licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
81fba898c4e80b8549f5348b74d08197a04afc85
docs
1037
## Element Property Databases These are curated element database files from various materials property repositories. The original files can be found here: https://github.com/anthony-wang/BestPractices/tree/master/notebooks/CBFV/cbfv/element_properties taken from commit: https://github.com/anthony-wang/BestPractices/commit/e297c67b4f9a1854b9b5c02ef8a85510f7e587fd ## Description - `jarvis.csv` : [Joint Automated Repository for Various Integrated Simulations provided by U.S. National Institutes of Standards and Technologies.](https://jarvis.nist.gov/) - `magpie.csv` : [Materials Agnostic Platform for Informatics and Exploration](https://bitbucket.org/wolverton/magpie/src/master/) - `mat2vec.csv` : [Word embeddings capture latent knowledge from materials science](https://github.com/materialsintelligence/mat2vec) - `oliynyk.csv` : Database from A. Oliynyk. - `onehot.csv`: Simple one hot encoding scheme, i.e., diagonal elemental matrix. - `random_200.csv`: 200 random elemental properties (I'm assuming, not sure from where)
CBFV
https://github.com/JuliaMatSci/CBFV.jl.git
[ "MIT" ]
0.1.0
81fba898c4e80b8549f5348b74d08197a04afc85
docs
134
```@meta CurrentModule = CBFV ``` # CBFV ```@index ``` ```@autodocs Modules = [CBFV] Private = false Order = [:function,:type] ```
CBFV
https://github.com/JuliaMatSci/CBFV.jl.git
[ "MIT" ]
0.1.0
81fba898c4e80b8549f5348b74d08197a04afc85
docs
1095
# Examples The example below uses the default `oliynyk` feature element database: ```@example using DataFrames using CBFV d = DataFrame(:formula=>["Tc1V1","Cu1Dy1","Cd3N2"],:target=>[248.539,66.8444,91.5034]) generatefeatures(d) ``` now trying with the `jarvis` database: ```@example using DataFrames #hide using CBFV #hide d = DataFrame(:formula=>["Tc1V1","Cu1Dy1","Cd3N2"],:target=>[248.539,66.8444,91.5034]) #hide generatefeatures(d,elementdata="jarvis") ``` Another example: ```@example using DataFrames using CBFV data = DataFrame("name"=>["Rb2Te","CdCl2","LaN"],"bandgap_eV"=>[1.88,3.51,1.12]) rename!(data,Dict("name"=>"formula","bandgap_eV"=>"target")) features = generatefeatures(data) ``` Here is an example with an existing feature combined with the generated features: ```@example using DataFrames using CBFV data = DataFrame(:formula=>["B2O3","Be1I2","Be1F3Li1"], :temperature=>[1400.00,1200.0,1100.00], :heat_capacity=>[89.115,134.306,192.464]) rename!(data,Dict(:heat_capacity=>:target)) features = generatefeatures(data,combine=true) ```
CBFV
https://github.com/JuliaMatSci/CBFV.jl.git
[ "MIT" ]
0.1.0
81fba898c4e80b8549f5348b74d08197a04afc85
docs
4943
# CBFV.jl : A simple composition-based feature vectorization utility in Julia [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliamatsci.github.io/CBFV.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliamatsci.github.io/CBFV.jl/dev) [![Build Status](https://github.com/juliamatsci/CBFV.jl/workflows/CI/badge.svg)](https://github.com/JuliaMatSci/CBFV.jl/actions) [![Build Status](https://travis-ci.com/JuliaMatSci/CBFV.jl.svg?branch=master)](https://travis-ci.com/JuliaMatSci/CBFV.jl) [![Coverage](https://codecov.io/gh/JuliaMatSci/CBFV.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaMatSci/CBFV.jl) This is a Julia rewrite of the [python tool](https://github.com/kaaiian/CBFV) to create a composition-based feature vector representation for machine learning with materials science data. The ideas and methodology are discussed in the recent article: >Wang, Anthony Yu-Tung; Murdock, Ryan J.; Kauwe, Steven K.; Oliynyk, Anton O.; Gurlo, Aleksander; Brgoch, Jakoah; Persson, Kristin A.; Sparks, Taylor D., [Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices](https://doi.org/10.1021/acs.chemmater.0c01907), *Chemistry of Materials* **2020**, *32 (12)*: 4954–4965. DOI: [10.1021/acs.chemmater.0c01907](https://doi.org/10.1021/acs.chemmater.0c01907). and the original python source code(s) can be found here: - [https://github.com/anthony-wang/BestPractices/tree/master/notebooks/CBFV](https://github.com/anthony-wang/BestPractices/tree/master/notebooks/CBFV) - [https://github.com/kaaiian/CBFV](https://github.com/kaaiian/CBFV) ## Example Use The input data set should have a least two columns with the header/names `formula` and `target`. ```@example using DataFrames using CBFV data = DataFrame("name"=>["Rb2Te","CdCl2","LaN"],"bandgap_eV"=>[1.88,3.51,1.12]) rename!(data,Dict("name"=>"formula","bandgap_eV"=>"target")) features = generatefeatures(data) ``` The thing to note is you most likely will still want to post-process the generated feature data using some transformation to scale the data. The [StatsBase.jl](https://juliastats.org/StatsBase.jl/stable/transformations/) package provides some basic fetures for this, although the input needs to be `AbstractMatrix{<:Real}` rather than a `DataFrame`. This can be achieved using `generatefeatures(data,returndataframe=false)` ## Supported Featurization Schemes As with the orignal CBFV python package the following element databases are available: - `oliynyk` (default): Database from A. Oliynyk. - `magpie`: [Materials Agnostic Platform for Informatics and Exploration](https://bitbucket.org/wolverton/magpie/src/master/) - `mat2vec`: [Word embeddings capture latent knowledge from materials science](https://github.com/materialsintelligence/mat2vec) - `jarvis`: [Joint Automated Repository for Various Integrated Simulations provided by U.S. National Institutes of Standards and Technologies.](https://jarvis.nist.gov/) - `onehot`: Simple one hot encoding scheme, i.e., diagonal elemental matrix. - `random_200`: 200 random elemental properties (I'm assuming). However, `CBFV.jl` will allow you to provide your own element database to featurize with. Also, the current implementation reads the saved `.csv` file in [`databases`](@ref), however, this is prone to potential issues (ex. out of date files). To alleviate this I will change the implementation to utilize `Pkg.Artificats` with a `Artificats.toml` file that enables grabbing the datafiles needed from a server if they don't exist locally already. ### Julia Dependencies This is a relatively small package so there aren't a lot of dependencies. The required packages are: - CSV - DataFrames - ProgressBars ## Citations Pleae cite the following when and if you use this package in your work: ```bibtex @misc{CBFV.jl, author = {Bringuier, Stefan}, year = {2021}, title = {CBFV.jl - A simple composition based feature vectorization Julia utility}, url = {https://github.com/JuliaMatSci/CBFV.jl}, } ``` In addition, please also consider citing the original python implementation and tutorial paper. ```bibtex @misc{CBFV, author = {Kauwe, Steven and Wang, Anthony Yu-Tung and Falkowski, Andrew}, title = {CBFV: Composition-based feature vectors}, url = {https://github.com/kaaiian/CBFV} } ``` ```bibtex @article{Wang2020bestpractices, author = {Wang, Anthony Yu-Tung and Murdock, Ryan J. and Kauwe, Steven K. and Oliynyk, Anton O. and Gurlo, Aleksander and Brgoch, Jakoah and Persson, Kristin A. and Sparks, Taylor D.}, year = {2020}, title = {Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices}, url = {https://doi.org/10.1021/acs.chemmater.0c01907}, pages = {4954--4965}, volume = {32}, number = {12}, issn = {0897-4756}, journal = {Chemistry of Materials}, doi = {10.1021/acs.chemmater.0c01907} } ```
CBFV
https://github.com/JuliaMatSci/CBFV.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
808
using Documenter, DataInterpolations cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true) cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true) ENV["GKSwstype"] = "100" makedocs(modules = [DataInterpolations], sitename = "DataInterpolations.jl", clean = true, doctest = false, linkcheck = true, format = Documenter.HTML(assets = ["assets/favicon.ico"], canonical = "https://docs.sciml.ai/DataInterpolations/stable/"), pages = ["index.md", "Methods" => "methods.md", "Interface" => "interface.md", "Using with Symbolics/ModelingToolkit" => "symbolics.md", "Manual" => "manual.md", "Inverting Integrals" => "inverting_integrals.md"]) deploydocs(repo = "github.com/SciML/DataInterpolations.jl"; push_preview = true)
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
4153
module DataInterpolationsChainRulesCoreExt if isdefined(Base, :get_extension) using DataInterpolations: _interpolate, derivative, AbstractInterpolation, LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation, AkimaInterpolation, BSplineInterpolation, BSplineApprox, get_idx, get_parameters, _quad_interp_indices, munge_data using ChainRulesCore else using ..DataInterpolations: _interpolate, derivative, AbstractInterpolation, LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation, AkimaInterpolation, BSplineInterpolation, BSplineApprox, get_parameters, _quad_interp_indices, munge_data using ..ChainRulesCore end function ChainRulesCore.rrule(::typeof(munge_data), u, t) u_out, t_out = munge_data(u, t) # For now modifications by munge_data not supported @assert (u == u_out && t == t_out) munge_data_pullback = Δ -> (NoTangent(), Δ[1], Δ[2]) (u_out, t_out), munge_data_pullback end function ChainRulesCore.rrule( ::Type{LinearInterpolation}, u, t, I, p, extrapolate, cache_parameters) A = LinearInterpolation(u, t, I, p, extrapolate, cache_parameters) function LinearInterpolation_pullback(ΔA) df = NoTangent() du = ΔA.u dt = NoTangent() dI = NoTangent() dp = NoTangent() dextrapolate = NoTangent() dcache_parameters = NoTangent() df, du, dt, dI, dp, dextrapolate, dcache_parameters end A, LinearInterpolation_pullback end function ChainRulesCore.rrule( ::Type{QuadraticInterpolation}, u, t, I, p, mode, extrapolate, cache_parameters) A = QuadraticInterpolation(u, t, I, p, mode, extrapolate, cache_parameters) function LinearInterpolation_pullback(ΔA) df = NoTangent() du = ΔA.u dt = NoTangent() dI = NoTangent() dp = NoTangent() dmode = NoTangent() dextrapolate = NoTangent() dcache_parameters = NoTangent() df, du, dt, dI, dp, dmode, dextrapolate, dcache_parameters end A, LinearInterpolation_pullback end function u_tangent(A::LinearInterpolation, t, Δ) out = zero.(A.u) idx = get_idx(A, t, A.iguesser) t_factor = (t - A.t[idx]) / (A.t[idx + 1] - A.t[idx]) if eltype(out) <: Number out[idx] = Δ * (one(eltype(out)) - t_factor) out[idx + 1] = Δ * t_factor else @. out[idx] = Δ * (true - t_factor) @. out[idx + 1] = Δ * t_factor end out end function u_tangent(A::QuadraticInterpolation, t, Δ) out = zero.(A.u) i₀, i₁, i₂ = _quad_interp_indices(A, t, A.iguesser) t₀ = A.t[i₀] t₁ = A.t[i₁] t₂ = A.t[i₂] Δt₀ = t₁ - t₀ Δt₁ = t₂ - t₁ Δt₂ = t₂ - t₀ if eltype(out) <: Number out[i₀] = Δ * (t - A.t[i₁]) * (t - A.t[i₂]) / (Δt₀ * Δt₂) out[i₁] = -Δ * (t - A.t[i₀]) * (t - A.t[i₂]) / (Δt₀ * Δt₁) out[i₂] = Δ * (t - A.t[i₀]) * (t - A.t[i₁]) / (Δt₂ * Δt₁) else @. out[i₀] = Δ * (t - A.t[i₁]) * (t - A.t[i₂]) / (Δt₀ * Δt₂) @. out[i₁] = -Δ * (t - A.t[i₀]) * (t - A.t[i₂]) / (Δt₀ * Δt₁) @. out[i₂] = Δ * (t - A.t[i₀]) * (t - A.t[i₁]) / (Δt₂ * Δt₁) end out end function u_tangent(A, t, Δ) NoTangent() end function ChainRulesCore.rrule(::typeof(_interpolate), A::Union{ LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation, AkimaInterpolation, BSplineInterpolation, BSplineApprox }, t::Number) deriv = derivative(A, t) function interpolate_pullback(Δ) (NoTangent(), Tangent{typeof(A)}(; u = u_tangent(A, t, Δ)), sum(deriv .* Δ)) end return _interpolate(A, t), interpolate_pullback end function ChainRulesCore.frule((_, _, Δt), ::typeof(_interpolate), A::AbstractInterpolation, t::Number) return _interpolate(A, t), derivative(A, t) * Δt end end # module
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
2356
module DataInterpolationsOptimExt using DataInterpolations import DataInterpolations: munge_data, Curvefit, CurvefitCache, _interpolate, get_show, derivative, ExtrapolationError, integral, IntegralNotFoundError, DerivativeNotFoundError isdefined(Base, :get_extension) ? (using Optim, ForwardDiff) : (using ..Optim, ..ForwardDiff) ### Curvefit function Curvefit(u, t, model, p0, alg, box = false, lb = nothing, ub = nothing; extrapolate = false) u, t = munge_data(u, t) errfun(t, u, p) = sum(abs2.(u .- model(t, p))) if box == false mfit = optimize(p -> errfun(t, u, p), p0, alg) else if lb === nothing || ub === nothing error("lower or upper bound should not be nothing") end od = OnceDifferentiable(p -> errfun(t, u, p), p0, autodiff = :finite) mfit = optimize(od, lb, ub, p0, Fminbox(alg)) end pmin = Optim.minimizer(mfit) CurvefitCache(u, t, model, p0, ub, lb, alg, pmin, extrapolate) end # Curvefit function _interpolate(A::CurvefitCache{<:AbstractVector{<:Number}}, t::Union{AbstractVector{<:Number}, Number}) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) A.m(t, A.pmin) end function _interpolate(A::CurvefitCache{<:AbstractVector{<:Number}}, t::Union{AbstractVector{<:Number}, Number}, i) _interpolate(A, t), i end function derivative(A::CurvefitCache{<:AbstractVector{<:Number}}, t::Union{AbstractVector{<:Number}, Number}, order = 1) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) order > 2 && throw(DerivativeNotFoundError()) order == 1 && return ForwardDiff.derivative(x -> A.m(x, A.pmin), t) return ForwardDiff.derivative(t -> ForwardDiff.derivative(x -> A.m(x, A.pmin), t), t) end function get_show(A::CurvefitCache) return "Curvefit" * " with $(length(A.t)) points, using $(nameof(typeof(A.alg)))\n" end function integral(A::CurvefitCache{<:AbstractVector{<:Number}}, t::Number) throw(IntegralNotFoundError()) end function integral(A::CurvefitCache{<:AbstractVector{<:Number}}, t1::Number, t2::Number) throw(IntegralNotFoundError()) end end # module
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
11684
module DataInterpolationsRegularizationToolsExt using DataInterpolations import DataInterpolations: munge_data, _interpolate, RegularizationSmooth, get_show, derivative, integral using LinearAlgebra isdefined(Base, :get_extension) ? (import RegularizationTools as RT) : (import ..RegularizationTools as RT) # TODO: # x midpoint rule # x scattered/interpolation # x GCV # x L-curve # - bounds on λ # - initial guess for λ? will require mods to RegularizationTools # - scaled λ? will need to work out equivalency with λ² formulation, and resolve with # derivative rather than difference matrix # - optimize λ via standard deviation? # - relative weights? # - arbitrary weighting -- implemented but not yet tested # - midpoint rule with scattered? # x add argument types for `RegularizationSmooth` constructor methods (why isn't this done # for the other interpolaters?) # - make use of `munge_data` features (allow for matrix rather than vector u & t arguments?) # - validate data and t̂ # x unit tests const LA = LinearAlgebra """ # Arguments - `u::Vector`: dependent data. - `t::Vector`: independent data. # Optional Arguments - `t̂::Vector`: t-values to use for the smooth curve (useful when data has missing values or is "scattered"); if not provided, then `t̂ = t`; must be monotonically increasing. - `wls::{Vector,Symbol}`: weights to use with the least-squares fitting term; if set to `:midpoint`, then midpoint-rule integration weights are used for _both_ `wls` and `wr`. - `wr::Vector`: weights to use with the roughness term. - `d::Int = 2`: derivative used to calculate roughness; e.g., when `d = 2`, the 2nd derivative (i.e. the curvature) of the data is used to calculate roughness. # Keyword Arguments - `λ::{Number,Tuple} = 1.0`: regularization parameter; larger values result in a smoother curve; the provided value is used directly when `alg = :fixed`; otherwise it is used as an initial guess for the optimization method, or as bounds if a 2-tuple is provided (TBD) - `alg::Symbol = :gcv_svd`: algorithm for determining an optimal value for λ; the provided λ value is used directly if `alg = :fixed`; otherwise `alg = [:gcv_svd, :gcv_tr, :L_curve]` is passed to the RegularizationTools solver. - `extrapolate::Bool` = false: flag to allow extrapolating outside the range of the time points provided. ## Example Constructors Smoothing using all arguments ```julia A = RegularizationSmooth(u, t, t̂, wls, wr, d; λ = 1.0, alg = :gcv_svd) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector, wls::AbstractVector, wr::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) M = _mapping_matrix(t̂, t) Wls½ = LA.diagm(sqrt.(wls)) Wr½ = LA.diagm(sqrt.(wr)) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, wls, wr, d, λ, alg, Aitp, extrapolate) end """ Direct smoothing, no `t̂` or weights ```julia A = RegularizationSmooth(u, t, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) t̂ = t N = length(t) M = Array{Float64}(LA.I, N, N) Wls½ = Array{Float64}(LA.I, N, N) Wr½ = Array{Float64}(LA.I, N - d, N - d) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, LA.diag(Wls½), LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end """ `t̂` provided, no weights ```julia A = RegularizationSmooth(u, t, t̂, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) N, N̂ = length(t), length(t̂) M = _mapping_matrix(t̂, t) Wls½ = Array{Float64}(LA.I, N, N) Wr½ = Array{Float64}(LA.I, N̂ - d, N̂ - d) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, LA.diag(Wls½), LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end """ `t̂` and `wls` provided ```julia A = RegularizationSmooth(u, t, t̂, wls, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector, wls::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) N, N̂ = length(t), length(t̂) M = _mapping_matrix(t̂, t) Wls½ = LA.diagm(sqrt.(wls)) Wr½ = Array{Float64}(LA.I, N̂ - d, N̂ - d) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, wls, LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end """ `wls` provided, no `t̂` ```julia A = RegularizationSmooth( u, t, nothing, wls, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing, wls::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) t̂ = t N = length(t) M = Array{Float64}(LA.I, N, N) Wls½ = LA.diagm(sqrt.(wls)) Wr½ = Array{Float64}(LA.I, N - d, N - d) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, wls, LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end """ `wls` and `wr` provided, no `t̂` ```julia A = RegularizationSmooth( u, t, nothing, wls, wr, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing, wls::AbstractVector, wr::AbstractVector, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) t̂ = t N = length(t) M = Array{Float64}(LA.I, N, N) Wls½ = LA.diagm(sqrt.(wls)) Wr½ = LA.diagm(sqrt.(wr)) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, wls, LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end """ Keyword provided for `wls`, no `t̂` ```julia A = RegularizationSmooth( u, t, nothing, :midpoint, d; λ = 1.0, alg = :gcv_svd, extrapolate = false) ``` """ function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::Nothing, wls::Symbol, d::Int = 2; λ::Real = 1.0, alg::Symbol = :gcv_svd, extrapolate::Bool = false) u, t = munge_data(u, t) t̂ = t N = length(t) M = Array{Float64}(LA.I, N, N) wls, wr = _weighting_by_kw(t, d, wls) Wls½ = LA.diagm(sqrt.(wls)) Wr½ = LA.diagm(sqrt.(wr)) û, λ, Aitp = _reg_smooth_solve(u, t̂, d, M, Wls½, Wr½, λ, alg, extrapolate) RegularizationSmooth(u, û, t, t̂, LA.diag(Wls½), LA.diag(Wr½), d, λ, alg, Aitp, extrapolate) end # """ t̂ provided and keyword for wls _TBD_ """ # function RegularizationSmooth(u::AbstractVector, t::AbstractVector, t̂::AbstractVector, # wls::Symbol, d::Int=2; λ::Real=1.0, alg::Symbol=:gcv_svd) """ Solve for the smoothed dependent variables and create spline interpolator """ function _reg_smooth_solve( u::AbstractVector, t̂::AbstractVector, d::Int, M::AbstractMatrix, Wls½::AbstractMatrix, Wr½::AbstractMatrix, λ::Real, alg::Symbol, extrapolate::Bool) λ = float(λ) # `float` expected by RT D = _derivative_matrix(t̂, d) Ψ = RT.setupRegularizationProblem(Wls½ * M, Wr½ * D) Wls½u = Wls½ * u if alg == :fixed b̄ = RT.to_standard_form(Ψ, Wls½u) # via b̄ ū = RT.solve(Ψ, b̄, λ) û = RT.to_general_form(Ψ, Wls½u, ū) else # the provided λ (a scalar) is used as an initial guess; using bounds for Brent() # method is TBD, JJS 12/21/21 result = RT.solve(Ψ, Wls½u; alg = alg, method = RT.NelderMead(), λ₀ = λ) û = result.x λ = result.λ end Aitp = CubicSpline(û, t̂; extrapolate) # It seems logical to use B-Spline of order d+1, but I am unsure if theory supports the # extra computational cost, JJS 12/25/21 #Aitp = BSplineInterpolation(û,t̂,d+1,:ArcLen,:Average) return û, λ, Aitp end """ Order d derivative matrix for the provided t vector """ function _derivative_matrix(t::AbstractVector, d::Int) N = length(t) if d == 0 return Array{Float64}(LA.I, (N, N)) end dt = t[(d + 1):end] - t[1:(end - d)] V = LA.diagm(1 ./ dt) Ddm1 = diff(_derivative_matrix(t, d - 1), dims = 1) D = d * V * Ddm1 return D end """ Linear interpolation mapping matrix, which maps `û` to `u`. """ function _mapping_matrix(t̂::AbstractVector, t::AbstractVector) N = length(t) N̂ = length(t̂) # map the scattered points to the appropriate index of the smoothed points idx = searchsortedlast.(Ref(t̂), t) # allow for "extrapolation"; i.e. for t̂ extremum that are interior to t idx[idx .== 0] .+= 1 idx[idx .== N̂] .+= -1 # create the linear interpolation matrix m2 = @. (t - t̂[idx]) / (t̂[idx + 1] - t̂[idx]) M = zeros(eltype(t), (N, N̂)) for i in 1:N M[i, idx[i]] = 1 - m2[i] M[i, idx[i] + 1] = m2[i] end return M end """ Common-use weighting, currently only `:midpoint` for midpoint-rule integration """ function _weighting_by_kw(t::AbstractVector, d::Int, wls::Symbol) # `:midpoint` only for now, but plan to add functionality for `:relative` weighting N = length(t) if wls == :midpoint bmp = zeros(N) bmp[1] = -t[1] + t[2] for i in 2:(N - 1) bmp[i] = -t[i - 1] + t[i + 1] end bmp[N] = -t[N - 1] + t[N] # divide by 2 doesn't matter in the minimize step, but keeping for correctness if # used as a template elsewhere bmp = bmp / 2 start = floor(Int, d / 2) + 1 final = iseven(d) ? N - (start - 1) : N - start b̃mp = bmp[start:final] return bmp, b̃mp else throw("Unknown `$(wls)` keyword used for weighting, use `:midpoint`.") end end function _interpolate(A::RegularizationSmooth{ <:AbstractVector{<:Number}, }, t::Number) _interpolate(A.Aitp, t) end function derivative(A::RegularizationSmooth{ <:AbstractVector{<:Number}, }, t::Number, order = 1) derivative(A.Aitp, t, order) end function get_show(A::RegularizationSmooth) return "RegularizationSmooth" * " with $(length(A.t)) points, with regularization coefficient $(A.λ)\n" end function integral(A::RegularizationSmooth{<:AbstractVector{<:Number}}, t::Number) integral(A.Aitp, t) end function integral(A::RegularizationSmooth{<:AbstractVector{<:Number}}, t1::Number, t2::Number) integral(A.Aitp, t1, t2) end end # module
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1094
module DataInterpolationsSymbolicsExt if isdefined(Base, :get_extension) using DataInterpolations: AbstractInterpolation import DataInterpolations: derivative using Symbolics using Symbolics: Num, unwrap, SymbolicUtils else using ..DataInterpolations: AbstractInterpolation import ..DataInterpolations: derivative using ..Symbolics using ..Symbolics: Num, unwrap, SymbolicUtils end @register_symbolic (interp::AbstractInterpolation)(t) Base.nameof(interp::AbstractInterpolation) = :Interpolation function derivative(interp::AbstractInterpolation, t::Num, order = 1) Symbolics.wrap(SymbolicUtils.term(derivative, interp, unwrap(t), order)) end SymbolicUtils.promote_symtype(::typeof(derivative), _...) = Real function Symbolics.derivative(::typeof(derivative), args::NTuple{3, Any}, ::Val{2}) Symbolics.unwrap(derivative(args[1], Symbolics.wrap(args[2]), args[3] + 1)) end function Symbolics.derivative(interp::AbstractInterpolation, args::NTuple{1, Any}, ::Val{1}) Symbolics.unwrap(derivative(interp, Symbolics.wrap(args[1]))) end end # module
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
5230
module DataInterpolations ### Interface Functionality abstract type AbstractInterpolation{T} end using LinearAlgebra, RecipesBase using PrettyTables using ForwardDiff import FindFirstFunctions: searchsortedfirstcorrelated, searchsortedlastcorrelated, Guesser include("parameter_caches.jl") include("interpolation_caches.jl") include("interpolation_utils.jl") include("interpolation_methods.jl") include("plot_rec.jl") include("derivatives.jl") include("integrals.jl") include("integral_inverses.jl") include("online.jl") include("show.jl") (interp::AbstractInterpolation)(t::Number) = _interpolate(interp, t) function (interp::AbstractInterpolation)(t::AbstractVector) u = get_u(interp.u, t) interp(u, t) end function get_u(u::AbstractVector, t) return similar(t, promote_type(eltype(u), eltype(t))) end function get_u(u::AbstractVector{<:AbstractVector}, t) type = promote_type(eltype(eltype(u)), eltype(t)) return [zeros(type, length(first(u))) for _ in eachindex(t)] end function get_u(u::AbstractMatrix, t) type = promote_type(eltype(u), eltype(t)) return zeros(type, (size(u, 1), length(t))) end function (interp::AbstractInterpolation)(u::AbstractMatrix, t::AbstractVector) @inbounds for i in eachindex(t) u[:, i] = interp(t[i]) end u end function (interp::AbstractInterpolation)(u::AbstractVector, t::AbstractVector) @inbounds for i in eachindex(u, t) u[i] = interp(t[i]) end u end const EXTRAPOLATION_ERROR = "Cannot extrapolate as `extrapolate` keyword passed was `false`" struct ExtrapolationError <: Exception end function Base.showerror(io::IO, e::ExtrapolationError) print(io, EXTRAPOLATION_ERROR) end const INTEGRAL_NOT_FOUND_ERROR = "Cannot integrate it analytically. Please use Numerical Integration methods." struct IntegralNotFoundError <: Exception end function Base.showerror(io::IO, e::IntegralNotFoundError) print(io, INTEGRAL_NOT_FOUND_ERROR) end const DERIVATIVE_NOT_FOUND_ERROR = "Derivatives greater than second order is not supported." struct DerivativeNotFoundError <: Exception end function Base.showerror(io::IO, e::DerivativeNotFoundError) print(io, DERIVATIVE_NOT_FOUND_ERROR) end const INTEGRAL_INVERSE_NOT_FOUND_ERROR = "Cannot invert the integral analytically. Please use Numerical methods." struct IntegralInverseNotFoundError <: Exception end function Base.showerror(io::IO, e::IntegralInverseNotFoundError) print(io, INTEGRAL_INVERSE_NOT_FOUND_ERROR) end const INTEGRAL_NOT_INVERTIBLE_ERROR = "The Interpolation is not positive everywhere so its integral is not invertible." struct IntegralNotInvertibleError <: Exception end function Base.showerror(io::IO, e::IntegralNotInvertibleError) print(io, INTEGRAL_NOT_INVERTIBLE_ERROR) end export LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation, AkimaInterpolation, ConstantInterpolation, QuadraticSpline, CubicSpline, BSplineInterpolation, BSplineApprox, CubicHermiteSpline, PCHIPInterpolation, QuinticHermiteSpline, LinearInterpolationIntInv, ConstantInterpolationIntInv # added for RegularizationSmooth, JJS 11/27/21 ### Regularization data smoothing and interpolation struct RegularizationSmooth{uType, tType, T, T2, ITP <: AbstractInterpolation{T}} <: AbstractInterpolation{T} u::uType û::uType t::tType t̂::tType wls::uType wr::uType d::Int # derivative degree used to calculate the roughness λ::T2 # regularization parameter alg::Symbol # how to determine λ: `:fixed`, `:gcv_svd`, `:gcv_tr`, `L_curve` Aitp::ITP extrapolate::Bool function RegularizationSmooth(u, û, t, t̂, wls, wr, d, λ, alg, Aitp, extrapolate) new{typeof(u), typeof(t), eltype(u), typeof(λ), typeof(Aitp)}( u, û, t, t̂, wls, wr, d, λ, alg, Aitp, extrapolate) end end export RegularizationSmooth # CurveFit struct CurvefitCache{ uType, tType, mType, p0Type, ubType, lbType, algType, pminType, T } <: AbstractInterpolation{T} u::uType t::tType m::mType # model type p0::p0Type # initial params ub::ubType # upper bound of params lb::lbType # lower bound of params alg::algType # alg to optimize cost function pmin::pminType # optimized params extrapolate::Bool function CurvefitCache(u, t, m, p0, ub, lb, alg, pmin, extrapolate) new{typeof(u), typeof(t), typeof(m), typeof(p0), typeof(ub), typeof(lb), typeof(alg), typeof(pmin), eltype(u)}(u, t, m, p0, ub, lb, alg, pmin, extrapolate) end end # Define an empty function, so that it can be extended via `DataInterpolationsOptimExt` function Curvefit() error("CurveFit requires loading Optim and ForwardDiff, e.g. `using Optim, ForwardDiff`") end export Curvefit end # module
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
6729
function derivative(A, t, order = 1) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) iguess = A.iguesser return if order == 1 _derivative(A, t, iguess) elseif order == 2 ForwardDiff.derivative(t -> begin _derivative(A, t, iguess) end, t) else throw(DerivativeNotFoundError()) end end function _derivative(A::LinearInterpolation, t::Number, iguess) idx = get_idx(A, t, iguess; idx_shift = -1, ub_shift = -1, side = :first) slope = get_parameters(A, idx) slope end function _derivative(A::QuadraticInterpolation, t::Number, iguess) i₀, i₁, i₂ = _quad_interp_indices(A, t, iguess) l₀, l₁, l₂ = get_parameters(A, i₀) du₀ = l₀ * (2t - A.t[i₁] - A.t[i₂]) du₁ = l₁ * (2t - A.t[i₀] - A.t[i₂]) du₂ = l₂ * (2t - A.t[i₀] - A.t[i₁]) return @views @. du₀ + du₁ + du₂ end function _derivative(A::LagrangeInterpolation{<:AbstractVector}, t::Number) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) der = zero(A.u[1]) for j in eachindex(A.t) tmp = zero(A.t[1]) if isnan(A.bcache[j]) mult = one(A.t[1]) for i in 1:(j - 1) mult *= (A.t[j] - A.t[i]) end for i in (j + 1):length(A.t) mult *= (A.t[j] - A.t[i]) end A.bcache[j] = mult else mult = A.bcache[j] end for l in eachindex(A.t) if l != j k = one(A.t[1]) for m in eachindex(A.t) if m != j && m != l k *= (t - A.t[m]) end end k *= inv(mult) tmp += k end end der += A.u[j] * tmp end der end function _derivative(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) der = zero(A.u[:, 1]) for j in eachindex(A.t) tmp = zero(A.t[1]) if isnan(A.bcache[j]) mult = one(A.t[1]) for i in 1:(j - 1) mult *= (A.t[j] - A.t[i]) end for i in (j + 1):length(A.t) mult *= (A.t[j] - A.t[i]) end A.bcache[j] = mult else mult = A.bcache[j] end for l in eachindex(A.t) if l != j k = one(A.t[1]) for m in eachindex(A.t) if m != j && m != l k *= (t - A.t[m]) end end k *= inv(mult) tmp += k end end der += A.u[:, j] * tmp end der end function _derivative(A::LagrangeInterpolation{<:AbstractVector}, t::Number, idx) _derivative(A, t) end function _derivative(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number, idx) _derivative(A, t) end function _derivative(A::AkimaInterpolation{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess; idx_shift = -1, side = :first) j = min(idx, length(A.c)) # for smooth derivative at A.t[end] wj = t - A.t[idx] @evalpoly wj A.b[idx] 2A.c[j] 3A.d[j] end function _derivative(A::ConstantInterpolation, t::Number, iguess) return zero(first(A.u)) end function _derivative(A::ConstantInterpolation{<:AbstractVector}, t::Number, iguess) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) return isempty(searchsorted(A.t, t)) ? zero(A.u[1]) : eltype(A.u)(NaN) end function _derivative(A::ConstantInterpolation{<:AbstractMatrix}, t::Number, iguess) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) return isempty(searchsorted(A.t, t)) ? zero(A.u[:, 1]) : eltype(A.u)(NaN) .* A.u[:, 1] end # QuadraticSpline Interpolation function _derivative(A::QuadraticSpline{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess; lb = 2, ub_shift = 0, side = :first) σ = get_parameters(A, idx - 1) A.z[idx - 1] + 2σ * (t - A.t[idx - 1]) end # CubicSpline Interpolation function _derivative(A::CubicSpline{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₁ = t - A.t[idx] Δt₂ = A.t[idx + 1] - t dI = (-A.z[idx] * Δt₂^2 + A.z[idx + 1] * Δt₁^2) / (2A.h[idx + 1]) c₁, c₂ = get_parameters(A, idx) dC = c₁ dD = -c₂ dI + dC + dD end function _derivative(A::BSplineInterpolation{<:AbstractVector{<:Number}}, t::Number, iguess) # change t into param [0 1] t < A.t[1] && return zero(A.u[1]) t > A.t[end] && return zero(A.u[end]) idx = get_idx(A, t, iguess) n = length(A.t) scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx]) t_ = A.p[idx] + (t - A.t[idx]) * scale N = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.N spline_coefficients!(N, A.d - 1, A.k, t_) ducum = zero(eltype(A.u)) if t == A.t[1] ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2]) else for i in 1:(n - 1) ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1]) end end ducum * A.d * scale end # BSpline Curve Approx function _derivative(A::BSplineApprox{<:AbstractVector{<:Number}}, t::Number, iguess) # change t into param [0 1] t < A.t[1] && return zero(A.u[1]) t > A.t[end] && return zero(A.u[end]) idx = get_idx(A, t, iguess) scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx]) t_ = A.p[idx] + (t - A.t[idx]) * scale N = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.N spline_coefficients!(N, A.d - 1, A.k, t_) ducum = zero(eltype(A.u)) if t == A.t[1] ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2]) else for i in 1:(A.h - 1) ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1]) end end ducum * A.d * scale end # Cubic Hermite Spline function _derivative( A::CubicHermiteSpline{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = A.du[idx] c₁, c₂ = get_parameters(A, idx) out += Δt₀ * (Δt₀ * c₂ + 2(c₁ + Δt₁ * c₂)) out end # Quintic Hermite Spline function _derivative( A::QuinticHermiteSpline{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = A.du[idx] + A.ddu[idx] * Δt₀ c₁, c₂, c₃ = get_parameters(A, idx) out += Δt₀^2 * (3c₁ + (3Δt₁ + Δt₀) * c₂ + (3Δt₁^2 + Δt₀ * 2Δt₁) * c₃) out end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
3875
abstract type AbstractIntegralInverseInterpolation{T} <: AbstractInterpolation{T} end """ invert_integral(A::AbstractInterpolation)::AbstractIntegralInverseInterpolation Creates the inverted integral interpolation object from the given interpolation. Conditions: - The range of `A` must be strictly positive - `A.u` must be a number type (on which an ordering is defined) - This is currently only supported for `ConstantInterpolation` and `LinearInterpolation` ## Arguments - `A`: interpolation object satisfying the above requirements """ invert_integral(A::AbstractInterpolation) = throw(IntegralInverseNotFoundError()) _integral(A::AbstractIntegralInverseInterpolation, idx, t) = throw(IntegralNotFoundError()) function _derivative(A::AbstractIntegralInverseInterpolation, t::Number, iguess) inv(A.itp(A(t))) end """ LinearInterpolationIntInv(u, t, A) It is the interpolation of the inverse of the integral of a `LinearInterpolation`. Can be easily constructed with `invert_integral(A::LinearInterpolation{<:AbstractVector{<:Number}})` ## Arguments - `u` : Given by `A.t` - `t` : Given by `A.I` (the cumulative integral of `A`) - `A` : The `LinearInterpolation` object """ struct LinearInterpolationIntInv{uType, tType, itpType, T} <: AbstractIntegralInverseInterpolation{T} u::uType t::tType extrapolate::Bool iguesser::Guesser{tType} itp::itpType function LinearInterpolationIntInv(u, t, A) new{typeof(u), typeof(t), typeof(A), eltype(u)}( u, t, A.extrapolate, Guesser(t), A) end end function invertible_integral(A::LinearInterpolation{<:AbstractVector{<:Number}}) return all(A.u .> 0) end get_I(A::AbstractInterpolation) = isempty(A.I) ? cumulative_integral(A, true) : A.I function invert_integral(A::LinearInterpolation{<:AbstractVector{<:Number}}) !invertible_integral(A) && throw(IntegralNotInvertibleError()) return LinearInterpolationIntInv(A.t, get_I(A), A) end function _interpolate( A::LinearInterpolationIntInv{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt = t - A.t[idx] x = A.itp.u[idx] slope = get_parameters(A.itp, idx) u = A.u[idx] + 2Δt / (x + sqrt(x^2 + slope * 2Δt)) u end """ ConstantInterpolationIntInv(u, t, A) It is the interpolation of the inverse of the integral of a `ConstantInterpolation`. Can be easily constructed with `invert_integral(A::ConstantInterpolation{<:AbstractVector{<:Number}})` ## Arguments - `u` : Given by `A.t` - `t` : Given by `A.I` (the cumulative integral of `A`) - `A` : The `ConstantInterpolation` object """ struct ConstantInterpolationIntInv{uType, tType, itpType, T} <: AbstractIntegralInverseInterpolation{T} u::uType t::tType extrapolate::Bool iguesser::Guesser{tType} itp::itpType function ConstantInterpolationIntInv(u, t, A) new{typeof(u), typeof(t), typeof(A), eltype(u)}( u, t, A.extrapolate, Guesser(t), A ) end end function invertible_integral(A::ConstantInterpolation{<:AbstractVector{<:Number}}) return all(A.u .> 0) end function invert_integral(A::ConstantInterpolation{<:AbstractVector{<:Number}}) !invertible_integral(A) && throw(IntegralNotInvertibleError()) return ConstantInterpolationIntInv(A.t, get_I(A), A) end function _interpolate( A::ConstantInterpolationIntInv{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess; ub_shift = 0) if A.itp.dir === :left # :left means that value to the left is used for interpolation idx_ = get_idx(A, t, idx; lb = 1, ub_shift = 0) else # :right means that value to the right is used for interpolation idx_ = get_idx(A, t, idx; side = :first, lb = 1, ub_shift = 0) end A.u[idx] + (t - A.t[idx]) / A.itp.u[idx_] end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
4211
function integral(A::AbstractInterpolation, t::Number) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) integral(A, A.t[1], t) end function integral(A::AbstractInterpolation, t1::Number, t2::Number) ((t1 < A.t[1] || t1 > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) ((t2 < A.t[1] || t2 > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) !hasfield(typeof(A), :I) && throw(IntegralNotFoundError()) # the index less than or equal to t1 idx1 = get_idx(A, t1, 0) # the index less than t2 idx2 = get_idx(A, t2, 0; idx_shift = -1, side = :first) if A.cache_parameters total = A.I[idx2] - A.I[idx1] return if t1 == t2 zero(total) else total += _integral(A, idx1, A.t[idx1]) total -= _integral(A, idx1, t1) total += _integral(A, idx2, t2) total -= _integral(A, idx2, A.t[idx2]) total end else total = zero(eltype(A.u)) for idx in idx1:idx2 lt1 = idx == idx1 ? t1 : A.t[idx] lt2 = idx == idx2 ? t2 : A.t[idx + 1] total += _integral(A, idx, lt2) - _integral(A, idx, lt1) end total end end function _integral(A::LinearInterpolation{<:AbstractVector{<:Number}}, idx::Number, t::Number) Δt = t - A.t[idx] slope = get_parameters(A, idx) Δt * (A.u[idx] + slope * Δt / 2) end function _integral( A::ConstantInterpolation{<:AbstractVector{<:Number}}, idx::Number, t::Number) if A.dir === :left # :left means that value to the left is used for interpolation return A.u[idx] * t else # :right means that value to the right is used for interpolation return A.u[idx + 1] * t end end function _integral(A::QuadraticInterpolation{<:AbstractVector{<:Number}}, idx::Number, t::Number) A.mode == :Backward && idx > 1 && (idx -= 1) idx = min(length(A.t) - 2, idx) t₀ = A.t[idx] t₁ = A.t[idx + 1] t₂ = A.t[idx + 2] t_sq = (t^2) / 3 l₀, l₁, l₂ = get_parameters(A, idx) Iu₀ = l₀ * t * (t_sq - t * (t₁ + t₂) / 2 + t₁ * t₂) Iu₁ = l₁ * t * (t_sq - t * (t₀ + t₂) / 2 + t₀ * t₂) Iu₂ = l₂ * t * (t_sq - t * (t₀ + t₁) / 2 + t₀ * t₁) return Iu₀ + Iu₁ + Iu₂ end function _integral(A::QuadraticSpline{<:AbstractVector{<:Number}}, idx::Number, t::Number) Cᵢ = A.u[idx] Δt = t - A.t[idx] σ = get_parameters(A, idx) return A.z[idx] * Δt^2 / 2 + σ * Δt^3 / 3 + Cᵢ * Δt end function _integral(A::CubicSpline{<:AbstractVector{<:Number}}, idx::Number, t::Number) Δt₁sq = (t - A.t[idx])^2 / 2 Δt₂sq = (A.t[idx + 1] - t)^2 / 2 II = (-A.z[idx] * Δt₂sq^2 + A.z[idx + 1] * Δt₁sq^2) / (6A.h[idx + 1]) c₁, c₂ = get_parameters(A, idx) IC = c₁ * Δt₁sq ID = -c₂ * Δt₂sq II + IC + ID end function _integral(A::AkimaInterpolation{<:AbstractVector{<:Number}}, idx::Number, t::Number) t1 = A.t[idx] A.u[idx] * (t - t1) + A.b[idx] * ((t - t1)^2 / 2) + A.c[idx] * ((t - t1)^3 / 3) + A.d[idx] * ((t - t1)^4 / 4) end _integral(A::LagrangeInterpolation, idx::Number, t::Number) = throw(IntegralNotFoundError()) _integral(A::BSplineInterpolation, idx::Number, t::Number) = throw(IntegralNotFoundError()) _integral(A::BSplineApprox, idx::Number, t::Number) = throw(IntegralNotFoundError()) # Cubic Hermite Spline function _integral( A::CubicHermiteSpline{<:AbstractVector{<:Number}}, idx::Number, t::Number) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = Δt₀ * (A.u[idx] + Δt₀ * A.du[idx] / 2) c₁, c₂ = get_parameters(A, idx) p = c₁ + Δt₁ * c₂ dp = c₂ out += Δt₀^3 / 3 * (p - dp * Δt₀ / 4) out end # Quintic Hermite Spline function _integral( A::QuinticHermiteSpline{<:AbstractVector{<:Number}}, idx::Number, t::Number) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = Δt₀ * (A.u[idx] + A.du[idx] * Δt₀ / 2 + A.ddu[idx] * Δt₀^2 / 6) c₁, c₂, c₃ = get_parameters(A, idx) p = c₁ + c₂ * Δt₁ + c₃ * Δt₁^2 dp = c₂ + 2c₃ * Δt₁ ddp = 2c₃ out += Δt₀^4 / 4 * (p - Δt₀ / 5 * dp + Δt₀^2 / 30 * ddp) out end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
34603
""" LinearInterpolation(u, t; extrapolate = false, cache_parameters = false) It is the method of interpolating between the data points using a linear polynomial. For any point, two data points one each side are chosen and connected with a line. Extrapolation extends the last linear polynomial on each side. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct LinearInterpolation{uType, tType, IType, pType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType p::LinearParameterCache{pType} extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function LinearInterpolation(u, t, I, p, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(p.slope), eltype(u)}( u, t, I, p, extrapolate, Guesser(t), cache_parameters, linear_lookup) end end function LinearInterpolation( u, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) p = LinearParameterCache(u, t, cache_parameters) A = LinearInterpolation( u, t, nothing, p, extrapolate, cache_parameters, assume_linear_t) I = cumulative_integral(A, cache_parameters) LinearInterpolation(u, t, I, p, extrapolate, cache_parameters, assume_linear_t) end """ QuadraticInterpolation(u, t, mode = :Forward; extrapolate = false, cache_parameters = false) It is the method of interpolating between the data points using quadratic polynomials. For any point, three data points nearby are taken to fit a quadratic polynomial. Extrapolation extends the last quadratic polynomial on each side. ## Arguments - `u`: data points. - `t`: time points. - `mode`: `:Forward` or `:Backward`. If `:Forward`, two data points ahead of the point and one data point behind is taken for interpolation. If `:Backward`, two data points behind and one ahead is taken for interpolation. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct QuadraticInterpolation{uType, tType, IType, pType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType p::QuadraticParameterCache{pType} mode::Symbol extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function QuadraticInterpolation( u, t, I, p, mode, extrapolate, cache_parameters, assume_linear_t) mode ∈ (:Forward, :Backward) || error("mode should be :Forward or :Backward for QuadraticInterpolation") linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(p.l₀), eltype(u)}( u, t, I, p, mode, extrapolate, Guesser(t), cache_parameters, linear_lookup) end end function QuadraticInterpolation( u, t, mode; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) p = QuadraticParameterCache(u, t, cache_parameters) A = QuadraticInterpolation( u, t, nothing, p, mode, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) QuadraticInterpolation(u, t, I, p, mode, extrapolate, cache_parameters, linear_lookup) end function QuadraticInterpolation(u, t; kwargs...) QuadraticInterpolation(u, t, :Forward; kwargs...) end """ LagrangeInterpolation(u, t, n = length(t) - 1; extrapolate = false, safetycopy = true) It is the method of interpolation using Lagrange polynomials of (k-1)th order passing through all the data points where k is the number of data points. ## Arguments - `u`: data points. - `t`: time points. - `n`: order of the polynomial. Currently only (k-1)th order where k is the number of data points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. """ struct LagrangeInterpolation{uType, tType, T, bcacheType} <: AbstractInterpolation{T} u::uType t::tType n::Int bcache::bcacheType idxs::Vector{Int} extrapolate::Bool iguesser::Guesser{tType} function LagrangeInterpolation(u, t, n, extrapolate) bcache = zeros(eltype(u[1]), n + 1) idxs = zeros(Int, n + 1) fill!(bcache, NaN) new{typeof(u), typeof(t), eltype(u), typeof(bcache)}(u, t, n, bcache, idxs, extrapolate, Guesser(t) ) end end function LagrangeInterpolation( u, t, n = length(t) - 1; extrapolate = false) u, t = munge_data(u, t) if n != length(t) - 1 error("Currently only n=length(t) - 1 is supported") end LagrangeInterpolation(u, t, n, extrapolate) end """ AkimaInterpolation(u, t; extrapolate = false, cache_parameters = false) It is a spline interpolation built from cubic polynomials. It forms a continuously differentiable function. For more details, refer: [https://en.wikipedia.org/wiki/Akima_spline](https://en.wikipedia.org/wiki/Akima_spline). Extrapolation extends the last cubic polynomial on each side. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct AkimaInterpolation{uType, tType, IType, bType, cType, dType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType b::bType c::cType d::dType extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function AkimaInterpolation( u, t, I, b, c, d, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(b), typeof(c), typeof(d), eltype(u)}(u, t, I, b, c, d, extrapolate, Guesser(t), cache_parameters, linear_lookup ) end end function AkimaInterpolation( u, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) n = length(t) dt = diff(t) m = Array{eltype(u)}(undef, n + 3) m[3:(end - 2)] = diff(u) ./ dt m[2] = 2m[3] - m[4] m[1] = 2m[2] - m[3] m[end - 1] = 2m[end - 2] - m[end - 3] m[end] = 2m[end - 1] - m[end - 2] b = 0.5 .* (m[4:end] .+ m[1:(end - 3)]) dm = abs.(diff(m)) f1 = dm[3:(n + 2)] f2 = dm[1:n] f12 = f1 + f2 ind = findall(f12 .> 1e-9 * maximum(f12)) b[ind] = (f1[ind] .* m[ind .+ 1] .+ f2[ind] .* m[ind .+ 2]) ./ f12[ind] c = (3.0 .* m[3:(end - 2)] .- 2.0 .* b[1:(end - 1)] .- b[2:end]) ./ dt d = (b[1:(end - 1)] .+ b[2:end] .- 2.0 .* m[3:(end - 2)]) ./ dt .^ 2 A = AkimaInterpolation( u, t, nothing, b, c, d, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) AkimaInterpolation(u, t, I, b, c, d, extrapolate, cache_parameters, linear_lookup) end """ ConstantInterpolation(u, t; dir = :left, extrapolate = false, cache_parameters = false) It is the method of interpolating using a constant polynomial. For any point, two adjacent data points are found on either side (left and right). The value at that point depends on `dir`. If it is `:left`, then the value at the left point is chosen and if it is `:right`, the value at the right point is chosen. Extrapolation extends the last constant polynomial at the end points on each side. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `dir`: indicates which value should be used for interpolation (`:left` or `:right`). - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct ConstantInterpolation{uType, tType, IType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType p::Nothing dir::Symbol # indicates if value to the $dir should be used for the interpolation extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function ConstantInterpolation( u, t, I, dir, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), eltype(u)}( u, t, I, nothing, dir, extrapolate, Guesser(t), cache_parameters, linear_lookup) end end function ConstantInterpolation( u, t; dir = :left, extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) A = ConstantInterpolation( u, t, nothing, dir, extrapolate, cache_parameters, assume_linear_t) I = cumulative_integral(A, cache_parameters) ConstantInterpolation(u, t, I, dir, extrapolate, cache_parameters, assume_linear_t) end """ QuadraticSpline(u, t; extrapolate = false, cache_parameters = false) It is a spline interpolation using piecewise quadratic polynomials between each pair of data points. Its first derivative is also continuous. Extrapolation extends the last quadratic polynomial on each side. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct QuadraticSpline{uType, tType, IType, pType, tAType, dType, zType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType p::QuadraticSplineParameterCache{pType} tA::tAType d::dType z::zType extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function QuadraticSpline( u, t, I, p, tA, d, z, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(p.σ), typeof(tA), typeof(d), typeof(z), eltype(u)}(u, t, I, p, tA, d, z, extrapolate, Guesser(t), cache_parameters, linear_lookup ) end end function QuadraticSpline( u::uType, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) where {uType <: AbstractVector{<:Number}} u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) s = length(t) dl = ones(eltype(t), s - 1) d_tmp = ones(eltype(t), s) du = zeros(eltype(t), s - 1) tA = Tridiagonal(dl, d_tmp, du) # zero for element type of d, which we don't know yet typed_zero = zero(2 // 1 * (u[begin + 1] - u[begin]) / (t[begin + 1] - t[begin])) d = map(i -> i == 1 ? typed_zero : 2 // 1 * (u[i] - u[i - 1]) / (t[i] - t[i - 1]), 1:s) z = tA \ d p = QuadraticSplineParameterCache(z, t, cache_parameters) A = QuadraticSpline( u, t, nothing, p, tA, d, z, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) QuadraticSpline(u, t, I, p, tA, d, z, extrapolate, cache_parameters, linear_lookup) end function QuadraticSpline( u::uType, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) where {uType <: AbstractVector} u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) s = length(t) dl = ones(eltype(t), s - 1) d_tmp = ones(eltype(t), s) du = zeros(eltype(t), s - 1) tA = Tridiagonal(dl, d_tmp, du) d_ = map( i -> i == 1 ? zeros(eltype(t), size(u[1])) : 2 // 1 * (u[i] - u[i - 1]) / (t[i] - t[i - 1]), 1:s) d = transpose(reshape(reduce(hcat, d_), :, s)) z_ = reshape(transpose(tA \ d), size(u[1])..., :) z = [z_s for z_s in eachslice(z_, dims = ndims(z_))] p = QuadraticSplineParameterCache(z, t, cache_parameters) A = QuadraticSpline( u, t, nothing, p, tA, d, z, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) QuadraticSpline(u, t, I, p, tA, d, z, extrapolate, cache_parameters, linear_lookup) end """ CubicSpline(u, t; extrapolate = false, cache_parameters = false) It is a spline interpolation using piecewise cubic polynomials between each pair of data points. Its first and second derivative is also continuous. Second derivative on both ends are zero, which are also called "natural" boundary conditions. Extrapolation extends the last cubic polynomial on each side. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct CubicSpline{uType, tType, IType, pType, hType, zType, T} <: AbstractInterpolation{T} u::uType t::tType I::IType p::CubicSplineParameterCache{pType} h::hType z::zType extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function CubicSpline(u, t, I, p, h, z, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(p.c₁), typeof(h), typeof(z), eltype(u)}( u, t, I, p, h, z, extrapolate, Guesser(t), cache_parameters, linear_lookup ) end end function CubicSpline(u::uType, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) where {uType <: AbstractVector{<:Number}} u, t = munge_data(u, t) n = length(t) - 1 h = vcat(0, map(k -> t[k + 1] - t[k], 1:(length(t) - 1)), 0) dl = vcat(h[2:n], zero(eltype(h))) d_tmp = 2 .* (h[1:(n + 1)] .+ h[2:(n + 2)]) du = vcat(zero(eltype(h)), h[3:(n + 1)]) tA = Tridiagonal(dl, d_tmp, du) # zero for element type of d, which we don't know yet typed_zero = zero(6(u[begin + 2] - u[begin + 1]) / h[begin + 2] - 6(u[begin + 1] - u[begin]) / h[begin + 1]) d = map( i -> i == 1 || i == n + 1 ? typed_zero : 6(u[i + 1] - u[i]) / h[i + 1] - 6(u[i] - u[i - 1]) / h[i], 1:(n + 1)) z = tA \ d linear_lookup = seems_linear(assume_linear_t, t) p = CubicSplineParameterCache(u, h, z, cache_parameters) A = CubicSpline( u, t, nothing, p, h[1:(n + 1)], z, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) CubicSpline(u, t, I, p, h[1:(n + 1)], z, extrapolate, cache_parameters, linear_lookup) end function CubicSpline( u::uType, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) where {uType <: AbstractVector} u, t = munge_data(u, t) n = length(t) - 1 h = vcat(0, map(k -> t[k + 1] - t[k], 1:(length(t) - 1)), 0) dl = vcat(h[2:n], zero(eltype(h))) d_tmp = 2 .* (h[1:(n + 1)] .+ h[2:(n + 2)]) du = vcat(zero(eltype(h)), h[3:(n + 1)]) tA = Tridiagonal(dl, d_tmp, du) d_ = map( i -> i == 1 || i == n + 1 ? zeros(eltype(t), size(u[1])) : 6(u[i + 1] - u[i]) / h[i + 1] - 6(u[i] - u[i - 1]) / h[i], 1:(n + 1)) d = transpose(reshape(reduce(hcat, d_), :, n + 1)) z_ = reshape(transpose(tA \ d), size(u[1])..., :) z = [z_s for z_s in eachslice(z_, dims = ndims(z_))] p = CubicSplineParameterCache(u, h, z, cache_parameters) A = CubicSpline( u, t, nothing, p, h[1:(n + 1)], z, extrapolate, cache_parameters, assume_linear_t) I = cumulative_integral(A, cache_parameters) CubicSpline(u, t, I, p, h[1:(n + 1)], z, extrapolate, cache_parameters, assume_linear_t) end """ BSplineInterpolation(u, t, d, pVecType, knotVecType; extrapolate = false, safetycopy = true) It is a curve defined by the linear combination of `n` basis functions of degree `d` where `n` is the number of data points. For more information, refer [https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve.html](https://pages.mtu.edu/%7Eshene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve.html). Extrapolation is a constant polynomial of the end points on each side. ## Arguments - `u`: data points. - `t`: time points. - `d`: degree of the piecewise polynomial. - `pVecType`: symbol to parameters vector, `:Uniform` for uniform spaced parameters and `:ArcLen` for parameters generated by chord length method. - `knotVecType`: symbol to knot vector, `:Uniform` for uniform knot vector, `:Average` for average spaced knot vector. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct BSplineInterpolation{uType, tType, pType, kType, cType, NType, T} <: AbstractInterpolation{T} u::uType t::tType d::Int # degree p::pType # params vector k::kType # knot vector c::cType # control points N::NType # Spline coefficients (preallocated memory) pVecType::Symbol knotVecType::Symbol extrapolate::Bool iguesser::Guesser{tType} linear_lookup::Bool function BSplineInterpolation(u, t, d, p, k, c, N, pVecType, knotVecType, extrapolate, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(p), typeof(k), typeof(c), typeof(N), eltype(u)}(u, t, d, p, k, c, N, pVecType, knotVecType, extrapolate, Guesser(t), linear_lookup ) end end function BSplineInterpolation( u, t, d, pVecType, knotVecType; extrapolate = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) n = length(t) n < d + 1 && error("BSplineInterpolation needs at least d + 1, i.e. $(d+1) points.") s = zero(eltype(u)) p = zero(t) k = zeros(eltype(t), n + d + 1) l = zeros(eltype(u), n - 1) p[1] = zero(eltype(t)) p[end] = one(eltype(t)) for i in 2:n s += √((t[i] - t[i - 1])^2 + (u[i] - u[i - 1])^2) l[i - 1] = s end if pVecType == :Uniform for i in 2:(n - 1) p[i] = p[1] + (i - 1) * (p[end] - p[1]) / (n - 1) end elseif pVecType == :ArcLen for i in 2:(n - 1) p[i] = p[1] + l[i - 1] / s * (p[end] - p[1]) end end lidx = 1 ridx = length(k) while lidx <= (d + 1) && ridx >= (length(k) - d) k[lidx] = p[1] k[ridx] = p[end] lidx += 1 ridx -= 1 end ps = zeros(eltype(t), n - 2) s = zero(eltype(t)) for i in 2:(n - 1) s += p[i] ps[i - 1] = s end if knotVecType == :Uniform # uniformly spaced knot vector # this method is not recommended because, if it is used with the chord length method for global interpolation, # the system of linear equations would be singular. for i in (d + 2):n k[i] = k[1] + (i - d - 1) // (n - d) * (k[end] - k[1]) end elseif knotVecType == :Average # average spaced knot vector idx = 1 if d + 2 <= n k[d + 2] = 1 // d * ps[d] end for i in (d + 3):n k[i] = 1 // d * (ps[idx + d] - ps[idx]) idx += 1 end end # control points N = zeros(eltype(t), n, n) spline_coefficients!(N, d, k, p) c = vec(N \ u[:, :]) N = zeros(eltype(t), n) BSplineInterpolation( u, t, d, p, k, c, N, pVecType, knotVecType, extrapolate, assume_linear_t) end """ BSplineApprox(u, t, d, h, pVecType, knotVecType; extrapolate = false) It is a regression based B-spline. The argument choices are the same as the `BSplineInterpolation`, with the additional parameter `h < length(t)` which is the number of control points to use, with smaller `h` indicating more smoothing. For more information, refer [http://www.cad.zju.edu.cn/home/zhx/GM/009/00-bsia.pdf](http://www.cad.zju.edu.cn/home/zhx/GM/009/00-bsia.pdf). Extrapolation is a constant polynomial of the end points on each side. ## Arguments - `u`: data points. - `t`: time points. - `d`: degree of the piecewise polynomial. - `h`: number of control points to use. - `pVecType`: symbol to parameters vector, `:Uniform` for uniform spaced parameters and `:ArcLen` for parameters generated by chord length method. - `knotVecType`: symbol to knot vector, `:Uniform` for uniform knot vector, `:Average` for average spaced knot vector. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct BSplineApprox{uType, tType, pType, kType, cType, NType, T} <: AbstractInterpolation{T} u::uType t::tType d::Int # degree h::Int # number of control points (n => h >= d >= 1) p::pType # params vector k::kType # knot vector c::cType # control points N::NType # Spline coefficients (preallocated memory) pVecType::Symbol knotVecType::Symbol extrapolate::Bool iguesser::Guesser{tType} linear_lookup::Bool function BSplineApprox(u, t, d, h, p, k, c, N, pVecType, knotVecType, extrapolate, assume_linear_t ) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(p), typeof(k), typeof(c), typeof(N), eltype(u)}(u, t, d, h, p, k, c, N, pVecType, knotVecType, extrapolate, Guesser(t), linear_lookup ) end end function BSplineApprox( u, t, d, h, pVecType, knotVecType; extrapolate = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) n = length(t) h < d + 1 && error("BSplineApprox needs at least d + 1, i.e. $(d+1) control points.") s = zero(eltype(u)) p = zero(t) k = zeros(eltype(t), h + d + 1) l = zeros(eltype(u), n - 1) p[1] = zero(eltype(t)) p[end] = one(eltype(t)) for i in 2:n s += √((t[i] - t[i - 1])^2 + (u[i] - u[i - 1])^2) l[i - 1] = s end if pVecType == :Uniform for i in 2:(n - 1) p[i] = p[1] + (i - 1) * (p[end] - p[1]) / (n - 1) end elseif pVecType == :ArcLen for i in 2:(n - 1) p[i] = p[1] + l[i - 1] / s * (p[end] - p[1]) end end lidx = 1 ridx = length(k) while lidx <= (d + 1) && ridx >= (length(k) - d) k[lidx] = p[1] k[ridx] = p[end] lidx += 1 ridx -= 1 end ps = zeros(eltype(t), n - 2) s = zero(eltype(t)) for i in 2:(n - 1) s += p[i] ps[i - 1] = s end if knotVecType == :Uniform # uniformly spaced knot vector # this method is not recommended because, if it is used with the chord length method for global interpolation, # the system of linear equations would be singular. for i in (d + 2):h k[i] = k[1] + (i - d - 1) // (h - d) * (k[end] - k[1]) end elseif knotVecType == :Average # NOTE: verify that average method can be applied when size of k is less than size of p # average spaced knot vector idx = 1 if d + 2 <= h k[d + 2] = 1 // d * ps[d] end for i in (d + 3):h k[i] = 1 // d * (ps[idx + d] - ps[idx]) idx += 1 end end # control points c = zeros(eltype(u), h) c[1] = u[1] c[end] = u[end] q = zeros(eltype(u), n) N = zeros(eltype(t), n, h) for i in 1:n spline_coefficients!(view(N, i, :), d, k, p[i]) end for k in 2:(n - 1) q[k] = u[k] - N[k, 1] * u[1] - N[k, h] * u[end] end Q = Matrix{eltype(u)}(undef, h - 2, 1) for i in 2:(h - 1) s = 0.0 for k in 2:(n - 1) s += N[k, i] * q[k] end Q[i - 1] = s end N = N[2:(end - 1), 2:(h - 1)] M = transpose(N) * N P = M \ Q c[2:(end - 1)] .= vec(P) N = zeros(eltype(t), h) BSplineApprox( u, t, d, h, p, k, c, N, pVecType, knotVecType, extrapolate, assume_linear_t) end """ CubicHermiteSpline(du, u, t; extrapolate = false, cache_parameters = false) It is a Cubic Hermite interpolation, which is a piece-wise third degree polynomial such that the value and the first derivative are equal to given values in the data points. ## Arguments - `du`: the derivative at the data points. - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct CubicHermiteSpline{uType, tType, IType, duType, pType, T} <: AbstractInterpolation{T} du::duType u::uType t::tType I::IType p::CubicHermiteParameterCache{pType} extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function CubicHermiteSpline( du, u, t, I, p, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(du), typeof(p.c₁), eltype(u)}( du, u, t, I, p, extrapolate, Guesser(t), cache_parameters, linear_lookup) end end function CubicHermiteSpline( du, u, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) @assert length(u)==length(du) "Length of `u` is not equal to length of `du`." u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) p = CubicHermiteParameterCache(du, u, t, cache_parameters) A = CubicHermiteSpline( du, u, t, nothing, p, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) CubicHermiteSpline(du, u, t, I, p, extrapolate, cache_parameters, linear_lookup) end """ PCHIPInterpolation(u, t; extrapolate = false, safetycopy = true) It is a PCHIP Interpolation, which is a type of [`CubicHermiteSpline`](@ref) where the derivative values `du` are derived from the input data in such a way that the interpolation never overshoots the data. See [here](https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/interp.pdf), section 3.4 for more details. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ function PCHIPInterpolation( u, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) u, t = munge_data(u, t) du = du_PCHIP(u, t) CubicHermiteSpline(du, u, t; extrapolate, cache_parameters, assume_linear_t) end """ QuinticHermiteSpline(ddu, du, u, t; extrapolate = false, safetycopy = true) It is a Quintic Hermite interpolation, which is a piece-wise fifth degree polynomial such that the value and the first and second derivative are equal to given values in the data points. ## Arguments - `ddu`: the second derivative at the data points. - `du`: the derivative at the data points. - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `cache_parameters`: precompute parameters at initialization for faster interpolation computations. Note: if activated, `u` and `t` should not be modified. Defaults to `false`. - `assume_linear_t`: boolean value to specify a faster index lookup behaviour for evenly-distributed abscissae. Alternatively, a numerical threshold may be specified for a test based on the normalized standard deviation of the difference with respect to the straight line (see [`looks_linear`](@ref)). Defaults to 1e-2. """ struct QuinticHermiteSpline{uType, tType, IType, duType, dduType, pType, T} <: AbstractInterpolation{T} ddu::dduType du::duType u::uType t::tType I::IType p::QuinticHermiteParameterCache{pType} extrapolate::Bool iguesser::Guesser{tType} cache_parameters::Bool linear_lookup::Bool function QuinticHermiteSpline( ddu, du, u, t, I, p, extrapolate, cache_parameters, assume_linear_t) linear_lookup = seems_linear(assume_linear_t, t) new{typeof(u), typeof(t), typeof(I), typeof(du), typeof(ddu), typeof(p.c₁), eltype(u)}( ddu, du, u, t, I, p, extrapolate, Guesser(t), cache_parameters, linear_lookup) end end function QuinticHermiteSpline(ddu, du, u, t; extrapolate = false, cache_parameters = false, assume_linear_t = 1e-2) @assert length(u)==length(du)==length(ddu) "Length of `u` is not equal to length of `du` or `ddu`." u, t = munge_data(u, t) linear_lookup = seems_linear(assume_linear_t, t) p = QuinticHermiteParameterCache(ddu, du, u, t, cache_parameters) A = QuinticHermiteSpline( ddu, du, u, t, nothing, p, extrapolate, cache_parameters, linear_lookup) I = cumulative_integral(A, cache_parameters) QuinticHermiteSpline( ddu, du, u, t, I, p, extrapolate, cache_parameters, linear_lookup) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
6986
function _interpolate(A, t) ((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError()) return _interpolate(A, t, A.iguesser) end # Linear Interpolation function _interpolate(A::LinearInterpolation{<:AbstractVector}, t::Number, iguess) if isnan(t) # For correct derivative with NaN idx = firstindex(A.u) t1 = t2 = one(eltype(A.t)) u1 = u2 = one(eltype(A.u)) slope = t * get_parameters(A, idx) else idx = get_idx(A, t, iguess) t1, t2 = A.t[idx], A.t[idx + 1] u1, u2 = A.u[idx], A.u[idx + 1] slope = get_parameters(A, idx) end Δt = t - t1 Δu = slope * Δt val = u1 Δu_nan = any(isnan.(Δu)) if t == t2 && Δu_nan val = u2 elseif !(iszero(Δt) && Δu_nan) val += Δu end val = oftype(Δu, val) val end function _interpolate(A::LinearInterpolation{<:AbstractArray}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt = t - A.t[idx] slope = get_parameters(A, idx) ax = axes(A.u)[1:(end - 1)] return A.u[ax..., idx] + slope * Δt end # Quadratic Interpolation _quad_interp_indices(A, t) = _quad_interp_indices(A, t, firstindex(A.t) - 1) function _quad_interp_indices(A::QuadraticInterpolation, t::Number, iguess) idx = get_idx(A, t, iguess; idx_shift = A.mode == :Backward ? -1 : 0, ub_shift = -2) idx, idx + 1, idx + 2 end function _interpolate(A::QuadraticInterpolation, t::Number, iguess) i₀, i₁, i₂ = _quad_interp_indices(A, t, iguess) l₀, l₁, l₂ = get_parameters(A, i₀) u₀ = l₀ * (t - A.t[i₁]) * (t - A.t[i₂]) u₁ = l₁ * (t - A.t[i₀]) * (t - A.t[i₂]) u₂ = l₂ * (t - A.t[i₀]) * (t - A.t[i₁]) return u₀ + u₁ + u₂ end # Lagrange Interpolation function _interpolate(A::LagrangeInterpolation{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess) findRequiredIdxs!(A, t, idx) if A.t[A.idxs[1]] == t return A.u[A.idxs[1]] end N = zero(A.u[1]) D = zero(A.t[1]) tmp = N for i in 1:length(A.idxs) if isnan(A.bcache[A.idxs[i]]) mult = one(A.t[1]) for j in 1:(i - 1) mult *= (A.t[A.idxs[i]] - A.t[A.idxs[j]]) end for j in (i + 1):length(A.idxs) mult *= (A.t[A.idxs[i]] - A.t[A.idxs[j]]) end A.bcache[A.idxs[i]] = mult else mult = A.bcache[A.idxs[i]] end tmp = inv((t - A.t[A.idxs[i]]) * mult) D += tmp N += (tmp * A.u[A.idxs[i]]) end N / D end function _interpolate(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number, iguess) idx = get_idx(A, t, iguess) findRequiredIdxs!(A, t, idx) if A.t[A.idxs[1]] == t return A.u[:, A.idxs[1]] end N = zero(A.u[:, 1]) D = zero(A.t[1]) tmp = D for i in 1:length(A.idxs) if isnan(A.bcache[A.idxs[i]]) mult = one(A.t[1]) for j in 1:(i - 1) mult *= (A.t[A.idxs[i]] - A.t[A.idxs[j]]) end for j in (i + 1):length(A.idxs) mult *= (A.t[A.idxs[i]] - A.t[A.idxs[j]]) end A.bcache[A.idxs[i]] = mult else mult = A.bcache[A.idxs[i]] end tmp = inv((t - A.t[A.idxs[i]]) * mult) D += tmp @. N += (tmp * A.u[:, A.idxs[i]]) end N / D end function _interpolate(A::AkimaInterpolation{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess) wj = t - A.t[idx] @evalpoly wj A.u[idx] A.b[idx] A.c[idx] A.d[idx] end # ConstantInterpolation Interpolation function _interpolate(A::ConstantInterpolation{<:AbstractVector}, t::Number, iguess) if A.dir === :left # :left means that value to the left is used for interpolation idx = get_idx(A, t, iguess; lb = 1, ub_shift = 0) else # :right means that value to the right is used for interpolation idx = get_idx(A, t, iguess; side = :first, lb = 1, ub_shift = 0) end A.u[idx] end function _interpolate(A::ConstantInterpolation{<:AbstractMatrix}, t::Number, iguess) if A.dir === :left # :left means that value to the left is used for interpolation idx = get_idx(A, t, iguess; lb = 1, ub_shift = 0) else # :right means that value to the right is used for interpolation idx = get_idx(A, t, iguess; side = :first, lb = 1, ub_shift = 0) end A.u[:, idx] end # QuadraticSpline Interpolation function _interpolate(A::QuadraticSpline{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess) Cᵢ = A.u[idx] Δt = t - A.t[idx] σ = get_parameters(A, idx) return A.z[idx] * Δt + σ * Δt^2 + Cᵢ end # CubicSpline Interpolation function _interpolate(A::CubicSpline{<:AbstractVector}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₁ = t - A.t[idx] Δt₂ = A.t[idx + 1] - t I = (A.z[idx] * Δt₂^3 + A.z[idx + 1] * Δt₁^3) / (6A.h[idx + 1]) c₁, c₂ = get_parameters(A, idx) C = c₁ * Δt₁ D = c₂ * Δt₂ I + C + D end # BSpline Curve Interpolation function _interpolate(A::BSplineInterpolation{<:AbstractVector{<:Number}}, t::Number, iguess) t < A.t[1] && return A.u[1] t > A.t[end] && return A.u[end] # change t into param [0 1] idx = get_idx(A, t, iguess) t = A.p[idx] + (t - A.t[idx]) / (A.t[idx + 1] - A.t[idx]) * (A.p[idx + 1] - A.p[idx]) n = length(A.t) N = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.N nonzero_coefficient_idxs = spline_coefficients!(N, A.d, A.k, t) ucum = zero(eltype(A.u)) for i in nonzero_coefficient_idxs ucum += N[i] * A.c[i] end ucum end # BSpline Curve Approx function _interpolate(A::BSplineApprox{<:AbstractVector{<:Number}}, t::Number, iguess) t < A.t[1] && return A.u[1] t > A.t[end] && return A.u[end] # change t into param [0 1] idx = get_idx(A, t, iguess) t = A.p[idx] + (t - A.t[idx]) / (A.t[idx + 1] - A.t[idx]) * (A.p[idx + 1] - A.p[idx]) N = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.N nonzero_coefficient_idxs = spline_coefficients!(N, A.d, A.k, t) ucum = zero(eltype(A.u)) for i in nonzero_coefficient_idxs ucum += N[i] * A.c[i] end ucum end # Cubic Hermite Spline function _interpolate( A::CubicHermiteSpline{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = A.u[idx] + Δt₀ * A.du[idx] c₁, c₂ = get_parameters(A, idx) out += Δt₀^2 * (c₁ + Δt₁ * c₂) out end # Quintic Hermite Spline function _interpolate( A::QuinticHermiteSpline{<:AbstractVector{<:Number}}, t::Number, iguess) idx = get_idx(A, t, iguess) Δt₀ = t - A.t[idx] Δt₁ = t - A.t[idx + 1] out = A.u[idx] + Δt₀ * (A.du[idx] + A.ddu[idx] * Δt₀ / 2) c₁, c₂, c₃ = get_parameters(A, idx) out += Δt₀^3 * (c₁ + Δt₁ * (c₂ + c₃ * Δt₁)) out end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
7041
function findRequiredIdxs!(A::LagrangeInterpolation, t, idx) n = length(A.t) - 1 i_min, idx_min, idx_max = if t == A.t[idx] A.idxs[1] = idx 2, idx, idx else 1, idx + 1, idx end for i in i_min:(n + 1) if idx_min == 1 A.idxs[i:end] .= range(idx_max + 1, idx_max + (n + 2 - i)) break elseif idx_max == length(A.t) A.idxs[i:end] .= (idx_min - 1):-1:(idx_min - (n + 2 - i)) break else left_diff = abs(t - A.t[idx_min - 1]) right_diff = abs(t - A.t[idx_max + 1]) left_expand = left_diff <= right_diff end if left_expand idx_min -= 1 A.idxs[i] = idx_min else idx_max += 1 A.idxs[i] = idx_max end end return idx end function spline_coefficients!(N, d, k, u::Number) N .= zero(u) if u == k[1] N[1] = one(u) return 1:1 elseif u == k[end] N[end] = one(u) return length(N):length(N) else i = findfirst(x -> x > u, k) - 1 N[i] = one(u) for deg in 1:d N[i - deg] = (k[i + 1] - u) / (k[i + 1] - k[i - deg + 1]) * N[i - deg + 1] for j in (i - deg + 1):(i - 1) N[j] = (u - k[j]) / (k[j + deg] - k[j]) * N[j] + (k[j + deg + 1] - u) / (k[j + deg + 1] - k[j + 1]) * N[j + 1] end N[i] = (u - k[i]) / (k[i + deg] - k[i]) * N[i] end return (i - d):i end end function spline_coefficients!(N, d, k, u::AbstractVector) for i in 1:size(N)[2] spline_coefficients!(view(N, i, :), d, k, u[i]) end return nothing end # helper function for data manipulation function munge_data(u::AbstractVector{<:Real}, t::AbstractVector{<:Real}) return u, t end function munge_data(u::AbstractVector, t::AbstractVector) Tu = Base.nonmissingtype(eltype(u)) Tt = Base.nonmissingtype(eltype(t)) @assert length(t) == length(u) non_missing_indices = collect( i for i in 1:length(t) if !ismissing(u[i]) && !ismissing(t[i]) ) u = Tu.([u[i] for i in non_missing_indices]) t = Tt.([t[i] for i in non_missing_indices]) return u, t end function munge_data(U::StridedMatrix, t::AbstractVector) TU = Base.nonmissingtype(eltype(U)) Tt = Base.nonmissingtype(eltype(t)) @assert length(t) == size(U, 2) non_missing_indices = collect( i for i in 1:length(t) if !any(ismissing, U[:, i]) && !ismissing(t[i]) ) U = hcat([TU.(U[:, i]) for i in non_missing_indices]...) t = Tt.([t[i] for i in non_missing_indices]) return U, t end function munge_data(U::AbstractArray{T, N}, t) where {T, N} TU = Base.nonmissingtype(eltype(U)) Tt = Base.nonmissingtype(eltype(t)) @assert length(t) == size(U, ndims(U)) ax = axes(U)[1:(end - 1)] non_missing_indices = collect( i for i in 1:length(t) if !any(ismissing, U[ax..., i]) && !ismissing(t[i]) ) U = cat([TU.(U[ax..., i]) for i in non_missing_indices]...; dims = ndims(U)) t = Tt.([t[i] for i in non_missing_indices]) return U, t end seems_linear(assume_linear_t::Bool, _) = assume_linear_t seems_linear(assume_linear_t::Number, t) = looks_linear(t; threshold = assume_linear_t) """ looks_linear(t; threshold = 1e-2) Determine if the abscissae `t` are regularly distributed, taking the standard deviation of the difference between the array of abscissae with respect to the straight line linking its first and last elements, normalized by the range of `t`. If this standard deviation is below the given `threshold`, the vector looks linear (return true). Internal function - interface may change. """ function looks_linear(t; threshold = 1e-2) length(t) <= 2 && return true t_0, t_f = first(t), last(t) t_span = t_f - t_0 tspan_over_N = t_span * length(t)^(-1) norm_var = sum( (t_i - t_0 - i * tspan_over_N)^2 for (i, t_i) in enumerate(t) ) / (length(t) * t_span^2) norm_var < threshold^2 end function get_idx(A::AbstractInterpolation, t, iguess::Union{<:Integer, Guesser}; lb = 1, ub_shift = -1, idx_shift = 0, side = :last) tvec = A.t ub = length(tvec) + ub_shift return if side == :last clamp(searchsortedlastcorrelated(tvec, t, iguess) + idx_shift, lb, ub) elseif side == :first clamp(searchsortedfirstcorrelated(tvec, t, iguess) + idx_shift, lb, ub) else error("side must be :first or :last") end end function cumulative_integral(A, cache_parameters) if cache_parameters && hasmethod(_integral, Tuple{typeof(A), Number, Number}) integral_values = [_integral(A, idx, A.t[idx + 1]) - _integral(A, idx, A.t[idx]) for idx in 1:(length(A.t) - 1)] pushfirst!(integral_values, zero(first(integral_values))) cumsum(integral_values) else promote_type(eltype(A.u), eltype(A.t))[] end end function get_parameters(A::LinearInterpolation, idx) if A.cache_parameters A.p.slope[idx] else linear_interpolation_parameters(A.u, A.t, idx) end end function get_parameters(A::QuadraticInterpolation, idx) if A.cache_parameters A.p.l₀[idx], A.p.l₁[idx], A.p.l₂[idx] else quadratic_interpolation_parameters(A.u, A.t, idx) end end function get_parameters(A::QuadraticSpline, idx) if A.cache_parameters A.p.σ[idx] else quadratic_spline_parameters(A.z, A.t, idx) end end function get_parameters(A::CubicSpline, idx) if A.cache_parameters A.p.c₁[idx], A.p.c₂[idx] else cubic_spline_parameters(A.u, A.h, A.z, idx) end end function get_parameters(A::CubicHermiteSpline, idx) if A.cache_parameters A.p.c₁[idx], A.p.c₂[idx] else cubic_hermite_spline_parameters(A.du, A.u, A.t, idx) end end function get_parameters(A::QuinticHermiteSpline, idx) if A.cache_parameters A.p.c₁[idx], A.p.c₂[idx], A.p.c₃[idx] else quintic_hermite_spline_parameters(A.ddu, A.du, A.u, A.t, idx) end end function du_PCHIP(u, t) h = diff(u) δ = h ./ diff(t) s = sign.(δ) function _du(k) sₖ₋₁, sₖ = if k == 1 s[1], s[2] elseif k == lastindex(t) s[end - 1], s[end] else s[k - 1], s[k] end if sₖ₋₁ == 0 && sₖ == 0 zero(eltype(δ)) elseif sₖ₋₁ == sₖ if k == 1 ((2 * h[1] + h[2]) * δ[1] - h[1] * δ[2]) / (h[1] + h[2]) elseif k == lastindex(t) ((2 * h[end] + h[end - 1]) * δ[end] - h[end] * δ[end - 1]) / (h[end] + h[end - 1]) else w₁ = 2h[k] + h[k - 1] w₂ = h[k] + 2h[k - 1] δ[k - 1] * δ[k] * (w₁ + w₂) / (w₁ * δ[k] + w₂ * δ[k - 1]) end else zero(eltype(δ)) end end return _du.(eachindex(t)) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
2383
import Base: append!, push! function add_integral_values!(A) integral_values = cumsum([_integral(A, idx, A.t[idx + 1]) - _integral(A, idx, A.t[idx]) for idx in (length(A.I) - 1):(length(A.t) - 1)]) pop!(A.I) integral_values .+= last(A.I) append!(A.I, integral_values) end function push!(A::LinearInterpolation{U, T}, u::eltype(U), t::eltype(T)) where {U, T} push!(A.u, u) push!(A.t, t) if A.cache_parameters slope = linear_interpolation_parameters(A.u, A.t, length(A.t) - 1) push!(A.p.slope, slope) add_integral_values!(A) end A end function push!(A::QuadraticInterpolation{U, T}, u::eltype(U), t::eltype(T)) where {U, T} push!(A.u, u) push!(A.t, t) if A.cache_parameters l₀, l₁, l₂ = quadratic_interpolation_parameters(A.u, A.t, length(A.t) - 2) push!(A.p.l₀, l₀) push!(A.p.l₁, l₁) push!(A.p.l₂, l₂) add_integral_values!(A) end A end function push!(A::ConstantInterpolation{U, T}, u::eltype(U), t::eltype(T)) where {U, T} push!(A.u, u) push!(A.t, t) if A.cache_parameters add_integral_values!(A) end A end function append!( A::LinearInterpolation{U, T}, u::U, t::T) where { U, T} length_old = length(A.t) u, t = munge_data(u, t) append!(A.u, u) append!(A.t, t) if A.cache_parameters slope = linear_interpolation_parameters.( Ref(A.u), Ref(A.t), length_old:(length(A.t) - 1)) append!(A.p.slope, slope) add_integral_values!(A) end A end function append!( A::ConstantInterpolation{U, T}, u::U, t::T) where { U, T} u, t = munge_data(u, t) append!(A.u, u) append!(A.t, t) if A.cache_parameters add_integral_values!(A) end A end function append!( A::QuadraticInterpolation{U, T}, u::U, t::T) where { U, T} length_old = length(A.t) u, t = munge_data(u, t) append!(A.u, u) append!(A.t, t) if A.cache_parameters parameters = quadratic_interpolation_parameters.( Ref(A.u), Ref(A.t), (length_old - 1):(length(A.t) - 2)) l₀, l₁, l₂ = collect.(eachrow(hcat(collect.(parameters)...))) append!(A.p.l₀, l₀) append!(A.p.l₁, l₁) append!(A.p.l₂, l₂) add_integral_values!(A) end A end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
5261
struct LinearParameterCache{pType} slope::pType end function LinearParameterCache(u, t, cache_parameters) if cache_parameters slope = linear_interpolation_parameters.(Ref(u), Ref(t), 1:(length(t) - 1)) LinearParameterCache(slope) else # Compute parameters once to infer types slope = linear_interpolation_parameters(u, t, 1) LinearParameterCache(typeof(slope)[]) end end # Prevent e.g. Inf - Inf = NaN function safe_diff(b, a::T) where {T} b == a ? zero(T) : b - a end function linear_interpolation_parameters(u::AbstractArray{T, N}, t, idx) where {T, N} Δu = if N > 1 ax = axes(u) safe_diff.( u[ax[1:(end - 1)]..., (idx + 1)], u[ax[1:(end - 1)]..., idx]) else safe_diff(u[idx + 1], u[idx]) end Δt = t[idx + 1] - t[idx] slope = Δu / Δt slope = iszero(Δt) ? zero(slope) : slope return slope end struct QuadraticParameterCache{pType} l₀::pType l₁::pType l₂::pType end function QuadraticParameterCache(u, t, cache_parameters) if cache_parameters parameters = quadratic_interpolation_parameters.( Ref(u), Ref(t), 1:(length(t) - 2)) l₀, l₁, l₂ = collect.(eachrow(stack(collect.(parameters)))) QuadraticParameterCache(l₀, l₁, l₂) else # Compute parameters once to infer types l₀, l₁, l₂ = quadratic_interpolation_parameters(u, t, 1) pType = typeof(l₀) QuadraticParameterCache(pType[], pType[], pType[]) end end function quadratic_interpolation_parameters(u, t, idx) if u isa AbstractMatrix u₀ = u[:, idx] u₁ = u[:, idx + 1] u₂ = u[:, idx + 2] else u₀ = u[idx] u₁ = u[idx + 1] u₂ = u[idx + 2] end t₀ = t[idx] t₁ = t[idx + 1] t₂ = t[idx + 2] Δt₀ = t₁ - t₀ Δt₁ = t₂ - t₁ Δt₂ = t₂ - t₀ l₀ = u₀ / (Δt₀ * Δt₂) l₁ = -u₁ / (Δt₀ * Δt₁) l₂ = u₂ / (Δt₂ * Δt₁) return l₀, l₁, l₂ end struct QuadraticSplineParameterCache{pType} σ::pType end function QuadraticSplineParameterCache(z, t, cache_parameters) if cache_parameters σ = quadratic_spline_parameters.(Ref(z), Ref(t), 1:(length(t) - 1)) QuadraticSplineParameterCache(σ) else # Compute parameters once to infer types σ = quadratic_spline_parameters(z, t, 1) QuadraticSplineParameterCache(typeof(σ)[]) end end function quadratic_spline_parameters(z, t, idx) σ = 1 // 2 * (z[idx + 1] - z[idx]) / (t[idx + 1] - t[idx]) return σ end struct CubicSplineParameterCache{pType} c₁::pType c₂::pType end function CubicSplineParameterCache(u, h, z, cache_parameters) if cache_parameters parameters = cubic_spline_parameters.( Ref(u), Ref(h), Ref(z), 1:(size(u)[end] - 1)) c₁, c₂ = collect.(eachrow(stack(collect.(parameters)))) CubicSplineParameterCache(c₁, c₂) else # Compute parameters once to infer types c₁, c₂ = cubic_spline_parameters(u, h, z, 1) pType = typeof(c₁) CubicSplineParameterCache(pType[], pType[]) end end function cubic_spline_parameters(u, h, z, idx) c₁ = (u[idx + 1] / h[idx + 1] - z[idx + 1] * h[idx + 1] / 6) c₂ = (u[idx] / h[idx + 1] - z[idx] * h[idx + 1] / 6) return c₁, c₂ end struct CubicHermiteParameterCache{pType} c₁::pType c₂::pType end function CubicHermiteParameterCache(du, u, t, cache_parameters) if cache_parameters parameters = cubic_hermite_spline_parameters.( Ref(du), Ref(u), Ref(t), 1:(length(t) - 1)) c₁, c₂ = collect.(eachrow(stack(collect.(parameters)))) CubicHermiteParameterCache(c₁, c₂) else # Compute parameters once to infer types c₁, c₂ = cubic_hermite_spline_parameters(du, u, t, 1) pType = typeof(c₁) CubicHermiteParameterCache(pType[], pType[]) end end function cubic_hermite_spline_parameters(du, u, t, idx) Δt = t[idx + 1] - t[idx] u₀ = u[idx] u₁ = u[idx + 1] du₀ = du[idx] du₁ = du[idx + 1] c₁ = (u₁ - u₀ - du₀ * Δt) / Δt^2 c₂ = (du₁ - du₀ - 2c₁ * Δt) / Δt^2 return c₁, c₂ end struct QuinticHermiteParameterCache{pType} c₁::pType c₂::pType c₃::pType end function QuinticHermiteParameterCache(ddu, du, u, t, cache_parameters) if cache_parameters parameters = quintic_hermite_spline_parameters.( Ref(ddu), Ref(du), Ref(u), Ref(t), 1:(length(t) - 1)) c₁, c₂, c₃ = collect.(eachrow(stack(collect.(parameters)))) QuinticHermiteParameterCache(c₁, c₂, c₃) else # Compute parameters once to infer types c₁, c₂, c₃ = quintic_hermite_spline_parameters(ddu, du, u, t, 1) pType = typeof(c₁) QuinticHermiteParameterCache(pType[], pType[], pType[]) end end function quintic_hermite_spline_parameters(ddu, du, u, t, idx) Δt = t[idx + 1] - t[idx] u₀ = u[idx] u₁ = u[idx + 1] du₀ = du[idx] du₁ = du[idx + 1] ddu₀ = ddu[idx] ddu₁ = ddu[idx + 1] c₁ = (u₁ - u₀ - du₀ * Δt - ddu₀ * Δt^2 / 2) / Δt^3 c₂ = (3u₀ - 3u₁ + 2(du₀ + du₁ / 2)Δt + ddu₀ * Δt^2 / 2) / Δt^4 c₃ = (6u₁ - 6u₀ - 3(du₀ + du₁)Δt + (ddu₁ - ddu₀)Δt^2 / 2) / Δt^5 return c₁, c₂, c₃ end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
10512
################################################################################ # Type recipes # ################################################################################ function to_plottable(A::AbstractInterpolation; plotdensity = 10_000, denseplot = true) t = sort(A.t) start = t[1] stop = t[end] if denseplot plott = collect(range(start, stop = stop, length = plotdensity)) else plott = t end output = A.(plott) plott, output end @recipe function f(A::AbstractInterpolation; plotdensity = 10_000, denseplot = true) @series begin seriestype := :path label --> string(nameof(typeof(A))) to_plottable(A; plotdensity = plotdensity, denseplot = denseplot) end @series begin seriestype := :scatter label --> "Data points" A.t, A.u end end ################################################################################ # Series recipes # ################################################################################ ############################################################ # Interpolations # ############################################################ ######################################## # Linear Interpolation # ######################################## @recipe function f(::Type{Val{:linear_interp}}, x, y, z; extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(LinearInterpolation(T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "LinearInterpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Quadratic Interpolation # ######################################## @recipe function f(::Type{Val{:quadratic_interp}}, x, y, z; mode = :Forward, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable( QuadraticInterpolation(T.(y), T.(x), mode; extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "QuadraticInterpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Lagrange Interpolation # ######################################## @recipe function f(::Type{Val{:lagrange_interp}}, x, y, z; n = length(x) - 1, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(LagrangeInterpolation(T.(y), T.(x), n; extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "LagrangeInterpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Quadratic Spline # ######################################## @recipe function f(::Type{Val{:quadratic_spline}}, x, y, z; extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(QuadraticSpline(T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "QuadraticSpline" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Cubic Spline # ######################################## @recipe function f(::Type{Val{:cubic_spline}}, x, y, z; extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(CubicSpline(T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "CubicSpline" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Akima interpolation # ######################################## @recipe function f(::Type{Val{:akima_interp}}, x, y, z; extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(AkimaInterpolation(T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "AkimaInterpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # B-spline Interpolation # ######################################## @recipe function f(::Type{Val{:bspline_interp}}, x, y, z; d = 5, pVecType = :ArcLen, knotVecType = :Average, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable( BSplineInterpolation(T.(y), T.(x), d, pVecType, knotVecType; extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "BSplineInterpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # B-spline (approximation) # ######################################## @recipe function f(::Type{Val{:bspline_approx}}, x, y, z; d = 5, h = length(x) - 1, pVecType = :ArcLen, knotVecType = :Average, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable( BSplineApprox(T.(y), T.(x), d, h, pVecType, knotVecType; extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "BSplineApprox" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Cubic Hermite Spline # ######################################## @recipe function f(::Type{Val{:cubic_hermite_spline}}, x, y, z; du = nothing, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) isnothing(du) && error("Provide `du` as a keyword argument.") T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable( CubicHermiteSpline(T.(du), T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "CubicHermiteSpline" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # PCHIP Interpolation # ######################################## @recipe function f(::Type{Val{:pchip_interp}}, x, y, z; extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable(PCHIPInterpolation(T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "PCHIP Interpolation" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end ######################################## # Quintic Hermite Spline # ######################################## @recipe function f(::Type{Val{:quintic_hermite_spline}}, x, y, z; du = nothing, ddu = nothing, extrapolate = false, safetycopy = false, plotdensity = 10_000, denseplot = true) (isnothing(du) || isnothing(ddu)) && error("Provide `du` and `ddu` as keyword arguments.") T = promote_type(eltype(y), eltype(x)) nx, ny = to_plottable( QuinticHermiteSpline(T.(ddu), T.(du), T.(y), T.(x); extrapolate, safetycopy); plotdensity = plotdensity, denseplot = denseplot) @series begin seriestype := :path label --> "QuinticHermiteSpline" x := nx y := ny end @series begin seriestype := :scatter label --> "Data points" x := x y := y end end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1877
###################### Generic Dispatches ###################### function Base.show(io::IO, mime::MIME"text/plain", interp::AbstractInterpolation) print(io, get_show(interp)) header = ["time", get_names(interp.u)...] data = hcat(interp.t, get_data(interp.u)) pretty_table(io, data; header = header, vcrop_mode = :middle) end function get_show(interp::AbstractInterpolation) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points\n" end function get_data(u::AbstractVector) return u end function get_data(u::AbstractVector{<:AbstractVector}) return reduce(hcat, u)' end function get_data(u::AbstractMatrix) return u' end function get_names(u::AbstractVector) return ["u"] end function get_names(u::AbstractVector{<:AbstractVector}) return ["u$i" for i in eachindex(first(u))] end function get_names(u::AbstractMatrix) return ["u$i" for i in axes(u, 1)] end ###################### Specific Dispatches ###################### function get_show(interp::QuadraticInterpolation) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points, $(interp.mode) mode\n" end function get_show(interp::LagrangeInterpolation) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points, with order $(interp.n)\n" end function get_show(interp::ConstantInterpolation) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points, in $(interp.dir) direction\n" end function get_show(interp::BSplineInterpolation) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points, with degree $(interp.d)\n" end function get_show(interp::BSplineApprox) return string(nameof(typeof(interp))) * " with $(length(interp.t)) points, with degree $(interp.d), number of control points $(interp.h)\n" end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
11540
using DataInterpolations, Test using FindFirstFunctions: searchsortedfirstcorrelated using FiniteDifferences using DataInterpolations: derivative using Symbolics using StableRNGs using RegularizationTools using Optim using ForwardDiff function test_derivatives(method; args = [], kwargs = [], name::String) func = method(args...; kwargs..., extrapolate = true) (; t) = func trange = collect(range(minimum(t) - 5.0, maximum(t) + 5.0, step = 0.1)) trange_exclude = filter(x -> !in(x, t), trange) @testset "$name" begin # Rest of the points for _t in trange_exclude cdiff = central_fdm(5, 1; geom = true)(func, _t) adiff = derivative(func, _t) @test isapprox(cdiff, adiff, atol = 1e-8) adiff2 = derivative(func, _t, 2) cdiff2 = central_fdm(5, 1; geom = true)(t -> derivative(func, t), _t) @test isapprox(cdiff2, adiff2, atol = 1e-8) end # Interpolation time points for _t in t[2:(end - 1)] if func isa BSplineInterpolation || func isa BSplineApprox || func isa CubicHermiteSpline fdiff = forward_fdm(5, 1; geom = true)(func, _t) fdiff2 = forward_fdm(5, 1; geom = true)(t -> derivative(func, t), _t) else fdiff = backward_fdm(5, 1; geom = true)(func, _t) fdiff2 = backward_fdm(5, 1; geom = true)(t -> derivative(func, t), _t) end adiff = derivative(func, _t) adiff2 = derivative(func, _t, 2) @test isapprox(fdiff, adiff, atol = 1e-8) @test isapprox(fdiff2, adiff2, atol = 1e-8) # Cached index if hasproperty(func, :iguesser) && !func.iguesser.linear_lookup @test abs(func.iguesser.idx_prev[] - searchsortedfirstcorrelated(func.t, _t, func.iguesser(_t))) <= 1 end end # t = t0 fdiff = forward_fdm(5, 1; geom = true)(func, t[1]) adiff = derivative(func, t[1]) @test isapprox(fdiff, adiff, atol = 1e-8) if !(func isa BSplineInterpolation || func isa BSplineApprox) fdiff2 = forward_fdm(5, 1; geom = true)(t -> derivative(func, t), t[1]) adiff2 = derivative(func, t[1], 2) @test isapprox(fdiff2, adiff2, atol = 1e-8) end # t = tend fdiff = backward_fdm(5, 1; geom = true)(func, t[end]) adiff = derivative(func, t[end]) @test isapprox(fdiff, adiff, atol = 1e-8) if !(func isa BSplineInterpolation || func isa BSplineApprox) fdiff2 = backward_fdm(5, 1; geom = true)(t -> derivative(func, t), t[end]) adiff2 = derivative(func, t[end], 2) @test isapprox(fdiff2, adiff2, atol = 1e-8) end end @test_throws DataInterpolations.DerivativeNotFoundError derivative( func, t[1], 3) func = method(args...) @test_throws DataInterpolations.ExtrapolationError derivative(func, t[1] - 1.0) @test_throws DataInterpolations.ExtrapolationError derivative(func, t[end] + 1.0) @test_throws DataInterpolations.DerivativeNotFoundError derivative( func, t[1], 3) end @testset "Linear Interpolation" begin u = vcat(collect(1:5), 2 * collect(6:10)) t = 1.0collect(1:10) test_derivatives( LinearInterpolation; args = [u, t], name = "Linear Interpolation (Vector)") u = vcat(2.0collect(1:10)', 3.0collect(1:10)') test_derivatives( LinearInterpolation; args = [u, t], name = "Linear Interpolation (Matrix)") # Issue: https://github.com/SciML/DataInterpolations.jl/issues/303 u = [3.0, 3.0] t = [0.0, 2.0] test_derivatives( LinearInterpolation; args = [u, t], name = "Linear Interpolation with two points") end @testset "Quadratic Interpolation" begin u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] test_derivatives(QuadraticInterpolation, args = [u, t], name = "Quadratic Interpolation (Vector)") test_derivatives(QuadraticInterpolation; args = [u, t, :Backward], name = "Quadratic Interpolation (Vector), backward") u = [1.0 4.0 9.0 16.0; 1.0 4.0 9.0 16.0] test_derivatives(QuadraticInterpolation; args = [u, t], name = "Quadratic Interpolation (Matrix)") end @testset "Lagrange Interpolation" begin u = [1.0, 4.0, 9.0] t = [1.0, 2.0, 3.0] test_derivatives( LagrangeInterpolation; args = [u, t], name = "Lagrange Interpolation (Vector)") u = [1.0 4.0 9.0; 1.0 2.0 3.0] test_derivatives( LagrangeInterpolation; args = [u, t], name = "Lagrange Interpolation (Matrix)") u = [[1.0, 4.0, 9.0], [3.0, 7.0, 4.0], [5.0, 4.0, 1.0]] test_derivatives(LagrangeInterpolation; args = [u, t], name = "Lagrange Interpolation (Vector of Vectors)") u = [[3.0 1.0 4.0; 1.0 5.0 9.0], [2.0 6.0 5.0; 3.0 5.0 8.0], [9.0 7.0 9.0; 3.0 2.0 3.0]] test_derivatives(LagrangeInterpolation; args = [u, t], name = "Lagrange Interpolation (Vector of Matrices)") end @testset "Akima Interpolation" begin u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:10.0) test_derivatives(AkimaInterpolation; args = [u, t], name = "Akima Interpolation") @testset "Akima smooth derivative at end points" begin A = AkimaInterpolation(u, t) @test derivative(A, t[1]) ≈ derivative(A, nextfloat(t[1])) @test derivative(A, t[end]) ≈ derivative(A, prevfloat(t[end])) end end @testset "Constant Interpolation" begin u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:11.0) A = ConstantInterpolation(u, t) t2 = collect(0.0:10.0) @test all(isnan, derivative.(Ref(A), t)) @test all(derivative.(Ref(A), t2 .+ 0.1) .== 0.0) end @testset "Quadratic Spline" begin u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] test_derivatives( QuadraticSpline; args = [u, t], name = "Quadratic Interpolation (Vector)") u = [[1.0, 2.0, 9.0], [3.0, 7.0, 5.0], [5.0, 4.0, 1.0]] test_derivatives(QuadraticSpline; args = [u, t], name = "Quadratic Interpolation (Vector of Vectors)") u = [[1.0 4.0 9.0; 5.0 9.0 2.0], [3.0 7.0 4.0; 6.0 5.0 3.0], [5.0 4.0 1.0; 2.0 3.0 8.0]] test_derivatives(QuadraticSpline; args = [u, t], name = "Quadratic Interpolation (Vector of Matrices)") end @testset "Cubic Spline" begin u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] test_derivatives( CubicSpline; args = [u, t], name = "Cubic Spline Interpolation (Vector)") u = [[1.0, 2.0, 9.0], [3.0, 7.0, 5.0], [5.0, 4.0, 1.0]] test_derivatives(CubicSpline; args = [u, t], name = "Cubic Spline Interpolation (Vector of Vectors)") u = [[1.0 4.0 9.0; 5.0 9.0 2.0], [3.0 7.0 4.0; 6.0 5.0 3.0], [5.0 4.0 1.0; 2.0 3.0 8.0]] test_derivatives(CubicSpline; args = [u, t], name = "Cubic Spline Interpolation (Vector of Matrices)") end @testset "BSplines" begin t = [0, 62.25, 109.66, 162.66, 205.8, 252.3] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] test_derivatives(BSplineInterpolation; args = [u, t, 2, :Uniform, :Uniform], name = "BSpline Interpolation (Uniform, Uniform)") test_derivatives(BSplineInterpolation; args = [u, t, 2, :ArcLen, :Average], name = "BSpline Interpolation (Arclen, Average)") test_derivatives(BSplineApprox; args = [u, t, 3, 4, :Uniform, :Uniform], name = "BSpline Approx (Uniform, Uniform)") end @testset "Cubic Hermite Spline" begin du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_derivatives(CubicHermiteSpline; args = [du, u, t], name = "Cubic Hermite Spline") A = CubicHermiteSpline(du, u, t; extrapolate = true) @test derivative.(Ref(A), t) ≈ du @test derivative(A, 100.0)≈0.0105409 rtol=1e-5 @test derivative(A, 300.0)≈-0.0806717 rtol=1e-5 end @testset "Quintic Hermite Spline" begin ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0] du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_derivatives(QuinticHermiteSpline; args = [ddu, du, u, t], name = "Quintic Hermite Spline") A = QuinticHermiteSpline(ddu, du, u, t; extrapolate = true) @test derivative.(Ref(A), t) ≈ du @test derivative.(Ref(A), t, 2) ≈ ddu @test derivative(A, 100.0)≈0.0103916 rtol=1e-5 @test derivative(A, 300.0)≈0.0331361 rtol=1e-5 end @testset "RegularizationSmooth" begin npts = 50 xmin = 0.0 xspan = 3 / 2 * π x = collect(range(xmin, xmin + xspan, length = npts)) rng = StableRNG(655) x = x + xspan / npts * (rand(rng, npts) .- 0.5) # select a subset randomly idx = unique(rand(rng, collect(eachindex(x)), 20)) t = x[unique(idx)] npts = length(t) ut = sin.(t) stdev = 1e-1 * maximum(ut) u = ut + stdev * randn(rng, npts) # data must be ordered if t̂ is not provided idx = sortperm(t) tₒ = t[idx] uₒ = u[idx] A = RegularizationSmooth(uₒ, tₒ; alg = :fixed) test_derivatives(RegularizationSmooth; args = [uₒ, tₒ], kwargs = [:alg => :fixed], name = "RegularizationSmooth") end @testset "Curvefit" begin rng = StableRNG(12345) model(x, p) = @. p[1] / (1 + exp(x - p[2])) t = range(-10, stop = 10, length = 40) u = model(t, [1.0, 2.0]) + 0.01 * randn(rng, length(t)) p0 = [0.5, 0.5] test_derivatives(Curvefit; args = [u, t, model, p0, LBFGS()], name = "Curvefit") end @testset "Symbolic derivatives" begin u = [0.0, 1.5, 0.0] t = [0.0, 0.5, 1.0] A = QuadraticSpline(u, t) @variables τ, ω(τ) D = Symbolics.Differential(τ) D2 = Symbolics.Differential(τ)^2 expr = A(ω) @test isequal(Symbolics.derivative(expr, τ), D(ω) * DataInterpolations.derivative(A, ω)) derivexpr1 = expand_derivatives(substitute(D(A(ω)), Dict(ω => 0.5τ))) derivexpr2 = expand_derivatives(substitute(D2(A(ω)), Dict(ω => 0.5τ))) symfunc1 = Symbolics.build_function(derivexpr1, τ; expression = Val{false}) symfunc2 = Symbolics.build_function(derivexpr2, τ; expression = Val{false}) @test symfunc1(0.5) == 0.5 * 3 @test symfunc2(0.5) == 0.5 * 6 u = [0.0, 1.5, 0.0] t = [0.0, 0.5, 1.0] @variables τ D = Symbolics.Differential(τ) D2 = Symbolics.Differential(τ)^2 D3 = Symbolics.Differential(τ)^3 f = LinearInterpolation(u, t) df = expand_derivatives(D(f(τ))) df2 = expand_derivatives(D2(f(τ))) df3 = expand_derivatives(D3(f(τ))) symfunc1 = Symbolics.build_function(df, τ; expression = Val{false}) symfunc2 = Symbolics.build_function(df2, τ; expression = Val{false}) symfunc3 = Symbolics.build_function(df3, τ; expression = Val{false}) ts = 0.0:0.1:1.0 @test all(map(ti -> symfunc1(ti) == derivative(f, ti), ts)) @test all(map(ti -> symfunc2(ti) == derivative(f, ti, 2), ts)) @test_throws DataInterpolations.DerivativeNotFoundError symfunc3(ts[1]) end @testset "Jacobian tests" begin u = rand(5) t = 0:4 interp = LinearInterpolation(u, t, extrapolate = true) grad1 = ForwardDiff.derivative(interp, 2.4) myvec = rand(20) .* 4.0 interp(myvec) grad = ForwardDiff.jacobian(interp, myvec) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1548
using DataInterpolations using DataInterpolations: integral, derivative, invert_integral using FiniteDifferences function test_integral_inverses(method; args = [], kwargs = []) A = method(args...; kwargs..., extrapolate = true) @test hasfield(typeof(A), :I) A_intinv = invert_integral(A) @test A_intinv isa DataInterpolations.AbstractIntegralInverseInterpolation ts = range(first(A.t), last(A.t), length = 100) Is = integral.(Ref(A), ts) ts_ = A_intinv.(Is) @test ts ≈ ts_ for I in Is cdiff = forward_fdm(5, 1; geom = true)(A_intinv, I) adiff = derivative(A_intinv, I) @test cdiff ≈ adiff end end @testset "Linear Interpolation" begin t = collect(1:5) u = [1.0, 1.0, 2.0, 4.0, 3.0] test_integral_inverses(LinearInterpolation; args = [u, t]) u = [1.0, -1.0, 2.0, 4.0, 3.0] A = LinearInterpolation(u, t) @test_throws DataInterpolations.IntegralNotInvertibleError invert_integral(A) end @testset "Constant Interpolation" begin t = collect(1:5) u = [1.0, 1.0, 2.0, 4.0, 3.0] test_integral_inverses(ConstantInterpolation; args = [u, t]) test_integral_inverses(ConstantInterpolation; args = [u, t], kwargs = [:dir => :right]) u = [1.0, -1.0, 2.0, 4.0, 3.0] A = ConstantInterpolation(u, t) @test_throws DataInterpolations.IntegralNotInvertibleError invert_integral(A) end t = collect(1:5) u = [1.0, 1.0, 2.0, 4.0, 3.0] A = QuadraticInterpolation(u, t) @test_throws DataInterpolations.IntegralInverseNotFoundError invert_integral(A)
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
7602
using DataInterpolations, Test using QuadGK using DataInterpolations: integral using Optim, ForwardDiff using RegularizationTools using StableRNGs function test_integral(method; args = [], kwargs = [], name::String) func = method(args...; kwargs..., extrapolate = true) (; t) = func t1 = minimum(t) t2 = maximum(t) @testset "$name" begin # integral(A, t1, t2) qint, err = quadgk(func, t1, t2; atol = 1e-12, rtol = 1e-12) aint = integral(func, t1, t2) @test isapprox(qint, aint, atol = 1e-6, rtol = 1e-8) # integral(A, t) qint, err = quadgk(func, t1, (t1 + t2) / 2; atol = 1e-12, rtol = 1e-12) aint = integral(func, (t1 + t2) / 2) @test isapprox(qint, aint, atol = 1e-6, rtol = 1e-8) # integral(A, t1, t), integral(A, t, t2), integral(A, t, t) ts = range(t1, t2; length = 100) for t in ts qint, err = quadgk(func, t1, t; atol = 1e-12, rtol = 1e-12) aint1 = integral(func, t1, t) @test isapprox(qint, aint1, atol = 1e-5, rtol = 1e-8) aint2 = integral(func, t) @test aint1 == aint2 qint, err = quadgk(func, t, t2; atol = 1e-12, rtol = 1e-12) aint = integral(func, t, t2) @test isapprox(qint, aint, atol = 1e-5, rtol = 1e-8) aint = integral(func, t, t) @test aint == 0.0 end # integrals with extrapolation qint, err = quadgk(func, t1 - 5.0, (t1 + t2) / 2; atol = 1e-12, rtol = 1e-12) aint = integral(func, t1 - 5.0, (t1 + t2) / 2) @test isapprox(qint, aint, atol = 1e-6, rtol = 1e-8) qint, err = quadgk(func, (t1 + t2) / 2, t2 + 5.0; atol = 1e-12, rtol = 1e-12) aint = integral(func, (t1 + t2) / 2, t2 + 5.0) @test isapprox(qint, aint, atol = 1e-6, rtol = 1e-8) end func = method(args...; kwargs...) @test_throws DataInterpolations.ExtrapolationError integral(func, t[1] - 1.0) @test_throws DataInterpolations.ExtrapolationError integral(func, t[end] + 1.0) @test_throws DataInterpolations.ExtrapolationError integral(func, t[1] - 1.0, t[2]) @test_throws DataInterpolations.ExtrapolationError integral(func, t[1], t[end] + 1.0) end @testset "LinearInterpolation" begin u = 2.0collect(1:10) t = 1.0collect(1:10) test_integral( LinearInterpolation; args = [u, t], name = "Linear Interpolation (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) test_integral(LinearInterpolation; args = [u, t], name = "Linear Interpolation (Vector) with random points") end @testset "QuadraticInterpolation" begin u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] test_integral( QuadraticInterpolation; args = [u, t], name = "Quadratic Interpolation (Vector)") u = [3.0, 0.0, 3.0, 0.0] t = [1.0, 2.0, 3.0, 4.0] test_integral(QuadraticInterpolation; args = [u, t, :Backward], name = "Quadratic Interpolation (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:10) test_integral(QuadraticInterpolation; args = [u, t], name = "Quadratic Interpolation (Vector) with random points") end @testset "LagrangeInterpolation" begin u = [1.0, 4.0, 9.0] t = [1.0, 2.0, 6.0] A = LagrangeInterpolation(u, t) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 1.0, 2.0) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 5.0) end @testset "QuadraticSpline" begin u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] test_integral(QuadraticSpline; args = [u, t], name = "Quadratic Spline (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) test_integral( QuadraticSpline; args = [u, t], name = "Quadratic Spline (Vector) with random points") end @testset "CubicSpline" begin u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] test_integral(CubicSpline; args = [u, t], name = "Cubic Spline (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) test_integral( CubicSpline; args = [u, t], name = "Cubic Spline (Vector) with random points") end @testset "AkimaInterpolation" begin u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:10.0) test_integral(AkimaInterpolation; args = [u, t], name = "Akima Interpolation (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) test_integral( AkimaInterpolation; args = [u, t], name = "Akima Interpolation (Vector) with random points") end @testset "CubicHermiteSpline" begin du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_integral(CubicHermiteSpline; args = [du, u, t], name = "Cubic Hermite Spline (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) du = diff(u) ./ diff(t) push!(du, 0) test_integral(CubicHermiteSpline; args = [du, u, t], name = "Cubic Hermite Spline (Vector) with random points") end @testset "QuinticHermiteSpline" begin ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0] du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_integral(QuinticHermiteSpline; args = [ddu, du, u, t], name = "Quintic Hermite Spline (Vector)") u = round.(rand(100), digits = 5) t = 1.0collect(1:100) du = diff(u) ./ diff(t) push!(du, 0) ddu = diff(du) ./ diff(t) push!(ddu, 0) test_integral(QuinticHermiteSpline; args = [ddu, du, u, t], name = "Quintic Hermite Spline (Vector) with random points") end @testset "RegularizationSmooth" begin npts = 50 xmin = 0.0 xspan = 3 / 2 * π x = collect(range(xmin, xmin + xspan, length = npts)) rng = StableRNG(655) x = x + xspan / npts * (rand(rng, npts) .- 0.5) # select a subset randomly idx = unique(rand(rng, collect(eachindex(x)), 20)) t = x[unique(idx)] npts = length(t) ut = sin.(t) stdev = 1e-1 * maximum(ut) u = ut + stdev * randn(rng, npts) # data must be ordered if t̂ is not provided idx = sortperm(t) tₒ = t[idx] uₒ = u[idx] test_integral(RegularizationSmooth; args = [uₒ, tₒ], kwargs = [:alg => :fixed], name = "RegularizationSmooth") end @testset "Curvefit" begin rng = StableRNG(12345) model(x, p) = @. p[1] / (1 + exp(x - p[2])) t = range(-10, stop = 10, length = 40) u = model(t, [1.0, 2.0]) + 0.01 * randn(rng, length(t)) p0 = [0.5, 0.5] A = Curvefit(u, t, model, p0, LBFGS()) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 0.0, 1.0) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 5.0) end @testset "BSplineInterpolation" begin t = [0, 62.25, 109.66, 162.66, 205.8, 252.3] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] A = BSplineInterpolation(u, t, 2, :Uniform, :Uniform) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 1.0, 100.0) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 50.0) end @testset "BSplineApprox" begin t = [0, 62.25, 109.66, 162.66, 205.8, 252.3] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] A = BSplineApprox(u, t, 2, 4, :Uniform, :Uniform) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 1.0, 100.0) @test_throws DataInterpolations.IntegralNotFoundError integral(A, 50.0) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1665
using DataInterpolations using Symbolics @testset "Interface" begin u = 2.0collect(1:10) t = 1.0collect(1:10) A = LinearInterpolation(u, t) for i in 1:10 @test u[i] == A.u[i] end for i in 1:10 @test t[i] == A.t[i] end end @testset "Symbolics" begin u = 2.0collect(1:10) t = 1.0collect(1:10) A = LinearInterpolation(u, t; extrapolate = true) B = LinearInterpolation(u .^ 2, t; extrapolate = true) @variables t x(t) substitute(A(t), Dict(t => x)) t_val = 2.7 @test substitute(A(t), Dict(t => t_val)) == A(t_val) @test substitute(B(A(t)), Dict(t => t_val)) == B(A(t_val)) @test substitute(A(B(A(t))), Dict(t => t_val)) == A(B(A(t_val))) end @testset "Type Inference" begin u = 2.0collect(1:10) t = 1.0collect(1:10) methods = [ ConstantInterpolation, LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation, QuadraticSpline, CubicSpline, AkimaInterpolation ] @testset "$method" for method in methods @inferred method(u, t) end @testset "BSplineInterpolation" begin @inferred BSplineInterpolation(u, t, 3, :Uniform, :Uniform) @inferred BSplineInterpolation(u, t, 3, :ArcLen, :Average) end @testset "BSplineApprox" begin @inferred BSplineApprox(u, t, 3, 5, :Uniform, :Uniform) @inferred BSplineApprox(u, t, 3, 5, :ArcLen, :Average) end du = ones(10) ddu = zeros(10) @testset "Hermite Splines" begin @inferred CubicHermiteSpline(du, u, t) @inferred PCHIPInterpolation(u, t) @inferred QuinticHermiteSpline(ddu, du, u, t) end end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
25722
using DataInterpolations using FindFirstFunctions: searchsortedfirstcorrelated using StableRNGs using Optim, ForwardDiff using BenchmarkTools function test_interpolation_type(T) @test T <: DataInterpolations.AbstractInterpolation @test hasfield(T, :u) @test hasfield(T, :t) @test hasfield(T, :extrapolate) @test hasfield(T, :iguesser) @test !isempty(methods(DataInterpolations._interpolate, (T, Any, Number))) @test !isempty(methods(DataInterpolations._integral, (T, Any, Number))) @test !isempty(methods(DataInterpolations._derivative, (T, Any, Number))) end function test_cached_index(A) for t in range(first(A.t), last(A.t); length = 2 * length(A.t) - 1) A(t) idx = searchsortedfirstcorrelated(A.t, t, A.iguesser) @test abs(A.iguesser.idx_prev[] - searchsortedfirstcorrelated(A.t, t, A.iguesser)) <= 2 end end @testset "Linear Interpolation" begin test_interpolation_type(LinearInterpolation) for t in (1.0:10.0, 1.0collect(1:10)) u = 2.0collect(1:10) #t = 1.0collect(1:10) A = LinearInterpolation(u, t; extrapolate = true) for (_t, _u) in zip(t, u) @test A(_t) == _u end @test A(0) == 0.0 @test A(5.5) == 11.0 @test A(11) == 22 u = vcat(2.0collect(1:10)', 3.0collect(1:10)') A = LinearInterpolation(u, t; extrapolate = true) for (_t, _u) in zip(t, eachcol(u)) @test A(_t) == _u end @test A(0) == [0.0, 0.0] @test A(5.5) == [11.0, 16.5] @test A(11) == [22, 33] x = 1:10 y = 2:4 u_ = x' .* y u = [u_[:, i] for i in 1:size(u_, 2)] A = LinearInterpolation(u, t; extrapolate = true) @test A(0) == [0.0, 0.0, 0.0] @test A(5.5) == [11.0, 16.5, 22.0] @test A(11) == [22.0, 33.0, 44.0] end x = 1:10 y = 2:4 u_ = x' .* y u = [u_[:, i:(i + 1)] for i in 1:2:10] t = 1.0collect(2:2:10) A = LinearInterpolation(u, t; extrapolate = true) @test A(0) == [-2.0 0.0; -3.0 0.0; -4.0 0.0] @test A(3) == [4.0 6.0; 6.0 9.0; 8.0 12.0] @test A(5) == [8.0 10.0; 12.0 15.0; 16.0 20.0] test_cached_index(A) # with NaNs (#113) u = [NaN, 1.0, 2.0, 3.0] t = 1:4 A = LinearInterpolation(u, t; extrapolate = true) @test isnan(A(1.0)) @test A(2.0) == 1.0 @test A(2.5) == 1.5 @test A(3.0) == 2.0 @test A(4.0) == 3.0 u = [0.0, NaN, 2.0, 3.0] A = LinearInterpolation(u, t; extrapolate = true) @test A(1.0) == 0.0 @test isnan(A(2.0)) @test isnan(A(2.5)) @test A(3.0) == 2.0 @test A(4.0) == 3.0 u = [0.0, 1.0, NaN, 3.0] A = LinearInterpolation(u, t; extrapolate = true) @test A(1.0) == 0.0 @test A(2.0) == 1.0 @test isnan(A(2.5)) @test isnan(A(3.0)) @test A(4.0) == 3.0 u = [0.0, 1.0, 2.0, NaN] A = LinearInterpolation(u, t; extrapolate = true) @test A(1.0) == 0.0 @test A(2.0) == 1.0 @test A(3.0) == 2.0 @test isnan(A(3.5)) @test isnan(A(4.0)) # Test type stability u = Float32.(1:5) t = Float32.(1:5) A1 = LinearInterpolation(u, t; extrapolate = true) u = 1:5 t = 1:5 A2 = LinearInterpolation(u, t; extrapolate = true) u = [1 // i for i in 1:5] t = (1:5) A3 = LinearInterpolation(u, t; extrapolate = true) u = [1 // i for i in 1:5] t = [1 // (6 - i) for i in 1:5] A4 = LinearInterpolation(u, t; extrapolate = true) F32 = Float32(1) F64 = Float64(1) I32 = Int32(1) I64 = Int64(1) R32 = Int32(1) // Int32(1) R64 = 1 // 1 for A in Any[A1, A2, A3, A4] @test @inferred(A(F32)) === A(F32) @test @inferred(A(F64)) === A(F64) @test @inferred(A(I32)) === A(I32) @test @inferred(A(I64)) === A(I64) @test @inferred(A(R32)) === A(R32) @test @inferred(A(R64)) === A(R64) end # Nan time value: t = 0.0:3 # Floats u = [0, -2, -1, -2] A = LinearInterpolation(u, t; extrapolate = true) dA = t -> ForwardDiff.derivative(A, t) @test isnan(dA(NaN)) t = 0:3 # Integers u = [0, -2, -1, -2] A = LinearInterpolation(u, t; extrapolate = true) dA = t -> ForwardDiff.derivative(A, t) @test isnan(dA(NaN)) # Test derivative at point gives derivative to the right (except last is to left): ts = t[begin:(end - 1)] @test dA.(ts) == dA.(ts .+ 0.5) # Test last derivative is to the left: @test dA(last(t)) == dA(last(t) - 0.5) # Test array-valued interpolation u = collect.(2.0collect(1:10)) t = 1.0collect(1:10) A = LinearInterpolation(u, t; extrapolate = true) @test A(0) == fill(0.0) @test A(5.5) == fill(11.0) @test A(11) == fill(22) # Test constant -Inf interpolation u = [-Inf, -Inf] t = [0.0, 1.0] A = LinearInterpolation(u, t) @test A(0.0) == -Inf @test A(0.5) == -Inf # Test extrapolation u = 2.0collect(1:10) t = 1.0collect(1:10) A = LinearInterpolation(u, t; extrapolate = true) @test A(-1.0) == -2.0 @test A(11.0) == 22.0 A = LinearInterpolation(u, t) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(11.0) @test_throws DataInterpolations.ExtrapolationError A([-1.0, 11.0]) end @testset "Quadratic Interpolation" begin test_interpolation_type(QuadraticInterpolation) u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] A = QuadraticInterpolation(u, t; extrapolate = true) for (_t, _u) in zip(t, u) @test A(_t) == _u end @test A(0.0) == 0.0 @test A(1.5) == 2.25 @test A(2.5) == 6.25 @test A(3.5) == 12.25 @test A(5.0) == 25 test_cached_index(A) # backward-looking interpolation u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] A = QuadraticInterpolation(u, t, :Backward; extrapolate = true) for (_t, _u) in zip(t, u) @test A(_t) == _u end @test A(0.0) == 0.0 @test A(1.5) == 2.25 @test A(2.5) == 6.25 @test A(3.5) == 12.25 @test A(5.0) == 25 test_cached_index(A) # Test both forward and backward-looking quadratic interpolation u = [1.0, 4.5, 6.0, 2.0] t = [1.0, 2.0, 3.0, 4.0] A_f = QuadraticInterpolation(u, t, :Forward) A_b = QuadraticInterpolation(u, t, :Backward) for (_t, _u) in zip(t, u) @test A_f(_t) == _u @test A_b(_t) == _u end l₀, l₁, l₂ = 0.375, 0.75, -0.125 # In the first subinterval they're the same (no other option) @test A_f(1.5) ≈ l₀ * u[1] + l₁ * u[2] + l₂ * u[3] @test A_b(1.5) ≈ l₀ * u[1] + l₁ * u[2] + l₂ * u[3] # In the second subinterval they should be different @test A_f(2.5) ≈ l₀ * u[2] + l₁ * u[3] + l₂ * u[4] @test A_b(2.5) ≈ l₂ * u[1] + l₁ * u[2] + l₀ * u[3] # In the last subinterval they should be the same again @test A_f(3.5) ≈ l₂ * u[2] + l₁ * u[3] + l₀ * u[4] @test A_b(3.5) ≈ l₂ * u[2] + l₁ * u[3] + l₀ * u[4] test_cached_index(A_f) test_cached_index(A_b) # Matrix interpolation test u = [1.0 4.0 9.0 16.0; 1.0 4.0 9.0 16.0] A = QuadraticInterpolation(u, t; extrapolate = true) for (_t, _u) in zip(t, eachcol(u)) @test A(_t) == _u end @test A(0.0) == [0.0, 0.0] @test A(1.5) == [2.25, 2.25] @test A(2.5) == [6.25, 6.25] @test A(3.5) == [12.25, 12.25] @test A(5.0) == [25.0, 25.0] u_ = [1.0, 4.0, 9.0, 16.0]' .* ones(5) u = [u_[:, i] for i in 1:size(u_, 2)] A = QuadraticInterpolation(u, t; extrapolate = true) @test A(0) == zeros(5) @test A(1.5) == 2.25 * ones(5) @test A(2.5) == 6.25 * ones(5) @test A(3.5) == 12.25 * ones(5) @test A(5.0) == 25.0 * ones(5) u = [repeat(u[i], 1, 3) for i in 1:4] A = QuadraticInterpolation(u, t; extrapolate = true) @test A(0) == zeros(5, 3) @test A(1.5) == 2.25 * ones(5, 3) @test A(2.5) == 6.25 * ones(5, 3) @test A(3.5) == 12.25 * ones(5, 3) @test A(5.0) == 25.0 * ones(5, 3) # Test extrapolation u = [1.0, 4.5, 6.0, 2.0] t = [1.0, 2.0, 3.0, 4.0] A = QuadraticInterpolation(u, t; extrapolate = true) @test A(0.0) == -4.5 @test A(5.0) == -7.5 A = QuadraticInterpolation(u, t) @test_throws DataInterpolations.ExtrapolationError A(0.0) @test_throws DataInterpolations.ExtrapolationError A(5.0) end @testset "Lagrange Interpolation" begin test_interpolation_type(LagrangeInterpolation) u = [1.0, 4.0, 9.0] t = [1.0, 2.0, 3.0] A = LagrangeInterpolation(u, t) @test A(2.0) == 4.0 @test A(1.5) == 2.25 u = [1.0, 8.0, 27.0, 64.0] t = [1.0, 2.0, 3.0, 4.0] A = LagrangeInterpolation(u, t) @test A(2.0) == 8.0 @test A(1.5) ≈ 3.375 @test A(3.5) ≈ 42.875 u = [1.0 4.0 9.0 16.0; 1.0 4.0 9.0 16.0] A = LagrangeInterpolation(u, t) @test A(2.0) == [4.0, 4.0] @test A(1.5) ≈ [2.25, 2.25] @test A(3.5) ≈ [12.25, 12.25] u_ = [1.0, 4.0, 9.0]' .* ones(4) u = [u_[:, i] for i in 1:size(u_, 2)] t = [1.0, 2.0, 3.0] A = LagrangeInterpolation(u, t) @test A(2.0) == 4.0 * ones(4) @test A(1.5) == 2.25 * ones(4) u_ = [1.0, 8.0, 27.0, 64.0]' .* ones(4) u = [u_[:, i] for i in 1:size(u_, 2)] t = [1.0, 2.0, 3.0, 4.0] A = LagrangeInterpolation(u, t) @test A(2.0) == 8.0 * ones(4) @test A(1.5) ≈ 3.375 * ones(4) @test A(3.5) ≈ 42.875 * ones(4) u = [repeat(u[i], 1, 3) for i in 1:4] A = LagrangeInterpolation(u, t) @test A(2.0) == 8.0 * ones(4, 3) @test A(1.5) ≈ 3.375 * ones(4, 3) @test A(3.5) ≈ 42.875 * ones(4, 3) # Test extrapolation u = [1.0, 4.0, 9.0] t = [1.0, 2.0, 3.0] A = LagrangeInterpolation(u, t; extrapolate = true) @test A(0.0) == 0.0 @test A(4.0) == 16.0 A = LagrangeInterpolation(u, t) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(4.0) end @testset "Akima Interpolation" begin test_interpolation_type(AkimaInterpolation) u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:10.0) A = AkimaInterpolation(u, t) @test A(0.0) ≈ 0.0 @test A(0.5) ≈ 1.375 @test A(1.0) ≈ 2.0 @test A(1.5) ≈ 1.5 @test A(2.5) ≈ 1.953125 @test A(3.5) ≈ 2.484375 @test A(4.5) ≈ 4.1363636363636366866103344 @test A(5.1) ≈ 5.9803623910336236590978842 @test A(6.5) ≈ 5.5067291516462386624652936 @test A(7.2) ≈ 5.2031367459745245795943447 @test A(8.6) ≈ 4.1796554159017080820603951 @test A(9.9) ≈ 3.4110386597938129327189927 @test A(10.0) ≈ 3.0 test_cached_index(A) # Test extrapolation A = AkimaInterpolation(u, t; extrapolate = true) @test A(-1.0) ≈ -5.0 @test A(11.0) ≈ -3.924742268041234 A = AkimaInterpolation(u, t) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(11.0) end @testset "ConstantInterpolation" begin test_interpolation_type(ConstantInterpolation) t = [1.0, 2.0, 3.0, 4.0] @testset "Vector case" for u in [[1.0, 2.0, 0.0, 1.0], ["B", "C", "A", "B"]] A = ConstantInterpolation(u, t, dir = :right; extrapolate = true) @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[2] @test A(2.0) == u[2] @test A(2.5) == u[3] @test A(3.0) == u[3] @test A(3.5) == u[1] @test A(4.0) == u[1] @test A(4.5) == u[1] test_cached_index(A) A = ConstantInterpolation(u, t; extrapolate = true) # dir=:left is default @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[1] @test A(2.0) == u[2] @test A(2.5) == u[2] @test A(3.0) == u[3] @test A(3.5) == u[3] @test A(4.0) == u[1] @test A(4.5) == u[1] test_cached_index(A) end @testset "Matrix case" for u in [ [1.0 2.0 0.0 1.0; 1.0 2.0 0.0 1.0], ["B" "C" "A" "B"; "B" "C" "A" "B"] ] A = ConstantInterpolation(u, t, dir = :right; extrapolate = true) @test A(0.5) == u[:, 1] @test A(1.0) == u[:, 1] @test A(1.5) == u[:, 2] @test A(2.0) == u[:, 2] @test A(2.5) == u[:, 3] @test A(3.0) == u[:, 3] @test A(3.5) == u[:, 1] @test A(4.0) == u[:, 1] @test A(4.5) == u[:, 1] test_cached_index(A) A = ConstantInterpolation(u, t; extrapolate = true) # dir=:left is default @test A(0.5) == u[:, 1] @test A(1.0) == u[:, 1] @test A(1.5) == u[:, 1] @test A(2.0) == u[:, 2] @test A(2.5) == u[:, 2] @test A(3.0) == u[:, 3] @test A(3.5) == u[:, 3] @test A(4.0) == u[:, 1] @test A(4.5) == u[:, 1] test_cached_index(A) end @testset "Vector of Vectors case" for u in [ [[1.0, 2.0], [0.0, 1.0], [1.0, 2.0], [0.0, 1.0]], [["B", "C"], ["A", "B"], ["B", "C"], ["A", "B"]]] A = ConstantInterpolation(u, t, dir = :right; extrapolate = true) @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[2] @test A(2.0) == u[2] @test A(2.5) == u[3] @test A(3.0) == u[3] @test A(3.5) == u[4] @test A(4.0) == u[4] @test A(4.5) == u[4] test_cached_index(A) A = ConstantInterpolation(u, t; extrapolate = true) # dir=:left is default @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[1] @test A(2.0) == u[2] @test A(2.5) == u[2] @test A(3.0) == u[3] @test A(3.5) == u[3] @test A(4.0) == u[4] @test A(4.5) == u[4] test_cached_index(A) end @testset "Vector of Matrices case" for u in [ [[1.0 2.0; 1.0 2.0], [0.0 1.0; 0.0 1.0], [1.0 2.0; 1.0 2.0], [0.0 1.0; 0.0 1.0]], [["B" "C"; "B" "C"], ["A" "B"; "A" "B"], ["B" "C"; "B" "C"], ["A" "B"; "A" "B"]]] A = ConstantInterpolation(u, t, dir = :right; extrapolate = true) @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[2] @test A(2.0) == u[2] @test A(2.5) == u[3] @test A(3.0) == u[3] @test A(3.5) == u[4] @test A(4.0) == u[4] @test A(4.5) == u[4] test_cached_index(A) A = ConstantInterpolation(u, t; extrapolate = true) # dir=:left is default @test A(0.5) == u[1] @test A(1.0) == u[1] @test A(1.5) == u[1] @test A(2.0) == u[2] @test A(2.5) == u[2] @test A(3.0) == u[3] @test A(3.5) == u[3] @test A(4.0) == u[4] @test A(4.5) == u[4] test_cached_index(A) end # Test extrapolation u = [1.0, 2.0, 0.0, 1.0] A = ConstantInterpolation(u, t; extrapolate = true) @test A(-1.0) == 1.0 @test A(11.0) == 1.0 A = ConstantInterpolation(u, t) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(11.0) # Test extrapolation with infs with regularly spaced t u = [1.67e7, 1.6867e7, 1.7034e7, 1.7201e7, 1.7368e7] t = [0.0, 0.1, 0.2, 0.3, 0.4] A = ConstantInterpolation(u, t; extrapolate = true) @test A(Inf) == last(u) @test A(-Inf) == first(u) end @testset "QuadraticSpline Interpolation" begin test_interpolation_type(QuadraticSpline) u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] A = QuadraticSpline(u, t; extrapolate = true) # Solution P₁ = x -> (x + 1)^2 # for x ∈ [-1, 0] P₂ = x -> 2 * x + 1 # for x ∈ [ 0, 1] for (_t, _u) in zip(t, u) @test A(_t) == _u end @test A(-2.0) == P₁(-2.0) @test A(-0.5) == P₁(-0.5) @test A(0.7) == P₂(0.7) @test A(2.0) == P₂(2.0) test_cached_index(A) u_ = [0.0, 1.0, 3.0]' .* ones(4) u = [u_[:, i] for i in 1:size(u_, 2)] A = QuadraticSpline(u, t; extrapolate = true) @test A(-2.0) == P₁(-2.0) * ones(4) @test A(-0.5) == P₁(-0.5) * ones(4) @test A(0.7) == P₂(0.7) * ones(4) @test A(2.0) == P₂(2.0) * ones(4) u = [repeat(u[i], 1, 3) for i in 1:3] A = QuadraticSpline(u, t; extrapolate = true) @test A(-2.0) == P₁(-2.0) * ones(4, 3) @test A(-0.5) == P₁(-0.5) * ones(4, 3) @test A(0.7) == P₂(0.7) * ones(4, 3) @test A(2.0) == P₂(2.0) * ones(4, 3) # Test extrapolation u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] A = QuadraticSpline(u, t; extrapolate = true) @test A(-2.0) == 1.0 @test A(2.0) == 5.0 A = QuadraticSpline(u, t) @test_throws DataInterpolations.ExtrapolationError A(-2.0) @test_throws DataInterpolations.ExtrapolationError A(2.0) end @testset "CubicSpline Interpolation" begin test_interpolation_type(CubicSpline) u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] A = CubicSpline(u, t; extrapolate = true) test_cached_index(A) # Solution P₁ = x -> 1 + 1.5x + 0.75 * x^2 + 0.25 * x^3 # for x ∈ [-1.0, 0.0] P₂ = x -> 1 + 1.5x + 0.75 * x^2 - 0.25 * x^3 # for x ∈ [0.0, 1.0] for (_t, _u) in zip(t, u) @test A(_t) == _u end for x in (-1.5, -0.5, -0.7) @test A(x) ≈ P₁(x) end for x in (0.3, 0.5, 1.5) @test A(x) ≈ P₂(x) end u_ = [0.0, 1.0, 3.0]' .* ones(4) u = [u_[:, i] for i in 1:size(u_, 2)] A = CubicSpline(u, t; extrapolate = true) for x in (-1.5, -0.5, -0.7) @test A(x) ≈ P₁(x) * ones(4) end for x in (0.3, 0.5, 1.5) @test A(x) ≈ P₂(x) * ones(4) end u = [repeat(u[i], 1, 3) for i in 1:3] A = CubicSpline(u, t; extrapolate = true) for x in (-1.5, -0.5, -0.7) @test A(x) ≈ P₁(x) * ones(4, 3) end for x in (0.3, 0.5, 1.5) @test A(x) ≈ P₂(x) * ones(4, 3) end # Test extrapolation u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] A = CubicSpline(u, t; extrapolate = true) @test A(-2.0) ≈ -1.0 @test A(2.0) ≈ 5.0 A = CubicSpline(u, t) @test_throws DataInterpolations.ExtrapolationError A(-2.0) @test_throws DataInterpolations.ExtrapolationError A(2.0) end @testset "BSplines" begin # BSpline Interpolation and Approximation t = [0, 62.25, 109.66, 162.66, 205.8, 252.3] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] @testset "BSplineInterpolation" begin test_interpolation_type(BSplineInterpolation) A = BSplineInterpolation(u, t, 2, :Uniform, :Uniform) @test [A(25.0), A(80.0)] == [13.454197730061425, 10.305633616059845] @test [A(190.0), A(225.0)] == [14.07428439395079, 11.057784141519251] @test [A(t[1]), A(t[end])] == [u[1], u[end]] test_cached_index(A) # Test extrapolation A = BSplineInterpolation(u, t, 2, :Uniform, :Uniform; extrapolate = true) @test A(-1.0) == u[1] @test A(300.0) == u[end] A = BSplineInterpolation(u, t, 2, :Uniform, :Uniform) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(300.0) A = BSplineInterpolation(u, t, 2, :ArcLen, :Average) @test [A(25.0), A(80.0)] == [13.363814458968486, 10.685201117692609] @test [A(190.0), A(225.0)] == [13.437481084762863, 11.367034741256463] @test [A(t[1]), A(t[end])] == [u[1], u[end]] @test_throws ErrorException("BSplineInterpolation needs at least d + 1, i.e. 4 points.") BSplineInterpolation( u[1:3], t[1:3], 3, :Uniform, :Uniform) @test_throws ErrorException("BSplineInterpolation needs at least d + 1, i.e. 5 points.") BSplineInterpolation( u[1:4], t[1:4], 4, :ArcLen, :Average) @test_nowarn BSplineInterpolation(u[1:3], t[1:3], 2, :Uniform, :Uniform) # Test extrapolation A = BSplineInterpolation(u, t, 2, :ArcLen, :Average; extrapolate = true) @test A(-1.0) == u[1] @test A(300.0) == u[end] A = BSplineInterpolation(u, t, 2, :ArcLen, :Average) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(300.0) end @testset "BSplineApprox" begin test_interpolation_type(BSplineApprox) A = BSplineApprox(u, t, 2, 4, :Uniform, :Uniform) @test [A(25.0), A(80.0)] ≈ [12.979802931218234, 10.914310609953178] @test [A(190.0), A(225.0)] ≈ [13.851245975109263, 12.963685868886575] @test [A(t[1]), A(t[end])] ≈ [u[1], u[end]] test_cached_index(A) @test_throws ErrorException("BSplineApprox needs at least d + 1, i.e. 3 control points.") BSplineApprox( u, t, 2, 2, :Uniform, :Uniform) @test_throws ErrorException("BSplineApprox needs at least d + 1, i.e. 4 control points.") BSplineApprox( u, t, 3, 3, :ArcLen, :Average) @test_nowarn BSplineApprox(u, t, 2, 3, :Uniform, :Uniform) # Test extrapolation A = BSplineApprox(u, t, 2, 4, :Uniform, :Uniform; extrapolate = true) @test A(-1.0) == u[1] @test A(300.0) == u[end] A = BSplineApprox(u, t, 2, 4, :Uniform, :Uniform) @test_throws DataInterpolations.ExtrapolationError A(-1.0) @test_throws DataInterpolations.ExtrapolationError A(300.0) end end @testset "Cubic Hermite Spline" begin test_interpolation_type(CubicHermiteSpline) du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] A = CubicHermiteSpline(du, u, t; extrapolate = true) @test A.(t) ≈ u @test A(100.0)≈10.106770 rtol=1e-5 @test A(300.0)≈9.901542 rtol=1e-5 test_cached_index(A) push!(u, 1.0) @test_throws AssertionError CubicHermiteSpline(du, u, t) end @testset "PCHIPInterpolation" begin u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 250.0] A = PCHIPInterpolation(u, t) @test A isa CubicHermiteSpline ts = 0.0:0.1:250.0 us = A(ts) @test all(minimum(u) .<= us) @test all(maximum(u) .>= us) @test all(A.du[3:4] .== 0.0) end @testset "Quintic Hermite Spline" begin test_interpolation_type(QuinticHermiteSpline) ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0] du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] A = QuinticHermiteSpline(ddu, du, u, t; extrapolate = true) @test A.(t) ≈ u @test A(100.0)≈10.107996 rtol=1e-5 @test A(300.0)≈11.364162 rtol=1e-5 test_cached_index(A) push!(u, 1.0) @test_throws AssertionError QuinticHermiteSpline(ddu, du, u, t) end @testset "Curvefit" begin # Curvefit Interpolation rng = StableRNG(12345) model(x, p) = @. p[1] / (1 + exp(x - p[2])) t = range(-10, stop = 10, length = 40) u = model(t, [1.0, 2.0]) + 0.01 * randn(rng, length(t)) p0 = [0.5, 0.5] A = Curvefit(u, t, model, p0, LBFGS()) ts = [-7.0, -2.0, 0.0, 2.5, 5.0] vs = [ 1.0013468217936277, 0.9836755196317837, 0.8833959853995836, 0.3810348276782708, 0.048062978598861855 ] us = A.(ts) @test vs ≈ us # Test extrapolation A = Curvefit(u, t, model, p0, LBFGS(); extrapolate = true) @test A(15.0) == model(15.0, A.pmin) A = Curvefit(u, t, model, p0, LBFGS()) @test_throws DataInterpolations.ExtrapolationError A(15.0) end @testset "Type of vector returned" begin # Issue https://github.com/SciML/DataInterpolations.jl/issues/253 t1 = Float32[0.1, 0.2, 0.3, 0.4, 0.5] t2 = Float64[0.1, 0.2, 0.3, 0.4, 0.5] interps_and_types = [ (LinearInterpolation(t1, t1), Float32), (LinearInterpolation(t1, t2), Float32), (LinearInterpolation(t2, t1), Float64), (LinearInterpolation(t2, t2), Float64) ] for i in eachindex(interps_and_types) @test eltype(interps_and_types[i][1](t1)) == interps_and_types[i][2] end end @testset "Plugging vector timepoints" begin # Issue https://github.com/SciML/DataInterpolations.jl/issues/267 t = Float64[1.0, 2.0, 3.0, 4.0, 5.0] @testset "utype - Vectors" begin interp = LinearInterpolation(rand(5), t) @test interp(t) isa Vector{Float64} end @testset "utype - Vector of Vectors" begin interp = LinearInterpolation([rand(2) for _ in 1:5], t) @test interp(t) isa Vector{Vector{Float64}} end @testset "utype - Matrix" begin interp = LinearInterpolation(rand(2, 5), t) @test interp(t) isa Matrix{Float64} end end # missing values handling tests u = [1.0, 4.0, 9.0, 16.0, 25.0, missing, missing] t = [1.0, 2.0, 3.0, 4.0, missing, 6.0, missing] A = QuadraticInterpolation(u, t) @test A(2.0) == 4.0 @test A(1.5) == 2.25 @test A(3.5) == 12.25 @test A(2.5) == 6.25 u = copy(hcat(u, u)') A = QuadraticInterpolation(u, t) @test A(2.0) == [4.0, 4.0] @test A(1.5) == [2.25, 2.25] @test A(3.5) == [12.25, 12.25] @test A(2.5) == [6.25, 6.25] # ForwardDiff compatibility with respect to coefficients function square(INTERPOLATION_TYPE, c) # elaborate way to write f(x) = x² xs = -4.0:2.0:4.0 ys = [c^2 + x for x in xs] itp = INTERPOLATION_TYPE(ys, xs) return itp(0.0) end # generate versions of this function with different interpolators f_quadratic_spline = c -> square(QuadraticSpline, c) f_cubic_spline = c -> square(CubicSpline, c) @test ForwardDiff.derivative(f_quadratic_spline, 2.0) ≈ 4.0 @test ForwardDiff.derivative(f_quadratic_spline, 4.0) ≈ 8.0 @test ForwardDiff.derivative(f_cubic_spline, 2.0) ≈ 4.0 @test ForwardDiff.derivative(f_cubic_spline, 4.0) ≈ 8.0
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1087
using DataInterpolations t1 = [1.0, 2.0, 3.0] u1 = [0.0, 1.0, 0.0] t2 = [4.0, 5.0, 6.0] u2 = [1.0, 2.0, 1.0] ts_append = 1.0:0.5:6.0 ts_push = 1.0:0.5:4.0 @testset "$method" for method in [ LinearInterpolation, QuadraticInterpolation, ConstantInterpolation] func1 = method(copy(u1), copy(t1); cache_parameters = true) append!(func1, u2, t2) func2 = method(vcat(u1, u2), vcat(t1, t2); cache_parameters = true) @test func1.u == func2.u @test func1.t == func2.t for name in propertynames(func1.p) @test getfield(func1.p, name) == getfield(func2.p, name) end @test func1(ts_append) == func2(ts_append) @test func1.I == func2.I func1 = method(copy(u1), copy(t1); cache_parameters = true) push!(func1, 1.0, 4.0) func2 = method(vcat(u1, 1.0), vcat(t1, 4.0); cache_parameters = true) @test func1.u == func2.u @test func1.t == func2.t for name in propertynames(func1.p) @test getfield(func1.p, name) == getfield(func2.p, name) end @test func1(ts_push) == func2(ts_push) @test func1.I == func2.I end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
1640
using DataInterpolations @testset "Linear Interpolation" begin u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = LinearInterpolation(u, t; cache_parameters = true) @test A.p.slope ≈ [4.0, -2.0, 1.0, 0.0] end @testset "Quadratic Interpolation" begin u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = QuadraticInterpolation(u, t; cache_parameters = true) @test A.p.l₀ ≈ [0.5, 2.5, 1.5] @test A.p.l₁ ≈ [-5.0, -3.0, -4.0] @test A.p.l₂ ≈ [1.5, 2.0, 2.0] end @testset "Quadratic Spline" begin u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = QuadraticSpline(u, t; cache_parameters = true) @test A.p.σ ≈ [4.0, -10.0, 13.0, -14.0] end @testset "Cubic Spline" begin u = [1, 5, 3, 4, 4] t = collect(1:5) A = CubicSpline(u, t; cache_parameters = true) @test A.p.c₁ ≈ [6.839285714285714, 1.642857142857143, 4.589285714285714, 4.0] @test A.p.c₂ ≈ [1.0, 6.839285714285714, 1.642857142857143, 4.589285714285714] end @testset "Cubic Hermite Spline" begin du = [5.0, 3.0, 6.0, 8.0, 1.0] u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = CubicHermiteSpline(du, u, t; cache_parameters = true) @test A.p.c₁ ≈ [-1.0, -5.0, -5.0, -8.0] @test A.p.c₂ ≈ [0.0, 13.0, 12.0, 9.0] end @testset "Quintic Hermite Spline" begin ddu = [0.0, 3.0, 6.0, 4.0, 5.0] du = [5.0, 3.0, 6.0, 8.0, 1.0] u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = QuinticHermiteSpline(ddu, du, u, t; cache_parameters = true) @test A.p.c₁ ≈ [-1.0, -6.5, -8.0, -10.0] @test A.p.c₂ ≈ [1.0, 19.5, 20.0, 19.0] @test A.p.c₃ ≈ [1.5, -37.5, -37.0, -26.5] end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
460
using DataInterpolations, Aqua @testset "Aqua" begin Aqua.find_persistent_tasks_deps(DataInterpolations) Aqua.test_ambiguities(DataInterpolations, recursive = false) Aqua.test_deps_compat(DataInterpolations) Aqua.test_piracies(DataInterpolations) Aqua.test_project_extras(DataInterpolations) Aqua.test_stale_deps(DataInterpolations) Aqua.test_unbound_args(DataInterpolations) Aqua.test_undefined_exports(DataInterpolations) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
7604
using DataInterpolations import StableRNGs: StableRNG using RegularizationTools # create scattered data npts = 50 xmin = 0.0 xspan = 3 / 2 * π x = collect(range(xmin, xmin + xspan, length = npts)) rng = StableRNG(655) x = x + xspan / npts * (rand(rng, npts) .- 0.5) # select a subset randomly idx = unique(rand(rng, collect(eachindex(x)), 20)) t = x[unique(idx)] npts = length(t) ut = sin.(t) stdev = 1e-1 * maximum(ut) u = ut + stdev * randn(rng, npts) # data must be ordered if t̂ is not provided idx = sortperm(t) tₒ = t[idx] uₒ = u[idx] tolerance = 1e-3 @testset "Direct smoothing" begin # fixed with default λ = 1.0 A = RegularizationSmooth(uₒ, tₒ; alg = :fixed) ans = [0.6456173647252937 0.663974701324226 0.7631218523665086 0.778654700697601 0.7489958320589535 0.7319087707475104 0.6807082599508811 0.6372557895089508 0.5832859790765743 0.5021274805916013 0.3065928203396211 0.1353332321156384 -0.3260000640060584 -0.6557906092739154 -0.9204882447932498]' @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(tₒ), ans, rtol = tolerance) # non-default d and λ A = RegularizationSmooth(uₒ, tₒ, 4; λ = 1e-2, alg = :fixed) ans = [0.19865190868740357 0.2885349151737291 0.6756699442978945 0.9165887141895426 0.9936113717653254 1.0042825002191034 0.9768118192829827 0.9184595331808411 0.8214983284892922 0.6538356458824783 0.28295521578898 0.018060767871253963 -0.5301723647977373 -0.8349855890541111 -1.1085048455468356]' @test isapprox(A.û, ans, rtol = tolerance) # GCV (default) to determine λ A = RegularizationSmooth(uₒ, tₒ) @test isapprox(A.λ, 0.12788440382063268, rtol = tolerance) ans = [0.21974931848164914 0.2973284508009968 0.6908546278415386 0.9300465474303226 0.9741453042418977 0.9767572556868123 0.9432951659303452 0.8889834700087442 0.804842790047182 0.6603217445567791 0.30341652659101737 0.05924456463634589 -0.5239939779242144 -0.8421768233191822 -1.107517099580091]' @test isapprox(A.û, ans, rtol = tolerance) # L-curve to determine λ A = RegularizationSmooth(uₒ, tₒ; alg = :L_curve) @test isapprox(A.λ, 0.9536286111306728, rtol = tolerance) ans = [ 0.6261657429321232, 0.6470204841904836, 0.7599270022828396, 0.7835725197598925, 0.7567105872094757, 0.7404815750685363, 0.6906841961987067, 0.647628105931872, 0.5937273796308717, 0.512087780658067, 0.3136272387739983, 0.1392761732695201, -0.3312498167413961, -0.6673268474631847, -0.9370342562716745 ] @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(tₒ), ans, rtol = tolerance) end @testset "Smoothing with weights" begin # midpoint rule integration A = RegularizationSmooth(uₒ, tₒ, nothing, :midpoint) @test isapprox(A.λ, 0.10787235405005478, rtol = tolerance) ans = [ 0.3068904607028622, 0.3637388879266782, 0.6654462500501238, 0.9056440536733456, 0.9738150157541853, 0.9821315604309402, 0.9502526946446999, 0.8953643918063283, 0.8024431779821514, 0.6415812230114304, 0.2834706832220367, 0.05281575111822609, -0.5333542714497277, -0.8406745098604134, -1.0983391396173634 ] @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(tₒ), ans, rtol = tolerance) # arbitrary weights for wls (and fixed λ, GCV not working well for some of these) A = RegularizationSmooth(uₒ, tₒ, nothing, collect(1:npts); λ = 1e-1, alg = :fixed) ans = [ 0.24640196218427968, 0.3212059975226125, 0.6557626475144205, 0.9222911426465459, 0.9913331910731215, 1.0072241662103494, 0.9757899817730779, 0.935880516370941, 0.8381074902073471, 0.6475589703422522, 0.2094170714475404, 0.09102085384961625, -0.5640882848240228, -0.810519277110118, -1.1159124134900906 ] @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(tₒ), ans, rtol = tolerance) # arbitrary weights for wls and wr nhalf = Int(floor(npts / 2)) wls = vcat(ones(nhalf), 10 * ones(npts - nhalf)) wr = collect(1:(npts - 2)) A = RegularizationSmooth(uₒ, tₒ, nothing, wls, wr; λ = 1e-1, alg = :fixed) ans = [ 0.21878709713242372, 0.3118480645325099, 0.7669822464946172, 1.0232343854914931, 1.0526513115274412, 1.0469579284244412, 0.9962426294084775, 0.9254407155702626, 0.8204764044515936, 0.6514510142804217, 0.27796896299068763, 0.04756024028728636, -0.5301034620974782, -0.8408107101140526, -1.1058428573417736 ] @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(tₒ), ans, rtol = tolerance) end @testset "Smoothing with t̂ provided" begin N̂ = 20 t̂ = collect(range(xmin, xmin + xspan, length = N̂)) # with t̂, no weights A = RegularizationSmooth(u, t, t̂) @test isapprox(A.λ, 0.138273889585313, rtol = tolerance) ans = [0.21626377852882872 0.39235926952322575 0.5573848799950002 0.7072474496656729 0.8361906119247042 0.9313473799797176 0.9809844353757837 0.9750833208625507 0.9096038940899813 0.7816929736202427 0.6052694276527628 0.4015903497629387 0.1913719025253403 -0.01979786871512895 -0.23400354001942947 -0.44481229967011127 -0.6457913359497256 -0.8405146928672158 -1.0367229293434395 -1.2334090099343238]' @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(t̂), ans, rtol = tolerance) # t̂ and wls A = RegularizationSmooth(u, t, t̂, collect(1:npts)) @test isapprox(A.λ, 0.26746430253489195, rtol = tolerance) ans = [0.3118247878815087 0.44275860852897864 0.5705834985506882 0.6979119448253899 0.8234189540704866 0.9289458273102476 0.9970803470992273 1.0071205506077525 0.9443157518324818 0.7954860908242515 0.5847385548859145 0.34813493129868633 0.1237494751337505 -0.0823517516424196 -0.28265170846635246 -0.4760833187699964 -0.6615795059853024 -0.844779821396189 -1.0341162283806349 -1.225270266213379]' @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(t̂), ans, rtol = tolerance) # t̂, wls, and wr nhalf = Int(floor(npts / 2)) wls = vcat(ones(nhalf), 10 * ones(npts - nhalf)) wr = collect(1:(N̂ - 2)) A = RegularizationSmooth(u, t, t̂, wls, wr) @test isapprox(A.λ, 0.04555080890920959, rtol = tolerance) ans = [ 0.2799800686914433, 0.4627548444527547, 0.5611922868318674, 0.6647761469309206, 0.7910803348948329, 0.9096001134420562, 1.0067644979677808, 1.0541868144785513, 0.9889720466386331, 0.8088479651943575, 0.5677592185997403, 0.31309698432269184, 0.08587106716465115, -0.11476265128730469, -0.30749376694236485, -0.4942769809562725, -0.676806367664006, -0.8587832527770329, -1.0443430843364814, -1.2309001260104093 ] @test isapprox(A.û, ans, rtol = tolerance) @test isapprox(A.(t̂), ans, rtol = tolerance) end @testset "Extrapolation" begin A = RegularizationSmooth(uₒ, tₒ; alg = :fixed, extrapolate = true) @test A(10.0) == A.Aitp(10.0) A = RegularizationSmooth(uₒ, tₒ; alg = :fixed) @test_throws DataInterpolations.ExtrapolationError A(10.0) end @testset "Type inference" begin A = RegularizationSmooth(uₒ, tₒ; alg = :fixed) @test @inferred(A(1.0)) == A(1.0) end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
674
using SafeTestsets @safetestset "Quality Assurance" include("qa.jl") @safetestset "Interface" include("interface.jl") @safetestset "Parameter Tests" include("parameter_tests.jl") @safetestset "Interpolation Tests" include("interpolation_tests.jl") @safetestset "Derivative Tests" include("derivative_tests.jl") @safetestset "Integral Tests" include("integral_tests.jl") @safetestset "Integral Inverse Tests" include("integral_inverse_tests.jl") @safetestset "Online Tests" include("online_tests.jl") @safetestset "Regularization Smoothing" include("regularization.jl") @safetestset "Show methods" include("show.jl") @safetestset "Zygote support" include("zygote_tests.jl")
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
2981
using DataInterpolations using Optim, StableRNGs using RegularizationTools t = [1.0, 2.0, 3.0, 4.0, 5.0] x = [1.0, 2.0, 3.0, 4.0, 5.0] @testset "Generic Cases" begin function test_show_line(A) @testset "$(nameof(typeof(A)))" begin @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "$(nameof(typeof(A))) with $(length(A.t)) points\n") end end methods = [ LinearInterpolation(x, t), AkimaInterpolation(x, t), QuadraticSpline(x, t), CubicSpline(x, t) ] test_show_line.(methods) end @testset "Specific Cases" begin @testset "QuadraticInterpolation" begin A = QuadraticInterpolation(x, t) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "QuadraticInterpolation with 5 points, Forward mode\n") end @testset "LagrangeInterpolation" begin A = LagrangeInterpolation(x, t) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "LagrangeInterpolation with 5 points, with order 4\n") end @testset "ConstantInterpolation" begin A = ConstantInterpolation(x, t) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "ConstantInterpolation with 5 points, in left direction\n") end @testset "BSplineInterpolation" begin A = BSplineInterpolation(x, t, 3, :Uniform, :Uniform) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "BSplineInterpolation with 5 points, with degree 3\n") end @testset "BSplineApprox" begin A = BSplineApprox(x, t, 2, 4, :Uniform, :Uniform) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "BSplineApprox with 5 points, with degree 2, number of control points 4\n") end end @testset "CurveFit" begin rng = StableRNG(12345) model(x, p) = @. p[1] / (1 + exp(x - p[2])) t = range(-10, stop = 10, length = 40) u = model(t, [1.0, 2.0]) + 0.01 * randn(rng, length(t)) p0 = [0.5, 0.5] A = Curvefit(u, t, model, p0, LBFGS()) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "Curvefit with 40 points, using LBFGS\n") end @testset "RegularizationSmooth" begin npts = 50 xmin = 0.0 xspan = 3 / 2 * π x = collect(range(xmin, xmin + xspan, length = npts)) rng = StableRNG(655) x = x + xspan / npts * (rand(rng, npts) .- 0.5) # select a subset randomly idx = unique(rand(rng, collect(eachindex(x)), 20)) t = x[unique(idx)] npts = length(t) ut = sin.(t) stdev = 1e-1 * maximum(ut) u = ut + stdev * randn(rng, npts) # data must be ordered if t̂ is not provided idx = sortperm(t) tₒ = t[idx] uₒ = u[idx] A = RegularizationSmooth(uₒ, tₒ; alg = :fixed) @test startswith(sprint(io -> show(io, MIME"text/plain"(), A)), "RegularizationSmooth with 15 points, with regularization coefficient 1.0\n") end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
code
4332
using DataInterpolations using ForwardDiff using Zygote function test_zygote(method, u, t; args = [], args_after = [], kwargs = [], name::String) func = method(args..., u, t, args_after...; kwargs..., extrapolate = true) trange = collect(range(minimum(t) - 5.0, maximum(t) + 5.0, step = 0.1)) trange_exclude = filter(x -> !in(x, t), trange) @testset "$name, derivatives w.r.t. input" begin for _t in trange_exclude adiff = DataInterpolations.derivative(func, _t) zdiff = u isa AbstractVector{<:Real} ? only(Zygote.gradient(func, _t)) : only(Zygote.jacobian(func, _t)) isnothing(zdiff) && (zdiff = 0.0) @test adiff ≈ zdiff end end if method ∉ [LagrangeInterpolation, BSplineInterpolation, BSplineApprox] @testset "$name, derivatives w.r.t. u" begin function f(u) A = method(args..., u, t, args_after...; kwargs..., extrapolate = true) out = if u isa AbstractVector{<:Real} zero(eltype(u)) elseif u isa AbstractMatrix zero(u[:, 1]) else zero(u[1]) end for _t in trange out += A(_t) end out end zgrad, fgrad = if u isa AbstractVector{<:Real} Zygote.gradient(f, u), ForwardDiff.gradient(f, u) elseif u isa AbstractMatrix Zygote.jacobian(f, u), ForwardDiff.jacobian(f, u) else Zygote.jacobian(f, u), ForwardDiff.jacobian(f, hcat(u...)) end end end end @testset "LinearInterpolation" begin u = vcat(collect(1.0:5.0), 2 * collect(6.0:10.0)) t = collect(1.0:10.0) test_zygote( LinearInterpolation, u, t; name = "Linear Interpolation") end @testset "Quadratic Interpolation" begin u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] test_zygote(QuadraticInterpolation, u, t; name = "Quadratic Interpolation") end @testset "Constant Interpolation" begin u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:10.0) test_zygote(ConstantInterpolation, u, t; name = "Constant Interpolation (vector)") t = [1.0, 4.0] u = [1.0 2.0; 0.0 1.0; 1.0 2.0; 0.0 1.0] test_zygote(ConstantInterpolation, u, t, name = "Constant Interpolation (matrix)") u = [[1.0, 2.0, 3.0, 4.0], [2.0, 3.0, 4.0, 5.0]] test_zygote( ConstantInterpolation, u, t, name = "Constant Interpolation (vector of vectors)") end @testset "Cubic Hermite Spline" begin du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_zygote(CubicHermiteSpline, u, t, args = [du], name = "Cubic Hermite Spline") end @testset "Quintic Hermite Spline" begin ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0] du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] test_zygote( QuinticHermiteSpline, u, t, args = [ddu, du], name = "Quintic Hermite Spline") end @testset "Quadratic Spline" begin u = [1.0, 4.0, 9.0, 16.0] t = [1.0, 2.0, 3.0, 4.0] test_zygote(QuadraticSpline, u, t, name = "Quadratic Spline") end @testset "Lagrange Interpolation" begin u = [1.0, 4.0, 9.0] t = [1.0, 2.0, 3.0] test_zygote(LagrangeInterpolation, u, t, name = "Lagrange Interpolation") end @testset "Constant Interpolation" begin u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0] t = collect(0.0:10.0) test_zygote(ConstantInterpolation, u, t, name = "Constant Interpolation") end @testset "Cubic Spline" begin u = [0.0, 1.0, 3.0] t = [-1.0, 0.0, 1.0] test_zygote(CubicSpline, u, t, name = "Cubic Spline") end @testset "BSplines" begin t = [0, 62.25, 109.66, 162.66, 205.8, 252.3] u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] test_zygote(BSplineInterpolation, u, t; args_after = [2, :Uniform, :Uniform], name = "BSpline Interpolation") test_zygote(BSplineApprox, u, t; args_after = [2, 4, :Uniform, :Uniform], name = "BSpline approximation") end
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
1118
# DataInterpolations v5 Release Notes ## Breaking changes - `AbstractInterpolation` is not a subtype of `AbstractVector` anymore. This was needed for previous versions of ModelingToolkit.jl to represent splines as vectors. - Indexing overloads for `AbstractInterpolation` and the type parameter associated with it are removed. For example - `A` is an interpolation object: + Doing `A[i]` will error. Use `A.u[i]`. + `size(A)` will error. Use `size(A.u)` or `size(A.t)`. - Removed deprecated bindings for `ZeroSpline` which is the same as `ConstantInterpolation`. # DataInterpolations v6 Release Notes ## Breaking changes - https://github.com/SciML/DataInterpolations.jl/pull/274 introduced caching of parameters for interpolations (released in v5.3) and also introduced a field `safetycopy` which was a boolean flag to create a copy of the data as the parameters would be invalid if data is mutated. This was removed in https://github.com/SciML/DataInterpolations.jl/pull/315 to introduce `cache_parameters` which made it explicit if a user wants to opt in for parameter caching or not.
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
6073
# DataInterpolations.jl [![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) [![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/DataInterpolations/stable/) [![codecov](https://codecov.io/gh/SciML/DataInterpolations.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/DataInterpolations.jl) [![CI](https://github.com/SciML/DataInterpolations.jl/actions/workflows/Tests.yml/badge.svg?branch=master)](https://github.com/SciML/DataInterpolations.jl/actions/workflows/Tests.yml) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle) [![DOI](https://joss.theoj.org/papers/10.21105/joss.06917/status.svg)](https://doi.org/10.21105/joss.06917) DataInterpolations.jl is a library for performing interpolations of one-dimensional data. By "data interpolations" we mean techniques for interpolating possibly noisy data, and thus some methods are mixtures of regressions with interpolations (i.e. do not hit the data points exactly, smoothing out the lines). This library can be used to fill in intermediate data points in applications like timeseries data. ## API All interpolation objects act as functions. Thus for example, using an interpolation looks like: ```julia u = rand(5) t = 0:4 interp = LinearInterpolation(u, t) interp(3.5) # Gives the linear interpolation value at t=3.5 ``` We can efficiently interpolate onto a vector of new `t` values: ```julia t′ = 0.5:1.0:3.5 interp(t′) ``` In-place interpolation also works: ```julia u′ = similar(u, length(t′)) interp(u′, t′) ``` ## Available Interpolations In all cases, `u` an `AbstractVector` of values and `t` is an `AbstractVector` of timepoints corresponding to `(u,t)` pairs. - `ConstantInterpolation(u,t)` - A piecewise constant interpolation. - `LinearInterpolation(u,t)` - A linear interpolation. - `QuadraticInterpolation(u,t)` - A quadratic interpolation. - `LagrangeInterpolation(u,t,n)` - A Lagrange interpolation of order `n`. - `QuadraticSpline(u,t)` - A quadratic spline interpolation. - `CubicSpline(u,t)` - A cubic spline interpolation. - `AkimaInterpolation(u, t)` - Akima spline interpolation provides a smoothing effect and is computationally efficient. - `BSplineInterpolation(u,t,d,pVec,knotVec)` - An interpolation B-spline. This is a B-spline which hits each of the data points. The argument choices are: + `d` - degree of B-spline + `pVec` - Symbol to Parameters Vector, `pVec = :Uniform` for uniform spaced parameters and `pVec = :ArcLen` for parameters generated by chord length method. + `knotVec` - Symbol to Knot Vector, `knotVec = :Uniform` for uniform knot vector, `knotVec = :Average` for average spaced knot vector. - `BSplineApprox(u,t,d,h,pVec,knotVec)` - A regression B-spline which smooths the fitting curve. The argument choices are the same as the `BSplineInterpolation`, with the additional parameter `h<length(t)` which is the number of control points to use, with smaller `h` indicating more smoothing. - `CubicHermiteSpline(du, u, t)` - A third order Hermite interpolation, which matches the values and first (`du`) order derivatives in the data points exactly. - `PCHIPInterpolation(u, t)` - a type of `CubicHermiteSpline` where the derivative values `du` are derived from the input data in such a way that the interpolation never overshoots the data. - `QuinticHermiteSpline(ddu, du, u, t)` - A fifth order Hermite interpolation, which matches the values and first (`du`) and second (`ddu`) order derivatives in the data points exactly. ## Extension Methods The follow methods require extra dependencies and will be loaded as package extensions. - `Curvefit(u,t,m,p,alg)` - An interpolation which is done by fitting a user-given functional form `m(t,p)` where `p` is the vector of parameters. The user's input `p` is a an initial value for a least-square fitting, `alg` is the algorithm choice to use for optimize the cost function (sum of squared deviations) via `Optim.jl` and optimal `p`s are used in the interpolation. Requires `using Optim`. - `RegularizationSmooth(u,t,d;λ,alg)` - A regularization algorithm (ridge regression) which is done by minimizing an objective function (l2 loss + derivatives of order `d`) integrated in the time span. It is a global method and creates a smooth curve. Requires `using RegularizationTools`. ## Plotting DataInterpolations.jl is tied into the Plots.jl ecosystem, by way of RecipesBase. Any interpolation can be plotted using the `plot` command (or any other), since they have type recipes associated with them. For convenience, and to allow keyword arguments to propagate properly, DataInterpolations.jl also defines several series types, corresponding to different interpolations. The series types defined are: - `:linear_interp` - `:quadratic_interp` - `:lagrange_interp` - `:quadratic_spline` - `:cubic_spline` - `:akima_interp` - `:bspline_interp` - `:bspline_approx` - `:cubic_hermite_spline` - `:pchip_interp` - `:quintic_hermite_spline` By and large, these accept the same keywords as their function counterparts. ## Citing If you use this software in your work, please cite: ```bib @article{Bhagavan2024, doi = {10.21105/joss.06917}, url = {https://doi.org/10.21105/joss.06917}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {101}, pages = {6917}, author = {Sathvik Bhagavan and Bart de Koning and Shubham Maddhashiya and Christopher Rackauckas}, title = {DataInterpolations.jl: Fast Interpolations of 1D data}, journal = {Journal of Open Source Software} } ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
6983
# DataInterpolations.jl DataInterpolations.jl is a library for performing interpolations of one-dimensional data. Interpolations are a very important component of many modeling workflows. Often, sampled or measured inputs need to be transformed into continuous functions or smooth curves for simulation purposes. In many scientific machine learning workflows, interpolating data is essential to learn continuous models. DataInterpolations.jl can be used for facilitating these types of workflows. By "data interpolations" we mean techniques for interpolating possibly noisy data, and thus some methods are mixtures of regressions with interpolations (i.e. do not hit the data points exactly, smoothing out the lines). ## Installation To install DataInterpolations.jl, use the Julia package manager: ```julia using Pkg Pkg.add("DataInterpolations") ``` ## Available Interpolations In all cases, `u` an `AbstractVector` of values and `t` is an `AbstractVector` of timepoints corresponding to `(u,t)` pairs. - `ConstantInterpolation(u,t)` - A piecewise constant interpolation. - `LinearInterpolation(u,t)` - A linear interpolation. - `QuadraticInterpolation(u,t)` - A quadratic interpolation. - `LagrangeInterpolation(u,t,n)` - A Lagrange interpolation of order `n`. - `QuadraticSpline(u,t)` - A quadratic spline interpolation. - `CubicSpline(u,t)` - A cubic spline interpolation. - `AkimaInterpolation(u, t)` - Akima spline interpolation provides a smoothing effect and is computationally efficient. - `BSplineInterpolation(u,t,d,pVec,knotVec)` - An interpolation B-spline. This is a B-spline that hits each of the data points. The argument choices are: + `d` - degree of B-spline + `pVec` - Symbol to Parameters Vector, `pVec = :Uniform` for uniformly spaced parameters, and `pVec = :ArcLen` for parameters generated by the chord length method. + `knotVec` - Symbol to Knot Vector, `knotVec = :Uniform` for uniform knot vector, `knotVec = :Average` for average spaced knot vector. - `BSplineApprox(u,t,d,h,pVec,knotVec)` - A regression B-spline which smooths the fitting curve. The argument choices are the same as the `BSplineInterpolation`, with the additional parameter `h<length(t)` which is the number of control points to use, with smaller `h` indicating more smoothing. - `CubicHermiteSpline(du, u, t)` - A third order Hermite interpolation, which matches the values and first (`du`) order derivatives in the data points exactly. - `PCHIPInterpolation(u, t)` - a type of `CubicHermiteSpline` where the derivative values `du` are derived from the input data in such a way that the interpolation never overshoots the data. - `QuinticHermiteSpline(ddu, du, u, t)` - a fifth order Hermite interpolation, which matches the values and first (`du`) and second (`ddu`) order derivatives in the data points exactly. ## Extension Methods The following methods require extra dependencies and will be loaded as package extensions. - `Curvefit(u,t,m,p,alg)` - An interpolation which is done by fitting a user-given functional form `m(t,p)` where `p` is the vector of parameters. The user's input `p` is an initial value for a least-squares fitting, `alg` is the algorithm choice to use to optimize the cost function (sum of squared deviations) via `Optim.jl` and optimal `p`s are used in the interpolation. Requires `using Optim`. - `RegularizationSmooth(u,t,d;λ,alg)` - A regularization algorithm (ridge regression) which is done by minimizing an objective function (l2 loss + derivatives of order `d`) integrated in the time span. It is a global method which creates a smooth curve. Requires `using RegularizationTools`. ## Plotting DataInterpolations.jl is tied into the Plots.jl ecosystem, by way of RecipesBase. Any interpolation can be plotted using the `plot` command (or any other), since they have type recipes associated with them. For convenience, and to allow keyword arguments to propagate properly, DataInterpolations.jl also defines several series types, corresponding to different interpolations. The series types defined are: - `:linear_interp` - `:quadratic_interp` - `:lagrange_interp` - `:quadratic_spline` - `:cubic_spline` - `:akima_interp` - `:bspline_interp` - `:bspline_approx` - `:cubic_hermite_spline` - `:pchip_interp` - `:quintic_hermite_spline` By and large, these accept the same keywords as their function counterparts. ## Citing If you use this software in your work, please cite: ```bib @article{Bhagavan2024, doi = {10.21105/joss.06917}, url = {https://doi.org/10.21105/joss.06917}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {101}, pages = {6917}, author = {Sathvik Bhagavan and Bart de Koning and Shubham Maddhashiya and Christopher Rackauckas}, title = {DataInterpolations.jl: Fast Interpolations of 1D data}, journal = {Journal of Open Source Software} } ``` ## Contributing - Please refer to the [SciML ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://github.com/SciML/ColPrac/blob/master/README.md) for guidance on PRs, issues, and other matters relating to contributing to SciML. - See the [SciML Style Guide](https://github.com/SciML/SciMLStyle) for common coding practices and other style decisions. - There are a few community forums: + The #diffeq-bridged and #sciml-bridged channels in the [Julia Slack](https://julialang.org/slack/) + The #diffeq-bridged and #sciml-bridged channels in the [Julia Zulip](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) + On the [Julia Discourse forums](https://discourse.julialang.org) + See also [SciML Community page](https://sciml.ai/community/) ## Reproducibility ```@raw html <details><summary>The documentation of this SciML package was built using these direct dependencies,</summary> ``` ```@example using Pkg # hide Pkg.status() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>and using this machine and Julia version.</summary> ``` ```@example using InteractiveUtils # hide versioninfo() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>A more complete overview of all dependencies and their versions is also provided.</summary> ``` ```@example using Pkg # hide Pkg.status(; mode = PKGMODE_MANIFEST) # hide ``` ```@raw html </details> ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml", String))["version"] name = TOML.parse(read("../../Project.toml", String))["name"] link_manifest = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Manifest.toml" link_project = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Project.toml" Markdown.parse("""You can also download the [manifest]($link_manifest) file and the [project]($link_project) file. """) ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
3520
# Interface for using the Interpolations object We will again use the same data as the previous tutorial to demonstrate how to use the Interpolations object for computing interpolated values at any time point, as well as derivatives and integrals. ```@example interface using DataInterpolations # Dependent variable u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] # Independent variable t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] ``` ## Interpolated values All interpolation methods return an object from which we can compute the value of the dependent variable at any time point. We will use the `CubicSpline` method for demonstration, but the API is the same for all the methods. We can also pass the `extrapolate = true` keyword if we want to allow the interpolation to go beyond the range of the timepoints. The default value is `extrapolate = false`. ```@example interface A1 = CubicSpline(u, t) # For interpolation do, A(t) A1(100.0) A2 = CubicSpline(u, t; extrapolate = true) # Extrapolation A2(300.0) ``` !!! note The values computed beyond the range of the time points provided during interpolation will not be reliable, as these methods only perform well within the range and the first/last piece polynomial fit is extrapolated on either side which might not reflect the true nature of the data. The keyword `cache_parameters = true` can be passed to precalculate parameters at initialization, making evalations cheaper to compute. This is not compatible with modifying `u` and `t`. The default `cache_parameters = false` does however not prevent allocation in every interpolation constructor call. ## Derivatives Derivatives of the interpolated curves can also be computed at any point for all the methods. Derivatives upto second order is supported where first order derivative is computed analytically and second order using `ForwardDiff.jl`. Order is passed as the third argument. It is 1 by default. We will continue with the above example, but the API is the same for all the methods. If the interpolation is defined with `extrapolate=true`, derivatives can also be extrapolated. ```@example interface # derivative(A, t) DataInterpolations.derivative(A1, 1.0, 1) DataInterpolations.derivative(A1, 1.0, 2) # Extrapolation DataInterpolations.derivative(A2, 300.0) ``` ## Integrals Integrals of the interpolated curves can also be computed easily. !!! note Integrals for `LagrangeInterpolation`, `BSplineInterpolation`, `BSplineApprox`, `Curvefit` will error as there are no simple analytical solutions available. Please use numerical methods instead, such as [Integrals.jl](https://docs.sciml.ai/Integrals/stable/). To compute the integrals from the start of time points provided during interpolation to any point, we can do: ```@example interface # integral(A, t) DataInterpolations.integral(A1, 5.0) ``` If we want to compute integrals between two points, we can do: ```@example interface # integral(A, t1, t2) DataInterpolations.integral(A1, 1.0, 5.0) ``` Again, if the interpolation is defined with `extrapolate=true`, the integral can be computed beyond the range of the timepoints. ```@example interface # integral(A, t1, t2) DataInterpolations.integral(A2, 200.0, 300.0) ``` !!! note If the times provided in the integral go beyond the range of the time points provided during interpolation, it uses extrapolation methods to compute the values, and hence the integral can be misrepsentative and might not reflect the true nature of the data.
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
1361
# Inverting integrals Solving implicit integral problems of the following form is supported: ```math \begin{equation} \text{find $t$ such that } \int_{t_1}^t f(\tau)\text{d}\tau = V \ge 0, \end{equation} ``` where $t_1$ is given by `first(A.t)`. This is supported for interpolations $f$ that are strictly positive and of one of these types: - `ConstantInterpolation` - `LinearInterpolation` This is achieved by creating an 'integral inverse' interpolation object which can efficiently compute $t$ for a given value of $V$, see the example below. ```@example inverting_integrals using Random #hide Random.seed!(1234) # hide using DataInterpolations using Plots # Create LinearInterpolation object from the u = sqrt.(1:25) + (2.0 * rand(25) .- 1.0) / 3 t = cumsum(rand(25)) A = LinearInterpolation(u, t) # Create LinearInterpolationIntInv object # from the LinearInterpolation object A_intinv = DataInterpolations.invert_integral(A) # Get the t values up to and including the # solution to the integral problem V = 25.0 t_ = A_intinv(V) ts = t[t .<= t_] push!(ts, t_) # Plot results plot(A; label = "Linear Interpolation") plot!(ts, A.(ts), fillrange = 0.0, fillalpha = 0.75, fc = :blues, lw = 0, label = "Area of $V") ``` ## Docstrings ```@docs DataInterpolations.invert_integral ConstantInterpolationIntInv LinearInterpolationIntInv ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
319
# Methods ```@docs LinearInterpolation QuadraticInterpolation LagrangeInterpolation AkimaInterpolation ConstantInterpolation QuadraticSpline CubicSpline BSplineInterpolation BSplineApprox CubicHermiteSpline PCHIPInterpolation QuinticHermiteSpline ``` # Utility Functions ```@docs DataInterpolations.looks_linear ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
8543
# Interpolation using different methods We will use the following data to demonstrate interpolation methods. ```@example tutorial using DataInterpolations, Plots gr() # hide # Dependent variable u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] # Independent variable t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] ``` For each method, we will show how to perform the fit and use the plot recipe to show the fitting curve. ## Linear Interpolation This is a linear interpolation between the ends points of the interval of input data points. ```@example tutorial A = LinearInterpolation(u, t) plot(A) ``` ## Quadratic Interpolation This function fits a parabola passing through the two nearest points from the input data point as well as the next-closest point on the right or left, depending on whether the forward- or backward-looking mode is selected (default mode is forward-looking). It is continuous and piecewise differentiable. ```@example tutorial A = QuadraticInterpolation(u, t) # same as QuadraticInterpolation(u,t,:Forward) # alternatively: A = QuadraticInterpolation(u,t,:Backward) plot(A) ``` ## Lagrange Interpolation It fits a polynomial of degree d (=length(t)-1), and is thus a continuously differentiable function. ```@example tutorial A = LagrangeInterpolation(u, t) plot(A) ``` ## Akima Interpolation This function fits piecewise cubic polynomials which forms a continuously differentiable function. This differs from Cubic Spline as coefficients are computed using only neighbouring points and hence the fit looks more natural. ```@example tutorial A = AkimaInterpolation(u, t) plot(A) ``` ## Constant Interpolation This function is constant between data points. By default, it takes the value at the left end of the interval. One can change that behavior by passing the keyword argument `dir = :right`. ```@example tutorial A = ConstantInterpolation(u, t) plot(A) ``` Or using the right endpoints: ```@example tutorial A = ConstantInterpolation(u, t, dir = :right) plot(A) ``` ## Quadratic Spline This is the quadratic spline. It is a continuously differentiable interpolation which hits each of the data points exactly. Splines are a local interpolation method, meaning that the curve in a given spot is only affected by the points nearest to it. ```@example tutorial A = QuadraticSpline(u, t) plot(A) ``` ## Cubic Spline This is the cubic spline. It is a continuously twice differentiable interpolation which hits each of the data points exactly. ```@example tutorial A = CubicSpline(u, t) plot(A) ``` ## B-Splines This is an interpolating B-spline. B-splines are a global method, meaning that every data point is taken into account for each point of the curve. The interpolating B-spline is the version which hits each of the points. This method is described in more detail [here](https://pages.mtu.edu/%7Eshene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html). Let's plot a cubic B-spline (3rd order). Since the data points are not close to uniformly spaced, we will use the `:ArcLen` and `:Average` choices: ```@example tutorial A = BSplineInterpolation(u, t, 3, :ArcLen, :Average) plot(A) ``` The approximating B-spline is a smoothed version of the B-spline. It again is a global method. In this case, we need to give a number of control points `length(t)>h` and this method fits a B-spline through the control points which is a least square approximation. This has a natural effect of smoothing the data. For example, if we use 4 control points, we get the result: ```@example tutorial A = BSplineApprox(u, t, 3, 4, :ArcLen, :Average) plot(A) ``` ## Cubic Hermite Spline This is the cubic (third order) Hermite interpolation. It matches the values and first order derivatives in the data points exactly. ```@example tutorial du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0011] A = CubicHermiteSpline(du, u, t) plot(A) ``` ## PCHIP Interpolation This is a type of `CubicHermiteSpline` where the derivative values `du` are derived from the input data in such a way that the interpolation never overshoots the data. ```@example tutorial A = PCHIPInterpolation(u, t) plot(A) ``` ## Quintic Hermite Spline This is the quintic (fifth order) Hermite interpolation. It matches the values and first and second order derivatives in the data points exactly. ```@example tutorial ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0] du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0011] A = QuinticHermiteSpline(ddu, du, u, t) plot(A) ``` ## Regularization Smoothing Smoothing by regularization (a.k.a. ridge regression) finds a function ``\hat{u}`` that minimizes the objective function: ``Q(\hat{u}) = \int_{t_1}^{t_N} |\hat{u}(t) - u(t)|^2 \mathrm{d}t + \lambda \int_{\hat{t}_1}^{\hat{t}_N} |\hat{u}^{(d)}(\hat{t})|^2 \mathrm{d} \hat{t}`` where ``(d)`` denotes derivative order and ``\lambda`` is the regularization (smoothing) parameter. The integrals are evaluated numerically at the set of ``t`` values for the first term and ``\hat{t}`` values for the second term (equal to ``t`` if not provided). Regularization smoothing is a global method that creates a smooth curve directly. See [Stickel (2010) Comput. Chem. Eng. 34:467](http://dx.doi.org/10.1016/j.compchemeng.2009.10.007) for details. The implementation in this package uses cubic splines to interpolate between the smoothed points after they are determined. ```@example tutorial using RegularizationTools d = 2 λ = 1e3 A = RegularizationSmooth(u, t, d; λ = λ, alg = :fixed) û = A.û # interpolate using the smoothed values N = 200 titp = collect(range(minimum(t), maximum(t), length = N)) uitp = A.(titp) lw = 1.5 scatter(t, u, label = "data") scatter!(t, û, marker = :square, label = "smoothed data") plot!(titp, uitp, lw = lw, label = "smoothed interpolation") ``` ## Dense Data Demonstration Some methods are better suited for dense data. Let's generate such data to demonstrate these methods. ```@example tutorial import StableRNGs: StableRNG rng = StableRNG(318) t = sort(10 .* rand(rng, 100)) u = sin.(t) .+ 0.5 * randn(rng, 100); ``` ## Regularization Smoothing Although smoothing by regularization can be used to interpolate sparse data as shown above, it is especially useful for dense as well as scattered data (unequally spaced, unordered, and/or repeat-valued). Generalized cross validation (GCV) or so-called L-curve methods can be used to determine an "optimal" value for the smoothing parameter. In this example, we perform smoothing in two ways. In the first, we find smooth values at the original ``t`` values and then interpolate. In the second, we perform the smoothing for the interpolant ``\hat{t}`` values directly. GCV is used to determine the regularization parameter for both cases. ```@example tutorial d = 4 A = RegularizationSmooth(u, t, d; alg = :gcv_svd) û = A.û N = 200 titp = collect(range(minimum(t), maximum(t), length = N)) uitp = A.(titp) Am = RegularizationSmooth(u, t, titp, d; alg = :gcv_svd) ûm = Am.û scatter(t, u, label = "simulated data", legend = :top) scatter!(t, û, marker = (:square, 4), label = "smoothed data") plot!(titp, uitp, lw = lw, label = "smoothed interpolation") plot!(titp, ûm, lw = lw, linestyle = :dash, label = "smoothed, more points") ``` ## Curve Fits A curve fit works with both dense and sparse data. We will demonstrate the curve fit on the dense data since we generated it based on `sin(t)`, so this is the curve we want to fit through it. To do so, let's define a similar function with parameters. Let's choose the form: ```@example tutorial m(t, p) = @. p[1] * sin(p[2] * t) + p[3] * cos(p[4] * t) ``` Notice that this is a function on the whole array of `t` and expects an array for the predicted `u` out. This choice of `m` is based on the assumption that our function is of the form `p1*sin(p2*t)+p3*cos(p4*t)`. We want to find the `p` to match our data. Let's start with the guess of every `p` being zero, that is `p=ones(4)`. Then we would fit this curve using: ```@example tutorial using Optim A = Curvefit(u, t, m, ones(4), LBFGS()) plot(A) ``` We can check what the fitted parameters are via: ```@example tutorial A.pmin ``` Notice that it essentially made `p3=0` with `p1=p2=1`, meaning it approximately found `sin(t)`! But note that the ability to fit is dependent on the initial parameters. For example, with `p=zeros(4)` as the initial parameters, the fit is not good: ```@example tutorial A = Curvefit(u, t, m, zeros(4), LBFGS()) plot(A) ``` And the parameters show the issue: ```@example tutorial A.pmin ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
1853
# Using DataInterpolations.jl with Symbolics.jl and ModelingToolkit.jl All interpolation methods can be integrated with [Symbolics.jl](https://symbolics.juliasymbolics.org/stable/) and [ModelingToolkit.jl](https://docs.sciml.ai/ModelingToolkit/stable/) seamlessly. ## Using with Symbolics.jl ### Expressions ```@example symbolics using DataInterpolations, Symbolics using Test u = [0.0, 1.5, 0.0] t = [0.0, 0.5, 1.0] A = LinearInterpolation(u, t) @variables τ # Simple Expression ex = cos(τ) * A(τ) @test substitute(ex, Dict(τ => 0.5)) == cos(0.5) * A(0.5) # true ``` ### Symbolic Derivatives ```@example symbolics D = Differential(τ) ex1 = A(τ) # Derivative of interpolation ex2 = expand_derivatives(D(ex1)) @test substitute(ex2, Dict(τ => 0.5)) == DataInterpolations.derivative(A, 0.5) # true # Higher Order Derivatives ex3 = expand_derivatives(D(D(A(τ)))) @test substitute(ex3, Dict(τ => 0.5)) == DataInterpolations.derivative(A, 0.5, 2) # true ``` ## Using with ModelingToolkit.jl Most common use case with [ModelingToolkit.jl](https://docs.sciml.ai/ModelingToolkit/stable/) is to plug in interpolation objects as input functions. This can be done using `TimeVaryingFunction` component of [ModelingToolkitStandardLibrary.jl](https://docs.sciml.ai/ModelingToolkitStandardLibrary/stable/). ```@example mtk using DataInterpolations using ModelingToolkitStandardLibrary.Blocks using ModelingToolkit using ModelingToolkit: t_nounits as t, D_nounits as D using OrdinaryDiffEq us = [0.0, 1.5, 0.0] times = [0.0, 0.5, 1.0] A = LinearInterpolation(us, times) @named src = TimeVaryingFunction(A) vars = @variables x(t) out(t) eqs = [out ~ src.output.u, D(x) ~ 1 + out] @named sys = ODESystem(eqs, t, vars, []; systems = [src]) sys = structural_simplify(sys) prob = ODEProblem(sys, [x => 0.0], (times[1], times[end])) sol = solve(prob) ```
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
6.4.5
0663b1c3567767469b59cda5ba36413daae695d4
docs
4996
--- title: 'DataInterpolations.jl: Fast Interpolations of 1D data' tags: - julia - interpolations authors: - name: Sathvik Bhagavan orcid: 0000-0003-0785-3586 corresponding: true affiliation: 1 - name: Bart de Koning orcid: 0009-0005-6134-6608 affiliation: 2 - name: Shubham Maddhashiya affiliation: 3 - name: Christopher Rackauckas orcid: 0000-0001-5850-0663 affiliation: "1, 3, 4" affiliations: - name: JuliaHub index: 1 - name: Deltares index: 2 - name: Pumas-AI index: 3 - name: Massachusetts Institute of Technology index: 4 date: 6 June 2024 bibliography: paper.bib --- # Summary Interpolations are used to estimate values between known data points using an approximate continuous function. DataInterpolations.jl is a Julia [@Bezanson2017] package containing 1D implementations of some of the most commonly used interpolation functions. These include: - Constant Interpolation - Linear Interpolation - Quadratic Interpolation - Lagrange Interpolation [@lagrange1898lectures] - Quadratic Splines - Cubic Splines [@Schoenberg1988] - Akima Splines [@10.1145/321607.321609] - Cubic Hermite Splines - Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [@doi:10.1137/0905021] - Quintic Hermite Splines - B-Splines [@Curry1988] [@DEBOOR197250] - Regression based B-Splines and a continually growing list. Along with these, the package also has methods to fit parameterized curves with the data points and Tikhonov regularization [@Tikhonov1943OnTS] [@amt-14-7909-2021] for obtaining smooth curves. The package also provides functionality to compute integrals and derivatives upto second order for those interpolations methods. It is also automatic differentiation friendly. It can also be used symbolically with Symbolics.jl [@10.1145/3511528.3511535] and plugged into models defined using ModelingToolkit.jl [@ma2021modelingtoolkit]. # Statement of need Interpolations are a very important component of many modeling workflows. Often, sampled or measured inputs need to be transformed into continuous functions or smooth curves for simulation purposes. In many scientific machine learning workflows, interpolating data is essential to learn continuous models. DataInterpolations.jl can be used for facilitating these types of workflows. Several interpolation packages already exist in Julia, such as [Interpolations.jl](https://juliamath.github.io/Interpolations.jl/stable/), which primarily specializes in B-Splines and uniformly spaced data with some support for irregularly spaced data. In contrast, DataInterpolations.jl does not assume any specific structure in the data, offering greater flexibility for diverse datasets. [Interpolations.jl](https://juliamath.github.io/Interpolations.jl/stable/) also doesn't offer methods like Quadratic Interpolation, Lagrange Interpolation, Hermite Splines etc. [BasicInterpolators.jl](https://github.com/markmbaum/BasicInterpolators.jl) is more similar to DataInterpolations.jl, although it doesn't offer methods like B-Splines. Rest of the interpolation packages focus on particular methods like [BSplineKit.jl](https://github.com/jipolanco/BSplineKit.jl) for B-Splines, [FastChebInterp.jl](https://github.com/JuliaMath/FastChebInterp.jl) for Chebyshev interpolation, [PCHIPInterpolation](https://github.com/gerlero/PCHIPInterpolation.jl) for PCHIP interpolation etc. Additionally, DataInterpolations.jl includes many novel techniques for accelerating the interpolation searches with specialized caching, quasi-linear guessing, and more to improve the performance algorithmically, beyond the simple computational optimizations. In summary, DataInterpolations.jl is more generic from other packages and offers many fast interpolation methods for arbitrarily spaced 1D data, all within a consistent and simple interface. # Example The following tutorials are provided in the documentation: - [Tutorial 1](https://docs.sciml.ai/DataInterpolations/stable/methods/) provides how to define each of the interpolation methods and compute the value at any point. - [Tutorial 2](https://docs.sciml.ai/DataInterpolations/stable/interface/) provides explanation for using the interface and interpolated objects for evaluating at any point, computing the derivative at any point and computing the integral between any two points. - [Tutorial 3](https://docs.sciml.ai/DataInterpolations/stable/symbolics/) provides how to use interpolation objects with Symbolics.jl and ModelingToolkit.jl. A simple demonstration here: ```julia using DataInterpolations # Dependent variable u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22] # Independent variable t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3] A1 = CubicSpline(u, t) # For interpolation do, A(t) A1(100.0) # derivative ## first order DataInterpolations.derivative(A1, 1.0, 1) ## second order DataInterpolations.derivative(A1, 1.0, 2) # integral DataInterpolations.integral(A1, 1.0, 5.0) ``` # References
DataInterpolations
https://github.com/SciML/DataInterpolations.jl.git
[ "MIT" ]
0.1.5
dbcd240388baf4139073e3d4f8b0dbe30a3234e5
code
2499
module Bingomatic using Plots using StatsBase using TextWrap export make_card export sample_words export savefig """ sample_words(word_pool, n...=(5,5)...; free_space=true) Sample words from word pool. # Arguments - `word_pool`: a list of words - `n`: the dimensions of the sampled words # Keywords - `free_space`: sets center cell to "Free Space" if true """ function sample_words(word_pool, n...=(5,5)...; free_space=true) n_cells = prod(n) center = Int(ceil(n_cells/2)) length(word_pool) < n_cells ? error("list must have more elements than cells") : nothing iseven(n_cells) ? error("Must have an odd number of cells") : nothing cells = sample(word_pool, n, replace=false) cells[center] = free_space ? "Free Space" : cells[center] return cells end """ make_card(list; word_size=12, line_width=8, break_words=false, kwargs...) Make bingo card # Arguments - `list`: an array containing bingo words # Keywords - `backend=pyplot`: plotting backend. - `word_size`: the size of words in points - `line_width`: the number of characters per line for each word or phrase - `break_words`: break long words when wrapping words - `kwargs`: variable keyword arguments to pass to the `plot` function """ function make_card(list; backend=pyplot, word_size=12, line_width=8, break_words=false, kwargs...) backend() min_x = 0 max_x = 2 n_rows = size(list, 1) n_cells = n_rows^2 offset = 1/n_rows iseven(n_rows) ? error("n_rows must be odd") : nothing length(list) < n_cells ? error("labels must have more elements than cells") : nothing ticks = range(min_x, max_x, length=n_rows+1) scale = range(min_x+offset, max_x-offset, length=n_rows) x = [[i j] for i in scale for j in scale] |> x -> vcat(x...) w_list = map(x -> TextWrap.wrap(x, width=line_width, break_long_words=break_words), list) return scatter(x[:,1], x[:,2], markersize=0, xlims=(min_x,max_x), ylims=(min_x,max_x), series_annotations = text.(w_list[:], :center, word_size), label = false, grid=true, gridstyle=:solid, gridlinewidth=1.5, gridalpha=1, xticks=ticks, yticks=ticks, xaxis=font(0), yaxis=font(0), xlabel="", ylabel="", frame_style=:box, size=(400,400); kwargs...) end end
Bingomatic
https://github.com/itsdfish/Bingomatic.jl.git
[ "MIT" ]
0.1.5
dbcd240388baf4139073e3d4f8b0dbe30a3234e5
code
413
using Bingomatic using Test @testset "Bingomatic.jl" begin @test_throws ErrorException sample_words(["a","b"], 2) @test_throws ErrorException sample_words(["a", "b", "c"], 4) n_rows = 3 word_list = ["a","b","c","d","e","f","g","h","i"] words = sample_words(word_list, n_rows, n_rows) @test size(words) == (n_rows,n_rows) @test words[5] == "Free Space" card = make_card(words) end
Bingomatic
https://github.com/itsdfish/Bingomatic.jl.git
[ "MIT" ]
0.1.5
dbcd240388baf4139073e3d4f8b0dbe30a3234e5
docs
1792
# Bingomatic Bingomatic™ is an awesome Julia package that creates bingo cards, using state-of-the-art bingo technology. ## Installation To install Bingomatic, switch to packge mode by entering `]` in the REPL and enter: ```julia add Bingomatic ``` Alternatively, enter the following into the REPL: ```julia using Pkg; Pkg.add("Bingomatic") ``` ## Standard Bingo Card A standard size bingo card can be made with a few lines of code, as shown below. ```julia using Bingomatic, Random Random.seed!(780775) word_pool = map(_->randstring(4), 1:50) words = sample_words(word_pool) card = make_card(words) ``` <img src="extras/example1.png" alt="" width="400" height="400"> ## Customized Bingo Card The example below shows that bingo cards can be be customized. It is also possible to override default values in `make_card` with variable keyword arguments. ```julia n_rows = 3 word_pool = map(_->randstring(4), 1:50) words = sample_words(word_pool, n_rows, n_rows) card = make_card(words; size=(300,300)) ``` <img src="extras/example2.png" alt="" width="300" height="300"> ## Christmas Movie Bingo Bingomatic™ includes a bonus word pool for Christmas Movie Bingo, a $19.99 value, absolutely free! Variations of this coveted game include a tribute to the [secret word](https://www.youtube.com/watch?v=gxMZgeBlqzQ) from Pee Wee's Playhouse where players scream each time the word "Christmas" is said. ```julia using Bingomatic, CSV, DataFrames, Random Random.seed!(1225) pkg_path = dirname(pathof(Bingomatic)) path = joinpath(pkg_path,"../extras/word_pool.csv") word_pool = CSV.read(path, DataFrame; stringtype=String) words = sample_words(word_pool.words) card = make_card(words; word_size=11, size=(630,630)) ``` <img src="extras/christmas_bingo.png" alt="" width="630" height="630">
Bingomatic
https://github.com/itsdfish/Bingomatic.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
13755
""" PythonPlot allows Julia to interface with the Matplotlib library in Python, specifically the matplotlib.pyplot module, so you can create beautiful plots in Julia with your favorite Python package. In general, all the arguments are the same as in Python. Here's a brief demo of a simple plot in Julia: using PythonPlot x = range(0; stop=2*pi, length=1000); y = sin.(3 * x + 4 * cos.(2 * x)); plot(x, y, color="red", linewidth=2.0, linestyle="--") title("A sinusoidally modulated sinusoid") For more information on API, see the matplotlib.pyplot documentation and the PythonPlot GitHub page. """ module PythonPlot using PythonCall export Figure, matplotlib, pyplot, pygui, withfig, plotshow, plotstep, plotclose ########################################################################### # Define a documentation object # that lazily looks up help from a Py object via zero or more keys. # This saves us time when loading PythonPlot, since we don't have # to load up all of the documentation strings right away. struct LazyHelp o # a Py or similar object supporting getindex with a __doc__ property keys::Tuple{Vararg{String}} LazyHelp(o) = new(o, ()) LazyHelp(o, k::AbstractString) = new(o, (k,)) LazyHelp(o, k1::AbstractString, k2::AbstractString) = new(o, (k1,k2)) LazyHelp(o, k::Tuple{Vararg{AbstractString}}) = new(o, k) end function Base.show(io::IO, ::MIME"text/plain", h::LazyHelp) o = h.o for k in h.keys o = pygetattr(o, k) end if pyhasattr(o, "__doc__") print(io, pyconvert(String, o.__doc__)) else print(io, "no Python docstring found for ", o) end end Base.show(io::IO, h::LazyHelp) = Base.show(io, "text/plain", h) function Base.Docs.catdoc(hs::LazyHelp...) Base.Docs.Text() do io for h in hs Base.show(io, MIME"text/plain"(), h) end end end ########################################################################### include("pygui.jl") include("init.jl") ########################################################################### # Wrapper around matplotlib Figure, supporting graphics I/O and pretty display mutable struct Figure o::Py end PythonCall.Py(f::Figure) = getfield(f, :o) PythonCall.pyconvert(::Type{Figure}, o::Py) = Figure(o) Base.:(==)(f::Figure, g::Figure) = pyconvert(Bool, Py(f) == Py(g)) Base.isequal(f::Figure, g::Figure) = isequal(Py(f), Py(g)) Base.hash(f::Figure, h::UInt) = hash(Py(f), h) Base.Docs.doc(f::Figure) = Base.Docs.Text(pyconvert(String, Py(f).__doc__)) # Note: using `Union{Symbol,String}` produces ambiguity. Base.getproperty(f::Figure, s::Symbol) = getproperty(Py(f), s) Base.getproperty(f::Figure, s::AbstractString) = getproperty(f, Symbol(s)) Base.setproperty!(f::Figure, s::Symbol, x) = setproperty!(Py(f), s, x) Base.setproperty!(f::Figure, s::AbstractString, x) = setproperty!(f, Symbol(s), x) Base.hasproperty(f::Figure, s::Symbol) = pyhasattr(Py(f), s) Base.propertynames(f::Figure) = propertynames(Py(f)) for (mime,fmt) in aggformats @eval _showable(::MIME{Symbol($mime)}, f::Figure) = !isempty(f) && haskey(PyDict{Any,Any}(f.canvas.get_supported_filetypes()), $fmt) @eval function Base.show(io::IO, m::MIME{Symbol($mime)}, f::Figure) if !_showable(m, f) throw(MethodError(Base.show, (io, m, f))) end f.canvas.print_figure(io, format=$fmt, bbox_inches="tight") end if fmt != "svg" @eval Base.showable(m::MIME{Symbol($mime)}, f::Figure) = _showable(m, f) end end # disable SVG output by default, since displaying large SVGs (large datasets) # in IJulia is slow, and browser SVG display is buggy. (Similar to IPython.) const SVG = [false] Base.showable(m::MIME"image/svg+xml", f::Figure) = SVG[1] && _showable(m, f) svg() = SVG[1] svg(b::Bool) = (SVG[1] = b) ########################################################################### # In IJulia, we want to automatically display any figures # at the end of cell execution, and then close them. However, # we don't want to display/close figures being used in withfig, # since the user is keeping track of these in some other way, # e.g. for interactive widgets. Base.isempty(f::Figure) = isempty(f.get_axes()) # We keep a set of figure numbers for the figures used in withfig, because # for these figures we don't want to auto-display or auto-close them # when the cell finishes executing. (We store figure numbers, rather # than Figure objects, since the latter would prevent the figures from # finalizing and hence closing.) Closing the figure removes it from this set. const withfig_fignums = Set{Int}() function display_figs() # called after IJulia cell executes if isjulia_display[] for manager in Gcf.get_all_fig_managers() f = manager.canvas.figure if pyconvert(Int, f.number) ∉ withfig_fignums fig = Figure(f) isempty(fig) || display(fig) pyplot.close(f) end end end end function close_figs() # called after error in IJulia cell if isjulia_display[] for manager in Gcf.get_all_fig_managers() f = manager.canvas.figure if pyconvert(Int, f.number) ∉ withfig_fignums pyplot.close(f) end end end end # hook to force new IJulia cells to create new figure objects const gcf_isnew = [false] # true to force next gcf() to be new figure force_new_fig() = gcf_isnew[1] = true # wrap gcf() and figure(...) so that we can force the creation # of new figures in new IJulia cells (e.g. after @manipulate commands # that leave the figure from the previous cell open). @doc LazyHelp(orig_figure) function figure(args...; kws...) gcf_isnew[1] = false Figure(pycall(orig_figure, args...; kws...)) end @doc LazyHelp(orig_gcf) function gcf() if isjulia_display[] && gcf_isnew[1] return figure() else return Figure(orig_gcf()) end end ########################################################################### # export documented pyplot API (http://matplotlib.org/api/pyplot_api.html) export acorr,annotate,arrow,autoscale,autumn,axhline,axhspan,axis,axline,axvline,axvspan,bar,barbs,barh,bone,box,boxplot,broken_barh,cla,clabel,clf,clim,cohere,colorbar,colors,contour,contourf,cool,copper,csd,delaxes,disconnect,draw,errorbar,eventplot,figaspect,figimage,figlegend,figtext,figure,fill_between,fill_betweenx,findobj,flag,gca,gcf,gci,get_current_fig_manager,get_figlabels,get_fignums,get_plot_commands,ginput,gray,grid,hexbin,hist2D,hlines,hold,hot,hsv,imread,imsave,imshow,ioff,ion,ishold,jet,legend,locator_params,loglog,margins,matshow,minorticks_off,minorticks_on,over,pause,pcolor,pcolormesh,pie,pink,plot,plot_date,plotfile,polar,prism,psd,quiver,quiverkey,rc,rc_context,rcdefaults,rgrids,savefig,sca,scatter,sci,semilogx,semilogy,set_cmap,setp,specgram,spectral,spring,spy,stackplot,stem,streamplot,subplot,subplot2grid,subplot_tool,subplots,subplots_adjust,summer,suptitle,table,text,thetagrids,tick_params,ticklabel_format,tight_layout,title,tricontour,tricontourf,tripcolor,triplot,twinx,twiny,vlines,waitforbuttonpress,winter,xkcd,xlabel,xlim,xscale,xticks,ylabel,ylim,yscale,yticks,hist # The following pyplot functions must be handled specially since they # overlap with standard Julia functions: # close, fill, show, step # … unlike PyPlot.jl, we'll avoid type piracy by renaming / not exporting. const plt_funcs = (:acorr,:annotate,:arrow,:autoscale,:autumn,:axes,:axhline,:axhspan,:axis,:axline,:axvline,:axvspan,:bar,:barbs,:barh,:bone,:box,:boxplot,:broken_barh,:cla,:clabel,:clf,:clim,:cohere,:colorbar,:colors,:connect,:contour,:contourf,:cool,:copper,:csd,:delaxes,:disconnect,:draw,:errorbar,:eventplot,:figaspect,:figimage,:figlegend,:figtext,:fill_between,:fill_betweenx,:findobj,:flag,:gca,:gci,:get_current_fig_manager,:get_figlabels,:get_fignums,:get_plot_commands,:ginput,:gray,:grid,:hexbin,:hlines,:hold,:hot,:hsv,:imread,:imsave,:imshow,:ioff,:ion,:ishold,:jet,:legend,:locator_params,:loglog,:margins,:matshow,:minorticks_off,:minorticks_on,:over,:pause,:pcolor,:pcolormesh,:pie,:pink,:plot,:plot_date,:plotfile,:polar,:prism,:psd,:quiver,:quiverkey,:rc,:rc_context,:rcdefaults,:rgrids,:savefig,:sca,:scatter,:sci,:semilogx,:semilogy,:set_cmap,:setp,:specgram,:spectral,:spring,:spy,:stackplot,:stem,:streamplot,:subplot,:subplot2grid,:subplot_tool,:subplots,:subplots_adjust,:summer,:suptitle,:table,:text,:thetagrids,:tick_params,:ticklabel_format,:tight_layout,:title,:tricontour,:tricontourf,:tripcolor,:triplot,:twinx,:twiny,:vlines,:waitforbuttonpress,:winter,:xkcd,:xlabel,:xlim,:xscale,:xticks,:ylabel,:ylim,:yscale,:yticks,:hist,:xcorr,:isinteractive) for f in plt_funcs sf = string(f) @eval @doc LazyHelp(pyplot,$sf) function $f(args...; kws...) if !pyhasattr(pyplot, $sf) error("matplotlib ", version, " does not have pyplot.", $sf) end return pycall(pyplot.$sf, args...; kws...) end end # rename to avoid type piracy: @doc LazyHelp(pyplot,"step") plotstep(x, y; kws...) = pycall(pyplot.step, x, y; kws...) # rename to avoid type piracy: @doc LazyHelp(pyplot,"show") plotshow(; kws...) = begin pycall(pyplot.show; kws...); nothing; end Base.close(f::Figure) = plotclose(f) # rename to avoid type piracy: @doc LazyHelp(pyplot,"close") plotclose() = pyplot.close() plotclose(f::Figure) = pyconvert(Union{Nothing,Int}, plotclose(pyconvert(Int, f.number))) function plotclose(f::Integer) pop!(withfig_fignums, f, f) pyplot.close(f) end plotclose(f::AbstractString) = pyplot.close(f) # rename to avoid type piracy: @doc LazyHelp(pyplot,"fill") plotfill(x::AbstractArray,y::AbstractArray, args...; kws...) = pycall(pyplot.fill, PyAny, x, y, args...; kws...) # consistent capitalization with mplot3d @doc LazyHelp(pyplot,"hist2d") hist2D(args...; kws...) = pycall(pyplot.hist2d, args...; kws...) # allow them to be accessed via their original names foo # as PythonPlot.foo … this also means that we must be careful # to use them as Base.foo in this module as needed! const close = plotclose const fill = plotfill const show = plotshow const step = plotstep include("colormaps.jl") ########################################################################### # Support array of string labels in bar chart function bar(x::AbstractVector{<:AbstractString}, y; kws_...) kws = Dict{Any,Any}(kws_) xi = 1:length(x) if !any(==(:align), keys(kws)) kws[:align] = "center" end p = bar(xi, y; kws...) ax = any(kw -> kw[1] == :orientation && lowercase(kw[2]) == "horizontal", pairs(kws)) ? gca().yaxis : gca().xaxis ax.set_ticks(xi) ax.set_ticklabels(x) return p end bar(x::AbstractVector{T}, y; kws...) where {T<:Symbol} = bar(map(string, x), y; kws...) ########################################################################### # Allow plots with 2 independent variables (contour, surf, ...) # to accept either 2 1d arrays or a row vector and a 1d array, # to simplify construction of such plots via broadcasting operations. # (Matplotlib is inconsistent about this.) include("plot3d.jl") for f in (:contour, :contourf) @eval function $f(X::AbstractMatrix, Y::AbstractVector, args...; kws...) if size(X,1) == 1 || size(X,2) == 1 $f(reshape(X, length(X)), Y, args...; kws...) elseif size(X,1) > 1 && size(X,2) > 1 && isempty(args) $f(X; levels=Y, kws...) # treat Y as contour levels else throw(ArgumentError("if 2nd arg is column vector, 1st arg must be row or column vector")) end end end for f in (:surf,:mesh,:plot_surface,:plot_wireframe,:contour3D,:contourf3D) @eval begin function $f(X::AbstractVector, Y::AbstractVector, Z::AbstractMatrix, args...; kws...) m, n = length(X), length(Y) $f(repeat(transpose(X),outer=(n,1)), repeat(Y,outer=(1,m)), Z, args...; kws...) end function $f(X::AbstractMatrix, Y::AbstractVector, Z::AbstractMatrix, args...; kws...) if size(X,1) != 1 && size(X,2) != 1 throw(ArgumentError("if 2nd arg is column vector, 1st arg must be row or column vector")) end m, n = length(X), length(Y) $f(repeat(transpose(X),outer=(n,1)), repeat(Y,outer=(1,m)), Z, args...; kws...) end end end # Already work: barbs, pcolor, pcolormesh, quiver # Matplotlib pcolor* functions accept 1d arrays but not ranges for f in (:pcolor, :pcolormesh) @eval begin $f(X::AbstractRange, Y::AbstractRange, args...; kws...) = $f([X...], [Y...], args...; kws...) $f(X::AbstractRange, Y::AbstractArray, args...; kws...) = $f([X...], Y, args...; kws...) $f(X::AbstractArray, Y::AbstractRange, args...; kws...) = $f(X, [Y...], args...; kws...) end end ########################################################################### # a more pure functional style, that returns the figure but does *not* # have any display side-effects. Mainly for use with @manipulate (Interact.jl) function withfig(actions::Function, f::Figure; clear=true) ax_save = gca() push!(withfig_fignums, f.number) figure(f.number) finalizer(plotclose, f) try if clear && !isempty(f) clf() end actions() catch rethrow() finally try sca(ax_save) # may fail if axes were overwritten catch end Main.IJulia.undisplay(f) end return f end ########################################################################### using LaTeXStrings export LaTeXString, latexstring, @L_str, @L_mstr end # module PythonPlot
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
7917
# Conveniences for working with and displaying matplotlib colormaps, # integrating with the Julia Colors package using Colors export ColorMap, get_cmap, register_cmap, get_cmaps ######################################################################## # Wrapper around colors.Colormap type: mutable struct ColorMap o::Py end PythonCall.Py(c::ColorMap) = getfield(c, :o) PythonCall.pyconvert(::Type{ColorMap}, o::Py) = ColorMap(o) Base.:(==)(c::ColorMap, g::ColorMap) = pyconvert(Bool, Py(c) == Py(g)) Base.isequal(c::ColorMap, g::ColorMap) = isequal(Py(c), Py(g)) Base.hash(c::ColorMap, h::UInt) = hash(Py(c), h) PythonCall.pycall(c::ColorMap, args...; kws...) = pycall(Py(c), args...; kws...) (c::ColorMap)(args...; kws...) = pycall(Py(c), args...; kws...) Base.Docs.doc(c::ColorMap) = Base.Docs.Text(pyconvert(String, Py(c).__doc__)) # Note: using `Union{Symbol,String}` produces ambiguity. Base.getproperty(c::ColorMap, s::Symbol) = getproperty(Py(c), s) Base.getproperty(c::ColorMap, s::AbstractString) = getproperty(Py(c), Symbol(s)) Base.setproperty!(c::ColorMap, s::Symbol, x) = setproperty!(Py(c), s, x) Base.setproperty!(c::ColorMap, s::AbstractString, x) = setproperty!(Py(c), Symbol(s), x) Base.propertynames(c::ColorMap) = propertynames(Py(c)) Base.hasproperty(c::ColorMap, s::Union{Symbol,AbstractString}) = pyhasattr(Py(c), s) function Base.show(io::IO, c::ColorMap) print(io, "ColorMap \"$(pyconvert(String, c.name))\"") end # all Python dependencies must be initialized at runtime (not when precompiled) const colorsm = PythonCall.pynew() const cm = PythonCall.pynew() const LinearSegmentedColormap = PythonCall.pynew() const cm_get_cmap = PythonCall.pynew() const cm_register_cmap = PythonCall.pynew() const ScalarMappable = PythonCall.pynew() const Normalize01 = PythonCall.pynew() function init_colormaps() PythonCall.pycopy!(colorsm, pyimport("matplotlib.colors")) PythonCall.pycopy!(cm, pyimport("matplotlib.cm")) # pytype_mapping(colorsm.Colormap, ColorMap) PythonCall.pycopy!(LinearSegmentedColormap, colorsm.LinearSegmentedColormap) PythonCall.pycopy!(cm_get_cmap, pyhasattr(pyplot, "get_cmap") ? pyplot.get_cmap : cm.get_cmap) PythonCall.pycopy!(cm_register_cmap, pyhasattr(matplotlib, "colormaps") && pyhasattr(matplotlib.colormaps, "register") ? matplotlib.colormaps.register : cm.register_cmap) PythonCall.pycopy!(ScalarMappable, cm.ScalarMappable) PythonCall.pycopy!(Normalize01, pycall(colorsm.Normalize; vmin=0,vmax=1)) end ######################################################################## # ColorMap constructors via colors.LinearSegmentedColormap # most general constructors using RGB arrays of triples, defined # as for matplotlib.colors.LinearSegmentedColormap ColorMap(name::Union{AbstractString,Symbol}, r::AbstractVector{Tuple{T,T,T}}, g::AbstractVector{Tuple{T,T,T}}, b::AbstractVector{Tuple{T,T,T}}, n=max(256,length(r),length(g),length(b)), gamma=1.0) where {T<:Real} = ColorMap(name, r,g,b, Array{Tuple{T,T,T}}(undef, 0), n, gamma) # as above, but also passing an alpha array function ColorMap(name::Union{AbstractString,Symbol}, r::AbstractVector{Tuple{T,T,T}}, g::AbstractVector{Tuple{T,T,T}}, b::AbstractVector{Tuple{T,T,T}}, a::AbstractVector{Tuple{T,T,T}}, n=max(256,length(r),length(g),length(b),length(a)), gamma=1.0) where T<:Real segmentdata = Dict("red" => pylist(r), "green" => pylist(g), "blue" => pylist(b)) if !isempty(a) segmentdata["alpha"] = a end ColorMap(LinearSegmentedColormap(name, segmentdata, n, gamma)) end # create from an array c, assuming linear mapping from [0,1] to c function ColorMap(name::Union{AbstractString,Symbol}, c::AbstractVector{T}, n=max(256, length(c)), gamma=1.0) where T<:Colorant nc = length(c) if nc == 0 throw(ArgumentError("ColorMap requires a non-empty Colorant array")) end r = Array{Tuple{Float64,Float64,Float64}}(undef, nc) g = similar(r) b = similar(r) a = T <: TransparentColor ? similar(r) : Array{Tuple{Float64,Float64,Float64}}(undef, 0) for i = 1:nc x = (i-1) / (nc-1) if T <: TransparentColor rgba = convert(RGBA{Float64}, c[i]) r[i] = (x, rgba.r, rgba.r) b[i] = (x, rgba.b, rgba.b) g[i] = (x, rgba.g, rgba.g) a[i] = (x, rgba.alpha, rgba.alpha) else rgb = convert(RGB{Float64}, c[i]) r[i] = (x, rgb.r, rgb.r) b[i] = (x, rgb.b, rgb.b) g[i] = (x, rgb.g, rgb.g) end end ColorMap(name, r,g,b,a, n, gamma) end ColorMap(c::AbstractVector{T}, n=max(256, length(c)), gamma=1.0) where {T<:Colorant} = ColorMap(string("cm_", hash(c)), c, n, gamma) function ColorMap(name::Union{AbstractString,Symbol}, c::AbstractMatrix{T}, n=max(256, size(c,1)), gamma=1.0) where T<:Real if size(c,2) == 3 return ColorMap(name, [RGB{T}(c[i,1],c[i,2],c[i,3]) for i in 1:size(c,1)], n, gamma) elseif size(c,2) == 4 return ColorMap(name, [RGBA{T}(c[i,1],c[i,2],c[i,3],c[i,4]) for i in 1:size(c,1)], n, gamma) else throw(ArgumentError("color matrix must have 3 or 4 columns")) end end ColorMap(c::AbstractMatrix{T}, n=max(256, size(c,1)), gamma=1.0) where {T<:Real} = ColorMap(string("cm_", hash(c)), c, n, gamma) ######################################################################## @doc LazyHelp(cm_get_cmap) get_cmap() = ColorMap(cm_get_cmap()) get_cmap(name::AbstractString) = ColorMap(cm_get_cmap(name)) get_cmap(name::AbstractString, lut::Integer) = ColorMap(cm_get_cmap(name, lut)) get_cmap(c::ColorMap) = c ColorMap(name::AbstractString) = get_cmap(name) @doc LazyHelp(cm_register_cmap) register_cmap(c::ColorMap) = cm_register_cmap(c) register_cmap(n::AbstractString, c::ColorMap) = cm_register_cmap(n,c) # convenience function to get array of registered colormaps get_cmaps() = ColorMap[get_cmap(c) for c in sort(filter!(c -> !endswith(c, "_r"), [pyconvert(String, c) for c in cm.datad]), by=lowercase)] ######################################################################## # display of ColorMaps as a horizontal color bar in SVG function Base.show(io::IO, ::MIME"image/svg+xml", cs::AbstractVector{ColorMap}) n = 256 nc = length(cs) a = range(0; stop=1, length=n) namelen = mapreduce(c -> length(c.name), max, cs) width = 0.5 height = 5 pad = 0.5 write(io, """ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="$(n*width+1+namelen*4)mm" height="$((height+pad)*nc)mm" shape-rendering="crispEdges"> """) for j = 1:nc c = cs[j] y = (j-1) * (height+pad) write(io, """<text x="$(n*width+1)mm" y="$(y+3.8)mm" font-size="3mm">$(c.name)</text>""") rgba = PyArray(pycall(ScalarMappable; cmap=c, norm=Normalize01).to_rgba(a)) for i = 1:n write(io, """<rect x="$((i-1)*width)mm" y="$(y)mm" width="$(width)mm" height="$(height)mm" fill="#$(hex(RGB(rgba[i,1],rgba[i,2],rgba[i,3])))" stroke="none" />""") end end write(io, "</svg>") end function Base.show(io::IO, m::MIME"image/svg+xml", c::ColorMap) Base.show(io, m, [c]) end function Base.show(io::IO, m::MIME"text/html", c::ColorMap) Base.show(io, m, Py(c)) end ########################################################################
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
7990
# PythonPlot initialization — the hardest part is finding a working backend. using VersionParsing ########################################################################### # global PyObject constants that get initialized at runtime. We # initialize them here (rather than via "global foo = ..." in __init__) # so that their type is known at compile-time. const matplotlib = PythonCall.pynew() const pyplot = PythonCall.pynew() const Gcf = PythonCall.pynew() const orig_draw = PythonCall.pynew() const orig_gcf = PythonCall.pynew() const orig_figure = PythonCall.pynew() const orig_show = PythonCall.pynew() ########################################################################### # file formats supported by Agg backend, from MIME types const aggformats = Dict("application/eps" => "eps", "image/eps" => "eps", "application/pdf" => "pdf", "image/png" => "png", "application/postscript" => "ps", "image/svg+xml" => "svg") # In 0.6, TextDisplay can show e.g. image/svg+xml as text (#281). # Any "real" graphical display should support PNG, I hope. isdisplayok() = displayable(MIME("image/png")) ########################################################################### # We allow the user to turn on or off the Python gui interactively via # pygui(true/false). This is done by loading pyplot with a GUI backend # if possible, then switching to a Julia-display backend (if available) # like get(dict, key, default), but treats a value of "nothing" as a missing key function getnone(dict, key, default) ret = get(dict, key, default) return ret === nothing ? default : ret end # return (backend,gui) tuple function find_backend(matplotlib::Py) gui2matplotlib = Dict(:wx=>"WXAgg",:gtk=>"GTKAgg",:gtk3=>"GTK3Agg", :qt_pyqt4=>"Qt4Agg", :qt_pyqt5=>"Qt5Agg", :qt_pyside=>"Qt4Agg", :qt4=>"Qt4Agg", :qt5=>"Qt5Agg", :qt=>"Qt4Agg",:tk=>"TkAgg") if Sys.islinux() guis = [:tk, :gtk3, :gtk, :qt5, :qt4, :wx] else guis = [:tk, :qt5, :qt4, :wx, :gtk, :gtk3] end options = [(g,gui2matplotlib[g]) for g in guis] matplotlib2gui = Dict("wx"=>:wx, "wxagg"=>:wx, "gtkagg"=>:gtk, "gtk"=>:gtk,"gtkcairo"=>:gtk, "gtk3agg"=>:gtk3, "gtk3"=>:gtk3,"gtk3cairo"=>:gtk3, "qt5agg"=>:qt5, "qt4agg"=>:qt4, "tkagg"=>:tk, "agg"=>:none,"ps"=>:none,"pdf"=>:none, "svg"=>:none,"cairo"=>:none,"gdk"=>:none, "module://gr.matplotlib.backend_gr"=>:gr) qt2gui = Dict("pyqt5"=>:qt_pyqt5, "pyqt4"=>:qt_pyqt4, "pyside"=>:qt_pyside) rcParams = PyDict{Any,Any}(matplotlib.rcParams) default = lowercase(get(ENV, "MPLBACKEND", getnone(rcParams, "backend", "none"))) if haskey(matplotlib2gui,default) defaultgui = matplotlib2gui[default] insert!(options, 1, (defaultgui,default)) end try # We will get an exception when we import pyplot below (on # Unix) if an X server is not available, even though # pygui_works and matplotlib.use(backend) succeed, at # which point it will be too late to switch backends. So, # throw exception (drop to catch block below) if DISPLAY # is not set. [Might be more reliable to test # success(`xdpyinfo`), but only if xdpyinfo is installed.] if options[1][1] != :none && Sys.isunix() && !Sys.isapple() ENV["DISPLAY"] end global gui if gui === :default # try to ensure that GUI both exists and has a matplotlib backend for (g,b) in options if g == :none # Matplotlib is configured to be non-interactive pygui(:default) matplotlib.use(b) matplotlib.interactive(false) return (b, g) elseif g == :gr return (b, g) elseif pygui_works(g) # must call matplotlib.use *before* loading backends module matplotlib.use(b) if g == :qt || g == :qt4 g = qt2gui[lowercase(rcParams["backend.qt4"])] if !pyexists("PyQt5") && !pyexists("PyQt4") # both Matplotlib and PyCall default to PyQt4 # if it is available, but we need to tell # Matplotlib to use PySide otherwise. rcParams["backend.qt4"] = "PySide" end end if pyexists("matplotlib.backends.backend_" * lowercase(b)) isjulia_display[] || pygui_start(g) matplotlib.interactive(!isjulia_display[] && Base.isinteractive()) return (b, g) end end end error("no gui found") # go to catch clause below else # the user specified a desired backend via pygui(gui) gui = pygui() matplotlib."use"(gui2matplotlib[gui]) if (gui==:qt && !pyexists("PyQt5") && !pyexists("PyQt4")) || gui==:qt_pyside rcParams["backend.qt4"] = "PySide" end isjulia_display[] || pygui_start(gui) matplotlib.interactive(!isjulia_display[] && Base.isinteractive()) return (gui2matplotlib[gui], gui) end catch e @warn(e) # provide information for debugging why a gui was not found if !isjulia_display[] @warn("No working GUI backend found for matplotlib") isjulia_display[] = true end pygui(:default) matplotlib.use("Agg") # GUI not available matplotlib.interactive(false) return ("Agg", :none) end end # declare more globals created in __init__ const isjulia_display = Ref(true) version = v"0.0.0" backend = "Agg" gui = :default # initialization -- anything that depends on Python has to go here, # so that it occurs at runtime (while the rest of PythonPlot can be precompiled). function __init__() ccall(:jl_generating_output, Cint, ()) == 1 && return nothing isjulia_display[] = isdisplayok() PythonCall.pycopy!(matplotlib, pyimport("matplotlib")) mvers = pyconvert(String, matplotlib.__version__) global version = try vparse(mvers) catch v"0.0.0" # fallback end backend_gui = find_backend(matplotlib) # workaround JuliaLang/julia#8925 global backend = backend_gui[1] global gui = backend_gui[2] PythonCall.pycopy!(pyplot, pyimport("matplotlib.pyplot")) # raw Python module PythonCall.pycopy!(Gcf, pyimport("matplotlib._pylab_helpers").Gcf) PythonCall.pycopy!(orig_gcf, pyplot.gcf) PythonCall.pycopy!(orig_figure, pyplot.figure) pyplot.gcf = gcf pyplot.figure = figure if isdefined(Main, :IJulia) && Main.IJulia.inited Main.IJulia.push_preexecute_hook(force_new_fig) Main.IJulia.push_postexecute_hook(display_figs) Main.IJulia.push_posterror_hook(close_figs) end if isjulia_display[] && gui != :gr && backend != "Agg" pyplot.switch_backend("Agg") pyplot.ioff() end init_colormaps() end function pygui(b::Bool) if !b != isjulia_display[] if backend != "Agg" pyplot.switch_backend(b ? backend : "Agg") if b pygui_start(gui) # make sure event loop is started Base.isinteractive() && pyplot.ion() else pyplot.ioff() end elseif b error("No working GUI backend found for matplotlib.") end isjulia_display[] = !b end return b end
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
3630
########################################################################### # Lazy wrapper around a Py to load a module on demand. mutable struct LazyPyModule name::String o::Py LazyPyModule(n::AbstractString) = new(n, PythonCall.pynew()) end _ispynull(x::Py) = PythonCall.getptr(x) == PythonCall.C.PyNULL PythonCall.Py(m::LazyPyModule) = _ispynull(getfield(m, :o)) ? PythonCall.pycopy!(getfield(m, :o), pyimport(getfield(m, :name))) : getfield(m, :o) Base.Docs.doc(m::LazyPyModule) = Base.Docs.Text(pyconvert(String, Py(m).__doc__)) Base.getproperty(m::LazyPyModule, x::Symbol) = getproperty(Py(m), x) Base.setproperty!(m::LazyPyModule, x::Symbol, v) = setproperty!(Py(m), x, v) Base.hasproperty(m::LazyPyModule, x::Symbol) = pyhasattr(Py(m), x) Base.propertynames(m::LazyPyModule) = propertynames(Py(m)) ########################################################################### # Lazily load mplot3d modules. This (slightly) improves load time of PythonPlot, # and it also allows PythonPlot to load on systems where mplot3d is not installed. const axes3D = LazyPyModule("mpl_toolkits.mplot3d.axes3d") const art3D = LazyPyModule("mpl_toolkits.mplot3d.art3d") """ using3D() This function ensures that the `mplot3d` module is loaded for 3d plotting. This occurs automatically if you call any of the 3d plotting functions like `plot3D` or `surf`, but it may be necessary to call this function manually if you are passing `projection="3d"` explicitly to axes or subplot objects. """ using3D() = (Py(axes3D); nothing) ########################################################################### # 3d plotting functions from mplot3d export art3D, Axes3D, using3D, surf, mesh, bar3D, contour3D, contourf3D, plot3D, plot_surface, plot_trisurf, plot_wireframe, scatter3D, text2D, text3D, zlabel, zlim, zscale, zticks const mplot3d_funcs = (:bar3d, :contour3D, :contourf3D, :plot3D, :plot_surface, :plot_trisurf, :plot_wireframe, :scatter3D, :text2D, :text3D, :view_init, :voxels) function gca3d() using3D() # make sure mplot3d is loaded return version <= v"3.4" ? gca(projection="3d") : pyplot.subplot(gca().get_subplotspec(), projection="3d") end for f in mplot3d_funcs fs = string(f) @eval @doc LazyHelp(axes3D,"Axes3D", $fs) function $f(args...; kws...) pycall(gca3d().$fs, args...; kws...) end end @doc LazyHelp(axes3D,"Axes3D") Axes3D(args...; kws...) = pycall(axes3D."Axes3D", args...; kws...) # correct for annoying mplot3d inconsistency @doc LazyHelp(axes3D,"Axes3D", "bar3d") bar3D(args...; kws...) = bar3d(args...; kws...) # it's annoying to have xlabel etc. but not zlabel const zlabel_funcs = (:zlabel, :zlim, :zscale, :zticks) for f in zlabel_funcs fs = string("set_", f) @eval @doc LazyHelp(axes3D,"Axes3D", $fs) function $f(args...; kws...) pycall(gca3d().$fs, args...; kws...) end end # export Matlab-like names function surf(Z::AbstractMatrix; kws...) plot_surface([1:size(Z,1);]*ones(1,size(Z,2)), ones(size(Z,1))*[1:size(Z,2);]', Z; kws...) end @doc LazyHelp(axes3D,"Axes3D", "plot_surface") function surf(X, Y, Z::AbstractMatrix, args...; kws...) plot_surface(X, Y, Z, args...; kws...) end function surf(X, Y, Z::AbstractVector, args...; kws...) plot_trisurf(X, Y, Z, args...; kws...) end @doc LazyHelp(axes3D,"Axes3D", "plot_wireframe") mesh(args...; kws...) = plot_wireframe(args...; kws...) function mesh(Z::AbstractMatrix; kws...) plot_wireframe([1:size(Z,1);]*ones(1,size(Z,2)), ones(size(Z,1))*[1:size(Z,2);]', Z; kws...) end
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
9607
# replacement for PyCall pygui stuff # GUI event loops and toolkit integration for Python, most importantly # to support plotting in a window without blocking. Currently, we # support wxWidgets, Qt5, Qt4, and GTK+. ############################################################################ # global variable to specify default GUI toolkit to use gui = :default # one of :default, :wx, :qt, :tk, or :gtk # for some reason, `util` is not always imported as an attribute to `importlib`: #PythonCall.PyException(<py AttributeError("module 'importlib' has no attribute 'util'")>) pyexists(mod::AbstractString) = pyconvert(Bool, pyimport("importlib.util").find_spec(mod) != Py(nothing)) pygui_works(gui::Symbol) = gui == :default || ((gui == :wx && pyexists("wx")) || (gui == :gtk && pyexists("gtk")) || (gui == :gtk3 && pyexists("gi")) || (gui == :tk && pyexists("tkinter")) || (gui == :qt_pyqt4 && pyexists("PyQt4")) || (gui == :qt_pyqt5 && pyexists("PyQt5")) || (gui == :qt_pyside && pyexists("PySide")) || (gui == :qt_pyside2 && pyexists("PySide2")) || (gui == :qt4 && (pyexists("PyQt4") || pyexists("PySide"))) || (gui == :qt5 && (pyexists("PyQt5") || pyexists("PySide2"))) || (gui == :qt && (pyexists("PyQt5") || pyexists("PyQt4") || pyexists("PySide") || pyexists("PySide2")))) # get or set the default GUI; doesn't affect running GUI """ pygui() Return the current GUI toolkit as a symbol. """ function pygui() global gui if gui::Symbol != :default && pygui_works(gui::Symbol) return gui::Symbol else for g in (:tk, :qt, :wx, :gtk, :gtk3) if pygui_works(g) gui = g return gui::Symbol end end error("No supported Python GUI toolkit is installed.") end end function pygui(g::Symbol) global gui if g != gui::Symbol if !(g in (:wx,:gtk,:gtk3,:tk,:qt,:qt4,:qt5,:qt_pyqt5,:qt_pyqt4,:qt_pyside,:qt_pyside2,:default)) throw(ArgumentError("invalid gui $g")) elseif !pygui_works(g) error("Python GUI toolkit for $g is not installed.") end gui = g end return g::Symbol end ############################################################################ # Event loops for various toolkits. # call doevent(status) every sec seconds function install_doevent(doevent, sec::Real) return Base.Timer(doevent, sec, interval=sec) end # For PyPlot issue #181: recent pygobject releases emit a warning # if we don't specify which version we want: function gtk_requireversion(gtkmodule::AbstractString, vers::VersionNumber=v"3.0") if startswith(gtkmodule, "gi.") gi = pyimport("gi") if pyconvert(Bool, gi.get_required_version("Gtk") == Py(nothing)) gi.require_version("Gtk", string(vers)) end end end # GTK (either GTK2 or GTK3, depending on gtkmodule): function gtk_eventloop(gtkmodule::AbstractString, sec::Real=50e-3) gtk_requireversion(gtkmodule) gtk = pyimport(gtkmodule) events_pending = gtk.events_pending main_iteration = gtk.main_iteration install_doevent(sec) do async # handle all pending while pyconvert(Bool, events_pending()) main_iteration() end end end # As discussed in PyPlot.jl#278, Qt looks for a file qt.conf in # the same path as the running executable, which tells it where # to find plugins etcetera. For Python's Qt, however, this will # be in the path of the python executable, not julia. Furthermore, # we can't copy it to the location of julia (even if that location # is writable) because that would assume that all julia programs # use the same version of Qt (e.g. via the same Python), which # is not necessarily the case, and even then it wouldn't work # for other programs linking libjulia. Unfortunately, there # seems to be no way to change this. However, we can at least # use set QT_PLUGIN_PATH by parsing qt.conf ourselves, and # this seems to fix some of the path-related problems on Windows. # ... unfortunately, it seems fixqtpath has to be called before # the Qt library is loaded. function fixqtpath(qtconf=joinpath(dirname(pyprogramname),"qt.conf")) haskey(ENV, "QT_PLUGIN_PATH") && return false if isfile(qtconf) for line in eachline(qtconf) m = match(r"^\s*prefix\s*=(.*)$"i, line) if m !== nothing dir = strip(m.captures[1]) if startswith(dir, '"') && endswith(dir, '"') dir = dir[2:end-1] end plugin_path = joinpath(dir, "plugins") if isdir(plugin_path) # for some reason I don't understand, # if libpython has already been loaded, then # we need to use Python's setenv rather than Julia's pyimport("os").environ["QT_PLUGIN_PATH"] = realpath(plugin_path) return true end end end end return false end # Qt: (PyQt5, PyQt4, or PySide module) function qt_eventloop(QtCore::Py, sec::Real=50e-3) # `fixqtpath()` seems to not be working, # https://github.com/JuliaPy/PythonPlot.jl/issues/17 #fixqtpath() instance = QtCore.QCoreApplication.instance AllEvents = QtCore.QEventLoop.AllEvents processEvents = QtCore.QCoreApplication.processEvents pop!(ENV, "QT_PLUGIN_PATH", "") # clean up environment maxtime = Py(50) pynothing = Py(nothing) install_doevent(sec) do async app = instance() if pyconvert(Bool, app != pynothing) app._in_event_loop = true processEvents(AllEvents, maxtime) end end end qt_eventloop(QtModule::AbstractString, sec::Real=50e-3) = qt_eventloop(pyimport("$QtModule.QtCore"), sec) function qt_eventloop(sec::Real=50e-3) for QtModule in ("PyQt5", "PyQt4", "PySide", "PySide2") try return qt_eventloop(QtModule, sec) catch end end error("no Qt module found") end # wx: (based on IPython/lib/inputhookwx.py, which is 3-clause BSD-licensed) function wx_eventloop(sec::Real=50e-3) wx = pyimport("wx") GetApp = wx.GetApp EventLoop = wx.EventLoop EventLoopActivator = wx.EventLoopActivator pynothing = Py(nothing) install_doevent(sec) do async app = GetApp() if pyconvert(Bool, app != pynothing) app._in_event_loop = true evtloop = EventLoop() ea = EventLoopActivator(evtloop) Pending = evtloop.Pending Dispatch = evtloop.Dispatch while pyconvert(Bool, Pending()) Dispatch() end finalize(ea) # deactivate event loop app.ProcessIdle() end end end # Tk: (Tkinter/tkinter module) # based on https://github.com/ipython/ipython/blob/7.0.1/IPython/terminal/pt_inputhooks/tk.py function Tk_eventloop(sec::Real=50e-3) Tk = pyimport("tkinter") _tkinter = pyimport("_tkinter") flag = _tkinter.ALL_EVENTS | _tkinter.DONT_WAIT root = pynothing = Py(nothing) install_doevent(sec) do async new_root = Tk._default_root if pyconvert(Bool, new_root != pynothing) root = new_root end if pyconvert(Bool, root != pynothing) while pyconvert(Bool, root.dooneevent(flag)) end end end end # cache running event loops (so that we don't start any more than once) const eventloops = Dict{Symbol,Timer}() """ pygui_start(gui::Symbol = pygui()) Start the event loop of a certain toolkit. The argument `gui` defaults to the current default GUI, but it could be `:wx`, `:gtk`, `:gtk3`, `:tk`, or `:qt`. """ function pygui_start(gui::Symbol=pygui(), sec::Real=50e-3) pygui(gui) if !haskey(eventloops, gui) if gui == :wx eventloops[gui] = wx_eventloop(sec) elseif gui == :gtk eventloops[gui] = gtk_eventloop("gtk", sec) elseif gui == :gtk3 eventloops[gui] = gtk_eventloop("gi.repository.Gtk", sec) elseif gui == :tk eventloops[gui] = Tk_eventloop(sec) elseif gui == :qt_pyqt4 eventloops[gui] = qt_eventloop("PyQt4", sec) elseif gui == :qt_pyqt5 eventloops[gui] = qt_eventloop("PyQt5", sec) elseif gui == :qt_pyside eventloops[gui] = qt_eventloop("PySide", sec) elseif gui == :qt_pyside2 eventloops[gui] = qt_eventloop("PySide2", sec) elseif gui == :qt4 try eventloops[gui] = qt_eventloop("PyQt4", sec) catch eventloops[gui] = qt_eventloop("PySide", sec) end elseif gui == :qt5 try eventloops[gui] = qt_eventloop("PyQt5", sec) catch eventloops[gui] = qt_eventloop("PySide2", sec) end elseif gui == :qt eventloops[gui] = qt_eventloop(sec) else throw(ArgumentError("unsupported GUI type $gui")) end end gui end """ pygui_stop(gui::Symbol = pygui()) Stop any running event loop for gui. The `gui` argument defaults to current default GUI. """ function pygui_stop(gui::Symbol=pygui()) if haskey(eventloops, gui) Base.close(pop!(eventloops, gui)) true else false end end pygui_stop_all() = for gui in keys(eventloops); pygui_stop(gui); end ############################################################################
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
code
1771
ENV["MPLBACKEND"]="agg" # no GUI using PythonPlot, PythonCall, Test pyversion = pyconvert(String, pyimport("sys").version) @info("PythonPlot is using Matplotlib $(PythonPlot.version) with Python $pyversion") plot(1:5, 2:6, "ro-") line = gca().lines[0] @test PyArray(line.get_xdata()) == 1:5 @test PyArray(line.get_ydata()) == 2:6 fig = gcf() @test isa(fig, PythonPlot.Figure) if PythonPlot.version >= v"2" @test PyArray(fig.get_size_inches()) ≈ [6.4, 4.8] else # matplotlib 1.3 @test PyArray(fig.get_size_inches()) ≈ [8, 6] end # with Matplotlib 1.3, I get "UserWarning: bbox_inches option for ps backend is not implemented yet" if PythonPlot.version >= v"2" s = sprint(show, "application/postscript", fig); # m = match(r"%%BoundingBox: *([0-9]+) +([0-9]+) +([0-9]+) +([0-9]+)", s) m = match(r"%%BoundingBox: *([0-9]+\.?[0-9]*) +([0-9]+\.?[0-9]*) +([0-9]+\.?[0-9]*) +([0-9]+\.?[0-9]*)", s) @test m !== nothing boundingbox = map(s -> parse(Float64, s), m.captures) @info("got plot bounding box ", boundingbox) @test all([300, 200] .< boundingbox[3:4] - boundingbox[1:2] .< [450,350]) end c = get_cmap("RdBu") a = 0.0:0.25:1.0 rgba = PyArray(pycall(PythonPlot.ScalarMappable; cmap=c, norm=PythonPlot.Normalize01).to_rgba(a)) @test rgba ≈ [ 0.403921568627451 0.0 0.12156862745098039 1.0 0.8991926182237601 0.5144175317185697 0.4079200307574009 1.0 0.9657054978854287 0.9672433679354094 0.9680891964628989 1.0 0.4085351787773935 0.6687427912341408 0.8145328719723184 1.0 0.0196078431372549 0.18823529411764706 0.3803921568627451 1.0 ] @testset "close figure: issue 22" begin f = figure() @test close(f) === nothing end
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
1.0.5
6ec334b52f9547f84fde749e512a97d0372ae395
docs
14042
# The PythonPlot module for Julia [![CI](https://github.com/JuliaPy/PythonPlot.jl/workflows/CI/badge.svg)](https://github.com/JuliaPy/PythonPlot.jl/actions?query=workflow%3ACI) This module provides a Julia interface to the [Matplotlib](http://matplotlib.org/) plotting library from Python, and specifically to the `matplotlib.pyplot` module. PythonPlot uses the Julia [PythonCall.jl](https://github.com/cjdoris/PythonCall.jl) package to call Matplotlib directly from Julia with little or no overhead (arrays are passed without making a copy). It is based on a fork of the [PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl) package, which uses the older [PyCall.jl](https://github.com/JuliaPy/PyCall.jl) interface to Python, and is intended to function as a mostly drop-in replacement for PyPlot.jl. This package takes advantage of Julia's [multimedia I/O](https://docs.julialang.org/en/latest/base/io-network/#Multimedia-I/O-1) API to display plots in any Julia graphical backend, including as inline graphics in [IJulia](https://github.com/JuliaLang/IJulia.jl). Alternatively, you can use a Python-based graphical Matplotlib backend to support interactive plot zooming etcetera. ## Installation The PythonPlot package uses the [CondaPkg.jl](https://github.com/cjdoris/CondaPkg.jl) package to automatically install Matplotlib as needed. (If you configure PythonCall to use some custom Python installation, you will need to install Matplotlib yourself.) You can either do inline plotting with [IJulia](https://github.com/JuliaLang/IJulia.jl), which doesn't require a GUI backend, or use the Qt, wx, or GTK+ backends of Matplotlib as described below. ## Basic usage Once Matplotlib and PythonPlot are installed, and you are using a graphics-capable Julia environment such as IJulia, you can simply type `using PythonPlot` and begin calling functions in the [matplotlib.pyplot](http://matplotlib.org/api/pyplot_api.html) API. For example: ``` using PythonPlot x = range(0; stop=2*pi, length=1000); y = sin.(3 * x + 4 * cos.(2 * x)); plot(x, y, color="red", linewidth=2.0, linestyle="--") title("A sinusoidally modulated sinusoid") ``` In general, all of the arguments, including keyword arguments, are exactly the same as in Python. (With minor translations, of course, e.g. Julia uses `true` and `nothing` instead of Python's `True` and `None`.) The full `matplotlib.pyplot` API is far too extensive to describe here; see the [matplotlib.pyplot documentation for more information](http://matplotlib.org/api/pyplot_api.html). The Matplotlib version number is returned by `PythonPlot.version`. ### Differences from PyPlot.jl Compared to the PyPlot.jl package, there are a few differences in the API. * To avoid type piracy, the functions `show`, `close`, `step`, and `fill` are renamed to `plotshow`, `plotclose`, `plotstep`, and `plotfill`, respectively. (You can also access them as `PythonPlot.show` etcetera.) * The `matplotlib.pyplot` module is exported as `pyplot` rather than as `plt`. * The PythonCall package performs many fewer automatic conversions from Python types to Julia types (in comparison to PyCall). If you need to convert Matplotlib return values to native Julia objects, you'll need to do `using PythonCall` and call its `pyconvert(T, o)` or other conversion functions. ### Exported functions Only the currently documented `matplotlib.pyplot` API is exported. To use other functions in the module, you can also call `matplotlib.pyplot.foo(...)` as `pyplot.foo(...)`. For example, `pyplot.plot(x, y)` also works. (And the raw `Py` object for the `matplotlib` module itself is also accessible as `PythonPlot.matplotlib`.) Matplotlib is somewhat inconsistent about capitalization: it has `contour3D` but `bar3d`, etcetera. PyPlot renames all such functions to use a capital *D* (e.g. it has `hist2D`, `bar3D`, and so on). You must also explicitly qualify some functions built-in Julia functions. In particular, `PythonPlot.xcorr`, `PythonPlot.axes`, and `PythonPlot.isinteractive` must be used to access `matplotlib.pyplot.xcorr` etcetera. If you wish to access *all* of the PyPlot functions exclusively through `pyplot.somefunction(...)`, as is conventional in Python, you can do `import PythonPlot as pyplot` instead of `using PythonPlot`. ### Figure objects You can get the current figure as a `Figure` object (a wrapper around `matplotlib.pyplot.Figure`) by calling `gcf()`. The `Figure` type supports Julia's [multimedia I/O API](https://docs.julialang.org/en/latest/base/io-network/#Multimedia-I/O-1), so you can use `display(fig)` to show a `fig::PyFigure` and `show(io, mime, fig)` (or `writemime` in Julia 0.4) to write it to a given `mime` type string (e.g. `"image/png"` or `"application/pdf"`) that is supported by the Matplotlib backend. ## Non-interactive plotting If you use PythonPlot from an interactive Julia prompt, such as the Julia [command-line prompt](http://docs.julialang.org/en/latest/manual/interacting-with-julia/) or an IJulia notebook, then plots appear immediately after a plotting function (`plot` etc.) is evaluated. However, if you use PythonPlot from a Julia script that is run non-interactively (e.g. `julia myscript.jl`), then Matplotlib is executed in [non-interactive mode](http://matplotlib.org/faq/usage_faq.html#what-is-interactive-mode): a plot window is not opened until you run `plotshow()` (equivalent to `pyplot.show()` in the Python examples). ## Interactive versus Julia graphics PythonPlot can use any Julia graphics backend capable of displaying PNG, SVG, or PDF images, such as the IJulia environment. To use a different backend, simply call `pushdisplay` with the desired `Display`; see the [Julia multimedia display API](https://docs.julialang.org/en/latest/base/io-network/#Multimedia-I/O-1) for more detail. On the other hand, you may wish to use one of the Python Matplotlib backends to open an interactive window for each plot (for interactive zooming, panning, etcetera). You can do this at any time by running: ``` pygui(true) ``` to turn on the Python-based GUI (if possible) for subsequent plots, while `pygui(false)` will return to the Julia backend. Even when a Python GUI is running, you can display the current figure with the Julia backend by running `display(gcf())`. If no Julia graphics backend is available when PythonPlot is imported, then `pygui(true)` is the default. ### Choosing a Python GUI toolkit Only the [Tk](http://www.tcl.tk/), [wxWidgets](http://www.wxwidgets.org/), [GTK+](http://www.gtk.org/) (version 2 or 3), and [Qt](http://qt-project.org/) (version 4 or 5; via the PyQt5, [PyQt4](http://wiki.python.org/moin/PyQt4) or [PySide](http://qt-project.org/wiki/PySide)), Python GUI backends are supported by PythonPlot. (Obviously, you must have installed one of these toolkits for Python first.) By default, PythonPlot picks one of these when it starts up (based on what you have installed), but you can force a specific toolkit to be chosen by importing the PyCall module and using its `pygui` function to set a Python backend *before* importing PythonPlot: ``` using PyCall pygui(gui) using PythonPlot ``` where `gui` can currently be one of `:tk`, `:gtk3`, `:gtk`, `:qt5`, `:qt4`, `:qt`, or `:wx`. You can also set a default via the Matplotlib `rcParams['backend']` parameter in your [matplotlibrc](http://matplotlib.org/users/customizing.html) file. ## Color maps The PythonPlot module also exports some functions and types based on the [matplotlib.colors](http://matplotlib.org/api/colors_api.html) and [matplotlib.cm](http://matplotlib.org/api/cm_api.html) modules to simplify management of color maps (which are used to assign values to colors in various plot types). In particular: * `ColorMap`: a wrapper around the [matplotlib.colors.Colormap](http://matplotlib.org/api/colors_api.html#matplotlib.colors.Colormap) type. The following constructors are provided: * `ColorMap{T<:Colorant}(name::String, c::AbstractVector{T}, n=256, gamma=1.0)` constructs an `n`-component colormap by [linearly interpolating](http://matplotlib.org/api/colors_api.html#matplotlib.colors.LinearSegmentedColormap) the colors in the array `c` of `Colorant`s (from the [ColorTypes.jl](https://github.com/JuliaGraphics/ColorTypes.jl) package). If you want a `name` to be constructed automatically, call `ColorMap(c, n=256, gamma=1.0)` instead. Alternatively, instead of passing an array of colors, you can pass a 3- or 4-column matrix of RGB or RGBA components, respectively (similar to [ListedColorMap](http://matplotlib.org/api/colors_api.html#matplotlib.colors.ListedColormap) in Matplotlib). * Even more general color maps may be defined by passing arrays of (x,y0,y1) tuples for the red, green, blue, and (optionally) alpha components, as defined by the [matplotlib.colors.LinearSegmentedColormap](http://matplotlib.org/api/colors_api.html#matplotlib.colors.LinearSegmentedColormap) constructor, via: `ColorMap{T<:Real}(name::String, r::AbstractVector{(T,T,T)}, g::AbstractVector{(T,T,T)}, b::AbstractVector{(T,T,T)}, n=256, gamma=1.0)` or `ColorMap{T<:Real}(name::String, r::AbstractVector{(T,T,T)}, g::AbstractVector{(T,T,T)}, b::AbstractVector{(T,T,T)}, alpha::AbstractVector{(T,T,T)}, n=256, gamma=1.0)` * `ColorMap(name::String)` returns an existing (registered) colormap, equivalent to [matplotlib.pyplot.get_cmap](http://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.get_cmap.html#matplotlib-pyplot-get-cmap)(`name`). * `matplotlib.colors.Colormap` objects returned by Python functions are automatically converted to the `ColorMap` type. * `get_cmap(name::String)` or `get_cmap(name::String, lut::Integer)` call the [matplotlib.pyplot.get_cmap](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.get_cmap.html#matplotlib-pyplot-get-cmap) function. * `register_cmap(c::ColorMap)` or `register_cmap(name::String, c::ColorMap)` call the [matplotlib.colormaps.register](https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ColormapRegistry.register) function. * `get_cmaps()` returns a `Vector{ColorMap}` of the currently registered colormaps. Note that, given an SVG-supporting display environment like IJulia, `ColorMap` and `Vector{ColorMap}` objects are displayed graphically; try `get_cmaps()`! ## 3d Plotting The PythonPlot package also imports functions from Matplotlib's [mplot3d](http://matplotlib.org/mpl_toolkits/mplot3d/) toolkit. Unlike Matplotlib, however, you can create 3d plots directly without first creating an [Axes3d](http://matplotlib.org/mpl_toolkits/mplot3d/api.html#axes3d) object, simply by calling one of: `bar3D`, `contour3D`, `contourf3D`, `plot3D`, `plot_surface`, `plot_trisurf`, `plot_wireframe`, or `scatter3D` (as well as `text2D`, `text3D`), exactly like the correspondingly named methods of [Axes3d](http://matplotlib.org/mpl_toolkits/mplot3d/api.html#axes3d). We also export the Matlab-like synonyms `surf` for `plot_surface` (or `plot_trisurf` for 1d-array arguments) and `mesh` for `plot_wireframe`. For example, you can do: ``` surf(rand(30,40)) ``` to plot a random 30×40 surface mesh. You can also explicitly create a subplot with 3d axes via, for example, `subplot(111, projection="3d")`, exactly as in Matplotlib, but you must first call the `using3D()` function to ensure that mplot3d is loaded (this happens automatically for `plot3D` etc.). The `Axes3D` constructor and the [art3D](http://matplotlib.org/mpl_toolkits/mplot3d/api.html#art3d) module are also exported. ## LaTeX plot labels Matplotlib allows you to [use LaTeX equations in plot labels](http://matplotlib.org/users/mathtext.html), titles, and so on simply by enclosing the equations in dollar signs (`$ ... $`) within the string. However, typing LaTeX equations in Julia string literals is awkward because escaping is necessary to prevent Julia from interpreting the dollar signs and backslashes itself; for example, the LaTeX equation `$\alpha + \beta$` would be the literal string `"\$\\alpha + \\beta\$"` in Julia. To simplify this, PythonPlot uses the [LaTeXStrings package](https://github.com/stevengj/LaTeXStrings.jl) to provide a new `LaTeXString` type that be constructed via `L"...."` without escaping backslashes or dollar signs. For example, one can simply write `L"$\alpha + \beta$"` for the abovementioned equation, and thus you can do things like: ``` title(L"Plot of $\Gamma_3(x)$") ``` If your string contains *only* equations, you can omit the dollar signs, e.g. `L"\alpha + \beta"`, and they will be added automatically. As an added benefit, a `LaTeXString` is automatically displayed as a rendered equation in IJulia. See the LaTeXStrings package for more information. ## SVG output in IJulia By default, plots in IJulia are sent to the notebook as PNG images. Optionally, you can tell PythonPlot to display plots in the browser as [SVG](https://en.wikipedia.org/wiki/Scalable_Vector_Graphics) images, which have the advantage of being resolution-independent (so that they display without pixellation at high-resolutions, for example if you convert an IJulia notebook to PDF), by running: ``` PythonPlot.svg(true) ``` This is not the default because SVG plots in the browser are much slower to display (especially for complex plots) and may display inaccurately in some browsers with buggy SVG support. The `PythonPlot.svg()` method returns whether SVG display is currently enabled. Note that this is entirely separate from manually exporting plots to SVG or any other format. Regardless of whether PythonPlot uses SVG for browser display, you can export a plot to SVG at any time by using the Matplotlib [savefig](http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig) command, e.g. `savefig("plot.svg")`. ## Modifying matplotlib.rcParams You can mutate the `rcParams` dictionary that Matplotlib uses for global parameters following this example: ```jl PythonPlot.matplotlib.rcParams["font.size"] = 15 ``` ## Author This module was written by [Steven G. Johnson](http://math.mit.edu/~stevenj/).
PythonPlot
https://github.com/JuliaPy/PythonPlot.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
783
module CalibrationTests using Reexport @reexport using CalibrationErrors using ConsistencyResampling: ConsistencyResampling using HypothesisTests: HypothesisTests @reexport using KernelFunctions using LinearAlgebra: LinearAlgebra using Random: Random using Statistics: Statistics using StatsFuns: StatsFuns using StructArrays: StructArrays using CalibrationErrors: CalibrationErrorEstimator, SKCE, unsafe_skce_eval export ConsistencyTest export DistributionFreeSKCETest, AsymptoticBlockSKCETest, AsymptoticSKCETest export AsymptoticCMETest # re-export using HypothesisTests: pvalue, confint export pvalue, confint include("consistency.jl") include("skce/asymptotic.jl") include("skce/asymptotic_block.jl") include("skce/distribution_free.jl") include("cme.jl") end # module
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
2537
struct AsymptoticCMETest{K<:Kernel,V,M,S} <: HypothesisTests.HypothesisTest """Kernel.""" kernel::K """Number of observations.""" nsamples::Int """Number of test locations.""" ntestsamples::Int """UCME estimate.""" estimate::V """Mean deviation for each test location.""" mean_deviations::M """Test statistic.""" statistic::S end function AsymptoticCMETest( estimator::UCME, predictions::AbstractVector, targets::AbstractVector ) # determine number of observations and test locations nsamples = length(predictions) testpredictions = estimator.testpredictions ntestsamples = length(testpredictions) # create matrix of deviations (observations × test locations) kernel = estimator.kernel deviations = CalibrationErrors.unsafe_ucme_eval.( (kernel,), predictions, targets, permutedims(testpredictions), permutedims(estimator.testtargets), ) # compute UCME estimate mean_deviations = Statistics.mean(deviations; dims=1) estimate = sum(abs2, mean_deviations) / ntestsamples # compute test statistic C = LinearAlgebra.Symmetric(Statistics.covm(deviations, mean_deviations)) x = vec(mean_deviations) statistic = nsamples * LinearAlgebra.dot(x, C \ x) return AsymptoticCMETest(kernel, nsamples, ntestsamples, estimate, x, statistic) end # HypothesisTests interface HypothesisTests.default_tail(::AsymptoticCMETest) = :right ## have to specify and check keyword arguments in `pvalue` and `confint` to ## force `tail = :right` due to the default implementation in HypothesisTests function HypothesisTests.pvalue(test::AsymptoticCMETest; tail=:right) if tail === :right StatsFuns.chisqccdf(test.ntestsamples, test.statistic) else throw(ArgumentError("tail=$(tail) is invalid")) end end HypothesisTests.testname(::AsymptoticCMETest) = "Asymptotic CME test" # parameter of interest: name, value under H0, point estimate function HypothesisTests.population_param_of_interest(test::AsymptoticCMETest) return "Mean vector", zero(test.mean_deviations), test.mean_deviations end function HypothesisTests.show_params(io::IO, test::AsymptoticCMETest, ident="") println(io, ident, "number of observations: ", test.nsamples) println(io, ident, "number of test locations: ", test.ntestsamples) println(io, ident, "UCME estimate: ", test.estimate) return println(io, ident, "test statistic: ", test.statistic) end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
2091
struct ConsistencyTest{E<:CalibrationErrorEstimator,P,T,V} <: HypothesisTests.HypothesisTest """Calibration estimator.""" estimator::E """Predictions.""" predictions::P """Targets.""" targets::T """Calibration estimate.""" estimate::V end function ConsistencyTest( estimator::CalibrationErrorEstimator, predictions::AbstractVector, targets::AbstractVector, ) estimate = estimator(predictions, targets) return ConsistencyTest(estimator, predictions, targets, estimate) end # HypothesisTests interface HypothesisTests.default_tail(::ConsistencyTest) = :right HypothesisTests.testname(::ConsistencyTest) = "Consistency resampling test" function HypothesisTests.pvalue(test::ConsistencyTest; kwargs...) return pvalue(Random.GLOBAL_RNG, test; kwargs...) end function HypothesisTests.pvalue( rng::Random.AbstractRNG, test::ConsistencyTest; bootstrap_iters::Int=1_000 ) bootstrap_iters > 0 || error("number of bootstrap samples must be positive") predictions = test.predictions sampledpredictions = similar(predictions) sampledtargets = similar(test.targets) samples = StructArrays.StructArray((sampledpredictions, sampledtargets)) estimate = test.estimate estimator = test.estimator sampler = Random.Sampler(rng, ConsistencyResampling.Consistent(predictions)) n = 0 for _ in 1:bootstrap_iters # perform consistency resampling Random.rand!(rng, samples, sampler) # evaluate the calibration error sampledestimate = estimator(sampledpredictions, sampledtargets) # check if the estimate for the resampled data is ≥ the original estimate if sampledestimate ≥ estimate n += 1 end end return n / bootstrap_iters end # parameter of interest: name, value under H0, point estimate function HypothesisTests.population_param_of_interest(test::ConsistencyTest) return nameof(typeof(test.estimator)), zero(test.estimate), test.estimate end HypothesisTests.show_params(io::IO, test::ConsistencyTest, ident="") = nothing
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
10383
@doc raw""" AsymptoticSKCETest(kernel::Kernel, predictions, targets) Calibration hypothesis test based on the unbiased estimator of the squared kernel calibration error (SKCE) with quadratic sample complexity. # Details Let ``\mathcal{D} = (P_{X_i}, Y_i)_{i=1,\ldots,n}`` be a data set of predictions and corresponding targets. Denote the null hypothesis "the predictive probabilistic model is calibrated" with ``H_0``. The hypothesis test approximates the p-value ``ℙ(\mathrm{SKCE}_{uq} > c \,|\, H_0)``, where ``\mathrm{SKCE}_{uq}`` is the unbiased estimator of the SKCE, defined as ```math \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big), ``` where ```math \begin{aligned} h_k\big((μ, y), (μ', y')\big) ={}& k\big((μ, y), (μ', y')\big) - 𝔼_{Z ∼ μ} k\big((μ, Z), (μ', y')\big) \\ & - 𝔼_{Z' ∼ μ'} k\big((μ, y), (μ', Z')\big) + 𝔼_{Z ∼ μ, Z' ∼ μ'} k\big((μ, Z), (μ', Z')\big). \end{aligned} ``` The p-value is estimated based on the asymptotically valid approximation ```math ℙ(n\mathrm{SKCE}_{uq} > c \,|\, H_0) \approx ℙ(T > c \,|\, \mathcal{D}), ``` where ``T`` is the bootstrap statistic ```math T = \frac{2}{n} \sum_{1 \leq i < j \leq n} \bigg(h_k\big((P^*_{X_i}, Y^*_i), (P^*_{X_j}, Y^*_j)\big) - \frac{1}{n} \sum_{r = 1}^n h_k\big((P^*_{X_i}, Y^*_i), (P_{X_r}, Y_r)\big) - \frac{1}{n} \sum_{r = 1}^n h_k\big((P_{X_r}, Y_r), (P^*_{X_j}, Y^*_j)\big) + \frac{1}{n^2} \sum_{r, s = 1}^n h_k\big((P_{X_r}, Y_r), (P_{X_s}, Y_s)\big)\bigg) ``` for bootstrap samples ``(P^*_{X_i}, Y^*_i)_{i=1,\ldots,n}`` of ``\mathcal{D}``. This can be reformulated to the approximation ```math ℙ(n\mathrm{SKCE}_{uq}/(n - 1) - \mathrm{SKCE}_b > c \,|\, H_0) \approx ℙ(T' > c \,|\, \mathcal{D}), ``` where ```math \mathrm{SKCE}_b = \frac{1}{n^2} \sum_{i, j = 1}^n h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big) ``` and ```math T' = \frac{2}{n(n - 1)} \sum_{1 \leq i < j \leq n} h_k\big((P^*_{X_i}, Y^*_i), (P^*_{X_j}, Y^*_j)\big) - \frac{2}{n^2} \sum_{i, r=1}^n h_k\big((P^*_{X_i}, Y^*_i), (P_{X_r}, Y_r)\big). ``` # References Widmann, D., Lindsten, F., & Zachariah, D. (2019). [Calibration tests in multi-class classification: A unifying framework](https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html). In: Advances in Neural Information Processing Systems (NeurIPS 2019) (pp. 12257–12267). Widmann, D., Lindsten, F., & Zachariah, D. (2021). [Calibration tests beyond classification](https://openreview.net/forum?id=-bxf89v3Nx). """ struct AsymptoticSKCETest{K<:Kernel,E,V,M} <: HypothesisTests.HypothesisTest """Kernel.""" kernel::K """Calibration error estimate.""" estimate::E """Test statistic.""" statistic::V """Symmetric kernel matrix, consisting of pairwise evaluations of ``h_{ij}``.""" kernelmatrix::M end function AsymptoticSKCETest( kernel::Kernel, predictions::AbstractVector, targets::AbstractVector ) # compute the calibration error estimate, the test statistic, and the kernel matrix estimate, statistic, kernelmatrix = estimate_statistic_kernelmatrix( kernel, predictions, targets ) return AsymptoticSKCETest(kernel, estimate, statistic, kernelmatrix) end # HypothesisTests interface HypothesisTests.default_tail(::AsymptoticSKCETest) = :right function HypothesisTests.pvalue(test::AsymptoticSKCETest; kwargs...) return pvalue(Random.GLOBAL_RNG, test; kwargs...) end function HypothesisTests.pvalue( rng::Random.AbstractRNG, test::AsymptoticSKCETest; bootstrap_iters::Int=1_000 ) return bootstrap_ccdf(rng, test.statistic, test.kernelmatrix, bootstrap_iters) end HypothesisTests.testname(::AsymptoticSKCETest) = "Asymptotic SKCE test" # parameter of interest: name, value under H0, point estimate function HypothesisTests.population_param_of_interest(test::AsymptoticSKCETest) return "SKCE", zero(test.estimate), test.estimate end function HypothesisTests.show_params(io::IO, test::AsymptoticSKCETest, ident="") return println(io, ident, "test statistic: $(test.statistic)") end @doc raw""" estimate_statistic_kernelmatrix(kernel, predictions, targets) Compute the estimate of the SKCE, the test statistic, and the matrix of the evaluations of the kernel function. # Details Let ``\mathcal{D} = (P_{X_i}, Y_i)_{i=1,\ldots,n}`` be a data set of predictions and corresponding targets. The unbiased estimator ``\mathrm{SKCE}_{uq}`` of the SKCE is defined as ```math \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big), ``` where ```math \begin{aligned} h_k\big((μ, y), (μ', y')\big) ={}& k\big((μ, y), (μ', y')\big) - 𝔼_{Z ∼ μ} k\big((μ, Z), (μ', y')\big) \\ & - 𝔼_{Z' ∼ μ'} k\big((μ, y), (μ', Z')\big) + 𝔼_{Z ∼ μ, Z' ∼ μ'} k\big((μ, Z), (μ', Z')\big). \end{aligned} ``` The test statistic is defined as ```math \frac{n}{n-1} \mathrm{SKCE}_{uq} - \mathrm{SKCE}_b, ``` where ```math \mathrm{SKCE}_b = \frac{1}{n^2} \sum_{i, j = 1}^n h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big) ``` (see [`AsymptoticSKCETest`](@ref)). This is equivalent to ```math \frac{1}{n^2} \sum_{i, j = 1} h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big) \bigg(\frac{n^2}{(n - 1)^2} 1(i \neq j) - \bigg). ``` The kernelmatrix ``K \in \mathbb{R}^{n \times n}`` is defined as ```math K_{ij} = h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big) ``` for ``i, j \in \{1, \ldots, n\}``. """ function estimate_statistic_kernelmatrix(kernel, predictions, targets) # obtain number of samples nsamples = length(predictions) nsamples > 1 || error("there must be at least two samples") # pre-computations α = (2 * nsamples - 1) / (nsamples - 1)^2 @inbounds begin # evaluate the kernel function for the first pair of samples prediction = predictions[1] target = targets[1] # initialize the kernel matrix hij = unsafe_skce_eval(kernel, prediction, target, prediction, target) kernelmatrix = Matrix{typeof(hij)}(undef, nsamples, nsamples) kernelmatrix[1, 1] = hij # initialize the test statistic and the unbiased estimate of the SKCE statistic = -hij / 1 estimate = zero(statistic) # add evaluations of all other pairs of samples nstatistic = 1 nestimate = 0 for i in 2:nsamples predictioni = predictions[i] targeti = targets[i] for j in 1:(i - 1) predictionj = predictions[j] targetj = targets[j] # evaluate the kernel function hij = unsafe_skce_eval(kernel, predictioni, targeti, predictionj, targetj) # update the kernel matrix kernelmatrix[j, i] = hij # update the estimate and the test statistic nstatistic += 2 statistic += 2 * (α * hij - statistic) / nstatistic nestimate += 1 estimate += (hij - estimate) / nestimate end # evaluate the kernel function for the `i`th sample hij = unsafe_skce_eval(kernel, predictioni, targeti, predictioni, targeti) # update the kernel matrix kernelmatrix[i, i] = hij # update the test statistic nstatistic += 1 statistic -= (statistic + hij) / nstatistic end end # add lower triangle of the kernel matrix LinearAlgebra.copytri!(kernelmatrix, 'U') return estimate, statistic, kernelmatrix end @doc raw""" bootstrap_ccdf(rng::AbstractRNG, statistic, kernelmatrix, bootstrap_iters::Int) Estimate the value of the inverse CDF of the test statistic under the calibration null hypothesis by bootstrapping. # Details Let ``\mathcal{D} = (P_{X_i}, Y_i)_{i=1,\ldots,n}`` be a data set of predictions and corresponding targets. Denote the null hypothesis "the predictive probabilistic model is calibrated" with ``H_0``, and the test statistic with ``T``. The value of the inverse CDF under the null hypothesis is estimated based on the asymptotically valid approximation ```math ℙ(T > c \,|\, H_0) \approx ℙ(T' > c \,|\, \mathcal{D}), ``` where the bootstrap statistic ``T'`` is defined as ```math T' = \frac{2}{n(n - 1)} \sum_{1 \leq i < j \leq n} h_k\big((P^*_{X_i}, Y^*_i), (P^*_{X_j}, Y^*_j)\big) - \frac{2}{n^2} \sum_{i, r=1}^n h_k\big((P^*_{X_i}, Y^*_i), (P_{X_r}, Y_r)\big) ``` for bootstrap samples ``(P^*_{X_i}, Y^*_i)_{i=1,\ldots,n}`` of ``\mathcal{D}`` (see [`AsymptoticSKCETest`](@ref)). Let ``C_i`` be the number of times that data pair ``(P_{X_i}, Y_i)`` was resampled. Then we obtain ```math T' = \frac{1}{n^2} \sum_{i=1}^n C_i \sum_{j=1}^n \bigg(\frac{n}{n-1} (C_j - \delta_{i,j}) - 2\bigg) h_k\big((P_{X_i}, Y_i), (P_{X_j}, Y_j)\big). ``` """ function bootstrap_ccdf( rng::Random.AbstractRNG, statistic, kernelmatrix, bootstrap_iters::Int ) # initialize array of counts of resampled indices nsamples = LinearAlgebra.checksquare(kernelmatrix) resampling_counts = Vector{Int}(undef, nsamples) # for each bootstrap sample α = nsamples / (nsamples - 1) extreme_count = 0 sampler = Random.Sampler(rng, 1:nsamples) for _ in 1:bootstrap_iters # resample data set fill!(resampling_counts, 0) for _ in 1:nsamples idx = rand(rng, sampler) @inbounds resampling_counts[idx] += 1 end # evaluate the bootstrap statistic z = zero(statistic) n = 0 for i in 1:nsamples # check if the `i`th data pair was sampled ci = resampling_counts[i] iszero(ci) && continue zi = Statistics.mean(enumerate(resampling_counts)) do (j, cj) # obtain evaluation of the kernel function @inbounds hij = kernelmatrix[j, i] return ((cj - (i == j)) * α - 2) * hij end # update bootstrap statistic n += ci z += ci * (zi - z) / n end # check if the bootstrap statistic is ≥ the original statistic if z ≥ statistic extreme_count += 1 end end return extreme_count / bootstrap_iters end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3288
struct AsymptoticBlockSKCETest{K<:Kernel,E,S,Z} <: HypothesisTests.ZTest """Kernel.""" kernel::K """Number of observations per block.""" blocksize::Int """Number of blocks of observations.""" nblocks::Int """Calibration error estimate (average of evaluations of blocks of observations).""" estimate::E """Standard error of evaluations of blocks of observations.""" stderr::S """z-statistic.""" z::Z end function AsymptoticBlockSKCETest( kernel::Kernel, blocksize::Int, predictions::AbstractVector, targets::AbstractVector ) # obtain number of samples nsamples = length(predictions) nsamples ≥ blocksize || error("there must be at least ", blocksize, " samples") # compute number of blocks nblocks = nsamples ÷ blocksize nblocks ≥ 2 || error("there must be at least 2 blocks") # evaluate U-statistic of the first block istart = 1 iend = blocksize x = SKCE(kernel)(view(predictions, istart:iend), view(targets, istart:iend)) # initialize the estimate and the sum of squares estimate = x / 1 S = zero(estimate)^2 # for all other blocks for b in 2:nblocks # evaluate U-statistic istart += blocksize iend += blocksize x = SKCE(kernel)(view(predictions, istart:iend), view(targets, istart:iend)) # update the estimate Δestimate = x - estimate estimate += Δestimate / b S += Δestimate * (x - estimate) end # compute standard error and z-statistic stderr = sqrt(S / (nblocks * (nblocks - 1))) z = estimate / stderr return AsymptoticBlockSKCETest(kernel, blocksize, nblocks, estimate, stderr, z) end # HypothesisTests interface HypothesisTests.default_tail(::AsymptoticBlockSKCETest) = :right ## have to specify and check keyword arguments in `pvalue` and `confint` to ## force `tail = :right` due to the default implementation in HypothesisTests function HypothesisTests.pvalue(test::AsymptoticBlockSKCETest; tail=:right) if tail === :right StatsFuns.normccdf(test.z) else throw(ArgumentError("tail=$(tail) is invalid")) end end # confidence interval by inversion function HypothesisTests.confint(test::AsymptoticBlockSKCETest; level=0.95, tail=:right) HypothesisTests.check_level(level) if tail === :right q = StatsFuns.norminvcdf(level) lowerbound = test.estimate - q * test.stderr (max(zero(lowerbound), lowerbound), oftype(lowerbound, Inf)) else throw(ArgumentError("tail = $(tail) is invalid")) end end HypothesisTests.testname(test::AsymptoticBlockSKCETest) = "Asymptotic block SKCE test" # parameter of interest: name, value under H0, point estimate function HypothesisTests.population_param_of_interest(test::AsymptoticBlockSKCETest) return "SKCE", zero(test.estimate), test.estimate end function HypothesisTests.show_params(io::IO, test::AsymptoticBlockSKCETest, ident="") println(io, ident, "number of observations per block: ", test.blocksize) println(io, ident, "number of blocks of observations: ", test.nblocks) println(io, ident, "z-statistic: ", test.z) return println( io, ident, "standard error of evaluations of pairs of observations: ", test.stderr ) end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
2565
struct DistributionFreeSKCETest{E<:SKCE,B,V} <: HypothesisTests.HypothesisTest """Calibration estimator.""" estimator::E """Uniform upper bound of the terms of the estimator.""" bound::B """Number of observations.""" n::Int """Calibration error estimate.""" estimate::V end function DistributionFreeSKCETest( estimator::SKCE, predictions::AbstractVector, targets::AbstractVector; bound=uniformbound(estimator), ) estimate = estimator(predictions, targets) return DistributionFreeSKCETest(estimator, bound, length(predictions), estimate) end # HypothesisTests interface HypothesisTests.default_tail(::DistributionFreeSKCETest) = :right function HypothesisTests.pvalue(test::DistributionFreeSKCETest) estimator = test.estimator if estimator.unbiased && (estimator.blocksize === identity || estimator.blocksize isa Integer) return exp(-div(test.n, 2) * (test.estimate / test.bound)^2 / 2) elseif !estimator.unbiased && estimator.blocksize === identity s = sqrt(test.n * test.estimate / test.bound) - 1 return exp(-max(s, zero(s))^2 / 2) else error("estimator is not supported") end end HypothesisTests.testname(::DistributionFreeSKCETest) = "Distribution-free SKCE test" # parameter of interest: name, value under H0, point estimate function HypothesisTests.population_param_of_interest(test::DistributionFreeSKCETest) return nameof(typeof(test.estimator)), zero(test.estimate), test.estimate end function HypothesisTests.show_params(io::IO, test::DistributionFreeSKCETest, ident="") println(io, ident, "number of observations: $(test.n)") return println(io, ident, "uniform bound of the terms of the estimator: $(test.bound)") end # uniform bound `B_{p;q}` of the absolute value of the terms in the estimators uniformbound(kce::SKCE) = 2 * uniformbound(kce.kernel) # uniform bounds of the norm of base kernels uniformbound(kernel::ExponentialKernel) = 1 uniformbound(kernel::SqExponentialKernel) = 1 uniformbound(kernel::WhiteKernel) = 1 # uniform bound of the norm of a scaled kernel uniformbound(kernel::ScaledKernel) = first(kernel.σ²) * uniformbound(kernel.kernel) # uniform bound of the norm of a kernel with input transformations # assume transform is bijective (i.e., transform does not affect the bound) as default uniformbound(kernel::TransformedKernel) = uniformbound(kernel.kernel) # uniform bounds of the norm of tensor product kernels uniformbound(kernel::KernelTensorProduct) = prod(uniformbound, kernel.kernels)
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
496
@testset "Aqua" begin # Test ambiguities separately without Base and Core # Ref: https://github.com/JuliaTesting/Aqua.jl/issues/77 # Only test Project.toml formatting on Julia > 1.6 when running Github action # Ref: https://github.com/JuliaTesting/Aqua.jl/issues/105 Aqua.test_all( CalibrationTests; ambiguities=false, project_toml_formatting=VERSION >= v"1.7" || !haskey(ENV, "GITHUB_ACTIONS"), ) Aqua.test_ambiguities([CalibrationTests]) end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3763
@testset "binary_trend" begin # sample data function generate_binary_data(rng::Random.AbstractRNG, nsamples::Int) # generate predictions dist = Dirichlet(2, 1) predictions = [rand(rng, dist) for _ in 1:nsamples] # generate targets targets_consistent = [rand(rng) < predictions[i][1] ? 1 : 2 for i in 1:nsamples] targets_onlytwo = fill(2, nsamples) return (predictions, targets_consistent), (predictions, targets_onlytwo) end data_consistent, data_only_two = generate_binary_data(StableRNG(18732), 500) # define tensor product kernel (using the mean total variation distance as bandwidth) kernel = (ExponentialKernel() ∘ ScaleTransform(3)) ⊗ WhiteKernel() @testset "Consistency test" begin # define estimators estimators = ( SKCE(kernel), SKCE(kernel; unbiased=false), (SKCE(kernel; blocksize=b) for b in (2, 10, 50, 100))..., ) for estimator in estimators test_consistent = @inferred(ConsistencyTest(estimator, data_consistent...)) @test @inferred(pvalue(test_consistent)) > 0.1 print(test_consistent) test_only_two = @inferred(ConsistencyTest(estimator, data_only_two...)) @test @inferred(pvalue(test_only_two)) < 1e-6 print(test_only_two) end end @testset "Distribution-free tests" begin # define estimators estimators = ( SKCE(kernel), SKCE(kernel; unbiased=false), (SKCE(kernel; blocksize=b) for b in (2, 10, 50, 100))..., ) for estimator in estimators test_consistent = @inferred( DistributionFreeSKCETest(estimator, data_consistent...) ) @test @inferred(pvalue(test_consistent)) > 0.7 println(test_consistent) test_only_two = @inferred(DistributionFreeSKCETest(estimator, data_only_two...)) @test @inferred(pvalue(test_only_two)) < (estimator.unbiased ? 0.4 : 1e-6) println(test_only_two) end end @testset "Asymptotic block SKCE test" begin for blocksize in (2, 10, 50, 100) test_consistent = @inferred( AsymptoticBlockSKCETest(kernel, blocksize, data_consistent...) ) @test @inferred(pvalue(test_consistent)) > 0.2 println(test_consistent) test_only_two = @inferred( AsymptoticBlockSKCETest(kernel, blocksize, data_only_two...) ) @test @inferred(pvalue(test_only_two)) < 1e-6 println(test_only_two) end end @testset "Asymptotic SKCE test" begin test_consistent = @inferred(AsymptoticSKCETest(kernel, data_consistent...)) @test @inferred(pvalue(test_consistent)) > 0.3 println(test_consistent) test_only_two = @inferred(AsymptoticSKCETest(kernel, data_only_two...)) @test @inferred(pvalue(test_only_two)) < 1e-6 println(test_only_two) end @testset "Asymptotic CME test" begin # define estimator (uniformly distributed test locations) rng = StableRNG(6789) testpredictions = [rand(rng, Dirichlet(2, 1)) for _ in 1:10] testtargets = rand(rng, 1:2, 10) estimator = @inferred(UCME(kernel, testpredictions, testtargets)) test_consistent = @inferred(AsymptoticCMETest(estimator, data_consistent...)) @test @inferred(pvalue(test_consistent)) > 0.1 println(test_consistent) test_only_two = @inferred(AsymptoticCMETest(estimator, data_only_two...)) @test @inferred(pvalue(test_only_two)) < 1e-6 println(test_only_two) end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3864
@testset "cme.jl" begin @testset "estimate and statistic" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() function deviation(testprediction, testtarget, prediction, target) testlocation = (testprediction, testtarget) return mapreduce(+, prediction, 1:length(prediction)) do p, t ((t == target) - p) * kernel(testlocation, (prediction, t)) end end for nclasses in (2, 10, 100), nsamples in (10, 50, 100) # define estimator (sample test locations uniformly) dist = Dirichlet(nclasses, 1) testpredictions = [rand(dist) for _ in 1:(nsamples ÷ 10)] testtargets = rand(1:nclasses, nsamples ÷ 10) estimator = UCME(kernel, testpredictions, testtargets) # sample predictions and targets predictions = [rand(dist) for _ in 1:nsamples] targets_consistent = [ rand(Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) # compute calibration error estimate and test statistic for targets in (targets_consistent, targets_onlyone) test = AsymptoticCMETest(estimator, predictions, targets) @test test.kernel == kernel @test test.nsamples == nsamples @test test.ntestsamples == nsamples ÷ 10 @test test.estimate ≈ estimator(predictions, targets) deviations = deviation.(testpredictions', testtargets', predictions, targets) mean_deviations = vec(mean(deviations; dims=1)) @test test.mean_deviations ≈ mean_deviations # use of `inv` can lead to slightly different results S = cov(deviations; dims=1) statistic = nsamples * mean_deviations' * inv(S) * mean_deviations @test test.statistic ≈ statistic rtol = 1e-4 end end end @testset "consistency" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() αs = 0.05:0.1:0.95 nsamples = 100 pvalues_consistent = Vector{Float64}(undef, 100) pvalues_onlyone = similar(pvalues_consistent) for nclasses in (2, 10) # create estimator (sample test locations uniformly) rng = StableRNG(7434) dist = Dirichlet(nclasses, 1) testpredictions = [rand(rng, dist) for _ in 1:5] testtargets = rand(rng, 1:nclasses, 5) estimator = UCME(kernel, testpredictions, testtargets) predictions = [Vector{Float64}(undef, nclasses) for _ in 1:nsamples] targets_consistent = Vector{Int}(undef, nsamples) targets_onlyone = ones(Int, nsamples) for i in eachindex(pvalues_consistent) # sample predictions and targets for j in 1:nsamples rand!(rng, dist, predictions[j]) targets_consistent[j] = rand(rng, Categorical(predictions[j])) end # define test test_consistent = AsymptoticCMETest( estimator, predictions, targets_consistent ) test_onlyone = AsymptoticCMETest(estimator, predictions, targets_onlyone) # estimate pvalues pvalues_consistent[i] = pvalue(test_consistent) pvalues_onlyone[i] = pvalue(test_onlyone) end # compute empirical test errors ecdf_consistent = ecdf(pvalues_consistent) @test all(ecdf_consistent(α) < α + 0.15 for α in αs) @test all(p < 0.05 for p in pvalues_onlyone) end end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3389
@testset "consistency.jl" begin @testset "ECE" begin ce = ECE(UniformBinning(10)) N = 1_000 for nclasses in (2, 5, 10) println("Consistency test with ECE ($nclasses classes)") # sample predictions and targets rng = StableRNG(3881) dist = Dirichlet(nclasses, 1) predictions = [rand(rng, dist) for _ in 1:10] targets_consistent = [ rand(rng, Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) # define consistency resampling tests test_consistent = ConsistencyTest(ce, predictions, targets_consistent) test_onlyone = ConsistencyTest(ce, predictions, targets_onlyone) # compute pvalues with both resampling methods pvalues = [pvalue(test_consistent) for _ in 1:N] if nclasses == 2 @test mean(pvalues) ≈ 0.02 atol = 1e-2 elseif nclasses == 5 @test mean(pvalues) ≈ 0.03 atol = 1e-2 elseif nclasses == 10 @test mean(pvalues) ≈ 0.03 atol = 1e-2 end pvalues = [pvalue(test_onlyone) for _ in 1:N] @test mean(pvalues) < 1e-3 end end @testset "Block SKCE" begin nsamples = 10 N = 1_000 for blocksize in (2, 5) ce = SKCE( (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel(); blocksize=blocksize, ) for nclasses in (2, 5, 10) println( "Consistency test with the linear SKCE estimator ($nclasses classes)" ) # sample predictions and targets rng = StableRNG(8339) dist = Dirichlet(nclasses, 1) predictions = [rand(rng, dist) for _ in 1:10] targets_consistent = [ rand(rng, Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) # define consistency resampling tests test_consistent = ConsistencyTest(ce, predictions, targets_consistent) test_onlyone = ConsistencyTest(ce, predictions, targets_onlyone) # compute pvalues with both resampling methods pvalues = [pvalue(test_consistent) for _ in 1:N] if blocksize == 2 if nclasses == 2 @test mean(pvalues) ≈ 0.18 atol = 1e-2 elseif nclasses == 5 @test mean(pvalues) ≈ 0.79 atol = 1e-2 elseif nclasses == 10 @test mean(pvalues) ≈ 0.32 atol = 1e-2 end else if nclasses == 2 @test mean(pvalues) ≈ 0.41 atol = 1e-2 elseif nclasses == 5 @test mean(pvalues) ≈ 0.35 atol = 1e-2 elseif nclasses == 10 @test mean(pvalues) ≈ 0.11 atol = 1e-2 end end pvalues = [pvalue(test_onlyone) for _ in 1:N] @test mean(pvalues) < 1e-2 end end end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
667
using CalibrationTests using Aqua using CalibrationErrors using Distributions using StableRNGs using StatsBase using Random using Statistics using Test Random.seed!(1234) @testset "CalibrationTests" begin @testset "General" begin include("aqua.jl") end @testset "Binary trend" begin include("binary_trend.jl") end @testset "Consistency test" begin include("consistency.jl") end @testset "SKCE" begin include("skce/asymptotic.jl") include("skce/asymptotic_block.jl") include("skce/distribution_free.jl") end @testset "Asymptotic CME" begin include("cme.jl") end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3146
@testset "asymptotic.jl" begin @testset "estimate, statistic, and kernel matrix" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() unbiasedskce = SKCE(kernel) biasedskce = SKCE(kernel; unbiased=false) for nclasses in (2, 10, 100), nsamples in (10, 50, 100) # sample predictions and targets dist = Dirichlet(nclasses, 1) predictions = [rand(dist) for _ in 1:nsamples] targets_consistent = [ rand(Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) # compute calibration error estimate and test statistic for targets in (targets_consistent, targets_onlyone) estimate, statistic, kernelmatrix = CalibrationTests.estimate_statistic_kernelmatrix( kernel, predictions, targets ) @test estimate ≈ unbiasedskce(predictions, targets) @test statistic ≈ nsamples / (nsamples - 1) * unbiasedskce(predictions, targets) - biasedskce(predictions, targets) @test kernelmatrix ≈ CalibrationErrors.unsafe_skce_eval.( (kernel,), predictions, targets, permutedims(predictions), permutedims(targets), ) end end end @testset "consistency" begin kernel1 = ExponentialKernel() ∘ ScaleTransform(0.1) kernel2 = WhiteKernel() kernel = kernel1 ⊗ kernel2 αs = 0.05:0.1:0.95 nsamples = 100 pvalues_consistent = Vector{Float64}(undef, 100) pvalues_onlyone = similar(pvalues_consistent) for nclasses in (2, 10) rng = StableRNG(1523) dist = Dirichlet(nclasses, 1) predictions = [Vector{Float64}(undef, nclasses) for _ in 1:nsamples] targets_consistent = Vector{Int}(undef, nsamples) targets_onlyone = ones(Int, nsamples) for i in eachindex(pvalues_consistent) # sample predictions and targets for j in 1:nsamples rand!(rng, dist, predictions[j]) targets_consistent[j] = rand(rng, Categorical(predictions[j])) end # define test test_consistent = AsymptoticSKCETest( kernel, predictions, targets_consistent ) test_onlyone = AsymptoticSKCETest(kernel, predictions, targets_onlyone) # estimate pvalues pvalues_consistent[i] = pvalue(test_consistent; bootstrap_iters=500) pvalues_onlyone[i] = pvalue(test_onlyone; bootstrap_iters=500) end # compute empirical test errors ecdf_consistent = ecdf(pvalues_consistent) @test maximum(ecdf_consistent.(αs) .- αs) < 0.15 @test maximum(pvalues_onlyone) < 0.01 end end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3899
@testset "asymptotic_block.jl" begin @testset "estimate, stderr, and z" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() for nclasses in (2, 10, 100), nsamples in (10, 50, 100) for blocksize in (2, 5, 10, 50) # blocksize may no be greater than number of samples blocksize < nsamples || continue # sample predictions and targets dist = Dirichlet(nclasses, 1) predictions = [rand(dist) for _ in 1:nsamples] targets_consistent = [ rand(Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) skce = SKCE(kernel; blocksize=blocksize) # for both sets of targets for targets in (targets_consistent, targets_onlyone) test = AsymptoticBlockSKCETest(kernel, blocksize, predictions, targets) @test test.blocksize == blocksize @test test.nblocks == nsamples ÷ blocksize @test test.estimate ≈ skce(predictions, targets) @test test.z == test.estimate / test.stderr @test pvalue(test) == pvalue(test; tail=:right) == ccdf(Normal(), test.z) @test_throws ArgumentError pvalue(test; tail=:left) @test_throws ArgumentError pvalue(test; tail=:both) for α in 0.55:0.05:0.95 q = quantile(Normal(), α) @test confint(test; level=α) == confint(test; level=α, tail=:right) == (max(0, test.estimate - q * test.stderr), Inf) @test_throws ArgumentError confint(test; level=α, tail=:left) @test_throws ArgumentError confint(test; level=α, tail=:both) end end end end end @testset "consistency" begin kernel1 = ExponentialKernel() ∘ ScaleTransform(0.1) kernel2 = WhiteKernel() kernel = kernel1 ⊗ kernel2 αs = 0.05:0.1:0.95 nsamples = 100 pvalues_consistent = Vector{Float64}(undef, 100) pvalues_onlyone = similar(pvalues_consistent) for blocksize in (2, 5, 10) for nclasses in (2, 10) rng = StableRNG(6144) dist = Dirichlet(nclasses, 1) predictions = [Vector{Float64}(undef, nclasses) for _ in 1:nsamples] targets_consistent = Vector{Int}(undef, nsamples) targets_onlyone = ones(Int, nsamples) for i in eachindex(pvalues_consistent) # sample predictions and targets for j in 1:nsamples rand!(rng, dist, predictions[j]) targets_consistent[j] = rand(rng, Categorical(predictions[j])) end # define test test_consistent = AsymptoticBlockSKCETest( kernel, blocksize, predictions, targets_consistent ) test_onlyone = AsymptoticBlockSKCETest( kernel, blocksize, predictions, targets_onlyone ) # estimate pvalues pvalues_consistent[i] = pvalue(test_consistent) pvalues_onlyone[i] = pvalue(test_onlyone) end # compute empirical test errors ecdf_consistent = ecdf(pvalues_consistent) @test maximum(ecdf_consistent.(αs) .- αs) < 0.1 @test maximum(pvalues_onlyone) < 0.01 end end end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
code
3469
@testset "distribution_free.jl" begin @testset "bounds" begin # default bounds for base kernels CalibrationTests.uniformbound(ExponentialKernel()) == 1 CalibrationTests.uniformbound(SqExponentialKernel()) == 1 CalibrationTests.uniformbound(WhiteKernel()) == 1 # default bounds for kernels with input transformations CalibrationTests.uniformbound(SqExponentialKernel() ∘ ScaleTransform(rand())) == 1 CalibrationTests.uniformbound(ExponentialKernel() ∘ ScaleTransform(rand(10))) == 1 # default bounds for scaled kernels CalibrationTests.uniformbound(42 * ExponentialKernel()) == 42 # default bounds for tensor product kernels kernel = (3.2 * SqExponentialKernel()) ⊗ (2.7 * WhiteKernel()) CalibrationTests.uniformbound(kernel) == 3.2 * 2.7 # default bounds for kernel terms CalibrationTests.uniformbound(SKCE(kernel; blocksize=2)) == 2 * 3.2 * 2.7 end @testset "estimator and estimates" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() for skce in (SKCE(kernel), SKCE(kernel; unbiased=false), SKCE(kernel; blocksize=2)) for nclasses in (2, 10, 100), nsamples in (10, 50, 100) # sample predictions and targets dist = Dirichlet(nclasses, 1) predictions = [rand(dist) for _ in 1:nsamples] targets_consistent = [ rand(Categorical(prediction)) for prediction in predictions ] targets_onlyone = ones(Int, length(predictions)) # for both sets of targets for targets in (targets_consistent, targets_onlyone) test = DistributionFreeSKCETest(skce, predictions, targets) @test test.estimator == skce @test test.n == nsamples @test test.estimate ≈ skce(predictions, targets) @test test.bound == CalibrationTests.uniformbound(skce) end end end end @testset "consistency" begin kernel = (ExponentialKernel() ∘ ScaleTransform(0.1)) ⊗ WhiteKernel() αs = 0.05:0.1:0.95 nsamples = 100 pvalues_consistent = Vector{Float64}(undef, 100) for skce in (SKCE(kernel), SKCE(kernel; unbiased=false), SKCE(kernel; blocksize=2)) for nclasses in (2, 10) rng = StableRNG(5921) dist = Dirichlet(nclasses, 1) predictions = [Vector{Float64}(undef, nclasses) for _ in 1:nsamples] targets_consistent = Vector{Int}(undef, nsamples) for i in eachindex(pvalues_consistent) # sample predictions and targets for j in 1:nsamples rand!(rng, dist, predictions[j]) targets_consistent[j] = rand(rng, Categorical(predictions[j])) end # define test test_consistent = DistributionFreeSKCETest( skce, predictions, targets_consistent ) # estimate pvalue pvalues_consistent[i] = pvalue(test_consistent) end # compute empirical test errors @test all(ecdf(pvalues_consistent).(αs) .< αs) end end end end
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.6.3
32b9b56182494346dffcdf3e29e2b69195cd0d07
docs
2954
# CalibrationTests.jl Hypothesis tests of calibration. [![Build Status](https://github.com/devmotion/CalibrationTests.jl/workflows/CI/badge.svg?branch=main)](https://github.com/devmotion/CalibrationTests.jl/actions?query=workflow%3ACI+branch%3Amain) [![DOI](https://zenodo.org/badge/215970266.svg)](https://zenodo.org/badge/latestdoi/215970266) [![Codecov](https://codecov.io/gh/devmotion/CalibrationTests.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/devmotion/CalibrationTests.jl) [![Coveralls](https://coveralls.io/repos/github/devmotion/CalibrationTests.jl/badge.svg?branch=main)](https://coveralls.io/github/devmotion/CalibrationTests.jl?branch=main) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) **There are also [Python](https://github.com/devmotion/pycalibration) and [R](https://github.com/devmotion/rcalibration) interfaces for this package** ## Overview This package implements different hypothesis tests for calibration of probabilistic models in the Julia language. ## Related packages The statistical tests in this package are based on the calibration error estimators in the package [CalibrationErrors.jl](https://github.com/devmotion/CalibrationErrors.jl). [pycalibration](https://github.com/devmotion/pycalibration) is a Python interface for CalibrationErrors.jl and CalibrationTests.jl. [rcalibration](https://github.com/devmotion/rcalibration) is an R interface for CalibrationErrors.jl and CalibrationTests.jl. ## Citing If you use CalibrationsTests.jl as part of your research, teaching, or other activities, please consider citing the following publications: Widmann, D., Lindsten, F., & Zachariah, D. (2019). [Calibration tests in multi-class classification: A unifying framework](https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html). In *Advances in Neural Information Processing Systems 32 (NeurIPS 2019)* (pp. 12257–12267). Widmann, D., Lindsten, F., & Zachariah, D. (2021). [Calibration tests beyond classification](https://openreview.net/forum?id=-bxf89v3Nx). To be presented at *ICLR 2021*. ## Acknowledgements This work was financially supported by the Swedish Research Council via the projects *Learning of Large-Scale Probabilistic Dynamical Models* (contract number: 2016-04278), *Counterfactual Prediction Methods for Heterogeneous Populations* (contract number: 2018-05040), and *Handling Uncertainty in Machine Learning Systems* (contract number: 2020-04122), by the Swedish Foundation for Strategic Research via the project *Probabilistic Modeling and Inference for Machine Learning* (contract number: ICA16-0015), by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and by ELLIIT.
CalibrationTests
https://github.com/devmotion/CalibrationTests.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
283
using FactoredValueMCTS using Documenter makedocs(; sitename="FactoredValueMCTS.jl", authors="Stanford Intelligent Systems Laboratory", modules=[FactoredValueMCTS], format=Documenter.HTML() ) deploydocs(; repo="github.com/JuliaPOMDP/FactoredValueMCTS.jl" )
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
1998
module FactoredValueMCTS using Random using LinearAlgebra using POMDPs using POMDPTools using MultiAgentPOMDPs using POMDPLinter: @req, @subreq, @POMDP_require using MCTS using Graphs using MCTS: convert_estimator # Patch simulate to support vector of rewards function POMDPs.simulate(sim::RolloutSimulator, mdp::JointMDP, policy::Policy, initialstate::S) where {S} if sim.eps === nothing eps = 0.0 else eps = sim.eps end if sim.max_steps === nothing max_steps = typemax(Int) else max_steps = sim.max_steps end s = initialstate # TODO: doesn't this add unnecessary action search? r = @gen(:r)(mdp, s, action(policy, s), sim.rng) if r isa AbstractVector r_total = zeros(n_agents(mdp)) else r_total = 0.0 end sim_helper!(r_total, sim, mdp, policy, s, max_steps, eps) return r_total end function sim_helper!(r_total::AbstractVector{F}, sim, mdp, policy, s, max_steps, eps) where {F} step = 1 disc = 1.0 while disc > eps && !isterminal(mdp, s) && step <= max_steps a = action(policy, s) sp, r = @gen(:sp, :r)(mdp, s, a, sim.rng) r_total .+= disc.*r s = sp disc *= discount(mdp) step += 1 end end function sim_helper!(r_total::AbstractFloat, sim, mdp, policy, s, max_steps, eps) step = 1 disc = 1.0 while disc > eps && !isterminal(mdp, s) && step <= max_steps a = action(policy, s) sp, r = @gen(:sp, :r)(mdp, s, a, sim.rng) r_total += disc.*r s = sp disc *= discount(mdp) step += 1 end end ### # Factored Value MCTS # abstract type CoordinationStatistics end include(joinpath("fvmcts", "factoredpolicy.jl")) include(joinpath("fvmcts", "fv_mcts_vanilla.jl")) include(joinpath("fvmcts", "action_coordination", "varel.jl")) include(joinpath("fvmcts", "action_coordination", "maxplus.jl")) export FVMCTSSolver, MaxPlus, VarEl end
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
616
""" Random Policy factored for each agent. Avoids exploding action space. """ struct FactoredRandomPolicy{RNG<:AbstractRNG,P<:JointMDP, U<:Updater} <: Policy rng::RNG problem::P updater::U end FactoredRandomPolicy(problem::JointMDP; rng=Random.GLOBAL_RNG, updater=NothingUpdater()) = FactoredRandomPolicy(rng, problem, updater) function POMDPs.action(policy::FactoredRandomPolicy, s) return [rand(policy.rng, agent_actions(policy.problem, i, si)) for (i, si) in enumerate(s)] end POMDPs.solve(solver::RandomSolver, problem::JointMDP) = FactoredRandomPolicy(solver.rng, problem, NothingUpdater())
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
14824
using StaticArrays using Base.Threads: @spawn abstract type AbstractCoordinationStrategy end struct VarEl <: AbstractCoordinationStrategy end Base.@kwdef struct MaxPlus <:AbstractCoordinationStrategy message_iters::Int64 = 10 message_norm::Bool = true use_agent_utils::Bool = false node_exploration::Bool = true edge_exploration::Bool = true end """ Factored Value Monte Carlo Tree Search solver datastructure Fields: n_iterations::Int64 Number of iterations during each action() call. default: 100 max_time::Float64 Maximum CPU time to spend computing an action. default::Inf depth::Int64 Number of iterations during each action() call. default: 100 exploration_constant::Float64: Specifies how much the solver should explore. In the UCB equation, Q + c*sqrt(log(t/N)), c is the exploration constant. The exploration terms for FV-MCTS-Var-El and FV-MCTS-Max-Plus are different but the role of c is the same. default: 1.0 rng::AbstractRNG: Random number generator estimate_value::Any (rollout policy) Function, object, or number used to estimate the value at the leaf nodes. If this is a function `f`, `f(mdp, s, depth)` will be called to estimate the value. If this is an object `o`, `estimate_value(o, mdp, s, depth)` will be called. If this is a number, the value will be set to that number default: RolloutEstimator(RandomSolver(rng)) init_Q::Any Function, object, or number used to set the initial Q(s,a) value at a new node. If this is a function `f`, `f(mdp, s, a)` will be called to set the value. If this is an object `o`, `init_Q(o, mdp, s, a)` will be called. If this is a number, Q will be set to that number default: 0.0 init_N::Any Function, object, or number used to set the initial N(s,a) value at a new node. If this is a function `f`, `f(mdp, s, a)` will be called to set the value. If this is an object `o`, `init_N(o, mdp, s, a)` will be called. If this is a number, N will be set to that number default: 0 reuse_tree::Bool If this is true, the tree information is re-used for calculating the next plan. Of course, clear_tree! can always be called to override this. default: false coordination_strategy::AbstractCoordinationStrategy The specific strategy with which to compute the best joint action from the current MCTS statistics. default: VarEl() """ Base.@kwdef mutable struct FVMCTSSolver <: AbstractMCTSSolver n_iterations::Int64 = 100 max_time::Float64 = Inf depth::Int64 = 10 exploration_constant::Float64 = 1.0 rng::AbstractRNG = Random.GLOBAL_RNG estimate_value::Any = RolloutEstimator(RandomSolver(rng)) init_Q::Any = 0.0 init_N::Any = 0 reuse_tree::Bool = false coordination_strategy::AbstractCoordinationStrategy = VarEl() end mutable struct FVMCTSTree{S,A,CS<:CoordinationStatistics} # To map the multi-agent state vector to the ID of the node in the tree state_map::Dict{S,Int64} # The next two vectors have one for each node ID in the tree total_n::Vector{Int} # The number of times the node has been tried s_labels::Vector{S} # The state corresponding to the node ID # List of all individual actions of each agent for coordination purposes. all_agent_actions::Vector{A} coordination_stats::CS lock::ReentrantLock end function FVMCTSTree(all_agent_actions::Vector{A}, coordination_stats::CS, init_state::S, lock::ReentrantLock, sz::Int64=10000) where {S, A, CS <: CoordinationStatistics} return FVMCTSTree{S,A,CS}(Dict{S,Int64}(), sizehint!(Int[], sz), sizehint!(S[], sz), all_agent_actions, coordination_stats, lock ) end # function Base.isempty(t::FVMCTSTree) = isempty(t.state_map) state_nodes(t::FVMCTSTree) = (FVStateNode(t, id) for id in 1:length(t.total_n)) struct FVStateNode{S} tree::FVMCTSTree{S} id::Int64 end # Accessors for state nodes @inline state(n::FVStateNode) = n.tree.s_labels[n.id] @inline total_n(n::FVStateNode) = n.tree.total_n[n.id] ## No need for `children` or ActionNode just yet mutable struct FVMCTSPlanner{S, A, SE, CS <: CoordinationStatistics, RNG <: AbstractRNG} <: AbstractMCTSPlanner{JointMDP{S,A}} solver::FVMCTSSolver mdp::JointMDP{S,A} tree::FVMCTSTree{S,A,CS} solved_estimate::SE rng::RNG end """ Called internally in solve() to create the FVMCTSPlanner where Var-El is the specific action coordination strategy. Creates VarElStatistics internally with the CG components and the minimum degree ordering heuristic. """ function varel_joint_mcts_planner(solver::FVMCTSSolver, mdp::JointMDP{S,A}, init_state::S, ) where {S,A} # Get coordination graph components from maximal cliques #adjmat = coord_graph_adj_mat(mdp) #@assert size(adjmat)[1] == n_agents(mdp) "Adjacency Matrix does not match number of agents!" #adjmatgraph = SimpleGraph(adjmat) adjmatgraph = coordination_graph(mdp) coord_graph_components = maximal_cliques(adjmatgraph) min_degree_ordering = sortperm(degree(adjmatgraph)) # Initialize full agent actions all_agent_actions = Vector{(actiontype(mdp))}(undef, n_agents(mdp)) for i = 1:n_agents(mdp) all_agent_actions[i] = agent_actions(mdp, i) end ve_stats = VarElStatistics{S}(coord_graph_components, min_degree_ordering, Dict{typeof(init_state),Vector{Vector{Int64}}}(), Dict{typeof(init_state),Vector{Vector{Int64}}}(), ) # Create tree from the current state tree = FVMCTSTree(all_agent_actions, ve_stats, init_state, ReentrantLock(), solver.n_iterations) se = convert_estimator(solver.estimate_value, solver, mdp) return FVMCTSPlanner(solver, mdp, tree, se, solver.rng) end # end function """ Called internally in solve() to create the FVMCTSPlanner where Max-Plus is the specific action coordination strategy. Creates MaxPlusStatistics and assumes the various MP flags are sent down from the CoordinationStrategy object given to the solver. """ function maxplus_joint_mcts_planner(solver::FVMCTSSolver, mdp::JointMDP{S,A}, init_state::S, message_iters::Int64, message_norm::Bool, use_agent_utils::Bool, node_exploration::Bool, edge_exploration::Bool, ) where {S,A} @assert (node_exploration || edge_exploration) "At least one of nodes or edges should explore!" #= adjmat = coord_graph_adj_mat(mdp) @assert size(adjmat)[1] == n_agents(mdp) "Adjacency Mat does not match number of agents!" =# #adjmatgraph = SimpleGraph(adjmat) adjmatgraph = coordination_graph(mdp) @assert size(adjacency_matrix(adjmatgraph))[1] == n_agents(mdp) # Initialize full agent actions # TODO(jkg): this is incorrect? Or we need to override actiontype to refer to agent actions? all_agent_actions = Vector{(actiontype(mdp))}(undef, n_agents(mdp)) for i = 1:n_agents(mdp) all_agent_actions[i] = agent_actions(mdp, i) end mp_stats = MaxPlusStatistics{S}(adjmatgraph, message_iters, message_norm, use_agent_utils, node_exploration, edge_exploration, Dict{S,PerStateMPStats}()) # Create tree from the current state tree = FVMCTSTree(all_agent_actions, mp_stats, init_state, ReentrantLock(), solver.n_iterations) se = convert_estimator(solver.estimate_value, solver, mdp) return FVMCTSPlanner(solver, mdp, tree, se, solver.rng) end # Reset tree. function clear_tree!(planner::FVMCTSPlanner) # Clear out state map dict entirely empty!(planner.tree.state_map) # Empty state vectors with state hints sz = min(planner.solver.n_iterations, 100_000) empty!(planner.tree.s_labels) sizehint!(planner.tree.s_labels, planner.solver.n_iterations) # Don't touch all_agent_actions and coord graph component # Just clear comp stats dict clear_statistics!(planner.tree.coordination_stats) end MCTS.init_Q(n::Number, mdp::JointMDP, s, c, a) = convert(Float64, n) MCTS.init_N(n::Number, mdp::JointMDP, s, c, a) = convert(Int, n) # No computation is done in solve; the solver is just given the mdp model that it will work with # and in case of MaxPlus, the various flags for the MaxPlus behavior function POMDPs.solve(solver::FVMCTSSolver, mdp::JointMDP) if typeof(solver.coordination_strategy) == VarEl return varel_joint_mcts_planner(solver, mdp, rand(solver.rng, initialstate(mdp))) elseif typeof(solver.coordination_strategy) == MaxPlus return maxplus_joint_mcts_planner(solver, mdp, rand(solver.rng, initialstate(mdp)), solver.coordination_strategy.message_iters, solver.coordination_strategy.message_norm, solver.coordination_strategy.use_agent_utils, solver.coordination_strategy.node_exploration, solver.coordination_strategy.edge_exploration) else throw(error("Not Implemented")) end end # IMP: Overriding action for FVMCTSPlanner here # NOTE: Hardcoding no tree reuse for now function POMDPs.action(planner::FVMCTSPlanner, s) clear_tree!(planner) # Always call this at the top plan!(planner, s) action = coordinate_action(planner.mdp, planner.tree, s) return action end function POMDPTools.action_info(planner::FVMCTSPlanner, s) clear_tree!(planner) # Always call this at the top plan!(planner, s) action = coordinate_action(planner.mdp, planner.tree, s) return action, nothing end function plan!(planner::FVMCTSPlanner, s) planner.tree = build_tree(planner, s) end # build_tree can be called on the assumption that no reuse AND tree is reinitialized function build_tree(planner::FVMCTSPlanner, s::S) where S n_iterations = planner.solver.n_iterations depth = planner.solver.depth root = insert_node!(planner.tree, planner, s) # Simulate can be multi-threaded @sync for n = 1:n_iterations @spawn simulate(planner, root, depth) end return planner.tree end function simulate(planner::FVMCTSPlanner, node::FVStateNode, depth::Int64) mdp = planner.mdp rng = planner.rng s = state(node) tree = node.tree # once depth is zero return if isterminal(planner.mdp, s) return 0.0 elseif depth == 0 return estimate_value(planner.solved_estimate, planner.mdp, s, depth) end # Choose best UCB action (NOT an action node as in vanilla MCTS) ucb_action = coordinate_action(mdp, planner.tree, s, planner.solver.exploration_constant, node.id) # Monte Carlo Transition sp, r = @gen(:sp, :r)(mdp, s, ucb_action, rng) spid = lock(tree.lock) do get(tree.state_map, sp, 0) # may be non-zero even with no tree reuse end if spid == 0 spn = insert_node!(tree, planner, sp) spid = spn.id q = r .+ discount(mdp) * estimate_value(planner.solved_estimate, planner.mdp, sp, depth - 1) else q = r .+ discount(mdp) * simulate(planner, FVStateNode(tree, spid) , depth - 1) end # NOTE: Not bothering with tree visualization right now # Augment N(s) lock(tree.lock) do tree.total_n[node.id] += 1 end # Update component statistics! (non-trivial) # This is related but distinct from initialization update_statistics!(mdp, tree, s, ucb_action, q) return q end @POMDP_require simulate(planner::FVMCTSPlanner, s, depth::Int64) begin mdp = planner.mdp P = typeof(mdp) @assert P <: JointMDP SV = statetype(P) @req iterate(::SV) #@assert typeof(SV) <: AbstractVector AV = actiontype(P) @assert typeof(AV) <: AbstractVector @req discount(::P) @req isterminal(::P, ::SV) @subreq insert_node!(planner.tree, planner, s) @subreq estimate_value(planner.solved_estimate, mdp, s, depth) @req gen(::P, ::SV, ::AV, ::typeof(planner.rng)) # XXX this is not exactly right - it could be satisfied with transition ## Requirements from MMDP Model @req agent_actions(::P, ::Int64) @req agent_actions(::P, ::Int64, ::eltype(SV)) @req n_agents(::P) @req coordination_graph(::P) # TODO: Should we also have this requirement for SV? @req isequal(::S, ::S) @req hash(::S) end function insert_node!(tree::FVMCTSTree{S,A,CS}, planner::FVMCTSPlanner, s::S) where {S,A,CS <: CoordinationStatistics} lock(tree.lock) do push!(tree.s_labels, s) tree.state_map[s] = length(tree.s_labels) push!(tree.total_n, 1) # NOTE: Could actually make actions state-dependent if need be init_statistics!(tree, planner, s) end # length(tree.s_labels) is just an alias for the number of state nodes ls = lock(tree.lock) do length(tree.s_labels) end return FVStateNode(tree, ls) end @POMDP_require insert_node!(tree::FVMCTSTree, planner::FVMCTSPlanner, s) begin P = typeof(planner.mdp) AV = actiontype(P) A = eltype(AV) SV = typeof(s) #S = eltype(SV) # TODO: Review IQ and IN IQ = typeof(planner.solver.init_Q) if !(IQ <: Number) && !(IQ <: Function) @req init_Q(::IQ, ::P, ::SV, ::Vector{Int64}, ::AbstractVector{A}) end IN = typeof(planner.solver.init_N) if !(IN <: Number) && !(IN <: Function) @req init_N(::IQ, ::P, ::SV, ::Vector{Int64}, ::AbstractVector{A}) end @req isequal(::S, ::S) @req hash(::S) end
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
12891
# NOTE: Matrix implicitly assumes all agents have same number of actions mutable struct PerStateMPStats agent_action_n::Matrix{Int64} # N X A agent_action_q::Matrix{Float64} edge_action_n::Matrix{Int64} # |E| X A^2 edge_action_q::Matrix{Float64} end """ Tracks the specific informations and statistics we need to use Max-Plus to coordinate_action the joint action in Factored-Value MCTS. Putting parameters here is a little ugly but coordinate_action can't have them since VarEl doesn't use those args. Fields: adjmatgraph::SimpleGraph The coordination graph as a Graphs SimpleGraph. message_iters::Int64 Number of rounds of message passing. message_norm::Bool Whether to normalize the messages or not after message passing. use_agent_utils::Bool Whether to include the per-agent utilities while computing the best agent action (see our paper for details) node_exploration::Bool Whether to use the per-node UCB style bonus while computing the best agent action (see our paper for details) edge_exploration::Bool Whether to use the per-edge UCB style bonus after the message passing rounds (see our paper for details). One of this or node_exploration MUST be true for exploration. all_states_stats::Dict{AbstractVector{S},PerStateMPStats} Maps each joint state in the tree to the per-state statistics. """ mutable struct MaxPlusStatistics{S} <: CoordinationStatistics adjmatgraph::SimpleGraph message_iters::Int64 message_norm::Bool use_agent_utils::Bool node_exploration::Bool edge_exploration::Bool # NOTE: One of this or node exploration must be true all_states_stats::Dict{S,PerStateMPStats} end function clear_statistics!(mp_stats::MaxPlusStatistics) empty!(mp_stats.all_states_stats) end function update_statistics!(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,MaxPlusStatistics{S}}, s::S, ucb_action::A, q::AbstractFloat) where {S,A} update_statistics!(mdp, tree, s, ucb_action, ones(typeof(q), n_agents(mdp)) * q) end """ Take the q-value from the MCTS step and distribute the updates across the per-node and per-edge q-stats as per the formula in our paper. """ function update_statistics!(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,MaxPlusStatistics{S}}, s::S, ucb_action::A, q::AbstractVector{Float64}) where {S,A} state_stats = tree.coordination_stats.all_states_stats[s] nagents = n_agents(mdp) # Update per agent action stats for i = 1:nagents ac_idx = agent_actionindex(mdp, i, ucb_action[i]) lock(tree.lock) do state_stats.agent_action_n[i, ac_idx] += 1 state_stats.agent_action_q[i, ac_idx] += (q[i] - state_stats.agent_action_q[i, ac_idx]) / state_stats.agent_action_n[i, ac_idx] end end # Now update per-edge action stats for (idx, e) in enumerate(edges(tree.coordination_stats.adjmatgraph)) # NOTE: Need to be careful about action ordering # Being more general to have unequal agent actions edge_comp = (e.src,e.dst) edge_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in edge_comp) edge_ac_idx = LinearIndices(edge_tup)[agent_actionindex(mdp, e.src, ucb_action[e.src]), agent_actionindex(mdp, e.dst, ucb_action[e.dst])] q_edge_value = q[e.src] + q[e.dst] lock(tree.lock) do state_stats.edge_action_n[idx, edge_ac_idx] += 1 state_stats.edge_action_q[idx, edge_ac_idx] += (q_edge_value - state_stats.edge_action_q[idx, edge_ac_idx]) / state_stats.edge_action_n[idx, edge_ac_idx] end end lock(tree.lock) do tree.coordination_stats.all_states_stats[s] = state_stats end end function init_statistics!(tree::FVMCTSTree{S,A,MaxPlusStatistics{S}}, planner::FVMCTSPlanner, s::S) where {S,A} n_agents = length(s) # NOTE: Assuming all agents have the same actions here n_all_actions = length(tree.all_agent_actions[1]) agent_action_n = zeros(Int64, n_agents, n_all_actions) agent_action_q = zeros(Float64, n_agents, n_all_actions) # Loop over agents and then actions # TODO: Need to define init_N and init_Q for single agent for i = 1:n_agents for (j, ac) in enumerate(tree.all_agent_actions[i]) agent_action_n[i, j] = init_N(planner.solver.init_N, planner.mdp, s, i, ac) agent_action_q[i, j] = init_Q(planner.solver.init_Q, planner.mdp, s, i, ac) end end n_edges = ne(tree.coordination_stats.adjmatgraph) edge_action_n = zeros(Int64, n_edges, n_all_actions^2) edge_action_q = zeros(Float64, n_edges, n_all_actions^2) # Loop over edges and then action_i \times action_j for (idx, e) in enumerate(edges(tree.coordination_stats.adjmatgraph)) edge_comp = (e.src, e.dst) n_edge_actions = prod([length(tree.all_agent_actions[c]) for c in edge_comp]) edge_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in edge_comp) for edge_ac_idx = 1:n_edge_actions ct_idx = CartesianIndices(edge_tup)[edge_ac_idx] edge_action = [tree.all_agent_actions[c] for c in edge_comp] edge_action_n[idx, edge_ac_idx] = init_N(planner.solver.init_N, planner.mdp, s, edge_comp, edge_action) edge_action_q[idx, edge_ac_idx] = init_Q(planner.solver.init_Q, planner.mdp, s, edge_comp, edge_action) end end state_stats = PerStateMPStats(agent_action_n, agent_action_q, edge_action_n, edge_action_q) lock(tree.lock) do tree.coordination_stats.all_states_stats[s] = state_stats end end """ Runs Max-Plus at the current state using the per-state MaxPlusStatistics to compute the best joint action with either or both of node-wise and edge-wise exploration bonus. Rounds of message passing are followed by per-node maximization. """ function coordinate_action(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,MaxPlusStatistics{S}}, s::S, exploration_constant::Float64=0.0, node_id::Int64=0) where {S,A} state_stats = lock(tree.lock) do tree.coordination_stats.all_states_stats[s] end adjgraphmat = lock(tree.lock) do tree.coordination_stats.adjmatgraph end k = tree.coordination_stats.message_iters message_norm = tree.coordination_stats.message_norm n_agents = length(s) state_agent_actions = [agent_actions(mdp, i, si) for (i, si) in enumerate(s)] n_all_actions = length(tree.all_agent_actions[1]) n_edges = ne(tree.coordination_stats.adjmatgraph) # Init forward and backward messages and q0 fwd_messages = zeros(Float64, n_edges, n_all_actions) bwd_messages = zeros(Float64, n_edges, n_all_actions) if tree.coordination_stats.use_agent_utils q_values = state_stats.agent_action_q / n_agents else q_values = zeros(size(state_stats.agent_action_q)) end state_total_n = lock(tree.lock) do (node_id > 0) ? tree.total_n[node_id] : 1 end # Iterate over passes for t = 1:k fnormdiff, bnormdiff = perform_message_passing!(fwd_messages, bwd_messages, mdp, tree.all_agent_actions, adjgraphmat, state_agent_actions, n_edges, q_values, message_norm, 0, state_stats, state_total_n) if !tree.coordination_stats.use_agent_utils q_values = zeros(size(state_stats.agent_action_q)) end # Update Q value with messages for i = 1:n_agents # need indices of all edges that agent is involved in nbrs = neighbors(tree.coordination_stats.adjmatgraph, i) edgelist = collect(edges(adjgraphmat)) if tree.coordination_stats.use_agent_utils @views q_values[i, :] = state_stats.agent_action_q[i, :]/n_agents end for n in nbrs if Edge(i,n) in edgelist # use backward message q_values[i,:] += bwd_messages[findfirst(isequal(Edge(i,n)), edgelist), :] elseif Edge(n,i) in edgelist q_values[i,:] += fwd_messages[findfirst(isequal(Edge(n,i)), edgelist), :] else @warn "Neither edge found!" end end end # If converged, break if isapprox(fnormdiff, 0.0) && isapprox(bnormdiff, 0.0) break end end # for t = 1:k # If edge exploration flag enabled, do a final exploration bonus if tree.coordination_stats.edge_exploration perform_message_passing!(fwd_messages, bwd_messages, mdp, tree.all_agent_actions, adjgraphmat, state_agent_actions, n_edges, q_values, message_norm, exploration_constant, state_stats, state_total_n) end # if edge_exploration # Maximize q values for agents best_action = Vector{eltype(A)}(undef, n_agents) for i = 1:n_agents # NOTE: Again can't just iterate over agent actions as it may be a subset exp_q_values = zeros(length(state_agent_actions[i])) if tree.coordination_stats.node_exploration for (idx, ai) in enumerate(state_agent_actions[i]) ai_idx = agent_actionindex(mdp, i, ai) exp_q_values[idx] = q_values[i, ai_idx] + exploration_constant*sqrt((log(state_total_n + 1.0))/(state_stats.agent_action_n[i, ai_idx] + 1.0)) end else for (idx, ai) in enumerate(state_agent_actions[i]) ai_idx = agent_actionindex(mdp, i, ai) exp_q_values[idx] = q_values[i, ai_idx] end end # NOTE: Can now look up index in exp_q_values and then again look at state_agent_actions _, idx = findmax(exp_q_values) best_action[i] = state_agent_actions[i][idx] end return best_action end function perform_message_passing!(fwd_messages::AbstractArray{F,2}, bwd_messages::AbstractArray{F,2}, mdp, all_agent_actions, adjgraphmat, state_agent_actions, n_edges::Int, q_values, message_norm, exploration_constant, state_stats, state_total_n) where {F} # Iterate over edges fwd_messages_old = deepcopy(fwd_messages) bwd_messages_old = deepcopy(bwd_messages) for (e_idx, e) in enumerate(edges(adjgraphmat)) i = e.src j = e.dst edge_tup_indices = LinearIndices(Tuple(1:length(all_agent_actions[c]) for c in (i,j))) # forward: maximize sender # NOTE: Can't do enumerate as action set might be smaller # Need to look up global index of agent action and use that # Need to break up vectorized loop @inbounds for aj in state_agent_actions[j] aj_idx = agent_actionindex(mdp, j, aj) fwd_message_vals = zeros(length(state_agent_actions[i])) # TODO: Should we use inbounds here again? @inbounds for (idx, ai) in enumerate(state_agent_actions[i]) ai_idx = agent_actionindex(mdp, i, ai) fwd_message_vals[idx] = q_values[i, ai_idx] - bwd_messages_old[e_idx, ai_idx] + state_stats.edge_action_q[e_idx, edge_tup_indices[ai_idx, aj_idx]]/n_edges + exploration_constant * sqrt( (log(state_total_n + 1.0)) / (state_stats.edge_action_n[e_idx, edge_tup_indices[ai_idx, aj_idx]] + 1) ) end fwd_messages[e_idx, aj_idx] = maximum(fwd_message_vals) end @inbounds for ai in state_agent_actions[i] ai_idx = agent_actionindex(mdp, i, ai) bwd_message_vals = zeros(length(state_agent_actions[j])) @inbounds for (idx, aj) in enumerate(state_agent_actions[j]) aj_idx = agent_actionindex(mdp, j, aj) bwd_message_vals[idx] = q_values[j, aj_idx] - fwd_messages_old[e_idx, aj_idx] + state_stats.edge_action_q[e_idx, edge_tup_indices[ai_idx, aj_idx]]/n_edges + exploration_constant * sqrt( (log(state_total_n + 1.0))/ (state_stats.edge_action_n[e_idx, edge_tup_indices[ai_idx, aj_idx]] + 1) ) end bwd_messages[e_idx, ai_idx] = maximum(bwd_message_vals) end # Normalize messages for better convergence if message_norm @views fwd_messages[e_idx, :] .-= sum(fwd_messages[e_idx, :])/length(fwd_messages[e_idx, :]) @views bwd_messages[e_idx, :] .-= sum(bwd_messages[e_idx, :])/length(bwd_messages[e_idx, :]) end end # (idx,edges) in enumerate(edges) # Return norm of message difference return norm(fwd_messages - fwd_messages_old), norm(bwd_messages - bwd_messages_old) end
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
15514
""" Tracks the specific informations and statistics we need to use Var-El to coordinate_action the joint action in Factored-Value MCTS. Fields: coord_graph_components::Vector{Vector{Int64}} The list of coordination graph components, i.e., cliques, where each element is a list of agent IDs that are in a mutual clique. min_degree_ordering::Vector{Int64} Ordering of agent IDs in increasing CG degree. This ordering is the heuristic most typically used for the elimination order in Var-El. n_component_stats::Dict{AbstractVector{S},Vector{Vector{Int64}}} Maps each joint state in the tree (for which we need to compute the UCB action) to the frequency of each component's various local actions. q_component_stats::Dict{AbstractVector{S},Vector{Vector{Float64}}} Maps each joint state in the tree to the accumulated q-value of each component's various local actions. """ mutable struct VarElStatistics{S} <: CoordinationStatistics coord_graph_components::Vector{Vector{Int64}} min_degree_ordering::Vector{Int64} n_component_stats::Dict{S,Vector{Vector{Int64}}} q_component_stats::Dict{S,Vector{Vector{Float64}}} end function clear_statistics!(ve_stats::VarElStatistics) empty!(ve_stats.n_component_stats) empty!(ve_stats.q_component_stats) end """ Runs variable elimination at the current state using the VarEl Statistics to compute the best joint action with the component-wise exploration bonus. FYI: Rather complicated. """ function coordinate_action(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,VarElStatistics{S}}, s::S, exploration_constant::Float64=0.0, node_id::Int64=0) where {S,A} n_agents = length(s) best_action_idxs = MVector{n_agents}([-1 for i in 1:n_agents]) # !Note: Acquire lock so as to avoid race state_q_stats = lock(tree.lock) do tree.coordination_stats.q_component_stats[s] end state_n_stats = lock(tree.lock) do tree.coordination_stats.n_component_stats[s] end state_total_n = lock(tree.lock) do (node_id > 0) ? tree.total_n[node_id] : 0 end # Maintain set of potential functions # NOTE: Hashing a vector here potential_fns = Dict{Vector{Int64},Vector{Float64}}() for (comp, q_stats) in zip(tree.coordination_stats.coord_graph_components, state_q_stats) potential_fns[comp] = q_stats end # Need this for reverse process # Maps agent to other elements in best response functions and corresponding set of actions # E.g. Agent 2 -> (3,4) in its best response and corresponding vector of agent 2 best actions best_response_fns = Dict{Int64,Tuple{Vector{Int64},Vector{Int64}}}() state_dep_actions = [agent_actions(mdp, i, si) for (i, si) in enumerate(s)] # Iterate over variable ordering # Need to maintain intermediate tables for ag_idx in tree.coordination_stats.min_degree_ordering # Lookup factors with agent in them and simultaneously construct # members of new potential function, and delete old factors agent_factors = Vector{Vector{Int64}}(undef, 0) new_potential_members = Vector{Int64}(undef, 0) for k in collect(keys(potential_fns)) if ag_idx in k # Agent to-be-eliminated is in factor push!(agent_factors, k) # Construct key for new potential as union of all others except ag_idx for ag in k if ag != ag_idx && ~(ag in new_potential_members) push!(new_potential_members, ag) end end end end if isempty(new_potential_members) == true # No out neighbors..either at beginning or end of ordering @assert agent_factors == [[ag_idx]] "agent_factors $(agent_factors) is not just [ag_idx] $([ag_idx])!" best_action_idxs[ag_idx] = _best_actionindex_empty(potential_fns, state_dep_actions, tree.all_agent_actions, ag_idx) else # Generate new potential function and the best response vector for eliminated agent n_comp_actions = prod([length(tree.all_agent_actions[c]) for c in new_potential_members]) # NOTE: Tuples should ALWAYS use tree.all_agent_actions for indexing comp_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in new_potential_members) # Initialize q-stats for new potential and best response action vector # will be inserted into corresponding dictionaries at the end new_potential_stats = Vector{Float64}(undef, n_comp_actions) best_response_vect = Vector{Int64}(undef, n_comp_actions) # Iterate over new potential joint actions and compute new payoff and best response for comp_ac_idx = 1:n_comp_actions # Get joint action for other members in potential ct_idx = CartesianIndices(comp_tup)[comp_ac_idx] # For maximizing over agent actions # As before, we now need to init with -Inf ag_ac_values = zeros(length(tree.all_agent_actions[ag_idx])) # TODO: Agent actions should already be in order # Only do anything if action legal for (ag_ac_idx, ag_ac) in enumerate(tree.all_agent_actions[ag_idx]) if ag_ac in state_dep_actions[ag_idx] # Need to look up corresponding stats from agent_factors for factor in agent_factors # NOTE: Need to reconcile the ORDER of ag_idx in factor factor_action_idxs = MVector{length(factor),Int64}(undef) for (idx, f) in enumerate(factor) # if f is ag_idx, set corresponding factor action to ag_ac if f == ag_idx factor_action_idxs[idx] = ag_ac_idx else # Lookup index for corresp. agent action in ct_idx new_pot_idx = findfirst(isequal(f), new_potential_members) factor_action_idxs[idx] = ct_idx[new_pot_idx] end # f == ag_idx end # NOW we can look up the stats of the factor factor_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in factor) factor_action_linidx = LinearIndices(factor_tup)[factor_action_idxs...] ag_ac_values[ag_ac_idx] += potential_fns[factor][factor_action_linidx] # Additionally add exploration stats if factor in original set factor_comp_idx = findfirst(isequal(factor), tree.coordination_stats.coord_graph_components) if state_total_n > 0 && ~(isnothing(factor_comp_idx)) # NOTE: Julia1.1 ag_ac_values[ag_ac_idx] += exploration_constant * sqrt((log(state_total_n+1.0))/(state_n_stats[factor_comp_idx][factor_action_linidx]+1.0)) end end # factor in agent_factors else ag_ac_values[ag_ac_idx] = -Inf end # ag_ac in state_dep_actions end # ag_ac_idx = 1:length(tree.all_agent_actions[ag_idx]) # Now we lookup ag_ac_values for the best value to be put in new_potential_stats # and the best index to be put in best_response_vect # NOTE: The -Inf mask should ensure only legal idxs chosen # If all ag_ac_values equal, should we sample randomly? best_val, best_idx = findmax(ag_ac_values) new_potential_stats[comp_ac_idx] = best_val best_response_vect[comp_ac_idx] = best_idx end # comp_ac_idx in n_comp_actions # Finally, we enter new stats vector and best response vector back to dicts potential_fns[new_potential_members] = new_potential_stats best_response_fns[ag_idx] = (new_potential_members, best_response_vect) end # isempty(new_potential_members) # Delete keys in agent_factors from potential fns since variable has been eliminated for factor in agent_factors delete!(potential_fns, factor) end end # ag_idx in min_deg_ordering # NOTE: At this point, best_action_idxs has at least one entry...for the last action obtained @assert !all(isequal(-1), best_action_idxs) "best_action_idxs is still undefined!" # Message passing in reverse order to recover best action for ag_idx in Base.Iterators.reverse(tree.coordination_stats.min_degree_ordering) # Only do something if best action already not obtained if best_action_idxs[ag_idx] == -1 # Should just be able to lookup best response function (agents, best_response_vect) = best_response_fns[ag_idx] # Members of agents should already have their best action defined agent_ac_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in agents) best_agents_action_idxs = [best_action_idxs[ag] for ag in agents] best_response_idx = LinearIndices(agent_ac_tup)[best_agents_action_idxs...] # Assign best action for ag_idx best_action_idxs[ag_idx] = best_response_vect[best_response_idx] end # isdefined end # Finally, return best action by iterating over best action indices # NOTE: best_action should use state-dep actions to reverse index best_action = [tree.all_agent_actions[ag][idx] for (ag, idx) in enumerate(best_action_idxs)] return best_action end """ Take the q-value from the MCTS step and distribute the updates across the component q-stats as per the formula in the Amato-Oliehoek paper. """ function update_statistics!(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,VarElStatistics{S}}, s::S, ucb_action::A, q::AbstractVector{Float64}) where {S,A} n_agents = length(s) for (idx, comp) in enumerate(tree.coordination_stats.coord_graph_components) # Create cartesian index tuple comp_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in comp) # RECOVER local action corresp. to ucb action # TODO: Review this carefully. Need @req for action index for agent. local_action = [ucb_action[c] for c in comp] local_action_idxs = [agent_actionindex(mdp, c, a) for (a, c) in zip(local_action, comp)] comp_ac_idx = LinearIndices(comp_tup)[local_action_idxs...] # NOTE: NOW we can update stats. Could generalize incremental update more here lock(tree.lock) do tree.coordination_stats.n_component_stats[s][idx][comp_ac_idx] += 1 q_comp_value = sum(q[c] for c in comp) tree.coordination_stats.q_component_stats[s][idx][comp_ac_idx] += (q_comp_value - tree.coordination_stats.q_component_stats[s][idx][comp_ac_idx]) / tree.coordination_stats.n_component_stats[s][idx][comp_ac_idx] end end end # TODO: is this the correct thing to do? # My guess is no, but not sure. function update_statistics!(mdp::JointMDP{S,A}, tree::FVMCTSTree{S,A,VarElStatistics{S}}, s::S, ucb_action::A, q::Float64) where {S, A} n_agents = length(s) for (idx, comp) in enumerate(tree.coordination_stats.coord_graph_components) # Create cartesian index tuple comp_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in comp) # RECOVER local action corresp. to ucb action # TODO: Review this carefully. Need @req for action index for agent. local_action = [ucb_action[c] for c in comp] local_action_idxs = [agent_actionindex(mdp, c, a) for (a, c) in zip(local_action, comp)] comp_ac_idx = LinearIndices(comp_tup)[local_action_idxs...] # NOTE: NOW we can update stats. Could generalize incremental update more here lock(tree.lock) do tree.coordination_stats.n_component_stats[s][idx][comp_ac_idx] += 1 q_comp_value = q * length(comp) # Maintains equivalence with `sum(q[c] for c in comp)` tree.coordination_stats.q_component_stats[s][idx][comp_ac_idx] += (q_comp_value - tree.coordination_stats.q_component_stats[s][idx][comp_ac_idx]) / tree.coordination_stats.n_component_stats[s][idx][comp_ac_idx] end end end function init_statistics!(tree::FVMCTSTree{S,A,VarElStatistics{S}}, planner::FVMCTSPlanner, s::S) where {S,A} n_comps = length(tree.coordination_stats.coord_graph_components) n_component_stats = Vector{Vector{Int64}}(undef, n_comps) q_component_stats = Vector{Vector{Float64}}(undef, n_comps) n_agents = length(s) # TODO: Could actually make actions state-dependent if need be for (idx, comp) in enumerate(tree.coordination_stats.coord_graph_components) n_comp_actions = prod([length(tree.all_agent_actions[c]) for c in comp]) n_component_stats[idx] = Vector{Int64}(undef, n_comp_actions) q_component_stats[idx] = Vector{Float64}(undef, n_comp_actions) comp_tup = Tuple(1:length(tree.all_agent_actions[c]) for c in comp) for comp_ac_idx = 1:n_comp_actions # Generate action subcomponent and call init_Q and init_N for it ct_idx = CartesianIndices(comp_tup)[comp_ac_idx] # Tuple corresp to local_action = [tree.all_agent_actions[c][ai] for (c, ai) in zip(comp, Tuple(ct_idx))] # NOTE: init_N and init_Q are functions of component AND local action # TODO(jkg): init_N and init_Q need to be defined n_component_stats[idx][comp_ac_idx] = init_N(planner.solver.init_N, planner.mdp, s, comp, local_action) q_component_stats[idx][comp_ac_idx] = init_Q(planner.solver.init_Q, planner.mdp, s, comp, local_action) end end # Update tree member lock(tree.lock) do tree.coordination_stats.n_component_stats[s] = n_component_stats tree.coordination_stats.q_component_stats[s] = q_component_stats end end @inline function _best_actionindex_empty(potential_fns, state_dep_actions, all_agent_actions, ag_idx) # NOTE: This is inefficient but necessary for state-dep actions? if length(state_dep_actions[ag_idx]) == length(all_agent_actions[ag_idx]) _, best_ac_idx = findmax(potential_fns[[ag_idx]]) else # Now we need to choose the best index from among legal actions # Create an array with illegal actions having -Inf and then fill legal vals # TODO: More efficient way to do this? masked_action_vals = fill(-Inf, length(all_agent_actions[ag_idx])) for (iac, ac) in enumerate(all_agent_actions[ag_idx]) if ac in state_dep_actions[ag_idx] masked_action_vals[iac] = potential_fns[[ag_idx]][iac] end end _, best_ac_idx = findmax(masked_action_vals) end return best_ac_idx end
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
code
1933
using POMDPs using FactoredValueMCTS using MultiAgentSysAdmin using MultiUAVDelivery using Test @testset "FactoredValueMCTS.jl" begin @testset "varel" begin @testset "sysadmin" begin @testset "local" begin mdp = BiSysAdmin{false}() solver = FVMCTSSolver() planner = solve(solver, mdp) s = rand(initialstate(mdp)) a = action(planner, s) @test a isa actiontype(mdp) end @testset "global" begin mdp = BiSysAdmin{true}() solver = FVMCTSSolver() planner = solve(solver, mdp) s = rand(initialstate(mdp)) a = action(planner, s) @test a isa actiontype(mdp) end end end @testset "maxplus" begin @testset "sysadmin" begin @testset "local" begin mdp = BiSysAdmin{false}() solver = FVMCTSSolver(;coordination_strategy=MaxPlus()) planner = solve(solver, mdp) s = rand(initialstate(mdp)) a = action(planner, s) @test a isa actiontype(mdp) end @testset "global" begin mdp = BiSysAdmin{true}() solver = FVMCTSSolver(;coordination_strategy=MaxPlus()) planner = solve(solver, mdp) s = rand(initialstate(mdp)) a = action(planner, s) @test a isa actiontype(mdp) end end @testset "uav" begin mdp = FirstOrderMultiUAVDelivery() solver = FVMCTSSolver(;coordination_strategy=MaxPlus()) planner = solve(solver, mdp) s = rand(initialstate(mdp)) a = action(planner, s) @test a isa actiontype(mdp) end end end
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
docs
2539
# FactoredValueMCTS [![CI](https://github.com/JuliaPOMDP/FactoredValueMCTS.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaPOMDP/FactoredValueMCTS.jl/actions/workflows/ci.yml) [![codecov.io](http://codecov.io/github/JuliaPOMDP/FactoredValueMCTS.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaPOMDP/FactoredValueMCTS.jl?branch=master) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliapomdp.github.io/FactoredValueMCTS.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliapomdp.github.io/FactoredValueMCTS.jl/dev) This package implements the Monte Carlo Tree Search (MCTS) planning algorithm for Multi-Agent MDPs. The algorithm factorizes the true action value function, based on the locality of interactions between agents that is encoded with a Coordination Graph. We implement two schemes for coordinating the actions for the team of agents during the MCTS computations. The first is the iterative message-passing MaxPlus, while the second is the exact Variable Elimination. We thus get two different Factored Value MCTS algorithms, FV-MCTS-MaxPlus and FV-MCTS-VarEl respectively. The full FV-MCTS-MaxPlus algorithm is described in our AAMAS 2021 paper _Scalable Anytime Planning for Multi-Agent MDPs_ ([Arxiv](https://arxiv.org/abs/2101.04788)). The FV-MCTS-Varel is based on the Factored Statistics algorithm from the AAAI 2015 paper _Scalable Planning and Learning from Multi-Agent POMDPs_ ([Extended Version](https://arxiv.org/abs/1404.1140)) applied to Multi-Agent MDPs rather than POMDPs. We use the latter as a baseline and show how the former outperforms it on two distinct simulated domains. To use our solver, the domain must implement the interface from [MultiAgentPOMDPs.jl](https://github.com/JuliaPOMDP/MultiAgentPOMDPs.jl). For examples, please see [MultiAgentSysAdmin](https://github.com/JuliaPOMDP/MultiAgentSysAdmin.jl) and [MultiUAVDelivery](https://github.com/JuliaPOMDP/MultiUAVDelivery.jl), which are the two domains from our AAMAS 2021 paper. Experiments from the paper are available at https://github.com/rejuvyesh/FVMCTS_experiments. ## Installation ```julia using Pkg Pkg.add("FactoredValueMCTS") ``` ## Citation ``` @inproceedings{choudhury2021scalable, title={Scalable Anytime Planning for Multi-Agent {MDP}s}, author={Shushman Choudhury and Jayesh K Gupta and Peter Morales and Mykel J Kochenderfer}, booktitle={International Conference on Autonomous Agents and MultiAgent Systems}, year={2021} } ```
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.2.1
91586a373b7d8b7272643ab92805c48a3709d7b7
docs
131
```@meta CurrentModule = FactoredValueMCTS ``` # FactoredValueMCTS ```@index ``` ```@autodocs Modules = [FactoredValueMCTS] ```
FactoredValueMCTS
https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
code
200
using CxxWrap, Libdl run(`cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH=$(CxxWrap.prefix_path()) -DJulia_EXECUTABLE=$(joinpath(Sys.BINDIR,"julia")) .`) run(`cmake --build . --config Release`)
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
code
672
module DejaVu using CxxWrap, Libdl, Graphs export StaticGraph, add_vertex!, add_edge!, Solver, set_print, automorphisms!, group_size, Orbit, orbit_size, find_orbit, represents_orbit, combine_orbits, are_in_same_orbit, reset get_path() = joinpath(@__DIR__,"../deps/lib","libdejavu.$(Libdl.dlext)") @wrapmodule get_path function __init__() @initcxx end function StaticGraph(g::AbstractGraph,color=i->0) sg = StaticGraph() initialize_graph!(sg,nv(g),ne(g)) for i=1:nv(g) add_vertex!(sg,isa(color,Function) ? color(i) : color[i],degree(g,i)) end for e=edges(g) add_edge!(sg,minmax(e.src-1,e.dst-1)...) end sg end end
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
code
454
using Test, DejaVu, Graphs @testset "Polygon" begin c = cycle_graph(10) @test nv(c)==ne(c)==10 d = Solver() set_print(d,false) g = StaticGraph(c) automorphisms!(d,g) @test group_size(d) |> String == "2*10^1" g = StaticGraph(c,==(1)) automorphisms!(d,g) @test group_size(d) |> String == "2*10^0" o = Orbit(10) automorphisms!(d,g,o) @test [orbit_size(o,i) for i=0:9] == [1,2,2,2,2,1,2,2,2,2] end
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
docs
1307
# DejaVu This is a minimalist integration of the graph automorphism solver [DejaVu](https://automorphisms.org). Sample run: ```julia julia> using DejaVu, Graphs julia> c = cycle_graph(10) # from Graphs {10, 10} undirected simple Int64 graph julia> g = StaticGraph(c) DejaVu.StaticGraphAllocated(Ptr{Nothing} @0x0000600000b13840) julia> d = Solver() DejaVu.SolverAllocated(Ptr{Nothing} @0x0000600002737f30) julia> automorphisms!(d,g) preprocessing ______________________________________________________________ T (ms) delta(ms) proc p1 p2 ______________________________________________________________ 0.08 0.08 regular 10 20 solving_component 1/1 (n=10) ______________________________________________________________ T (ms) delta(ms) proc p1 p2 ______________________________________________________________ 0.14 0.03 sel 2 39 0.18 0.04 dfs 2-0 ~2*10^1 0.19 0.01 done 1 2 julia> group_size(d) |> String "2*10^1" ``` [![Build Status](https://github.com/laurentbartholdi/DejaVu.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/laurentbartholdi/DejaVu.jl/actions/workflows/CI.yml?query=branch%3Amain)
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
docs
2973
# Documentation This is the source code documentation for dejavu 2.0. It contains detailed descriptions for all classes and methods. If you are looking for a guide to get started, please instead refer to our [get started guide](https://automorphisms.org) on our main page. ## Potentially Interesting Pages Below, we list some potentially interesting pages of this documentation. * [solver](@ref dejavu::solver): the dejavu solver, used to compute automorphisms of a graph * [static_graph](@ref dejavu::static_graph): the graph interface * [refinement](@ref dejavu::ir::refinement): the color refinement algorithm * [orbit](@ref dejavu::groups::orbit): can be used to compute orbits * [hooks](@ref dejavu::hooks): hooks are used to interact with the computed symmetries * [random_schreier](@ref dejavu::groups::random_schreier): a implementation of the random Schreier algorithm ## Bug Reports & Feedback If you come across any bugs or have any feedback to share, please always feel free to reach out to me at `markus (at) automorphisms.org`. ## How does it work? An up-to-date description of the algorithms will be available in Markus Anders' PhD thesis. The underlying algorithms are based on a series of papers by Markus Anders and Pascal Schweitzer, in particular * Search Problems in Trees with Symmetries, ICALP 2021 * Engineering a Fast Probabilistic Isomorphism Test, ALENEX 2021 * Parallel Computation of Combinatorial Symmetries, ESA 2021 The preprocessing routines are described in * Engineering a Preprocessor for Symmetry Detection, SEA 2023, additionally co-authored by Julian Stieß ## Copyright & License The solver is released under the MIT license. For more information, see the [license](LICENSE_source.html). ## Compilation Using *cmake*, the project should compile without any further dependencies: ```text cmake . make ``` Compilation produces a binary *dejavu*. It accepts a DIMACS graph as input, and computes the automorphism group of the graph. For available options and more descriptions, please refer to our [guide](https://automorphisms.org/quick_start/standalone/). ## Use dejavu as a library dejavu is a header-only library. You can simply add dejavu to your C++ project by including the respective header file: ```cpp #include "dejavu.h" ``` Note that currently, dejavu requires to be *compiled with C++ version 14*. For a more thorough description, please refer to our [guide](https://automorphisms.org/quick_start/cpp_api/). By default, dejavu is compiled without assertions. We recommend activating assertions for debugging purposes (by adding the definition `DEJDEBUG`). Assertions do however slow the code considerably. ## Running the tests Using *cmake*, a test target `dejavu_test` can be produced by setting the following flag: ```text cmake . -DCOMPILE_TEST_SUITE=1 ``` In order to run all the tests, the [test graphs](https://automorphisms.org/graphs/graphs.zip) are required to be placed into `tests/graphs/`.
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.1.0
6ee30f61e9eed2d9799a214de6aaf3b2d8357f7d
docs
1486
# Get started & Documentation Please refer to our [get started guide](https://automorphisms.org/). There is also a [full documentation](https://automorphisms.org/documentation/), which can be built from the code using [doxygen](https://www.doxygen.nl/). ## Compilation Using *cmake*, the project should compile without any further dependencies: ```text cmake . make ``` Compilation produces a binary *dejavu*. It accepts a DIMACS graph as input, and computes the automorphism group of the graph. For available options and more descriptions, please refer to our [guide](https://automorphisms.org/quick_start/standalone/). ## Use dejavu as a library dejavu is a header-only library. You can simply add dejavu to your C++ project by including the respective header file: ```cpp #include "dejavu.h" ``` Note that currently, dejavu requires to be *compiled with C++ version 14*. For a more thorough description, please refer to our [guide](https://automorphisms.org/quick_start/cpp_api/). By default, dejavu is compiled without assertions. We recommend activating assertions for debugging purposes (by adding the definition `DEJDEBUG`). Assertions do however slow the code considerably. ## Running the tests Using *cmake*, a test target `dejavu_test` can be produced by setting the following flag: ```text cmake . -DCOMPILE_TEST_SUITE=1 ``` In order to run all the tests, the [test graphs](https://automorphisms.org/graphs/graphs.zip) are required to be placed into `tests/graphs/`.
DejaVu
https://github.com/laurentbartholdi/DejaVu.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1048
using SetProg using Documenter, Literate const EXAMPLES_DIR = joinpath(@__DIR__, "src", "examples") const OUTPUT_DIR = joinpath(@__DIR__, "src/generated") const EXAMPLES = readdir(EXAMPLES_DIR) for example in EXAMPLES example_filepath = joinpath(EXAMPLES_DIR, example) Literate.markdown(example_filepath, OUTPUT_DIR) Literate.notebook(example_filepath, OUTPUT_DIR) Literate.script(example_filepath, OUTPUT_DIR) end makedocs( sitename = "SetProg", # See https://github.com/JuliaDocs/Documenter.jl/issues/868 format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"), # See https://github.com/jump-dev/JuMP.jl/issues/1576 strict = true, pages = [ "Index" => "index.md", "Tutorials" => map( file -> joinpath("generated", file), filter( file -> endswith(file, ".md"), sort(readdir(OUTPUT_DIR)), ), ), ], ) deploydocs( repo = "github.com/blegat/SetProg.jl.git", push_preview = true, )
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
6079
using Test #src # # Continuous-time Controlled Invariant Set # #md # [![Binder](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/continuous_controlled.ipynb) #md # [![nbviewer](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/continuous_controlled.ipynb) # # ## Introduction # # This reproduces reproduces the numerical result of the Section 4 of [LJ21]. # # This example considers the continuous-time constrained linear control system: # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = u(t) # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^2$ and input constraint $u \in [-1, 1]$. # # In order to compute controlled invariant sets for this system, we consider # the projection onto the first two dimensions of controlled invariant sets of the # following lifted system: # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = x_3(t)\\ # \dot{x}_3(t) & = u(t) # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^3$. # # The matricial form of this system is given by $\dot{x}(t) = Ax(t) + Bu(t)$ where `A` and `B` are as defined below. # As shown in Proposition 5 of [LJ21], a set is controlled invariant for this system if and only if it is invariant for the algebraic system # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = x_3(t) # \end{aligned} # ``` # The matricial form of this system is given by $E\dot{x}(t) = Cx(t)$ where # # [LJ21] B. Legat and R. M. Jungers. # *Continuous-time controlled invariant sets, a geometric approach*. # 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021, **2021**. A = [0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0] B = reshape([0.0, 0.0, 1.0], 3, 1) E = [1.0 0.0 0.0 0.0 1.0 0.0] C = A[1:2, :] # The invariance of a set $S$ for this system is characterized by the following condition (see Proposition 7 of [LJ21]): # ```math # \forall x \in \partial S, \exists y \in T_S(x), Ey = Cx. # ``` # The search for a set satisfying this condition can be formulated as the following set program; see [L20] for an intoduction to set programming. # # [L20] Legat, B. (2020). *Set programming : theory and computation*. Ph.D. thesis, UCLouvain. using SetProg function maximal_invariant(family, γ = nothing; dirs=dirs) model = Model(sdp_solver) @variable(model, S, family) @constraint(model, S ⊆ □_3) x = boundary_point(S, :x) @constraint(model, C * x in E * tangent_cone(S, x)) S_2 = project(S, 1:2) if γ === nothing @variable(model, γ) end for point in dirs @constraint(model, γ * point in S_2) end @show γ @objective(model, Max, γ) @show JuMP.objective_function(model) JuMP.optimize!(model) @show solve_time(model) @show JuMP.termination_status(model) @show JuMP.objective_value(model) if JuMP.termination_status(model) == MOI.OPTIMAL return JuMP.value(S), JuMP.objective_value(model) else return end end import GLPK lp_solver = optimizer_with_attributes(GLPK.Optimizer, MOI.Silent() => true, "presolve" => GLPK.GLP_ON) import CSDP sdp_solver = optimizer_with_attributes(CSDP.Optimizer, MOI.Silent() => true) using Polyhedra interval = HalfSpace([1.0], 1.0) ∩ HalfSpace([-1.0], 1.0) lib = Polyhedra.DefaultLibrary{Float64}(lp_solver) □_2 = polyhedron(interval * interval, lib) □_3 = □_2 * interval dirs = [[-1 + √3, -1 + √3], [-1, 1]] all_dirs = [dirs; (-).(dirs)] inner = polyhedron(vrep(all_dirs), lib) outer = polar(inner) # ## Ellipsoidal template # # We start with the ellipsoidal template. We consider two different objectives (see Section 4.2 of [L20]): # * the volume of the set (which corresponds to $\log(\det(Q))$ or $\sqrt[n]{\det(Q)}$ in the objective function) and # * the sum of the squares of the length of its semi-axes of the polar (which corresponds to the trace of $Q$ in the objective function). sol_ell, γ_ell = maximal_invariant(Ellipsoid(symmetric=true)) using Plots function hexcolor(rgb::UInt32) r = ((0xff0000 & rgb) >> 16) / 255 g = ((0x00ff00 & rgb) >> 8) / 255 b = ((0x0000ff & rgb) ) / 255 Plots.RGBA(r, g, b) end # Values taken from http://www.toutes-les-couleurs.com/code-couleur-rvb.php lichen = hexcolor(0x85c17e) canard = hexcolor(0x048b9a) aurore = hexcolor(0xffcb60) frambo = hexcolor(0xc72c48) cols = [canard, frambo] x2 = range(0, stop=1, length=20) x1 = 1 .- x2.^2 / 2 upper = [[[-1, 1]]; [[x1[i], x2[i]] for i in eachindex(x2)]] mci = polyhedron(vrep([upper; (-).(upper)]), lib) polar_mci = polar(mci) SetProg.Sets.print_support_function(project(sol_ell, 1:2)) # We can plot the primal solution as follows: function primal_plot(set, γ=nothing; npoints=256, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05), args...) plot(ratio=:equal, tickfont=Plots.font(12); xlim=xlim, ylim=ylim, args...) plot!(□_2, color=lichen) plot!(mci, color=aurore) plot!(set, color=canard, npoints=npoints) γ === nothing || plot!(γ * inner, color=frambo) plot!() end primal_plot(project(sol_ell, 1:2), γ_ell) # and the dual plot as follows: function polar_plot(set, γ; npoints=256, xlim=(-1.5, 1.5), ylim=(-1.5, 1.5), args...) plot(ratio=:equal, tickfont=Plots.font(12); xlim=xlim, ylim=ylim, args...) γ === nothing || plot!(inv(γ) * outer, color=frambo) plot!(polar(set), color=canard, npoints=npoints) plot!(polar_mci, color=aurore) plot!(polar(□_2), color=lichen) end polar_plot(project(sol_ell, 1:2), γ_ell) # ## Polyset template p4, γ4 = maximal_invariant(PolySet(symmetric=true, degree=4, convex=true), 0.91) γ4 # Below is the primal plot: primal_plot(project(p4, 1:2), γ4) # and here is the polar plot: polar_plot(project(p4, 1:2), γ4) # ## Piecewise semi-ellipsoidal template sol_piece_◇, γ_piece_◇ = maximal_invariant(Ellipsoid(symmetric=true, piecewise=polar(□_3)), dirs=all_dirs) γ_piece_◇ # Below is the primal plot: primal_plot(project(sol_piece_◇, 1:2), γ_piece_◇) # and here is the polar plot: polar_plot(project(sol_piece_◇, 1:2), γ_piece_◇)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
13265
using Test #src # # Discrete-time Controlled Invariant Set # #md # [![Binder](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/discrete_controlled.ipynb) #md # [![nbviewer](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/discrete_controlled.ipynb) # # An similar example is available in a [codeocean capsule](https://doi.org/10.24433/CO.6396918.v1). # # ## Introduction # # This example considers the linear control system already introduced in the Example 2 of [LTJ20]; see also Example 2 of [LRJ20]: # ```math # \begin{aligned} # x_{k+1} & = x_k + u_k / 2\\ # u_{k+1} & = u_k' # \end{aligned} # ``` # with $(x_k, u_k) \in [-1, 1]^2$. # # The system is $x_{k+1} = Ax_k + Bu_k$ where $B = (0, 1)$ and # ```math # A = \begin{bmatrix} # 1 & 1/2\\ # 0 & 0 # \end{bmatrix}. # ``` # As shown in Example 4 of [LTJ18], a set $S \subseteq [-1, 1]^2$ is controlled invariant for this system if # ```math # \begin{bmatrix} # 1 & 1/2 # \end{bmatrix} # S \subseteq # \begin{bmatrix} # 1 & 0 # \end{bmatrix} # S # ``` # # [LRJ20] Legat, Benoît, Saša V. Raković, and Raphaël M. Jungers. # *Piecewise semi-ellipsoidal control invariant sets.* # IEEE Control Systems Letters 5.3 (2020): 755-760. # # [LTJ18] B. Legat, P. Tabuada and R. M. Jungers. # *Computing controlled invariant sets for hybrid systems with applications to model-predictive control*. # 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS (2018). # We need to pick an LP and an SDP solver, see [here](https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers) for a list of available ones. using SetProg import GLPK lp_solver = optimizer_with_attributes(GLPK.Optimizer, MOI.Silent() => true) import CSDP sdp_solver = optimizer_with_attributes(CSDP.Optimizer, MOI.Silent() => true) A = [1.0 0.5] E = [1.0 0.0] using Polyhedra lib = DefaultLibrary{Float64}(lp_solver) h = HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1) □ = polyhedron(h, lib) # [0, 1]^2 v = convexhull([1.0, 0], [0, 1], [-1, 0], [0, -1]) ◇ = polyhedron(v, lib); # polar of [0, 1]^2 # ## Polyhedral template # # ### Fixed point approach # # This section shows that the maximal control invariant set of this simple control system is polyhedral. Moreover, this polyhedron is obtained after only one fixed point iteration of the standard viability # kernel algorithm. We implement the fixed point iteration with the following function: function fixed_point_iteration(set::Polyhedron) new_set = set ∩ (A \ (E * set)) removehredundancy!(new_set) return new_set end # We start with $[-1, 1]^2$ and obtain the polytope `mci` after one iteration. mci = fixed_point_iteration(□) # One additional iteration gives the same polytope, showing that this polytope is control invariant. fixed_point_iteration(mci) # We plot this polytope `mci` in yellow below along with the safe set $[-1, 1]^2$ in green. using Plots function hexcolor(rgb::UInt32) r = ((0xff0000 & rgb) >> 16) / 255 g = ((0x00ff00 & rgb) >> 8) / 255 b = ((0x0000ff & rgb) ) / 255 Plots.RGBA(r, g, b) end # Values taken from http://www.toutes-les-couleurs.com/code-couleur-rvb.php lichen = hexcolor(0x85c17e) canard = hexcolor(0x048b9a) aurore = hexcolor(0xffcb60) plot(ratio=:equal, tickfont=Plots.font(12)) plot!(□, color=lichen) plot!(mci, color=aurore) # We also plot their respective polars. Note that the inclusion is reversed in the polar space. polar_mci = polar(mci) plot(ratio=:equal, tickfont=Plots.font(12)) plot!(polar_mci, color=aurore) plot!(◇, color=lichen) function maximal_invariant(template, heuristic::Function) solver = if template isa Polytope lp_solver else sdp_solver end model = Model(solver) @variable(model, S, template) @constraint(model, S ⊆ □) @constraint(model, A * S ⊆ E * S) @objective(model, Max, heuristic(volume(S))) optimize!(model) @show solve_time(model) @show termination_status(model) @show objective_value(model) return value(S) end function primal_plot(set; npoints=256, args...) plot(ratio=:equal, tickfont=Plots.font(12); args...) plot!(□, color=lichen) plot!(mci, color=aurore) plot!(set, color=canard, npoints=npoints) end function polar_plot(set; npoints=256, args...) plot(ratio=:equal, tickfont=Plots.font(12); args...) plot!(SetProg.Sets.polar(set), color=canard, npoints=npoints) plot!(polar_mci, color=aurore) plot!(◇, color=lichen) end # ### Linear programming approach # # As introduced in [R21], given a fixed polyhedral conic partition of the state-space, # we can search over all polyhedra for which the gauge or support function # is linear over each piece of the partition. # The partition can be defined by a polytope as described in [Eq. (4.6), R21]. # In this example, because the sets are represented with the support function, # the pieces will be used for the support function/polar set and # the pieces of the gauge function/primal will depend on the value of # the support function on each piece. # # [R21] Raković, S. V. # *Control Minkowski–Lyapunov functions* # Automatica, Elsevier BV, 2021, 128, 109598 # Let's start with setting the partition using the cross polytope `◇`. sol_polytope_◇ = maximal_invariant(Polytope(symmetric=true, piecewise=◇), L1_heuristic) SetProg.Sets.print_support_function(sol_polytope_◇) # We can see that the polar set is unbounded so the primal set has zero volume. # More precisely, the polar is $[-1, 1] \times [-\infty, \infty]$ and the primal # set is $[-1, 1] \times \{0\}$. # Let's now try setting the partition using the square `□`. sol_polytope_□ = maximal_invariant(Polytope(symmetric=true, piecewise=□), L1_heuristic) SetProg.Sets.print_support_function(sol_polytope_□) # The primal plot is below: primal_plot(sol_polytope_□, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # And the polar plot is below: polar_plot(sol_polytope_□, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # Let's now use a partition with 8 pieces. pieces8 = convexhull(□, 1.25 * ◇) sol_polytope_8 = maximal_invariant(Polytope(symmetric=true, piecewise=pieces8), L1_heuristic) SetProg.Sets.print_support_function(sol_polytope_8) # The primal plot is below: primal_plot(sol_polytope_8, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # And the polar plot is below: polar_plot(sol_polytope_8, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # We can use the polar of the polytope resulting from the first fixed point iteration to generate a refined conic partition. # With this partition, the maximal piecewise semi-ellipsoidal control invariant set matches the maximal control invariant set. sol_polytope_mci = maximal_invariant(Polytope(symmetric=true, piecewise=polar_mci), L1_heuristic) SetProg.Sets.print_support_function(sol_polytope_mci) # The primal plot is below: primal_plot(sol_polytope_mci) # And the polar plot is below: polar_plot(sol_polytope_mci) # ## Ellipsoidal template # # We now compute the maximal ellipsoidal control invariant set. Here we can either maximize its volume (which corresponds to $\log(\det(Q))$ or $\sqrt[n]{\det(Q)}$ in the objective function) or minimize the sum of the squares of the length of its semi-axes of the polar (which corresponds to the trace of $Q$ in the objective function). # We can see below that the control invariant set of maximal volume has support function # $$h^2(S, x) = x_1^2 - \frac{1}{2} x_1x_2 + x_2^2.$$ sol_ell_vol = maximal_invariant(Ellipsoid(symmetric=true, dimension=2), nth_root) SetProg.Sets.print_support_function(sol_ell_vol) # We can see below the ellipsoid in blue along with the maximal control invariant set in yellow and the safe set in green. primal_plot(sol_ell_vol) # Below is are the corresponding sets in the polar space. polar_plot(sol_ell_vol) # We can see below that the control invariant set of minimal sum of squares of the length of the semi-axes of the polar has support function # $$h^2(S, x) = x_1^2 - \alpha x_1x_2 + x_2^2.$$ # with $\alpha \approx 1.377456$. # Note that the sum of the squares of the length of the semi-axes of the polar is equal to the integral of $h^2(S, x)$ over the hypercube $[-1, 1]^2$ hence the use of the `L1_heuristic(vol, ones(2))` as objective which means taking the integral over the hyperrectangle with vertex `ones(2) = [1, 1]`. sol_ell_L1 = maximal_invariant(Ellipsoid(symmetric=true, dimension=2), vol -> L1_heuristic(vol, ones(2))) SetProg.Sets.print_support_function(sol_ell_L1) # The primal plot is below: primal_plot(sol_ell_L1) # And the polar plot is below: polar_plot(sol_ell_L1) # ## Piecewise semi-ellipsoidal template # # We now study the maximal piecewise semi-ellipsoidal control invariant sets of a given conic partition. # The volume is not directly maximized. Instead, for each cone, we compute the sum $s$ of the normalized rays and consider the polytope obtained by intersecting the cone with the halfspace $s^\top x \le \|s\|_2^2$. We integrate the quadratic form corresponding to this cone, i.e. $h^2(S, x)$ over the polytope. The sum of the integrals over each polytope is the objective function we use. This can be seen as the generalization of the sum of the squares of the semi-axes of the polar of the ellipsoid. # # Note that the constraint (29) of Program 1 of [LRJ20] is implemented with Proposition 2 of [LRJ20] for all results of this example. # The conic partition are obtained by considering the conic hull of each facets of a given polytope. # We first consider the conic partition corresponding to the polar of the safe set $[-1, 1]^2$. This gives the four quadrants as cones of the conic partition. # The maximal piecewise semi-ellipsoidal control invariant set with this partition has the following support function: # ```math # h^2(S, x) = \begin{cases} # (x_1 - x_2)^2 & \text{ if }x_1x_2 \le 0,\\ # x_1^2 - x_1x_2/2 + x_2^2 & \text{ if }x_1x_2 \ge 0. # \end{cases} # ``` # For the cones $x_1x_2 \le 0$, the semi-ellipsoid matches the safe set and the maximal control invariant set. # For the cones $x_1x_2 \ge 0$, the semi-ellipsoid matches the maximal volume control invariant ellipsoid. # This illustrates one key feature of piecewise semi-ellipsoidal sets, they can combines advantages of both polyhedra and ellipsoids. It can be polyhedral on the directions where the maximal control invariant set is polyhedral and be ellipsoidal on the directions where the maximal control invariant set is smooth or requires many halfspaces in its representation. sol_piece_◇ = maximal_invariant(Ellipsoid(symmetric=true, piecewise=◇), L1_heuristic) SetProg.Sets.print_support_function(sol_piece_◇) # The primal plot is below: primal_plot(sol_piece_◇, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # And the polar plot is below: polar_plot(sol_piece_◇, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # Let's now try setting the partition with the square `□`. sol_piece_□ = maximal_invariant(Ellipsoid(symmetric=true, piecewise=□), L1_heuristic) SetProg.Sets.print_support_function(sol_piece_□) # The primal plot is below: primal_plot(sol_piece_□, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # And the polar plot is below: polar_plot(sol_piece_□, xlim=(-1.6, 1.6), ylim=(-1.6, 1.6)) # Let's now try with the partition of 8 pieces. sol_piece_8 = maximal_invariant(Ellipsoid(symmetric=true, piecewise=pieces8), L1_heuristic) SetProg.Sets.print_support_function(sol_piece_8) # The primal plot is below: primal_plot(sol_piece_8, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05)) # And the polar plot is below: polar_plot(sol_piece_8, xlim=(-1.1, 1.1), ylim=(-1.05, 1.05)) # We can use the polar of the polytope resulting from the first fixed point iteration to generate a refined conic partition. # With this partition, the maximal piecewise semi-ellipsoidal control invariant set matches the maximal control invariant set. The support function is # ```math # h^2(S, x) = \begin{cases} # (x_1 - x_2)^2 & \text{ if }x_1x_2 \le 0,\\ # x_1^2 & \text{ if }x_2(x_1-2x_2) \ge 0,\\ # (x_1/2 + x_2)^2 & \text{ if }x_1(2x_2-x_1) \ge 0.\\ # \end{cases} # ``` sol_piece_mci = maximal_invariant(Ellipsoid(symmetric=true, piecewise=polar_mci), L1_heuristic) SetProg.Sets.print_support_function(sol_piece_mci) # The primal plot is below: primal_plot(sol_piece_mci) # And the polar plot is below: polar_plot(sol_piece_mci) # ## Polyset template # # We now use the polyset templates. As details in [LRJ20], for inclusion # constraints of the form `A * S ⊆ E * S`, the polar representation is used # so we need the set to be convex. For this, we set the argument `convex=true`. # We directly try `degree=4` because `degree=2` would simply give the same as # `sol_ell_L1`. sol4 = maximal_invariant(PolySet(symmetric=true, degree=4, convex=true), vol -> L1_heuristic(vol, ones(2))) SetProg.Sets.print_support_function(sol4) # The primal plot is below: primal_plot(sol4) # And the polar plot is below: polar_plot(sol4) # Let's now try degree 6. sol6 = maximal_invariant(PolySet(symmetric=true, degree=6, convex=true), vol -> L1_heuristic(vol, ones(2))) SetProg.Sets.print_support_function(sol6) # The primal plot is below: primal_plot(sol6) # And the polar plot is below: polar_plot(sol6)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
8336
using Test #src # # Discrete-time Switched Invariant Set # #md # [![Binder](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/discrete_switched.ipynb) #md # [![nbviewer](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/discrete_switched.ipynb) # # ## Introduction # # In this notebook, we compute the maximal (resp. minimal) invariant set contained in the square with vertices $(\pm 1, \pm 1)$ for the system # ```math # \begin{aligned} # x_{k+1} & = -y_k\\ # y_{k+1} & = x_k. # \end{aligned} # ``` # # The system is $x_{k+1} = Ax_k$ where # ```math # A = \begin{bmatrix} # 0 & -1\\ # 1 & 0 # \end{bmatrix}. # ``` # A set $S$ is controlled invariant if # $$AS \subseteq S.$$ # We need to pick an LP and an SDP solver, see [here](https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers) for a list of available ones. Run one of the following two cells to choose choose the solver. using SetProg import Clp lp_solver = optimizer_with_attributes(Clp.Optimizer, MOI.Silent() => true) import CSDP sdp_solver = optimizer_with_attributes(CSDP.Optimizer, MOI.Silent() => true) using Polyhedra lib = DefaultLibrary{Float64}(lp_solver) h = HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1) □ = polyhedron(h, lib) ◇ = polar(□) A1 = [-1 -1 -4 0] / 4 A2 = [ 3 3 -2 1] / 4 A = [0.0 -1.0 1.0 0.0] function maximal_invariant(template, heuristic::Function) solver = if template isa Polytope lp_solver else sdp_solver end model = Model(solver) @variable(model, S, template) @constraint(model, S ⊆ □) @constraint(model, A1 * S ⊆ S) @constraint(model, A2 * S ⊆ S) @objective(model, Max, heuristic(volume(S))) optimize!(model) @show solve_time(model) @show termination_status(model) @show objective_value(model) return value(S) end function minimal_invariant(template, heuristic::Function) solver = if template isa Polytope lp_solver else sdp_solver end model = Model(solver) @variable(model, S, template) @constraint(model, □ ⊆ S) @constraint(model, A1 * S ⊆ S) @constraint(model, A2 * S ⊆ S) @objective(model, Min, heuristic(volume(S))) optimize!(model) @show solve_time(model) @show termination_status(model) @show objective_value(model) @show JuMP.objective_sense(model) return value(S) end using Plots function hexcolor(rgb::UInt32) r = ((0xff0000 & rgb) >> 16) / 255 g = ((0x00ff00 & rgb) >> 8) / 255 b = ((0x0000ff & rgb) ) / 255 Plots.RGBA(r, g, b) end # Values taken from http://www.toutes-les-couleurs.com/code-couleur-rvb.php lichen = hexcolor(0x85c17e) canard = hexcolor(0x048b9a) aurore = hexcolor(0xffcb60) frambo = hexcolor(0xc72c48) function primal_plot(min_sol, max_sol; npoints=256, args...) plot(ratio=:equal, tickfont=Plots.font(12); args...) plot!(min_sol, color=canard, npoints=npoints) plot!(□, color=lichen) plot!(max_sol, color=aurore, npoints=npoints) end function polar_plot(min_sol, max_sol; npoints=256, args...) plot(ratio=:equal, tickfont=Plots.font(12); args...) plot!(polar(max_sol), color=aurore, npoints=npoints) plot!(◇, color=lichen) plot!(polar(min_sol), color=canard, npoints=npoints) end # ## Polyhedral template # # ### Fixed point approach # # This section shows fixed point approach for computing a polyhedral maximal invariant set. # We implement the fixed point iteration of the standard viability kernel algorithm with the following function. # A more sophisticated approach specialized for discrete-time linear switched systems # is available in [SwitchOnSafety](https://github.com/blegat/SwitchOnSafety.jl). function backward_fixed_point_iteration(set::Polyhedron) new_set = set ∩ (A1 \ set) ∩ (A2 \ set) removehredundancy!(new_set) return new_set end # We start with $[-1, 1]^2$ and obtain the maximal invariant set after one iteration. max_polytope_1 = backward_fixed_point_iteration(□) # We can see that it has already converged. backward_fixed_point_iteration(max_polytope_1) # We now turn to the minimal invariant set with the following iteration: function forward_fixed_point_iteration(set::Polyhedron) new_set = convexhull(set, A1 * set, A2 * set) removevredundancy!(new_set) return new_set end # We start with $[-1, 1]^2$ and obtain the minimal invariant set after three iteration. min_polytope_1 = forward_fixed_point_iteration(□) # We see below that the second iteration was indeed needed. min_polytope_2 = forward_fixed_point_iteration(min_polytope_1) # And the third iteration as well. min_polytope_3 = forward_fixed_point_iteration(min_polytope_2) # We see below that it has converged forward_fixed_point_iteration(min_polytope_3) # Let's see this visually plot(ratio=:equal, tickfont=Plots.font(12)) plot!(min_polytope_3, color=frambo) plot!(min_polytope_2, color=canard) plot!(min_polytope_1, color=aurore) plot!(□, color=lichen) plot!(max_polytope_1, color=frambo) # ### Linear programming approach # # As introduced in [R21], we can search over all polyhedra with a given face fan. # The partition can be defined by the face fan of a given polytope as described in [Eq. (4.6), R21]. # For `maximal_invariant`, because the sets are represented with the support function, # the fan will be used for the face fan of the polar set # the face fan of the primal set will depend on the value of # the support function on each piece. # For `minimal_invariant`, the sets are represented with the gauge function, # the fac will therefore be used for the face fan of the primal set. # # [R21] Raković, S. V. # *Control Minkowski–Lyapunov functions* # Automatica, Elsevier BV, 2021, 128, 109598 # We use the face fan of the polytope `pieces8` (which has the same face fan as the octogon `convexhull(□, √2 * ◇)`). pieces8 = convexhull(□, 1.25 * ◇) max_polytope = maximal_invariant(Polytope(symmetric=true, piecewise=pieces8), L1_heuristic) min_polytope = minimal_invariant(Polytope(symmetric=true, piecewise=polar(pieces8)), L1_heuristic) primal_plot(min_polytope, max_polytope) # The polar plot is as follows: polar_plot(min_polytope, max_polytope) # ## Ellipsoidal template # We now consider the ellipsoidal template. # The ellipsoids of maximal volume are given as follows: max_ell_vol = maximal_invariant(Ellipsoid(symmetric=true), nth_root) min_ell_vol = minimal_invariant(Ellipsoid(symmetric=true), nth_root) primal_plot(min_ell_vol, max_ell_vol) # All ellipsoids are convex so we can also obtain the polar plot: polar_plot(min_ell_vol, max_ell_vol) # The ellipsoids of maximal sum of squared length of its axis. max_ell_L1 = maximal_invariant(Ellipsoid(symmetric=true), vol -> L1_heuristic(vol, ones(2))) min_ell_L1 = minimal_invariant(Ellipsoid(symmetric=true), vol -> L1_heuristic(vol, ones(2))) primal_plot(min_ell_L1, max_ell_L1) # And the polar plot is: polar_plot(min_ell_vol, max_ell_vol) # ## Polyset template # We generalize the previous template to homogeneous polynomials of degree $2d$. # As objective, we use the integral of the polynomial used to represent # the set (either in the support function for `maximal_invariant` # or in the gauge function for `minimal_invariant`) over the square `□`. # We start with quartic polynomials. max_4 = maximal_invariant(PolySet(symmetric=true, convex=true, degree=4), vol -> L1_heuristic(vol, ones(2))) min_4 = minimal_invariant(PolySet(symmetric=true, degree=4), vol -> L1_heuristic(vol, ones(2))) primal_plot(min_4, max_4) # We now obtain the results for sextic polynomials, note that we do not # impose the sets to be convex for `minimal_invariant`. This is why we don't # show the polar plot for polysets. max_6 = maximal_invariant(PolySet(symmetric=true, convex=true, degree=6), vol -> L1_heuristic(vol, ones(2))) min_6 = minimal_invariant(PolySet(symmetric=true, degree=6), vol -> L1_heuristic(vol, ones(2))) primal_plot(min_6, max_6) # The nonconvexity is even more apparent for octic polynomials. max_8 = maximal_invariant(PolySet(symmetric=true, convex=true, degree=8), vol -> L1_heuristic(vol, □)) min_8 = minimal_invariant(PolySet(symmetric=true, degree=8), vol -> L1_heuristic(vol, □)) primal_plot(min_8, max_8, npoints=1024)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
7069
# # Hybrid Controlled Invariant Set # #md # [![Binder](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/hybrid_controlled.ipynb) #md # [![nbviewer](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/hybrid_controlled.ipynb) # # ## Introduction # # This example considers the hybrid constrained linear control system: # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = u(t) # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^2$ and input constraint $u \in [-1, 1]$ # and the jump: # ```math # \begin{aligned} # x_1^+ & = -x_1 + u/8\\ # x_2^+ & = x_2 - u/8 # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^2$ and input constraint $u \in [-1, 1]$ # that can occur anytime. # # In order to compute controlled invariant sets for this system, we consider # the projection onto the first two dimensions of controlled invariant sets of the # following lifted system: # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = x_3(t)\\ # \dot{x}_3(t) & = u(t) # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^3$; # with a first jump to a temporary mode: # ```math # \begin{aligned} # x_1^+ & = x_1\\ # x_2^+ & = x_2\\ # x_3^+ & = u # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^3$ and unconstrained input; # and a second jump back to the original mode: # ```math # \begin{aligned} # x_1^+ & = -x_1 + x_3/8\\ # x_2^+ & = x_2 - x_3/8\\ # x_3^+ & = u. # \end{aligned} # ``` # Note that the input `u` chosen in the first jump is the input that will be used for # the reset map and the input `u` chosen for the second jump is the input that will be used # for the state `x_3` of the continuous-time system. # # The matricial form of this system is given by $\dot{x}(t) = Ax(t) + Bu(t)$ where `A` and `B` are as defined below. # As shown in Proposition 5 of [LJ21], a set is controlled invariant for this system if and only if it is weakly invariant for the algebraic system # ```math # \begin{aligned} # \dot{x}_1(t) & = x_2(t)\\ # \dot{x}_2(t) & = x_3(t) # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^3$; # with a first jump to a temporary mode: # ```math # \begin{aligned} # x_1^+ & = x_1\\ # x_2^+ & = x_2 # \end{aligned} # ``` # with state constraint $x \in [-1, 1]^3$ # and a second jump back to the original mode: # ```math # \begin{aligned} # x_1^+ & = -x_1 + x_3/8\\ # x_2^+ & = x_2 - x_3/8. # \end{aligned} # ``` # # The matricial form of this system is given by $E\dot{x}(t) = Cx(t)$ with a first jump # $Ex^+ = Ex$ and a second jump $Ex^+ = Ux$ where: # # [LJ21] B. Legat and R. M. Jungers. # *Continuous-time controlled invariant sets, a geometric approach*. # 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021, **2021**. A = [0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0] B = reshape([0.0, 0.0, 1.0], 3, 1) E = [1.0 0.0 0.0 0.0 1.0 0.0] C = A[1:2, :] U = [-1.0 0.0 1/4 0.0 1.0 -1/4] using SetProg function maximal_invariant(family, γ = nothing; dirs=dirs) model = Model(sdp_solver) @variable(model, S, family) @constraint(model, S ⊆ □_3) @variable(model, T, family) @constraint(model, T ⊆ □_3) x = boundary_point(S, :x) @constraint(model, C * x in E * tangent_cone(S, x)) @constraint(model, E * S ⊆ E * T) @constraint(model, U * T ⊆ E * S) S_2 = project(S, 1:2) if γ === nothing @variable(model, γ) end @constraint(model, [point in dirs], γ * point in S_2) @objective(model, Max, γ) JuMP.optimize!(model) @show solve_time(model) @show JuMP.termination_status(model) @show JuMP.objective_value(model) if JuMP.termination_status(model) == MOI.OPTIMAL return JuMP.value(S), JuMP.objective_value(model) else return end end import GLPK lp_solver = optimizer_with_attributes(GLPK.Optimizer, MOI.Silent() => true, "presolve" => GLPK.GLP_ON) import CSDP sdp_solver = optimizer_with_attributes(CSDP.Optimizer, MOI.Silent() => true) using Polyhedra interval = HalfSpace([1.0], 1.0) ∩ HalfSpace([-1.0], 1.0) lib = Polyhedra.DefaultLibrary{Float64}(lp_solver) □_2 = polyhedron(interval * interval, lib) □_3 = □_2 * interval u_max = 1/8 x2l0 = √(2u_max) - u_max dirs = [[-1 + √3, -1 + √3], [-1/2, 1.0], [-1.0, x2l0]] all_dirs = [dirs; (-).(dirs)] inner = polyhedron(vrep(all_dirs), lib) outer = polar(inner) # ## Ellipsoidal template # # We start with the ellipsoidal template. The objective consider is to maximize `γ` # such that `γ * inner` is included in the set. sol_ell, γ_ell = maximal_invariant(Ellipsoid(symmetric=true)) using Plots function hexcolor(rgb::UInt32) r = ((0xff0000 & rgb) >> 16) / 255 g = ((0x00ff00 & rgb) >> 8) / 255 b = ((0x0000ff & rgb) ) / 255 Plots.RGBA(r, g, b) end # Values taken from http://www.toutes-les-couleurs.com/code-couleur-rvb.php lichen = hexcolor(0x85c17e) canard = hexcolor(0x048b9a) aurore = hexcolor(0xffcb60) frambo = hexcolor(0xc72c48) cols = [canard, frambo] x2 = range(0, stop=1, length=20) x1 = 1 .- x2.^2 / 2 x2l = range(x2l0, stop=1.0 - u_max, length=20) x1l = -(1 .- (x2l .+ u_max).^2 / 2 .+ u_max) upper = [[[-1/2, 1.0]]; [[x1l[i], x2l[i]] for i in eachindex(x2l)]; [[x1[i], x2[i]] for i in eachindex(x2)]] mci = polyhedron(vrep([upper; (-).(upper)]), lib) polar_mci = polar(mci) SetProg.Sets.print_support_function(project(sol_ell, 1:2)) # We can plot the primal solution as follows: function primal_plot(set, γ=nothing; npoints=256, xlim=(-1.05, 1.05), ylim=(-1.05, 1.05), args...) plot(ratio=:equal, tickfont=Plots.font(12); xlim=xlim, ylim=ylim, args...) plot!(□_2, color=lichen) plot!(mci, color=aurore) plot!(set, color=canard, npoints=npoints) γ === nothing || plot!(γ * inner, color=frambo) plot!() end primal_plot(project(sol_ell, 1:2), γ_ell) # and the dual plot as follows: function polar_plot(set, γ; npoints=256, xlim=(-1.5, 1.5), ylim=(-1.5, 1.5), args...) plot(ratio=:equal, tickfont=Plots.font(12); xlim=xlim, ylim=ylim, args...) γ === nothing || plot!(inv(γ) * outer, color=frambo) plot!(polar(set), color=canard, npoints=npoints) plot!(polar_mci, color=aurore) plot!(polar(□_2), color=lichen) end polar_plot(project(sol_ell, 1:2), γ_ell) # ## Polyset template # We start with quartic polynomials: p4, γ4 = maximal_invariant(PolySet(symmetric=true, degree=4, convex=true), 0.896) γ4 # Below is the primal plot: primal_plot(project(p4, 1:2), γ4) # and here is the polar plot: polar_plot(project(p4, 1:2), γ4) # We now try it with sextic polynomials: p6, γ6 = maximal_invariant(PolySet(symmetric=true, degree=6, convex=true), 0.93) γ6 # Below is the primal plot: primal_plot(project(p6, 1:2), γ6) # and here is the polar plot: polar_plot(project(p6, 1:2), γ6) # We now try it with octic polynomials: p8, γ8 = maximal_invariant(PolySet(symmetric=true, degree=8, convex=true), 0.96) γ8 # Below is the primal plot: primal_plot(project(p8, 1:2), γ8) # and here is the polar plot: polar_plot(project(p8, 1:2), γ8)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
871
function hexcolor(rgb::UInt32) r = ((0xff0000 & rgb) >> 16) / 255 g = ((0x00ff00 & rgb) >> 8) / 255 b = ((0x0000ff & rgb) ) / 255 Plots.RGBA(r, g, b) end # Values taken from http://www.toutes-les-couleurs.com/code-couleur-rvb.php troyes = hexcolor(0xfefdf0) #troyes = Plots.RGBA(0.9961, 0.9922, 0.9412) frambo = hexcolor(0xc72c48) #frambo = Plots.RGBA(0.7804, 0.1725, 0.2824) lichen = hexcolor(0x85c17e) #lichen = Plots.RGBA(0.5216, 0.7569, 0.4941) canard = hexcolor(0x048b9a) #canard = Plots.RGBA(0.0157, 0.5451, 0.6039) aurore = hexcolor(0xffcb60) # colors taken from https://previews.123rf.com/images/capacitorphoto/capacitorphoto1410/capacitorphoto141000191/32438941-Graph-Icon-color-set-illustration--Stock-Vector.jpg red = hexcolor(0xf59297) gre = hexcolor(0xcbdf80) blu = hexcolor(0x2394ce) ora = hexcolor(0xfacb95) yel = hexcolor(0xf2f08b)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
10882
struct L1Heuristic{S} <: AbstractScalarFunction set::S support # support of L1 integral end Base.copy(l::L1Heuristic) = l L1_heuristic(volume::Volume, support=nothing) = L1Heuristic(volume.set, support) Base.show(io::IO, l::L1Heuristic) = print(io, "L1-heuristic(", l.set, ")") set_space(space::Space, ::L1Heuristic, ::JuMP.Model) = space function power_integrate(exponent, bound) exp = exponent + 1 @assert isodd(exp) return (2/exp) * bound^exp end function rectangle_integrate(m::MP.AbstractMonomialLike, vertex) exp = MP.exponents(m) if any(isodd, exp) return zero(power_integrate(2, vertex[1])) else @assert length(exp) == length(vertex) return prod(power_integrate.(exp, vertex)) end end function rectangle_integrate(t::MP.AbstractTermLike, vertex) return MP.coefficient(t) * rectangle_integrate(MP.monomial(t), vertex) end function rectangle_integrate(p::MP.AbstractPolynomialLike, vertex) return sum(rectangle_integrate(t, vertex) for t in MP.terms(p)) end struct PowerOfLinearForm coefficients::Vector{Int} power::Int end struct Decomposition coefficients::Vector{Float64} forms::Vector{PowerOfLinearForm} end using Combinatorics using Polyhedra using LinearAlgebra # See (6) of [BBDKV11] function _linear_simplex(l::PowerOfLinearForm, s) ls = [l.coefficients'si for si in points(s)] sum(prod(i -> ls[i]^k[i], eachindex(ls)) for k in multiexponents(npoints(s), l.power)) end function _integrate(l::PowerOfLinearForm, s) current = Polyhedra.unscaled_volume_simplex(s) * _linear_simplex(l, s) # Should multiply by `factorial(l.power) / factorial(l.power + fulldim(s))` # but we want computing `factorial` as it needs big integer for arguments above 20. for i in (l.power + 1):(l.power + fulldim(s)) current /= i end return current end function integrate(l::PowerOfLinearForm, s, cache::Dict{PowerOfLinearForm, Float64}) if !haskey(cache, l) cache[l] = _integrate(l, s) end return cache[l] end function integrate_simplex!(ints::Vector{Float64}, decs::Vector{Decomposition}, simplex, cache = Dict{PowerOfLinearForm, Float64}()) empty!(cache) for (i, dec) in enumerate(decs) ints[i] += sum(dec.coefficients[j] * integrate(dec.forms[j], simplex, cache) for j in eachindex(dec.forms)) end end function integrate_decompositions(decs::Vector{Decomposition}, polytope::Polyhedron, cache = Dict{PowerOfLinearForm, Float64}()) integrals = zeros(length(decs)) for Δ in Polyhedra.triangulation(polytope) integrate_simplex!(integrals, decs, Δ, cache) end return integrals end function integrate_monomials(monos::AbstractVector{<:MP.AbstractMonomial}, polytope::Polyhedron) return integrate_decompositions(decompose.(monos), polytope) end function integrate(p::MP.AbstractPolynomial, polytope::Polyhedron) return MP.coefficients(p)'integrate_monomials(MP.monomials(p), polytope) end function integrate_gauge_like(set, polytope, decs, val, cache) integrals = integrate_decompositions(decs, polytope, cache) return evaluate_monomials(exps -> integrals[val[exps]], set) end function l1_integral(set, polytope::Polyhedra.Polyhedron) decs = Decomposition[] val = Dict(exps => length(push!(decs, decompose(exps))) for exps in all_exponents(set)) cache = Dict{PowerOfLinearForm, Float64}() return integrate_gauge_like(set, polytope, decs, val, cache) end """ As studied in [DPW96]. [DPW96] C. Durieu, B. T. Polyak and E. Walter. *Trace versus determinant in ellipsoidal outer-bounding, with application to state estimation*. IFAC Proceedings Volumes, **1996**. """ function l1_integral(ell::Sets.Ellipsoid, vertex::AbstractVector) n = Sets.dimension(ell) @assert n == length(vertex) # The integral of off-diagonal entries xy are zero between the rectangle # is symmetric # the integral of x^2 is (x^3 - (-x^3)) / 3 = 2/3 * x^3 c = 2/3 return sum(i -> ell.Q[i, i] * c * vertex[i]^2, 1:n) end """ As developed in [HL12]. [HL12] D. Henrion and C. Louembet. *Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design*. International Journal of Control, **2012**. """ function l1_integral(set::Union{Sets.PolySet, Sets.ConvexPolySet}, vertex::AbstractVector) return rectangle_integrate(set.p, vertex) end # See (13) of [BBDKV11] #[BBDKV11] Baldoni, V., Berline, N., De Loera, J., Köppe, M., & Vergne, M. (2011). # How to integrate a polynomial over a simplex. Mathematics of Computation, 80(273), 297-325. function decompose(exps::Vector{Int}) f(i) = 0:i d = sum(exps) # `factorial` is limited to `d <= 20`. deno = prod(Float64, 1:d) coefficients = Float64[] forms = PowerOfLinearForm[] for p in Iterators.product(f.(exps)...) dp = sum(p) iszero(dp) && continue coef = prod(i -> binomial(exps[i], p[i]), eachindex(p)) if isodd(d - dp) coef = -coef end push!(coefficients, coef / deno) push!(forms, PowerOfLinearForm(collect(p), d)) end return Decomposition(coefficients, forms) end decompose(mono::MP.AbstractMonomial) = decompose(MP.exponents(mono)) function all_exponents(set::Union{Sets.PolySet, Sets.ConvexPolySet}) return MP.exponents.(MP.monomials(Sets.space_variables(set), set.degree)) end function ell_exponents(i, j, n) exps = zeros(Int, n) exps[i] += 1 exps[j] += 1 return exps end function all_exponents(set::Union{Sets.Ellipsoid,Sets.Piecewise{<:Any, <:Sets.Ellipsoid}}) return [ell_exponents(i, j, Sets.dimension(set)) for j in 1:Sets.dimension(set) for i in 1:j] end function all_exponents(set::Sets.Piecewise) # TODO check that all polysets have same exponents return all_exponents(set.sets[1]) end function lin_exponents(i, n) exps = zeros(Int, n) exps[i] += 1 return exps end function all_exponents(set::Union{Sets.PolarPoint,Sets.Piecewise{<:Any,<:Sets.PolarPoint}}) return [lin_exponents(i, Sets.dimension(set)) for i in 1:Sets.dimension(set)] end function evaluate_monomials(monomial_value::Function, set::Union{Sets.PolySet{T}, Sets.ConvexPolySet{T}}) where T U = MA.promote_operation(*, Float64, T) total = zero(MA.promote_operation(+, U, U)) for t in MP.terms(set.p) total = MA.add_mul!!(total, monomial_value(MP.exponents(MP.monomial(t))), MP.coefficient(t)) end return total end function evaluate_monomials(monomial_value::Function, set::Sets.Ellipsoid{T}) where T U = MA.promote_operation(*, Float64, T) total = zero(MA.promote_operation(+, U, U)) for j in 1:Sets.dimension(set) for i in 1:Sets.dimension(set) total = MA.add_mul!!(total, monomial_value(ell_exponents(i, j, Sets.dimension(set))), set.Q[i, j]) end end return total end function evaluate_monomials(monomial_value::Function, set::Sets.PolarPoint{T}) where T U = MA.promote_operation(*, Float64, T) total = zero(MA.promote_operation(+, U, U)) for i in 1:Sets.dimension(set) total = MA.add_mul!!(total, monomial_value(lin_exponents(i, Sets.dimension(set))), set.a[i]) end return total end function l1_integral(set::Sets.Piecewise{T, <:Union{Sets.PolarPoint{T}, Sets.Ellipsoid{T}, Sets.PolySet{T}}}, ::Nothing) where T decs = Decomposition[] val = Dict(exps => length(push!(decs, decompose(exps))) for exps in all_exponents(set)) cache = Dict{PowerOfLinearForm, Float64}() U = MA.promote_operation(*, Float64, T) total = zero(MA.promote_operation(+, U, U)) for (set, piece) in zip(set.sets, set.pieces) # Some pieces might be empty cones, e.g., if a projection of a polar set is given. hasallrays(piece) || continue @assert !haslines(piece) # `piece` is a cone, let's cut it with a halfspace # We normalize as the norm of each ray is irrelevant cut = normalize(sum(normalize ∘ Polyhedra.coord, rays(piece))) # Just a heuristic, open to better ideas polytope = piece ∩ HalfSpace(cut, one(eltype(cut))) total = MA.add!!(total, integrate_gauge_like(set, polytope, decs, val, cache)) end return total end _polar(::Nothing) = nothing function _polar(vertex::Vector) ◇ = typeof(vertex)[] for i in eachindex(vertex) v = zeros(eltype(vertex), length(vertex)) v[i] = 1 / vertex[i] push!(◇, v) v = zeros(eltype(vertex), length(vertex)) v[i] = -1 / vertex[i] push!(◇, v) end return Polyhedra.polyhedron(Polyhedra.vrep(◇)) end # The polar of the rectangle with vertices (-v, v) is not a rectangle but the # smaller rectangle contained in it has vertices (-1 ./ v, 1 ./ v). # the set is not necessarily inside this rectangle, we just know that it is # outside the polar of the rectangle with vertices (-v, v). However, since it # is homogeneous, only the ratios between the dimensions is important function l1_integral(set::Sets.Polar, p::Polyhedra.Polyhedron) return l1_integral(Polyhedra.polar(set), Polyhedra.polar(p)) end function l1_integral(set::Sets.Polar, vertex) return l1_integral(Polyhedra.polar(set), _polar(vertex)) end function l1_integral(set::Sets.HouseDualOf{<:Sets.AbstractEllipsoid}, vertex) return l1_integral(Polyhedra.polar(Sets.Ellipsoid(set.set.set.Q)), vertex) end function l1_integral(set::Sets.HouseDualOf{<:Sets.ConvexPolynomialSet}, vertex) return rectangle_integrate(MP.subs(set.set.set.q, set.set.set.z => 0), 1 ./ vertex) end function invert_objective_sense(::Union{Sets.Polar, Sets.PerspectiveDual}) return false end function invert_objective_sense(::Union{Sets.Ellipsoid, Sets.PolySet, Sets.ConvexPolySet, Sets.Piecewise}) return true end function objective_sense(model::JuMP.Model, l::L1Heuristic) sense = data(model).objective_sense if invert_objective_sense(variablify(l.set)) if sense == MOI.MAX_SENSE return MOI.MIN_SENSE elseif sense == MOI.MIN_SENSE return MOI.MAX_SENSE else error("Unsupported objective sense $sense for `L1_heuristic`.") end else return sense end end function objective_function(::JuMP.Model, l::L1Heuristic) return l1_integral(variablify(l.set), l.support) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
830
module SetProg using LinearAlgebra include("Sets/Sets.jl") import MutableArithmetics const MA = MutableArithmetics import Reexport Reexport.@reexport using MultivariateBases Reexport.@reexport using JuMP const MOI = JuMP.MOI Reexport.@reexport using Polyhedra using SumOfSquares using MultivariateMoments import DynamicPolynomials import MultivariatePolynomials as MP const SpaceVariable = Sets.SpaceVariable export Polytope, Ellipsoid, PolySet export nth_root, L1_heuristic @enum Space Undecided PrimalSpace DualSpace include("utilities.jl") include("spaces.jl") include("macros.jl") # need to be before `variables.jl` and `constraints.jl` as they use `⊆` in `@constraint` include("variables.jl") include("map.jl") include("constraints.jl") include("objective.jl") include("data.jl") include("optimize.jl") end # module
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1096
struct AffineTerm{T, F} coefficient::T func::F end struct AffineExpression{T, F <: AbstractScalarFunction} <: AbstractScalarFunction terms::Vector{AffineTerm{T, F}} constant::T end function Base.:(+)(f::F, g::F) where F <: AbstractScalarFunction return AffineExpression([AffineTerm(1.0, f), AffineTerm(1.0, g)], 0.0) end function Base.:(+)(a::AffineExpression{T, F}, f::F) where {T, F <: AbstractScalarFunction} return AffineExpression([a.terms; AffineTerm(1.0, f)], a.constant) end function Base.:(+)(f::F, a::AffineExpression{T, F}) where {T, F <: AbstractScalarFunction} return a + f end function objective_sense(model::JuMP.Model, f::AffineExpression) sense = objective_sense(model, f.terms[1]) for i in 2:length(f.terms) @assert sense == objective_sense(model, f.terms[i]) end return sense end function objective_function(model::JuMP.Model, aff::AffineExpression) obj = convert(JuMP.AffExpr, aff.constant) for t in aff.terms obj = MA.add_mul!!(obj, t.coefficient, objective_function(t.func)) end return obj end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1913
abstract type SetConstraint <: JuMP.AbstractConstraint end ## Loading ## function need_variablify(set::Union{Polyhedra.Rep, Polyhedra.RepElement, Sets.AbstractSet}) return false end function variablify(set::Union{Polyhedra.Rep, Polyhedra.RepElement, Sets.AbstractSet}) return set end need_variablify(v::SetVariableRef) = true variablify(v::SetVariableRef) = v.variable function load(model::JuMP.Model, constraint::SetConstraint) @assert need_variablify(constraint) return JuMP.add_constraint(model, variablify(constraint)) end ## Adding ## struct SetShape <: JuMP.AbstractShape end struct ConstraintIndex value::Int end function JuMP.add_constraint(model::JuMP.Model, constraint::SetConstraint, name::String="") d = data(model) if d.state != Modeling error("Constraint of type $(typeof(constraint)) not supported yet") end @assert need_variablify(constraint) index = ConstraintIndex(d.last_index += 1) d.constraints[index] = constraint d.names[index] = name return JuMP.ConstraintRef(model, index, SetShape()) end ### SetConstraintRef ### const SetConstraintRef{M} = JuMP.ConstraintRef{M, ConstraintIndex, SetShape} function JuMP.name(cref::SetConstraintRef) return data(cref.model).names[cref.index] end function JuMP.constraint_object(cref::SetConstraintRef) return data(cref.model).constraints[cref.index] end function transformed_constraint(cref::SetConstraintRef) return data(cref.model).transformed_constraints[cref.index] end function JuMP.dual(cref::SetConstraintRef) return JuMP.dual(transformed_constraint(cref)) end function SumOfSquares.moment_matrix(cref::SetConstraintRef) return SumOfSquares.moment_matrix(transformed_constraint(cref)) end include("membership.jl") include("inclusion.jl") include("tangent.jl")
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3882
# Avoid variables, constraints and objective being added when loading @enum State Loading Modeling mutable struct Data variables::Set{SetVariableRef} constraints::Dict{ConstraintIndex, SetConstraint} transformed_constraints::Dict{ConstraintIndex, JuMP.ConstraintRef} names::Dict{ConstraintIndex, String} last_index::Int objective_sense::MOI.OptimizationSense objective::Union{Nothing, AbstractScalarFunction} objective_variable::Union{Nothing, JuMP.VariableRef} perspective_polyvar::Union{Nothing, SpaceVariable} space::Space state::State spaces::Union{Nothing, Spaces} end function JuMP.copy_extension_data(::SetProg.Data, ::JuMP.Model, ::JuMP.Model) end function lift_space_variables(data::Data, x::Vector{SpaceVariable}) @assert data.perspective_polyvar > x[1] SpaceVariable[data.perspective_polyvar; x] end function set_space(cur::Space, space::Space) if space == Undecided || cur == Undecided || cur == space return space else error("Incompatible constraints/objective, some require to do the modeling in the primal space and some in the dual space.") end end function set_space(d::Data, model::JuMP.Model) space = Undecided for (index, constraint) in d.constraints space = set_space(space, constraint) end if d.objective !== nothing space = set_space(space, d.objective, model) end if space == Undecided space = PrimalSpace end d.space = space end # Remove spaces creating in earlier `optimize!` function clear_spaces(d::Data) for vref in d.variables clear_spaces(vref) end for (index, constraint) in d.constraints clear_spaces(constraint) end end # No space index stored in constants function clear_spaces(::Union{Polyhedra.Rep, Sets.AbstractSet}) end # No perspective variable function Sets.perspective_variable(::Polyhedra.Rep) end synchronize_perspective(::Nothing, ::Nothing) = nothing synchronize_perspective(::Nothing, z::SpaceVariable) = z synchronize_perspective(z::SpaceVariable, ::Nothing) = z function synchronize_perspective(z1::SpaceVariable, z2::SpaceVariable) if z1 !== z2 throw(ArgumentError("Perspective variables do not match")) end return z1 end function synchronize_perspective(d::Data) z = nothing for (index, constraint) in d.constraints z = synchronize_perspective(z, Sets.perspective_variable(constraint)) end if z === nothing DynamicPolynomials.@polyvar z end d.perspective_polyvar = z end function create_spaces(set::Polyhedra.Rep, spaces::Spaces) return new_space(spaces, Polyhedra.fulldim(set)) end function create_spaces(set::Union{Sets.AbstractSet, Sets.Projection}, spaces::Spaces) polyvars = Sets.space_variables(set) if polyvars === nothing return new_space(spaces, Sets.dimension(set)) else return new_space(spaces, polyvars) end end # Create spaces and identify objects lying the the same space function create_spaces(d::Data) spaces = Spaces() for vref in d.variables create_spaces(vref, spaces) end for (index, constraint) in d.constraints create_spaces(constraint, spaces) end d.spaces = spaces end function data(model::JuMP.Model) if !haskey(model.ext, :SetProg) model.ext[:SetProg] = Data(Set{SetVariableRef}(), Dict{ConstraintIndex, SetConstraint}(), Dict{ConstraintIndex, JuMP.ConstraintRef}(), Dict{ConstraintIndex, String}(), 0, MOI.FEASIBILITY_SENSE, nothing, nothing, nothing, Undecided, Modeling, nothing) model.optimize_hook = optimize_hook end return model.ext[:SetProg] end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1105
function poly_eval(p::MP.AbstractPolynomial{JuMP.AffExpr}, a::AbstractVector{Float64}) vars = MP.variables(p) aff = zero(JuMP.AffExpr) for term in MP.terms(p) mono = MP.monomial(term) aff = MA.add_mul!!(aff, mono(vars => a), MP.coefficient(term)) end return aff end function sublevel_eval(ell::Sets.Ellipsoid, a::AbstractVector) return quad_form(ell.Q, a) end function sublevel_eval(set::Union{Sets.PolySet, Sets.ConvexPolySet}, a::AbstractVector) return poly_eval(MP.polynomial(set.p), a) end function sublevel_eval(set::Sets.Householder, a::AbstractVector, β) x = Sets.space_variables(set) z = Sets.perspective_variable(set) # Avoid large values, with high degree polynomials, it might cause issues if false scale_a = norm(a) scale_β = abs(β) scaling = max(scale_a, scale_β) / sqrt(scale_a * scale_β) else scaling = 1.0 end return Sets.perspective_gauge0(set)(z => β / scaling, x => a / scaling) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
18552
### InclusionConstraint ### struct InclusionConstraint{SubSetType, SupSetType, KWT} <: SetConstraint subset::SubSetType supset::SupSetType kws::KWT end function need_variablify(c::InclusionConstraint) return need_variablify(c.subset) || need_variablify(c.supset) end function variablify(c::InclusionConstraint) return JuMP.build_constraint(error, variablify(c.subset), PowerSet(variablify(c.supset)); c.kws...) end function clear_spaces(c::InclusionConstraint) clear_spaces(c.subset) clear_spaces(c.supset) end function Sets.perspective_variable(c::InclusionConstraint) return synchronize_perspective(Sets.perspective_variable(c.subset), Sets.perspective_variable(c.supset)) end function create_spaces(c::InclusionConstraint, spaces::Spaces) sub = create_spaces(c.subset, spaces) sup = create_spaces(c.supset, spaces) return merge_spaces(spaces, sub, sup) end JuMP.function_string(print_mode, c::InclusionConstraint) = string(c.subset) function JuMP.in_set_string(print_mode, c::InclusionConstraint) string(print_mode == MIME("text/latex") ? "\\subseteq" : "⊆", " ", c.supset) end struct PowerSet{S} set::S end # Fallback, might be because `subset` or `sup_powerset` is a `SetVariableRef` or # a `Polyhedron` (which is handled by `JuMP.add_constraint`). function JuMP.build_constraint(_error::Function, subset, sup_powerset::PowerSet; kws...) InclusionConstraint(subset, sup_powerset.set, kws) end ### InclusionConstraint for sets ### ## Set in Set ## # See [LTJ18] B. Legat, P. Tabuada and R. M. Jungers. # *Computing controlled invariant sets for hybrid systems with applications to model-predictive control*. # 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2018, **2018**. function set_space(space::Space, ::InclusionConstraint{<:Sets.LinearImage, <:Sets.LinearImage}) return set_space(space, DualSpace) end # AS ⊆ S <=> S ⊆ A^{-1}S so PrimalSpace work # AS ⊆ S <=> A^{-T}S∘ ⊆ S∘ so DualSpace work function set_space(space::Space, ::InclusionConstraint{<:Sets.LinearImage, <:SetVariableRef}) return space end # We can always transform an ellipsoid to primal or dual space so we can handle # any space function set_space(space::Space, ::InclusionConstraint{<:SetVariableRef, <:Sets.AbstractEllipsoid{T}}) where T<:Number return space end # S-procedure: Q ⊆ P <=> xQx ≤ 1 => xPx ≤ 1 <=> xPx ≤ xQx <=> Q - P is PSD function JuMP.build_constraint(_error::Function, subset::Sets.Ellipsoid, sup_powerset::PowerSet{<:Sets.Ellipsoid}; S_procedure_scaling = nothing) @assert S_procedure_scaling === nothing || isone(S_procedure_scaling) Q = subset.Q P = sup_powerset.set.Q return psd_constraint(Symmetric(Q - P)) end # S-procedure: Q ⊆ P <=> q(x) ≤ 1 => p(x) ≤ 1 <=> p(x) ≤ q(x) <= q - p is SOS function JuMP.build_constraint(_error::Function, subset::Union{Sets.PolySet, Sets.ConvexPolySet}, sup_powerset::PowerSet{<:Union{Sets.PolySet, Sets.ConvexPolySet}}; S_procedure_scaling = nothing) @assert S_procedure_scaling === nothing || isone(S_procedure_scaling) q = subset.p p = sup_powerset.set.p JuMP.build_constraint(_error, q - p, SOSCone()) end # S-procedure: Q ⊆ P <=> q - p is SOS function s_procedure(model, subset, supset; S_procedure_scaling = nothing) q = subset.p p = supset.p if S_procedure_scaling === nothing S_procedure_scaling = @variable(model) # We want to avoid creating a non-convex problem. If one of `p` and `q` # is a polynomial with constant coefficients, we multiply the variable # by this one if MP.coefficient_type(q) <: Number s = S_procedure_scaling * q - p else s = q - S_procedure_scaling * p end else s = q - S_procedure_scaling * p end return JuMP.build_constraint(error, s, SOSCone()) end # S-procedure: Q ⊆ P <=> q - p is SOS function JuMP.add_constraint(model::JuMP.Model, constraint::InclusionConstraint{<:Sets.Householder, <:Sets.Householder}, name::String = "") return JuMP.add_constraint(model, s_procedure(model, constraint.subset, constraint.supset; constraint.kws...), name) end _add_constraint_or_not(model, ::Nothing) = nothing _add_constraint_or_not(model, con) = JuMP.add_constraint(model, con) function _preprocess_domain(domain) # TODO `detecthlinearity!` fails to ignore `[1e-17, 0]` coming from # `zero_eliminate` of `[1e-17, 0, 1]` so we remove duplicates to drop it domain = polyhedron( removeduplicates(hrep(domain), Polyhedra.default_solver(domain)), library(domain) ) detecthlinearity!(domain) return domain end function _linear_part(model, domain) Λ = [zero(JuMP.AffExpr) for i in 1:fulldim(domain)] for (i, h) in enumerate(halfspaces(domain)) iszero(h.β) || error("only cones are supported") λ = @variable(model, lower_bound = 0.0, base_name = "λ[$i]") Λ = MA.broadcast!(MA.add_mul, Λ, λ, h.a) end return Λ end function lin_in_domain(model, h::Vector, domain::Polyhedra.HRep) domain = _preprocess_domain(domain) dim(domain) <= 0 && return a = h + _linear_part(model, domain) if hashyperplanes(domain) # If we are in lower dimension, # we can reduce the size of `a` so that the linear constraint has smaller size. V = _linspace(domain) a = V' * a end return JuMP.build_constraint(error, a, MOI.Zeros(length(a))) end function add_constraint_inclusion_domain( model::JuMP.Model, subset::Sets.PolarPoint, supset::Sets.PolarPoint, domain::Polyhedra.Polyhedron) return _add_constraint_or_not(model, lin_in_domain(model, (subset.a - supset.a), domain)) end function _quadratic_part(model, domain) Λ = [zero(JuMP.AffExpr) for i in 1:fulldim(domain), j in 1:fulldim(domain)] for (i, hi) in enumerate(halfspaces(domain)) for (j, hj) in enumerate(halfspaces(domain)) i <= j && break (iszero(hi.β) && iszero(hj.β)) || error("only cones are supported") A = hi.a * hj.a' + hj.a * hi.a' λ = @variable(model, lower_bound = 0.0, base_name = "λ[$i,$j]") Λ = MA.broadcast!(MA.add_mul, Λ, λ, A) end end return Λ end function _linspace(domain) L = Matrix{Polyhedra.coefficient_type(domain)}(undef, nhyperplanes(domain), fulldim(domain)) for (i, h) in enumerate(hyperplanes(domain)) iszero(h.β) || error("only cones are supported") L[i, :] = h.a end return LinearAlgebra.nullspace(L) end function psd_in_domain(model, Q::Symmetric, domain::Polyhedra.HRep) domain = _preprocess_domain(domain) dim(domain) <= 0 && return A = Q - _quadratic_part(model, domain) if hashyperplanes(domain) # If we are in lower dimension, # we can reduce the size of `A` so that the PSD constraint has smaller size. V = _linspace(domain) A = V' * A * V end return psd_constraint(Symmetric(A)) end function lifted_psd_in_domain(model, Q::Symmetric, domain) # TODO `detecthlinearity!` fails to ignore `[1e-17, 0]` coming from # `zero_eliminate` of `[1e-17, 0, 1]` so we remove duplicates to drop it domain = polyhedron( removeduplicates(hrep(domain), Polyhedra.default_solver(domain)), library(domain) ) detecthlinearity!(domain) dim(domain) <= 0 && return Λ = [zero(JuMP.AffExpr) for i in 1:fulldim(domain)] for (i, hi) in enumerate(halfspaces(domain)) λ = @variable(model, lower_bound = 0.0, base_name = "λ[$i]") Λ = MA.broadcast!(MA.add_mul, Λ, λ, hi.a) end off = Q[2:end, 1] - Λ A = [Q[1, 1] off' off Q[2:end, 2:end] - _quadratic_part(model, domain)] if hashyperplanes(domain) V = _linspace(domain) V = [1 zeros(1, size(V, 2)) zeros(size(V, 1), 1) V] A = V' * A * V end return psd_constraint(Symmetric(A)) end function add_constraint_inclusion_domain( model::JuMP.Model, subset::Sets.Ellipsoid, supset::Sets.Ellipsoid, domain::Polyhedra.Polyhedron) return _add_constraint_or_not(model, psd_in_domain(model, Symmetric(subset.Q - supset.Q), domain)) end function JuMP.add_constraint(model::JuMP.Model, constraint::InclusionConstraint{<:Sets.Piecewise, <:Sets.Piecewise}, name::String = "") subset = constraint.subset supset = constraint.supset for (i, si) in enumerate(subset.sets) for (j, sj) in enumerate(supset.sets) add_constraint_inclusion_domain(model, si, sj, subset.pieces[i] ∩ supset.pieces[j]) end end end # S ⊆ T <=> T* ⊇ S* function JuMP.build_constraint(_error::Function, subset::Sets.HouseDualOf, sup_powerset::PowerSet{<:Sets.HouseDualOf}; kws...) S = subset T = sup_powerset.set JuMP.build_constraint(_error, Sets.perspective_dual(T), PowerSet(Sets.perspective_dual(S)); kws...) end # S ⊆ T <=> polar(T) ⊆ polar(S) function JuMP.build_constraint(_error::Function, subset::Sets.Polar, sup_powerset::PowerSet{<:Sets.Polar}; kws...) S = subset T = sup_powerset.set JuMP.build_constraint(_error, Polyhedra.polar(T), PowerSet(Polyhedra.polar(S)); kws...) end # See [LTJ18] function JuMP.build_constraint(_error::Function, subset::Sets.LinearImage{<:Union{Sets.Polar, Sets.PerspectiveDual}}, sup_powerset::PowerSet{<:Sets.LinearImage{<:Union{Sets.Polar, Sets.PerspectiveDual}}}; kws...) dim = Sets.dimension(subset) DynamicPolynomials.@polyvar x[1:dim] JuMP.build_constraint(_error, apply_map(subset, x), PowerSet(apply_map(sup_powerset.set, x)); kws...) end function JuMP.build_constraint(_error::Function, subset::Sets.AbstractSet, sup_powerset::PowerSet{<:Sets.LinearPreImage{<:Sets.AbstractSet}}; kws...) x = Sets.space_variables(subset) JuMP.build_constraint(_error, subset, PowerSet(apply_map(sup_powerset.set, x)); kws...) end function JuMP.build_constraint(_error::Function, subset::Sets.LinearImage{<:Sets.AbstractSet}, sup_powerset::PowerSet{<:Sets.AbstractSet}; kws...) JuMP.build_constraint( _error, subset.set, PowerSet(Sets.LinearPreImage(sup_powerset.set, subset.A)); kws...) end function JuMP.build_constraint(_error::Function, subset::Sets.LinearImage{<:Union{Sets.Polar, Sets.PerspectiveDual}}, sup_powerset::PowerSet{<:Sets.AbstractSet}; kws...) x = Sets.space_variables(sup_powerset.set) JuMP.build_constraint(_error, apply_map(subset, x), sup_powerset; kws...) end ## Set in Polyhedron ## function set_space(space::Space, ::InclusionConstraint{<:SetVariableRef, <:Polyhedra.Rep}) return set_space(space, DualSpace) end # Ellipsoid # function JuMP.add_constraint(model::JuMP.Model, constraint::InclusionConstraint{<:Sets.AbstractSet, <:Polyhedra.Rep}, name::String = "") ◯ = constraint.subset □ = constraint.supset for hp in hyperplanes(□) @constraint(model, ◯ ⊆ hp) end for hs in halfspaces(□) @constraint(model, ◯ ⊆ hs) end end # S∘ ⊆ [⟨a, x⟩ ≤ β] # S∘ ⊆ [⟨a/β, x⟩ ≤ 1] # a/β ∈ S function JuMP.build_constraint(_error::Function, subset::Sets.Polar, sup_powerset::PowerSet{<:Polyhedra.HyperPlane}) @assert iszero(sup_powerset.set.β) # Otherwise it is not symmetric around the origin JuMP.build_constraint(_error, Line(sup_powerset.set.a), Polyhedra.polar(subset)) end function JuMP.build_constraint(_error::Function, subset::Sets.Polar, sup_powerset::PowerSet{<:Polyhedra.HalfSpace}) JuMP.build_constraint(_error, ScaledPoint(sup_powerset.set.a, sup_powerset.set.β), Polyhedra.polar(subset)) end # τ^{-1}(τ(S)*) ⊆ [⟨a, x⟩ ≤ β] # τ(S)* ⊆ [⟨(β, -a), (z, x)⟩ ≥ 0] # (β, -a) ∈ τ(S) function JuMP.build_constraint(_error::Function, subset::Sets.PerspectiveDual, sup_powerset::PowerSet{<:Polyhedra.HyperPlane}) JuMP.build_constraint(_error, SymScaledPoint(-sup_powerset.set.a, sup_powerset.set.β), Polyhedra.polar(subset)) end function JuMP.build_constraint(_error::Function, subset::Sets.PerspectiveDual, sup_powerset::PowerSet{<:Polyhedra.HalfSpace}) JuMP.build_constraint(_error, ScaledPoint(-sup_powerset.set.a, sup_powerset.set.β), Sets.perspective_dual(subset)) end ## Polyhedron in Set ## function set_space(space::Space, ::InclusionConstraint{<:Polyhedra.Rep, <:SetVariableRef}) return set_space(space, PrimalSpace) end function JuMP.add_constraint( model::JuMP.Model, constraint::InclusionConstraint{ <:Polyhedra.VRep, <:Union{Sets.AbstractSet{<:JuMP.AbstractJuMPScalar}, Polyhedra.HRepElement{<:JuMP.AbstractJuMPScalar}}}, ::String = "" ) □ = constraint.subset ◯ = constraint.supset for line in lines(□) @constraint(model, line in ◯) end for ray in rays(□) @constraint(model, ray in ◯) end for point in points(□) @constraint(model, point in ◯) end end # Approach 1: # [x'Qx ≤ 1] ⊆ [⟨a, x⟩ ≤ β] # <=> [x'Qx ≤ 1] ⊆ [⟨a/β, x⟩ ≤ 1] # <=> [x'Qx ≤ 1] ⊆ [(⟨a/β, x⟩)^2 ≤ 1] # <=> [x'Qx ≤ 1] ⊆ [x'(aa' / β^2)x ≤ 1] # <=> Q ⪰ aa' / β^2 # Schur's Lemma # [β^2 a'] # [a Q ] # Approach 2: # [x'Qx ≤ 1] ⊆ [⟨a, x⟩ ≤ β] # <=> [x'Qx ≤ 1] ⊆ [⟨-a, x⟩ ≤ β] # <=> [x'Qx - z^2 ≤ 0] ⊆ [⟨-a, x⟩z - βz^2 ≤ 0] # <=> λx'Qx - λz^2 ≥ ⟨-a, x⟩z - βz^2 # <=> λx'Qx - λz^2 ≥ ⟨-a, x⟩z - βz^2 # <=> λx'Qx + ⟨a, x⟩z + (β - λ) z^2 ≥ 0 # [β-λ a'/2] # [a/2 λQ ] # TODO how to prove that they are equivalent ? # Approach 1 is better if β is constant # Approach 2 is better if Q is constant _unstable_constantify(x) = x function _unstable_constantify(x::JuMP.GenericAffExpr) return isempty(JuMP.linear_terms(x)) ? x.constant : x end function _psd_matrix(subset::Sets.Ellipsoid, hs::HalfSpace) return Symmetric([ _unstable_constantify(hs.β)^2 hs.a' hs.a subset.Q ]) end function JuMP.build_constraint( ::Function, subset::Sets.Ellipsoid, sup_powerset::PowerSet{<:HalfSpace} ) return psd_constraint(Symmetric(_psd_matrix(subset, sup_powerset.set))) end function add_constraint_inclusion_domain( model::JuMP.Model, subset::Sets.Ellipsoid, supset::HalfSpace, domain ) return _add_constraint_or_not( model, lifted_psd_in_domain(model, _psd_matrix(subset, supset), domain) ) end function JuMP.add_constraint( model::JuMP.Model, constraint::InclusionConstraint{ <:Sets.Piecewise, <:HalfSpace}, name::String = "" ) subset = constraint.subset supset = constraint.supset for (piece, set) in zip(subset.pieces, subset.sets) add_constraint_inclusion_domain(model, set, constraint.supset, piece) end end # [p(x) ≤ 1] ⊆ [⟨a, x⟩ ≤ β] # <= λ(1 - p(x)) ≤ β - ⟨a, x⟩ (necessary if p is SOS-convex) # 0 ≤ λ(p(x) - 1) - ⟨a, x⟩ + β # Set `x = 0`: 0 ≤ λ(p(0) - 1) + β # hence if p(0) ≤ 1 (i.e. 0 ∈ S), then λ ≤ β / (1 - p(0)) # Homogeneous case: λ ≤ β # Use build_constraint when SumOfSquares#66 if λ = β (e.g. homogeneous) function JuMP.add_constraint(model::JuMP.Model, constraint::InclusionConstraint{<:Union{Sets.ConvexPolySet, Sets.ConvexPolynomialSet}, <:HalfSpace}, name::String = "") p = Sets.gauge1(constraint.subset) h = constraint.supset x = Sets.space_variables(constraint.subset) hs = dot(h.a, x) - h.β if MP.coefficient_type(p) <: Number λ = @variable(model, lower_bound=0.0, base_name = "λ") cref = @constraint(model, λ * (p - 1) - hs in SOSCone()) elseif Polyhedra.coefficient_type(h) <: Number λ = @variable(model, lower_bound=0.0, base_name = "λ") cref = @constraint(model, (p - 1) - λ * hs in SOSCone()) else β = _unstable_constantify(h.β) if β isa Number # TODO what is a good value for β ??? λ = β/2 else λ = @variable(model, lower_bound=0.0, base_name = "λ") end cref = @constraint(model, λ * (p - 1) - hs in SOSCone()) end return cref end function JuMP.build_constraint(_error::Function, subset::Sets.Householder, sup_powerset::PowerSet{<:HalfSpace}) # 0 ≤ βz + ⟨-a, x⟩ x = [sup_powerset.set.β; -sup_powerset.set.a] H = Sets._householder(subset.h) # The householder transformation is symmetric and orthogonal so no need to # worry about whether we should invert or transpose H y = H * x JuMP.build_constraint(_error, subset.set, PowerSet(HalfSpace(y[2:end], -y[1]))) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1038
function JuMP.parse_constraint_call(_error::Function, vectorized::Bool, ::Val{:⊂}, lhs, rhs) _error("Unrecognized symbol ⊂ you mean ⊆ ?") end function JuMP.parse_constraint_call(_error::Function, vectorized::Bool, ::Val{:⊆}, lhs, rhs) parse_code = :() if vectorized build_call = :(JuMP.build_constraint.($_error, $(esc(lhs)), $(esc(:(SetProg.PowerSet.($rhs)))))) else build_call = :(JuMP.build_constraint($_error, $(esc(lhs)), $(esc(:(SetProg.PowerSet($rhs)))))) end return parse_code, build_call end function JuMP.parse_constraint_call(_error::Function, vectorized::Bool, ::Val{:⊃}, lhs, rhs) _error("Unrecognized symbol ⊃, did you mean ⊇ ?") end function JuMP.parse_constraint_call(_error::Function, vectorized::Bool, ::Val{:⊇}, lhs, rhs) parse_one_operator_constraint(_error, vectorized, Val(:⊆), rhs, lhs) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3161
need_variablify(p::Sets.Projection) = need_variablify(p.set) Sets.perspective_variable(p::Sets.Projection) = Sets.perspective_variable(p.set) clear_spaces(p::Sets.Projection) = clear_spaces(p.set) need_variablify(lm::Sets.LinearImage) = need_variablify(lm.set) function variablify(lm::Sets.LinearImage) return Sets.LinearImage(variablify(lm.set), lm.A) end """ apply_map(li::Sets.LinearImage{<:Sets.Polar}, new_vars) The set ``(AS)^\\circ``, the polar of the set ``AS``, is ``A^{-\\top}S^\\circ``. """ function apply_map(li::Sets.LinearImage{<:Sets.Polar}, new_vars) return Sets.polar(apply_map(Sets.LinearPreImage(Sets.polar(li.set), li.A'), new_vars)) end function apply_map(li::Sets.LinearPreImage{<:Sets.PolarPoint}, new_vars) return Sets.PolarPoint(li.A' * li.set.a) end """ apply_map(li::Sets.LinearPreImage{<:Sets.Ellipsoid}, new_vars) Given ``S = \\{\\, x \\mid x^\\top Q x \\le 1\\,\\}``, we have ``A^{-1}S = \\{\\, x \\mid x^\\top A^\\top Q A x \\le 1\\,\\}``. """ function apply_map(li::Sets.LinearPreImage{<:Sets.Ellipsoid}, new_vars) return Sets.Ellipsoid(Symmetric(li.A' * li.set.Q * li.A)) end function apply_map(li::Sets.LinearPreImage{<:Sets.Piecewise}, new_vars) return Sets.Piecewise( [apply_map(Sets.LinearPreImage(set, li.A), new_vars) for set in li.set.sets], li.A \ li.set.polytope, [li.A \ piece for piece in li.set.pieces], li.set.graph # /!\ FIXME The nij are now incorrect ) return Sets.Ellipsoid(Symmetric(li.A' * li.set.Q * li.A)) end """ apply_map(li::Sets.LinearPreImage{<:Sets.PolySet}, new_vars) Given ``S = \\{\\, x \\mid p(x) \\le 1\\,\\}``, we have ``A^{-1}S = \\{\\, x \\mid p(Ax) \\le 1\\,\\}``. """ function apply_map(li::Sets.LinearPreImage{<:Sets.PolySet}, new_vars) deg = li.set.degree @assert iseven(deg) q = apply_matrix(li.set.p, li.A, new_vars, div(deg, 2)) return Sets.PolySet(deg, q) end function apply_map(li::Sets.LinearPreImage{<:Sets.ConvexPolySet}, new_vars) deg = li.set.degree @assert iseven(deg) q = apply_matrix(li.set.p, li.A, new_vars, div(deg, 2)) return Sets.ConvexPolySet(deg, q, nothing) end """ apply_map(li::Sets.LinearImage{<:Sets.PerspectiveDualOf{<:Union{Sets.PerspectiveEllipsoid, Sets.PerspectiveConvexPolynomialSet}}}, new_vars) The set ``(AS)^\\circ``, the polar of the set ``AS``, is ``A^{-\\top}S^\\circ`` and given ..., we have ... """ function apply_map(li::Sets.LinearImage{<:Sets.PerspectiveDualOf{<:Sets.Householder{T}}}, new_vars) where T old_vars = Sets.space_variables(li.set) p = MP.subs(Sets.perspective_gauge0(li.set.set), old_vars => li.A' * new_vars) dual = Sets.Householder(Sets.UnknownSet{T}(), p, li.A * li.set.set.h, Sets.perspective_variable(li.set), new_vars) return Sets.perspective_dual(dual) end abstract type SymbolicVariable end # FIXME, for Sets.AbstractSet, we should apply it directly function Base.:(*)(A::AbstractMatrix, set::Union{SetVariableRef, Sets.AbstractSet, SymbolicVariable}) return Sets.LinearImage(set, A) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
9812
include("eval.jl") ### MembershipConstraint ### struct ScaledPoint{T, S, P<:AbstractVector{T}} coord::P scaling::S end Base.copy(p::ScaledPoint) = ScaledPoint(p.coord, p.scaling) struct SymScaledPoint{T, S, P<:AbstractVector{T}} coord::P scaling::S end Base.copy(p::SymScaledPoint) = SymScaledPoint(p.coord, p.scaling) const Point{T} = Union{AbstractVector{T}, ScaledPoint{T}} Polyhedra.coord(p::Union{ScaledPoint, SymScaledPoint}) = p.coord scaling(::AbstractVector) = 1.0 scaling(p::Union{ScaledPoint, SymScaledPoint}) = p.scaling Sets.perspective_variable(::Point) = nothing clear_spaces(::Point) = nothing create_spaces(point::Point, spaces::Spaces) = new_space(spaces, length(point)) """ struct MembershipConstraint{P, S} <: SetConstraint member::P set::S end Constrain `member in set`. """ struct MembershipConstraint{P, S} <: SetConstraint member::P set::S end need_variablify(c::MembershipConstraint) = need_variablify(c.set) function variablify(c::MembershipConstraint) return JuMP.build_constraint(error, variablify(c.member), variablify(c.set)) end JuMP.function_string(print_mode, c::MembershipConstraint) = string(c.member) JuMP.in_set_string(print_mode, c::MembershipConstraint) = string(JuMP.math_symbol(print_mode, :in), c.set) function JuMP.build_constraint(_error::Function, member, set::Union{Sets.AbstractSet, Sets.Projection, SetVariableRef}) MembershipConstraint(member, set) end # TODO set_space(space::Space, ::MembershipConstraint) = space # a/β ∈ S∘ # S ⊆ [⟨a/β, x⟩ ≤ 1] # S ⊆ [⟨a, x⟩ ≤ β] function JuMP.build_constraint(_error::Function, member::Point, set::Sets.Polar) if set.set isa Sets.AbstractEllipsoid{<:Number} # The `else` will produce an SDP which is less efficiently solved than # a SOC return JuMP.build_constraint(_error, member, Sets.ellipsoid(set)) else return JuMP.build_constraint(_error, Polyhedra.polar(set), PowerSet(HalfSpace(coord(member), scaling(member)))) end end # a/β ∈ τ^{-1}(τ(S)*) # (β, a) ∈ τ(S)* # τ(S) ⊆ [⟨(β, a), (z, x)⟩ ≥ 0] # S ⊆ [⟨-a, x⟩ ≤ β] function JuMP.build_constraint(_error::Function, member::Point, set::Sets.PerspectiveDual) if set.set isa Union{Sets.AbstractEllipsoid{<:Number}, Sets.Householder{<:Number, <:Sets.AbstractEllipsoid{<:Number}}} # The `else` will produce an SDP which is less efficiently solved than # a SOC return JuMP.build_constraint(_error, member, Sets.ellipsoid(set)) else return JuMP.build_constraint(_error, Sets.perspective_dual(set), PowerSet(HalfSpace(-coord(member), scaling(member)))) end end function JuMP.build_constraint(_error::Function, member::Point{<:Number}, set::Sets.Piecewise) # We take `coord` and ignore the scaling as `piece` is a cone. piece = findfirst(piece -> Polyhedra.coord(member) in piece, set.pieces) JuMP.build_constraint(_error, member, set.sets[piece]) end function JuMP.build_constraint(_error::Function, member::Point{<:JuMP.AbstractJuMPScalar}, img::Sets.HyperSphere) JuMP.build_constraint(_error, [scaling(member); coord(member)], SecondOrderCone()) end function JuMP.build_constraint(_error::Function, member::Point, img::Sets.LinearPreImage) JuMP.build_constraint(_error, img.A * member, img.set) end function JuMP.build_constraint(_error::Function, member::Point, t::Sets.Translation) JuMP.build_constraint(_error, member - t.c, t.set) end function JuMP.build_constraint(_error::Function, member::Point{<:JuMP.AbstractJuMPScalar}, ell::Sets.Ellipsoid{<:Number}) # The eltype of Point is an expression of JuMP variables so we cannot # compute (x-c)' * Q * (x-c) <= 1, we need to transform it to # ||L * (x - c)||_2 <= 1 U, S, V = svd(ell.Q.data) L = diagm(0 => sqrt.(S)) * V' sphere = Sets.LinearPreImage(Sets.HyperSphere(size(L, 1)), L) JuMP.build_constraint(_error, member, sphere) end function JuMP.build_constraint(_error::Function, member::Point{<:JuMP.AbstractJuMPScalar}, set::Sets.AbstractEllipsoid{<:Number}) JuMP.build_constraint(_error, member, Sets.ellipsoid(set)) end function JuMP.build_constraint(_error::Function, member::Point{<:JuMP.AbstractJuMPScalar}, set::Sets.Ellipsoid{<:JuMP.AbstractJuMPScalar}) # The eltype of both `member` and `set` is an expression of JuMP variables # so we cannot use the linear constraint `x' * Q * x <= 1` nor transform it # to SOC. We need to use the SDP constraint: # [ 1 x' ] # [ x Q^{-1} ] ⪰ 0 so we switch to the polar representation JuMP.build_constraint(_error, member, Polyhedra.polar_representation(set)) end function JuMP.build_constraint(_error::Function, member::Point{<:Number}, set::Union{Sets.Ellipsoid, Sets.PolySet, Sets.ConvexPolySet}) JuMP.build_constraint(_error, sublevel_eval(set, AbstractVector{Float64}(coord(member))), MOI.LessThan(Float64(scaling(member)^2))) end function JuMP.build_constraint(_error::Function, member::Polyhedra.Line, set::Union{Sets.Ellipsoid, Sets.PolySet, Sets.ConvexPolySet}) # We must have (λl)^T Q (λl) ≤ 1 for all λ hence we must have l^T Q l ≤ 0 # As Q is positive definite, it means l^T Q l = 0 l = Polyhedra.coord(member) JuMP.build_constraint(_error, sublevel_eval(set, l), MOI.EqualTo(0.0)) end function JuMP.build_constraint(_error::Function, member::Polyhedra.Ray, set::Union{Sets.Ellipsoid, Sets.PolySet, Sets.ConvexPolySet}) # We must have (λl)^T Q (λl) ≤ 1 for all λ > 0 hence we must have l^T Q l ≤ 0 # As Q is positive definite, it means l^T Q l = 0 r = Polyhedra.coord(member) JuMP.build_constraint(_error, sublevel_eval(set, r), MOI.EqualTo(0.0)) end function JuMP.build_constraint(_error::Function, member::Point{<:Number}, set::Sets.Householder) p = member val = sublevel_eval(set, coord(p), scaling(p)) JuMP.build_constraint(_error, val, MOI.LessThan(0.0)) end function JuMP.build_constraint(_error::Function, member::SymScaledPoint{<:Number}, set::Sets.Householder) p = member val = sublevel_eval(set, coord(p), scaling(p)) JuMP.build_constraint(_error, val, MOI.EqualThan(0.0)) end # TODO simplify when https://github.com/JuliaOpt/SumOfSquares.jl/issues/3 is done function _moment_matrix(f, monos) # Takes into account that some monomials are the same so they should # have the same value d = Dict{typeof(exponents(first(monos))), typeof(f(1,1))}() function element(i, j) mono = monos[i] * monos[j] exps = exponents(mono) if !haskey(d, exps) d[exps] = f(i, j) end return d[exps] end return MomentMatrix(element, monos) end function JuMP.add_constraint( model::JuMP.Model, constraint::SetProg.MembershipConstraint{ Vector{T}, SetProg.Sets.ConvexPolySet{Float64}}, name::String = "") where T set = constraint.set @assert iseven(set.degree) monos = monomials(SetProg.Sets.space_variables(set), 0:div(set.degree, 2)) U = promote_type(T, Int, JuMP.VariableRef) function variable(i, j) if i == length(monos) && j == length(monos) return one(U) elseif i == length(monos) || j == length(monos) return convert(U, constraint.member[length(monos) - min(i, j)]) else return convert(U, JuMP.VariableRef(model)) end end ν = _moment_matrix(variable, monos) @constraint(model, ν.Q.Q in MOI.PositiveSemidefiniteConeTriangle(length(monos))) p = SetProg.Sets.gauge1(set) scalar_product = dot(measure(ν), polynomial(p)) @constraint(model, scalar_product in MOI.LessThan(1.0)) end function JuMP.build_constraint(_error::Function, member::Point, h::Sets.PolarPoint) r = Polyhedra.coord(member) JuMP.build_constraint(_error, r'h.a - scaling(member), MOI.LessThan(0.0)) end function JuMP.build_constraint(_error::Function, member::Point, h::Polyhedra.HalfSpace{AffExpr}) r = Polyhedra.coord(member) JuMP.build_constraint(_error, r'h.a - scaling(member) * h.β, MOI.LessThan(0.0)) end function JuMP.build_constraint(_error::Function, member::Polyhedra.Ray, h::Polyhedra.HalfSpace) r = Polyhedra.coord(member) JuMP.build_constraint(_error, r'h.a, MOI.LessThan(0.0)) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
2588
struct RootVolume{S} <: AbstractScalarFunction set::S end Base.copy(rv::RootVolume) = rv nth_root(volume::Volume) = RootVolume(volume.set) Base.show(io::IO, rv::RootVolume) = print(io, "volume^(1/n)(", rv.set, ")") # Primal: # set : x^T Q x ≤ 1 # volume proportional to 1/det(Q) # t ≤ det(Q)^(1/n) <=> 1/t^n ≥ 1/det(Q) # volume proportional to 1/t^n # For t ≤ det(Q)^(1/n) to be tight we need to maximize `t` # hence we need to minimize the volume # Dual: # set : x^T Q^{-1} x ≤ 1 # volume proportional to det(Q) # t ≤ det(Q)^(1/n) <=> t^n ≥ det(Q) # volume proportional to t^n # For t ≤ det(Q)^(1/n) to be tight we need to maximize `t` # hence we need to maximize the volume function set_space(space::Space, rv::RootVolume, model::JuMP.Model) if rv.set isa Ellipsoid rv.set.guaranteed_psd = true end sense = data(model).objective_sense if sense == MOI.MIN_SENSE return set_space(space, PrimalSpace) else # The sense cannot be FEASIBILITY_SENSE since the objective function is # not nothing @assert sense == MOI.MAX_SENSE return set_space(space, DualSpace) end end function ellipsoid_root_volume(model::JuMP.Model, Q::AbstractMatrix) n = LinearAlgebra.checksquare(Q) t = @variable(model, base_name="t") upper_tri = [Q[i, j] for j in 1:n for i in 1:j] @constraint(model, [t; upper_tri] in MOI.RootDetConeTriangle(n)) return t end function root_volume(model::JuMP.Model, ell::Union{Sets.PolarOrNot{<:Sets.Ellipsoid}, Sets.HouseDualOf{<:Sets.AbstractEllipsoid}}) return ellipsoid_root_volume(model, Sets.convexity_proof(ell)) end """ root_volume(model::JuMP.Model, set::Sets.PolarOrNot{<:Sets.ConvexPolySet}) Section IV.A of [MLB05]. [MLB05] A. Magnani, S. Lall and S. Boyd. *Tractable fitting with convex polynomials via sum-of-squares*. Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference 2005, **2005**. """ function root_volume(model::JuMP.Model, set::Sets.PolarOrNot{<:Sets.ConvexPolySet}) if Sets.convexity_proof(set) === nothing error("Cannot optimize volume of non-convex polynomial sublevel set.", " Use PolySet(convex=true, ...)") end return ellipsoid_root_volume(model, Sets.convexity_proof(set)) end objective_sense(::JuMP.Model, ::RootVolume) = MOI.MAX_SENSE function objective_function(model::JuMP.Model, rv::RootVolume) return root_volume(model, variablify(rv.set)) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
818
abstract type AbstractScalarFunction <: JuMP.AbstractJuMPScalar end struct Volume{S} <: AbstractScalarFunction set::S end Polyhedra.volume(variable::Union{SetVariableRef, Sets.Projection{<:SetVariableRef}, Sets.AbstractSet{<:JuMP.AbstractJuMPScalar}}) = Volume(variable) function JuMP.set_objective(model::JuMP.Model, sense::MOI.OptimizationSense, func::AbstractScalarFunction) d = data(model) @assert d.state == Modeling d.objective_sense = sense d.objective = func end function load(model::JuMP.Model, f::AbstractScalarFunction) JuMP.set_objective_sense(model, objective_sense(model, f)) JuMP.set_objective_function(model, objective_function(model, f)) end include("affine.jl") include("nth_root.jl") include("L1_heuristic.jl")
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
941
function load(model::JuMP.Model, d::Data) d.state = Loading for variable in d.variables load(model, variable) end for (index, constraint) in d.constraints cref = load(model, constraint) if cref !== nothing d.transformed_constraints[index] = cref end end if d.objective !== nothing load(model, d.objective) end d.state = Modeling end # set as `optimize_hook` to JuMP Model in `data` so it is called at # `JuMP.optimize!` if at least one set variable is created function optimize_hook(model::JuMP.AbstractModel) d = data(model) set_space(d, model) # In case `optimize!` is called then the problem is modified and then it is # called again we need to clear first the space that might be wrong synchronize_perspective(d) clear_spaces(d) create_spaces(d) load(model, d) JuMP.optimize!(model, ignore_optimize_hook = true) end
SetProg
https://github.com/blegat/SetProg.jl.git