dopf_admm(data, model_type, optimizer, tol=tol, max_iteration=max_iteration, alpha=alpha) ``` To use multiprocessing features, we need to use the Distributed library, add processors, and upload the PowerModelsADA and the solver packages to the processors. For the best performance, the number of processors should be equal to the number of areas. The code becomes as follows: ```julia using Distributed num_area = 4 # change the number to be equal to number of areas addprocs(num_area, exeflags="--project") @everywhere using PowerModelsADA @everywhere using Ipopt data_area = solve_dopf_admm(data, model_type, optimizer, tol=tol, max_iteration=max_iteration, alpha=alpha, multiprocessors=true) ``` To compare the distributed algorithm objective function value with the central OPF, use `compare_solution` to get the absolute value of the relative error. ```julia optimality_gap = compare_solution(data, data_area, model_type, optimizer) ``` PowerModelsADA also provides the flexibility for more granular control of the distributed algorithm. We can use the following code to initialize the distributed algorithm (we use ADMM in this example). ```julia ## define parameters and power flow model max_iteration = 1000 tol = 1e-4 alpha = 1000 model_type = DCPPowerModel ## obtain areas idx areas_id = get_areas_id(data) ## decompose the system into subsystems data_area = decompose_system(data) ## initialize parameters using the algorithm-specific initialize function for i in areas_id admm_methods.initialize_method(data_area[i], model_type; tol=tol, max_iteration=max_iteration, alpha = alpha) end ``` We then start the iterative process of the distributed algorithm using while loop with a pre-define termination criteria as follows: ```julia ## initialize global counters iteration = 0 flag_convergence = false ## start iteration while iteration < max_iteration && flag_convergence == false ## solve local problem and update solution for i in areas_id result = solve_pmada_model(data_area[i], model_type, optimizer, admm_methods.build_method, solution_processors=admm_methods.post_processors) update_data!(data_area[i], result["solution"]) end ## share solution with neighbors for i in areas_id # sender subsystem for j in data_area[i]["neighbors"] # receiver subsystem shared_data = prepare_shared_data(data_area[i], j) receive_shared_data!(data_area[j], deepcopy(shared_data), i) end end # calculate mismatches and update convergence flags for i in areas_id dopf_method.update_method(data_area[i]) end ## check global convergence and update iteration counters flag_convergence = update_global_flag_convergence(data_area) iteration += 1 end ```
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.2.0
3fd7a279de0fa6191f064f6de4601a43e659b867
code
671
using Resizing using Documenter DocMeta.setdocmeta!(Resizing, :DocTestSetup, :(using Resizing); recursive=true) makedocs(; modules=[Resizing], authors="Zachary P. Christensen <[email protected]> and contributors", repo="https://github.com/Tokazama/Resizing.jl/blob/{commit}{path}#{line}", sitename="Resizing.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://Tokazama.github.io/Resizing.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/Tokazama/Resizing.jl", devbranch="main", )
Resizing
https://github.com/Tokazama/Resizing.jl.git
[ "MIT" ]
0.2.0
3fd7a279de0fa6191f064f6de4601a43e659b867
code
7684
module Resizing import Compat: @assume_effects const UNSAFE_GROW_DOC = """ This method assumes that `collection` will grow without any errors and may result in undefined behavior if the user isn't certain `collection` can safely grow. For example, an instance of `Vector` cannot be shared with another instance of `Array` to change sizes. """ const UNSAFE_SHRINK_DOC = """ This method assumes that `collection` will shrink without any errors and may result in undefined behavior if the user isn't certain `collection` can safely shrink. For example, an instance of `Vector` cannot be shared with another instance of `Array` to change sizes. It also assumes that the provided number of elements the will be removed does not exceed the size of `collection`. """ # https://github.com/JuliaLang/julia/issues/34478 # FIXME is hacky. should replace with https://github.com/JuliaLang/julia/pull/47540 const FLAG_OFFSET = 1 + sizeof(Csize_t)>>1 + sizeof(Ptr{Cvoid}) >>1 function isshared(x::Array) ptr = pointer_from_objref(x) GC.@preserve x begin out = (unsafe_load(convert(Ptr{UInt16}, ptr), FLAG_OFFSET) & 0x4000) !== 0x0000 end return out end """ shrink_end!(collection, n::Integer) -> Bool Deletes `n` elements from begining at the last index of `collection`. If successful will return `true`. See also: [`shrink_beg!`](@ref), [`shrink_at!`](@ref), [`unsafe_shrink_end!`](@ref) """ shrink_end!(x, n::Integer) = false function shrink_end!(x::Vector, n::Integer) if isshared(x) || (length(x) - n) < 0 return false else unsafe_shrink_end!(x, n) return true end end """ unsafe_shrink_end!(collection, n::Integer) -> Nothing Deletes `n` elements from the last index of `collection`. $(UNSAFE_SHRINK_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_shrink_end!(x::Vector, n::Integer) ccall(:jl_array_del_end, Cvoid, (Any, UInt), x, n) end """ shrink_at!(collection, i::Int, n::Integer) -> Bool Shrink `collection` by `n` elements at index `i`. If successful this will return `true`. See also: [`shrink_beg!`](@ref), [`shrink_end!`](@ref), [`unsafe_shrink_at!`](@ref) """ shrink_at!(x, i::Int, n::Integer) = false function shrink_at!(x::Vector, i::Int, n::Integer) if isshared(x) || i < 1 || (i + n) > length(x) return false else unsafe_shrink_at!(x, i, n) return true end end """ unsafe_shrink_at!(collection, i, n::Integer) -> Nothing Deletes `n` elements from index `i` of `collection`. $(UNSAFE_SHRINK_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_shrink_at!(x::Vector, i, n::Integer) ccall(:jl_array_del_at, Cvoid, (Any, Int, UInt), x, i-1, n) end """ shrink_beg!(collection, n::Integer) -> Bool Deletes `n` elements from the first index of `collection`. If successful will return `true`. See also: [`shrink_at!`](@ref), [`shrink_end!`](@ref), [`unsafe_shrink_beg!`](@ref) """ shrink_beg!(x, n::Integer) = false function shrink_beg!(x::Vector, n::Integer) if isshared(x) || (length(x) - n) < 0 return false else unsafe_shrink_beg!(x, n) return true end end """ unsafe_shrink_beg!(collection, n::Integer) -> Nothing Deletes `n` elements from the first index of `collection`. $(UNSAFE_SHRINK_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_shrink_beg!(x::Vector, n::Integer) ccall(:jl_array_del_beg, Cvoid, (Any, UInt), x, n) end """ grow_at!(collection, i::Int, n::Integer) -> Bool Grow `collection` by `n` elements at index `i`. This does not ensure that new elements are defined. If successful this will return true return `true`. See also: [`grow_beg!`](@ref), [`grow_end!`](@ref), [`unsafe_grow_at!`](@ref) """ grow_at!(x, i, n::Integer) = false function grow_at!(x::Vector, i, n::Integer) if isshared(x) || 1 > i || i > (length(x) + 1) return false else unsafe_grow_at!(x, i, n) return true end end """ unsafe_grow_at!(collection, i::Int, n::Integer) -> Nothing Grows by `n` elements at index `i` of `collection`. $(UNSAFE_GROW_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_grow_at!(x::Vector, i::Int, n::Integer) ccall(:jl_array_grow_at, Cvoid, (Any, Int, UInt), x, i-1, n) end """ grow_end!(collection, n::Integer) -> Bool Grow `collection` by `n` elements from its last index. This does not ensure that new elements are defined. If successful will return `true`. See also: [`grow_beg!`](@ref), [`grow_at!`](@ref), [`unsafe_grow_end!`](@ref) """ grow_end!(x, n::Integer) = false grow_end!(x::Vector, n::Integer) = isshared(x) ? false : (unsafe_grow_end!(x, n); true) """ unsafe_grow_end!(collection, n) -> Nothing Grows by `n` elements at the last index of `collection`. $(UNSAFE_GROW_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_grow_end!(x::Vector, n) ccall(:jl_array_grow_end, Cvoid, (Any, UInt), x, n) end """ grow_beg!(collection, n::Integer) -> Bool Grow `collection` by `n` elements from its first index. This does not ensure that new elements are defined. If successful will return `true`. See also: [`grow_at!`](@ref), [`grow_end!`](@ref), [`unsafe_grow_beg!`](@ref) """ grow_beg!(x, n::Integer) = false grow_beg!(x::Vector, n::Integer) = isshared(x) ? false : (unsafe_grow_beg!(x, n); true) """ unsafe_grow_beg!(collection, n) -> Nothing Grows by `n` elements at the first index of `collection`. $(UNSAFE_GROW_DOC) """ @assume_effects :terminates_locally :nothrow function unsafe_grow_beg!(x::Vector, n) ccall(:jl_array_grow_end, Cvoid, (Any, UInt), x, n) end """ assert_shrink_end!(collection, n::Integer) -> Nothing Executes `shrink_end!(collection, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_shrink_end!(x, n) shrink_end!(x, n) && return nothing throw(ArgumentError("$(x), cannot shrink from its last index by $(Int(n)) elements")) end """ assert_shrink_beg!(collection, n::Integer) -> Nothing Executes `shrink_beg!(collection, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_shrink_beg!(x, n) shrink_beg!(x, n) && return nothing throw(ArgumentError("$(x), cannot shrink from its first index by $(Int(n)) elements")) end """ assert_shrink_at!(collection, i::Int, n::Integer) -> Nothing Executes `shrink_at!(collection, i, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_shrink_at!(x, i, n) shrink_at!(x, i, n) && return nothing throw(ArgumentError("$(x), cannot shrink at index $(i) by $(Int(n)) elements")) end """ assert_grow_end!!(collection, n::Integer) -> Nothing Executes `grow_end!(collection, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_grow_end!(x, n) grow_end!(x, n) && return nothing throw(ArgumentError("$(x), cannot grow from its last index by $(Int(n)) elements")) end """ assert_grow_beg!(collection, n::Integer) -> Nothing Executes `grow_beg!(collection, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_grow_beg!(x, n) grow_beg!(x, n) && return nothing throw(ArgumentError("$(x), cannot grow from its first index by $(Int(n)) elements")) end """ assert_grow_at!(collection, i::Int, n::Integer) -> Nothing Executes `grow_at!(collection, i, n)`, throwing an error if unsuccessful or `nothing` if successful. """ function assert_grow_at!(x, i, n) grow_at!(x, i, n) && return nothing throw(ArgumentError("$(x), cannot grow at index $(i) by $(Int(n)) elements")) end end
Resizing
https://github.com/Tokazama/Resizing.jl.git
[ "MIT" ]
0.2.0
3fd7a279de0fa6191f064f6de4601a43e659b867
code
1458
using Resizing using Test @testset "grow_end!" begin v = Vector{Int}(undef, 10) @test !Resizing.grow_end!(1:2, 2) @test_throws ArgumentError Resizing.assert_grow_end!(1:2, 2) @test Resizing.grow_end!(v, 2) @test length(v) == 12 end @testset "grow_beg!" begin v = Vector{Int}(undef, 10) @test !Resizing.grow_beg!(1:2, 2) @test_throws ArgumentError Resizing.assert_grow_beg!(1:2, 2) @test Resizing.grow_beg!(v, 2) @test length(v) == 12 end @testset "grow_at!" begin v = Vector{Int}(undef, 10) @test !Resizing.grow_at!(1:2, 2, 2) @test_throws ArgumentError Resizing.assert_grow_at!(1:2, 2, 2) @test !Resizing.grow_at!(v, 12, 2) @test Resizing.grow_at!(v, 2, 2) @test length(v) == 12 end @testset "shrink_end!" begin @test !Resizing.shrink_end!(1:2, 2) v = Vector{Int}(undef, 10) @test_throws ArgumentError Resizing.assert_shrink_end!(v, 11) @test Resizing.shrink_end!(v, 2) @test length(v) == 8 end @testset "shrink_beg!" begin @test !Resizing.shrink_beg!(1:2, 2) v = Vector{Int}(undef, 10) @test_throws ArgumentError Resizing.assert_shrink_beg!(v, 11) @test Resizing.shrink_beg!(v, 2) @test length(v) == 8 end @testset "shrink_at!" begin @test !Resizing.shrink_at!(1:2, 2, 2) v = Vector{Int}(undef, 10) @test_throws ArgumentError Resizing.assert_shrink_at!(v, 2, 9) @test Resizing.shrink_at!(v, 2, 2) @test length(v) == 8 end
Resizing
https://github.com/Tokazama/Resizing.jl.git
[ "MIT" ]
0.2.0
3fd7a279de0fa6191f064f6de4601a43e659b867
docs
1810
# Resizing [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://Tokazama.github.io/Resizing.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://Tokazama.github.io/Resizing.jl/dev/) [![Build Status](https://github.com/Tokazama/Resizing.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/Tokazama/Resizing.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/Tokazama/Resizing.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/Tokazama/Resizing.jl) Julia does not currently have a well developed interface for changing the size of collections. `Resizing` provides common methods for growing and shrinking collections. Although the relative position where a resizing method is executed may vary by method and collection type, a common pattern makes them straightforward to use and overload for new collections. For example, the following methods are responsible for growing a collection from the last index: * `Resizing.unsafe_grow_end!(collection, n)`: assumes that all necessary conditions for growing `collection` by `n` elements from the last index are met without checking. * `Resizing.grow_end!(collection, n)`: Calls `Resizing.unsafe_grow_end!(collection, n)` if it can determine that `collection` can safely grow by `n` elements from the last index, returning `true` if successful. * `Resizing.assert_grow_end!(collection, n)`: Calls `Resizing.grow_end!(collection, n)`. If `false` is returned it throws an error, otherwise returns `nothing`. Note that `grow_end!` and `unsafe_grow_end!` must be defined for each new collection type, but `assert_grow_end!` can rely completely on the former two methods. This same pattern exists for shrinking or growing at the beginning, end, or a specified index.
Resizing
https://github.com/Tokazama/Resizing.jl.git
[ "MIT" ]
0.2.0
3fd7a279de0fa6191f064f6de4601a43e659b867
docs
176
```@meta CurrentModule = Resizing ``` # Resizing Documentation for [Resizing](https://github.com/Tokazama/Resizing.jl). ```@index ``` ```@autodocs Modules = [Resizing] ```
Resizing
https://github.com/Tokazama/Resizing.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
219
module LearnBase # AGGREGATION MODES include("aggmode.jl") # OBSERVATION DIMENSIONS include("obsdim.jl") # LEARNING COSTS (e.g. loss & penalty) include("costs.jl") # OTHER CONCEPTS include("other.jl") end # module
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
3649
""" Baseclass for all aggregation modes. """ abstract type AggregateMode end """ module AggMode Types for aggregation of multiple observations. - `AggMode.None()` - `AggMode.Sum()` - `AggMode.Mean()` - `AggMode.WeightedSum(weights)` - `AggMode.WeightedMean(weights)` """ module AggMode using ..LearnBase: AggregateMode """ AggMode.None() Opt-out of aggregation. This is usually the default value. Using `None` will cause the element-wise results to be returned. """ struct None <: AggregateMode end """ AggMode.Sum() Causes the method to return the unweighted sum of the elements instead of the individual elements. Can be used in combination with `ObsDim`, in which case a vector will be returned containing the sum for each observation (useful mainly for multivariable regression). """ struct Sum <: AggregateMode end """ AggMode.Mean() Causes the method to return the unweighted mean of the elements instead of the individual elements. Can be used in combination with `ObsDim`, in which case a vector will be returned containing the mean for each observation (useful mainly for multivariable regression). """ struct Mean <: AggregateMode end """ AggMode.WeightedSum(weights; [normalize = false]) Causes the method to return the weighted sum of all observations. The variable `weights` has to be a vector of the same length as the number of observations. If `normalize = true`, the values of the weight vector will be normalized in such as way that they sum to one. # Arguments - `weights::AbstractVector`: Vector of weight values that can be used to give certain observations a stronger influence on the sum. - `normalize::Bool`: Boolean that specifies if the weight vector should be transformed in such a way that it sums to one (i.e. normalized). This will not mutate the weight vector but instead happen on the fly during the accumulation. Defaults to `false`. Setting it to `true` only really makes sense in multivalue-regression, otherwise the result will be the same as for [`WeightedMean`](@ref). """ struct WeightedSum{W<:AbstractVector} <: AggregateMode weights::W normalize::Bool end WeightedSum(weights::AbstractVector; normalize::Bool = false) = WeightedSum(weights, normalize) """ AggMode.WeightedMean(weights; [normalize = true]) Causes the method to return the weighted mean of all observations. The variable `weights` has to be a vector of the same length as the number of observations. If `normalize = true`, the values of the weight vector will be normalized in such as way that they sum to one. # Arguments - `weights::AbstractVector`: Vector of weight values that can be used to give certain observations a stronger influence on the mean. - `normalize::Bool`: Boolean that specifies if the weight vector should be transformed in such a way that it sums to one (i.e. normalized). This will not mutate the weight vector but instead happen on the fly during the accumulation. Defaults to `true`. Setting it to `false` only really makes sense in multivalue-regression, otherwise the result will be the same as for [`WeightedSum`](@ref). """ struct WeightedMean{W<:AbstractVector} <: AggregateMode weights::W normalize::Bool end WeightedMean(weights::AbstractVector; normalize::Bool = true) = WeightedMean(weights, normalize) end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
11760
""" Baseclass for any kind of cost. Notable examples for costs are `Loss` and `Penalty`. """ abstract type Cost end """ Baseclass for all losses. A loss is some (possibly simplified) function `L(x, y, yΜ‚)`, of features `x`, targets `y` and outputs `yΜ‚ = f(x)` for some function `f`. """ abstract type Loss <: Cost end """ A loss is considered **supervised**, if all the information needed to compute `L(x, y, yΜ‚)` are contained in `y` and `yΜ‚`, and thus allows for the simplification `L(y, yΜ‚)`. """ abstract type SupervisedLoss <: Loss end """ A supervised loss that can be simplified to `L(y, yΜ‚) = L(yΜ‚ - y)` is considered **distance-based**. """ abstract type DistanceLoss <: SupervisedLoss end """ A supervised loss with targets `y ∈ {-1, 1}`, and which can be simplified to `L(y, yΜ‚) = L(yβ‹…yΜ‚)` is considered **margin-based**. """ abstract type MarginLoss <: SupervisedLoss end """ A loss is considered **unsupervised**, if all the information needed to compute `L(x, y, yΜ‚)` are contained in `x` and `yΜ‚`, and thus allows for the simplification `L(x, yΜ‚)`. """ abstract type UnsupervisedLoss <: Loss end """ Baseclass for all penalties. """ abstract type Penalty <: Cost end """ value(loss, target, output) -> Number Compute the (non-negative) numeric result for the `loss` function. Note that `target` and `output` can be of different numeric type, in which case promotion is performed in the manner appropriate for the given loss. value(loss, targets, outputs) -> AbstractVector Compute the result for each pair of values in `targets` and `outputs`. value(loss, targets, outputs, aggmode) -> Number Compute the weighted or unweighted sum or mean (depending on aggregation mode `aggmode`) of the individual values of the `loss` function for each pair in `targets` and `outputs`. This method will not allocate a temporary array. In the case that the two parameters are arrays with a different number of dimensions, broadcast will be performed. Note that the given parameters are expected to have the same size in the dimensions they share. value(loss, targets, outputs, aggmode, obsdim) -> AbstractVector Compute the aggregated result along dimension with observations `obsdim`. This method will not allocate a temporary array, but it will allocate the resulting vector. Both arrays have to be of the same shape and size. Furthermore they have to have at least two dimensions (i.e. they must not be vectors). ## Notes - New loss functions only need to implement the first method with single `target` and `output`. Fallback implementations are available for other methods in `LossFunctions.jl`. """ function value end """ deriv(loss, target, output) -> Number Compute the analytical derivative with respect to the `output` for the `loss` function. Note that `target` and `output` can be of different numeric type, in which case promotion is performed in the manner appropriate for the given loss. deriv(loss, targets, outputs) -> AbstractVector Compute the result for each pair of values in `targets` and `outputs`. deriv(loss, targets, outputs, aggmode) -> Number Compute the weighted or unweighted sum or mean (depending on aggregation mode `aggmode`) of the individual values of the `loss` function for each pair in `targets` and `outputs`. This method will not allocate a temporary array. In the case that the two parameters are arrays with a different number of dimensions, broadcast will be performed. Note that the given parameters are expected to have the same size in the dimensions they share. deriv(loss, targets, outputs, aggmode, obsdim) -> AbstractVector Compute the aggregated result along dimension with observations `obsdim`. This method will not allocate a temporary array, but it will allocate the resulting vector. Both arrays have to be of the same shape and size. Furthermore they have to have at least two dimensions (i.e. they must not be vectors). ## Notes - New loss functions only need to implement the first method with single `target` and `output`. Fallback implementations are available for other methods in `LossFunctions.jl`. """ function deriv end """ deriv2(loss, target, output) -> Number Compute the second derivative with respect to the `output` for the `loss` function. Note that `target` and `output` can be of different numeric type, in which case promotion is performed in the manner appropriate for the given loss. deriv2(loss, targets, outputs) -> AbstractVector Compute the result for each pair of values in `targets` and `outputs`. deriv2(loss, targets, outputs, aggmode) -> Number Compute the weighted or unweighted sum or mean (depending on aggregation mode `aggmode`) of the individual values of the `loss` function for each pair in `targets` and `outputs`. This method will not allocate a temporary array. In the case that the two parameters are arrays with a different number of dimensions, broadcast will be performed. Note that the given parameters are expected to have the same size in the dimensions they share. deriv2(loss, targets, outputs, aggmode, obsdim) -> AbstractVector Compute the aggregated result along dimension with observations `obsdim`. This method will not allocate a temporary array, but it will allocate the resulting vector. Both arrays have to be of the same shape and size. Furthermore they have to have at least two dimensions (i.e. they must not be vectors). ## Notes - New loss functions only need to implement the first method with single `target` and `output`. Fallback implementations are available for other methods in `LossFunctions.jl`. """ function deriv2 end """ isconvex(loss) -> Bool Return `true` if the given `loss` denotes a convex function. A function `f: ℝⁿ β†’ ℝ` is convex if its domain is a convex set and if for all `x, y` in that domain, with `ΞΈ` such that for `0 ≦ ΞΈ ≦ 1`, we have `f(ΞΈ x + (1 - ΞΈ) y) ≦ ΞΈ f(x) + (1 - ΞΈ) f(y)`. """ isconvex(loss::SupervisedLoss) = isstrictlyconvex(loss) """ isstrictlyconvex(loss) -> Bool Return `true` if the given `loss` denotes a strictly convex function. A function `f : ℝⁿ β†’ ℝ` is strictly convex if its domain is a convex set and if for all `x, y` in that domain where `x β‰  y`, with `ΞΈ` such that for `0 < ΞΈ < 1`, we have `f(ΞΈ x + (1 - ΞΈ) y) < ΞΈ f(x) + (1 - ΞΈ) f(y)`. """ isstrictlyconvex(loss::SupervisedLoss) = isstronglyconvex(loss) """ isstronglyconvex(loss) -> Bool Return `true` if the given `loss` denotes a strongly convex function. A function `f : ℝⁿ β†’ ℝ` is `m`-strongly convex if its domain is a convex set, and if for all `x, y` in that domain where `x β‰  y`, and `ΞΈ` such that for `0 ≀ ΞΈ ≀ 1`, we have `f(ΞΈ x + (1 - ΞΈ)y) < ΞΈ f(x) + (1 - ΞΈ) f(y) - 0.5 m β‹… ΞΈ (1 - ΞΈ) | x - y |β‚‚Β²` In a more familiar setting, if the loss function is differentiable we have `(βˆ‡f(x) - βˆ‡f(y))α΅€ (x - y) β‰₯ m | x - y |β‚‚Β²` """ isstronglyconvex(loss::SupervisedLoss) = false """ isdifferentiable(loss, [x]) -> Bool Return `true` if the given `loss` is differentiable (optionally limited to the given point `x` if specified). A function `f : ℝⁿ β†’ ℝᡐ` is differentiable at a point `x` in the interior domain of `f` if there exists a matrix `Df(x) ∈ ℝ^(m Γ— n)` such that it satisfies: `lim_{z β‰  x, z β†’ x} (|f(z) - f(x) - Df(x)(z-x)|β‚‚) / |z - x|β‚‚ = 0` A function is differentiable if its domain is open and it is differentiable at every point `x`. """ isdifferentiable(loss::SupervisedLoss) = istwicedifferentiable(loss) isdifferentiable(loss::SupervisedLoss, at) = isdifferentiable(loss) """ istwicedifferentiable(loss, [x]) -> Bool Return `true` if the given `loss` is differentiable (optionally limited to the given point `x` if specified). A function `f : ℝⁿ β†’ ℝ` is said to be twice differentiable at a point `x` in the interior domain of `f`, if the function derivative for `βˆ‡f` exists at `x`: `βˆ‡Β²f(x) = Dβˆ‡f(x)`. A function is twice differentiable if its domain is open and it is twice differentiable at every point `x`. """ istwicedifferentiable(loss::SupervisedLoss) = false istwicedifferentiable(loss::SupervisedLoss, at) = istwicedifferentiable(loss) """ islocallylipschitzcont(loss) -> Bool Return `true` if the given `loss` function is locally-Lipschitz continous. A supervised loss `L : Y Γ— ℝ β†’ [0, ∞)` is called locally Lipschitz continuous if for all `a β‰₯ 0` there exists a constant `cₐ β‰₯ 0`, such that `sup_{y ∈ Y} | L(y,t) βˆ’ L(y,tβ€²) | ≀ cₐ |t βˆ’ tβ€²|, t, tβ€² ∈ [βˆ’a,a]` Every convex function is locally lipschitz continuous. """ islocallylipschitzcont(loss::SupervisedLoss) = isconvex(loss) || islipschitzcont(loss) """ islipschitzcont(loss) -> Bool Return `true` if the given `loss` function is Lipschitz continuous. A supervised loss function `L : Y Γ— ℝ β†’ [0, ∞)` is Lipschitz continous, if there exists a finite constant `M < ∞` such that `|L(y, t) - L(y, tβ€²)| ≀ M |t - tβ€²|, βˆ€ (y, t) ∈ Y Γ— ℝ` """ islipschitzcont(loss::SupervisedLoss) = false """ isnemitski(loss) -> Bool Return `true` if the given `loss` denotes a Nemitski loss function. We call a supervised loss function `L : Y Γ— ℝ β†’ [0,∞)` a Nemitski loss if there exist a measurable function `b : Y β†’ [0, ∞)` and an increasing function `h : [0, ∞) β†’ [0, ∞)` such that `L(y,yΜ‚) ≀ b(y) + h(|yΜ‚|), (y, yΜ‚) ∈ Y Γ— ℝ` If a loss if locally lipsschitz continuous then it is a Nemitski loss. """ isnemitski(loss::SupervisedLoss) = islocallylipschitzcont(loss) isnemitski(loss::MarginLoss) = true """ isunivfishercons(loss) -> Bool """ isunivfishercons(loss::Loss) = false """ isfishercons(loss) -> Bool Return `true` if the givel `loss` is Fisher consistent. We call a supervised loss function `L : Y Γ— ℝ β†’ [0,∞)` a Fisher consistent loss if the population minimizer of the risk `E[L(y,f(x))]` for all measurable functions leads to the Bayes optimal decision rule. """ isfishercons(loss::Loss) = isunivfishercons(loss) """ isclipable(loss) -> Bool Return `true` if the given `loss` function is clipable. A supervised loss `L : Y Γ— ℝ β†’ [0,∞)` can be clipped at `M > 0` if, for all `(y,t) ∈ Y Γ— ℝ`, `L(y, tΜ‚) ≀ L(y, t)` where `tΜ‚` denotes the clipped value of `t` at `Β± M`. That is `tΜ‚ = -M` if `t < -M`, `tΜ‚ = t` if `t ∈ [-M, M]`, and `t = M` if `t > M`. """ isclipable(loss::SupervisedLoss) = false isclipable(loss::DistanceLoss) = true # can someone please double check? """ isdistancebased(loss) -> Bool Return `true` if the given `loss` is a distance-based loss. A supervised loss function `L : Y Γ— ℝ β†’ [0,∞)` is said to be distance-based, if there exists a representing function `ψ : ℝ β†’ [0,∞)` satisfying `ψ(0) = 0` and `L(y, yΜ‚) = ψ (yΜ‚ - y), (y, yΜ‚) ∈ Y Γ— ℝ`. """ isdistancebased(loss::Loss) = false isdistancebased(loss::DistanceLoss) = true """ ismarginbased(loss) -> Bool Return `true` if the given `loss` is a margin-based loss. A supervised loss function `L : Y Γ— ℝ β†’ [0,∞)` is said to be margin-based, if there exists a representing function `ψ : ℝ β†’ [0,∞)` satisfying `L(y, yΜ‚) = ψ(yβ‹…yΜ‚), (y, yΜ‚) ∈ Y Γ— ℝ`. """ ismarginbased(loss::Loss) = false ismarginbased(loss::MarginLoss) = true """ isclasscalibrated(loss) -> Bool """ isclasscalibrated(loss::SupervisedLoss) = false isclasscalibrated(loss::MarginLoss) = isconvex(loss) && isdifferentiable(loss, 0) && deriv(loss, 0) < 0 """ issymmetric(loss) -> Bool Return `true` if the given loss is a symmetric loss. A function `f : ℝ β†’ [0,∞)` is said to be symmetric about origin if we have `f(x) = f(-x), βˆ€ x ∈ ℝ`. A distance-based loss is said to be symmetric if its representing function is symmetric. """ issymmetric(loss::SupervisedLoss) = false """ isminimizable(loss) -> Bool Return `true` if the given `loss` is a minimizable loss. """ isminimizable(loss::SupervisedLoss) = isconvex(loss)
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
2694
""" Baseclass for all observation dimensions. """ abstract type ObsDimension end """ module ObsDim Singleton types to define which dimension of some data structure (e.g. some `Array`) denotes the observations. - `ObsDim.First()` - `ObsDim.Last()` - `ObsDim.Constant(dim)` Used for efficient dispatching """ module ObsDim using ..LearnBase: ObsDimension """ Default value for most functions. Denotes that the concept of an observation dimension is not defined for the given data. """ struct Undefined <: ObsDimension end """ ObsDim.Last <: ObsDimension Defines that the last dimension denotes the observations """ struct Last <: ObsDimension end """ ObsDim.Constant{DIM} <: ObsDimension Defines that the dimension `DIM` denotes the observations """ struct Constant{DIM} <: ObsDimension end Constant(dim::Int) = Constant{dim}() """ ObsDim.First <: ObsDimension Defines that the first dimension denotes the observations """ const First = Constant{1} end Base.convert(::Type{ObsDimension}, dim) = throw(ArgumentError("Unknown way to specify a obsdim: $dim")) Base.convert(::Type{ObsDimension}, dim::ObsDimension) = dim Base.convert(::Type{ObsDimension}, ::Nothing) = ObsDim.Undefined() Base.convert(::Type{ObsDimension}, dim::Int) = ObsDim.Constant(dim) Base.convert(::Type{ObsDimension}, dim::String) = convert(ObsDimension, Symbol(lowercase(dim))) Base.convert(::Type{ObsDimension}, dims::Tuple) = map(d->convert(ObsDimension, d), dims) function Base.convert(::Type{ObsDimension}, dim::Symbol) if dim == :first || dim == :begin ObsDim.First() elseif dim == Symbol("end") || dim == :last ObsDim.Last() elseif dim == Symbol("nothing") || dim == :none || dim == :null || dim == :na || dim == :undefined ObsDim.Undefined() else throw(ArgumentError("Unknown way to specify a obsdim: $dim")) end end """ default_obsdim(data) The specify the default obsdim for a specific type of data. Defaults to `ObsDim.Undefined()` """ default_obsdim(data) = ObsDim.Undefined() default_obsdim(A::AbstractArray) = ObsDim.Last() default_obsdim(tup::Tuple) = map(default_obsdim, tup) """ datasubset(data, [idx], [obsdim]) Return a lazy subset of the observations in `data` that correspond to the given `idx`. No data should be copied except of the indices. Note that `idx` can be of type `Int` or `AbstractVector`. Both options must be supported by a custom type. If it makes sense for the type of `data`, `obsdim` can be used to disptach on which dimension of `data` denotes the observations. See `?ObsDim`. """ function datasubset end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
10385
""" Return the gradient of the learnable parameters w.r.t. some objective """ function grad end function grad! end """ Proximal operator of a function (https://en.wikipedia.org/wiki/Proximal_operator) """ function prox end function prox! end """ Anything that takes an input and performs some kind of function to produce an output. For example a linear prediction function. """ abstract type Transformation end abstract type StochasticTransformation <: Transformation end abstract type Learnable <: Transformation end """ Do a forward pass, and return the output """ function transform end function transform! end """ Baseclass for any prediction model that can be minimized. This means that an object of a subclass contains all the information needed to compute its own current loss. """ abstract type Minimizable <: Learnable end function update end function update! end function learn end function learn! end # getobs(data, [idx], [obsdim]) # # Return the observations corresponding to the observation-index # `idx`. Note that `idx` can be of type `Int` or `AbstractVector`. # Both options must be supported by a custom type. # # The returned observation(s) should be in the form intended to # be passed as-is to some learning algorithm. There is no strict # interface requirement on how this "actual data" must look like. # Every author behind some custom data container can make this # decision him-/herself. We do, however, expect it to be consistent # for `idx` being an integer, as well as `idx` being an abstract # vector, respectively. # # If it makes sense for the type of `data`, `obsdim` can be used # to disptach on which dimension of `data` denotes the observations. # See `?ObsDim` # # This function is implemented in MLDataPattern function getobs end # getobs!(buffer, data, [idx], [obsdim]) # # Inplace version of `getobs(data, idx, obsdim)`. If this method # is defined for the type of `data`, then `buffer` should be used # to store the result, instead of allocating a dedicated object. # # Implementing this function is optional. In the case no such # method is provided for the type of `data`, then `buffer` will be # *ignored* and the result of `getobs` returned. This could be # because the type of `data` may not lend itself to the concept # of `copy!`. Thus supporting a custom `getobs!(::MyType, ...)` # is optional and not required. # # If it makes sense for the type of `data`, `obsdim` can be used # to disptach on which dimension of `data` denotes the observations. # See `?ObsDim` # # This function is implemented in MLDataPattern function getobs! end # -------------------------------------------------------------------- # gettarget([f], observation) # # Use `f` (if provided) to extract the target from the single # `observation` and return it. It is used internally by # `targets` (only if `f` is provided) and by # `eachtarget` (always) on each individual observation. # # Even though this function is not exported, it is intended to be # extended by users to support their custom data storage types. # # This function is implemented in MLDataPattern function gettarget end # not exported # gettargets(data, [idx], [obsdim]) # # Return the targets corresponding to the observation-index `idx`. # Note that `idx` can be of type `Int` or `AbstractVector`. # # Implementing this function for a custom type of `data` is # optional. It is particularly useful if the targets in `data` can # be provided without invoking `getobs`. For example if you have a # remote data-source where the labels are part of some metadata # that is locally available. # # If it makes sense for the type of `data`, `obsdim` can be used # to disptach on which dimension of `data` denotes the observations. # See `?ObsDim` # # This function is implemented in MLDataPattern function gettargets end # not exported # targets([f], data, [obsdim]) # # This function is implemented in MLDataPattern function targets end # -------------------------------------------------------------------- """ abstract DataView{TElem, TData} <: AbstractVector{TElem} Baseclass for all vector-like views of some data structure. This allow for example to see some design matrix as a vector of individual observation-vectors instead of one matrix. see `MLDataPattern.ObsView` and `MLDataPattern.BatchView` for examples. """ abstract type DataView{TElem, TData} <: AbstractVector{TElem} end """ abstract AbstractObsView{TElem, TData} <: DataView{TElem, TData} Baseclass for all vector-like views of some data structure, that views it as some form or vector of observations. see `MLDataPattern.ObsView` for a concrete example. """ abstract type AbstractObsView{TElem, TData} <: DataView{TElem, TData} end """ abstract AbstractBatchView{TElem, TData} <: DataView{TElem, TData} Baseclass for all vector-like views of some data structure, that views it as some form or vector of equally sized batches. see `MLDataPattern.BatchView` for a concrete example. """ abstract type AbstractBatchView{TElem, TData} <: DataView{TElem, TData} end # -------------------------------------------------------------------- """ abstract DataIterator{TElem,TData} Baseclass for all types that iterate over a `data` source in some manner. The total number of observations may or may not be known or defined and in general there is no contract that `getobs` or `nobs` has to be supported by the type of `data`. Furthermore, `length` should be used to query how many elements the iterator can provide, while `nobs` may return the underlying true amount of observations available (if known). see `MLDataPattern.RandomObs`, `MLDataPattern.RandomBatches` """ abstract type DataIterator{TElem,TData} end """ abstract ObsIterator{TElem,TData} <: DataIterator{TElem,TData} Baseclass for all types that iterate over some data source one observation at a time. ```julia using MLDataPattern @assert typeof(RandomObs(X)) <: ObsIterator for x in RandomObs(X) # ... end ``` see `MLDataPattern.RandomObs` """ abstract type ObsIterator{TElem,TData} <: DataIterator{TElem,TData} end """ abstract BatchIterator{TElem,TData} <: DataIterator{TElem,TData} Baseclass for all types that iterate over of some data source one batch at a time. ```julia @assert typeof(RandomBatches(X, size=10)) <: BatchIterator for x in RandomBatches(X, size=10) @assert nobs(x) == 10 # ... end ``` see `MLDataPattern.RandomBatches` """ abstract type BatchIterator{TElem,TData} <: DataIterator{TElem,TData} end # -------------------------------------------------------------------- # just for dispatch for those who care to const AbstractDataIterator{E,T} = Union{DataIterator{E,T}, DataView{E,T}} const AbstractObsIterator{E,T} = Union{ObsIterator{E,T}, AbstractObsView{E,T}} const AbstractBatchIterator{E,T} = Union{BatchIterator{E,T},AbstractBatchView{E,T}} # -------------------------------------------------------------------- import Base: AbstractSet "A continuous range (inclusive) between a lo and a hi" struct IntervalSet{T} <: AbstractSet{T} lo::T hi::T end function IntervalSet(lo::A, hi::B) where {A,B} T = promote_type(A,B) IntervalSet{T}(convert(T,lo), convert(T,hi)) end # numeric interval randtype(s::IntervalSet{T}) where T <: Number = Float64 Base.rand(s::IntervalSet{T}, dims::Integer...) where T <: Number = rand(dims...) .* (s.hi - s.lo) .+ s.lo Base.in(x::Number, s::IntervalSet{T}) where T <: Number = s.lo <= x <= s.hi Base.length(s::IntervalSet{T}) where T <: Number = 1 Base.:(==)(s1::IntervalSet{T}, s2::IntervalSet{T}) where T = s1.lo == s2.lo && s1.hi == s2.hi # vector of intervals randtype(s::IntervalSet{T}) where T <: AbstractVector = Vector{Float64} Base.rand(s::IntervalSet{T}) where T <: AbstractVector = Float64[rand() * (s.hi[i] - s.lo[i]) + s.lo[i] for i=1:length(s)] Base.in(x::AbstractVector, s::IntervalSet{T}) where T <: AbstractVector = all(i -> s.lo[i] <= x[i] <= s.hi[i], 1:length(s)) Base.length(s::IntervalSet{T}) where T <: AbstractVector = length(s.lo) "Set of discrete items" struct DiscreteSet{T<:AbstractArray} <: AbstractSet{T} items::T end randtype(s::DiscreteSet) = eltype(s.items) Base.rand(s::DiscreteSet, dims::Integer...) = rand(s.items, dims...) Base.in(x, s::DiscreteSet) = x in s.items Base.length(s::DiscreteSet) = length(s.items) Base.getindex(s::DiscreteSet, i::Int) = s.items[i] Base.:(==)(s1::DiscreteSet, s2::DiscreteSet) = s1.items == s2.items # operations on arrays of sets randtype(sets::AbstractArray{S,N}) where {S <: AbstractSet, N} = Array{promote_type(map(randtype, sets)...), N} Base.rand(sets::AbstractArray{S}) where S <: AbstractSet = eltype(randtype(sets))[rand(s) for s in sets] function Base.rand(sets::AbstractArray{S}, dim1::Integer, dims::Integer...) where S <: AbstractSet A = Array{randtype(sets)}(undef, dim1, dims...) for i in eachindex(A) A[i] = rand(sets) end A end function Base.in(xs::AbstractArray, sets::AbstractArray{S}) where S <: AbstractSet size(xs) == size(sets) && all(map(in, xs, sets)) end "Groups several heterogenous sets. Used mainly for proper dispatch." struct TupleSet{T<:Tuple} <: AbstractSet{T} sets::T end TupleSet(sets::AbstractSet...) = TupleSet(sets) # rand can return arrays or tuples, but defaults to arrays randtype(sets::TupleSet, ::Type{Vector}) = Vector{promote_type(map(randtype, sets.sets)...)} Base.rand(sets::TupleSet, ::Type{Vector}) = eltype(randtype(sets, Vector))[rand(s) for s in sets.sets] randtype(sets::TupleSet, ::Type{Tuple}) = Tuple{map(randtype, sets.sets)...} Base.rand(sets::TupleSet, ::Type{Tuple}) = map(rand, sets.sets) function Base.rand(sets::TupleSet, ::Type{OT}, dim1::Integer, dims::Integer...) where OT A = Array{randtype(sets, OT)}(undef, dim1, dims...) for i in eachindex(A) A[i] = rand(sets, OT) end A end Base.length(sets::TupleSet) = sum(length(s) for s in sets.sets) Base.iterate(sets::TupleSet) = iterate(sets.sets) Base.iterate(sets::TupleSet, i) = iterate(sets.sets, i) randtype(sets::TupleSet) = randtype(sets, Vector) Base.rand(sets::TupleSet, dims::Integer...) = rand(sets, Vector, dims...) Base.in(x, sets::TupleSet) = all(map(in, x, sets.sets)) "Returns an AbstractSet representing valid input values" function inputdomain end "Returns an AbstractSet representing valid output/target values" function targetdomain end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
407
@testset "AggMode" begin @test typeof(LearnBase.AggMode.None()) <: LearnBase.AggregateMode @test typeof(LearnBase.AggMode.Sum()) <: LearnBase.AggregateMode @test typeof(LearnBase.AggMode.Mean()) <: LearnBase.AggregateMode @test typeof(LearnBase.AggMode.WeightedSum([1,2,3])) <: LearnBase.AggregateMode @test typeof(LearnBase.AggMode.WeightedMean([1,2,3])) <: LearnBase.AggregateMode end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
1937
# dummy types for testing struct MyStronglyConvexType <: LearnBase.SupervisedLoss end LearnBase.isstronglyconvex(::MyStronglyConvexType) = true LearnBase.islipschitzcont(::MyStronglyConvexType) = true @testset "Costs" begin @test LearnBase.Cost <: Any @test LearnBase.Penalty <: LearnBase.Cost @test LearnBase.Loss <: LearnBase.Cost @test LearnBase.UnsupervisedLoss <: LearnBase.Loss @test LearnBase.SupervisedLoss <: LearnBase.Loss @test LearnBase.MarginLoss <: LearnBase.SupervisedLoss @test LearnBase.DistanceLoss <: LearnBase.SupervisedLoss @test typeof(LearnBase.value) <: Function @test typeof(LearnBase.deriv) <: Function @test typeof(LearnBase.deriv2) <: Function @test typeof(LearnBase.isminimizable) <: Function @test typeof(LearnBase.isdifferentiable) <: Function @test typeof(LearnBase.istwicedifferentiable) <: Function @test typeof(LearnBase.isconvex) <: Function @test typeof(LearnBase.isstrictlyconvex) <: Function @test typeof(LearnBase.isstronglyconvex) <: Function @test typeof(LearnBase.isnemitski) <: Function @test typeof(LearnBase.islipschitzcont) <: Function @test typeof(LearnBase.islocallylipschitzcont) <: Function @test typeof(LearnBase.isfishercons) <: Function @test typeof(LearnBase.isunivfishercons) <: Function @test typeof(LearnBase.isclipable) <: Function @test typeof(LearnBase.ismarginbased) <: Function @test typeof(LearnBase.isdistancebased) <: Function @test typeof(LearnBase.isclasscalibrated) <: Function @test typeof(LearnBase.issymmetric) <: Function # test fallback methods @test LearnBase.isstronglyconvex(MyStronglyConvexType()) @test LearnBase.isstrictlyconvex(MyStronglyConvexType()) @test LearnBase.isconvex(MyStronglyConvexType()) @test LearnBase.islipschitzcont(MyStronglyConvexType()) @test LearnBase.islocallylipschitzcont(MyStronglyConvexType()) end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
4687
struct SomeType end @testset "ObsDim" begin @testset "Type tree" begin @test_throws MethodError LearnBase.ObsDim.Constant(2.0) @test typeof(LearnBase.ObsDim.First()) <: LearnBase.ObsDimension @test typeof(LearnBase.ObsDim.First()) <: LearnBase.ObsDim.First @test typeof(LearnBase.ObsDim.First()) <: LearnBase.ObsDim.Constant{1} @test typeof(LearnBase.ObsDim.Last()) <: LearnBase.ObsDimension @test typeof(LearnBase.ObsDim.Last()) <: LearnBase.ObsDim.Last @test typeof(LearnBase.ObsDim.Constant(2)) <: LearnBase.ObsDimension @test typeof(LearnBase.ObsDim.Constant(2)) <: LearnBase.ObsDim.Constant{2} end @testset "Constructors" begin @test_throws ArgumentError convert(LearnBase.ObsDimension, "test") @test_throws ArgumentError convert(LearnBase.ObsDimension, 1.0) @test @inferred(convert(LearnBase.ObsDimension, LearnBase.ObsDim.First())) === LearnBase.ObsDim.First() @test @inferred(convert(LearnBase.ObsDimension, LearnBase.ObsDim.First())) === LearnBase.ObsDim.Constant(1) @test @inferred(convert(LearnBase.ObsDimension, LearnBase.ObsDim.Last())) === LearnBase.ObsDim.Last() @test @inferred(convert(LearnBase.ObsDimension, LearnBase.ObsDim.Constant(2))) === LearnBase.ObsDim.Constant(2) @test_throws ErrorException @inferred convert(LearnBase.ObsDimension, 1) @test_throws ErrorException @inferred convert(LearnBase.ObsDimension, 6) @test convert(LearnBase.ObsDimension, 1) === LearnBase.ObsDim.First() @test convert(LearnBase.ObsDimension, 2) === LearnBase.ObsDim.Constant(2) @test convert(LearnBase.ObsDimension, 6) === LearnBase.ObsDim.Constant(6) @test_throws ErrorException @inferred convert(LearnBase.ObsDimension, :first) @test_throws ErrorException @inferred convert(LearnBase.ObsDimension, "first") @test convert(LearnBase.ObsDimension, (:first,:last)) === (LearnBase.ObsDim.First(),LearnBase.ObsDim.Last()) @test convert(LearnBase.ObsDimension, :first) === LearnBase.ObsDim.First() @test convert(LearnBase.ObsDimension, :begin) === LearnBase.ObsDim.First() @test convert(LearnBase.ObsDimension, "first") === LearnBase.ObsDim.First() @test convert(LearnBase.ObsDimension, "BEGIN") === LearnBase.ObsDim.First() @test convert(LearnBase.ObsDimension, :end) === LearnBase.ObsDim.Last() @test convert(LearnBase.ObsDimension, :last) === LearnBase.ObsDim.Last() @test convert(LearnBase.ObsDimension, "End") === LearnBase.ObsDim.Last() @test convert(LearnBase.ObsDimension, "LAST") === LearnBase.ObsDim.Last() @test convert(LearnBase.ObsDimension, :nothing) === LearnBase.ObsDim.Undefined() @test convert(LearnBase.ObsDimension, :none) === LearnBase.ObsDim.Undefined() @test convert(LearnBase.ObsDimension, :na) === LearnBase.ObsDim.Undefined() @test convert(LearnBase.ObsDimension, :null) === LearnBase.ObsDim.Undefined() @test convert(LearnBase.ObsDimension, :undefined) === LearnBase.ObsDim.Undefined() @test convert(LearnBase.ObsDimension, nothing) === LearnBase.ObsDim.Undefined() end @testset "Default values" begin @testset "Arrays, SubArrays, and Sparse Arrays" begin @test @inferred(LearnBase.default_obsdim(rand(10))) === LearnBase.ObsDim.Last() @test @inferred(LearnBase.default_obsdim(view(rand(10),:))) === LearnBase.ObsDim.Last() @test @inferred(LearnBase.default_obsdim(rand(10,5))) === LearnBase.ObsDim.Last() @test @inferred(LearnBase.default_obsdim(view(rand(10,5),:,:))) === LearnBase.ObsDim.Last() @test @inferred(LearnBase.default_obsdim(sprand(10,0.5))) === LearnBase.ObsDim.Last() @test @inferred(LearnBase.default_obsdim(sprand(10,5,0.5))) === LearnBase.ObsDim.Last() end @testset "Types with no specified default" begin @test @inferred(LearnBase.default_obsdim(SomeType())) === LearnBase.ObsDim.Undefined() end @testset "Tuples" begin @test @inferred(LearnBase.default_obsdim((SomeType(),SomeType()))) === (LearnBase.ObsDim.Undefined(), LearnBase.ObsDim.Undefined()) @test @inferred(LearnBase.default_obsdim((SomeType(),rand(2,2)))) === (LearnBase.ObsDim.Undefined(), LearnBase.ObsDim.Last()) @test @inferred(LearnBase.default_obsdim((rand(10),SomeType()))) === (LearnBase.ObsDim.Last(), LearnBase.ObsDim.Undefined()) @test @inferred(LearnBase.default_obsdim((rand(10),rand(2,2)))) === (LearnBase.ObsDim.Last(), LearnBase.ObsDim.Last()) end end end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
6609
@testset "Other" begin @test LearnBase.Minimizable <: Any @test LearnBase.Transformation <: Any @test LearnBase.StochasticTransformation <: LearnBase.Transformation @test typeof(LearnBase.transform) <: Function @test typeof(LearnBase.transform!) <: Function @test typeof(LearnBase.getobs) <: Function @test typeof(LearnBase.getobs!) <: Function @test typeof(LearnBase.learn) <: Function @test typeof(LearnBase.learn!) <: Function @test typeof(LearnBase.update) <: Function @test typeof(LearnBase.update!) <: Function @test typeof(LearnBase.grad) <: Function @test typeof(LearnBase.grad!) <: Function @test typeof(LearnBase.prox) <: Function @test typeof(LearnBase.prox!) <: Function @test typeof(LearnBase.datasubset) <: Function @test typeof(LearnBase.targets) <: Function @test typeof(LearnBase.gettarget) <: Function @test typeof(LearnBase.gettargets) <: Function @test LearnBase.DataView <: AbstractVector @test LearnBase.DataView <: LearnBase.AbstractDataIterator @test LearnBase.DataView{Int} <: AbstractVector{Int} @test LearnBase.DataView{Int,Vector{Int}} <: LearnBase.AbstractDataIterator{Int,Vector{Int}} @test LearnBase.AbstractObsView <: LearnBase.DataView @test LearnBase.AbstractObsView <: LearnBase.AbstractObsIterator @test LearnBase.AbstractObsView{Int,Vector{Int}} <: LearnBase.DataView{Int,Vector{Int}} @test LearnBase.AbstractObsView{Int,Vector{Int}} <: LearnBase.AbstractObsIterator{Int,Vector{Int}} @test LearnBase.AbstractBatchView <: LearnBase.DataView @test LearnBase.AbstractBatchView <: LearnBase.AbstractBatchIterator @test LearnBase.AbstractBatchView{Int,Vector{Int}} <: LearnBase.DataView{Int,Vector{Int}} @test LearnBase.AbstractBatchView{Int,Vector{Int}} <: LearnBase.AbstractBatchIterator{Int,Vector{Int}} @test LearnBase.DataIterator <: LearnBase.AbstractDataIterator @test LearnBase.DataIterator{Int,Vector{Int}} <: LearnBase.AbstractDataIterator{Int,Vector{Int}} @test LearnBase.ObsIterator <: LearnBase.DataIterator @test LearnBase.ObsIterator <: LearnBase.AbstractObsIterator @test LearnBase.ObsIterator{Int,Vector{Int}} <: LearnBase.DataIterator{Int,Vector{Int}} @test LearnBase.ObsIterator{Int,Vector{Int}} <: LearnBase.AbstractObsIterator{Int,Vector{Int}} @test LearnBase.BatchIterator <: LearnBase.DataIterator @test LearnBase.BatchIterator <: LearnBase.AbstractBatchIterator @test LearnBase.BatchIterator{Int,Vector{Int}} <: LearnBase.DataIterator{Int,Vector{Int}} @test LearnBase.BatchIterator{Int,Vector{Int}} <: LearnBase.AbstractBatchIterator{Int,Vector{Int}} @test LearnBase.ObsDim.Constant <: LearnBase.ObsDimension @test LearnBase.ObsDim.First <: LearnBase.ObsDimension @test LearnBase.ObsDim.Last <: LearnBase.ObsDimension @test LearnBase.ObsDim.Undefined <: LearnBase.ObsDimension @test typeof(LearnBase.ObsDim.Constant(2)) <: LearnBase.ObsDim.Constant{2} # IntervalSet let s = LearnBase.IntervalSet(-1,1) @test typeof(s) == LearnBase.IntervalSet{Int} @test typeof(s) <: AbstractSet for x in (-1,0,0.5,1,1.0) @test x in s end for x in (-1-1e-10, 1+1e-10, -Inf, Inf, 2, NaN) @test !(x in s) end for i=1:10 x = rand(s) @test typeof(x) == Float64 @test x in s end xs = rand(s, 10) @test typeof(xs) == Vector{Float64} for x in xs @test typeof(x) == Float64 @test x in s end @test LearnBase.randtype(s) == Float64 # @show s LearnBase.randtype(s) end let s = LearnBase.IntervalSet(-1,1.0) @test typeof(s) == LearnBase.IntervalSet{Float64} @test typeof(s) <: AbstractSet @test 1 in s # @show s LearnBase.randtype(s) @test length(s) == 1 end # IntervalSet{Vector} let s = LearnBase.IntervalSet([-1.,0.], [1.,1.]) @test typeof(s) == LearnBase.IntervalSet{Vector{Float64}} @test typeof(s) <: AbstractSet @test LearnBase.randtype(s) == Vector{Float64} @test typeof(rand(s)) == Vector{Float64} @test rand(s) in s @test [-1, 0] in s @test !([-1.5,0] in s) @test !([0,2] in s) @test length(s) == 2 end # DiscreteSet let s = LearnBase.DiscreteSet([-1,1]) @test typeof(s) == LearnBase.DiscreteSet{Vector{Int}} @test typeof(s) <: AbstractSet for x in (-1, 1, -1.0, 1.0) @test x in s end for x in (0, Inf, -Inf, NaN) @test !(x in s) end for i=1:10 x = rand(s) @test typeof(x) == Int @test x in s end xs = rand(s, 10) @test typeof(xs) == Vector{Int} for x in xs @test typeof(x) == Int @test x in s end @test LearnBase.randtype(s) == Int @test length(s) == 2 @test s[1] == -1 end let s = LearnBase.DiscreteSet([-1,1.0]) @test typeof(s) == LearnBase.DiscreteSet{Vector{Float64}} @test typeof(s) <: AbstractSet @test typeof(rand(s)) == Float64 @test typeof(rand(s, 2)) == Vector{Float64} end # TupleSet let s = LearnBase.TupleSet(LearnBase.IntervalSet(0,1), LearnBase.DiscreteSet([0,1])) @test typeof(s) == LearnBase.TupleSet{Tuple{LearnBase.IntervalSet{Int}, LearnBase.DiscreteSet{Vector{Int}}}} @test typeof(s) <: AbstractSet for x in ([0,0], [0.0,0.0], [0.5,1.0]) @test x in s end for x in ([0,0.5], [-1,0]) @test !(x in s) end @test typeof(rand(s)) == Vector{Float64} @test typeof(rand(s, 2)) == Vector{Vector{Float64}} @test typeof(rand(s, Tuple)) == Tuple{Float64,Int} @test typeof(rand(s, Tuple, 2)) == Vector{Tuple{Float64,Int}} @test LearnBase.randtype(s) == Vector{Float64} tot = 0 for (i,x) in enumerate(s) @test x == s.sets[i] tot += length(x) end @test length(s) == tot end # arrays of sets let s = [LearnBase.IntervalSet(0,1), LearnBase.DiscreteSet([0,1])] @test typeof(s) == Vector{AbstractSet} for x in ([0,0], [0.0,0.0], [0.5,1.0]) @test x in s end for x in ([0,0.5], [-1,0]) @test !(x in s) end @test typeof(rand(s)) == Vector{Float64} @test typeof(rand(s, 2)) == Vector{Vector{Float64}} end end
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
code
130
using LearnBase using SparseArrays using Test include("aggmode.jl") include("obsdim.jl") include("costs.jl") include("other.jl")
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.6.1
f9de1fa263131b629e261ac275eace510357a4fc
docs
1149
# LearnBase [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![Build Status](https://travis-ci.org/JuliaML/LearnBase.jl.svg?branch=master)](https://travis-ci.org/JuliaML/LearnBase.jl) [![Build status](https://ci.appveyor.com/api/projects/status/t1hds926lm0rog8h/branch/master?svg=true)](https://ci.appveyor.com/project/Evizero/learnbase-jl/branch/master) [![Coverage Status](https://coveralls.io/repos/github/JuliaML/LearnBase.jl/badge.svg?branch=master)](https://coveralls.io/github/JuliaML/LearnBase.jl?branch=master) This package embodies a community effort to provide common types and function-definitions for Machine Learning packages in Julia. See [src/LearnBase.jl](https://github.com/JuliaML/LearnBase.jl/blob/master/src/LearnBase.jl) for more information ## WARNING This package has been discontinued. Most functionalities have been moved [MLUtils.jl](https://github.com/JuliaML/MLUtils.jl).
LearnBase
https://github.com/JuliaML/LearnBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
648
using Documenter, ModiaBase makedocs( #modules = [ModiaBase], sitename = "ModiaBase", authors = "Hilding Elmqvist (Mogram) and Martin Otter (DLR-SR)", format = Documenter.HTML(prettyurls = false), pages = [ "Home" => "index.md", "Tutorial" => "Tutorial.md", "Data Structures" => "DataStructures.md", "Equation Sorting" => "EquationSorting.md", "Equation Reduction" => "EquationReduction.md", "Transformation to ODE System" => "TransformationToODEs.md", "Nonlinear Equations" => "NonlinearEquations.md", ] )
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
9628
""" Module with graph theoretical methods for maximum matching, Pantelides index reduction and Tarjan's strongly connected components. * Author: Hilding Elmqvist, Mogram AB * Date: July-August 2016 (rewritten). * License: MIT A bipartite graph (E, V) is defined by an array of arrays. Each E-entry has an integer array of indices to V-entries. Example bipartite graph: G = [ [3, 5], [4, 6], [1, 7, 9], [2, 8, 9], [1, 2] ] """ module BLTandPantelides export matching, pantelides!, BLT, checkAssign using ..BLTandPantelidesUtilities "Controls logging" const log = false """ function augmentPath!(G, i, assign, vColour, eColour, vPassive) Construction of augmenting path Reference: Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM Journal of Scientific and Statistical Computing, 9(2), pp. 213–231 (1988). """ function augmentPath!(G, i, assign, vColour, eColour, vPassive) # returns pathFound # assign: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned # i: E-node # vPassive: set to != 0 has the same effect as deleting V-node and corresponding edges # j: V-node if log println("augmentPath: equation $i") end pathFound = false eColour[i] = true # If a V-node j exists such that edge (i-j) exists and assign[j] == 0 for j in G[i] if vPassive[j] == 0 && assign[j] == 0 pathFound = true assign[j] = i return pathFound end end # For every j such that edge (i-j) exists and j is uncoloured for j in G[i] if vPassive[j] == 0 && !vColour[j] vColour[j] = true k = assign[j] pathFound = augmentPath!(G, k, assign, vColour, eColour, vPassive) if pathFound assign[j] = i return pathFound end end end return pathFound end function checkAssign(assign, VSizes, VTypes, ESizes, ETypes, equationsInfix, variableNames, A, vPassive=A) println("Checking assignment") assignmentOK = true for j in 1:length(assign) if vPassive[j] == 0 i = assign[j] if i > 0 && VSizes[j] != ESizes[i] assignmentOK = false print("Error: Variable ") printList(variableNames, [j], A, newLine=false) println(" (($j)) with size=$(VSizes[j]) is assigned in equation (($i)) with size $(ESizes[i])") end end end if assignmentOK println("Assignment is OK") else # error("Assignment not OK") end end """ function matching(G, M, vActive=fill(true, M)) Find maximum matching in bipartite graph * `G`: bipartite graph * `M`: number of V-nodes * `vActive`: set to false has the same effect as deleting V-node and corresponding edges * `return assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned Reference: Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM Journal of Scientific and Statistical Computing, 9(2), pp. 213–231 (1988). """ function matching(G, M, vActive=fill(true, M)) assign::Array{Int,1} = fill(0, M) eColour::Array{Bool,1} = fill(false, length(G)) vColour::Array{Bool,1} = fill(false, M) vPassive::Array{Int,1} = [if va; 0 else 1 end for va in vActive] for i in 1:length(G) fill!(eColour, false) fill!(vColour, false) pathFound = augmentPath!(G, i, assign, vColour, eColour, vPassive) end return assign end # ------------------------------------------------------- """ function pantelides!(G, M, A) Perform index reduction with Pantelides algorithm. * `G`: bipartite graph (updated) * `M`: number of V-nodes * `A`: A[j] = if V[k] = der(V[j]) then k else 0 * `return assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `return A`: A[j] = if V[k] = der(V[j]) then k else 0 * `return B`: B[i] = if E[l] = der(E[i]) then l else 0 Reference: Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM Journal of Scientific and Statistical Computing, 9(2), pp. 213–231 (1988). """ function pantelides!(G, M, A) assign::Array{Int,1} = fill(0, M) B::Array{Int,1} = fill(0, length(G)) eColour::Array{Bool,1} = fill(false, length(G)) vColour::Array{Bool,1} = fill(false, M) N = length(G) N2 = N for k in 1:N2 pathFound = false i = k while !pathFound # Delete all V-nodes with A[.] != 0 and all their incidence edges from the graph # Designate all nodes as "uncoloured" if length(eColour) == length(G) fill!(eColour, false) else eColour = fill(false, length(G)) end if length(vColour) == length(M) fill!(vColour, false) else vColour = fill(false, M) end pathFound = augmentPath!(G, i, assign, vColour, eColour, A) if !pathFound if log println("\nDifferentiate:") end # For every coloured V-node j do for j in 1:length(vColour) if vColour[j] M += 1 if log println("New variable derivative: var($M) = der($j)") end push!(A, 0) A[j] = M push!(assign, 0) end end # For every coloured E-node l do for l in 1:N if eColour[l] N += 1 if log println("New equation derivative: equ($N) = DER($l)") end # Create new E-node N push!(G, copy(G[l])) # Create edges from E-node N to all V-nodes j and A[j] such that edge (l-j) exists for m in 1:length(G[l]) j = G[l][m] if !(A[j] in G[N]) push!(G[N], A[j]) end end push!(B, 0) # Set B[l] = N B[l] = N end end # For every coloured V-node j for j in 1:length(vColour) if vColour[j] if log println("Assigning derivative of variable $(A[j]) to derivative of equation: $(B[assign[j]])") end assign[A[j]] = B[assign[j]] end end i = B[i] end end end return assign, A, B end const notOnStack = 1000000000 """ Find minimal systems of equations that have to be solved simultaneously. Reference: Tarjan, R. E. (1972), "Depth-first search and linear graph algorithms", SIAM Journal on Computing 1 (2): 146–160, doi:10.1137/0201010 """ function strongConnect!(G, assign, v, nextnode, stack, components, lowlink, number) # println("strongConnect: ", v) if v == 0 return nextnode end nextnode += 1 lowlink[v] = number[v] = nextnode push!(stack, v) for w in [assign[j] for j in G[v]] # for w in the adjacency list of v if w > 0 # Is assigned if number[w] == 0 # if not yet numbered nextnode = strongConnect!(G, assign, w, nextnode, stack, components, lowlink, number) lowlink[v] = min(lowlink[v], lowlink[w]) else if number[w] < number[v] # (v, w) is a frond or cross-link # if w is on the stack of points. Always valid since otherwise number[w]=notOnStack (a big number) lowlink[v] = min(lowlink[v], number[w]) end end end end if lowlink[v] == number[v] # v is the root of a component # start a new strongly connected component comp = [] repeat = true while repeat # delete w from point stack and put w in the current component # println("delete w from point stack and put w in the current component") w = pop!(stack) number[w] = notOnStack push!(comp, w) repeat = w != v end push!(components, comp) end return nextnode end """ function BLT(G, assign) Find Block Lower Triangular structure for a bipartite graph `G` with assignment `assign` * `G`: bipartite graph * `assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `return components`: cell array of components. Each component is a list of indices to E-nodes """ function BLT(G, assign) nextnode::Int = 0 stack = [] components = [] lowlink = fill(0, length(G)) number = fill(0, length(G)) for v in 1:length(G) if number[v] == 0 nextnode = strongConnect!(G, assign, v, nextnode, stack, components, lowlink, number) end end return components end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
10794
""" Module with utility functions for BLTandPantelides. * Author: Hilding Elmqvist, Mogram AB * Date: July-August 2016 * License: MIT """ module BLTandPantelidesUtilities export buildExtendedSystem, addDependencies, buildFullIncidence export invertDer, invertAssign export createNames, printList, printAssignedEquations, printSortedEquations, printUnassigned, makeList logTranslation = true logModia(args...) = if logTranslation; print(stdout, args...) else end loglnModia(args...) = if logTranslation; println(stdout, args...) else end """ function buildExtendedSystem(A) Extend a system according to Pantelides equation (15), i.e. return the incidence for function h(x, der(x)). * `A`: A[j] = if V[k] = der(V[j]) then k else 0 * `return G`: bipartite graph Example: julia> BLTandPantelidesUtilities.buildExtendedSystem([5,6,7,8,0,0,0,0,0]) 4-element Array{Any,1}: [1,5] [2,6] [3,7] [4,8] """ function buildExtendedSystem(A) G = [] for i in 1:length(A) a = A[i] if a > 0 push!(G, [i, a]) # h(x, der(x)) end end return G end function addDependencies(G, Vindices) newG = [] for g in G push!(newG, [g; Vindices]) end return newG end """ buildFullIncidence(n,m) Build a bipartite graph with full incidence, i.e. all of the n E-nodes refer to all of the m V-nodes. * `n`: number of E-nodes * `m`: number of V-nodes * `return G`: bipartite graph Example: julia> BLTandPantelidesUtilities.buildFullIncidence(2,3) 2-element Array{Any,1}: [1,2,3] [1,2,3] """ function buildFullIncidence(n, m) G = [] for i in 1:n push!(G, [j for j in 1:m]) end return G end """ function invertDer(A) Invert derivative relationships for variables and equations * `A`: A[j] = if V[k] = der(V[j]) then k else 0 (or correspondingly for E-nodes) * `return orgIndex`: index of original variable or equation * `return derOrder`: derivative order Note that invertDer can be used to invert from list of E-nodes to list of V-nodes as well. Example: julia> BLTandPantelidesUtilities.invertDer([5,6,7,8,10,11,0,0,0,0,0]) ([1,2,3,4,1,2,3,4,9,1,2],[0,0,0,0,1,1,1,1,0,2,2]) """ function invertDer(A) orgIndex = [i for i in 1:length(A)] # Index of original variable or equation derOrder = fill(0, length(A)) # Derivative order for i in 1:length(A) a = A[i] if a > 0 derOrder[a] = derOrder[i] + 1 orgIndex[a] = orgIndex[i] end end return orgIndex, derOrder end """ invertAssign(assign, n=length(assign)) Invert assignment relationships for variables and equations. * `assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `n`: number of E-nodes * `return invAssign`: invAssign[i] contains the V-node to which E-node i is assigned or 0 if E-node i not assigned * `return unAssigned`: unassigned V-nodes Note that invertAssign can be used to invert from list of E-nodes to list of V-nodes as well. Example: julia> inv=BLTandPantelidesUtilities.invertAssign([0,0,0,0,1,2,7,4,3,9,8]) ([5,6,9,8,0,0,7,11,10,0,0],[1,2,3,4]) julia> BLTandPantelides.invertAssign(inv[1]) ([0,0,0,0,1,2,7,4,3,9,8],[5,6,10,11]) """ function invertAssign(assign, n=length(assign)) invAssign = fill(0, n) unAssigned::Vector{Int} = [] for j in 1:length(assign) i = assign[j] if i > 0 invAssign[i] = j else push!(unAssigned, j) end end return invAssign, unAssigned end """ function createNames(infixes, A) Creates names. * `infixes`: infix strings for original variable * `A`: A[j] = if V[k] = der(V[j]) then k else 0 Example: julia> BLTandPantelidesUtilities.createNames(["x", "y", "w", "z", "", "", "", "", "T"], [5,6,7,8,10,11,0,0,0,0,0]) x, y, w, z, der(x), der(y), der(w), der(z), T, der2(x), der2(y) """ function createNames(infixes, A) names = [] (orgIndex, derOrder) = invertDer(A) for j in 1:length(A) if derOrder[j] > 0 d = "der" if derOrder[j] > 1 d = d * string(derOrder[j]) end d = "$d($(infixes[orgIndex[j]]))" else d = infixes[orgIndex[j]] end push!(names, d) end names end """ function printList(infixes, indices, A, vertical=false) Print list of variables or equations. * `infixes`: infix strings for original variable or equation * `indices`: indices for the variables or equations to be printed * `A`: A[j] = if V[k] = der(V[j]) then k else 0 (or correspondingly for E-nodes) * `vertical`: if vertical then new line separation else comma separation Example: julia> BLTandPantelidesUtilities.printList(["x", "y", "w", "z", "", "", "", "", "T"], 1:11, [5,6,7,8,10,11,0,0,0,0,0]) x, y, w, z, der(x), der(y), der(w), der(z), T, der2(x), der2(y) """ function printList(infixes, indices, A, vertical=false) (orgIndex, derOrder) = invertDer(A) for ind in 1:length(indices) j = indices[ind] if j > 0 if ind > 1 if vertical loglnModia() else logModia(", ") end end if derOrder[j] > 0 if vertical logModia("DER") else logModia("der") end if derOrder[j] > 1 logModia(derOrder[j]) end logModia("(") end logModia(infixes[orgIndex[j]]) if derOrder[j] > 0 logModia(")") end end end loglnModia() end function makeList(infixes, indices, A, vertical=false) l = String[] (orgIndex, derOrder) = invertDer(A) for ind in 1:length(indices) s = "" j = indices[ind] if j > 0 if derOrder[j] > 0 if vertical s = "DER" else s = "der" end if derOrder[j] > 1 s *= string(derOrder[j]) end s *= "_" # "(" # s *= "this." end s *= string(infixes[orgIndex[j]]) if derOrder[j] > 0 # s *= ")" end push!(l, s) end end return l end const variableColumn = 5 const equationColumn = 50 """ printAssignedEquations(equations, variables, indices, assign, A, B) Print assigned equations. * `equations`: infix string for original equations * `variables`: infix string for original variables * `indices`: indices for the equations to be printed * `assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `A`: A[j] = if V[k] = der(V[j]) then k else 0 * `B`: B[i] = if E[l] = der(E[l]) then l else 0 Example: See testBLTandPantelides.testPendulum """ function printAssignedEquations(equations, variables, indices, assign, A, B) (orgIndexVar, derOrderVar) = invertDer(A) (orgIndexEqu, derOrderEqu) = invertDer(B) (assignedVar, unAssigned) = invertAssign(assign) for i in indices logModia(lpad(string(i) * ":", variableColumn, " ")) if i <= length(assignedVar) j = assignedVar[i] else j = 0 end if j > 0 if derOrderVar[j] == 1 prefix = "der(" suffix = ")" elseif derOrderVar[j] > 1 prefix = "der" * string(derOrderVar[j]) * "(" suffix = ")" else prefix = "" suffix = "" end logModia(lpad(prefix * string(variables[orgIndexVar[j]]) * suffix, equationColumn, " ")) else logModia(" "^equationColumn) end logModia(": ") if derOrderEqu[i] == 1 prefix = "DER( " suffix = " )" elseif derOrderEqu[i] > 1 prefix = "DER" * string(derOrderEqu[i]) * "( " suffix = " )" else prefix = "" suffix = "" end equ = equations[i] # orgIndexEqu[i]] equ = string(equ) equ = replace(equ, "\n" => " ") oldequ = "" while oldequ != equ oldequ = equ equ = replace(oldequ, " " => " ") end loglnModia(prefix * equ * suffix) end end """ printSortedEquations(equations, variables, components, assign, A, B) Print sorted equations. * `equations`: infix string for original equations * `variables`: infix string for original variables * `components`: cell array of components. Each component is a list of indices to E-nodes * `assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `A`: A[j] = if V[k] = der(V[j]) then k else 0 * `B`: B[i] = if E[l] = der(E[l]) then l else 0 Example: See testBLTandPantelides.testPendulum """ function printSortedEquations(equations, variables, components, assign, A, B) loglnModia("[assigned variable]: [differentiation] equation") loglnModia("Strongly connected components are enclosed in []") for c in components if length(c) > 1 loglnModia("[") end printAssignedEquations(equations, variables, c, assign, A, B) if length(c) > 1 loglnModia("]") end end end """ printUnassigned(equations, variables, components, assign, A, B) Print unassigned variables and equations. * `equations`: infix string for original equations * `variables`: infix string for original variables * `assign`: assign[j] contains the E-node to which V-node j is assigned or 0 if V-node j not assigned * `A`: A[j] = if V[k] = der(V[j]) then k else 0 * `B`: B[i] = if E[l] = der(E[l]) then l else 0 Example: See testBLTandPantelides.testPendulum """ function printUnassigned(equations, variables, assign, A, B, vActive=[]) (invAssign, unAssignedVariables) = invertAssign(assign, length(B)) (ass, unAssignedEquations) = invertAssign(invAssign, length(assign)) if vActive != [] # Don't print not active variables unass = [] for v in unAssignedVariables if vActive[v] push!(unass, v) end end unAssignedVariables = unass end loglnModia("\nUnassigned variables:") printList(variables, unAssignedVariables, A) loglnModia("\nUnassigned equations:") printList(equations, unAssignedEquations, B, true) end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
3919
""" Module for differentiation of expressions with regards to time. * Developer: Hilding Elmqvist, Mogram AB * First version: December 2020 * License: MIT (expat) """ module Differentiate using Base.Meta: isexpr using DiffRules using Unitful export derivative """ der = derivative(ex, timeInvariants=[]) Form the derivative of the expressions `ex` with regards to time. Time derivative of variables are denoted `der(v)`. * `ex`: Expression to differentiate * `timeInvariants`: Vector of time invariant variables, i.e. with time derivative equal to zero. * `return `der`: Time derivative of ex """ derivative(ex, timeInvariants=[]) = 0#u"1/s" derivative(s::Symbol, timeInvariants=[]) = if s == :time; 1 elseif s in timeInvariants; 0 else :(der($s)) end # 0u"1/s" function derivative(ex::Expr, timeInvariants=[]) if isexpr(ex, :call) && ex.args[1] == :der :(der($ex)) elseif isexpr(ex, :call) func = ex.args[1] arguments = ex.args[2:end] derArguments = [derivative(a, timeInvariants) for a in arguments] if func in [:+, :-] ders = [d for d in derArguments if d != 0] if length(ders) == 0 # der(1+2+3) == 0, der(1-2-3) == 0 0 elseif func == :- && length(derArguments) > 1 && length(ders) == 1 && derArguments[1] != 0 # der(x-2-3) == der(x) derArguments[1] else Expr(:call, func, ders...) end elseif func in [:*] # der(e1 * e2 * e3 + ...) = der(e1)*e2*e3 + e1*der(e2)*e3 + e1*e2*der(e3) + ... diff = Expr(:call, :+) for i in 1:length(arguments) terms = [] for j in 1:length(arguments) term = if i == j; derivative(arguments[j], timeInvariants) else arguments[j] end if term == 0 terms = [] break else push!(terms, term) end end if length(terms) > 0 product = Expr(:call, :*, terms...) push!(diff.args, product) end end if length(diff.args) == 1 # Only + operator diff = 0 elseif length(diff.args) == 2 # Only one + term, remove + diff = diff.args[2] else diff end elseif length(arguments) <= 2 d = DiffRules.diffrule(:Base, ex.args[1], ex.args[2:end]...) if length(arguments) > 1 sum = [] for i in 1:length(arguments) if d[i] == :(one($(arguments[i]))) push!(sum, :($(derArguments[i]))) elseif d[i] == :(-one($(arguments[i]))) push!(sum, :(-$(derArguments[i]))) elseif derArguments[i] != 0 push!(sum, :($(d[i]) * $(derArguments[i]))) end end if length(sum) > 1 Expr(:call, :+, sum...) elseif length(sum) == 1 sum[1] else 0 end else :($d * $(derArguments[1])) end end elseif isexpr(ex, :.) if ex in timeInvariants; 0 else :(der($ex)) end elseif isexpr(ex, :if) || isexpr(ex, :elseif) Expr(ex.head, ex.args[1], [derivative(e, timeInvariants) for e in ex.args[2:end]]...) # Don't differentiate condition elseif isexpr(ex, :ref) Expr(ex.head, derivative(ex.args[1], timeInvariants), ex.args[2:end]...) # Don't differentiate indices else # For example: =, vect, hcat Expr(ex.head, [derivative(e, timeInvariants) for e in ex.args]...) end end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
26954
# License for this file: MIT (expat) # Copyright 2020-2021, DLR Institute of System Dynamics and Control # Author: Martin Otter, DLR-SR #= Algorithm to exactly process linear Integer equations and hereby removing underdeterminism, overdeterminism, and state constraints that are not structurally visible, as well as eliminating simple equations. The following is exported: - [`simplifyLinearIntegerEquations`](@ref) - [`printSimplifiedLinearIntegerEquations`](@ref) and the following utility functions that can be applied on the return argument `vProperty` of [`simplifyLinearIntegerEquations`](@ref): - `isNotEliminated(vProperty, v)` - if variable v is not eliminated. - `isEliminated(vProperty, v)` - if variable v is eliminated. - `isZero(vProperty,v)` - if eliminated variable v is zero. - `isAlias(vProperty,v)` - if eliminated variable v is an alias variable v = v_alias - `isNegAlias(vProperty,v)` - if eliminated variable v is a negative alias variable v = -v_alias - `alias(vProperty,v)` - alias variable v_alias of eliminated variable v (v = v_alias). - `negAlias(vProperty,v)` - negated alias variable v_alias of eliminated variable v (v = -v_alias). # Main developer [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en) =# import OrderedCollections export simplifyLinearIntegerEquations! export printSimplifiedLinearIntegerEquations export isNotEliminated, isEliminated, isZero, isAlias, isNegAlias, alias, negAlias # Inquire properties of eliminated variables (vEliminated is returned from simplifyLinearIntegerEquations(..) const IS_PRESENT = typemin(Int) # Variable is not eliminated isNotEliminated(vProperty::Vector{Int}, v::Int) = vProperty[v] == IS_PRESENT isEliminated( vProperty::Vector{Int}, v::Int) = vProperty[v] != IS_PRESENT isZero( vProperty::Vector{Int}, v::Int) = vProperty[v] == 0 isAlias( vProperty::Vector{Int}, v::Int) = vProperty[v] > 0 isNegAlias( vProperty::Vector{Int}, v::Int) = vProperty[v] < 0 && vProperty[v] != IS_PRESENT alias( vProperty::Vector{Int}, v::Int) = vProperty[v] negAlias( vProperty::Vector{Int}, v::Int) = -vProperty[v] """ getFirstActiveIndex(Gint, vActive, i::Int) Return the first index j of equation i, such that vActive[ Gint[i][j] ] == true. If there is no such index, return zero. """ function getFirstActiveIndex(Gint, vActive::Vector{Bool}, i::Int)::Int found = false j = 0 for (k,vk) in enumerate(Gint[i]) if vActive[vk] j = k break end end return j end """ swapEquations!(Gint, eInt, GcInt, GcInt2, i, j) Swap equations i and j """ function swapEquations!(Gint, eInt::Vector{Int}, GcInt, GcInt2, i::Int, j::Int)::Nothing Gint_i = Gint[i] GcInt_i = GcInt[i] GcInt2_i = GcInt2[i] eInt_i = eInt[i] Gint[i] = Gint[j] GcInt[i] = GcInt[j] GcInt2[i] = GcInt2[j] eInt[i] = eInt[j] Gint[j] = Gint_i GcInt[j] = GcInt_i GcInt2[j] = GcInt2_i eInt[j] = eInt_i return nothing end """ cj = find_v(eq_i, eqc_i, vj) Return coefficient of variable vj in eq_i or zero, if vj not in eq_i. """ function find_v(eq_i, eqc_i, vj)::Int for (j, vi) in enumerate(eq_i) if vi == vj return eqc_i[j] end end return 0 end mutable struct Buffer Gint_i::Vector{Int} GcInt2_i::Vector{Int} Buffer() = new(Int[], Int[]) end """ eliminateVariable!(Gint, GcInt2, k, k_perm, i, pivot, vj, oldPivot) Eliminate variable vj from equation i and store the result as equation i. k_perm is the sorting order of equation k (return argument of sortperm(..)). If equation i does not contain variable vj, the equation is not changed. If equation i contains variable vj, then multiply equation i with pivot and equation k with the coefficient of variable vj in equation i. Subtract the latter from the former equation and divide by oldPivot (it is guaranteed that the division has no reminder). If Gc[i,j] would be the coefficient of variable j in equation i, then the following operation is carried out: pivot_i = Gc[i,vj] for j = 1:nv # nv: number of variables Gc[i,j] = div(pivot * Gc[i,j] - pivot_i * Gc[k,j], oldPivot) # guaranteed no remainder end If one of the coeffients of equation i, so GcInt2[i], becomes zero, then this coefficient and the corresponding variable is removed from the equation. It is therefore guaranteed that after the operation, no coefficient of the new equation i is zero, so no element of GcInt2[i][:] is zero and no element of Gint[i][:] is vj. """ function eliminateVariable!(Gint, GcInt2, k::Int, i::Int, pivot::Int, vj::Int, oldPivot::Int, buffer::Buffer)::Nothing # Return if equation i does not contain variable vj vj_present=false c_vj = 0 # Coefficient of vj for (index, value) in enumerate(Gint[i]) if value == vj vj_present = true c_vj = GcInt2[i][index] deleteat!(Gint[i] ,index) deleteat!(GcInt2[i],index) break end end if !vj_present return nothing end #println("... Eliminate variable $vj from equation $i = ", Gint[i]) #println(" Gint[$k] = ", Gint[k], ", GcInt2[$k] = ", GcInt2[k], ", pivot = $pivot, c_vj = $c_vj") # Union of relevant variables eq_i = Gint[i] eq_k = Gint[k] eqc_i = GcInt2[i] eqc_k = GcInt2[k] v_all = union(eq_i, eq_k) #println("v_all = $v_all") # Eliminate variable vj from equation i empty!(buffer.Gint_i) empty!(buffer.GcInt2_i) for v in v_all ci = find_v(eq_i, eqc_i, v) ck = find_v(eq_k, eqc_k, v) ci_new = div(pivot*ci - c_vj*ck, oldPivot) if ci_new != 0 push!(buffer.Gint_i , v) push!(buffer.GcInt2_i, ci_new) end end temp1 = Gint[i] temp2 = GcInt2[i] Gint[i] = buffer.Gint_i GcInt2[i] = buffer.GcInt2_i buffer.Gint_i = temp1 buffer.GcInt2_i = temp2 return nothing end """ rk = upperTrapezoidal!(Gint, eInt, GcInt2, vActive, ieq) Transform equations ieq..end to upper trapezoidal form and return the rank `rk` (`ieq <= rk <= length(Gint)`). """ function upperTrapezoidal!(Gint, eInt::Vector{Int}, GcInt, GcInt2, vActive::Vector{Bool}, ieq::Int)::Int j = 0 e = 0 vj = 0 pivot = 0 oldPivot = 1 neq = length(Gint) buffer = Buffer() for k = ieq:neq # Search for a pivot in equations k:neq j = 0 e = 0 # Inspect only equations with one variable for k2 = k:neq if length(Gint[k2]) == 1 j = getFirstActiveIndex(Gint, vActive, k2) if j > 0 e = k2 break end end end if j == 0 # Inspect only equations with two variables for k2 = k:neq if length(Gint[k2]) == 2 j = getFirstActiveIndex(Gint, vActive, k2) if j > 0 e = k2 break end end end end if j == 0 # Inspect all equations for k2 = k:neq j = getFirstActiveIndex(Gint, vActive, k2) if j > 0 e = k2 break end end end if j > 0 # Extract infos pivot = GcInt2[e][j] vj = Gint[e][j] deleteat!(Gint[e] , j) # Remove variable vj in equation e (is added later to the front) deleteat!(GcInt2[e], j) # Swap equations k and e if e != k swapEquations!(Gint, eInt, GcInt, GcInt2, k, e) end else # no pivot found: equations k:neq have no active variables (rank = k-1) return k-1 end # Eliminate variable vj from equations k+1:neq for i = k+1:neq eliminateVariable!(Gint, GcInt2, k, i, pivot, vj, oldPivot, buffer) end oldPivot = pivot # Add variable vj in equation k at the front pushfirst!(Gint[k] , vj) pushfirst!(GcInt2[k], pivot) #println("... k = $k") #println(" Gint = ", Gint) #println(" GcInt2 = ", GcInt2) end return neq end """ AvarRev = revertAssociation(Avar::Vector{Int}) Revert the association Vector `Avar[i] = j`, such that `AvarRev[j] = i` (`Avar[i]=0` is allowed and is ignored). """ function revertAssociation(Avar::Vector{Int})::Vector{Int} AvarRev = fill(0, length(Avar)) for (i, value) in enumerate(Avar) if value != 0 AvarRev[ value ] = i end end return AvarRev end needsVariableElimination(vProperty, eq_k::Vector{Int}) = findfirst(v->isEliminated(vProperty,v), eq_k) != nothing """ equationRemoved = simplifyOneEquation!(eq_k, eqc_k, AvarRev, vEliminated, vProperty) Simplify one equation has much as possible. Return true, if equation is removed, otherwise return false. """ function simplifyOneEquation!(eq_k, eqc_k, AvarRev, vEliminated, vProperty)::Bool while length(eq_k) > 1 && needsVariableElimination(vProperty, eq_k[2:end]) # Equation has more as one variable and at least one of the variables is zero, alias or negative alias variable for j = 2:length(eq_k) v_j = eq_k[j] # Eliminate variable if possible if isNotEliminated(vProperty, v_j) continue elseif isZero(vProperty, v_j) deleteat!(eq_k , j) deleteat!(eqc_k, j) break else # alias or negAlias if isAlias(vProperty, v_j) v_add = alias(vProperty, v_j) vc_add = eqc_k[j] else v_add = negAlias(vProperty, v_j) vc_add = -eqc_k[j] end # Check whether v_add appears in equation isPresent = false for i = 2:length(eq_k) if i != j && eq_k[i] == v_add isPresent = true eqc_k[i] += vc_add if eqc_k[i] == 0 if i < j deleteat!(eq_k , [i,j]) deleteat!(eqc_k, [i,j]) else deleteat!(eq_k , [j,i]) deleteat!(eqc_k, [j,i]) end else deleteat!(eq_k , j) deleteat!(eqc_k, j) end break end end if isPresent break else eq_k[j] = v_add eqc_k[j] = vc_add end end end end # Check if equation can be removed vk = eq_k[1] if AvarRev[vk] == 0 # vk is not a derivative of a variable -> it can be removed if length(eq_k) == 1 # equation k is a function of one variable # Variable is zero -> remove equation push!(vEliminated, vk) vProperty[vk] = 0 empty!(eq_k) empty!(eqc_k) return true elseif length(eq_k) == 2 && abs(eqc_k[1]) == abs(eqc_k[2]) # equation k is a function of alias variables if eqc_k[1] > 0 && eqc_k[2] < 0 || eqc_k[1] < 0 && eqc_k[2] > 0 # Alias variable -> remove equation push!(vEliminated, vk) vProperty[vk] = eq_k[2] empty!(eq_k) empty!(eqc_k) else # Negative alias variable -> remove equation push!(vEliminated, vk) vProperty[vk] = -eq_k[2] empty!(eq_k) empty!(eqc_k) end return true end end return false end function printLinearIntegerEquations(Gint, eInt, GcInt, var_name::Function; rk=(0,0,0))::Int ne = 0 for i = 1:length(Gint) e = Gint[i] if length(e) > 0 ne += 1 # Construct equation vc = GcInt[i][1] prefix = (vc == 1 ? "" : (vc == -1 ? "-" : string(vc) )) str = "0 = " * prefix * var_name(e[1]) for j = 2:length(e) v = e[j] vc = GcInt[i][j] str = str * (vc > 0 ? " + " : " - ") if abs(vc) != 1 str = str * string(abs(vc)) * "*" end str = str * var_name(v) end println(lpad(string(eInt[i]), 8), ": ", str) end if i == rk[1] println(" ---------- rk1") elseif i == rk[2] println(" ---------- rk2") elseif i == rk[3] println(" ---------- rk3") end end return ne end """ (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(G, eInt, GcInt, Avar) Remove singularities of the **linear Integer equations** of a DAE system and simplify these equations as much as possible. The following **singularities** are fixed by this function: - Equations that are redundant are removed. - State constraint that are not structurally visible are transformed to a structurally visible form so that structural index reduction algorithms, such as the Pantelides algorithm, can handle these state constraints. - Variables that can have an arbitrary value and do not appear in the remaining set of equations (so must be solved from the linear Integer equations) are set to zero. The calling function should print a warning message in such a case (if `nvArbitrary > 0`). The following **simplifications** are performed recursively (`c` is an arbitrary Integer literal): - An equation `c*v1 = 0` is removed and `v1` is replaced by zero in all occurrences of the linear Integer equations and all expressions with `v1` are simplified. - An equation `c*v2 + c*v3 = 0` or `c*v2 - c*v3 = 0` is removed and `v2` is replaced by `v3` or by `-v3` in all occurrences of the linear Integer equations and all expressions with `v2` and `v3` are simplified. Note: - Input arguments `G, eInt, GcInt` are changed by a call of this function and represent the transformed linear Integer equations. The Abstract Syntax Tree (AST) of all these equations must be replaced by new AST equations defined by the returned arguments. - The number of operations in the transformed linear Integer equations is guaranteed to be not larger as the original equations - with exception of the structurally visible state constraints, where the number of operations could be larger. - Potential states (variables appearing differentiated) and derivatives of potential states are **not** eliminated by this function. # Input arguments - `G`: Bi-partite graph/incidence matrix of all equations. Typically: `G::Vector{Vector{Int}}` On entry, `G` is the original graph. On exit, the linear Integer equations of `G` are typically changed. - `eInt::Vector{Int}`: `G[eInt]` are the linear Integer equations of `G`. On exit, `eInt` is reordered. If `length(G[eInt[i]]) = 0`, then the corresponding equation is eliminated. - `GcInt`: `GcInt[i]` is the vector of Integer coefficients that are associated with the variables of `G[eInt[i]]`. Typically: `GcInt::Vector{Vector{Int}}`. On exit, `GcInt` is reordered according to `eInt` and typically most of the coefficients have been changed. - `Avar::Vector{Int}`: Defines the derivatives of the variables: `A[i] = if der(v_i) == v_k then k else 0`. This vector is not changed by `simplifyLinearIntegerEquations!`. # Output arguments - `vEliminated::Vector{Int}`: Variables that are eliminated. - `vProperty::Vector{Int}`: Defines the properties of the eliminated variables. These properties can be inquired with the following exported functions: o `isNotEliminated(vProperty, v)` - if variable v is not eliminated. o `isEliminated(vProperty, v)` - if variable v is eliminated. o `isZero(vProperty,v)` - if eliminated variable v is zero. o `isAlias(vProperty,v)` - if eliminated variable v is an alias variable v = v_alias o `isNegAlias(vProperty,v)` - if eliminated variable v is a negative alias variable v = -v_alias o `alias(vProperty,v)` - alias variable v_alias of eliminated variable v (v = v_alias). o `negAlias(vProperty,v)` - negated alias variable v_alias of eliminated variable v (v = -v_alias). - `nvArbitrary::Int`: Variables `vEliminated[1:nvArbitrary]` are variables that can be arbitrarily set and that have been set to zero. - `redundantEquations::Vector{Int}`: G[redundantEquations] are redundant equations that have been removed. # Algorithm The algorithm to remove the singularities is sketched in the paper: - Otter, Elmqvist (2017): [Transformation of Differential Algebraic Array Equations to Index One Form](http://www.ep.liu.se/ecp/132/064/ecp17132565.pdf), section 5. Modelica'2017 Conference. An error in this algorithm was fixed, the algorithm was improved to handle large equation systems and to simplify equations as much as possible. # Main developer [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en) """ function simplifyLinearIntegerEquations!(G, eInt::Vector{Int}, GcInt, Avar::Vector{Int}; log::Bool=false, var_name::Function = v -> "???") nv = length(Avar) # Revert derivative association vector Avar AvarRev = revertAssociation(Avar) # Construct vActive1 and vActive2 for first and second transformation to upper trapezoidal form # (vActiveX[v] = false, if variable shall be ignored when transforming to upper trapezoidal form) # vActive1[v] = true, if variable is not a potential state (does not appear differentiated) # and variable v must be solved from the linear Integer equations # vActive2[v] = true, if variable is not a potential state (does not appear differentiated) vActive2 = [v==0 for v in Avar] vActive1 = copy(vActive2) for e in setdiff(collect(1:length(G)), eInt) # Equations that are not linear Integer equations for v in G[e] vActive1[v] = false end end # Save all variables with vActive1[v] = true in vShouldBeSolved vShouldBeSolved = findall(vActive1) # Construct the bi-partite graph of the linear Integer equations # (a deepcopy of the relevant part of G) Gint = deepcopy(G[eInt]) if log println("\n+++ Remove singularities") println(" Linear Integer equations:") printLinearIntegerEquations(Gint, eInt, GcInt, var_name) println(" Unknown variables:") unknowns = collect(OrderedCollections.OrderedSet([v for e in Gint for v in e])) for v in unknowns print(lpad(string(v),8), ": ", var_name(v)) if v in vShouldBeSolved print(" (to be solved by equations)\n") elseif Avar[v] > 0 print(" (potential state)\n") else print("\n") end end end # Construct a deepcopy of GcInt (this copy is modified by the transformation to upper trapezoidal form) GcInt2 = deepcopy(GcInt) # First transformation to upper trapezoidal form: # Diagonal entries: Variables v that must be solved from the linear Integer equations #println("\n... before upperTrapezoidal!:") #println(" Gint = $Gint") #println(" GcInt2 = $GcInt2") rk1 = upperTrapezoidal!(Gint, eInt, GcInt, GcInt2, vActive1, 1) # Eliminate variables that must be solved from the linear Integer equations # but are not diagonal entries (= variables can be arbitrarily set) vSolved = [Gint[i][1] for i = 1:rk1] vEliminated = setdiff(vShouldBeSolved, vSolved) vProperty = fill(IS_PRESENT, nv) for v in vEliminated vProperty[v] = 0 end nvArbitrary = length(vEliminated) if log println("\n After first transformation to trapezoidal form (eliminate variables that must be solved):") printLinearIntegerEquations(Gint, eInt, GcInt2, var_name, rk=(rk1,0,0)) end # Second transformation to upper trapezoidal form: Ignore potential states rk2 = upperTrapezoidal!(Gint, eInt, GcInt, GcInt2, vActive2, rk1+1) if log println("\n After second transformation to trapezoidal form (ignore potential states):") printLinearIntegerEquations(Gint, eInt, GcInt2, var_name, rk=(rk1,rk2,0)) end # Third transformation to upper trapezoidal form: All remaining variables are potential states fill!(vActive2, true) rk3 = upperTrapezoidal!(Gint, eInt, GcInt, GcInt2, vActive2, rk2+1) #println("\n... after upperTrapezoidal!:") #println(" Gint = $Gint") #println(" GcInt2 = $GcInt2") #println(" rk1 = $rk1, rk2 = $rk2, rk3 = $rk3") if log println("\n After third transformation to trapezoidal form (eliminate potential states):") printLinearIntegerEquations(Gint, eInt, GcInt2, var_name, rk=(rk1, rk2, rk3)) end # Simplify equations from equation rk2 upto equation 1 for k = rk2:-1:1 simplifyOneEquation!(Gint[k], GcInt2[k], AvarRev, vEliminated, vProperty) end if log println("\n After alias elimination:") printLinearIntegerEquations(Gint, eInt, GcInt2, var_name, rk=(rk1, rk2, rk3)) end #println("\n... after equation simplification:") #println(" Gint = $Gint") #println(" GcInt2 = $GcInt2") #println(" vEliminated = ", vEliminated) #println(" vProperty[vEliminated] = ", vProperty[vEliminated]) # Update GcInt (use GcInt2[i] if it has not more unknowns as the corresponding GcInt[i] equation) equationsRemoved = false for i = 1:rk2 if length(GcInt2[i]) <= length(GcInt[i]) # Use transformed equation GcInt[i] = GcInt2[i] else # Use original equation Gint[i] = G[ eInt[i] ] equationRemoved = simplifyOneEquation!(Gint[i], GcInt[i], AvarRev, vEliminated, vProperty) equationsRemoved = equationsRemoved || equationRemoved end end if equationsRemoved # Simplify equations, until no equation is removed anymore equationRemoved = false while true for i = 1:rk2 if length(Gint[i]) > 0 equationRemoved = simplifyOneEquation!(Gint[i], GcInt[i], AvarRev, vEliminated, vProperty) if equationRemoved break end end end if !equationRemoved break end end end # For constraint equations and for removed equations, use transformed equations for i = rk2+1:length(eInt) GcInt[i] = GcInt2[i] end if log println("\n Final, simplified equations:") printLinearIntegerEquations(Gint, eInt, GcInt2, var_name, rk=(rk1, rk2, rk3)) end # Update G for (i,e) in enumerate(eInt) G[e] = Gint[i] end redundantEquations = rk3 < length(eInt) ? eInt[rk3+1:end] : Int[] return (vEliminated, vProperty, nvArbitrary, redundantEquations) end """ printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, var_name::Function; printTest=false) Print result of [`simplifyLinearIntegerEquations!`](@ref). Function `var_name(v)` returns the name of variable `v` as String. If `printTest=true`, statements are printed that can be included in a Testset. """ function printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, var_name::Function; printTest=false)::Nothing if nvArbitrary > 0 println("\n Variables that can be arbitrarily set and have been set to zero:") for v in vEliminated[1:nvArbitrary] println(lpad(string(v), 8), ": ", var_name(v), " = 0") end end if length(vEliminated) - nvArbitrary > 0 println("\n Variables that have been eliminated:") for v in vEliminated[nvArbitrary+1:end] print(lpad(string(v), 8), ": ", var_name(v), " = ") if isZero(vProperty, v) println("0") elseif isAlias(vProperty, v) println(var_name(alias(vProperty,v))) else println("-", var_name(negAlias(vProperty,v))) end end end if length(redundantEquations) > 0 println("\n Redundant equations that have been removed:") for e in redundantEquations println(" ", e) end end println("\n Remaining transformed linear Integer equations:") ne = printLinearIntegerEquations(G[eInt], eInt, GcInt, var_name) if ne == 0 println(" none (all linear Integer equations are removed)") end println() if printTest println("@test nvArbitrary == ", nvArbitrary) println("@test vEliminated == ", vEliminated) println("@test vProperty[vEliminated] == ", vProperty[vEliminated]) println("@test redundantEquations == ", redundantEquations) println("@test eInt == ", eInt) println("@test G[eInt] == ", G[eInt]) println("@test GcInt == ", GcInt) end return nothing end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
788
""" Main module of ModiaBase. * Developers: Hilding Elmqvist, Mogram AB, Martin Otter, DLR * First version: December 2020 * License: MIT (expat) """ module ModiaBase const path = dirname(dirname(@__FILE__)) # Absolute path of package directory const Version = "0.11.1" const Date = "2023-06-03" #println("\nImporting ModiaBase Version $Version ($Date)") using Unitful using StaticArrays include("LinearIntegerEquations.jl") include("BLTandPantelidesUtilities.jl") using .BLTandPantelidesUtilities include("BLTandPantelides.jl") using .BLTandPantelides include("Differentiate.jl") using .Differentiate include("Tearing.jl") include("Simplify.jl") using .Simplify include("Symbolic.jl") using .Symbolic include("NonlinearEquations.jl") using .NonlinearEquations end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
17810
""" module NonlinearEquations - Solve determined or underdetermined nonlinear equation systems Initial implementation: Gerhard Hippmann, DLR-SR """ module NonlinearEquations export mild, high, extreme, quiet, info, verbose, debug, solveNonlinearEquations! using Printf using LinearAlgebra import ForwardDiff import FiniteDiff @enum Nonlinearity begin mild high extreme end @enum Loglevel begin quiet info verbose debug end # Calculate RMS value (mean square root norm) of a vector function rms(x::Vector) n = length(x) sum = 0 for i = 1:n sum = sum + x[i]*x[i] end return sqrt(sum/n) end """ solveNonlinearEquations!(F!::Function, m::Integer, x::Vector, scale::Union{Vector, Nothing}; nonlinearity::Nonlinearity = high, restricted = false, xtol = 1e-6, maxiter = 50, quasi = true, forwardjac = false, loglevel::Loglevel = info) -> convergence::Bool Solve nonlinear equation system ``F(x) = 0`` with ``length(F) <= length(x)`` by global Gauss-Newton method with error oriented convergence criterion and adaptive trust region strategy. Optionally Broyden's 'good' Jacobian rank-1 updates are used. In case of underdetermined and/or rank-deficient equation system, a least squares solution is computed such that the norm of the scaled solution vector is minimal. `F!` is a C1 continuous function with length ``n`` of input and ``m`` of output vector where ``n >= m`` (determined or underdetermined system of equations). It has to be defined by F!(F::Vector, x::Vector) -> success::Bool returning true in case of successful evaluation. `m` is the length of the output vector of `F!`. `x` is the vector of unknowns. On input it must contain an initial guess of the problem's solution, which is used as the start vector of the iteration. On output it contains the iteration result. If `solveNonlinearEquations!` returns true, the iteration converged and `x` contains an approximation of the solution which satisfies the error tolerance `xtol`. `scale` is a vector of length ``n`` which contains positive scaling values used in computations of scaled norms and Jacobian scaling due to ``x_i / {scale}_i``. In case of `nothing` automatic scaling depends on `nonlinearity`. `nonlinearity` defines the grade of non-linearity of the problem. Possible @enum values are `mild`, `high` and `extreme`. In case of `extreme` `restricted` is automatically set true. `restricted` can be used to restrict the monotonicity test (i.e. damping factor) such that large iteration steps are avoided. `xtol` is the error tolerance which the final approximate solution `x` must satisfy. `maxiter` is the maximum number of allowed iterations. `quasi` enables switch to local quasi Newton iteration (which avoids costly Jacobian evaluations) in case of advanced convergence. `forwardjac` enables analytic Jacobian evaluation using [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl) package. Otherwise numeric computation by [FiniteDiff](https://github.com/JuliaDiff/FiniteDiff.jl) is used. `loglevel` is the log message level. Possible @enum values are `quiet`, `info`, `verbose` and `debug`. Reference: P. Deuflhard: Newton Methods for Nonlinear Problems. - Affine Invariance and Adaptive Algorithms (section 4.4). Series Computational Mathematics 35, Springer (2004). """ function solveNonlinearEquations!(F!::Function, m::Integer, x::Vector, scale::Union{Vector, Nothing}; nonlinearity::Nonlinearity = high, restricted = false, xtol = 1e-6, maxiter = 50, quasi = true, forwardjac = false, loglevel::Loglevel = info) n = length(x) @assert(m > 0) @assert(n >= m) @assert(xtol > 0.0) @assert(maxiter > 0) # Constants SMALL = 1e-150 LAMBDA_START_DEFAULT = 1e-2 LAMBDA_MIN_DEFAULT = 1e-4 LAMBDA_START_EXTREMELY_DEFAULT = 1e-4 LAMBDA_MIN_EXTREMELY_DEFAULT = 1e-8 THETA_MAX = 0.5 DELKCOMP = false # use [deltabar] = delta_k(x^{k-1}) instead of [deltabar] = 0 # Work arrays xscale = similar(x, n) xthresh = similar(x, n) w = similar(x, n) dx = similar(x, n) dxbar = similar(x, n) fxk = similar(x, m) jac = similar(x, m, n) if forwardjac jcfg = ForwardDiff.JacobianConfig(F!, fxk, x) else xche = similar(x, n) fxche1 = similar(x, m) fxche2 = similar(x, m) jche = FiniteDiff.JacobianCache(xche, fxche1, fxche2) end dxl = similar(x, n) Pdxbar = similar(x, n) fxl = similar(x, m) jacdxbar = similar(x, m) if DELKCOMP fxkm1 = similar(x, m) jacdxkm1 = similar(x, m) end # Initialization k = 0 cnvg = false nfcn = 0 njac = 0 normdx = 0.0 normdxbar = 0.0 precs = 0.0 qnerr_iter = false # Set initial damping factor if nonlinearity == high lambda = LAMBDA_START_DEFAULT lambda_min = LAMBDA_MIN_DEFAULT elseif nonlinearity == extreme lambda = LAMBDA_START_EXTREMELY_DEFAULT lambda_min = LAMBDA_MIN_EXTREMELY_DEFAULT restricted = true else # mild lambda = 1.0 lambda_min = LAMBDA_MIN_DEFAULT end # Set scaling vector if scale === nothing if nonlinearity == mild xscale .= 1.0 else xscale .= xtol end else xscale .= scale end if loglevel >= verbose println("Solve underdetermined nonlinear equations:") println("Problem dimension = $n") println("Prescribed relative precision = $xtol") println("The problem is specified as being $(nonlinearity)ly nonlinear.") println("The $(restricted ? "restricted" : "standard") monotonicity test will be applied.") println("The maximum permitted number of iteration steps is: $maxiter") if loglevel >= debug println("Start damping factor = $lambda") println("Start vector = $x") println("Scale vector = $xscale") end end # Evaluate F(x^0) okay = F!(fxk, x) nfcn = nfcn + 1 if !okay error("Error in function evaluation $nfcn.") else normfk = rms(fxk) w .= x xthresh .= xscale if (loglevel >= debug) println("Start function vector = $fxk\n") println(" iter norm_scl(dx) norm(fk) lambda") end end # For iteration index k = 0, 1,... do: while okay # Update scale vector # xscale = max.(xthresh, max.(0.5*abs.(x) + abs.(w), SMALL)) for i = 1:n xscale[i] = max(xthresh[i], max(0.5 * (abs(x[i]) + abs(w[i])), SMALL)) end if k > 0 # Recompute norms after rescaling normdxkm1 = rms(dx ./ xscale) normdxbar = rms(dxbar ./ xscale) end # 1. Step k: Evaluate Jacobian matrix F'(x^k) if forwardjac ForwardDiff.jacobian!(jac, F!, fxk, x, jcfg) else FiniteDiff.finite_difference_jacobian!(jac, F!, x, jche) end njac = njac + 1 # Scale Jacobian and change sign of it for ic = 1:n jac[:,ic] = jac[:,ic] * -xscale[ic] end # Compute QR-factorization of Jacobian jacqr = qr(jac, ColumnNorm()) # Solve linear system -F'(x^k) * dx^k = F(x^k) ldiv!(dx, jacqr, fxk) # Descale predictor increment vector dx = dx .* xscale normdx = rms(dx ./ xscale) precs = normdx if loglevel >= debug @printf("%5i %12e %12e %7f\n", k, normdx, normfk, lambda ) end # Convergence test: If norm(dx^k) <= epsilon: Solution found: x^* := x^k + dx^k cnvg = normdx <= xtol if cnvg x .= x .+ dx k = k + 1 break end # For k > 0: Compute a prediction value for the damping factor if k > 0 lambdakm1 = lambda # Damping factor of last iterate # estimate for Lipschitz constant [omegabar_k] (page 228 1st formula) # Solve -F'(x^k) * Pdxbar = -F'(x^k) * Delta(x^{k-1},x^k) based on (4.79) mul!(jacdxbar, jac, dxbar ./ xscale) ldiv!(Pdxbar, jacqr, jacdxbar) # Pdxbar = P(x^k) * Delta(x^{k-1},x^k) dxh = rms((dxbar .- dx) ./ xscale)^2 - rms((dxbar ./ xscale) .- Pdxbar)^2 # (Delta(x^{k-1},x^k) - Delta(x^k,x^k))^2 - ((I_n - P(x^k)) * Delta(x^{k-1},x^k))^2 omegabar = sqrt(dxh) / (lambdakm1*normdxkm1*normdxbar) # Damping factor (page 228 2nd formula) lambda = min(1.0, 1.0/(omegabar*normdx)) end reduced = false @label checkregularity # Regularity test: If lambda_k < lambda_min: Convergence failure if lambda < lambda_min if loglevel >= verbose println("Convergence failure, damping factor became too small.") end break end # 2. Compute the trial iterate x^{k+1} := x^k + lambda_k * dx^k (3.43) xkp1 = x .+ lambda*dx # Evaluate F(x^{k+1}) okay = F!(fxk, xkp1) nfcn = nfcn + 1 if !okay println("Error in function evaluation $nfcn. Step reject not implemented.") break end normfkp1 = rms(fxk) # Simplified Gauss-Newton correction # Solve linear system (old Jacobian, new right hand side) F'(x^k) * dxbar^{k+1} = F(x^{k+1}) page 199 3rd formula ldiv!(dxbar, jacqr, fxk) # Descale corrector increment vector dxbar = dxbar .* xscale normdxbar = rms(dxbar ./ xscale) precs = normdxbar if loglevel >= debug @printf("%5i * %12e %12e %7f\n", k, normdxbar, normfkp1, lambda ) end # 3. Compute the monitoring quantity Theta_k := norm(dxbar^{k+1}) / norm(dx^k) and correction damping factor mue theta = normdxbar / normdx # Contraction factor (page 148 1st formula resp. page 213 1st formula resp. page 227 3rd formula) if k > 0 if (lambdakm1 == 1.0) && (lambda == 1.0) # Iterates approach the solution del = theta # page 215 1st paragraph elseif DELKCOMP # solve F'(x^k) * w = F(x^{k-1}) + F'(x^{k-1})*dx^{k-1} ldiv!(w, jacqr, fxkm1 + jacdxkm1) # w = F'(x^k)^+ * r(x^{k-1}) del1 = rms(w) # solve F'(x^k) * w = F(x^{k-1}) ldiv!(w, jacqr, fxkm1) # w = F'(x^k)^+ * F(x^{k-1}) del2 = rms(w) # delta_k(x^{k-1}) (page 214 8th formula / page 217 1st formula) del = del1 / del2 else del = 0.0 end else del = 0.0 end # Solve F'(x^k) * dxl = F(x^k + lambda*Delta(x^k,x^k)) w = x .+ lambda*dx okay = F!(fxl, w) nfcn = nfcn + 1 if !okay println("Error in function evaluation $nfcn. Step reject not implemented.") break end ldiv!(dxl, jacqr, fxl) # dxl = Delta(x^k,x^k+lambda*Delta(x^k,x^k)) hk = 2.0*rms(dxl .- (1.0 - lambda)*dx ./ xscale) / (lambda*lambda*normdx) # [h_k] (4.68) mue = (1.0 - del) / hk # Correction damping factor (page 213 4th formula) # If Theta_k >= 1 (or, if restricted Theta_k > 1 - lambda_k/4) # then replace lambda_k by lambda'_k := min(mu'_k, lambda_k/2). Goto regularity test. # else let lambda'_k := min(1, lambda'_k) if (!restricted && theta >= 1.0) || (restricted && theta > 1.0-lambda/4.0) # Natural/restricted monotonicity test failed lambda_new = min(mue, 0.5*lambda) # Corrected damping factor (3.48) if lambda <= lambda_min lambda = lambda_new # Does not make sense, bug? else lambda = max(lambda_new, lambda_min) end reduced = true @goto checkregularity else # Monotonicity test succeeded lambda_new = min(1.0, mue) # (3.45) end # If lambda'_k == lambda_k == 1 # then if norm(dxbar^{k+1}) <= epsilon: Solution found: x^* := x^{k+1} + dxbar^{k+1} # else if Theta_k < 0.5 switch to quasi Gauss-Newton method # else if lambda'_k >= 4*lambda_k replace lambda_k by lambda'_k and goto 2. # else accept x^{k+1} as new iterate: goto 1 with k := k + 1. if (lambda == 1.0) && (lambda_new == 1.0) # Iterates approach the solution cnvg = normdxbar <= xtol # Convergence test if cnvg x .= xkp1 .+ dxbar break end if quasi qnerr_iter = theta < THETA_MAX # page 148 1st formula end elseif (lambda_new >= 4.0*lambda) && !reduced # not documented? lambda = lambda_new @goto checkregularity end # Save previous iterate for scaling purposes and accept new iterate w .= x x .= xkp1 normfk = normfkp1 if DELKCOMP fxkm1 .= fxk mul!(jacdxkm1, jac, dx ./ xscale) end # Next step k = k + 1 if k >= maxiter break end if qnerr_iter # Local error-oriented quasi Gauss-Newton method using Broyden's 'good' rank-1 updates # Input arguments: x, nfcn, normdx, jaclu, F!, n, scale, dx, maxiter # Output arguments: x, nfcn, normdx, normfk, cnvg, precs, okay, qnerr_iter # Overwrites: xscale # Work arrays dx_qn = similar(x, n, 1) sigma = similar(x, maxiter+2) fxk_qn = similar(x, m) v = similar(x, n) # Set scaling vector if scale === nothing xscale .= 1.0 else xscale .= scale end # Initialization dx_qn[:,1] .= dx s = normdx sigma[1] = s * s # For k = 0, ..., k_max: k_qn = 0 while true if k_qn > 0 # New iterate x_k+1 x .= x .+ dx_qn[:,k_qn+1] precs = normdx cnvg = sigma[k_qn+1] <= xtol * xtol if cnvg k_qn = k_qn + 1 break end end # Allocate new column of dx_qn dx_qn = hcat(dx_qn, similar(x, n)) # Evaluate F(x_k+1) okay = F!(fxk_qn, x) nfcn = nfcn + 1 if !okay println("Error in function evaluation $nfcn. Step reject not implemented.") break end normfk = rms(fxk_qn) # Solve linear system J*v = -F_k+1 ldiv!(v, jacqr, fxk_qn) # Descale v v = v .* xscale for i = 1:k_qn alpha_bar = dot(v ./ xscale, dx_qn[:,i] ./ xscale)/n / sigma[i] v = v .+ (alpha_bar * dx_qn[:,i+1]) end alpha_kp1 = dot(v ./ xscale, dx_qn[:,k_qn+1] ./ xscale)/n / sigma[k_qn+1] s = 1.0 - alpha_kp1 dx_qn[:,k_qn+2] .= v / s thetak = rms(dx_qn[:,k_qn+2]) / rms(dx_qn[:,k_qn+1]) # page 225 3rd formula # Check contraction factor if thetak > THETA_MAX if loglevel >= debug @printf("%5i %12e %12e QNERR THETA!\n", k+k_qn, normdx, normfk ) end k_qn = k_qn + 1 break end sigma[k_qn+2] = dot(dx_qn[:,k_qn+2] ./ xscale, dx_qn[:,k_qn+2] ./ xscale)/n normdx = sqrt(sigma[k_qn+2]) if loglevel >= debug @printf("%5i %12e %12e QNERR\n", k+k_qn, normdx, normfk ) end k_qn = k_qn + 1 if k + k_qn >= maxiter break end end k = k + k_qn - 1 # Total number of iterations if cnvg break else normfk = normfkp1 qnerr_iter = false end if k >= maxiter break end end end if k >= maxiter println("Max. allowed number of iterations = $maxiter exceeded.") end if loglevel >= info println("Solver $(cnvg ? "converged" : "did not converge").") if loglevel >= verbose println("Number of iterations = $k") println("Number of function evaluations = $nfcn") println("Number of Jacobian evaluations = $njac") if loglevel >= debug println("Solution vector = $x") end println("Precision = $precs") end end return cnvg end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
2894
""" Symbolic simplifications of +, -, *, /, ^ * Developer: Hilding Elmqvist, Mogram AB * First version: December 2020 * License: MIT (expat) If possible, the operation is performed. Special care about adding zero and multiplying with one. """ module Simplify export add, sub, mult, divide, power, simplify using Base.Meta: isexpr using Unitful isUnit(x) = typeof(x) <: Unitful.FreeUnits || isexpr(x, :macrocall) function add(x, y) if typeof(x) in [Float64, Int64] && typeof(y) in [Float64, Int64] x + y elseif x == 0 y elseif y == 0 x else :($x + $y) end end function sub(x, y) if typeof(x) in [Float64, Int64] && typeof(y) in [Float64, Int64] x - y elseif x == 0 && isexpr(y, :call) && length(y.args) == 2 && y.args[1] == :- y.args[2] elseif x == 0 :(- $y) elseif y == 0 x else :($x - $y) end end function mult(x, y) if typeof(x) in [Float64, Int64] && typeof(y) in [Float64, Int64] x * y elseif (x == 0 && ! isUnit(y)) || (y == 0 && ! isUnit(x)) # Does not remove unit even if 0 0 elseif x == 1 && ! isUnit(y) y elseif y == 1 && ! isUnit(x) x elseif x == -1 && ! isUnit(y) sub(0, y) else :($x * $y) end end function divide(x, y) if typeof(x) in [Float64, Int64] && typeof(y) in [Float64, Int64] x / y elseif x == 0 || x == 0.0 0 elseif y === 1 || y == 1.0 x elseif y === -1 sub(0, x) else :($x / $y) end end function power(x, y) if typeof(x) in [Float64, Int64] && typeof(y) in [Float64, Int64] x ^ y elseif y == 1 x else :($x ^ $y) end end simplify(ex) = ex function simplify(ex::Expr) args = [simplify(arg) for arg in ex.args] if ex.head == :call && ex.args[1] in [:+, :-, :*] && all([typeof(a) in [Float64, Int64] for a in args[2:end]]) if ex.args[1] in [:+] return sum(args[2:end]) elseif ex.args[1] in [:-] return args[2] - sum(args[3:end]) else return prod(args[2:end]) end elseif ex.head == :call && ex.args[1] == :* && any([a == 0 for a in args[2:end]]) # x*0*y = 0 return 0 elseif ex.head == :call && ex.args[1] == :^ && length(args) == 3 && args[3] == 1 # x^1 = x return args[2] elseif ex.head == :call && ex.args[1] == :^ && length(args) == 3 && args[3] == 0 # x^0 = 1 return 1 else return Expr(ex.head, args...) end end function testSimplify() @show simplify(:(1+3)) @show simplify(:(3-1)) @show simplify(:(4*3)) @show simplify(:(4*3+x)) @show simplify(:(1+3+x)) @show simplify(:(1+x+3)) @show simplify(:(x^0)) @show simplify(:(x^1)) @show simplify(:(x^(3-2))) end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
18326
""" Structural and symbolic processing. * Developer: Hilding Elmqvist, Mogram AB * First version: December 2020 * License: MIT (expat) Examples of use can be found in TestSymbolic.jl """ module Symbolic export removeBlock, removeQuoteNode, makeDerVar, append, prepend, Incidence, findIncidence!, linearFactor, solveEquation, isLinear, getCoefficients, substitute, removeUnits, resetEventCounters, getEventCounters, substituteForEvents using Base.Meta: isexpr using OrderedCollections using ModiaBase.Simplify using Unitful using Measurements using MonteCarloMeasurements """ e = removeBlock(ex) Remove :block with LineNumberNode from expressions * `ex`: Expression or array of expressions * `return `e`: ex with :block removed """ removeBlock(ex) = ex removeBlock(arr::Array{Any,1}) = [removeBlock(a) for a in arr] removeBlock(arr::Array{Expr,1}) = [removeBlock(a) for a in arr] removeBlock(q::QuoteNode) = q # if typeof(q.value) == Symbol; q.value else q end # begin print("QuoteNode: "); dump(q); q; end # q.value removeBlock(d::OrderedDict) = OrderedDict{Symbol, Any}([(k,removeBlock(v)) for (k,v) in d]) function removeBlock(ex::Expr) if isexpr(ex, :block) && length(ex.args) == 2 && typeof(ex.args[1]) == LineNumberNode ex.args[2] elseif isexpr(ex, :block) && length(ex.args) == 3 && typeof(ex.args[1]) == LineNumberNode && typeof(ex.args[2]) == LineNumberNode ex.args[3] else Expr(ex.head, [removeBlock(arg) for arg in ex.args]...) end end removeQuoteNode(ex) = ex removeQuoteNode(arr::Array{Any,1}) = [removeQuoteNode(a) for a in arr] removeQuoteNode(arr::Array{Expr,1}) = [removeQuoteNode(a) for a in arr] removeQuoteNode(q::QuoteNode) = q.value # if typeof(q.value) == Symbol; q.value else q end # begin print("QuoteNode: "); dump(q); q; end # q.value removeQuoteNode(d::OrderedDict) = OrderedDict{Symbol, Any}([(k,removeQuoteNode(v)) for (k,v) in d]) function removeQuoteNode(ex::Expr) Expr(ex.head, [removeQuoteNode(arg) for arg in ex.args]...) end removeUnits(ex) = if typeof(ex) <: Unitful.Quantity; @show ex; ustrip(ex) else ex end removeUnits(ex::Expr) = if ex.head == :macrocall && ex.args[1] == Symbol("@u_str"); 1 else Expr(ex.head, [removeUnits(arg) for arg in ex.args]...) end append(ex, suffix) = if ex == nothing; suffix else Expr(:., ex, QuoteNode(suffix)) end prepend(ex, prefix) = ex #prepend(ex, prefix::Array{Any,1}) = if length(prefix) == 0; ex else prepend(prepend(ex, prefix[end]), prefix[1:end-1]) end #prepend(ex, prefix::Array{Symbol,1}) = if length(prefix) == 0; ex else prepend(prepend(ex, prefix[end]), prefix[1:end-1]) end #prepend(ex::Symbol, prefix::Array{Symbol,1}) = if length(prefix) == 0; ex else prepend(prepend(ex, prefix[end]), prefix[1:end-1]) end #prepend(ex::QuoteNode, prefix::Symbol) = Expr(:., prefix, QuoteNode(ex)) prepend(ex::Symbol, prefix) = if prefix == nothing; ex elseif ex in [:time, :instantiatedModel, :_leq_mode, :_x]; ex else Expr(:., prefix, QuoteNode(ex)) end prepend(ex::Symbol, prefix::Nothing) = ex prepend(arr::Array{Expr,1}, prefix) = [prepend(a, prefix) for a in arr] #prepend(dict::OrderedCollections.OrderedDict{Symbol,Expr}, prefix) = OrderedDict([prepend(k, prefix) => prepend(k, prefix) for (k,v) in dict]) function prepend(ex::Expr, prefix) if typeof(prefix) == Array{Any,1} && length(prefix) == 0 ex elseif ex.head == :. && ex.args[1] == :up ex.args[2].value elseif ex.head in [:call, :kw] if false #ex.head == :call && ex.args[1] == :der e = Symbol(ex) :($prefix.$e) else Expr(ex.head, ex.args[1], [prepend(arg, prefix) for arg in ex.args[2:end]]...) end elseif ex.head == :macrocall if length(ex.args) >= 1 && ex.args[1] == Symbol("@u_str") # Do not expand units, such as u"s", because otherwise logCode=true results in wrong code, because show(u"N") is N and not u"N". ex else eval(ex) end else Expr(ex.head, [prepend(arg, prefix) for arg in ex.args]...) end end nCrossingFunctions = 0 nAfter = 0 nClocks = 0 nSamples = 0 previousVars = [] preVars = [] holdVars = [] function resetEventCounters() global nCrossingFunctions global nAfter global nClocks global nSamples global previousVars global preVars global holdVars nCrossingFunctions = 0 nAfter = 0 nClocks = 0 nSamples = 0 previousVars = [] preVars = [] holdVars = [] end function getEventCounters() global nCrossingFunctions global nAfter global nClocks global nSamples global previousVars global preVars global holdVars return (nCrossingFunctions, nAfter, nClocks, nSamples, previousVars, preVars, holdVars) end substituteForEvents(ex) = ex function substituteForEvents(ex::Expr) global nCrossingFunctions global nAfter global nClocks global nSamples global previousVar global preVars global holdVars if ex.head in [:call, :kw] if ex.head == :call && ex.args[1] == :positive nCrossingFunctions += 1 :(positive(instantiatedModel, $nCrossingFunctions, ustrip($(substituteForEvents(ex.args[2]))), $(string(substituteForEvents(ex.args[2]))), _leq_mode)) elseif ex.head == :call && ex.args[1] == :Clock @assert 2<=length(ex.args)<=3 "The Clock function takes one or two arguments: $ex" nClocks += 1 if length(ex.args) == 2 :(Clock(ustrip($(substituteForEvents(ex.args[2]))), instantiatedModel, $nClocks)) else :(Clock(ustrip($(substituteForEvents(ex.args[2]))), ustrip($(substituteForEvents(ex.args[3]))), instantiatedModel, $nClocks)) end elseif ex.head == :call && ex.args[1] == :sample nSamples += 1 :(sample($(substituteForEvents(ex.args[2])), $(substituteForEvents(ex.args[3])), instantiatedModel, $nSamples)) elseif ex.head == :call && ex.args[1] == :pre if length(ex.args) == 2 push!(preVars, ex.args[2]) nPre = length(preVars) :(pre(instantiatedModel, $nPre)) else error("The pre function takes one arguments: $ex") end elseif ex.head == :call && ex.args[1] == :previous if length(ex.args) == 3 push!(previousVars, ex.args[2]) nPrevious = length(previousVars) :(previous($(substituteForEvents(ex.args[3])), instantiatedModel, $nPrevious)) else error("The previous function presently takes two arguments: $ex") end elseif ex.head == :call && ex.args[1] == :hold push!(holdVars, ex.args[2]) nHold = length(holdVars) if length(ex.args) == 3 :(hold($(substituteForEvents(ex.args[2])), $(substituteForEvents(ex.args[3])), instantiatedModel, $nHold)) else # error("The hold function takes two or three arguments, hold(v, clock) or hold(expr, start, clock) : $ex") error("The hold function takes two arguments, hold(v, clock): $ex") end elseif ex.head == :call && ex.args[1] in [:initial, :terminal] if length(ex.args) == 1 :($(ex.args[1])(instantiatedModel)) else error("The $(ex.args[1]) function don't take any arguments: $ex") end elseif ex.head == :call && ex.args[1] == :after # after(instantiatedModel, nr, t, tAsString, leq_mode) nAfter += 1 :(after(instantiatedModel, $nAfter, ustrip($(substituteForEvents(ex.args[2]))), $(string(substituteForEvents(ex.args[2]))), _leq_mode)) else Expr(ex.head, ex.args[1], [substituteForEvents(arg) for arg in ex.args[2:end]]...) end else Expr(ex.head, [substituteForEvents(arg) for arg in ex.args]...) end end Incidence = Union{Symbol, Expr} """ findIncidence!(ex, incidence::Array{Incidence,1}) Traverses an expression and finds incidences of Symbols and der(...) * `ex`: Expression or array of expressions * `incidence`: array of incidences. New incidences of `ex` are pushed. """ findIncidence!(ex, incidence::Array{Incidence,1}, includeX::Bool=true) = nothing findIncidence!(s::Symbol, incidence::Array{Incidence,1}, includeX::Bool=true) = begin if ! (s in [:(:), :end]); push!(incidence, s) end end findIncidence!(arr::Array{Any,1}, incidence::Array{Incidence,1}, includeX::Bool=true) = [findIncidence!(a, incidence, includeX) for a in arr] findIncidence!(arr::Array{Expr,1}, incidence::Array{Incidence,1}, includeX::Bool=true) = [findIncidence!(a, incidence, includeX) for a in arr] function findIncidence!(ex::Expr, incidence::Array{Incidence,1}, includeX::Bool=true) if ex.head == :macrocall && ex.args[1] == Symbol("@u_str") nothing elseif isexpr(ex, :function) nothing elseif ex.head == :call if ex.args[1] == :der push!(incidence, ex) # der(x) if includeX push!(incidence, ex.args[2]) # x end elseif ex.args[1] in [:pre, :previous] [findIncidence!(e, incidence, includeX) for e in ex.args[3:end]] # skip operator/function name and first argument else [findIncidence!(e, incidence, includeX) for e in ex.args[2:end]] # skip operator/function name end elseif ex.head == :. push!(incidence, ex) # if ex.args[2].value != :all # push!(incidence, ex.args[1]) # end elseif ex.head == :generator vars = [v.args[1] for v in ex.args[2:end]] incid = Incidence[] [findIncidence!(e, incid, includeX) for e in ex.args] unique!(incid) setdiff!(incid, vars) push!(incidence, incid...) else # For example: =, vect, hcat, block, ref [findIncidence!(e, incidence, includeX) for e in ex.args] end nothing end """ (rest, factor, linear) = linearFactor(ex, x) Finds the linear `factor` and `rest` if `ex` is `linear` with regards to `x` (ex == factor*x + rest) * `ex`: Expression * `return (rest, factor, linear)`: """ linearFactor(ex, x) = (ex, 0, true) linearFactor(ex::Symbol, x::Incidence) = if ex == x; (0, 1, true) else (ex, 0, true) end function linearFactor(ex::Expr, x::Incidence) if ex.head == :block linearFactor(ex.args[1], x) elseif ex.head == :macrocall && ex.args[1] == Symbol("@u_str") (ex, 0, true) elseif isexpr(ex, :call) && ex.args[1] == :der if ex == x; (0, 1, true) else (ex, 0, true) end elseif isexpr(ex, :call) && ex.args[1] in [:positive, :previous] (ex, 0, true) elseif isexpr(ex, :call) func = ex.args[1] if func in [:_DUPLICATEEQUATION, :_DUPLICATIMPLICITDEPENDENCY, :implicitDependency] return (ex, 0, false) end arguments = ex.args[2:end] factored = [linearFactor(a, x) for a in arguments] rests = [f[1] for f in factored] factors = [f[2] for f in factored] linears = [f[3] for f in factored] if func == :+ rest = foldl(add, rests) factor = foldl(add, factors) (rest, factor, all(linears)) elseif func == :- if length(rests) == 1 rest = sub(0, rests[1]) else rest = foldl(sub, rests) end if length(factors) == 1 factor = sub(0, factors[1]) else factor = foldl(sub, factors) end (rest, factor, all(linears)) elseif func == :* if length(arguments) > 2 linearFactor(foldl(mult, arguments), x) else # (r1 + f1*x)*(r2 + f2*x) = (r1*r2 + r1*f2*x + f1*r2*x + ...) rest = foldl(mult, rests) factor = 0 if factors[1] == 0 factor = mult(rests[1], factors[2]) (rest, factor, all(linears)) elseif length(factors) == 2 && factors[2] == 0 factor = mult(rests[2], factors[1]) (rest, factor, all(linears)) else (0, 0, false) end end elseif func == :/ # (r1 + f1*x)/r2 = (r1/r2 + f1/r2*x) rest = foldl(divide, rests) @assert length(factors) == 2 "Non-binary division is not handled." factor = divide(factors[1], rests[2]) (rest, factor, all(linears) && all(factors[2:end] .== 0)) elseif func == :\ # r1 \ (r2 + f2*x) = (r1\r2 + r1\f2*x) rest = divide(rests[2], rests[1]) @assert length(factors) == 2 "Non-binary \\ is not handled." factor = divide(factors[2], rests[1]) (rest, factor, all(linears) && factors[1] == 0) else (ex, 0, all(linears) && all(factors .== 0)) end elseif ex.head == :. if ex == x; (0, 1, true) else (ex, 0, true) end elseif isexpr(ex, :if) || isexpr(ex, :elseif) cond = linearFactor(ex.args[1], x) then = linearFactor(ex.args[2], x) els = linearFactor(ex.args[3], x) if then[1] == els[1] rest = then[1] else rest = :(if $(cond[1]); $(then[1]) else $(els[1]) end) end if then[2] == els[2] factor = then[2] else factor = :(if $(cond[1]); $(then[2]) else $(els[2]) end) end (rest, factor, cond[3] && then[3] && els[3]) elseif isexpr(ex, :(=)) LHS = linearFactor(ex.args[1], x) RHS = linearFactor(ex.args[2], x) rest = sub(LHS[1], RHS[1]) factor = sub(LHS[2], RHS[2]) (rest, factor, LHS[3] && RHS[3]) elseif isexpr(ex, :vect) || isexpr(ex, :vcat) || isexpr(ex, :hcat) || isexpr(ex, :row) arguments = ex.args[2:end] factored = [linearFactor(a, x) for a in arguments] linears = [f[3] for f in factored] (ex, 0, all(linears)) else # @warn "Unknown expression type" ex # dump(ex) incidence = Incidence[] findIncidence!(ex, incidence) if x in incidence (ex, 0, false) else (ex, 0, true) end end end """ (solved_equation, solved) = solveEquation(equ::Expr, x) Solves `equ` for `x` if `ex` is linear with regards to `x` (equ == factor*x + rest = 0) * `equ`: Equation (expression = expression) * `return (solved_equation, solved)`: If the equation is `solved`, solved_equation constains the corresponding Expr """ function solveEquation(equ::Expr, x) (rest, factor, linear) = linearFactor(equ, x) (:($x = $(divide(sub(0, rest), factor))), linear) end """ (linear, constant) = isLinear(ex::Expr, x) Tests if `ex` is `linear` with regards to `x` (ex == factor*x + rest) and checks if the factor is `constant` * `ex`: Expression * `return (linear, constant)` """ function isLinear(equ::Expr, x::Incidence) (rest, factor, linear) = linearFactor(equ, x) (linear, typeof(factor) != Expr) end """ (incidence, coefficients, rest, linear) = getCoefficients(ex) If `ex` is `linear` with regards to all `incidence` (Symbols and der(...)), the `coefficients` and `rest` are returned * `ex`: Expression * `return (incidence, coefficients, rest, linear)` """ function getCoefficients(ex::Expr) incidence = Incidence[] findIncidence!(ex, incidence) coefficients = [] rest = ex linear = true for x in incidence crossIncidence = Incidence[] findIncidence!(coefficients, crossIncidence) if x in crossIncidence linear = false break end (rest, factor, linearRest) = linearFactor(rest, x) if !linearRest linear = false break end push!(coefficients, factor) end incidence, coefficients, rest, linear end substitute(substitutions, ex) = begin nex = get(substitutions, ex, ex); if nex != ex; nex = substitute(substitutions, nex) else nex end; nex end substitute(substitutions, ex::Vector{Symbol}) = [substitute(substitutions, e) for e in ex] substitute(substitutions, ex::Vector{Expr}) = [substitute(substitutions, e) for e in ex] substitute(substitutions, ex::MonteCarloMeasurements.StaticParticles) = ex substitute(substitutions, ex::Measurements.Measurement{Float64}) = ex function substitute(substitutions, ex::Expr) if isexpr(ex, :quote) ex elseif ex.head == :. nex = get(substitutions, ex, ex) if nex != ex nex = substitute(substitutions, nex) end nex elseif ex.head == :call && ex.args[1] == :+ && length(ex.args) ==3 add(substitute(substitutions, ex.args[2]), substitute(substitutions,ex.args[3])) elseif ex.head == :call && ex.args[1] == :- && length(ex.args) ==3 sub(substitute(substitutions, ex.args[2]), substitute(substitutions,ex.args[3])) elseif ex.head == :call && ex.args[1] == :* && length(ex.args) ==3 mult(substitute(substitutions, ex.args[2]), substitute(substitutions,ex.args[3])) else Expr(ex.head, [substitute(substitutions, arg) for arg in ex.args]...) end end function testSubstitutions() ex = substitute(Dict(:a=>:b), :(a+b=0)) @show ex ex = substitute(Dict(:a=>:b), :(a+b+c=0)) @show ex ex = substitute(Dict(:b=>0), :(a+b=0)) @show ex ex = substitute(Dict(:b=>0.0), :(a+b=0)) @show ex ex = substitute(Dict(:b=>0), :(a+b+c=0)) @show ex ex = substitute(Dict(:b=>0.0), :(a+b+c=0)) @show ex ex = substitute(Dict(:b=>0.0), :(a+b*(c+d)=0)) @show ex println("TEST getCoefficients") n = 10000 @show n e = Expr(:call, :f, fill(:x, n)...) # @show e @time incidence, coefficients, rest, linear = getCoefficients(e) # @show incidence coefficients rest linear e = Expr(:call, :_DUPLICATEEQUATION, fill(:x, n)...) # @show e @time incidence, coefficients, rest, linear = getCoefficients(e) # @show incidence coefficients rest linear end # testSubstitutions() end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
21707
# License for this file: MIT (expat) # Copyright 2017-2021, DLR Institute of System Dynamics and Control # Author: Martin Otter, DLR-SR # # Functions to tear systems of equations. export TearingSetup, tearEquations! const Undefined = typemin(Int) #= Bender, Fineman, Gilbert, Tarjan (2016): A New Approach to Incremental Cycle Detection and Related Problems. ACM Transactions on Algorithms, Volume 12, Issue 2, Feb. 2016 http://dl.acm.org/citation.cfm?id=2756553 Text excerpt from this paper (the advantage of Algorithm N is that it is simple to implement and needs no sophisticated data structures) 3. A ONE-WAY-SEARCH ALGORITHM FOR DENSE GRAPHS [..] To develop the algorithm, we begin with a simple algorithm and then modify it to improve its running time. We call the simple algorithm Algorithm N (for β€œnaive”). The algorithm initializes k(v) = 1 for each vertex v. The initial vertex levels are a weak topological numbering since the initial graph contains no arcs. To add an arc (v,w), if k(v) < k(w), merely add the arc. If, on the other hand, k(v) β‰₯ k(w), add the arc and then do a selective forward search that begins by traversing (v,w) and continues until the search traverses an arc into v (there is a cycle) or there are no more candidate arcs to traverse. To traverse an arc (x, y), if y = v, stop (there is a cycle); otherwise, if k(x) β‰₯ k(y), increase k(y) to k(x)+1 and add all arcs (y, z) to the set of candidate arcs to traverse. It is easy to show that (1) after each arc addition that does not form a cycle the vertex levels are a weak topological numbering, (2) Algorithm N is correct, and (3) 1 ≀ k(v) ≀ size(v) ≀ n for all v. Since an arc (x, y) notEqual (v,w) is only traversed as a result of k(x) increasing, each arc is traversed at most n times, resulting in a total time bound of O(nm) for all arc additions. =# """ ts = TearingSetup(G [,nv]) Generate a setup object `ts` from a bi-partite graph `G` to reduce one or more systems of equations that are present in `G`. The returned object `ts` holds internal auxiliary storage that is used in analysis with function [`tearEquations!`](@ref). `G` is expected to be a vector of integer vectors (for example of type `Vector{ Vector{Int} }`). The optional argument `nv` is the largest integer number occuring in `G` (= number of variables). If `nv` is not provided, it is deduced from `G`. `TearingSetup` is useful to reduce the amount of memory to be allocated, if function [`tearEquations!`](@ref) shall be called several times on equation systems from `G`. """ mutable struct TearingSetup minlevel::Int curlevel::Int level::Vector{Int} lastlevel::Vector{Int} levelStack::Vector{Int} visitedStack::Vector{Int} vActive::Vector{Bool} vAssignable::Vector{Bool} visited::Vector{Bool} check::Vector{Bool} stack::Vector{Int} eSolved::Vector{Int} vSolved::Vector{Int} G::AbstractVector # Vector{ Vector{Int} } or Vector{ Any } assign::Vector{Int} function TearingSetup(G::AbstractVector, nv::Int) visited = fill(false, length(G)) check = fill(false, length(G)) vActive = fill(false, nv) vAssignable = fill(false, nv) level = fill(Undefined, nv) lastlevel = fill(Undefined, nv) levelStack = fill(0, 0) stack = fill(0, 0) visitedStack = fill(0, 0) eSolved = fill(0, 0) vSolved = fill(0, 0) assign = fill(0, nv) new(0, Undefined, level, lastlevel, levelStack, visitedStack, vActive, vAssignable, visited, check, stack, eSolved, vSolved, G, assign) end function TearingSetup(G::AbstractVector) nv = 1 for g in G nv = max(nv, maximum(g)) end TearingSetup(G,nv) end end """ reInitializeTearingSetup!(td::TearingSetup, es, vs, eSolvedFixed, vSolvedFixed) Define the set of equations and the set of variables for which the equations shall be solved for (equations es shall be solved for variables vs) and re-initialize td. eSolvedFixed/vSolvedFixed must be a DAG starting at eSolvedFixed/vSolvedFixed[1] """ function reInitializeTearingSetup!(td::TearingSetup, es::Vector{Int}, vs::Vector{ Vector{Int} }, eSolvedFixed::Vector{Int}, vSolvedFixed::Vector{Int}, check::Bool) # check arguments if check # Check that eSolvedFixed, vSolvedFixed are a DAG @assert( length(eSolvedFixed) == length(vSolvedFixed) ) if length(eSolvedFixed) > 0 checkDAG!(td, eSolvedFixed, vSolvedFixed) end # Check es neq = length(td.G) for esi in es @assert(esi > 0 && esi <= neq) end # Check that eSolvedFixed and es have no elements in common ediff = intersect(eSolvedFixed, es) if length(ediff) != 0 error("... Error in Tearing.jl: Function tearEquations!(...) was not called correctly:\n", "eSolvedFixed and es are not allowed to have elements in common.") end # Check vs and that vSolvedFixed and vs have no elements in common nv = length(td.vActive) for vse in vs for vsi in vse @assert(vsi > 0 && vsi <= nv) end vdiff = intersect(vSolvedFixed, vse) if length(vdiff) != 0 error("... Error in Tearing.jl: Function tearEquations!(...) was not called correctly:\n", "vSolvedFixed and vs are not allowed to have elements in common.") end end end # Re-initialize td td.minlevel = 0 td.curlevel = Undefined for i in eachindex(td.visited) td.visited[i] = false td.check[i] = false end for i in eachindex(td.vActive) td.vActive[i] = false td.vAssignable[i] = false td.assign[i] = 0 td.level[i] = Undefined td.lastlevel[i] = Undefined end empty!(td.levelStack) empty!(td.stack) empty!(td.visitedStack) empty!(td.eSolved) empty!(td.vSolved) # Define initial DAG vs2 = Int[] for i in eachindex(vSolvedFixed) vFixed = vSolvedFixed[i] td.assign[vFixed] = eSolvedFixed[i] td.level[ vFixed] = i push!(vs2, vFixed) end # Define that vs and vSolvedFixed shall be treated as the unknown variables during traversal for vse in vs for vsi in vse td.vActive[vsi] = true end end for vsi in vSolvedFixed td.vActive[vsi] = true end return vs2 end in_vActive(td, v) = td.vActive[v] in_vAssignable(td, v) = td.vAssignable[v] """ result = isDAG!(td::TearingSetup, vStart::Int) Traverse potential DAG starting from variable node vStart. If no cycle is detected return true, otherwise return false. """ function isDAG!(td::TearingSetup, vStart::Int)::Bool # Initialize stacks and flags empty!(td.stack) for i in eachindex(td.visited) td.visited[i] = false td.check[i] = false end # Traverse DAG push!(td.stack, vStart) while length(td.stack) > 0 veq = td.stack[end] eq = td.assign[veq] if !td.visited[eq] td.visited[eq] = true td.check[eq] = true for v in td.G[eq] if in_vActive(td, v) && v != veq # v is an element of the unknown variables and is not the variable to solve for eq2 = td.assign[v] if eq2 != 0 if !td.visited[eq2] # eq2 not yet visited push!(td.stack, v) elseif td.check[eq2] # cycle detected return false end #else # error("... error in Tearing.jl code in function isDAG! (should not occur): assign[$v] = 0") end end end else td.check[eq] = false pop!(td.stack) end end return true end """ visitDAG!(td::TearingSetup,v) Traverse DAG starting from variable v and store visited equations and variables in stacks eSolved, vSolved. If a cycle is deteced, raise an error (signals a programming error). """ function visitDAG!(td::TearingSetup, vVisit::Int) push!(td.stack, vVisit) while length(td.stack) > 0 veq = td.stack[end] eq = td.assign[veq] if !td.visited[eq] td.visited[eq] = true td.check[eq] = true for v in td.G[eq] if in_vActive(td, v) && v != veq # v is an element of the unknown variables and is not the variable to solve for eq2 = td.assign[v] if eq2 != 0 if !td.visited[eq2] # visit eq2 if not yet visited push!(td.stack, v) elseif td.check[eq2] # cycle detected error("... error in Tearing.jl code: \n", " cycle detected (should not occur): eq = ", eq, ", veq = ", veq, ", eq2 = ", eq2, ", v = ", v) end end end end else td.check[eq] = false push!(td.eSolved, eq) push!(td.vSolved, veq) pop!(td.stack) end end nothing end """ (eSolved, vSolved) = sortDAG!(td::TearingSetup, vs) Sort the equations that are assigned by variables vs using object td of type TearingSetup and return the sorted equations eSolved and assigned variables vSolved. """ function sortDAG!(td::TearingSetup, vs::Vector{Int}) # initialize data structure empty!(td.stack) empty!(td.eSolved) empty!(td.vSolved) for i in eachindex(td.visited) td.visited[i] = false td.check[i] = false end # visit all assigned variables and equations for veq in vs if !td.visited[ td.assign[veq] ] visitDAG!(td, veq) end end return (td.eSolved, td.vSolved) end """ checkDAG!(td::TearingSetup, es::Vector{Int}, vs::Vector{Int}) A DAG is defined by equations es and variables vs, such that es[1] is solved for vs[1], afterwards es[2] for vs[2] etc. This function checks whether es/vs defines a DAG. If a cycle is detected, an error is raised (signals a programming error). """ function checkDAG!(td::TearingSetup, es::Vector{Int}, vs::Vector{Int})::Nothing if length(vs) == 0 return nothing end # Initialize stacks and flags empty!(td.stack) for i in eachindex(td.visited) td.visited[i] = false td.check[i] = false td.assign[i] = 0 end for i in eachindex(td.vActive) td.vActive[i] = false end for vsi in vs td.vActive[vsi] = true end for i in eachindex(es) td.assign[vs[i]] = es[i] end # Traverse DAG push!(td.stack, vs[1]) while length(td.stack) > 0 veq = td.stack[end] eq = td.assign[veq] if !td.visited[eq] td.visited[eq] = true td.check[eq] = true for v in td.G[eq] if in_vActive(td, v) && v != veq # v is an element of the unknown variables and is not the variable to solve for eq2 = td.assign[v] if eq2 != 0 if !td.visited[eq2] # visit eq2 if not yet visited push!(td.stack, v) elseif td.check[eq2] # cycle detected error("... error in Tearing.jl code (should not occur): \n", " Cycle detected: eq = ", eq, ", veq = ", veq, ", eq2 = ", eq2, ", v = ", v) end else error("... error in Tearing.jl code (should not occur): assign[$v] = 0") end end end else td.check[eq] = false pop!(td.stack) end end return nothing end function tearEquationsCore!(vs2, td::TearingSetup, isSolvable::Function, es::Vector{Int}, vs::Vector{Int}, log::Bool)::Nothing G = td.G vAssignable = false for eq in es # iterate only over equations that are not in eSolvedFixed for vj in G[eq] vAssignable = in_vAssignable(td, vj) vAssigned = td.assign[vj] > 0 if log if !vAssigned if vAssignable if isSolvable(eq,vj) println(" Equation $eq can be solved for variable $vj") else println(" Equation $eq cannot be solved for variable $vj") end end end end if vAssignable && !vAssigned && isSolvable(eq,vj) # vj is an element of the variables that can be assigned in this stage, but is not yet assigned # Add equation to graph td.assign[vj] = eq # Check for cycles (traverse DAG starting from vj) if isDAG!(td, vj) # accept vj push!(vs2, vj) if log println(" -> solved for variable $vj without cycles") end break # continue with next equation else # cycle; remove vj from DAG and undo its changes td.assign[vj] = 0 if log println(" -> solving for variable $vj gives a cycle (so not done)") end # continue with next variable in equation eq end end end end return nothing end """ (eSolved, vSolved, eResidue, vTear) = tearEquations!(GorTs, isSolvable, es, vs; eSolvedFixed=Int[], vSolvedFixed=Int[], check=true) This function tears a system of equations consisting of equations `es` and `eSolvedFixed` that are functions of variables `vs` and `vSolvedFixed`. The optional arguments `eSolvedFixed, vSolvedFixed` define the starting Directed Acyclic Graph (solving equations eSolvedFixed[1] for variable vSolvedFixed[1], eSolvedFixed[2] for variable vSolvedFixed[2] etc.) starting at `vSolvedFixed[1]`. The function returns the teared equations so that if `vTear` are given, `vSolved` can be computed from `eSolved` in a forward sequence (so solving `eSolved[1]` for `vSolved[1]`, `eSolved[2]` for `vSolved[2]`, and so on). `vTear` must be selected, so that the equations `eResidues` are fulfilled. Equations `eSolved` and `eResidue` are the (reordered) union of `es` and `eSolvedFixed`. Variables vSolved` and `vTear` are the (reordered) union of `vs` and `vSolvedFixed`. This means that an algebraic equation system `0 = g(w)` (`g` are equations `es` and `eSolvedFixed`; `w` are unknowns `vs` and `vSolvedFixed`) is solved as much as possible explicitly for the unknowns resulting in ``` w_e := g_e(w_t) 0 = g_r(w_t, w_e) ``` where - `w` (= vs and vSolvedFixed) consists of all elements of `w_e, w_t`; - equations `g_e` of `g` are explicitly solved for `w_e`; - equations `g_r` are the equations of `g` that cannot be explicitly solved (= residual equations). # Required arguments - `GorTs`: Either a bi-partite graph `G::Vector{Vector{Int}}` or `ts::TearingSetup` generated with constructor `ts = TearingSetup(G)`. `ts` is re-initialized in `tearEquations!` for any call of the function. `TearingSetup` is useful to reduce the amount of memory to be allocated, if several equation systems shall be teared from `G`. - `isSolvable(e,v)`: Function that returns true, if equation `e` can be solved for variable `v` without influencing the solution space (= rank preserving operation). - `es::Vector{Int}`: Vector of equations that shall be solved with respect to variables `vs`. `es` must be equations from `G`. - `vs`: Either of type `Vector{Int}` or of type `Vector{Vector{Int}}`. `vs` are the unknown variables that shall be solved from `es`. If `vs::Vector{Vector{Int}}`, it is first tried to solve `es` for `vs[1]`, then for `vs[2]` etc. (so `vs` defines a priority to solve for variables). # Optional arguments - `eSolvedFixed::Vector{Int}`: Equations of `G` that are already defined to be solved for `vSolvedFixed`. - `vSolvedFixed::Vector{Int]`: Variables of `G` that are explicitly solved from `eSolvedFixed`. - `check::Bool`: = true, if various checks shall be performed, for example that eSolvedFixed/vSolvedFixed and eSolved/vSolved are a DAG respectively. # Return arguments - `eSolved::Vector{Int}`: Equations that are explicitly solved in the order `eSolved[1], eSolved[2], ...`. - `vSolved::Vector{Int}`: Equation `eSolved[i]` is explicitly solved for variable `vSolved[i]`. - `eResdiue::Vector{Int}`: Residual equations that are not explicitly solved. - `vTear::Vector{Int}`: Tearing variables, so variables that are assumed to be known, when solving equations `eSolved`. # Example ``` using ModiaBase G = Vector{Int}[ [1,2,4], # equation 1 depends on variables 1,2,4 [1,7], [3,4], [3,7], [6,7], [2] ] es = [3,4,2,1] # Solve equations 3,4,2,1 vs = [3,7,1,4] # for variables 3,7,1,4 isSolvable(e,v) = true # Assume that every equation is solvable for its unknowns (eSolved,vSolved,eResidue,vTear) = tearEquations!(G, isSolvable, es, vs) # eSolved = [3,4,2] # vSolved = [3,7,1] # eResidue = [1] # vTear = [4] ``` # Algorithm The algorithm used in this function is sketched in the paper: - Otter, Elmqvist (2017): [Transformation of Differential Algebraic Array Equations to Index One Form](http://www.ep.liu.se/ecp/132/064/ecp17132565.pdf). Modelica'2017 Conference. The function uses several extensions of the described basic tearing algorithm that are important for transforming higher index Differential Algebraic Equations to index one form. Note, the traversals in Directed-Acyclic-Graphs - the core operation of the tearing algorithm - is **not** performed with recursive function calls but with while loops and an explicit stack, in order to avoid function stack overflow for large algebraic loops. Tests up to 1 million equations in 1 million unknowns have been performed. For improving efficiency, algorithm N of the following paper is used as utility algorithm: - Bender, Fineman, Gilbert, Tarjan (2016): [A New Approach to Incremental Cycle Detection and Related Problems](http://dl.acm.org/citation.cfm?id=2756553). ACM Transactions on Algorithms, Volume 12, Issue 2, Feb. # Main developer [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en) """ tearEquations!(G , isSolvable, es, vs ; kwargs...) = tearEquations!(TearingSetup(G), isSolvable, es, vs; kwargs...) tearEquations!(td::TearingSetup, isSolvable, es, vs::Vector{Int}; kwargs...) = tearEquations!(td , isSolvable, es, fill(vs,1); kwargs...) function tearEquations!(td::TearingSetup, isSolvable::Function, es::Vector{Int}, vs::Vector{ Vector{Int} }; eSolvedFixed::Vector{Int}=Int[], vSolvedFixed::Vector{Int}=Int[], check::Bool=true, log::Bool=false) # Reinitialize td vs2 = reInitializeTearingSetup!(td, es, vs, eSolvedFixed, vSolvedFixed, check) # Try vs in order of priority for vse in vs if length(vse) > 0 # Define variables that can be assigned for vsi in vse td.vAssignable[ vsi ] = true end # Perform tearing if log println(" Try to solve for variable(s) ", vse) end tearEquationsCore!(vs2, td, isSolvable, es, vse, log) # Undefine variables that can be assigned for vsi in vse td.vAssignable[ vsi ] = false end end end # Determine solved equations and variables (eSolved, vSolved) = sortDAG!(td, vs2) eResidue = setdiff(es, eSolved) if length(vs) == 1 vTear = setdiff(vs[1], vSolved) else vs_vector = deepcopy(vs[1]) for i in 2:length(vs) append!(vs_vector, vs[i]) end vTear = setdiff(vs_vector, vSolved) end # Check result if check checkDAG!(td, eSolved, vSolved) end return (eSolved, vSolved, eResidue, vTear) end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
11974
""" Module with tests for BLTandPantelides. * Author: Hilding Elmqvist, Mogram AB * Date: July-August 2016. Array version: Summer 2018 * License: MIT """ module TestBLTandPantelides using ModiaBase using Test println("... Test BLTandPantelides.jl") @testset "BLTandPantelides" begin # testMatch println("\nTest match") G = Any[ [2], [3,8], [4,7], [5], [3,6], [], [4,6], [1,7], ] assign = ModiaBase.matching(G, 8) @show assign @testset "testMatch" begin @test any(assign .== 6) == false @test assign == [8,1,2,7,4,5,3,0] end # testSingular println("\nSingular system") G = Any[ [3], [3], [2,3] ] assign = ModiaBase.matching(G, 4) @show assign (invAssign, unAssignedVariables) = ModiaBase.invertAssign(assign, length(G)) @show invAssign, unAssignedVariables (ass, unAssignedEquations) = ModiaBase.invertAssign(invAssign, length(assign)) @show ass, unAssignedEquations @testset "Singular system" begin @test assign == [0,3,1,0] @test invAssign == [3,0,2] @test unAssignedVariables == [1,4] @test ass == assign @test unAssignedEquations == [2] end # testTarjan println("\nTest Tarjans strong connect") # Reference: Tarjan, Fig.3., page 158. G = Any[ [2], [3,8], [4,7], [5], [3,6], [], [4,6], [1,7], ] assign = 1:8 components = ModiaBase.BLT(G, assign) @show components @testset "testTarjan" begin @test components == Any[Any[6],Any[7,5,4,3],Any[8,2,1]] end # testPendulum println("\nFixed-length pendulum") # Reference: Pantelides, page 222-225. G = Any[ [3, 5], [4, 6], [1, 7, 9], [2, 8, 9], [1, 2] ] assign = ModiaBase.matching(G, 9) @show assign # Variable vector is: [x, y, w, z, der(x), der(y), der(w), der(z), T], i.e. vector A is: A = [5,6,7,8,0,0,0,0,0] # Symbolic output of results variables = ["x", "y", "w", "z", "der(x)", "der(y)", "der(w)", "der(z)", "T"] equations = [ "der(x) = w", "der(y) = z", "der(w) = T*x", "der(z) = T*y - g", "0 = x^2 + y^2 - L^2"] println("\nAssigned original equations:") ModiaBase.printAssignedEquations(equations, variables, 1:length(equations), assign, A, fill(0, length(equations))) ModiaBase.printUnassigned(equations, variables, assign, A, fill(0, length(equations))) println("\nTest diagnostics for too many equations") tooManyEquations = [equations; [ "x = cos(phi)", "y = sin(phi)"]] tooFewVariables = [variables; ["phi", "dummy"]] #= Gbig = {G; { [1, 10] [2, 10] } } =# Gbig = copy(G) push!(Gbig, [1, 10]) push!(Gbig, [2, 10]) @show Gbig Abig = [A; fill(0, 1) ] EGbig = [Gbig; ModiaBase.buildExtendedSystem(Abig)] EGbig = ModiaBase.addDependencies(EGbig, (length(Abig)+1):length(EGbig)) @show EGbig equationsBig = [tooManyEquations; fill("h(., der(.)) = 0", length(EGbig)-length(tooManyEquations))] assignBig = ModiaBase.matching(EGbig, length(EGbig)) Abig = [Abig; fill(0, length(EGbig)-length(Abig))] ModiaBase.printAssignedEquations(equationsBig, tooFewVariables, 1:length(EGbig), assignBig, Abig, fill(0, length(EGbig))) ModiaBase.printUnassigned(equationsBig, tooFewVariables, assignBig, Abig, fill(0, length(EGbig))) componentsBig = ModiaBase.BLT(EGbig, assignBig) @show componentsBig println("\nTest diagnostics for too many variables") tooManyVariables = [variables; ["dummy"]] Gbig = copy(G) Gbig[5] = [1, 10] # Wrong equation involving x and dummy Gbig[4] = [10, 8, 9] # Wrong equation involving dummy @show Gbig Abig = [A; fill(0, 1) ] EGbig = [Gbig; ModiaBase.buildExtendedSystem(Abig)] EGbig = [EGbig; ModiaBase.buildFullIncidence(length(Abig)-length(EGbig), length(Abig))] @show EGbig equationsBig = copy(equations) equationsBig[5] = "0 = x^2 + dummy^2 - L^2" equationsBig = [equationsBig; fill("h(., der(.)) = 0", length(EGbig)-length(equationsBig))] assignBig = ModiaBase.matching(EGbig, length(EGbig)) Abig = [Abig; fill(0, length(EGbig)-length(Abig))] ModiaBase.printAssignedEquations(equationsBig, tooManyVariables, 1:length(EGbig), assignBig, Abig, fill(0, length(EGbig))) ModiaBase.printUnassigned(equationsBig, tooManyVariables, assignBig, Abig, fill(0, length(EGbig))) componentsBig = ModiaBase.BLT(EGbig, assignBig) @show componentsBig println("\nTest diagnostics for too few equations") tooManyVariables = variables Gbig = copy(G) pop!(Gbig) # Delete last equation @show Gbig Abig = A EGbig = [Gbig; ModiaBase.buildExtendedSystem(Abig)] equationsBig = equations[1:4] equationsBig = [equationsBig; fill("h(., der(.)) = 0", length(EGbig)-length(equationsBig))] EGbig = [EGbig; ModiaBase.buildFullIncidence(length(Abig)-length(EGbig), length(Abig))] equationsBig = [equationsBig; fill("full(...) = 0", length(EGbig)-length(equationsBig))] @show EGbig assignBig = ModiaBase.matching(EGbig, length(EGbig)) Abig = [Abig; fill(0, length(EGbig)-length(Abig))] ModiaBase.printAssignedEquations(equationsBig, tooManyVariables, 1:length(EGbig), assignBig, Abig, fill(0, length(EGbig))) ModiaBase.printUnassigned(equationsBig, tooManyVariables, assignBig, Abig, fill(0, length(EGbig))) componentsBig = ModiaBase.BLT(EGbig, assignBig) @show componentsBig println("\nCheck consistency of equations by ModiaBase.matching extended equation set") EG = [G; ModiaBase.buildExtendedSystem(A)] @show EG assign = ModiaBase.matching(EG, 9) @show assign @testset "testPendulum 1" begin @test all(assign .> 0) end println("\nPerform index reduction") (assign, A, B) = ModiaBase.pantelides!(G, 9, A) @show G @show assign @show A @show B @testset "testPendulum 2" begin # According to Pantelides, page 224-225. @test assign == [0,0,0,0,1,2,7,4,3,9,8] @test A == [5,6,7,8,10,11,0,0,0,0,0] @test B == [7,8,0,0,6,9,0,0,0] end println("------------------------------------------------------") println() vActive = fill(true, length(A)) vActive[[1,3]] .= false @show vActive assign = ModiaBase.matching(G, length(A), vActive) @show assign components = ModiaBase.BLT(G, assign) @show components @testset "testPendulum BLT components" begin @test assign == [0, 5, 0, 2, 1, 6, 7, 4, 3, 9, 8] @test components == Any[Any[1], Any[5], Any[6], Any[2], Any[4, 8, 9, 7, 3]] end println("------------------------------------------------------") println() #= println("\nAll unknowns:") printList(variables, 1:length(A), A) println("\nAll equations:") printList(equations, 1:length(B), B, true) println("\nAssigned equations:") ModiaBase.printAssignedEquations(equations, variables, 1:length(B), assign, A, B) println("\nSorted equations:") ModiaBase.printSortedEquations(equations, variables, components, assign, A, B) ModiaBase.printUnassigned(equations, variables, assign, A, B) println("\nBuild augmented system.") AG = [G; ModiaBase.buildFullIncidence(length(A)-length(B), length(A))] @show AG assignAG = ModiaBase.matching(AG, length(A)) @show assignAG componentsAG = ModiaBase.BLT(AG, assignAG) @show componentsAG @testset "testPendulum 3" begin # See Pantelides, page 222, paragraph 1. @test componentsAG == Any[Any[11,3,7,9,8,2,10,4,5,6,1]] end equationsAG = [equations; fill("", length(B)-length(equations)); fill("full", length(A)-length(B))] BAG = [B;fill(0, length(A)-length(B))] println("\nAssigned augmented equations:") ModiaBase.printAssignedEquations(equationsAG, variables, 1:length(BAG), assignAG, A, BAG) println("\nSorted augmented equations:") ModiaBase.printSortedEquations(equationsAG, variables, componentsAG, assignAG, A, BAG) ModiaBase.printUnassigned(equationsAG, variables, assignAG, A, BAG) =# println("\nSet initial conditions on x and y. Should fail.") IG1 = copy(G) push!(IG1, [1]) push!(IG1, [2]) @show IG1 assignIG1 = ModiaBase.matching(IG1, length(A)) @show assignIG1 @testset "testPendulum 4" begin @test any(assignIG1 .== 0) end componentsIG1 = ModiaBase.BLT(IG1, assignIG1) @show componentsIG1 equationsIG = [equations; fill("", length(B)-length(equations)); fill("initial", length(A)-length(B))] BIG = [B;fill(0, length(A)-length(B))] ModiaBase.printUnassigned(equationsIG, variables, assignIG1, A, BIG) println("\nSet initial conditions on x and w.") IG2 = copy(G) push!(IG2, [1]) push!(IG2, [3]) @show IG2 assignIG2 = ModiaBase.matching(IG2, length(A)) @show assignIG2 @testset "testPendulum 5" begin @test all(assignIG2 .> 0) end componentsIG2 = ModiaBase.BLT(IG2, assignIG2) @show componentsIG2 println("\nSorted IG2 equations:") ModiaBase.printSortedEquations(equationsIG, variables, componentsIG2, assignIG2, A, BIG) println("\nSet initial conditions on w and z.") IG3 = copy(G) push!(IG3, [3]) push!(IG3, [4]) @show IG3 assignIG3 = ModiaBase.matching(IG3, length(A)) @show assignIG3 @testset "testPendulum 6" begin @test all(assignIG3 .> 0) end componentsIG3 = ModiaBase.BLT(IG3, assignIG3) @show componentsIG3 println("\nSorted IG3 equations:") ModiaBase.printSortedEquations(equationsIG, variables, componentsIG3, assignIG3, A, BIG) # testPendulum1 println("\nFixed-length pendulum") # Reference: Pantelides, page 222-225. G = Any[ [3, 5], [4, 6], [1, 7, 9], [2, 8, 9], [1, 2] ] # Variable vector is: [x, y, w, z, der(x), der(y), der(w), der(z), T], i.e. vector A is: A = [5,6,7,8,0,0,0,0,0] println("\nPerform index reduction") (assign, A, B) = ModiaBase.pantelides!(G, 9, A) @testset "testPendulum 2" begin # According to Pantelides, page 224-225. @test assign == [0,0,0,0,1,2,7,4,3,9,8] @test A == [5,6,7,8,10,11,0,0,0,0,0] @test B == [7,8,0,0,6,9,0,0,0] end println("\nSet initial conditions on x and w.") IG = copy(G) push!(IG, [1]) push!(IG, [3]) @show IG assignIG = ModiaBase.matching(IG, length(A)) @show assignIG componentsIG = ModiaBase.BLT(IG, assignIG) @show componentsIG @testset "testPendulum" begin @test all(assignIG .> 0) @test componentsIG == Any[Any[11], Any[1], Any[10], Any[5], Any[6], Any[2], Any[7,9,8,4,3]] end # testReactor # Reference: Pantelides, page 225-228. println("\nExothermic Reactor Model") G = Any[ [1, 3, 5], [2, 4, 5, 6], [1, 2, 5], [1] ] ModiaBase.matching(G, 6) A = [3,4,0,0,0,0] (assign, A, B) = ModiaBase.pantelides!(G, 6, A) @show assign @show A @show B components = ModiaBase.BLT(G, assign) @show components @testset "testReactor" begin @test assign == [0,0,1,7,3,2,8,6] @test components == Any[Any[3],Any[1],Any[8],Any[6],Any[7],Any[2],Any[4],Any[5]] end println("\n\n----------------------\n") end println("\n----------------------\n") function bigTest(G) n = length(G) if n <= 100 @show G end assign = ModiaBase.matching(G, n) if n <= 100 @show assign end components = ModiaBase.BLT(G, assign) if n <= 100 @show components end end const n=5000 # Stack overflow for band and n=10000 const nFull=1000 function test() println("\nBig tests, n = ", n) println("\nBig test: diagonal") @static if VERSION < v"0.7.0-DEV.2005" G1 = Array{Any}(n) else G1 = Array{Any}(undef, n) end for i in 1:n G1[i] = [i] end @time bigTest(G1) println("\nBig test: band") @static if VERSION < v"0.7.0-DEV.2005" G2 = Array{Any}(n) else G2 = Array{Any}(undef, n) end for i in 1:n G2[i] = [i-1 < 1 ? n : i-1, i, mod(i,n)+1] end @time bigTest(G2) println("\nBig test: full, n=", nFull) @static if VERSION < v"0.7.0-DEV.2005" G3 = Array{Any}(nFull) else G3 = Array{Any}(undef, nFull) end for i in 1:nFull G3[i] = [i for i in 1:nFull] end @time bigTest(G3) end test() end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
7011
module TestDifferentiate using ModiaBase using Test removeBlock(ex) = ex function removeBlock(ex::Expr) if ex.head in [:block] ex.args[1] else Expr(ex.head, [removeBlock(arg) for arg in ex.args]...) end end function showDifferentiate(ex, timeInvariants=[]) Base.remove_linenums!(ex) print(removeBlock(ex), " : ") der = ModiaBase.derivative(ex, timeInvariants) Base.remove_linenums!(der) der = string(removeBlock(der)) println(der) string(der) end function testDifferentiate() println("\nTest differentiate") @test showDifferentiate(10) == "0" @test showDifferentiate(10.0) == "0" @test showDifferentiate(:time) == "1" @test showDifferentiate(:x) == "der(x)" @test showDifferentiate(:(der(x))) == "der(der(x))" println() @test showDifferentiate(:(x.y.z)) == "der(x.y.z)" @test showDifferentiate(:(x = y)) == "der(x) = der(y)" println() @test showDifferentiate(:(+ y)) == "+(der(y))" @test showDifferentiate(:(x + y)) == "der(x) + der(y)" @test showDifferentiate(:(x + y + z)) == "der(x) + der(y) + der(z)" @test showDifferentiate(:(- y)) == "-(der(y))" @test showDifferentiate(:(x - y)) == "der(x) - der(y)" @test showDifferentiate(:(x - y - z)) == "(der(x) - der(y)) - der(z)" @test showDifferentiate(:(x * y)) == "der(x) * y + x * der(y)" @test showDifferentiate(:(x * y * z)) == "der(x) * y * z + x * der(y) * z + x * y * der(z)" @test showDifferentiate(:(x / y)) == "(one(x) / y) * der(x) + -((x / y) / y) * der(y)" # @test showDifferentiate(:(x / y / z)) == "(one(x / y) / z) * ((one(x) / y) * der(x) + -((x / y) / y) * der(y)) + -(((x / y) / z) / z) * der(z)" @test showDifferentiate(:(x ^ 2)) == "(2 * x ^ (2 - 1)) * der(x)" @test showDifferentiate(:(x ^ y)) == "(y * x ^ (y - 1)) * der(x) + if x isa Real && x <= 0\n Base.oftype(float(x), NaN)\n else\n x ^ y * log(x)\n end * der(y)" # @test showDifferentiate(:(x ^ y ^ z)) == "(y ^ z * x ^ (y ^ z - 1)) * der(x) + (x ^ (y ^ z) * log(x)) * ((z * y ^ (z - 1)) * der(y) + (y ^ z * log(y)) * der(z))" @test showDifferentiate(:(sin(x))) == "cos(x) * der(x)" @test showDifferentiate(:([x, y])) == "[der(x), der(y)]" @test showDifferentiate(:(if x; y else z end)) == "if x\n der(y)\nelse\n der(z)\nend" @test showDifferentiate(:(if x; y elseif z; v else w end)) == "if x\n der(y)\nelseif z\n der(v)\nelse\n der(w)\nend" @test showDifferentiate(:(1+2+3)) == "0" @test showDifferentiate(:(1-2-3)) == "0" @test showDifferentiate(:(x-2-3)) == "der(x)" @test showDifferentiate(:(1-x-3)) == "-(der(x))" @test showDifferentiate(:(2*x + y + z)) == "2 * der(x) + der(y) + der(z)" # Previous test suit der = showDifferentiate(:(x + 5 + z = w)) @test der == "der(x) + der(z) = der(w)" # der = showDifferentiate(ModiaBase.derivative(:(x + 5 + z = w))) # @test der == "der(der(x)) + der(der(z)) = der(der(w))" der = showDifferentiate(Expr(:(=), Expr(:call, :+, :x), :w)) @test der == "+(der(x)) = der(w)" der = showDifferentiate(:(2 + 3 = w)) @test der == "0 = der(w)" der = showDifferentiate(Expr(:(=), Expr(:call, :-, :x), :w)) @test der == "-(der(x)) = der(w)" der = showDifferentiate(:(x - 5 - z = w)) @test der == "der(x) - der(z) = der(w)" der = showDifferentiate(:(5 - x - z = w)) @test der == "-(der(x)) - der(z) = der(w)" der = showDifferentiate(:(5x = w)) @test der == "5 * der(x) = der(w)" der = showDifferentiate(:(x * 5 * z = w)) @test der == "der(x) * 5 * z + x * 5 * der(z) = der(w)" der = showDifferentiate(:(4 * 5 * 6 = w)) @test der == "0 = der(w)" der = showDifferentiate(:(y = x/5)) @test der == "der(y) = (one(x) / 5) * der(x)" der = showDifferentiate(:(y = 5/y)) @test der == "der(y) = -((5 / y) / y) * der(y)" der = showDifferentiate(:(y = [1, x])) @test der == "der(y) = [0, der(x)]" der = showDifferentiate(:(y = [2x 3x; 4x 5x])) @test der == "der(y) = [2 * der(x) 3 * der(x); 4 * der(x) 5 * der(x)]" der = showDifferentiate(:(y = [2*x 3x; 4x 5x]*[1, x])) @test der == "der(y) = [2 * der(x) 3 * der(x); 4 * der(x) 5 * der(x)] * [1, x] + [2x 3x; 4x 5x] * [0, der(x)]" #= der = showDifferentiate(:(y = transpose(B) + BΒ΄)) @test der == "der(y) = transpose(der(B)) + der(BΒ΄)" =# der = showDifferentiate(:(y = x[5, 6])) @test der == "der(y) = (der(x))[5, 6]" der = showDifferentiate(:(y = x[5:7])) @test der == "der(y) = (der(x))[5:7]" #= der = showDifferentiate(:(y = [x for x in z])) @test der == "der(y) = [x for x = der(z)]" der = showDifferentiate(:(y = [x[i] for i in 1:5])) @test der == "der(y) = [x[i] for i = nothing]" =# der = showDifferentiate(:(y = sin(x))) @test der == "der(y) = cos(x) * der(x)" der = showDifferentiate(:(y = cos(x))) @test der == "der(y) = -(sin(x)) * der(x)" #= der = showDifferentiate(:(y = tan(x))) @test der == "der(y) = (1 / cos(x) ^ 2) * der(x)" =# der = showDifferentiate(:(y = exp(x))) @test der == "der(y) = exp(x) * der(x)" der = showDifferentiate(:(z = x^y)) #@test der == "der(z) = (y * x ^ (y - 1)) * der(x) + (x ^ y * log(x)) * der(y)" @test der == "der(z) = (y * x ^ (y - 1)) * der(x) + if x isa Real && x <= 0\n Base.oftype(float(x), NaN)\n else\n x ^ y * log(x)\n end * der(y)" der = showDifferentiate(:(y = log(x))) @test der == "der(y) = inv(x) * der(x)" der = showDifferentiate(:(y = asin(x))) @test der == "der(y) = inv(sqrt(1 - x ^ 2)) * der(x)" der = showDifferentiate(:(y = acos(x))) @test der == "der(y) = -(inv(sqrt(1 - x ^ 2))) * der(x)" der = showDifferentiate(:(y = atan(x))) @test der == "der(y) = inv(1 + x ^ 2) * der(x)" #= der = showDifferentiate(:(y = f(x, 5, z))) @test der == "der(y) = f_der_1(x, 5, z) * der(x) + f_der_3(x, 5, z) * der(z)" der = showDifferentiate(:(y = f(x, 5, g(z)))) @test der == "der(y) = f_der_1(x, 5, g(z)) * der(x) + f_der_3(x, 5, g(z)) * (g_der_1(z) * der(z))" =# der = showDifferentiate(:(y = true ? x : y)) @test der == "der(y) = if true\n der(x)\n else\n der(y)\n end" #= der = showDifferentiate(:(y = if b; x elseif false; y else z end)) @test der == "der(y) = if b\n der(x)\n else\n if false\n der(y)\n else \n der(z)\n end\n end" =# der = showDifferentiate(:(y = time)) @test der == "der(y) = 1" der = showDifferentiate(:(y = a*x), [:a]) @test der == "der(y) = a * der(x)" end @testset "Symbolic" begin @testset "Differentiate" begin testDifferentiate() end end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
14527
""" module TestLinearIntegerEquations - Test ModiaBase/src/LinearIntegerEquations.jl """ module TestLinearIntegerEquations using Test using ModiaBase println("... Test LinearIntegerEquations.jl") @testset "Test LinearIntegerEquations.jl" begin @testset "... Test Voltage source and resistor without ground" begin println("\n --- Test Voltage source and resistor without ground") #= # Resistor 1: R.v = R.p.v - R.n.v 2: 0 = R.p.i + R.n.i 3: R.v = R.R*R.p.i # Voltage source 4: V.v = V.p.v - V.n.v 5: 0 = V.p.i + V.n.i 6: V.v = 10 # Connect equations connect(V.p, R.p) connect(R.n, V.n) -> 7: V.p.v = R.p.v 8: 0 = V.p.i + R.p.i 9: R.n.v = V.n.v 10: 0 = R.n.i + V.n.i # Variables: 1: R.v 2: R.p.v 3: R.p.i 4: R.n.v 5: R.n.i 6: V.v 7: V.p.v 8: V.p.i 9: V.n.v 10: V.n.i =# G = Vector{Int}[[1, 2, 4], [3, 5], [1, 3], [6, 7, 9], [8, 10], [6], [7, 2], [8, 3], [4, 9], [5, 10]] eInt = Int[1,2,4,5,7,8,9,10] GcInt = Vector{Int}[[-1, 1, -1], [1,1], [-1,1,-1], [1,1], [-1,1], [1,1], [-1,1], [1,1]] Avar = fill(0,10) vNames = ["R.v", "R.p.v", "R.p.i", "R.n.v", "R.n.i", "V.v", "V.p.v", "V.p.i", "V.n.v", "V.n.i"] name(v) = vNames[v] (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(G, eInt, GcInt, Avar) printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, name, printTest=false) @test nvArbitrary == 1 @test vEliminated == [9, 6, 2, 4, 10, 7, 8, 5] @test vProperty[vEliminated] == [0, 1, 1, 0, 3, 1, -3, -3] @test redundantEquations == [10] @test eInt == [2, 5, 7, 8, 9, 1, 4, 10] @test G[eInt] == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] @test GcInt == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] end @testset "... Test Voltage source and resistor with ground" begin println("\n --- Test Voltage source and resistor with ground") #= # Resistor 1: R.v = R.p.v - R.n.v 2: 0 = R.p.i + R.n.i 3: R.v = R.R*R.p.i # Voltage source 4: V.v = V.p.v - V.n.v 5: 0 = V.p.i + V.n.i 6: V.v = 10 # Ground 7: ground.p.v = 0 # Connect equations connect(V.p, R.p) connect(R.n, V.n) connect(R.n, ground.p) -> 8: V.p.v = R.p.v 9: 0 = V.p.i + R.p.i 10: R.n.v = V.n.v 11: R.n.v = ground.p.v 12: 0 = R.n.i + V.n.i + ground.p.i # Variables: 1: R.v 2: R.p.v 3: R.p.i 4: R.n.v 5: R.n.i 6: V.v 7: V.p.v 8: V.p.i 9: V.n.v 10: V.n.i 11: ground.p.v 12: ground.p.i =# G = Vector{Int}[[1, 2, 4], [3, 5], [1, 3], [6, 7, 9], [8, 10], [6], [11], [7, 2], [8, 3], [4, 9], [4,11], [5, 10, 12]] eInt = Int[1,2,4,5,7,8,9,10,11,12] GcInt = Vector{Int}[[-1, 1, -1], [1,1], [-1,1,-1], [1,1], [1], [-1,1], [1,1], [-1,1], [-1,1], [1,1,1]] Avar = fill(0,12) vNames = ["R.v", "R.p.v", "R.p.i", "R.n.v", "R.n.i", "V.v", "V.p.v", "V.p.i", "V.n.v", "V.n.i", "ground.p.v", "ground.p.i"] name(v) = vNames[v] (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(G, eInt, GcInt, Avar) printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, name, printTest=false) @test nvArbitrary == 0 @test vEliminated == [6, 12, 5, 10, 7, 2, 8, 9, 4, 11] @test vProperty[vEliminated] == [1, 0, -3, 3, 1, 1, -3, 0, 0, 0] @test redundantEquations == Int64[] @test eInt == [7, 11, 10, 5, 1, 8, 9, 2, 12, 4] @test G[eInt] == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] @test GcInt == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] end @testset "... Test Voltage source and capacitor without ground" begin println("\n --- Test Voltage source and capacitor without ground") #= # Capacitor 1: C.v = C.p.v - C.n.v 2: 0 = C.p.i + C.n.i 3: C.C*der(C.v) = C.p.i # Voltage source 4: V.v = V.p.v - V.n.v 5: 0 = V.p.i + V.n.i 6: V.v = 10 # Connect equations connect(V.p, C.p) connect(C.n, V.n) -> 7: V.p.v = C.p.v 8: 0 = V.p.i + C.p.i 9: C.n.v = V.n.v 10: 0 = C.n.i + V.n.i # Variables: 1: C.v 2: C.p.v 3: C.p.i 4: C.n.v 5: C.n.i 6: V.v 7: V.p.v 8: V.p.i 9: V.n.v 10: V.n.i 11: der(C.v) =# G = Any[[1, 2, 4], [3, 5], [11, 3], [6, 7, 9], [8, 10], [6], [7, 2], [8, 3], [4, 9], [5, 10]] eInt = Int[1,2,4,5,7,8,9,10] GcInt = Any[[-1, 1, -1], [1,1], [-1,1,-1], [1,1], [-1,1], [1,1], [-1,1], [1,1]] Avar = fill(0,10) pushfirst!(Avar,11) vNames = ["C.v", "C.p.v", "C.p.i", "C.n.v", "C.n.i", "V.v", "V.p.v", "V.p.i", "V.n.v", "V.n.i", "der(C.v)"] name(v) = vNames[v] (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(G, eInt, GcInt, Avar) printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, name, printTest=false) @test nvArbitrary == 1 @test vEliminated == [9, 6, 2, 4, 10, 7, 8, 5] @test vProperty[vEliminated] == [0, 1, 1, 0, 3, 1, -3, -3] @test redundantEquations == [10] @test eInt == [2, 5, 7, 8, 9, 1, 4, 10] @test G[eInt] == Any[Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] @test GcInt == Any[Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[]] end @testset "... Test two inductances in series with parallel resistors without ground" begin println("\n --- Test two inductances in series with parallel resistors without ground") #= # Inductor 1 1: L1.v = L1.p.v - L1.n.v 2: 0 = L1.p.i + L1.n.i 3: L1.L*der(L1.p.i) = L1.v # Inductor 2 4: L2.v = L2.p.v - L2.n.v 5: 0 = L2.p.i + L2.n.i 6: L2.L*der(L2.p.i) = L2.v # Resistor 1 7: R1.v = R1.p.v - R1.n.v 8: 0 = R1.p.i + R1.n.i 9: R1.v = R1.R*R1.p.i # Resistor 2 10: R2.v = R2.p.v - R2.n.v 11: 0 = R2.p.i + R2.n.i 12: R2.v = R2.R*R2.p.i # Voltage source 13: V.v = V.p.v - V.n.v 14: 0 = V.p.i + V.n.i 15: V.v = 10 # Connect equations connect(V.p, L1.p) connect(L1.n, R1.p) connect(L1.n, R2.p) connect(R1.n, L2.p) connect(R2.n, L2.p) connect(L2.n, V.n) -> 16: V.p.v = L1.p.v 17: 0 = V.p.i + L1.p.i 18: L1.n.v = R1.p.v 19: L1.n.v = R2.p.v 20: 0 = L1.n.i + R1.p.i + R2.p.i 21: R1.n.v = L2.p.v 22: R2.n.v = L2.p.v 23: 0 = R1.n.i + R2.n.i + L2.p.i 24: L2.n.v = V.n.v 25: 0 = L2.n.i + V.n.i # Variables: 1: L1.v 2: L1.p.v 3: L1.p.i 4: L1.n.v 5: L1.n.i 6: L2.v 7: L2.p.v 8: L2.p.i 9: L2.n.v 10: L2.n.i 11: R1.v 12: R1.p.v 13: R1.p.i 14: R1.n.v 15: R1.n.i 16: R2.v 17: R2.p.v 18: R2.p.i 19: R2.n.v 20: R2.n.i 21: V.v 22: V.p.v 23: V.p.i 24: V.n.v 25: V.n.i 26: der(L1.p.i) 27: der(L2.p.i) =# G = [[1, 2, 4], [3, 5], [26, 1], [6, 7, 9], [8,10], [27, 6], [11, 12, 14], [13, 15], [11, 13], [16, 17, 19], [18, 20], [16, 18], [21, 22, 24], [23, 25], [21], [22, 2], [23, 3], [4, 12], [4, 17], [5, 13, 18], [14, 7], [19, 7], [15, 20, 8], [9, 24], [10, 25]] eInt = Int[1,2,4,5,7,8,10,11,13,14,16,17,18,19,20,21,22,23,24,25] GcInt = [[-1, 1, -1], [1,1], [-1,1,-1], [1,1], [-1,1,-1], [1,1], [-1,1,-1], [1,1], [-1,1,-1], [1,1], [-1,1], [1,1], [-1,1], [-1,1], [1,1,1], [-1,1], [-1,1], [1,1,1], [-1,1], [1,1]] Avar = fill(0,27) Avar[3] = 26 Avar[8] = 27 vNames = ["L1.v", "L1.p.v", "L1.p.i", "L1.n.v", "L1.n.i", "L2.v", "L2.p.v", "L2.p.i", "L2.n.v", "L2.n.i", "R1.v", "R1.p.v", "R1.p.i", "R1.n.v", "R1.n.i", "R2.v", "R2.p.v", "R2.p.i", "R2.n.v", "R2.n.i", "V.v", "V.p.v", "V.p.i", "V.n.v", "V.n.i", "der(L1.p.i)", "der(L2.p.i)"] var_name(v) = vNames[v] (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(G, eInt, GcInt, Avar; log=true, var_name = var_name) printSimplifiedLinearIntegerEquations(G, eInt, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, var_name, printTest=false) @test nvArbitrary == 1 @test vEliminated == [7, 16, 12, 9, 19, 14, 17, 4, 25, 22, 23, 20, 15, 10, 5, 6] @test vProperty[vEliminated] == [0, 11, 11, 24, 0, 0, 11, 11, 3, 2, -3, -18, -13, -8, -3, -24] @test redundantEquations == [25] @test eInt == [2, 5, 8, 11, 14, 16, 17, 18, 19, 21, 22, 24, 1, 13, 7, 10, 4, 23, 20, 25] @test G[eInt] == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], [2, 1, 11], [21, 2, 24], Int64[], Int64[], Int64[], [13, 8, 18], [3, 8], Int64[]] @test GcInt == [Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], Int64[], [1, -1, -1], [-1, 1, -1], Int64[], Int64[], Int64[], [-1, 1, -1], [1, -1], Int64[]] end end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
22899
""" module TestNonlinearEquations Module to test ModiaBase/src/NonlinearEquations.jl """ module TestNonlinearEquations using Test using ModiaBase.NonlinearEquations using LinearAlgebra println("... Test NonlinearEquations.jl") @testset "\nTest NonlinearEquations.jl" begin loglevel = info # Linear underdetermined test @testset "... Test linear problem:" begin A = [1 2 3; 4 5 6] xref = [-1; -2; 5] b = A*xref m = size(A, 1) n = size(A, 2) # Test function function fx!(fx::Vector, x::Vector) @assert(length(x) == n) @assert(length(fx) == m) res = A*x - b for i in 1:m fx[i] = res[i] end return true end # Solver parameters tol = 1e-6 maxiter = 50 nonlinearity = mild restricted = false quasi = true forwardjac = false if loglevel >= info println("Linear problem:") end x = zeros(Float64, n) y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [-2.33333333333333, 0.666666666666666, 3.66666666666666]) end # Determined test from https://www.zib.de/codelib/NewtonLib/ @testset "... Test Chebyquad problem of dimensions 2..7" begin # Test function function fx!(fx::Vector, x::Vector) n = length(x) for i in range(1, n-1, step=2) fx[i] = 0.0 fx[i+1] = n / ((i + 1.0)^2 - 1.0) end if isodd(n) fx[n] = 0.0 end for l = 1:n factt = 4.0 * x[l] - 2.0 ti2 = 1.0 ti1 = 0.5 * factt fx[1] = ti1 + fx[1] for i = 2:n ti = factt * ti1 - ti2 fx[i] = ti + fx[i] ti2 = ti1 ti1 = ti end end return true end # Test parameters nn = 7 # max. Chebyquad problem dimension # Checks @assert(nn >= 2) # Solver parameters tol = 1e-6 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = false for n = 2:nn if n == 6 continue end if loglevel >= info println("Chebyquad problem n = $n:") end x = zeros(Float64, n) y = zeros(Float64, n) fscale = zeros(Float64, n) for i = 1:n x[i] = i / (n + 1) fscale[i] = 1.0 end if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, n, x, fscale; nonlinearity=high, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end if n == 2 @test isapprox(x, [0.2113248654051863, 0.7886751345948136]) elseif n == 3 @test isapprox(x, [0.14644660948566998, 0.4999999999999999, 0.8535533905143302]) elseif n == 4 @test isapprox(x, [0.10267275999827528, 0.4062037728007276, 0.5937962271992724, 0.8973272400017247]) elseif n == 5 @test isapprox(x, [0.08375125622814243, 0.31272929406063793, 0.5, 0.6872707059393621, 0.9162487437718575]) elseif n == 6 @test converged == false elseif n == 7 @test isapprox(x, [0.05806914954476061, 0.23517161265728312, 0.33804409443504935, 0.5, 0.6619559055649507, 0.764828387342717, 0.9419308504552394]) elseif n == 8 @test converged == false elseif n == 9 @test converged == false end end end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/2by2.jl # and https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/already_converged.jl @testset "... Test 2by2 problem" begin # Test function m = 2 n = 2 function f_2by2!(F, x) F[1] = (x[1]+3)*(x[2]^3-7)+18 F[2] = sin(x[2]*exp(x[1])-1) return true end # Solver parameters tol = 1e-7 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = false for ii in 1:2 if loglevel >= info println("2by2 problem $ii:") end if ii == 1 x = [-0.5, 1.4] else x = [0.0, 1.0] # already converged end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(f_2by2!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") f_2by2!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [0.0, 1.0], atol=100*tol) end end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK Powell singular problem" begin # Test function m = 4 n = 4 function fx!(fvec, x) fvec[1] = x[1] + 10x[2] fvec[2] = sqrt(5)*(x[3] - x[4]) fvec[3] = (x[2] - 2x[3])^2 fvec[4] = sqrt(10)*(x[1] - x[4])^2 return true end # Initial guess x = [3.0, -1.0, 0.0, 1.0] # Solver parameters tol = 1e-8 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = false if loglevel >= info println("MINPACK Powell singular problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [0.0, 0.0, 0.0, 0.0], atol=100*tol) end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK Powell badly scaled problem" begin # Test function m = 2 n = 2 c1 = 1e4 c2 = 1.0001 function fx!(fvec, x) fvec[1] = c1*x[1]*x[2] - 1 fvec[2] = exp(-x[1]) + exp(-x[2]) - c2 return true end # Initial guess x = [0.0, 1.0] # Solver parameters tol = 1e-8 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = false if loglevel >= info println("MINPACK Powell badly scaled problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [1.0981593296997054e-5, 9.106146739867453], atol=100*tol) end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK Wood problem" begin # Test function m = 4 n = 4 c3 = 2e2 c4 = 2.02e1 c5 = 1.98e1 c6 = 1.8e2 function fx!(F, x) temp1 = x[2] - x[1]^2 temp2 = x[4] - x[3]^2 F[1] = -c3*x[1]*temp1 - (1 - x[1]) F[2] = c3*temp1 + c4*(x[2] - 1) + c5*(x[4] - 1) F[3] = -c6*x[3]*temp2 - (1 - x[3]) F[4] = c6*temp2 + c4*(x[4] - 1) + c5*(x[2] - 1) return true end # Initial guess x = [-3.0, -1.0, -3.0, -1.0] # Solver parameters tol = 1e-8 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = true if loglevel >= info println("MINPACK Wood problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [-0.967974024937593, 0.9471391408178416, -0.9695163103315912, 0.9512476657923256], atol=100*tol) end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK helical valley problem" begin # Test function m = 3 n = 3 tpi = 8*atan(1) c7 = 2.5e-1 c8 = 5e-1 function fx!(fvec, x) if x[1] > 0 temp1 = atan(x[2]/x[1])/tpi elseif x[1] < 0 temp1 = atan(x[2]/x[1])/tpi + c8 else temp1 = c7*sign(x[2]) end temp2 = sqrt(x[1]^2+x[2]^2) fvec[1] = 10(x[3] - 10*temp1) fvec[2] = 10(temp2 - 1) fvec[3] = x[3] return true end # Initial guess x = [-1.0, 0.0, 0.0] # Solver parameters tol = 1e-8 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = false if loglevel >= info println("MINPACK helical valey problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [1.0, 0.0, 0.0], atol=100*tol) end # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK Watson problem" begin # Solver parameters tol = 1e-7 maxiter = 50 nonlinearity = high restricted = false quasi = true forwardjac = true for n in (6, 9) # Test function c9 = 2.9e1 function fx!(fvec, x) fill!(fvec, 0) for i = 1:29 ti = i/c9 sum1 = 0.0 temp = 1.0 for j = 2:n sum1 += (j-1)*temp*x[j] temp *= ti end sum2 = 0.0 temp = 1.0 for j = 1:n sum2 += temp*x[j] temp *= ti end temp1 = sum1 - sum2^2 - 1 temp2 = 2*ti*sum2 temp = 1/ti for k = 1:n fvec[k] += temp*(k-1-temp2)*temp1 temp *= ti end end temp = x[2] - x[1]^2 - 1 fvec[1] += x[1]*(1-2temp) fvec[2] += temp return true end # Initial guess x = zeros(n) if loglevel >= info println("MINPACK Watson problem n = $n:") end y = zeros(Float64, n) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, n, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end if n == 6 @test isapprox(x, [-0.01572508640145857, 1.0124348693691099, -0.2329916259567373, 1.260430087799606, -1.5137289227222785, 0.9929964324311331], atol=100*tol) elseif n == 9 @test isapprox(x, [-1.530703652140686e-5, 0.9997897039319482, 0.014763963693568192, 0.14634232829924446, 1.000821103005262, -2.617731140520362, 4.104403164480623, -3.143612278557626, 1.0526264080104843], atol=100*tol) end end end #= # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test MINPACK trigonometric problem" begin # Test function m = 10 n = 10 function fx!(fvec, x) for j = 1:n fvec[j] = cos(x[j]) end sum1 = sum(fvec) for k = 1:n fvec[k] = n+k-sin(x[k]) - sum1 - k*fvec[k] end return true end # Start point x = ones(n)/n # Solver parameters tol = 1e-8 maxiter = 500 nonlinearity = extreme restricted = true quasi = false forwardjac = true if loglevel >= info println("MINPACK trigonometric problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end end =# # Determined test from https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl @testset "... Test determined Rosenbrock problem" begin # Test function m = 2 n = 2 function fx!(fvec, x) fvec[1] = 1 - x[1] fvec[2] = 10*(x[2] - x[1]^2) return true end # Start point x = [0.0, -0.1] # Solver parameters tol = 1e-6 maxiter = 500 nonlinearity = high restricted = false quasi = true forwardjac = false if loglevel >= info println("Determined Rosenbrock problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [1.0, 1.0], atol=100*tol) end # Underdetermined test from https://de.wikipedia.org/wiki/Gau%C3%9F-Newton-Verfahren#Beispiel @testset "... Test underdetermined Rosenbrock problem" begin # Test function m = 1 n = 2 a = 1.0 b = 100.0 function fx!(fx::Vector, x::Vector) @assert(length(fx) == m) @assert(length(x) == n) fx[1] = (a - x[1])^2 + b*(x[2] - x[1]^2)^2 return true end # Start point x = [0.0, -0.1] # Solver parameters tol = 1e-6 maxiter = 500 nonlinearity = high restricted = false quasi = false forwardjac = true if loglevel >= info println("Underdeterminded Rosenbrock problem:") end y = zeros(Float64, m) fscale = ones(Float64, n) if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale") end converged = solveNonlinearEquations!(fx!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") fx!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end @test isapprox(x, [1.0, 1.0], atol=100*tol) end # Underdetermined slider-crank initial state problem 1 @testset "... Test slider-crank initial state problem 1" begin # kinematic parameters wheelRadius = 0.1 barLength = 0.5 # function for computation of bar end y-component function res_z!(res::Vector, ang::Vector) phiWheel = ang[1] phiBar = ang[2] absPosJoint = wheelRadius*[-sin(phiWheel), cos(phiWheel)] relPosJointEnd = barLength*[cos(phiBar), sin(phiBar)] relTransJoint = [cos(phiWheel) -sin(phiWheel); sin(phiWheel) cos(phiWheel)] absPosEnd = absPosJoint + relTransJoint * relPosJointEnd res[1] = absPosEnd[2] return true end # initial guess phiWheel = 10.0 phiBar = 5.0 # solver parameters tol = 1e-6 maxiter = 50 log = true nonlinearity = mild restricted = false quasi = true forwardjac = false if loglevel >= info println("Slider-crank initial state problem 1:") end n = 2 m = 1 x = zeros(Float64, n) y = zeros(Float64, m) fscale = ones(Float64, n) x[1] = phiWheel x[2] = phiBar if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale\n") end converged = solveNonlinearEquations!(res_z!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") res_z!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end # consistent states phiWheel = x[1] phiBar = x[2] @test isapprox([phiWheel, phiBar], [10.471751810654157, 5.1360050971720925], atol=100*tol) end # Underdetermined slider-crank initial state problem 2 @testset "... Test slider-crank initial state problem 2" begin # kinematic parameters wheelRadius = 0.1 barLength = 0.5 # function for computation of joint position residual function res!(res::Vector, x::Vector) phiWheel = x[1] xBar = x[2] phiBar = x[3] absPosWheelJoint = wheelRadius*[-sin(phiWheel), cos(phiWheel)] absPosBarJoint = [xBar, 0.0] + barLength*[cos(phiBar), sin(phiBar)] res .= absPosWheelJoint .- absPosBarJoint return true end # initial guess phiWheel = 0.3 xBar = -0.4 phiBar = -0.1 # solver parameters tol = 1e-6 maxiter = 50 log = true nonlinearity = high restricted = false quasi = true forwardjac = false if loglevel >= info println("Slider-crank initial state problem 2:") end n = 3 m = 2 x = zeros(Float64, n) y = zeros(Float64, m) fscale = ones(Float64, n) x[1] = phiWheel x[2] = xBar x[3] = phiBar if loglevel == debug println("* start vector = $x") println("* scale vector = $fscale\n") end converged = solveNonlinearEquations!(res!, m, x, fscale; nonlinearity=nonlinearity, restricted=restricted, xtol=tol, maxiter=maxiter, quasi=quasi, forwardjac=forwardjac, loglevel=loglevel) if loglevel == debug println("* solution = $x") res!(y, x) println("* rms(f(x*)) = $(norm(y)/sqrt(n))") end # consistent states phiWheel = x[1] xBar = x[2] phiBar = x[3] @test isapprox([phiWheel, xBar, phiBar], [0.30614037233377206, -0.5209621708411616, 0.1918759765115025], atol=100*tol) end end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
5444
module TestSymbolic using ModiaBase using ModiaBase.BLTandPantelidesUtilities using ModiaBase.Symbolic using Test function showFindIncidence(ex) Base.remove_linenums!(ex) ex = removeBlock(ex) print(rpad(string(ex), 40)) incidence = Incidence[] findIncidence!(ex, incidence) println(incidence) incidence end function testFindIncidence() println("testFindIncidence") @test showFindIncidence(10) == [] @test showFindIncidence(:(x)) == [:x] @test showFindIncidence(:(x*(y + z*sin(w)))) == [:x, :y, :z, :w] @test showFindIncidence(:(x, x.y, x.y.z, x.y[z], f(x.y))) == [:x, :(x.y), :(x.y.z), :(x.y), :z, :(x.y)] println() end function showLinearFactor(ex, x) Base.remove_linenums!(ex) ex = removeBlock(ex) print(rpad(string(ex), 20)) print(rpad(string(x), 10)) factor = linearFactor(ex, x) Base.remove_linenums!.(factor) factor = string(removeBlock(factor)) println(factor) string(factor) end function testLinearFactors() println("testLinearFactors") @test showLinearFactor(:(10), :x) == "(10, 0, true)" @test showLinearFactor(:(20.0), :x) == "(20.0, 0, true)" @test showLinearFactor(:(x), :x) == "(0, 1, true)" @test showLinearFactor(:(x.y.z), :(x.y.z)) == "(0, 1, true)" @test showLinearFactor(:(y), :x) == "(:y, 0, true)" @test showLinearFactor(:(x + y), :x) == "(:y, 1, true)" @test showLinearFactor(:(x + y + x + y), :x) == "(:(y + y), 2, true)" @test showLinearFactor(:(x - y), :x) == "(:(-y), 1, true)" @test showLinearFactor(:(y - x), :x) == "(:y, -1, true)" @test showLinearFactor(:(-x + y), :x) == "(:y, -1, true)" @test showLinearFactor(:(x - y - z), :x) == "(:(-y - z), 1, true)" @test showLinearFactor(:(x - y - x), :x) == "(:(-y), 0, true)" @test showLinearFactor(:(x - y + x), :x) == "(:(-y), 2, true)" @test showLinearFactor(:(x * y), :x) == "(0, :y, true)" @test showLinearFactor(:(x * x), :x) == "(0, 0, false)" @test showLinearFactor(:(2 * x), :x) == "(0, 2, true)" @test showLinearFactor(:(x * y * z), :x) == "(0, :(z * y), true)" @test showLinearFactor(:(x / y), :x) == "(0, :(1 / y), true)" @test showLinearFactor(:(y / x), :x) == "(:(y / 0), NaN, false)" @test showLinearFactor(:(x / y / z), :x) == "(0, :((1 / y) / z), true)" @test showLinearFactor(:(y \ x), :x) == "(0, :(1 / y), true)" @test showLinearFactor(:(sin(x)), :x) == "(:(sin(x)), 0, false)" @test showLinearFactor(:(sin(x) + x), :x) == "(:(sin(x)), 1, false)" @test showLinearFactor(:(sin(y)), :x) == "(:(sin(y)), 0, true)" @test showLinearFactor(:(if cond; x else y end), :x) == "(:(if cond\n 0\n else\n y\n end), :(if cond\n 1\n else\n 0\n end), true)" @test showLinearFactor(:(if cond; x elseif cond2; y else z end), :x) == "(:(if cond\n 0\n else\n if cond2\n y\n else\n z\n end\n end), :(if cond\n 1\n else\n 0\n end), true)" @test showLinearFactor(:(if cond; x+1 else 2x+2 end), :x) == "(:(if cond\n 1\n else\n 2\n end), :(if cond\n 1\n else\n 2\n end), true)" @test showLinearFactor(:(x[5]), :x) == "(:(x[5]), 0, false)" @test showLinearFactor(:(x = y), :x) == "(:(-y), 1, true)" @test showLinearFactor(:(x + 1 = y + 2), :x) == "(:(1 - (y + 2)), 1, true)" @test showLinearFactor(:(der(x) + x), :(der(x))) == "(:x, 1, true)" @test showLinearFactor(:(R*i = u), :i) == "(:(-u), :R, true)" println() end function showSolveEquation(ex, x) Base.remove_linenums!(ex) ex = removeBlock(ex) print(rpad(string(ex), 20)) print(rpad(string(x), 10)) factor = solveEquation(ex, x) Base.remove_linenums!.(factor) factor = string(removeBlock(factor)) println(factor) string(factor) end function testSolveEquations() println("testSolveEquations") @test showSolveEquation(:(R*i = u), :i) == "(:(i = u / R), true)" @test showSolveEquation(:(R*i = u), :u) == "(:(u = R * i), true)" @test showSolveEquation(:(R*i = u), :R) == "(:(R = u / i), true)" println() end function showGetCoefficients(ex) Base.remove_linenums!(ex) ex = removeBlock(ex) print(rpad(string(ex), 20)) factor = getCoefficients(ex) Base.remove_linenums!(factor) factor = string(removeBlock(factor)) println(factor) string(factor) end function testGetCoefficients() println("testGetCoefficients") @test showGetCoefficients(:(v1 = 0)) == "(Union{Expr, Symbol}[:v1], Any[1], 0, true)" @test showGetCoefficients(:(v1 = 10)) == "(Union{Expr, Symbol}[:v1], Any[1], -10, true)" @test showGetCoefficients(:(v1 = v2)) == "(Union{Expr, Symbol}[:v1, :v2], Any[1, -1], 0, true)" @test showGetCoefficients(:(v1 = v2 + sin(v3))) == "(Union{Expr, Symbol}[:v1, :v2, :v3], Any[1, -1], :(-(sin(v3))), false)" @test showGetCoefficients(:(v1 = -v2)) == "(Union{Expr, Symbol}[:v1, :v2], Any[1, 1], 0, true)" @test showGetCoefficients(:(R*i = u)) == "(Union{Expr, Symbol}[:R, :i, :u], Any[:i], :(-u), false)" println() end @testset "Symbolic" begin @testset "TestFindIncidence" begin testFindIncidence() end @testset "TestLinearFactors" begin testLinearFactors() end @testset "TestSolveEquations" begin testSolveEquations() end @testset "TestGetCoefficients" begin testGetCoefficients() end end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
6321
# License for this file: MIT (expat) # Copyright 2017-2020, DLR Institute of System Dynamics and Control """ module TestTearing Module to test ModiaBase/src/Tearing.jl # Main developer [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en) """ module TestTearing using Test using ModiaBase println("... Test Tearing.jl") isSolvable(Gsolvable, e::Int, v::Int) = v in Gsolvable[e] @testset "\nTest Tearing.jl" begin @testset "... Test equation system 1" begin G = Any[[1,2,3,4,5], [1,2,3,4,8], [4,1,2], [3,2,1], [2,1,7]] es = [2,3,5,1] vs = [1,3,7,8] td = ModiaBase.TearingSetup(G, 8) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [3,8] @test eSolved == [2,5] @test vSolved == [1,7] @test eResidue == [3,1] end @testset "... Test equation system 2" begin #= eSolved = [2,5] vSolved = [1,7] eResidue = [3,1] vTear = [3,8] ignored variables: 2,4,5,6 known : 2,3,4,5,6,8 unknown: 1,7 [1,2,3,4,8] is solved for 1 [2,1,7] is solved for 7 =# #= unknowns: x1dd, x2dd, x3dd, x4d, x5 1: 0 = x1dd - x2dd 2: 0 = x1dd + x2dd - x3dd + x6ddd 3: 0 = x1d + x3dd - x4d 4: 0 = 2*x1dd + x2dd + x3dd + x4d + x6ddd 5: 0 = 3*x1dd + 2*x2dd + x5 Variables 1: x1dd 2: x2dd 3: x3dd 4: x4d 5: x5 6: x1d 7: x6ddd vTear = [2] eSolved = [1,2,3,5] vSolved = [1,3,4,5] eResidue = [4] =# G = Any[[1,2], [1,2,3,7], [6,3,4], [1,2,3,4,7], [1,2,5]] es = [1,2,3,4,5] vs = [1,2,3,4,5] td2 = TearingSetup(G, 7) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td2, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [2] @test eSolved == [1,2,3,5] @test vSolved == [1,3,4,5] @test eResidue == [4] end @testset "... Test equation system 3" begin G = Any[ [1,2,4,7], [6,3,4], [2,5], [4,5], [1,2,3,7]] es = [1,2,3,4,5] vs = [1,2,3,4,5] td3 = TearingSetup(G, 7) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td3, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [5] @test eSolved == [4,3,1,2] @test vSolved == [4,2,1,3] @test eResidue == [5] end @testset "... Test equation system 4" begin #= Same as test2, but indices changed unknowns: z1, z2, z4, z6, z7 1: 0 = f1(z2,z6,z7) 2: 0 = f2(z1,z7) 3: 0 = f3(z1,z2,z3,z7) 4: 0 = f4(z6,z3,z4) 5: 0 = f5(z1,z2,z3,z4,z7) 6: 0 = f6(z1,z2,z5) 7: 0 = f7(z4,z5,z6) Variables 1: z1 (x1dd) 2: z2 (x6ddd) 3: z3 (x3dd) 4: z4 (x4d) 5: z5 (x5) 6: z6 (x1d) 7: z7 (x2dd) =# G = Any[[2,6,7], [1,2], [1,2,3,7], [6,3,4], [1,2,3,4,7], [1,2,5], [4,5,6]] es = [2,3,4,5,6] vs = [1,3,4,5,7] td4 = TearingSetup(G, 7) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td4, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [7] @test eSolved == [2,3,4,6] @test vSolved == [1,3,4,5] @test eResidue == [5] end @testset "... Test equation system 5" begin #= Check "marked" flag unknowns: z1, z2, z3, z4, z5, z6 1: 0 = f1(z1,z6) 2: 0 = f2(z2,z1) 3: 0 = f3(z3,z2) 4: 0 = f4(z4,z3) 5: 0 = f5(z5,z4) 6: 0 = f6(z6,z1) =# G = Any[[1,6], [2,1], [3,2], [4,3], [5,4], [6,5]] es = [1,2,3,4,5,6] vs = [1,2,3,4,5,6] td5 = TearingSetup(G, 6) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td5, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [6] @test eSolved == [1,2,3,4,5] @test vSolved == [1,2,3,4,5] @test eResidue == [6] end @testset "... Test equation system 6" begin #= Check predefined equations phi1 = phi2 w1 = der(phi1) w2 = der(phi2) der(phi1) = der(phi2) unknowns: 1:w1, 2:w2, 3:der(phi1), 4:der(phi2) 1: 0 = f1(w1,der(phi1)) 2: 0 = f2(w2,der(phi2)) 3: 0 = f3(der(phi1), der(phi2)) =# G = Vector{Int}[[1,3], [2,4], [3,4]] es = [1,2,3] vs = [1,2,3,4] td = TearingSetup(G, 4) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [4] @test eSolved == [3,1,2] @test vSolved == [3,1,2] @test eResidue == Int[] es = [1,2] vs = Vector{Int}[[4], [1,2]] td = TearingSetup(G, 4) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> isSolvable(G,e,v), es, vs; eSolvedFixed=[3], vSolvedFixed=[3]) @test vTear == [2] @test eSolved == [2,3,1] @test vSolved == [4,3,1] @test eResidue == Int[] end @testset "... Test equation systems 7a and 7b" begin neq = 10 G = fill(fill(0, 0), neq) for i in 1:neq G[i] = i == 1 ? [1,neq] : [i,i - 1] end #G = [[i, (i==1 ? neq : i-1)] for i = 1:neq] es = collect(1:neq) vs = es td5 = TearingSetup(G, neq) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td5, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [neq] for i in 1:neq G[i] = i == neq ? [1,neq] : [neq - i + 1,neq - i] end #println("G = ") #display(G) #G = [[i, (i==1 ? neq : i-1)] for i = neq:-1:1] es = collect(1:neq) vs = es td5 = TearingSetup(G, neq) (eSolved, vSolved, eResidue, vTear) = tearEquations!(td5, (e,v) -> isSolvable(G,e,v), es, vs) @test vTear == [1] end end end # module
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
code
293
module Runtests using Test @testset "Test ModiaBase" begin include("TestSymbolic.jl") include("TestBLTandPantelides.jl") include("TestDifferentiate.jl") include("TestTearing.jl") include("TestLinearIntegerEquations.jl") include("TestNonlinearEquations.jl") end end
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
2743
# ModiaBase [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://modiasim.github.io/ModiaBase.jl/stable/) [![The MIT License](https://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square)](https://github.com/ModiaSim/ModiaBase.jl/blob/master/LICENSE.md) ModiaBase is part of [ModiaSim](https://modiasim.github.io/docs/). It is usually used via [Modia](https://github.com/ModiaSim/Modia.jl). The [ModiaBase documentation](https://modiasim.github.io/ModiaBase.jl/stable/) provides details of the algorithms and how to use them. ModiaBase provides basic algorithms and functionality that is needed for equation-based modeling to transform a (potentially high-index) Differential-Algebraic Equation system (DAE), to an Ordinary Differential Equation system in state space form (ODE). It is used by [Modia](https://github.com/ModiaSim/Modia.jl), but can also be utilized in another context. Especially the following functionality is provided: - Simplify linear Integer equations (many equations of object-oriented models are linear Integer equations and can be pre-processed exactly) - to remove alias variables and equations, - to remove redundant equations, - to provide definite values for variables that can have arbitrary values if this makes sense, - to make state constraints structurally visible. - Find a variable assignment of an equation system, in order to transform the equation system in a directed graph that can be further processed. - Find the strong components in a directed graph (with the algorithm of Tarjan) to determine algebraic equation systems that must be solved together. - Sort an equation system (= transform to Block Lower Triangular form), to determine the order in which the equations have to be evaluated. - Reduce the dimension of algebraic equation systems by tearing. - Find equations that need to be differentiated one or more times (with the algorithm of Pantelides) in order that the DAE can be transformed to an ODE. - Analytically differentiate the found equations. - Statically select ODE states and transform to ODE form (hereby identifying linear equation systems that must be solved during simulation). ## Installation Typically, a user installs [Modia](https://github.com/ModiaSim/Modia.jl) and does not need to install ModiaBase separately. If needed, ModiaBase is installed with (Julia 1.7 is required): ```julia julia> ]add ModiaBase ``` ## Main Developers - [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/). - [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en). License: MIT (expat)
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
5457
# Data Structures In this chapter the **basic data structures** are summarized and shortly described that are used in package ModiaBase. ## 1. Bi-partite Graph The *bi-partite Graph* `G` of a DAE system defines the functional dependency of the equations ``e_i`` from time-varying variables ``v_j``. `G` is also a sparse representation of the incidence matrix of the DAE system. Example: ```julia # Bi-partite graph of low pass filter G = Vector{Int}[ [1,2,4], # equation 1 depends on variables 1,2,4 [1,7], # equation 2 depends on variables 1,7 [3,4], [3,7], [6,7], [2] ] ``` In ModiaBase, only potential states and unknown variables are described with `G`. Dependency on parameters (= constant quantities) is not shown. The number of variables is usually larger as the number of equations, because both the potential states and their derivatives are stored in `G`. ## 2. Assignment Vector The *assignment vector* `assign` defines for all equations and variables the unique variable ``v_j`` that is solved from equation ``e_i``. Example: ```julia assign = [2,6,3,1,0,5,4] # Variable 1 is solved from equation 2 # Variable 2 is solved from equation 6 # ... # Variable 5 is not solved from any equation ``` The *inverted assignment vector* `invAssign` defines the unique equation ``e_i`` that is solved for the unique variable ``v_j``. This vector can be directly computed from vector `assign`. Example: ```julia (invAssign, unAssigned) = invertAssign(assign) # invAssign = [4,1,3,7,6,2,0] # Equation 1 is solved for variable 4 # Equation 2 is solved for variable 1 # ... # Equation 7 is not solved for any variable ``` ## 3. Block Lower Triangular Form The *Block Lower Triangular form* `blt` of an equation system describes the sorted set of equations, in order to solve for the unknown variables. With vector `invAssign` (see subsection 2 above) the information is provided for which variable the respective equation is solved. Example: ```julia blt = [ [6], # Solve first equation 6 [3,4,2,1], # Afterwards solve equations 3,4,2,1 (they form an algebraic loop) [5] ] # Finally solve equation 5 invAssign = [4, 1, 3, 7, 6, 2, 0] ``` The meaning is: 1. Equation 6 is solved for variable 2. 2. Equations 3,4,2,1 are solved simultaneously for variables 3, 7, 1, 4. 3. Equation 5 is solved for variable 6. ## 4. Variable Association Vector The derivative relationship between variables is described with the *variable association vector* `Avar` and its inverted vector `invAvar`: ```math \begin{aligned} Avar_j &= \left\{ \begin{array}{rl} k & \text{\textbf{if}}~ \dot{v}_j \equiv v_k \\ 0 & \text{\textbf{if}}~ v_j \text{ is not a differentiated variable} \end{array}\right. \\ invAvar_j &= \left\{ \begin{array}{rl} k & \text{\textbf{if}}~ v_j \equiv \dot{v}_k \\ 0 & \text{\textbf{if}}~ v_j \text{ is not a differentiated variable} \end{array}\right. \end{aligned} ``` Example: The following derivative relationships between variables `v1,v2,v3,v4,v5` ```julia 1. v1 2. v2 = der(v1) 3. v3 = der(v2) 4. v4 5. v5 = der(v4) ``` are expressed by the following variable association vector and its inverted form: ```julia Avar = [2,3,0,5,0] # The derivative of variable 1 is variable 2 # The derivative of variable 2 is variable 3 # ... invAvar = [0,1,2,0,4] # Variable 1 is not a derivative # Variable 2 is the derivative of variable 1 # ... # Variable 5 is the derivative of variable 4 ``` ## 5. Equation Association Vector The derivative relationship between equations is described with the *equation association vector* `Bequ` and its inverted vector `invBequ`: ```math \begin{aligned} Bequ_i &= \left\{ \begin{array}{rl} k & \text{\textbf{if}}~ \dot{e}_i \equiv e_k \\ 0 & \text{\textbf{if}}~ \dot{e}_i \text{ does not exist} \end{array}\right. \\ invBequ_i &= \left\{ \begin{array}{rl} k & \text{\textbf{if}}~ e_i \equiv \dot{e}_k \\ 0 & \text{\textbf{if}}~ _i \text{ is not a differentiated equation} \end{array}\right. \end{aligned} ``` Example: The following derivative relationships between equations `e1,e2,e3,e4,e5` ```julia 1. e1 2. e2 = der(e1) 3. e3 = der(e2) 4. e4 5. e5 = der(e4) ``` are expressed by the following equation association vector and its inverted form: ```julia Bvar = [2,3,0,5,0] # The derivative of equation 1 is equation 2 # The derivative of equation 2 is equation 3 # ... invBvar = [0,1,2,0,4] # Equation 1 is not a differentiated equation # Equation 2 is the derivative of equation 1 # ... # Equation 5 is the derivative of equation 4 ```
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
1106
# Equation Reduction This section provides functions to **reduce the dimensions of systems of equations**. ## Linear Integer Equations Many equations of object-oriented models are **linear Integer equations** (such as all equations deduced from connections, or, say defining a potential difference) and can be pre-processed exactly to simplify the equations, for example elimination of alias variables, or variables that are identically to zero). Furthermore, (consistently) redundant or (consistently) overdetermined equations can be removed. Finally, hidden state constraints can be made explicit in order that a structural algorithm (such as the algorithm of Pantelides) can process state constraints. ```@meta CurrentModule = ModiaBase ``` ```@docs simplifyLinearIntegerEquations! printSimplifiedLinearIntegerEquations ``` ## Algebraic Systems **Algebraic equation systems** are reduced by selecting a subset of the variables as iteration variables and computing the remaining variables in a forward sequence. ```@meta CurrentModule = ModiaBase ``` ```@docs TearingSetup tearEquations! ```
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
438
# Equation Sorting This section provides functions to **sort systems of equations**. ## Main Functions ```@meta CurrentModule = ModiaBase.BLTandPantelides ``` ```@docs matching BLT ``` ## Utility Functions ```@meta CurrentModule = ModiaBase.BLTandPantelidesUtilities ``` ```@docs invertDer invertAssign buildExtendedSystem buildFullIncidence createNames printList printAssignedEquations printSortedEquations printUnassigned ```
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
215
# Nonlinear Equations This section provides functions to **solve nonlinear equations systems**. ## Main Functions ```@meta CurrentModule = ModiaBase.NonlinearEquations ``` ```@docs solveNonlinearEquations! ```
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
538
# Transformation to ODE System This section provides utility functions to **transform DAE to ODE systems**. In particular, - to find equations that need to be differentiated, in order to transform a Differential Algebraic Equations (DAEs) agebraically to Ordinary Differential Equations (ODEs), - to differentiate relevant equations analytically, ## Main Functions ```@meta CurrentModule = ModiaBase.BLTandPantelides ``` ```@docs pantelides! ``` ```@meta CurrentModule = ModiaBase.Differentiate ``` ```@docs derivative ```
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
7711
# Tutorial This chapter contains a short tutorial about the data structures and functions provided by package [ModiaBase](https://github.com/ModiaSim/ModiaBase.jl). ## 1. Regular DAEs (Index Zero DAEs) In this subsection functions are demonstrated that can be used to transform regular DAEs to ODEs. The transformations are explained with the following simple electrical circuit (a low pass filter where the voltage source is modelled with an inner resistor): ![Low Pass Filter](../resources/images/LowPassFilter.png) ### 1.1 Bi-Partite Graph In a first step, the structural information of the low pass filter model is provided as incidence matrix ![Incidence Matrix of Low Pass Filter](../resources/images/LowPassFilter_IncidenceMatrix.png) - Every **column** corresponds to one time-varying **variable**. Parameters, so variables with constant values, are not shown. - Every **row** corresponds to one **equation**. - A cell is marked (here in *blue*), if a time-varying variable is present in one equation. Variables that are appearing differentiated, such as `C.v`, are not marked because in a first analysis phase, these potential state variables are treated as known. The matrix above is called the **incidence matrix** or the **bi-partite graph** of the circuit. In ModiaBase, this matrix is represented as vector `G` of Integer vectors: ```julia # Bi-partite graph of low pass filter G = [ [25,27], # equation 1 depends on variables 25,27 [6,23], [4,10], ..., [27] ] ``` This can be also made more explicit (and a bit more efficient storage) by defining the incidence matrix as: ```julia # Bi-partite graph of low pass filter G = Vector{Int}[ [25,27], # equation 1 depends on variables 25,27 [6,23], [4,10], ..., [27] ] ``` ### 1.2 Linear Integer Equations Object-oriented models consist of a lot of linear Integer equations, especially due to the connect-statements. The linear integer equations of `G` are identified and the corresponding linear factors are determined. With function [`simplifyLinearIntegerEquations!`](@ref) this information is used to simplify the equations by transforming the linear Integer equations with a fraction-free (exact) Gaussian elimination to a special normalized form and then perform the following simplifications: - Equations of the form `v = 0` are removed and `v` is replaced by β€ž0β€œ at all places where `v` occurs, and these equations are simplified. - Equations of the form `v1 = v2` and `v1 = -v2` are removed, `v1` is replaced by `v2` (or `-v2`) at all places where `v1` occurs (so called *alias-variables*), and these equations are simplified. - *Redundant equations* are removed. - Variables that appear *only* in the linear Integer equations (and in no other equations) are set to zero, if they can be *arbitrarily selected*. For example, if an electrical circuit is not grounded, then one of the electrical potentials is arbitrarily set to zero. - State constraints are made structurally visible. After applying [`simplifyLinearIntegerEquations!`](@ref) to the low pass filter circuit, the incidence matrix is simplified to ![Incidence Matrix of Low Pass Filter](../resources/images/LowPassFilterReduced_IncidenceMatrix.png) ```julia # Bi-partite graph of simplified low pass filter G = Vector{Int}[ [1,2,4], [1,7], [3,4], [3,7], [6,7], [2] ] # Eliminated variables R.i = -(V.p.i) ground.p.v = 0 R.p.i = -(V.p.i) R.n.v = C.v V.n.i = -(V.p.i) V.n.v = 0 V.p.v = Ri.n.v Ri.p.i = V.p.i C.n.v = 0 C.p.v = C.v Ri.p.v = R.p.v C.n.i = V.p.i V.i = V.p.i R.n.i = V.p.i C.p.i = -(V.p.i) ground.p.i = 0 C.i = -(V.p.i) Ri.i = V.p.i V.v = Ri.n.v Ri.n.i = -(V.p.i) ``` ### 1.3 Assignment In a follow-up step, an assignment is made (also called matching), to associate one variable uniquely with one equation: ![Matched IIncidence Matrix of Low Pass Filter](../resources/images/LowPassFilterReduced_Matching.png) - *Red* marks show the assigned variables. - *Blue* marks show if a variable is part of the respective equation The assignment is computed with function [`ModiaBase.matching`](@ref) returning a vector `assign`: ```julia using ModiaBase vActive = fill(true,7) vActive[5] = false # state C.v is known assign = matching(G, 7, vActive) # assign = [2,6,3,1,0,5,4] ``` The meaning of vector `assign` is that - Variable 1 is solved from equation 2, - Variable 2 is solved from equation 6, - etc. ### 1.4 Sorting In a follow-up step, equations are sorted and algebraic loops determined (= Block Lower Triangular transformation): ![Incidence Matrix of sorted equations of Low Pass Filter](../resources/images/LowPassFilterReduced_BLT.png) - *Red* marks show the assigned variables. - *Blue* marks show if a variable is part of the respective equation - A *grey* area marks an algebraic loop. The sorting is computed with function [`ModiaBase.BLT`](@ref): ```julia using ModiaBase blt = BLT(G, assign) #= blt = [ [6], [3,4,2,1], [5] ] =# ``` The meaning is for example that the second BLT block consists of equations 3,4,2,1 and these equations form an algebraic loop. ### 1.5 Reducing sizes of equation systems In a follow-up step, the sizes of equation systems are reduced by variable substitution (= tearing). Applying [`ModiaBase.tearEquations!`](@ref) to the low pass filter circuit, reduces the dimension of BLT block 2 from size 4 to size 1 resulting in the following equation system: ```julia # iteration variables (inputs): C.i # residual variables (outputs): residual R.v := R.R*C.i R.i.v := -Ri.R*C.i R.p.v := Ri.v + V.v residual := R.v - R.p.v + C.v ``` ### 1.6 Generation of AST In a final step, the AST (Abstract Syntax Tree) of the model is generated. Hereby, it is determined that the equation system of section 1.4 and 1.5 is linear in the iteration variable (`C.i`) and an AST is generated to build-up a linear equation system `A*C.i = b` and solve this system numerically with an LU decomposition whenever the AST is called (if the equation system has size 1, a simple division is used instead of calling a linear equation solver). Applying `Modia.getSortedAndSolvedAST` results basically in a function `getDerivatives` that can be solved with the many ODE integrators of [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl): ```julia function getDerivatives(_der_x, _x, _m, _time)::Nothing _m.time = ModiaLang.getValue(_time) _m.nGetDerivatives += 1 instantiatedModel = _m _p = _m.evaluatedParameters _leq_mode = nothing time = _time var"C.v" = _x[1] var"V.v" = (_p[:V])[:V] begin local var"C.i", var"R.v", var"Ri.v", var"R.p.v" _leq_mode = _m.linearEquations[1] _leq_mode.mode = -2 while ModiaBase.LinearEquationsIteration!(_leq_mode, _m.isInitial, _m.time, _m.timer) var"C.i" = _leq_mode.vTear_value[1] var"R.v" = (_p[:R])[:R] * var"C.i" var"Ri.v" = (_p[:Ri])[:R] * -var"C.i" var"R.p.v" = var"Ri.v" + var"V.v" _leq_mode.residual_value[1] = (var"R.v" + -1var"R.p.v") + var"C.v" end _leq_mode = nothing end var"der(C.v)" = var"C.i" / (_p[:C])[:C] _der_x[1] = var"der(C.v)" if _m.storeResult ModiaLang.addToResult!(_m, _der_x, time, var"R.v", var"R.p.v", var"Ri.v", var"C.i", var"V.v") end return nothing end ``` ## 2. Singular DAEs (Higher Index DAEs) xxx
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.11.1
37e87a7e1dc621c63032c73ceea050b5fb4f1c6f
docs
8998
# ModiaBase.jl Documentation [ModiaBase](https://github.com/ModiaSim/ModiaBase.jl) provides functions to support the transformation of a Differential Algebraic Equation system (DAE) ```math 0 = f_{dae}(\frac{dx_{dae}}{dt},x_{dae},w,t) \tag{1} ``` to an explicit Ordinary Differential Equation system (ODE) ```math \begin{aligned} \frac{dx_{ode}}{dt} &= f_{x}(x_{ode},t) \\ (w, x_{dae}) &= f_{w}(x_{ode},t) \end{aligned} \tag{2} ``` where ``x=x(t), w=w(t)`` are vector valued functions of the scalar variable ``t`` (= usually time). ``x_{dae}`` is the DAE state vector, ``x_{ode}`` is the ODE state vector - a subset of ``x_{dae}``, and ``w`` are purely algebraic variables that do not appear differentiated in the DAE. The equations are hereby represented as a vector of Julia expressions, that is of an Abstract Syntax Tree (AST). These functions are used by package [Modia](https://github.com/ModiaSim/Modia.jl), but can also be utilized in another context. Especially the following functionality is provided: - Simplify linear Integer equations (many equations of object-oriented models are linear Integer equations and can be pre-processed exactly) - to remove alias variables and equations, - to remove redundant equations, - to provide definite values for variables that can have arbitrary values if this makes sense, - to make state constraints structurally visible. - Find a variable assignment of an equation system, in order to transform the equation system in a directed graph that can be further processed. - Find the strong components in a directed graph (with the algorithm of Tarjan) to determine algebraic equation systems that must be solved together. - Sort an equation system (= transform to Block Lower Triangular form), to determine the order in which the equations have to be evaluated. - Reduce the dimension of algebraic equation systems by tearing. - Find equations that need to be differentiated one or more times (with the algorithm of Pantelides) in order that the DAE can be transformed to an ODE. - Analytically differentiate the found equations. - Statically select ODE states and transform to ODE form (hereby identifying linear equation systems that must be solved during simulation). Transformation from a DAE to an ODE form is (currently) performed if no nonlinear-algebraic equations appear and the ODE-states can be statically selected. Array variables and array equations are kept (they are not "flattened" in single elements). However, DAE forms that require to differentiate array equations, are not yet supported. The following extensions are planned (internal prototypes are available): - Full support of array equations. - If transformation to an ODE is not possible with the algorithms above, transformation to a special index 1 DAE, that can be simulated with standard DAE solvers (such as Sundials IDA). ## Installation The package is registered and is installed with (Julia 1.7 is required): ```julia julia> ]add ModiaBase ``` ## Release Notes ### Version 0.11.1 - Included function `solveNonlinearEquations!` to solve nonlinear equation systems `F(x) = 0` with `length(F) <= length(x)` by global Gauss-Newton method with error oriented convergence criterion and adaptive trust region strategy. Optionally Broyden's 'good' Jacobian rank-1 updates are used. In case of underdetermined and/or rank-deficient equation system, a least squares solution is computed such that the norm of the scaled solution vector is minimal. - Removed the manifest.toml file. ### Version 0.11.0 - Moved ModiaBase.Symbolic.makeDerVar to Modia (because makeDerVar needs FloatType for generating type-stable code and FloatType is available in Modia but not in ModiaBase). ### Version 0.10.0 **Non-backwards** compatible changes - EquationAndStateInfo.jl and StateSelection.jl moved to Modia (ModiaLang is merged into Modia), because the AST generation in these files depends on details of CodeGeneration.jl of Modia/ModiaLang. - TestLinearEquations.jl also moved to Modia/ModiaLang. ### Version 0.9.2 - Minor (efficiency) improvement of linear equation system if iteration variables are SVectors. ### Version 0.9.1 - Update of Manifest.toml file ### Version 0.9.0 Non-backwards compatible improvements - Parameter values in the code are now type cast to the type of the parameter value from the `@instantiatedModel(..)` call. The benefit is that access of parameter values in the code is type stable and operations with the parameter value are more efficient and at run-time no memory is allocated. Existing models can no longer be simulated, if parameter values provided via `simulate!(.., merge=xx)` are not type compatible to their definition. For example, an error is thrown if the @instantedModel(..) uses a Float64 value and the `simulate!(.., merge=xx)` uses a `Measurement{Float64}` value for the same parameter. Other improvements - Hierarchical names in function calls supported (e.g. `a.b.c.fc(..)`). - Functions can return multiple values, e.g. `(tau1,tau2) = generalizedForces(derw1, derw2)`. - Large speedup of symbolic transformation, if function depends on many input (and output) arguments (includes new operator `implicitDependency(..)`). - Support for StaticArrays variables (the StaticArrays feature is kept in the generated AST). - Support for Array variables (especially of state and tearing variables) where the dimension can change after @instantiateModel(..) - Included DAE-Mode in solution of linear equation system (if DAE integrator is used and all unknowns of a linear equation system are part of the DAE states, solve the linear equation system during continuous integration via DAE solver (= usually large simulation speed-up, for larger linear equation systems) - Improved code generation of linear equation systems lead to more efficient solution of linear equation systems. Bug fixes - Do no longer expand the unit macro in the AST, such as `u"N"`, because otherwise `logCode=true` results in wrong code (previously, a `u"N"` definition in the model was displayed in the code as `N` which is not correct Julia code). ### Version 0.8.1 - Update Project.toml, Manifest.toml, README.md ### Version 0.8.0 - Require Julia 1.7 - Upgrade Manifest.toml to version 2.0 - Update Project.toml/Manifest.toml ### Version 0.7.8 - Tests of TestDifferentiate.jl corrected to comply with DiffRules > 1.0 - Scaling introduced to improve numerics when constructing A-matrix of linear equation system. ### Version 0.7.7 - Bug fixed when selecting RecursiveFactorization.jl ### Version 0.7.6 - Fixed bug in StateSelection.jl: If unitless=true, no unit is associated with the tearing variable. - Solve linear equation systems optionally with [RecursiveFactorization.jl](https://github.com/YingboMa/RecursiveFactorization.jl) instead of the default `lu!(..)` and `ldiv!(..)`. - Project.toml: Changed DiffRules from "~1.0" to "1", since issue with "1.2.1" (leading to an error in runtests) seems to be fixed. - Project.toml: Added version 1 of MonteCarloMeasurements. - Updated used packages. - Tutorial slightly improved. ### Version 0.7.5 - Added a restriction, so that DiffRules 1.0.2 is used, instead of 1.2.1 (which leads to an error in the test suite). ### Version 0.7.4 - showCodeWithoutComments(code): Bug corrected to only remove comments and not other code (ModiaLang.@instantiateModel(..., logCode=true, ...) gave wrong output). - Used packages updated ### Version 0.7.3 - Speed improvements for structural and symbolic algorithms. - Added support for state events, time events and synchronous operators (positive(), Clock(), after(), pre(), previous(), hold(), initial(), terminal()) - Added support for mixed linear equation systems having Real and Boolean unknowns. - Simplified code for linear equation systems (while-loop instead of for-loop). - Added TimerOutputs @timeit instrumentation to the solution of linear equation systems. ### Version 0.7.2 - Support of parameters as hierarchical named tuples. - Support of array comprehensions. - Support of array end (e.g. A[3:end]) - If one equation cannot be solved for one unknown (e.g. since function call), try to solve it as linear equation system. - If variables with init values are explicitly solved for, print warning message only if log = true (in TinyModia.simulate! an error occurs, if the init value cannot be respected). ### Version 0.7.1 - Due to version conflicts, added version 0.17 of DataStructures in compat. ### Version 0.7.0 - Initial version, based on code developed for Modia 0.6 and ModiaMath 0.6. ## Main developers - [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/). - [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/), [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en)
ModiaBase
https://github.com/ModiaSim/ModiaBase.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
660
using Freenect using Documenter makedocs(; modules=[Freenect], authors="dmillard <[email protected]> and contributors", repo="https://github.com/dmillard/Freenect.jl/blob/{commit}{path}#L{line}", sitename="Freenect.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://dmillard.github.io/Freenect.jl", assets=String[], ), pages=[ "Home" => "index.md", "installation.md", "getting_started.md", "displaying_images.md", "reference.md" ], ) deploydocs(; repo="github.com/dmillard/Freenect.jl", devbranch="main", )
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
156
module Freenect using libfreenect_jll using DocStringExtensions include("./export_utils.jl") include("./freenect_sync.jl") include("./pointcloud.jl") end
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
1112
macro exported_enum(name, values) export_sym(ex::Expr) = Expr(:export, ex.args[1]) export_sym(ex::Symbol) = Expr(:export, ex) export_sym(ex::LineNumberNode) = ex esc(quote @enum($name, $values) export $name $(export_sym.(values.args)...) end) end macro exported_cfun(proto) hasdocs = proto.head == :block if hasdocs docs = proto.args[2] proto = pop!(proto.args[2].args) end nameargs, returntype = proto.args name = nameargs.args[1] args = nameargs.args[2:end] argname(ex::Expr)::Symbol = ex.args[1] argtype(ex::Expr)::Union{Symbol,Expr} = ex.args[2] defn = quote function $name($(argname.(args)...)) ccall( ($(QuoteNode(Symbol("freenect_", name))), libfreenect_jll.libfreenect_sync), $returntype, ($(argtype.(args)...),), $(argname.(args)...) ) end end if hasdocs push!(docs.args, defn.args[2]) defn = docs end return esc(quote $defn export $name end) end
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
7949
""" Available modes for the LED on the Kinect. """ @exported_enum LEDMode begin off = 0 green = 1 red = 2 yellow = 3 blink_green = 4 blink_red_yellow = 6 end """ Enumeration of available resolutions. Not all available resolutions are actually supported for all video formats. Frame modes may not perfectly match resolutions. For instance, `resolution_medium` is 640x488 for the IR camera. """ @exported_enum Resolution begin resolution_low = 0 # QVGA - 320 x 240 resolution_medium = 1 # VGA - 640 x 480 resolution_high = 2 # SXGA - 1280x1024 end const resolution_to_dims = Dict{Resolution,NTuple{2,Int}}( resolution_low => (240, 320), resolution_medium => (480, 640), resolution_high => (1024, 1280) ) """ See <http://openkinect.org/wiki/Protocol_Documentation#RGB_Camera> for more information. """ @exported_enum VideoFormat begin video_rgb = 0 # Decompressed RGB mode (demosaicing done by libfreenect) video_bayer = 1 # Bayer compressed mode (raw information from camera) video_ir_8bit = 2 # 8-bit IR mode video_ir_10bit = 3 # 10-bit IR mode video_ir_10bit_packed = 4 # 10-bit packed IR mode video_yuv_rgb = 5 # YUV RGB mode video_yuv_raw = 6 # YUV Raw mode end const video_format_to_channels = Dict{VideoFormat,Int}( video_rgb => 3, video_ir_8bit => 1, # I haven't used the other modes enough to wrap them. Contributions welcome! ) """ See <http://openkinect.org/wiki/Protocol_Documentation#RGB_Camera> for more information. """ @exported_enum DepthFormat begin depth_11bit = 0 # 11 bit depth information in one uint16_t/pixel depth_10bit = 1 # 10 bit depth information in one uint16_t/pixel depth_11bit_packed = 2 # 11 bit packed depth information depth_10bit_packed = 3 # 10 bit packed depth information depth_registered = 4 # processed depth data in mm, aligned to 640x480 rgb depth_mm = 5 # depth to each pixel in mm, but left unaligned to rgb image end const wrappable_depth_formats = Set{DepthFormat}([ depth_11bit, depth_10bit, depth_registered, depth_mm, # I haven't used the other modes enough to wrap them. Contributions welcome! ]) """ Possible status codes returned in [`RawTiltState`](@ref). """ @exported_enum TiltStatusCode begin tilt_status_stopped = 0x00 tilt_status_limit = 0x01 tilt_status_moving = 0x04 end """ $(TYPEDEF) $(TYPEDFIELDS) This data is currently uninterpreted and only provided raw. """ struct RawTiltState accelerometer_x::Cshort accelerometer_y::Cshort accelerometer_z::Cshort tilt_angle::Cchar tilt_status::Cchar end import Base.copy copy(s::RawTiltState) = RawTiltState(s.accelerometer_x, s.accelerometer_y, s.accelerometer_z, s.tilt_angle, s.tilt_status) export RawTiltState # These are just a thin wrapper around the ccall @exported_cfun begin """ $(TYPEDSIGNATURES) Synchronous video function, starts the runloop if it isn't running The returned buffer is valid until this function is called again, after which the buffer must not be used again. Make a copy if the data is required. """ sync_get_video_with_res(video::Ref{Ptr{Cvoid}}, timestamp::Ref{Cuint}, index::Cint, res::Cint, fmt::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Does the exact same as [`sync_get_video_with_res`](@ref), with a default resolution of `resolution_medium`. """ sync_get_video(video::Ref{Ptr{Cvoid}}, timestamp::Ref{Cuint}, index::Cint, fmt::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Synchronous depth function, starts the runloop if it isn't running In the raw pointer version, the returned buffer is valid until this function is called again, after which the buffer must not be used again. Make a copy if the data is required. The version returning an array does not have this limitation. """ sync_get_depth_with_res(depth::Ref{Ptr{Cvoid}}, timestamp::Ref{Cuint}, index::Cint, res::Cint, fmt::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Does the exact same as [`sync_get_depth_with_res`](@ref), with a default resolution of `resolution_medium`. """ sync_get_depth(depth::Ref{Ptr{Cvoid}}, timestamp::Ref{Cuint}, index::Cint, fmt::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Tilt the kinect to `angle`. Starts the runloop if it isn't running. """ sync_set_tilt_degs(angle::Cint, index::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Tilt state function, starts the runloop if it isn't running. The returned pointer is only safe until the next call to this function. """ sync_get_tilt_state(state::Ref{Ptr{RawTiltState}}, index::Cint)::Cint end @exported_cfun begin """ $(TYPEDSIGNATURES) Set the LED to the given mode, starts the runloop if it isn't running. """ sync_set_led(led::Cint, index::Cint)::Cint end # These should be safe to call and use the return values """ $(TYPEDSIGNATURES) Synchronous video function, starts the runloop if it isn't running. The returned array is copied before returning and is safe to store. """ function sync_get_video_with_res(index::Integer, res::Resolution, fmt::VideoFormat) if fmt βˆ‰ keys(video_format_to_channels) error( "Video format \"$fmt\" not in wrapped types $(keys(video_format_to_channels)). " * "Use the more verbose version of sync_get_video_with_res and decode manually." ) end timestamp = Ref{Cuint}() unsafe_video = Ref{Ptr{Cvoid}}(C_NULL) sync_get_video_with_res(unsafe_video, timestamp, index, res, fmt) rows, cols = resolution_to_dims[res] channels = video_format_to_channels[fmt] wrapped_video = unsafe_wrap(Array, convert(Ptr{UInt8}, unsafe_video[]), (channels, cols, rows)) wrapped_video_transpose = PermutedDimsArray(wrapped_video, [1, 3, 2]) if channels == 1 wrapped_video_transpose = view(wrapped_video_transpose, 1, :, :) end return copy(wrapped_video_transpose), Int(timestamp[]) end """ $(TYPEDSIGNATURES) Synchronous video function with resolution `resolution_medium`, starts the runloop if it isn't running. The returned array is copied before returning and is safe to store. """ sync_get_video(index::Integer, fmt::VideoFormat) = sync_get_video_with_res(index, resolution_medium, fmt) """ $(TYPEDSIGNATURES) Synchronous depth function, starts the runloop if it isn't running. The returned array is copied before returning and is safe to store. """ function sync_get_depth_with_res(index::Integer, res::Resolution, fmt::DepthFormat) if fmt βˆ‰ wrappable_depth_formats error( "Depth format \"$fmt\" not in wrapped types $(wrappable_depth_formats). " * "Use the more verbose version of sync_get_depth_with_res and decode manually." ) end timestamp = Ref{Cuint}() unsafe_depth = Ref{Ptr{Cvoid}}(C_NULL) sync_get_depth_with_res(unsafe_depth, timestamp, index, res, fmt) rows, cols = resolution_to_dims[res] wrapped_depth = unsafe_wrap(Array, convert(Ptr{UInt16}, unsafe_depth[]), (cols, rows)) wrapped_depth_transpose = transpose(wrapped_depth) return copy(wrapped_depth_transpose), Int(timestamp[]) end """ $(TYPEDSIGNATURES) Synchronous depth function with resolution `resolution_medium`, starts the runloop if it isn't running. The returned array is copied before returning and is safe to store. """ sync_get_depth(index::Integer, fmt::DepthFormat) = sync_get_depth_with_res(index, resolution_medium, fmt) """ $(TYPEDSIGNATURES) Tilt state function, starts the runloop if it isn't running. The returned `RawTiltState` struct is safe to store. """ function sync_get_tilt_state(index::Integer) state = Ref{Ptr{RawTiltState}}(C_NULL) sync_get_tilt_state(state, index) return copy(unsafe_load(state[])) end
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
1218
function compute_world_X_depth() # These values are rather undocumented and come from the source of the # glpclview example in libfreenect. fx = 594.21 fy = 591.04 a = -0.0030711 b = 3.3309495 cx = 339.5 cy = 242.7 W = [1 / fx 0 0 -cx / fx 0 -1 / fy 0 cy / fy 0 0 0 -1 0 0 a b] P = [ 0. 0. -1. 0. -1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1.] return P * W end const world_X_depth = compute_world_X_depth() """ $(TYPEDSIGNATURES) Helper for getting a pointcloud from the camera at `index`. The resulting point cloud is relative to the camera, with X forward, Y left, and Z up. This function uses a fixed homography matrix - you may have better results for your own hardware by calibrating your Kinect. """ function sync_get_pointcloud(index::Integer) depth, timestamp = sync_get_depth(index, depth_11bit) cloud = zeros((3, 480, 640)) for i ∈ 1:480, j ∈ 1:640 uvw = Float64[j - 1, i - 1, depth[i, j], 1.0] xyzw = world_X_depth * uvw cloud[:, i, j] .= xyzw[1:3] ./ xyzw[4] end return cloud, timestamp end export sync_get_pointcloud
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
code
89
using Freenect using Test @testset "Freenect.jl" begin # Write your tests here. end
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
955
# Freenect.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://dmillard.github.io/Freenect.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://dmillard.github.io/Freenect.jl/dev) [![Build Status](https://github.com/dmillard/Freenect.jl/workflows/CI/badge.svg)](https://github.com/dmillard/Freenect.jl/actions) [![Coverage](https://codecov.io/gh/dmillard/Freenect.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/dmillard/Freenect.jl) Freenect.jl is a wrapper around the [libfreenect](https://github.com/OpenKinect/libfreenect) open source Microsoft Kinect driver. This package only supports Kinect v1, which comes from the XBox 360 era. For installation and usage please visit the [documentation](https://dmillard.github.io/Freenect.jl/dev). ## Acknowledgements The development of this software was supported in part by the NASA Space Technology Research Fellowship, grant number 80NSSC19K1182.
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
1290
# Displaying Images Freenect.jl doesn't come with any image-specific utilities out of the box, it only returns arrays of data. Here are some examples of using the [JuliaImages](https://juliaimages.org) suite to display data from the Kinect. Before running these examples, be sure to install the relevant packages: ```julia using Pkg Pkg.add("Images") Pkg.add("ImageView") ``` ## RGB Image ```julia using Freenect, Images, ImageView image, timestamp = sync_get_video(0, video_rgb) imshow(colorview(RGB, image ./ 255)) ``` ![RGB Image](rgb.png) ## Infrared Image ```julia using Freenect, Images, ImageView image, timestamp = sync_get_video(0, video_ir_8bit) imshow(colorview(Gray, image ./ 255)) ``` ![Infrared Image](infrared.png) ## Depth Image These images often appear washed out when directly visualized, and anything below the minimum range appears in white. ```julia using Freenect, Images, ImageView depth, timestamp = sync_get_depth(0, depth_11bit) imshow(colorview(Gray, depth ./ 2^11)) ``` ![Depth Image](depth.png) ## Point Cloud Image While direct XYZ to RGB isn't the cleanest visualizer, it works in a pinch. ```julia using Freenect, Images, ImageView cloud, timestamp = sync_get_pointcloud(0) imshow(colorview(RGB, cloud)) ``` ![Point Cloud Image](cloud.png)
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
893
# Getting Started The key functions are [`sync_get_video`](@ref), [`sync_get_depth`](@ref), and [`sync_get_pointcloud`](@ref). Each of these has a memory-safe Julia wrapper which will return an array. To display the returned array as an image, refer to [Displaying Images](displaying_images.md). Sometimes `libfreenect` doesn't connect to the Kinect immediately. I find it helpful to try to set the LED until it makes a connection. ## Quickstart Example ```julia using Freenect kinect_idx = 0 while sync_set_led(green, kinect_idx) != 0 sleep(0.5) end sync_set_led(blink_red_yellow, kinect_idx) sleep(1) sync_set_tilt_degs(10, kinect_idx) sleep(1) sync_set_tilt_degs(0, kinect_idx) sleep(1) image, image_timestamp = sync_get_video(kinect_idx, video_rgb) depth, depth_timestamp = sync_get_depth(kinect_idx, depth_11bit) cloud, cloud_timestamp = sync_get_pointcloud(kinect_idx) ```
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
328
# Freenect.jl Freenect.jl is a wrapper around the libfreenect open source Microsoft Kinect driver. This package only supports Kinect v1, which comes from the XBox 360 era. ## Acknowledgements The development of this software was supported in part by the NASA Space Technology Research Fellowship, grant number 80NSSC19K1182.
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
347
# Installation `libfreenect` is a userspace driver, and is included in the Julia [Yggdrasil](https://github.com/JuliaPackaging/Yggdrasil) package tree as `libfreenect_jll`. The upshot of this is that you do _not_ need `libfreenect` installed on your system to use Freenect.jl, and can just install with ```julia using Pkg Pkg.add("Freenect") ```
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.2
f3fd84bbb7693624a92ecd86f5b41eb4a6c83847
docs
105
```@meta CurrentModule = Freenect ``` # Reference ```@index ``` ```@autodocs Modules = [Freenect] ```
Freenect
https://github.com/dmillard/Freenect.jl.git
[ "MIT" ]
0.1.6
a749a3ab2d986ce3f981af4da17f904ae0c4478f
code
4835
module MLJTSVDInterface import TSVD import MLJModelInterface using Random: MersenneTwister, AbstractRNG, GLOBAL_RNG const PKG = "TSVD" const MMI = MLJModelInterface MMI.@mlj_model mutable struct TSVDTransformer <: MLJModelInterface.Unsupervised nvals::Int = 2 maxiter::Int = 1000 rng::Union{Int, AbstractRNG} = GLOBAL_RNG end struct TSVDTransformerResult singular_values::Vector{Float64} components::Matrix{Float64} is_table::Bool end as_matrix(X) = MMI.matrix(X) as_matrix(X::AbstractMatrix) = X _get_rng(rng::Int) = MersenneTwister(rng) _get_rng(rng) = rng function MMI.fit(transformer::TSVDTransformer, verbosity, Xuser) X = as_matrix(Xuser) rng = _get_rng(transformer.rng) U, s, V = TSVD.tsvd( X, transformer.nvals; maxiter=transformer.maxiter, initvec = convert(Vector{float(eltype(X))}, randn(rng, size(X,1))) ) is_table = ~isa(Xuser, AbstractArray) fitresult = TSVDTransformerResult(s, V, is_table) cache = nothing return fitresult, cache, NamedTuple() end # for returning user-friendly form of the learned parameters: function MMI.fitted_params(::TSVDTransformer, fitresult) singular_values = fitresult.singular_values components = fitresult.components is_table = fitresult.is_table return (singular_values = singular_values, components = components, is_table=is_table) end function MMI.transform(::TSVDTransformer, fitresult, Xuser) X = as_matrix(Xuser) Xtransformed = X * fitresult.components if fitresult.is_table Xtransformed = MMI.table(Xtransformed) end return Xtransformed end ## META DATA MMI.metadata_pkg( TSVDTransformer, name="$PKG", uuid="9449cd9e-2762-5aa3-a617-5413e99d722e", url="https://github.com/JuliaLinearAlgebra/TSVD.jl", is_pure_julia=true, license="MIT", is_wrapper=false ) MMI.metadata_model( TSVDTransformer, input_scitype = Union{MMI.Table(MMI.Continuous),AbstractMatrix{MMI.Continuous}}, output_scitype = Union{MMI.Table(MMI.Continuous),AbstractMatrix{MMI.Continuous}}, human_name = "truncated SVD transformer", docstring = "Truncated SVD dimensionality reduction", # brief description path = "MLJTSVDInterface.TSVDTransformer" ) """ $(MMI.doc_header(TSVDTransformer)) This model performs linear dimension reduction. It differs from regular principal component analysis in that data is not centered, so that sparsity, if present, can be preserved during the computation. Text analysis is a common application. The truncated SVD is computed by Lanczos bidiagonalization. The Lanczos vectors are partially orthogonalized as described in R. M. Larsen, *Lanczos bidiagonalization with partial reorthogonalization*, Department of Computer Science, Aarhus University, Technical report, DAIMI PB-357, September 1998. # Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) Here: - `X` is any table of input features (eg, a `DataFrame`) whose columns are of scitype `Continuous`; check the column scitypes with `schema(X)`; alternatively, `X` is any `AbstractMatrix` with `Continuous` elements; check the scitype with `scitype(X)`. Train the machine using `fit!(mach, rows=...)`. # Operations - `transform(mach, Xnew)`: transform (project) observations in `Xnew` into their lower-dimensional representations; `Xnew` should have the same scitype as `X` above, and the object returned is a table or matrix according to the type of `X`. # Hyper-parameters - `nvals=2`: The output dimension (number of singular values) - `maxiter=1000`: The maximum number if iterations. - `rng=Random.GLOBAL_RNG`: The random number generator to use, either an `Int` seed, or an `AbstractRNG`. # Fitted parameters The fields of `fitted_params(mach)` are: - `singular_values`: The estimated singular values, stored as a vector. - `components`: The estimated component vectors, stored as a matrix. - `is_table`: Whether or not `transform` returns a table or matrix. # Examples With tabular input: ```julia using MLJ SVD = @load TSVDTransformer pkg=TSVD X, _ = @load_iris # `X`, a table svd = SVD(nvals=3) mach = machine(svd, X) |> fit! (; singular_values, components) = fitted_params(mach) Xsmall = transform(mach, X) # a table to_matrix(x) = hcat(values(x)...) @assert sum(round.((to_matrix(Xsmall) * components') - to_matrix(X))) == 0 ``` With sparse matrix input: ```julia using MLJ using SparseArrays SVD = @load TSVDTransformer pkg=TSVD # sparse matrix with 10 rows (observations): I = rand(1:10, 100) J = rand(1:10^6, 100) K = rand(100) X = sparse(I, J, K, 10, 10^6) svd = SVD(nvals=4) mach = machine(svd, X) |> fit! Xsmall = transform(mach, X) # matrix with 10 rows but only 4 columns ``` """ TSVDTransformer end # module
MLJTSVDInterface
https://github.com/JuliaAI/MLJTSVDInterface.jl.git
[ "MIT" ]
0.1.6
a749a3ab2d986ce3f981af4da17f904ae0c4478f
code
2299
using MLJTSVDInterface using Test using TSVD using MLJBase using SparseArrays using StableRNGs # for RNGs stable across all julia versions using MLJTestInterface const rng = StableRNGs.StableRNG(123) @testset "tsvd transformer" begin n = 10 p = 20 prob_nonzero = 0.5 # test with a sparse matrix X_sparse = sprand(rng, n, p, prob_nonzero) # use defaults - transform into an n x 2 dense matrix model = TSVDTransformer(rng=42) mach = machine(model, X_sparse) fit!(mach, verbosity=0) X_transformed = transform(mach, X_sparse) # also do the raw transformation with TSVD library U, s, V = tsvd(X_sparse, 2) @test size(X_transformed) == (10, 2) @test isapprox(s, fitted_params(mach).singular_values) @test size(V) == size(fitted_params(mach).components) # test with a dense matrix X_dense = rand(rng, n, p) mach = machine(model, X_dense) fit!(mach, verbosity=0) X_transformed = transform(mach, X_dense) # also do the raw transformation with TSVD library U, s, V = tsvd(X_dense, 2) @test size(X_transformed) == (10, 2) @test isapprox(s, fitted_params(mach).singular_values) @test size(V) == size(fitted_params(mach).components) # test tables X, _ = make_regression(100, 5) mach = machine(model, X) fit!(mach, verbosity=0) X_transformed = transform(mach, X) @test length(keys(X_transformed)) == 2 # test with default RNG model = TSVDTransformer() mach = machine(model, X_sparse) fit!(mach, verbosity=0) X_transformed = transform(mach, X_sparse) # also do the raw transformation with TSVD library U, s, V = tsvd(X_sparse, 2) @test size(X_transformed) == (10, 2) @test isapprox(s, fitted_params(mach).singular_values) @test size(V) == size(fitted_params(mach).components) end @testset "generic interface tests" begin for data in first.([ MLJTestInterface.make_regression(), MLJTestInterface.make_regression(row_table=true), ]) failures, summary = MLJTestInterface.test( [TSVDTransformer,], data, mod=@__MODULE__, verbosity=2, # bump to debug throw=false, # set to true to debug ) @test isempty(failures) end end
MLJTSVDInterface
https://github.com/JuliaAI/MLJTSVDInterface.jl.git
[ "MIT" ]
0.1.6
a749a3ab2d986ce3f981af4da17f904ae0c4478f
docs
573
# MLJTSVDInterface.jl Repository implementing the [MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) model interface for models provided by [TSVD.jl](https://github.com/JuliaLinearAlgebra/TSVD.jl). | Linux | Coverage | | :------------ | :------- | | [![Build Status](https://github.com/JuliaAI/MLJTSVDInterface.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJTSVDInterface.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaAI/MLJTSVDInterface.jl/branch/master/graph/badge.svg)](https://codecov.io/github/JuliaAI/MLJTSVDInterface.jl?branch=master) |
MLJTSVDInterface
https://github.com/JuliaAI/MLJTSVDInterface.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
646
using MetidaNCA using Documenter, Weave, PrettyTables, CSV, DataFrames #using DocumenterLaTeX include("validation.jl") #v_out_path = joinpath(dirname(@__FILE__), "src", "validation_report.md") makedocs( modules = [MetidaNCA], sitename = "MetidaNCA.jl", authors = "Vladimir Arnautov", pages = [ "Home" => "index.md", "Examples" => "examples.md", "Details" => "details.md", "Parameter list" => "parameters.md", "API" => "api.md" ], ) deploydocs(repo = "github.com/PharmCat/MetidaNCA.jl.git", devbranch = "main", forcepush = true )
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
12308
refdict = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9585.4218 10112.176 5396.5498 9317.8358 9561.26 6966.598 7029.5735 7110.6745 8315.0803 5620.8945 ], :AUMClast => [ 333582.48 298701.39 186032.06 313955.9 315181.56 226977.06 219797.71 240526.05 277613.98 154893.06 ], :AUCall => [ 9585.4218 10112.1760 5396.5498 9317.8358 9561.2600 6966.5980 7029.5735 7110.6745 8315.0803 5620.8945 ], :Rsq => [ 0.78607696 0.99276359 0.81358898 0.91885869 0.85335995 0.95011904 0.97031231 0.94796904 0.94753789 0.88092269 ], :ARsq => [ 0.71476928 0.99035145 0.77630678 0.83771737 0.82891994 0.92517856 0.96041642 0.92195356 0.92130684 0.86391165 ], :Kel => [ 0.0033847439 0.014106315 0.0032914304 0.0076953442 0.0068133279 0.0076922807 0.012458956 0.0089300798 0.0056458649 0.017189737 ], :HL => [ 204.78571 49.137367 210.59148 90.073577 101.73401 90.109450057666 55.634451 77.619371 122.77077 40.323315 ], :Clast_pred => [ 117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857 ], :AUCinf => [ 42925.019 16154.93 26026.183 22004.078 25820.275 16001.76 11688.953 15446.21 24865.246 8075.3242 ], :AUCpct => [ 77.669383 37.405019 79.26492 57.6540502829908 62.969953 56.463551 39.861391 53.964925 66.559429 30.394194 ], :MRTlast => [ 34.801023 29.538786 34.472406 33.69408 32.964438 32.58076 31.267574 33.826053 33.386807 27.556657 ], :MRTinf => [ 293.16224 71.937917 305.04073 130.69968 149.96684 128.24114 79.498252 114.8571 176.97811 58.746446 ], :Clinf => [ 0.0023296437 0.0061900608 0.0038422846 0.0045446122 0.0038729255 0.0062493127 0.0085550864 0.0064740799 0.0040216775 0.012383404 ], :Vzinf => [ 0.68827768 0.43881487 1.1673601 0.59056646 0.56843374 0.8124135 0.68666158 0.72497447 0.71232266 0.72039519 ], ) ################################################################################ refdict2 = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 121.239 62.222 49.849 52.421 0 57.882 19.95 22.724 105.438 13.634 ], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9566.59680869131 10054.28647805950 5392.45721941379 9297.09633445033 9519.18087436122 6948.98562111745 6988.77263241364 7058.81896352039 8302.36808633358 5486.83888944199 ], :AUMCtau => [ 5477.20423544297 8367.57088170951 3455.34643479800 6014.64604481587 6609.78830163090 5064.72384740413 4976.96365993911 2863.00517022791 5386.88322025614 4713.47970846693 ], :AUCall => [ 9566.59680869131 10054.28647805950 5392.45721941379 9297.09633445033 9519.18087436122 6948.98562111745 6988.77263241364 7058.81896352039 8302.36808633358 5486.83888944199 ], :Rsq => [ 0.786076957 0.992763591 0.81358898 0.918858685 0.853359952 0.95011904 0.970312315 0.94796904 0.947537895 0.88092269 ], :ARsq => [ 0.714769276 0.990351454 0.776306776 0.83771737 0.828919944 0.92517856 0.96041642 0.92195356 0.921306842 0.863911645 ], # LZint :LZint => [ 5.00848559255328 5.42889759540296 4.44064607555325 5.16688496904739 5.14735707974283 4.82967584017057 5.01074587961482 4.96847859724365 4.94725938794774 4.89636108788302 ], :Kel => [ 0.00338474394000776 0.01410631494324980 0.00329143037249282 0.00769534422298109 0.00681332791154901 0.00769228066663777 0.01245895597676470 0.00893007980967252 0.00564586491870971 0.01718973683041960 ], :HL => [ 204.785706938398 49.137367437811 210.591476080649 90.073577019460 101.734011566509 90.109450057666 55.634451382012 77.619371308325 122.770769499451 40.323315440951 ], :Clast_pred => [ 117.3057799 82.53668981 66.93105694 100.7679335 105.2983206 71.93994201 61.17270231 75.60427664 93.76176158 38.81085735 ], :AUCinf => [ 42906.1941313004 16097.0411126277 26022.0900281352 21983.3384532182 25778.1957695968 15984.1473646863 11648.1518057779 15394.3547690766 24852.5337997128 7941.2685538530 ], :AUCpct => [ 77.7034598328254 37.5395365663056 79.2773861992505 57.7084419901233 63.0727419426760 56.5257660444885 40.0010169085628 54.1467046238288 66.5934743183831 30.9072744205350 ], :MRTtauinf => [ 299.791671096989 74.654997085457 305.919973652938 143.538421744963 173.022067431888 124.653434795141 92.735873637166 175.461862330056 178.810514188399 69.516339753006 ], :Cltau => [ 0.078847213948573 0.054590500813083 0.132511872732088 0.074823364534525 0.076283206573122 0.089747243392665 0.092646906460213 0.130442680913677 0.081991954283052 0.103060243120434 ], :Vztau => [ 23.2948829648816 3.8699335037324 40.2596615257358 9.7231991664617 11.1961742577834 11.6671826317919 7.4361693413954 14.6071125559694 14.5224789228203 5.9954520617241 ], :AUCtau => [ 1268.27563070553 1831.82052757491 754.64936037981 1336.48093242129 1310.90451610924 1114.24035123260 1079.36685444479 766.62024499617 1219.63186357018 970.30626915116 ], ) ################################################################################ # 3 Linear Trapezoidal with Linear Interpolation, Dose 120, Dosetime 0.0, tau 12 refdict3 = Dict( :Cmax => [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482], :Tmax => [1 1 1.5 1 4 2.5 2.5 4 3 2], :Cdose => [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], :Clast => [112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191], :AUClast => [9585.4218 10112.176 5396.5498 9317.8358 9561.26 6966.598 7029.5735 7110.6745 8315.0803 5620.8945], :AUMCtau => [9984.8168 14630.0690 6024.4953 10299.7210 11466.1230 8467.3568 9003.0193 6457.0058 10095.8180 8367.3005], :AUCall => [9585.4218 10112.1760 5396.5498 9317.8358 9561.2600 6966.5980 7029.5735 7110.6745 8315.0803 5620.8945], :Rsq => [0.78607696 0.99276359 0.81358898 0.91885869 0.86367664 0.95011904 0.97031231 0.94796904 0.94753789 0.87969895], :ARsq => [0.71476928 0.99035145 0.77630678 0.83771737 0.84420187 0.92517856 0.96041642 0.92195356 0.92130684 0.86766884], # LZint :LZint => [5.0084856 5.4288976 4.4406461 5.166885 5.1496027 4.8296758 5.0107459 4.9684786 4.9472594 4.8651403], :Kel => [0.0033847439 0.0141063150 0.0032914304 0.0076953442 0.0068579883 0.0076922807 0.0124589560 0.0089300798 0.0056458649 0.0165437520], :HL => [204.785706938398 49.1373674378108 210.591476080649 90.0735770194602 101.071502239954 90.109450057666 55.6344513820121 77.6193713083247 122.770769499451 41.8978220179993], :Clast_pred => [117.30578 82.53669 66.931057 100.76793 105.19623 71.939942 61.172702 75.604277 93.761762 39.408841], :AUCinf => [42925.019 16154.93 26026.183 22004.078 25714.393 16001.76 11688.953 15446.21 24865.246 8171.1624], :AUCpct => [77.669383 37.405019 79.26492 57.6540502829908 62.817478 56.463551 39.861391 53.964925 66.559429 31.210589], :MRTtauinf => [302.40303 75.590599 312.72083 148.34069 172.0933 130.19061 91.908297 161.57402 176.30461 70.260736], #Cltau, CLss :Cltau => [0.07185191 0.050414459 0.12240579 0.070132959 0.06902661 0.085106504 0.083532913 0.10859036 0.073251565 0.092756742], :Vztau => [21.228167 3.5738929 37.18924 9.113687 10.06514 11.063884 6.7046479 12.160066 12.974374 5.6067536], :AUCtau => [1670.1018 2380.2695 980.34575 1711.0358 1738.46 1409.998 1436.5595 1105.0705 1638.1903 1293.7065], ) refdict4 = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 0 0 0 0 0 0 0 0 0 0 ], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9572.8582 10054.0367665966 5391.5322 9296.2179 9518.6531 6948.5757 6987.0645 7064.7816 8298.9634 5485.6538 ], :AUMCtau => [ 9973.8062 14631.1197073321 6022.9286 10307.954 11473.081 8471.0956 8982.0378 6271.7444 10040.829690586 8361.7894 ], :AUCall => [ 9572.8582 10054.0367665966 5391.5322 9296.2179 9518.6531 6948.5757 6987.0645 7064.7816 8298.9634 5485.6538 ], :Rsq => [ 0.78607696 0.99276359 0.81358898 0.91885869 0.85335995 0.95011904 0.97031231 0.94796904 0.94753789 0.88092269 ], :ARsq => [ 0.71476928 0.99035145 0.77630678 0.83771737 0.82891994 0.92517856 0.96041642 0.92195356 0.92130684 0.86391165 ], # LZint :LZint => [ 5.0084856 5.4288976 4.4406461 5.166885 5.1473571 4.8296758 5.0107459 4.9684786 4.9472594 4.8963611 ], :Kel => [ 0.003384744 0.014106315 0.00329143 0.007695344 0.006813328 0.007692281 0.012458956 0.00893008 0.005645865 0.017189737 ], :HL => [ 204.78571 49.137367 210.59148 90.073577 101.73401 90.109450057666 55.634451 77.619371 122.77077 40.323315 ], :Clast_pred => [ 117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857 ], :AUCinf => [ 42912.456 16096.791 26021.165 21982.4599914207 25777.668 15983.737 11646.444 15400.317 24849.129 7940.0834 ], :AUCpct => [ 77.692122 37.540119 79.280204 57.710748 63.074033 56.527216 40.006884 54.12574 66.602599 30.911888 ], :MRTtauinf => [ 302.63508 75.323724 313.06798 148.31081 172.5577 130.22554 91.866692 164.91799 176.98523 68.167555 ], :Cltau => [ 0.071927102 0.050429351 0.12256044 0.070184147 0.069035447 0.0852177496596485 0.08379761 0.11110872 0.073575577 0.092819834 ], :Vztau => [ 21.250382 3.5749486 37.236223 9.1203389 10.132412 11.078346 6.7258934 12.442074 13.031764 5.399724 ], :AUCtau => [ 1668.3558 2379.5666 979.10878 1709.7878 1738.2375 1408.1573 1432.0218 1080.0233 1630.976 1292.8271 ], ) ################################################################################ urefdict = Dict{Symbol, Float64}( #:N_Samples => 5, #:Dose => 100, :Rsq => 0.90549162, :ARsq => 0.81098324, #Rsq_adjusted #:Corr_XY => -0.95157323, #:No_points_lambda_z => 3, :Kel => 0.13445441, #Lambda_z #:Lambda_z_intercept => 0.79280975, #:Lambda_z_lower => 4, #:Lambda_z_upper => 15, :HL => 5.1552579, #HL_Lambda_z #:Span => 2.1337439, #:Tlag => 0, :Tmax => 1.5, #Tmax_Rate :Maxrate => 4, #Max_Rate #:Mid_Pt_last => 15, :Rlast => 0.33333333, #Rate_last #:Rate_last_pred => 0.2940497, :AUClast => 17.125, #AURC_last #:AURC_last_D => 0.17125, :Vol => 11, #Vol_UR :AR => 16, #Amount_Recovered :Prec => 16, #Percent_Recovered :AUCall => 17.125, #AURC_all :AUCinf => 19.604155, #AURC_INF_obs :AUCpct => 12.646069, #AURC_%Extrap_obs #:AURC_INF_pred => 19.311984, #:AURC_%Extrap_pred => 11.324493, ) pdrefdict = Dict{Symbol, Float64}( #:N_Samples => 5, #:Dose => 100, :Rsq => 0.90549162, :ARsq => 0.81098324, #Rsq_adjusted #:Corr_XY => -0.95157323, #:No_points_lambda_z => 3, :Kel => 0.13445441, #Lambda_z #:Lambda_z_intercept => 0.79280975, #:Lambda_z_lower => 4, #:Lambda_z_upper => 15, :HL => 5.1552579, #HL_Lambda_z #:Span => 2.1337439, #:Tlag => 0, :Tmax => 1.5, #Tmax_Rate :Maxrate => 4, #Max_Rate #:Mid_Pt_last => 15, :Rlast => 0.33333333, #Rate_last #:Rate_last_pred => 0.2940497, :AUClast => 17.125, #AURC_last #:AURC_last_D => 0.17125, :Vol => 11, #Vol_UR :AR => 16, #Amount_Recovered :Prec => 16, #Percent_Recovered :AUCall => 17.125, #AURC_all :AUCinf => 19.604155, #AURC_INF_obs :AUCpct => 12.646069, #AURC_%Extrap_obs #:AURC_INF_pred => 19.311984, #:AURC_%Extrap_pred => 11.324493, ) pdrefdict = Dict{Symbol, Float64}( #N_Samples => 13, :Tmax => 5.0, :Rmax => 8.0 , :AUCABL => 7.3857143 , :AUCBBL => 8.7357143 , :AUCATH => 13.959524 , :AUCBTH => 1.8095238 , :AUCBTW => 6.926190 , :TABL => 3.4809524 , :TBBL => 5.5190476 , :TATH => 5.7619048 , :TBTH => 3.2380952 , :AUCNETB => -1.35 , :AUCNETT => 12.15 , :TIMEBTW => 2.2809524, )
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1297
#weave(joinpath(dirname(pathof(MetidaNCA)), "..", "docs", "validation_report.jmd"); weave(joinpath(dirname(@__FILE__), "validation_report.jmd"); #doctype = "pandoc2pdf", doctype = "pandoc2pdf", #out_path = joinpath(dirname(pathof(MetidaNCA)), "..", "docs", "src"), out_path = joinpath(dirname(@__FILE__), "src"), pandoc_options=["--toc", "-V colorlinks=true" , "-V linkcolor=blue", "-V urlcolor=red", "-V toccolor=gray", "--number-sections"]) rm(joinpath(dirname(@__FILE__), "src", "validation_report.aux"); force=true) rm(joinpath(dirname(@__FILE__), "src", "validation_report.log"); force=true) rm(joinpath(dirname(@__FILE__), "src", "validation_report.out"); force=true) #= using Documenter, MetidaNCA, Weave, PrettyTables, CSV, DataFrames weave(joinpath(dirname(@__FILE__), "validation_report.jmd"); #doctype = "pandoc2pdf", doctype = "pandoc2pdf", out_path = ppath, pandoc_options=["--toc", "-V colorlinks=true" , "-V linkcolor=blue", "-V urlcolor=red", "-V toccolor=gray"]) mainfont: romanuni.ttf sansfont: NotoSans-Regular.ttf monofont: NotoSansMono-Regular.ttf mathfont: texgyredejavu-math.otf - name: Install TeXlive and Pandoc run: sudo apt-get install pandoc texlive texlive-publishers texlive-science latexmk texlive-xetex texlive-latex-base texlive-fonts-recommended =#
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1389
# Metida # Copyright Β© 2019-2020 Vladimir Arnautov aka PharmCat <[email protected]> module MetidaNCA using RecipesBase import Base: length, length, push!, resize! import MetidaBase import MetidaBase: Tables, StatsBase, PrecompileTools, PrettyTables, AbstractIdData, AbstractSubject, DataSet, AbstractSubjectResult, AbstractResultData, isnanormissing, getid, getdata, metida_table, metida_table_, MetidaTable, uniqueidlist, indsdict!, subset using MetidaBase.Requires export pkimport, upkimport, pdimport, nca!, nca, DoseTime, ElimRange, LimitRule, NoPageSort, auc_sparse, setdosetime!, setkelauto!, setkelrange!, applylimitrule!, setbl!, setth!, pkplot, getkeldata, getkelauto, getkelrange, getdosetime, getbl, getth, subset, metida_table, PKSubject, UPKSubject, PDSubject, NCAResult function __init__() @require Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin savefig = Plots.savefig end end const LOG2 = log(2) include("types.jl") include("setkelauto.jl") include("setkelrange.jl") include("setdosetime.jl") include("getkeldata.jl") include("applylimitrule.jl") include("show.jl") include("import.jl") include("nca.jl") include("plots.jl") include("metidatable.jl") include("setblth.jl") include("timefilter.jl") include("sparse.jl") include("atomic.jl") include("precompile.jl") end # module
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
3201
#Subject """ applylimitrule!(data::Union{PKSubject, PDSubject}, rule::LimitRule) Apply rule to PK subject . * STEP 1 (NaN step): replace all `NaN` and `missing` values with nan keyword value (if `nan` not NaN); * STEP 2 (LLOQ step): replace values below `lloq` with `btmax` value if this value befor Tmax or with atmax if this value after Tmax (if `lloq` not NaN); * STEP 3 (remove NaN): `rm` == true, then remove all `NaN` and `missing` values. """ function applylimitrule!(data::Union{PKSubject, PDSubject}, rule::LimitRule) applylimitrule!(data.time, data.obs, rule) data end """ applylimitrule!(f::Function, data::DataSet{T}, rule::LimitRule) where T <: Union{PKSubject, PDSubject} Apply if `f(subj)` return `true`. """ function applylimitrule!(f::Function, data::DataSet{T}, rule::LimitRule) where T <: Union{PKSubject, PDSubject} for i in data if f(i) applylimitrule!(i, rule) end end data end #DS ind Int """ applylimitrule!(data::DataSet{T}, rule::LimitRule, ind::Int) where T <: Union{PKSubject, PDSubject} Apply by ind. """ function applylimitrule!(data::DataSet{T}, rule::LimitRule, ind::Int) where T <: Union{PKSubject, PDSubject} applylimitrule!(data[ind], rule) data end #DS iter Int """ applylimitrule!(data::DataSet{T}, rule::LimitRule, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: Union{PKSubject, PDSubject} Apply by inds. """ function applylimitrule!(data::DataSet{T}, rule::LimitRule, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: Union{PKSubject, PDSubject} for i in inds applylimitrule!(data[i], rule) end data end #DS all """ applylimitrule!(data::DataSet{T}, rule::LimitRule) where T <: Union{PKSubject, PDSubject} Apply to all dataset. """ function applylimitrule!(data::DataSet{T}, rule::LimitRule) where T <: Union{PKSubject, PDSubject} for i = 1:length(data) applylimitrule!(data[i], rule) end data end #DS Dict """ applylimitrule!(data::DataSet{T}, rule::LimitRule, sort::Dict) where T <: PKSubject """ function applylimitrule!(data::DataSet{T}, rule::LimitRule, sort::Dict) where T <: Union{PKSubject, PDSubject} for i = 1:length(data) if sort βŠ† data[i].id applylimitrule!(data[i], rule) end end data end """ applylimitrule!(time, obs, rule::LimitRule) """ function applylimitrule!(time, obs, rule::LimitRule) if validobsn(time, obs) == 0 return Float64[], Float64[] end cmax, tmax, tmaxn = ctmax(time, obs) #NaN Rule obsn = length(obs) if !isnan(rule.nan) for i = 1:obsn if isnanormissing(obs[i]) obs[i] = rule.nan end end end #LLOQ rule if !isnan(rule.lloq) for i = 1:obsn if !isnanormissing(obs[i]) && obs[i] <= rule.lloq if i <= tmaxn obs[i] = rule.btmax else obs[i] = rule.atmax end end end end #NaN Remove rule if rule.rm inds = findall(isnanormissing, obs) deleteat!(time, inds) deleteat!(obs, inds) end time, obs end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1529
""" cmax(time::AbstractVector, obs::AbstractVector) Return Cmax """ function cmax(time::AbstractVector, obs::AbstractVector) length(time) == length(obs) || error("length(time) != length(obs)") cmax, tmax, tmaxn = ctmax(time, obs) cmax end """ tmax(time::AbstractVector, obs::AbstractVector) Return Tmax """ function tmax(time::AbstractVector, obs::AbstractVector) length(time) == length(obs) || error("length(time) != length(obs)") cmax, tmax, tmaxn = ctmax(time, obs) tmax end """ auc(time::AbstractVector, obs::AbstractVector; calcm = :lint) Return AUC. All concentration points included in calculation. * `calcm` - AUC/AUMC calculation method: - `:lint` - linear trapezoidal; - `:logt` - log-trapezoidal after Tmax; - `:luld` - linar up log down; - `:luldt` - linear up log down after Tmax; !!! note This function doesn't contain `NaN`, `missing` or dosing time checks. """ function auc(time::AbstractVector, obs::AbstractVector; calcm = :lint) length(time) == length(obs) || error("length(time) != length(obs)") length(time) >= 2 || error("length(time) >= 2") auc_ = 0.0 if calcm == :lint @inbounds for i = 1:(length(time) - 1) auc_ += linauc(time[i], time[i + 1], obs[i], obs[i+1]) end else cmax, tmax, tmaxn = ctmax(time, obs) @inbounds for i = 1:(length(time) - 1) auc_ += aucpart(time[i], time[i + 1], obs[i], obs[i + 1], calcm, i >= tmaxn) end end auc_ end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
257
""" getkeldata(data::T) where T <: PKSubject """ function getkeldata(data::T) where T <: PKSubject data.keldata end """ getkeldata(data::T) where T <: PKSubject """ function getkeldata(ncar::T) where T <: NCAResult getkeldata(ncar.data) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
13833
# ЗаполняСт ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ d индСксами ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ nonunique(v) = [k for (k, v) in StatsBase.countmap(v) if v > 1] function floatparse(data, warn) if !isa(data, AbstractFloat) && !ismissing(data) if isa(data, AbstractString) tp = tryparse(Float64, data) if isnothing(tp) warn && @warn "Value $data parsed as `NaN`" return NaN else return tp end else try return float(data) catch return NaN end end elseif ismissing(data) return NaN else return data end end #= function floatparse(data::AbstractVector) v = Vector{Float64}(undef, length(data)) @inbounds for i = 1:length(data) if !isa(data[i], AbstractFloat) && !ismissing(data[i]) if isa(data[i], AbstractString) try v[i] = parse(Float64, data[i]) catch v[i] = NaN end else try v[i] = float(data[i]) catch v[i] = NaN end end elseif ismissing(data[i]) v[i] = NaN else v[i] = data[i] end end identity.(v) end =# #= Check element type of time column Check element type of observation / concentration column return new arrays =# function checkvalues(timevals_sp, concvals_sp; warn = true) timevals_sp_ = identity.(timevals_sp) eltype(timevals_sp_) <: Number || error("Some time values not a number ($(eltype(timevals_sp_))))!") if !(eltype(concvals_sp) <: Union{Number, Missing}) warn && @warn "Some concentration values maybe not a number, try to fix." concvals_sp_ = floatparse.(concvals_sp, warn) elseif eltype(concvals_sp) <: Integer warn && @warn "Concentration values transformed to float." concvals_sp_ = float.(concvals_sp) else concvals_sp_ = identity.(concvals_sp) end timevals_sp_, concvals_sp_ end """ pkimport(data, time, conc, sort; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), limitrule::Union{Nothing, LimitRule} = nothing, warn = true, kwargs...) Import PK data from table `data`. * `time` - time column; * `conc` - concentration column; * `sort` - subject sorting columns. keywords: * `kelauto` - if `true` auto range settings, if `false` used `kelstart`/`kelend` from `elimrange`; * `elimrange` - set elimination range settings; * `dosetime` - set dose and dose time, by default dosetime = 0, dose is `NaN`; * `limitrule` - apply limitrule to subject; * `warn` - false for warnings supress. !!! note If time column have non-unique values - last pair time-concentration will be used. See also: [`ElimRange`](@ref), [`DoseTime`](@ref), [`LimitRule`](@ref). """ function pkimport(data, time, conc, sort; kelauto = true, elimrange = ElimRange(), dosetime = nothing, limitrule::Union{Nothing, LimitRule} = nothing, warn = true, kwargs...) if isa(sort, String) sort = [Symbol(sort)] end if isa(sort, Symbol) sort = [sort] end Tables.istable(data) || error("Data not a table!") cols = Tables.columns(data) cdata = Tuple(Tables.getcolumn(cols, y) for y in sort) d = Dict{Tuple{eltype.(cdata)...}, Vector{Int}}() indsdict!(d, cdata) timec = Tables.getcolumn(data, time) concc = Tables.getcolumn(data, conc) if isnothing(dosetime) dosetime = DoseTime(NaN, zero(eltype(timec)), NaN) end any(isnanormissing, timec) && error("Some time values is NaN or Missing!") sdata = Vector{PKSubject}(undef, length(d)) i = one(Int) @inbounds for (k, v) in d timevals = view(timec, v) concvals = view(concc, v) if !allunique(timevals) nuv = nonunique(timevals) warn && @warn "Not all time values is unique ($nuv), last observation used! ($k)" nuvinds = findall(x -> x == first(nuv), timevals) resize!(nuvinds, length(nuvinds) - 1) if length(nuv) > 1 for cnt = 2:length(nuv) nuvinds_ = findall(x -> x == nuv[cnt], timevals) resize!(nuvinds_, length(nuvinds_) - 1) append!(nuvinds, nuvinds_) end end sort!(nuvinds) deleteat!(v, nuvinds) timevals = view(timec, v) concvals = view(concc, v) end sp = sortperm(timevals) timevals_spv = view(timevals, sp) concvals_spv = view(concvals, sp) timevals_sp, concvals_sp = checkvalues(timevals_spv, concvals_spv; warn = warn) sdata[i] = PKSubject(timevals_sp, concvals_sp, kelauto, elimrange, dosetime, Dict(sort .=> k)) i += one(Int) end ds = DataSet(identity.(sdata)) if !isnothing(limitrule) applylimitrule!(ds, limitrule) end ds end """ pkimport(data, time, conc; warn = true, kwargs...) Import PK data from tabular data `data`, `time` - time column, `conc` - concentration column. """ function pkimport(data, time, conc; warn = true, kwargs...) timevals_sp, concvals_sp = checkvalues(Tables.getcolumn(data, time), Tables.getcolumn(data, conc); warn = warn) pkimport(timevals_sp, concvals_sp; warn = warn, kwargs...) end """ pkimport(time, conc; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), id = Dict{Symbol, Any}(), limitrule::Union{Nothing, LimitRule} = nothing, warn = true, kwargs...) Import PK data from time vector `time` and concentration vector `conc`. """ function pkimport(time, conc; kelauto = true, elimrange = ElimRange(), dosetime = nothing, id = Dict{Symbol, Any}(), limitrule::Union{Nothing, LimitRule} = nothing, warn = true, kwargs...) timevals_sp, concvals_sp = checkvalues(time, conc, warn = warn) if isnothing(dosetime) dosetime = DoseTime(NaN, zero(eltype(timevals_sp)), NaN) end pks = PKSubject(timevals_sp, concvals_sp, kelauto, elimrange, dosetime, id) if !isnothing(limitrule) applylimitrule!(pks, limitrule) end pks end function pkimport(data; time, conc, sort = nothing, kwargs...) if isnothing(sort) return pkimport(data, time, conc; kwargs...) end return pkimport(data, time, conc, sort; kwargs...) end """ upkimport(data, stime, etime, conc, vol, sort; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime()) Import urine PK data from table `data`. * `stime` - start time column; * `etime` - end time column; * `conc` - concentration column; * `vol` - volume column; * `sort` - subject sorting columns. """ function upkimport(data, stime, etime, conc, vol, sort; kelauto = true, elimrange = ElimRange(), dosetime = nothing) if isa(sort, String) sort = [Symbol(sort)] end if isa(sort, Symbol) sort = [sort] end cols = Tables.columns(data) cdata = Tuple(Tables.getcolumn(cols, y) for y in sort) d = Dict{Tuple{eltype.(cdata)...}, Vector{Int}}() indsdict!(d, cdata) tnames = Symbol.(names(data)) isa(stime, Symbol) || stime in tnames || error("column Start Time ($stime) not found") isa(etime, Symbol) || etime in tnames || error("column End Time ($etime) not found") isa(conc, Symbol) || conc in tnames || error("column Concentration ($conc) not found") isa(vol, Symbol) || vol in tnames || error("column Volume ($vol) not found") stimec = Tables.getcolumn(data, stime) etimec = Tables.getcolumn(data, etime) concc = Tables.getcolumn(data, conc) volc = Tables.getcolumn(data, vol) if isnothing(dosetime) dosetime = DoseTime(NaN, zero(promote_type(eltype(stimec), eltype(etimec))), NaN) end any(isnanormissing, stimec) && error("Some Start Time values is NaN or Missing!") any(isnanormissing, etimec) && error("Some End Time values is NaN or Missing!") sdata = Vector{UPKSubject}(undef, length(d)) i = one(Int) @inbounds for (k, v) in d stimevals = view(stimec, v) etimevals = view(etimec, v) concvals = view(concc, v) volvals = view(volc, v) sdata[i] = upkimport(stimevals, etimevals, concvals, volvals; kelauto = kelauto, elimrange = elimrange, dosetime = dosetime, id = Dict(sort .=> k)) i += one(Int) end return DataSet(identity.(sdata)) end """ upkimport(data, stime, etime, conc, vol; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime()) Import single urine PK data from table `data`. * `stime` - start time column; * `etime` - end time column; * `conc` - concentration column; * `vol` - volume column. """ function upkimport(data, stime, etime, conc, vol; kelauto = true, elimrange = ElimRange(), dosetime = nothing) upkimport(Tables.getcolumn(data, stime), Tables.getcolumn(data, etime), Tables.getcolumn(data, conc), Tables.getcolumn(data, vol); kelauto = kelauto, elimrange = elimrange, dosetime = dosetime) end """ upkimport(stime, etime, conc, vol; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime()) Import urine PK data from time vectors: * `stime` - start times; * `etime` - end times; * `conc` - concentrations; * `vol` - volumes. """ function upkimport(stime, etime, conc, vol; kelauto = true, elimrange = ElimRange(), dosetime = nothing, id = Dict{Symbol, Any}()) any(isnanormissing, stime) && error("Some Start Time values is NaN or Missing!") any(isnanormissing, etime) && error("Some End Time values is NaN or Missing!") timeranges = collect(zip(stime, etime)) sp = sortperm(stime) timevals_sp = timeranges[sp] concvals_sp = conc[sp] volvals_sp = vol[sp] time_type = promote_type(typeof(zero(eltype(stime))), typeof(zero(eltype(stime)))) zerotime = zero(time_type) if isnothing(dosetime) dosetime = DoseTime(NaN, zerotime, NaN*zerotime) else if !(time_type <: typeof(dosetime.time)) && !(time_type <: Real) @warn "Type of dose time can be wrong... try to fix it" dosetime = DoseTime(dosetime.dose, dosetime.time*oneunit(time_type), dosetime.tau) end end if length(timevals_sp) > 1 for c = 2:length(timevals_sp) timevals_sp[c][1] == timevals_sp[c-1][2] || error("Start time ($(timevals_sp[c][1])) for observation $c not equal End time ($(timevals_sp[c-1][2])) for observation $(c-1)!") end end UPKSubject(timevals_sp, concvals_sp, volvals_sp, kelauto, elimrange, dosetime, id) end """ pdimport(data, time, obs, sort; bl = 0, th = 0, limitrule::Union{Nothing, LimitRule} = nothing, warn = true) Import pharmackodynamic data from table: * `data` - data table; * `time` - observation time; * `obs` - observation value; * `sort` - sorting columns. Keywords: * `bl` - baseline; * `th` - threshold; * `limitrule` - limit rule; * `warn` - warning supress if `false`. """ function pdimport(data, time, obs, sort; bl = 0, th = 0, limitrule::Union{Nothing, LimitRule} = nothing, warn = true) if isa(sort, String) sort = [Symbol(sort)] end if isa(sort, Symbol) sort = [sort] end Tables.istable(data) || error("Data not a table!") cols = Tables.columns(data) cdata = Tuple(Tables.getcolumn(cols, y) for y in sort) d = Dict{Tuple{eltype.(cdata)...}, Vector{Int}}() indsdict!(d, cdata) timec = Tables.getcolumn(data, time) obsc = Tables.getcolumn(data, obs) any(isnanormissing, timec) && error("Some time values is NaN or Missing!") sdata = Vector{PDSubject}(undef, length(d)) i = one(Int) @inbounds for (k, v) in d timevals = timec[v] obsvals = obsc[v] if !allunique(timevals) nuv = nonunique(timevals) warn && @warn "Not all time values is unique ($nuv), last observation used! ($k)" nuvinds = findall(x -> x == first(nuv), timevals) resize!(nuvinds, length(nuvinds) - 1) if length(nuv) > 1 for cnt = 2:length(nuv) nuvinds_ = findall(x -> x == nuv[cnt], timevals) resize!(nuvinds_, length(nuvinds_) - 1) append!(nuvinds, nuvinds_) end end sort!(nuvinds) deleteat!(v, nuvinds) timevals = view(timec, v) obsvals = view(obsc, v) end sp = sortperm(timevals) timevals_spv = view(timevals, sp) obsvals_spv = view(obsvals, sp) timevals_sp, obsvals_sp = checkvalues(timevals_spv, obsvals_spv, warn = warn) sdata[i] = PDSubject(timevals_sp, obsvals_sp, bl, th, Dict(sort .=> k)) i += one(Int) end ds = DataSet(identity.(sdata)) if !isnothing(limitrule) applylimitrule!(ds, limitrule) end ds end """ pdimport(data, time, obs; warn = true, kwargs...) Import PD data from tabular data `data`, `time` - time column, `obs` - observations column. """ function pdimport(data, time, obs; warn = true, kwargs...) timevals_sp, obsvals_sp = checkvalues(Tables.getcolumn(data, time), Tables.getcolumn(data, obs), warn = warn) pdimport(timevals_sp, obsvals_sp; kwargs...) end """ pdimport(time, obs; bl = 0, th = 0, id = Dict{Symbol, Any}(), warn = true) Import PD data from time vector `time` and observations vector `obs`. """ function pdimport(time, obs; bl = 0, th = 0, id = Dict{Symbol, Any}(), warn = true) timevals_sp, obsvals_sp = checkvalues(copy(time), copy(obs), warn = warn) PDSubject(timevals_sp, obsvals_sp, bl, th, id) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1052
#= function Base.append!(t::MetidaTable, t2::MetidaTable) if !(names(t) βŠ† names(t2)) error("Names for t not in t2") end for n in names(t) append!(t.table[n], t2.table[n]) end t end =# function MetidaBase.metida_table_(obj::DataSet{T}) where T <: PKSubject idset = Set(keys(first(obj).id)) if length(obj) > 1 for i = 2:length(obj) union!(idset, Set(keys(obj[i].id))) end end mt1 = metida_table_((fill(getid(obj, 1, c), length(obj[1])) for c in idset)...; names = idset) mt2 = metida_table_(deepcopy(obj[1].time), deepcopy(obj[1].obs); names = [:time, :obs]) mtm = merge(mt1, mt2) if length(obj) > 1 for i = 2:length(obj) mt1 = metida_table_((fill(getid(obj, i, c), length(obj[i])) for c in idset)...; names = idset) mt2 = metida_table_(obj[i].time, obj[i].obs; names = [:time, :obs]) amtm = merge(mt1, mt2) for n in keys(mtm) append!(mtm[n], amtm[n]) end end end mtm end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
43631
# Pharmacokinetics # Makoid C, Vuchetich J, Banakar V. 1996-1999. Basic Pharmacokinetics. function validobsn(time::Vector{<:Number}, obs::Vector) if length(time) != length(obs) error("Vector length `time` not equal `obs`") end n = 0 @inbounds for i = 1:length(time) if !isnanormissing(time[i]) && !isnanormissing(obs[i]) n+=1 end end n end function firstobs(time::Vector{T}, obs::Vector, dosetime) where T <: Number @inbounds for i = 1:length(time) if time[i] >= dosetime && !isnanormissing(obs[i]) return i end #unitful dosetime? end error("Observations not found") end function firstobs(time::Vector{<:Tuple}, obs, vol, dosetime) @inbounds for i = 1:length(time) if time[i][1] >= dosetime && !isnanormissing(obs[i]) && !isnanormissing(vol[i]) return i end end error("Observations not found") end function ctaumin(time::AbstractVector, obs::AbstractVector, taulastp::Int) fi = 0 min = NaN for i = 1:taulastp if !isnanormissing(obs[i]) fi = i min = obs[i] break end end if length(obs) == 1 return min end @inbounds for i = fi:taulastp if !isnanormissing(obs[i]) && obs[i] < min min = obs[i] end end min end function ctmax(time::AbstractVector, obs::AbstractVector{T}, taulastp) where T cmax = obs[1] tmaxn = 1 if length(obs) == 1 return cmax, first(time), tmaxn end taulastp > length(obs) && error("taulastp > length(obs") @inbounds for i = 2:taulastp if !isnanormissing(obs[i]) && obs[i] > cmax cmax = obs[i] tmaxn = i end end return cmax, time[tmaxn], tmaxn end function ctmax(time::AbstractVector, obs::AbstractVector) f = findfirst(!isnanormissing, obs) cmax = obs[f] tmaxn = f if length(obs) - f == 0 return cmax, time[f], tmaxn end @inbounds for i = f + 1:length(obs) if !isnanormissing(obs[i]) && obs[i] > cmax cmax = obs[i] tmaxn = i end end return cmax, time[tmaxn], tmaxn end function ctmax(data::PKSubject) fobs = firstobs(data.time, data.obs, data.dosetime.time) if data.dosetime.tau > 0 taulastp = findlast(x -> x <= data.dosetime.time + data.dosetime.tau, data.time) else taulastp = length(data.obs) end cmax = data.obs[fobs] tmaxn = fobs if length(data.obs) - fobs == 0 return cmax, data.time[fobs], tmaxn end @inbounds for i = fobs + 1:length(data.obs) if !isnanormissing(data.obs[i]) && data.obs[i] > cmax cmax = data.obs[i] tmaxn = i end end return cmax, data.time[tmaxn], tmaxn end function logtpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) return log(cx/c₁)/log(cβ‚‚/c₁)*(tβ‚‚-t₁)+t₁ end function logcpredict(t₁, tβ‚‚, tx, c₁::T, cβ‚‚::T) where T return exp(log(c₁/oneunit(c₁)) + (tx-t₁)/(tβ‚‚-t₁)*(log(cβ‚‚/oneunit(cβ‚‚)) - log(c₁/oneunit(c₁))))*oneunit(c₁) end #Linear trapezoidal auc function linauc(t₁, tβ‚‚, c₁, cβ‚‚) return (tβ‚‚-t₁)*(c₁+cβ‚‚)/2 end #Linear trapezoidal aumc function linaumc(t₁, tβ‚‚, c₁, cβ‚‚) return (tβ‚‚-t₁)*(t₁*c₁+tβ‚‚*cβ‚‚)/2 end #Log trapezoidal auc function logauc(t₁, tβ‚‚, c₁, cβ‚‚) return (tβ‚‚-t₁)*(cβ‚‚-c₁)/log(cβ‚‚/c₁) end #Log trapezoidal aumc function logaumc(t₁, tβ‚‚, c₁, cβ‚‚) return (tβ‚‚-t₁) * (tβ‚‚*cβ‚‚-t₁*c₁) / log(cβ‚‚/c₁) - (tβ‚‚-t₁)^2 * (cβ‚‚-c₁) / log(cβ‚‚/c₁)^2 end #Intrapolation #linear prediction bx from ax, a1 < ax < a2 function linpredict(a₁, aβ‚‚, ax, b₁, bβ‚‚) return (ax - a₁) / (aβ‚‚ - a₁)*(bβ‚‚ - b₁) + b₁ end function slope(x::AbstractVector{X}, y::AbstractVector{Y}; funk::Function = identity) where X where Y XYT = promote_type(X, Y) if length(x) != length(y) throw(ArgumentError("Unequal vector length!")) end n = length(x) if n < 2 throw(ArgumentError("n < 2!")) end Ξ£xy = zero(XYT) Ξ£x = zero(X) Ξ£y = zero(Y) Ξ£x2 = zero(X) Ξ£y2 = zero(Y) @inbounds for i = 1:n xi = x[i] yi = funk(y[i]) Ξ£xy += xi * yi Ξ£x += xi Ξ£y += yi Ξ£x2 += xi^2 Ξ£y2 += yi^2 end a = (n * Ξ£xy - Ξ£x * Ξ£y)/(n * Ξ£x2 - Ξ£x^2) b = (Ξ£y * Ξ£x2 - Ξ£x * Ξ£xy)/(n * Ξ£x2 - Ξ£x^2) r2 = (n * Ξ£xy - Ξ£x * Ξ£y)^2/((n * Ξ£x2 - Ξ£x^2)*(n * Ξ£y2 - Ξ£y^2)) n > 2 ? ar = 1 - (1 - r2)*(n - 1)/(n - 2) : ar = NaN return a, b, r2, ar, n end #= function logslope(x, y) if length(x) != length(y) throw(ArgumentError("Unequal vector length!")) end n = length(x) if n < 2 throw(ArgumentError("n < 2!")) end Ξ£xy = zero(Float64) Ξ£x = zero(Float64) Ξ£y = zero(Float64) Ξ£x2 = zero(Float64) Ξ£y2 = zero(Float64) @inbounds for i = 1:n xi = x[i] yi = log(y[i]) Ξ£xy += xi * yi Ξ£x += xi Ξ£y += yi Ξ£x2 += xi^2 Ξ£y2 += yi^2 end a = (n * Ξ£xy - Ξ£x * Ξ£y)/(n * Ξ£x2 - Ξ£x^2) b = (Ξ£y * Ξ£x2 - Ξ£x * Ξ£xy)/(n * Ξ£x2 - Ξ£x^2) r2 = (n * Ξ£xy - Ξ£x * Ξ£y)^2/((n * Ξ£x2 - Ξ£x^2)*(n * Ξ£y2 - Ξ£y^2)) n > 2 ? ar = 1 - (1 - r2)*(n - 1)/(n - 2) : ar = NaN return a, b, r2, ar, n end #end slope =# #--------------------------------------------------------------------------- function aucpart(t₁, tβ‚‚, c₁, cβ‚‚, calcm, aftertmax) if calcm == :lint || c₁ <= zero(c₁) && cβ‚‚ <= zero(cβ‚‚) auc = linauc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :logt && aftertmax && c₁ > zero(c₁) && cβ‚‚ > zero(cβ‚‚) auc = logauc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :luld && c₁ > cβ‚‚ > zero(cβ‚‚) auc = logauc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :luldt && aftertmax && c₁ > cβ‚‚ > zero(cβ‚‚) auc = logauc(t₁, tβ‚‚, c₁, cβ‚‚) #elseif calcm == :log && c₁ > zero(T) && cβ‚‚ > zero(T) #auc = logauc(t₁, tβ‚‚, c₁, cβ‚‚) else auc = linauc(t₁, tβ‚‚, c₁, cβ‚‚) end return auc end function aumcpart(t₁, tβ‚‚, c₁, cβ‚‚, calcm, aftertmax) if calcm == :lint || c₁ <= zero(c₁) && cβ‚‚ <= zero(cβ‚‚) aumc = linaumc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :logt && aftertmax && c₁ > zero(c₁) && cβ‚‚ > zero(cβ‚‚) aumc = logaumc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :luld && c₁ > cβ‚‚ > zero(cβ‚‚) aumc = logaumc(t₁, tβ‚‚, c₁, cβ‚‚) elseif calcm == :luldt && aftertmax && c₁ > cβ‚‚ > zero(cβ‚‚) aumc = logaumc(t₁, tβ‚‚, c₁, cβ‚‚) #elseif calcm == :log && c₁ > zero(T) && cβ‚‚ > zero(T) #aumc = logaumc(t₁, tβ‚‚, c₁, cβ‚‚) else aumc = linaumc(t₁, tβ‚‚, c₁, cβ‚‚) end return aumc end #--------------------------------------------------------------------------- function interpolate(t₁, tβ‚‚, tx, c₁, cβ‚‚, intpm, aftertmax) if intpm == :lint || c₁ <= zero(c₁) || cβ‚‚ <= zero(cβ‚‚) c = linpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) elseif intpm == :logt && aftertmax && c₁ > zero(c₁) && cβ‚‚ > zero(cβ‚‚) c = logcpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) elseif intpm == :luld && c₁ > cβ‚‚ > zero(cβ‚‚) c = logcpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) elseif intpm == :luldt && aftertmax && c₁ > cβ‚‚ > zero(cβ‚‚) c = logcpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) #elseif intpm == :log && c₁ > zero(T) && cβ‚‚ > zero(T) #c = logcpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) else c = linpredict(t₁, tβ‚‚, tx, c₁, cβ‚‚) end return c end # Time interpolation function tinterpolate(c₁, cβ‚‚, cx, t₁, tβ‚‚, intpm, aftertmax) if intpm == :lint || c₁ <= zero(c₁) || cβ‚‚ <= zero(cβ‚‚) t = linpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) elseif intpm == :logt && aftertmax && c₁ > zero(c₁) && cβ‚‚ > zero(cβ‚‚) t = logtpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) elseif intpm == :luld && c₁ > cβ‚‚ > zero(cβ‚‚) t = logtpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) elseif intpm == :luldt && aftertmax && c₁ > cβ‚‚ > zero(cβ‚‚) t = logtpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) #elseif intpm == :log && c₁ > zero(T) && cβ‚‚ > zero(T) #t = logtpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) else t = linpredict(c₁, cβ‚‚, cx, t₁, tβ‚‚) end return t end ################################################################################ # STEPS ################################################################################ # 1 # Make observation vector and time vector, no points befor Dosetime and nopoints after last nonmissing concentration function step_1_filterpksubj(_time::AbstractVector{T}, _obs, dosetime) where T fobs = firstobs(_time, _obs, dosetime) li = findlast(!isnanormissing, _obs) n = li - fobs + 1 obstype = typeof(zero(eltype(_obs))) nanobst = NaN * zero(eltype(_obs)) time = Vector{T}(undef, n) obs = Vector{obstype}(undef, n) inds = Vector{Int}(undef, 0) ii = 0 for i = fobs:li ii += 1 time[ii] = _time[i] if isnanormissing(_obs[i]) obs[ii] = nanobst push!(inds, ii) else obs[ii] = _obs[i] end end time, obs, inds # return time, obs, and NaN or Missing value list end #2 function step_2_interpolate!(time, obs::AbstractVector{T}, inds, tmaxn, intpm) where T if length(inds) > 0 vals = Vector{T}(undef, length(inds)) for i = 1:length(inds) aftertmax = inds[i] > tmaxn i₁ = findlast(!isnanormissing, obs[1:inds[i] - 1]) iβ‚‚ = findfirst(!isnanormissing, obs[inds[i] + 1:end]) + inds[i] vals[i] = interpolate(time[i₁], time[iβ‚‚], time[inds[i]], obs[i₁], obs[iβ‚‚], intpm, aftertmax) end for i = 1:length(inds) obs[inds[i]] = vals[i] end end end # 3 # Elimination, TlastN, Tlast function step_3_elim!(result, data, adm, tmaxn, time_cp::AbstractVector{T}, obs_cp::AbstractVector{O}, time, keldata) where T where O resize!(keldata) obsnum = length(time_cp) # data.kelrange.kelexcl - indexes; excltime - time values excltime = time[data.kelrange.kelexcl] # Unitful values r_time_cp = reinterpret(typeof(one(T)), time_cp) r_obs_cp = reinterpret(typeof(one(O)), obs_cp) tlastn = findlast(x-> x > zero(x), r_obs_cp) tlast = r_time_cp[tlastn] if data.kelauto if (adm != :iv && obsnum - tmaxn > 2) || (adm == :iv && obsnum - tmaxn > 1) if adm == :iv stimep = tmaxn else stimep = tmaxn + 1 end timep = collect(stimep:obsnum) # time points (and conc) - indexes for time vector from start to end # Esclude all indexes in data.kelrange.kelexcl if length(data.kelrange.kelexcl) > 0 exclinds = findall(x -> x in excltime, time_cp) filter!(x-> x βˆ‰ exclinds, timep) end # find all concentrations <= 0 - indexes zcinds = findall(x -> x <= zero(O), obs_cp) # exclude concentrations <= 0 from time vector filter!(x-> x βˆ‰ zcinds, timep) if length(timep) > 2 logconc = log.(r_obs_cp) for i = length(timep)-2:-1:1 timepv = view(timep, i:length(timep)) sl = slope(view(r_time_cp, timepv), view(logconc, timepv)) if sl[1] < 0 push!(keldata, time_cp[timep[i]], time_cp[timep[end]], sl[1], sl[2], sl[3], sl[4], sl[5]) end end end end else stimep = findfirst(x -> x >= time[data.kelrange.kelstart], time_cp) etimep = findlast(x -> x <= time[data.kelrange.kelend], time_cp) timep = collect(stimep:etimep) if length(data.kelrange.kelexcl) > 0 @inbounds for i in data.kelrange.kelexcl filter!(x-> x βˆ‰ findall(x -> x in excltime, time_cp), timep) end end zcinds = findall(x -> x <= 0, obs_cp) filter!(x-> x βˆ‰ zcinds, timep) if length(timep) > 1 sl = slope(view(r_time_cp, timep), view(r_obs_cp, timep), funk = log) push!(keldata, time_cp[stimep], time_cp[etimep], sl[1], sl[2], sl[3], sl[4], sl[5]) end end # keldata - New KelData, excltime excluded time values, t last N and tlast keldata, excltime, tlastn, tlast end # 6 function step_6_areas(time_cp::AbstractVector{T}, obs_cp::AbstractVector{O}, calcm, tmaxn, tlastn) where T where O obsnum = length(time_cp) auctype = typeof(zero(eltype(time_cp))*zero(eltype(obs_cp))) aumctype = typeof(zero(eltype(time_cp))^2*zero(eltype(obs_cp))) aucpartl = Array{auctype, 1}(undef, obsnum - 1) aumcpartl = Array{aumctype, 1}(undef, obsnum - 1) #Calculate all AUC/AUMC part based on data for i = 1:(obsnum - 1) aucpartl[i] = aucpart(time_cp[i], time_cp[i + 1], obs_cp[i], obs_cp[i + 1], calcm, i >= tmaxn) aumcpartl[i] = aumcpart(time_cp[i], time_cp[i + 1], obs_cp[i], obs_cp[i + 1], calcm, i >= tmaxn) end #----------------------------------------------------------------------- #----------------------------------------------------------------------- auclast = zero(auctype) aumclast = zero(aumctype) @inbounds for i = 1:tlastn-1 auclast += aucpartl[i] aumclast += aumcpartl[i] end if auclast == zero(auctype) auclast = NaN * zero(auctype) end if aumclast == zero(aumctype) aumclast = NaN * zero(aumctype) end aucall = auclast if tlastn < length(time_cp) @inbounds for i = tlastn:obsnum-1 aucall += aucpartl[i] end end aucpartl, aumcpartl, auclast, aumclast, aucall end """ nca(args...; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), kwargs...) nca(data, time, conc, sort; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), kwargs...) nca(data, time, conc; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), kwargs...) nca(time, conc; kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), kwargs...) Import data and perform NCA analysis. Syntax simillar to [`pkimport`](@ref) Applicable `kwargs` see [`nca!`](@ref). See also: [`ElimRange`](@ref), [`DoseTime`](@ref), [`LimitRule`](@ref). """ function nca(args...; type::Symbol = :bps, bl = 0, th = 0, kelauto = true, elimrange = ElimRange(), dosetime = DoseTime(), limitrule::Union{Nothing, LimitRule} = nothing, kwargs...) if !(type in (:bps, :ur, :pd)) error("Unknown type") end if type == :bps pki = pkimport(args...; kelauto = kelauto, elimrange = elimrange, dosetime = dosetime, limitrule = limitrule, kwargs...) elseif type == :ur pki = upkimport(args...; kelauto = kelauto, elimrange = elimrange, dosetime = dosetime, kwargs...) elseif type == :pd pki = pdimport(args...; th = th, bl = bl, limitrule = limitrule, kwargs...) end nca!(pki; kwargs...) end """ nca!(data::DataSet{Subj}; adm = :ev, calcm = :lint, intpm = nothing, verbose = 0, warn = true, io::IO = stdout, modify! = identity) where Subj <: AbstractSubject Non-compartmental (NCA) analysis of PK/PD data. """ function nca!(data::DataSet{Subj}; kwargs...) where Subj <: AbstractSubject #result = Vector{NCAResult{Subj}}(undef, length(data)) #for i = 1:length(data) # result[i] = nca!(data[i]; kwargs...) #end #DataSet(result) map(x -> nca!(x; kwargs...), data) end """ nca!(data::PKSubject{T,O}; adm = :ev, calcm = :lint, intpm = nothing, partials = nothing, prtext = :err, verbose = 0, warn = true, io::IO = stdout, modify! = nothing) where T where O * `adm` - administration: - `:ev` - extra vascular; - `:iv` - intravascular bolus; * `calcm` - AUC/AUMC calculation method: - `:lint` - linear trapezoidal; - `:luld` - linear up log down; - `:luldt` - linear up log down after Tmax; - `:logt` - log-trapezoidal after Tmax (Not Recommended); * `intpm` - interpolation method: - `:lint` - linear trapezoidal; - `:luld` - linear up log down; - `:luldt` - linear up log down after Tmax; - `:logt` - log-trapezoidal after Tmax; * `partials` - calculate partial AUC vor vector of time intervals (`:err` (default) - throw error if end time > last oservation time; `:last` - no extrapolation; `:extr` - if `Kel` calculated used extrapolation or `NaN` if no `Kel`); * `prtext` - extrapolation rule for partials AUC; * `verbose` - print to `io`, 1: partial areas table, 2: 1, and results; * `warn` - show warnings; * `io` - output stream; * `modify!` - function to modify output paramaters, call `modify!(ncaresult)` if difined. Results: * Cmax * Tmax * Cdose * Tlag * Clast * AUClast * AUMClast * AUCall * Rsq * ARsq * Kel * HL * LZint * NpLZ * Clast_pred * AUCinf * AUCinf_pred * AUMCinf * AUMCinf_pred * AUCpct * MRTlast * MRTinf * MRTinf_pred * Cllast * Clinf * Vzlast * Vzinf * Vssinf Steady-state parameters (tau used): * AUCtau * AUMCtau * Ctau * Cavg * Ctaumin * Accind * Fluc * Fluctau * Swing * Swingtau * MRTtauinf * Cltau * Vztau `partials` is a vector of vectors, tuples or pairs. Example: `partials = [(1,2), (3,4)]`, `partials = [[1,2], (3,4)]` """ function nca!(data::PKSubject{T, O}; adm = :ev, calcm = :lint, intpm = nothing, partials = nothing, prtext = :err, verbose = 0, warn = true, io::IO = stdout, modify! = identity) where T where O ptype = promote_type(Float64, T, O) result = Dict{Symbol, ptype}() if isnothing(intpm) intpm = calcm end options = Dict(:type => :bps, :adm => adm, :calcm => calcm, :intpm => intpm, :verbose => verbose, :warn => warn, :modify! => modify!) if verbose > 0 println(io, " Non-compartmental Pharmacokinetic Analysis") if length(data.id) > 0 print(io, " Subject: ") for (k,v) in data.id print(io, "$(k) => $(v); ") end println(io, "") end println(io, " Settings:") println(io, " Method: $(calcm); Dose: $(data.dosetime.dose); Dose time: $(data.dosetime.time)") if data.dosetime.tau > 0 println(io, " Tau: $(data.dosetime.tau)") end end ################################################################################ # STEP 1 FILTER ALL BEFORE DOSETIME AND ALL NAN OR MISSING VALUES if validobsn(data.time, data.obs) == 0 return NCAResult(data, options, result) end time_cp, obs_cp, einds = step_1_filterpksubj(data.time, data.obs, data.dosetime.time) if length(obs_cp) < 2 return NCAResult(data, options, result) end ################################################################################ # STEP 2 - CMAX TMAX FOR TAU RANGE Clast Tlast; interpolate NaN and missings #result[:Obsnum] = obsnum = length(obs_cp) result[:Obsnum] = validobsn(time_cp, obs_cp) # If TAU set, calculates start and end timepoints for AUCtau if data.dosetime.tau > zero(typeof(data.dosetime.tau)) taulastp = findlast(x -> x <= data.dosetime.time + data.dosetime.tau, time_cp) result[:Ctaumin] = ctaumin(time_cp, obs_cp, taulastp) else taulastp = length(obs_cp) end result[:Cmax], result[:Tmax], tmaxn = ctmax(time_cp, obs_cp, taulastp) step_2_interpolate!(time_cp, obs_cp, einds, tmaxn, intpm) ################################################################################ # STEP 3 # Elimination, add interpolated inds to elimination exclusion # Get last concentration if length(einds) > 0 for ei in einds if ei βˆ‰ data.kelrange.kelexcl push!(data.kelrange.kelexcl, ei) end end sort!(data.kelrange.kelexcl) if data.kelrange.kelstart in data.kelrange.kelexcl || data.kelrange.kelend in data.kelrange.kelexcl data.kelauto = true end end keldata, excltime, tlastn, tlast = step_3_elim!(result, data, adm, tmaxn, time_cp, obs_cp, data.time, data.keldata) # C last and T last result[:Tlast] = time_cp[tlastn] result[:Clast] = obs_cp[tlastn] ################################################################################ # STEP 4 if data.dosetime.time > zero(T) time_cp .-= data.dosetime.time end ################################################################################ # STEP 5 # Dose concentration # Dosetime is first point cdoseins = zero(Int) if iszero(first(time_cp)) result[:Cdose] = first(obs_cp) # Dosetime before first point else if adm == :iv if first(obs_cp) > obs_cp[2] > zero(O) result[:Cdose] = logcpredict(first(time_cp), time_cp[2], 0, first(obs_cp), obs_cp[2]) else result[:Cdose] = first(obs_cp) end else if data.dosetime.tau > zero(typeof(data.dosetime.tau)) result[:Cdose] = result[:Ctaumin] else result[:Cdose] = zero(O) end end cdoseins = 1 pushfirst!(time_cp, zero(T)) pushfirst!(obs_cp, result[:Cdose]) # if time-zero point added some points shoud be shifted taulastp += 1 tmaxn += 1 tlastn += 1 end ################################################################################ # STEP 6 # Areas aucpartl, aumcpartl, auclast, aumclast, aucall = step_6_areas(time_cp, obs_cp, calcm, tmaxn, tlastn) result[:AUClast] = auclast result[:AUMClast] = aumclast result[:AUCall] = aucall ################################################################################ # STEP 7 # Other parameters #--------------------------------------------------------------------------- result[:MRTlast] = result[:AUMClast] / result[:AUClast] #--------------------------------------------------------------------------- if data.dosetime.dose > zero(data.dosetime.dose) result[:Cllast] = data.dosetime.dose / result[:AUClast] result[:Dose] = data.dosetime.dose end #----------------------------------------------------------------------- #----------------------------------------------------------------------- tlagn = findfirst(!iszero, obs_cp) if isnothing(tlagn) result[:Tlag] = NaN*zero(T) elseif tlagn > 1 result[:Tlag] = time_cp[tlagn-1] else result[:Tlag] = zero(T) end if length(data.keldata) > 0 #data.keldata = keldata result[:ARsq], rsqn = findmax(keldata.ar) result[:Rsq] = keldata.r[rsqn] #kel = abs(keldata.a[rsqn]) result[:Kel] = abs(keldata.a[rsqn]) / oneunit(T) result[:LZ] = keldata.a[rsqn] result[:LZint] = keldata.b[rsqn] result[:Rsqn] = rsqn result[:NpLZ] = keldata.n[rsqn] result[:Clast_pred] = exp(result[:LZint] + result[:LZ] * tlast) * oneunit(O) result[:HL] = LOG2 / result[:Kel] result[:AUCinf] = result[:AUClast] + result[:Clast] / result[:Kel] result[:AUCinf_pred] = result[:AUClast] + result[:Clast_pred] / result[:Kel] result[:AUCpct] = (result[:AUCinf] - result[:AUClast]) / result[:AUCinf] * 100 result[:AUMCinf] = result[:AUMClast] + result[:Tlast] * result[:Clast] / result[:Kel] + result[:Clast] / result[:Kel] ^ 2 result[:MRTinf] = result[:AUMCinf] / result[:AUCinf] if data.dosetime.dose > zero(data.dosetime.dose) result[:Vzlast] = data.dosetime.dose / result[:AUClast] / result[:Kel] result[:Vzinf] = data.dosetime.dose / result[:AUCinf] / result[:Kel] result[:Clinf] = data.dosetime.dose / result[:AUCinf] result[:Vssinf] = result[:Clinf] * result[:MRTinf] end else result[:Kel] = NaN / oneunit(T) end ################################################################################ # STEP 8 # Steady-state parameters if data.dosetime.tau > zero(data.dosetime.tau) eaucpartl = zero(T)*zero(O) eaumcpartl = zero(T)^2*zero(O) if time_cp[taulastp] < data.dosetime.tau < time_cp[end] result[:Ctau] = interpolate(time_cp[taulastp], time_cp[taulastp + 1], data.dosetime.tau, obs_cp[taulastp], obs_cp[taulastp + 1], intpm, true) eaucpartl = aucpart(time_cp[taulastp], data.dosetime.tau, obs_cp[taulastp], result[:Ctau], calcm, true) eaumcpartl = aumcpart(time_cp[taulastp], data.dosetime.tau, obs_cp[taulastp], result[:Ctau], calcm, true) #remoove part after tau elseif data.dosetime.tau > time_cp[end] && result[:Kel] !== NaN #extrapolation result[:Ctau] = exp(result[:LZint] + result[:LZ] * (data.dosetime.tau + data.dosetime.time)) eaucpartl = aucpart(time_cp[end], data.dosetime.tau, obs_cp[end], result[:Ctau], calcm, true) eaumcpartl = aumcpart(time_cp[end], data.dosetime.tau, obs_cp[end], result[:Ctau], calcm, true) else result[:Ctau] = obs_cp[taulastp] end auctau = eaucpartl aumctau = eaumcpartl @inbounds for i = 1:taulastp-1 auctau += aucpartl[i] aumctau += aumcpartl[i] end result[:AUCtau] = auctau result[:AUMCtau] = aumctau result[:Cavg] = result[:AUCtau]/data.dosetime.tau if result[:Ctaumin] != 0 result[:Swing] = (result[:Cmax] - result[:Ctaumin])/result[:Ctaumin] end if result[:Ctau] != 0 result[:Swingtau] = (result[:Cmax] - result[:Ctau])/result[:Ctau] end result[:Fluc] = (result[:Cmax] - result[:Ctaumin])/result[:Cavg] * 100 result[:Fluctau] = (result[:Cmax] - result[:Ctau])/result[:Cavg] * 100 #If Kel calculated result[:Cltau] = data.dosetime.dose / result[:AUCtau] if !isnan(result[:Kel]) result[:Accind] = 1 / (1 - (exp(-result[:Kel] * data.dosetime.tau))) result[:MRTtauinf] = (result[:AUMCtau] + data.dosetime.tau * (result[:AUCinf] - result[:AUCtau])) / result[:AUCtau] result[:Vztau] = data.dosetime.dose / result[:AUCtau] / result[:Kel] result[:Vsstau] = result[:Cltau] * result[:MRTtauinf] end end #partials if !isnothing(partials) for prt in partials stime = prt[1] etime = prt[2] if stime < data.dosetime.time error("Start time can't be less than dose time!") end if stime < data.dosetime.time error("End time can't be less than dose time!") end if etime <= stime error("End time can't be less or equal start time!") end suffix = "_"*string(stime)*"_"*string(etime) stime = stime - data.dosetime.time etime = etime - data.dosetime.time if etime > last(time_cp) && prtext == :err error("End time can't be greater than last time point ($(last(time_cp)))! Use keyword `prtext=:last` or `prtext=:extr`...") end #first point firstp = findfirst(x -> x >= stime, time_cp) #last point lastp = findlast(x -> x <= etime, time_cp) firstpart = zero(T)*zero(O) lastpart = zero(T)*zero(O) if stime < time_cp[firstp] firstpartc = interpolate(time_cp[firstp - 1], time_cp[firstp], stime, obs_cp[firstp - 1], obs_cp[firstp], intpm, stime > result[:Tmax]) firstpart += aucpart(stime, time_cp[firstp], firstpartc, obs_cp[firstp], calcm, stime > result[:Tmax]) #println("firstpartc = $firstpartc , firstpart = $firstpart") end if etime > time_cp[lastp] && etime < last(time_cp) # if last time > etime -> interpolation lastpartc = interpolate(time_cp[lastp], time_cp[lastp + 1], etime, obs_cp[lastp], obs_cp[lastp + 1], intpm, time_cp[lastp] > result[:Tmax]) lastpart += aucpart(time_cp[lastp], etime, obs_cp[lastp], lastpartc, calcm, time_cp[lastp] > result[:Tmax]) #println("lastpartc = $lastpartc , lastpart = $lastpart") elseif etime >= time_cp[lastp] && prtext == :last lastpartc = zero(O) elseif etime > time_cp[lastp] && prtext == :extr && !isnan(result[:Kel]) lastpartc = exp(result[:LZint] + result[:LZ] * etime) lastpart += aucpart(time_cp[lastp], etime, obs_cp[end], lastpartc, calcm, time_cp[lastp] > result[:Tmax]) else lastpartc = NaN lastpart += lastpartc end aucpartial = zero(T)*zero(O) if firstp != lastp aucpartn = lastp - firstp for i = 1:aucpartn aucpartial += aucpart(time_cp[firstp + i - 1], time_cp[firstp + i], obs_cp[firstp + i - 1], obs_cp[firstp + i], calcm, time_cp[firstp + i - 1] >= result[:Tmax]) #println("first = $(firstp + i - 1) , scns = $(firstp + i) , aucpartial = $aucpartial") end end aucpartial += firstpart + lastpart result[Symbol("AUC"*suffix)] = aucpartial if verbose > 2 println(io, " Partial $(prt[1]) - $(prt[2]); from point $firstp to $lastp") if stime < time_cp[firstp] println(io, " Interpolation values: first = $firstpartc, last = $lastpartc") end if etime > time_cp[lastp] println(io, " Interpolation parts: first = $firstpart, last = $lastpart") end end end end ################################################################################ # Verbose output if verbose > 0 aucpartlsum = similar(aucpartl) aumcpartlsum = similar(aumcpartl) @inbounds for i = 1:length(aucpartl) aucpartlsum[i] = sum(view(aucpartl, 1:i)) aumcpartlsum[i] = sum(view(aumcpartl, 1:i)) end if data.dosetime.time > 0 time_cp .+= data.dosetime.time end hnames = [:Time, :Concentrtion, :AUC, :AUC_cum, :AUMC, :AUMC_cum, :Info] mx = metida_table(time_cp, obs_cp, pushfirst!(aucpartl, 0.0), pushfirst!(aucpartlsum, 0.0), pushfirst!(aumcpartl, 0.0), pushfirst!(aumcpartlsum, 0.0), fill("", length(obs_cp)); names = hnames) if cdoseins > 0 mx[1, 7] = "D*" else mx[1, 7] = "D" end if !isnan(result[:Kel]) @inbounds for i = 1:length(time_cp) if time_cp[i] >= keldata.s[rsqn] && time_cp[i] <= keldata.e[rsqn] if length(data.kelrange.kelexcl) > 0 if time_cp[i] in excltime mx[i, 7] = "Excl" else mx[i, 7] = "E" end else mx[i, 7] = "E" end end if i in einds mx[i, 7] *= "@" end end end hnames = (["Time" "Conc." "AUC" "AUC" "AUMC" "AUMC" "Info"], ["" "" "" "(cum.)" "" "(cum.)" ""]) PrettyTables.pretty_table(io, mx; tf = PrettyTables.tf_compact, header = hnames, formatters = PrettyTables.ft_printf("%3.4g")) println(io, "") println(io, " Cdose: $(result[:Cdose]), Dose time: $(data.dosetime.time)") if isnan(result[:Kel]) println(io, " Elimination not calculated") else println(io, " Kel start: $(keldata.s[rsqn]); end: $(keldata.e[rsqn])") end if length(einds) > 0 println(io, " @ - Interpolated points ($(length(einds)))") end println(io, "") if data.dosetime.tau < time_cp[end] && data.dosetime.tau > 0 println(io, " Tau + dosetime is less then end time. Interpolation used.") println(io, " Ctau: $(result[:Ctau])") println(io, " AUC final part: $(eaucpartl)") println(io, " AUMC final part: $(eaumcpartl)") println(io, "") end if verbose > 1 println(io, " Results:") PrettyTables.pretty_table(io, result; tf = PrettyTables.tf_compact, header = ["Parameter", "Value"], formatters = PrettyTables.ft_printf("%4.6g")) end end ################################################################################ ncares = NCAResult(data, options, result) modify!(ncares) #----------------------------------------------------------------------- return ncares end function maxconc(subj::T) where T <: PKSubject maximum(subj.obs) end function minconc(subj::T, pos = false) where T <: PKSubject if pos return minimum(Iterators.filter(x-> x > zero(x), subj.obs)) else return minimum(subj.obs) end end function exrate(time::AbstractVector{Tuple{S, E}}, conc::AbstractVector{C}, vol::AbstractVector{V}) where S where E where C where V T = promote_type(S, E) length(time) == length(conc) == length(vol) || error("") er = Vector{typeof(oneunit(C)*oneunit(V)/oneunit(T))}(undef, length(time)) @inbounds for i = 1:length(time) er[i] = conc[i]*vol[i]/(time[i][2] - time[i][1]) end er end function step_1_filterupksubj(time, obs, vol, dosetime) fobs = firstobs(time, obs, vol, dosetime) ni = 0 @inbounds for i = fobs:length(obs) if !isnanormissing(obs[i]) && !isnanormissing(vol[i]) ni += 1 end end inds = Vector{Int}(undef, ni) ni = 1 @inbounds for i = fobs:length(obs) if !isnanormissing(obs[i]) && !isnanormissing(vol[i]) inds[ni] = i ni += 1 end end time_cp = time[inds] obs_cp = obs[inds] vol_cp = vol[inds] time_cp, obs_cp, vol_cp end """ nca!(data::UPKSubject{T, O, VOL, V}; adm = :ev, calcm = :lint, intpm = nothing, verbose = 0, warn = true, io::IO = stdout, modify! = identity) where T where O where VOL where V Non-compartmental (NCA) analysis of pharmacokinetic for urine data. Results: * AUCall * AUClast * Rlast * Maxrate * Tmax * AR * Vol * Prec * ARsq * Rsq * Kel * LZ * LZint * Rsqn * HL * AUCinf """ function nca!(data::UPKSubject{Tuple{S, E}, O, VOL, V}; adm = :ev, calcm = :lint, intpm = nothing, verbose = 0, warn = true, io::IO = stdout, modify! = identity, kwargs...) where S where E where O where VOL where V ptype = promote_type(Float64, S, E, O, VOL) ttype = promote_type(S, E) result = Dict{Symbol, ptype}() options = Dict(:type => :urine, :adm => adm, :calcm => calcm, :intpm => intpm, :verbose => verbose, :warn => warn, :modify! => modify!) if verbose > 0 println(io, " Non-compartmental Pharmacokinetic Analysis") println(io, " Matrix: urine") if length(data.id) > 0 print(io, " Subject: ") for (k,v) in data.id print(io, "$(k) => $(v); ") end println(io, "") end println(io, " Settings:") println(io, " Method: $(calcm); Dose: $(data.dosetime.dose); Dose time: $(data.dosetime.time)") end if isnothing(intpm) intpm = calcm end time, obs, vol = step_1_filterupksubj(data.time, data.obs, data.vol, data.dosetime.time) mtime = map(x-> (x[1]+x[2])/2, time) exr = exrate(time, obs, vol) result[:AR] = data.obs' * data.vol result[:Vol] = sum(vol) if time[1][1] > data.dosetime.time pushfirst!(mtime, 0) else pushfirst!(mtime, time[1][1]) end pushfirst!(obs, zero(O)) pushfirst!(vol, zero(VOL)) pushfirst!(exr, zero(eltype(exr))) result[:Maxrate], result[:Tmax], tmaxn = ctmax(mtime, exr) if data.dosetime.dose > zero(data.dosetime.dose) result[:Prec] = result[:AR]/data.dosetime.dose * 100 end obsnum = length(exr) lastobs = length(exr) for i = length(exr):-1:1 if exr[i] > zero(eltype(exr)) break else lastobs = i end end # STEP 3 # Elimination keldata, excltime = step_3_elim!(result, data, adm, tmaxn, mtime, exr, data.time, data.keldata) #result[:Kel] #result[:HL] aucpartl = Vector{typeof(zero(eltype(exr))*zero(ttype))}(undef, obsnum - 1) #Calculate all AUC part based on data for i = 1:(obsnum - 1) aucpartl[i] = aucpart(mtime[i], mtime[i + 1], exr[i], exr[i + 1], calcm, i >= tmaxn) end result[:AUCall] = sum(aucpartl) result[:AUClast] = sum(aucpartl[1:lastobs-1]) result[:Rlast] = exr[end] if length(data.keldata) > 0 result[:ARsq], rsqn = findmax(keldata.ar) result[:Rsq] = keldata.r[rsqn] result[:Kel] = abs(keldata.a[rsqn]) / oneunit(ttype) result[:LZ] = keldata.a[rsqn] result[:LZint] = keldata.b[rsqn] result[:Rsqn] = rsqn result[:NpLZ] = keldata.n[rsqn] result[:HL] = LOG2 / result[:Kel] result[:AUCinf] = result[:AUClast] + result[:Rlast] / result[:Kel] result[:AUCpct] = (result[:AUCinf] - result[:AUClast]) / result[:AUCinf] * 100 end ncares = NCAResult(data, options, result) modify!(ncares) #----------------------------------------------------------------------- return ncares end function auctspl(c1, c2, t1, t2, sl, calcm) slu = sl*oneunit(c1) if c1 >= slu && c2 >= slu auca = aucpart(t1, t2, c1, c2, calcm, true) - (t2 - t1)*slu aucb = zero(auca) ta = t2 - t1 tb = zero(ta) elseif c1 <= slu && c2 <= slu aucb = (t2 - t1)*slu - aucpart(t1, t2, c1, c2, calcm, true) auca = zero(aucb) tb = t2 - t1 ta = zero(tb) else tint = tinterpolate(c1, c2, slu, t1, t2, calcm, true) l = aucpart(t1, tint, c1, slu, calcm, true) r = aucpart(tint, t2, slu, c2, calcm, true) if c1 > slu && c2 < slu auca = l - (tint - t1)*slu aucb = (t2 - tint)*slu - r ta = tint - t1 tb = t2 - tint elseif c1 < slu && c2 > slu auca = r - (t2 - tint)*slu aucb = (tint - t1)*slu - l ta = t2 - tint tb = tint - t1 else error("!!") end end auca, aucb, ta, tb end function auctblth(c1, c2, t1, t2, bl, th, calcm) aucabl, aucbbl, tabl, tbbl = auctspl(c1, c2, t1, t2, bl, calcm) aucath, aucbth, tath, tbth = auctspl(c1, c2, t1, t2, th, calcm) if th > bl aucbtw = aucabl - aucath else aucbtw = aucbbl - aucbth end aucabl, aucbbl, tabl, tbbl, aucath, aucbth, tath, tbth, aucbtw end """ nca!(data::PDSubject{T,O}; calcm = :lint, intpm = nothing, verbose = 0, warn = true, io::IO = stdout, modify! = identity, kwargs...) where T where O Non-compartmental (NCA) analysis of pharmacodynamic data. Results: * Rmax - max responce; * Tmax - time for maximum responce; * AUCABL - AUC above baseline; * AUCBBL - AUC below baseline; * AUCATH - AUC above threshold; * AUCBTH - AUC below threshold; * AUCNETB - AUCABL - AUCBBL; * AUCNETT - AUCATH - AUCBTH; * TABL - time above baseline; * TBBL - time below baseline; * TATH - time above threshold; * TBTH - time below threshold; * AUCBTW - AUC between baseline and threshold; """ function nca!(data::PDSubject{T,O}; calcm = :lint, intpm = nothing, verbose = 0, warn = true, io::IO = stdout, modify! = identity, kwargs...) where T where O ptype = promote_type(Float64, T, O) result = Dict{Symbol, ptype}() if isnothing(intpm) intpm = calcm end options = Dict(:type => :pd, :calcm => calcm, :intpm => intpm, :verbose => verbose, :warn => warn, :modify! => modify!) if verbose > 0 println(io, " Pharmacodynamic Analysis") if length(data.id) > 0 print(io, " Subject: ") for (k,v) in data.id print(io, "$(k) => $(v); ") end println(io, "") end println(io, " Settings:") println(io, " Method: $(calcm);") end auctype = promote_type(eltype(data.time), eltype(data.obs)) ################################################################################ # STEP 1 FILTER ALL BEFORE DOSETIME AND ALL NAN OR MISSING VALUES if validobsn(data.time, data.obs) == 0 return NCAResult(data, options, result) end time_cp, obs_cp, einds = step_1_filterpksubj(data.time, data.obs, first(data.time)) if length(obs_cp) < 2 return NCAResult(data, options, result) end ################################################################################ result[:Obsnum] = obsnum = length(obs_cp) result[:Rmax], result[:Tmax], tmaxn = ctmax(time_cp, obs_cp, length(obs_cp)) # ALL NAN AND MISSING VALUES LINEAR INTERPOLATED step_2_interpolate!(time_cp, obs_cp, einds, 1, :lint) aucpartabl = Array{ptype, 1}(undef, obsnum - 1) aucpartbbl = Array{ptype, 1}(undef, obsnum - 1) aucpartath = Array{ptype, 1}(undef, obsnum - 1) aucpartbth = Array{ptype, 1}(undef, obsnum - 1) tpartabl = Array{ptype, 1}(undef, obsnum - 1) tpartbbl = Array{ptype, 1}(undef, obsnum - 1) tpartath = Array{ptype, 1}(undef, obsnum - 1) tpartbth = Array{ptype, 1}(undef, obsnum - 1) aucpartbtw = Array{ptype, 1}(undef, obsnum - 1) for i = 1:(obsnum - 1) aucpartabl[i], aucpartbbl[i], tpartabl[i], tpartbbl[i], aucpartath[i], aucpartbth[i], tpartath[i], tpartbth[i], aucpartbtw[i] = auctblth( obs_cp[i], obs_cp[i + 1], time_cp[i], time_cp[i + 1], data.bl, data.th, calcm) end result[:AUCABL] = sum(aucpartabl) result[:AUCBBL] = sum(aucpartbbl) result[:AUCATH] = sum(aucpartath) result[:AUCBTH] = sum(aucpartbth) result[:TABL] = sum(tpartabl) result[:TBBL] = sum(tpartbbl) result[:TATH] = sum(tpartath) result[:TBTH] = sum(tpartbth) result[:AUCBTW] = sum(aucpartbtw) result[:AUCNETB] = result[:AUCABL] - result[:AUCBBL] result[:AUCNETT] = result[:AUCATH] - result[:AUCBTH] if data.th > data.bl result[:TIMEBTW] = result[:TBTH] - result[:TBBL] else result[:TIMEBTW] = result[:TBBL] - result[:TBTH] end # Verbose output if verbose > 0 hnames = [:Time, :Observation, :AUCABL, :AUCBBL, :AUCATH, :AUCBTH] mx = metida_table(collect(time_cp), collect(obs_cp), pushfirst!(aucpartabl, zero(first(aucpartabl))), pushfirst!(aucpartbbl, zero(first(aucpartbbl))), pushfirst!(aucpartath, zero(first(aucpartath))), pushfirst!(aucpartbth, zero(first(aucpartbth))); names = hnames) hnames = (["Time" "Obs." "AUCABL" "AUCBBL" "AUCATH" "AUCBTH"], ["" "" "" "" "" "" ""]) PrettyTables.pretty_table(io, mx; tf = PrettyTables.tf_compact, header = hnames, formatters = PrettyTables.ft_printf("%3.4g")) println(io, "") if verbose > 1 println(io, " Results:") PrettyTables.pretty_table(io, result; tf = PrettyTables.tf_compact, header = ["Parameter", "Value"], formatters = PrettyTables.ft_printf("%4.6g")) end end ncares = NCAResult(data, options, result) modify!(ncares) #----------------------------------------------------------------------- return ncares end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
16245
struct NoPageSort end const PKPLOTSTYLE = ( (:solid, :blue, :circle, :blue), (:solid, :red, :utriangle, :red), (:solid, :green, :diamond, :green), (:solid, :magenta, :pentagon, :magenta), (:solid, :purple, :heptagon, :purple), (:solid, :indigo, :octagon, :indigo), (:solid, :gold, :star, :gold), (:solid, :yellow, :rect, :yellow), (:solid, :gray, :xcross, :gray), (:solid, :cyan, :cross, :cyan), (:dot, :blue, :utriangle, :blue), (:dot, :red, :circle, :red), (:dot, :green, :rect, :green), (:dot, :yellow, :diamond, :yellow), (:dot, :gray, :cross, :gray), (:dot, :cyan, :xcross, :cyan), (:dot, :gold, :pentagon, :gold), (:dot, :magenta, :star, :magenta), (:dot, :purple, :octagon, :purple), (:dot, :indigo, :heptagon, :indigo), ) function plotstyle(n) if isnothing(n) n = 1 end if n >= 1 && n <= 20 return PKPLOTSTYLE[n] elseif n > 1900 return (:auto, :auto, :auto, :auto) end n -= 20 linestyle = (:dash, :dashdot, :dashdotdot) linecolor = (:yellow, :gray, :cyan, :gold, :magenta, :purple, :indigo) markershape = (:star4, :star6, :star7, :star8, :rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :rtriangle, :ltriangle, :pentagon, :heptagon, :octagon, :vline, :hline) markercolor = (:gray, :gold, :magenta, :purple, :indigo) a = n % 3 + 1 b = n % 7 + 1 c = n % 19 + 1 d = n % 5 + 1 (linestyle[a], linecolor[b], markershape[c], markercolor[d]) end @userplot PKPlot @userplot PKElimpPlot @userplot PKElimpDrop @userplot PdHLine function luceil(x) fl = Int(floor(log10(x))) if fl < 0 fl = 0 end ceil(x/10^fl)*10^fl end @recipe function f(subj::PKPlot; lcd = :auto, tcd = :auto) x, y = subj.args if isa(lcd, Real) lc = luceil(maximum(x->isnan(x) ? -Inf : x, y)/lcd) yt = 0:lc:lc*lcd elseif isa(lcd, StepRange) yt = lcd elseif lcd == :all yt = y end if isa(tcd, Real) tc = luceil(maximum(x)/tcd) xt = 0:tc:tc*tcd elseif isa(tcd, StepRange) xt = tcd elseif tcd == :all xt = x end widen --> true seriestype --> :line xguide --> "Time" link --> :both legend --> true grid --> true gridstyle --> :auto #ticks := [nothing :auto nothing] #xlims --> (minimum(x), maximum(x)*1.1) #ylims --> (0, maximum(y)*1.1) if !isa(lcd, Symbol) || lcd != :auto yticks --> yt end if !isa(tcd, Symbol) || tcd != :auto xticks --> xt end seriescolor --> :blue markershape --> :circle markersize --> 3 markercolor --> :match markerstrokealpha --> 0 (x, y) end @recipe function f(subj::PKElimpPlot) x, y = subj.args seriestype --> :line legend --> false markersize --> 0 markerstrokealpha --> 0 (x, y) end @recipe function f(subj::PKElimpDrop) x, y = subj.args seriestype --> :scatter legend --> false markersize --> 4 markercolor --> :red markershape --> :xcross (x, y) end @recipe function f(subj::PdHLine) x, y = subj.args seriestype --> :straightline (x, [y, y]) end # Text label from ID function plotlabel(d, ld = nothing) title = "" if isnothing(d) return title end if length(d) > 0 for (k, v) in d kv = k if !isnothing(ld) && haskey(ld, kv) kv = ld[kv] end title *= "$(kv) = $(v); " end end return title end """ pkplot(subj; ls = false, elim = false, xticksn = :auto, yticksn = :auto, kwargs...) Plot for subject * `ls` - concentration in log scale; * `elim` - draw elimination curve; * `xticksn` - number of ticks on x axis; * `yticksn` - number of ticks on y axis; *Other keywords:* * `plotstyle` - predefined plot style from PKPLOTSTYLE; * `drawbl` (`false`) - draw baseline, only for PDSubject; * `drawth` (`false`) - draw threshold, only for PDSubject; """ function pkplot(subj::AbstractSubject; ls = false, elim = false, xticksn = :auto, yticksn = :auto, kwargs...) time = subj.time obs = subj.obs kwargs = Dict{Symbol, Any}(kwargs) k = keys(kwargs) if !(:plotstyle in k) kwargs[:linestyle], kwargs[:linecolor], kwargs[:markershape], kwargs[:markercolor] = PKPLOTSTYLE[1] else kwargs[:linestyle], kwargs[:linecolor], kwargs[:markershape], kwargs[:markercolor] = kwargs[:plotstyle] end if !(:drawbl in k) kwargs[:drawbl] = false end if !(:drawth in k) kwargs[:drawth] = false end if !(:title in k) kwargs[:title] = plotlabel(subj.id) end if !(:legend in k) kwargs[:legend] = true end if !(:ylabel in k) kwargs[:ylabel] = "Concentration" end if !(:xlims in k) kwargs[:xlims] = (minimum(subj.time), maximum(subj.time)*1.1) end if :yscale in k if kwargs[:yscale] in [:ln, :log, :log2, :log10] ls = false if !(:minorticks in k) kwargs[:minorticks] = true end inds = findall(x-> x > 0, subj.obs) time = subj.time[inds] obs = subj.obs[inds] if !(:yticks in k) if kwargs[:yscale] == :log10 b = 10 elseif kwargs[:yscale] == :log2 b = 2 elseif kwargs[:yscale] == :ln || kwargs[:yscale] == :log b = β„― end t = collect(floor(log(b, minimum(obs))):ceil(log(b, maximum(obs)))) pushfirst!(t, first(t) - 1) kwargs[:yticks] = b .^ t end if !(:ylims in k) kwargs[:ylims] = (minimum(obs)*0.5, maximum(obs)*2.) else if kwargs[:ylims][1] <= 0 kwargs[:ylims] = (minimum(obs)/b, kwargs[:ylims][2]) end end end else if !(:ylims in k) kwargs[:ylims] = (minimum(subj.obs), maximum(subj.obs)*1.15) end end if ls == true inds = findall(x-> x > 0, subj.obs) time = subj.time[inds] obs = log.(subj.obs[inds]) if (:ylims in k) kwargs[:ylims] = (0, log(kwargs[:ylims][2])) end end p = pkplot(time, obs; lcd = yticksn, tcd = xticksn, kwargs...) if elim if length(subj.keldata) > 0 arsq, rsqn = findmax(subj.keldata.ar) lz = subj.keldata.a[rsqn] lzint = subj.keldata.b[rsqn] ts = subj.keldata.s[rsqn] te = subj.keldata.e[rsqn] if ls true x = [ts, te] y = [lzint + lz * x[1], lzint + lz * x[2]] else x = collect(ts:(te-ts)/100:te) y = exp.(lzint .+ lz .* x) end pkelimpplot!(p, x, y; title = kwargs[:title]*"\n($(round(lzint, sigdigits = 4)) + $(round(lz, sigdigits = 4)) * Time; aRΒ² = $(round(arsq, sigdigits = 4))) ") if length(subj.kelrange.kelexcl) > 0 pkelimpdrop!(p, time[subj.kelrange.kelexcl], obs[subj.kelrange.kelexcl]) end end end if isa(subj, PDSubject) if kwargs[:drawth] == true pdhline!(p, [minimum(subj.time), maximum(subj.time)], getth(subj), lc = :blue, label = "TH") end if kwargs[:drawbl] == true pdhline!(p, [minimum(subj.time), maximum(subj.time)], getbl(subj), lc = :red, label = "BL") end end return p end function pkplot!(subj; ls = false, elim = false, xticksn = :auto, yticksn = :auto, kwargs...) time = subj.time obs = subj.obs kwargs = Dict{Symbol, Any}(kwargs) k = keys(kwargs) if !(:plotstyle in k) kwargs[:linestyle], kwargs[:linecolor], kwargs[:markershape], kwargs[:markercolor] = PKPLOTSTYLE[1] else kwargs[:linestyle], kwargs[:linecolor], kwargs[:markershape], kwargs[:markercolor] = kwargs[:plotstyle] end if !(:legend in k) kwargs[:legend] = true end if !(:xlims in k) kwargs[:xlims] = (minimum(subj.time), maximum(subj.time)*1.1) end if :yscale in k if kwargs[:yscale] in [:ln, :log, :log2, :log10] ls = false if !(:minorticks in k) kwargs[:minorticks] = true end inds = findall(x-> x > 0, subj.obs) time = subj.time[inds] obs = subj.obs[inds] if !(:yticks in k) if kwargs[:yscale] == :log10 b = 10 elseif kwargs[:yscale] == :log2 b = 2 elseif kwargs[:yscale] == :ln || kwargs[:yscale] == :log b = β„― end t = collect(floor(log(b, minimum(obs))):ceil(log(b, maximum(obs)))) pushfirst!(t, first(t) - 1) kwargs[:yticks] = b .^ t end if !(:ylims in k) kwargs[:ylims] = (minimum(obs)*0.5, maximum(obs)*2.) else if kwargs[:ylims][1] <= 0 kwargs[:ylims] = (minimum(obs)/b, kwargs[:ylims][2]) end end end else if !(:ylims in k) kwargs[:ylims] = (minimum(subj.obs), maximum(subj.obs)*1.15) end end if ls == true inds = findall(x-> x > 0, subj.obs) time = subj.time[inds] obs = log.(subj.obs[inds]) if (:ylims in k) kwargs[:ylims] = (0, log(kwargs[:ylims][2])) end end p = pkplot!(time, obs; lcd = yticksn, tcd = xticksn, kwargs...) return p end function pageplot(data, id, ulist; kwargs...) kwargs = Dict{Symbol, Any}(kwargs) k = keys(kwargs) if !(:title in k) kwargs[:title] = plotlabel(id, kwargs[:ldict]) end fst = true p = nothing labvec = Vector{Int}(undef, 0) # Make subdata by ID isnothing(id) ? subdata = data : subdata = subset(data, id) # Y lims if !(:ylims in k) && length(subdata) > 1 ysc = :yscale in k ylmin = findmin(x->minconc(x, ysc), getdata(subdata))[1] ylmax = findmax(x->maxconc(x), getdata(subdata))[1]*1.15 if ysc ylmax *= 5 end kwargs[:ylims] = (ylmin, ylmax) end # Plotting subdata if length(subdata) > 1 kwargs[:elim] = false end for subj in subdata if !isnothing(ulist) num = findfirst(x-> x βŠ† subj.id, ulist) if !isnothing(num) style = plotstyle(num) if num ∈ labvec kwargs[:label] = nothing else kwargs[:label] = plotlabel(ulist[num], kwargs[:ldict]) push!(labvec, num) end else style = plotstyle(1) end else style = plotstyle(1) end if fst p = pkplot(subj; plotstyle = style, kwargs...) fst = false else pkplot!(subj; plotstyle = style, kwargs...) end end p end """ pkplot(data::DataSet{T}; typesort::Union{Nothing, Symbol, AbstractVector{Symbol}} = nothing, pagesort::Union{Nothing, Symbol, AbstractVector{Symbol}, NoPageSort} = nothing, filter::Union{Nothing, Dict{Symbol}} = nothing, uylims::Bool = false, ldict = nothing, savepath::Union{Nothing, AbstractString} = nothing, namepref::Union{Nothing, AbstractString} = nothing, onlyplots = false, kwargs...) where T <: AbstractSubject PK plot for subject set. * `typesort` - sort on page by this id key; * `pagesort` - different pages by this id key; * `filter` - use only subjects if filter βŠ† subject id; * `uylims` - same ylims for all dataset; * `ldict` - Dict with labels for replace; * `savepath` - path for plot saving; * `namepref` - name prefix for saving files. * `onlyplots` - if `true` return only vetor of plots; Use `pagesort = MetidaNCA.NoPageSort()` to prevent page plotting (return single plot). Return vector of pairs: `Page ID` => `Plot`. """ function pkplot(data::DataSet{T}; typesort::Union{Nothing, Symbol, AbstractVector{Symbol}} = nothing, pagesort::Union{Nothing, Symbol, AbstractVector{Symbol}, NoPageSort} = nothing, filter::Union{Nothing, Dict{Symbol}} = nothing, uylims::Bool = false, ldict = nothing, savepath::Union{Nothing, AbstractString} = nothing, namepref::Union{Nothing, AbstractString} = nothing, onlyplots = false, kwargs...) where T <: AbstractSubject kwargs = Dict{Symbol, Any}(kwargs) k = keys(kwargs) if !(:ls in k) kwargs[:ls] = false end if !(:elim in k) kwargs[:elim] = false end if !(:drawbl in k) kwargs[:drawbl] = false end if !(:drawth in k) kwargs[:drawth] = false end if uylims && !(:ylims in k) kwargs[:ylims] = (findmin(x -> minconc(x), getdata(data))[1], findmax(x -> maxconc(x), getdata(data))[1]*1.15) end if !isnothing(filter) data = subset(data, filter) end if !isnothing(typesort) if isa(typesort, Symbol) typesort = [typesort] end typelist = uniqueidlist(data, typesort) else typelist = nothing if !(:legend in k) kwargs[:legend] = false end end p = [] if isnothing(typesort) && isnothing(pagesort) printtitle = false if !(:title in k) printtitle = true end for subj in data if printtitle kwargs[:title] = plotlabel(subj.id, ldict) end if !(:legend in k) kwargs[:legend] = false end push!(p, subj.id => pkplot(subj; kwargs...)) end elseif !isnothing(typesort) && isnothing(pagesort) printtitle = false if !(:title in k) printtitle = true end for subj in data if printtitle kwargs[:title] = plotlabel(subj.id, ldict) end if !(:legend in k) kwargs[:legend] = false end push!(p, subj.id => pageplot(data, subj.id, typelist; ldict, kwargs...)) end elseif !isnothing(pagesort) && !isa(pagesort, NoPageSort) if isa(pagesort, Symbol) pagesort = [pagesort] end pagelist = uniqueidlist(data, pagesort) for id in pagelist push!(p, id => pageplot(data, id, typelist; ldict, kwargs...)) end else if !(:title in k) && !isnothing(filter) kwargs[:title] = plotlabel(filter) end push!(p, pageplot(data, nothing, typelist; ldict, kwargs...)) end if !isnothing(savepath) if @isdefined savefig if isfile(savepath) error("File found on this path...") elseif !isdir(savepath) mkpath(savepath) end if isnothing(namepref) namepref = "plot" end for i = 1:length(p) if isa(p[i], Pair) savefig(p[i][2], joinpath(savepath, namepref*"_$(i).png")) else savefig(p[i], joinpath(savepath, namepref*"_$(i).png")) end end else @warn "savefig not defined, install Plots.jl for plot writing... plots NOT saved..." end end if isa(pagesort, NoPageSort) return p[1] end if onlyplots return getindex.(p, 2) end return p end """ pkplot(data::DataSet{T}; kwargs...) where T <: NCAResult """ function pkplot(data::DataSet{T}; kwargs...) where T <: NCAResult ds = map(x-> x.data, data) pkplot(ds; kwargs...) end """ pkplot(data::NCAResult; kwargs...) """ function pkplot(data::NCAResult; kwargs...) pkplot(data.data; kwargs...) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
272
PrecompileTools.@compile_workload begin data = metida_table([0.,1.,2.,3.,4.,2.,1.,0.], [0.,1.,2.,3.,4.,5.,6.,7.], names = (:conc, :time)) pki = pkimport(data, :time, :conc; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0, tau = 5.5)) pkr = nca!(pki) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
2998
# BL # Subject """ setbl!(data::T, bl) where T <: PDSubject Set `baseline` for pd subject `data`. """ function setbl!(data::T, bl) where T <: PDSubject isnanormissing(bl) && error("Baseline can't be NaN or missing.") data.bl = bl data end #DS ind Int """ setbl!(data::DataSet{T}, bl, ind::Int) where T <: PDSubject Set baseline for subject `ind` in `data`. """ function setbl!(data::DataSet{T}, bl, ind::Int) where T <: PDSubject setbl!(data[ind], bl) data end #DS iter Int """ setbl!(data::DataSet{T}, bl, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) Set baseline for all subjects in range or vector `ind` in `data`. """ function setbl!(data::DataSet{T}, bl, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: PDSubject for i in inds setbl!(data[i], bl) end data end #DS all """ setbl!(data::DataSet{T}, bl) where T <: PDSubject Set `baseline` for all subjects in `data`. """ function setbl!(data::DataSet{T}, bl) where T <: PDSubject for i = 1:length(data) setbl!(data[i], bl) end data end #DS Dict """ setbl!(data::DataSet{T}, bl, sort::Dict) where T <: PDSubject Set `baseline` only for subjects which `sort` βŠ† `id` is `true`. """ function setbl!(data::DataSet{T}, bl, sort::Dict; kelauto = false) where T <: PDSubject for i = 1:length(data) if sort βŠ† data[i].id setbl!(data[i], bl) end end data end #GET subj """ getbl(data::T) where T <: PDSubject """ function getbl(data::T) where T <: PDSubject data.bl end ################################################################################ # TH # Subject """ setth!(data::T, th) where T <: PDSubject Set `threshold` for subject `data`. """ function setth!(data::T, th) where T <: PDSubject isnanormissing(th) && error("Threshold can't be NaN or missing.") data.th = th data end #DS ind Int """ setth!(data::DataSet{T}, th, ind::Int) where T <: PDSubject """ function setth!(data::DataSet{T}, th, ind::Int) where T <: PDSubject setth!(data[ind], th) data end #DS iter Int """ setth!(data::DataSet{T}, th, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) """ function setth!(data::DataSet{T}, th, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: PDSubject for i in inds setth!(data[i], th) end data end #DS all """ setth!(data::DataSet{T}, th) where T <: PDSubject """ function setth!(data::DataSet{T}, th) where T <: PDSubject for i = 1:length(data) setth!(data[i], th) end data end #DS Dict """ setth!(data::DataSet{T}, th, sort::Dict) where T <: PDSubject """ function setth!(data::DataSet{T}, th, sort::Dict; kelauto = false) where T <: PDSubject for i = 1:length(data) if sort βŠ† data[i].id setth!(data[i], th) end end data end #GET subj """ getth(data::T) where T <: PDSubject """ function getth(data::T) where T <: PDSubject data.th end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1751
#Subject """ setdosetime!(data::T, dosetime::DoseTime) where T <: PKSubject Set dose time `dosetime` for subject `data`. """ function setdosetime!(data::PKSubject, dosetime::DoseTime) data.dosetime = dosetime data end #DS ind Int """ setdosetime!(data::DataSet{T}, dosetime::DoseTime, ind::Int) where T <: PKSubject * `ind` - index in DataSet. """ function setdosetime!(data::DataSet{<:PKSubject}, dosetime::DoseTime, ind::Int) setdosetime!(data[ind], dosetime) data end #DS iter Int """ setdosetime!(data::DataSet{T}, dosetime::DoseTime, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: PKSubject * `inds` - indexes in DataSet. """ function setdosetime!(data::DataSet{<:PKSubject}, dosetime::DoseTime, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) for i in inds setdosetime!(data[i], dosetime) end data end #DS all """ setdosetime!(data::DataSet{T}, dosetime::DoseTime) where T <: PKSubject For all subjects in DataSet. """ function setdosetime!(data::DataSet{<:PKSubject}, dosetime::DoseTime) for i = 1:length(data) setdosetime!(data[i], dosetime) end data end #DS Dict """ setdosetime!(data::DataSet{T}, dosetime::DoseTime, sort::Dict) where T <: PKSubject Set dose time `dosetime` for subjects if `sort` βŠ† subject's `id`. """ function setdosetime!(data::DataSet{<:PKSubject}, dosetime::DoseTime, sort::Dict) for i = 1:length(data) if sort βŠ† data[i].id setdosetime!(data[i], dosetime) end end data end #GET subj """ getdosetime(data::T) where T <: PKSubject Return dosetime. """ function getdosetime(data::PKSubject) data.dosetime end #Subject #DS ind Int #DS iter Int #DS all #DS Dict #GET subj
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1751
#Subject """ setkelauto!(data::T, kelauto::Bool) where T <: PKSubject Set range for elimination parameters calculation for subject. * `data` - PK subject; * `kelauto` - value. """ function setkelauto!(data::PKSubject, kelauto::Bool) if !kelauto if !(data.kelrange.kelend > data.kelrange.kelstart > 0) error("Start point: $(data.kelrange.kelstart) end point: $(data.kelrange.kelend), check that data.kelrange.kelend > data.kelrange.kelstart > 0") end end data.kelauto = kelauto data end #DS ind Int """ setkelauto!(data::DataSet{T}, kelauto::Bool, ind::Int) where T <: PKSubject """ function setkelauto!(data::DataSet{<: PKSubject}, kelauto::Bool, ind::Int) setkelauto!(data[ind], kelauto) data end #DS iter Int """ setkelauto!(data::DataSet{T}, kelauto::Bool, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) where T <: PKSubject """ function setkelauto!(data::DataSet{<: PKSubject}, kelauto::Bool, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}) for i in inds setkelauto!(data[i], kelauto) end data end #DS all """ setkelauto!(data::DataSet{T}, kelauto::Bool) where T <: PKSubject """ function setkelauto!(data::DataSet{<: PKSubject}, kelauto::Bool) for i = 1:length(data) setkelauto!(data[i], kelauto) end data end #DS Dict """ setkelauto!(data::DataSet{T}, kelauto::Bool, sort::Dict) where T <: PKSubject """ function setkelauto!(data::DataSet{<: PKSubject}, kelauto::Bool, sort::Dict) for i = 1:length(data) if sort βŠ† data[i].id setkelauto!(data[i], kelauto) end end data end #GET subj """ getkelauto!(data::T) where T <: PKSubject """ function getkelauto(data::PKSubject) data.kelauto end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1964
#Subject """ setkelrange!(data::T, range::ElimRange{:point}; kelauto = false) where T <: PKSubject Set `range` for subject `data`. Set `kelauto` if possible. """ function setkelrange!(data::T, range::ElimRange{:point}; kelauto = false) where T <: PKSubject if range.kelend > length(data) throw(ArgumentError("Kel endpoint out of range")) end data.kelrange = range setkelauto!(data, kelauto) data end #DS ind Int """ setdosetime!(data::DataSet{T}, dosetime::DoseTime, ind::Int) where T <: PKSubject """ function setkelrange!(data::DataSet{T}, range::ElimRange{:point}, ind::Int; kelauto = false) where T <: PKSubject setkelrange!(data[ind], range; kelauto = kelauto) data end #DS iter Int """ setkelrange!(data::DataSet{T}, range::ElimRange{:point}, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}; kelauto = false) """ function setkelrange!(data::DataSet{T}, range::ElimRange{:point}, inds::Union{Vector{Int}, UnitRange{Int}, Tuple{Vararg{Int}}}; kelauto = false) where T <: PKSubject for i in inds setkelrange!(data[i], range; kelauto = kelauto) end data end #DS all """ setkelrange!(data::DataSet{T}, range::ElimRange{:point}; kelauto = false) where T <: PKSubject """ function setkelrange!(data::DataSet{T}, range::ElimRange{:point}; kelauto = false) where T <: PKSubject for i = 1:length(data) setkelrange!(data[i], range; kelauto = kelauto) end data end #DS Dict """ setkelrange!(data::DataSet{T}, range::ElimRange{:point}, sort::Dict; kelauto = false) where T <: PKSubject """ function setkelrange!(data::DataSet{T}, range::ElimRange{:point}, sort::Dict; kelauto = false) where T <: PKSubject for i = 1:length(data) if sort βŠ† data[i].id setkelrange!(data[i], range; kelauto = kelauto) end end data end #GET subj """ getkelrange(data::T) where T <: PKSubject """ function getkelrange(data::T) where T <: PKSubject data.kelrange end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
3861
function Base.show(io::IO, obj::DoseTime) print(io, "Dose - $(obj.dose); Time - $(obj.time); Tau - $(obj.tau)") end function Base.show(io::IO, obj::ElimRange) print(io, "Elimination range: $(obj.kelstart) - $(obj.kelend) ") if length(obj.kelexcl) > 0 print(io, "Exclusions: $(obj.kelexcl[1])") if length(obj.kelexcl) > 1 for i = 2:length(obj.kelexcl) print(io, ", $(obj.kelexcl[i])") end end print(io, ".") else print(io, "No exclusion.") end end function Base.show(io::IO, obj::KelData) println(io, "Elimination table:") header = ["Strat time", "End time", "a", "b", "rΒ²", "Adjusted rΒ²", "N"] mt = metida_table(obj.s, obj.e, obj.a, obj.b, obj.r, obj.ar, obj.n; names = Tuple(Symbol.(header))) PrettyTables.pretty_table(io, mt; tf = PrettyTables.tf_compact, header = header) end # PK Subject function Base.show(io::IO, obj::PKSubject) println(io, " Pharmacokinetic subject") if length(obj.id) > 0 print(io, "ID: ") for (k, v) in obj.id print(io, "$k => $v;") end println(io, "") end println(io, "Observations: $(length(obj)); ", obj.dosetime) println(io, obj.kelrange) PrettyTables.pretty_table(io, metida_table(obj.time, obj.obs; names = (:Time, :Concentration)); tf = PrettyTables.tf_compact) end function Base.show(io::IO, obj::UPKSubject) println(io, " Pharmacokinetic subject (urine)") println(io, "Observations: $(length(obj)); ", obj.dosetime) println(io, obj.kelrange) PrettyTables.pretty_table(io, metida_table(getindex.(obj.time, 1), getindex.(obj.time, 2), obj.obs, obj.vol); tf = PrettyTables.tf_compact, header = ["Start time", "End time", "Concentration", "Volume"]) end function Base.show(io::IO, obj::PDSubject) println(io, " Pharmacodynamics subject") if length(obj.id) > 0 print(io, "ID: ") for (k, v) in obj.id print(io, "$k => $v;") end println(io, "") end println(io, "Observations: $(length(obj)); ") PrettyTables.pretty_table(io, metida_table(obj.time, obj.obs; names = (:Time, :Observation)); tf = PrettyTables.tf_compact) end function subject_type_str(subj::Type{<:PKSubject}) "Pharmacokinetics subject" end function subject_type_str(subj::Type{<:UPKSubject}) "Pharmacokinetics subject (urine)" end function subject_type_str(subj::Type{<:PDSubject}) "Pharmacodynamics subject" end function Base.show(io::IO, obj::DataSet{ST}) where ST <: AbstractSubject println(io, "DataSet: $(subject_type_str(ST))") println(io, "Length: $(length(obj))") lo = min(length(obj), 20) for i = 1:lo print(io, "Subject $(i): ") if length(obj[i].id) > 0 for (k, v) in obj[i].id print(io, "$k => $v, ") end println(io, "") else println(io, "-") end end if lo < length(obj) printstyled(io, "$(length(obj) - lo) subjects omitted... \n"; color = :blue) end end function Base.show(io::IO, obj::T) where T <: NCAResult println(io, " PK/PD subject NCA result") PrettyTables.pretty_table(io, obj.result; header = ["Parameter", "Value"], tf = PrettyTables.tf_compact) end function Base.show(io::IO, obj::DataSet{Res}) where Res <: NCAResult println(io, "DataSet: PK/PD NCA result") println(io, "Length: $(length(obj))") lo = min(length(obj), 20) for i = 1:lo print(io, "Subject $(i): ") if length(obj[i].data.id) > 0 for (k, v) in obj[i].data.id print(io, "$k => $v, ") end println(io, "") else println(io, "-") end end if lo < length(obj) printstyled(io, "$(length(obj) - lo) subjects omitted... \n"; color = :blue) end end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
891
""" auc_sparse(time, obs) AUC for sparse data. ```math w_1 = (t_2 - t_1) / 2 ``` ```math w_j = (t_{j+1} - t_{j-1}) / 2 (2 \\leq j \\leq J - 1) ``` ```math w_J = (t_J - t_{J-1}) / 2 ``` ```math AUC = \\sum_{j=1}^J \\mu_j w_j ``` where `math \\mu_j` is the mean drug concentration at time t. """ function auc_sparse(time::AbstractVector, obs::AbstractVector) if length(time) < 2 error("length(time) < 2") end if length(time) != length(obs) error("length(time) != length(obs)") end for i = 1:length(time) - 1 if time[i+1] <= time[i] error("Unsorted observations!") end end wts = Vector{Float64}(undef, length(time)) wts[1] = (time[2] - time[1]) / 2 wts[end] = (time[end] - time[end-1]) / 2 if length(time) > 2 for i = 2:length(time) - 1 wts[i] = (time[i+1] - time[i-1]) / 2 end end return obs' * wts end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1320
""" timefilter(subj::PKSubject, time::AbstractRange) Exclude all observation than not in time range. """ function timefilter(subj::PKSubject, time::AbstractRange) subj_ = deepcopy(subj) inds = Int[] for n = 1:length(subj_) if !(subj_.time[n] in time) push!(inds, n) end end deleteat!(subj_.time, inds) deleteat!(subj_.obs, inds) resize!(subj_.keldata, 0) if !(subj_.kelrange.kelstart in time) || !(subj_.kelrange.kelend in time) || any(x-> !(x in time), subj_.kelrange.kelexcl) subj_.kelrange = ElimRange() subj_.kelauto = true end subj_ end """ timefilter(subj::PKSubject, time::Tuple{<:Number, <:Number}) Make deepcopy of subj and remove all observations < time[1] or > time[2]. Then resize keldata to 0. If any of points in elimination rage not in min/max time, then elimination settings reset. """ function timefilter(subj::PKSubject, time::Tuple{<:Number, <:Number}) timefilter(subj, LinRange(time[1], time[2], 2)) end """ timefilter(data::DataSet{<: PKSubject}, time) Make new DataSet with new filtered subjects. """ function timefilter(data::DataSet{<: PKSubject}, time) subj = getdata(data) data_ = similar(subj) for i in 1:length(subj) data_[i] = timefilter(subj[i], time) end DataSet(data_) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
9013
# Elimination data struct KelData{S<:Number, E<:Number} s::Vector{S} e::Vector{E} a::Vector{Float64} b::Vector{Float64} r::Vector{Float64} ar::Vector{Float64} n::Vector{Int} function KelData(s::Vector{S}, e::Vector{E}, a::Vector{A}, b::Vector{B}, r, ar, n)::KelData where S <: Number where E <: Number where A where B new{S, E}(s, e, a, b, r, ar, n)::KelData end function KelData()::KelData KelData(Float64[], Float64[], Float64[], Float64[], Float64[], Float64[], Int[]) end end function resize!(keldata::KelData) resize!(keldata, 0) end function resize!(keldata::KelData, i::Int) resize!(keldata.s, i) resize!(keldata.e, i) resize!(keldata.a, i) resize!(keldata.b, i) resize!(keldata.r, i) resize!(keldata.ar, i) resize!(keldata.n, i) keldata end function Base.push!(keldata::KelData, s, e, a, b, r, ar, n) push!(keldata.s, s) push!(keldata.e, e) push!(keldata.a, a) push!(keldata.b, b) push!(keldata.r, r) push!(keldata.ar, ar) push!(keldata.n, n) end function Base.length(keldata::KelData) return length(keldata.a) end # Elimination settings """ ElimRange(kelstart::Int, kelend::Int, kelexcl::Vector{Int})::ElimRange Elimination settings for PK subject. * `kelstart` - start point; * `kelend` - end point; * `kelexcl` - excluded points (not time value). """ mutable struct ElimRange{Symbol} kelstart::Int kelend::Int kelexcl::Vector{Int} function ElimRange(kelstart::Int, kelend::Int, kelexcl::Vector{Int}; time = false)::ElimRange if kelstart > kelend throw(ArgumentError("Kel start > kel end")) end if kelstart < 0 throw(ArgumentError("Kel start point < 0")) end if kelend < 0 throw(ArgumentError("Kel endpoint < 0")) end if any(x -> x < 0, kelexcl) throw(ArgumentError("Exclude point < 0")) end if kelstart in kelexcl || kelend in kelexcl throw(ArgumentError("Kel start or kel end in exclusion")) end new{:point}(kelstart, kelend, kelexcl)::ElimRange end function ElimRange(;kelstart = 0, kelend = 0, kelexcl = Int[]) ElimRange(kelstart, kelend, kelexcl) end end # Dose settings """ DoseTime(dose::D, time::T, tau::TAU) where D <: Number where T <: Number where TAU <: Number Dose settings. * `dose` - dose; * `time` - dose time; * `tau` - tau (Ο„); Dose time set 0 by default. """ struct DoseTime{D <: Number, T <: Number, TAU <: Number} dose::D time::T tau::TAU function DoseTime(dose::D, time::T, tau::TAU) where D <: Number where T <: Number where TAU <: Number if time < zero(T) throw(ArgumentError("Dose time can't be less zero!")) end new{D, T, TAU}(dose, time, tau)::DoseTime end function DoseTime(;dose = NaN, time = 0.0, tau = NaN) DoseTime(dose, time, tau) end #= function DoseTime(dose) DoseTime(dose, 0, NaN) end function DoseTime(dose, time) DoseTime(dose, time, NaN) end =# end # PK subject """ PKSubject(time::Vector{T}, conc::Vector{O}, kelauto::Bool, kelrange::ElimRange, dosetime::DoseTime, keldata::KelData, sort::Dict{Symbol, V} = Dict{Symbol, Any}()) where T <: Number where O <: Union{Number, Missing} where V Pharmacokinetic subject. Fields: * time::Vector{T} - time values; * obs::Vector{O} - observations; * kelauto::Bool * kelrange::ElimRange * dosetime::DoseTime * keldata::KelData * id::Dict{Symbol, V} """ mutable struct PKSubject{T <: Number, O <: Union{Number, Missing}, V <: Any} <: AbstractSubject time::Vector{T} obs::Vector{O} kelauto::Bool kelrange::ElimRange dosetime::DoseTime keldata::KelData id::Dict{Symbol, V} function PKSubject(time::Vector{T}, conc::Vector{O}, kelauto::Bool, kelrange::ElimRange, dosetime::DoseTime, keldata::KelData, sort::Dict{Symbol, V} = Dict{Symbol, Any}()) where T <: Number where O <: Union{Number, Missing} where V new{T, O, V}(time, conc, kelauto, kelrange, dosetime, keldata, sort)::PKSubject end function PKSubject(time::Vector{T}, conc::Vector{O}, kelauto::Bool, kelrange::ElimRange, dosetime::DoseTime, sort::Dict{Symbol, V}) where T where O where V PKSubject(time, conc, kelauto, kelrange, dosetime, KelData(T[], T[], Float64[], Float64[], Float64[], Float64[], Int[]), sort) end #= function PKSubject(time::Vector, conc::Vector, sort::Dict) PKSubject(time, conc, true, ElimRange(), DoseTime(NaN, 0), KelData(), sort) end function PKSubject(time::Vector, conc::Vector, kelauto::Bool, kelrange, dosetime; sort = Dict()) PKSubject(time, conc, kelauto, kelrange, dosetime, KelData(), sort) end function PKSubject(time::Vector, conc::Vector; sort = Dict()) PKSubject(time, conc, true, ElimRange(), DoseTime(NaN, 0), KelData(), sort) end =# end function Base.length(obj::T) where T <: AbstractSubject length(obj.time) end """ NCAResult(subject::T, options, result::Dict{Symbol, U}) where T <: AbstractSubject where U NCA resulst. Fields: * data::T * options::Dict{Symbol} * result::Dict{Symbol, U} """ struct NCAResult{T, U} <: AbstractSubjectResult{T} data::T options::Dict{Symbol} result::Dict{Symbol, U} function NCAResult(subject::T, options, result::Dict{Symbol, U}) where T <: AbstractSubject where U new{T, U}(subject, options, result) end #= function NCAResult(subject::T, method, result) where T <: AbstractSubject NCAResult(subject, method, result, Dict()) end =# end """ LimitRule(lloq::T, btmax, atmax, nan, rm::Bool) where T <: Real LimitRule(;lloq = NaN, btmax = NaN, atmax = NaN, nan = NaN, rm::Bool = false) * `lloq` - LLOQ - low limit of quantification; * `btmax` - value for points before Tmax; * `atmat` - values for points after Tmax; * `nan` - values for replacing `NaN`; * `rm` - if `true`, removee all `NaN` points. Rule for PK subject. * STEP 1 (NaN step): replace all `NaN` and `missing` values with nan keyword value (if `nan` not NaN); * STEP 2 (LLOQ step): replace values below `lloq` with `btmax` value if this value befor Tmax or with atmax if this value after Tmax (if `lloq` not NaN); * STEP 3 (remove NaN): `rm` == true, then remove all `NaN` and `missing` values. See also: [`applylimitrule!`](@ref) """ struct LimitRule{T<:Real} lloq::T btmax::Float64 atmax::Float64 nan::Float64 rm::Bool function LimitRule(lloq::T, btmax, atmax, nan, rm::Bool) where T <: Real new{T}(lloq, btmax, atmax, nan, rm)::LimitRule end function LimitRule(;nan = NaN, lloq = NaN, btmax = NaN, atmax = NaN, rm::Bool = false) LimitRule(lloq, btmax, atmax, nan, rm) end end #= function isapplicable(lr::LimitRule) !isnan(lr.lloq) || !isnan(lr.nan) || lr.rm ? true : false end =# #Urine PK subject mutable struct UPKSubject{T <: Tuple{Number, Number}, O <: Union{Number, Missing}, VOL <: Union{Number, Missing}, V <: Any} <: AbstractSubject time::Vector{T} obs::Vector{O} vol::Vector{VOL} kelauto::Bool kelrange::ElimRange dosetime::DoseTime keldata::KelData id::Dict{Symbol, V} function UPKSubject(time::Vector{T}, conc::Vector{O}, vol::Vector{VOL}, kelauto::Bool, kelrange::ElimRange, dosetime::DoseTime, keldata::KelData, id::Dict{Symbol, V} = Dict{Symbol, Any}()) where T <: Tuple{Number, Number} where O <: Union{Number, Missing} where VOL <: Union{Number, Missing} where V new{T, O, VOL, V}(time, conc, vol, kelauto, kelrange, dosetime, keldata, id) end function UPKSubject(time::AbstractVector{Tuple{S,E}}, conc::Vector, vol::Vector, kelauto::Bool, kelrange::ElimRange, dosetime::DoseTime, id::Dict{Symbol, V}) where V where S where E ttype = promote_type(S, E) UPKSubject(time, conc, vol, kelauto, kelrange, dosetime, KelData(ttype[], ttype[], Float64[], Float64[], Float64[], Float64[], Int[]), id) end end # PD subject mutable struct PDSubject{T <: Number, O <: Union{Number, Missing}, V <: Any} <: AbstractSubject time::Vector{T} obs::Vector{O} bl::Float64 th::Float64 id::Dict{Symbol, V} function PDSubject(time::Vector{T}, conc::Vector{O}, bl, th, sort::Dict{Symbol, V} = Dict{Symbol, Any}()) where T <: Number where O <: Union{Number, Missing} where V new{T, O, V}(time, conc, bl, th, sort)::PDSubject end function PDSubject(time::Vector, conc::Vector, bl, th, sort::Dict{Symbol, V}) where V PDSubject(time, conc, bl, th, sort) end end function gettime(subj::T) where T <: AbstractSubject getfield(subj, :time) end function getobs(subj::T) where T <: AbstractSubject getfield(subj, :obs) end struct NCAOptions adm::Symbol calcm::Symbol intpm::Symbol verbose::Int warn::Bool io::IO modify!::Function end #= function gettime(subj::PKSubject) end function getobs(subj::PKSubject) end function gettime(subj::UPKSubject) end function getobs(subj::UPKSubject) end =#
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
3015
@testset " #6 Pharmacodynamics data; Linear-trapezoidal rule " begin io = IOBuffer(); pd = MetidaNCA.pdimport(pddata, :time, :obs, :subj; bl = 1.5, th = 5.0) @test_nowarn MetidaNCA.pkplot(pd) @test_nowarn MetidaNCA.pkplot(pd[1], drawth = true, drawbl = true) pd_res = MetidaNCA.nca!(pd[1]) pd_rds = MetidaNCA.nca!(pd) @test last(pd[1].time) - first(pd[1].time) == pd_res[:TABL] + pd_res[:TBBL] == pd_res[:TATH] + pd_res[:TBTH] nca_res = MetidaNCA.nca(pddata, :time, :obs, :subj)[1] pd_res = MetidaNCA.nca(pddata, :time, :obs, :subj, type = :pd, bl = 0.0, th = 0.0)[1] @test pd_res[:AUCABL] == pd_res[:AUCATH] == nca_res[:AUClast] @test MetidaNCA.getbl(pd[1]) β‰ˆ 1.5 @test MetidaNCA.getth(pd[1]) β‰ˆ 5.0 MetidaNCA.setbl!(pd, 2) MetidaNCA.setth!(pd, 6) @test MetidaNCA.getbl(pd[1]) β‰ˆ 2.0 @test MetidaNCA.getth(pd[1]) β‰ˆ 6.0 MetidaNCA.setbl!(pd, 3, 1) MetidaNCA.setth!(pd, 4, 1) @test MetidaNCA.getbl(pd[1]) β‰ˆ 3.0 @test MetidaNCA.getth(pd[1]) β‰ˆ 4.0 MetidaNCA.setbl!(pd, 2, [1]) MetidaNCA.setth!(pd, 1, [1]) @test MetidaNCA.getbl(pd[1]) β‰ˆ 2.0 @test MetidaNCA.getth(pd[1]) β‰ˆ 1.0 MetidaNCA.setbl!(pd, 0, Dict(:subj => 1)) MetidaNCA.setth!(pd, 0, Dict(:subj => 1)) @test MetidaNCA.getbl(pd[1]) β‰ˆ 0.0 @test MetidaNCA.getth(pd[1]) β‰ˆ 0.0 @test_throws ErrorException MetidaNCA.setbl!(pd, NaN) @test_throws ErrorException MetidaNCA.setth!(pd, NaN) pd = MetidaNCA.pdimport(pddata, :time, :obs; bl = 3.0, th = 1.5, id = Dict(:subj => 1)) pd_rds = MetidaNCA.nca!(pd) @test pd_rds[:Tmax] β‰ˆ 5.0 atol=1E-6 @test pd_rds[:Rmax] β‰ˆ 8.0 atol=1E-6 @test pd_rds[:AUCABL] β‰ˆ 7.3857143 atol=1E-6 @test pd_rds[:AUCBBL] β‰ˆ 8.7357143 atol=1E-6 @test pd_rds[:AUCATH] β‰ˆ 13.959524 atol=1E-6 @test pd_rds[:AUCBTH] β‰ˆ 1.8095238 atol=1E-6 @test pd_rds[:AUCBTW] β‰ˆ 6.926190 atol=1E-6 @test pd_rds[:TABL] β‰ˆ 3.4809524 atol=1E-6 @test pd_rds[:TBBL] β‰ˆ 5.5190476 atol=1E-6 @test pd_rds[:TATH] β‰ˆ 5.7619048 atol=1E-6 @test pd_rds[:TBTH] β‰ˆ 3.2380952 atol=1E-6 @test pd_rds[:AUCNETB] β‰ˆ -1.35 atol=1E-2 @test pd_rds[:AUCNETT] β‰ˆ 12.15 atol=1E-2 @test pd_rds[:TIMEBTW] β‰ˆ 2.2809524 atol=1E-6 pd = MetidaNCA.pdimport(pddata, :time, :obs; bl = 1.5, th = 3.0, id = Dict(:subj => 1)) pd_rds = MetidaNCA.nca!(pd) @test pd_rds[:AUCATH] β‰ˆ 7.3857143 atol=1E-6 @test pd_rds[:AUCBTH] β‰ˆ 8.7357143 atol=1E-6 @test pd_rds[:AUCABL] β‰ˆ 13.959524 atol=1E-6 @test pd_rds[:AUCBBL] β‰ˆ 1.8095238 atol=1E-6 @test pd_rds[:AUCBTW] β‰ˆ 6.5738095 atol=1E-6 @test pd_rds[:TATH] β‰ˆ 3.4809524 atol=1E-6 @test pd_rds[:TBTH] β‰ˆ 5.5190476 atol=1E-6 @test pd_rds[:TABL] β‰ˆ 5.7619048 atol=1E-6 @test pd_rds[:TBBL] β‰ˆ 3.2380952 atol=1E-6 @test pd_rds[:AUCNETT] β‰ˆ -1.35 atol=1E-2 @test pd_rds[:AUCNETB] β‰ˆ 12.15 atol=1E-2 @test pd_rds[:TIMEBTW] β‰ˆ 2.2809524 atol=1E-6 # pd_rds = MetidaNCA.nca!(pd; calcm = :luld) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git