licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
6431
using Pkg Pkg.activate(@__DIR__) using SigmaRidgeRegression using Plots using StatsBase using Statistics using LaTeXStrings using Random #using ColorSchemes # grp = GroupedFeatures(num_groups=2,group_size=200) # To add to tests.jl # SigmaRidgeRegression.fixed_point_function(hs, γs, [1.0; Inf]) # SigmaRidgeRegression.risk_formula(hs, γs, αs, [1.0; 10000]) _linestyles = [ :dot :dashdot :dash] _main_cols = [:grey :purple :green] id_design = BlockCovarianceDesign([IdentityCovarianceDesign(), IdentityCovarianceDesign()]) function theoretical_and_realized_mse(γs, αs, design::BlockCovarianceDesign; n = 400, nreps = 50, ntest = 20_000) grp = GroupedFeatures(round.(Int, γs .* n)) design = set_groups(design, grp) #design = IdentityCovarianceDesign(grp.p) #hs = [spectrum(design);spectrum(design)] hs = spectrum.(design.blocks) λs1 = SigmaRidgeRegression.optimal_ignore_second_group_λs(γs, αs) λs2 = SigmaRidgeRegression.optimal_single_λ(γs, αs) λs3 = SigmaRidgeRegression.optimal_λs(γs, αs) all_λs = (λs1, λs2, λs3) opt_risk_theory = Matrix{Float64}(undef, 1, length(all_λs)) risk_empirical = Matrix{Float64}(undef, nreps, length(all_λs)) for (i, λs) in enumerate(all_λs) opt_risk_theory[1, i] = SigmaRidgeRegression.risk_formula(hs, γs, αs, λs) end for j = 1:nreps ridge_sim = GroupRidgeSimulationSettings( grp = grp, ntrain = n, ntest = ntest, Σ = design, response_model = RandomLinearResponseModel(αs = αs, grp = grp), ) sim_res = simulate(ridge_sim) for (i, λs) in enumerate(all_λs) risk_empirical[j, i] = mse_ridge( StatsBase.fit( MultiGroupRidgeRegressor(grp, λs), sim_res.X_train, sim_res.Y_train, grp, ), sim_res.X_test, sim_res.Y_test, ) end end risk_empirical = mean(risk_empirical; dims = 1) (theoretical = opt_risk_theory, empirical = risk_empirical, all_λs = all_λs) end function oracle_risk_plot( γs, sum_alpha_squared; design = id_design, ylim = (0, 2.5), n = 1000, title = nothing, legend = nothing, kwargs..., ) ratio_squared = range(0.0, 1.0, length = 30) αs_squared = ratio_squared .* sum_alpha_squared bs_squared = reverse(ratio_squared) .* sum_alpha_squared risks = [ theoretical_and_realized_mse( γs, sqrt.([αs_squared[i]; bs_squared[i]]), design; n = n, kwargs..., ) for i = 1:length(ratio_squared) ] theoretical_risks = vcat(map(r -> r.theoretical, risks)...) .- 1 empirical_risks = vcat(map(r -> r.empirical, risks)...) .- 1 labels = [L"$\;$Optimal $\blambda = (\lambda, \infty)$" L"$\;$Optimal $\blambda = (\lambda, \lambda)$" L"$\;$Optimal $\blambda = (\lambda_1, \lambda_2)$"] #colors = reshape(colorschemes[:seaborn_deep6][1:3], 1, 3) #colors = [:red :blue :purple] ylabel = L"$\risk{\blambda}- \sigma^2$" xlabel = L"\alpha_1^2/(\alpha_1^2 + \alpha_2^2)" pl = plot( ratio_squared, theoretical_risks, color = _main_cols, linestyle = _linestyles, ylim = ylim, xguide = xlabel, yguide = ylabel, legend = legend, label = labels, background_color_legend = :transparent, foreground_color_legend = :transparent, grid = false, title = title, frame = :box, plot_titlefontsize = 0.5, thickness_scaling = 2.2, legendfontsize = 12, size = (650, 500), ) plot!( pl, ratio_squared, empirical_risks, seriestype = :scatter, color = _main_cols, markershape = :utriangle, markerstrokealpha = 0.0, markersize = 4, label = nothing, ) pl end Random.seed!(10) pgfplotsx() using PGFPlotsX push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{bm}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\blambda}{\bm{\lambda}}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\risk}[1]{\bm{R}(#1)}") nreps = 1 title_curve_1 = L"\gamma_1 = \gamma_2 = \frac{1}{4},\;\; \alpha_1^2 + \alpha_2^2 = 1" curve_1 = oracle_risk_plot( [0.25, 0.25], 1.0, legend = :topleft, nreps = nreps, title = title_curve_1, ) plot!(curve_1, tex_output_standalone = true) savefig(curve_1, "oracle_risk1.tikz") function generate_risk_plots(base_plot_name; nreps=nreps, kwargs...) title_curve_1 = L"\gamma_1 = \gamma_2 = \frac{1}{4},\;\; \alpha_1^2 + \alpha_2^2 = 1" curve_1 = oracle_risk_plot([0.25, 0.25], 1.0, legend = :topleft, nreps = nreps, title = title_curve_1; kwargs...) title_curve_2 = L"\gamma_1 = \frac{1}{10},\; \gamma_2 = \frac{4}{10},\;\; \alpha_1^2 + \alpha_2^2 = 1" curve_2 = oracle_risk_plot([0.1, 0.4], 1.0, legend = nothing, nreps = nreps, title=title_curve_2; kwargs...) title_curve_3 = L"\gamma_1 = \gamma_2 = 1,\;\; \alpha_1^2 + \alpha_2^2 = 1" curve_3 = oracle_risk_plot([1.0, 1.0], 1.0, legend = nothing, nreps = nreps, title=title_curve_3; kwargs...) title_curve_4 = L"\gamma_1 = \gamma_2 = \frac{1}{4},\;\; \alpha_1^2 + \alpha_2^2 = 2" curve_4 = oracle_risk_plot([0.25, 0.25], 2.0, legend = nothing, nreps = nreps, title=title_curve_4; kwargs...) title_curve_5 = L"\gamma_1 = \frac{1}{10},\; \gamma_2 = \frac{4}{10},\;\; \alpha_1^2 + \alpha_2^2 = 2" curve_5 = oracle_risk_plot([0.1, 0.4], 2.0, legend = nothing, nreps = nreps, title=title_curve_5; kwargs...) title_curve_6 = L"\gamma_1 = \gamma_2 = 1,\;\; \alpha_1^2 + \alpha_2^2 = 2" curve_6 = oracle_risk_plot([1.0, 1.0], 2.0, legend = nothing, nreps = nreps, title=title_curve_6; kwargs...) for (i, c) in enumerate([curve_1, curve_2, curve_3, curve_4, curve_5, curve_6]) savefig(c, "$(base_plot_name)$i.tikz") end end generate_risk_plots("oracle_risk") #ar1_block_design = BlockCovarianceDesign([AR1Design(ρ=0.95), AR1Design(ρ=0.95)]) exponential_design = BlockCovarianceDesign([ExponentialOrderStatsCovarianceDesign(rate=0.5), ExponentialOrderStatsCovarianceDesign(rate=0.5)]) generate_risk_plots("exponential_covariance/oracle_risk"; design=exponential_design, ylim=(0,6))
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3932
using Pkg Pkg.activate(@__DIR__) using SigmaRidgeRegression using StatsBase using Statistics using Random using MLJ using Distributions using DrWatson using JLD2 opt_no = parse(Int64, ARGS[1]) @show opt_no # helper functions function _merge(grp::GroupedFeatures; groups_goal = 2) ngroups = length(grp.ps) new_ps = Vector{Int64}(undef, groups_goal) mod(ngroups, groups_goal) == 0 || throw("Only implemented when #groups_goal divides ngroups") step_length = div(ngroups, groups_goal) cnt = 1 for i=1:groups_goal cnt_upper = cnt + (step_length - 1) new_ps[i] = sum(grp.ps[cnt:cnt_upper]) cnt = cnt_upper end GroupedFeatures(new_ps) end function single_simulation(sim; Ks=Ks, save=true) res = [] sim_name = randstring(16) groups = sim.groups _simulated_model = simulate(sim) X = MLJ.matrix(_simulated_model.X) Y = _simulated_model.Y resampling_idx = _simulated_model.resampling_idx bayes_λs = groups.ps .* var(sim.response_noise) ./ abs2.(sim.response_model.αs) ./ sim.ntrain bayes_ridge = MultiGroupRidgeRegressor(groups, bayes_λs; center=false, scale=false) _mach = machine(bayes_ridge, X, Y) _eval = evaluate!(_mach, resampling=resampling_idx, measure=l2) mse_bayes = _eval.measurement[1] for K in Ks newgroups = _merge(groups; groups_goal = K) single_ridge = SingleGroupRidgeRegressor(groups=newgroups, λ=1.0, center=false, scale=false) loo_single_ridge = LooRidgeRegressor(ridge = deepcopy(single_ridge)) sigma_ridge = SigmaRidgeRegressor(groups=newgroups, σ=0.01, center=false, scale=false) loo_sigmaridge = LooRidgeRegressor(ridge=deepcopy(sigma_ridge), tuning=SigmaRidgeRegression.DefaultTuning(scale=:linear, param_min_ratio=0.001)) multi_ridge = MultiGroupRidgeRegressor(newgroups; center=false, scale=false) loo_multi_ridge = LooRidgeRegressor(ridge = deepcopy(multi_ridge), rng=MersenneTwister(1)) glasso = GroupLassoRegressor(groups=newgroups, center=false, scale=false) holdout_glasso = TunedRidgeRegressor(ridge=deepcopy(glasso), resampling= Holdout(shuffle=true, rng=1), tuning=DefaultTuning(param_min_ratio=1e-5)) models = [loo_sigmaridge, loo_single_ridge, loo_multi_ridge, holdout_glasso] tmp_mses = fill(Inf, length(models)) for (model_idx, model) in enumerate(models) _mach = machine(model, X, Y) _eval = evaluate!(_mach, resampling=resampling_idx, measure=l2) tmp_mses[model_idx] = _eval.measurement[1] end push!(res, (mse_sigma = tmp_mses[1], mse_single = tmp_mses[2], mse_multi= tmp_mses[3], mse_glasso = tmp_mses[4], mse_bayes = mse_bayes, K=K, sim=sim, p = sim.groups.p, cov = sim.Σ, response = sim.response_model, sim_name = sim_name) ) end if save @save "simulation_results/$(sim_name).jld2" res end res end # Code that starts simulations #Varying K from 1 to 10How informative?n=p/2n−2p p= 1280informative vs uninformative.K= 2`,`= 0,...,Kbla Ks = 2 .^ (1:5) p = 32*25 ns = Int.([p/2; p; 2p]) groups = GroupedFeatures(fill(25, 32)) ar1 = SigmaRidgeRegression.AR1Design(p, 0.8) id = IdentityCovarianceDesign(p) #uninformative_response_model = RandomLinearResponseModel(αs = fill(1.0,32), grp = groups) informative_response_model = RandomLinearResponseModel(αs = (0:31)./3.1, grp = groups) all_opts = dict_list(Dict(:n => ns, :cov => [ar1, id])) opt = all_opts[opt_no] n = opt[:n] @show n Σ = opt[:cov] @show Σ nreps = 300 sim = GroupRidgeSimulationSettings(groups=groups, Σ=Σ, response_noise = Normal(0,5), response_model=informative_response_model, ntrain = n) for i in Base.OneTo(nreps) @show i single_simulation(sim) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3499
using Pkg Pkg.activate(@__DIR__) using FileIO using DataFrames using SigmaRidgeRegression using Distributions using LaTeXStrings using Plots using StatsPlots using PGFPlotsX pgfplotsx() push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amsmath}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amssymb}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{bm}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\risk}[1]{\bm{R}(#1)}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage[bbgreekl]{mathbbol}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\sigmacv}{\bbsigma}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\bSigma}{\bm{\Sigma}}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\bw}{\bm{w}}") all_files = load.(readdir("simulation_results")) all_files = load("simulation_results/loaded_files.jld2")["loaded_files"] all_tuples = vcat([x["res"] for x in all_files]...) df = DataFrame(all_tuples) df.n = getfield.(df.sim, :ntrain) summary_f = x-> median(x) .- 25 #25 is noise variance gdf = groupby(df, [:cov,:n ,:K]) |> df -> combine(df, :mse_sigma => summary_f => :mse_sigma, :mse_single => summary_f => :mse_single, :mse_multi => summary_f => :mse_multi, :mse_glasso => summary_f => :mse_glasso, :mse_bayes => summary_f => :mse_bayes, nrow) |> df -> groupby(df, [:n,:cov]) f_tbl_norm(i) = [gdf[i].mse_sigma gdf[i].mse_single gdf[i].mse_multi gdf[i].mse_glasso] ./ gdf[i].mse_bayes f_tbl(i) = [gdf[i].mse_single gdf[i].mse_glasso gdf[i].mse_multi gdf[i].mse_sigma gdf[i].mse_bayes] _cols = [:steelblue :green :orange :purple :grey] _markers = [:utriangle :dtriangle :diamond :pentagon :circle] _labels = ["Single Ridge" "Group Lasso" "Multi Ridge" L"\sigmacv\textrm{-Ridge}" "Bayes"] _linestyles =[:dot :dashdot :dashdotdot :solid :dash] plot_params = (frame = :box, grid=nothing, color = _cols, background_color_legend = :transparent, foreground_color_legend = :transparent, thickness_scaling = 2.3, markershape = _markers, ylabel = L"\risk{\widehat{\bw}} - \sigma^2", linestyle = _linestyles, xlabel=L"K", xscale = :log2, markeralpha=0.6, size= (550, 440)) pl1= plot(gdf[1].K, f_tbl(1); label=_labels, legend=:topleft, title=L"\bSigma=\textrm{AR}(0.8),\;n=p/2", ylim=(0,650), plot_params...) pl2= plot(gdf[2].K, f_tbl(2); label=nothing, title=L"\bSigma=\textrm{AR}(0.8),\;n=p", ylim=(0,220), plot_params...) pl3= plot(gdf[3].K, f_tbl(3); label=nothing, title=L"\bSigma=\textrm{AR}(0.8),\;n=2p", ylim=(0,45), plot_params...) pl4= plot(gdf[4].K, f_tbl(4); label=nothing, title=L"\bSigma=I,\; n=p/2", legend=:topleft, ylim=(0,650), plot_params... ) pl5= plot(gdf[5].K, f_tbl(5); label=nothing, title=L"\bSigma=I,\; n=p", ylim=(0,220), plot_params... ) pl6= plot(gdf[6].K, f_tbl(6); label=nothing, title=L"\bSigma=I,\; n=2p", ylim=(0,45), plot_params... ) savefig(pl1, "simulations_ar_phalf.tikz") savefig(pl2, "simulations_ar_p.tikz") savefig(pl3, "simulations_ar_ptwice.tikz") savefig(pl4, "simulations_id_phalf.tikz") savefig(pl5, "simulations_id_p.tikz") savefig(pl6, "simulations_id_ptwice.tikz") pl_ar= plot(pl1,pl2,pl3, size=(1150,280), layout=(1,3)) savefig(pl_ar, "simulations_ar.tikz") pl_id= plot(pl4,pl5,pl6, size=(1150,280), layout=(1,3)) pl = plot(pl4,pl5,pl6,pl1,pl2,pl3, size=(1200,800), layout=(2,3)) savefig(pl_ar, "simulations_identity.tikz")
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1413
# This file provides reproducible code for the extraction of SigmaRidgeRegression.CLLData # from the R/Bioconductor MOFA package. # A R installation (it will be called through `RCall`) is required # with an installation of the `MOFAdata` package. # This package may be installed from within `R` as follows: # ```r # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") #BiocManager::install("MOFAdata") #``` using JLD2 using RCall R""" data("CLL_data", package="MOFAdata") # use methylation data, gene expression data and drug responses as predictors CLL_data <- CLL_data[1:3] CLL_data <- lapply(CLL_data,t) ngr <- sapply(CLL_data,ncol) CLL_data <- Reduce(cbind, CLL_data) #only include patient samples profiles in all three omics CLL_data2 <- CLL_data[apply(CLL_data,1, function(p) !any(is.na(p))),] dim(CLL_data2) # prepare design matrix and response X <- CLL_data2[,!grepl("D_002", colnames(CLL_data))] y <- rowMeans(CLL_data2[,grepl("D_002", colnames(CLL_data))]) annot <- rep(1:3, times = ngr-c(5,0,0)) # group annotations to drugs, meth and RNA ngr_prime <- ngr-c(5,0,0) """ # run with seed from Velten & Huber R""" set.seed(9876) foldid <- sample(rep(seq(10), length=nrow(X))) """ @rget foldid @rget X @rget y @rget ngr_prime cll_data = (X = X, y = y, ngr = Int.(ngr_prime), foldid = foldid) JLD2.@save "cll_data.jld2" {compress=true} cll_data
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
2416
module SigmaRidgeRegression using BlockDiagonals using Distributions using Expectations using FillArrays #not used yet using FiniteDifferences using LinearAlgebra import MLJModelInterface const MMI = MLJModelInterface import MLJ import MLJTuning using MutableNamedTuples using Random using Roots using Setfield using StatsBase using Tables using UnPack using WoodburyMatrices import Base.\ import Base: reduce, rand import LinearAlgebra: ldiv! import StatsBase: fit!, fit, coef, islinear, leverage, modelmatrix, response, predict import WoodburyMatrices: _ldiv! #---------- piracy --------------------------------------------------------- MMI.nrows(X::Tables.MatrixTable) = size(MMI.matrix(X), 1) MMI.selectrows(X::Tables.MatrixTable, ::Colon) = X MMI.selectrows(X::Tables.MatrixTable, r::Integer) = MMI.selectrows(X::Tables.MatrixTable, r:r) function MMI.selectrows(X::Tables.MatrixTable, r) new_matrix = MMI.matrix(X)[r, :] _names = getfield(X, :names) MMI.table(new_matrix; names = _names) end #---------------------------------------------------------------------------- include("nnls.jl") include("utils.jl") include("groupedfeatures.jl") include("blockridge.jl") include("end_to_end.jl") include("covariance_design.jl") include("simulations.jl") include("theoretical_risk_curves.jl") include("mmi.jl") include("mmi_sigmaridge.jl") include("grouplasso.jl") include("datasets/CLLData/CLLData.jl") export GroupedFeatures, ngroups, group_idx, group_summary, group_expand, random_betas, CholeskyRidgePredictor, WoodburyRidgePredictor, BasicGroupRidgeWorkspace, MomentTunerSetup, get_αs_squared, get_λs, loo_error, mse_ridge, σ_squared_max, sigma_squared_path, CovarianceDesign, nfeatures, get_Σ, spectrum, simulate_rotated_design, AR1Design, set_groups, DiagonalCovarianceDesign, IdentityCovarianceDesign, UniformScalingCovarianceDesign, ExponentialOrderStatsCovarianceDesign, BlockCovarianceDesign, simulate, GroupRidgeSimulationSettings, RandomLinearResponseModel, optimal_risk, optimal_single_λ_risk, optimal_ignore_second_group_risk, SingleGroupRidgeRegressor, MultiGroupRidgeRegressor, LooRidgeRegressor, TunedRidgeRegressor, SigmaRidgeRegressor, GroupLassoRegressor, DefaultTuning, LooSigmaRidgeRegressor end # module
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
7734
""" `AbstractRidgePredictor` is supposed to implement the interface * `update_λs!` * `trace_XtX` * `XtXpΛ_ldiv_XtX` * `LinearAlgebra.ldiv!` * `Base.\` Concrete subtypes available are `CholeskyRidgePredictor` and `WoodburyRidgePredictor`. """ abstract type AbstractRidgePredictor end """ Used typically for p < n. """ struct CholeskyRidgePredictor{M<:AbstractMatrix,SYM<:Symmetric,C<:Cholesky} <: AbstractRidgePredictor X::M XtX::SYM XtXpΛ::SYM XtXpΛ_chol::C end function CholeskyRidgePredictor(X) (n, p) = size(X) XtX = Symmetric(X' * X ./ n) XtXpΛ = XtX + 1.0 * I XtXpΛ_chol = cholesky!(XtXpΛ) CholeskyRidgePredictor(X, XtX, XtXpΛ, XtXpΛ_chol) end function update_λs!(chol::CholeskyRidgePredictor, groups, λs) chol.XtXpΛ .= Symmetric(chol.XtX + Diagonal(group_expand(groups, λs))) cholesky!(chol.XtXpΛ) end function ldiv!(A, chol::CholeskyRidgePredictor, B) ldiv!(A, chol.XtXpΛ_chol, B) end function \(chol::CholeskyRidgePredictor, B) chol.XtXpΛ_chol \ B end function XtXpΛ_ldiv_XtX(chol::CholeskyRidgePredictor) chol.XtXpΛ_chol \ chol.XtX end function trace_XtX(chol::CholeskyRidgePredictor) tr(chol.XtX) end """ Used typically for p >> n and n reasonably small """ struct WoodburyRidgePredictor{M<:AbstractMatrix,S<:SymWoodbury} <: SigmaRidgeRegression.AbstractRidgePredictor X::M wdb::S end function WoodburyRidgePredictor(X) (n, p) = size(X) wdb = SymWoodbury(1.0 * I(p), X', I(n) / n) WoodburyRidgePredictor(X, wdb) end #It would be very useful if there could be an implementation of #```julia #ldiv!(dest::AbstracMatrix, W::AbstractWoodbury, B::AbstractMatrix) #``` #Right now I think this only works with `AbstractVector`. Before implementing and filing a pull request, I was wondering whether you think it is an OK approach to #```julia # for i=1:ncols # ldiv!(view(dest, :, i), A, view(B,:,i)) #end #``` #------------------------------------------------------------------------ # TODO: Fix the following two things upstream on WoodburyMatrices.jl #------------------------------------------------------------------------ function _ldiv!(dest, W::SymWoodbury, A::Diagonal, B) WoodburyMatrices.myldiv!(W.tmpN1, A, B) mul!(W.tmpk1, W.V, W.tmpN1) mul!(W.tmpk2, W.Cp, W.tmpk1) mul!(W.tmpN2, W.U, W.tmpk2) WoodburyMatrices.myldiv!(A, W.tmpN2) for i = 1:length(W.tmpN2) @inbounds dest[i] = W.tmpN1[i] - W.tmpN2[i] end return dest end #----------------------------------------------------------------------- function LinearAlgebra.ldiv!(Y::AbstractMatrix, A::SymWoodbury, B::AbstractMatrix) ncols = size(B, 2) for i = 1:ncols ldiv!(view(Y, :, i), A, view(B, :, i)) end Y end #----------------------------------------------------------------------- function update_λs!(wbpred::WoodburyRidgePredictor, groups, λs) wdb = wbpred.wdb n = size(wdb.D, 1) A = Diagonal(group_expand(groups, λs)) wdb.A .= A wdb.Dp .= inv(n * I + wdb.B' * (A \ wdb.B)) end function ldiv!(A, wbpred::WoodburyRidgePredictor, B) ldiv!(A, wbpred.wdb, B) end function \(wbpred::WoodburyRidgePredictor, B) wbpred.wdb \ B end function XtXpΛ_ldiv_XtX(wbpred::WoodburyRidgePredictor) n = size(wbpred.X, 1) (wbpred.wdb \ wbpred.X') * wbpred.X ./ n end function trace_XtX(wbpred::WoodburyRidgePredictor) n = size(wbpred.X, 1) # recall XtX here really is XtX/n tr(wbpred.X' * wbpred.X) / n #make more efficient later. end Base.@kwdef mutable struct BasicGroupRidgeWorkspace{ CP<:AbstractRidgePredictor, M<:AbstractMatrix, V<:AbstractVector, } X::M Y::V groups::GroupedFeatures n::Integer = size(X, 1) p::Integer = size(X, 2) λs::V = ones(groups.num_groups) XtY::V = X' * Y ./ n XtXpΛ_chol::CP = CholeskyRidgePredictor(X) XtXpΛ_div_Xt::M = XtXpΛ_chol \ X' .\ n β_curr::V = XtXpΛ_chol \ XtY leverage_store::V = zeros(n) Y_hat::V = X * β_curr cache = nothing end ngroups(rdg::BasicGroupRidgeWorkspace) = ngroups(rdg.groups) # StatsBase.jl interace coef(rdg::BasicGroupRidgeWorkspace) = rdg.β_curr islinear(rdg::BasicGroupRidgeWorkspace) = true leverage(rdg::BasicGroupRidgeWorkspace) = rdg.leverage_store modelmatrix(rdg::BasicGroupRidgeWorkspace) = rdg.X predict(rdg::BasicGroupRidgeWorkspace, X) = X * coef(rdg) response(rdg::BasicGroupRidgeWorkspace) = rdg.Y function loo_error(rdg::BasicGroupRidgeWorkspace) mean(abs2.((rdg.Y .- rdg.Y_hat) ./ (1.0 .- rdg.leverage_store))) end function mse_ridge(rdg::BasicGroupRidgeWorkspace, X_test, Y_test) mean(abs2.(Y_test - X_test * rdg.β_curr)) end function StatsBase.fit!(rdg::BasicGroupRidgeWorkspace, λs) λs = isa(λs, MutableNamedTuple) ? collect(values(λs)) : λs rdg.λs .= λs update_λs!(rdg.XtXpΛ_chol, rdg.groups, λs) #rdg.XtXpΛ .= Symmetric(rdg.XtX + Diagonal(group_expand(rdg.groups, λs))) #cholesky!(rdg.XtXpΛ) ldiv!(rdg.β_curr, rdg.XtXpΛ_chol, rdg.XtY) mul!(rdg.Y_hat, rdg.X, rdg.β_curr) ldiv!(rdg.XtXpΛ_div_Xt, rdg.XtXpΛ_chol, rdg.X') rdg.XtXpΛ_div_Xt ./= rdg.n _prod_diagonals!(rdg.leverage_store, rdg.X, rdg.XtXpΛ_div_Xt) loo_error(rdg) end """ λωλας_λ(rdg; multiplier=0.1) Implements the Panagiotis Lolas rule of thumb for picking an optimal λ. """ function λωλας_λ(rdg; multiplier = 0.1) multiplier * rdg.p^2 / rdg.n / trace_XtX(rdg.XtXpΛ_chol) #TODO 2s end #function max_σ_squared(rdg) # mean(abs2, rdg.Y) #end # Tuning through Moment Fitting Base.@kwdef struct MomentTunerSetup{ IV<:AbstractVector, FV<:AbstractVector, FM<:AbstractMatrix, } ps::IV n::Integer beta_norms_squared::FV N_norms_squared::FV M_squared::FM end function MomentTunerSetup(rdg::BasicGroupRidgeWorkspace) grps = rdg.groups n = rdg.n ps = grps.ps ngroups = grps.num_groups beta_norms_squared = group_summary(grps, rdg.β_curr, x -> sum(abs2, x)) N_matrix = rdg.XtXpΛ_div_Xt #sqrt(n)*N from paper M_matrix = XtXpΛ_ldiv_XtX(rdg.XtXpΛ_chol) #TODO 1 N_norms_squared = Vector{eltype(beta_norms_squared)}(undef, ngroups) M_squared = Matrix{eltype(beta_norms_squared)}(undef, ngroups, ngroups) for g = 1:ngroups N_norms_squared[g] = sum(abs2, N_matrix[group_idx(grps, g), :]) for h = 1:ngroups # Mij is entry (j,i) and dived by p_i M_squared[h, g] = sum(abs2, M_matrix[group_idx(grps, g), group_idx(grps, h)]) end end MomentTunerSetup( ps = ps, n = n, beta_norms_squared = beta_norms_squared, N_norms_squared = N_norms_squared, M_squared = M_squared, ) end function σ_squared_max(mom::MomentTunerSetup) u = mom.beta_norms_squared v = mom.N_norms_squared maximum(u ./ v) end function get_αs_squared(mom::MomentTunerSetup, σ_squared) rhs = mom.beta_norms_squared .- σ_squared .* mom.N_norms_squared α_sq_by_p = vec(nonneg_lsq(mom.M_squared, rhs; alg = :fnnls)) # mom.M_squared\rhs\ α_sq_by_p .* mom.ps end function get_λs(mom::MomentTunerSetup, σ_squared) αs_squared = get_αs_squared(mom, σ_squared) γs = mom.ps ./ mom.n σ_squared .* γs ./ αs_squared end function sigma_squared_path( rdg::BasicGroupRidgeWorkspace, mom::MomentTunerSetup, σs_squared, ) n_σs = length(σs_squared) n_groups = ngroups(rdg) loos_hat = zeros(n_σs) λs = zeros(n_σs, n_groups) βs = zeros(n_σs, rdg.groups.p) for (i, σ_squared) in enumerate(σs_squared) λs_tmp = get_λs(mom, σ_squared) λs[i, :] = λs_tmp loos_hat[i] = fit!(rdg, λs_tmp) βs[i, :] = rdg.β_curr end (λs = λs, loos = loos_hat, βs = βs) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3236
abstract type CovarianceDesign{T} end get_Σ(mat) = mat nfeatures(mat) = size(mat, 1) function spectrum(mat) eigs = eigvals(mat) probs = fill(1/length(eigs), length(eigs)) DiscreteNonParametric(eigs, probs) end spectrum(cov::CovarianceDesign) = spectrum(get_Σ(cov)) nfeatures(cov::CovarianceDesign) = cov.p function simulate_rotated_design(cov, n; rotated_measure = Normal()) Σ = get_Σ(cov) Σ_chol = cholesky(Σ) p = nfeatures(cov) Z = rand(rotated_measure, n, p) X = randn(n, p) * Σ_chol.UL X end Base.@kwdef struct AR1Design{P<:Union{Missing,Int}} <: CovarianceDesign{P} p::P = missing ρ = 0.7 end function get_Σ(cov::AR1Design{Int}) p = nfeatures(cov) ρ = cov.ρ Σ = [ρ^(abs(i - j)) for i = 1:p, j = 1:p] Σ end abstract type DiagonalCovarianceDesign{T} <: CovarianceDesign{T} end Base.@kwdef struct IdentityCovarianceDesign{P<:Union{Missing,Int}} <: DiagonalCovarianceDesign{P} p::P = missing end spectrum(::IdentityCovarianceDesign) = DiscreteNonParametric([1.0],[1.0]) function get_Σ(cov::IdentityCovarianceDesign{Int}) I(cov.p) end Base.@kwdef struct UniformScalingCovarianceDesign{P<:Union{Missing,Int}} <: DiagonalCovarianceDesign{P} scaling::Float64 = 1.0 p::P = missing end spectrum(unif::UniformScalingCovarianceDesign) = DiscreteNonParametric([unif.scaling],[1.0]) function get_Σ(cov::UniformScalingCovarianceDesign{Int}) (cov.scaling * I)(cov.p) end Base.@kwdef struct ExponentialOrderStatsCovarianceDesign{P<:Union{Missing,Int}} <: DiagonalCovarianceDesign{P} p::P = missing rate::Float64 end function spectrum(cov::ExponentialOrderStatsCovarianceDesign) p = cov.p rate = cov.rate tmp = range(1 / (2p); stop = 1 - 1 / (2p), length = p) eigs = 1 / rate .* log.(1 ./ tmp) DiscreteNonParametric(eigs, fill(1/p, p)) end get_Σ(cov::ExponentialOrderStatsCovarianceDesign) = Diagonal(support(spectrum(cov))) struct BlockCovarianceDesign{T, S <: CovarianceDesign{T}, G} <: CovarianceDesign{T} blocks::Vector{S} groups::G end function BlockCovarianceDesign(blocks::Vector{S}) where S<:CovarianceDesign{Missing} BlockCovarianceDesign(blocks, missing) end nfeatures(cov::BlockCovarianceDesign) = sum(nfeatures.(cov.blocks)) function get_Σ(blockdesign::BlockCovarianceDesign) BlockDiagonal(get_Σ.(blockdesign.blocks)) end function spectrum(blockdesign::BlockCovarianceDesign) @unpack blocks, groups = blockdesign spectra = spectrum.(blocks) mixing_prop = groups.ps ./ groups.p MixtureModel(spectra, mixing_prop) end function simulate_rotated_design(cov::BlockCovarianceDesign, n; rotated_measure = Normal()) hcat(simulate_rotated_design.(cov.blocks, n; rotated_measure=rotated_measure)...) end # Set groups function set_groups(design::CovarianceDesign, p::Integer) @set design.p = p end function set_groups(design::CovarianceDesign, groups::GroupedFeatures) set_groups(design, nfeatures(groups)) end function set_groups(blockdesign::BlockCovarianceDesign, groups::GroupedFeatures) updated_blocks = set_groups.(blockdesign.blocks, groups.ps) BlockCovarianceDesign(updated_blocks, groups) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
847
abstract type AbstractGroupRegressor <: MMI.Deterministic end abstract type AbstractGroupRidgeRegressor <: AbstractGroupRegressor end function StatsBase.fit(grp_ridge::AbstractGroupRidgeRegressor, X, Y, grp::GroupedFeatures) decomposition = grp_ridge.decomposition tuning = _main_hyperparameter_value(grp_ridge) nobs = length(Y) if decomposition === :default decomposition = (nfeatures(grp) <= 4*nobs) ? :cholesky : :woodbury end if decomposition === :cholesky pred = CholeskyRidgePredictor(X) elseif decomposition === :woodbury pred = WoodburyRidgePredictor(X) else "Only :default, :cholesky and :woodbury currently supported" end workspace = BasicGroupRidgeWorkspace(X = X, Y = Y, groups = grp, XtXpΛ_chol = pred) StatsBase.fit!(workspace, tuning) workspace end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1317
""" GroupedFeatures(ps::AbstractVector{Int}) A type representing groups of features, wherein the first `ps[1]` features are one group, the next `ps[2]` features are the second group and so forth. """ struct GroupedFeatures{IV<:AbstractVector{Int}} ps::IV p::Int num_groups::Int end function GroupedFeatures(; group_size::Int, num_groups::Int) GroupedFeatures(fill(group_size, num_groups)) end GroupedFeatures(ps) = GroupedFeatures(ps, sum(ps), length(ps)) ngroups(gr::GroupedFeatures) = gr.num_groups nfeatures(gr::GroupedFeatures) = gr.p function group_idx(gr::GroupedFeatures, i::Integer) starts = cumsum([1; gr.ps])[1:end-1] ends = cumsum(gr.ps) starts[i]:ends[i] end function group_summary(gr::GroupedFeatures, vec::AbstractVector, f) ps = gr.ps num_groups = gr.num_groups starts = cumsum([1; ps])[1:end-1] ends = cumsum(ps) el = eltype(f(vec)) output = Vector{el}(undef, num_groups) for g = 1:num_groups output[g] = f(vec[starts[g]:ends[g]]) end output end function group_expand(gr::GroupedFeatures, vec::AbstractVector) arr = zeros(eltype(vec), gr.p) for i = 1:gr.num_groups arr[group_idx(gr, i)] .= vec[i] end arr end function group_expand(gr::GroupedFeatures, el::Number) fill(el, gr.p) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3425
Base.@kwdef mutable struct GroupLassoRegressor{G,P,T<:Number} <: AbstractGroupRegressor decomposition::Symbol = :default groups::G groups_multiplier::P = sqrt.(groups.ps) ./ sqrt(groups.p) λ::T = 1.0 center::Bool = true scale::Bool = true maxiter::Int = 100 η_reg::T = 1e-5 η_threshold::T = 1e-2 abs_tol::T = 1e-4 truncate_to_zero::Bool = true end _main_hyperparameter(::GroupLassoRegressor) = :λ function _default_hyperparameter_maximum(model::GroupLassoRegressor, fitted_machine) @unpack groups, groups_multiplier = model _norms = group_summary(groups, _workspace(fitted_machine.cache).XtY, norm) maximum(_norms ./ groups_multiplier) end _default_param_min_ratio(::GroupLassoRegressor, fitted_machine) = 1e-5 function _glasso_fit!(workspace, glasso::GroupLassoRegressor) @unpack η_reg, η_threshold, abs_tol, groups, maxiter, λ, groups_multiplier, truncate_to_zero = glasso tmp_λs = copy(workspace.λs) ηs_new = group_summary(groups, StatsBase.coef(workspace), norm) ηs_old = copy(ηs_new) converged = false iter_cnt = 0 for i = 1:maxiter tmp_λs .= λ .* groups_multiplier ./ sqrt.(abs2.(ηs_new) .+ η_reg) fit!(workspace, tmp_λs) ηs_new .= group_summary(groups, StatsBase.coef(workspace), norm) #converged = norm(ηs_new .- ηs_old, Inf) < abs_tol #@show (ηs_new .- ηs_old) ./ sqrt.(abs2.(ηs_old) .+ η_reg) #@show (ηs_new .- ηs_old) #@show sqrt.( abs2.(ηs_old) .+ η_reg) converged = (norm((ηs_new .- ηs_old) ./ sqrt.(abs2.(ηs_old) .+ η_reg), Inf) < abs_tol) || (norm(ηs_new .- ηs_old, Inf) < abs_tol) ηs_old .= ηs_new iter_cnt += 1 converged && break end #@show "conv" ηs = group_summary(groups, StatsBase.coef(workspace), norm) final_λs = deepcopy(workspace.λs) #zero_groups = group_summary(groups, StatsBase.coef(workspace), norm) .< η_threshold .* groups_multiplier #final_λs[zero_groups] .= Inf #fit!(workspace, final_λs) (workspace = workspace, converged = converged, iter_count = iter_cnt) end function MMI.fit(m::GroupLassoRegressor, verb::Int, X, y) @unpack decomposition, center, scale = m Xmatrix = MMI.matrix(X) p = size(Xmatrix, 2) m_tmp = MultiGroupRidgeRegressor(; groups = m.groups, decomposition = decomposition, scale = scale, center = center, ) multiridge_machine = MLJ.machine(m_tmp, X, y) fit!(multiridge_machine) workspace = _workspace(multiridge_machine.cache) glasso_workspace = _glasso_fit!(workspace, m) βs = StatsBase.coef(glasso_workspace.workspace) x_transform = multiridge_machine.fitresult.x_transform y_transform = multiridge_machine.fitresult.y_transform fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) # return return fitresult, glasso_workspace, NamedTuple{}() end function MMI.update( model::GroupLassoRegressor, verbosity::Int, old_fitresult, old_cache, X, y, ) glasso_workspace = _glasso_fit!(old_cache.workspace, model) βs = StatsBase.coef(glasso_workspace.workspace) x_transform = old_fitresult.x_transform y_transform = old_fitresult.y_transform fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) return fitresult, glasso_workspace, NamedTuple{}() end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
10825
abstract type FixedLambdaGroupRidgeRegressor <: AbstractGroupRidgeRegressor end """ SingleGroupRidgeRegressor(; λ, decomposition = :default, center = true, scale = true) Type representing vanilla Ridge regression with hyperparameter `λ`. `center` and `scale` (default `true` for both) control whether the response and features should be centered and scaled first (make sure that `center=true` if the model is supposed to have an intercept!). `decomposition` can be one of `:default`, `:cholesky` or `:woodbury` and determines how the linear system is solved. """ Base.@kwdef mutable struct SingleGroupRidgeRegressor{T,G} <: FixedLambdaGroupRidgeRegressor decomposition::Symbol = :default λ::T = 1.0 groups::G = nothing center::Bool = true scale::Bool = true end _main_hyperparameter(::SingleGroupRidgeRegressor) = :λ _main_hyperparameter_value(m) = getproperty(m, _main_hyperparameter(m)) function _default_hyperparameter_maximum( model::FixedLambdaGroupRidgeRegressor, fitted_machine, ) 1000 * maximum(abs.(fitted_machine.cache.XtY)) end function _default_param_min_ratio(ridge, fitted_machine) 1e-6 end function _default_scale(ridge, fitted_machine) :log10 end function _groups(m::SingleGroupRidgeRegressor, p) isnothing(m.groups) ? GroupedFeatures([p]) : m.groups end function MMI.fit(m::FixedLambdaGroupRidgeRegressor, verb::Int, X, y) @unpack center, scale, groups = m Xmatrix = MMI.matrix(X) if center || scale x_transform = StatsBase.fit( ZScoreTransform, Xmatrix; dims = 1, center = center, scale = scale, ) y_transform = StatsBase.fit(ZScoreTransform, y; dims = 1, center = center, scale = scale) Xmatrix = StatsBase.transform(x_transform, Xmatrix) y = StatsBase.transform(y_transform, y) else x_transform = nothing y_transform = nothing end p = size(Xmatrix, 2) groups = _groups(m, p) workspace = StatsBase.fit(m, Xmatrix, y, groups) # see end_to_end.jl βs = StatsBase.coef(workspace) fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) # return return fitresult, workspace, NamedTuple{}() end function MMI.update( model::AbstractGroupRidgeRegressor, verbosity::Int, old_fitresult, old_cache, X, y, ) new_λ = _main_hyperparameter_value(model) StatsBase.fit!(old_cache, new_λ) βs = StatsBase.coef(old_cache) fitresult = ( coef = βs, x_transform = old_fitresult.x_transform, y_transform = old_fitresult.y_transform, ) return fitresult, old_cache, NamedTuple{}() end function MMI.predict(model::AbstractGroupRegressor, fitresult, Xnew) Xnew = MMI.matrix(Xnew) @unpack coef, x_transform, y_transform = fitresult !isnothing(x_transform) && (Xnew = StatsBase.transform(x_transform, Xnew)) ypred = Xnew * coef !isnothing(y_transform) && StatsBase.reconstruct!(y_transform, ypred) ypred end function range_and_grid( ridge::AbstractGroupRegressor, param_min, param_max, scale, resolution, n, rng ) param_symbol = _main_hyperparameter(ridge) param_range = range(ridge, param_symbol, lower = param_min, upper = param_max, scale = scale) model_grid = MLJTuning.grid(ridge, [param_symbol], [MLJ.iterator(param_range, resolution)]) if length(model_grid) > n model_grid = sample(rng, model_grid, n; replace = false) end param_range, model_grid end """ MultiGroupRidgeRegressor(; decomposition, λ, groups) """ mutable struct MultiGroupRidgeRegressor{T,G<:GroupedFeatures} <: FixedLambdaGroupRidgeRegressor decomposition::Symbol λs::T #Named tuple groups::G center::Bool scale::Bool end _main_hyperparameter(::MultiGroupRidgeRegressor) = :λs _groups(m::MultiGroupRidgeRegressor, p) = m.groups function MultiGroupRidgeRegressor(; groups::GroupedFeatures, λs::AbstractVector = ones(ngroups(groups)), decomposition = :default, center = true, scale = true, ) ngr = ngroups(groups) λ_expr = Tuple(Symbol.(:λ, Base.OneTo(ngr))) λ_tupl = MutableNamedTuple{λ_expr}(tuple(λs...)) MultiGroupRidgeRegressor(decomposition, λ_tupl, groups, center, scale) end function range_and_grid(ridge::MultiGroupRidgeRegressor, λ_min, λ_max, scale, resolution, n, rng) λ_names = [Meta.parse("(λs.$λ)") for λ in keys(ridge.λs)] nparams = length(λ_names) λ_range = [range(ridge, λ, lower = λ_min, upper = λ_max, scale = scale) for λ in λ_names] λ_product_grid = MLJ.iterator.(λ_range, resolution) if nparams*log(resolution) > log(n) tmp_idx = zeros(Int, nparams) model_grid = [deepcopy(ridge) for i in Base.OneTo(n)] for i in Base.OneTo(n) sample!(rng, 1:resolution, tmp_idx) clone = model_grid[i] for k in eachindex(λ_names) MLJ.recursive_setproperty!(clone, λ_names[k], λ_product_grid[k][tmp_idx[k]]) end end else model_grid = MLJTuning.grid(ridge, λ_names, λ_product_grid) end λ_range, model_grid end """ DefaultTuning(resolution, n, param_min_ratio, param_max, scale) Determines the default set of hyperparameters to loop over when tuning a `AbstractGroupRidgeRegressor` method. Parameters are chosen on a grid that is equidistant in `scale` (e.g. `:log10` or `:linear` or `:default`) with number of points given by `resolution` (default `100`) that ranges from `param_min_ratio*param_max` to `param_max`. Both `param_min_ratio` and `param_max` can be specified as `:default`, in which case a method specific default choice will be used. If there are multiple hyperparameters (say `d`), then the above rules are used componentwise. `n` (default `1000`) is the largest number of hyperparameters to explore (if `resolution^d > n`, then the parameters are randomly subsampled to `n` of them). """ Base.@kwdef struct DefaultTuning{T,M} resolution::Int = 100 n::Int = 1000 param_min_ratio::M = :default param_max::T = :default scale = :default end function _tuning_grid(tuning::DefaultTuning, model, fitted_machine, rng) @unpack resolution, n, scale = tuning if tuning.param_max === :default param_max = _default_hyperparameter_maximum(model, fitted_machine) elseif isa(tuning.param_max, Number) param_max = tuning.param_max else error("param_max can be :default or a number only.") end if tuning.param_min_ratio === :default param_min_ratio = _default_param_min_ratio(model, fitted_machine) elseif isa(tuning.param_min_ratio, Number) param_min_ratio = tuning.param_min_ratio else error("param_min_ratio can be :default or a number only.") end if tuning.scale === :default _scale = _default_scale(model, fitted_machine) else _scale = tuning.scale end param_min = param_min_ratio * param_max param_range, model_grid = range_and_grid(model, param_min, param_max, _scale, resolution, n, rng) param_range, model_grid, param_max end """ LooRidgeRegressor(;ridge, tuning = DefaultTuning(), rng = Random.GLOBAL_RNG) A MLJ model that wraps a `ridge` model such as `SigmaRidgeRegressor` and tunes its parameters by leave-one-out-cross-validation with `tuning` settings defaulting to [`DefaultTuning`](@ref). In case there is randomness in choosing the search space of hyperparameters, then the `rng` may be specified (defaults to `Random.GLOBAL_RNG`). """ Base.@kwdef mutable struct LooRidgeRegressor{G,T} <: AbstractGroupRidgeRegressor ridge::G = SingleGroupRidgeRegressor() tuning::T = DefaultTuning() rng = Random.GLOBAL_RNG end _groups(loo::LooRidgeRegressor) = _groups(loo.ridge) _workspace(wk::BasicGroupRidgeWorkspace) = wk _workspace(wk) = wk.workspace function MMI.fit(m::LooRidgeRegressor, verb::Int, X, y) ridge = m.ridge mach = MLJ.machine(ridge, X, y) fit!(mach) x_transform = mach.fitresult.x_transform y_transform = mach.fitresult.y_transform ridge_workspace = _workspace(mach.cache) param_range, model_grid, param_max = _tuning_grid(m.tuning, ridge, mach, m.rng) history = map(model_grid) do newm param = _main_hyperparameter_value(newm) mach.model = newm fit!(mach; verbosity = 0) λ = deepcopy(ridge_workspace.λs) loo = loo_error(ridge_workspace) (loo = loo, param = param, model = newm, λ = λ) end loos = [h.loo for h in history] params = [h.param for h in history] λs = [h.λ for h in history] best_model_idx = argmin(loos) best_model = model_grid[best_model_idx] best_param = params[best_model_idx] best_loo = loos[best_model_idx] best_λs = λs[best_model_idx] report = ( best_model = best_model, best_param = best_param, best_λs = best_λs, best_loo = best_loo, loos = loos, λs = λs, params = params, param_max = param_max, param_range = param_range, ) mach.model = best_model fit!(mach) βs = StatsBase.coef(ridge_workspace) fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) # return return fitresult, ridge_workspace, report end Base.@kwdef mutable struct TunedRidgeRegressor{G,R,M,T} <: AbstractGroupRidgeRegressor ridge::G = SingleGroupRidgeRegressor(decomposition = :cholesky, λ = 1.0) tuning::T = DefaultTuning() resampling::R = MLJ.CV(nfolds = 5, shuffle=true) measure::M = MLJ.l2 end function MMI.fit(m::TunedRidgeRegressor, verb::Int, X, y) ridge = m.ridge mach = MLJ.machine(ridge, X, y) fit!(mach) #x_transform = mach.fitresult.x_transform #y_transform = mach.fitresult.y_transform ridge_workspace = _workspace(mach.cache) param_range, model_grid, param_max = _tuning_grid(m.tuning, ridge, mach, m.resampling.rng) tuned_model = MLJ.TunedModel( model = ridge, ranges = model_grid, tuning = MLJ.Explicit(), resampling = m.resampling, measure = m.measure, ) tuned_mach = MLJ.machine(tuned_model, X, y) fit!(tuned_mach) _fitresult = tuned_mach.fitresult.fitresult _cache = tuned_mach.fitresult.cache best_λs = deepcopy(_workspace(_cache).λs) tunedreport = tuned_mach.report best_param = _main_hyperparameter_value(tunedreport.best_model) tunedreport = (tunedreport..., best_param=best_param, best_λs = best_λs) # return return _fitresult, _cache, tunedreport end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
4060
""" SigmaRidgeRegressor(; decomposition, groups, σ, center, scale, init_model) A MLJ model that fits σ-Ridge Regression with `groups` and parameter `σ`. `center` and `scale` (default `true` for both) control whether the response and features should be centered and scaled first (make sure that `center=true` if the model is supposed to have an intercept!). `decomposition` can be one of `:default`, `:cholesky` or `:woodbury` and determines how the linear system is solved. `init_model` is the initial model used to define the Method of Moments map from `σ` to `λ`; it defaults to leave-one-out ridge without groups. """ Base.@kwdef mutable struct SigmaRidgeRegressor{G,T,M} <: SigmaRidgeRegression.AbstractGroupRidgeRegressor decomposition::Symbol = :default groups::G σ::T = 1.0 center::Bool = true scale::Bool = true init_model::M = LooRidgeRegressor(;ridge=SingleGroupRidgeRegressor( decomposition = decomposition, groups = groups, center = center, scale = scale,) ) end _main_hyperparameter(::SigmaRidgeRegressor) = :σ function _default_hyperparameter_maximum(model::SigmaRidgeRegressor, fitted_machine) sqrt(σ_squared_max(fitted_machine.cache.mom)) end _default_param_min_ratio(::SigmaRidgeRegressor, fitted_machine) = 1e-3 _default_scale(::SigmaRidgeRegressor, fitted_machine) = :linear function MMI.fit(m::SigmaRidgeRegressor, verb::Int, X, y) @unpack init_model, decomposition, center, scale, groups = m init_machine = MLJ.machine(init_model, X, y) fit!(init_machine; verbosity = verb) mom = MomentTunerSetup(init_machine.cache) σ = m.σ λs = SigmaRidgeRegression.get_λs(mom, abs2(σ)) multiridge = MultiGroupRidgeRegressor(; groups=groups, λs=λs, decomposition = decomposition, center = center, scale = scale, ) multiridge_machine = MLJ.machine(multiridge, X, y) fit!(multiridge_machine; verbosity = verb) workspace = multiridge_machine.cache cache = (workspace = workspace, mom = mom, multiridge_machine = multiridge_machine) βs = StatsBase.coef(workspace) x_transform = multiridge_machine.fitresult.x_transform y_transform = multiridge_machine.fitresult.y_transform fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) # return return fitresult, cache, NamedTuple{}() end function MMI.update( model::SigmaRidgeRegressor, verbosity::Int, old_fitresult, old_cache, X, y, ) @unpack init_model, decomposition, center, scale, groups = model workspace = old_cache.workspace multiridge_machine = old_cache.multiridge_machine mom = old_cache.mom σ = model.σ λs = SigmaRidgeRegression.get_λs(mom, abs2(σ)) multiridge = MultiGroupRidgeRegressor(; groups=groups, λs=λs, decomposition = decomposition, center = center, scale = scale, ) multiridge_machine.model = multiridge fit!(multiridge_machine; verbosity = verbosity) cache = (workspace = workspace, mom = mom, multiridge_machine = multiridge_machine) βs = StatsBase.coef(workspace) x_transform = multiridge_machine.fitresult.x_transform y_transform = multiridge_machine.fitresult.y_transform fitresult = (coef = βs, x_transform = x_transform, y_transform = y_transform) return fitresult, cache, NamedTuple{}() end """ LooSigmaRidgeRegressor(; kwargs...) Convenience constructors and type-alias for `LooRidgeRegressor{<:SigmaRidgeRegressor}`. Equivalent to `LooRidgeRegressor(;ridge= SigmaRidgeRegressor())` with `kwargs` passed to both `LooRidgeRegressor` and `SigmaRidgeRegressor`. """ const LooSigmaRidgeRegressor = LooRidgeRegressor{<:SigmaRidgeRegressor} function LooSigmaRidgeRegressor(; tuning = DefaultTuning(), rng = Random.GLOBAL_RNG, kwargs...) sigma_ridge = SigmaRidgeRegressor(;kwargs...) LooRidgeRegressor(;ridge=deepcopy(sigma_ridge), tuning=tuning, rng=rng) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3670
# Code below is hard-copied from # https://github.com/ahwillia/NonNegLeastSquares.jl # See that repository for the license of this file. # (Temporary stop-gap until the above package is registered) using Distributed function nonneg_lsq(A, B; alg::Symbol = :pivot, gram::Bool = false, kwargs...) if alg == :fnnls return fnnls(A, B; gram = gram, kwargs...) else error("Specified algorithm :", alg, " not recognized.") end end # If second input is a vector, convert it to a matrix nonneg_lsq(A, b::AbstractVector; kwargs...) = nonneg_lsq(A, b[:, :]; kwargs...) """ x = fnnls(AtA, Atb; ...) Returns x that solves A*x = b in the least-squares sense, subject to x >=0. The inputs are the cross-products AtA = A'*A and Atb = A'*b. Uses the modified active set method of Bro and De Jong (1997). Optional arguments: tol: tolerance for nonnegativity constraints max_iter: maximum number of iterations (counts inner loop iterations) References: Bro R, De Jong S. A fast non-negativitity-constrained least squares algorithm. Journal of Chemometrics. 11, 393–401 (1997) """ function fnnls( AtA, Atb::AbstractVector{T}; tol::Float64 = 1e-8, max_iter = 30 * size(AtA, 2), ) where {T} n = size(AtA, 1) x = zeros(T, n) s = zeros(T, n) # P is a bool array storing positive elements of x # i.e., x[P] > 0 and x[~P] == 0 P = x .> tol w = Atb - AtA * x # We have reached an optimum when either: # (a) all elements of x are positive (no nonneg constraints activated) # (b) ∂f/∂x = A' * (b - A*x) > 0 for all nonpositive elements of x iter = 0 while sum(P) < n && any(w[(!).(P)] .> tol) && iter < max_iter # find i that maximizes w, restricting i to indices not in P # Note: the while loop condition guarantees at least one w[~P]>0 i = argmax(w .* (!).(P)) # Move i to P P[i] = true # Solve least-squares problem, with zeros for columns/elements not in P s[P] = AtA[P, P] \ Atb[P] s[(!).(P)] .= zero(eltype(s)) # zero out elements not in P # Inner loop: deal with negative elements of s while any(s[P] .<= tol) iter += 1 # find indices in P where s is negative ind = @__dot__ (s <= tol) & P # calculate step size, α, to prevent any xᵢ from going negative α = minimum(x[ind] ./ (x[ind] - s[ind])) # update solution (pushes some xᵢ to zero) x += α * (s - x) # Remove all i in P where x[i] == 0 for i = 1:n if P[i] && abs(x[i]) < tol P[i] = false # remove i from P end end # Solve least-squares problem again, zeroing nonpositive columns s[P] = AtA[P, P] \ Atb[P] s[(!).(P)] .= zero(eltype(s)) # zero out elements not in P end # update solution x = deepcopy(s) w .= Atb - AtA * x end return x end function fnnls( A, B::AbstractMatrix; gram::Bool = false, use_parallel::Bool = true, kwargs..., ) n = size(A, 2) k = size(B, 2) if gram # A,B are actually Gram matrices AtA = A AtB = B else # cache matrix computations AtA = A' * A AtB = A' * B end if use_parallel && nprocs() > 1 X = @distributed (hcat) for i = 1:k fnnls(AtA, AtB[:, i]; kwargs...) end else X = Array{eltype(B)}(undef, n, k) for i = 1:k X[:, i] = fnnls(AtA, AtB[:, i]; kwargs...) end end return X end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1930
abstract type AbstractResponseModel end """ random_betas(gr::GroupedFeatures, αs) Suppose `gr` consists of ``K`` groups with ``p_1, \\dotsc, p_K`` features each. Then this returns a random vector of βs of length ``\\sum p_g``, where for `j` in the `g`-th group we draw (independent) ``β_j \\sim N(0, α_g^2/p_g)``. ``α_g`` is the `g`-th element of the vectpr `αs`. """ function random_betas(gr::GroupedFeatures, αs) ps = gr.ps βs = zeros(eltype(αs), gr.p) for i = 1:gr.num_groups βs[group_idx(gr, i)] .= randn(ps[i]) .* sqrt(αs[i]^2 / ps[i]) end βs end Base.@kwdef struct RandomLinearResponseModel <: AbstractResponseModel αs::Vector{Float64} grp::GroupedFeatures iid_measure = Normal() end function (resp::RandomLinearResponseModel)(X) β = random_betas(resp.grp, resp.αs) #todo, allow other noise dbn. Xβ = X * β Xβ, β end Base.@kwdef struct GroupRidgeSimulationSettings{C,R,D} groups::GroupedFeatures Σ::C response_model::R response_noise::D = Normal() ntest::Int = 10000 ntrain::Int iid_measure = Normal() end Base.@kwdef struct GroupRidgeSimulation groups::GroupedFeatures X::Matrix{Float64} Y::Vector{Float64} resampling_idx = nothing β = nothing end function simulate(group_simulation::GroupRidgeSimulationSettings) ntrain = group_simulation.ntrain ntest = group_simulation.ntest ntotal = ntrain + ntest @unpack response_model, response_noise = group_simulation X = simulate_rotated_design( group_simulation.Σ, ntotal; rotated_measure = group_simulation.iid_measure, ) Xβ, β = response_model(X) Y = Xβ .+ rand(response_noise, ntotal) resampling_idx = [(1:ntrain, (ntrain+1):ntotal)] GroupRidgeSimulation(; groups = group_simulation.groups, X=X, Y=Y, resampling_idx = resampling_idx, β = β, ) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1785
function _integrate_spectrum(h::Float64, γ, λ, f) #interpreted as point mass spectrum denom = (λ / h + 1 / (1 + γ * f)) 1 / denom end #interpreted as function _integrate_spectrum(h::Distribution, γ, λ, f) expectation(u->_integrate_spectrum(u, γ, λ, f), h) end function fixed_point_function(hs, γs, λs) γ = sum(γs) fixed_point_f = f -> f - sum(γs ./ γ .* _integrate_spectrum.(hs, γ, λs, f)) find_zero(fixed_point_f, (0.0, 100.0)) end function risk_formula(hs, γs, αs, λs) λs = min.(λs, 10_000) #hack for now until properly dealing with Infinity γ = sum(γs) fixed_pt = λs_tilde -> fixed_point_function(hs, γs, λs_tilde) f = fixed_pt(λs) ∇f = grad(central_fdm(5, 1), fixed_pt, λs)[1] #return ∇f #return γ ./ γs .* (γs .* λs - αs.^2 .* λs.^2) .* ∇f 1 + γ * f + sum(γ ./ γs .* (γs .* λs - αs .^ 2 .* λs .^ 2) .* ∇f) end function r_squared(hs, γs, αs, λs) response_var = 1 + sum(abs2, αs) risk = risk_formula(hs, γs, αs, λs) 1 - risk / response_var end function optimal_r_squared(αs, γs, hs) λs_opt = γs ./ αs .^ 2 r_squared(hs, γs, αs, λs_opt) end function optimal_λs(γs, αs) γs ./ αs .^ 2 end function optimal_risk(hs, γs, αs) λs_opt = optimal_λs(γs, αs) risk_formula(hs, γs, αs, λs_opt) end function optimal_single_λ(γs, αs) λ_opt = sum(γs) / sum(abs2, αs) λs_opt = fill(λ_opt, 2) end function optimal_single_λ_risk(hs, γs, αs) λs_opt = optimal_single_λ(γs, αs) risk_formula(hs, γs, αs, λs_opt) end function optimal_ignore_second_group_λs(γs, αs) λ1_opt = γs[1] * (1 + αs[2]^2) / αs[1]^2 λs_opt = [λ1_opt; Inf] end function optimal_ignore_second_group_risk(hs, γs, αs) λs_opt = optimal_ignore_second_group_λs(γs, αs) risk_formula(hs, γs, αs, λs_opt) end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
263
function _prod_diagonals!(Y, A, B) @inbounds for j ∈ 1:size(A, 1) Y[j] = 0 @inbounds for i ∈ 1:size(A, 2) Y[j] += A[j, i] * B[i, j] end end Y end function random_rotation(p) mat = randn(p, p) qr(mat).Q end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1394
export CLLData """ CLLData A dataset of different omic measurements for Chronic lymphocytic leukaemia (CLL) patient samples. The data can be loaded via: ``` cll_data = CLLData.load() ``` `cll_data` is a named tuple with fields: * `X`: The features. * `y`: The response, namely Ibrutinib sensitivity. * `ngr`: The number of features in each of the three feature groupings, namely drug sensitivity, methylation and RNAseq data. * `foldid`: A `Vector{Int}` with values in 1,..,10 that assign each of the rows of `X` to a fold to be used in cross-validation. ## References The dataset was originally published in: Dietrich, Sascha, et al. "Drug-perturbation-based stratification of blood cancer." The Journal of clinical investigation 128.1 (2018): 427-445. It was used in the context of side-information by: Velten, Britta, and Wolfgang Huber. "Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes." Biostatistics (2019). The `foldid` assignment into folds is the same as the one used by the above publication. The dataset was copied from the Bioconductor MOFAdata package, available at: https://bioconductor.org/packages/release/data/experiment/html/MOFAdata.html """ module CLLData using JLD2 const DATA = joinpath(@__DIR__, "cll_data.jld2") function load() JLD2.@load DATA cll_data cll_data end end
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
7394
using Plots using LaTeXStrings using CategoricalArrays using GLM using Distributions using SigmaRidgeRegression using LinearAlgebra using StatsBase using Plots using Random tmp_X = whiten_covariates(X, Σ_chol) cov(tmp_X) estimate_var(DickerMoments(),X,Y; Σ = Σ_chol) using ForwardDiff σ = 5.0 #gr = GroupedFeatures(repeat([200],5)) Random.seed!(1) σ = 5.0 grp = GroupedFeatures([30;30;30;30;30;30]) n = 400 p = grp.p ρ = 0.7 Σ = [ρ^(abs(i-j)) for i=1:p,j=1:p] Σ_chol = cholesky(Σ) X = randn(n, p) * Σ_chol.UL Xnew = randn(10000, p) * Σ_chol.UL using Statistics cov(X) #X= randn(n, p) .+ randn(n) αs = sqrt.(range(4.0,12.0,length=ngroups(grp)))#r#ange(2.0, 2.75, 3.5; length=3)#1.0:5.0 β = random_betas(grp, αs) group_summary(grp, β, norm) sum(abs2, β) Y = X*β .+ σ .* randn(n) tmp = BasicGroupRidgeWorkspace(X=X, Y=Y, groups=grp) λωλας_λ(tmp) λs σ_squared_max(mom) using StatsBase StatsBase.fit!(tmp, λωλας_λ(tmp)) mom = MomentTunerSetup(tmp) tune_σ(1.0) SigmaRidgeRegression. min1 = opt_res.minimizer lambda_min1 = get_λs(mom, min1) min_val1 = opt_res.minimum β1 = copy(tmp.β_curr) function tune_λ(λ) fit!(tmp, λ) end lower_box_constraint = fill(0.0, 6) upper_box_constraint = fill(Inf, 6) opt_res2 = optimize(tune_λ, lower_box_constraint, upper_box_constraint, lambda_min1) opt_res2.minimizer opt_res2.minimizer opt_res2.minimum fit!(tmp, opt_res2.minimizer) β2 = copy(tmp.β_curr) mean(abs2, X*(β-β1)) mean(abs2, X*(β-β2)) opt_res3 = optimize(tune_λ, lower_box_constraint, upper_box_constraint, fill(1.0,6)) opt_res3.minimizer opt_res3.minimizer #opt_res3.minimum opt_res.minimizer oracle_λ = σ^2 ./ αs.^2 .* 30 ./ n using Optim using Plots scatter( αs.^2, SigmaRidgeRegression.get_αs_squared(mom,1.0)) plot!(αs.^2,αs.^2) σs_squared = range(0.01, 3.0; length=100) mypath1 = sigma_squared_path(tmp, mom, σs_squared) plot(σs_squared, mypath1.loos) using Plots plot(σs_squared, mypath1.λs) λs = vcat([get_λs(mom, s)' for s in σs_squared]...) pl = plot(σs_squared, λs) σs_squared = range(0.01, 50.0; length=100) mypath = sigma_squared_path(tmp, mom, σs_squared) plot(σs_squared, mypath.loos) four_cols_rep = hcat([fill(col, 1, 30) for col in ["#440154"; "#31688E"; "#35B779"]]...) linetype_rep = hcat([fill(col, 1, 25) for col in [:dash,:dot,:dashdot, :solid]]...) [:black,"#9818d6","#ff5151"] #66c2a5 #fc8d62 #8da0cb #e78ac3 four_cols_rep = hcat([fill(col, 1, 30) for col in [:black; :purple; :green]]...) plot(σs_squared, mypath.βs, alpha=0.8, linewidth=1.0,label="", color=four_cols_rep, ylim=(-2,2)) using Plots using PlotThemes theme(:default) opt_λ_empirical = σ^2/norm(β)^2*γ opt_λ = σ^2/20.0*p/n p/n max_σ_squared(tmp) fit!(tmp, 0.050) mom = MomentTunerSetup(tmp) mom.M_squared my find_λs_squared(mom, 0.2) find_αs_squared(mom, 1.0) using NonNegLeastSquares using Plots using LaTeXStrings pgfplotsx() , ylab=L"\hat{\lambda}(\sigmacv)", xlab=L"\sigmacv", size=(300,200)); pl = plot(σs_squared, get_α, size=(500,400)) savefig(pl, "pl2.tex") mom.N_norms_squared find_αs(mom, 2.0) using NonNegLeastSquares find_αs(mom, 20.0) using RandomMatrices myrot = rand(GaussianHermite{1},n,1) n_test = 20_000 n = 10_000 p = 1_000 σ = 1.0 γ = p/n X = randn(n, p) .+ randn(n) #strong positive correlations. Z = randn(p,p) Z_qr_Q = Matrix(qr(Z).Q) my_eigs = [fill(5, 500);fill(1, 500)] Σ = Z_qr_Q * Diagonal(my_eigs) * Z_qr_Q' X = real.(Matrix((sqrt(Σ)*randn(p,n))')) X_qr.Q'*X_qr.Q Y_test = X_test*β .+ σ .* randn(n_test) 1.41 tmp.XtXpΛ size(tmp.X) size(tmp.XtXpΛ_div_Xt) size(tmp.Y) StatsBase.fit!(tmp, 2.0) diag(tmp.X*inv(tmp.XtX + Diagonal(group_expand(tmp.groups, tmp.λs)))tmp.X') tmp.leverage_store hat_matrix = tmp.X*inv(tmp.XtX + Diagonal(group_expand(tmp.groups, tmp.λs)))tmp.X'./n hat_matrix*tmp.Y ≈ tmp.X * tmp.β_curr diag(hat_matrix) ≈ tmp.leverage_store mean(diag(hat_matrix)) mean(tmp.leverage_store) using ForwardDiff using Zygote Zygote.gradient(λ->fit!(tmp, λ), fill(1.0,5)) ForwardDiff.gradient(λ->fit!(tmp, λ), fill(1.0,5)) ForwardDiff.Hess loo_error(tmp) mse_ridge(tmp, X_test, Y_test) λs = range(0.00, 3.0; length=50) mses_hat = zeros(length(λs)) loos_hat = zeros(length(λs)) for (i, λ) in enumerate(λs) fit!(tmp, λ) mses_hat[i] = mse_ridge(tmp, X_test, Y_test) loos_hat[i] = loo_error(tmp) end using Plots using LaTeXStrings plot(λs, [mses_hat loos_hat], color=["black" "blue"], linestyle=[:solid :dot], label=["MSE" "LOO"], xlabel=L"\lambda") plot(λs, mses_hat .- loos_hata) fits = [solve_ridge(XtX, XtY, X, Y, λ) for λ in λs] mses_hat = [mse_ridge(X_test, Y_test, fit[:β_hat]) for fit in fits] loos_hat = [fit[:LOO_error] for fit in fits] using Plots using LaTeXStrings vline!([opt_λ_empirical opt_λ], color=[:green :red]) true_error = tmp2 = fit!(tmp., 1.0:5.0) tmp2.XtXpΛ_chol\(tmp.XtX + Diagonal(group_expand(tmp.groups, 1.0:5.0))) ≈ I (tmp.XtX + Diagonal(group_expand(tmp.groups, 1.0:5.0)))\tmp.XtY ≈ tmp.β_curr function BasicGroupRidgeWorkspace(X, Y, groups) end mychol = cholesky(XtX) vs = XtX ldiv!(XtX, mychol, I) cholesky(XtX) isa(vs, AbstractMatrix) #function rand() #n_test = 10_000 β = randn(p) .* sqrt(α^2/p) norm(β)^2 XtY = X'*Y./n function solve_ridge(XtX::Symmetric, XtY, X, Y, λ; compute_M_matrix=false) n, p = size(X) chol_trans_inv = inv(cholesky(XtX + λ*I(p))) β_hat = chol_trans_inv*XtY hat_matrix = X*chol_trans_inv*X' ./ n Y_hat = X*β_hat LOO_error = norm( (Y .- Y_hat)./ ( 1.0 .- diag(hat_matrix)))^2 / n res= Dict(:β_hat => β_hat, :LOO_error => LOO_error, :λ => λ) if compute_M_matrix M_matrix = chol_trans_inv * XtX N_matrix = chol_trans_inv * X'./n res[:M_matrix] = M_matrix res[:N_matrix] = N_matrix end res end P_mat = ridge_sol[:N_matrix] sol_matrix sol_rhs β_hat_norms α_squared_hat = sol_matrix\sol_rhs matrix_sol = # want a fun: # FeatureGroups # repeat(..., FeatureGroups) # + iterator protocol for groups. # groupwise(Groups(), \beta::Vector, ) # groupwise(Groups(), \beta::Matrix, ) # groupwise(Groups(), \beta::Matrix, ) a = reshape(Vector(1:16), (4,4)) @which reduce(max, a, dims=1) Σ = [ρ^(abs(i-j)) for i=1:p,j=1:p] myinv = inv(Σ_chol.UL) myinv*Σ*myinv' X = randn(n, p) * Σ_chol.L woodbury_playi using WoodburyMatrices A, B, D bla = copy(tmp.λs) bla[6] = Inf A_tmp = Diagonal(group_expand(tmp.groups, bla)) wd = SymWoodbury(A_tmp, X', I(n)/n) wd.Dp wd.B wd. Dp = inv(n*I + wd.B'*(A_tmp\wd.B)) wd.Dp ≈ Dp ≈ Dp Dp = safeinv(safeinv(D) .+ B'*(A\B)) ?Woodbury Random.seed!(100) σ = 4.0 grp = GroupedFeatures([300;3000;5000]) n = 400 p = grp.p X = randn(n, p)# * Σ_chol.UL αs = sqrt.([4.0;8.0;12.0])#r#ange(2.0, 2.75, 3.5; length=3)#1.0:5.0 β = random_betas(grp, αs) group_summary(grp, β, norm) sum(abs2, β) Y = X*β .+ σ .* randn(n) tmp = BasicGroupRidgeWorkspace(X=X, Y=Y, groups=grp, XtXpΛ_chol = WoodburyRidgePredictor(X)) fit!(tmp, λωλας_λ(tmp)) mom = MomentTunerSetup(tmp) #scatter( αs.^2, SigmaRidgeRegression.get_αs_squared(mom,1.0)) #plot!(αs.^2,αs.^2) σs_squared1 = range(0.0001, 34; length=30) mypath1 = sigma_squared_path(tmp, mom, σs_squared1) #with gr plot(sqrt.(σs_squared1), mypath1.loos) get_λs(mom, 4)
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
1400
using SigmaRidgeRegression using Test using LinearAlgebra using Random import StatsBase @testset "Woodbury and Cholesky" begin Random.seed!(1) σ = 5.0 grp = GroupedFeatures([30;30;30;30;30;30]) n = 400 p = grp.p X = randn(n, p) αs = sqrt.(range(4.0,12.0,length=ngroups(grp)))#r#ange(2.0, 2.75, 3.5; length=3)#1.0:5.0 β = random_betas(grp, αs) Y = X*β .+ σ .* randn(n) tmp_chol = BasicGroupRidgeWorkspace(X=X, Y=Y, groups=grp) tmp_woodb = BasicGroupRidgeWorkspace(X=X, Y=Y, groups=grp, XtXpΛ_chol = WoodburyRidgePredictor(X)) @test SigmaRidgeRegression.λωλας_λ(tmp_chol) ≈ SigmaRidgeRegression.λωλας_λ(tmp_woodb) beta_chol = tmp_chol.XtXpΛ_chol \ tmp_woodb.XtY beta_wdb = tmp_woodb.XtXpΛ_chol \ tmp_woodb.XtY @test beta_chol ≈ beta_wdb tmp_chol.XtXpΛ_chol \ tmp_chol.X' ≈ tmp_woodb.XtXpΛ_chol \ tmp_woodb.X' ldiv_chol = ldiv!(tmp_chol.XtXpΛ_div_Xt, tmp_chol.XtXpΛ_chol, tmp_chol.X') ldiv_wdb = ldiv!(tmp_woodb.XtXpΛ_div_Xt, tmp_woodb.XtXpΛ_chol, tmp_woodb.X') @test ldiv_chol ≈ ldiv_wdb loo_chol = StatsBase.fit!(tmp_chol, SigmaRidgeRegression.λωλας_λ(tmp_chol)) loo_wdb = StatsBase.fit!(tmp_woodb, SigmaRidgeRegression.λωλας_λ(tmp_chol)) @test tmp_woodb.β_curr ≈ tmp_chol.β_curr end include("test_mmi.jl") #include("test_grouplasso.jl") include("test_covariance.jl")
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
566
using SigmaRidgeRegression using LinearAlgebra using Test tmp_block = BlockCovarianceDesign([IdentityCovarianceDesign(), IdentityCovarianceDesign(missing)], missing) id = IdentityCovarianceDesign() groups = GroupedFeatures([200;200]) @test set_groups(id, 400) == set_groups(id, groups) instantiated_block = set_groups(tmp_block, groups) bla = simulate_rotated_design(instantiated_block, 20) @test size(bla) == (20,400) instantiated_block.blocks[1] spectrum(instantiated_block) cov1 = SigmaRidgeRegression.UniformScalingCovarianceDesign(p=100, scaling=2.5)
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
3893
using RCall using SigmaRidgeRegression using LinearAlgebra import StatsBase:fit using StatsBase using Random using Test using MLJ using Plots Random.seed!(1) n = 100 p = 80 X = randn(n, p) Xtable = MLJ.table(X); βs = randn(p)./sqrt(p) Y = X*βs .+ randn(n) groups = GroupedFeatures([30;30;20]) glasso = GroupLassoRegressor(groups=groups) glasso_machine = machine(glasso, X, Y) fit!(glasso_machine) λ_max = SigmaRidgeRegression._default_hyperparameter_maximum(glasso, glasso_machine) glasso_machine.model.λ = λ_max fit!(glasso_machine) group_summary(groups, glasso_machine.fitresult.coef, norm) group_index = group_expand(groups, Base.OneTo(ngroups(groups))) R"library(gglasso)" @rput X @rput Y @rput group_index @rput p R"gglasso_fit_all <- gglasso(X, Y, group=group_index, intercept=FALSE)" R"lambda_max <- max(gglasso_fit_all$lambda)" @rget lambda_max @test lambda_max .*sqrt(p) ≈ λ_max for λ in [0.001; 0.1; 0.5; 1.0; λ_max/2] glasso_machine.model.λ = λ fit!(glasso_machine) R"gglasso_fit <- gglasso(X, Y, group=group_index, lambda=$λ / sqrt(p), intercept=FALSE)" R"beta <- gglasso_fit$beta" @rget beta beta = vec(beta) @test group_summary(groups, beta, norm) ≈ group_summary(groups, fitted_params(glasso_machine).fitresult.coef, norm) atol =0.005 @test norm( beta .- fitted_params(glasso_machine).fitresult.coef, Inf) < 0.005 end @rput Xstand @rput Ystand R"gglasso_fit1 <- gglasso(Xstand, Ystand, group=group_index, lambda=0.02, intercept=FALSE)" R"gpreg_fit1 <- grpreg(Xstand, Ystand, group=group_index, lambda=0.01)" R"as.vector(predict(gglasso_fit1, Xstand))" R"predict(gpreg_fit1, Xstand)" MLJ.predict(glasso_machine) # Now check CVGGLasso code Xstand = StatsBase.transform(StatsBase.fit(StatsBase.ZScoreTransform, X; dims=1), X) Ystand = Y .- mean(Y) cvgglasso = CVGGLassoRegressor(groups=groups) cvgglasso_machine = machine(cvgglasso, Xstand, Ystand) fit!(cvgglasso_machine) cvgglasso_machine.report.param_max cvgglasso_machine.report.tmp_intercept multiridge = MultiGroupRidgeRegressor(;groups=groups, λs=cvgglasso_machine.report.best_λs) multiridge_machine = machine(multiridge, Xstand, Ystand) fit!(multiridge_machine) @test predict(multiridge_machine) ≈ predict(cvgglasso_machine) atol =0.01 new_X = randn(2,p) @test predict(multiridge_machine, new_X) ≈ predict(cvgglasso_machine, new_X) atol =0.01 cvgglasso_machine.report.best_param grpreglasso = CVGGLassoRegressor(groups=groups, engine=:grpreg) grpreglasso_machine = machine(grpreglasso, Xstand, Ystand) fit!(grpreglasso_machine) grpreglasso_machine.report.best_param grpreglasso_machine.report.param_max grpreglasso_machine.report.tmp_intercept loo_glasso = LooRidgeRegressor(ridge = glasso) loo_glasso_machine = machine(loo_glasso, X, Y) fit!(loo_glasso_machine) loo_glasso_machine.report.best_λs cv_glasso = TunedRidgeRegressor(ridge = glasso, resampling=CV(nfolds=5,shuffle=true, rng=1)) cv_glasso_machine = machine(cv_glasso, X, Y) fit!(cv_glasso_machine) cv_glasso_machine.report.best_param cv_glasso_machine.report.best_λs loo_list = loo_glasso_machine.report.loos λ = loo_glasso_machine.report.best_model.λ using Plots plot(λ,loo_list, xscale=:log10) λ_path = vcat(loo_glasso_machine.report.λs'...) plot(λ , λ_path, xscale=:log10, yscale=:log10) #ps = fill(50, 10) #n = 200 #grp = GroupedFeatures(ps) #design = IdentityCovarianceDesign(grp.p) #αs = vcat(fill(0.0, 5), fill(3.0,5)) #ridge_sim= GroupRidgeSimulationSettings(grp = grp, # ntrain= n, # Σ = design, # response_model = RandomLinearResponseModel(αs = αs, grp=grp)) #sim_res = simulate(ridge_sim) Random.seed!(1) n = 1000 p = 800 X = randn(n, p) Xtable = MLJ.table(X); βs = randn(p)./sqrt(p) Y = X*βs .+ randn(n) groups = GroupedFeatures([300;300;200]) cvgglasso = CVGGLassoRegressor(groups=groups, eps=1e-4) cvgglasso_machine = machine(cvgglasso, X, Y) @time fit!(cvgglasso_machine)
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
7471
using MLJLinearModels using MLJ using MLJModelInterface import StatsBase using SigmaRidgeRegression using Test using Random using Plots const MMI = MLJModelInterface # Mostly here to check implementation. # Let us first test if the code works for a single predictor single_group_ridge_reg = SingleGroupRidgeRegressor(decomposition=:cholesky, λ=0.0, center=false, scale=false) single_group_ridge_reg_woodbury = SingleGroupRidgeRegressor(decomposition=:woodbury, λ=0.0, center=false, scale=false) mljlm_ridge = RidgeRegressor(lambda=0.0, fit_intercept=false) Random.seed!(1) n = 100 p = 80 X = randn(n, p) Xtable = MLJ.table(X); βs = randn(p)./sqrt(p) Y = X*βs .+ randn(n) grps = GroupedFeatures([p]); single_group_ridge_machine = machine(single_group_ridge_reg, Xtable, Y) single_group_ridge_woodbury_machine = machine(single_group_ridge_reg_woodbury, Xtable, Y) mljlm_ridge_machine = machine(mljlm_ridge, Xtable, Y) fit!(single_group_ridge_machine) @test_broken fit!(single_group_ridge_woodbury_machine)#cannot handle 0.0 fit!(mljlm_ridge_machine) @test predict(single_group_ridge_machine) ≈ predict(mljlm_ridge_machine) single_group_ridge_machine.model.λ = 1.0 single_group_ridge_woodbury_machine.model.λ = 1.0 mljlm_ridge_machine.model.lambda = 1.0 * n fit!(single_group_ridge_machine) fit!(single_group_ridge_woodbury_machine) fit!(mljlm_ridge_machine) @test predict(single_group_ridge_machine) ≈ predict(mljlm_ridge_machine) @test predict(single_group_ridge_machine) ≈ predict(single_group_ridge_woodbury_machine) # check above with scaling/centering for scale in [false] for decomposition in [:cholesky; :woodbury] @show scale, decomposition Yshift = Y .+ 10.0 Y_center = Yshift .- mean(Yshift) X_center_transform = StatsBase.fit(StatsBase.ZScoreTransform, X; dims=1,scale=scale, center=true) X_center = StatsBase.transform(X_center_transform, X) single_group_ridge_reg_centered = SingleGroupRidgeRegressor(decomposition=decomposition, λ=1.0, center=true, scale=scale) single_group_ridge_reg_centered_machine = machine(single_group_ridge_reg_centered, X, Yshift) fit!(single_group_ridge_reg_centered_machine) single_group_ridge_reg_tmp = SingleGroupRidgeRegressor(decomposition=decomposition, λ=1.0, center=false, scale=false) single_group_ridge_machine_centered_data = machine(single_group_ridge_reg_tmp, X_center, Y_center) fit!(single_group_ridge_machine_centered_data) @test predict(single_group_ridge_reg_centered_machine) == predict(single_group_ridge_machine_centered_data) .+ mean(Yshift) end end # .+ mean(Y) # Start checking LOOCVRidgeRegressor loocv_ridge = LooRidgeRegressor(; ridge=SingleGroupRidgeRegressor(;scale=false, center=false)) loocv_ridge_machine = machine(loocv_ridge, X, Y) @time fit!(loocv_ridge_machine) λ_max = loocv_ridge_machine.report.param_max λ_range = loocv_ridge_machine.report.param_range ## Compare against brute froce predictions loocv_ridge_bruteforce = TunedModel(model = single_group_ridge_reg, tuning = Grid(resolution=loocv_ridge.tuning.resolution), resampling= CV(nfolds=n), measure = l2, range = λ_range) loocv_ridge_bruteforce_machine = machine(loocv_ridge_bruteforce, X,Y) @time fit!(loocv_ridge_bruteforce_machine) loos_brute = [h.measurement[1] for h in loocv_ridge_bruteforce_machine.report.history] λs_brute = [h.model.λ for h in loocv_ridge_bruteforce_machine.report.history] plot(λs_brute, loos_brute; seriestype=:scatter, xscale=:log10) plot!(loocv_ridge_machine.report.params, loocv_ridge_machine.report.loos) @test loocv_ridge_machine.report.best_param ≈ loocv_ridge_bruteforce_machine.report.best_model.λ @test loocv_ridge_machine.fitresult.coef == loocv_ridge_bruteforce_machine.fitresult.fitresult.coef @test predict(loocv_ridge_machine) == predict(loocv_ridge_bruteforce_machine) Xnew = MLJ.table(randn(10, p)); @test predict(loocv_ridge_machine, Xnew) == predict(loocv_ridge_bruteforce_machine, Xnew) ## visualize plot(loocv_ridge_machine.report.params, loocv_ridge_machine.report.loos, xscale=loocv_ridge_machine.model.tuning.scale, label="loo shortcut") vline!([loocv_ridge_machine.report.best_param]) single_ridge_cv_curve_loo = learning_curve(single_group_ridge_machine, range=λ_range, resampling=CV(nfolds=n), measure=l2) plot!(single_ridge_cv_curve_loo.parameter_values, single_ridge_cv_curve_loo.measurements, xlab=single_ridge_cv_curve_loo.parameter_name, xscale=single_ridge_cv_curve_loo.parameter_scale, label = "LOO brute force") # Let us also try with other number of folds single_ridge_cv = TunedModel(model = single_group_ridge_reg, tuning = Grid(resolution=100), resampling= CV(nfolds=5), measure = l2, range = λ_range) single_ridge_cv_machine = machine(single_ridge_cv, Xtable, Y) single_ridge_cv_curve_5fold = learning_curve(single_group_ridge_machine, range=λ_range, resampling=CV(nfolds=5), measure=l2) plot!(single_ridge_cv_curve_5fold.parameter_values, single_ridge_cv_curve_5fold.measurements, xlab=single_ridge_cv_curve_5fold.parameter_name, xscale=single_ridge_cv_curve_5fold.parameter_scale, label = "5-fold", ylab = "CV estimate of RMS error") tmp_eval = evaluate!(single_group_ridge_machine, resampling=CV(nfolds=n), measure=l2) @test tmp_eval.measurement[1] ≈ loo_error(single_group_ridge_machine.cache) atol=0.02 # Check multiridge multiridge = MultiGroupRidgeRegressor(;groups=GroupedFeatures([30;50]), center=false, scale=false) loocv_multiridge = LooRidgeRegressor(ridge=multiridge, tuning=SigmaRidgeRegression.DefaultTuning(resolution=10)) loocv_multiridge_mach = machine(loocv_multiridge, X, Y) fit!(loocv_multiridge_mach) multiridge_ranges = loocv_multiridge_mach.report.param_range multiridge_loo_bruteforce = TunedModel(model=multiridge, resampling=CV(nfolds=n), tuning=Grid(resolution=loocv_multiridge.tuning.resolution), range=multiridge_ranges, measure=l2) multiridge_loo_bruteforce_machine = machine(multiridge_loo_bruteforce, X, Y) fit!(multiridge_loo_bruteforce_machine) @test values(multiridge_loo_bruteforce_machine.report.best_model.λs) == values(loocv_multiridge_mach.report.best_param) @test predict(multiridge_loo_bruteforce_machine) == predict(loocv_multiridge_mach) # test SigmaRidgeRegression groups = GroupedFeatures([30;50]) sigmaridge = SigmaRidgeRegressor(;groups=groups, σ=1.0, scale=false, center=false) sigmaridge_machine = machine(sigmaridge, X, Y) fit!(sigmaridge_machine) sigmaridge_machine.cache.workspace.λs predict(sigmaridge_machine) loo_sigmaridge = LooRidgeRegressor(;ridge=sigmaridge, tuning=DefaultTuning(scale=:linear)) loo_sigmaridge_machine = machine(loo_sigmaridge, X, Y) fit!(loo_sigmaridge_machine) σs = loo_sigmaridge_machine.report.params loo_σs = loo_sigmaridge_machine.report.loos plot(σs, loo_σs) loo_sigmaridge_machine.report.best_param loo_sigmaridge_machine.report.best_λs λ_path = vcat(loo_sigmaridge_machine.report.λs'...) plot(σs, λ_path,xlim=(0,1.5), ylim=(0,20))
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
docs
2970
# SigmaRidgeRegression.jl <img src="sigmaridge_logo.png" width="205"> [![Build Status](https://github.com/nignatiadis/SigmaRidgeRegression.jl/workflows/CI/badge.svg)](https://github.com/nignatiadis/SigmaRidgeRegression.jl/actions) [![Coverage](https://codecov.io/gh/nignatiadis/SigmaRidgeRegression.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/nignatiadis/SigmaRidgeRegression.jl) Automatically and optimally-tuned Ridge regression when the features may be partitioned into groups. See the manuscript below for a theoretical description of the method. > Ignatiadis, Nikolaos, and Panagiotis Lolas. "Group-regularized ridge regression via empirical Bayes noise level cross-validation." [arXiv:2010.15817](https://arxiv.org/abs/2010.15817) (2020+) The folder `reproduction_code` in this repository contains code to reproduce the results of the paper. ## Installation The package is available on the Julia registry (for Julia version 1.5) and may be installed as follows: ```julia using Pkg Pkg.add("SigmaRidgeRegression") ``` ## Example usage SigmaRidgeRegression.jl can be used alongside the [MLJ](https://github.com/alan-turing-institute/MLJ.jl) framework for machine learning in Julia. ```julia # Suppose we have three groups of features, each with n observations # and 25, 50 and 100 features respectively n = 400 Random.seed!(1) p1 = 25 ; X1 = randn(n, p1) p2 = 50 ; X2 = randn(n, p2) p3 = 100; X3 = randn(n, p3) # The signal in the regression of the coefficients across these groups varies α1_sq = 4.0 ; βs1 = randn(p1) .* sqrt(α1_sq / p1) α2_sq = 8.0 ; βs2 = randn(p2) .* sqrt(α2_sq / p2) α3_sq = 12.0; βs3 = randn(p3) .* sqrt(α3_sq / p3) # Let us concatenate the results and create a response X = [X1 X2 X3] βs = [βs1; βs2; βs3] σ = 4.0 Y = X*βs .+ σ .* randn(n) # Let us make a `GroupedFeatures` object that describes the feature grouping # !!NOTE!! Right now the features are expected to be ordered consecutively in groups # i.e., the first p1 features belong to group 1 etc. groups = GroupedFeatures([p1;p2;p3]) # Create MLJ machine and fit SigmaRidgeRegression: sigma_model = LooSigmaRidgeRegressor(;groups=groups) mach_sigma_model = machine(sigma_model, X, Y) fit!(mach_sigma_model) # How well are we estimating the true X*βs in mean squared error? mean(abs2, X*βs .- predict(mach_sigma_model)) # 4.612726430034071 # In this case we may compare also to the Bayes risk λs_opt = σ^2 ./ [α1_sq; α2_sq; α3_sq] .* groups.ps ./n bayes = MultiGroupRidgeRegressor(;groups=groups, λs=λs_opt, center=false, scale=false) mach_bayes = machine(bayes, X, Y) fit!(mach_bayes) mean(abs2, X*βs .- predict(mach_bayes)) #4.356913540118585 ``` ### TODOs * Fully implement the MLJ interface. * Wait for the following MLJ issue to be fixed: https://github.com/alan-turing-institute/MLJBase.jl/issues/428#issuecomment-708141459, in the meantime this package uses type piracy as in the above comments to accommodate the large number of features.
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
docs
92
# SigmaRidgeRegression.jl ```@index ``` ```@autodocs Modules = [SigmaRidgeRegression] ```
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
docs
1157
# Reproduction code ## Setup Start the `Julia` REPL (Julia version 1.5) in this folder and type `]` to activate the package manager. Then type and enter ```julia activate . ``` followed by ```julia instantiate ``` This will automatically install all required Julia dependencies. For the `cll.jl` file, a R installation (it will be called through `RCall`) is also required with an installation of the `MOFAdata` package. This package may be installed from within `R` as follows: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("MOFAdata") ``` ## File description * `motivation.jl`: Code to reproduce Figures 1 and 2. * `oracle_risks.jl`: Code to reproduces Figures 4 and S1. * `cll.jl`: Code to reproduce Tables 1 and 2. * `million_songs.jl`: Code to reproduce Figures 5 and 6. * `simulations.jl` and `simulations_plots.jl`: Code to reproduce Figure 7 of the manuscript. Note that you call `simulations.jl` for example via `julia simulations.jl 1` (and similarly up to `6`) and this generates files in `simulation_results`. These results are then loaded by `simulations_plots.jl`.
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
807
using Documenter, AllanDeviations makedocs( format = :html, sitename = "AllanDeviations.jl", authors = "Julien Kluge", pages = [ "Home" => "index.md", "Installation Guide" => "installation.md", "Quick Start Guide" => "quickstart.md", "Library" => Any[ "API guide" => "lib/apiguide.md", "Allan Deviation" => "lib/allandev.md", "Modified Allan Deviation" => "lib/mallandev.md", "Hadamard Deviation" => "lib/hadamarddev.md", "Time Deviation" => "lib/timedev.md", "Total Deviation" => "lib/totaldev.md", "Max. time interval error" => "lib/mtie.md" ] ] ) deploydocs( repo = "github.com/JulienKluge/AllanDeviations.jl.git", target = "build", osname = "linux", julia = "nightly", deps = nothing, make = nothing )
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
2535
module AllanDeviations # # Exports/ # export AllanTauDescriptor, AllTaus, QuarterOctave, HalfOctave, Octave, HalfDecade, Decade export allandev export mallandev export hadamarddev export timedev export totaldev export mtie # # /Exports # # # Types/ # abstract type AllanTauDescriptor end struct AllTaus <: AllanTauDescriptor end struct QuarterOctave <: AllanTauDescriptor end struct HalfOctave <: AllanTauDescriptor end struct Octave <: AllanTauDescriptor end struct HalfDecade <: AllanTauDescriptor end struct Decade <: AllanTauDescriptor end # # /Types # # # Helper Functions/ # function frequencytophase(data::AbstractArray{T, 1}, rate::AbstractFloat) where T dt = 1 / rate n = length(data) + 1 dataPrime = zeros(T, n) walkingSum = zero(T) @inbounds for i in 2:n #spare the first element so that the phase begins with zero walkingSum += data[i - 1] dataPrime[i] = walkingSum * dt end dataPrime end #tau-descriptor to m function taudescription_to_m(::Type{AllTaus}, rate::AbstractFloat, n::Int) 1:(n - 2) end function taudescription_to_m(::Type{Decade}, rate::AbstractFloat, n::Int) 10 .^(0:Int(floor(log10(n)))) end function taudescription_to_m(::Type{HalfDecade}, rate::AbstractFloat, n::Int) 5 .^(0:Int(floor(log(5.0, n)))) end function taudescription_to_m(::Type{Octave}, rate::AbstractFloat, n::Int) 2 .^(0:Int(floor(log2(n)))) end function taudescription_to_m(::Type{HalfOctave}, rate::AbstractFloat, n::Int) unique(Int.(floor.( 1.5 .^(1:Int(floor(log(1.5, n)))) ))) end function taudescription_to_m(::Type{QuarterOctave}, rate::AbstractFloat, n::Int) unique(Int.(floor.( 1.25 .^(1:Int(floor(log(1.25, n)))) ))) end #tau with custom log base value to m function taudescription_to_m(taus::AbstractFloat, rate::AbstractFloat, n::Int) if taus <= 1.0 error("Custom `taus`-log scale must be greater than 1.0") end unique(Int.(floor.( taus .^(0:Int(floor(log(taus, n)))) ))) end #tau with custom array to m function taudescription_to_m(taus::Array{Float64}, rate::AbstractFloat, n::Int) m = unique(Int.(floor.(rate .* taus))) m[m .>= 1] end #tau with custom tau-length count function taudescription_to_m(count::Integer, rate::AbstractFloat, n::Int) unique(Int.(floor.( 1.125 .^(1:(log(1.125, n) / count):log(1.125, n)) ))) end # # /Helper Functions # # # Exported functions/ # include("dev_allan.jl") include("dev_mallan.jl") include("dev_hadamard.jl") include("dev_time.jl") include("dev_total.jl") include("dev_mtie.jl") # # /Exported functions # end # AllanDeviations
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
2477
""" allandev(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the allan deviation #parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. #returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function allandev( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} #frequency to phase calculation if frequency data = frequencytophase(data, rate) end n = length(data) if n < 3 error("Length for `data` in allandev must be at least 3 or greater") end #tau calculations m = taudescription_to_m(taus, rate, n) dev = zeros(T, length(m)) #allandeviation deverr = zeros(T, length(m)) #allandeviation error devcount = zeros(Int, length(m)) #sum term count mStride = 1 #overlapping - can be overwritten in loop for consecutive @inbounds for (index, τ) in enumerate(m) if !overlapping #overwrite stride for consecutive operation mStride = τ end #allan deviation: http://www.leapsecond.com/tools/adev_lib.c sum = zero(T) i = 1 terms = 0 while (i + 2 * τ) <= n v = data[i] - 2 * data[i + τ] + data[i + 2 * τ] sum += v * v i += mStride terms += 1 end if terms <= 1 #break the tau loop if no contribution with term-count > 1 is done break end dev[index] = sqrt(sum / (2 * terms)) / τ * rate deverr[index] = dev[index] / sqrt(terms) devcount[index] = terms end selector = devcount .> 1 #select only entries, where 2 or more terms contributed to the deviation (tau = m[selector] ./ rate, deviation = dev[selector], error = deverr[selector], count = devcount[selector]) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
2518
""" hadamarddev(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the hadamard deviation #parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. #returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function hadamarddev( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} #frequency to phase calculation if frequency data = frequencytophase(data, rate) end n = length(data) if n < 5 error("Length for `data` in hadamarddev must be at least 5 or greater") end #tau calculations m = taudescription_to_m(taus, rate, n) dev = zeros(T, length(m)) #hadamarddeviation deverr = zeros(T, length(m)) #hadamarddeviation error devcount = zeros(Int, length(m)) #sum term count mStride = 1 #overlapping - can be overwritten in loop for consecutive @inbounds for (index, τ) in enumerate(m) if !overlapping #overwrite stride for consecutive operation mStride = τ end #hadamard deviation: http://www.leapsecond.com/tools/adev_lib.c sum = zero(T) i = 1 terms = 0 while (i + 3 * τ) <= n v = data[i + 3 * τ] - 3 * data[i + 2 * τ] + 3 * data[i + τ] - data[i] sum += v * v i += mStride terms += 1 end if terms <= 1 #break the tau loop if no contribution with term-count > 1 is done break end dev[index] = sqrt(sum / (6 * terms)) / τ * rate deverr[index] = dev[index] / sqrt(terms) devcount[index] = terms end selector = devcount .> 1 #select only entries, where 2 or more terms contributed to the deviation (tau = m[selector] ./ rate, deviation = dev[selector], error = deverr[selector], count = devcount[selector]) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
2663
""" mallandev(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the modified allan deviation #parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. #returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function mallandev( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} #frequency to phase calculation if frequency data = frequencytophase(data, rate) end n = length(data) if n < 4 error("Length for `data` in mallandev must be at least 4 or greater") end #tau calculations m = taudescription_to_m(taus, rate, n) dev = zeros(T, length(m)) #allandeviation deverr = zeros(T, length(m)) #allandeviation error devcount = zeros(Int, length(m)) #sum term count mStride = 1 #overlapping - can be overwritten in loop for consecutive @inbounds for (index, τ) in enumerate(m) if !overlapping #overwrite stride for consecutive operation mStride = τ end #allan deviation: http://www.leapsecond.com/tools/adev_lib.c sum = zero(T) v = zero(T) i = 1 while (i + 2 * τ) <= n && i <= τ v += data[i] - 2 * data[i + τ] + data[i + 2 * τ] i += mStride end sum += v * v terms = 1 i = 1 while (i + 3 * τ) <= n v += data[i + 3 * τ] - 3 * data[i + 2 * τ] + 3 * data[i + τ] - data[i] sum += v * v i += mStride terms += 1 end if terms <= 1 #break the tau loop if no contribution with term-count > 1 is done break end dev[index] = sqrt(sum / (2 * terms)) / (τ * τ) * rate deverr[index] = dev[index] / sqrt(terms) devcount[index] = terms end selector = devcount .> 1 #select only entries, where 2 or more terms contributed to the deviation (tau = m[selector] ./ rate, deviation = dev[selector], error = deverr[selector], count = devcount[selector]) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
3602
#= ## ## TODO: mtie has great performance for phase data but extremely worse performance for frequency data ## Is this due to branch misprediction? ## =# """ mtie(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the maximal time interval error # parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. # returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function mtie( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} #frequency to phase calculation if frequency data = frequencytophase(data, rate) end n = length(data) if n < 2 error("Length for `data` in mtie must be at least 2 or greater") end if !overlapping #warn for consecutive execution @warn "It is highly unusual to use the mtie in the non overlapping form. Do not use this for definite interpretation or publication." end #tau calculations m = taudescription_to_m(taus, rate, n) dev = zeros(T, length(m)) #mtie deverr = zeros(T, length(m)) #mtie error devcount = zeros(Int, length(m)) #sum term count mStride = 1 #overlapping - can be overwritten in loop for consecutive @inbounds for (index, τ) in enumerate(m) if !overlapping #overwrite stride for consecutive operation mStride = τ end #mtie: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1065.pdf terms = n - τ if terms < 2 break end submin = data[1] submax = data[1] for j = 1:(1 + τ) if data[j] < submin submin = data[j] elseif data[j] > submax submax = data[j] end end delta = submax - submin maximumv = delta for i = (1 + mStride):(mStride):(n - τ) #max pipe if data[i - mStride] == submax #rolling max-pipe is obsolete submax = data[i] for j = i:(i + τ) if data[j] > submax submax = data[j] end end delta = submax - submin elseif data[i + τ] > submax #if new element is bigger than the old one submax = data[i + τ] delta = submax - submin end #min pipe if data[i - mStride] == submin #rolling min-pipe is obsolete submin = data[i] for j = i:(i + τ) if data[j] < submin submin = data[j] end end delta = submax - submin elseif data[i + τ] < submin #if new element is smaller than the old one submin = data[i + τ] delta = submax - submin end #comparer if delta > maximumv maximumv = delta end end dev[index] = maximumv deverr[index] = dev[index] / sqrt(terms) devcount[index] = terms end selector = devcount .> 1 #select only entries, where 2 or more terms contributed to the deviation (tau = m[selector] ./ rate, deviation = dev[selector], error = deverr[selector], count = devcount[selector]) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
1648
""" timedev(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the time deviation #parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. #returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function timedev( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} n = length(data) if n < 4 error("Length for `data` in timedev must be at least 4 or greater") #we check this here, so that we can output the right function name in case of the error end (mdtaus, mddeviation, mderror, mdcount) = mallandev(data, rate, frequency = frequency, overlapping = overlapping, taus = taus) mdm = mdtaus ./ sqrt(3) (tau = mdtaus, deviation = mdm .* mddeviation, error = mdm .* mderror, count = mdcount) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
3185
""" totaldev(data, rate; [frequency=false], [overlapping=true], [taus=Octave]) Calculates the total deviation #parameters: * `<data>`: The data array to calculate the deviation from either as as phases or frequencies. * `<rate>`: The rate of the data given. * `[frequency]`: True if `data` contains frequency data otherwise (default) phase data is assumed. * `[overlapping]`: True (default) to calculate overlapping deviation, false otherwise. * `[taus]`: Taus to calculate the deviation at. This can either be an AllanTauDescriptor type `AllTaus, Decadade, HalfDecade, Octave, HalfOctave, QuarterOctave`, an array of taus to calculate at, a float number to build a custom log-scale on or an integer to build a specific number of log spaced points. #returns: named tupple (tau, deviation, error, count) * `tau`: Taus which where used. * `deviation`: Deviations calculated. * `error`: Respective errors. * `count`: Number of contributing terms for each deviation. """ function totaldev( data::AbstractArray{T, 1}, rate::AbstractFloat; frequency::Bool = false, overlapping::Bool = true, taus::Union{Type{U}, Integer, AbstractFloat, Array{Float64}} = 192) where {T, U <: AllanTauDescriptor} #frequency to phase calculation if frequency data = frequencytophase(data, rate) end n = length(data) if n < 3 error("Length for `data` in totaldev must be at least 3 or greater") end if !overlapping #warn for consecutive execution @warn "It is highly unusual to use the total deviation in the non overlapping form. Do not use this for definite interpretation or publication." end #tau calculations m = taudescription_to_m(taus, rate, n) #array reflection dataPrime = zeros(Float64, 3 * n - 4) datStart = 2 * data[1] datEnd = 2 * data[n] nm2 = n - 2 @inbounds for i = 1:nm2 dataPrime[i ] = datStart - data[n - i] #left reflection dataPrime[i + nm2 ] = data[i] #original data from 1 to (n - 2) dataPrime[i + nm2 + n] = datEnd - data[n - i] #right reflection end dataPrime[2 * nm2 + 1] = data[n - 1] #original data (n - 1) dataPrime[2 * nm2 + 2] = data[n] #original data (n) dev = zeros(T, length(m)) #totaldev deverr = zeros(T, length(m)) #totaldev error devcount = zeros(Int, length(m)) #sum term count mStride = 1 #overlapping - can be overwritten in loop for consecutive @inbounds for (index, τ) in enumerate(m) if n - τ < 1 break end if !overlapping #overwrite stride for consecutive operation mStride = τ end #hadamard deviation: http://www.leapsecond.com/tools/adev_lib.c sum = zero(T) i = n terms = 0 while (i <= nm2 + n - 1) v = dataPrime[i - τ] - 2 * dataPrime[i] + dataPrime[i + τ] sum += v * v i += mStride terms += 1 end if terms <= 1 #break the tau loop if no contribution with term-count > 1 is done break end dev[index] = sqrt(sum / (2 * terms)) / τ * rate deverr[index] = dev[index] / sqrt(terms) devcount[index] = terms end selector = devcount .> 1 #select only entries, where 2 or more terms contributed to the deviation (tau = m[selector] ./ rate, deviation = dev[selector], error = deverr[selector], count = devcount[selector]) end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
96
using Test using AllanDeviations @testset "General Tests" begin include("test_general.jl") end
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
code
9189
using Test using Random #include("../src/AllanDeviations.jl") #using .AllanDeviations using AllanDeviations arrInt = zeros(Int, 5) arr32 = zeros(Float32, 5) arr64 = zeros(Float64, 5) resInt = allandev(arrInt, 1.0, taus = AllTaus) res32 = allandev(arr32, 1.0, taus = AllTaus) res64 = allandev(arr64, 1.0, taus = AllTaus) #Basic result type test @test isa(resInt.deviation, Array{Int}) @test isa(res32.deviation, Array{Float32}) @test isa(res64.deviation, Array{Float64}) @test isa(res32.tau, Array{Float64}) @test isa(res64.tau, Array{Float64}) @test isa(res32.error, Array{Float32}) @test isa(res64.error, Array{Float64}) @test isa(res32.count, Array{Int}) @test isa(res64.count, Array{Int}) #Allandev from zero arrays is zero @test sum(res32.deviation) == 0 @test sum(res64.deviation) == 0 #which also holds then for their errors @test sum(res32.error) == 0 @test sum(res64.error) == 0 #and the result should be the same lenth for both types @test length(res32.deviation) == length(res64.deviation) @test length(res32.error) == length(res64.error) @test length(res32.tau) == length(res64.tau) @test length(res32.count) == length(res64.count) #rate tests arr64 = [1.0, 2.0, 1.0, 2.0, 1.5, 1.5, 2.0, 1.75] res64 = allandev(arr64, 1.0) res64r = allandev(arr64, 0.5) @test sum(abs.(res64.deviation .- (2.0 .* res64r.deviation))) <= 2e-16 #half the rate means half the allan deviation @test sum(abs.(res64.tau .- (0.5 .* res64r.tau))) <= 2e-16 #and double the tau @test sum(abs.(res64.count .- res64r.count)) == 0 #but the count stays #too few data points @test_throws ErrorException allandev([1.0], 1.0) @test_throws ErrorException allandev(zeros(Float64, 0), 1.0) @test_throws ErrorException mallandev([1.0], 1.0) @test_throws ErrorException hadamarddev([1.0], 1.0) @test_throws ErrorException timedev([1.0], 1.0) @test_throws ErrorException totaldev([1.0], 1.0) @test_throws ErrorException mtie([1.0], 1.0) #tau errors @test_throws ErrorException allandev(arr64, 1.0, taus = 1.0) @test_throws ErrorException allandev(arr64, 1.0, taus = 0.5) @test_throws ErrorException allandev(arr64, 1.0, taus = -2.0) #result and comparison tests resallan = allandev(arr64, 1.0, taus = AllTaus) resmallan = mallandev(arr64, 1.0, taus = AllTaus) reshadamard = hadamarddev(arr64, 1.0, taus = AllTaus) restime = timedev(arr64, 1.0, taus = AllTaus) restotal = totaldev(arr64, 1.0, taus = AllTaus) resmtie1 = mtie(arr64, 1.0, taus = AllTaus) resmtie2 = mtie([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], 1.0, taus = AllTaus) resmtie3 = mtie([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], 1.0, taus = AllTaus) @test abs(resallan.deviation[1] - 0.97093168314425360) < 2e-16 @test abs(resallan.deviation[2] - 0.18221724671391565) < 2e-16 @test abs(resallan.deviation[3] - 0.20833333333333334) < 2e-16 @test abs(resmallan.deviation[1] - 0.9709316831442536) < 2e-16 @test abs(resmallan.deviation[2] - 0.0919975090242484) < 2e-16 @test abs(reshadamard.deviation[1] - 1.0616418102794056) < 2e-16 @test abs(reshadamard.deviation[2] - 0.1943203969393503) < 2e-16 @test abs(restime.deviation[1] - 0.56056766862807130) < 2e-16 @test abs(restime.deviation[2] - 0.10622957319984969) < 2e-16 @test abs(restotal.deviation[1] - 0.97093168314425360) < 2e-16 @test abs(restotal.deviation[2] - 0.35539004394233290) < 2e-16 @test abs(restotal.deviation[3] - 0.19982631347136330) < 2e-16 @test abs(restotal.deviation[4] - 0.27540216805004764) < 2e-16 @test abs(restotal.deviation[5] - 0.13919410907075053) < 2e-16 @test abs(restotal.deviation[6] - 0.14877975892797604) < 2e-16 @test length(resmtie1.deviation) == length(arr64) - 2 for i = 1:length(resmtie1.deviation) @test abs(resmtie1.deviation[i] - 1.0) < 2e-16 @test abs(resmtie2.deviation[i] - i) < 2e-16 @test abs(resmtie3.deviation[i] - i) < 2e-16 end @test resallan.deviation[1] == resmallan.deviation[1] #first element of allan deviation and modified allan deviation is the same @test abs(resallan.deviation[1] / sqrt(3) - restime.deviation[1]) < 2e-16 #first element of allan deviation and modified allan deviation is the same @test reshadamard.count[1] < resallan.count[1] #the hadamarddeviation iterates over four terms @test reshadamard.count[1] < resmallan.count[1] #the hadamarddeviation iterates over four terms @test abs(resmallan.deviation[2] / sqrt(3) * 2 - restime.deviation[2]) < 2e-16 #test time deviation calculation #overlapping tests Random.seed!(0xA11E4DE71A7104_00) arr64 = rand(512) resallan = allandev(arr64, 1.0, taus = AllTaus).count resallan_o = allandev(arr64, 1.0, overlapping = true, taus = AllTaus).count resallan_c = allandev(arr64, 1.0, overlapping = false, taus = AllTaus).count resmallan_o = mallandev(arr64, 1.0, overlapping = true, taus = AllTaus).count resmallan_c = mallandev(arr64, 1.0, overlapping = false, taus = AllTaus).count reshadamard_o = hadamarddev(arr64, 1.0, overlapping = true, taus = AllTaus).count reshadamard_c = hadamarddev(arr64, 1.0, overlapping = false, taus = AllTaus).count restotal_o = totaldev(arr64, 1.0, overlapping = true, taus = AllTaus).count resmtie_o = mtie(arr64, 1.0, overlapping = true, taus = AllTaus).count @test length(resallan) == length(resallan_o) #overlapping is standard @test length(resallan_o) == 255 @test length(resallan_c) == 170 @test sum(resallan_o) == 65280 @test sum(resallan_c) == 2674 @test length(resmallan_o) == 170 @test length(resmallan_c) == 170 @test sum(resmallan_o) == 43605 @test sum(resmallan_c) == 2674 @test length(reshadamard_o) == 170 @test length(reshadamard_c) == 127 @test sum(reshadamard_o) == 43435 @test sum(reshadamard_c) == 2461 @test length(restotal_o) == 510 @test sum(restotal_o) == 260100 @test length(resmtie_o) == 510 @test sum(resmtie_o) == 130815 #frequency conversion tests resallan = allandev(arr64, 1.0, taus = AllTaus) resallan_p = allandev(arr64, 1.0, frequency = false, taus = AllTaus) resallan_f = allandev(arr64, 1.0, frequency = true, taus = AllTaus) resallan_f_r = allandev(arr64, 0.5, frequency = true, taus = AllTaus) arr64_f = zeros(Float64, length(arr64) + 1) arr64_f[2:length(arr64_f)] = cumsum(arr64) arr64_f_r = zeros(Float64, length(arr64) + 1) arr64_f_r[2:length(arr64_f)] = cumsum(arr64 * 2.0) resallan_f_a = allandev(arr64_f, 1.0, frequency = false, taus = AllTaus) resallan_f_a_r = allandev(arr64_f_r, 1.0, frequency = false, taus = AllTaus) resmallan = mallandev(arr64, 1.0, frequency = true, taus = AllTaus) reshadamard = hadamarddev(arr64, 1.0, frequency = true, taus = AllTaus) restime = timedev(arr64, 1.0, frequency = true, taus = AllTaus) @test sum(abs.(resallan.deviation .- resallan_p.deviation)) < 2e-16 #phase is standard @test sum(abs.(resallan_p.deviation .- resallan_f.deviation)) > 2e-16 #frequency is not the same @test sum(abs.(resallan_f.deviation .- resallan_f_a.deviation)) < 2e-13 #frequency conversion @test sum(abs.(resallan_f_r.deviation .- (resallan_f_a_r.deviation .* 0.5))) < 2e-13 #frequency conversion with different rate @test sum(abs(resallan_f.deviation[1] - resmallan.deviation[1])) < 2e-15 #also test for mallandev @test abs(reshadamard.deviation[1] - 0.29893879132526296) < 2e-16 #hadamarddev @test abs(restime.deviation[1] - 0.17291213240777910) < 2e-16 #timedev #taus tests resallan_a = allandev(arr64, 1.0, taus = AllTaus).count resallan_qo = allandev(arr64, 1.0, taus = QuarterOctave).count resallan_ho = allandev(arr64, 1.0, taus = HalfOctave).count resallan_o = allandev(arr64, 1.0, taus = Octave).count resallan_hd = allandev(arr64, 1.0, taus = HalfDecade).count resallan_d = allandev(arr64, 1.0, taus = Decade).count #all tau arguments taus_o_a = 2.0 .^(0:floor(log2(length(arr64)))) resallan_o_c = allandev(arr64, 1.0, taus = 2.0).count resallan_o_a = allandev(arr64, 1.0, taus = taus_o_a).count #all tau arguments mallandev resmallan = mallandev(arr64, 1.0, taus = Octave).count resmallan_o_c = mallandev(arr64, 1.0, taus = 2.0).count resmallan_o_a = mallandev(arr64, 1.0, taus = taus_o_a).count #all tau arguments hadamarddev reshadamard = hadamarddev(arr64, 1.0, taus = Octave).count reshadamard_o_c = hadamarddev(arr64, 1.0, taus = 2.0).count reshadamard_o_a = hadamarddev(arr64, 1.0, taus = taus_o_a).count @test length(resallan_a) == 255 @test sum(resallan_a) == 65280 @test length(resallan_qo) == 21 @test sum(resallan_qo) == 8680 @test length(resallan_ho) == 13 @test sum(resallan_ho) == 5506 @test length(resallan_o) == 8 @test sum(resallan_o) == 3586 @test length(resallan_o_c) == 8 #float tau argument @test sum(resallan_o_c) == 3586 #float tau argument @test length(resallan_o_a) == 8 #array tau argument @test sum(resallan_o_a) == 3586 #array tau argument @test length(resallan_hd) == 4 @test sum(resallan_hd) == 1736 @test length(resallan_d) == 3 @test sum(resallan_d) == 1314 #mallandev tau tests @test length(resmallan) == length(resmallan_o_c) @test length(resmallan_o_a) == length(resmallan_o_c) @test sum(resmallan) == sum(resmallan_o_c) @test sum(resmallan_o_a) == sum(resmallan_o_c) #hadamarddev tau tests @test length(reshadamard) == length(reshadamard_o_c) @test length(reshadamard_o_a) == length(reshadamard_o_c) @test sum(reshadamard) == sum(reshadamard_o_c) @test sum(reshadamard_o_a) == sum(reshadamard_o_c)
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
4724
![logo](./doc/src/assets/AllanDeviationsLogo.png "AllanDeviations.jl logo") AllanDeviations.jl is a package for the Julia programming language and provides various frequency- and phase-stability deviations (or variances) in overlapping and consecutive forms. Currently implemented are: |Deviation|Function name|Phase Data|Frequency Data|Consecutive|Overlapping| |---------|:------------|:--------:|:------------:|:---------:|:---------:| |Allan deviation|`allandev`|✓|✓|✓|✓| |Modified Allan deviation|`mallandev`|✓|✓|✓|✓| |Hadamard deviation|`hadamarddev`|✓|✓|✓|✓| |Time deviation|`timedev`|✓|✓|✓|✓| |Total deviation|`totaldev`|✓|✓|✓|✓| |Maximal time interval error|`mtie`|✓|✓|✓|✓| ![example calculation](./doc/src/assets/DeviationResults.png "Example calculation of two potassium D2-frequency references.") --- |Build & Tests<br>(Julia v1.0.0 & upwards)| |Code test coverage| | Documentation | |-------------|-|------------------|-|------------------| |[![AppVeyor](https://ci.appveyor.com/api/projects/status/x28fou4fc8mnf2o7/branch/master?svg=true)](https://ci.appveyor.com/project/JulienKluge/allandeviations-jl/branch/master)| |[![Coveralls](https://coveralls.io/repos/github/JulienKluge/AllanDeviations.jl/badge.svg?branch=master)](https://coveralls.io/github/JulienKluge/AllanDeviations.jl?branch=master)| | [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JulienKluge.github.io/AllanDeviations.jl/stable/) | [![TravisCI](https://travis-ci.org/JulienKluge/AllanDeviations.jl.svg?branch=master)](https://travis-ci.org/JulienKluge/AllanDeviations.jl)| |[![codecov](https://codecov.io/gh/JulienKluge/AllanDeviations.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JulienKluge/AllanDeviations.jl)| | [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://JulienKluge.github.io/AllanDeviations.jl/latest/) | --- ## Usage ### Installing (v1.0.0 and higher) To install AllanDeviations.jl open up a Julia REPL/Console and type: ```Julia using Pkg; Pkg.add("AllanDeviations") ``` This installs the package along with any dependencies needed. ### Example code The following code calculates the overlapping Allan deviation of a given data array `arr` and rate `r` with log2 spaced averaging times τ. ```Julia using AllanDeviations (tau, deviation, error, count) = allandev(arr, r) #assuming phase data (tau, deviation, error, count) = allandev(arr, r, frequency = true) #assuming frequency data (tau, deviation, error, count) = allandev(arr, r, overlapping = false) #non-overlapping/consecutive ``` Every function returns a simple named tuple `(tau, deviation, error, count)`. `tau` is an array of the averaging times used. `deviation` are the respective calculated deviations, `error` the respective errors of the deviations and `count` is the number of terms contributing to every deviation.<br>The errors are calculated by `error .= deviation ./ sqrt.(count)`. The averaging times τ can also be finely tuned: ```Julia using AllanDeviations allandev(arr, r) #log_2 spaced tau distribution: octave allandev(arr, r, taus = AllTaus) #uses every possible tau value allandev(arr, r, taus = Octave) #log_2 spaced: octave (default) allandev(arr, r, taus = HalfOctave) #log_1.5 spaced: half octave allandev(arr, r, taus = QuarterOctave) #log_1.25 spaced: quarter octave allandev(arr, r, taus = Decade) #log_10 spaced: decade allandev(arr, r, taus = HalfDecade) #log_5 spaced: half decade allandev(arr, r, taus = 1.1) #log_1.1 spaced allandev(arr, r, taus = [1.0, 2.0, 3.0]) #calculates at τ = 1.0, τ = 2.0 and τ = 3.0 if possible allandev(arr, r, taus = [0.4]) #calculates at τ = 0.4 if possible ``` #### CSV example This example shows how to load data from a csv file (via the CSV package), calculate the overlapping allan deviation with it and to output a plot (via the Plots package) in the same directory: ```Julia using AllanDeviations, CSV, Plots data = CSV.read("fractionalFrequencyData.csv") #load data freq = data[:, 2] #extract fractional frequency rate = length(data[:, 1]) / data[end, 1] #calculate rate result = allandev(freq, rate, frequency = true) #calculate overlapping allan deviation plot(result.tau, result.deviation, xscale = :log10, yscale = :log10) #log-log plot everything savefig("allanDevPlot.png") #save the plot ``` > ![resulting plot](./doc/src/assets/allanDevPlot.png "resulting image") --- ## References + [NIST - Riley, William J. "Handbook of frequency stability analysis." (2008): 81.](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1065.pdf) + [C Reference implementations: leapsecond.com](http://www.leapsecond.com/tools/adev_lib.c) + [Python Package: AllanTools](https://pypi.org/project/AllanTools/)
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
1964
# AllanDeviations.jl AllanDeviations.jl is a package for the [Julia programming language](https://www.julialang.org). It provides fast frequency and phase stability deviations/variances for different purposes and timescales in a unified API ([API guide](@ref)) and plain Julia without any dependencies. It was build and tested against Julia v1 and should be therefore upwards compatible for a long time. ## Implemented Deviations/Functions #### [Allan deviation](@ref) * Overlapping & non-overlapping * Frequency- & phase data * General purpose choice #### [Modified Allan deviation](@ref) * Overlapping & non-overlapping * Frequency- & phase data * Used to distinguish W and F PM #### [Hadamard deviation](@ref) * Overlapping & non-overlapping * Frequency- & phase data * Rejects frequency drift, and handles divergent noise #### [Time deviation](@ref) * Overlapping & non-overlapping * Frequency- & phase data * General time error of time source #### [Total deviation](@ref) * Overlapping & non-overlapping * Frequency- & phase data * Better confidence at long averages for Allan #### [Maximum time interval error](@ref) * Overlapping & non-overlapping * Frequency- & phase data * Measure of clock error commonly used in the tele-communications industry ## Example Calculation This is an example plot of some AllanDeviations.jl calculations of a Potassium-D2-Frequency beat note from two reference lasers. ![Potassium D2](assets/DeviationResults.png) ## References The main algorithms where implemented with the help of a C Reference implementations from [leapsecond.com](http://www.leapsecond.com/tools/adev_lib.c) and the main Literature from [NIST - Riley, William J. "Handbook of frequency stability analysis." (2008): 81.](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1065.pdf). The Python package [allantools](https://pypi.org/project/AllanTools/) was used as reference test implementation to verify the results against.
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
756
# Installation guide AllanDeviations.jl is registered in [Metadata.jl](https://github.com/JuliaLang/METADATA.jl/tree/metadata-v2/AllanDeviations). Therefore it is part of the official, public package system. You can download and install it in your global Julia installation (or local project) via opening a Julia Console/REPL and type: ```Julia using Pkg Pkg.add("AllanDeviations") ``` This installs all necessary files. **This only needs to be done once!** Afterwards, the package can be loaded by ```Julia using AllanDeviations ``` ## Updating The package installation can be updated to the newest version with: ```Julia using Pkg Pkg.update("AllanDeviations") ``` Or even by updating all installed packages ```Julia using Pkg Pkg.update() ```
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
5216
# Quickstart ## Installation Install the package once in a Julia Console/REPL with: ```Julia using Pkg Pkg.add("AllanDeviations") ``` ## Loading The package can be loaded in every Julia program with a simple using directive ```Julia using AllanDeviations ``` ## Allan Deviation of random data Print the overlapping Allan Deviation of one million random points with rate 1.0 at octave log-spaced taus: ```Julia using AllanDeviations arr = rand(Float64, 1_000_000) result = allandev(arr, 1.0) println(result.deviation) ``` ## Other deviations ```Julia result = allandev(arr, 1.0) #Allan deviation result = mallandev(arr, 1.0) #Modified Allan deviation result = hadamarddev(arr, 1.0) #Hadamard deviation result = timedev(arr, 1.0) #Time deviation result = totaldev(arr, 1.0) #Total deviation result = mtie(arr, 1.0) #Maximum time interval error ``` ## Full Data result Every deviation method returns a named tuple in the form `(tau, deviation, error, count)` ```Julia println("Calculated taus:") println(result.tau) println("Calculated Deviations:") println(result.deviation) println("Calculated errors:") println(result.error) println("Calculated Term Number:") println(result.count) ``` ### Same Result via tuple deconstruction The returned tuple can already be deconstructed into variables on return. ```Julia (myTaus, myDeviation, myError, myCount) = allandev(arr, 1.0) ``` ## Calculating on frequency data AllanDeviations.jl assumes by default that the `data`-argument contains phase data. This can be changed by setting the optional named argument `frequency` to `true` for frequency data. ```Julia result = allandev(arr, 1.0, frequency = true) ``` ## Non-Overlapping AllanDeviations.jl will by default calculate the overlapping deviations. This can be changed by setting the optional named argument `overlapping` to `false`. ```Julia result = allandev(arr, 1.0, overlapping = false) ``` ## Addressing different taus ```Julia #Key-Types allandev(arr, 1.0, taus = AllTaus) #all possible taus allandev(arr, 1.0, taus = QuarterOctave) #quarter octave log-spaced allandev(arr, 1.0, taus = HalfOctave) #half octave log-spaced allandev(arr, 1.0, taus = Octave) #octave log-spaced allandev(arr, 1.0, taus = HalfDecade) #hald decade log-spaced allandev(arr, 1.0, taus = Decade) #decade log-spaced #Explicit taus allandev(arr, 1.0, taus = [2.0]) #calculate deviation at tau=2.0 if possible allandev(arr, 1.0, taus = [2.0, 3.0, 4.0]) #calculate deviation at tau=2.0, tau=3.0 & tau=4.0 if possible #Custom log scale allandev(arr, 1.0, taus = 1.2) #calculate 1/5 of an octave log-spaced #Custom log count allandev(arr, 1.0, taus = 100) #calculate 100 log-spaced tau values between min and maximal possible tau #This does not guarantee that 100 deviations will be calculated since some values will be discarded #when less than two terms contributed to it ``` ## Benchmark Deviations #### Benchmark different overlapping deviations for one million datapoints and 200 taus ```Julia using BenchmarkTools arr = rand(Float64, 1_000_000); @btime allandev(arr, 1.0, taus = 200); #Allan Deviation @btime mallandev(arr, 1.0, taus = 200); #Modified Allan Deviation @btime hadamarddev(arr, 1.0, taus = 200); #Hadamard Deviation @btime timedev(arr, 1.0, taus = 200); #Time Deviation @btime totaldev(arr, 1.0, taus = 200); #Total Deviation @btime mtie(arr, 1.0, taus = 200); #Maximum time interval error println("Done") ``` Results ``` 315.247 ms (52 allocations: 35.91 KiB) #Allan Deviation 309.990 ms (52 allocations: 35.28 KiB) #Modified Allan Deviation 278.230 ms (52 allocations: 35.28 KiB) #Hadamard Deviation 309.647 ms (57 allocations: 39.33 KiB) #Time Deviation 331.483 ms (54 allocations: 22.92 MiB) #Total Deviation 901.942 ms (52 allocations: 35.91 KiB) #Maximum time interval error Done ``` For comparison, pythons allantools needs approximately 3.5 seconds for the Allan deviation, 6.5 seconds for the total deviation and an indeterminate amount of time for mtie (to be fair, allantools also provides a fastmtie which seems to be currently unfinished though). #### Benchmark different overlapping deviations for 10.000 data points and all possible taus: ```Julia using BenchmarkTools arr = rand(Float64, 10_000) @btime allandev(arr, 1.0, taus = AllTaus); #Allan Deviation @btime mallandev(arr, 1.0, taus = AllTaus); #Modified Allan Deviation @btime hadamarddev(arr, 1.0, taus = AllTaus); #Hadamard Deviation @btime timedev(arr, 1.0, taus = AllTaus); #Time Deviation @btime totaldev(arr, 1.0, taus = AllTaus); #Total Deviation @btime mtie(arr, 1.0, taus = AllTaus); #Maximum time interval error println("Done") ``` Results: ``` 37.702 ms (30 allocations: 436.13 KiB) #Allan Deviation 39.805 ms (30 allocations: 371.13 KiB) #Modified Allan Deviation 28.266 ms (30 allocations: 371.13 KiB) #Hadamard Deviation 39.969 ms (51 allocations: 449.97 KiB) #Time Deviation 150.508 ms (32 allocations: 865.89 KiB) #Total Deviation 240.852 ms (30 allocations: 631.44 KiB) #Maximum time interval error Done ``` However, these timings need to be taken with a grain of salt, since it does not represent real world data.
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
176
# Allan deviation ## Formula Allan variance $$\sigma_y^2(\tau)=\frac{1}{2(N-2m)\tau^2}\sum_{j=1}^{N-2m}(x_{j+2m}-2x_{j+m}+x_{j})^2$$ ## Doc String ```@docs allandev(x) ```
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
1977
# API guide Every deviation function uses the same input and output structure. ```Julia (tau, deviation, error, count) = XXXdev(data, rate; frequency = false, overlapping = true, taus = 192) ``` ## Input Parameter ```Julia data, rate; frequency = false, overlapping = true, taus = 192 ``` * `data` - is the data to calculate the deviation from. It must be either phase data (default) or frequency data according to the `frequency` argument. The type of the array can be any possible numeric type and the deviations function are type stable. * `rate` - is the rate as a Float, which describes the data capturing rate of your dataset. * `[frequency]` *optional*, *named* - can be set to false (default) if the `data` argument contains phase data or `true` if the `data` argument contains frequency data. * `[overlapping]` *optional*, *named* - can be set to true (default) for the overlapping deviation or false for the consecutive one. * `[taus]` *optional*, *named* - describes at which averaging time the deviation should be calculated. This can be either: - An `AllanTauDescriptor` type where there is: `AllTaus`, `QuarterOctave`, `HalfOctave`, `Octave`, `HalfDecade`, `Decade` and produces respective log-spaced points - A Float Array which describes at which taus the deviation should be evaluated - A Float which produces an according base-log-spaced array of taus - An Integer (default, 192) which produces an array of equally many log-spaced taus. (Note: this does not mean, that exactly this count of deviations will be returned because some can be discarded due to too few contributing terms) ## Output Tuple Every deviation returns a named output tuple: ```Julia (tau, deviation, error, count) ``` * `tau` - the taus where the respective deviations got calculated on * `deviation` - the deviations * `error` - the respective deviation errors * `count` - the respective count of contributing terms for each deviation (always 2 <= count < N)
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
205
# Hadamard deviation ## Formula Hadamard variance $$H\sigma_y^2(\tau)=\frac{1}{6\tau^2(N-3m)}\sum_{j=1}^{N-3m}\left(x_{j+3}-3x_{j+2}+3x_{j+1}-x_{j}\right)^2$$ ## Doc String ```@docs hadamarddev(x) ```
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
238
# Modified Allan deviation ## Formula Modified Allan variance $$Mod\,\sigma_y^2(\tau)=\frac{1}{2m^2\tau^2(N-3m+1)}\sum_{j=1}^{N-3m+1}\left(\sum_{t=j}^{j+m-1}[x_{t+2m}-2x_{t+m}+x_{t}]\right)^2$$ ## Doc String ```@docs mallandev(x) ```
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
637
# Maximum time interval error ## Formula Maximum time interval error $$Mtie(\tau)=\operatorname{max}_{1\leq k\leq N-n}\left(\operatorname{max}_{k\leq t\leq k+n}(x_t)-\operatorname{min}_{k\leq t\leq k+n}(x_t)\right)$$ ## Doc String ```@docs mtie(x) ``` ## Possible issues * `mtie` in itself needs a great amount of computations and can be very slow for big taus with many data points. When computations need too much time, consider reducing the number of taus and/or especially using smaller taus. * Mtie can be called with a non-overlapping calculation. This throws a warning because it is unusual to use but nevertheless faster.
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
143
# Time deviation ## Formula time variance $$\sigma_x^2(\tau)=\frac{\tau^2}{3}Mod\,\sigma_y^2(\tau)$$ ## Doc String ```@docs timedev(x) ```
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
0.3.0
05e3b02540f98940ffa775d46860a48259372b6e
docs
354
# Total deviation ## Formula total variance $$Tot\,\sigma_y^2(\tau)=\frac{1}{2\tau^2(N-2)}\sum_{j=2}^{N-1}\left(x_{j-m}^*-2x_{j}^*+x_{j+m}^*\right)^2$$ ## Doc String ```@docs totaldev(x) ``` ## Possible issues * `totaldev` can be called with a non-overlapping calculation. This throws a warning because it is unusual to use but nevertheless faster.
AllanDeviations
https://github.com/JulienKluge/AllanDeviations.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
code
534
using Documenter, Zalgo makedocs( modules = [Zalgo], sitename = "Zalgo", warnonly = true, format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", size_threshold=nothing, collapselevel=1, assets = ["assets/zalgo-docs.css"] ), pages = Any[ "Introduction" => "index.md", "Index" => "functionindex.md" ] ) deploydocs( repo = "github.com/cormullion/Zalgo.jl.git", target = "build", push_preview=true, forcepush=true )
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
code
15754
""" Zalgo.jl does two things. - It adds pointless diacritics to text: `zalgo("Cthulhu")` - It converts an input ASCII string to equivalent characters found in the darkest recesses of the Unicode charts: ``` blackboard("Hello World") boldfraktur("Hello World") bolditalic("Hello World") bolditalicsans("Hello World") boldroman("Hello World") boldsans("Hello World") boldscript("Hello World") boxed("hello world") circled("HELLO WORLD") fraktur("Hello World") italic("Hello World") italicsans("Hello World") sans("Hello World") script("Hello World") segmented("0123456789") teletype("Hello World") upsidedown("Hello World") ``` ```large_type("Hello World")``` displays the text using the Large Type glyphs added to Unicode in version 16. """ module Zalgo export zalgo, boldfraktur, bolditalic, bolditalicsans, boldroman, boldsans, boldscript, fraktur, italic, italicsans, sans, script, teletype, upsidedown, blackboard, boxed, circled, segmented, large_type include("largetype.jl") const updc = vcat('\u0300':'\u0315', '\u031A', '\u033D', '\u034A':'\u034C', '\u0350':'\u0352', '\u0357':'\u0358', '\u035B', '\u035D', '\u035E', '\u0360':'\u0361', '\u0363':'\u036F', '\uFE20':'\uFE22') const middledc = vcat('\u031B', '\u0334':'\u0338') const downdc = vcat('\u0316':'\u0319', '\u031C':'\u0333', '\u0339':'\u033C', '\u0347':'\u0349', '\u034D':'\u034E', '\u0353':'\u0356', '\u0359', '\u035A', '\u035C', '\u035F', '\u0362') const upsidedowndict = Dict{String,String}("a" => "ɐ", "b" => "q", "c" => "ɔ", "d" => "p", "e" => "ǝ", "f" => "ɟ", "g" => "ƃ", "h" => "ɥ", "i" => "ı", "j" => "ɾ", "k" => "ʞ", "l" => "ן", "m" => "ɯ", "n" => "u", "o" => "o", "p" => "d", "q" => "b", "r" => "ɹ", "s" => "s", "t" => "ʇ", "u" => "n", "v" => "ʌ", "w" => "ʍ", "x" => "x", "y" => "ʎ", "z" => "z", "A" => "∀", "B" => "𐐒", "C" => "Ɔ", "D" => "◖", "E" => "Ǝ", "F" => "Ⅎ", "G" => "⅁", "H" => "H", "I" => "I", "J" => "ſ", "K" => "⋊", "L" => "˥", "M" => "W", "N" => "N", "O" => "O", "P" => "Ԁ", "Q" => "Ό", "R" => "ᴚ", "S" => "S", "T" => "⊥", "U" => "∩", "V" => "Λ", "W" => "M", "X" => "X", "Y" => "⅄", "Z" => "Z", "0" => "0", "1" => "Ɩ", "2" => "ᄅ", "3" => "Ɛ", "4" => "ㄣ", "5" => "ϛ", "6" => "9", "7" => "ㄥ", "8" => "8", "9" => "6", " " => " ") # These are a shambles, Unicode Consortium! # build the fraktur dict frakturdict = Dict{String,Char}() [frakturdict[string(Char(i + 64))] = vcat( '\U1D504', # A '\U1D505', # B '\u212d', # C ! '\U1D507', # D '\U1D508', # E '\U1D509', # F '\U1D50a', # G '\u210c', # H ! '\u2111', # I ! '\U1D50d', # J '\U1D50e', # K '\U1D50f', # L '\U1D510', # M '\U1D511', # N '\U1D512', # O '\U1D513', # P '\U1D514', # Q '\u211c', # R ! '\U1D516', # S '\U1D517', # T '\U1D518', # U '\U1D519', # V '\U1D51a', # W '\U1D51b', # X '\U1D51c', # Y '\u2128' # Z ! )[i] for i = 1:26] [frakturdict[string(Char(i + 96))] = vcat('\U1D586':'\U1D59F')[i] for i = 1:26] frakturdict[" "] = ' ' # build the blackboard (double-struck) dict blackboarddict = Dict{String,Char}() [blackboarddict[string(Char(i + 64))] = vcat( '\U1D538', # A '\U1D539', # B '\u2102', # C ! '\U1D53B', # D '\U1D53c', # E '\U1D53d', # F '\U1D53e', # G '\u210D', # H ! '\U1D540', # I ! '\U1D541', # J '\U1D542', # K '\U1D543', # L '\U1D544', # M '\u2115', # N ! '\U1D546', # O '\u2119', # P ! '\u211a', # Q ! '\u211d', # R '\U1D54A', # S '\U1D54B', # T '\U1D54C', # U '\U1D54D', # V '\U1D54E', # W '\U1D54f', # X '\U1D550', # Y '\u2124' # Z ! )[i] for i = 1:26] [blackboarddict[string(Char(i + 96))] = vcat('\U1D552':'\U1D56B')[i] for i = 1:26] # digits [blackboarddict[string(Char(i + 48))] = vcat('\U1D7D8':'\U1D7E1')[i+1] for i in 0:9] blackboarddict[" "] = ' ' # build the Script dict scriptdict = Dict{String,Char}() [scriptdict[string(Char(i + 64))] = vcat('\U1D49C':'\U1D4B5')[i] for i = 1:26] [scriptdict[string(Char(i + 96))] = vcat('\U1D4b6':'\U1D4cf')[i] for i = 1:26] scriptdict["B"] = '\u212c' scriptdict["E"] = '\u2130' scriptdict["F"] = '\u2131' scriptdict["H"] = '\u210b' scriptdict["I"] = '\u2110' scriptdict["L"] = '\u2112' scriptdict["M"] = '\u2133' scriptdict["R"] = '\u211B' scriptdict["e"] = '\u212f' scriptdict["g"] = '\u210a' scriptdict["o"] = '\u2134' scriptdict[" "] = ' ' # build the boldroman dict boldromandict = Dict{String,Char}() [boldromandict[string(Char(i + 64))] = vcat('\U1D400':'\U1D419')[i] for i = 1:26] [boldromandict[string(Char(i + 96))] = vcat('\U1D41a':'\U1D433')[i] for i = 1:26] [boldromandict[string(Char(i + 48))] = vcat('\U1D7CE':'\U1D7D7')[i+1] for i = 0:9] boldromandict[" "] = ' ' # build the italic dict italicdict = Dict{String,Char}() [italicdict[string(Char(i + 64))] = vcat('\U1D434':'\U1D44d')[i] for i = 1:26] [italicdict[string(Char(i + 96))] = vcat('\U1D44e':'\U1D467')[i] for i = 1:26] italicdict[" "] = ' ' # build the bolditalic dict bolditalicdict = Dict{String,Char}() [bolditalicdict[string(Char(i + 64))] = vcat('\U1D468':'\U1D481')[i] for i = 1:26] [bolditalicdict[string(Char(i + 96))] = vcat('\U1D482':'\U1D49b')[i] for i = 1:26] bolditalicdict[" "] = ' ' # build the boldscript dict boldscriptdict = Dict{String,Char}() [boldscriptdict[string(Char(i + 64))] = vcat('\U1D4D0':'\U1D4E9')[i] for i = 1:26] [boldscriptdict[string(Char(i + 96))] = vcat('\U1D4ea':'\U1D503')[i] for i = 1:26] boldscriptdict[" "] = ' ' # build the boldfraktur dict boldfrakturdict = Dict{String,Char}() [boldfrakturdict[string(Char(i + 64))] = vcat('\U1D56c':'\U1D585')[i] for i = 1:26] [boldfrakturdict[string(Char(i + 96))] = vcat('\U1D586':'\U1D59f')[i] for i = 1:26] boldfrakturdict[" "] = ' ' # build the sans dict sansdict = Dict{String,Char}() [sansdict[string(Char(i + 64))] = vcat('\U1D5A0':'\U1D5B9')[i] for i = 1:26] [sansdict[string(Char(i + 96))] = vcat('\U1D5ba':'\U1D5d3')[i] for i = 1:26] [sansdict[string(Char(i + 48))] = vcat('\U1D7E2':'\U1D7EB')[i+1] for i = 0:9] sansdict[" "] = ' ' # build the boldsans dict boldsansdict = Dict{String,Char}() [boldsansdict[string(Char(i + 64))] = vcat('\U1D5d4':'\U1D5ed')[i] for i = 1:26] [boldsansdict[string(Char(i + 96))] = vcat('\U1D5ee':'\U1D607')[i] for i = 1:26] [boldsansdict[string(Char(i + 48))] = vcat('\U1D7EC':'\U1D7F5')[i+1] for i = 0:9] boldsansdict[" "] = ' ' # build the italicsans dict italicsansdict = Dict{String,Char}() [italicsansdict[string(Char(i + 64))] = vcat('\U1D608':'\U1D621')[i] for i = 1:26] [italicsansdict[string(Char(i + 96))] = vcat('\U1D622':'\U1D63b')[i] for i = 1:26] italicsansdict[" "] = ' ' # build the bolditalicsans dict bolditalicsansdict = Dict{String,Char}() [bolditalicsansdict[string(Char(i + 64))] = vcat('\U1D63c':'\U1D655')[i] for i = 1:26] [bolditalicsansdict[string(Char(i + 96))] = vcat('\U1D656':'\U1D66f')[i] for i = 1:26] bolditalicsansdict[" "] = ' ' # build the teletype dict ttdict = Dict{String,Char}() [ttdict[string(Char(i + 64))] = vcat('\U1D670':'\U1D689')[i] for i = 1:26] [ttdict[string(Char(i + 96))] = vcat('\U1D68a':'\U1D6a3')[i] for i = 1:26] [ttdict[string(Char(i + 48))] = vcat('\U1D7F6':'\U1D7FF')[i+1] for i = 0:9] ttdict[" "] = ' ' # build the boxed dict boxeddict = Dict{String,Char}() [boxeddict[string(Char(i + 64))] = vcat('\U1F130':'\U1F14A')[i] for i = 1:26] [boxeddict[string(Char(i + 96))] = vcat('\U1F170':'\U1F18A')[i] for i = 1:26] boxeddict[" "] = ' ' # build the circled dict circleddict = Dict{String,Char}() [circleddict[string(Char(i + 64))] = vcat('\u24b6':'\u24cf')[i] for i = 1:26] [circleddict[string(Char(i + 96))] = vcat('\u24d0':'\u24e9')[i] for i = 1:26] [circleddict[string(Char(i + 0x30))] = vcat('\u2460':'\u2468')[i] for i = 1:9] # 24EA 0 CIRCLED DIGIT ZERO is separate !!! circleddict[string(Char(0x30))] = '\u24ea' circleddict[" "] = ' ' # negativecircled dict # build the circled dict negativecircleddict = Dict{String,Char}() [negativecircleddict[string(Char(i + 64))] = vcat('\U1F150':'\U1F169')[i] for i = 1:26] [negativecircleddict[string(Char(i + 96))] = vcat('\U1F170':'\U1F189')[i] for i = 1:26] negativecircleddict[" "] = ' ' # build the segmented dict segmenteddict = Dict{String,Char}() [segmenteddict[string(Char(i + 0x2f))] = vcat('\U1FBF0':'\U1FBF9')[i] for i = 1:10] segmenteddict[" "] = ' ' function adddc(letter, dc) return string(letter) * string(dc[rand(1:end)]) end """ zalgo(str::String, upmarks = 1:4, middlemarks = 1:4, downmarks = 1:4, maxmarks = 6) Randomly add up to `maxmarks` diacritic marks to each letter of `str`. The `upmarks`, `middlemarks`, and `downmarks` ranges determine the minimum and maximum number of diacritic marks added to the letter at that position. """ function zalgo(text::String; upmarks=1:4, middlemarks=1:4, downmarks=1:4, maxmarks=6) letters = split(text, "") zalgostring = String[] for letter in letters # can't add a diacritic mark to some letters if !all(isletter, letter) push!(zalgostring, letter) continue end upmarks_added = rand(upmarks.start:upmarks.stop) downmarks_added = rand(downmarks.start:downmarks.stop) middlemarks_added = rand(middlemarks.start:middlemarks.stop) newletter = letter for i in 1:maxmarks randint = rand(1:2) if randint == 1 if upmarks_added > 0 newletter = adddc(newletter, updc) upmarks_added -= 1 end elseif randint == 2 if downmarks_added > 0 newletter = adddc(newletter, downdc) downmarks_added -= 1 end else if middlemarks_added > 0 newletter = adddc(newletter, middledc) middlemarks_added -= 1 end end end push!(zalgostring, newletter) end return join(zalgostring) end """ upsidedown(str) Return a version of string `str` with upside down letters from the Unicode table. """ function upsidedown(str) asciistr = filter!(c -> haskey(upsidedowndict, c), split(str, "")) return join(map(c -> upsidedowndict[c], asciistr)) end """ fraktur(str) Return a version of string `str` with Fraktur letters from the Unicode table. """ function fraktur(str) asciistr = filter!(c -> haskey(frakturdict, c), split(str, "")) return join(map(c -> frakturdict[c], asciistr)) end """ script(str; roundhand=false) Return a version of string `str` with mathematical script letters from the Unicode table. There are two basic styles of mathematical script lettering: the “regular” calligraphic or Chancery alphabet, and the “fancy script” or round hand alphabet. By default, the script style will be “script”. If `roundhand` is true, the style will be “roundhand”. For more details, see [this Unicode document](https://www.unicode.org/L2/L2020/20275r-math-calligraphic.pdf). """ function script(str; roundhand=false) asciistr = filter!(c -> haskey(scriptdict, c), split(str, "")) if roundhand == true return join(map(c -> string(Zalgo.scriptdict[c], Char(0xFE01)), asciistr)) else return join(map(c -> Zalgo.scriptdict[c], asciistr)) end end """ boldroman(str) Return a version of string `str` with boldroman letters from the Unicode table. """ function boldroman(str) asciistr = filter!(c -> haskey(boldromandict, c), split(str, "")) return join(map(c -> boldromandict[c], asciistr)) end """ italic(str) Return a version of string `str` with italic letters from the Unicode table. """ function italic(str) asciistr = filter!(c -> haskey(italicdict, c), split(str, "")) return join(map(c -> italicdict[c], asciistr)) end """ bolditalic(str) Return a version of string `str` with bolditalic letters from the Unicode table. """ function bolditalic(str) asciistr = filter!(c -> haskey(bolditalicdict, c), split(str, "")) return join(map(c -> bolditalicdict[c], asciistr)) end """ boldscript(str) Return a version of string `str` with boldscript letters from the Unicode table. """ function boldscript(str) asciistr = filter!(c -> haskey(boldscriptdict, c), split(str, "")) return join(map(c -> boldscriptdict[c], asciistr)) end """ boldfraktur(str) Return a version of string `str` with boldfraktur letters from the Unicode table. """ function boldfraktur(str) asciistr = filter!(c -> haskey(boldfrakturdict, c), split(str, "")) return join(map(c -> boldfrakturdict[c], asciistr)) end """ sans(str) Return a version of string `str` with sans serif letters from the Unicode table. """ function sans(str) asciistr = filter!(c -> haskey(sansdict, c), split(str, "")) return join(map(c -> sansdict[c], asciistr)) end """ boldsans(str) Return a version of string `str` with bold sans serif letters from the Unicode table. """ function boldsans(str) asciistr = filter!(c -> haskey(boldsansdict, c), split(str, "")) return join(map(c -> boldsansdict[c], asciistr)) end """ italicsans(str) Return a version of string `str` with italic sans serif letters from the Unicode table. """ function italicsans(str) asciistr = filter!(c -> haskey(italicsansdict, c), split(str, "")) return join(map(c -> italicsansdict[c], asciistr)) end """ bolditalicsans(str) Return a version of string `str` with bold italic sans serif letters from the Unicode table. """ function bolditalicsans(str) asciistr = filter!(c -> haskey(bolditalicsansdict, c), split(str, "")) return join(map(c -> bolditalicsansdict[c], asciistr)) end """ teletype(str) Return a version of string `str` with teletype (monospaced) letters from the Unicode table. """ function teletype(str) asciistr = filter!(c -> haskey(ttdict, c), split(str, "")) return join(map(c -> ttdict[c], asciistr)) end """ blackboard(str) Return a version of string `str` with blackboard (double-struck) letters from the Unicode table. """ function blackboard(str) asciistr = filter!(c -> haskey(blackboarddict, c), split(str, "")) return join(map(c -> blackboarddict[c], asciistr)) end """ boxed(str) Return a version of string `str` with boxed letters from the Unicode table. ``` boxed("A") -> "🄰" boxed("a") -> "🅰" ``` """ function boxed(str) asciistr = filter!(c -> haskey(boxeddict, c), split(str, "")) return join(map(c -> boxeddict[c], asciistr)) end """ circled(str) Return a version of string `str` with circled/boxed letters from the Unicode table. ``` A-Z "A" -> "Ⓐ" \u24b6:\u24cf a-z "a" -> "ⓐ" \u24d0:\u24e9 0-9 "0" -> "⓪" \u2460:\u2468 A-Z inverse "A" -> "🅐" \U1F150:\U1F169 a-z inverse "a" -> "🅰" \U1F170:\U1F189 ``` """ function circled(str; negative=false) if negative asciistr = filter!(c -> haskey(negativecircleddict, c), split(str, "")) return join(map(c -> negativecircleddict[c], asciistr)) else asciistr = filter!(c -> haskey(circleddict, c), split(str, "")) return join(map(c -> circleddict[c], asciistr)) end end """ segmented(str) Return a version of string `str` with LED-style digits from the Unicode table. """ function segmented(str) asciistr = filter!(c -> haskey(segmenteddict, c), split(str, "")) return join(map(c -> segmenteddict[c], asciistr)) end end # module
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
code
6365
# thanks to Philippe Majerus https://github.com/PhMajerus for documenting these # in some detail """ A single "LargeType" glyph, using the system of pieces defined in Unicode version 16. Each glyph is made up of nine pieces, each in the range U1CE1A to U1CE50. """ struct LargeTypeChar topleft::Char topcenter::Char topright::Char middleleft::Char middlecenter::Char middleright::Char bottomleft::Char bottomcenter::Char bottomright::Char end """ A sequence of LargeType glyphs """ struct LargeTypeString glyphs::Array{LargeTypeChar,1} end """ Construct a LargeType glyph from a string. """ function _buildLargeTypeChar(str) if length(str) != 9 throw(error("_buildLargeTypeChar: exactly nine characters required - $(str) is $(length(str))")) end return LargeTypeChar([Char(e) for e in str]...) end """ large_type(str) Return a string of Unicode glyphs that will display the `str` as "Large Type". Each glyph is made up to 9 small pieces. Like the other functions, the current font should have these characters (at Unicode points range U+1CE1A to U+1CE50) otherwise you probably won't sequence anything. """ function large_type(str) res = LargeTypeString([]) for ch in filter(isascii, str) push!(res.glyphs, LTD[string(ch)]) end return res end function Base.show(io::IO, ltc::LargeTypeChar) println(io) print(io, ltc.topleft) print(io, ltc.topcenter) print(io, ltc.topright) println(io) print(io, ltc.middleleft) print(io, ltc.middlecenter) print(io, ltc.middleright) println(io) print(io, ltc.bottomleft) print(io, ltc.bottomcenter) print(io, ltc.bottomright) println(io) end function Base.show(io::IO, ltcs::LargeTypeString) # do all the top row glyphs first for i in 1:length(ltcs.glyphs) print(io, ltcs.glyphs[i].topleft) print(io, ltcs.glyphs[i].topcenter) print(io, ltcs.glyphs[i].topright) end println() for i in 1:length(ltcs.glyphs) print(io, ltcs.glyphs[i].middleleft) print(io, ltcs.glyphs[i].middlecenter) print(io, ltcs.glyphs[i].middleright) end println() for i in 1:length(ltcs.glyphs) print(io, ltcs.glyphs[i].bottomleft) print(io, ltcs.glyphs[i].bottomcenter) print(io, ltcs.glyphs[i].bottomright) end println() end LTD = Dict( " " => _buildLargeTypeChar(" "), "!" => _buildLargeTypeChar(" 𜸜 𜸩 𜹊 "), "\"" => _buildLargeTypeChar("𜸜𜸜 "), "#" => _buildLargeTypeChar(" 𜸺𜸺 𜸺𜸺 "), "\$" => _buildLargeTypeChar("𜸚𜸺𜸤𜸾𜸺𜸤𜸾𜸺𜹃"), "%" => _buildLargeTypeChar("𜹇 𜹇𜸬𜸴𜸻𜹐 𜹐"), "&" => _buildLargeTypeChar("𜸚𜸤 𜸮𜹀𜸺𜸾𜸟𜹃"), "'" => _buildLargeTypeChar(" 𜸜 "), "(" => _buildLargeTypeChar(" 𜸚𜸥 𜸩 𜸾𜸥"), ")" => _buildLargeTypeChar("𜸞𜸤 𜸩 𜸞𜹃 "), "*" => _buildLargeTypeChar(" 𜸪𜸲𜸸 "), "+" => _buildLargeTypeChar(" 𜸣 𜸞𜸺𜸥 𜸭 "), "," => _buildLargeTypeChar(" 𜹃 "), "-" => _buildLargeTypeChar(" 𜸞𜸟𜸥 "), "." => _buildLargeTypeChar(" ▘ "), "/" => _buildLargeTypeChar(" 𜸣 𜸞𜸟𜸥 𜸭 "), "0" => _buildLargeTypeChar("𜸚𜸟𜸤𜸩 𜸩𜸾𜸟𜹃"), "1" => _buildLargeTypeChar(" 𜸦 𜸩 𜸼 "), "2" => _buildLargeTypeChar("𜸚𜸟𜸤𜸚𜸟𜹃𜸽𜸟𜸥"), "3" => _buildLargeTypeChar("𜸚𜸟𜸤 𜸟𜸷𜸾𜸟𜹃"), "4" => _buildLargeTypeChar("𜸜 𜸜𜸽𜸟𜸺 𜸼"), "5" => _buildLargeTypeChar("𜸛𜸟𜸥𜸽𜸟𜸤𜸾𜸟𜹃"), "6" => _buildLargeTypeChar("𜸚𜸟𜸤𜸨𜸟𜸤𜸾𜸟𜹃"), "7" => _buildLargeTypeChar("𜸞𜸟𜸧 𜸵𜸻 𜸼 "), "8" => _buildLargeTypeChar("𜸚𜸟𜸤𜸮𜸟𜸷𜸾𜸟𜹃"), "9" => _buildLargeTypeChar("𜸚𜸟𜸤𜸾𜸟𜸶𜸾𜸟𜹃"), ":" => _buildLargeTypeChar(" ▘ ▘ "), ";" => _buildLargeTypeChar(" 𜹐 𜹃 "), "<" => _buildLargeTypeChar(" 𜸬 𜸫 "), "=" => _buildLargeTypeChar(" 𜸞𜸟𜸥𜸞𜸟𜸥"), ">" => _buildLargeTypeChar(" 𜸢 𜸻 "), "?" => _buildLargeTypeChar("𜸚𜸟𜸤 𜸵𜸻 𜹊 "), "@" => _buildLargeTypeChar("𜸚𜸟𜸤𜸚𜸧𜸩𜸾𜹀𜹃"), "A" => _buildLargeTypeChar("𜸚𜸟𜸤𜸨𜸟𜸶𜸼 𜸼"), "B" => _buildLargeTypeChar("𜸛𜸟𜸤𜸨𜸟𜸷𜸽𜸟𜹃"), "C" => _buildLargeTypeChar("𜸚𜸟𜸤𜸩 𜸾𜸟𜹃"), "D" => _buildLargeTypeChar("𜸛𜸟𜸤𜸩 𜸩𜸽𜸟𜹃"), "E" => _buildLargeTypeChar("𜸛𜸟𜸥𜸨𜸟 𜸽𜸟𜸥"), "F" => _buildLargeTypeChar("𜸛𜸟𜸥𜸨𜸟 𜸼 "), "G" => _buildLargeTypeChar("𜸚𜸟𜸤𜸩 𜸧𜸾𜸟𜹃"), "H" => _buildLargeTypeChar("𜸜 𜸜𜸨𜸟𜸶𜸼 𜸼"), "I" => _buildLargeTypeChar(" 𜸠 𜸩 𜹀 "), "J" => _buildLargeTypeChar(" 𜸜 𜸩𜸾𜸟𜹃"), "K" => _buildLargeTypeChar("𜸜 𜸜𜸨𜸯𜸸𜸼 𜸼"), "L" => _buildLargeTypeChar("𜸜 𜸩 𜸽𜸟𜸥"), "M" => _buildLargeTypeChar("𜸝𜸡𜸦𜸩𜸰𜸩𜸼 𜸼"), "N" => _buildLargeTypeChar("𜸝𜸢𜸜𜸩𜸫𜸹𜸼 𜸼"), "O" => _buildLargeTypeChar("𜸛𜸟𜸧𜸩 𜸩𜸽𜸟𜹄"), "P" => _buildLargeTypeChar("𜸛𜸟𜸤𜸨𜸟𜹃𜸼 "), "Q" => _buildLargeTypeChar("𜸚𜸟𜸤𜸩 𜸩𜸾𜸟𜹅"), "R" => _buildLargeTypeChar("𜸛𜸟𜸤𜸨𜸟𜸷𜸼 𜸼"), "S" => _buildLargeTypeChar("𜸚𜸟𜸤𜸾𜸟𜸤𜸾𜸟𜹃"), "T" => _buildLargeTypeChar("𜸞𜸠𜸥 𜸩 𜸼 "), "U" => _buildLargeTypeChar("𜸜 𜸜𜸩 𜸩𜸾𜸟𜹃"), "V" => _buildLargeTypeChar("𜸜 𜸜𜸩 𜸩𜸫𜹁𜸻"), "W" => _buildLargeTypeChar("𜸜 𜸜𜸩𜸱𜸩𜸿𜹂𜹆"), "X" => _buildLargeTypeChar("𜸜 𜸜𜸪𜸲𜸸𜸼 𜸼"), "Y" => _buildLargeTypeChar("𜸜 𜸜𜸫𜸳𜸻 𜸼 "), "Z" => _buildLargeTypeChar("𜸛𜸟𜸧𜸬𜸴𜸻𜸽𜸟𜹄"), "[" => _buildLargeTypeChar(" 𜸛𜸥 𜸩 𜸽𜸥"), "\\" => _buildLargeTypeChar("𜸜 𜸫𜸲𜸢 𜸼"), "]" => _buildLargeTypeChar("𜸞𜸧 𜸩 𜸞𜹄 "), "^" => _buildLargeTypeChar(" 𜸱 𜹂 "), "_" => _buildLargeTypeChar(" ▀▀▀"), "`" => _buildLargeTypeChar(" 𜸤 "), "a" => _buildLargeTypeChar(" 𜸚𜸧 𜸾𜹄 "), "b" => _buildLargeTypeChar("𜸜 𜸨𜸤 𜸽𜹃 "), "c" => _buildLargeTypeChar(" 𜸚𜸥 𜸾𜸥 "), "d" => _buildLargeTypeChar(" 𜸜 𜸚𜸶 𜸾𜹄 "), "e" => _buildLargeTypeChar(" 𜸚𜸤 𜸾𜸥 "), "f" => _buildLargeTypeChar("𜸚𜸤 𜸺 𜸼 "), "g" => _buildLargeTypeChar(" 𜸚𜸧 𜸾𜸶 "), "h" => _buildLargeTypeChar("𜸜 𜸨𜸤 𜸼𜸼 "), "i" => _buildLargeTypeChar(" 𜸣 𜸜 𜸼 "), "j" => _buildLargeTypeChar(" 𜸣 𜸜 𜸾𜹃 "), "k" => _buildLargeTypeChar("𜸜 𜸨𜸷 𜸼𜸼 "), "l" => _buildLargeTypeChar(" 𜸜 𜸩 𜸼 "), "m" => _buildLargeTypeChar(" 𜸝𜸦 𜸼𜸼 "), "n" => _buildLargeTypeChar(" 𜸛𜸤 𜸼𜸼 "), "o" => _buildLargeTypeChar(" 𜸚𜸤 𜸾𜹃 "), "p" => _buildLargeTypeChar(" 𜸛𜸤 𜸨𜹃 "), "q" => _buildLargeTypeChar(" 𜸚𜸧 𜸾𜸶 "), "r" => _buildLargeTypeChar(" 𜸚𜸥 𜸼 "), "s" => _buildLargeTypeChar(" 𜸚𜸥 𜸞𜹃 "), "t" => _buildLargeTypeChar("𜸣 𜸺 𜸾𜹃 "), "u" => _buildLargeTypeChar(" 𜸜𜸜 𜸽𜹄 "), "v" => _buildLargeTypeChar(" 𜸜𜸜 𜸾𜹃 "), "w" => _buildLargeTypeChar(" 𜸜𜸜 𜸿𜹆 "), "x" => _buildLargeTypeChar(" 𜸮𜸷 𜸼𜸼 "), "y" => _buildLargeTypeChar(" 𜸜𜸜 𜸾𜸶 "), "z" => _buildLargeTypeChar(" 𜸞𜸧 𜸽𜸥 "), "{" => _buildLargeTypeChar(" 𜸚𜸥 𜸷 𜸾𜸥"), "|" => _buildLargeTypeChar(" 𜹈 𜹌 "), "}" => _buildLargeTypeChar("𜸞𜸤 𜸮 𜸞𜹃 "), "~" => _buildLargeTypeChar(" 𜸚𜸟𜹃 "), #"" => _buildLargeTypeChar("▚▚▚▚▚▚▚▚▚"), # not sure )
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
code
2742
using Zalgo using Test s = "Julia is really cool" @test length(zalgo(s)) > length(s) @test (zalgo(s, upmarks=1:2) |> length > length(s)) == true @test (zalgo(s, middlemarks=1:2) |> length > length(s)) == true @test (zalgo(s, downmarks=1:2) |> length > length(s)) == true @test (zalgo(s, maxmarks=2) |> length > length(s)) == true @test length(zalgo(s, maxmarks=0)) == length(s) @test boldscript(string('B'))[1] |> Int == 120017 @test boldfraktur(string('B'))[1] |> Int == 120173 @test bolditalic(string('B'))[1] |> Int == 119913 @test bolditalicsans(string('B'))[1] |> Int == 120381 @test boldroman(string('B'))[1] |> Int == 119809 @test boldsans(string('B'))[1] |> Int == 120277 @test italic(string('B'))[1] |> Int == 119861 @test italicsans(string('B'))[1] |> Int == 120329 @test sans(string('B'))[1] |> Int == 120225 @test script(string('B'))[1] |> Int == 8492 @test teletype(string('B'))[1] |> Int == 120433 @test upsidedown(string('B'))[1] |> Int == 66578 @test blackboard(string('B'))[1] |> Int == 120121 @test fraktur(string('B'))[1] |> Int == 120069 @test boldscript(string('w'))[1] |> Int == 120064 @test boldfraktur(string('w'))[1] |> Int == 120220 @test bolditalic(string('w'))[1] |> Int == 119960 @test bolditalicsans(string('w'))[1] |> Int == 120428 @test boldroman(string('w'))[1] |> Int == 119856 @test boldsans(string('w'))[1] |> Int == 120324 @test italic(string('w'))[1] |> Int == 119908 @test italicsans(string('w'))[1] |> Int == 120376 @test sans(string('w'))[1] |> Int == 120272 @test script(string('w'))[1] |> Int == 120012 @test teletype(string('w'))[1] |> Int == 120480 @test upsidedown(string('w'))[1] |> Int == 653 @test blackboard(string('w'))[1] |> Int == 120168 @test fraktur(string('w'))[1] |> Int == 120220 @test boxed(string('w'))[1] |> Int == 127366 @test circled(string('w'))[1] |> Int == 9446 @test circled(string('w'), negative=true)[1] |> Int == 127366 @test segmented(string('1'))[1] |> Int == 130033 @test segmented(string('0'))[1] |> Int == 130032 @test length(blackboard("Figure 2")) == 8 @test length(blackboard("Figure 22")) == 9 # two script styles sc1 = collect(script("Good Morning Sir", roundhand=false)) sc2 = collect(script("Good Morning Sir", roundhand=true)) # they'll only differ by one: sc2 has a VS2 (U+FE01) after every glyph @test length(setdiff(sc2, sc1)) == 1 @test length(large_type("ABC").glyphs) == 3 #= # build for f in (boldscript, boldfraktur, bolditalic, bolditalicsans, boldroman, boldsans, italic, italicsans, sans, script, teletype, upsidedown, blackboard, fraktur) ch = 'w' ff = f(string(ch)) fch = Int(Char(ff[1])) println(" @test ", f, "(string('$(ch)'))[1] |> Int", " == ", fch,) end =#
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
docs
387
# Changelog ## [v1.3.0] - 2024-02-25 ### Added - large type - roundhand script option ## Changed - up to Documenter 1 ### Removed ### Deprecated ################################################################### ## [v1.2.0] - 2021-12-30 ### Added - boxed letters ## Changed ### Removed ### Deprecated ###################################################################
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
docs
4008
![luxor splash image](docs/src/assets/zalgo-social-media-preview.png) # Zalgo | **Documentation** | **Build Status** | **Code Coverage** | |:--------------------------------------- |:-------------------------------------------|:-------------------------------:| | [![][docs-stable-img]][docs-stable-url] | [![Build Status][ci-img]][ci-url] | [![][codecov-img]][codecov-url] | | [![][docs-latest-img]][docs-latest-url] | [![][appveyor-img]][appveyor-url] | | ```julia using Zalgo zalgo("Julia approaches") "J̳̋ͪ︡ų̔l̲̮̲̏̆͋i͖͈̬̭ͭ̄a̬ͯ a̖̖̝ͬͨ͢p̘͓̣̄̕p̯ͥ̍͘r̯ͧ̄o̘̖̮͌̚ã͔̍ͣc̗ͪh̨͗︢e̚s̡̡︡ͮ͐" ``` ```julia zalgo(""" Zalgo is an Internet legend about an ominous entity believed to cause insanity, death and destruction of the world, similar to the creature Cthulhu created by H.P. Lovecraft in the 1920s. Zalgo is often associated with scrambled text on webpages and photos of people whose eyes and mouth have been covered in black. Or: Zalgo is something that's coming. It's coming soon. It has nothing to do with Lovecraft. - https://knowyourmeme.com/memes/zalgo""") Z̯͗ͮ̃ͣa̖ͬl̢͍͐͞g̣͖ͩó͓͚͒̋ į̜͞s̖̽͊︢ͩ ȧ̝̙̜ͦn͖̤̪̅︡̑ I̞̎n̤̅t̬̆ͬ͑ḛ͕͒͋̉ṟͤͮͫn̢̰̎̓ͥe̝̯̹︢͟t͓̹̤̋ lͯe͎ͮͮ̕g̬̝̬̲͑̐e͖̪͌̄n̢̘̭͒︢ḑ̹͓ͬ̎ͯ a̺̅b̽͜͡ō̰͔̻̮ų̘̜͊̑̒t̃ͮ︢͜ a̰̩̤ͯ̆͠n̢͖̽̆̃ͣ o͚̬͔̹ͪ͑m̝̀ͧȋ̱̺̎̌n͔̖͈͋ͥ̂o̱ͯ̒u̬̰̥̲ͥs̘̄̆̕ e̙̘̙͗n̝͋ͮ͢t͍̭͗ị͋͟ț̜͑̒̑͞ÿ̤̟̹̄̓ b̩ͮe̼̹͘l̼̟̯̊ị͖̼ͤ︠e͙͔̅v̡̰̖̍ē̙̙̎d̙̤͌ t̳̥ͧͩͭ̕o̠ͨ c͖ͪͨ͞a︡̌̕͢ȗ̝̺̐ͥ͘s̩̅e̺̹̱͛ i̧̺̙͔̔͝n̻︠̀͡s̬̝͋̄a̳̘̻̋͞n̟̏͞i̪̲͗ͣͨͯt̨̖̔̊̑͒y̘̌, d̡̩̪̄͜ě̪̫a̱͙̞͛t͍h̭̥̔ â͇̘̙̑͊n̥̽d̯͐̐͡ ḑ̠̍ͨ̄͝ẽ͙̰̉̚s̙̗̏̚t̻͝r̘ͧͤ̇ͧú͉̪͝c͓̜͓͒̎ͩt̺̑ï̳̼ͣo͙̞͖̪︡ṅ̩̦ ȯ̩͎̬̼f̧̹̠͉̈ t̳̫͊̄͠h̳͇̠̋͋͞e̤̟͌ͭ̚ ẇ͔o̠ͨ̆͊r͖̭͕ͨͯ͘l̫ͣ͜d̙͕ͧͭ, s̼̔i͙̱͋m̪̞i̭͇̐͛̔l̲̩̏̋̉͝ä̢͉ͤr̖̦̽ t͕͚ͧo̦͛̑ t̮ͫ̑h̭ͯe͎̦̹͐̎͊ c̨̪ͮ̎̍r̲͑̀̀ȩ̝̰ͥ̎̈ä̹̖t̥︢̽̏͟u̠͋ͨ̕͢r̨̻̟͛e̥̎︠̐̓ C͖͌ͧţ̠̈ͦ̔̕ḫ̱̄ͣ̇͛ù̬ͭ͝l̯̝̟̐̊͟h̦́͢͟ú̪̳̜ c͕r̜̼̄ͦ̕e̡̕ḁ͐t͚̮̣͚̽e̥̊̒ͯd͙̮͎͑ͪ̄ b̭͘y̫̗͉︡͞ H̹̮̍.P̫̤ͧ. L̞̳͓̍ͭo͖͍ͥ︢v̘͉ͫ͞e̳͙͌͟c̠ͭ̌r̫ͭͤa̼̜͑͝f̪̜͛͟ṫ̪̤̪ i̮̼̺ͨ͝n̺̭̆͋͘ t̨̠̫̦̐h͉̗ͭͯĕ͍̼̟̮̀ 1920s̭͐̽︠. Z̟̩̃͜a͇͍ͮ͒l̰̻̜︠͡g̭̮ͧo̹ͬ͞ i̭͗ͣs̬͓̄ͯ̃ ȍ̧̯͐f̹̟̭ͮͦt̗ͯe̡̥͚ͮn̬̼̖ͫ a̺̤̲͑s͓̦ͪs̪̠̯̋o̲̔c̨͉ͨi͇͛͋͊a̤︢ͪ︢t̹̱͑e͙̜̮͑̚ḏ͓̭ͦ͛ w̟̠̋i̭͝t͉̬̝̀͛h͎ͬ͛͊ s̯̻̽ͧ͘c͇̹͠͡͝r̥̝̐͞ą̰︡̑m̤̒͋͘b̫͍̲︠̍ͥl͇͈̻͋͊͝e͈͈̺͗̍d̥̠̅͡ t̲̄ͥ̍͜ȩ̜̇͗x̤͋̋̒̅t̺̩̚ o͉̻ͩͫn̢̠̒͞ w̼̔̈̎ͪe͎̝̗͒̍͠b̰̏͐̚p̖͕̎︢ͨ̋ã̭g͍̲̽̃̕͝e̙͈̐̅͗̚s̜̙̼̫͞͡ ā̰̍͢n͉̯͒͞ḑ̦̤͝ p͖̚h̭̽͠o̺̅ͮ͢t͈︢̅ͫ̕ô̞̳̩s̮ͭ͛ͨ o͖͑̇ͥ͒f̥̓ p̤͗ê̢̝͈͓̊o͓̟︢̅p̩̣̉̄ͧ̓l̮︠︢̔̚e̺̩̞ͣ͐ͤ w̰̺̙ͯ̊h͙ͩ̔o̗̪͚͘s͔̙̯ͨ̽̕ḙ̢̐ͨ̓͠ ě̞ͩÿ̝̌e̗︡s̲̮̽ a̽͟͜n̗̦̏͐d͇̖ͤ̕ m̳̋o͖͍̩͐ͬ͟u̬͕̯͗t̢͕̪͐̉h̜ͧ̂ͫ h̨͒a̡͚͚͌̚v̺̙͝e͍ͧ͘͟ b̰̕e̙̲ͫ︠e̞̖̟̯ͭ͠n̰̂͊͝ c̗ͧo̺͒͒v̲̙̫̋̐e̻̮͐͡r̯͋͒͝e̞ͯ︠͢d͉̺̈ i̗͔︡ͩ͞n̩̟͎͔͛̎ b͓͉̳̩ͣ̑ļ͔̝̘ͫ͋ä̩̍̒ċ͙́̏k͊͟. O̟̯̕r͕̖͙̤ͣ͘: Ź͖̹ā̖̩͌l̮̝ͨg̹̎͢õ̠̇̊͜ i̫̪͑ͯş͕̀ͦ̚͟ s̮̯ͩ̐͝͡ǫ̩ͬ͒m̳ͥ̊ͪ︡e̙͙͌ͬ͟t̗͖ͦ̑͝ẖ̪͇ͫ̎i̜͈ͣ̋͋͘ṋ͍ͦ̇͊̕g̼ͯ͞ ť͙͒͟h͇͈̐ͤͤ̕a͖͐̽̈̎t̜͇ͩ̒͝'s̘̃︢̄ c̼̖̉͡o̹͕̭͗̌͜m̘͈͚̎̓︡i̥̭ͧ̓͢n͌͗̑ĝ̘ͦ̆. I̗͋̎t̲͛'s̞̙̺͇̈ͧ ċ̘̐̏͟͝o̧͗͋ͤ͞m̝̜͕̫ͧ͞i͍͎̞︡͢n̺ͮg̨̹ͦ s̻̲̋̏ͪő̢̫ͧ̀o̡̒̔͋̽n̪͍̕. I̜̙̅͡t͔͎͒ h̨̻͑͛a̺͌͊̕s̻̰ͩ̓̇ ň͓ͣ͌o͉t̝̽ͦh̠̦͕ͫͥi͚̕͢͞n̖g͎ ṯ︡̈̈̚o͙̍ d̫ͨ͌ȍ̟͈̂ w̥̬̝︡i̯͒͗t͇̋ḩ̖︢͝ L̤̇ͮǫ̰ͣ̎̑̀v̞͙̚ě̩̃c̢̋r̳︡ͨ̐͒a̰̗̻͙͋ḟ̤̚͡t̻̪̳ͩ. - h͉ͩͭ̚t̊ͨ͡t̳ͮp͉͕͇̂̽s̯͕͇̽̎̕://k̝̤͐̇n̦︠̀͞ȏ̻̭͜ẁ̹̥̗̱y͕ͭ͢o̰͚͟͢u̡͙͖ͨȓ͈︡m͎͊︢̓ę͇︡͑ͤͫm̲͔̟ͫe͉͛͌̚.c̺͉͊͋o̝̲̣̽m̳̳ͣͣͩ/ṃ̬̓͡e͎͍̟̪ͨm̝̻̎̏e͒ͯs̟̮̼̒/z͙̦̝ͤ͒̀a̢͙̓͒l̨̰͉̋g͎̀͐̃͘o̺ͫ͐͠ ``` """ Because this is pretty useless, this package provides some other more useful functions for converting text. [docs-stable-img]: https://img.shields.io/badge/docs-stable%20release-blue.svg [docs-stable-url]: https://cormullion.github.io/Zalgo.jl/dev/ [docs-latest-img]: https://img.shields.io/badge/docs-current--master-orange.svg [docs-latest-url]: https://cormullion.github.io/Zalgo.jl/dev/ [travis-img]: https://travis-ci.com/cormullion/Zalgo.jl.svg?branch=master [travis-url]: https://travis-ci.com/cormullion/Zalgo.jl [appveyor-img]: https://ci.appveyor.com/api/projects/status/59hherf65c713iaw/branch/master?svg=true [appveyor-url]: https://ci.appveyor.com/project/cormullion/zalgo-jl [codecov-img]: https://codecov.io/gh/cormullion/zalgo.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/cormullion/zalgo.jl [ci-img]: https://github.com/cormullion/zalgo.jl/workflows/CI/badge.svg [ci-url]: https://github.com/cormullion/zalgo.jl/actions?query=workflow%3ACI
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
docs
43
# Index ```@autodocs Modules = [Zalgo] ```
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
1.3.0
8a4aef12779f4becb49be401efc6f57777b5bc2c
docs
3321
# Zalgo ## Z̝̫͈̝ͩ͒̔͐̑̆̔︠̈a̜̙̜̯͇̳̱ͯͫͦ͑ͦ͘͟l͙͙̻̱͌ͮ̐́ͮͯ͟͢g͚̋̈̎͋̎̒̐ͮͯͦò̻̉\n Zalgo text is digital text that has been modified by the addition of combining characters, the Unicode symbols more usually employed to position diacritics above and below glyphs. “Zalgo” was named for a 2004 Internet meme that ascribed it to the influence of an eldritch deity. There’s no official connection with H. P. Lovecraft’s Cthulhu. Use the `zalgo` function to add diacritics to a string. The options let you control how many diacritics are used. For maximum degeneracy, set `maxmarks` to a large number. ```@example using Zalgo zalgo("Julia is cool", maxmarks=100) ``` ## Utilities !!! note These utility functions use glyphs from the current font. Not many fonts contain all the necessary glyphs! Because this package is useless — and occasionally bad, because it can cause some applications to misbehave — it also provides some utility functions to justify its existence. The following functions convert the input string to equivalent characters that are to be found in the eldritch lexicon of the Unicode realm, where arcane glyphs and cryptic symbols abound. ```julia blackboard("Hello World") # double-struck or 'blackboard' style boldfraktur("Hello World") # bold Fraktur (black letter) bolditalic("Hello World") # bold italic bolditalicsans("Hello World") # bold italic sans-serif boldroman("Hello World") # bold roman boldsans("Hello World") # bold sans-serif boldscript("Hello World") # bold script-style fraktur("Hello World") # Fraktur (black letter) large_type("Hello World") # Large Type (9 segments per glyph) italic("Hello World") # italic italicsans("Hello World") # italic sans-serif sans("Hello World") # sans-serif script("Hello World") # script teletype("Hello World") # monospaced 'teletype' upsidedown("Hello World") # might look like it's flipped upside down circled("HELLO WORLD") # letters in circles boxed("hello world") # letters in boxes segmented("0123456789") # digits converted to 7-segment 'LED"-type display ``` ![terminal example](assets/terminal1.png) You can see what's going on using: ```julia-repl julia-1.10> collect(blackboard("Hello World")) 11-element Vector{Char}: 'ℍ': Unicode U+210D (category Lu: Letter, uppercase) '𝕖': Unicode U+1D556 (category Ll: Letter, lowercase) '𝕝': Unicode U+1D55D (category Ll: Letter, lowercase) '𝕝': Unicode U+1D55D (category Ll: Letter, lowercase) '𝕠': Unicode U+1D560 (category Ll: Letter, lowercase) ' ': ASCII/Unicode U+0020 (category Zs: Separator, space) '𝕎': Unicode U+1D54E (category Lu: Letter, uppercase) '𝕠': Unicode U+1D560 (category Ll: Letter, lowercase) '𝕣': Unicode U+1D563 (category Ll: Letter, lowercase) '𝕝': Unicode U+1D55D (category Ll: Letter, lowercase) '𝕕': Unicode U+1D555 (category Ll: Letter, lowercase) ``` ### "Large Type" Unicode 16 defines a set of glyphs that can be combined in a 3 × 3 grid to build larger letters. ![large type](assets/largetype.png) ### Script styles There are two mathematical script styles: ![script style](assets/scripts.png)
Zalgo
https://github.com/cormullion/Zalgo.jl.git
[ "MIT" ]
0.1.2
504869786fe9e38cf52cbbac43e68f2f102e13e3
code
12536
module EasyRanges export @range, @reverse_range using Base: OneTo """ EasyRanges.ContiguousRange is an alias for `AbstractUnitRange{Int}`, the type of ranges in an [`EasyRanges.CartesianBox`][(@ref). """ const ContiguousRange = AbstractUnitRange{Int} """ EasyRanges.CartesianBox{N} is an alias for `CartesianIndices{N}` but restricted to have contiguous Cartesian indices. Since Julia 1.6, `CartesianIndices` may have non-unit step, hence non-contiguous indices. """ const CartesianBox{N} = CartesianIndices{N,<:NTuple{N,ContiguousRange}} """ EasyRanges.StretchBy(δ) -> obj yields a callable object `obj` such that `obj(x)` yields `x` stretched by offset `δ`. """ StretchBy """ EasyRanges.ShrinkBy(δ) -> obj yields a callable object `obj` such that `obj(x)` yields `x` shrinked by offset `δ`. """ ShrinkBy """ @range expr rewrites range expression `expr` with extended syntax. The result is an `Int`-valued index range (possibly Cartesian) where indices are running in the forward direction (with a positive step). """ macro range(ex::Expr) esc(Expr(:call, :(EasyRanges.forward), rewrite!(ex))) end """ @reverse_range expr rewrites range expression `expr` with extended syntax. The result is an `Int`-valued index range (possibly Cartesian) where indices are running in the reverse direction (with a negative step). """ macro reverse_range(ex::Expr) esc(Expr(:call, :(EasyRanges.backward), rewrite!(ex))) end rewrite!(x) = x # left anything else untouched function rewrite!(ex::Expr) if ex.head === :call if ex.args[1] === :(+) ex.args[1] = :(EasyRanges.plus) elseif ex.args[1] === :(-) ex.args[1] = :(EasyRanges.minus) elseif ex.args[1] === :(∩) || ex.args[1] === :(intersect) || ex.args[1] == :(Base.intersect) ex.args[1] = :(EasyRanges.cap) elseif ex.args[1] === :(±) ex.args[1] = :(EasyRanges.stretch) elseif ex.args[1] === :(∓) ex.args[1] = :(EasyRanges.shrink) end for i in 2:length(ex.args) rewrite!(ex.args[i]) end end return ex end """ EasyRanges.forward(R) yields an object which contains the same (Cartesian) indices as `R` but with positive step(s) and `Int`-valued. Arguments of other types are returned unchanged. """ forward(a) = a forward(a::AbstractUnitRange{Int}) = a forward(a::AbstractUnitRange{<:Integer}) = to_int(a) function forward(a::OrdinalRange{<:Integer,<:Integer}) first_a, step_a, last_a = first_step_last(a) return step_a ≥ 0 ? (first_a:step_a:last_a) : (last_a:-step_a:first_a) end forward(a::CartesianIndices) = isa(a, CartesianBox) ? a : CartesianIndices(map(forward, ranges(a))) """ EasyRanges.backward(R) yields an object which constains the same (Cartesian) indices as `R` but with negative step(s) and `Int`-valued. Arguments of other types are returned unchanged. """ backward(a) = a function backward(a::AbstractUnitRange{<:Integer}) first_a, last_a = first_last(a) return last_a:-1:first_a end function backward(a::OrdinalRange{<:Integer,<:Integer}) first_a, step_a, last_a = first_step_last(a) return step_a ≤ 0 ? (first_a:step_a:last_a) : (last_a:-step_a:first_a) end backward(a::CartesianIndices) = CartesianIndices(map(backward, ranges(a))) """ EasyRanges.plus(a...) yields the result of expression `+a`, `a + b`, `a + b + c...` in [`@range`](@ref) macro. """ plus # Use ordinary + by default and deal with multiple arguments. plus(a) = +a plus(a, b) = a + b @inline plus(a, b, c...) = plus(plus(a, b), c...) # Unary plus just converts to `Int`-valued object. plus(a::Int) = a plus(a::Integer) = to_int(a) plus(a::AbstractUnitRange{Int}) = a plus(a::AbstractUnitRange{<:Integer}) = to_int(a) plus(a::OrdinalRange{<:Integer,<:Integer}) = forward(a) plus(a::CartesianIndex) = a plus(a::CartesianIndices) = forward(a) # Binary plus. plus(a::Integer, b::Integer) = to_int(a) + to_int(b) function plus(a::AbstractUnitRange{<:Integer}, b::Integer) first_a, last_a = first_last(a) int_b = to_int(b) return (first_a + int_b):(last_a + int_b) end plus(a::Integer, b::AbstractUnitRange{<:Integer}) = plus(b, a) function plus(a::OrdinalRange{<:Integer,<:Integer}, b::Integer) first_a, step_a, last_a = first_step_last(a) int_b = to_int(b) if step_a ≥ 0 return (first_a + int_b):(step_a):(last_a + int_b) else return (last_a + int_b):(-step_a):(first_a + int_b) end end plus(a::Integer, b::OrdinalRange{<:Integer,<:Integer}) = plus(b, a) """ EasyRanges.minus(a...) yields the result of expression `-a` and `a - b` in [`@range`](@ref) macro. """ minus # Use ordinary - by default. minus(a) = -a minus(a, b) = a - b # Unary minus yields positive step sign. minus(a::Integer) = -to_int(a) function minus(a::AbstractUnitRange{<:Integer}) first_a, last_a = first_last(a) return (-last_a):(-first_a) end function minus(a::OrdinalRange{<:Integer,<:Integer}) first_a, step_a, last_a = first_step_last(a) if step_a ≥ 0 return (-last_a):(step_a):(-first_a) else return (-first_a):(-step_a):(-last_a) end end minus(a::CartesianIndex) = -a minus(a::CartesianIndices) = CartesianIndices(map(minus, ranges(a))) # Binary minus. minus(a::Integer, b::Integer) = to_int(a) - to_int(b) function minus(a::AbstractUnitRange{<:Integer}, b::Integer) first_a, last_a = first_last(a) int_b = to_int(b) return (first_a - int_b):(last_a - int_b) end function minus(a::Integer, b::AbstractUnitRange{<:Integer}) int_a = to_int(a) first_b, last_b = first_last(b) return (int_a - last_b):(int_a - first_b) end function minus(a::OrdinalRange{<:Integer,<:Integer}, b::Integer) first_a, step_a, last_a = first_step_last(a) int_b = to_int(b) if step_a ≥ 0 return (first_a - int_b):(step_a):(last_a - int_b) else return (last_a - int_b):(-step_a):(first_a - int_b) end end function minus(a::Integer, b::OrdinalRange{<:Integer,<:Integer}) int_a = to_int(a) first_b, step_b, last_b = first_step_last(b) if step_b ≥ 0 return (int_a - last_b):(step_b):(int_a - first_b) else return (int_a - first_b):(-step_b):(int_a - last_b) end end """ EasyRanges.cap(a...) yields the result of expression `a ∩ b` in [`@range`](@ref) macro. """ cap(a, b) = intersect(a, b) # use default behavior cap(a::Integer, b::Integer) = cap(to_int(a), to_int(b)) cap(a::Int, b::Int) = ifelse(a === b, a:a, 1:0) cap(a::Integer, b::AbstractUnitRange{<:Integer}) = cap(b, a) function cap(a::AbstractUnitRange{<:Integer}, b::Integer) first_a, last_a = first_last(a) int_b = to_int(b) ifelse((first_a ≤ int_b)&(int_b ≤ last_a), int_b:int_b, 1:0) end cap(a::OneTo, b::OneTo) = OneTo{Int}(min(to_int(a.stop), to_int(b.stop))) function cap(a::AbstractUnitRange{<:Integer}, b::AbstractUnitRange{<:Integer}) first_a, last_a = first_last(a) first_b, last_b = first_last(b) return max(first_a, first_b):min(last_a, last_b) end function cap(a::OrdinalRange{<:Integer,<:Integer}, b::OrdinalRange{<:Integer,<:Integer}) return forward(a) ∩ forward(b) # FIXME: Optimize? end cap(a::CartesianIndex{N}, b::CartesianIndex{N}) where {N} = CartesianIndices(map(cap, Tuple(a), Tuple(b))) # Combine CartesianIndices and CartesianIndices or CartesianIndex. for f in (:plus, :minus, :cap) @eval begin $f(a::CartesianIndices{N}, b::CartesianIndex{N}) where {N} = CartesianIndices(map($f, ranges(a), Tuple(b))) $f(a::CartesianIndex{N}, b::CartesianIndices{N}) where {N} = CartesianIndices(map($f, Tuple(a), ranges(b))) end end cap(a::CartesianIndices{N}, b::CartesianIndices{N}) where {N} = CartesianIndices(map(cap, ranges(a), ranges(b))) """ EasyRanges.stretch(a, b) yields the result of stretching `a` by amount `b`. This is equivalent to the expression `a ± b` in [`@range`](@ref) macro. """ stretch(a::Int, b::Int) = (a - b):(a + b) function stretch(a::AbstractUnitRange{<:Integer}, b::Integer) first_a, last_a = first_last(a) int_b = to_int(b) return (first_a - int_b):(last_a + int_b) end function stretch(a::OrdinalRange{<:Integer}, b::Integer) first_a, step_a, last_a = first_step_last(a) int_b = to_int(b) (int_b % step_a) == 0 || throw(ArgumentError("stretch must be multiple of the step")) if step_a ≥ 0 return (first_a - int_b):step_a:(last_a + int_b) else return (last_a - int_b):(-step_a):(first_a + int_b) end end """ EasyRanges.shrink(a, b) yields the result of shrinking `a` by amount `b`. This is equivalent to the expression `a ∓ b` in [`@range`](@ref) macro. """ shrink(a::Int, b::Int) = (a + b):(a - b) function shrink(a::AbstractUnitRange{<:Integer}, b::Integer) first_a, last_a = first_last(a) int_b = to_int(b) return (first_a + int_b):(last_a - int_b) end function shrink(a::OrdinalRange{<:Integer}, b::Integer) first_a, step_a, last_a = first_step_last(a) int_b = to_int(b) (int_b % step_a) == 0 || throw(ArgumentError("shrink must be multiple of the step")) if step_a ≥ 0 return (first_a + int_b):step_a:(last_a - int_b) else return (last_a + int_b):(-step_a):(first_a - int_b) end end for (f, s) in ((:stretch, :StretchBy), (:shrink, :ShrinkBy)) @eval begin struct $s <: Function δ::Int # left operand end (obj::$s)(x::Integer) = $f(x, obj.δ) (obj::$s)(x::OrdinalRange{<:Integer,<:Integer}) = $f(x, obj.δ) $f(a::Integer, b::Integer) = $f(to_int(a), to_int(b)) $f(a::CartesianIndices{N}, b::CartesianIndex{N}) where {N} = CartesianIndices(map($f, ranges(a), Tuple(b))) $f(a::CartesianIndices{N}, b::NTuple{N,Integer}) where {N} = CartesianIndices(map($f, ranges(a), b)) $f(a::CartesianIndices, b::Integer) = CartesianIndices(map($s(b), ranges(a))) end # A Cartesian index can be stretched, not shrinked. if f === :stretch @eval begin $f(a::CartesianIndex{N}, b::CartesianIndex{N}) where {N} = CartesianIndices(map($f, Tuple(a), Tuple(b))) $f(a::CartesianIndex{N}, b::NTuple{N,Integer}) where {N} = CartesianIndices(map($f, Tuple(a), b)) $f(a::CartesianIndex, b::Integer) = CartesianIndices(map($s(b), Tuple(a))) end end end """ EasyRanges.ranges(R) yields the list of ranges in Cartesian indices `R`. """ ranges(R::CartesianIndices) = getfield(R, :indices) """ EasyRanges.first_last(x) -> (first_x, last_x) yields the 2-tuple `(first(x), last(x))` converted to be `Int`-valued. """ first_last(x::AbstractUnitRange{<:Integer}) = (to_int(first(x)), to_int(last(x))) first_last(x::CartesianIndices) = begin flag = true for r in ranges(x) flag &= (step(r) == 1) end flag || throw(ArgumentError("Cartesian ranges have non-unit step")) return (CartesianIndex(map(first, ranges(x))), CartesianIndex(map(last, ranges(x)))) end """ EasyRanges.first_step_last(x) -> (first_x, step_x, last_x) yields the 3-tuple `(first(x), step(x), last(x))` converted to be `Int`-valued. """ first_step_last(x::AbstractUnitRange{<:Integer}) = (to_int(first(x)), 1, to_int(last(x))) first_step_last(x::OrdinalRange{<:Integer,<:Integer}) = (to_int(first(x)), to_int(step(x)), to_int(last(x))) first_step_last(x::CartesianIndices) = (CartesianIndex(map(first, ranges(x))), CartesianIndex(map(step, ranges(x))), CartesianIndex(map(last, ranges(x)))) """ EasyRanges.to_int(x) yields an `Int`-valued equivalent of `x`. """ to_int(x::Int) = x to_int(x::Integer) = to_type(Int, x) to_int(x::OneTo{Int}) = x to_int(x::OneTo) = OneTo{Int}(x.stop) to_int(x::AbstractUnitRange{Int}) = x to_int(x::AbstractUnitRange{<:Integer}) = to_int(first(x)):to_int(last(x)) to_int(x::OrdinalRange{Int,Int}) = x to_int(x::OrdinalRange{<:Integer}) = to_int(first(x)):to_int(step(x)):to_int(last(x)) # Cartesian indices are already `Int`-valued. to_int(x::CartesianIndex) = x to_int(x::CartesianIndices) = x to_int(x::Tuple{Vararg{Int}}) = x to_int(x::Tuple{Vararg{Integer}}) = map(to_int, x) """ EasyRanges.to_type(T, x) yields `x` surely converted to type `T`. """ to_type(::Type{T}, x::T) where {T} = x to_type(::Type{T}, x) where {T} = convert(T, x)::T end
EasyRanges
https://github.com/emmt/EasyRanges.jl.git
[ "MIT" ]
0.1.2
504869786fe9e38cf52cbbac43e68f2f102e13e3
code
4474
module Bench using EasyRanges using BenchmarkTools, Test const try_turbo = false # NOTE: @turbo code broken for Cartesian indices @static if try_turbo using LoopVectorization end test1_jl(A, B, C) = A ∩ (B .+ C) test1(A, B, C) = @range A ∩ (B + C) test2_jl(A, B, C) = A ∩ (B .- C) test2(A, B, C) = @range A ∩ (B - C) # Discrete correlation. function correlate_jl!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @simd for j ∈ CartesianIndices(A) ∩ (i .+ CartesianIndices(B)) s += A[j]*B[j-i] end dst[i] = s end return dst end function correlate!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @simd for j ∈ @range CartesianIndices(A) ∩ (i + CartesianIndices(B)) s += A[j]*B[j-i] end dst[i] = s end return dst end @static if try_turbo function correlate_turbo!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @turbo for j ∈ @range CartesianIndices(A) ∩ (i + CartesianIndices(B)) s += A[j]*B[j-i] end dst[i] = s end return dst end end # Discrete convolution. function convolve_jl!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @simd for j ∈ CartesianIndices(A) ∩ (i .- CartesianIndices(B)) s += A[j]*B[i-j] end dst[i] = s end return dst end function convolve!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @simd for j ∈ @range CartesianIndices(A) ∩ (i - CartesianIndices(B)) s += A[j]*B[i-j] end dst[i] = s end return dst end @static if try_turbo function convolve_turbo!(dst, A, B) T = promote_type(eltype(A), eltype(B)) @inbounds for i ∈ CartesianIndices(dst) s = zero(T) @turbo for j ∈ @range CartesianIndices(A) ∩ (i - CartesianIndices(B)) s += A[j]*B[i-j] end dst[i] = s end return dst end end A = CartesianIndices((30,40,50)); B = CartesianIndices((3,4,5)); for I ∈ (CartesianIndex(1,2,3), #= CartesianIndex(10,20,30) =#) println("Testing with I = $I") print(" A ∩ (B .+ I)"); @btime test1_jl($A, $B, $I); print("@range A ∩ (B + I)"); @btime test1($A, $B, $I); print(" A ∩ (I .+ B)"); @btime test1_jl($A, $I, $B); print("@range A ∩ (I + B)"); @btime test1($A, $I, $B); print(" A ∩ (B .- I)"); @btime test2_jl($A, $B, $I); print("@range A ∩ (B - I)"); @btime test2($A, $B, $I); print(" A ∩ (I .- B)"); @btime test2_jl($A, $I, $B); print("@range A ∩ (I - B)"); @btime test2($A, $I, $B); end T = Float32 A = rand(T, (8,8)) B = rand(T, (32,32)) C1 = similar(B) C2 = similar(B) x = '×' println("\nTesting correlation of $(join(size(A),x)) and $(join(size(B),x)) arrays") print("base Julia with @simd "); @btime correlate_jl!($C1, $A, $B); print("using @range and @simd "); @btime correlate!($C2, $A, $B); @test C1 ≈ C2 if try_turbo print("using @range and @turbo"); @btime correlate_turbo!($C2, $A, $B); @test C1 ≈ C2 end println("\nTesting correlation of $(join(size(B),x)) and $(join(size(A),x)) arrays") print("base Julia with @simd "); @btime correlate_jl!($C1, $B, $A); print("using @range and @simd "); @btime correlate!($C2, $B, $A); @test C1 ≈ C2 if try_turbo print("using @range and @turbo"); @btime correlate_turbo!($C2, $B, $A); @test C1 ≈ C2 end println("\nTesting convolution of $(join(size(A),x)) and $(join(size(B),x)) arrays") print("base Julia with @simd "); @btime convolve_jl!($C1, $A, $B); print("using @range and @simd "); @btime convolve!($C2, $A, $B); @test C1 ≈ C2 if try_turbo print("using @range and @turbo"); @btime convolve_turbo!($C2, $A, $B); @test C1 ≈ C2 end println("\nTesting convolution of $(join(size(B),x)) and $(join(size(A),x)) arrays") print("base Julia with @simd "); @btime convolve_jl!($C1, $B, $A); print("using @range and @simd "); @btime convolve!($C2, $B, $A); @test C1 ≈ C2 if try_turbo print("using @range and @turbo"); @btime convolve_turbo!($C2, $B, $A); @test C1 ≈ C2 end end # module
EasyRanges
https://github.com/emmt/EasyRanges.jl.git
[ "MIT" ]
0.1.2
504869786fe9e38cf52cbbac43e68f2f102e13e3
code
12414
module TestingEasyRanges using Test using Base: OneTo using EasyRanges using EasyRanges: forward, backward, ranges, to_type, to_int, stretch, shrink, first_last, first_step_last, plus, minus, cap # A bit of type-piracy for more readable error messages. Base.show(io::IO, x::CartesianIndices) = print(io, "CartesianIndices($(x.indices))") # CartesianIndices with non-unit ranges appear in Julia 1.6 const CARTESIAN_INDICES_MAY_HAVE_NON_UNIT_RANGES = (VERSION ≥ v"1.6") @testset "EasyRanges" begin # to_type let A = [-1,0,2] @test to_type(Array{Int}, A) === A @test to_type(Array{Int16}, A) isa Array{Int16} @test to_type(Array{Int16}, A) == A end # to_int @test to_int(5) === 5 @test to_int(UInt16(7)) === 7 @test to_int(OneTo{Int}(8)) === OneTo(8) @test to_int(OneTo{UInt16}(3)) === OneTo(3) @test to_int(3:8) === 3:8 @test to_int(UInt16(3):UInt16(8)) === 3:8 @test to_int(8:-3:-1) === 8:-3:-1 @test to_int(Int16(8):Int16(-3):Int16(-1)) === 8:-3:-1 @test to_int(CartesianIndex(-1,2,3,4)) === CartesianIndex(-1,2,3,4) @test to_int(CartesianIndices((Int16(-1):Int16(3),Int16(2):Int16(8)))) === CartesianIndices((-1:3,2:8)) @test to_int((-1,3,2)) === (-1,3,2) @test to_int((Int16(-1),Int16(3),Int16(2))) === (-1,3,2) # first_last and first_step_last @test first_last(Int16(-4):Int16(11)) == (-4, 11) @test_throws MethodError first_last(-4:2:11) @test first_step_last(Int16(-4):Int16(11)) === (-4,1,11) @test first_step_last(Int16(-4):Int16(2):Int16(11)) === (-4,2,10) @test first_last(CartesianIndices((2:6, 3:5))) === (CartesianIndex(2,3), CartesianIndex(6,5)) @test first_step_last(CartesianIndices((2:6, 3:5))) === (CartesianIndex(2,3), CartesianIndex(1,1), CartesianIndex(6,5)) if CARTESIAN_INDICES_MAY_HAVE_NON_UNIT_RANGES @test first_last(CartesianIndices((2:1:6, 3:1:5))) === (CartesianIndex(2,3), CartesianIndex(6,5)) @test_throws ArgumentError first_last(CartesianIndices((2:1:6, 3:2:5))) @test first_step_last(CartesianIndices((2:6, 3:2:7))) === (CartesianIndex(2,3), CartesianIndex(1,2), CartesianIndex(6,7)) end # Check normalization of ranges. @test forward(π) === π @test forward(OneTo(6)) === OneTo{Int}(6) @test forward(OneTo{Int16}(6)) === OneTo{Int}(6) @test forward(2:7) === 2:7 @test forward(Int16(2):Int16(7)) === 2:7 @test forward(-2:3:11) === -2:3:11 @test forward(Int16(-2):Int16(3):Int16(11)) === -2:3:11 @test forward(11:-3:-2) === -1:3:11 @test forward(Int16(11):Int16(-3):Int16(-2)) === -1:3:11 # backward @test backward(π) === π @test backward(OneTo(5)) === 5:-1:1 @test backward(2:3:12) === 11:-3:2 @test backward(11:-3:2) === 11:-3:2 # unary plus @test plus(1.0) === 1.0 @test plus(7) === 7 @test plus(Int16(7)) === 7 @test plus(2:8) === 2:8 @test plus(Int16(2):Int16(8)) === 2:8 @test plus(2:3:12) === 2:3:11 @test plus(Int16(2):Int16(3):Int16(12)) === 2:3:11 @test plus(12:-4:-1) === 0:4:12 @test plus(CartesianIndex(-1,2,3,4)) === CartesianIndex(-1,2,3,4) @test plus(CartesianIndices((4:8,2:9))) === CartesianIndices((4:8,2:9)) if CARTESIAN_INDICES_MAY_HAVE_NON_UNIT_RANGES @test plus(CartesianIndices((8:-1:4,2:3:9))) === CartesianIndices((4:1:8,2:3:8)) end # binary plus @test plus(2, π) === (2 + π) @test plus(3, 8) === 11 @test plus(Int16(3), Int16(8)) === 11 @test plus(1:4, 2) === 3:6 @test plus(2, 1:4) === 3:6 @test plus(1:2:8, 3) === 4:2:10 @test plus(3, 1:2:8) === 4:2:10 @test plus(8:-2:1, 3) === 5:2:11 @test plus(3, 8:-2:1) === 5:2:11 @test plus(CartesianIndices(((4:8, 2:9))), CartesianIndex(-1,2)) === CartesianIndices(((3:7, 4:11))) @test (@range CartesianIndices(((4:8, 2:9))) + CartesianIndex(-1,2)) === CartesianIndices(((3:7, 4:11))) @test plus(CartesianIndex(-1,2), CartesianIndices(((4:8, 2:9)))) === CartesianIndices(((3:7, 4:11))) @test (@range CartesianIndex(-1,2) + CartesianIndices(((4:8, 2:9)))) === CartesianIndices(((3:7, 4:11))) # plus with more arguments @test plus(1.0, 2, π, sqrt(2)) === (1.0 + 2 + π + sqrt(2)) # unary minus @test minus(1.0) === -1.0 @test minus(7) === -7 @test minus(Int16(7)) === -7 @test minus(2:8) === -8:-2 @test minus(Int16(2):Int16(8)) === -8:-2 @test minus(2:3:12) === -11:3:-2 @test minus(Int16(2):Int16(3):Int16(12)) === -11:3:-2 @test minus(12:-4:-1) === -12:4:0 @test minus(CartesianIndex(-1,2,3,4)) === CartesianIndex(1,-2,-3,-4) @test minus(CartesianIndices((4:8,2:9))) === CartesianIndices((-8:-4,-9:-2)) if CARTESIAN_INDICES_MAY_HAVE_NON_UNIT_RANGES @test minus(CartesianIndices((8:-1:3,2:3:9))) === CartesianIndices((-8:1:-3,-8:3:-2)) end # binary minus @test minus(2, π) === (2 - π) @test minus(3, 8) === -5 @test minus(Int16(3), Int16(8)) === -5 @test minus(1:4, 2) === -1:2 @test minus(2, 1:4) === -2:1 @test minus(1:2:8, 3) === -2:2:4 @test minus(3, 0:2:9) === -5:2:3 @test minus(8:-2:1, 3) === -1:2:5 @test minus(3, 8:-2:1) === -5:2:1 @test minus(CartesianIndices(((4:8, 2:9))), CartesianIndex(-1,2)) === CartesianIndices(((5:9, 0:7))) @test (@range CartesianIndices(((4:8, 2:9))) - CartesianIndex(-1,2)) === CartesianIndices(((5:9, 0:7))) @test minus(CartesianIndex(-1,2), CartesianIndices(((4:8, 2:9)))) === CartesianIndices(((-9:-5, -7:0))) @test (@range CartesianIndex(-1,2) - CartesianIndices(((4:8, 2:9)))) === CartesianIndices(((-9:-5, -7:0))) # intersection @test cap([1], 1) == [1] @test cap(-7, -7) === -7:-7 @test cap(2, 0) === 1:0 @test cap(Int16(2), Int16(0)) === 1:0 @test cap(2, 0:6) === 2:2 @test cap(0:6, 2) === 2:2 @test cap(-1, 0:6) === 1:0 @test cap(0:6, -1) === 1:0 @test cap(OneTo(5), OneTo(7)) === OneTo(5) @test cap(OneTo(9), OneTo(7)) === OneTo(7) @test cap(1:7, 2:5) === 2:5 @test cap(2:5, 1:7) === 2:5 @test cap(1:7, 0:5) === 1:5 @test cap(0:5, 1:7) === 1:5 @test cap(1:7, 2:8) === 2:7 @test cap(2:8, 1:7) === 2:7 @test cap(2:3:9, 1:1:7) === 2:3:5 @test cap(2:3:14, 1:2:12) === 5:6:11 @test cap(14:-3:2, 1:2:12) === 5:6:11 @test (@range [1] ∩ 1) == [1] @test (@range -7 ∩ -7) === -7:-7 @test (@range 2 ∩ 0) === 1:0 @test (@range Int16(2) ∩ Int16(0)) === 1:0 @test (@range 2 ∩ (0:6)) === 2:2 @test (@range (0:6) ∩ 2) === 2:2 @test (@range -1 ∩ (0:6)) === 1:0 @test (@range (0:6) ∩ -1) === 1:0 @test (@range OneTo(5) ∩ OneTo(7)) === OneTo(5) @test (@range OneTo(9) ∩ OneTo(7)) === OneTo(7) @test (@range (1:7) ∩ (2:5)) === 2:5 @test (@range (2:5) ∩ (1:7)) === 2:5 @test (@range (1:7) ∩ (0:5)) === 1:5 @test (@range (0:5) ∩ (1:7)) === 1:5 @test (@range (1:7) ∩ (2:8)) === 2:7 @test (@range (2:8) ∩ (1:7)) === 2:7 @test (@range (2:3:9) ∩ (1:1:7)) === 2:3:5 @test (@range (2:3:14) ∩ (1:2:12)) === 5:6:11 @test (@range (14:-3:2) ∩ (1:2:12)) === 5:6:11 @test (@range intersect(14:-3:2, 1:2:12)) === 5:6:11 @test (@range Base.intersect(14:-3:2, 1:2:12)) === 5:6:11 @test cap(CartesianIndex(3,4), CartesianIndex(3,4)) === CartesianIndices((3:3,4:4)) @test (@range CartesianIndex(3,4) ∩ CartesianIndex(3,4)) === CartesianIndices((3:3,4:4)) # Intersection of CartesianIndices and CartesianIndex @test cap(CartesianIndices((2:4, 5:9)), CartesianIndex(3,5)) === CartesianIndices((3:3, 5:5)) @test (@range CartesianIndices((2:4, 5:9)) ∩ CartesianIndex(3,5)) === CartesianIndices((3:3, 5:5)) @test cap(CartesianIndices((2:4, 5:9)), CartesianIndex(1,5)) === CartesianIndices((1:0, 5:5)) @test (@range CartesianIndices((2:4, 5:9)) ∩ CartesianIndex(1,5)) === CartesianIndices((1:0, 5:5)) @test cap(CartesianIndices((2:4, 5:9)), CartesianIndex(2,3)) === CartesianIndices((2:2, 1:0)) @test (@range CartesianIndices((2:4, 5:9)) ∩ CartesianIndex(2,3)) === CartesianIndices((2:2, 1:0)) # Intersection of CartesianIndices @test cap(CartesianIndices((2:4, 5:9)), CartesianIndices((0:3, 6:10))) === CartesianIndices((2:3, 6:9)) @test (@range CartesianIndices((2:4, 5:9)) ∩ CartesianIndices((0:3, 6:10))) === CartesianIndices((2:3, 6:9)) # Streching. @test stretch(7, 11) === -4:18 @test stretch(Int16(7), Int16(11)) === -4:18 @test stretch(OneTo(6), 3) === -2:9 @test stretch(OneTo{Int16}(6), Int16(3)) === -2:9 @test stretch(7, 3) === 4:10 @test stretch(7, Int16(3)) === 4:10 @test_throws ArgumentError stretch(1:3:9, 2) @test_throws ArgumentError @range (1:3:9) ± 2 @test stretch(1:3:14, 6) === -5:3:19 @test (@range (1:3:14) ± 6) === -5:3:19 @test stretch(15:-3:-1, 6) === -6:3:21 @test (@range (15:-3:-1) ± 6) === -6:3:21 let I = CartesianIndex(7,8) @test stretch(I, 2) === CartesianIndices((5:9, 6:10)) @test (@range I ± 2) === CartesianIndices((5:9, 6:10)) @test stretch(I, (2,3)) === CartesianIndices((5:9, 5:11)) @test (@range I ± (2,3)) === CartesianIndices((5:9, 5:11)) @test stretch(I, CartesianIndex(2,3)) === CartesianIndices((5:9, 5:11)) @test (@range I ± CartesianIndex(2,3)) === CartesianIndices((5:9, 5:11)) end let R = CartesianIndices((5:8, -1:4)) @test stretch(R, 2) === CartesianIndices((3:10, -3:6)) @test (@range R ± 2) === CartesianIndices((3:10, -3:6)) @test stretch(R, (2,3)) === CartesianIndices((3:10, -4:7)) @test (@range R ± (2,3)) === CartesianIndices((3:10, -4:7)) @test stretch(R, CartesianIndex(2,3)) === CartesianIndices((3:10, -4:7)) @test (@range R ± CartesianIndex(2,3)) === CartesianIndices((3:10, -4:7)) end # Shrinking. @test shrink(7, -11) === -4:18 @test shrink(Int16(7), -Int16(11)) === -4:18 @test shrink(OneTo(6), 2) === 3:4 @test shrink(OneTo{Int16}(6), Int16(2)) === 3:4 @test shrink(7, -3) === 4:10 @test shrink(7, -Int16(3)) === 4:10 @test_throws ArgumentError shrink(1:3:9, 2) @test_throws ArgumentError @range (1:3:9) ∓ 2 @test shrink(-1:3:15, 6) === 5:3:8 @test (@range (-1:3:15) ∓ 6) === 5:3:8 @test shrink(15:-3:-1, 6) === 6:3:9 @test (@range (15:-3:-1) ∓ 6) === 6:3:9 let R = CartesianIndices((5:11, -1:6)) @test shrink(R, 2) === CartesianIndices((7:9, 1:4)) @test (@range R ∓ 2) === CartesianIndices((7:9, 1:4)) @test shrink(R, (2,3)) === CartesianIndices((7:9, 2:3)) @test (@range R ∓ (2,3)) === CartesianIndices((7:9, 2:3)) @test shrink(R, CartesianIndex(2,3)) === CartesianIndices((7:9, 2:3)) @test (@range R ∓ CartesianIndex(2,3)) === CartesianIndices((7:9, 2:3)) end # Shift CartesianIndices by CartesianIndex. @test (@range CartesianIndices((2:3, -1:5)) + CartesianIndex(4,-7)) === CartesianIndices((6:7, -8:-2)) @test (@range CartesianIndices((2:3, -1:5)) - CartesianIndex(4,-7)) === CartesianIndices((-2:-1, 6:12)) @test (@range CartesianIndex(4,-7) + CartesianIndices((2:3, -1:5))) === CartesianIndices((6:7, -8:-2)) @test (@range CartesianIndices((2:3, -1:5)) - CartesianIndex(4,-7)) === CartesianIndices((-2:-1, 6:12)) @test (@range OneTo(5)) === OneTo(5) @test (@reverse_range OneTo(5)) === 5:-1:1 @test (@range 1:5) === 1:5 @test (@reverse_range 1:5) === 5:-1:1 @test (@range 5:-1:1) === 1:1:5 @test (@reverse_range 5:-1:1) === 5:-1:1 @test (@range -7:2:6) === -7:2:5 @test (@reverse_range -7:2:6) === 5:-2:-7 @test (@range 5:-2:-8) === -7:2:5 @test (@reverse_range 5:-2:-8) === 5:-2:-7 # Shift CartesianIndices by CartesianIndex (reversed). if CARTESIAN_INDICES_MAY_HAVE_NON_UNIT_RANGES @test (@reverse_range CartesianIndices((2:3, -1:5)) + CartesianIndex(4,-7)) === CartesianIndices((7:-1:6, -2:-1:-8)) @test (@reverse_range CartesianIndices((2:3, -1:5)) - CartesianIndex(4,-7)) === CartesianIndices((-1:-1:-2, 12:-1:6)) @test (@reverse_range CartesianIndex(4,-7) + CartesianIndices((2:3, -1:5))) === CartesianIndices((7:-1:6, -2:-1:-8)) @test (@reverse_range CartesianIndices((2:3, -1:5)) - CartesianIndex(4,-7)) === CartesianIndices((-1:-1:-2, 12:-1:6)) end end end # module
EasyRanges
https://github.com/emmt/EasyRanges.jl.git
[ "MIT" ]
0.1.2
504869786fe9e38cf52cbbac43e68f2f102e13e3
docs
13226
# EasyRanges: range expressions made easier for Julia [![Build Status](https://github.com/emmt/EasyRanges.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/emmt/EasyRanges.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Build Status](https://ci.appveyor.com/api/projects/status/github/emmt/EasyRanges.jl?svg=true)](https://ci.appveyor.com/project/emmt/EasyRanges-jl) [![Coverage](https://codecov.io/gh/emmt/EasyRanges.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/emmt/EasyRanges.jl) `EasyRanges` is a small Julia package dedicated at making life easier with integer or Cartesian indices and ranges. This package exports macros `@range` and `@reverse_range` which take an expression with extended syntax rules (see below) and rewrite it to produce an `Int`-valued *index range* which may be a step range or an instance of `CartesianIndices`. These two macros differ in the step sign of the result: `@range` always yield ranges with non-decreasing indices, while `@reverse_range` always yield ranges with non-increasing indices. Compared to range expressions with broadcast operators (`.+`, `.-`, etc.) that are implemented by Julia, the `EasyRanges` package offers a number of advantages: - The code is more expressive and an extended syntax is supported. - Computing the resulting range can be much faster and involves at most `O(d)` storage with `d` the number of array dimensions. Note: Julia ≥ 1.9 improves on this by being able to return an iterator, yet expressions such as `A ∩ (I .- B)`, with `A` and `B` Cartesian ranges and `I` a Cartesian index, yield an array of Cartesian indices. - The `@range` macro always yields non-decreasing indices which is most favorable for the efficiency of **loop vectorization**, for example with the `@simd` macro of Julia or with with the `@turbo` (formerly `@avx`) macro provided by [`LoopVectorization`](https://github.com/JuliaSIMD/LoopVectorization.jl.git). ## Usage ```julia using EasyRanges ``` brings two macros, `@range` and `@reverse_range`, into scope. These macros can be used as: ```julia @range expr @reverse_range expr ``` to evaluate expression `expr` with special rules (see below) where integers, Cartesian indices, and ranges of integers or of Cartesian indices are treated specifically: - integers are converted to `Int`, ranges to `Int`-valued ranges, and tuples of integers to tuples of `Int`; - arithmetic expressions only involving indices and ranges yield lightweight and efficient ranges (of integers or of Cartesian indices); - ranges produced by `@range` (resp. `@reverse_range`) always have positive (resp. negative) steps; - operators `+` and `-` can be used to [*shift*](#shift-operations) index ranges; - operator `∩` and method `intersect` yield the [intersection](#intersecting) of ranges with ranges, of ranges with indices, or of indices with indices; - operator `±` can be used to [*stretch*](#stretching) ranges or to produce centered ranges; - operator `∓` can be used to [*shrink*](#shrinking) ranges. As shown in [*A working example*](#a-working-example) below, these rules are useful for writing readable ranges in `for` loops without sacrificing efficiency. ### Definitions In `EasyRanges`, if *indices* are integers, *ranges* means ranges of integers (of super-type `OrdinalRange{Int}{Int}`); if *indices* are Cartesian indices, *ranges* means ranges of Cartesian indices (of super-type `CartesianIndices`). ### Shift operations In `@range` and `@reverse_range` expressions, an index range `R` can be shifted with the operators `+` and `-` by an amount specified by an index `I`: ```julia @range R + I -> S # J ∈ S is equivalent to J - I ∈ R @range R - I -> S # J ∈ S is equivalent to J + I ∈ R @range I + R -> S # J ∈ S is equivalent to J - I ∈ R @range I - R -> S # J ∈ S is equivalent to I - J ∈ R ``` Integer-valued ranges can be shifted by an integer offset: ```julia @range (3:6) + 1 -> 4:7 # (2:6) .+ 1 -> 4:7 @range 1 + (3:6) -> 4:7 # (2:6) .+ 1 -> 4:7 @range (2:4:10) + 1 -> 3:4:11 # (2:4:10) .+ 1 -> 3:4:11 @range (3:6) - 1 -> 2:5 # (3:6) .- 1 -> 2:5 @range 1 - (3:6) -> -5:-2 # 1 .- (3:6) -> -2:-1:-5 ``` This is like using the broadcasting operators `.+` and `.-` except that the result is an `Int`-valued range and that the step sign is kept positive (as in the last above example). The `@reverse_macro` yields ranges with negative steps: ```julia @reverse_range (3:6) + 1 -> 7:-1:4 @reverse_range 1 + (3:6) -> 7:-1:4 @reverse_range (3:6) - 1 -> 5:-1:1 @reverse_range 1 - (3:6) -> -1:-1:-5 ``` Cartesian ranges can be shifted by a Cartesian index (without penalties on the execution time and, usually, no extra allocations): ```julia @range CartesianIndices((2:6, -1:2)) + CartesianIndex(1,3) # -> CartesianIndices((3:7, 2:5)) @range CartesianIndex(1,3) + CartesianIndices((2:6, -1:2)) # -> CartesianIndices((3:7, 2:5)) @range CartesianIndices((2:6, -1:2)) - CartesianIndex(1,3) # -> CartesianIndices((1:5, -4:-1)) @range CartesianIndex(1,3) - CartesianIndices((2:6, -1:2)) # -> CartesianIndices((-5:-1, 1:4)) ``` This is similar to the broadcasting operators `.+` and `.-` except that a lightweight instance of `CartesianIndices` with positive increment is always produced. ### Intersecting In `@range` and `@reverse_range` expressions, the operator `∩` (obtained by typing `\cap` and pressing the `[tab]` key at the REPL) and the method `intersect` yield the intersection of ranges with ranges, of ranges with indices, or of indices with indices. The intersection of indices, say `I` and `J`, yield a range `R` (empty if the integers are different): ```julia @range I ∩ J -> R # R = {I} if I == J, R = {} else ``` Examples: ```julia @range 3 ∩ 3 -> 3:3 @range 3 ∩ 2 -> 1:0 # empty range @range CartesianIndex(3,4) ∩ CartesianIndex(3,4) -> CartesianIndices((3:3,4:4)) ``` The intersection of an index range `R` and an index `I` yields an index range `S` that is either the singleton `{I}` (if `I` belongs to `R`) or empty (if `I` does not belong to `R`): ```julia @range R ∩ I -> S # S = {I} if I ∈ R, S = {} else @range I ∩ R -> S # idem ``` Examples: ```julia @range (2:6) ∩ 3 -> 3:3 # a singleton range @range 1 ∩ (2:6) -> 1:0 # an empty range @range (2:6) ∩ (3:7) -> 3:6 # intersection of ranges @range CartesianIndices((2:4, 5:9)) ∩ CartesianIndex(3,7)) -> CartesianIndices((3:3, 7:7)) ``` These syntaxes are already supported by Julia, but the `@range` macro guarantees to return an `Int`-valued range with a forward (positive) step. ### Stretching In `@range` and `@reverse_range` expressions, the operator `±` (obtained by typing `\pm` and pressing the `[tab]` key at the REPL) can be used to **stretch** ranges or to produce **centered ranges**. The expression `R ± I` yields the index range `R` stretched by an amount specified by index `I`. Assuming `R` is unit range: ```julia @range R ± I -> (first(R) - I):(last(R) + I) ``` where, if `R` is a range of integers, `I` is an integer, and if `R` is a `N`-dimensional Cartesian, `I` is a `N`-dimensional Cartesian index range. Not shown in the above expression, the range step is preserved by the operation (except that the result has a positive step). The expression `I ± ΔI` with `I` an index and `ΔI` an index offset yields an index range centered at `I`. Assuming `R` is unit range: ```julia @range I ± ΔI -> (I - ΔI):(I + ΔI) ``` There is no sign correction and the range may be empty. If `I` and `ΔI` are two integers, `I ± ΔI` is a range of integers. If `I` is a `N`-dimensional Cartesian index, then `I ± ΔI` is a range of Cartesian indices and `ΔI` can be an integer, a `N`-tuple of integers, or a `N`-dimensional Cartesian index. Specifying `ΔI` as a single integer for a `N`-dimensional Cartesian index `I` is identical to specifying the same amount of stretching for each dimension. ### Shrinking In `@range` and `@reverse_range` expressions, the operator `∓` (obtained by typing `\mp` and pressing the `[tab]` key at the REPL) can be used to **shrink** ranges. The expression `R ∓ I` yields the same result as `@range R ± (-I)`, that is the index range `R` shrink by an amount specified by index `I`: ```julia @range R ∓ I -> (first(R) + I):(last(R) - I) ``` ## Installation The `EasyRanges` package is an official Julia package and can be installed as follows: ```julia using Pkg pkg"add EasyRanges" ``` ## A working example `EasyRanges` may be very useful to write readable expressions in ranges used by `for` loops. For instance, suppose that you want to compute a **discrete correlation** of `A` by `B` as follows: $$ C[i] = \sum_{j} A[j] B[j-i] $$ and for all valid indices `i` and `j`. Assuming `A`, `B` and `C` are abstract vectors, the Julia equivalent code is: ```julia for i ∈ eachindex(C) s = zero(T) j_first = max(firstindex(A), firstindex(B) + i) j_last = min(lastindex(A), lastindex(B) + i) for j ∈ j_first:j_last s += A[j]*B[j-i] end C[i] = s end ``` where `T` is a suitable type, say `T = promote_type(eltype(A), eltype(B))`. The above expressions of `j_first` and `j_last` are to ensure that `A[j]` and `B[j-i]` are in bounds. The same code for multidimensional arrays writes: ```julia for i ∈ CartesianIndices(C) s = zero(T) j_first = max(first(CartesianIndices(A)), first(CartesianIndices(B)) + i) j_last = min(last(CartesianIndices(A)), last(CartesianIndices(B)) + i) for j ∈ j_first:j_last s += A[j]*B[j-i] end C[i] = s end ``` now `i` and `j` are multidimensional Cartesian indices and Julia already helps a lot by making such a code applicable whatever the number of dimensions. Note that the syntax `j_first:j_last` is supported for Cartesian indices since Julia 1.1. There is more such syntactic sugar and using the broadcasting operator `.+` and the operator `∩` (a shortcut for the function `intersect`), the code can be rewritten as: ```julia for i ∈ CartesianIndices(C) s = zero(T) for j ∈ CartesianIndices(A) ∩ (CartesianIndices(B) .+ i) s += A[j]*B[j-i] end C[i] = s end ``` which is not less efficient and yet much more readable. Indeed, the statement ```julia for j ∈ CartesianIndices(A) ∩ (CartesianIndices(B) .+ i) ``` makes it clear that the loop is for all indices `j` such that `j ∈ CartesianIndices(A)` and `j - i ∈ CartesianIndices(B)` which is required to have `A[j]` and `B[j-i]` in bounds. The same principles can be applied to the uni-dimensional code: ```julia for i ∈ eachindex(C) s = zero(T) for j ∈ eachindex(A) ∩ (eachindex(B) .+ i) s += A[j]*B[j-i] end C[i] = s end ``` Now suppose that you want to compute the **discrete convolution** instead: $$ C[i] = \sum_{j} A[j] B[i-j] $$ Then, the code for multi-dimensional arrays writes: ```julia for i ∈ CartesianIndices(C) s = zero(T) for j ∈ CartesianIndices(A) ∩ (i .- CartesianIndices(B)) s += A[j]*B[i-j] end C[i] = s end ``` because you want to have `j ∈ CartesianIndices(A)` and `i - j ∈ CartesianIndices(B)`, the latter being equivalent to `j ∈ i - CartesianIndices(B)`. This simple change however results in **a dramatic slowdown** because the expression `i .- CartesianIndices(B)` yields an array of Cartesian indices while the expression `CartesianIndices(B) .- i` yields an instance of `CartesianIndices`. As an example, the discrete convolution of a 32×32 array by a 8×8 array in single precision floating-point takes 30.3 ms or 88.5 ms on my laptop (Intel Core i7-5500U CPU at 2.40GHz) depending on the order of the operands and 40Mb of memory compared to 5.6 μs or 35.8 µs and no additional memory for a discrete correlation (all with `@inbounds` and `@simd` of course). Hence a slowdown by a factor of 5410 or 2570 for the same number of floating-point operations. Using the `@range` macro of `EasyRanges`, the discrete correlation and discrete convolution write: ```julia # Discrete correlation. for i ∈ CartesianIndices(C) s = zero(T) for j ∈ @range CartesianIndices(A) ∩ (i + CartesianIndices(B)) s += A[j]*B[j-i] end C[i] = s end # Discrete convolution. for i ∈ CartesianIndices(C) s = zero(T) for j ∈ @range CartesianIndices(A) ∩ (i - CartesianIndices(B)) s += A[j]*B[i-j] end C[i] = s end ``` which do not require the broadcasting operators `.+` and `.-` and which do not have the aforementioned issue. Using the macros `@range` and `@reverse_range` have other advantages: - The result is guaranteed to be `Int`-valued (needed for efficient indexing). - The *step*, that is the increment between consecutive indices, in the result has a given direction: `@range` always yields a non-negative step (which is favorable for loop vectorization), while `@reverse_range` always yields a non-positive step. - The syntax of range expressions is simplified and extended for other operators (like `±` for stretching or `∓` for shrinking) that are not available in the base Julia. This syntax can be extended as the package is developed without disturbing other packages (i.e., no type-piracy).
EasyRanges
https://github.com/emmt/EasyRanges.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
597
### ScRNAseq.jl ### ### A julia package for scRNA-seq exploratory data analysis ## ### This file is NOT YET a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md module ScRNAseq export Fileio, Qualitycontrol, Transformation, Embedding include("helper.jl") include("fileio/fileio.jl") include("qualitycontrol/qualitycontrol.jl") include("transformation/transformation.jl") include("embedding/embedding.jl") using .Fileio using .Qualitycontrol using .Transformation using .Embedding end # module ScRNAseq
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
508
# using TableReader rescale(A; dims=1) = (A .- mean(A, dims=dims)) ./ max.(std(A, dims=dims), eps()) # vecnorm(x) = x./norm.(x[:,i] for i in 1:size(x,2))' vecnorm(x::AbstractMatrix) = norm.(x[:,i] for i in 1:size(x,2)) function normc!(x) for i in 1:size(x,2) x[:,i]=x[:,i]./norm(x[:,i]) end end #= function [A,G,H] = pythagoreanMeans(list) A = mean(list); % arithmetic mean G = exp(mean(log(list))); % geometric mean H = 1./mean(1./list); % harmonic mean end =#
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
99
module Embedding export umap, tsne include("umap.jl") include("tsne.jl") end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
121
import TSne, Plots function tsne(X) X = convert(Array{Float64,2}, X); Y = TSne.tsne(X, 3); return Y end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
498
import UMAP, Plots function umap(X) X2 = convert(Array{Float64,2}, X) Y = UMAP.umap(X2, 3) # ,2;n_neighbors=5); f2 = Plots.plot(Y[1, :], Y[2, :], seriestype = :scatter) Y = Y'; # theplot = scatter(Y[:,1], Y[:,2], marker=(2,2,:auto,stroke(0))) # , color=Int.(allabels[1:size(Y,1)])) #= f = scatter3d( Y[:, 1], Y[:, 2], Y[:, 3], marker = (2, 2, :auto, stroke(0)), color = Int.(sum(X, dims = 1)), ) =# return Y end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
943
module Fileio using DelimitedFiles, MatrixMarket, UnicodePlots, MAT, CSV, DataFrames export readmm, readtx, readgl, showx function readmm(filename) # read MatrixMarket file X=mmread(filename); end function readcsv(filename) # read CSV file with header and row name df = CSV.File(filename; datarow=2) |> DataFrame! X=convert(Matrix, df[:,2:end]) genelist=df[:,1] return X,genelist end function readmt(filename) # read Matlab Mat file file=matopen(filename) X=read(file,"X") genelist=read(file,"genelist") close(file) X = convert(Array{Float64,2}, X) return X,genelist end function readtx(filename) # read DLM text file X=readdlm(filename,',',Int16) end function readgl(filename::String,colidx::Integer=1) # read genelist genelist=readdlm(filename,'\t',String) genelist=vec(genelist[:,colidx]) end function showx(X) spy(X) end end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
178
# using MarketMatrix # https://imgur.com/a/y3C0Vd2 println(pwd()) cd(dirname(@__FILE__)) println(pwd()) using MatrixMarket A=mmread("Ydf_matrix.mtx") using UnicodePlots spy(A)
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
2472
using LinearAlgebra, Statistics, MAT, Arpack # cd("C:\\Users\\jcai.AUTH\\Documents\\GitHub\\julia_test\\pcnet") # file=matopen("testdata.mat") # X=read(file,"X") # A0=read(file,"A") # close(file) # https://discourse.julialang.org/t/how-to-get-the-principal-components-and-variances-from-multivariatestats/15843/4 """ pca(data) perform PCA using SVD inputs: - data: M x N matrix of input data. (M dimensions, N trials) outputs: - PC: each column is a principle component - V: M x 1 matrix of variances """ function pca(data::Array{T,2}) where T X = data .- mean(data, dims=2) Y = X' ./ sqrt(T(size(X,2)-1)) U,S,PC = svd(Y) S = diagm(0=>S) V = S .* S # find the least variance vector indexList = sortperm(diag(V); rev=true) # PCs = map(x->PC[:,x], indexList) return PC, diag(V)[indexList] end X=randn(Float64, (20,4)) pc0,d0=pca(collect(X')) using MultivariateStats p=fit(PCA,X') pc1=p.proj d1=p.prinvars function pca2(X; k::Int=3) X=X.-mean(X,dims=1) Σ = X'X./(size(X,1)-1) # Covariance natrix # D,V = eigen(Σ,sortby=-) # Factorise into Σ = U * diagm(S) * V' D,V = eigen(Σ,sortby=x -> -abs(x)) # Factorise into Σ = U * diagm(S) * V' # sortby = x -> -abs(x) Xrot = X*V # Rotate onto the basis defined by U # pvar = sum(D[1:k]) / sum(D) # Percentage of variance retained with top k vectors # X̃ = Xrot[:,1:k] # Keep top k vectors return V, D end pc2,d2=pca2(X) function pca3(X, k::Int=3) X=X.-mean(X,dims=1) X=X./sqrt(size(X,1)-1) # var(X,dims=1) F = svd(X) # Factorise into Σ = U * diagm(S) * V' # Xrot = X*F.V # Rotate onto the basis defined by U # pvar = sum(F.S[1:k]) / sum(F.S) # Percentage of variance retained with top k vectors # X̃ = Xrot[:,1:k] # Keep top k vectors return F.V, F.S.*F.S end pc3,d3=pca3(X) function pca4(X, k::Int=3) X=X.-mean(X,dims=1) X=X./sqrt(size(X,1)-1) # var(X,dims=1) F = svds(X;nsv=3)[1] # Factorise into Σ = U * diagm(S) * V' # Xrot = X*F.V # Rotate onto the basis defined by U # pvar = sum(F.S[1:k]) / sum(F.S) # Percentage of variance retained with top k vectors # X̃ = Xrot[:,1:k] # Keep top k vectors return F.V, F.S.*F.S end pc4,d4=pca4(X) [d0 d1 d2 d3 d4] ``` pc0 pc1 pc2 pc3 ```
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
2172
using LinearAlgebra, Statistics, MAT, Arpack, MultivariateStats, Random # p=fit(PCA,X') # cd("C:\\Users\\jcai.AUTH\\Documents\\GitHub\\julia_test\\pcnet") # file=matopen("testdata.mat") # X=read(file,"X") # A0=read(file,"A") # close(file) rng = MersenneTwister(1234); X=randn(rng,Float64,(200,300)); function pcnetwork1(X) n=size(X,2) A=1.0 .-Matrix(I,n,n) for k in 1:n y=X[:,k] 𝒳=X[:,1:end.≠k] F=svds(𝒳,nsv=3)[1] ϕ=F.V s=𝒳*ϕ s ./= (norm.(s[:,i] for i=1:size(s,2)).^2)' b=sum(y.*s,dims=1) 𝒷=ϕ*b' A[k,A[k,:].==1.0]=𝒷 end return A end function pcnetwork2(X) n=size(X,2) A=1.0 .-Matrix(I,n,n) for k in 1:n y=X[:,k] 𝒳=X[:,1:end.≠k] F=svd(𝒳) ϕ=F.V[:,1:3] s=𝒳*ϕ s ./=(norm.(s[:,i] for i=1:size(s,2)).^2)' b=sum(y.*s,dims=1) 𝒷=ϕ*b' A[k,A[k,:].==1.0]=𝒷 end return A end function pcnetwork3(X) n=size(X,2) A=1.0 .-Matrix(I,n,n) for k in 1:n y=X[:,k] 𝒳=X[:,1:end.≠k] # _,v=eigen(𝒳'𝒳,sortby=-) # v=eigvecs(𝒳'𝒳,sortby=-) # v=v[:,1:3] _,ϕ=eigs(𝒳'𝒳,nev=3,which=:LM) s=𝒳*ϕ s ./=(norm.(s[:,i] for i=1:size(s,2)).^2)' b=sum(y.*s,dims=1) 𝒷=ϕ*b' A[k,A[k,:].==1.0]=𝒷 end return A end function pcnetwork4(X) n=size(X,2) A=1.0 .-Matrix(I,n,n) for k in 1:n y=X[:,k] 𝒳=X[:,1:end.≠k] p=fit(PCA,𝒳') v=p.proj v=v[:,1:3] s=𝒳*v s=s./(norm.(s[:,i] for i=1:size(s,2)).^2)' b=sum(y.*s,dims=1) 𝒷=v*b' A[k,A[k,:].==1.0]=𝒷 end return A end function pcnetwork5(X) # http://hua-zhou.github.io/teaching/biostatm280-2017spring/slides/16-eigsvd/eigsvd.html n=size(X,2) A=1.0 .-Matrix(I,n,n) for k in 1:n y=X[:,k] 𝒳=X[:,1:end.≠k] # _,v=eigen(𝒳'𝒳,sortby=-) # v=eigvecs(𝒳'𝒳,sortby=-) # v=v[:,1:3] U,S,V=svd(𝒳) ϕ=V[:,1:3] b=V*inv(diagm(S))*U'*y 𝒷=ϕ*b' A[k,A[k,:].==1.0]=𝒷 end return A end @time A1=pcnetwork1(X); @time A2=pcnetwork2(X); @time A3=pcnetwork3(X); # @time A5=pcnetwork5(X); # @time A4=pcnetwork4(X); A1≈A2≈A3 # A1≈A5
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
618
println("hello") using DelimitedFiles a=readdlm("GSM3204305_P_N_Expr_999cells.csv",','); b=a[2:end,2:end] using CSV, DataFrames, Statistics # CSV.File("GSM3204305_P_N_Expr_999cells.csv"; datarow=2) df = CSV.File("GSM3204305_P_N_Expr_999cells.csv"; datarow=2) |> DataFrame! X=convert(Matrix, df[:,2:end]) typeof(X) # df = DataFrame(x = rand(3),w=rand(3)) # dv = @data([NA, 3, 2, 5, 4]) # mean(dv) # b=readtable("GSM3204305_P_N_Expr_999cells.csv") libsize=sum(X,dims=1) libsize[libsize.>20000] filter(x -> x > 20000, libsize) a = [1 2; 3 4] a[a .== 1] a[[false true; false true]] X[[X[:,1].>=0,libsize.>20000]]
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
722
# Pkg.add("TSne") using Statistics, DelimitedFiles a = readdlm("GSM3204305_P_N_Expr_999cells.csv", ','); X = a[2:end, 2:end] # X=a[2:500,2:500] rescale(A; dims = 1) = (A .- mean(A, dims = dims)) ./ max.(std(A, dims = dims), eps()) # using TSne # Y = tsne(X', 2, 50, 1000, 20.0); # samples in row using UMAP, Plots X2 = convert(Array{Float64,2}, X) Y = umap(X2, 3) # ,2;n_neighbors=5); f2 = plot(Y[1, :], Y[2, :], seriestype = :scatter) Y = Y'; # theplot = scatter(Y[:,1], Y[:,2], marker=(2,2,:auto,stroke(0))) # , color=Int.(allabels[1:size(Y,1)])) f = scatter3d( Y[:, 1], Y[:, 2], Y[:, 3], marker = (2, 2, :auto, stroke(0)), color = Int.(sum(X, dims = 1)), ) # Plots.pdf(f, "myplot.pdf")
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
512
#using Pkg #Pkg.add("DelimitedFiles") #Pkg.add("MAT") #Pkg.add("Arpack") using Statistics, DelimitedFiles, LinearAlgebra, Statistics, MAT, Arpack, Pkg cd("E:\\GitHub\\julia_test\\scrnaseq_code") file=matopen("s1131_cr.mat") X=read(file,"X"); s=read(file,"t_sne"); close(file) cd("..") X = convert(Array{Float64,2}, X) # Pkg.activate("E:\\GitHub\\julia_test\\pcnet\\pcnet.jl") using pcrnet #@time A1=pcrnet.pcnetwork1(rand(200,300)); #@time A3=pcrnet.pcnetwork3(rand(200,300)); @time A=pcrnet.pcnetwork3(X');
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
154
module Normalization export norm_libsize # using StatsBase function norm_libsize(X) lbsz=sum(X,dims=1) X=(X./lbsz)*1e4; return X end end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
599
module Qualitycontrol using Statistics, SparseArrays export selectg, scstats, emptyrate function ismtgene(genelist) startswith.(uppercase.(genelist),"MT-") end function selectg(X,genelist) ng=size(X,1); i=vec(sum(!iszero,X,dims=2)./ng.>0.05) X=X[i,:]; genelist=genelist[i]; return X,genelist end function scstats(X) logmean=log10.(mean(X,dims=2)); logvar=log10.(var(X,dims=2)); dropoutrate=mean(X.==0,dims=2); return logmean,logvar,dropoutrate end function emptyrate(X) # nnz(sparse(X)) count(!iszero,X)./count(isreal,X) end end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
205
function pearsonresiduals(X) u=(sum(X,dims=2)*sum(X,dims=1))./sum(X); s=sqrt.(u+(u.^2)./100); X=(X-u)./s; n=size(X,2); sn=sqrt(n); X[X.>sn].=sn; X[X.<-sn].=-sn; return X end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
95
module Transformation export pearsonresiduals include("pearsonresiduals.jl") end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
414
using ScRNAseq # obviously the tests use the ScTenifoldNet module... using DelimitedFiles cd(dirname(@__FILE__)) X=readdlm("X.txt",',',Int16) genelist=vec(readdlm("genelist.txt",String)) X,genelist=ScRNAseq.Qualitycontrol.selectg(X,genelist) X1=ScRNAseq.Transformation.pearsonresiduals(X) Y=ScRNAseq.Embedding.umap(X1) # Y2=ScRNAseq.Embedding.tsne(X) using Plots scatter(Y[:,1],Y[:,2])
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
402
push!(LOAD_PATH,"E:/GitHub/ScRNAseq.jl/src/"); using ScRNAseq # obviously the tests use the ScTenifoldNet module... using Test # and the Base.Test module... tests = ["code_test1"] # the test file names are stored as strings... for t in tests include("$(t).jl") # ... so that they can be evaluated in a loop end
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.1.0
4fd0bc928ee1f2759527e1e3115e679ed9a3d6b8
code
2493
using DelimitedFiles cd(dirname(@__FILE__)) X=readdlm("X.txt",',',Int16) genelist=vec(readdlm("genelist.txt",String)) using Statistics glogmean=log10.(mean(X,dims=2)); glogvar=log10.(var(X,dims=2)); dropoutrate=mean(X.==0,dims=2); using SparseArrays nnz(sparse(X)) count(!iszero,X) using Plots Plots.scatter(glogmean,glogvar) Plots.scatter(glogmean,1 .-dropoutrate) using Distributions # fit_mle(NegativeBinomial,X[3,:].+0.0) fit_mle(Normal,X[3,:].+0.0) # fit(Normal,X[3,:].+0.0) # using GLM # http://naobioml.blogspot.com/2017/02/how-to-fit-count-data-with-negative.html data=X[3,:].+0.0; function f2(x::Vector) sum = 0 for i in data sum += log(pdf(NegativeBinomial(x[1], x[2]), i)) end return -1*sum end using Optim, Distributions lower = [0.0, 0.0] upper = [Inf, 1] initial_x = [0.5, 0.5] # x2 = optimize(DifferentiableFunction(f2), initial_x, lower, upper, Fminbox(), optimizer = GradientDescent) x2 = optimize(f2, [0.0, 0.0], [Inf, 1],[0.5, 0.5]) function f1(x) sum = 0 for i in data sum += log(pdf(Poisson(x), i)) end -1*sum end x1 = optimize(f1, 0.0, 7) #= ------------ using Distributions, Optim, StatsPlots julia> data = vcat([0 for i in 1:70], [1 for i in 1:38], [2 for i in 1:17], [3 for i in 1:10], [4 for i in 1:9], [5 for i in 1:3], [6 for i in 1:2], [7 for i in 1:1]); julia> function f2(x) sum = 0.0 for i in data sum += log(pdf(NegativeBinomial(x[1], x[2]), i)) end return -sum end f2 (generic function with 1 method) julia> opt_result = optimize(f2, [0.0, 0.0], [Inf, 1],[0.5, 0.5]) * Status: success * Candidate solution Minimizer: [1.02e+00, 4.72e-01] Minimum: 2.224372e+02 * Found with Algorithm: Fminbox with L-BFGS Initial Point: [5.00e-01, 5.00e-01] * Convergence measures |x - x'| = 0.00e+00 ≤ 0.0e+00 |x - x'|/|x'| = 0.00e+00 ≤ 0.0e+00 |f(x) - f(x')| = 0.00e+00 ≤ 0.0e+00 |f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00 |g(x)| = 7.79e-08 ≰ 1.0e-08 * Work counters Seconds run: 0 (vs limit Inf) Iterations: 4 f(x) calls: 226 ∇f(x) calls: 226 julia> histogram(data, normalize = true, label = "Data", alpha = 0.5, linecolor = "white"); plot!(NegativeBinomial(opt_result.minimizer[1], opt_result.minimizer[2]), label = "Negative Binomial fit") =#
ScRNAseq
https://github.com/jamesjcai/ScRNAseq.jl.git
[ "MIT" ]
0.2.0
90af6257edf8e0a40a94105db3bf4233a97f2136
code
765
using Documenter, FresnelIntegrals using Documenter.Remotes makedocs(sitename="FresnelIntegrals.jl") DocMeta.setdocmeta!(FresnelIntegrals, :DocTestSetup, :(using FresnelIntegrals); recursive=true) makedocs(; modules=[FresnelIntegrals], authors="Kiran Shila <[email protected]> and contributors", repo=Remotes.GitHub("kiranshila","FresnelIntegrals.jl"), sitename="FresnelIntegrals.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://kiranshila.github.io/FresnelIntegrals.jl", edit_link="master", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/kiranshila/FresnelIntegrals.jl.git", devbranch="master", )
FresnelIntegrals
https://github.com/kiranshila/FresnelIntegrals.jl.git
[ "MIT" ]
0.2.0
90af6257edf8e0a40a94105db3bf4233a97f2136
code
2590
module FresnelIntegrals using SpecialFunctions using IrrationalConstants: sqrtπ export fresnelc, fresnels, fresnel """ fresnelc(z::Number) Calculate the normalized Fresnel cosine integral ```math C(z) = \\int_{0}^{z} \\cos{\\left(\\frac{\\pi t^2}{2}\\right)} \\, \\mathrm{d}t ``` for the number ``z``. """ function fresnelc(z::Number) x = (z * sqrtπ) / 2 re_x, im_x = reim(x) a = (re_x + im_x) + (im_x - re_x) * im b = (re_x - im_x) + (im_x + re_x) * im re_erf_a, im_erf_a = reim(erf(a)) re_erf_b, im_erf_b = reim(erf(b)) re_y = (re_erf_a - im_erf_a + re_erf_b + im_erf_b) / 4 im_y = (im_erf_a + re_erf_a - re_erf_b + im_erf_b) / 4 y = re_y + im_y * im return y end function fresnelc(z::Real) x = (z * sqrtπ) / 2 a = x + x * im re_erf_a, im_erf_a = reim(erf(a)) y = (re_erf_a + im_erf_a) / 2 return y end """ fresnels(z::Number) Calculate the normalized Fresnel sine integral ```math S(z) = \\int_{0}^{z} \\sin{\\left(\\frac{\\pi t^2}{2}\\right)} \\, \\mathrm{d}t ``` for the number ``z``. """ function fresnels(z::Number) x = (z * sqrtπ) / 2 re_x, im_x = reim(x) a = (re_x + im_x) + (im_x - re_x) * im b = (re_x - im_x) + (im_x + re_x) * im re_erf_a, im_erf_a = reim(erf(a)) re_erf_b, im_erf_b = reim(erf(b)) re_y = (re_erf_a + im_erf_a + re_erf_b - im_erf_b) / 4 im_y = (im_erf_a - re_erf_a + re_erf_b + im_erf_b) / 4 y = re_y + im_y * im return y end function fresnels(z::Real) x = (z * sqrtπ) / 2 a = x + x * im re_erf_a, im_erf_a = reim(erf(a)) y = (re_erf_a - im_erf_a) / 2 return y end """ fresnel(z::Number) Calculate the normalized cosine and sine fresnel integrals. See also [`fresnels`](@ref), [`fresnelc`](@ref). """ function fresnel(z::Number) x = (z * sqrtπ) / 2 re_x, im_x = reim(x) a = (re_x + im_x) + (im_x - re_x) * im b = (re_x - im_x) + (im_x + re_x) * im re_erf_a, im_erf_a = reim(erf(a)) re_erf_b, im_erf_b = reim(erf(b)) re_y_sin = (re_erf_a + im_erf_a + re_erf_b - im_erf_b) / 4 im_y_sin = (im_erf_a - re_erf_a + re_erf_b + im_erf_b) / 4 re_y_cos = (re_erf_a - im_erf_a + re_erf_b + im_erf_b) / 4 im_y_cos = (im_erf_a + re_erf_a - re_erf_b + im_erf_b) / 4 y_sin = re_y_sin + im_y_sin * im y_cos = re_y_cos + im_y_cos * im return (y_cos, y_sin) end function fresnel(z::Real) x = (z * sqrtπ) / 2 a = x + x * im re_erf_a, im_erf_a = reim(erf(a)) y_sin = (re_erf_a - im_erf_a) / 2 y_cos = (re_erf_a + im_erf_a) / 2 return (y_cos, y_sin) end end # module
FresnelIntegrals
https://github.com/kiranshila/FresnelIntegrals.jl.git
[ "MIT" ]
0.2.0
90af6257edf8e0a40a94105db3bf4233a97f2136
code
1003
using FresnelIntegrals using Test using QuadGK @testset "FresnelIntegrals.jl" begin # Generate random complex number z = randn(ComplexF64) # Test by comparing to numeric solution @test fresnelc(z) ≈ quadgk(t->cos(π*t^2/2),0,z)[1] @test fresnels(z) ≈ quadgk(t->sin(π*t^2/2),0,z)[1] # Test just for code coverage 😄 @test (fresnelc(z),fresnels(z)) == fresnel(z) # Generate random real number z = randn(Float64) # Test by comparing to numeric solution @test fresnelc(z) ≈ quadgk(t->cos(π*t^2/2),0,z)[1] @test fresnels(z) ≈ quadgk(t->sin(π*t^2/2),0,z)[1] # Test just for code coverage 😄 @test (fresnelc(z),fresnels(z)) == fresnel(z) # Precise values come from WolframAlpha calculator # One could add more decimals and more tests if needed @test fresnels(1.) ≈ 0.4382591473903 @test fresnelc(1.) ≈ 0.7798934003768 @test fresnels(sqrt(2)*im) ≈ -0.7139722140219*im @test fresnelc(sqrt(2)*im) ≈ 0.5288915951112*im end
FresnelIntegrals
https://github.com/kiranshila/FresnelIntegrals.jl.git
[ "MIT" ]
0.2.0
90af6257edf8e0a40a94105db3bf4233a97f2136
docs
2252
# FresnelIntegrals.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://kiranshila.github.io/FresnelIntegrals.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://kiranshila.github.io/FresnelIntegrals.jl/dev/) [![Build Status](https://github.com/kiranshila/FresnelIntegrals.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/kiranshila/FresnelIntegrals.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/kiranshila/FresnelIntegrals.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kiranshila/FresnelIntegrals.jl) A quick Julia library for calculating Fresnel Integrals using the error function from [SpecialFunctions.jl](https://github.com/JuliaMath/SpecialFunctions.jl). ```julia using FresnelIntegrals using Plots z = -30:0.001:30 plot(x->real(fresnelc(x)), x->real(fresnels(x)),z,legend=false) title!("Euler Spiral") xlabel!("C(z)") ylabel!("S(z)") ``` ![Spiral](Spiral.png) As expected, this is much faster than the numeric integral solution ```julia using QuadGK using FresnelIntegrals julia> @benchmark fresnelc(1.8) BenchmarkTools.Trial: 10000 samples with 772 evaluations. Range (min … max): 161.448 ns … 1.744 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 163.927 ns ┊ GC (median): 0.00% Time (mean ± σ): 164.460 ns ± 16.519 ns ┊ GC (mean ± σ): 0.00% ± 0.00% ▃▄▂ ▁▇█▄ ▁ ▃▄▂▁ ▁▁▁ ▂ ███▇▁▃▁▁▁▁▁▁▁▁▁▁▅▇▅█████▁▄▄▄▆▆▅▆▆█▇▆█████▇▆▅▅▇██████▇▇▆▇▇▆▅▆ █ 161 ns Histogram: log(frequency) by time 168 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark quadgk(t->cos(π*t^2/2),0,1.8) BenchmarkTools.Trial: 10000 samples with 187 evaluations. Range (min … max): 548.321 ns … 48.949 μs ┊ GC (min … max): 0.00% … 98.43% Time (median): 554.893 ns ┊ GC (median): 0.00% Time (mean ± σ): 599.010 ns ± 558.147 ns ┊ GC (mean ± σ): 2.25% ± 3.29% ▅█▆▂▄▃▃▁▁▁▁▁ ▂▁ ▁▁▁▁▂▁ ▁ ███████████████▇▅▆▅▄▃▅▄▅▅▅▄▄▃▄████████▇▇▆▆▇▆▆▆▇▇▇▇▇█████████▇ █ 548 ns Histogram: log(frequency) by time 754 ns < Memory estimate: 368 bytes, allocs estimate: 2. ```
FresnelIntegrals
https://github.com/kiranshila/FresnelIntegrals.jl.git
[ "MIT" ]
0.2.0
90af6257edf8e0a40a94105db3bf4233a97f2136
docs
287
```@meta CurrentModule = FresnelIntegrals ``` # FresnelIntegrals A quick Julia library for calculating Fresnel Integrals using the error function from [SpecialFunctions.jl](https://github.com/JuliaMath/SpecialFunctions.jl). ## Functions ```@autodocs Modules = [FresnelIntegrals] ```
FresnelIntegrals
https://github.com/kiranshila/FresnelIntegrals.jl.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
code
204
push!(LOAD_PATH, "../src/") using Documenter using BasicDataLoaders makedocs(sitename="BasicDataLoaders") deploydocs(repo = "github.com/lucasondel/BasicDataLoaders.git", devbranch = "main")
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
code
765
# DataLoaders - Basic data loaders for training machine learning # models # # Lucas Ondel 2020 module BasicDataLoaders using BSON ####################################################################### # Basic input for loading / saving data, models, ... export load export save include("io.jl") ####################################################################### # Abstract data loader export AbstractDataLoader """ abstract type AbstractDataLoader end Base type for all the data loaders. """ abstract type AbstractDataLoader{T} end # Subtypes should implement the Iteration and Indexing interfaces ####################################################################### # Concrete data loaders export DataLoader include("dataloader.jl") end
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
code
2726
# DataLoaders - Concrete subtypes of AbstractDataLoader # # Lucas Ondel 2020 function Base.show(io::IO, dl::AbstractDataLoader) println(io, "$(typeof(dl))") println(io, " data: $(typeof(dl.data))") print(io, " batchsize: $(dl.batchsize)") end _index(i, batchsize) = (i-1) * batchsize + 1 ####################################################################### # DataLoader """ struct DataLoader data batchsize end # Constructor DataLoader(data[, batchsize = 1, preprocess = x -> x, preprocess_element = x -> x]) where `data` is a sequence of elements to iterate over, `batchsize` is the size of each batch, `preprocess` is a user-defined function to apply on each batch and `preprocess_element` is a user-defined function to apply on each batch's element. By default, `preprocess` and `preprocess_element` are simply the identity function. !!! warning When iterating, the final batch may have a size smaller than `batchsize`. """ struct DataLoader{T<:AbstractVector} <: AbstractDataLoader{T} data::T batchsize::UInt fbatch::Function felement::Function function DataLoader(data::AbstractVector; batchsize = 1, preprocess = x -> x, preprocess_element = x -> x) length(data) > 0 || throw(ArgumentError("cannot create a DataLoader from an empty collection")) batchsize >= 1 || throw(ArgumentError("`batchsize = $batchsize` should greater or equal to 1")) new{typeof(data)}(data, batchsize, preprocess, preprocess_element) end end function Base.iterate(dl::DataLoader, state = 1) if state > size(dl.data, 1) return nothing end offset = min(state+dl.batchsize-1, size(dl.data,1)) dl.fbatch(dl.felement.(dl.data[state:offset])), offset+1 end Base.length(dl::DataLoader) = UInt(ceil(size(dl.data, 1)/dl.batchsize)) Base.eltype(dl::DataLoader) = eltype(dl.data) function Base.getindex(dl::DataLoader, i) 1 <= i <= length(dl) || throw(BoundsError(dl, i)) start = _index(i, dl.batchsize) offset = min(start + dl.batchsize - 1, size(dl.data,1)) dl.fbatch(dl.felement.(dl.data[start:offset])) end function Base.getindex(dl::DataLoader, ur::UnitRange) 1 <= ur.start <= length(dl) || throw(BoundsError(dl, ur.start)) 1 <= ur.stop <= length(dl) || throw(BoundsError(dl, ur.stop)) N = size(dl.data, 1) start = _index(ur.start, dl.batchsize) offset = min(_index(ur.stop, dl.batchsize) + dl.batchsize - 1, N) DataLoader(dl.data[start:offset], batchsize = dl.batchsize, preprocess = dl.fbatch, preprocess_element = dl.felement) end Base.firstindex(dl::DataLoader) = 1 Base.lastindex(dl::DataLoader) = length(dl)
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
code
950
# DataLoaders - Basic input/output operations # # Lucas Ondel 2020 """ save(path, obj) Write `obj` to file `path` in the [BSON format](http://bsonspec.org/). The intermediate directories are created if they do not exists. If `path` does not end with the extension ".bson", the extension is appended to the output path. The function returns the type of the object saved. See [`load`](@ref) to load this file again. """ function save(path, obj) if ! endswith(path, ".bson") path *= ".bson" end mkpath(dirname(path)) T = typeof(obj) bson(path, data = obj, type = T) T end """ load(path) Load a julia object saved in `path` with the function [`save`](@ref). If `path` does not end with thex extension ".bson", the extension is appended to input path. """ function load(path) if ! endswith(path, ".bson") path *= ".bson" end dict = BSON.load(path) convert(dict[:type], dict[:data]) end
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
code
1885
using BasicDataLoaders using Distributed using Documenter using Test doctest(BasicDataLoaders) @testset "input/output operations" begin obj = Float32[1, 2, 3] dir = mktempdir(cleanup = true) path = joinpath(dir, "test") T = save(path*".bson", obj) @test T == Array{Float32, 1} @test isfile(path*".bson") lobj = load(path*".bson") @test typeof(lobj) == Array{Float32, 1} @test all(lobj .≈ obj) save(path, obj) @test ! isfile(path) @test isfile(path*".bson") lobj = load(path*".bson") @test typeof(lobj) == Array{Float32, 1} @test all(lobj .≈ obj) end @testset "Data loader" begin obj = Float32[i for i in 1:10] dl = DataLoader(obj, batchsize = 1) @test typeof(dl) == DataLoader{Array{Float32, 1}} @test_throws ArgumentError DataLoader(obj, batchsize = 0) @test_throws ArgumentError DataLoader(obj, batchsize = -1) @test_throws ArgumentError DataLoader([], batchsize = 1) dl = DataLoader(obj, batchsize = 3) @test length(dl) == 4 @test all(dl[1] .== [1, 2, 3]) @test all(dl[2] .== [4, 5, 6]) @test all(dl[3] .== [7, 8, 9]) @test all(dl[4] .== [10]) @test all(dl[1] .== dl[begin]) @test all(dl[4] .== dl[end]) sobj = [[1, 1], [2, 2], [3, 3]] v = [3, 4] sdl = DataLoader(obj, batchsize = 2) sdl2 = DataLoader(obj, batchsize = 2, preprocess_element = x -> v .* x) for (i, batch) in enumerate(sdl2) @test all((sdl2[i]) .== [v .* a for a in sdl[i]]) end dl2 = DataLoader(obj, batchsize = 3, preprocess = x -> 2 .* x) for (i, batch) in enumerate(dl2) @test all((2 .* dl[i]) .== dl2[i]) end N = 10 dl = DataLoader(1:10, batchsize = 3, preprocess = x -> 2*x) addprocs(2) @everywhere using BasicDataLoaders res = @distributed (+) for x in dl sum(x) end @test res == N*(N+1) end
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
docs
839
# BasicDataLoaders *Julia package providing a simple data loader to train machine learning systems.* | **Documentation** | **Test Status** | |:------------------:|:-----------------:| | [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://lucasondel.github.io/BasicDataLoaders/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://lucasondel.github.io/BasicDataLoaders/dev) | ![](https://github.com/lucasondel/BasicDataLoaders/workflows/Test/badge.svg) | ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type ] to enter the Pkg REPL mode and run: ```julia pkg> add BasicDataLoaders ``` Have a look at the [documentation](https://lucasondel.github.io/BasicDataLoaders/stable/) to get started! ## Authors Lucas Ondel, Brno University of Technology, 2020
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
1.1.0
88eb6c42d1fc48144dfd2bb69f359ef6fb0adb59
docs
2255
# BasicDataLoaders Julia package providing a simple data loader to train machine learning systems. The source code of the project is available on [github](https://github.com/lucasondel/BasicDataLoaders). ## Authors Lucas Ondel, Brno University of Technology, 2020 ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ```julia pkg> add BasicDataLoaders ``` ## API The package provide a simple data loader object: ```@docs DataLoader ``` !!! note `DataLoder` supports the iterating and indexing interface and, consequently, it can be used in [distributed for loops](https://docs.julialang.org/en/v1/manual/distributed-computing/). Because it is very common for data loaders to load data from disk, the package also provides two convenience functions to easily read and write files: ```@docs save load ``` ## Examples Here is a complete example that simply print the batches: ```jldoctest julia> using BasicDataLoaders julia> dl = DataLoader(1:10, batchsize = 3) DataLoader{UnitRange{Int64}} data: UnitRange{Int64} batchsize: 3 julia> for batch in dl println(batch) end [1, 2, 3] [4, 5, 6] [7, 8, 9] [10] ``` Here is another example that computes the sum of all even numbers between 2 and 200 included: ```jldoctest julia> using BasicDataLoaders julia> dl = DataLoader(1:100, batchsize = 10, preprocess = x -> 2*x) DataLoader{UnitRange{Int64}} data: UnitRange{Int64} batchsize: 10 julia> sum(sum(batch) for batch in dl) 10100 ``` Finally, here is an example simulating loading data from files. In practice, you can replace the printing function with the [`load`](@ref) function. ```jldoctest julia> using BasicDataLoaders julia> files = ["file1.bson", "file2.bson", "file3.bson"] 3-element Array{String,1}: "file1.bson" "file2.bson" "file3.bson" julia> dl = DataLoader(files, batchsize = 2, preprocess = x -> println("load and merge files $x")) DataLoader{Array{String,1}} data: Array{String,1} batchsize: 2 julia> for batch in dl println("do something on this batch") end load and merge files ["file1.bson", "file2.bson"] do something on this batch load and merge files ["file3.bson"] do something on this batch ```
BasicDataLoaders
https://github.com/lucasondel/BasicDataLoaders.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
1111
push!(LOAD_PATH,"../src/") using Documenter, PowerModelsADA makedocs( modules = [PowerModelsADA], sitename = "PowerModelsADA.jl", authors = "Mohannad Alkhraijah", format = Documenter.HTML( analytics = "", mathengine = Documenter.MathJax(), collapselevel=1, ), pages = [ "Home" => "index.md", "Manual" => [ "Quick Start Guide" => "quickguide.md", "Data Structure" => "data_structure.md", "Technical Specifications" => "specification.md" , "Distributed Algorithms" => [ "ADMM" => "admm.md", "ATC" => "atc.md", "APP" => "app.md", "ALADIN" => "aladin.md", "Adaptive ADMM" => "adaptive_admm.md" ] ], "Tutorials" => [ "Using PowerModelsADA" => "tutorial.md", "User-defined Algorithm" => "newalgorithm.md" ], "Library" => "library.md", "Comparison Results" => "comparison.md" ] ) deploydocs( repo = "github.com/mkhraijah/PowerModelsADA.jl" )
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
2925
## Import package using PowerModelsADA using Ipopt ## Read case with partition file and return dictionary of the paritioned case case_path = "test/data/case14.m" parition_file_path = "test/data/case14_2areas.csv" data = parse_file(case_path) assign_area!(data, parition_file_path) ## Settings and optimizer initiation max_iteration = 1000 tol = 1e-3 optimizer = optimizer_with_attributes(Ipopt.Optimizer, "print_level"=>0) model_type = ACPPowerModel ## Distributed algorithm ## ADMM with fully distributed structure data_area = solve_dopf_admm(data, model_type, optimizer, tol=tol, max_iteration=max_iteration, print_level = 1, alpha=1000, save_data=["solution", "mismatch"], multiprocessors=false) error_admm = compare_solution(data, data_area, model_type, optimizer) ## Adaptive ADMM with fully distributed structure data_area = solve_dopf_adaptive_admm(data, model_type, optimizer, tol=tol, max_iteration=max_iteration, print_level = 1, alpha=100.0, mu_inc=1.05, mu_dec=1.05, eta_inc=0.05, eta_dec=0.02, save_data=["solution", "mismatch"]) error_adaptive_admm = compare_solution(data, data_area, model_type, optimizer) ## APP with fully distributed structure data_area = solve_dopf_app(data, model_type, optimizer; tol=tol, max_iteration=max_iteration, print_level = 1, alpha=1000, save_data=["solution", "mismatch"]) error_app = compare_solution(data, data_area, model_type, optimizer) ## ATC with fully distributed structure data_area = solve_dopf_atc(data, model_type, optimizer; tol=tol, max_iteration=max_iteration, print_level = 1, alpha=1.1) error_atc = compare_solution(data, data_area, model_type, optimizer) ## ADMM with central coordinator structure data_area = solve_dopf_admm_coordinated(data, model_type, optimizer; tol=tol, max_iteration=max_iteration, print_level = 1, alpha = 100); error_admm_coordinated = compare_solution(data, data_area, model_type, optimizer) ## Adaptive ADMM with central coordinator structure data_area = solve_dopf_adaptive_admm_coordinated(data, model_type, optimizer, tol=tol, max_iteration=max_iteration, print_level = 1, alpha=100.0, mu_inc=1.1, mu_dec=1.05, eta_inc=0.05, eta_dec=0.02, save_data=["solution", "mismatch"]) error_adaptive_admm_coordinated = compare_solution(data, data_area, model_type, optimizer) ## ATC with central coordinator structure data_area = solve_dopf_atc_coordinated(data, model_type, optimizer; max_iteration=max_iteration, print_level = 1, alpha = 1.05) error_atc = compare_solution(data, data_area, model_type, optimizer) ## ALADIN with central coordinator structure sigma = Dict{String, Real}("va" => 10, "vm" => 5, "pf" => 1, "pt" => 1, "qf" => 1, "qt" => 1, "pg" => 1, "qg" => 1) data_area = solve_dopf_aladin_coordinated(data, model_type, optimizer; tol=tol, max_iteration=max_iteration, print_level=1, p=100, mu=1000, r_p=1.5, r_mu=2, q_gamma=0, sigma=sigma) error_aladin = compare_solution(data, data_area, model_type, optimizer)
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
2789
############################################################################### # Build methods for the XX algorithm # ############################################################################### """ template for xx distributed algorithm """ module xx_methods using ..PowerModelsADA "solve distributed OPF using XX algorithm" function solve_method(data, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, parameters...) solve_dopf(data, model_type, optimizer, xx_methods; mismatch_method=mismatch_method, tol=tol, max_iteration=max_iteration, print_level=print_level, parameters...) end "initialize the XX algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::Type; tol::Float64=1e-4, max_iteration::Int64=1000, kwargs...) # initiate primal and dual shared variables data["shared_variable"] = Dict(to_area=> variable_name=>value) data["received_variable"] = Dict(from_area=> variable_name=>value) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # xx parameters data["parameter"] = Dict("alpha"=> get(kwargs, :alpha, 1000)) end "build PowerModel using xx algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_function) end "set the xx algorithm objective" function objective_function(pm::AbstractPowerModel) ### objective = 0 ### return objective end "update the xx algorithm data after each iteration" function update_method(data::Dict{String, <:Any}) ### ### calc_mismatch!(data) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end end """ solve_dopf_xx(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm",tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, parameters) Solve the distributed OPF problem using xx algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : print mismatch after each iteration and result summary """ solve_dopf_xx = xx_methods.solve_method # export the algorithm methods module and call method export xx_methods, solve_dopf_xx
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
1634
module PowerModelsADA import JuMP import PowerModels import InfrastructureModels import Serialization import LinearAlgebra import DelimitedFiles import SparseArrays import Suppressor: @capture_out import Distributed import PowerModels: AbstractPowerModel, parse_file, ids, ref, var, con, sol, nw_ids, nws, optimize_model!, update_data!, ref_add_core!, pm_it_sym, pm_it_name, nw_id_default, ismultinetwork, ismulticonductor, silence const _PM = PowerModels const _IM = InfrastructureModels # const _pmada_global_keys = Set(["time_series", "per_unit", "parameter", "option", "solution", "local_solution", "shared_variable", "received_variable", "received_delta", "dual_variable", "received_dual_variable", "shared_sensitivities", "shared_dual_variable", "dual_residual", "mismatch", "dual_residual", "counter"]) const _pmada_global_keys = Set(["time_series", "per_unit", "parameter", "option", "solution", "mismatch", "counter", "previous_solution", "shared_flag_convergence", "received_flag_convergence", "shared_convergence_iteration", "received_convergence_iteration"]) include("core/base.jl") include("core/variables.jl") include("core/opf.jl") include("core/data.jl") include("core/data_sharing.jl") include("core/util.jl") include("core/export.jl") include("algorithms/admm_methods.jl") include("algorithms/atc_methods.jl") include("algorithms/app_methods.jl") include("algorithms/admm_coordinated_methods.jl") include("algorithms/atc_coordinated_methods.jl") include("algorithms/aladin_coordinated_methods.jl") include("algorithms/adaptive_admm_methods.jl") include("algorithms/adaptive_admm_coordinated_methods.jl") end
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
11113
############################################################################### # Build methods for adaptive ADMM algorithm # ############################################################################### """ adaptive ADMM algorithm module contains build and update methods """ module adaptive_admm_coordinated_methods using ..PowerModelsADA using LinearAlgebra "solve distributed OPF using adaptive ADMM algorithm" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf_coordinated(data, model_type, optimizer, adaptive_admm_coordinated_methods; kwargs...) end "initialize the adaptive ADMM algorithm" function initialize_method_local(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id =get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "dual_variable", initialization_method) data["dual_residual"] = Dict{String, Any}() initialize_dopf!(data, model_type; kwargs...) # adaptive ADMM parameters alpha = Float64(get(kwargs, :alpha, 1000.0)) data["parameter"] = Dict("alpha"=> alpha) data["received_parameter"]= Dict{String, Any}("0" => data["parameter"]["alpha"]) # adaptive ADMM dual residual dictionary if haskey(data, "previous_solution") for str in ["shared_variable", "received_variable"] if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"]= Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end # adaptive ADMM dual residual tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end end "initialize the adaptive ADMM algorithm" function initialize_method_coordinator(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id =get_area_id(data) areas_id = get_areas_id(data) initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) data["dual_residual"] = Dict{String, Any}() # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # adaptive ADMM dual residual dictionary if haskey(data, "previous_solution") for str in unique(["shared_variable", "received_variable",keys(data["previous_solution"])...]) if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"]= Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end # adaptive ADMM dual residual tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end # adaptive ADMM parameters alpha = Float64(get(kwargs, :alpha, 1000)) alpha_max = Float64(get(kwargs, :alpha_max, 1e8)) alpha_min = Float64(get(kwargs, :alpha_min, 1)) mu_inc = Float64(get(kwargs, :mu_inc, 2.5)) mu_dec = Float64(get(kwargs, :mu_dec, 2.5)) eta_inc = Float64(get(kwargs, :eta_inc, 0.1)) eta_dec = Float64(get(kwargs, :eta_dec, 0.1)) data["parameter"] = Dict("alpha"=> alpha,"mu_inc"=> mu_inc, "mu_dec"=> mu_dec, "eta_inc"=> eta_inc, "eta_dec"=>eta_dec, "alpha_max"=>alpha_max, "alpha_min"=>alpha_min) data["shared_parameter"] = Dict(string(area) => data["parameter"]["alpha"] for area in areas_id) end "build PowerModel object for the adaptive ADMM algorithm" function build_method_local(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_adaptive_admm_local) end "build PowerModel object for the ADMM algorithm coordinator" function build_method_coordinator(pm::AbstractPowerModel) # define variables variable_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_adaptive_admm_coordinator) end "adaptive ADMM algorithm objective function" function objective_adaptive_admm_local(pm::AbstractPowerModel) # parameters alpha = pm.data["parameter"]["alpha"] # data shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ##objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] objective += alpha/2 * (v - v_central)^2 + v_dual * (v - v_central) end end end return objective end "adaptive ADMM algorithm objective function" function objective_adaptive_admm_coordinator(pm::AbstractPowerModel) # parameters alpha = pm.data["parameter"]["alpha"] # data shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ##objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] objective += alpha/2 * (v - v_central)^2 + v_dual * (v - v_central) end end end return objective end "update the adaptive ADMM algorithm data after each iteration" function update_method_local(data::Dict{String, <:Any}) # parameters data["parameter"]["alpha"] = data["received_parameter"]["0"] alpha = data["parameter"]["alpha"] # data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = deepcopy(data["dual_variable"]) # update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_primal = shared_variable_local[area][variable][idx] v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + alpha * (v_primal - v_central) end end end calc_dual_residual!(data) calc_mismatch!(data) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end "update the adaptive ADMM algorithm data after each iteration" function update_method_coordinator(data::Dict{String, <:Any}) # parameters alpha = deepcopy(data["parameter"]["alpha"]) alpha_max = data["parameter"]["alpha_max"] alpha_min = data["parameter"]["alpha_min"] mu_inc = data["parameter"]["mu_inc"] mu_dec = data["parameter"]["mu_dec"] eta_inc = data["parameter"]["eta_inc"] eta_dec = data["parameter"]["eta_dec"] # data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = deepcopy(data["dual_variable"]) # update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_primal = shared_variable_local[area][variable][idx] v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + alpha * (v_primal - v_central) end end end calc_dual_residual!(data) calc_mismatch!(data) ## update adaptive ADMM parameters if data["mismatch"]["0"] > mu_inc * data["dual_residual"]["0"] alpha = alpha * ( 1 + eta_inc) elseif data["dual_residual"]["0"] > mu_dec * data["mismatch"]["0"] alpha = alpha / ( 1 + eta_dec) end if alpha > alpha_max alpha = alpha_max elseif alpha < alpha_min alpha = alpha_min end data["parameter"]["alpha"] = alpha for area in keys(data["shared_parameter"]) data["shared_parameter"][area] = alpha end update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end post_processors_local = [update_solution!, update_shared_variable!] post_processors_coordinator = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_parameter", "shared_variable", "received_variable", "dual_variable", "dual_residual") end """ solve_dopf_adaptive_admm(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, print_optimizer_info::Bool=false, alpha::Real=1000) Solve the distributed OPF problem using adaptive ADMM algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - alpha::Real=1000 : algorithm parameter """ solve_dopf_adaptive_admm_coordinated = adaptive_admm_coordinated_methods.solve_method # export the algorithm methods module and solve method export adaptive_admm_coordinated_methods, solve_dopf_adaptive_admm_coordinated
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
10040
############################################################################### # Build methods for adaptive ADMM algorithm # ############################################################################### """ adaptive ADMM algorithm module contains build and update methods """ module adaptive_admm_methods using ..PowerModelsADA using LinearAlgebra "solve distributed OPF using adaptive ADMM algorithm" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf(data, model_type, optimizer, adaptive_admm_methods; kwargs...) end "initialize the adaptive ADMM algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id =get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) data["dual_residual"] = Dict{String, Any}() # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # adaptive ADMM dual residual dictionary if haskey(data, "previous_solution") for str in unique(["shared_variable", "received_variable",keys(data["previous_solution"])...]) if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"]= Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end # adaptive ADMM dual residual tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end # adaptive ADMM parameters alpha = Float64(get(kwargs, :alpha, 1000)) alpha_max = Float64(get(kwargs, :alpha_max, 1e8)) alpha_min = Float64(get(kwargs, :alpha_min, 1)) mu_inc = Float64(get(kwargs, :mu_inc, 2)) mu_dec = Float64(get(kwargs, :mu_dec, 2)) eta_inc = Float64(get(kwargs, :eta_inc, 0.2)) eta_dec = Float64(get(kwargs, :eta_dec, 0.2)) data["parameter"] = Dict("alpha"=> alpha,"mu_inc"=> mu_inc, "mu_dec"=> mu_dec, "eta_inc"=> eta_inc, "eta_dec"=>eta_dec, "alpha_max"=>alpha_max, "alpha_min"=>alpha_min) data["alpha"] = initialize_shared_variable(data, model_type, area_id, areas_id, "parameter", "constant", alpha) end "build PowerModel object for the adaptive ADMM algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_adaptive_admm) end "adaptive ADMM algorithm objective function" function objective_adaptive_admm(pm::AbstractPowerModel) # parameters alphas = pm.data["alpha"] # data shared_variable_local = pm.data["shared_variable"] shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ##objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] alpha = alphas[area][variable][idx] objective += alpha/2 * (v - v_central)^2 + v_dual * (v - v_central) end end end return objective end "update the adaptive ADMM algorithm data after each iteration" function update_method(data::Dict{String, <:Any}) # parameters alphas = data["alpha"] alpha_max = data["parameter"]["alpha_max"] alpha_min = data["parameter"]["alpha_min"] mu_inc = data["parameter"]["mu_inc"] mu_dec = data["parameter"]["mu_dec"] eta_inc = data["parameter"]["eta_inc"] eta_dec = data["parameter"]["eta_dec"] # data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = deepcopy(data["dual_variable"]) # update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_primal = shared_variable_local[area][variable][idx] v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] alpha = alphas[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + alpha * (v_primal - v_central) end end end calc_dual_residual_adaptive!(data) calc_mismatch!(data, central = true) ## update adaptive ADMM parameters for area in keys(data["alpha"]) for variable in keys(data["alpha"][area]) for idx in keys(data["alpha"][area][variable]) if data["mismatch"][area][variable][idx] > mu_inc * data["dual_residual"][area][variable][idx] data["alpha"][area][variable][idx] = data["alpha"][area][variable][idx] * ( 1 + eta_inc) elseif data["dual_residual"][area][variable][idx] > mu_dec * data["mismatch"][area][variable][idx] data["alpha"][area][variable][idx] = data["alpha"][area][variable][idx] / ( 1 + eta_dec) end if data["alpha"][area][variable][idx] > alpha_max data["alpha"][area][variable][idx] = alpha_max elseif data["alpha"][area][variable][idx] < alpha_min data["alpha"][area][variable][idx] = alpha_min end end end end update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end """ calc_dual_residual!(data::Dict{String, <:Any}; central::Bool=false) calculate the dual redidual as seen by the area. Set central=true if the algorithm uses the optimality condition of a central coordinator. """ function calc_dual_residual_adaptive!(data::Dict{String, <:Any}; central::Bool=false) area_id = string(get_area_id(data)) alpha = data["alpha"] shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] if data["counter"]["iteration"] == 1 dual_dual_residual = Dict{String, Any}([ area => Dict{String, Any}([ variable => Dict{String, Any}([ idx => central ? -alpha[area][variable][idx]* (shared_variable_local[area][variable][idx]+shared_variable_received[area][variable][idx])/2 : -alpha[area][variable][idx]* shared_variable_local[area][variable][idx] for idx in keys(shared_variable_local[area][variable])]) for variable in keys(shared_variable_local[area])]) for area in keys(shared_variable_local)]) else previous_shared_variable_local = data["previous_solution"]["shared_variable"][end] previous_shared_variable_received = data["previous_solution"]["received_variable"][end] dual_dual_residual = Dict{String, Any}([ area => Dict{String, Any}([ variable => Dict{String, Any}([ idx => central ? -alpha[area][variable][idx] * ((shared_variable_local[area][variable][idx]+shared_variable_received[area][variable][idx])/2 - (previous_shared_variable_local[area][variable][idx] +previous_shared_variable_received[area][variable][idx] )/2) : -alpha[area][variable][idx] * (shared_variable_local[area][variable][idx] - previous_shared_variable_local[area][variable][idx]) for idx in keys(shared_variable_local[area][variable])]) for variable in keys(shared_variable_local[area])]) for area in keys(shared_variable_local) ]) end dual_dual_residual[area_id] = LinearAlgebra.norm([value for area in keys(dual_dual_residual) if area != area_id for variable in keys(dual_dual_residual[area]) for (idx,value) in dual_dual_residual[area][variable]]) data["dual_residual"] = dual_dual_residual end post_processors = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "alpha", "shared_variable", "received_variable", "dual_variable", "dual_residual") end """ solve_dopf_adaptive_admm(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, print_optimizer_info::Bool=false, alpha::Real=1000) Solve the distributed OPF problem using adaptive ADMM algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - alpha::Real=1000 : algorithm parameter """ solve_dopf_adaptive_admm = adaptive_admm_methods.solve_method # export the algorithm methods module and solve method export adaptive_admm_methods, solve_dopf_adaptive_admm
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
7811
############################################################################### # Build methods for ADMM algorithm with coordinator # ############################################################################### """ ADMM algorithm module containsbuild and update methods """ module admm_coordinated_methods using ..PowerModelsADA "solve distributed OPF using ADMM algorithm with central coordinator" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf_coordinated(data, model_type, optimizer, admm_coordinated_methods; kwargs...) end "initialize the ADMM algorithm local area" function initialize_method_local(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id , 0, "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ADMM parameters data["parameter"] = Dict("alpha"=> Float64(get(kwargs, :alpha, 1000))) # ADMM dual residual dictionary and tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] if haskey(data, "previous_solution") for str in ["shared_variable", "received_variable"] if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"]= Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end end "initializethe ADMM algorithm coordinator" function initialize_method_coordinator(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) initialization_method = get(kwargs, :initialization_method, "flat") # initialize primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ADMM parameters data["parameter"] = Dict("alpha"=> get(kwargs, :alpha, 1000)) if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] if haskey(data, "previous_solution") for str in ["shared_variable", "received_variable"] if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"]= Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end end # ADMM dual residual tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end end "build PowerModel object for the ADMM algorithm local area" function build_method_local(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_admm_local) end "build PowerModel object for the ADMM algorithm coordinator" function build_method_coordinator(pm::AbstractPowerModel) # define variables variable_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_admm_coordinator) end "ADMM algorithm objective function of the coordinator" function objective_admm_local(pm::AbstractPowerModel) # parameters alpha = pm.data["parameter"]["alpha"] # data shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] # objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] objective += alpha/2 * (v - v_central)^2 + v_dual * (v - v_central) end end end return objective end "ADMM algorithm objective function of the local area" objective_admm_coordinator(pm::AbstractPowerModel) = objective_admm_local(pm) "update the ADMM algorithm coordinator data after each iteration" function update_method_local(data::Dict{String, <:Any}) # parameters alpha = data["parameter"]["alpha"] # data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = data["dual_variable"] # update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_local = shared_variable_local[area][variable][idx] v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + alpha * (v_local - v_central) end end end calc_mismatch!(data) if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] calc_dual_residual!(data) end update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end "update the ADMM algorithm coordinator data after each iteration" update_method_coordinator(data::Dict{String, <:Any}) = update_method_local(data) post_processors_local = [update_solution!, update_shared_variable!] post_processors_coordinator = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable") end """ solve_dopf_admm_coordinated(data::Dict{String, <:Any}, model_type::DataType, optimizer; tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, alpha::Real=1000) Solve the distributed OPF problem using ADMM algorithm with central coordinator. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - alpha::Real=1000 : algorithm parameters """ solve_dopf_admm_coordinated = admm_coordinated_methods.solve_method # export the algorithm methods module and solve method export admm_coordinated_methods, solve_dopf_admm_coordinated
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
5789
############################################################################### # Build methods for ADMM algorithm # ############################################################################### """ ADMM algorithm module contains build and update methods """ module admm_methods using ..PowerModelsADA "solve distributed OPF using ADMM algorithm" function solve_method(data, model_type::Type, optimizer; kwargs...) solve_dopf(data, model_type, optimizer, admm_methods; kwargs...) end "initialize the ADMM algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::Type; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) data["dual_residual"] = Dict{String, Any}() # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # ADMM parameters data["parameter"] = Dict("alpha"=> Float64(get(kwargs, :alpha, 1000))) # ADMM dual residual dictionary and tolerance if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] if haskey(data, "previous_solution") for str in ["shared_variable", "received_variable"] if !haskey(data["previous_solution"], str) data["previous_solution"][str]= Vector{Dict}() end end else data["previous_solution"] = Dict([str=> Vector{Dict}() for str in ["shared_variable", "received_variable"]]) end data["option"]["tol_dual"] = get(kwargs, :tol_dual, data["option"]["tol"]) end end "build PowerModel object for the ADMM algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_admm) end "ADMM algorithm objective function" function objective_admm(pm::AbstractPowerModel) # parameters alpha = pm.data["parameter"]["alpha"] # data shared_variable_local = pm.data["shared_variable"] shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ##objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] objective += alpha/2 * (v - v_central)^2 + v_dual * (v - v_central) end end end return objective end "update the ADMM algorithm data after each iteration" function update_method(data::Dict{String, <:Any}) # parameters alpha = data["parameter"]["alpha"] # data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = data["dual_variable"] # update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_primal = shared_variable_local[area][variable][idx] v_central = (shared_variable_local[area][variable][idx] + shared_variable_received[area][variable][idx])/2 v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + alpha * (v_primal - v_central) end end end calc_mismatch!(data, central=true) if data["option"]["termination_measure"] in ["dual_residual", "mismatch_dual_residual"] calc_dual_residual!(data, central=true) end update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end post_processors = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable", "dual_residual") end """ solve_dopf_admm(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, print_optimizer_info::Bool=false, alpha::Real=1000) Solve the distributed OPF problem using ADMM algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - tol_dual::Float64=1e-4 : dual residual tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : 0 - no print, 1 - print mismatch after each iteration and result summary, 2 - print optimizer output - alpha::Real=1000 : algorithm parameter """ solve_dopf_admm = admm_methods.solve_method # export the algorithm methods module and solve method export admm_methods, solve_dopf_admm
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
26736
############################################################################### # Build methods for ALADIN algorithm with coordinator # ############################################################################### # """ # ALADIN algorithm module contains build and update methods # """ module aladin_coordinated_methods using JuMP using PowerModels using SparseArrays using LinearAlgebra using ..PowerModelsADA "initialize the ALADIN algorithm local area" function initialize_method_local(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id # initialize primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, 0, "shared_variable", "flat") data["shared_dual_variable"] = Dict{String, Dict{String, Any}}("0" => initialize_shared_variable(data, model_type, area_id, areas_id, "shared_dual_variable", "flat")) data["received_dual_variable"] = Dict{String, Dict{String, Any}}("0" => initialize_shared_variable(data, model_type, area_id, areas_id, "received_dual_variable", "flat")) data["shared_sensitivities"] = Dict{String, Dict{String, Any}}("0" => Dict("g"=>Dict{String, Any}(), "C"=>Dict{String, Any}(), "B"=> Dict{String, Any}() )) data["local_solution"] = initialize_all_variable(data, model_type) data["received_delta"] = Dict{String, Dict{String, Any}}("0" => initialize_all_variable(data, model_type, "zeros")) # initialize algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ALADIN parameters p = Float64(get(kwargs, :p, 1000)) r_p = Float64(get(kwargs, :r_p, 1.3)) p_upper = Float64(get(kwargs, :p_upper, 1e6)) a1 = Float64(get(kwargs, :a1, 1)) a2 = Float64(get(kwargs, :a2, 1)) a3 = Float64(get(kwargs, :a3, 1)) q_gamma = get(kwargs, :q_gamma, 0) sigma = get(kwargs, :sigma, NaN) data["parameter"] = Dict("p" => p, "r_p"=> r_p, "p_upper"=>p_upper, "a1"=>a1, "a2"=>a2, "a3"=> a3, "q_gamma"=>q_gamma, "sigma"=>sigma) end "initialize the ALADIN algorithm coordinator" function initialize_method_coordinator(data::Dict{String, <:Any}, model_type::DataType; kwargs...) data_system = data data = deepcopy(data_system) data = decompose_coordinator(data) areas_id = get_areas_id(data) # initialize primal and dual shared variables data["received_sensitivities"] = Dict{String,Any}([string(area) => Dict{String, Any}() for area in areas_id]) data["received_variable"] = initialize_shared_variable(data, model_type, 0 ,areas_id, "received_variable", "flat") data["shared_dual_variable"] = Dict{String,Any}() data["received_dual_variable"] = Dict{String,Any}() data["shared_delta"] = Dict{String,Any}() for i in areas_id data_area = decompose_system(data_system, i) areas = deepcopy(areas_id) deleteat!(areas, areas .== i) data["shared_dual_variable"][string(i)] = initialize_shared_variable(data, model_type, i ,areas, "shared_dual_variable", "flat") data["received_dual_variable"][string(i)] = initialize_shared_variable(data, model_type, i ,areas, "received_dual_variable", "flat") data["shared_delta"][string(i)] = initialize_all_variable(data_area, model_type, "shared_delta") end # initialize distributed algorithm parameters initialize_dopf!(data, model_type; kwargs...) mu = Float64(get(kwargs, :mu, 1000)) r_mu = Float64(get(kwargs, :r_mu, 2)) mu_upper = Float64(get(kwargs, :mu_upper, 2e6)) a1 = Float64(get(kwargs, :a1, 1)) a2 = Float64(get(kwargs, :a2, 1)) a3 = Float64(get(kwargs, :a3, 1)) q_gamma = Float64(get(kwargs, :q_gamma, 0)) sigma = get(kwargs, :sigma, NaN) data["parameter"] = Dict("mu" => mu, "r_mu" => r_mu, "mu_upper" => mu_upper, "a1" => a1, "a2" => a2, "a3" => a3, "q_gamma" => q_gamma, "sigma" => sigma) return data end function calc_mismatch_aladin!(data::Dict{String, <:Any}; p::Int64=2 ) area_id = string(get_area_id(data)) mismatch_method = data["option"]["mismatch_method"] shared_variable_local = data["shared_variable"]["0"] shared_variable_solution = data["local_solution"] mismatch = Dict{String, Any}([ variable => Dict{String, Any}([ idx => shared_variable_local[variable][idx] - shared_variable_solution[variable][idx] for idx in keys(shared_variable_local[variable])]) for variable in keys(shared_variable_local)]) if mismatch_method == "norm" mismatch[area_id] = LinearAlgebra.norm([value for variable in keys(mismatch) for (idx,value) in mismatch[variable]], p) elseif mismatch_method == "max" || mismatch_method == "maximum" mismatch[area_id] = LinearAlgebra.maximum([value for variable in keys(mismatch) for (idx,value) in mismatch[variable]]) end data["mismatch"] = mismatch end "update the ALADIN algorithm coordinator data after each iteration" function update_method_local(data::Dict{String, <:Any}) # parameters p = data["parameter"]["p"] r_p = data["parameter"]["r_p"] p_upper = data["parameter"]["p_upper"] a1 = data["parameter"]["a1"] a2 = data["parameter"]["a2"] a3 = data["parameter"]["a3"] ## data dual_variable_local = data["shared_dual_variable"]["0"] dual_variable_central = data["received_dual_variable"]["0"] delta = data["received_delta"]["0"] solution = data["solution"] local_solution = data["local_solution"] ## update dual variable for area in keys(dual_variable_local) for variable in keys(dual_variable_local[area]) for idx in keys(dual_variable_local[area][variable]) dual_central = dual_variable_central[area][variable][idx] dual_local = dual_variable_local[area][variable][idx] dual_variable_local[area][variable][idx]= dual_local + a3 * (dual_central - dual_local) end end end ## update solution (corresponding to update all variables) for variable in keys(local_solution) for idx in keys(local_solution[variable]) v_sol = solution[variable][idx] v_local = local_solution[variable][idx] v_delta = delta[variable][idx] local_solution[variable][idx] = v_local + a1 * (v_sol - v_local) + a2 * v_delta end end # update parameters if p < p_upper data["parameter"]["p"] = r_p * p end calc_mismatch_aladin!(data) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end "build PowerModel object for the ALADIN algorithm local area" function build_method_local(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_aladin_local) end "ALADIN algorithm objective function of the coordinator" function objective_aladin_local(pm::AbstractPowerModel) ## ALADIN parameters p = pm.data["parameter"]["p"] q_gamma = pm.data["parameter"]["q_gamma"] sigma = pm.data["parameter"]["sigma"] ## data area_id = get_area_id(pm) dual_variable = pm.data["shared_dual_variable"]["0"] local_solution = pm.data["local_solution"] ## objective function if haskey(pm.data["solution"], "qg") objective = q_gamma*(sum(PowerModelsADA._var(pm, "qg", string(idx)) for idx in ids(pm, :gen)))^2 else objective = 0 end for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_dual = dual_variable[area][variable][idx] if area_id < parse(Int64,area) objective += v * v_dual else objective -= v * v_dual end end end end for variable in keys(local_solution) for idx in keys(local_solution[variable]) v = PowerModelsADA._var(pm, variable, idx) v_local = local_solution[variable][idx] objective += sigma[variable] * p / 2 * (v - v_local)^2 end end return objective end function update_sensitivities!(pm::AbstractPowerModel, solution::Dict{String, <:Any}) solution["shared_sensitivities"] = pm.data["shared_sensitivities"] solution["shared_sensitivities"]["0"]["g"] = compute_cost_gradient(pm) solution["shared_sensitivities"]["0"]["C"] = compute_active_constraint_jacobian(pm, true) solution["shared_sensitivities"]["0"]["B"] = compute_optimal_hessian(pm) end post_processors_local = [update_solution!, update_shared_variable!, update_sensitivities!] function compute_cost_gradient(pm::AbstractPowerModel) g = initialize_all_variable(pm.data, typeof(pm),"zeros") for (i,gen) in pm.data["gen"] pg = PowerModelsADA._var(pm, "pg", i) g["pg"][i] = 2*gen["cost"][1]*value(pg) + gen["cost"][2] end return g end function compute_active_constraint_jacobian(pm::AbstractPowerModel, delete_dependent_constraints::Bool) # obtain the Jacobian matrix C_matrix = active_constraint_jacobian(pm, true) # arrange Jacobian matrix for each variable variable_dict = initialize_all_variable(pm.data, typeof(pm),"zeros") C = Dict([variable => Dict([idx=> Vector() for idx in keys(variable_dict[variable])]) for variable in keys(variable_dict)]) for variable in keys(C) for idx in keys(C[variable]) v = PowerModelsADA._var(pm, variable, idx) col = JuMP.index(v).value C[variable][idx] = C_matrix[:,col] end end return C end function active_constraint_jacobian(pm::AbstractPowerModel, delete_dependent_constraints::Bool) model = pm.model x = JuMP.all_variables(model) x_optimal = JuMP.value.(x) C = zeros(0,length(x)) if !(isempty(JuMP.all_nonlinear_constraints(model))) d = JuMP.NLPEvaluator(model) JuMP.MOI.initialize(d, [:Jac]) jacobian_sparsity = JuMP.MOI.jacobian_structure(d) I = [i for (i, _) in jacobian_sparsity] J = [j for (_, j) in jacobian_sparsity] V = zeros(length(jacobian_sparsity)) nc = JuMP.num_nonlinear_constraints(model) JuMP.MOI.eval_constraint_jacobian(d, V, x_optimal) C = SparseArrays.sparse(I, J, V, nc, length(x)) end #Now add in gradients for linear and quadratic constraints, which were not included in NLPEvaluator cref_types = JuMP.list_of_constraint_types(model) for t in cref_types if t[1] == JuMP.AffExpr #Add gradients of all active linear constraints crefs = JuMP.all_constraints(model, t[1], t[2]) for cref in crefs if abs(JuMP.dual(cref)) > 1e-3 || t[2] == JuMP.MOI.EqualTo{Float64} #only add gradient of active constraints cgrad = zeros(1, length(x)) for k = 1:length(x) cgrad[1,k] = JuMP.normalized_coefficient(cref, x[k]) end C = vcat(C, cgrad) end end elseif t[1] == QuadExpr #Add gradients of all active quadratic constraints vmap = Dict(x[i] => i for i in 1:length(x)) crefs = JuMP.all_constraints(model, t[1], t[2]) for cref in crefs if abs(dual(cref)) > 1e-3 || t[2] == JuMP.MOI.EqualTo{Float64} cgrad = zeros(1,length(x)) func_set = JuMP.constraint_object(cref) for (vars, coef) in func_set.func.terms if vars.a != vars.b cgrad[1,vmap[vars.a]] += x_optimal[vmap[vars.b]]*coef cgrad[1,vmap[vars.b]] += x_optimal[vmap[vars.a]]*coef else cgrad[1,vmap[vars.a]] += 2*x_optimal[vmap[vars.a]]*coef end end for k = 1:length(x) cgrad[1,k] += JuMP.coefficient(func_set.func, x[k]) #add coefficient of affine terms end C = vcat(C, cgrad) end end end end #Add gradient of active variable bound constraints for k = 1:length(x) if JuMP.has_lower_bound(x[k]) if abs(JuMP.value(x[k]) - JuMP.lower_bound(x[k])) < 1e-6 cgrad = zeros(1, length(x)) cgrad[1,k] = 1 C = vcat(C, cgrad) end end if JuMP.has_upper_bound(x[k]) if abs(JuMP.value(x[k]) - JuMP.upper_bound(x[k])) < 1e-6 cgrad = zeros(1, length(x)) cgrad[1,k] = 1 C = vcat(C, cgrad) end end if JuMP.is_fixed(x[k]) cgrad = zeros(1, length(x)) cgrad[1,k] = 1 C = vcat(C, cgrad) end end # Delete linearly dependent rows until constraints are all linearly independent (Ipopt doesn't do this, although Gurobi would) if (delete_dependent_constraints) C = delete_dependent_row(C) end return Matrix(C) end function delete_dependent_row(mat) while(size(mat)[1] > LinearAlgebra.rank(mat)) x = findfirst(i -> rank(mat[1:end .!= i, :]) == rank(mat), 1:size(mat)[1]) mat =mat[1:end .!= x, :] end return mat end function compute_optimal_hessian(pm::AbstractPowerModel) # obtain the Hessian matrix B_matrix = optimal_hessian(pm) # arrange Hessian matrix for each variable variable_dict = initialize_all_variable(pm.data, typeof(pm),"zeros") B = Dict([variable1 => Dict([idx1=> Dict( [variable2 => Dict([idx2=> 0.0 for idx2 in keys(variable_dict[variable2])]) for variable2 in keys(variable_dict)] ) for idx1 in keys(variable_dict[variable1])]) for variable1 in keys(variable_dict)]) for variable1 in keys(B) for idx1 in keys(B[variable1]) v1 = PowerModelsADA._var(pm, variable1, idx1) for variable2 in keys(B) for idx2 in keys(B[variable2]) v2 = PowerModelsADA._var(pm, variable2, idx2) row = JuMP.index(v1).value col = JuMP.index(v2).value B[variable1][idx1][variable2][idx2] = B_matrix[row,col] end end end end return B end function optimal_hessian(pm::AbstractPowerModel) pm_temp = deepcopy(pm) model = pm_temp.model x = all_variables(model) n = num_variables(model) x_optimal = value.(x) y_optimal = -dual.(all_nonlinear_constraints(model)) crefs = Dict{ConstraintRef,Float64}() for (F, S) in list_of_constraint_types(model) for cref in all_constraints(model, F, S) crefs[cref] = -dual(cref) end end #change the objective to generator cost only PowerModels.objective_min_fuel_and_flow_cost(pm_temp) # compute hessian matrix H = spzeros(length(x),length(x)) if !(isempty(all_nonlinear_constraints(model))) d = NLPEvaluator(model) MOI.initialize(d, [:Hess]) hessian_sparsity = MOI.hessian_lagrangian_structure(d) I = [i for (i, _) in hessian_sparsity] J = [j for (_, j) in hessian_sparsity] V = zeros(length(hessian_sparsity)) MOI.eval_hessian_lagrangian(d, V, x_optimal, 1.0, y_optimal) H = SparseArrays.sparse(I, J, V, n, n) end vmap = Dict(x[i] => i for i in 1:n) for (F, S) in list_of_constraint_types(model) for cref in all_constraints(model, F, S) add_to_hessian(H, constraint_object(cref).func, crefs[cref], vmap) end end add_to_hessian(H, objective_function(model), 1.0, vmap) B = fill_off_diagonal(H) if findmin(eigvals(Matrix(B)))[1] < 1e-4 F = eigen(Matrix(B)); d = zeros(length(F.values)); for idx = 1:length(F.values) if F.values[idx] < -1e-4 d[idx] = abs(F.values[idx]) d[idx] = -1*(F.values[idx]) elseif -1e-4 <= F.values[idx] <= 1e-4 d[idx] = 1e-4 else d[idx] = F.values[idx] end end D = LinearAlgebra.Diagonal(d) B = F.vectors*abs.(D)*transpose(F.vectors) end return B end add_to_hessian(H, f::Any, μ, vmap) = nothing function add_to_hessian(H, f::QuadExpr, μ, vmap) for (vars, coef) in f.terms if vars.a != vars.b H[vmap[vars.a], vmap[vars.b]] += μ * coef else H[vmap[vars.a], vmap[vars.b]] += 2 * μ * coef end end end #helper function to fill in missing symmetric elements in sparse Hessian function fill_off_diagonal(H) ret = H + H' row_vals = SparseArrays.rowvals(ret) non_zeros = SparseArrays.nonzeros(ret) for col in 1:size(ret, 2) for i in SparseArrays.nzrange(ret, col) if col == row_vals[i] non_zeros[i] /= 2 end end end return ret end "solve the ALADIN algorithm coordinator problem" function solve_coordinator!(data, optimizer) mu = data["parameter"]["mu"] shared_variable = data["received_variable"] dual_variable = data["received_dual_variable"] sensitivities = data["received_sensitivities"] delta = data["shared_delta"] qp_dual_variable = data["shared_dual_variable"] model = Model(optimizer) # define variables x = Dict{String, Any}(area => Dict{String, Any}(variable => Dict{String, Any}(idx => JuMP.@variable(model, base_name=string("x_", area, "_", variable, "_", idx)) for idx in keys(delta[area][variable])) for variable in keys(delta[area])) for area in keys(delta)) s = Dict{String, Any}(area1 => Dict{String, Any}(area2=> Dict{String, Any}(variable => Dict{String, Any}(idx => JuMP.@variable(model, base_name=string("s_", variable, "_", idx)) for idx in keys(dual_variable[area1][area2][variable])) for variable in keys(dual_variable[area1][area2])) for area2 in keys(dual_variable[area1]) if area1<area2) for area1 in keys(dual_variable)) # define objective function qp_objective = JuMP.GenericQuadExpr{Float64, JuMP.VariableRef}() for area1 in keys(dual_variable) for area2 in keys(dual_variable[area1]) if area1 < area2 for variable in keys(dual_variable[area1][area2]) for (idx,val) in dual_variable[area1][area2][variable] qp_objective += val*s[area1][area2][variable][idx] + mu/2*(s[area1][area2][variable][idx])^2 end end end end end for area in keys(x) for variable in keys(x[area]) for idx in keys(x[area][variable]) qp_objective += sum(0.5*x[area][variable][idx]*x[area][variable2][idx2]*sensitivities[area]["B"][variable][idx][variable2][idx2] for variable2 in keys(x[area]) for idx2 in keys(x[area][variable2]))+ (sensitivities[area]["g"][variable][idx]*x[area][variable][idx]) end end end @objective(model, Min, qp_objective) # define constraints constraint_ref = Dict{String,Any}(area1 => Dict{String,Any}(area2 => Dict{String,Any}(variable => Dict{String, JuMP.ConstraintRef}([idx => @constraint(model, x[area1][variable][idx] + shared_variable[area1][variable][idx] - x[area2][variable][idx] - shared_variable[area2][variable][idx] == s[area1][area2][variable][idx]) for idx in keys(dual_variable[area1][area2][variable])]) for variable in keys(dual_variable[area1][area2]) ) for area2 in keys(dual_variable[area1]) if area1<area2) for area1 in keys(dual_variable)) for area in keys(x) n_constraints = size(first(first(data["received_sensitivities"][area]["C"])[2])[2])[1] for n in 1:n_constraints @constraint(model, sum(sensitivities[area]["C"][variable][idx][n]*x[area][variable][idx] for variable in keys(x[area]) for idx in keys(x[area][variable])) == 0) end end optimize!(model) for area in keys(delta) for variable in keys(delta[area]) for idx in keys(delta[area][variable]) delta[area][variable][idx] = value(x[area][variable][idx]) end end end for area1 in keys(qp_dual_variable) for area2 in keys(qp_dual_variable[area1]) if area1 < area2 for variable in keys(qp_dual_variable[area1][area2]) for idx in keys(qp_dual_variable[area1][area2][variable]) qp_dual_variable[area1][area2][variable][idx] = -dual(constraint_ref[area1][area2][variable][idx]) qp_dual_variable[area2][area1][variable][idx] = -dual(constraint_ref[area1][area2][variable][idx]) end end end end end end "update the ALADIN algorithm coordinator data after each iteration" function update_method_coordinator(data::Dict{String, <:Any}) if data["parameter"]["mu"] < data["parameter"]["mu_upper"] data["parameter"]["mu"] = data["parameter"]["r_mu"]*data["parameter"]["mu"] end save_solution!(data) update_iteration!(data) end push!(_pmada_global_keys, "local_solution", "shared_variable", "received_variable", "shared_delta", "received_delta", "dual_variable", "shared_dual_variable", "received_dual_variable", "shared_sensitivities", "received_sensitivities") end """ solve_dopf_aladin_coordinated(data::Dict{String, <:Any}, model_type::DataType, optimizer; tol::Float64=1e-4, max_iteration::Int64=1000, print_level = true, p::Real=1000, mu::Real=1000, p_upper::Real=1e6, mu_upper::Real=2e6, r_p::Real=1.5, mu_p::Real=2, a1::Real=1, a2::Real=1, # a3::Real=1, q_gamma::Real=0, sigma::Dict{String,Real}=Dict()) Solve the distributed OPF problem using ALADIN algorithm with central coordinator. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : print mismatch after each iteration and result summary - p::Real=1000 : parameter - mu::Real=1000 : parameter - p_upper::Real=1e6 : parameter - mu_upper::Real=2e6 : parameter - r_p::Real=1.5 : parameter - r_mu::Real=2 : parameter - a1::Real=1 : parameter - a2::Real=1 : parameter - a3::Real=1 : parameter - q_gamma::Real=0 : parameter - sigma::Dict{String, <:Any}=Dict() : dictionary with variable name as key and parameter value as values """ function solve_dopf_aladin_coordinated(data::Union{Dict{String, <:Any}, String}, model_type::DataType, optimizer; mismatch_method::String="norm", tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, p::Real=1000, mu::Real=1000, p_upper::Real=1e6, mu_upper::Real=2e6, r_p::Real=1.5, r_mu::Real=2, a1::Real=1, a2::Real=1, a3::Real=1, q_gamma::Real=0, sigma::Dict{String, <:Any}=Dict{String,Any}("w"=> 20, "wr"=>5, "wi"=>5 ,"vi"=> 10, "vr"=> 10, "va" => 10, "vm" => 5, "pf" => 1, "pt" => 1, "qf" => 1, "qt" => 1, "pg" => 1, "qg" => 1)) # obtain and standardize case data if isa(data, String) data = parse_file(data) end PowerModels.standardize_cost_terms!(data, order=2) # obtain and arrange areas id arrange_areas_id!(data) areas_id = get_areas_id(data) # decompose the system into subsystems data_area = Dict{Int64, Any}() for i in areas_id data_area[i] = decompose_system(data, i) end # initilize distributed power model parameters data_coordinator = aladin_coordinated_methods.initialize_method_coordinator(data, model_type; mismatch_method=mismatch_method, max_iteration=max_iteration, tol=tol, a1=a1, a2=a2, a3=a3, mu=mu, r_mu=r_mu, mu_upper=mu_upper, q_gamma=q_gamma, sigma=sigma) for i in areas_id aladin_coordinated_methods.initialize_method_local(data_area[i], model_type; mismatch_method=mismatch_method, max_iteration=max_iteration, tol=tol, p=p, a1=a1, a2=a2, a3=a3, r_p=r_p, p_upper=p_upper, q_gamma=q_gamma, sigma=sigma) end ## initialaize the algorithms global counters iteration = 0 flag_convergence = false ## start iteration while iteration < max_iteration && !flag_convergence # solve local area problems in parallel info1 = @capture_out begin Threads.@threads for i in areas_id result = solve_pmada_model(data_area[i], model_type, optimizer, aladin_coordinated_methods.build_method_local, solution_processors=aladin_coordinated_methods.post_processors_local) update_data!(data_area[i], result["solution"]) end end # share solution of local areas with the coordinator for i in areas_id # sender subsystem shared_data = prepare_shared_data(data_area[i], 0, serialize = false) receive_shared_data!(data_coordinator, shared_data, i) end # solve coordinator problem info2 = @capture_out begin aladin_coordinated_methods.solve_coordinator!(data_coordinator, optimizer) end # share coordinator solution with local areas for i in areas_id # sender subsystem shared_data = prepare_shared_data(data_coordinator, i, serialize = false) receive_shared_data!(data_area[i], shared_data, 0) end # update local areas and coordinator problems after aladin_coordinated_methods.update_method_coordinator(data_coordinator) for i in areas_id aladin_coordinated_methods.update_method_local(data_area[i]) end # check global convergence and update iteration counters flag_convergence = update_global_flag_convergence(data_area) iteration += 1 # print solution print_iteration(data_area, print_level, [info1; info2]) end data_area[0] = data_coordinator print_convergence(data_area, print_level) return data_area end # export the algorithm methods module and solve method export aladin_coordinated_methods, solve_dopf_aladin_coordinated
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
5157
############################################################################### # Build methods for APP algorithm # ############################################################################### """ APP algorithm module contains build and update methods """ module app_methods using ..PowerModelsADA "solve distributed OPF using APP algorithm" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf(data, model_type, optimizer, app_methods; kwargs...) end "initialize the APP algorithm" function initialize_method(data::Dict{String, <:Any}, model_type::Type; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) deleteat!(areas_id, areas_id .== area_id) # remove the same area from the list of areas_id initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize APP parameters data["parameter"] = Dict( "alpha" => Float64(get(kwargs, :alpha, 1000)), "beta" => Float64(get(kwargs, :beta, 2*Float64(get(kwargs, :alpha, 1000)))), "gamma" => Float64(get(kwargs, :gamma, Float64(get(kwargs, :alpha, 1000))))) end "build PowerModel object for the APP algorithm" function build_method(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_app) end "APP algorithm objective function" function objective_app(pm::AbstractPowerModel) ## APP parameters alpha = pm.data["parameter"]["alpha"] beta = pm.data["parameter"]["beta"] gamma = pm.data["parameter"]["gamma"] ## data shared_variable_local = pm.data["shared_variable"] shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ## objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_neighbor = shared_variable_received[area][variable][idx] v_local = shared_variable_local[area][variable][idx] v_dual = dual_variable[area][variable][idx] objective += beta/2 * (v - v_local)^2 + gamma * v * (v_local - v_neighbor) + v * v_dual end end end return objective end "update the APP algorithm data after each iteration" function update_method(data::Dict{String, <:Any}) ## APP parameters alpha = data["parameter"]["alpha"] ## data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = data["dual_variable"] ## update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_neighbor = shared_variable_received[area][variable][idx] v_local = shared_variable_local[area][variable][idx] v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx] = v_dual + alpha * (v_local - v_neighbor) end end end calc_mismatch!(data) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end post_processors = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable") end """ solve_dopf_app(data::Dict{String, <:Any}, model_type::DataType, optimizer; mismatch_method::String="norm",tol::Float64=1e-4, max_iteration::Int64=1000, print_level::Int64=1, alpha::Real=1000, beta::Real, gamma::Real) Solve the distributed OPF problem using APP algorithm. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : print mismatch after each iteration and result summary - alpha::Real=1000 : algorithm parameter - beta::Real=2alpha : algorithm parameter - gamma::Real=alpha : algorithm parameter """ solve_dopf_app = app_methods.solve_method # export the algorithm methods module and solve method export app_methods, solve_dopf_app
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git
[ "MIT" ]
0.1.4
1b4ce3c83cc3946f34782ffbeb2248009e260cba
code
6724
############################################################################### # Build methods for ATC algorithm with coordinator # ############################################################################### """ ATC algorithm module contains build and update methods """ module atc_coordinated_methods using ..PowerModelsADA "solve distributed OPF using ATC algorithm with central coordinator" function solve_method(data, model_type::DataType, optimizer; kwargs...) solve_dopf_coordinated(data, model_type, optimizer, atc_coordinated_methods; kwargs...) end "initialize the ATC algorithm local area" function initialize_method_local(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) initialization_method = get(kwargs, :initialization_method, "flat") # primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, [0], "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, [0], "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id ,[0], "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ATC parameters data["parameter"] = Dict( "alpha" => Float64(get(kwargs, :alpha, 1.05)), "beta" => Float64(get(kwargs, :beta, 1)), "beta_max" => Float64(get(kwargs, :beta_max, 1e6))) end "initialize the ATC algorithm coordinator" function initialize_method_coordinator(data::Dict{String, <:Any}, model_type::DataType; kwargs...) area_id = get_area_id(data) areas_id = get_areas_id(data) initialization_method = get(kwargs, :initialization_method, "flat") # initialize primal and dual shared variables data["shared_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "shared_variable", initialization_method) data["received_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "received_variable", initialization_method) data["dual_variable"] = initialize_shared_variable(data, model_type, area_id, areas_id, "dual_variable", initialization_method) # distributed algorithm settings initialize_dopf!(data, model_type; kwargs...) # initialize ATC parameters data["parameter"] = Dict( "alpha" => Float64(get(kwargs, :alpha, 1.05)), "beta" => Float64(get(kwargs, :beta, 1)), "beta_max" => Float64(get(kwargs, :beta_max, 1e6))) end "build PowerModel object for ATC algorithm local area" function build_method_local(pm::AbstractPowerModel) # define variables variable_opf(pm) # define constraints constraint_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_atc_local) end "build PowerModel object for the ATC algorithm coordinator" function build_method_coordinator(pm::AbstractPowerModel) # define variables variable_opf(pm) # define objective function objective_min_fuel_and_consensus!(pm, objective_atc_coordinator) end "ATC algorithm objective function of the coordinator" function objective_atc_local(pm::AbstractPowerModel) ## atc parameters beta = pm.data["parameter"]["beta"] ## data shared_variable_received = pm.data["received_variable"] dual_variable = pm.data["dual_variable"] ## objective function objective = 0 for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v = PowerModelsADA._var(pm, variable, idx) v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] objective += (beta * (v - v_central))^2 + v_dual * (v - v_central) end end end return objective end "ATC algorithm objective function of the local area" objective_atc_coordinator(pm::AbstractPowerModel) = objective_atc_local(pm) "update the ATC algorithm coordinator data after each iteration" function update_method_local(data::Dict{String, <:Any}) ## ATC parameters alpha = data["parameter"]["alpha"] beta = data["parameter"]["beta"] beta_max = data["parameter"]["beta_max"] ## data shared_variable_local = data["shared_variable"] shared_variable_received = data["received_variable"] dual_variable = data["dual_variable"] ## update dual variable for area in keys(dual_variable) for variable in keys(dual_variable[area]) for idx in keys(dual_variable[area][variable]) v_local = shared_variable_local[area][variable][idx] v_central = shared_variable_received[area][variable][idx] v_dual = dual_variable[area][variable][idx] data["dual_variable"][area][variable][idx]= v_dual + 2 * beta^2 * (v_local - v_central) end end end ## update ATC parameter if beta < beta_max data["parameter"]["beta"] *= alpha end calc_mismatch!(data) update_flag_convergence!(data) save_solution!(data) update_iteration!(data) end "update the ATC algorithm coordinator data after each iteration" update_method_coordinator(data::Dict{String, <:Any}) = update_method_local(data) post_processors_local = [update_solution!, update_shared_variable!] post_processors_coordinator = [update_solution!, update_shared_variable!] push!(_pmada_global_keys, "shared_variable", "received_variable", "dual_variable") end """ solve_dopf_atc_coordinated(data::Dict{String, <:Any}, model_type::DataType, optimizer; tol::Float64=1e-4, max_iteration::Int64=1000, print_level = true, alpha::Real=1000) Solve the distributed OPF problem using ATC algorithm with central coordinator. # Arguments: - data::Dict{String, <:Any} : dictionary contains case in PowerModel format - model_type::DataType : power flow formulation (PowerModel type) - optimizer : optimizer JuMP initiation object - mismatch_method::String="norm" : mismatch calculation method (norm, max) - tol::Float64=1e-4 : mismatch tolerance - max_iteration::Int64=1000 : maximum number of iteration - print_level::Int64=1 : print mismatch after each iteration and result summary - alpha::Real=1.05 : algorithm parameters - beta::Real=1.0 : algorithm parameters """ solve_dopf_atc_coordinated = atc_coordinated_methods.solve_method # export the algorithm methods module and solve method export atc_coordinated_methods, solve_dopf_atc_coordinated
PowerModelsADA
https://github.com/mkhraijah/PowerModelsADA.jl.git