licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 14262 | #=
A mapping is a `Dict{A, <:Integer}` with `A` the type of symbols used (usually `Char`).
For example, `Dict('A' => 1, 'C' => 2, ...)
Below is a utility function for mappings
=#
"""
compute_mapping(s::AbstractString)
Return a `Dict{Int, Char}`: `Dict(i => c for (i,c) in enumerate(s))`.
"""
function compute_mapping(s::AbstractVector{A}, ::Type{I}=Int) where {A,I<:Integer}
@assert allunique(s) "Cannot compute mapping from vector with duplicates - got $s"
return Dict{A, I}(c => i for (i, c) in enumerate(s))
end
function reverse_mapping(mapping::Dict{T,U}) where {T, U}
return Dict{U,T}(y => x for (x, y) in mapping)
end
#######################################################################################
####################################### Alphabet ######################################
#######################################################################################
"""
struct Alphabet{A,I}
characters::Vector{A}
char_to_index::Dict{A, I}
index_to_char::Dict{I, A}
default_char = nothing
default_index
end
Structure allowing the mapping from biological symbols of type `A` to integers of type `I`.
The typical use case would be `Alphabet{Char, Int}`.
`Alphabet` can be constructed
- from a `Vector` of symbols and an optional type `I`, *e.g.* `Alphabet(['A','C','G','T'], UInt8)::Alphabet{Char, UInt8}`
- from a `String` and an optional type, *e.g.* `Alphabet("ACGT")`
- from a mapping `Dict{A, I}` where `I<:Integer`: `Alphabet(Dict('A'=>1, 'C'=>2))`
- from a `Symbol`, using default alphabets, *e.g.* `Alphabet(:nt)`
- from an integer, using default alphabets (see `?default_alphabets`).
"""
@kwdef struct Alphabet{A, I<:Integer}
characters::Vector{A} # Alphabet characters
char_to_index::Dict{A, I} = compute_mapping(characters)
index_to_char::Dict{I, A} = reverse_mapping(char_to_index)
default_char::Union{Nothing, A} = nothing
default_index::Union{Nothing, I} = _default_index_from_char(default_char, characters)
# Constructor with checks
function Alphabet{A,I}(
characters, char_to_index, index_to_char, default_char, default_index,
) where {A,I}
@assert isconcretetype(I) && isconcretetype(A) """\
Use concrete type to build `Alphabet` - got `($A,$I)`
"""
if !isbitstype(A)
@warn "Building alphabet using non bit-type symbols $(A). \
May lead to some issues, for instance when copying."
end
@assert !(A <: Integer) """\
Symbol type should not be `Integer`. Got $characters of type $A
"""
@assert length(characters) == length(char_to_index) == length(index_to_char) """\
Inconsistent lengths between `characters`, `char_to_index` and `index_to_char`:\
$(length(characters)) vs $(length(char_to_index)) vs $(length(index_to_char))
"""
# are characters and char_to_index consistent
@assert all(c -> haskey(char_to_index, c), characters) """\
Incomplete `char_to_index`: some symbols in $characters not in $char_to_index
"""
@assert all(x -> char_to_index[x[2]] == x[1], enumerate(characters)) """\
Inconsistency between `characters` and `char_to_index`: \
$characters -- $(char_to_index)
"""
# are char_to_index and index_to_char consistent
@assert all(c -> haskey(char_to_index, c), values(index_to_char)) """\
Some symbols in `index_to_char` not in `char_to_index`
"""
@assert all(i -> haskey(index_to_char, i), values(char_to_index)) """\
Some indices in `char_to_index` not in `index_to_char`
"""
@assert all(c -> c == index_to_char[char_to_index[c]], keys(char_to_index)) """\
Inconsistent `char_to_index` and `index_to_char`.
"""
# are defaults ok
@assert !xor(isnothing(default_char), isnothing(default_index)) """\
Got `default_char=$(default_char)` and `default_index=$(default_index)`.
These should either both be `nothing`, or both something.
This error can happen if the proposed `default_char` is not in the alphabet.
"""
@assert isnothing(default_char) || in(default_char, characters) """\
Default char $(default_char) not found in alphabet characters $(string)
Maybe use `default_char = c` with `c` in your alphabet?
"""
@assert isnothing(default_index) || haskey(index_to_char, default_index) """\
Got `default_index=$(default_index)` \
but alphabet `characters` of length $(length(characters))
"""
@assert (isnothing(default_index) && isnothing(default_char)) ||
index_to_char[default_index] == default_char """\
Defaults are inconsistent with mapping.\
`default_index=$(default_index)` maps to $(char_to_index[default_index]),\
but `default_char=$(default_char)`
"""
# Checking for duplicates
@assert allunique(characters) """Cannot form alphabet from `characters` with duplicates\
- got $characters
"""
return new{A,I}(characters, char_to_index, index_to_char, default_char, default_index)
end
end
_default_index_from_char(c, characters::AbstractVector) = findfirst(==(c), characters)
_default_index_from_char(::Nothing, ::AbstractVector) = nothing
################################################
############## Equality, copying ###############
################################################
function Base.:(==)(α::Alphabet{A,I}, β::Alphabet{B,J}) where {A,B,I,J}
return A == B &&
I == J &&
α.characters == β.characters &&
α.default_char == β.default_char
α.default_index == β.default_index
α.index_to_char == β.index_to_char &&
α.char_to_index == β.char_to_index
end
function Base.hash(alphabet::Alphabet{A,I}, h::UInt) where {A,I}
h = hash(Alphabet{A,I}, h)
h = hash(alphabet.characters, h)
h = hash(alphabet.index_to_char, h)
h = hash(alphabet.char_to_index, h)
h = hash(alphabet.default_char, h)
h = hash(alphabet.default_index, h)
return h
end
function Base.copy(alphabet::Alphabet{A,I}) where {A,I}
return Alphabet{A,I}(;
characters = copy(alphabet.characters), # assumes A is bit type, otherwise deepcopy
char_to_index = copy(alphabet.char_to_index),
index_to_char = copy(alphabet.index_to_char),
default_char = alphabet.default_char,
default_index = alphabet.default_index,
)
end
Base.convert(::Type{I}, alphabet::Alphabet{A,I}) where {A,I<:Integer} = alphabet
Base.convert(::Type{Alphabet{A,I}}, alphabet::Alphabet{A,I}) where {A,I} = alphabet
function Base.convert(::Type{J}, α::Alphabet{A,I}) where {A,I,J<:Integer}
return Alphabet{A,J}(;
characters = copy(α.characters),
char_to_index = convert(Dict{A, J}, α.char_to_index),
index_to_char = convert(Dict{J, A}, α.index_to_char),
default_char = α.default_char,
default_index = isnothing(α.default_index) ? nothing : convert(J, α.default_index)
)
end
function Base.convert(::Type{Alphabet{A,J}}, alphabet::Alphabet{A,I}) where {A,I,J<:Integer}
return convert(J, alphabet)
end
################################################
################# Constructors #################
################################################
function Alphabet(
characters::AbstractVector{<:A}, ::Type{I}=Int; kwargs...
) where {A, I<:Integer}
return Alphabet{A,I}(;
characters,
char_to_index = compute_mapping(characters, I),
kwargs...
)
end
function Alphabet(S::AbstractString, ::Type{I}=Int; kwargs...) where I
return Alphabet(collect(S), I; kwargs...)
end
Alphabet(A::Alphabet) = A
Alphabet(alphabet::Alphabet{A,I}, ::Type{J}) where {A,I,J} = convert(J, alphabet)
function Alphabet(characters::AbstractVector{A}, mapping::Dict{A,I}; kwargs...) where {A,I}
return Alphabet{A,I}(;
characters,
char_to_index = mapping,
kwargs...
)
end
function Alphabet(S::AbstractString, mapping::Dict{<:AbstractChar, I}; kwargs...) where I
return Alphabet(collect(S), mapping; kwargs...)
end
function Alphabet(char_to_index::AbstractDict{A, I}; kwargs...) where {A,I}
# cannot do collect(keys(...)) because of undefined ordering of Dict
characters = Vector{A}(undef, length(char_to_index))
for (c, i) in char_to_index
characters[i] = c
end
return Alphabet{A,I}(; characters, char_to_index, kwargs...)
end
################################################
################### Defaults ###################
################################################
const _DEFAULT_AA_ALPHABET_STRING = "-ACDEFGHIKLMNPQRSTVWY"
const _DEFAULT_NT_ALPHABET_STRING = "-ACGT"
const _DEFAULT_NT_ALPHABET_STRING_NOGAP = "ACGT"
const _DEFAULT_BINARY_ALPHABET_STRING = "01"
const _DEFAULT_ALPHABET_STRING = _DEFAULT_AA_ALPHABET_STRING
const aa_alphabet = Alphabet(_DEFAULT_AA_ALPHABET_STRING)
const aa_alphabet_names = (:aa, :AA, :aminoacids, :amino_acids)
const nt_alphabet = Alphabet(_DEFAULT_NT_ALPHABET_STRING)
const nt_alphabet_names = (:nt, :nucleotide, :dna)
const binary_alphabet = Alphabet(_DEFAULT_BINARY_ALPHABET_STRING)
const binary_alphabet_names = (:binary, :spin)
function Alphabet(name::Symbol, ::Type{T}=Int) where T <: Integer
return if name in aa_alphabet_names
# Alphabet(_DEFAULT_AA_ALPHABET_STRING, T; default_char = '-')
convert(Alphabet{Char, T}, aa_alphabet)
elseif name in nt_alphabet_names
# Alphabet(_DEFAULT_NT_ALPHABET_STRING, T; default_char = '-')
convert(Alphabet{Char, T}, nt_alphabet)
elseif name in binary_alphabet_names
# Alphabet(_DEFAULT_BINARY_ALPHABET_STRING, T)
convert(Alphabet{Char, T}, binary_alphabet)
else
names = convert(
Vector{Any}, vcat(aa_alphabet_names, nt_alphabet_names, binary_alphabet_names)
)
error("Unrecognized alphabet name $name - Possible names $names")
end
end
"""
default_alphabet(q::Int, T::Type)
- if `q==21`, amino acids
- if `q==5`, nucleotides
- if `q==4`, nucleotides without gaps
- if `q==2`, binary (0, 1)
- else, if `q<21`, return the restriction of amino acids to the first q sites
- if `q>21`, fails
"""
function default_alphabet(q::Integer, ::Type{T}=Int) where T <: Integer
@assert q > 0 "`q` must be strictly positive - got $q"
return if q == 2
Alphabet(:binary, T)
elseif q == 4
Alphabet(_DEFAULT_NT_ALPHABET_STRING_NOGAP, T)
elseif q == 5
Alphabet(:dna, T)
elseif 5 < q <= 21
Alphabet(:aa, T)
else
error("No defined default alphabet for q = $q (<2 or > 21) - provide your own or use `nothing`")
end
end
################################################
############ Transforming sequences ############
################################################
## Symbol to Int
function (alphabet::Alphabet{A,T})(c::A) where {A,T}
i = get(alphabet.char_to_index, c, alphabet.default_index)
if isnothing(i)
error("Symbol $c not in alphabet, and no defaults set.")
end
return i
end
function (alphabet::Alphabet{A,T})(S::AbstractVector{<:A}) where {A,T}
return map(x -> alphabet(x), S)
end
function (alphabet::Alphabet{Char,T})(S::AbstractString) where T
return map(x -> alphabet(x), collect(S))
end
## Int to Symbol
function (alphabet::Alphabet)(x::Integer)
c = get(alphabet.index_to_char, x, alphabet.default_char)
if isnothing(c)
error("$x is not in alphabet range, and no defaults set.")
end
return c
end
# If it makes sense, convert a `Vector{Int}` to a string
function (alphabet::Alphabet{<:AbstractChar,T} where T<:Integer)(X::AbstractVector{<:Integer})
return prod(map(alphabet, X))
end
# Otherwise return an array of symbols
(alphabet::Alphabet)(X::AbstractVector{<:Integer}) = map(alphabet, X)
(alphabet::Alphabet)(::Missing) = missing
# Equivalent to alphabet(X) for Char based alphabets
# Otherwise, can be overloaded for the desired effect
# Used when writing fasta
function to_string(
X::AbstractVector{<:Integer},
alphabet::Alphabet{<:AbstractChar,<:Integer},
)
return alphabet(X)
end
"""
translate(x, original_alphabet::Alphabet, new_alphabet::Alphabet)
Return the translation in `new_alphabet` of an integer or a vector of integers `x` that is
expressed in `original_alphabet`.
"""
function translate(x::Integer, original_alphabet::Alphabet, new_alphabet::Alphabet)
return x |> original_alphabet |> new_alphabet
end
function translate(X::AbstractVector{<:Integer}, A::Alphabet, B::Alphabet)
return map(x -> translate(x, A, B), X)
end
################################################
##################### Misc #####################
################################################
Base.length(alphabet::Alphabet) = length(alphabet.characters)
Base.in(i::Integer, alphabet::Alphabet) = haskey(alphabet.index_to_char, i)
Base.in(c::A, alphabet::Alphabet{A,I}) where {A,I} = haskey(alphabet.char_to_index, c)
function name(alphabet::Alphabet{Char,I}) where I
return if prod(alphabet.characters) == _DEFAULT_AA_ALPHABET_STRING
:aa
elseif prod(alphabet.characters) == _DEFAULT_NT_ALPHABET_STRING
:dna
elseif prod(alphabet.characters) == _DEFAULT_BINARY_ALPHABET_STRING
:binary
else
:custom
end
end
function name(alphabet::Alphabet{A,I}) where {A,I}
return :custom
end
Base.getindex(alphabet::Alphabet, i::Integer) = alphabet.index_to_char[i]
Base.getindex(alphabet::Alphabet{A,I}, c::A) where {A,I} = alphabet.char_to_index[c]
function Base.show(io::IO, alphabet::Alphabet{A,I}) where {A,I}
print(io, "Alphabet{$A,$I}: $(alphabet.characters)")
end
function Base.show(io::IO, x::MIME"text/plain", alphabet::Alphabet{A,I}) where {A,I}
println(io, "$(name(alphabet)) Alphabet{$A,$I} with mapping $(alphabet.characters)")
end
"""
symbols(alphabet)
Return the vector of symbols/characters used by `alphabet`.
"""
symbols(alphabet::Alphabet) = alphabet.characters
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 2296 | """
hamming(x, y; normalize=true, positions=nothing)
Hamming distance between `Vectors` `x` and `y`.
Only sites in vector `positions` will be considered.
"""
function hamming(
X::AbstractVector{<:Integer}, Y::AbstractVector{<:Integer};
normalize=true, positions = nothing,
)
@assert length(X) == length(Y) """Expect vectors of same length.
Instead $(length(X)) != $(length(Y))"""
H = if isnothing(positions)
sum(zip(X, Y)) do (x,y)
x != y
end
else
sum(positions) do i
X[i] != Y[i]
end
end
Z = (isnothing(positions) ? length(X) : length(positions))
return normalize ? H / Z : H
end
function hamming(X::Alignment, i::Integer, Y::Alignment, j::Integer)
@warn "Not implemented yet"
return nothing
end
"""
pairwise_hamming(X, Y; step=1, step_left, step_right, as_vec=true, kwargs...)
pairwise_hamming(X; kwargs...)
Return all hamming distances between sequences of `X` and `Y`.
In the second form, consider pairs of sequences in `X`.
Only consider sequences every `step`.
`step_left` and `step_right` can be used to skip sequence either in `X` or in `Y`.
This is useful for large alignment, as the number of computations grows with the product
of the size of the alignments
By default, the return value is a vector organized like
`[H(1,2), H(1,3), ..., H(M-1, M)]` with `H` standing for hamming distance and `M` for the
number of sequences.
If a matrix is prefered, use `as_vec=false`
Extra keyword arguments are passed to `hamming`.
"""
function pairwise_hamming(
X::AbstractAlignment, Y::AbstractAlignment;
step=1, step_left=step, step_right=step, as_vec=true, kwargs...
)
if Alphabet(X) != Alphabet(Y)
@warn """Alignments do not have the same alphabet. Are you sure?
Left aln: $(Alphabet(X))
Right aln: $(Alphabet(Y))
"""
end
X_sequences = eachsequence(X; skip = step_left)
Y_sequences = eachsequence(Y; skip = step_right)
D = [hamming(x, y; kwargs...) for x in X_sequences, y in Y_sequences]
return if as_vec
M = size(D, 1)
[D[i,j] for i in 1:M for j in (i+1):M]
else
D
end
end
pairwise_hamming(X::AbstractAlignment; kwargs...) = pairwise_hamming(X, X; kwargs...)
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 3281 | function f1(A::AbstractAlignment, w::AbstractVector{Float64})
@assert sum(w) ≈ 1 "Weights must sum to 1 - Instead $(sum(w))"
L, M = size(A)
q = length(Alphabet(A))
X = A.data' # M x L - for faster iteration
f = zeros(Float64, q, L)
for i in 1:L, m in 1:M
f[X[m,i], i] += w[m]
end
return f
end
function f1(X::AbstractAlignment)
M = size(X, 2)
return f1(X, ones(Float64, M)/M)
end
f1(X::AbstractAlignment, ::Nothing) = f1(X)
# f1(X::AbstractAlignment, weights::AbstractVector) = f1(X, weights) # pretty sure this does nothing?
# if weights comes directly from `compute_weights`
function f1(X::AbstractAlignment, weights::Tuple{Any,Any})
return f1(X, weights[1])
end
"""
site_specific_frequencies(X::AbstractAlignment[, weights=X.weights]; as_vec=false)
Return the site specific frequencies of `X`.
If `as_vec`, the result is a vector of length `Lxq`.
Otherwise, it is a matrix of `q` rows and `L` columns (default).
"""
function site_specific_frequencies(X, w=X.weights; as_vec=false)
f = f1(X, w)
if as_vec
q, L = size(f)
return reshape(f, q*L)
end
return f
end
function consensus(X::AbstractAlignment, w=X.weights)
f = site_specific_frequencies(X, w; as_vec=false)
cons = map(argmax, eachcol(f))
return Alignment(cons, Alphabet(X); names = ["consensus"])
end
function f2(A::AbstractAlignment, w::AbstractVector)
@assert sum(w) ≈ 1 "Weights must sum to 1 - Instead $(sum(w))"
L, M = size(A)
q = length(Alphabet(A))
X = A.data'
f = zeros(Float64, q, q, L, L)
for i in 1:L, m in 1:M
f[X[m,i], X[m,i], i, i] += w[m]
for j in (i+1):L
f[X[m, i], X[m, j], i, j] += w[m]
f[X[m, j], X[m, i], j, i] += w[m]
end
end
return f
end
f2(X) = f2(X, ones(Float64, size(X,2))/size(X,2))
f2(X, ::Nothing) = f2(X)
f2(X, weights::Tuple{Any,Any}) = f2(X, weights[1])
"""
pairwise_frequencies(X::AbstractAlignment, w=X.weights; as_mat=false)
Return a `q x q x L x L` tensor.
The `(a, b, i, j)` element is the fraction of sequences for which we see `a` at position
`i` and `b` at position `j`.
If `as_mat=true`, will return a `qL x qL` matrix, with `q x q` blocks representing
correlations between two specific columns.
"""
function pairwise_frequencies(X::AbstractAlignment, w=X.weights; as_mat=false)
f = f2(X, w)
if as_mat
q, L = size(f, 1), size(f, 3)
f = permutedims(f, [1, 3, 2, 4])
return reshape(f, q*L, q*L)
end
return f
end
"""
pairwise_correlations(X, w=X.weights; as_mat=false)
Compute connected correlations: the difference between the pairwise frequencies and the
product of the single site frequencies.
See `?pairwise_frequencies` for the shape of the output.
"""
function pairwise_correlations(X::AbstractAlignment, w=X.weights; as_mat=false)
f1 = site_specific_frequencies(X, w)
f2 = pairwise_frequencies(X, w)
q, L = size(f1)
C = zeros(Float64, q, q, L, L)
for i in 1:L, j in (i+1):L, a in 1:q, b in 1:q
C[a, b, i, j] = f2[a, b, i, j] - f1[a, i]*f1[b, j]
C[b, a, j, i] = C[a, b, i, j]
end
if as_mat
C = permutedims(C, [1, 3, 2, 4])
return reshape(C, q*L, q*L)
end
return C
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 1635 | """
compute_weights(X::AbstractAlignment, θ = 0.2; normalize = true)
Compute phylogenetic correction weights for sequences of `X`.
The weight sequence `S` is `1/N`, where `N` is the number of sequences in `X` at
hamming distance less than `H` from `S` (including `S` itself).
The threshold `H` is `floor(θ⋅L)` where `L` is the sequence length.
The return value is a tuple `(weights, Meff)`, where `Meff` is the sum of weights
(pre-normalization). If `normalize`, weights are normalized to sum to one. .
"""
function compute_weights(X::AbstractAlignment, θ = 0.2; normalize = true)
return if θ == 0.
M = sequence_number(X)
w = ones(M)
normalize ? (w/sum(w), M) : (w, M)
else
compute_weights(X.data, θ; normalize)
end
end
"""
compute_weights!(X, θ; kwargs...)
Compute and set weights for `X`. See `compute_weights`.
"""
function compute_weights!(X, θ = 0.2; kwargs...)
w, Meff = compute_weights(X, θ; kwargs...)
X.weights = w
return w, Meff
end
function compute_weights(
Y::AbstractMatrix{<:Integer}, theta::Float64; normalize=true,
)
L, M = size(Y)
threshold = Int(floor(L * theta))
weights = ones(Int, M);
d = 0
@inbounds for m in 1:M, l in (m+1):M
d = 0 # distance
i = 1 # index in sequence
while d < threshold && i <= L
(Y[i,m] != Y[i,l]) && (d += 1)
i += 1
end
if d < threshold
weights[m]+=1
weights[l]+=1
end
end
weights = 1 ./ weights
Meff = sum(weights)
return (normalize ? weights / Meff : weights, Meff)
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 511 | using BioSequenceMappings
using DCAUtils # to compare weights
using Random
using Test
here = dirname(@__FILE__)
@testset "BioSequenceMappings.jl" begin
@testset "Alphabet" begin
println("# Alphabet")
include(joinpath(here, "./alphabets/test.jl"))
end
@testset "Alignment" begin
println("# Alignment")
include(joinpath(here, "./alignments/test.jl"))
end
@testset "IO" begin
println("# IO")
include(joinpath(here, "./io/test.jl"))
end
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 4503 | @testset "Constructors without alphabet" begin
@testset "Basic" begin
data = Matrix{Int}([1 2 3; 2 3 4])
alignment = Alignment(data; verbose=false)
@test typeof(alignment) == Alignment{Char, Int} # should autofind nt alphabet
@test size(alignment.data) == (2, 3)
@test length(alignment.weights) == 3
@test length(alignment.names) == 3
@test Alphabet(alignment) == BioSequenceMappings.default_alphabet(4, Int)
end
@testset "With type" begin
data = Matrix{Int8}([1 2 3; 2 3 4])
alignment = Alignment(data; verbose=false)
@test typeof(alignment) == Alignment{Char,Int8}
@test Alphabet(alignment) == BioSequenceMappings.default_alphabet(4, Int8)
end
@testset "Without alphabet" begin
data = Matrix{Int8}([1 2 3; 2 3 4])
alignment = Alignment(data; alphabet = nothing)
@test typeof(alignment) == Alignment{Nothing, Int8}
@test isnothing(alignment.alphabet)
end
end
@testset "Constructors with explicit alphabet" begin
data = Matrix{Int16}([1 2 3; 2 3 4])
@testset "Basic" begin
alphabet = Alphabet("ACGT", Int16)
alignment = Alignment(data, alphabet)
@test typeof(alignment) == Alignment{Char, Int16}
@test Alphabet(alignment) == alphabet
end
@testset "Mismatched types - Alphabet gets priority" begin
alphabet = Alphabet("ACGT", Int8)
alignment = Alignment(data, alphabet)
@test typeof(alignment) == Alignment{Char, Int8}
@test Alphabet(alignment) == alphabet
end
@testset "From alphabet constructor" begin
alignment = Alignment(data, "BCDE")
@test typeof(alignment) == Alignment{Char, Int16}
@test Alphabet(alignment) == Alphabet("BCDE", Int16)
end
@testset "With keywords" begin
weights = [1/4, 1/4, 1/2]
names = ["A", "B", "CD"]
alignment = Alignment(data, :dna; weights, names)
@test Alphabet(alignment) == Alphabet(:dna, Int16)
@test alignment.weights == weights
@test alignment.names == names
end
@testset "From vector of vectors" begin
vecdat = Matrix{Int}([1 2 3; 2 3 4]) |> eachcol |> collect
alignment = Alignment(vecdat, :dna)
@test typeof(alignment) == Alignment{Char, Int}
@test size(alignment) == (2, 3) # three sequences of length 2
@test Alphabet(alignment) == Alphabet(:dna, Int)
end
@testset "From vector of integers" begin
sequence = Int16[1,2,3,4,5]
alignment = Alignment(sequence, :dna)
@test typeof(alignment) == Alignment{Char, Int16}
@test size(alignment) == (5, 1)
@test Alphabet(alignment) == Alphabet(:dna, Int16)
end
end
@testset "Constructor with keyword alphabet" begin
data = Matrix{Int}([1 2 3; 2 3 4])
@testset "Explicit alphabet" begin
alphabet = Alphabet("ACGT", Int)
alignment = Alignment(data; alphabet)
@test typeof(alignment) == Alignment{Char, Int}
@test Alphabet(alignment) == alphabet
end
@testset "Symbol" begin
alignment = Alignment(data; alphabet=:dna)
@test Alphabet(alignment) == Alphabet(:dna)
end
@testset "Vector of vector data" begin
data = [[1,2], [3,4]]
alignment = Alignment(data; alphabet = :dna)
@test size(alignment) == (2,2)
@test alignment[1] == [1,2]
@test Alphabet(alignment) == Alphabet(:dna)
end
@testset "Vector of integers data" begin
data = [3,4]
alignment = Alignment(data; alphabet = :dna)
@test size(alignment) == (2,1)
@test alignment[1] == [3,4]
@test Alphabet(alignment) == Alphabet(:dna)
end
end
@testset "Test for errors" begin
data = Matrix{Int}([1 2 3; 2 3 21])
@test Alignment(data; verbose=false).alphabet == default_alphabet(21)
@test_throws AssertionError Alignment(data, :dna)
@test_throws AssertionError Alignment(data; weights = [1/2, 1/4, 1/3], verbose=false)
@test_throws AssertionError Alignment(data; weights = [1., 1., -1.], verbose=false)
@test_throws AssertionError Alignment(data; weights = [1/2, 1/4, 1/4, 0.], verbose=false)
@test_throws AssertionError Alignment(data; weights = [1/2, 1/4, 1/3], names = ["A"], verbose=false)
data = Matrix{Int}([1 2 3; 2 3 22])
@test_throws ErrorException Alignment(data; verbose=false)
@test Alignment(data; alphabet=:none).alphabet == nothing
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 1360 | @testset "Iterating" begin
data = Matrix{Int16}([1 2 3; 2 3 4])
X = Alignment(data; verbose=false)
@test size(X) == (2, 3)
@test length(X) == 3
@test sum(X) == Int16[6, 9] # sum of sequences, meaningless but it's for test
@test map(sum, X) == Int16[3, 5, 7] # sum of each sequence, also meaningless
@test findall(x -> x==[1,2], X) == [1]
@test first(Iterators.reverse(X)) == [3, 4]
end
@testset "Indexing" begin
data = Matrix{Int16}([1 2 3; 2 3 4])
X = Alignment(data; verbose=false)
@test X[1] == Int16[1, 2]
@test X[1:2] == X.data[:, 1:2]
@test X[:] == X.data
@test X[end] == Int16[3, 4]
end
@testset "Subsample" begin
data = Matrix{Int16}([1 2 3; 2 3 4])
X = Alignment(data; verbose=false)
Y = subsample(X, 1)
@test typeof(Y) == typeof(X)
@test size(Y) ==(2, 1)
@test Y.alphabet == X.alphabet
@test Y[1] == X[1]
@test Y[1] !== X[1] # different in memory
Y = subsample(X, 1:2)
@test typeof(Y) == typeof(X)
@test size(Y) == (2, 2)
@test Y.alphabet == X.alphabet
@test Y[1] == X[1] && Y[2] == X[2]
@test Y[1] !== X[1] && Y[2] !== X[2]
Y = subsample(X, 3:-1:2)
@test typeof(Y) == typeof(X)
@test size(Y) == (2, 2)
@test Y[1] == X[3] && Y[2] == X[2]
Y = subsample(X, :)
@test all(i -> X[i] == Y[i], eachindex(Y))
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 613 | @testset "weights" begin
Random.seed!(42)
Y = Int8.(rand(1:2, 10, 100))
X = Alignment(Y; verbose=false)
for θ in 0:.2:1
(w1, M1) = BioSequenceMappings.compute_weights(Y, θ; normalize=false)
(w2, M2) = DCAUtils.compute_weights(Y, θ; verbose=false)
@test w1 ≈ w2
@test M1 ≈ M2
@test sum(BioSequenceMappings.compute_weights(Y, .4; normalize=true)[1]) ≈ 1
@test BioSequenceMappings.compute_weights(X, θ; normalize=false)[1] ≈ w1
end
end
@testset "find sequence" begin
@warn "I should write a test for `find_sequence` and `match_sequences`"
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 258 | basedir = dirname(@__FILE__)
@testset "Basics" begin
include(joinpath(basedir, "basics.jl"))
end
@testset "Interfaces" begin
include(joinpath(basedir, "interfaces.jl"))
end
@testset "Methods" begin
include(joinpath(basedir, "methods.jl"))
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 7762 | # Very basic tests
@testset "Alphabet constructor tests" begin
# Test valid input
@testset "Constructor String + Dict" begin
alphabet = Alphabet("ACGT-", Dict{Char, Int}('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4, '-'=>5))
@test alphabet.characters == collect("ACGT-")
@test alphabet.char_to_index == Dict{Char, Int}('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4, '-'=>5)
@test alphabet.index_to_char == Dict{Int, Char}(1=>'A', 2=>'C', 3=>'G', 4=>'T', 5=>'-')
@test isa(alphabet, Alphabet{Char,Int})
end
@testset "Constructor Vec + Dict - custom struct for characters" begin
struct T c::Char end
alphabet = Alphabet([T('A'), T('C')], Dict{T, Int}(T('A')=>1, T('C')=>2))
@test alphabet.characters == [T('A'),T('C')]
@test alphabet.char_to_index == Dict{T, Int}(T('A')=>1, T('C')=>2)
@test alphabet.index_to_char == Dict{Int, T}(1=>T('A'), 2=>T('C'))
@test isa(alphabet, Alphabet{T,Int})
end
# Test constructor with Dict input
@testset "Constructor Dict" begin
alphabet = Alphabet(Dict('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4))
@test alphabet.characters == collect("ACGT")
@test alphabet.char_to_index == Dict('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4)
end
# Test constructor with different lengths for string and mapping
@test_throws AssertionError Alphabet("-ACGT", Dict('A'=>1, 'C'=>2, 'G'=>3))
# Test constructor with incomplete mapping
@test_throws AssertionError Alphabet("-ACGT", Dict('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4, 'X'=>5))
# Test constructor with empty string
@testset "Empty string" begin
alphabet = Alphabet("")
isempty(alphabet.characters) && alphabet.char_to_index == Dict()
end
# Test constructor from string alone
@testset "String constructor" begin
alphabet = Alphabet("AB")
@test typeof(alphabet) == Alphabet{Char, Int}
@test alphabet.characters == collect("AB")
@test alphabet.char_to_index == Dict{Char, Int}('A' => 1, 'B' => 2)
end
# Test constructor from string alone -- not integer types
@testset "String constructor - Int8" begin
alphabet = Alphabet("AB", Int8)
@test typeof(alphabet) == Alphabet{Char,Int8}
@test alphabet.characters == collect("AB")
@test alphabet.char_to_index == Dict{Char, Int8}('A' => 1, 'B' => 2)
end
# the test below wants to test overflow of Int8 for strings with diverse characters
@testset "Unicode string + Int8" begin
long_unicode_string = "≔⪉➰Ⅰ⚃⻘⧓⌏☷∉⻔⛴⿐ⱞ➒℃➷⮡⦊⻌⁆ⷢⅽ➫ⰹⓑⲂ⎛➻⮝ⷕ⮥⇑∇ⳣ⍹\u20c2⾣Ⲥⵀ➶⒰⨼⾧Ⓥⷵ〉⣀♈⽺⺆⦤⟹⁍⯕\u2fe4ⳘⱣ⡭⯐⪘℅⺈ⷽ⠴⇽⼝⿂⋅ⵥ␠⬯Ɀ⢒⢏⽹Ⓝⲵ⤢ⶕ⌲ↆ⑂⤻⚲\u2fe8▰⹋⦮⬄≢⣔⫿⅑Ⲏ❠\u2065▢⊺ⵡℙ⠰ⴈⱯ⎽☊ₜ⢳⧷⽌⯸⎾⡀⡚⍁⾱⨷⺊ℯ⼨⸱⸃⠷⛠⾢⤮ⱀ⒡⟽ⷃ⒋⑲⤆⑯⬊ⲁ☫\u2d29⬬⥄╟ⶮ ⢋♼⧂⧽⾰⫖⧼⡕⤦⎂Ⓨ◎⽩➛▍⮄␟♛ⵉ⺭▔╯ℂ✉⌃⤅K⽙⸐Ⓜ⣩⦘Ⱂℇ∞⽐ⴏ⮻☠┓⪡⾶ⓢ⻀≲┬⣅⦓⧈⤬≱⚀⫠⑾⅌"
@test_throws InexactError Alphabet(long_unicode_string, Int8)
alphabet = Alphabet(long_unicode_string, Int16)
@test typeof(alphabet) == Alphabet{Char, Int16}
end
# Test throw for abstract type
@test_throws AssertionError Alphabet("ABC", Signed)
# Test throw for non unique alphabet string
@test_throws AssertionError Alphabet("AAA")
# Test constructor with non-Char keys in mapping
@test_throws MethodError Alphabet("-ACGT", Dict('A'=>1, 'C'=>2, 'G'=>3, 4=>4))
end
@testset "Equality and hash" begin
A1 = Alphabet(:dna, Int16)
A2 = Alphabet(:dna, Int16) # same data and same type
B = Alphabet(:dna, Int8) # same data and different type
C = Alphabet(:aa, Int16) # different data and same type
@test A1 == A2
@test hash(A1) == hash(A2)
@test A1 != B && hash(A1) != hash(B)
end
@testset "Copy, convert" begin
# Testing the `copy` function
@testset "copy" begin
original_alphabet = Alphabet("ACGT")
copied_alphabet = copy(original_alphabet)
# Check that the copied alphabet is equal to the original (using data)
@test copied_alphabet == original_alphabet
# Check that the copied alphabet is not the same object as the original (in memory)
@test copied_alphabet !== original_alphabet
end
# Testing the `convert` function
@testset "convert function" begin
original_alphabet = Alphabet("ACGT")
# Convert to the same type should return the same object with === (Base.convert)
@test convert(Alphabet{Char, Int}, original_alphabet) === original_alphabet
@test convert(Int, original_alphabet) === original_alphabet
# Convert to a different type should return a new object with the same content
converted_alphabet = convert(Alphabet{Char,UInt8}, original_alphabet)
@test converted_alphabet.characters == original_alphabet.characters
@test converted_alphabet.char_to_index == original_alphabet.char_to_index
@test converted_alphabet.index_to_char == original_alphabet.index_to_char
# Check that the converted alphabet is not the same object as the original
@test converted_alphabet !== original_alphabet
# Check the second formulation of convert
@test convert(UInt8, original_alphabet) == converted_alphabet
end
end
@testset "Defaults" begin
local BSM = BioSequenceMappings
@test Alphabet(:dna).characters == collect(BSM._DEFAULT_NT_ALPHABET_STRING)
@test Alphabet(:nt).characters == collect(BSM._DEFAULT_NT_ALPHABET_STRING)
@test Alphabet(:nucleotide).characters == collect(BSM._DEFAULT_NT_ALPHABET_STRING)
@test Alphabet(:aa).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test Alphabet(:amino_acids).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test Alphabet(:aminoacids).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test Alphabet(:AA, Int8).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test Alphabet(:spin).characters == collect(BSM._DEFAULT_BINARY_ALPHABET_STRING)
@test Alphabet(:binary).characters == collect(BSM._DEFAULT_BINARY_ALPHABET_STRING)
@test typeof(Alphabet(:spin, Int8)) == Alphabet{Char, Int8}
@test_throws ErrorException Alphabet(:some_symbol)
@test default_alphabet(4).characters == collect(BSM._DEFAULT_NT_ALPHABET_STRING_NOGAP)
@test default_alphabet(21).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test default_alphabet(5).characters == collect(BSM._DEFAULT_NT_ALPHABET_STRING)
@test default_alphabet(14).characters == collect(BSM._DEFAULT_AA_ALPHABET_STRING)
@test_throws ErrorException default_alphabet(22)
@test_throws ErrorException default_alphabet(1)
end
@testset "Sequence to int" begin
@test begin
s = "TGCA"
alphabet = Alphabet(:dna)
X = alphabet(s)
X == [5,4,3,2] && typeof(X) == Vector{Int}
end
@test begin
s = "TGCA"
alphabet = Alphabet(:dna, Int8)
X = alphabet(s)
X == [5,4,3,2] && typeof(X) == Vector{Int8}
end
@test_throws ErrorException begin
s = "-TGCAB"
alphabet = Alphabet(:dna, Int8)
alphabet(s)
end
@test begin
s = "AB12"
alphabet = Alphabet("CBA321", UInt8)
X = alphabet(s)
X == [3, 2, 6, 5] && typeof(X) == Vector{UInt8}
end
end
@testset "Int to sequence" begin
@test begin
X = Int[1,2,3,4]
alphabet = Alphabet(:dna)
alphabet(X) == "-ACG"
end
@test begin
X = Int8[5,4,3,2]
alphabet = Alphabet(:dna, Int16) # Int16 should not matter here
alphabet(X) == "TGCA"
end
@test_throws ErrorException begin
X = [1,2,3,4,5,6]
alphabet = Alphabet("-ACGT")
alphabet(X)
end
# Test with UTF8
@test begin
X = [1,2,3,4]
alphabet = Alphabet("τ4ν2")
alphabet(X) == "τ4ν2"
end
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | code | 1054 | basedir = dirname(@__FILE__)
@testset "Alphabet from fasta" begin
auto_alph = BioSequenceMappings.auto_alphabet_from_fasta # convenience
@test auto_alph(joinpath(basedir, "toy_fasta_aa.fasta")) == Alphabet(:aa)
@test auto_alph(joinpath(basedir, "toy_fasta_dna.fasta")) == Alphabet(:dna)
@test auto_alph(joinpath(basedir, "toy_fasta_bin.fasta")) == Alphabet(:binary)
@info "Tests: warning will be produced below"
@test !in(
auto_alph(joinpath(basedir, "toy_fasta_else.fasta")),
[Alphabet(:dna), Alphabet(:aa), Alphabet(:binary)]
)
end
@testset "Writing and reading" begin
# test whether FASTX handles long names
long_name = repeat("1", 250)
short_name = "Hello"
seq = [1,2,3,4]
A = Alignment([seq, reverse(seq)], alphabet = :nt, names = [long_name, short_name])
write(joinpath(basedir, "aln.fasta"), A)
B = read_fasta(joinpath(basedir, "aln.fasta"), alphabet = :nt)
@test find_sequence(long_name, B) == (1, seq)
@test find_sequence(short_name, B) == (2, reverse(seq))
end
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 1901 | # BioSequenceMappings
[](https://PierreBarrat.github.io/BioSequenceMappings.jl/stable/)
[](https://PierreBarrat.github.io/BioSequenceMappings.jl/dev/)
The aim of the package is to facilitate the task of converting biological sequences (nucleotides, amino acids) to integers or to onehot representation.
It also provides simple function to manipulate alignments or to compute simple statistics.
*Note*: I do not frequently use the onehot format, so for now it is not documented / not well tested. I'll develop it more when I get the time.
## Installation
From a Julia session:
```julia
using Pkg
Pkg.add("BioSequenceMappings")
using BioSequenceMappings
```
## Usage
Check the [documentation](https://pierrebarrat.github.io/BioSequenceMappings.jl/dev/) for more information. Below are some examples.
### Filter sequences by Hamming distance
Load an alignment, find all sequences with a Hamming distance smaller than 66% to the first one, create a new alignment object from them and save it to a file.
```julia
using BioSequenceMappings
A = read_fasta("example/PF00014.fasta");
size(A) # 100 sequences of length 53
s0 = A[1];
indices = findall(s -> hamming(s, s0; normalize=true) < 0.66, A)
B = subsample(A, indices)
write("example/PF00014_subsample.fasta", B)
```
### Remove columns with too many gaps
Load an alignment, find columns with more than 5% gaps and remove them, then create a new alignment object.
```julia
using BioSequenceMappings
A = read_fasta("example/PF00014.fasta"); # uses the default alphabet `aa_alphabet`
gap_digit = A.alphabet('-')
f1 = site_specific_frequencies(A)
non_gapped_colums = findall(j -> f1[gap_digit, j] <= 0.05, 1:size(f1, 2))
B = Alignment(A.data[non_gapped_colums, :], A.alphabet; A.names) # sequences are stored as columns
``` | BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 5479 | ```@meta
DocTestSetup = quote
using BioSequenceMappings
end
```
# The `Alignment` type
An [`Alignment`](@ref) essentially contains a set of aligned biological sequences mapped to integers.
It is a subtype of the more general `AbstractAlignment`.
The precise type is of the form `Alignment{A,T}` where `A` is the type of biological symbols (see [The `Alphabet` type](@ref)) and `T` the type of integers.
Its fields are simple and self-explanatory:
- `data::Matrix{T}`: the mapped sequences. Each column of the matrix is one sequence.
- `alphabet::Alphabet{A,T}`: the alphabet defining the mapping from symbols to integers.
- `weights::Vector{Float64}`: weights associated with each sequence. DCA-like methods assign phylogenetic weights to sequences when infering models.
- `names::Vector{String}`: names of the sequences, corresponding to the description string if the alignment was built from a FASTA file.
The dimensions of an alignment can be obtained using `size`: length $\cross$ number of sequences
## Reading & writing
For now, the only file format that this package interacts with is FASTA.
Reading an alignment is simple:
```@repl align1
using BioSequenceMappings # hide
A = read_fasta("../../example/PF00014.fasta")
size(A) # length and number of sequences
```
When reading from FASTA, the choice of the alphabet is made by reading the first five sequences, and comparing the observed characters with the list of default alphabets (see [The `Alphabet` type](@ref)).
If they fit one of the defaults, it will be used.
Otherwise, an alphabet will be created *ad hoc*:
```@repl strange_characters
using BioSequenceMappings # hide
A = read_fasta("../../example/strange_characters.fasta"); # warning produced because no default alphabet was found
A.alphabet |> symbols |> prod
```
Writing to a FASTA file is just as easy:
```@repl strange_characters
write("new_fasta_file.fasta", A) # or...
open("new_fasta_file.fasta", "w") do io
write(io, A)
end
```
## Accessing & iterating
Sequences can be accessed by indexing.
Indexing using a range will return a view in the underlying `data` matrix.
```@repl align1
A[1] # the first sequence of the alignment
size(A[1:5]) # 5 sequences of length L
```
!!! tip
When indexing or when iterating, the return value is a *reference* to the sequence and not a copy.
For this reason, if you modify the sequence, the alignment itself will be modified
```@repl
using BioSequenceMappings # hide
A = read_fasta("../../example/PF00014.fasta") # hide
s = A[1]'
s[1] = 21
A[1]' # the first element has been modified
```
The fact that calls like `A[1:5]` return a matrix-like object can be inconvenient.
To iterate over sequences as vectors of integers, one can use the [`eachsequence`](@ref) function.
It takes the alignment as a first argument and optionally indices, and return an iterator.
```@repl align1
for s in eachsequence(A)
# s: vector of integers
end
map(length, eachsequence(A, 1:5:16)) # length of sequences 1, 6, 11. 16
collect(eachsequence(A; skip=25)) # collect as list of vectors, taking one every 25 sequences
```
If the name of the sequence is needed, the iterator [`named_sequences`](@ref) can be used instead, taking the same arguments and iterating over tuples of the form `(name, sequence)`.
## Finding sequences
The package provides [`find_sequence`](@ref) to find sequences by name in an alignment, and [`match_sequences`](@ref) to match all sequences with a particular name pattern.
```jldoctest align2; setup = :(example_dir = joinpath(dirname(pathof(BioSequenceMappings)), "../example"))
julia> A = read_fasta(joinpath(example_dir, "toy_fasta_dna.fasta"));
julia> n = A.names[1] # name of the first sequence in the alignment
"sequence_1"
julia> find_sequence(n, A) # index and sequence
(1, [5, 3, 4, 2, 4, 1, 5, 1, 5, 5])
julia> indices, sequences = match_sequences(r"sequence_[0-9]", A); # using a regex
julia> indices
5-element Vector{Int64}:
1
2
3
4
5
```
!!! note
`find_sequence` searches for an exact match.
It is based on `findfirst`, and will thus return the first match it finds.
If nothing is found, then the result is `nothing`.
On the other hand, `match_sequences` is based on `occursin` and `findall`.
The returned sequences are references to original objects, as when indexing.
## Creating subalignments
The call `subsample(A, indices)` will create an `AbstractAlignment` of the same type as `A` by taking only the sequences at `indices`.
It uses the same alphabet as `A` and copies over the names of the sequences.
Note that [`subsample`](@ref) *copies* the underlying data, creating a completely independent object.
```@repl align3
using BioSequenceMappings # hide
A = read_fasta("../../example/toy_fasta_dna.fasta")
A[1][1] # first character of the first sequence
B = subsample(A, 1:2:5)
B[1][1] = 5
A[1][1] # A remains unchanged
```
With [`subsample_random`](@ref), it is also possible to create a random subalignment by picking sequences from the original one.
For now, this is only possible without replacement, *i.e.* the same sequence cannot be picked twice.
To just pick one sequence at random without creating a new alignment object, just call `rand`.
```@repl align3
subsample_random(A, 3) # new alignment using three random sequences from A
subsample_random(A, 12) # sampling without replacement: this will error since size(A, 1) < 12
rand(A) # one random sequence from A (returns a view)
```
## OneHotAlignment
TBA | BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 5141 | ```@setup alpha1
using BioSequenceMappings
```
```@meta
DocTestSetup = quote
using BioSequenceMappings
A = Alphabet(['A', 'C', 'G', 'T', '-'])
end
```
# The `Alphabet` type
## Basics
An `Alphabet` contains information necessary to map biological symbols to integers and inversely.
The full type is `Alphabet{A,I}`, where `A` is the type of biological symbols (typically `Char`) and `I` is a subtype of `Integer`.
The simplest way to create an alphabet is from a list of symbols:
```@repl alpha1
A = Alphabet(['A', 'C', 'G', 'T', '-'])
```
The created alphabet `A` associates `Char` correspondings to nucleotides to `Int` according to the index at which they appear in the input vector: `'A' => 1`, `'C' => 2`, etc...
Note that we could have created the same alphabet from a string (since it's based on `Char`s) or from a dictionary:
```jldoctest alpha2
julia> B = Alphabet("ACGT-");
julia> C = Alphabet(Dict('A'=>1, 'C'=>2, 'G'=>3, 'T'=>4, '-'=>5));
julia> A == B
true
julia> A == C
true
```
The alphabet is used to map symbols to integers and inversely.
This is done by calling the object directly, as a function:
```jldoctest alpha2
julia> A('A') # mapping Char to Int
1
julia> A(1) # mapping Int to Char
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)
julia> A("A-GT") # mapping a string to a vector
4-element Vector{Int64}:
1
5
3
4
julia> A([1,2,3]) # mapping a vector to a string
"ACG"
```
If needed, the mapping is accessible using the `symbols`function:
```jldoctest alpha2
julia> symbols(A)
5-element Vector{Char}:
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)
'C': ASCII/Unicode U+0043 (category Lu: Letter, uppercase)
'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)
'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase)
'-': ASCII/Unicode U+002D (category Pd: Punctuation, dash)
julia> A |> symbols |> prod # as a string
"ACGT-"
```
## Default alphabets
The package comes with three default alphabets:
- an amino-acid alphabet `aa_alphabet` using the mapping `"-ACDEFGHIKLMNPQRSTVWY"`;
- a nucleotide alphabet `nt_alphabet` using the mapping `"-ACGT"`;
- a "binary" alphabet `BioSequenceMappings.binary_alphabet`, which I found useful for simulations, with the mapping: `"01"`.
These can be also be accessed by calling `Alphabet(name)` where `name` is a symbol corresponding to any of the default alphabets.
The symbolic names can be easily be found:
```jldoctest alpha2
julia> BioSequenceMappings.aa_alphabet_names # also works with nt and binary alphabets
(:aa, :AA, :aminoacids, :amino_acids)
julia> Alphabet(:aa) == aa_alphabet
true
julia> Alphabet(:amino_acids)([1,2,3])
"-AC"
```
Each default alphabet is also associated to a specific cardinality of biological symbols through the function `default_alphabet`.
This means that an integer vector with elements ranging from 1 to `q` will be associated to the following alphabets:
```juliadoctest alpha2
julia> default_alphabet(2) == Alphabet(:binary) # q == 2
true
julia> default_alphabet(5) == Alphabet(:nt) # q == 5
true
julia> default_alphabet(21) == Alphabet(:aa) # 5 < q <= 21
true
julia> default_alphabet(15) == Alphabet(:aa) # 5 < q <= 21
```
This association is useful to create `Alignment` objects from a matrix of integers without having to specify the alphabet manually.
## Default characters
When reading biological sequences, it can be convenient to associate all unexpected characters to a default symbol, for instance the gap.
This can be achieved by providing the `default_char` keyword argument when constructing the alphabet:
```@repl alpha1
A_default = Alphabet("ACGT-"; default_char = '-')
A_default("ABCDEF") # 'unknown' chars are mapped to '-', in turn mapped to 5
A("ABCDEF") # if no defaults are provided, fails
```
This also works the other way around: integers that are not in the range of the alphabet are mapped to the default symbol:
```@repl alpha1
A_default(1:10) # indices larger than 5 are mapped to the gap
A(1:10) # if no defaults are provided, fails
```
## Using specific integer types
When created as above, the alphabet will default to using `Int` as the integer type.
If dealing with large amounts of data, it can be beneficial to use a more sober type.
This is done by providing an extra argument of the desired type when constructing the alphabet:
```@repl alpha1
B = Alphabet("ACGT-", UInt8)
B == A
B("A-")
```
## Translating between alphabets
It often happens to me that I have an integer vector `X` representing a sequence, but with a mapping different from the one I am used to.
The [`translate`](@ref) function lets me convert it to another integer vector with the right mapping.
```jldoctest alpha2
julia> strange_alphabet = Alphabet("TCGA-"); # the default is "-ACGT"
julia> X = Int[2, 2, 5, 4, 5]; # representing the sequence "CC-A-" according to the above
julia> strange_alphabet(X)
"CC-A-"
julia> nt_alphabet(X) # this is obviously wrong - nt_alphabet uses "-ACGT"
"AATGT"
julia> Y = translate(X, strange_alphabet, nt_alphabet)
5-element Vector{Int64}:
3
3
1
2
1
julia> nt_alphabet(Y) # now this works
"CC-A-"
``` | BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 1697 | ```@meta
CurrentModule = BioSequenceMappings
```
# BioSequenceMappings
The aim of the package is to facilitate the task of converting biological sequences (nucleotides, amino acids) to integers or to onehot representation.
It also provides simple function to manipulate alignments or to compute simple statistics.
*Note*: I do not frequently use the onehot format, so for now it is not documented / not well tested. I'll develop it more when I get the time.
## Installation
From the Julia REPL:
```@repl
using Pkg
Pkg.add("https://github.com/PierreBarrat/BioSequenceMappings.jl")
using BioSequenceMappings
```
## Usage
### Filter sequences by Hamming distance
Load an alignment, find all sequences with a Hamming distance smaller than 66% to the first one, create a new alignment object from them and save it to a file.
```@repl example_1
using BioSequenceMappings
A = read_fasta("../../example/PF00014.fasta");
size(A) # 100 sequences of length 53
s0 = A[1];
s0' # transpose for legibility
indices = findall(s -> hamming(s, s0; normalize=true) < 0.66, A)
B = subsample(A, indices)
write("PF00014_subsample.fasta", B)
```
### Remove columns with too many gaps
Load an alignment, find columns with more than 5% gaps and remove them, then create a new alignment object.
```@repl example_2
using BioSequenceMappings # hide
A = read_fasta("../../example/PF00014.fasta"); # uses the default alphabet `aa_alphabet`
gap_digit = A.alphabet('-')
f1 = site_specific_frequencies(A)
non_gapped_colums = findall(j -> f1[gap_digit, j] <= 0.05, 1:size(f1, 2))' # transpose for legibility
B = Alignment(A.data[non_gapped_colums', :], A.alphabet; A.names) # sequences are stored as columns
``` | BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 227 | ```@meta
CurrentModule = BioSequenceMappings
```
Documentation for [BioSequenceMappings](https://github.com/PierreBarrat/BioSequenceMappings.jl).
```@index
```
```@autodocs
Modules = [BioSequenceMappings]
Private = false
``` | BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"MIT"
] | 0.1.3 | e1032040d1be0b6a9bcfba77379c6384e301b24b | docs | 1799 | # Utilities
## Hamming distance
[`hamming(x, y)`](@ref) returns the normalized Hamming distance between two integer vectors.
## Alignment statistics
### Pairwise Hamming distance
[`pairwise_hamming(A)`](@ref) returns a vector containing all Hamming distances between pairs of sequences in `A`.
For large alignments, it is often practical to consider only a subset of Hamming distances: the `step=n` keyword can be used to only consider every nth sequence.
The function is also adapted to two alignments: [`pairwise_hamming(A,B)`] will consider all pairs of sequences with one member in `A` and the other one in `B`.
### Statistics
- the profile of the alignment: [`site_specific_frequencies(A)`](@ref) returns a `q x L` matrix where `q` is the size of the alphabet and `L` the length of sequences, with element `(a, i)` being the fraction of sequences in which character `a` was found at position `i`.
- the pairwise frequencies: [`pairwise_frequencies(A)`](@ref)
- the pairwise correlations: [`pairwise_correlations(A)`](@ref)
All these functions accept a vector of weights as a second argument, and will by default use `A.weights` if it is not provided.
### Weights
In DCA-like algorithms, it is customary to weight sequences by their degree of phylogenetic relations.
Typically, the weight of a sequence is inversely proportional to the number of other sequences with a Hamming distance smaller than some threshold.
For an alignment `X`, computing the weights is done using [`compute_weights`](@ref):
```@repl
using BioSequenceMappings # hide
A = read_fasta("../../example/toy_fasta_dna.fasta")
compute_weights(A) # compute and return the weight vector, as well as the effective number of sequences
compute_weights!(A); # same, but sets the weights field in A
A.weights
```
| BioSequenceMappings | https://github.com/PierreBarrat/BioSequenceMappings.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 5806 | using MoYe, CUDA, Test
@views function matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma_C)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# gmem copy partition
gmem_thr_copy_a = get_slice(gmem_copy_A, threadIdx().x)
tAgA = partition_S(gmem_thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(gmem_thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
gmem_thr_copy_b = get_slice(gmem_copy_B, threadIdx().x)
tBgB = partition_S(gmem_thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(gmem_thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
# mma partition
thr_mma = get_slice(mma_C, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
tCrA = make_fragment_A(thr_mma, tCsA) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB) # (MMA, MMA_N, MMA_K)
tCrC = make_fragment_C(thr_mma, tCgC) # (MMA, MMA_M, MMA_N)
zeros!(tCrC)
# retile
smem_thr_copy_A = get_slice(smem_copy_A, threadIdx().x)
smem_thr_copy_B = get_slice(smem_copy_B, threadIdx().x)
tCsA_retiled = partition_S(smem_thr_copy_A, sA)
tCsB_retiled = partition_S(smem_thr_copy_B, sB)
tCrA_retiled = retile_D(smem_thr_copy_A, tCrA)
tCrB_retiled = retile_D(smem_thr_copy_B, tCrB)
k_tile_max = size(tAgA, 4)
@cuprintln "k_tile_max: $k_tile_max"
k_tile = 1
# for k_tile in 1:k_tile_max
# copy from global to shared
copyto!(gmem_copy_A, tAsA, view(tAgA, :, :, :, k_tile))
copyto!(gmem_copy_B, tBsB, view(tBgB, :, :, :, k_tile))
cp_async_wait()
sync_threads()
# copy from shared to registers
copyto!(smem_copy_A, tCrA_retiled, tCsA_retiled)
copyto!(smem_copy_B, tCrB_retiled, tCsB_retiled)
# MoYe.copyto_unpack!(MoYe.CopyTraits{LDSM_U32x4_N}(), view(tCrB_retiled, (:,_1), _1, _1), view(tCsB_retiled, (:,_1), _1, _1))
if threadIdx().x == 1
@cuprintln "Thread 1"
@cuprintln Int32(sB[17,1]), Int32(sB[17,2]), Int32(sB[17,3]), Int32(sB[17,4]), Int32(sB[17,5]), Int32(sB[17,6]), Int32(sB[17,7]), Int32(sB[17,8]), Int32(sB[17,9]), Int32(sB[17,10]), Int32(sB[17,11]), Int32(sB[17,12]), Int32(sB[17,13]), Int32(sB[17,14]), Int32(sB[17,15]), Int32(sB[17,16])
@cuprintln Int32(sB[18,1]), Int32(sB[18,2]), Int32(sB[18,3]), Int32(sB[18,4]), Int32(sB[18,5]), Int32(sB[18,6]), Int32(sB[18,7]), Int32(sB[18,8]), Int32(sB[18,9]), Int32(sB[18,10]), Int32(sB[18,11]), Int32(sB[18,12]), Int32(sB[18,13]), Int32(sB[18,14]), Int32(sB[18,15]), Int32(sB[18,16])
@cuprintln Int32(tCrB[1,1,1]), Int32(tCrB[2,1,1]), Int32(tCrB[1,2,1]), Int32(tCrB[2,2,1])
@cuprintln Int32(tCrB_retiled[1,1,1]), Int32(tCrB_retiled[2,1,1]), Int32(tCrB_retiled[3,1,1]), Int32(tCrB_retiled[4,1,1])
end
if threadIdx().x == 25
@cuprintln "Thread 25"
@cuprintln Int32(tCsB_retiled[1]), Int32(tCsB_retiled[2]), Int32(tCsB_retiled[3]), Int32(tCsB_retiled[4])
end
@gc_preserve gemm!(mma_C, tCrC, tCrA, tCrB, tCrC)
@inbounds tCrC[1] # compiler bug, have to load after copyto!
sync_threads()
# end
copyto!(tCgC, tCrC)
@inbounds tCrC[1] # compiler bug, have to load after copyto!
sync_threads()
return nothing
end
function matmul(A, B, C)
bM = _32
bN = _32
bK = _16
sA_atom_layout = @Layout (32, 8) (1, 32)
sB_atom_layout = @Layout (8, 16) (16, 1)
sA_layout = MoYe.tile_to_shape(sA_atom_layout, (bM, bK))
sB_layout = MoYe.tile_to_shape(sB_atom_layout, (bN, bK))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
gmem_copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TA}(),
@Layout((4, 8)),
@Layout((4, 1)))
gmem_copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TB}(),
@Layout((8, 4), (4, 1)),
@Layout((1, 4)))
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN(),
@Layout((1,2,1)),
(_32, _32, _8))
# Note: A is M-major so we can only use `UniversalCopy`
smem_copy_A = make_tiled_copy_A(CopyAtom{UniversalCopy{TA}, TA}(), mma)
smem_copy_B = make_tiled_copy_B(CopyAtom{LDSM_U32x4_N, TB}(), mma)
threads = Int(size(mma))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
end
function test()
M = 32
K = 16
N = 32
A = CuArray(reshape(collect(1:M*K) .* 1f0, (M,K)))
B = CuArray(reshape(collect(1:N*K) .* 1f0, (K,N))) # K-major
C = CuArray(ones(Float32, (M,N)))
matmul(A, B', C)
CUDA.synchronize()
@test C == A * B
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test() | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1880 | using MoYe
using Documenter
DocMeta.setdocmeta!(MoYe, :DocTestSetup, :(using MoYe); recursive=true)
makedocs(; modules=[MoYe],
authors="MilkshakeForReal <[email protected]> and contributors",
repo="https://github.com/YichengDWu/MoYe.jl/blob/{commit}{path}#{line}",
warnonly = Documenter.except(:autodocs_block, :cross_references, :docs_block,
:doctest, :eval_block, :example_block, :footnote,
:linkcheck_remotes, :linkcheck, :meta_block, :parse_error),
sitename="MoYe.jl",
format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://YichengDWu.github.io/MoYe.jl",
edit_link="main", assets=String[]),
pages=[
"Home" => "index.md",
"Manual" => [
"Layout" => "manual/layout.md",
"Array" => "manual/array.md",
"Broadcasting" => "manual/broadcast.md",
"MatMul" => "manual/matmul.md",
# "Data Movement" => [
# "Global Memory & Shared Memory" => "manual/datamovement/gs.md",
# ]
"TiledCopy & TiledMMA" => "manual/tiled_matmul.md",
"Memcpy Async" => "manual/async.md",
"Pipeline" => "manual/pipeline.md",
"Tensor Cores" => "manual/tensor_core.md",
],
"API Reference" => [
"Layout" => "api/layout.md",
"MoYeArray" => "api/array.md",
"Tiling" => "api/tiling.md",
"Data Movement" => "api/copy.md",
"MMA/Copy Atoms" => "api/atom.md",
],
])
deploydocs(; repo="github.com/YichengDWu/MoYe.jl", push_preview=true, devbranch="main")
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3230 | using MoYe, CUDA, Test
using MoYe: @loopinfo
function matmul_kernel(A, blocklayout_A, threadlayout_A, B, blocklayout_B, threadlayout_B,
C, blocklayout_C, threadlayout_C)
sA = MoYeSharedArray(eltype(A), blocklayout_A)
sB = MoYeSharedArray(eltype(B), blocklayout_B)
X = MoYe.One()
M = size(A, 1)
N = size(B, 1)
K = size(A, 2)
mA = MoYeArray(A, (M, K))
mB = MoYeArray(B, (N, K))
mC = MoYeArray(C, (M, N))
bM = size(blocklayout_A, 1)
bN = size(blocklayout_B, 1)
bK = size(blocklayout_B, 2)
blocktile_A = @tile mA (bM, bK) (blockIdx().x, :) # (bM,bK,k)
blocktile_B = @tile mB (bN, bK) (blockIdx().y, :) # (bN,bK,k)
blocktile_C = @tile mC (bM, bN) (blockIdx().x, blockIdx().y) # (bM,bN)
# Load data A and B from gmem to smem a and b
threadtile_gA = @parallelize blocktile_A threadlayout_A threadIdx().x # (tM,tK,k)
threadtile_sA = @parallelize sA threadlayout_A threadIdx().x # (tM,tK)
threadtile_gB = @parallelize blocktile_B threadlayout_B threadIdx().x # (tN,tK,k)
threadtile_sB = @parallelize sB threadlayout_B threadIdx().x # (tN,tK)
# For mma computation
computetile_sA = @parallelize sA threadlayout_C threadIdx().x (X, :)
computetile_sB = @parallelize sB threadlayout_C threadIdx().x (:, X)
computetile_gC = @parallelize blocktile_C threadlayout_C threadIdx().x
frg_c = make_fragment_like(computetile_gC)
zeros!(frg_c)
k_max = size(threadtile_gA, 3)
for i in 1:k_max
# copy gmem to smem
copyto!(threadtile_sA, view(threadtile_gA, :, :, i))
copyto!(threadtile_sB, view(threadtile_gB, :, :, i))
cp_async_wait()
sync_threads()
# classic three nested for loops
for k in axes(computetile_sA, 2)
@loopinfo unroll for m in axes(computetile_sA, 1)
@loopinfo unroll for n in axes(computetile_sB, 1)
@inbounds frg_c[m, n] += computetile_sA[m, k] * computetile_sB[n, k]
end
end
end
sync_threads()
end
copyto!(computetile_gC, frg_c)
return nothing
end
function matmul(A, B, C)
M = size(A, 1)
N = size(B, 1)
K = size(A, 2)
blocklayout_A = @Layout (128, 8)
blocklayout_B = @Layout (128, 8)
blocklayout_C = @Layout (128, 128)
threadlayout_A = @Layout (32, 8)
threadlayout_B = @Layout (32, 8)
threadlayout_C = @Layout (32, 8)
threads = Int(size(threadlayout_C))
bM = size(blocklayout_A, 1)
bN = size(blocklayout_B, 1)
blocks = (cld(M, bM), cld(N, bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, blocklayout_A, threadlayout_A, B,
blocklayout_B, threadlayout_B, C,
blocklayout_C, threadlayout_C)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2945 | module MoYe
using Static: StaticInt, static, dynamic, is_static, One, Zero, known, repr
import Static
import ManualMemory, LayoutPointers
import StrideArraysCore
import StaticArrayInterface
using StrideArraysCore: static_length, static_size, static_axes
using StrideArraysCore: @gc_preserve
using CUDA, BFloat16s, LLVM
using CUDA: @device_override
using LLVMLoopInfo: @loopinfo
using Core: LLVMPtr
import Adapt
using MacroTools: @capture
import LinearAlgebra
#import LinearAlgebra
include("utilities.jl")
include("algorithm/tuple_algorithms.jl")
include("int_tuple.jl")
include("stride.jl")
include("layout.jl")
include("engine.jl")
include("array.jl")
include("broadcast.jl")
include("algorithm/array_algorithms.jl")
include("pointer.jl")
# Arch
include("arch/mma/mma.jl")
include("arch/mma/make_mma_ops.jl")
include("arch/copy/copy.jl")
include("arch/copy/copy_async.jl")
include("arch/copy/ldmatrix.jl")
# Traits
include("traits/mma.jl")
include("traits/copy.jl")
include("traits/cp_async.jl")
include("traits/ldmatrix.jl")
# Atom
include("atom/mma.jl")
include("atom/copy.jl")
include("atom/ldmatrix.jl")
include("algorithm/copy.jl")
include("algorithm/blas.jl")
# Deprecations
include("deprecated.jl")
# Device
include("device/smem.jl")
include("print.jl")
# rexport
export static, @gc_preserve, static_size, @loopinfo
# tuple algorithms
export flatten, unflatten
export colex_less, elem_less, increment, capacity
export coord_to_index, index_to_coord, coord_to_coord, compact_col_major, compact_row_major,
GenColMajor, GenRowMajor, @Layout
# Layout
export Layout, StaticLayout, make_layout, shape, rank, depth, cosize, composition, complement,
logical_product, blocked_product, raked_product, zipped_product, tiled_product,
logical_divide, zipped_divide, tiled_divide, zeros!, recast, right_inverse,
left_inverse, tile_to_shape
export print_layout, print_typst
# MoYeArray
export ArrayEngine, ViewEngine, MoYeArray, make_fragment_like, @parallelize, @tile, zeros!
export MoYeSharedArray
# Traits
export MMATraits, shape_mnk, thr_id, layout_a, layout_b, layout_c, layout_d
# Atom
export CopyAtom, make_tiled_copy, get_slice, partition_D, partition_S, UniversalFMA,
UniversalCopy, CPOP_ASYNC_CACHEALWAYS, CPOP_ASYNC_CACHEGLOBAL
export MMAAtom, make_tiled_mma, partition_C, partition_A, partition_B, tile_size,
partition_fragment_C, partition_fragment_A, partition_fragment_B, make_tiled_copy_A,
make_tiled_copy_B, make_tiled_copy_C, make_fragment_A, make_fragment_B, make_fragment_C,
retile_D, retile_S
# pointer
export isgmem, issmem, isrmem
# blas
export axpby!, gemm!
# data movement
export cp_async_wait, cp_async_commit
# constants
export _0, _1, _2, _3, _4, _5, _6, _8, _9, _10,
_16, _32, _64, _128, _256, _512, _1024, _2048, _4096, _8192
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 12433 | """
MoYeArray(engine::Engine, layout::Layout)
MoYeArray{T}(::UndefInitializer, layout::StaticLayout)
MoYeArray(ptr, layout::Layout)
Create a MoYeArray from an engine and a layout. See also [`ArrayEngine`](@ref) and [`ViewEngine`](@ref).
## Examples
```julia
julia> slayout = @Layout (5, 2);
julia> array_engine = ArrayEngine{Float32}(undef, cosize(slayout)); # owning array
julia> MoYeArray(array_engine, slayout)
5×2 MoYeArray{Float32, 2, ArrayEngine{Float32, 10}, Layout{2, Tuple{Static.StaticInt{5}, Static.StaticInt{2}}, Tuple{Static.StaticInt{1}, Static.StaticInt{5}}}}:
-3.24118f12 0.0
7.57f-43 0.0
0.0 0.0
0.0 0.0
7.89217f-40 0.0
julia> MoYeArray{Float32}(undef, slayout)
5×2 MoYeArray{Float32, 2, ArrayEngine{Float32, 10}, Layout{2, Tuple{Static.StaticInt{5}, Static.StaticInt{2}}, Tuple{Static.StaticInt{1}, Static.StaticInt{5}}}}:
4.0f-45 7.57f-43
0.0 0.0
-1.81623f7 0.0
7.57f-43 0.0
-1.81623f7 0.0
julia> A = ones(10);
julia> MoYeArray(pointer(A), slayout) # non-owning array
5×2 MoYeArray{Float64, 2, ViewEngine{Float64, Ptr{Float64}}, Layout{2, Tuple{Static.StaticInt{5}, Static.StaticInt{2}}, Tuple{Static.StaticInt{1}, Static.StaticInt{5}}}}:
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
julia> function test_alloc() # when powered by a ArrayEngine, MoYeArray is stack-allocated
slayout = @Layout (2, 3) # and mutable
x = MoYeArray{Float32}(undef, slayout)
fill!(x, 1.0f0)
return sum(x)
end
test_alloc (generic function with 2 methods)
julia> @allocated(test_alloc())
0
```
"""
struct MoYeArray{T, N, E <: Engine{T}, L <: Layout{N}} <: AbstractArray{T, N}
engine::E
layout::L
@inline function MoYeArray(engine::Engine{T}, layout::Layout{N}) where {T, N}
return new{T, N, typeof(engine), typeof(layout)}(engine, layout)
end
end
@inline function MoYeArray{T}(::UndefInitializer, l::StaticLayout) where {T}
return MoYeArray(ArrayEngine{T}(undef, cosize(l)), l)
end
@inline function MoYeArray{T}(::UndefInitializer, l::Layout) where {T}
throw(ArgumentError("Owning `MoYeArray` cannot be created from a dynamic layout"))
end
@inline function MoYeArray{T}(::UndefInitializer, shape::Union{StaticInt, StaticIntTuple},
args...) where {T}
l = make_layout(shape, args...)
return MoYeArray(ArrayEngine{T}(undef, cosize(l)), l)
end
@inline function MoYeArray{T}(f::Function, l::StaticLayout) where {T}
return MoYeArray(ArrayEngine{T}(f, cosize(l)), l)
end
@inline function MoYeArray{T}(f::Function, shape::Union{StaticInt, StaticIntTuple},
args...) where {T}
l = make_layout(shape, args...)
return MoYeArray(ArrayEngine{T}(f, cosize(l)), l)
end
@inline function MoYeArray(ptr::Ptr{T}, layout::Layout) where {T}
engine = ViewEngine(ptr)
return MoYeArray(engine, layout)
end
@inline function MoYeArray(ptr::Ptr{T}, shape::GenIntTuple, args...) where {T <: Number}
l = make_layout(shape, args...)
return MoYeArray(ptr, l)
end
@inline function MoYeArray(ptr::LLVMPtr{T}, layout::Layout) where {T}
engine = ViewEngine(ptr)
return MoYeArray(engine, layout)
end
@inline function MoYeArray(ptr::LLVMPtr{T}, shape::GenIntTuple, args...) where {T}
return MoYeArray(ptr, make_layout(shape, args...))
end
@inline function MoYeArray(x::LinearAlgebra.Transpose)
return MoYeArray(pointer(x.parent), make_layout(size(x), GenRowMajor))
end
@inline function MoYeArray(x::LinearAlgebra.Adjoint)
return MoYeArray(pointer(x.parent), make_layout(size(x), GenRowMajor))
end
@inline function MoYeArray(x::AbstractArray)
return MoYeArray(pointer(x), make_layout(size(x), GenColMajor))
end
#@inline function MoYeArray(x::StaticArrayInterface.StaticArray)
# return MoYeArray(pointer(x), make_layout(StaticArrayInterface.static_size(x)))
#end
@inline MoYeArray(x::AbstractArray, args...) = MoYeArray(pointer(x), args...)
@inline MoYeArray(x::LinearAlgebra.Adjoint, args...) = MoYeArray(pointer(x.parent), args...)
@inline MoYeArray(x::LinearAlgebra.Transpose, args...) = MoYeArray(pointer(x.parent), args...)
const BitMoYeArray{N, E, L} = MoYeArray{Bool, N, E, L}
const StaticMoYeArray{T, N, A} = MoYeArray{T, N, A, <:Layout{N, <:StaticIntTuple}} # only size needs to be static
const OwningArray{T, N, L} = MoYeArray{T, N, <:ArrayEngine, L}
const NonOwningArray{T, N, L} = MoYeArray{T, N, <:ViewEngine, L}
const StaticOwningArray{T, N, L} = MoYeArray{T, N, <:ArrayEngine, <:Layout{N, <:StaticIntTuple}}
const StaticNonOwningArray{T, N, L} = MoYeArray{T, N, <:ViewEngine, <:Layout{N, <:StaticIntTuple}}
const LocalArray{T, N, L} = MoYeArray{T, N, ViewEngine{T, Ptr{T}}, L}
const SharedArray{T, N, L} = MoYeArray{T, N, ViewEngine{T, LLVMPtr{T, AS.Shared}}, L}
engine(x::MoYeArray) = getfield(x, :engine)
layout(x::MoYeArray) = getfield(x, :layout)
layout(::Type{<:StaticMoYeArray{T,N,E,L}}) where {T,N,E,L} = L
@inline Base.elsize(x::MoYeArray{T}) where {T} = sizeof(T)
@inline Base.sizeof(x::MoYeArray) = Base.elsize(x) * length(x)
@inline Base.size(x::MoYeArray) = tuple(dynamic(map(capacity, shape(layout(x))))...)
@inline Base.size(x::MoYeArray, i::StaticInt) = size(layout(x), i)
@inline Base.length(x::MoYeArray) = x |> layout |> shape |> capacity |> dynamic
@inline Base.strides(x::MoYeArray) = stride(layout(x)) # note is might be static
@inline Base.stride(x::MoYeArray, i::IntType) = getindex(stride(layout(x)), i)
@inline rank(x::MoYeArray) = rank(layout(x))
@inline depth(x::MoYeArray) = depth(layout(x))
@inline shape(x::MoYeArray) = shape(layout(x))
@inline shape(x::Type{<:MoYeArray{T, N, E, L}}) where {T, N, E, L} = shape(L)
# static interface
@inline StaticArrayInterface.static_size(x::StaticMoYeArray) = map(capacity, shape(layout(x)))
@inline StaticArrayInterface.static_size(x::A, i::Union{Int, StaticInt}) where {A<:StaticMoYeArray}= size(layout(x), i)
@inline function StaticArrayInterface.static_axes(x::StaticMoYeArray{T,N,<:ViewEngine}) where {T,N}
return map(Base.oneto, static_size(x))
end
@inline StaticArrayInterface.static_axes(x::StaticMoYeArray) = static_axes(MoYeArray(pointer(x), layout(x)))
@inline Base.axes(x::StaticMoYeArray) = static_axes(x)
@inline Base.axes(x::StaticMoYeArray, i::StaticInt) = static_axes(x, i)
@inline function ManualMemory.preserve_buffer(A::MoYeArray)
return ManualMemory.preserve_buffer(engine(A))
end
@inline function Base.unsafe_convert(::Type{Ptr{T}},
A::MoYeArray{T}) where {T}
return Base.unsafe_convert(Ptr{T}, engine(A))
end
@inline function Base.pointer(A::MoYeArray)
return pointer(engine(A))
end
"""
pointer(A::MoYeArray, i::Integer)
Return a pointer to the element at the logical index `i` in `A`, not the physical index.
"""
@inline function Base.pointer(x::MoYeArray{T}, i::IntType) where {T}
offset = coord_to_index0(x.layout, i-one(i))
return pointer(x) + offset*sizeof(T)
end
Base.IndexStyle(::Type{<:MoYeArray}) = IndexLinear()
Base.@propagate_inbounds function Base.getindex(x::OwningArray, ids::Union{Integer, StaticInt, IntTuple}...)
@boundscheck checkbounds(x, ids...) # should fail if ids is hierarchical
index = layout(x)(ids...)
b = ManualMemory.preserve_buffer(x)
GC.@preserve b begin
@inbounds ViewEngine(pointer(x))[index]
end
end
Base.@propagate_inbounds function Base.getindex(x::NonOwningArray, ids::Union{Integer, StaticInt, IntTuple}...)
@boundscheck checkbounds(x, ids...)
index = layout(x)(ids...)
@inbounds engine(x)[index]
end
# strictly for fixing print a vector
Base.@propagate_inbounds function Base.getindex(x::MoYeArray{T, 1}, row::Int, col::Int) where {T}
@inline
return getindex(x, row)
end
Base.@propagate_inbounds function Base.setindex!(x::OwningArray, val, ids::Union{Integer, StaticInt, IntTuple}...)
@boundscheck checkbounds(x, ids...)
index = layout(x)(ids...)
b = ManualMemory.preserve_buffer(x)
GC.@preserve b begin
@inbounds ViewEngine(pointer(x))[index] = val
end
end
Base.@propagate_inbounds function Base.setindex!(x::NonOwningArray, val, ids::Union{Integer, StaticInt, IntTuple}...)
@boundscheck checkbounds(x, ids...)
index = layout(x)(ids...)
@inbounds engine(x)[index] = val
end
function Adapt.adapt_structure(to, x::MoYeArray)
data = Adapt.adapt_structure(to, engine(x))
return MoYeArray(data, layout(x))
end
function Adapt.adapt_storage(::Type{MoYeArray{T, N, A}},
xs::AT) where {T, N, A, AT <: AbstractArray}
return Adapt.adapt_storage(A, xs)
end
@inline StrideArraysCore.maybe_ptr_array(A::MoYeArray) = MoYeArray(ViewEngine(pointer(A)), layout(A))
# Array operations
@inline function Base.view(x::MoYeArray{T, N}, coord::Vararg{Colon, N}) where {T, N}
b = ManualMemory.preserve_buffer(x)
GC.@preserve b begin
MoYeArray(pointer(x), layout(x))
end
end
@inline function Base.view(x::MoYeArray{T, N}, coord::Colon) where {T, N}
return view(x, repeat(:, N)...)
end
@inline function Base.view(x::MoYeArray{T},
coord...) where {T}
b = ManualMemory.preserve_buffer(x)
GC.@preserve b begin
sliced_layout, offset = slice_and_offset(layout(x), coord)
MoYeArray(pointer(x) + offset * sizeof(T), sliced_layout)
end
end
@inline function Base.similar(::Type{T}, x::MoYeArray{S,N,E,L}) where {T,S,N,E,Shape<:GenStaticIntTuple,L<:Layout{N, Shape}}
return MoYeArray{T}(undef, make_layout_like(x.layout))
end
@inline function Base.similar(x::MoYeArray{S,N,E,L}) where {S,N,E,Shape<:GenStaticIntTuple,L<:Layout{N, Shape}}
return similar(S, x)
end
function transpose(x::MoYeArray)
return MoYeArray(pointer(x), transpose(x.layout))
end
"""
append_dim(x::MoYeArray, N::StaticInt) -> MoYeArray
Add dimension to the end of the array to N.
"""
function append_dim(x::MoYeArray, N::StaticInt)
return MoYeArray(pointer(x), append(x.layout, N))
end
"""
append_dim(x::MoYeArray, N::StaticInt) -> MoYeArray
Add dimension to the front of the array to N.
"""
function prepend_dim(x::MoYeArray, N::StaticInt)
return MoYeArray(pointer(x), prepend(x.layout, N))
end
"""
recast(::Type{NewType}, x::MoYeArray{OldType}) -> MoYeArray{NewType}
Recast the element type of a MoYeArray. This is similar to `Base.reinterpret`, but dose all
the computation at compile time, if possible.
## Examples
```julia
julia> x = MoYeArray{Int32}(undef, @Layout((2,3)))
2×3 MoYeArray{Int32, 2, ArrayEngine{Int32, 6}, Layout{2, Tuple{Static.StaticInt{2}, Static.StaticInt{3}}, Tuple{Static.StaticInt{1}, Static.StaticInt{2}}}}:
-1948408944 0 2
514 -268435456 0
julia> x2 = recast(Int16, x)
4×3 MoYeArray{Int16, 2, ViewEngine{Int16, Ptr{Int16}}, Layout{2, Tuple{Static.StaticInt{4}, Static.StaticInt{3}}, Tuple{Static.StaticInt{1}, Static.StaticInt{4}}}}:
-23664 0 2
-29731 0 0
514 0 0
0 -4096 0
julia> x3 = recast(Int64, x)
1×3 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{1}, Static.StaticInt{3}}, Tuple{Static.StaticInt{1}, Static.StaticInt{1}}}}:
2209959748496 -1152921504606846976 2
```
"""
@inline function recast(::Type{NewType}, x::MoYeArray{OldType}) where {NewType, OldType}
@gc_preserve _recast(NewType, x)
end
@inline function recast(::Type{OldType}, x::MoYeArray{OldType}) where {OldType}
return x
end
function _recast(::Type{NewType}, x::MoYeArray{OldType}) where {NewType, OldType}
@inline
old_layout = layout(x)
new_layout = recast(old_layout, NewType, OldType)
if sizeof(OldType) < sizeof(NewType) # TODO: handle composed layout
shape_diff = map(-, flatten(shape(old_layout)), flatten(shape(new_layout)))
extent_diff = map(*, shape_diff, flatten(stride(old_layout)))
offset = _foldl((i,a)->i+min(a, Zero()), extent_diff, Zero())
return MoYeArray(recast(NewType, pointer(x) + offset * sizeof(OldType)), new_layout)
else
return MoYeArray(recast(NewType, pointer(x)), new_layout)
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2167 | using Base.Broadcast: AbstractArrayStyle, DefaultArrayStyle, Broadcasted
using Base.Broadcast: _broadcast_getindex, broadcast_shape
import Base.Broadcast: instantiate, materialize!, BroadcastStyle, broadcasted
struct MoYeArrayStyle{N, Shape, Stride} <: AbstractArrayStyle{N} end
BroadcastStyle(::Type{<:StaticMoYeArray{T,N,E,L}}) where {T,N,E,Shape,Stride,L<:Layout{N,Shape,Stride}} = MoYeArrayStyle{N,Shape,Stride}()
BroadcastStyle(a::MoYeArrayStyle, ::DefaultArrayStyle) = a
BroadcastStyle(a::MoYeArrayStyle{N,S}, b::MoYeArrayStyle{N,S}) where {N,S} = a
@generated function BroadcastStyle(a::MoYeArrayStyle{N1, S1}, b::MoYeArrayStyle{N2, S2}) where {N1, S1, N2, S2}
if N1 > N2
return :a
elseif N1 < N2
return :b
else
if map(product, make_tuple(S1)) == map(product, make_tuple(S2))
return :a
else
throw("Don't know how to broadcast MoYeArrays")
end
end
end
# currently only defined for static layouts
@inline function Base.similar(bc::Broadcasted{MoYeArrayStyle{N,Shape, Stride}},
::Type{ElType}) where {ElType, N, Shape, Stride}
return MoYeArray{ElType}(undef, make_layout_like(make_layout(make_tuple(Shape), make_tuple(Stride))))
end
@inline function Base.copyto!(dest::StaticOwningArray{T,N,L}, bc::Broadcasted{MoYeArrayStyle{N,S}}) where {T,N,S,L<:Layout{N,S}}
@gc_preserve copyto!(dest, bc)
return dest
end
# have to define these to avoid ambiguities...
@inline broadcasted(f::Function, x::StaticOwningArray) = @gc_preserve broadcasted(f, x)
@inline broadcasted(f::Function, x::StaticOwningArray, y::StaticOwningArray) = @gc_preserve broadcasted(f, x, y)
@inline broadcasted(f::Function, x::StaticOwningArray, y::Number) = @gc_preserve broadcasted(f, x, y)
@inline broadcasted(f::Function, x::Number, y::StaticOwningArray) = @gc_preserve broadcasted(f, x, y)
@inline broadcasted(f::Function, x::StaticOwningArray, y::StaticNonOwningArray) = @gc_preserve broadcasted(f, x, y)
@inline broadcasted(f::Function, x::StaticNonOwningArray, y::StaticOwningArray) = @gc_preserve broadcasted(f, x, y)
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 4206 | """
ViewEngine{T, P}
A wrapper of a pointer. `P` is the type of the pointer.
"""
struct ViewEngine{T, P}
ptr::P
end
@inline function ViewEngine(ptr::Ptr{T}) where {T}
return ViewEngine{T, typeof(ptr)}(ptr)
end
@inline function ViewEngine(ptr::LLVMPtr{T, AS}) where {T, AS}
return ViewEngine{T, typeof(ptr)}(ptr)
end
@inline function ViewEngine(A::AbstractArray)
p = LayoutPointers.memory_reference(A)[1]
return ViewEngine(p)
end
@inline function ViewEngine(A::ViewEngine)
return A
end
@inline Base.pointer(A::ViewEngine) = getfield(A, :ptr)
@inline function Base.unsafe_convert(p::Type{Ptr{T}}, A::ViewEngine{T}) where {T}
return Base.unsafe_convert(p, pointer(A))
end
@inline function Base.unsafe_convert(p::Type{LLVMPtr{T, AS}}, A::ViewEngine{T}) where {T, AS}
return Base.unsafe_convert(p, pointer(A))
end
@inline function Base.getindex(A::ViewEngine{T, <:LLVMPtr{T}}, i::IntType) where {T}
align = Base.datatype_alignment(T)
return unsafe_load(pointer(A), dynamic(i), Val(align))
end
@inline function Base.getindex(A::ViewEngine{T}, i::IntType) where {T}
return unsafe_load(pointer(A), dynamic(i))
end
@inline function Base.setindex!(A::ViewEngine{T, <:LLVMPtr{T}}, val, i::IntType) where {T}
align = Base.datatype_alignment(T)
return unsafe_store!(pointer(A), val, dynamic(i), Val(align))
end
@inline function Base.setindex!(A::ViewEngine{T, <:Ptr{T}}, val, i::IntType) where {T}
return unsafe_store!(pointer(A), val, dynamic(i))
end
@inline ManualMemory.preserve_buffer(::ViewEngine) = nothing
"""
ArrayEngine{T, L} <: DenseVector{T}
A owning and mutable vector of type `T` with static length `L`.
## Examples
```julia
julia> x = ArrayEngine{Float32}(undef, _3)
3-element ArrayEngine{Float32, 3}:
-9.8271385f-36
7.57f-43
-9.8271385f-36
julia> x[1] = 10f0
10.0f0
julia> x
3-element ArrayEngine{Float32, 3}:
10.0
7.57f-43
-9.8271385f-36
```
"""
mutable struct ArrayEngine{T, L} <: DenseVector{T}
data::NTuple{L, T}
@inline ArrayEngine{T, L}(::UndefInitializer) where {T, L} = new{T, L}()
@inline function ArrayEngine{T}(::UndefInitializer, ::StaticInt{L}) where {T, L}
return ArrayEngine{T, L}(undef)
end
@inline ArrayEngine(data::NTuple{L, T}) where {T, L} = new{T, L}(data)
end
@inline function Base.unsafe_convert(::Type{Ptr{T}}, A::ArrayEngine{T}) where {T}
return Base.unsafe_convert(Ptr{T}, pointer_from_objref(A))
end
@inline function Base.pointer(A::ArrayEngine{T}) where {T}
return Base.unsafe_convert(Ptr{T}, pointer_from_objref(A))
end
#@device_override @inline function Base.pointer(A::ArrayEngine{T}) where {T}
# return Base.bitcast(LLVMPtr{T, AS.Generic}, pointer_from_objref(A))
#end
@inline Base.size(::ArrayEngine{T, L}) where {T, L} = (L,)
@inline Base.length(::ArrayEngine{T, L}) where {T, L} = L
@inline Base.length(::Type{ArrayEngine{T, L}}) where {T, L} = L
@inline Base.similar(::ArrayEngine{T, L}) where {T, L} = ArrayEngine{T, L}(undef)
@generated function Base.similar(A::ArrayEngine, ::Type{T}) where {T}
return quote
Base.@_inline_meta
return ArrayEngine{T}(undef, $(StaticInt{length(A)}()))
end
end
@inline function ArrayEngine{T}(f::Function, ::StaticInt{L}) where {T, L} # not very useful
A = ArrayEngine{T, L}(undef)
@loopinfo unroll for i in eachindex(A)
@inbounds A[i] = f(i)
end
return A
end
@inline function ManualMemory.preserve_buffer(A::ArrayEngine)
return ManualMemory.preserve_buffer(getfield(A, :data))
end
Base.@propagate_inbounds function Base.getindex(A::ArrayEngine, i::IntType)
@boundscheck checkbounds(A, i)
b = ManualMemory.preserve_buffer(A)
GC.@preserve b begin
@inbounds ViewEngine(pointer(A))[i]
end
end
Base.@propagate_inbounds function Base.setindex!(A::ArrayEngine, val, i::IntType)
@boundscheck checkbounds(A, i)
b = ManualMemory.preserve_buffer(A)
GC.@preserve b begin
@inbounds ViewEngine(pointer(A))[i] = val
end
end
const Engine{T} = Union{ViewEngine{T}, ArrayEngine{T}}
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 9572 | const IntSequence{N} = NTuple{N, Union{IntType, StaticInt}}
# the recursive type definition is tricky to get right, we put Tuple here to represent it.
const IntTuple{N} = Tuple{Vararg{Union{IntType, Tuple}, N}}
const GenIntTuple = Union{Int, StaticInt, IntTuple}
# note that this type is only **almost** static
const StaticIntTuple{N} = Tuple{
Vararg{
Union{StaticInt,
Tuple{Vararg{Union{StaticInt, Tuple}}}}, N}}
const GenStaticIntTuple = Union{StaticInt, StaticIntTuple}
Base.@propagate_inbounds function Base.getindex(@nospecialize(x::Tuple),
@nospecialize(I::IntSequence{N})) where {N}
return map(Base.Fix1(getindex, x), I)
end
@inline fmap(f::Function, @nospecialize(t::Tuple)) = map(Base.Fix1(fmap, f), t)
@inline fmap(f::Function, x) = f(x)
@generated function fmap(f::Function, @nospecialize(t0::Tuple), t1)
expr = Expr(:tuple)
for i in 1:length(t0.parameters)
push!(expr.args, :(fmap(f, t0[$i], t1[$i])))
end
return expr
end
@inline fmap(f::F, t0, t1) where F = f(t0, t1)
@inline rank(@nospecialize x::IntTuple) = nfields(x)
@inline rank(@nospecialize x::IntType) = one(x)
@inline rank(@nospecialize(x::IntTuple), I::IntType...) = rank(getindex(x, I...))
@generated function rank(::Type{T}) where {T<:Tuple}
return quote
Base.@_inline_meta
return $(length(T.parameters))
end
end
@inline depth(@nospecialize x::IntType) = zero(x)
function depth(@nospecialize x::IntTuple)
return max(map(depth, x)...) + One()
end
@inline shape(x::Tuple) = map(shape, x)
@inline shape(x) = x
@inline product(x::IntType) = x
@inline product(x::IntSequence) = prod(x)
@inline product(x::IntTuple) = prod(flatten(x))
@generated function product(::Type{T}) where {T<:StaticIntTuple}
return quote
Base.@_inline_meta
return $(typeof(prod(flatten(make_tuple(T)))))
end
end
@inline product_each(x) = map(product, x)
@inline product_like_helper(a,b) = product(b)
@inline product_like(x, g) = fmap(product_like_helper, g, x)
@inline capacity(x::IntType) = x
@inline capacity(@nospecialize x::IntTuple) = product(x)
@inline capacity(::Type{T}) where {T<:StaticInt} = T
@inline capacity(::Type{T}) where {T<:StaticIntTuple} = product(T)
@inline flatsum(@nospecialize x::IntTuple) = sum(flatten(x))
function inner_product(@nospecialize(x::IntSequence), @nospecialize(y::IntSequence))
return sum(map(*, x, y))
end
function inner_product(@nospecialize(x::IntTuple), @nospecialize(y::IntTuple))
return sum(map(inner_product, x, y))
end
Base.cld(@nospecialize(x::IntSequence), @nospecialize(y::IntSequence)) = map(cld, x, y)
function Base.cld(x::IntTuple, y::IntTuple)
@assert rank(x) >= rank(y)
y = append(y, One(), StaticInt{rank(x)}())
return map(cld, x, y)
end
function shape_div(a::IntType, b::IntType)
return a ÷ b != 0 ? a ÷ b : sign(a) * sign(b)
end
@generated function shape_div(::StaticInt{N}, ::StaticInt{M}) where {N, M}
@assert N % M == 0 || M % N == 0 "Cannot divide $(N) by $(M) or vice versa"
return :($(StaticInt{shape_div(N, M)}()))
end
function shape_div(@nospecialize(a::IntType), @nospecialize(b::IntTuple))
return shape_div(a, product(b))
end
function shape_div(@nospecialize(a::IntTuple), b::IntType)
result, _ = _foldl((init, ai) -> (append(init[1], shape_div(ai, init[2])),
shape_div(init[2], ai)), a, ((), b))
return result
end
function shape_div(a::IntTuple{N}, b::IntTuple{N}) where {N}
return map(shape_div, a, b)
end
function elem_scale(x::IntType, y)
@inline
return x * capacity(y)
end
function elem_scale(x::IntTuple{N}, y::IntTuple{N}) where {N}
return map(elem_scale, x, y)
end
@generated function iscongruent(x, y)
:($(==(repeat_like(x, Zero()), repeat_like(y, Zero()))))
end
# Any coordinate into A can also be used as a coordinate into B
@inline function iscompatible(@nospecialize(a::Tuple), @nospecialize(b::Tuple))
return length(a)==length(b) && all(map(iscompatible, a, b))
end
@inline iscompatible(a::IntType, b::GenIntTuple) = a == capacity(b)
@inline iscompatible(a::Tuple, b::IntType) = false
# Replace the elements of Tuple B that are paired with 0 in A with 1
@inline filter_zeros(a::Zero, x) = One()
@inline filter_zeros(a::IntType, x) = x
function filter_zeros(x::IntTuple{N}, y::IntTuple{N}) where {N}
return map(filter_zeros, x, y)
end
filter_zeros(t::Tuple) = filter_zeros(t, t)
function slice(A::Tuple, index::Tuple)
length(A) == length(index) ||
throw(DimensionMismatch("Array and index must have the same rank"))
return tuple_cat(map(slice, A, index)...)
end
function slice(A, index::Colon)
@inline
return tuple(A)
end
function slice(A, index::IntType)
@inline
return ()
end
function dice(@nospecialize(A::Tuple), @nospecialize(index::Tuple))
length(A) == length(index) ||
throw(DimensionMismatch("Array and index must have the same rank"))
return tuple_cat(map(dice, A, index)...)
end
function dice(A, index::Colon)
@inline
return ()
end
function dice(A, index::IntType)
@inline
return tuple(A)
end
function make_int_tuple(N::IntType, t, n::IntType, init::IntType)
ntuple(N) do i
return i ≤ n ? t[i] : init
end
end
# fill_int_tuple_from
# make_int_tuple_from
#function to_array(::Type{T}, @nospecialize(x::IntTuple)) where {T}
# x = flatten(x)
# N = length(x)
# result = Array{T}(undef, N)
# ntuple(N) do i
# @inbounds result[i] = x[i]
# end
# return result
#end
# comparison
# Base.:(<)(x::Int, y::Tuple) = x < product(y)? maybe we need this for non congruent shapes
#lex_less = <
#lex_leq = <=
#lex_geq = >=
colex_less(x::IntType, y::IntType) = x < y
colex_less(::Tuple{}, ::Tuple{}) = false
colex_less(::Tuple{}, ::Tuple) = true
colex_less(::Tuple, ::Tuple{}) = false
function colex_less(@nospecialize(t1::Tuple), @nospecialize(t2::Tuple))
a, b = last(t1), last(t2)
if a ≠ b
return colex_less(a, b)
end
return colex_less(Base.front(t1), Base.front(t2))
end
elem_less(x::IntType, y::IntType) = x < y
elem_less(::Tuple{}, ::Tuple{}) = true
elem_less(::Tuple{}, ::Tuple) = true # TupleA is exhausted
elem_less(::Tuple, ::Tuple{}) = false # TupleA is not exhausted, TupleB is exhausted
function elem_less(@nospecialize(t1::Tuple), @nospecialize(t2::Tuple))
a, b = first(t1), first(t2)
if length(t1) == length(t2) == 1
return a < b
end
if !((a == b) || elem_less(a, b))
return false
end
return elem_less(Base.tail(t1), Base.tail(t2))
end
elem_leq(x, y) = !elem_less(y, x)
elem_gtr(x, y) = elem_less(y, x)
elem_geq(x, y) = !elem_geq(x, y)
@inline function increment(coord::IntType, shape::IntType)
return ifelse(coord < shape, coord + one(coord), one(coord))
end
function increment(coord, shape)
c, s = first(coord), first(shape)
if length(coord) == length(shape) == 1
return increment(c, s)
end
if c != s
return (increment(c, s), Base.tail(coord)...)
end
return (repeat_like(s, 1), increment(Base.tail(coord), Base.tail(shape))...)
end
# iterator
struct ForwardCoordUnitRange{N, B, E} <: AbstractUnitRange{Int}
start::B
stop::E
function ForwardCoordUnitRange(start::IntTuple{N}, stop::IntTuple{N}) where {N}
return new{N, typeof(start), typeof(stop)}(start, stop)
end
end
function HierIndices(shape::IntTuple)
start = repeat_like(shape, 1)
return ForwardCoordUnitRange(start, shape)
end
Base.first(x::ForwardCoordUnitRange) = getfield(x, :start)
Base.last(x::ForwardCoordUnitRange) = getfield(x, :stop)
Base.length(x::ForwardCoordUnitRange) = length(getfield(x, :stop))
function Base.iterate(x::ForwardCoordUnitRange)
start = getfield(x, :start)
return (start, start)
end
function Base.iterate(x::ForwardCoordUnitRange, state)
stop = getfield(x, :stop)
if state == stop
return nothing
end
new_state = increment(state, stop)
return (new_state, new_state)
end
make_tuple(::Type{StaticInt{N}}) where {N} = StaticInt{N}()
make_tuple(::Type{Colon}) = Colon()
@generated function make_tuple(::Type{S}) where {S<:Tuple}
expr = Expr(:tuple)
for p in S.parameters
push!(expr.args, make_tuple(p))
end
return expr
end
make_tuple(::Type{S}) where {S} = S()
function Base.getindex(x::StaticInt, i::Integer)
@inline
@boundscheck i == 1 || throw(BoundsError(x, i))
x
end
@inline Base.getindex(x::StaticInt, ::StaticInt{1}) = x
# @inline Base.getindex(x::StaticInt, ::StaticInt{N}) where {N} = throw(BoundsError(x, N))
"""
static findfirst, returns a StaticInt, returns N+1 if not found, specialized on `f`
"""
function static_findfirst(::G, t::Tuple, ::Tuple{}) where {G}
@inline
return StaticInt{length(t)+1}()
end
function static_findfirst(f::G, t::Tuple, I::Tuple) where {G}
return (@inline; f(t[first(I)])) ? first(I) : static_findfirst(f, t, Base.tail(I))
end
static_findfirst(f::G, t::StaticInt) where {G} = ifelse(f(t), One(), _2)
static_findfirst(f::G, t::Tuple) where {G} = static_findfirst(f, t, ntuple(static, length(t)))
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 39708 | """
Layout{N, Shape, Stride}
A `Layout` is a pair of `Shape` and `Stride` tuples. The `Shape` tuple
contains the number of elements in each dimension, and the `Stride` tuple
contains the number of elements to skip to get to the next element in each
dimension.
## Fields
- `shape`.
- `stride`.
## Indexing
A `Layout` can be indexed with three types of indices:
- `Int`: a linear index in a column-major order.
- `IntTuple`: a hierarchical index. It has the exact hierarchical structure as defined by the `Shape`.
- `IntTuple`: a congruent index. A tuple of `N` mixes hierarchical and linear indices along each dimension.
## Examples
```julia
julia> layout = Layout((4, (2, 2)), (2, (1, 8)));
julia> print_layout(ans)
(4, (2, 2)):(2, (1, 8))
1 2 3 4
+----+----+----+----+
1 | 1 | 2 | 9 | 10 |
+----+----+----+----+
2 | 3 | 4 | 11 | 12 |
+----+----+----+----+
3 | 5 | 6 | 13 | 14 |
+----+----+----+----+
4 | 7 | 8 | 15 | 16 |
+----+----+----+----+
julia> layout(6) # linear index
4
julia> layout((2,2)) # hierarchical index
4
julia> layout((2,(2,1))) # congruent index
4
```
"""
struct Layout{N, Shape, Stride}
shape::Shape
stride::Stride
# shape and stride must be congruent
function Layout(shape::IntTuple{N}, stride::IntTuple{N}) where {N}
return new{N, typeof(shape), typeof(stride)}(shape, stride)
end
function Layout(shape::IntType, stride::IntType)
return new{1, typeof(shape), typeof(stride)}(shape, stride)
end
end
"""
A tuple of `Layout`s, `Colon`s, integers, or tiles.
"""
const Tile{N} = Tuple{
Vararg{
Union{Colon, Layout, Int, StaticInt,
Tuple{Vararg{Union{Colon, Layout, Int, StaticInt}}}}, N}}
const StaticLayout{N, S, R} = Layout{N, S, R
} where {S <: Union{StaticInt, StaticIntTuple{N}},
R <: Union{StaticInt, StaticIntTuple{N}}}
@inline function StaticLayout{N, S, R}() where {N, S <: StaticIntTuple{N},
R <: StaticIntTuple{N}}
return Layout(make_tuple(S), make_tuple(R))
end
shape(l::Layout) = getfield(l, :shape)
shape(l::Layout{1}, ::One) = shape(l)
shape(l, i::IntType) = getindex(shape(l), i)
shape(l::Type{<:StaticLayout{N, S, R}}) where {N, S, R} = S
Base.stride(l::Layout) = getfield(l, :stride)
Base.stride(l::Layout{1}, ::One) = stride(l)
Base.stride(l::Layout, i::IntType) = getindex(stride(l), i)
Base.stride(l::Type{<:StaticLayout{N, S, R}}) where {N, S, R} = R
Static.static(l::Layout) = make_layout(static(shape(l)), static(stride(l)))
Static.is_static(l::Layout) = dynamic(is_static(shape(l))) && dynamic(is_static(stride(l)))
# map a logical coordinate to a linear index
function (l::Layout)(@nospecialize coord::IntType)
return coord_to_index(coord, shape(l), stride(l))
end
function (l::Layout)(@nospecialize coord::IntTuple)
return coord_to_index(coord, shape(l), stride(l))
end
@generated function (l::Layout)(coord) # coord is fixed with colon
@assert hascolon(coord)
return :(slice(l, coord))
end
function (l::Layout)(c1, c2, c3...)
return l((c1, c2, c3...))
end
# map 1D index to a hier coordinate
function get_hier_coord(l::Layout, @nospecialize index::Union{Integer, StaticInt})
@inline
return index_to_coord(index, l.shape, l.stride)
end
"""
get_congr_coord(l::Layout, index::Integer)
Get the flat congruent coordinate from the physical index `index`.
"""
function get_congr_coord(l::Layout{N},
@nospecialize index::Union{Integer, StaticInt}) where {N}
@inline
return coord_to_coord(get_hier_coord(l, index), l.shape, ntuple(Returns(One()), Val(N)))
end
function get_linear_coord(l::Layout, @nospecialize index::Union{Integer, StaticInt})
@inline
return coord_to_index(get_hier_coord(l, index), l.shape)
end
"""
make_layout(shape::IntTuple, stride::IntTuple)
make_layout(shape::IntTuple, major=GenColMajor)
Construct a layout with the given shape and stride. If the stride is not given, it is set to
col-major compact stride. See alse [`GenColMajor`](@ref) and [`GenRowMajor`](@ref).
"""
function make_layout(shape::IntTuple, stride::IntTuple)
@inline
return Layout(shape, stride)
end
function make_layout(shape::IntType, stride::IntType)
@inline
return Layout(shape, stride)
end
function make_layout(shape::GenIntTuple)
@inline
return Layout(shape, compact_col_major(shape))
end
"""
make_layout(::Layouts...)
Concatenate layouts into a single layout.
"""
function make_layout(layouts::Layout...)
return make_layout(map(shape, layouts), map(stride, layouts)) # concatenation
end
function make_layout(shape::GenIntTuple, ::Type{GenColMajor})
return make_layout(shape, compact_col_major(shape))
end
function make_layout(shape::GenIntTuple, ::Type{GenRowMajor})
return make_layout(shape, compact_row_major(shape))
end
function make_layout(shape::Type{S}, stride::Type{D}) where {N, S <: IntTuple{N},
D <: IntTuple{N}}
@inline
return Layout{N, S, D}
end
function make_layout(shape::Type{S}, stride::Type{D}) where {S <: StaticInt, D <: StaticInt}
@inline
return Layout{1, S, D}
end
"""
cat(::Layouts...)
Concatenate layouts into a single layout.
"""
function Base.cat(layouts::Layout...)
return make_layout(map(shape, layouts), map(stride, layouts))
end
"""
@Layout(shape, stride=nothing)
Construct a static layout with the given shape and stride.
## Arguments
- `shape`: a tuple of integers or a single integer
- `stride`: a tuple of integers, a single integer, [`GenColMajor`](@ref) or [`GenRowMajor`](@ref)
"""
macro Layout(expr1, expr2=nothing)
if expr2 === nothing
layout_call = :(make_layout(static($expr1)))
elseif expr2 isa Symbol
layout_call = :(make_layout(static($expr1), $expr2))
else
expr2
layout_call = :(make_layout(static($expr1), static($expr2)))
end
return layout_call
end
"""
make_ordered_layout(shape, order)
make_ordered_layout(layout)
Construct a compact layout with the given shape and the stride is following the given order.
## Examples
```julia
julia> MoYe.make_ordered_layout((3, 5), (2, 6))
(3, 5):(_1, 3)
julia> MoYe.make_ordered_layout((3, 5), (10, 2))
(3, 5):(5, _1)
```
"""
function make_ordered_layout(shape, order) # The arguments may be static, which is not handled
return make_layout(shape, compact_order(shape, order))
end
function make_ordered_layout(layout::Layout)
return make_ordered_layout(shape(layout), stride(layout))
end
function make_layout_like(layout::Layout,)
return make_layout(shape(layout), compact_order(filter_zeros(stride(layout), shape(layout)), stride(layout)))
end
# make_identity_layout
"""
getindex(layout::Layout, Is...)
Get the sub-layout of `layout` with the given indices.
"""
function Base.getindex(layout::Layout, Is::IntType...)
@inline
return make_layout(getindex(shape(layout), Is...), getindex(stride(layout), Is...))
end
function Base.getindex(@nospecialize(t::Layout), r::AbstractUnitRange)
@inline
return ntuple(i -> t[i + first(r) - 1], length(r))
end
function Base.getindex(layout::Type{<:Layout}, ::StaticInt{I}) where {I}
@inline
return make_layout(shape(layout).parameters[I], stride(layout).parameters[I])
end
# Layout as iterator
function Base.firstindex(l::Layout)
return 1
end
function Base.lastindex(l::Layout)
return rank(l)
end
function Base.first(l::Layout)
return l[1]
end
function Base.last(l::Layout{N}) where {N}
return l[N]
end
function Base.length(l::Layout{N}) where {N}
return N
end
function Base.iterate(l::Layout)
return l[1], 1
end
function Base.iterate(x::Layout{N}, state) where {N}
if state == N
return nothing
end
new_state = state + 1
return (x[new_state], new_state)
end
"""
flatten(layout::Layout)
Remove the hierarchy of the layout and make it a flat layout.
## Examples
```julia
julia> layout = make_layout(((4, 3), 1), ((3, 1), 0))
((4, 3), 1):((3, 1), 0)
julia> print(flatten(layout))
(4, 3, 1):(3, 1, 0)
```
"""
function flatten(layout::Layout)
return make_layout(flatten(shape(layout)), flatten(stride(layout)))
end
"""
size(::Layout)
size(::Layout, i::Union{Int, StaticInt})
Get the cardinality of the domain of the layout. See also [`cosize`](@ref).
"""
function Base.size(layout::Layout)
return capacity(shape(layout))
end
function Base.size(layout::Layout, i::IntType)
return capacity(shape(layout)[i])
end
function Base.size(layout::Type{<:StaticLayout})
return capacity(shape(layout))
end
function Base.size(layout::Type{<:StaticLayout}, ::StaticInt{I}) where {I}
return capacity(shape(layout).parameters[I])
end
"""
rank(::Layout)
rank(::Layout, i::Union{Int, StaticInt})
Get the rank, i.e., the dimensionality, of the layout.
"""
function rank(layout::Layout)
return rank(shape(layout))
end
function rank(layout::Layout, i::Int)
return rank(shape(layout)[i])
end
function rank(::Type{<:Layout{N}}) where {N}
return N
end
"""
depth(::Layout)
depth(::Layout, i::Union{Int, StaticInt})
Get the depth of the hierarchy of the layout. For example, the depth of `(1,2)` is 1, and the depth of `((1,2),3)` is 2.
"""
function depth(layout::Layout)
return depth(shape(layout))
end
function depth(layout::Layout, i::IntType)
return depth(shape(layout)[i])
end
"""
cosize(::Layout)
cosize(::Layout, i::Union{Int, StaticInt})
Get the cardinality of the codomain of the layout. See also [`size`](@ref).
"""
function cosize(layout::Layout)
return layout(size(layout)) ## Note: negative stride is not supported
end
function coord_to_index(layout::Layout, coord)
return coord_to_index(coord, shape(layout), stride(layout))
end
function coord_to_index0(layout::Layout, coord)
return coord_to_index0(coord, shape(layout), stride(layout))
end
@inline iscompatible(a::Layout, b::Layout) = iscompatible(shape(a), shape(b))
function slice(layout::Layout, coord)
return make_layout(slice(shape(layout), coord), slice(stride(layout), coord))
end
function slice_and_offset(layout::Layout, coord)
idx = coord_to_index(layout, coord)
return slice(layout, coord), (idx - one(idx))
end
function dice(layout::Layout, coord)
return make_layout(dice(shape(layout), coord), dice(stride(layout), coord))
end
function append(layout::Layout{N}, ::Layout, ::StaticInt{N}) where {N}
return layout
end
function append(layout::Layout{N}, ::StaticInt{N}) where {N}
return layout
end
function append(layout::Layout, x::Layout, N::StaticInt)
return make_layout(append(shape(layout), shape(x), N),
append(stride(layout), stride(x), N))
end
function append(layout::Layout, N::StaticInt)
return append(layout, @Layout(1, 0), N)
end
function prepend(layout::Layout, x::Layout, N::StaticInt)
return make_layout(prepend(shape(layout), shape(x), N),
prepend(stride(layout), stride(x), N))
end
function prepend(layout::Layout, N::StaticInt)
return prepend(layout, @Layout(1, 0), N)
end
function replace(layout::Layout, x::Layout, N::IntType)
return make_layout(replace(shape(layout), shape(x), N),
replace(stride(layout), stride(x), N))
end
function group(layout::Layout, B::IntType, E::IntType)
return make_layout(group(shape(layout), B, E), group(stride(layout), B, E))
end
@generated function transform_layout(f, t1, t2)
R1 = rank(t1)
R2 = rank(t2)
expr = Expr(:call, :make_layout)
for i in 1:min(R1, R2)
push!(expr.args, Expr(:call, :f, :(t1[$i]), :(t2[$i])))
end
if R1 < R2
for i in (R1 + 1):R2
push!(expr.args, :(t2[$i]))
end
elseif R1 > R2
for i in (R2 + 1):R1
push!(expr.args, :(t1[$i]))
end
end
return quote
Base.@_inline_meta
$expr
end
end
@generated function transform_layout(f, t1, t2, ::StaticInt{N}) where {N}
expr = Expr(:call, :make_layout)
for i in 1:N
push!(expr.args, Expr(:call, :f, :(t1[$i]), :(t2[$i])))
end
return expr
end
@generated function bw_coalesce(::StaticInt{I}, old_shape,
old_stride,
new_shape,
new_stride) where {I}
expr = Expr(:block)
for i in I:-1:1
if old_shape.parameters[i] == One
continue
elseif new_shape == One
new_shape = old_shape.parameters[i]
new_stride = old_stride.parameters[i]
push!(expr.args, :(new_shape = old_shape[$(static(i))]))
push!(expr.args, :(new_stride = old_stride[$(static(i))]))
elseif front(new_shape)<:StaticInt &&
old_shape.parameters[i]<:StaticInt &&
old_stride.parameters[i]<:StaticInt &&
front(new_stride)<:StaticInt &&
old_shape.parameters[i] * old_stride.parameters[i] == front(new_stride)
new_shape = replace_front(new_shape, old_shape.parameters[i] * front(new_shape))
new_stride = replace_front(new_stride, old_stride.parameters[i])
push!(expr.args, :(new_shape = replace_front(new_shape,
old_shape[$(static(i))] * front(new_shape))))
push!(expr.args, :(new_stride = replace_front(new_stride, old_stride[$(static(i))])))
else
new_shape = prepend(new_shape, old_shape.parameters[i])
new_stride = prepend(new_stride, old_stride.parameters[i])
push!(expr.args, :(new_shape = prepend(new_shape, old_shape[$(static(i))])))
push!(expr.args, :(new_stride = prepend(new_stride, old_stride[$(static(i))])))
end
end
return quote
$expr
if isa(new_shape,StaticInt) && new_shape == One()
return Layout(One(), Zero())
else
return Layout(new_shape, new_stride)
end
end
end
"""
coalesce(layout::Layout)
Coalesce the layout by merging adjacent dimensions with stride 1.
## Examples
```julia
julia> layout = @Layout (2, (1, 6)) (1, (6, 2))
(_2, (_1, _6)):(_1, (_6, _2))
julia> print(coalesce(layout))
_12:_1
```
"""
function Base.coalesce(layout::Layout)
flat_shape = flatten(shape(layout))
flat_stride = flatten(stride(layout))
return bw_coalesce(static(rank(flat_shape) - 1), flat_shape, flat_stride,
last(flat_shape), last(flat_stride))
end
function Base.coalesce(layout::Layout, @nospecialize trg_profile::IntTuple) # respect the target profile
@assert rank(trg_profile) <= rank(layout)
return transform_layout(coalesce, layout, trg_profile)
end
function Base.coalesce(layout::Layout, trg_profile)
return coalesce(layout)
end
function filter_zeros(l::Layout)
return make_layout(filter_zeros(stride(l), shape(l)), stride(l))
end
function Base.filter(l::Layout)
return coalesce(filter_zeros(l))
end
# shortcuts
function composition(lhs_shape::IntType, lhs_stride::IntType, rhs_shape::IntType,
rhs_stride::StaticInt{0})
return Layout(rhs_shape, rhs_stride)
end
# Base case a:b ∘ c:d = c:(b*d)
function composition(lhs_shape::IntType, lhs_stride::IntType, rhs_shape::IntType,
rhs_stride::IntType)
result_stride = lhs_stride * rhs_stride
return Layout(rhs_shape, result_stride)
end
function composition(lhs_shape::Tuple, lhs_stride::Tuple, rhs_shape::IntType,
rhs_stride::StaticInt{1})
result_shape_0 = Base.front(lhs_shape)
result_shape_1, rest_shape = _foldl((init, si) -> (append(init[1],
min(abs(si), init[2])),
shape_div(init[2], abs(si))),
result_shape_0, ((), rhs_shape))
return bw_coalesce(static(rank(lhs_shape) - 1), result_shape_1, lhs_stride, rest_shape,
last(lhs_stride))
end
function composition(lhs_shape::Tuple, lhs_stride::Tuple, rhs_shape::IntType,
rhs_stride::StaticInt{0})
return Layout(rhs_shape, rhs_stride)
end
function composition(lhs_shape::Tuple, lhs_stride::Tuple, rhs_shape::IntType,
rhs_stride::IntType)
result_shape_0 = Base.front(lhs_shape)
result_stride_0 = Base.front(lhs_stride)
result_shape_1, rest_stride = _foldl((init, di) -> (append(init[1],
shape_div(di, init[2])),
shape_div(init[2], di)),
result_shape_0, ((), rhs_stride))
result_stride_1 = elem_scale(result_stride_0, shape_div(result_shape_0, result_shape_1))
result_shape_2, rest_shape = _foldl((init, si) -> (append(init[1],
min(abs(si), init[2])),
shape_div(init[2], abs(si))),
result_shape_1, ((), rhs_shape))
return bw_coalesce(static(rank(lhs_shape) - 1), result_shape_2, result_stride_1,
rest_shape, rest_stride * last(lhs_stride))
end
# distributivity with concatenation
@generated function composition(lhs_shape, lhs_stride, rhs_shape::IntTuple{N},
rhs_stride::IntTuple{N}) where {N}
expr = Expr(:call, :make_layout)
for i in 1:N
push!(expr.args,
:(MoYe.composition(lhs_shape, lhs_stride, rhs_shape[$i], rhs_stride[$i])))
end
return expr
end
"""
composition(l1::Layout, l2::Layout)
Compose two layouts as composing two functions. You can use `∘` operator as well.
## Examples
```julia
julia> make_layout(20, 2) ∘ make_layout((4, 5), (1, 4))
(4, 5):(2, 8)
julia> make_layout(20, 2) ∘ make_layout((4, 5), (5, 1))
(4, 5):(10, 2)
```
"""
function composition(lhs::Layout, rhs::Layout)
flat_shape = flatten(shape(lhs))
flat_stride = flatten(stride(lhs))
return composition(flat_shape, flat_stride, shape(rhs), stride(rhs))
end
@generated function composition(lhs::Layout, rhs::Tuple)
@assert rank(rhs) <= rank(lhs)
return :(transform_layout(composition, lhs, rhs, $(static(rank(rhs)))))
end
function composition(lhs::Layout, rhs::Colon)
return lhs
end
function composition(lhs::Layout, rhs)
return composition(lhs, make_layout(rhs))
end
function Base.:(∘)(l1::Layout, l2)
return composition(l1, l2)
end
function withshape(l::Layout, shape::GenIntTuple)
return composition(l, make_layout(shape))
end
function withshape(l::Layout, s1, s2, s3...)
return composition(l, make_layout((s1, s2, s3...)))
end
function _complement_inner(init, i)
shape, stride, result_shape, result_stride = init
min_stride = Static.reduce_tup(min, stride)
min_idx = static_findfirst(==(min_stride), stride)
new_shape = min_stride ÷ result_stride[i]
new_stride = min_stride * shape[min_idx]
@assert !iszero(new_shape)
return (remove(shape, min_idx),
remove(stride, min_idx),
append(result_shape, new_shape),
append(result_stride, new_stride))
end
function _complement(shape::IntType, stride::StaticInt{0}, cotarget::IntType)
return make_layout(coalesce(cotarget))
end
function _complement(shape::IntType, stride::IntType, cotarget::IntType)
return _complement(tuple(shape), tuple(stride), cotarget)
end
function _complement(shape::IntTuple{R}, stride::StaticIntTuple{R},
cotarget::IntType) where {R}
shape_, stride_, result_shape, result_stride = _foldl(_complement_inner, ntuple(identity,Val(R - 1)), (shape, stride, (), (One(),)))
new_shape = stride_[1] ÷ back(result_stride)
@assert !iszero(new_shape)
result_shape = append(result_shape, new_shape)
new_stride = shape_[1] * stride_[1]
rest_shape = coalesce(cld(cotarget, new_stride))
rest_stride = compact_col_major(rest_shape, new_stride)
return coalesce(make_layout((result_shape, rest_shape), (result_stride, rest_stride)))
end
"""
complement(l::Layout, cosize::IntType)
A complement layout of `A` is a layout `B` such that `(A, B)` is a compact layout of size `cosize`.
"""
function complement(l::Layout, cotarget::IntType)
filter_layout = filter(l)
return _complement(shape(filter_layout), stride(filter_layout), cotarget)
end
function complement(l::Layout)
filter_layout = filter(l)
return _complement(shape(filter_layout), stride(filter_layout), cosize(filter_layout))
end
@generated function inverse_seq(shape::StaticIntTuple{N}, stride::StaticIntTuple{N}, I::StaticInt{II}) where {II, N}
if N < II
return :((Is))
else
next_stride = stride.parameters[II] * shape.parameters[II]
next_idx = static_findfirst(==(next_stride), tuple(stride.parameters...))
Is = (I(),)
while N >= dynamic(next_idx)
Is = (Is..., next_idx)
next_stride = stride.parameters[dynamic(next_idx)] * shape.parameters[dynamic(next_idx)]
next_idx = static_findfirst(==(next_stride), tuple(stride.parameters...))
end
return :($Is)
end
end
# need this specialization to avoid type instability...
Base.@assume_effects :total function inverse_seq(shape, stride, I::StaticInt)
length(shape) < I && return ()
@inbounds next_stride = stride[I] * shape[I]
if isa(next_stride, StaticInt)
next_idx = static_findfirst(==(next_stride), stride)
return inverse_seq(shape, stride, next_idx, I)
else
return tuple(I)
end
end
function inverse_seq(shape, stride, I::StaticInt, I′::StaticInt,
Is::Vararg{StaticInt, N}) where {N}
length(shape) < I && return (I′, Is...)
@inbounds next_stride = stride[I] * shape[I]
if isa(next_stride, StaticInt)
next_idx = static_findfirst(==(next_stride), stride)
return inverse_seq(shape, stride, next_idx, I′, Is..., I)
else
return (I′, Is..., I)
end
end
@inline right_inverse(x::Colon) = x
"""
right_inverse(layout::Layout)
Return the right inverse of `layout`, i.e. a layout `layout′` such that `(layout ∘ layout′)(i) == (i)`.
The domain of `layout′` is chosen to be the maximum continues squence of the codomain of `layout`.
"""
function right_inverse(layout::Layout)
flat_layout = coalesce(layout)
astride = map(abs, flat_layout.stride)
next_I = findfirst(Base.Fix1(===, One()), astride)
isnothing(next_I) && return @Layout(1, 0)
iseq = inverse_seq(flat_layout.shape, astride, static(next_I))
isempty(iseq) && return @Layout(1, 0)
rstride = compact_col_major(flat_layout.shape)
return make_layout(unwrap(map(Base.Fix1(shape, flat_layout), iseq)),
unwrap(map(i -> sign(Base.Fix1(stride, flat_layout)(i)) *
Base.Fix1(getindex, rstride)(i), iseq)))
end
"""
left_inverse(layout::Layout)
Return the left inverse of `layout`, i.e. a layout `layout′` such that `(layout′ ∘ layout)(i) == (i)`.
The domain of `layout′` is chosen to be the maximum continues squence of the domain of `layout`.
"""
left_inverse(layout::Layout) = right_inverse(make_layout(layout, complement(layout)))
left_inverse(::Colon) = Colon()
function max_common_layout(a::Layout, b::Layout)
inv_b = right_inverse(b)
common = coalesce(composition(a, inv_b))
if is_static(shape(common, 1)) && (stride(common, 1) == One())
return composition(inv_b, common[1])
else
return @Layout 1 0
end
end
function max_common_vector(a::Layout, b::Layout)
inv_b = right_inverse(b)
common = coalesce(composition(a, inv_b))
if known(is_static(shape(common, 1))) && (stride(common, 1) == One())
return shape(common, 1)
else
return One()
end
end
function _zip(layout::Layout)
return make_layout(_zip(shape(layout)), _zip(stride(layout)))
end
# this is equivalent to make_layout(map(make_layout, l1, l2)...)
function _zip(layoutA::Layout, layoutB::Layout)
return make_layout(_zip(shape(layoutA), shape(layoutB)),
_zip(stride(layoutA), stride(layoutB)))
end
@inline function transpose(l::Layout{2})
return make_layout(l[2], l[1])
end
function tile_unzip(layout::Layout, tile)
return make_layout(zip2_by(shape(layout), tile), zip2_by(stride(layout), tile))
end
"""
logical_product(A::Layout, B::Layout)
Compute the logical product of two layouts. Indexing through the first mode of the resulting layout
corresponds to indexing through `A` and indexing through the second mode corresponds to indexing
through `B`.
```julia
julia> tile = @Layout((2, 2), (1, 2));
julia> print_layout(tile)
(_2, _2):(_1, _2)
1 2
+---+---+
1 | 1 | 3 |
+---+---+
2 | 2 | 4 |
+---+---+
julia> matrix_of_tiles = @Layout((3, 4), (4, 1));
julia> print_layout(matrix_of_tiles)
(_3, _4):(_4, _1)
1 2 3 4
+----+----+----+----+
1 | 1 | 2 | 3 | 4 |
+----+----+----+----+
2 | 5 | 6 | 7 | 8 |
+----+----+----+----+
3 | 9 | 10 | 11 | 12 |
+----+----+----+----+
julia> print_layout(logical_product(tile, matrix_of_tiles))
((_2, _2), (_3, _4)):((_1, _2), (_16, _4))
1 2 3 4 5 6 7 8 9 10 11 12
+----+----+----+----+----+----+----+----+----+----+----+----+
1 | 1 | 17 | 33 | 5 | 21 | 37 | 9 | 25 | 41 | 13 | 29 | 45 |
+----+----+----+----+----+----+----+----+----+----+----+----+
2 | 2 | 18 | 34 | 6 | 22 | 38 | 10 | 26 | 42 | 14 | 30 | 46 |
+----+----+----+----+----+----+----+----+----+----+----+----+
3 | 3 | 19 | 35 | 7 | 23 | 39 | 11 | 27 | 43 | 15 | 31 | 47 |
+----+----+----+----+----+----+----+----+----+----+----+----+
4 | 4 | 20 | 36 | 8 | 24 | 40 | 12 | 28 | 44 | 16 | 32 | 48 |
+----+----+----+----+----+----+----+----+----+----+----+----+
```
"""
function logical_product(layout::Layout, tile::Layout)
return make_layout(layout,
composition(complement(layout, size(layout) * cosize(tile)), tile))
end
function logical_product(layout::Layout, tile::Colon)
return layout
end
function logical_product(layout::Layout, tile::IntType)
return logical_product(layout, make_layout(tile))
end
function logical_product(layout::Layout, tile::Tuple)
return transform_layout(logical_product, layout, tile)
end
function zipped_product(layout::Layout, tile)
return tile_unzip(logical_product(layout, tile), tile)
end
function tiled_product(layout::Layout, tile)
d = zipped_product(layout, tile)
return d(:, repeat(:, rank(tile)))
end
"""
blocked_product(tile::Layout, matrix_of_tiles::Layout, coalesce_result::Bool=false)
Compute the blocked product of two layouts. Indexing through the first mode of the resulting layout
corresponds to indexing through the cartesian product of the first mode of `tile` and the first
mode of `matrix_of_tiles`. Indexing through the second mode is similar. If `coalesce_result` is
true, then the result is coalesced.
```julia
julia> tile = @Layout (2, 2);
julia> matrix_of_tiles = @Layout (3, 4) (4, 1);
julia> print_layout(blocked_product(tile, matrix_of_tiles))
((_2, _3), (_2, _4)):((_1, _16), (_2, _4))
1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
+----+----+----+----+----+----+----+----+
2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
+----+----+----+----+----+----+----+----+
3 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
+----+----+----+----+----+----+----+----+
4 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
+----+----+----+----+----+----+----+----+
5 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
+----+----+----+----+----+----+----+----+
6 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 |
+----+----+----+----+----+----+----+----+
```
"""
function blocked_product(block::Layout{N}, layout::Layout{M},
coalesce_result::Bool=false) where {N, M}
R = max(N, M)
padded_block = append(block, StaticInt{R}())
padded_layout = append(layout, StaticInt{R}())
result = logical_product(padded_block, padded_layout)
@inbounds result = _zip(result[1], result[2])
coalesce_result && return coalesce(result, repeat(One(), R))
return result
end
"""
raked_product(tile::Layout, matrix_of_tiles::Layout, coalesce_result::Bool=false)
The tile is shattered or interleaved with the matrix of tiles.
```julia
julia> tile = @Layout (2, 2) (1, 2);
julia> matrix_of_tiles = @Layout (3, 4) (4, 1);
julia> print_layout(raked_product(tile, matrix_of_tiles))
((_3, _2), (_4, _2)):((_16, _1), (_4, _2))
1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
1 | 1 | 5 | 9 | 13 | 3 | 7 | 11 | 15 |
+----+----+----+----+----+----+----+----+
2 | 17 | 21 | 25 | 29 | 19 | 23 | 27 | 31 |
+----+----+----+----+----+----+----+----+
3 | 33 | 37 | 41 | 45 | 35 | 39 | 43 | 47 |
+----+----+----+----+----+----+----+----+
4 | 2 | 6 | 10 | 14 | 4 | 8 | 12 | 16 |
+----+----+----+----+----+----+----+----+
5 | 18 | 22 | 26 | 30 | 20 | 24 | 28 | 32 |
+----+----+----+----+----+----+----+----+
6 | 34 | 38 | 42 | 46 | 36 | 40 | 44 | 48 |
+----+----+----+----+----+----+----+----+
```
"""
function raked_product(block::Layout{N}, layout::Layout{M},
coalesce_result::Bool=false) where {N, M}
R = max(N, M)
padded_block = append(block, StaticInt{R}())
padded_layout = append(layout, StaticInt{R}())
result = logical_product(padded_block, padded_layout)
@inbounds result = _zip(result[2], result[1])
coalesce_result && return coalesce(result, repeat(One(), R))
return result
end
function tile_to_shape(l::Layout{N}, trg_shape::IntTuple{R}, ord_shape=GenColMajor) where {N, R}
@assert N <= R "Cannot tile to a smaller shape"
padded_layout = append(l, StaticInt{R}())
product_shape = shape_div(product_each(trg_shape), product_each(shape(padded_layout)))
return coalesce(blocked_product(padded_layout, make_ordered_layout(product_shape, ord_shape)), product_shape)
end
@generated function safe_div(::StaticInt{N}, ::StaticInt{M}) where {N, M}
R = div(N, M)
@assert R * M==N "Safe division failed"
return :($(StaticInt{R}()))
end
@inline safe_div(x::IntType, y::IntType) = div(x, y)
struct Upcast{N<:StaticInt} end
function (::Upcast)(shape::IntType, stride::StaticInt{0})
@inline
return make_layout(shape, stride)
end
function (::Upcast{m})(shape::IntType, stride::StaticInt) where m
@inline
return make_layout(shape_div(shape, shape_div(m(), abs(stride))), shape_div(stride, m()))
end
function (::Upcast{m})(shape::IntType, stride::DInt) where m
@inline
return make_layout(shape, safe_div(stride, m()))
end
function (f::Upcast{m})(shape::Tuple, stride::Tuple) where m
return transform_layout(f, shape, stride)
end
function upcast(layout::Layout, ::StaticInt{M}) where M
@inline
return Upcast{StaticInt{M}}()(layout.shape, layout.stride)
end
struct Downcast{N<:StaticInt} end
function (::Downcast{N})(shape::IntType, stride::StaticInt{1}) where N
@inline
return make_layout(shape * N(), stride)
end
function (::Downcast{N})(shape::IntType, stride::StaticInt{-1}) where N
@inline
return make_layout(shape * N(), stride)
end
function (::Downcast{N})(shape::IntType, stride::StaticInt) where N
@inline
return make_layout(shape, stride * N())
end
function (::Downcast{N})(shape::DInt, stride::DInt) where N
@inline
if isone(stride)
return make_layout(shape * N(), stride)
else
return make_layout(shape, stride * N())
end
end
function (f::Downcast{N})(shape::Tuple, stride::Tuple) where N
@inline
return transform_layout(f, shape, stride)
end
function downcast(layout::Layout, ::StaticInt{M}) where M
@inline
return Downcast{StaticInt{M}}()(layout.shape, layout.stride)
end
@generated function recast(layout::Layout, ::Type{NewType},
::Type{OldType}) where {NewType, OldType}
if sizeof(NewType) == sizeof(OldType)
return :layout
elseif sizeof(NewType) > sizeof(OldType)
@assert sizeof(NewType) % sizeof(OldType)==0 "Cannot recast $OldType to $NewType"
return :(upcast(layout, $(StaticInt{sizeof(NewType) ÷ sizeof(OldType)}())))
else
@assert sizeof(OldType) % sizeof(NewType)==0 "Cannot recast $OldType to $NewType"
return :(downcast(layout, $(StaticInt{sizeof(OldType) ÷ sizeof(NewType)}())))
end
end
"""
logical_divide(layout::Layout, tile::Tile)
Gather the elements of `layout` along all modes into blocks according to `tile`.
```julia
julia> raked_prod = @Layout ((3, 2), (4, 2)) ((16, 1), (4, 2));
julia> print_layout(raked_prod)
((_3, _2), (_4, _2)):((_16, _1), (_4, _2))
1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
1 | 1 | 5 | 9 | 13 | 3 | 7 | 11 | 15 |
+----+----+----+----+----+----+----+----+
2 | 17 | 21 | 25 | 29 | 19 | 23 | 27 | 31 |
+----+----+----+----+----+----+----+----+
3 | 33 | 37 | 41 | 45 | 35 | 39 | 43 | 47 |
+----+----+----+----+----+----+----+----+
4 | 2 | 6 | 10 | 14 | 4 | 8 | 12 | 16 |
+----+----+----+----+----+----+----+----+
5 | 18 | 22 | 26 | 30 | 20 | 24 | 28 | 32 |
+----+----+----+----+----+----+----+----+
6 | 34 | 38 | 42 | 46 | 36 | 40 | 44 | 48 |
+----+----+----+----+----+----+----+----+
julia> subtile = (Layout(2, 3), Layout(2, 4)); # gather 2 elements with stride 3 along the first mode
# and 2 elements with stride 4 along the second mode
julia> print_layout(logical_divide(raked_prod, subtile))
(((1, 2), ((3, 1), (1, 1))), ((1, 2), ((4, 1), (1, 1)))):(((48, 1), ((_16, _1), (48, 2))), ((16, 2), ((_4, _2), (16, 4))))
1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
+----+----+----+----+----+----+----+----+
2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
+----+----+----+----+----+----+----+----+
3 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
+----+----+----+----+----+----+----+----+
4 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
+----+----+----+----+----+----+----+----+
5 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
+----+----+----+----+----+----+----+----+
6 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 |
+----+----+----+----+----+----+----+----+
```
"""
function logical_divide(layout::Layout, tile::Layout)
return composition(layout, make_layout(tile, complement(tile, size(layout))))
end
function logical_divide(layout::Layout, tile::Tuple)
length(tile) <= rank(layout) || throw(DimensionMismatch("too many modes in tile"))
return transform_layout(logical_divide, layout, tile)
end
function logical_divide(layout::Layout, tile::Colon)
return layout
end
function logical_divide(layout::Layout, tile::IntType)
return logical_divide(layout, make_layout(tile))
end
"""
zipped_divide(layout::Layout, tile)
Compute the logical division of `layout` by `tile`, then group the resulting subtiles into the first
mode and the rest into the second mode.
```julia
julia> raked_prod = @Layout ((3, 2), (4, 2)) ((16, 1), (4, 2));
julia> print_layout(raked_prod)
((_3, _2), (_4, _2)):((_16, _1), (_4, _2))
1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
1 | 1 | 5 | 9 | 13 | 3 | 7 | 11 | 15 |
+----+----+----+----+----+----+----+----+
2 | 17 | 21 | 25 | 29 | 19 | 23 | 27 | 31 |
+----+----+----+----+----+----+----+----+
3 | 33 | 37 | 41 | 45 | 35 | 39 | 43 | 47 |
+----+----+----+----+----+----+----+----+
4 | 2 | 6 | 10 | 14 | 4 | 8 | 12 | 16 |
+----+----+----+----+----+----+----+----+
5 | 18 | 22 | 26 | 30 | 20 | 24 | 28 | 32 |
+----+----+----+----+----+----+----+----+
6 | 34 | 38 | 42 | 46 | 36 | 40 | 44 | 48 |
+----+----+----+----+----+----+----+----+
julia> subtile = (@Layout(2, 3), @Layout(2, 4)); # gather 2 elements with stride 3 along the first mode and 2 elements with stride 4 along the second mode
julia> print_layout(zipped_divide(raked_prod, subtile))
((_2, _2), (_3, _4)):((_1, _2), (_16, _4))
1 2 3 4 5 6 7 8 9 10 11 12
+----+----+----+----+----+----+----+----+----+----+----+----+
1 | 1 | 17 | 33 | 5 | 21 | 37 | 9 | 25 | 41 | 13 | 29 | 45 |
+----+----+----+----+----+----+----+----+----+----+----+----+
2 | 2 | 18 | 34 | 6 | 22 | 38 | 10 | 26 | 42 | 14 | 30 | 46 |
+----+----+----+----+----+----+----+----+----+----+----+----+
3 | 3 | 19 | 35 | 7 | 23 | 39 | 11 | 27 | 43 | 15 | 31 | 47 |
+----+----+----+----+----+----+----+----+----+----+----+----+
4 | 4 | 20 | 36 | 8 | 24 | 40 | 12 | 28 | 44 | 16 | 32 | 48 |
+----+----+----+----+----+----+----+----+----+----+----+----+
```
"""
function zipped_divide(layout::Layout, tile)
return tile_unzip(logical_divide(layout, tile), tile)
end
"""
tiled_divide(layout::Layout, tile)
Similar to `zipped_divide`, but upack the second mode into multiple modes.
"""
function tiled_divide(layout::Layout, tile)
d = zipped_divide(layout, tile)
R = rank(d, 2)
return d(:, repeat(:, R))
end
function tile(l1::Layout, l2::Layout)
return tiled_divide(l1, l2)
end
function tile(l1::Layout, l2::Layout, l3::Layout...)
return tiled_divide(l1, (l2, l3...))
end
"""
make_fragment_like(::Layout) -> Layout
make_fragment_like(T, ::MoYeArray) -> MoYeArray
Make a compact layout of the same shape with the first mode being col-major, and with the rest
following the given order.
"""
make_fragment_like(layout::StaticLayout{1}) = make_layout(shape(layout))
function make_fragment_like(layout::StaticLayout{R}) where {R}
return tiled_product(make_layout(shape(layout)[1]),
make_ordered_layout(make_layout(layout[2:end]...)))
end
make_fragment_like(layout::Layout) = make_layout(shape(layout))
make_fragment_like(shape::GenIntTuple) = make_layout(shape)
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 748 | @inline isgmem(::MoYeArray{T, N, ViewEngine{T, LLVMPtr{M, AS.Global}}}) where {T, N, M} = true
@inline isgmem(::MoYeArray) = false
@inline issmem(::MoYeArray{T, N, ViewEngine{T, LLVMPtr{M, AS.Shared}}}) where {T, N, M} = true
@inline issmem(::MoYeArray) = false
@inline isrmem(x::MoYeArray) = !isgmem(x) && !issmem(x)
@inline recast(::Type{T}, ptr::LLVMPtr{S, AS}) where {T, S, AS} = LLVM.Interop.addrspacecast(LLVMPtr{T, AS}, ptr)
@inline recast(::Type{T}, ptr::Ptr) where {T} = reinterpret(Ptr{T}, ptr)
Base.:(-)(x::LLVMPtr, ::StaticInt{N}) where {N} = x - N
Base.:(-)(::StaticInt{N}, y::LLVMPtr) where {N} = y - N
Base.:(+)(x::LLVMPtr, ::StaticInt{N}) where {N} = x + N
Base.:(+)(::StaticInt{N}, y::LLVMPtr) where {N} = y + N
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 10939 | function Base.show(io::IO, l::Layout)
return print(io, shape(l), ":", stride(l))
end
@inline Base.ndigits(@nospecialize x::StaticInt{N}) where {N} = ndigits(N)
function print_layout(layout::Layout{2})
idx_width = ndigits(cosize(layout)) + 2
delim = "+-----------------"
print(layout)
print("\n")
# Column indices
print(" ")
for n in 1:size(layout, 2)
formatted_number = lpad(n, idx_width - 2)
print(" ", formatted_number, " ")
end
println()
# Print out A m-by-n
for m in 1:size(layout, 1)
# Header
print(" ")
for n in 1:size(layout, 2)
print(view(delim, 1:(idx_width + 1)))
end
println("+")
# Values
print(lpad(m, 2), " ") # Row indices
for n in 1:size(layout, 2)
formatted_number = lpad(Int(layout(m, n)), idx_width - 2)
print("| ", formatted_number, " ")
end
println("|")
end
# Footer
print(" ")
for n in 1:size(layout, 2)
print(view(delim, 1:(idx_width + 1)))
end
return println("+")
end
function print_typst_mma(
A::Layout, TA::Layout,
B::Layout, TB::Layout,
C::Layout, TC::Layout
)
@assert size(A, 1) == size(C, 1)
@assert size(B, 1) == size(C, 2)
@assert size(A, 2) == size(B, 2)
sA = known(size(TA))
sB = known(size(TB))
sC = known(size(TC))
height = (size(A, 1) + size(A, 2) + 2 + 2) * 2.35
width = (size(B, 1) + size(B, 2) + 3) * 2.35
# build table
table_C_cells = Vector{String}()
for m in 1:size(C, 1)
push!(table_C_cells, "fill_cell(1),")
for n in 1:size(C, 2)
val_idx, thr_id = fldmod1(C(m, n), sC)
thr_idx = TC(thr_id)
push!(table_C_cells, "cell($thr_idx, $val_idx),")
end
push!(table_C_cells, "\n")
end
table_A_cells = Vector{String}()
for m in 1:size(A, 1)
push!(table_A_cells, "left_cell($m),")
for k in 1:size(A, 2)
val_idx, thr_id = fldmod1(A(m, k), sA)
thr_idx = TA(thr_id)
push!(table_A_cells, "cell($thr_idx, $val_idx),")
end
push!(table_A_cells, "\n")
end
table_B_cells = Vector{String}()
for k in 1:size(B, 2)
push!(table_B_cells, "left_cell($k),")
for n in 1:size(B, 1)
val_idx, thr_id = fldmod1(B(n, k), sB)
thr_idx = TB(thr_id)
push!(table_B_cells, "cell($thr_idx, $val_idx),")
end
push!(table_B_cells, "\n")
end
println("""
#set par(leading: 0.25em)
#set page(width: $(width)em, height: $(height)em, margin: 0pt)
#let color_map = (
rgb(175, 175, 255),
rgb(175, 255, 175),
rgb(255, 255, 175),
rgb(255, 175, 175),
rgb(210, 210, 255),
rgb(210, 255, 210),
rgb(255, 210, 210),
aqua,
teal,
red.transparentize(50%),
yellow.transparentize(50%),
lime.transparentize(50%),
fuchsia.transparentize(50%),
color.mix((aqua, 10%), (red, 50%)).transparentize(10%),
orange.transparentize(30%),
purple.transparentize(50%),
maroon.transparentize(70%),
rgb(87, 127, 230).transparentize(30%),
cmyk(27%, 0%, 3%, 5%),
color.hsl(30deg, 50%, 60%).transparentize(30%),
color.mix((red, 70%), (blue, 30%)).transparentize(30%),
color.mix((red, 70%), (fuchsia, 30%)).transparentize(30%),
color.mix((aqua, 70%), (fuchsia, 30%)).transparentize(10%),
color.mix((purple, 70%), (blue, 30%)).transparentize(50%),
color.mix((red, 30%), (fuchsia, 70%)).transparentize(50%),
color.mix((eastern, 30%), (fuchsia, 70%)).transparentize(30%),
color.mix((green, 50%), (olive, 50%)).transparentize(30%),
color.mix((blue, 50%), (purple, 50%)).transparentize(30%),
color.mix((yellow, 50%), (purple, 50%)).transparentize(30%),
color.mix((orange, 50%), (purple, 50%)).transparentize(30%),
color.mix((teal, 70%), (blue, 30%)).transparentize(30%),
color.mix((aqua, 60%), (lime, 40%)).transparentize(30%),
)
#let cell(thr_idx, val_idx) = table.cell(fill: color_map.at((thr_idx.bit-and(31))))[#block(width: 1.5em, height: 1.5em)[T#(thr_idx) \\ V#(val_idx)]]
#let top_cell(i) = table.cell(stroke:none, align: horizon)[#(if i == 0 {block(width: 1.5em, height: 1.5em)[]} else {block(width: 1.5em, height: 1.5em)[#i]})]
#let left_cell(i) = table.cell(x: 0, y:i, stroke:none, align: horizon)[#block(width: 1.5em, height: 1.5em)[#i]]
#let fill_cell(i) = table.cell(stroke:none)[#block(width: 1.5em, height: 1.5em)[]]
""")
println("""
#let table_C = table(
rows: $(known(size(C, 1))),
columns: $(known(size(C, 2)+One())),
align: center,
table.header(..range($(known(size(C, 2)+One()))).map(fill_cell)),
$(table_C_cells...))
""")
println("""
#let table_A = table(
columns: $(known(size(A, 2)+One())),
rows: $(known(size(A, 1))),
align: center,
table.header(..range($(known(size(A, 2)+One()))).map(top_cell)),
$(table_A_cells...))
""")
println("""
#let table_B = table(
columns: $(known(size(B, 1)+One())),
rows: $(known(size(B, 2))),
align: center,
table.header(..range($(known(size(B, 1)+One()))).map(top_cell)),
$(table_B_cells...))
""")
print("""
#grid(
columns: 2,
rows: 2,
gutter: 0pt,
[], table_B,
table_A, table_C
)""")
end
function print_typst_copy(S, TS, D, TD)
@assert rank(S) == 2
@assert rank(D) == 2
@assert size(S, 1) == size(D, 1)
@assert size(S, 2) == size(D, 2)
height = (size(S, 1) + 2) * 2.35
width = (size(S, 2) * 2 + 4) * 2.35
println("""
#set par(leading: 0.25em)
#set page(width: $(width)em, height: $(height)em, margin: 0pt)
#let color_map = (
rgb(175, 175, 255),
rgb(175, 255, 175),
rgb(255, 255, 175),
rgb(255, 175, 175),
rgb(210, 210, 255),
rgb(210, 255, 210),
rgb(255, 210, 210),
aqua,
teal,
red.transparentize(50%),
yellow.transparentize(50%),
lime.transparentize(50%),
fuchsia.transparentize(50%),
color.mix((aqua, 10%), (red, 50%)).transparentize(10%),
orange.transparentize(30%),
purple.transparentize(50%),
maroon.transparentize(70%),
rgb(87, 127, 230).transparentize(30%),
cmyk(27%, 0%, 3%, 5%),
color.hsl(30deg, 50%, 60%).transparentize(30%),
color.mix((red, 70%), (blue, 30%)).transparentize(30%),
color.mix((red, 70%), (fuchsia, 30%)).transparentize(30%),
color.mix((aqua, 70%), (fuchsia, 30%)).transparentize(10%),
color.mix((purple, 70%), (blue, 30%)).transparentize(50%),
color.mix((red, 30%), (fuchsia, 70%)).transparentize(50%),
color.mix((eastern, 30%), (fuchsia, 70%)).transparentize(30%),
color.mix((green, 50%), (olive, 50%)).transparentize(30%),
color.mix((blue, 50%), (purple, 50%)).transparentize(30%),
color.mix((yellow, 50%), (purple, 50%)).transparentize(30%),
color.mix((orange, 50%), (purple, 50%)).transparentize(30%),
color.mix((teal, 70%), (blue, 30%)).transparentize(30%),
color.mix((aqua, 60%), (lime, 40%)).transparentize(30%),
)
#let cell(thr_idx, val_idx) = table.cell(fill: color_map.at((thr_idx.bit-and(31))))[#block(width: 1.5em, height: 1.5em)[T#(thr_idx) \\ V#(val_idx)]]
#let top_cell(i) = table.cell(stroke:none, align: horizon)[#(if i == 0 {block(width: 1.5em, height: 1.5em)[]} else {block(width: 1.5em, height: 1.5em)[#i]})]
#let left_cell(i) = table.cell(x: 0, y:i, stroke:none, align: horizon)[#block(width: 1.5em, height: 1.5em)[#i]]
#let fill_cell(i) = table.cell(stroke:none)[#block(width: 1.5em, height: 1.5em)[]]
""")
sS = known(size(TS))
sD = known(size(TD))
table_S_cells = Vector{String}()
for m in 1:size(S, 1)
push!(table_S_cells, "left_cell($m),")
for n in 1:size(S, 2)
val_idx, thr_id = fldmod1(S(m, n), sS)
thr_idx = TS(thr_id)
push!(table_S_cells, "cell($thr_idx, $val_idx),")
end
push!(table_S_cells, "\n")
end
table_D_cells = Vector{String}()
for m in 1:size(D, 1)
push!(table_D_cells, "left_cell($m),")
for n in 1:size(D, 2)
val_idx, thr_id = fldmod1(D(m, n), sD)
thr_idx = TD(thr_id)
push!(table_D_cells, "cell($thr_idx, $val_idx),")
end
push!(table_D_cells, "\n")
end
println("""
#let table_S = table(
columns: $(known(size(S, 2)+One())),
rows: $(known(size(S, 1))),
align: center,
table.header(..range($(known(size(S, 2)+One()))).map(top_cell)),
$(table_S_cells...))
""")
println("""
#let table_D = table(
columns: $(known(size(D, 2)+One())),
rows: $(known(size(D, 1))),
align: center,
table.header(..range($(known(size(D, 2)+One()))).map(top_cell)),
$(table_D_cells...))
""")
# put the two tables side by side
print("""
#grid(
columns: 2,
rows: 1,
gutter: 3em,
table_S, table_D
)""")
end
function print_typst end
print_typst(m::MMAAtom) = print_typst(make_tiled_mma(m))
print_typst(c::CopyAtom) = print_typst(make_tiled_copy(c))
"""
print_typst(::AbstractMMAAtom)
Print the layout of the A, B, and C matrices in a typst format.
Go to https://typst.app and paste the output to visualize the layout.
## Example
```
julia> tiled_mma = make_tiled_mma(MMAOP_8x8x4_F32F16F16F32_NT(), @Layout((2,2), (2,1)), (@Layout((4,4,2), (1,8,4)), _32, _4))
TiledMMA
ThrLayoutVMNK: ((_4, _2), _2, _2, _1):((_1, _16), _8, _4, _0)
PermutationMNK: ((_4, _4, _2):(_1, _8, _4), _32, _4)
MMAAtom
Thread ID: (_4, _2):(_1, _16)
Layout_A_TV: ((_4, _2), _4):((_8, _4), _1)
Layout_B_TV: ((_4, _2), _4):((_8, _4), _1)
Layout_C_TV: ((_2, _2, _2), (_2, _2, _2)):((_1, _16, _4), (_8, _2, _32))
julia> print_typst(tiled_mma)
```
It will print the following image:

"""
function print_typst(tiled_mma::TiledMMA)
A, TA = get_layoutA_MK(tiled_mma)
B, TB = get_layoutB_NK(tiled_mma)
C, TC = get_layoutC_MN(tiled_mma)
print_typst_mma(A, TA, B, TB, C, TC)
end
"""
print_typst(::AbstractCopyAtom)
Print the layout of the source and destination matrices in a typst format.
## Example
```julia
julia> tiled_copy = make_tiled_copy(CopyAtom{UniversalCopy{UInt128}, Float32}(),
@Layout((32,8)),
@Layout((4,1)))
julia> print_typst(tiled_copy)
```
"""
function print_typst(tiled_copy::TiledCopy)
layoutS_MN, thrID_S = get_layoutS_MN(tiled_copy)
layoutD_MN, thrID_D = get_layoutD_MN(tiled_copy)
print_typst_copy(layoutS_MN, thrID_S, layoutD_MN, thrID_D)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 10651 | Base.@assume_effects :terminates_locally @generated function coord_to_index0_itt(coord::IntType, shape::Tuple, stride::Tuple)
N = length(shape.parameters)
if N == 1
if shape.parameters[1] <: Tuple
return :(coord_to_index0_itt(coord, shape[1], stride[1]))
else
return :(coord * stride[1])
end
elseif coord == StaticInt{0}
expr = Expr(:call, :+,)
for i in 1:N
if shape.parameters[i] <: Tuple
push!(expr.args, :(coord_to_index0_itt(Zero(), shape[$i], stride[$i])))
else
push!(expr.args, :(Zero() * stride[$i]))
end
end
return expr
else
expr = Expr(:block, :(result = Zero()), :(new_coord = coord))
for i in 1:N
if shape.parameters[i] <: Tuple
push!(expr.args, :(result += coord_to_index0_itt(new_coord % product(shape[$i]), shape[$i], stride[$i])))
else
push!(expr.args, :(result += (new_coord % shape[$i]) * stride[$i]))
end
push!(expr.args, :(new_coord = new_coord ÷ product(shape[$i])))
end
push!(expr.args, :(return result))
return expr
end
end
Base.@assume_effects :total function coord_to_index0(coord::IntType, shape::IntType, stride::IntType)
@inline
return coord * stride
end
Base.@assume_effects :total function coord_to_index0(coord::IntType, shape::IntTuple{N}, stride::IntTuple{N}) where {N}
@inline return coord_to_index0_itt(coord, shape, stride)
end
@generated function coord_to_index0(coord::NTuple{N, <:StaticInt}, shape::NTuple{N, <:StaticInt}, stride::NTuple{N, <:StaticInt}) where {N}
coord, stride = make_tuple(coord), make_tuple(stride)
result = sum((c * s for (c, s) in zip(coord, stride)))
return :($result)
end
Base.@assume_effects :total @generated function coord_to_index0(coord::IntTuple{N}, shape::IntTuple{N}, stride::IntTuple{N}) where {N}
expr = Expr(:call, :+)
for i in 1:N
push!(expr.args, :(coord_to_index0(coord[$i], shape[$i], stride[$i])))
end
return expr
end
Base.@assume_effects :total function coord_to_index0_horner(coord, shape, I1, Is...)
if isempty(Is)
return coord[I1]
else
return coord[I1] + shape[I1] * coord_to_index0_horner(coord, shape, Is...)
end
end
Base.@assume_effects :total function coord_to_index0(coord::IntType, shape)
return coord
end
Base.@assume_effects :total function coord_to_index0(coord::IntTuple{N}, shape::IntTuple{N}) where {N}
flat_coord = flatten(coord)
flat_shape = flatten(product_like(shape, coord))
coord_to_index0_horner(flat_coord, flat_shape, ntuple(identity, rank(flat_shape))...)
end
@inline _offset(x::Colon) = Zero()
@inline _offset(x::DInt) = x - one(x)
@inline _offset(x::StaticInt{N}) where {N} = StaticInt{N - 1}()
@inline _offset(x::NTuple{N, Colon}) where {N} = ntuple(Returns(Zero()), Val(N))
@inline function _offset(x::NTuple{N, Int}) where {N}
return ntuple(Base.Fix2(-, 1) ∘ Base.Fix1(getindex, x), Val(N))
end
@inline _offset(x::Tuple) = map(_offset, x)
Base.@assume_effects :total function coord_to_index(coord::IntType, shape, stride...)
idx = coord_to_index0(coord - one(coord), shape, stride...)
return idx + one(idx)
end
Base.@assume_effects :total function coord_to_index(coord, shape, stride...)
idx = coord_to_index0(_offset(coord), shape, stride...)
return idx + one(idx)
end
function index_to_coord(index::IntType, shape::StaticInt{1}, stride::IntType)
return Zero()
end
function index_to_coord(index::IntType, shape::IntType, stride::IntType)
crd = ((index - one(index)) ÷ stride) % shape
return crd + one(crd)
end
function index_to_coord(index::IntType, shape::Tuple, stride::Tuple)
length(shape) == length(stride) ||
throw(DimensionMismatch("shape, and stride must have the same rank"))
return let index = index
map((s, d) -> index_to_coord(index, s, d), shape, stride)
end
end
function index_to_coord(index::IntType, shape::Tuple, stride::IntType)
return let index = index
map((s, d) -> index_to_coord(index, s, d), shape, compact_col_major(shape, stride))
end
end
function index_to_coord(index::Tuple, shape::Tuple, stride::Tuple)
length(index) == length(shape) == length(stride) ||
throw(DimensionMismatch("index, shape, and stride must have the same rank"))
return map(index_to_coord, index, shape, stride)
end
# default stride, compact + column major
function index_to_coord(index::IntType, shape::IntType)
@inline
return index
end
function index_to_coord(index::IntType, shape::Tuple)
return index_to_coord(index, shape, compact_col_major(shape, One()))
end
function index_to_coord(index::Tuple, shape::Tuple)
length(index) == length(shape) ||
throw(DimensionMismatch("index and shape must have the same rank"))
return map(index_to_coord, index, shape)
end
"""
Transoform a coordinate in one shape to a coordinate in another shape.
"""
function coord_to_coord(@nospecialize(coord::Tuple), @nospecialize(src_shape::Tuple),
@nospecialize(dst_shape::Tuple))
length(coord) == length(src_shape) == length(dst_shape) ||
throw(DimensionMismatch("coord, shape1, and shape2 must have the same rank"))
return map(coord_to_coord, coord, src_shape, dst_shape)
end
function coord_to_coord(coord, src_shape, dst_shape)
return index_to_coord(coord_to_index(coord, src_shape), dst_shape)
end
struct LayoutLeft end
struct LayoutRight end
"""
GenColMajor
[`make_layout`](@ref) uses this to create a col-major compact layout.
```julia
julia> make_layout(((1, (2, 4)), 1), MoYe.GenColMajor)
((1, (2, 4)), 1):((_1, (1, 2)), 8)
```
"""
const GenColMajor = LayoutLeft
"""
GenRowMajo
[`make_layout`](@ref) uses this to create a row-major compact layout.
```julia
julia> make_layout(((1, (2, 4)), 1), MoYe.GenRowMajor)
((1, (2, 4)), 1):((8, (4, 1)), _1)
```
"""
const GenRowMajor = LayoutRight
struct CompactLambda{Major} end
function compact_inner_left(init, shape)
for si in shape.parameters
current = init[2]
result = if si == One
(Zero, current)
elseif si <: StaticInt
(current, si * current)
else # if si <: Tuple
compact_inner_left((Tuple{}, current), si)
end
@inbounds init = (append(init[1], result[1]), result[2])
end
return init
end
@generated function compact(shape::StaticIntTuple, current::StaticInt, ::Type{LayoutLeft})
return :($(map(make_tuple, compact_inner_left((Tuple{}, current), shape))))
end
function compact_inner_right(init, _shape)
shape = reverse(_shape)
for si in shape.parameters
current = init[2]
result = if si == One
(Zero, current)
elseif si <: StaticInt
(current, si * current)
else # if si <: Tuple
compact_inner_right((Tuple{}, current), si)
end
@inbounds init = (prepend(init[1], result[1]), result[2])
end
return init
end
@generated function compact(shape::StaticIntTuple, current::StaticInt, ::Type{LayoutRight})
return :($(map(make_tuple, compact_inner_right((Tuple{}, current), shape))))
end
Base.@assume_effects :total function compact(shape::Tuple, current::IntType, ::Type{LayoutLeft})
return _foldl(CompactLambda{LayoutLeft}(), shape, ((), current))
end
Base.@assume_effects :total function compact(shape::Tuple, current::IntType, ::Type{LayoutRight})
return _foldl(CompactLambda{LayoutRight}(), reverse(shape), ((), current))
end
function compact(shape::StaticInt{1}, current::StaticInt, ::Type{Major}) where {Major}
@inline
return (Zero(), current)
end
function compact(shape::StaticInt{1}, current::Integer, ::Type{Major}) where {Major}
@inline
return (Zero(), current)
end
@generated function compact(shape::StaticInt{N}, current::StaticInt{M},
::Type{Major}) where {Major, N, M}
return :((current, $(StaticInt{N * M}())))
end
function compact(shape::IntType, current::IntType, ::Type{Major}) where {Major}
@inline
return (current, current * shape)
end
function compact_major(shape::Tuple, current::Tuple, ::Type{Major}) where {Major}
length(shape) == length(current) ||
throw(DimensionMismatch("shape and current must have the same rank"))
return map((s, c) -> compact_major(s, c, Major), shape, current)
end
function compact_major(shape, current::IntType, major::Type{Major}) where {Major}
return @inbounds first(compact(shape, current, major))
end
Base.@assume_effects :total function (::CompactLambda{LayoutLeft})(init, si)
result = compact(si, init[2], LayoutLeft)
return @inbounds (append(init[1], result[1]), result[2])
end
Base.@assume_effects :total function (::CompactLambda{LayoutRight})(init, si)
result = compact(si, init[2], LayoutRight)
return @inbounds (prepend(init[1], result[1]), result[2])
end
compact_col_major(shape, current=One()) = compact_major(shape, current, LayoutLeft)
compact_row_major(shape, current=One()) = compact_major(shape, current, LayoutRight)
function compact_order(shape::Tuple, order::Tuple, old_shape, old_order)
return let old_shape = old_shape, old_order = old_order
map((x, y) -> compact_order(x, y, old_shape, old_order), shape, order)
end
end
function compact_order(shape, order::StaticInt, old_shape, old_order)
d = let order = order
product(map((s, o) -> ifelse(o < order, product(s), One()), old_shape, old_order))
end
return compact_col_major(shape, d)
end
function compact_order(shape, order)
old_shape = flatten_to_tuple(product_like(shape, order))
flat_order = flatten_to_tuple(order)
max_order = _foldl(flat_order, Zero()) do v, o
ifelse(Static.le(v, o) isa Static.True, o, v)
end
old_order = map(ntuple(i->static(i+max_order), Val(rank(flat_order))), flat_order) do seq_v, o
ifelse(o isa StaticInt, o, seq_v)
end
new_order = unflatten(old_order, order)
return compact_order(shape, new_order, old_shape, old_order)
end
function compact_order(shape, ::Type{LayoutLeft})
return compact_col_major(shape)
end
function compact_order(shape, ::Type{LayoutRight})
return compact_row_major(shape)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1938 | const IntType = Union{Int, StaticInt, Int32}
const DInt = Union{Int, Int32}
function Base.promote_rule(@nospecialize(T1::Type{<:StaticInt}), T2::Type{Int32})
return Int32
end
Base.rem(x::Int32, ::StaticInt{Y}) where {Y} = rem(x, Int32(Y))
Base.rem(::StaticInt{X}, y::Int32) where {X} = rem(Int32(X), y)
Base.div(x::Int32, ::StaticInt{Y}) where {Y} = div(x, Int32(Y))
Base.div(::StaticInt{X}, y::Int32) where {X} = div(Int32(X), y)
uint_bit(::StaticInt{8}) = UInt8
uint_bit(::StaticInt{16}) = UInt16
uint_bit(::StaticInt{32}) = UInt32
uint_bit(::StaticInt{64}) = UInt64
uint_bit(::StaticInt{128}) = UInt128
uint_bytes(::StaticInt{N}) where {N} = uint_bit(static(8*N))
@generated sizeof_bits(::Type{T}) where {T} = :($(static(sizeof(T)*8)))
@inline Base.:(==)(::StaticInt{N}, ::StaticInt{N}) where {N} = true
@inline Base.:(==)(@nospecialize(x::StaticInt), @nospecialize(y::StaticInt)) = false
@inline Base.:(*)(::Type{StaticInt{N}}, ::Type{StaticInt{M}}) where {N, M} = StaticInt{N*M}
function Base.show(io::IO, ::MIME"text/plain",
@nospecialize(x::StaticInt))
print(io, "_" * repr(known(typeof(x))))
nothing
end
@generated function Base.abs(::StaticInt{N}) where {N}
return quote
Base.@_inline_meta
return $(StaticInt{abs(N)}())
end
end
const _0 = StaticInt{0}()
const _1 = StaticInt{1}()
const _2 = StaticInt{2}()
const _3 = StaticInt{3}()
const _4 = StaticInt{4}()
const _5 = StaticInt{5}()
const _6 = StaticInt{6}()
const _7 = StaticInt{7}()
const _8 = StaticInt{8}()
const _9 = StaticInt{9}()
const _10 = StaticInt{10}()
const _16 = StaticInt{16}()
const _32 = StaticInt{32}()
const _64 = StaticInt{64}()
const _128 = StaticInt{128}()
const _256 = StaticInt{256}()
const _512 = StaticInt{512}()
const _1024 = StaticInt{1024}()
const _2048 = StaticInt{2048}()
const _4096 = StaticInt{4096}()
const _8192 = StaticInt{8192}() | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 7450 | @inline function make_fragment_like(::Type{T}, layout::Layout) where {T}
return MoYeArray{T}(undef, make_fragment_like(layout))
end
@inline function make_fragment_like(::Type{T}, x::MoYeArray) where {T}
return make_fragment_like(T, layout(x))
end
@inline function make_fragment_like(x::MoYeArray{T}) where {T}
return make_fragment_like(T, x)
end
# make_identity_tensor
# Layout manipulation, should return a non-owning MoYeArray
@inline flatten(@nospecialize(x::MoYeArray)) = MoYeArray(pointer(x), flatten(layout(x)))
@inline Base.coalesce(@nospecialize x::MoYeArray) = MoYeArray(pointer(x), coalesce(layout(x)))
@inline function Base.coalesce(@nospecialize(x::MoYeArray), @nospecialize(trg_profile::IntTuple))
return MoYeArray(pointer(x), coalesce(layout(x), trg_profile))
end
@inline function group_modes(@nospecialize(x::MoYeArray), B::IntType, E::IntType)
return MoYeArray(pointer(x), group(layout(x), B, E))
end
# Algebra
@inline function logical_divide(@nospecialize(x::MoYeArray), tile)
return MoYeArray(pointer(x), logical_divide(layout(x), tile))
end
@inline function zipped_divide(@nospecialize(x::MoYeArray), tile)
return MoYeArray(pointer(x), zipped_divide(layout(x), tile))
end
@inline function tiled_divide(@nospecialize(x::MoYeArray), tile)
return MoYeArray(pointer(x), tiled_divide(layout(x), tile))
end
@inline function local_partition(x::MoYeArray{T,N}, tile::Tile, coord::Tuple) where {T,N}
return view(zipped_divide(x, tile), coord, ntuple(i -> Colon(), Val(N)))
end
@inline function local_partition(@nospecialize(x::MoYeArray), tile::Layout, index::DInt)
return local_partition(x, map(capacity, shape(tile)), get_congr_coord(tile, index))
end
@inline function local_partition(@nospecialize(x::MoYeArray), tile::Tile, coord, proj)
return local_partition(x, dice(tile, proj), dice(coord, proj))
end
@inline function local_partition(@nospecialize(x::MoYeArray), tile::Layout, index::Integer, proj)
return local_partition(x, dice(map(capacity, shape(tile)), proj), get_congr_coord(dice(tile, proj), index))
end
function composition(x::MoYeArray, l)
@inline
return MoYeArray(pointer(x), composition(layout(x), l))
end
function Base.:(∘)(x::MoYeArray, l)
@inline
return MoYeArray(pointer(x), composition(layout(x), l))
end
"""
@parallelize x::MoYeArray threadgroup_layout::Layout thread_idx::Int
Partition `x` with `size(threadgroup_layout)` threads, and return the view of the entries that the thread at `thread_idx` will work on.
## Examples
Say we have a [`MoYeArray`](@ref) `x` of shape `(6, 8)` and 4 threads of shape (2, 2). We would
like to partition `x` with the 4 threads and get a view of the entries that the first thread
will work on. We can do this by calling `@parallelize(x, (2, 2), 1)`.
```julia
julia> a = MoYeArray(pointer([i for i in 1:48]), @Layout((6,8)))
6×8 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{6}, Static.StaticInt{8}}, Tuple{Static.StaticInt{1}, Static.StaticInt{6}}}}:
1 7 13 19 25 31 37 43
2 8 14 20 26 32 38 44
3 9 15 21 27 33 39 45
4 10 16 22 28 34 40 46
5 11 17 23 29 35 41 47
6 12 18 24 30 36 42 48
julia> @parallelize a (_2, _2) (1, 1)
3×4 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{3}, Static.StaticInt{4}}, Tuple{Static.StaticInt{2}, Static.StaticInt{12}}}}:
1 13 25 37
3 15 27 39
5 17 29 41
```
You can also pass in a thread layout and a thread id to get the tile:
```julia
julia> @parallelize a @Layout((2,2), (1, 2)) 2
3×4 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{StaticInt{3}, StaticInt{4}}, Tuple{StaticInt{2}, StaticInt{12}}}}:
2 14 26 38
4 16 28 40
6 18 30 42
julia> @parallelize a @Layout((2,2), (2, 1)) 2
3×4 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{StaticInt{3}, StaticInt{4}}, Tuple{StaticInt{2}, StaticInt{12}}}}:
7 19 31 43
9 21 33 45
11 23 35 47
```
"""
macro parallelize(x, tile, coord, proj...)
if length(proj) == 0
return quote
local_partition($(esc(x)), static($(esc(tile))), $(esc(coord)))
end
else
return quote
local_partition($(esc(x)), static($(esc(tile))), $(esc(coord)), static($(esc(proj[1]))))
end
end
end
@inline function local_tile(x::MoYeArray, tile::Tile, coord::Tuple)
R1 = length(tile)
R2 = rank(x)
return view(zipped_divide(x, tile), ntuple(i -> :, R1), append(coord, :, StaticInt{R2}()))
end
@inline function local_tile(x::MoYeArray, tile::Tile, coord::Tuple, proj)
return local_tile(x, dice(tile, proj), dice(coord, proj))
end
"""
@tile x::MoYeArray threadgroup_shape::Tile threadgroup_coord::Tuple
Partition `x` with `threadgroup_shape`. Return the view of the entries of `x` that the thread group at `threadgroup_coord` will work on.
## Examples
```julia
julia> a = MoYeArray(pointer([i for i in 1:48]), @Layout((6,8)))
6×8 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{6}, Static.StaticInt{8}}, Tuple{Static.StaticInt{1}, Static.StaticInt{6}}}} with indices _1:_6×_1:_8:
1 7 13 19 25 31 37 43
2 8 14 20 26 32 38 44
3 9 15 21 27 33 39 45
4 10 16 22 28 34 40 46
5 11 17 23 29 35 41 47
6 12 18 24 30 36 42 48
julia> @tile a (_2, _2) (1, 1)
2×2 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{StaticInt{2}, StaticInt{2}}, Tuple{StaticInt{1}, StaticInt{6}}}}:
1 7
2 8
```
"""
macro tile(x, tile, coord, proj...)
if length(proj) == 0
return quote
local_tile($(esc(x)), static($(esc(tile))), $(esc(coord)))
end
else
return quote
local_tile($(esc(x)), static($(esc(tile))), $(esc(coord)), static($(esc(proj[1]))))
end
end
end
@inline function Base.fill!(x::NonOwningArray, val)
vx = engine(x)
@loopinfo unroll for i in eachindex(x)
@inbounds vx[i] = val
end
return x
end
@inline Base.fill!(x::OwningArray, val) = @gc_preserve fill!(x, val)
@inline function Base.sum(x::NonOwningArray{T}) where T
vx = engine(x)
tmp = zero(T)
@loopinfo unroll for i in 1:length(x)
@inbounds tmp += vx[i]
end
return tmp
end
@inline Base.sum(x::OwningArray) = @gc_preserve sum(x)
"""
zeros!(x::MoYeArray)
Fill `x` with zeros.
"""
@inline zeros!(x::MoYeArray) = fill!(x, zero(eltype(x)))
function max_common_vector(src::MoYeArray{TS}, dst::MoYeArray{TD}) where {TS, TD}
if sizeof(TS) == sizeof(TD) && isbitstype(TS) && isbitstype(TD)
return max_common_vector(src.layout, dst.layout)
else
return Zero()
end
end
@device_override function foreach(f::F, x::MoYeArray) where {F}
@loopinfo unroll for i in eachindex(x)
f(x[i])
end
return nothing
end
@device_override function map!(f::F, x::MoYeArray, y::MoYeArray) where {F}
@loopinfo unroll for i in eachindex(x)
x[i] = f(y[i])
end
return nothing
end
@device_override @inline function map!(f::F, x::MoYeArray) where {F}
@loopinfo unroll for i in eachindex(x)
x[i] = f(x[i])
end
return nothing
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 10302 | @inline function axpby!(a::Number, X::MoYeArray{T}, b::Number, Y::MoYeArray{T}) where {T}
x, y = ManualMemory.preserve_buffer(X), ManualMemory.preserve_buffer(Y)
vx, vy = ViewEngine(pointer(X)), ViewEngine(pointer(Y))
GC.@preserve x y begin
@loopinfo unroll for i in eachindex(vx)
@inbounds vy[i] = iszero(b) ? a * vx[i] : a * vx[i] + b * vy[i]
end
end
end
@inline gemm!(A::MoYeArray, B::MoYeArray, C::MoYeArray) = gemm!(C, A, B, C)
@inline gemm!(mma::AbstractMMAAtom, A::MoYeArray, B::MoYeArray, C::MoYeArray) = gemm!(mma,C,A,B,C)
function gemm!(D::MoYeArray{TD}, A::MoYeArray{TA}, B::MoYeArray{TB}, C::MoYeArray{TC}) where {TD,TA,TB,TC}
@inline
return gemm!(MMAAtom{UniversalFMA{TD,TA,TB,TC}}(), D, A, B, C)
end
# element-wise multiplication (1,1,1,1)
function gemm!(mma_atom::AbstractMMAAtom, D::LocalArray{DT,1}, A::LocalArray{DA,1},
B::LocalArray{DB,1}, C::LocalArray{DC,1}) where {DT,DA,DB,DC}
@inline
apply(mma_atom, D, A, B, C)
return nothing
end
# outer product (2,1,1,2) -> (2,2,2,2)
@generated function gemm!(mma_atom::AbstractMMAAtom, D::LocalArray{DT,2}, A::LocalArray{DA,1},
B::LocalArray{DB,1}, C::LocalArray{DC,2}) where {DT,DA,DB,DC}
@assert size(layout(A), _1) == size(layout(C), _1) == size(layout(D), _1) # M
@assert size(layout(B), _1) == size(layout(C), _2) == size(layout(D), _2) # N
return quote
Base.@_inline_meta
gemm!(mma_atom, D, append_dim(A, _2), append_dim(B, _2), C)
end
end
# matrix multiplication (2,2,2,2) -> (3,3,3,3)
@generated function gemm!(mma_atom::AbstractMMAAtom, D::LocalArray{DT,2}, A::LocalArray{DA,2},
B::LocalArray{DB,2}, C::LocalArray{DC,2}) where {DT,DA,DB,DC}
@assert size(layout(A), _1) == size(layout(C), _1) == size(layout(D), _1) # M
@assert size(layout(B), _1) == size(layout(C), _2) == size(layout(D), _2) # N
@assert size(layout(A), _2) == size(layout(B), _2) # K
return quote
Base.@_inline_meta
gemm!(mma_atom,
prepend_dim(D, _3), prepend_dim(A, _3),
prepend_dim(B, _3), prepend_dim(C, _3))
end
end
# batched outer product (3,2,2,3) -> (1,1,1,1)
@generated function gemm!(mma_atom::AbstractMMAAtom,
D::LocalArray{DT,3}, A::LocalArray{DA,2},
B::LocalArray{DB,2}, C::LocalArray{DC,3}) where {DT,DA,DB,DC}
@assert size(layout(A), _2) == size(layout(C), _2) == size(layout(D), _2) # M
@assert size(layout(B), _2) == size(layout(C), _3) == size(layout(D), _3) # N
@assert size(layout(C), _1) == size(layout(D), _1)
M = size(layout(A), _2)
return quote
Base.@_inline_meta
@loopinfo unroll for n in axes(B, 2)
@loopinfo unroll for m in axes(A, 2)
ms = Bool(n & 1) ? m : $(M()+_1)-m
gemm!(mma_atom, view(D, :, ms, n), view(A, :, ms), view(B, :, n), view(C, :, ms, n))
end
end
return nothing
end
end
# batched matrix multiplication (3,3,3,3) -> (3,2,2,3)
@generated function gemm!(mma_atom::AbstractMMAAtom, D::LocalArray{DT,3}, A::LocalArray{DA,3},
B::LocalArray{DB,3}, C::LocalArray{DC,3}) where {DT,DA,DB,DC}
@assert size(layout(A), _2) == size(layout(C), _2) == size(layout(D), _2) # M
@assert size(layout(B), _2) == size(layout(C), _3) == size(layout(D), _3) # N
@assert size(layout(A), _3) == size(layout(B), _3) # K
@assert size(layout(C), _1) == size(layout(D), _1)
return quote
Base.@_inline_meta
@loopinfo unroll for k in axes(A, 3)
gemm!(mma_atom, D, view(A, :, :, k), view(B, :, :, k), C)
end
return nothing
end
end
# (2,2,2,2) -> (3,3,3,3)
@generated function gemm!(mma_atom::AbstractMMAAtom,
D::LocalArray{DT, 2},
A::SharedArray{DA, 2},
B::SharedArray{DB, 2},
C::LocalArray{DC, 2}) where {DT,DA,DB,DC}
@assert size(layout(A), _1) == size(layout(C), _1) == size(layout(D), _1) # M
@assert size(layout(B), _1) == size(layout(C), _2) == size(layout(D), _2) # N
@assert size(layout(A), _2) == size(layout(B), _2) # K
@assert size(layout_a(mma_atom()), _2) == One()
@assert size(layout_b(mma_atom()), _2) == One()
@assert size(layout_c(mma_atom()), _2) == One()
return quote
gemm!(mma_atom,
prepend_dim(D, _3), prepend_dim(A, _3),
prepend_dim(B, _3), prepend_dim(C, _3))
end
end
# (3,3,3,3) -> (3,2,2,3)
@generated function gemm!(mma_atom::AbstractMMAAtom, D::LocalArray{DT,3}, A::SharedArray{DA,3},
B::SharedArray{DB,3}, C::LocalArray{DC,3}) where {DT, DA, DB, DC}
@assert size(layout(A), _2) == size(layout(C), _2) == size(layout(D), _2) # M
@assert size(layout(B), _2) == size(layout(C), _3) == size(layout(D), _3) # N
@assert size(layout(A), _3) == size(layout(B), _3) # K
@assert size(layout(C), _1) == size(layout(D), _1)
return quote
Base.@_inline_meta
rA = make_fragment_A(mma_atom, A)
rB = make_fragment_B(mma_atom, B)
@loopinfo unroll for k in axes(A,3)
_copyto!(view(rA, :, :, k), view(A, :, :, k))
_copyto!(view(rB, :, :, k), view(B, :, :, k))
gemm!(mma_atom, D, view(rA, :, :, k), view(rB, :, :, k), C)
end
return nothing
end
end
function gemm!(thr_mma::ThrMMA, alpha, A::SharedArray{TA,2}, B::SharedArray{TB,2},
beta, C::SharedArray{TC,2}, transform_A, transform_B) where {TA,TB,TC}
@assert size(layout(A), 1) == size(layout(C), 1) # M
@assert size(layout(B), 1) == size(layout(C), 2) # N
@assert size(layout(A), 2) == size(layout(B), 2) # K
@assert Core.Compiler.return_type(transform_A, Tuple{TA}) == TA
@assert Core.Compiler.return_type(transform_B, Tuple{TB}) == TB
M = size(layout(C), 1)
N = size(layout(C), 2)
K = size(layout(A), 2)
BLK_M = tile_size(thr_mma, 1)
BLK_N = tile_size(thr_mma, 2)
BLK_K = tile_size(thr_mma, 3)
m_residue = M - BLK_M * (cld(M, BLK_M) - One())
n_residue = N - BLK_N * (cld(N, BLK_N) - One())
k_residue = K - BLK_K * cld(K, BLK_K)
sA = MoYeArray(pointer(A, (1, k_residue+1)), layout(A))
sB = MoYeArray(pointer(B, (1, k_residue+1)), layout(B))
rounded_sA = sA ∘ (cld(M, BLK_M) * BLK_M, cld(K, BLK_K) * BLK_K)
rounded_sB = sB ∘ (cld(N, BLK_N) * BLK_N, cld(K, BLK_K) * BLK_K)
rounded_sC = sC ∘ (cld(M, BLK_M) * BLK_M, cld(N, BLK_N) * BLK_N)
thr_A = partition_A(thr_mma, rounded_sA)
thr_B = partition_B(thr_mma, rounded_sB)
thr_C = partition_C(thr_mma, rounded_sC)
rA = make_fragment_A(thr_mma, thr_A)
rB = make_fragment_B(thr_mma, thr_B)
rC = make_fragment_C(thr_mma, thr_C)
# predication
thr_pA = MoYeArray{Bool}(undef, static_size(thr_A, 1))
thr_pB = MoYeArray{Bool}(undef, static_size(thr_B, 1))
cA = make_identity_array((BLK_M, BLK_K))
cB = make_identity_array((BLK_N, BLK_K))
thr_cA = partition_A(thr_mma, cA)
thr_cB = partition_B(thr_mma, cB)
@loopinfo unroll for i in size(layout(thr_pA))
@inbounds thr_pA[i] = elem_less(thr_cA[i][1], m_residue)
end
@loopinfo unroll for i in size(layout(thr_pB))
@inbounds thr_pB[i] = elem_less(thr_cB[i][1], n_residue)
end
# load A
@loopinfo unroll for i in axes(thr_A, 1)
if k_residue == Zero() || thr_cA[i][2] > -k_residue
@loopinfo unroll for m in axes(thr_A, 2)
@inbounds rA[i, m, 1] = (m_residue == BLK_M || m <= static_size(thr_A, 2) || thr_pA[i]) ?
transform_A(thr_A[i, m, 1]) : zero(TA)
end
end
end
# load B
@loopinfo unroll for i in axes(thr_B, 1)
if k_residue == Zero() || thr_cB[i][2] > -k_residue
@loopinfo unroll for n in axes(thr_B, 2)
@inbounds rB[i, n, 1] = (n_residue == BLK_N || n <= static_size(thr_B, 2) || thr_pB[i]) ?
transform_B(thr_B[i, n, 1]) : zero(TB)
end
end
end
zeros!(rC)
K_BLK_MAX = static_size(thr_A, 3)
@loopinfo unroll for k_blk in 1:K_BLK_MAX
if k_blk < K_BLK_MAX
k_next = k_blk + 1
@loopinfo unroll for m in axes(thr_A, 2)
@loopinfo unroll for i in axes(thr_A, 1)
rA[i, m, k_next] = (m_residue == BLK_M || m <= static_size(thr_A, 2) || thr_pA[i]) ?
transform_A(thr_A[i, m, k_next]) : zero(TA)
end
end
@loopinfo unroll for n in axes(thr_B, 2)
@loopinfo unroll for i in axes(thr_B, 1)
rB[i, n, k_next] = (n_residue == BLK_N || n <= static_size(thr_B, 2) || thr_pB[i]) ?
transform_B(thr_B[i, n, k_next]) : zero(TB)
end
end
gemm!(thr_mma, view(rA, :, :, k_blk), view(rB, :, :, k_blk), rC)
end
end
############
# Epilogue #
############
cC = make_identity_array((BLK_M, BLK_N))
thr_cC = partition_C(thr_mma, cC)
is_beta_zero = iszero(beta)
@loopinfo unroll for m in axes(thr_C, 2)
@loopinfo unroll for n in axes(thr_C, 3)
@loopinfo unroll for i in axes(thr_C, 1)
if (m_residue == BLK_M || m <= static_size(thr_C, 2) || thr_cC[i][1] <= m_residue) &&
(n_residue == BLK_N || n <= static_size(thr_C, 3) || thr_cC[i][2] <= n_residue)
@inbounds thr_C[i, m, n] = is_beta_zero ? alpha * rC[i, m, n] : alpha * rC[i, m, n] + beta * thr_C[i, m, n]
end
end
end
end
return nothing
end
function gemm!(thr_mma::ThrMMA, alpha, A::SharedArray{TA,2}, B::SharedArray{TB,2},
beta, C::SharedArray{TC,2}) where {TA,TB,TC}
gemm!(thr_mma, alpha, A, B, beta, C, identity, identity)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 5853 | struct TrivialPred end
@inline (::TrivialPred)(i) = true
function _copyto_if!(dest::NonOwningArray, src::NonOwningArray, mask)
copy_op = select_elementwise_copy(src, dest) # would select async copy if dest is shared memory and src is global memory
@loopinfo unroll for i in _1:size(src.layout)
if mask(i)
apply(copy_op, pointer(dest, i), pointer(src, i))
end
end
return dest
end
function copyto_if!(dest::MoYeArray, src::MoYeArray, mask)
@gc_preserve _copyto_if!(dest, src, mask)
end
@generated function _copyto_vec!(dest::MoYeArray{TD}, src::MoYeArray{TS}, ::Type{TV}) where {TD,TS,TV}
if (sizeof(TD) == sizeof(TS)) && sizeof(TV) > sizeof(TD)
return quote
Base.@_inline_meta
src_v = recast(TV, src)
dest_v = recast(TV, dest)
return _copyto_if!(dest_v, src_v, TrivialPred())
end
else
return quote
Base.@_inline_meta
return _copyto_if!(dest, src, TrivialPred())
end
end
end
"""
copyto!(dest::MoYeArray, src::MoYeArray)
Copy the contents of `src` to `dest`. The function automatically carries out potential
vectorization. In particular, while transferring data from global memory to shared memory,
it automatically initiates asynchronous copying, if your device supports so.
"""
function Base.copyto!(dest::MoYeArray, src::MoYeArray)
@inline
@gc_preserve _copyto!(dest, src)
return dest
end
function _copyto!(dest::NonOwningArray, src::NonOwningArray)
@inline
return _copyto!(dest, src, _8)
end
function _copyto!(dest::NonOwningArray{TD}, src::NonOwningArray{TS}, align::StaticInt{N}) where {TD,TS, N}
vec_elem = max_common_vector(src, dest)
src_bits = sizeof(TS) * 8
#vec_bits = is_static(layout(src)) && is_static(layout(dest)) ?
# min(vec_elem * src_bits, 128) :
# min(vec_elem * src_bits, N)
vec_bits = 8 # explicitly disable vectorization for now
if vec_elem > 1 && vec_bits > 8
return _copyto_vec!(dest, src, uint_bit(static(vec_bits)))
else
return _copyto_if!(dest, src, TrivialPred())
end
end
@inline group_tail(l::Layout{2}) = l
@inline group_tail(l::Layout{N}) where {N} = group(l, _2, StaticInt{N}())
@inline group_tail(l::Tuple{Vararg{Union{IntType, Tuple}, 2}}) = l
@inline group_tail(l::Tuple{Vararg{Union{IntType, Tuple}, N}}) where {N} = (Base.first(l), Base.tail(l))
function generate_copy_atom_loops(dst, src, dst_shape, src_shape, n_src, n_dst, d=1)
expr = Expr(:block)
dst_v = Symbol(:dst_v_, d)
src_v = Symbol(:src_v_, d)
loop_var = Symbol(:i_, d)
grouped_dst_shape = group_tail(dst_shape)
grouped_src_shape = group_tail(src_shape)
push!(expr.args, :($dst_v = MoYeArray(pointer($dst), group_tail(layout($dst)[_1]))))
push!(expr.args, :($src_v = MoYeArray(pointer($src), group_tail(layout($src)[_1]))))
loop = Expr(:for, :($loop_var = _1:$(product(grouped_dst_shape[2]))))
loopbody = Expr(:block)
sliced_dst = Symbol(:sliced_dst_, d)
sliced_src = Symbol(:sliced_src_, d)
push!(loopbody.args, :($sliced_dst = view($dst_v, :, $loop_var)))
push!(loopbody.args, :($sliced_src = view($src_v, :, $loop_var)))
# here we use the fact that each slice has the same layout
sliced_layout_dst = slice(grouped_dst_shape, (:, 1))
sliced_layout_src = slice(grouped_src_shape, (:, 1))
if typeof(product(grouped_dst_shape[1])) == n_dst || typeof(product(grouped_src_shape[1])) == n_src
push!(loopbody.args, :(copyto_unpack!(copy_atom, $sliced_dst, $sliced_src)))
else
new_layout_dst = grouped_dst_shape[1]
new_layout_src = grouped_src_shape[1]
push!(loopbody.args, generate_copy_atom_loops(sliced_dst, sliced_src, new_layout_dst, new_layout_src, n_src, n_dst, d+1))
end
push!(loopbody.args, :($(Expr(:loopinfo, (Symbol("llvm.loop.unroll.enable"), 1)))))
push!(loop.args, loopbody)
push!(expr.args, loop)
return expr
end
function Base.copyto!(copy_atom::AbstractCopyAtom, dst::MoYeArray, src::MoYeArray)
@inline
@gc_preserve _copyto!(copy_atom, dst, src)
return dst
end
function _copyto!(copy_atom::AbstractCopyAtom, dst::NonOwningArray, src::NonOwningArray)
@inline
return _copyto!(copy_atom, dst, src, TrivialPred())
end
@generated function _copyto!(copy_atom::AbstractCopyAtom, dst::NonOwningArray{TD,N}, src::NonOwningArray{TS, N}, pred) where {TD, TS, N}
expr = generate_copy_atom_loops(:sliced_dst, :sliced_src, make_tuple(shape(layout(dst)[_1])), make_tuple(shape(layout(src)[_1])),
num_val_src(copy_atom), num_val_dst(copy_atom))
return quote
dst_v = group_modes(dst, _2, StaticInt{$N}())
src_v = group_modes(src, _2, StaticInt{$N}())
@loopinfo unroll for i in 1:size(layout(src_v), 2)
if pred(i)
sliced_dst = view(dst_v, :, i)
sliced_src = view(src_v, :, i)
$expr
end
end
return dst
end
end
#Base.@assume_effects :foldable function _copyto!(copy_atom::AbstractCopyAtom, dst::NonOwningArray{TD, 1}, src::NonOwningArray{TS, 1}, pred) where {TD, TS}
# @inline
# apply(copy_atom, dst, src)
#end
#Base.@assume_effects :foldable function _copyto!(copy_atom::AbstractCopyAtom, dst::NonOwningArray{TD, N}, src::NonOwningArray{TS, N}, pred) where {TD, TS, N}
# src_v = group_modes(src, _2, StaticInt{N}())
# dst_v = group_modes(dst, _2, StaticInt{N}())
# for i in 1:size(src_v.layout, 2)
# if pred(i)
# apply(copy_atom, view(dst_v, :, i), view(src_v, :, i))
# end
# end
#end | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 7398 | # we don't overload Base.front, the following finds the first non-tuple element
@inline front(@nospecialize(t::Tuple)) = front(first(t))
@inline front(@nospecialize(x::Type{<:Tuple})) = front(first(x.parameters))
@inline front(x) = x
@inline back(@nospecialize(t::Tuple)) = back(getindex(t, length(t)))
@inline back(@nospecialize(x::Type{<:Tuple})) = back(getindex(x.parameters, length(x.parameters)))
@inline back(x) = x
@inline unwrap(@nospecialize(t::Tuple)) = isone(nfields(t)) ? unwrap(first(t)) : t
@inline unwrap(x) = x
@inline flatten_to_tuple(@nospecialize x::NTuple{N, Union{Int, StaticInt, Colon}}) where {N} = x
@inline flatten_to_tuple(@nospecialize x::Tuple) = (flatten_to_tuple(first(x))..., flatten_to_tuple(Base.tail(x))...)
@inline flatten_to_tuple(x) = tuple(x)
# recursive flatten
@inline flatten(@nospecialize x::NTuple{N, Union{Int, StaticInt, Colon }}) where {N} = x
@inline flatten(@nospecialize x::Tuple) = (flatten(first(x))..., flatten(Base.tail(x))...)
@inline flatten(x) = x
tuple_cat(x) = x
tuple_cat(x, y, z...) = (x..., tuple_cat(y, z...)...)
function unflatten_impl(flat_tuple::Tuple, target::Tuple)
return _foldl(target, ((), flat_tuple)) do v, t
result, remaining_tuple = v
sub_result, sub_tuple = unflatten_impl(remaining_tuple, t)
(append(result, sub_result), sub_tuple)
end
end
unflatten_impl(flat_tuple::Tuple, target) = (Base.first(flat_tuple), Base.tail(flat_tuple))
function unflatten(flat_tuple::Tuple, target::Union{IntType, Tuple})
unflatten_tuple, flat_remidner = unflatten_impl(flat_tuple, target)
return unflatten_tuple
end
function insert(@nospecialize(t::Tuple), x, N)
return (getindex(t, Base.OneTo(N - one(N)))..., x, getindex(t, N:length(t))...)
end
@generated function remove(x::Tuple, ::StaticInt{N}) where {N}
M = length(x.parameters)
M < N && return :x
M == N && return :(Base.front(x))
f = ntuple(i-> :(x[$i]), N-1)
t = ntuple(i-> :(x[$(i+N)]), M-N)
return quote
($(f...), $(t...))
end
end
function Base.replace(@nospecialize(t::Tuple), x, N)
return (getindex(t, Base.OneTo(N - one(N)))..., x,
getindex(t, UnitRange(N + one(N), length(t)))...)
end
@inline function replace_front(@nospecialize(t::Tuple), v)
return (v, Base.tail(t)...)
end
@inline replace_front(t, v) = v
@generated function replace_front(::Type{T}, ::Type{V}) where {T<:Tuple,V}
expr = Expr(:curly, Tuple)
push!(expr.args, V)
push!(expr.args, T.parameters[2:end]...)
return expr
end
@inline function replace_back(@nospecialize(t::Tuple), v)
return (Base.front(t)..., v)
end
@inline replace_back(t, v) = v
@inline function Base.repeat(x, n)
return ntuple(Returns(x), n)
end
@inline repeat_like(t, x) = x
@inline function repeat_like(t::Tuple, x)
return repeat_like(typeof(t), x)
end
function repeat_inner(expr, T)
for i in T.parameters
if i <: IntType
push!(expr.args, :x)
elseif i <: Tuple
push!(expr.args, repeat_inner(Expr(:tuple), i))
end
end
return expr
end
@generated function repeat_like(::Type{T}, x) where {T<:Tuple}
return repeat_inner(Expr(:tuple), T)
end
@generated function group(t::Tuple, ::StaticInt{B}, ::StaticInt{E}) where {B,E}
return quote
@inbounds (t[1:$B-1]..., t[$B:$E], t[$E+1:end]...)
end
end
# Group the elements [B,E] of a T into a single element
function group(t::Tuple, b, e)
return (getindex(t, Base.OneTo(b - one(b)))..., getindex(t, UnitRange(b, e)),
getindex(t, UnitRange(e + one(e), length(t)))...)
end
# append x to extend t to rank N
@inline function append(t::Union{Tuple, IntType}, val, ::StaticInt{N}) where {N}
M = length(t)
M > N && throw(ArgumentError(LazyString("input tuple of length ", M, ", requested ", N)))
if @generated
quote
(t..., $(fill(:val, N - length(t.parameters))...))
end
else
(t..., ntuple(Returns(val), N-M)...)
end
end
@generated function append(::Type{T}, ::Type{X}) where {T<:Tuple, X}
expr = Expr(:curly, Tuple)
push!(expr.args, T.parameters...)
push!(expr.args, X)
return expr
end
@generated function append(::Type{T}, ::Type{X}) where {T, X}
expr = Expr(:curly, Tuple)
push!(expr.args, T)
push!(expr.args, X)
return expr
end
function append(t::Tuple, x)
@inline
return (t..., x)
end
function append(t::IntType, x::IntType)
@inline
return (t, x)
end
@inline function prepend(t::Union{Tuple, IntType}, val, ::StaticInt{N}) where {N}
M = length(t)
M > N && throw(ArgumentError(LazyString("input tuple of length ", M, ", requested ", N)))
if @generated
quote
($(fill(:val, N - length(t.parameters))...), t...)
end
else
(ntuple(Returns(val), N-M)..., t...)
end
end
function prepend(t::Tuple, x)
@inline
return (x, t...)
end
@generated function prepend(::Type{T}, ::Type{X}) where {T<:Tuple, X}
expr = Expr(:curly, Tuple)
push!(expr.args, X)
push!(expr.args, T.parameters...)
return expr
end
@generated function prepend(::Type{T}, ::Type{X}) where {T, X}
expr = Expr(:curly, Tuple)
push!(expr.args, X)
push!(expr.args, T)
return expr
end
function prepend(t::IntType, x::IntType)
@inline
return (x, t)
end
# specialize on the operation
Base.@assume_effects :total @generated function _foldl(op::G, x::Tuple, init) where {G}
length(x.parameters) == 0 && return :init
expr = :(op(init, x[1]))
for i in 2:length(x.parameters)
expr = :(op($expr, x[$i]))
end
return quote
Base.@_inline_meta
@inbounds $expr
end
end
_foldl(op::G, x::IntType, init) where {G} = op(init, x)
Base.@assume_effects :total @generated function escan(f::F, x::NTuple{N, T}, init::T) where {F, N, T}
q = Expr(:block, Expr(:meta, :inline, :propagate_inbounds))
if N == 1
push!(q.args, :init)
return q
end
syms = ntuple(i -> Symbol(:i_, i), N)
push!(q.args, Expr(:(=), syms[1], :init))
for n in 1:(N - 1)
push!(q.args, Expr(:(=), syms[n + 1], Expr(:call, :f, syms[n], Expr(:ref, :x, n))))
end
push!(q.args, Expr(:return, Expr(:tuple, syms...)))
return q
end
@inline _zip(t::Tuple{Vararg{Tuple}}) = tuple(zip(t...)...)
@inline _zip(t::Tuple) = tuple(t)
@inline _zip(t) = t
@inline _zip(t1, t2, t3...) = _zip((t1, t2, t3...))
function zip2_by(t, guide::Tuple)
TR = length(t)
GR = length(guide)
GR <= TR || throw(ArgumentError("zip2_by: guide tuple is longer than input tuple"))
split = map(zip2_by, t[1:GR], guide[1:GR])
result = tuple(zip(split...)...)
return (result[1], (result[2]..., t[(GR + 1):end]...))
end
function zip2_by(t, guide)
@assert length(t) == 2
return t
end
@generated hascolon(::T) where T = :($(Colon ∈ T.parameters))
@generated hascolon(::Type{T}) where T = :($(Colon ∈ T.parameters))
@generated function Base.reverse(::Type{T}) where {T<:Tuple}
expr = Expr(:curly, Tuple)
push!(expr.args,
Core._apply_iterate(Base.iterate, Base.revargs, T.parameters)...)
return expr
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1816 | abstract type AbstractCopyOp{SRegisters, DRegisters} <: PTXOperation end
function Base.getproperty(obj::AbstractCopyOp{SRegisters, DRegisters},
sym::Symbol) where {SRegisters, DRegisters}
if sym === :DRegisters
return DRegisters
elseif sym === :SRegisters
return SRegisters
else
return getfield(obj,sym)
end
end
function Base.propertynames(::AbstractCopyOp)
return (:SRegisters, :DRegisters)
end
# default implementation, 1 value per thread
function Base.copyto!(op::AbstractCopyOp, dest::MoYeArray, src::MoYeArray)
op(pointer(dest), pointer(src))
return dest
end
@inline Adapt.adapt(to, x::AbstractCopyOp) = x
struct UniversalCopy{TS, TD} <: AbstractCopyOp{Registers{TS, 1}, Registers{TD, 1}} end
@inline UniversalCopy{S}() where {S} = UniversalCopy{S,S}()
function (::UniversalCopy{TS, TD})(dest::LLVMPtr{TD}, src::LLVMPtr{TS}) where {TS, TD}
@inline
align_src = Base.datatype_alignment(TS)
align_dst = Base.datatype_alignment(TD)
return unsafe_store!(dest, unsafe_load(src, 1, Val(align_src)), 1, Val(align_dst))
end
# the following methods should be moved if LocalArray has an address space
function (::UniversalCopy{TS, TD})(dest::Ptr{TD}, src::Ptr{TS}) where {TS, TD}
@inline
src = recast(TS, src)
dest = recast(TD, dest)
return unsafe_store!(dest, unsafe_load(src))
end
function (::UniversalCopy{TS, TD})(dest::Ptr{TD}, src::LLVMPtr{TS}) where {TS, TD}
@inline
return unsafe_store!(dest, unsafe_load(src, 1, Val(Base.datatype_alignment(TS))))
end
function (::UniversalCopy{TS, TD})(dest::LLVMPtr{TD}, src::Ptr{TS}) where {TS, TD}
@inline
return unsafe_store!(dest, unsafe_load(src), 1, Val(Base.datatype_alignment(TD)))
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2273 | abstract type AbstractCopyOp_ASYNC{TS,TD} <: AbstractCopyOp{Registers{TS, 1}, Registers{TD, 1}} end
const CP_SYNC_ENABLED = @static if CUDA.functional() && capability(device()) >= v"8.0"
true
else
false
end
struct CPOP_ASYNC_CACHEALWAYS{TS, TD} <: AbstractCopyOp_ASYNC{TS,TD}
@generated function CPOP_ASYNC_CACHEALWAYS{TS, TD}() where {TS, TD}
@assert sizeof(TS) == sizeof(TD)
@assert sizeof(TS) in (4, 8, 16) "Only 4, 8, 16 bytes are supported, got $(sizeof(TS))"
return :($(new{TS, TD}()))
end
end
@inline CPOP_ASYNC_CACHEALWAYS{S}() where {S} = CPOP_ASYNC_CACHEALWAYS{S,S}()
@generated function (::CPOP_ASYNC_CACHEALWAYS{TS, TD})(dst::LLVMPtr{TD, AS.Shared}, src::LLVMPtr{TS, AS.Global}) where {TD, TS}
intr = "llvm.nvvm.cp.async.ca.shared.global.$(sizeof(TS))"
return quote
Base.@_inline_meta
ccall($intr, llvmcall, Cvoid, (LLVMPtr{TD, AS.Shared}, LLVMPtr{TS, AS.Global}), dst, src)
end
end
struct CPOP_ASYNC_CACHEGLOBAL{TS, TD} <: AbstractCopyOp_ASYNC{TS,TD}
@generated function CPOP_ASYNC_CACHEGLOBAL{TS, TD}() where {TS, TD}
@assert sizeof(TS) == sizeof(TD)
@assert sizeof(TS) in (16, ) "Only 16 bytes are supported, got $(sizeof(TS))" # only 16 for LLVM 15
return :($(new{TS, TD}()))
end
end
@inline CPOP_ASYNC_CACHEGLOBAL{S}() where {S} = CPOP_ASYNC_CACHEGLOBAL{S,S}()
@generated function (::CPOP_ASYNC_CACHEGLOBAL{TS, TD})(dst::LLVMPtr{TD, AS.Shared}, src::LLVMPtr{TS, AS.Global}) where {TS, TD}
intr = ".$(sizeof(TS))"
return quote
Base.@_inline_meta
ccall($intr, llvmcall, Cvoid, (LLVMPtr{TD, AS.Shared}, LLVMPtr{TS, AS.Global}), dst, src)
end
end
"""
cp_async_wait(N::Int32)
cp_async_wait()
`cp_async_wait(N)` is equivalent to `cp.async.wait.group(N)` and `cp_async_wait()` is equivalent to `cp.async.wait.all` in CUDA.
"""
@inline cp_async_wait(i::Int32) = ccall("llvm.nvvm.cp.async.wait.group", llvmcall, Cvoid, (Int32,), i)
@inline cp_async_wait() = ccall("llvm.nvvm.cp.async.wait.all", llvmcall, Cvoid, ())
"""
cp_async_commit()
`cp.async.commit.group`.
"""
@inline cp_async_commit() = ccall("llvm.nvvm.cp.async.commit.group", llvmcall, Cvoid, ())
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 5458 | abstract type AbstractLdMatrix{SRegisters, DRegisters} <: AbstractCopyOp{SRegisters, DRegisters} end
function Base.getproperty(obj::AbstractLdMatrix{SRegisters, DRegisters},
sym::Symbol) where {SRegisters, DRegisters}
if sym === :DRegisters
return DRegisters
elseif sym === :SRegisters
return SRegisters
else
return getfield(obj,sym)
end
end
function Base.propertynames(::AbstractLdMatrix)
return (:SRegisters, :DRegisters)
end
struct LDSM_U32x1_N <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 1}} end
struct LDSM_U32x2_N <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 2}} end
struct LDSM_U32x4_N <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 4}} end
struct LDSM_U16x2_T <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 1}} end
struct LDSM_U16x4_T <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 2}} end
struct LDSM_U16x8_T <: AbstractLdMatrix{Registers{UInt128, 1}, Registers{UInt32, 4}} end
@inline function (::LDSM_U32x1_N)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.b16", llvmcall, UInt32, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
@inline function (::LDSM_U32x2_N)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.b16", llvmcall, LLVMStruct2{UInt32}, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
@inline function (::LDSM_U32x4_N)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.b16", llvmcall, LLVMStruct4{UInt32}, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
@inline function (::LDSM_U16x2_T)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.trans.b16", llvmcall, UInt32, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
@inline function (::LDSM_U16x4_T)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.trans.b16", llvmcall, LLVMStruct2{UInt32}, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
@inline function (::LDSM_U16x8_T)(src_addr::LLVMPtr{UInt32, AS.Shared})
return ccall("llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.trans.b16", llvmcall, LLVMStruct4{UInt32}, (LLVMPtr{UInt32, AS.Shared},), src_addr)
end
function Base.copyto!(op::LDSM_U32x1_N, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
return unsafe_store!(pointer(dest), val, 1)
end
@inbounds function Base.copyto!(op::LDSM_U32x2_N, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
Base.Cartesian.@nexprs 2 i -> dest[i] = getfield(val, i)
return dest
end
@inbounds function Base.copyto!(op::LDSM_U32x4_N, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
Base.Cartesian.@nexprs 4 i -> dest[i] = getfield(val, i)
return dest
end
function Base.copyto!(op::LDSM_U16x2_T, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
return unsafe_store!(pointer(dest), val, 1)
end
@inbounds function Base.copyto!(op::LDSM_U16x4_T, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
dest_ptr = pointer(dest)
Base.Cartesian.@nexprs 2 i -> dest[i] = getfield(val, i)
return dest
end
@inbounds function Base.copyto!(op::LDSM_U16x8_T, dest::LocalArray{UInt32}, src::SharedArray{UInt128})
@inline
src_ptr = pointer(src)
val = op(recast(UInt32, src_ptr))
dest_ptr = pointer(dest)
Base.Cartesian.@nexprs 4 i -> dest[i] = getfield(val, i)
return dest
end
"""
copyto!(ldmatrix::AbstractLdMatrix, dest::MoYeArray{UInt32}, src::MoYeArray{UInt128})
Load data from shared memory to registers. The available `AbstractLdMatrix`s are:
```julia
# Type => LLVM intrinsic
"LDSM_U32x1_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.b16"
"LDSM_U32x2_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.b16"
"LDSM_U32x4_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.b16"
"LDSM_U16x2_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.trans.b16"
"LDSM_U16x4_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.trans.b16"
"LDSM_U16x8_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.trans.b16"
```
You can inspect the number and the type of registers used per thread by
```julia
julia> LDSM_U32x4_N()
LDSM_U32x4_N()
julia> ans.DRegisters
Registers{UInt32, 4}
```
"""
function Base.copyto!(ldmatrix::AbstractLdMatrix, dest::MoYeArray, src::MoYeArray)
throw(MethodError(copyto!, (ldmatrix, dest, src)))
end
const ldmatrix_ops_list = [
"LDSM_U32x1_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.b16"
"LDSM_U32x2_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.b16"
"LDSM_U32x4_N" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.b16"
"LDSM_U16x2_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x1.trans.b16"
"LDSM_U16x4_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x2.trans.b16"
"LDSM_U16x8_T" => "llvm.nvvm.ldmatrix.sync.aligned.m8n8.x4.trans.b16"
]
export LDSM_U32x1_N, LDSM_U32x2_N, LDSM_U32x4_N, LDSM_U16x2_T, LDSM_U16x4_T, LDSM_U16x8_T | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 16036 | """
fma!(::AbstractMMAOP, D, A, B, C)
Perform matrix multiply-and-accumulate computation, `A*B+C`, and store the result in D.
The available mma operations can be found in `MoYe.mma_ops_list`.
```julia
julia> MoYe.mma_ops_list
51-element Vector{Any}:
"MMAOP_8x8x4_F64F64F64F64_TN" => "llvm.nvvm.mma.m8n8k4.row.col.f64"
"MMAOP_16x8x4_F32TF32TF32F32_TN" => "llvm.nvvm.mma.m16n8k4.row.col.tf32"
"MMAOP_16x8x8_F32TF32TF32F32_TN" => "llvm.nvvm.mma.m16n8k8.row.col.tf32"
"MMAOP_16x8x16_F32BF16BF16F32_TN" => "llvm.nvvm.mma.m16n8k16.row.col.bf16"
"MMAOP_16x8x8_F32BF16BF16F32_TN" => "llvm.nvvm.mma.m16n8k8.row.col.bf16"
"MMAOP_8x8x4_F16F16F16F16_TT" => "llvm.nvvm.mma.m8n8k4.row.row.f16.f16"
"MMAOP_8x8x4_F16F16F16F16_NT" => "llvm.nvvm.mma.m8n8k4.col.row.f16.f16"
"MMAOP_8x8x4_F16F16F16F16_TN" => "llvm.nvvm.mma.m8n8k4.row.col.f16.f16"
"MMAOP_8x8x4_F16F16F16F16_NN" => "llvm.nvvm.mma.m8n8k4.col.col.f16.f16"
"MMAOP_8x8x4_F32F16F16F16_TT" => "llvm.nvvm.mma.m8n8k4.row.row.f32.f16"
"MMAOP_8x8x4_F32F16F16F16_NT" => "llvm.nvvm.mma.m8n8k4.col.row.f32.f16"
"MMAOP_8x8x4_F32F16F16F16_TN" => "llvm.nvvm.mma.m8n8k4.row.col.f32.f16"
"MMAOP_8x8x4_F32F16F16F16_NN" => "llvm.nvvm.mma.m8n8k4.col.col.f32.f16"
"MMAOP_16x8x8_F16F16F16F16_TN" => "llvm.nvvm.mma.m16n8k8.row.col.f16.f16"
⋮
"MMAOP_16x8x16_S32U8S8S32_TN_SATURATE" => "llvm.nvvm.mma.m16n8k16.row.col.satfinite.u8.s8"
"MMAOP_16x8x16_S32U8U8S32_TN" => "llvm.nvvm.mma.m16n8k16.row.col.u8"
"MMAOP_16x8x16_S32U8U8S32_TN_SATURATE" => "llvm.nvvm.mma.m16n8k16.row.col.satfinite.u8"
"MMAOP_16x8x32_S32U8S8S32_TN" => "llvm.nvvm.mma.m16n8k32.row.col.u8.s8"
"MMAOP_16x8x32_S32U8S8S32_TN_SATURATE" => "llvm.nvvm.mma.m16n8k32.row.col.satfinite.u8.s8"
"MMAOP_16x8x32_S32U8U8S32_TN" => "llvm.nvvm.mma.m16n8k32.row.col.u8"
"MMAOP_16x8x32_S32U8U8S32_TN_SATURATE" => "llvm.nvvm.mma.m16n8k32.row.col.satfinite.u8"
"MMAOP_8x8x128_S32B1B1S32_TN_XORPOPC" => "llvm.nvvm.mma.xor.popc.m8n8k128.row.col.b1"
"MMAOP_8x8x128_S32B1B1S32_TN_ANDPOPC" => "llvm.nvvm.mma.and.popc.m8n8k128.row.col.b1"
"MMAOP_16x8x128_S32B1B1S32_TN_XORPOPC" => "llvm.nvvm.mma.xor.popc.m16n8k128.row.col.b1"
"MMAOP_16x8x128_S32B1B1S32_TN_ANDPOPC" => "llvm.nvvm.mma.and.popc.m16n8k128.row.col.b1"
"MMAOP_16x8x256_S32B1B1S32_TN_XORPOPC" => "llvm.nvvm.mma.xor.popc.m16n8k256.row.col.b1"
"MMAOP_16x8x256_S32B1B1S32_TN_ANDPOPC" => "llvm.nvvm.mma.and.popc.m16n8k256.row.col.b1"
```
You can instantiate any of these `AbstractMMAOP`s and inspect the information about
the operation
```julia
julia> op = MMAOP_16x8x8_F32TF32TF32F32_TN()
MMAOP_16x8x8_F32TF32TF32F32_TN()
julia> op.ARegisters # Register type, and number of registers
MoYe.Registers{UInt32, 4}
julia> op.BRegisters
MoYe.Registers{UInt32, 2}
julia> op.CRegisters
MoYe.Registers{Float32, 4}
```
!!! note
Do not use `mma` with `wmma.load` together. Their data layouts do not agree.
The correct execution chain is ldmatrix + mma.
"""
function fma! end
const geom_to_shape = Dict(
"m8n8k4" => static((8, 8, 4)),
"m16n8k4" => static((16, 8, 4)),
"m16n8k8" => static((16, 8, 8)),
"m16n8k16" => static((16, 8, 16)),
"m16n8k32" => static((16, 8, 32)),
"m8n8k128" => static((8, 8, 128)),
"m16n8k128" => static((16, 8, 128)),
"m16n8k256" => static((16, 8, 256)),
"m8n8k32" => static((8, 8, 32)),
"m16n8k32" => static((16, 8, 32)),
"m16n8k64" => static((16, 8, 64)),
"m8n8k16" => static((8, 8, 16)),
"m16n8k16" => static((16, 8, 16)),
"m16n8k32" => static((16, 8, 32)),
)
# PTX types to LLVM types for registers
const ptx_to_llvm_reg = Dict(
"f16" => "<2 x half>",
"f32" => "float",
"f64" => "double",
"s32" => "i32",
"b16" => "i32",
"s8" => "i32",
"u8" => "i32",
"s4" => "i32",
"u4" => "i32",
"b1" => "i32",
"bf16" => "i32",
"tf32" => "i32",
)
# PTX types to julia types for registers
const ptx_to_jl_reg = Dict(
"f16" => NTuple{2, VecElement{Float16}},
"f32" => Float32,
"f64" => Float64,
"s32" => UInt32,
"b16" => UInt32,
"s8" => UInt32,
"u8" => UInt32,
"s4" => UInt32,
"u4" => UInt32,
"b1" => UInt32,
"bf16" => UInt32,
"tf32" => UInt32
)
const ptx_to_jl = Dict(
"f16" => Float16,
"f32" => Float32,
"f64" => Float64,
"s32" => Int32,
"s8" => Int8,
"u8" => UInt8,
"bf16" => BFloat16,
"tf32" => Float32,
"b1" => Bool,
)
# geom to num of registers
const nregs = Dict(
# u8/s8 -> s32 @ m16n16k16/m8n32k16/m32n8k16
"m16n16k16:a:u8" => 2,
"m16n16k16:a:s8" => 2,
"m16n16k16:b:u8" => 2,
"m16n16k16:b:s8" => 2,
"m16n16k16:c:s32" => 8,
"m16n16k16:d:s32" => 8,
"m8n32k16:a:u8" => 1,
"m8n32k16:a:s8" => 1,
"m8n32k16:b:u8" => 4,
"m8n32k16:b:s8" => 4,
"m8n32k16:c:s32"=>8,
"m8n32k16:d:s32"=>8,
"m32n8k16:a:u8"=>4,
"m32n8k16:a:s8"=>4,
"m32n8k16:b:u8"=>1,
"m32n8k16:b:s8"=>1,
"m32n8k16:c:s32"=>8,
"m32n8k16:d:s32"=>8,
"m8n8k16:a:u8"=>1,
"m8n8k16:a:s8"=>1,
"m8n8k16:b:u8"=>1,
"m8n8k16:b:s8"=>1,
"m8n8k16:c:s32"=>2,
"m8n8k16:d:s32"=>2,
"m16n8k16:a:u8"=>2,
"m16n8k16:a:s8"=>2,
"m16n8k16:b:u8"=>1,
"m16n8k16:b:s8"=>1,
"m16n8k16:c:s32"=>4,
"m16n8k16:d:s32"=>4,
"m16n8k32:a:u8"=>4,
"m16n8k32:a:s8"=>4,
"m16n8k32:b:u8"=>2,
"m16n8k32:b:s8"=>2,
"m16n8k32:c:s32"=>4,
"m16n8k32:d:s32"=>4,
# u4/s4 -> s32 @ m8n8k32 (u4/s4)
"m8n8k32:a:u4"=>1,
"m8n8k32:a:s4"=>1,
"m8n8k32:b:u4"=>1,
"m8n8k32:b:s4"=>1,
"m8n8k32:c:s32"=>2,
"m8n8k32:d:s32"=>2,
"m16n8k32:a:u4"=>2,
"m16n8k32:a:s4"=>2,
"m16n8k32:b:u4"=>1,
"m16n8k32:b:s4"=>1,
"m16n8k32:c:s32"=>4,
"m16n8k32:d:s32"=>4,
"m16n8k64:a:u4"=>4,
"m16n8k64:a:s4"=>4,
"m16n8k64:b:u4"=>2,
"m16n8k64:b:s4"=>2,
"m16n8k64:c:s32"=>4,
"m16n8k64:d:s32"=>4,
# b1 -> s32 @ m8n8k128(b1)
"m8n8k128:a:b1"=>1,
"m8n8k128:b:b1"=>1,
"m8n8k128:c:s32"=>2,
"m8n8k128:d:s32"=>2,
"m16n8k128:a:b1"=>2,
"m16n8k128:b:b1"=>1,
"m16n8k128:c:s32"=>4,
"m16n8k128:d:s32"=>4,
"m16n8k256:a:b1"=>4,
"m16n8k256:b:b1"=>2,
"m16n8k256:c:s32"=>4,
"m16n8k256:d:s32"=>4,
# bf16 -> s32 @ m16n16k16/m8n32k16/m32n8k16
"m16n16k16:a:bf16"=>4,
"m16n16k16:b:bf16"=>4,
"m8n32k16:a:bf16"=>2,
"m8n32k16:b:bf16"=>8,
"m32n8k16:a:bf16"=>8,
"m32n8k16:b:bf16"=>2,
"m16n8k16:a:bf16"=>4,
"m16n8k16:b:bf16"=>2,
"m16n8k16:c:f32"=>4,
"m16n8k16:d:f32"=>4,
"m16n8k8:a:bf16"=>2,
"m16n8k8:b:bf16"=>1,
"m16n8k8:c:f32"=>4,
"m16n8k8:d:f32"=>4,
"m8n8k4:a:f64"=>1,
"m8n8k4:b:f64"=>1,
"m8n8k4:c:f64"=>2,
"m8n8k4:d:f64"=>2,
# tf32 -> s32 @ m16n16k8
"m16n16k8:a:tf32"=>4,
"m16n16k8:b:tf32"=>4,
"m16n8k4:a:tf32"=>2,
"m16n8k4:b:tf32"=>1,
"m16n8k4:c:f32"=>4,
"m16n8k4:d:f32"=>4,
"m16n8k8:a:tf32"=>4,
"m16n8k8:b:tf32"=>2,
"m16n8k8:c:f32"=>4,
"m16n8k8:d:f32"=>4,
"m8n8k4:a:f16"=>2,
"m8n8k4:b:f16"=>2,
"m16n8k8:a:f16"=>2,
"m16n8k8:b:f16"=>1,
"m16n8k8:c:f16"=>2,
"m16n8k8:d:f16"=>2,
"m16n8k8:c:f32"=>4,
"m16n8k8:d:f32"=>4,
"m16n8k16:a:f16"=>4,
"m16n8k16:b:f16"=>2,
"m16n8k16:c:f16"=>2,
"m16n8k16:d:f16"=>2,
"m16n8k16:c:f32"=>4,
"m16n8k16:d:f32"=>4,
# ldmatrix
"m8n8:x1:b16"=>1,
"m8n8:x2:b16"=>2,
"m8n8:x4:b16"=>4,
)
# all other combinations have the smae size
const other_nregs = Dict(
"a:f16" => 8,
"b:f16" => 8,
"c:f16" => 4,
"d:f16" => 4,
"c:f32" => 8,
"d:f32" => 8,
)
function get_mmp_op_signature(alayout, blayout, satf, b1op)
alayout = alayout == "row" ? "T" : "N"
blayout = blayout == "row" ? "T" : "N"
satf = isempty(satf) ? "" : "_SATURATE"
if isempty(b1op)
blop = ""
elseif b1op == ".xor.popc"
blop = "_XORPOPC"
else
blop = "_ANDPOPC"
end
return "$alayout$blayout$satf$blop"
end
function get_nregs(geom, frag, ptx_elt_type)
return get(nregs, "$geom:$frag:$ptx_elt_type", get(other_nregs, "$frag:$ptx_elt_type", nothing))
end
# LLVMStruct lowers to {llvmT, llvmT, ...}, which matches the return type of the intrinsic
for N in unique(vcat(unique(values(nregs)), unique(values(other_nregs))))
struct_ty = Symbol("LLVMStruct$N")
@eval struct $struct_ty{T}
Base.Cartesian.@nexprs $N i -> x_i::T
end
#@eval Base.convert(::Type{NTuple{$N, T}}, x::$struct_ty{T}) where {T} = ntuple(i -> getfield(x, i), $N)
end
function get_b1_ops(ptx_type)
ptx_type != "b1" && return [""]
return [".xor.popc", ".and.popc"]
end
function make_frag(geom, frag, ptx_elt_type)
T, S = ptx_to_jl_reg[ptx_elt_type], get_nregs(geom, frag, ptx_elt_type)
return Registers{T, S}
end
function mma_intrinsic_signature(ptx_type_d, ptx_type_a, ptx_type_b, ptx_type_c,)
if ptx_type_a == "f16"
return "$ptx_type_d.$ptx_type_c" # FP16 ops identified by accumulator & result type.
elseif ptx_type_a != ptx_type_b
return "$ptx_type_a.$ptx_type_b" # other ops are identified by input types.
else
return ptx_type_a # if input types are the same, it only appears once.
end
end
function convert_geom(input_string::String)
regex = r"(\d+)"
matches = collect(eachmatch(regex, input_string))
result = join((m.match for m in matches), "x")
return result
end
function get_ccall_args(ARegisters, BRegisters, CRegisters, DRegisters)
a_frag_ty = eltype(ARegisters)
b_frag_ty = eltype(BRegisters)
c_frag_ty = eltype(CRegisters)
d_frag_ty = eltype(DRegisters)
a_sz = length(ARegisters)
b_sz = length(BRegisters)
c_sz = length(CRegisters)
d_sz = length(DRegisters)
a_types = ntuple(i -> a_frag_ty, a_sz)
b_types = ntuple(i -> b_frag_ty, b_sz)
c_types = ntuple(i -> c_frag_ty, c_sz)
d_types = @eval $(Symbol(:LLVMStruct,d_sz)){$d_frag_ty}
a_vars = ntuple(i -> :(a[$i]), a_sz)
b_vars = ntuple(i -> :(b[$i]), b_sz)
c_vars = ntuple(i -> :(c[$i]), c_sz)
return a_types, b_types, c_types, d_types, a_vars, b_vars, c_vars, d_frag_ty, d_sz
end
function is_mma_variant_supported(type_a, type_b, type_c, type_d, geom, layout_a, layout_b, satf)
if !(isempty(satf) || (type_a in ["s8", "u8", "s4", "u4"]))
return false
end
if geom == "m8n8k4" && (type_c == "f32") && (type_d != "f32")
return false
end
if geom == "m16n8k8" && (type_a != type_b || type_c != type_d)
return false
end
if geom == "m16n8k16" && (type_c != type_d)
return false
end
if !((geom == "m8n8k4") && type_a == "f16")
return layout_a == "row" && layout_b == "col"
end
return true
end
function make_mma_ops(geoms, types_a, types_b, types_c, types_d)
struct_names = []
for (geom, type_a, type_c) in Iterators.product(geoms, types_a, types_c)
for (type_b, type_d) in Iterators.product(ifelse(isempty(types_b), [type_a], types_b),
ifelse(isempty(types_d), [type_c], types_d))
for (alayout, blayout, satf) in Iterators.product(["row", "col"], ["row", "col"], ["", ".satfinite"])
if !is_mma_variant_supported(type_a, type_b, type_c, type_d, geom, alayout, blayout, satf)
continue
end
for b1op in get_b1_ops(type_a)
# Step 1: Construct the MMA_OP struct
struct_name = "MMAOP_$(convert_geom(geom))_$(uppercase(type_d*type_a*type_b*type_c))_$(get_mmp_op_signature(alayout, blayout, satf, b1op))"
DRegisters = make_frag(geom, "d", type_d)
ARegisters = make_frag(geom, "a", type_a)
BRegisters = make_frag(geom, "b", type_b)
CRegisters = make_frag(geom, "c", type_c)
_struct_name = Symbol(struct_name)
@eval struct $_struct_name <: AbstractMMAOP{$DRegisters, $ARegisters, $BRegisters, $CRegisters} end
@eval export $_struct_name
# Step 2: Construct the intrinsic
intrinsic_signature = mma_intrinsic_signature(type_d, type_a, type_b, type_c)
mma_intrinsic = "llvm.nvvm.mma$b1op.$geom.$alayout.$blayout$satf.$intrinsic_signature"
push!(struct_names, struct_name => mma_intrinsic)
a_types, b_types, c_types, d_types, a_vars, b_vars, c_vars, d_frag_ty, d_sz = get_ccall_args(ARegisters(), BRegisters(), CRegisters(), DRegisters())
# Step 3: define fma!
if d_sz == 1
@eval @inline function (::$_struct_name)(a, b, c)
return ccall($mma_intrinsic, llvmcall, $d_frag_ty, ($(a_types...), $(b_types...), $(c_types...)), $(a_vars...), $(b_vars...), $(c_vars...))
end
@eval @inline function fma!(op::$_struct_name, d, a, b, c)
val = op(a,b,c)
return unsafe_store!(pointer(d), val, 1)
end
else
@eval @inline function (::$_struct_name)(a, b, c)
return ccall($mma_intrinsic, llvmcall, $d_types, ($(a_types...), $(b_types...), $(c_types...)), $(a_vars...), $(b_vars...), $(c_vars...))
end
@eval @inline @inbounds function fma!(op::$_struct_name, d::MoYeArray, a::MoYeArray, b::MoYeArray, c::MoYeArray)
val = op(a,b,c)
ptr = pointer(d)
Base.Cartesian.@nexprs $d_sz i -> d[i] = getfield(val, i)
return d
end
end
# Step 4: record the information about the operation
@eval @inline valtype_d(::$_struct_name) = $(ptx_to_jl[type_d])
@eval @inline valtype_a(::$_struct_name) = $(ptx_to_jl[type_a])
@eval @inline valtype_b(::$_struct_name) = $(ptx_to_jl[type_b])
@eval @inline valtype_c(::$_struct_name) = $(ptx_to_jl[type_c])
@eval @inline shape_mnk(mma_op::$_struct_name) = $(geom_to_shape[geom])
@eval @inline alignment_a(::$_struct_name) = $(ifelse(alayout == "row", :(:row), :(:col)))
@eval @inline alignment_b(::$_struct_name) = $(ifelse(blayout == "row", :(:row), :(:col)))
end
end
end
end
return struct_names
end
function get_mma_ops()
vcat(
make_mma_ops(["m8n8k4"], ["f64"], [], ["f64"], []),
make_mma_ops(["m16n8k4", "m16n8k8"], ["tf32"], [], ["f32"], []),
make_mma_ops(["m16n8k16", "m16n8k8"], ["bf16"], [], ["f32"], []),
make_mma_ops(["m8n8k4", "m16n8k8", "m16n8k16"], ["f16"], [],[ "f16", "f32"], ["f16", "f32"]),
make_mma_ops(["m8n8k16", "m16n8k16", "m16n8k32"], ["s8", "u8"], ["s8", "u8"], ["s32"], []),
#make_mma_ops(["m8n8k32", "m16n8k32", "m16n8k64"], ["s4", "u4"], ["s4", "u4"], ["s32"], []), # Julia does not support s4/u4
make_mma_ops(["m8n8k128", "m16n8k128", "m16n8k256"], ["b1"], [], ["s32"], []), # 6
)
end
const mma_ops_list = get_mma_ops()
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2414 | abstract type PTXOperation end
@inline apply(op::PTXOperation, args...) = op(args...)
abstract type AbstractMMAOP{DRegisters, ARegisters, BRegisters, CRegisters} <: PTXOperation end
@inline Adapt.adapt(to, x::AbstractMMAOP) = x
@inline fma!(mmaop::AbstractMMAOP, a, b, c) = fma!(mmaop, c, a, b, c)
"""
Registers{T,S}
A struct that wraps the register file type `T` and number of register files `S`.
"""
struct Registers{T,S} end
@inline Base.eltype(::Registers{T}) where {T} = T
@inline Base.length(::Registers{T, L}) where {T, L} = L
@inline Base.eltype(::Type{<:Registers{T}}) where {T} = T
@inline Base.length(::Type{Registers{T, L}}) where {T, L} = L
function Base.getproperty(obj::AbstractMMAOP{DRegisters, ARegisters, BRegisters, CRegisters},
sym::Symbol) where {DRegisters, ARegisters,
BRegisters, CRegisters}
if sym === :DRegisters
return DRegisters
elseif sym === :ARegisters
return ARegisters
elseif sym === :BRegisters
return BRegisters
elseif sym === :CRegisters
return CRegisters
else
return getfield(obj,sym)
end
end
function Base.propertynames(::AbstractMMAOP)
return (:DRegisters, :ARegisters, :BRegisters, :CRegisters)
end
@inline regtype_d(mma_op::AbstractMMAOP) = eltype(mma_op.DRegisters)
@inline regtype_a(mma_op::AbstractMMAOP) = eltype(mma_op.ARegisters)
@inline regtype_b(mma_op::AbstractMMAOP) = eltype(mma_op.BRegisters)
@inline regtype_c(mma_op::AbstractMMAOP) = eltype(mma_op.CRegisters)
@inline regnum_d(mma_op::AbstractMMAOP) = length(mma_op.DRegisters)
@inline regnum_a(mma_op::AbstractMMAOP) = length(mma_op.ARegisters)
@inline regnum_b(mma_op::AbstractMMAOP) = length(mma_op.BRegisters)
@inline regnum_c(mma_op::AbstractMMAOP) = length(mma_op.CRegisters)
struct UniversalFMA{D,A,B,C} <: AbstractMMAOP{Registers{D, 1}, Registers{A, 1},
Registers{B, 1}, Registers{C, 1}}
end
UniversalFMA{A,B,C}() where {A,B,C} = UniversalFMA{C,A,B,C}()
@inline valtype_a(::UniversalFMA{D,A,B,C}) where {D,A,B,C} = A
@inline valtype_b(::UniversalFMA{D,A,B,C}) where {D,A,B,C} = B
@inline valtype_c(::UniversalFMA{D,A,B,C}) where {D,A,B,C} = C
@inline valtype_d(::UniversalFMA{D,A,B,C}) where {D,A,B,C} = D
@inline fma!(::UniversalFMA, d, a, b, c) = @inbounds d .= a .* b .+ c
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 14092 | abstract type AbstractCopyAtom{Traits, T, OP} <: AbstractCopyTraits{OP} end
struct CopyAtom{Traits, T, OP, VS, VD, VR, NS, ND} <: AbstractCopyAtom{Traits, T, OP}
traits::Traits
val_layout_src::VS
val_layout_dst::VD
val_layout_ref::VR
num_val_src::NS
num_val_dst::ND
end
function Base.getproperty(atom::CopyAtom, x::Symbol)
if x === :bit_layout_src
return atom.traits.srclayout
elseif x === :bit_layout_dst
return atom.traits.dstlayout
elseif x === :bit_layout_ref
return atom.traits.reflayout
elseif x === :threadid
return atom.traits.threadid
else
return getfield(atom, x)
end
end
function Base.propertynames(::CopyAtom)
return (:traits, :bit_layout_src, :bit_layout_dst, :bit_layout_ref, :val_layout_src,
:val_layout_dst, :val_layout_ref, :num_val_src, :num_val_dst)
end
function CopyAtom{Traits, T}() where {OP, Traits <: CopyTraits{OP}, T}
@inline
traits = Traits()
threadid = traits.threadid
val_layout_src = upcast(traits.srclayout, sizeof_bits(T))
val_layout_dst = upcast(traits.dstlayout, sizeof_bits(T))
val_layout_ref = upcast(traits.reflayout, sizeof_bits(T))
@assert size(val_layout_src, 1) == size(threadid)
@assert size(val_layout_dst, 1) == size(threadid)
@assert size(val_layout_ref, 1) == size(threadid)
num_val_src = size(val_layout_src, 2)
num_val_dst = size(val_layout_dst, 2)
return CopyAtom{typeof(traits), T, OP, typeof(val_layout_src), typeof(val_layout_dst),
typeof(val_layout_ref), typeof(num_val_src), typeof(num_val_dst)}(traits,
val_layout_src,
val_layout_dst,
val_layout_ref,
num_val_src,
num_val_dst)
end
function CopyAtom{CPOP, T}() where {CPOP <: AbstractCopyOp, T}
@inline
op = CPOP()
return CopyAtom{CopyTraits{typeof(op)}, T}()
end
@inline function num_val_src(::Type{CopyAtom{Traits, T, OP, VS, VD, VR, NS, ND}}) where {
Traits,
T,
OP,
VS,
VD,
VR,
NS,
ND}
return NS
end
@inline function num_val_dst(::Type{CopyAtom{Traits, T, OP, VS, VD, VR, NS, ND}}) where {
Traits,
T,
OP,
VS,
VD,
VR,
NS,
ND}
return ND
end
@inline get_traits(atom::CopyAtom) = atom.traits
struct TiledCopy{Traits, T, OP, CP, LT, ST} <: AbstractCopyAtom{Traits, T, OP}
copy_atom::CP
tiled_layout_TV::LT
tiler_MN::ST
end
@inline atom_threadid(tiled_copy::TiledCopy) = tiled_copy.copy_atom.threadid
@inline atom_layout_src(tiled_copy::TiledCopy) = tiled_copy.copy_atom.val_layout_src
@inline atom_layout_dst(tiled_copy::TiledCopy) = tiled_copy.copy_atom.val_layout_dst
@inline atom_layout_ref(tiled_copy::TiledCopy) = tiled_copy.copy_atom.val_layout_ref
function num_val_src(::Type{<:TiledCopy{Traits, T, OP, CP}}) where {Traits, T, OP, VS, VD,
VR, NS, ND,
CP <:
CopyAtom{Traits, T, OP,
VS, VD, VR, NS,
ND}}
@inline
return NS
end
function num_val_dst(::Type{<:TiledCopy{Traits, T, OP, CP}}) where {Traits, T, OP, VS, VD,
VR, NS, ND,
CP <:
CopyAtom{Traits, T, OP,
VS, VD, VR, NS,
ND}}
@inline
return ND
end
@inline get_traits(atom::TiledCopy) = get_traits(atom.copy_atom)
function TiledCopy(atom::CopyAtom{Traits, T, OP}, tiled_layout_TV::Layout,
tiler_MN) where {Traits, T, OP}
@assert size(tiled_layout_TV, 1) % size(atom.val_layout_ref, 1) == Zero()
@assert size(tiled_layout_TV, 2) % size(atom.val_layout_ref, 2) == Zero()
return TiledCopy{Traits, T, OP, typeof(atom), typeof(tiled_layout_TV), typeof(tiler_MN)
}(atom, tiled_layout_TV, tiler_MN)
end
function tile2thrfrg(tiled_copy::TiledCopy, x::Layout, ref2trg)
atom_num_thr = size(atom_layout_ref(tiled_copy), 1)
atom_num_val = size(atom_layout_ref(tiled_copy), 2)
atom_layout_TV = zipped_divide(tiled_copy.tiled_layout_TV, (atom_num_thr, atom_num_val))
trg_layout_TV = composition(atom_layout_TV, (ref2trg, :))
thrval2mn = coalesce(_zip(trg_layout_TV), (One(), (One(), One())))
tv_array = composition(x, (thrval2mn, :))
return tv_array((:, :), :)
end
function tidfrg_S(tiled_copy::TiledCopy, src::Layout{N}) where {N}
@assert N>=rank(shape(tiled_copy.tiler_MN)) "The dimension is too small to be tiled."
return tile2thrfrg(tiled_copy, zipped_divide(src, tiled_copy.tiler_MN),
composition(right_inverse(atom_layout_ref(tiled_copy)),
atom_layout_src(tiled_copy)))
end
function tidfrg_D(tiled_copy::TiledCopy, dst::Layout{N}) where {N}
@assert N>=rank(shape(tiled_copy.tiler_MN)) "The dimension is too small to be tiled."
return tile2thrfrg(tiled_copy, zipped_divide(dst, tiled_copy.tiler_MN),
composition(right_inverse(atom_layout_ref(tiled_copy)),
atom_layout_dst(tiled_copy)))
end
function retile(tiled_copy, x::StaticLayout{R}) where {R}
V = size(x, _1)
tiled_layout_TV = tiled_copy.tiled_layout_TV
tiled_shape_MN = shape(tiled_copy.tiler_MN)
atom_num_val = size(atom_layout_ref(tiled_copy), _2)
tiled_num_thr = size(tiled_layout_TV, _1)
frg_layout_mn = upcast(composition(right_inverse(tiled_layout_TV),
make_layout(tiled_shape_MN)), tiled_num_thr * V)
frg_layout_v = zipped_divide(logical_product(make_layout(V),
right_inverse(frg_layout_mn)),
make_layout(atom_num_val))
t_array = zipped_divide(x, prepend(product_each(shape(frg_layout_mn)), V))
v_array = composition(t_array, (frg_layout_v, :))
return v_array(:, append(One(), :, StaticInt{R}()))
end
function get_layoutS_TV(tiled_copy::TiledCopy)
ref_S = make_layout((shape(tiled_copy.tiler_MN), One()))
return tile2thrfrg(tiled_copy, ref_S,
composition(right_inverse(atom_layout_ref(tiled_copy)),
atom_layout_src(tiled_copy)))(:, :, One())
end
function get_layoutS_MN(tiled_copy::TiledCopy)
tiled_shape_MN = shape(tiled_copy.tiler_MN)
layoutS_TV = get_layoutS_TV(tiled_copy)
layoutS_MK = composition(right_inverse(layoutS_TV), make_layout(tiled_shape_MN))
thrID_S = make_layout(size(tiled_copy.tiled_layout_TV, 1))
return (layoutS_MK, thrID_S)
end
function get_layoutD_TV(tiled_copy::TiledCopy)
ref_D = make_layout((shape(tiled_copy.tiler_MN), One()))
return tile2thrfrg(tiled_copy, ref_D,
composition(right_inverse(atom_layout_ref(tiled_copy)),
atom_layout_dst(tiled_copy)))(:, :, One())
end
function get_layoutD_MN(tiled_copy::TiledCopy)
tiled_shape_MN = shape(tiled_copy.tiler_MN)
layoutD_TV = get_layoutD_TV(tiled_copy)
layoutD_MK = composition(right_inverse(layoutD_TV), make_layout(tiled_shape_MN))
thrID_D = make_layout(size(tiled_copy.tiled_layout_TV, 1))
return (layoutD_MK, thrID_D)
end
struct ThrCopy{Traits, T, OP, TC, TI} <: AbstractCopyAtom{Traits, T, OP}
tiled_copy::TC
thr_idx::TI
function ThrCopy(tiled_copy::TiledCopy{Traits, T, OP}, thr_idx) where {Traits, T, OP}
return new{Traits, T, OP, typeof(tiled_copy), typeof(thr_idx)}(tiled_copy, thr_idx)
end
end
function partition_S(thr_copy::ThrCopy, s::MoYeArray{T, N}) where {T, N}
thr_tensor = MoYeArray(pointer(s), tidfrg_S(thr_copy.tiled_copy, layout(s)))
return view(thr_tensor, thr_copy.thr_idx, :, repeat(:, StaticInt{N}()))
end
function partition_D(thr_copy::ThrCopy, d::MoYeArray{T, N}) where {T, N}
thr_tensor = MoYeArray(pointer(d), tidfrg_D(thr_copy.tiled_copy, layout(d)))
return view(thr_tensor, thr_copy.thr_idx, :, repeat(:, StaticInt{N}()))
end
function retile_S(thr_copy::ThrCopy, s::StaticMoYeArray{T, R}) where {T, R}
return MoYeArray(pointer(s), retile(thr_copy.tiled_copy, layout(s)))
end
function retile_D(thr_copy::ThrCopy, d::StaticMoYeArray{T, R}) where {T, R}
return MoYeArray(pointer(d), retile(thr_copy.tiled_copy, layout(d)))
end
@inline get_slice(tiled_copy::TiledCopy, thr_idx::DInt) = ThrCopy(tiled_copy, thr_idx)
@inline get_thread_slice(tiled_copy::TiledCopy, thr_idx::DInt) = get_slice(tiled_copy, thr_idx)
function make_tiled_copy_A(copy_atom::AbstractCopyAtom, tiled_mma::TiledMMA)
M, K = tile_size(tiled_mma, _1), tile_size(tiled_mma, _3)
return TiledCopy(copy_atom, get_layoutA_TV(tiled_mma), (M, K))
end
function make_tiled_copy_B(copy_atom::AbstractCopyAtom, tiled_mma::TiledMMA)
N, K = tile_size(tiled_mma, _2), tile_size(tiled_mma, _3)
return TiledCopy(copy_atom, get_layoutB_TV(tiled_mma), (N, K))
end
function make_tiled_copy_C(copy_atom::AbstractCopyAtom, tiled_mma::TiledMMA)
M, N = tile_size(tiled_mma, _1), tile_size(tiled_mma, _2)
return TiledCopy(copy_atom, get_layoutC_TV(tiled_mma), (M, N))
end
"""
make_tiled_copy(copy_atom::CopyAtom,
thr_layout::Layout,
val_layout::Layout)
Make a tiled copy atom from a copy atom.
"""
function make_tiled_copy(copy_atom::CopyAtom, thr_layout::Layout{TR},
val_layout::Layout{TV}=@Layout(1)) where {TR, TV}
# (M, N) -> (thr_idx, val_idx)
layout_mn = raked_product(thr_layout, val_layout, true)
# (thr_idx, val_idx) -> (M, N)
layout_tv = composition(right_inverse(layout_mn), make_layout((size(thr_layout), size(val_layout))))
tiler = product_each(shape(layout_mn))
return TiledCopy(copy_atom, layout_tv, tiler)
end
function tile_size(tiled_copy::TiledCopy)
return shape(tiled_copy.tiler_MN)
end
function Base.size(tiled_copy::TiledCopy)
return size(tiled_copy.tiled_layout_TV, 1)
end
function Base.show(io::IO, m::CopyAtom{Traits, T}) where {Traits, T}
println(io, "CopyAtom")
println(io, " Thread ID: ", m.traits.threadid)
println(io, " ValLayoutSrc: ", m.val_layout_src)
println(io, " ValLayoutDst: ", m.val_layout_dst)
println(io, " ValLayoutRef: ", m.val_layout_ref)
return println(io, " ValueType: $(Int(sizeof_bits(T)))b")
end
function Base.show(io::IO, m::TiledCopy)
println(io, "TiledCopy")
println(io, " Tiler_MN: ", m.tiler_MN)
println(io, " TiledLayout_TV: ", m.tiled_layout_TV)
return show(io, m.copy_atom)
end
function Base.show(io::IO, m::ThrCopy)
println(io, "ThrCopy")
println(io, " ThrIdx: ", m.thr_idx)
return show(io, m.tiled_copy)
end
Base.@assume_effects :foldable @generated function apply(copy_atom::AbstractCopyAtom, dst::MoYeArray{TS, 1}, src::MoYeArray{TD,1}) where {TS, TD}
if shape(src) <: Tuple && shape(dst) <: Tuple
return quote
Base.@_inline_meta
dst_v = MoYeArray(pointer(dst), dst.layout[_1])
src_v = MoYeArray(pointer(src), src.layout[_1])
_copyto!(copy_atom, dst_v, src_v, TrivialPred())
end
else
@assert num_val_src(copy_atom) == size(layout(src)) "Expected $(num_val_src(copy_atom)) but got $(size(layout(src)))"
@assert num_val_dst(copy_atom) == size(layout(dst)) "Expected $(num_val_dst(copy_atom)) but got $(size(layout(dst)))"
return quote
Base.@_inline_meta
copyto_unpack!(get_traits(copy_atom), dst, src)
end
end
end | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 346 | function Base.copyto!(copy_atom::CopyAtom{Traits, T, OP}, dst::StaticOwningArray,
src::SharedArray) where {Traits, T, OP <: AbstractLdMatrix}
@inline
buffer = ManualMemory.preserve_buffer(dst)
GC.@preserve buffer begin copyto!(copy_atom, StrideArraysCore.maybe_ptr_array(dst), src) end
return dst
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 14200 | abstract type AbstractMMAAtom{Traits} end
# Atom interface
@inline valtype_a(::AbstractMMAAtom{Traits}) where {Traits} = valtype_a(Traits())
@inline valtype_b(::AbstractMMAAtom{Traits}) where {Traits} = valtype_b(Traits())
@inline valtype_c(::AbstractMMAAtom{Traits}) where {Traits} = valtype_c(Traits())
@inline valtype_d(::AbstractMMAAtom{Traits}) where {Traits} = valtype_d(Traits())
@inline frgtype_a(::AbstractMMAAtom{Traits}) where {Traits} = valtype_a(Traits())
@inline frgtype_b(::AbstractMMAAtom{Traits}) where {Traits} = valtype_b(Traits())
@inline frgtype_c(::AbstractMMAAtom{Traits}) where {Traits} = valtype_c(Traits())
@inline frgtype_d(::AbstractMMAAtom{Traits}) where {Traits} = valtype_d(Traits())
#@inline regnum_a(::AbstractMMAAtom{OP}) where {OP} = regnum_a(OP())
#@inline regnum_b(::AbstractMMAAtom{OP}) where {OP} = regnum_b(OP())
#@inline regnum_c(::AbstractMMAAtom{OP}) where {OP} = regnum_c(OP())
#@inline regnum_d(::AbstractMMAAtom{OP}) where {OP} = regnum_d(OP())
@inline layout_a(::AbstractMMAAtom{Traits}) where {Traits} = layout_a(Traits())
@inline layout_b(::AbstractMMAAtom{Traits}) where {Traits} = layout_b(Traits())
@inline layout_c(::AbstractMMAAtom{Traits}) where {Traits} = layout_c(Traits())
@inline thr_id(::AbstractMMAAtom{Traits}) where {Traits} = thr_id(Traits())
@inline shape_mnk(::AbstractMMAAtom{Traits}) where {Traits} = shape_mnk(Traits())
function make_fragment_C(m::AbstractMMAAtom, C::MoYeArray{T, N}) where {T, N}
@inline
@assert N ≥ 3
@assert size(layout(C), 1) == size(layout_c(m), 2)
return MoYeArray{frgtype_c(m)}(undef, shape(C)) # (V, M, N)
end
# Note that hopper architecture needs to return a view of A/B for the fragment
# In this case we always have frgtype_a(m) == T
function make_fragment_A(m::AbstractMMAAtom, A::MoYeArray{T, N}) where {T, N}
@inline
@assert N ≥ 3
@assert size(layout(A), 1) == size(layout_a(m), 2)
return make_fragment_like(frgtype_a(m), A) # (V, M, K)
end
function make_fragment_B(m::AbstractMMAAtom, B::MoYeArray{T, N}) where {T, N}
@inline
@assert N ≥ 3
@assert size(layout(B), 1) == size(layout_b(m), 2)
return make_fragment_like(frgtype_b(m), B) # (V, N, K)
end
struct MMAAtom{Traits} <: AbstractMMAAtom{Traits}
function MMAAtom{Traits}(args...) where {Traits <: AbstractMMATraits}
traits = Traits(args...)
return new{typeof(traits)}()
end
function MMAAtom{OP}(args...) where {OP <: AbstractMMAOP}
traits = MMATraits{OP}(args...)
return new{typeof(traits)}()
end
end
function Base.show(io::IO, m::MMAAtom)
println(io, "MMAAtom")
println(io, " Shape_MNK: ", shape_mnk(m))
println(io, " Thread ID: ", thr_id(m))
println(io, " Layout_A_TV: ", layout_a(m))
println(io, " Layout_B_TV: ", layout_b(m))
return println(io, " Layout_C_TV: ", layout_c(m))
end
function apply(mma_atom::AbstractMMAAtom{Traits}, D::MoYeArray{TD, 1}, A::MoYeArray{TA, 1},
B::MoYeArray{TB, 1}, C::MoYeArray{TC, 1}) where {Traits, TD, TA, TB, TC}
@inline
return mma_unpack!(Traits(), D, A, B, C)
end
function apply(mma_atom::AbstractMMAAtom, A::MoYeArray, B::MoYeArray, C::MoYeArray)
@inline
return apply(mma_atom, C, A, B, C)
end
# TiledMMA
struct TiledMMA{Atom<:AbstractMMAAtom,
AtomLayoutMNK <: Layout{3},
PermutationMNK <: Tile{3}, Traits} <: AbstractMMAAtom{Traits}
atom::Atom
atom_layout_mnk::AtomLayoutMNK
permutation_mnk::PermutationMNK
function TiledMMA{Atom, AtomLayoutMNK, PermutationMNK, Traits}() where {Atom, AtomLayoutMNK, PermutationMNK, Traits}
return new{Atom, AtomLayoutMNK, PermutationMNK, Traits}(Atom(), AtomLayoutMNK(), make_tuple(PermutationMNK))
end
function TiledMMA{Atom, AtomLayoutMNK, PermutationMNK}() where {Traits,Atom<:AbstractMMAAtom{Traits}, AtomLayoutMNK, PermutationMNK}
return new{Atom, AtomLayoutMNK, PermutationMNK, Traits}(Atom(), AtomLayoutMNK(), make_tuple(PermutationMNK))
end
end
function Base.show(io::IO, m::TiledMMA)
println(io, "TiledMMA")
println(io, " ThrLayoutVMNK: ", get_thr_layout_vmnk(m))
println(io, " PermutationMNK: ", m.permutation_mnk)
return show(io, m.atom)
end
struct ThrMMA{TA<:TiledMMA, ThrVMNK, Traits} <: AbstractMMAAtom{Traits}
tiled_mma::TA
thr_vmnk::ThrVMNK
function ThrMMA(tiled_mma::TA, thr_vmnk::ThrVMNK) where {Traits,TA<:AbstractMMAAtom{Traits}, ThrVMNK}
return new{TA, ThrVMNK, Traits}(tiled_mma, thr_vmnk)
end
end
function Base.show(io::IO, m::ThrMMA{TA, ThrVMNK}) where {TA, ThrVMNK}
println(io, "ThrMMA")
println(io, " Thr VMNK: ", m.thr_vmnk)
return show(io, m.tiled_mma)
end
@inline @generated function get_thr_layout_vmnk(::TiledMMA{Atom, AtomLayoutMNK}) where {Atom, AtomLayoutMNK}
thr_layout_vmnk_ = tiled_product(thr_id(Atom()), AtomLayoutMNK()) # (thr_id, atom_M, atom_N, atom_K)
return :($thr_layout_vmnk_)
end
function thrfrg_C(m::TiledMMA, C::Layout)
thr_layout_vmnk = get_thr_layout_vmnk(m)
atom_mnk = shape_mnk(m.atom)
permutation_mnk = m.permutation_mnk
# Assume C > permutation_mn and permutation_mn divides C such logical_divide makes sense
# Because of the assumption, the "effective" tiledmma size scales up
# If permutation_mnk is a tuple of ints then there is no actual permutation, it simply add nested sublayouts to the layout
t_array = logical_divide(C, (permutation_mnk[1], permutation_mnk[2]))
a_array = zipped_divide(t_array, map(make_layout, (atom_mnk[1], atom_mnk[2]))) # ((atom_m, atom_n), (rest_m, rest_n))
tv_array = composition(a_array, (layout_c(m), :)) # ((thr_id, val_idx), (rest_m, rest_n))
thr_tile = (:, (make_layout(size(thr_layout_vmnk, _2)), make_layout(size(thr_layout_vmnk, _3)))) # (:, (atom_M, atom_N))
# ((thr_id, val_idx), ((atom_M, atom_N), (rest_m/atom_M, rest_n/atom_N)) -> ((thr_id, (atom_M, atom_N)), (val_idx, (rest_m/atom_M, rest_n/atom_N)))
thr_array = zipped_divide(tv_array, thr_tile)
return thr_array
end
function thrfrg_A(m::TiledMMA, A::Layout)
thr_layout_vmnk = get_thr_layout_vmnk(m)
atom_mnk = shape_mnk(m.atom)
permutation_mnk = m.permutation_mnk
t_array = logical_divide(A, (permutation_mnk[1], permutation_mnk[3]))
a_array = zipped_divide(t_array, map(make_layout, map(make_layout, (atom_mnk[1], atom_mnk[3]))))
tv_array = composition(a_array, (layout_a(m), :))
thr_tile = (:, (make_layout(size(thr_layout_vmnk, _2)), make_layout(size(thr_layout_vmnk, _4)))) # (:, (thrM, thrK))
# ((thr_id, val_idx), ((M, K), (rest_m/M, rest_k/K)) -> ((thr_id, (thrM, thrK)), (val_idx, (rest_m/thrM, rest_k/thrK)))
thr_array = zipped_divide(tv_array, thr_tile)
return thr_array
end
function thrfrg_B(m::TiledMMA, B::Layout)
thr_layout_vmnk = get_thr_layout_vmnk(m)
atom_mnk = shape_mnk(m.atom)
permutation_mnk = m.permutation_mnk
t_array = logical_divide(B, (permutation_mnk[2], permutation_mnk[3]))
b_array = zipped_divide(t_array, map(make_layout, map(make_layout, (atom_mnk[2], atom_mnk[3]))))
tv_array = composition(b_array, (layout_b(m), :))
thr_tile = (:, (make_layout(size(thr_layout_vmnk, _3)), make_layout(size(thr_layout_vmnk, _4)))) # (:, (thrN, thrK))
# ((thr_id, val_idx), ((N, K), (rest_n/N, rest_k/K)) -> ((thr_id, (thrN, thrK)), (val_idx, (rest_n/thrN, rest_k/thrK)))
thr_array = zipped_divide(tv_array, thr_tile)
return thr_array
end
function get_slice(m::TiledMMA, thr_idx::DInt)
@inline
thr_vmnk = get_congr_coord(get_thr_layout_vmnk(m), thr_idx)
return ThrMMA(m, thr_vmnk)
end
@inline Base.size(x::TiledMMA) = size(get_thr_layout_vmnk(x))
@generated function tile_size(m::TiledMMA, ::StaticInt{I}) where {I}
@assert I in 1:3
m = m()
core_size = shape_mnk(m)[I] * size(get_thr_layout_vmnk(m), I+1)
s = m.permutation_mnk[I]
perm_size = s isa Layout ? size(s) : s
if perm_size isa Colon
return :($core_size)
else
return :($(max(core_size, perm_size)))
end
end
@inline tile_shape(m::TiledMMA) = (tile_size(m, One()), tile_size(m, _2), tile_size(m, _3))
function make_tiled_mma(mma_atom::AbstractMMAAtom,
atom_layout::Layout=@Layout((1, 1, 1)),
permutations::Tile=(:, :, :))
atom_layout_mnk = append(atom_layout, @Layout(1, 0), _3)
permutation_mnk = append(permutations, :, _3)
return TiledMMA{typeof(mma_atom), typeof(atom_layout_mnk), typeof(permutation_mnk)}()
end
"""
make_tiled_mma(mma_op, atom_layout, permutations)
Create a TiledMMA object from an MMA operation, atom layout, and permutations.
See also [`print_typst`](@ref).
## Arguments
- `mma_op::OP`: The MMA operation.
- `atom_layout::Layout`: The layout of the atom.
- `permutations::Tile`: The permutations of the atom.
## Examples
```julia
julia> tiled_mma = make_tiled_mma(MMAOP_8x8x4_F32F16F16F32_NT(), @Layout((2,2), (2,1)), (@Layout((4,4,2), (1,8,4)), _32, _4))
TiledMMA
ThrLayoutVMNK: ((_4, _2), _2, _2, _1):((_1, _16), _8, _4, _0)
PermutationMNK: ((_4, _4, _2):(_1, _8, _4), _32, _4)
MMAAtom
Thread ID: (_4, _2):(_1, _16)
Layout_A_TV: ((_4, _2), _4):((_8, _4), _1)
Layout_B_TV: ((_4, _2), _4):((_8, _4), _1)
Layout_C_TV: ((_2, _2, _2), (_2, _2, _2)):((_1, _16, _4), (_8, _2, _32))
```
"""
function make_tiled_mma(mma_op::OP,
atom_layout::Layout=@Layout((1, 1, 1)),
permutations::Tile=(:, :, :)) where {OP<: AbstractMMAOP}
return make_tiled_mma(MMAAtom{OP}(), atom_layout, permutations)
end
function get_layoutC_MN(tiled_mma::TiledMMA)
ref_C = make_layout((tile_size(tiled_mma, One()), tile_size(tiled_mma, _2)))
layoutC_TV = thrfrg_C(tiled_mma, ref_C)
layoutC_MN = withshape(right_inverse(layoutC_TV), shape(ref_C))
thrid_C = get_thr_layout_vmnk(tiled_mma)(:, :, :, Zero())
return layoutC_MN, thrid_C
end
function get_layoutA_MK(tiled_mma::TiledMMA)
ref_A = make_layout((tile_size(tiled_mma, One()), tile_size(tiled_mma, _3)))
layoutA_TV = thrfrg_A(tiled_mma, ref_A)
layoutA_MK = withshape(right_inverse(layoutA_TV), shape(ref_A))
thrid_A = get_thr_layout_vmnk(tiled_mma)(:, :, Zero(), :)
return layoutA_MK, thrid_A
end
function get_layoutB_NK(tiled_mma::TiledMMA)
ref_B = make_layout((tile_size(tiled_mma, _2), tile_size(tiled_mma, _3)))
layoutB_TV = thrfrg_B(tiled_mma, ref_B)
layoutB_NK = withshape(right_inverse(layoutB_TV), shape(ref_B))
thrid_B = get_thr_layout_vmnk(tiled_mma)(:, Zero(), :, :)
return layoutB_NK, thrid_B
end
@inline tile_size(m::ThrMMA, i::IntType) = tile_size(m.tiled_mma, i)
function get_layoutC_TV(tiled_mma::TiledMMA)
ref_C = make_layout((tile_size(tiled_mma, One()), tile_size(tiled_mma, _2)))
layoutC_TV = thrfrg_C(tiled_mma, ref_C)
thridx_to_thrid = right_inverse(get_thr_layout_vmnk(tiled_mma))
return composition(layoutC_TV, (thridx_to_thrid, :))
end
function get_layoutA_TV(tiled_mma::TiledMMA)
ref_A = make_layout((tile_size(tiled_mma, One()), tile_size(tiled_mma, _3)))
layoutA_TV = thrfrg_A(tiled_mma, ref_A)
thr_layout_vmnk = get_thr_layout_vmnk(tiled_mma)
# insert N dimension to reflect the projection in A
atile = (:, (make_layout((size(thr_layout_vmnk, _2), size(thr_layout_vmnk, _3)), (One(), Zero())), :))
thridx_to_thrid = right_inverse(thr_layout_vmnk)
return composition(composition(layoutA_TV, (atile, :)), (thridx_to_thrid, :))
end
function get_layoutB_TV(tiled_mma::TiledMMA)
ref_B = make_layout((tile_size(tiled_mma, _2), tile_size(tiled_mma, _3)))
layoutB_TV = thrfrg_B(tiled_mma, ref_B)
thr_layout_vmnk = get_thr_layout_vmnk(tiled_mma)
# insert M dimension to reflect the projection in B
btile = (:, (make_layout((size(thr_layout_vmnk, _2), size(thr_layout_vmnk, _3)), (Zero(), One())), :))
thridx_to_thrid = right_inverse(thr_layout_vmnk)
return composition(composition(layoutB_TV, (btile, :)), (thridx_to_thrid, :))
end
function partition_C(m::ThrMMA, C::MoYeArray)
thr_array = MoYeArray(pointer(C), thrfrg_C(m.tiled_mma, layout(C)))
thr_vmn = (m.thr_vmnk[1], (m.thr_vmnk[2], m.thr_vmnk[3])) # (V, (M, N))
return view(thr_array, thr_vmn, (:, repeat(:, rank(layout(thr_array)[2][2]))))
end
function partition_A(m::ThrMMA, A::MoYeArray)
thr_array = MoYeArray(pointer(A), thrfrg_A(m.tiled_mma, layout(A)))
thr_vmk = (m.thr_vmnk[1], (m.thr_vmnk[2], m.thr_vmnk[4])) # (V, (M, K))
return view(thr_array, thr_vmk, (:, repeat(:, rank(layout(thr_array)[2][2]))))
end
function partition_B(m::ThrMMA, B::MoYeArray)
thr_array = MoYeArray(pointer(B), thrfrg_B(m.tiled_mma, layout(B)))
thr_vnk = (m.thr_vmnk[1], (m.thr_vmnk[3], m.thr_vmnk[4])) # (V, (N, K))
return view(thr_array, thr_vnk, (:, repeat(:, rank(layout(thr_array)[2][2]))))
end
function partition_fragment_C(m::ThrMMA, C::MoYeArray)
@inline
return make_fragment_C(m.tiled_mma.atom, partition_C(m, C))
end
function partition_fragment_A(m::ThrMMA, A::MoYeArray)
@inline
return make_fragment_A(m.tiled_mma.atom, partition_A(m, A))
end
function partition_fragment_B(m::ThrMMA, B::MoYeArray)
@inline
return make_fragment_B(m.tiled_mma.atom, partition_B(m, B))
end
function partition_shape_C(m::TiledMMA, shape_MN::StaticIntTuple{R}) where {R}
@assert R >= 2
atom_mnk = shape_mnk(m)
V = shape(layout_c(m))[2]
M = shape_div(shape_MN[1], atom_mnk[1]* m.thr_vmnk[2])
N = shape_div(shape_MN[2], atom_mnk[2]* m.thr_vmnk[3])
return (V, M, N, shape_MN[3:R]...)
end
function partition_fragment_C(m::TiledMMA, shape_MN::StaticIntTuple)
@inline
return MoYeArray{frgtype_c(m)}(undef, partition_shape_C(m, shape_MN))
end | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 450 | ## Shared Memory, static allocation but the layout can be dynamic
@inline SharedMemory(T, ::StaticInt{L}) where {L} = CUDA.emit_shmem(T, Val(L))
function MoYeSharedArray(::Type{T}, l::StaticLayout) where {T}
@inline
smem = MoYe.SharedMemory(T, cosize(l))
return MoYeArray(smem, l)
end
function MoYeSharedArray(::Type{T}, s::StaticIntTuple) where {T}
@inline
l = make_layout(s)
return MoYeSharedArray(T, l)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1460 | abstract type AbstractCopyTraits{OP} <: AbstractTraits{OP} end
struct CopyTraits{C <: AbstractCopyOp, LT, LS, LD, LR} <: AbstractCopyTraits{C}
copy_op::C
threadid::LT
srclayout::LS
dstlayout::LD
reflayout::LR
end
function CopyTraits{OP}(threadid, srclayout, dstlayout, reflayout=srclayout) where {OP<:AbstractCopyOp}
copy_op = OP()
return CopyTraits{typeof(copy_op), typeof(threadid), typeof(srclayout), typeof(dstlayout), typeof(reflayout)}(copy_op, threadid, srclayout, dstlayout, reflayout)
end
function CopyTraits{UniversalCopy{S,D}}() where {S,D}
threadid = make_layout(One()) # 1 thread per operation
srclayout = make_layout((One(), static(sizeof(S) * 8))) # thr -> bit
dstlayout = make_layout((One(), static(sizeof(D) * 8)))
return CopyTraits{UniversalCopy{S,D}}(threadid, srclayout, dstlayout)
end
function copyto_unpack!(::AbstractCopyTraits{OP}, dst::MoYeArray, src::MoYeArray) where {OP}
cpop = OP()
registers_src = cpop.SRegisters
registers_dst = cpop.DRegisters
regtype_src = eltype(registers_src)
regtype_dst = eltype(registers_dst)
regnum_src = length(registers_src)
regnum_dst = length(registers_dst)
rs = recast(regtype_src, src)
rd = recast(regtype_dst, dst)
@assert size(rs.layout) == StaticInt{regnum_src}()
@assert size(rd.layout) == StaticInt{regnum_dst}()
copyto!(cpop, rd, rs)
return dst
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1043 |
function CopyTraits{CPOP_ASYNC_CACHEALWAYS{S,D}}() where {S,D}
threadid = make_layout(One()) # 1 thread per operation
srclayout = make_layout((One(), static(sizeof(S)*8)))
dstlayout = make_layout((One(), static(sizeof(D)*8)))
return CopyTraits{CPOP_ASYNC_CACHEALWAYS{S,D}}(threadid, srclayout, dstlayout)
end
function CopyTraits{CPOP_ASYNC_CACHEGLOBAL{S,D}}() where {S,D}
threadid = make_layout(One()) # 1 thread per operation
srclayout = make_layout((One(), static(sizeof(S)*8)))
dstlayout = make_layout((One(), static(sizeof(D)*8)))
return CopyTraits{CPOP_ASYNC_CACHEALWAYS{S,D}}(threadid, srclayout, dstlayout)
end
function select_elementwise_copy(src::MoYeArray{TS}, dest::MoYeArray{TD}) where {TS, TD}
@static if CP_SYNC_ENABLED
if isgmem(src) && issmem(dest) && sizeof(TS) == sizeof(TD)
return CPOP_ASYNC_CACHEALWAYS{TS,TD}()
else
return UniversalCopy{TS,TD}()
end
else
return UniversalCopy{TS,TD}()
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1611 | function CopyTraits{LDSM_U32x1_N}()
threadid = @Layout 32 # 32 threads per operation
srclayout = @Layout ((8, 4), 128) ((128, 0), 1) # thr -> bit
dstlayout = @Layout (32, 32) (32, 1)
return CopyTraits{LDSM_U32x1_N}(threadid, srclayout, dstlayout, dstlayout)
end
function CopyTraits{LDSM_U32x2_N}()
threadid = @Layout 32
srclayout = @Layout ((16, 2), 128) ((128, 0), 1)
dstlayout = @Layout (32, (32, 2)) (32, (1, 1024))
return CopyTraits{LDSM_U32x2_N}(threadid, srclayout, dstlayout, dstlayout)
end
function CopyTraits{LDSM_U32x4_N}()
threadid = @Layout 32
srclayout = @Layout (32, 128) (128, 1)
dstlayout = @Layout (32, (32, 4)) (32, (1, 1024))
return CopyTraits{LDSM_U32x4_N}(threadid, srclayout, dstlayout, dstlayout)
end
function CopyTraits{LDSM_U16x2_T}()
threadid = @Layout 32
srclayout = @Layout ((8, 4), 128) ((128, 0), 1)
dstlayout = @Layout ((4, 8), (16, 2)) ((256, 16), (1, 128))
return CopyTraits{LDSM_U16x2_T}(threadid, srclayout, dstlayout, dstlayout)
end
function CopyTraits{LDSM_U16x4_T}()
threadid = @Layout 32
srclayout = @Layout ((16, 2), 128) ((128, 0), 1)
dstlayout = @Layout ((4, 8), (16, 2, 2)) ((256, 16), (1, 128, 1024))
return CopyTraits{LDSM_U16x4_T}(threadid, srclayout, dstlayout, dstlayout)
end
function CopyTraits{LDSM_U16x8_T}()
threadid = @Layout 32
srclayout = @Layout (32, 128) (128, 1)
dstlayout = @Layout ((4, 8), (16, 2, 4)) ((256, 16), (1, 128, 1024))
return CopyTraits{LDSM_U16x8_T}(threadid, srclayout, dstlayout, dstlayout)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3187 | abstract type AbstractTraits{OP} end
abstract type AbstractMMATraits{OP <: AbstractMMAOP} <: AbstractTraits{OP} end
# Traits of AbstractMMATraits
# logical types, delegate to mma ops
@inline valtype_a(::AbstractMMATraits{OP}) where {OP} = valtype_a(OP())
@inline valtype_b(::AbstractMMATraits{OP}) where {OP} = valtype_b(OP())
@inline valtype_c(::AbstractMMATraits{OP}) where {OP} = valtype_c(OP())
@inline valtype_d(::AbstractMMATraits{OP}) where {OP} = valtype_d(OP())
# register types
@inline regtype_a(::AbstractMMATraits{OP}) where {OP} = regtype_a(OP())
@inline regtype_b(::AbstractMMATraits{OP}) where {OP} = regtype_b(OP())
@inline regtype_c(::AbstractMMATraits{OP}) where {OP} = regtype_c(OP())
@inline regtype_d(::AbstractMMATraits{OP}) where {OP} = regtype_d(OP())
# register numbers
@inline regnum_a(::AbstractMMATraits{OP}) where {OP} = regnum_a(OP())
@inline regnum_b(::AbstractMMATraits{OP}) where {OP} = regnum_b(OP())
@inline regnum_c(::AbstractMMATraits{OP}) where {OP} = regnum_c(OP())
@inline regnum_d(::AbstractMMATraits{OP}) where {OP} = regnum_d(OP())
@inline shape_mnk(::AbstractMMATraits{OP}) where {OP} = shape_mnk(OP())
# the following functions need to be implemented for each mma trait
thr_id(::AbstractMMATraits) = error("thr_id not implemented")
# Thr-Val layouts for A, B, C
layout_a(::AbstractMMATraits) = error("layout_a not implemented")
layout_b(::AbstractMMATraits) = error("layout_b not implemented")
layout_c(::AbstractMMATraits) = error("layout_c not implemented")
struct MMATraits{OP <: AbstractMMAOP, D, A, B, C} <: AbstractMMATraits{OP} end
function MMATraits{OP}() where {OP<: AbstractMMAOP}
return MMATraits{OP, valtype_d(OP()), valtype_a(OP()), valtype_b(OP()), valtype_c(OP())}()
end
@inline shape_mnk(::MMATraits{<:UniversalFMA}) = static((1, 1, 1))
@inline thr_id(::MMATraits{<:UniversalFMA}) = @Layout 1
@inline layout_a(::MMATraits{<:UniversalFMA}) = @Layout (1, 1)
@inline layout_b(::MMATraits{<:UniversalFMA}) = @Layout (1, 1)
@inline layout_c(::MMATraits{<:UniversalFMA}) = @Layout (1, 1)
# utilities
@inline get_regtypes(traits::AbstractMMATraits) = (regtype_d(traits), regtype_a(traits), regtype_b(traits), regtype_c(traits))
@inline get_regnums(traits::AbstractMMATraits) = (regnum_d(traits), regnum_a(traits), regnum_b(traits), regnum_c(traits))
function mma_unpack!(traits::MMATraits{OP, TD, TA, TB, TC},
D::LocalArray{TD},
A::LocalArray{TA},
B::LocalArray{TB},
C::LocalArray{TC}) where {OP, TD, TA, TB, TC}
reg_type_D, reg_type_A, reg_type_B, reg_type_C = get_regtypes(traits)
reg_num_D, reg_num_A, reg_num_B, reg_num_C = get_regnums(traits)
rD = recast(reg_type_D, D)
rA = recast(reg_type_A, A)
rB = recast(reg_type_B, B)
rC = recast(reg_type_C, C)
@assert size(layout(rD)) == reg_num_D
@assert size(layout(rA)) == reg_num_A
@assert size(layout(rB)) == reg_num_B
@assert size(layout(rC)) == reg_num_C
return fma!(OP(), rD, rA, rB, rC)
end
include("mma_sm70.jl")
include("mma_sm75.jl")
include("mma_sm80.jl") | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1035 | function make_mmatraits_sm70(mmaops)
for mmaop in mmaops
@eval @inline thr_id(::MMATraits{$mmaop}) = @Layout (4, 2) (1, 16)
mmaop_ins = @eval $mmaop()
ALayout = alignment_a(mmaop_ins) == :row ? @Layout((8, 4), (1, 8)) : @Layout(((4, 2), 4), ((8, 4), 1))
BLayout = alignment_b(mmaop_ins) == :col ? @Layout((8, 4), (1, 8)) : @Layout(((4, 2), 4), ((8, 4), 1))
CLayout = valtype_c(mmaop_ins) == Float16 ? @Layout((8, 8), (1, 8)) : @Layout(((2,2,2), (2,2,2)), ((1,16,4), (8,2,32)))
@eval layout_a(::MMATraits{$mmaop}) = $ALayout
@eval layout_b(::MMATraits{$mmaop}) = $BLayout
@eval layout_c(::MMATraits{$mmaop}) = $CLayout
end
end
make_mmatraits_sm70((
:MMAOP_8x8x4_F32F16F16F32_TN,
:MMAOP_8x8x4_F32F16F16F32_NT,
:MMAOP_8x8x4_F32F16F16F32_TT,
:MMAOP_8x8x4_F32F16F16F32_NN,
:MMAOP_8x8x4_F16F16F16F16_TN,
:MMAOP_8x8x4_F16F16F16F16_NT,
:MMAOP_8x8x4_F16F16F16F16_TT,
:MMAOP_8x8x4_F16F16F16F16_NN,
))
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 728 | @inline thr_id(::MMATraits{MMAOP_16x8x8_F32F16F16F32_TN}) = @Layout(32)
@inline layout_a(::MMATraits{MMAOP_16x8x8_F32F16F16F32_TN}) = @Layout ((4, 8), (2,2)) ((32, 1), (16, 8))
@inline layout_b(::MMATraits{MMAOP_16x8x8_F32F16F16F32_TN}) = @Layout ((4, 8), 2) ((16, 1), 8)
@inline layout_c(::MMATraits{MMAOP_16x8x8_F32F16F16F32_TN}) = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
@inline thr_id(::MMATraits{MMAOP_8x8x16_S32S8S8S32_TN}) = @Layout(32)
@inline layout_a(::MMATraits{MMAOP_8x8x16_S32S8S8S32_TN}) = @Layout ((4, 8), 4) ((32, 1), 8)
@inline layout_b(::MMATraits{MMAOP_8x8x16_S32S8S8S32_TN}) = @Layout ((4, 8), 2) ((32, 1), 8)
@inline layout_c(::MMATraits{MMAOP_8x8x16_S32S8S8S32_TN}) = @Layout ((4, 8), 2) ((16, 1), 8)
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 4372 | function _get_layouts(::Tuple{StaticInt{16}, StaticInt{8}, StaticInt{8}}, AElType, CElType)
A = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
B = @Layout ((4, 8), 2) ((16, 1), 8)
C = A
return A, B, C
end
function _get_layouts(::Tuple{StaticInt{16}, StaticInt{8}, StaticInt{16}},
AElType::Type{<:AbstractFloat},
CElType::Type{<:AbstractFloat})
A = @Layout ((4, 8), (2, 2, 2)) ((32, 1), (16, 8, 128))
B = @Layout ((4, 8), (2, 2)) ((16, 1), (8, 64))
C = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
return A, B, C
end
function _get_layouts(::Tuple{StaticInt{16}, StaticInt{8}, StaticInt{16}}, AElType, CElType)
A = @Layout ((4, 8), (4, 2, 2)) ((64,1), (16, 8, 256))
B = @Layout ((4, 8), (4, 2)) ((32, 1), (8, 128))
C = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
return A, B, C
end
function _get_layouts(::Tuple{StaticInt{8}, StaticInt{8}, StaticInt{4}}, AElType, CElType)
A = @Layout ((4, 8), 1) ((8, 1), 0)
B = A
C = @Layout ((4, 8), 2) ((16, 1), 8)
return A, B, C
end
function _get_layouts(::Tuple{StaticInt{8}, StaticInt{8}, StaticInt{16}}, AElType, CElType)
A = @Layout ((4, 8), 4) ((32, 1), 8)
B = A
C = @Layout ((4, 8), 2) ((16, 1), 8)
return A, B, C
end
function _get_layouts(::Tuple{StaticInt{16}, StaticInt{8}, StaticInt{32}}, AElType, CElType)
A = @Layout ((4, 8), (4, 2, 2)) ((64, 1), (16, 8, 256))
B = @Layout ((4, 8), (4, 2)) ((32, 1), (8, 128))
C = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
return A, B, C
end
function make_sm80_mmatraits(mmaops)
for mmaop in mmaops
@eval @inline thr_id(::MMATraits{$mmaop}) = @Layout(32)
mmop_ins = @eval $mmaop()
A, B, C = _get_layouts(shape_mnk(mmop_ins), valtype_a(mmop_ins), valtype_c(mmop_ins))
@eval layout_a(::MMATraits{$mmaop}) = $A
@eval layout_b(::MMATraits{$mmaop}) = $B
@eval layout_c(::MMATraits{$mmaop}) = $C
end
end
# 16x8x16
make_sm80_mmatraits((
# 16x8x8
:MMAOP_16x8x8_F16F16F16F16_TN,
:MMAOP_16x8x8_F32BF16BF16F32_TN,
# 16x8x16
:MMAOP_16x8x16_F16F16F16F16_TN,
:MMAOP_16x8x16_F32F16F16F32_TN,
:MMAOP_16x8x16_F32BF16BF16F32_TN,
:MMAOP_16x8x16_S32S8S8S32_TN,
:MMAOP_16x8x16_S32S8S8S32_TN_SATURATE,
:MMAOP_16x8x16_S32S8U8S32_TN,
:MMAOP_16x8x16_S32S8U8S32_TN_SATURATE,
:MMAOP_16x8x16_S32U8S8S32_TN,
:MMAOP_16x8x16_S32U8S8S32_TN_SATURATE,
:MMAOP_16x8x16_S32U8U8S32_TN,
:MMAOP_16x8x16_S32U8U8S32_TN_SATURATE,
# 8x8x4 TODO: add complex types
:MMAOP_8x8x4_F64F64F64F64_TN,
# 8x8x16
#:MMAOP_8x8x16_S32S8S8S32_TN,
:MMAOP_8x8x16_S32S8S8S32_TN_SATURATE,
:MMAOP_8x8x16_S32S8U8S32_TN,
:MMAOP_8x8x16_S32S8U8S32_TN_SATURATE,
:MMAOP_8x8x16_S32U8S8S32_TN,
:MMAOP_8x8x16_S32U8S8S32_TN_SATURATE,
:MMAOP_8x8x16_S32U8U8S32_TN,
:MMAOP_8x8x16_S32U8U8S32_TN_SATURATE,
# 16x8x32
:MMAOP_16x8x32_S32S8S8S32_TN,
:MMAOP_16x8x32_S32S8S8S32_TN_SATURATE,
:MMAOP_16x8x32_S32S8U8S32_TN,
:MMAOP_16x8x32_S32S8U8S32_TN_SATURATE,
:MMAOP_16x8x32_S32U8S8S32_TN,
:MMAOP_16x8x32_S32U8S8S32_TN_SATURATE,
:MMAOP_16x8x32_S32U8U8S32_TN,
:MMAOP_16x8x32_S32U8U8S32_TN_SATURATE,
))
# special cases
@inline thr_id(::MMATraits{MMAOP_16x8x8_F32TF32TF32F32_TN}) = @Layout(32)
@inline layout_a(::MMATraits{MMAOP_16x8x8_F32TF32TF32F32_TN}) = @Layout ((4, 8), (2, 2)) ((16, 1), (8, 64))
@inline layout_b(::MMATraits{MMAOP_16x8x8_F32TF32TF32F32_TN}) = @Layout ((4, 8), 2) ((8, 1), 32)
@inline layout_c(::MMATraits{MMAOP_16x8x8_F32TF32TF32F32_TN}) = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
@inline thr_id(::MMATraits{MMAOP_16x8x4_F32TF32TF32F32_TN}) = @Layout(32)
@inline layout_a(::MMATraits{MMAOP_16x8x4_F32TF32TF32F32_TN}) = @Layout ((4, 8), 1) ((8, 1),08)
@inline layout_b(::MMATraits{MMAOP_16x8x4_F32TF32TF32F32_TN}) = @Layout ((4, 8), (2, 2)) ((32, 1), (16, 8))
@inline thr_id(::MMATraits{MMAOP_16x8x256_S32B1B1S32_TN_XORPOPC}) = @Layout(32)
@inline layout_a(::MMATraits{MMAOP_16x8x256_S32B1B1S32_TN_XORPOPC}) = @Layout (32, (8, 4, 2, 2)) (64, (64, 16 ,8, 2048))
@inline layout_b(::MMATraits{MMAOP_16x8x256_S32B1B1S32_TN_XORPOPC}) = @Layout (32, (32, 2)) (64, (1, 1024)) | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 4049 | using MoYe, Test
function test_alloc()
slayout = @Layout (2, 3)
x = MoYeArray{Float32}(undef, slayout)
fill!(x, 1.0f0)
return sum(x)
end
@test @allocated(test_alloc()) == 0
@testset "Constructors" begin
@test_nowarn MoYeArray{Float32}(undef, static((2, 3)))
@test_throws MethodError MoYeArray{Float32}(undef, (2, 3))
@test_nowarn MoYeArray{Float32}(undef, static((2, 3)), GenRowMajor)
@test_nowarn MoYeArray{Float32}(undef, static((2, 3)), GenColMajor)
A = rand(3)
ca = MoYeArray(pointer(A), static((3, 1)))
ca2 = MoYeArray(pointer(A), static((3, 1)), GenRowMajor)
@test ca.engine isa ViewEngine
@test ca2.engine isa ViewEngine
end
@testset "Static indexing" begin
A = MoYeArray{Float64}(undef, @Layout((3,4)))
@test A[_1] == A[1]
A[_1] = 1.0
@test A[_1] == 1.0
data = rand(3,4)
B = MoYeArray(pointer(data), @Layout((3,4)))
@test B[_1] == B[1]
B[_1] = 1.0
@test B[_1] == 1.0
end
@testset "Array Operations" begin
@testset "View" begin
ca = MoYeArray{Float32}(undef, static((2, 3)))
va = view(ca, :, 1)
@test va isa MoYeArray
@test va.engine isa ViewEngine
@test va.layout.shape == tuple(_2)
va2 = view(ca, :, :)
@test va2 isa MoYeArray
@test va2.engine isa ViewEngine
@test va2.layout.shape == tuple(_2, _3)
end
@testset "Copy" begin
ca = MoYeArray{Float32}(undef, static((2, 3)))
zeros!(ca)
ca2 = copy(ca)
@test ca2 isa MoYeArray
@test ca2.engine isa ArrayEngine
@test ca2 == ca
A = ones(6)
ca3 = MoYeArray(pointer(A), _6)
ca4 = copy(ca3)
@test ca4 isa MoYeArray
@test ca4.engine isa ArrayEngine
@test ca4 == ca3
end
@testset "similar" begin
ca = MoYeArray{Float32}(undef, static((2, 3)))
ca2 = similar(ca)
@test ca2 isa MoYeArray
@test ca2.engine isa ArrayEngine
@test ca2.layout == ca.layout
A = ones(6)
ca3 = MoYeArray(pointer(A), _6)
ca4 = similar(ca3)
@test ca4 isa MoYeArray
@test ca4.engine isa ArrayEngine
@test ca4.layout == ca3.layout
end
@testset "recast" begin
data = collect(1:12)
a = MoYeArray(pointer(data), @Layout((4,3)))
@testset "downcast" begin
b = recast(Int32, a)
@test b.layout == @Layout((8,3))
@test b.engine isa ViewEngine
@testset "dynamic layout" begin
a′ = MoYeArray(pointer(data), make_layout((4,3)))
b′ = recast(Int32, a′)
@test b′.layout == make_layout((8,3))
@test b′.engine isa ViewEngine
end
end
@testset "upcast" begin
c = recast(UInt128, a)
@test c.layout == @Layout((2,3))
@test c.engine isa ViewEngine
end
end
end
@testset "BLAS" begin
@testset "fill! and sum" begin
ca = MoYeArray{Float32}(undef, static((2, 3)))
fill!(ca, 1.0f0)
@test all(ca .== 1.0f0)
@test sum(ca) == 6.0f0
end
end
@testset "Unsqueeze" begin
a = MoYeArray{Float32}(undef, static((2, 3)))
b = MoYe.append_dim(a, _3);
@test b.layout == @Layout (2, 3, 1) (1,2,0)
c = MoYe.prepend_dim(a, _3);
@test c.layout == @Layout (1, 2, 3) (0,1,2)
end
@testset "Recast" begin
x = MoYeArray{Float32}(undef, static((4, 3)))
zeros!(x)
@testset "Upcast" begin
x2 = recast(Float64, x)
@test x2 isa MoYeArray{Float64}
@test x2.layout == @Layout (2, 3)
@test x == recast(Float32, x2)
end
@testset "Downcast" begin
x2 = recast(Float16, x)
zeros!(x2)
@test x2 isa MoYeArray{Float16}
@test x2.layout == @Layout (8, 3)
@test x == recast(Float32, x2)
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 393 | using MoYe, Test
x = MoYeArray{Float32}(undef, @Layout((3,2)))
x2 = x .+ x
x3 = x .+ 1
@test x2 isa MoYeArray{Float32}
@test x2.layout == @Layout((3,2))
@test x2.engine isa ArrayEngine
@test x3 isa MoYeArray{Float32}
@test x3.layout == @Layout((3,2))
@test x3.engine isa ArrayEngine
y = MoYeArray{Float32}(undef, @Layout((3,), (2,)))
z = x .+ y
@test z.layout == x.layout
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 6140 | using MoYe, Test, CUDA
using Core: LLVMPtr
@testset "Universal Copy" begin
@testset "Explicit Vectorized Copy" begin
@testset "Sequential Copy" begin
# single thread
a = [Int32(i) for i in 1:8]
pa = reinterpret(LLVMPtr{Int32, AS.Generic}, pointer(a))
x = MoYeArray(pa, make_layout((4,2)))
b = [Int32(i) for i in 9:16]
pb = reinterpret(LLVMPtr{Int32, AS.Generic}, pointer(b))
y = MoYeArray(pb, make_layout((4,2)))
GC.@preserve a b begin
MoYe._copyto_vec!(y, x, Int128)
@test y == x
end
end
@testset "Parallized Copy" begin
function parallelized_copy(a, b, thread_layout)
for i in 1:size(thread_layout) # on gpu this is parallelized instead of sequential
thread_tile_a = @parallelize a thread_layout i
thread_tile_b = @parallelize b thread_layout i
#display(thread_tile_a)
MoYe._copyto_vec!(thread_tile_b, thread_tile_a, Int32) # no vectorization here
end
end
a_data = [Int32(i) for i in 1:6*6]
b_data = [Int32(i) for i in 6*6+1:6*6*2]
GC.@preserve a_data b_data begin
thread_layout = @Layout((2,3))
layout = make_layout((6,6))
pa = pointer(a_data)
pa = reinterpret(LLVMPtr{Int32, AS.Generic}, pa)
a = MoYeArray(pa, layout)
pb = pointer(b_data)
pb = reinterpret(LLVMPtr{Int32, AS.Generic}, pb)
b = MoYeArray(pb, layout)
parallelized_copy(a, b, thread_layout)
end
@test b == a
end
end
@testset "Auto-vectorized Copy" begin
@testset "Sequential Copy" begin
a = [Int32(i) for i in 1:8]
pa = reinterpret(LLVMPtr{Int32, AS.Generic}, pointer(a))
x = MoYeArray(pa, @Layout((4,2)))
b = [Int32(i) for i in 9:16]
pb = reinterpret(LLVMPtr{Int32, AS.Generic}, pointer(b))
y = MoYeArray(pb, @Layout((4,2)))
GC.@preserve b a begin
copyto!(y, x) # should recast to UInt128
@test y == x
end
end
@testset "Parallized Copy" begin
function parallelized_copy(a, b, thread_layout)
for i in 1:size(thread_layout) # on gpu this is parallelized instead of sequential
thread_tile_a = @parallelize a thread_layout i
thread_tile_b = @parallelize b thread_layout i
#display(thread_tile_a)
copyto!(thread_tile_b, thread_tile_a)
end
end
a_data = [Int32(i) for i in 1:6*6]
b_data = [Int32(i) for i in 6*6+1:6*6*2]
GC.@preserve a_data b_data begin
thread_layout = @Layout((2,3))
layout = @Layout((6,6))
pa = pointer(a_data)
pa = reinterpret(LLVMPtr{Int32, AS.Generic}, pa)
a = MoYeArray(pa, layout)
pb = pointer(b_data)
pb = reinterpret(LLVMPtr{Int32, AS.Generic}, pb)
b = MoYeArray(pb, layout)
parallelized_copy(a, b, thread_layout)
end
@test b == a
end
end
end
function tiled_copy_kernel(g_in, g_out, tiled_copy, smem_layout)
t_g_in = MoYeArray(pointer(g_in), smem_layout)
t_g_out = MoYeArray(pointer(g_out), smem_layout)
t_smem=MoYeArray{UInt16}(undef, smem_layout)
for tid in 1:32
for i in tid:size(tiled_copy):size(t_smem.layout)
t_smem[i] = t_g_in[i]
end
end
for tid in 1:size(tiled_copy)
thr_copy = get_slice(tiled_copy, tid)
tXsX = partition_S(thr_copy, t_smem)
tXgX = partition_D(thr_copy, t_g_out)
tXrX = MoYeArray{UInt16}(undef, tXgX.layout.shape)
copyto!(tiled_copy, tXrX, tXsX)
copyto!(tXgX, tXrX)
end
end
@testset "Tiled Copy" begin
@testset "UniversalCopy" begin
@testset "32 x 32" begin
g_in = [UInt16(i) for i in 1:32*32]
g_out = zeros(UInt16, 32*32)
smem_layout = @Layout (32,32) (1,32)
tiled_copy = make_tiled_copy(MoYe.CopyAtom{MoYe.UniversalCopy{UInt16, UInt16}, UInt16}(),
@Layout((16,2)), @Layout((2,4)))
tiled_copy_kernel(g_in, g_out, tiled_copy, smem_layout)
@test g_out == g_in
end
@testset "32 x 8" begin
g_in = [UInt16(i) for i in 1:32*8]
g_out = zeros(UInt16, 32*8)
smem_layout = @Layout (32, (2, 4)) (2, (1, 64))
tiled_copy = make_tiled_copy(MoYe.CopyAtom{MoYe.UniversalCopy{UInt16, UInt16}, UInt16}(),
@Layout((32,1)), @Layout((1,8)))
tiled_copy_kernel(g_in, g_out, tiled_copy, smem_layout)
@test g_out == g_in
end
end
@testset "LDMATRIX" begin
@testset "32 x 32" begin
g_in = [UInt16(i) for i in 1:32*32]
g_out = zeros(UInt16, 32*32)
smem_layout = @Layout (32,32) (1,32)
for ldmatrix in [:LDSM_U32x1_N, :LDSM_U32x2_N, :LDSM_U32x4_N]
@testset "$ldmatrix" begin
@eval tiled_copy = make_tiled_copy(MoYe.CopyAtom{$ldmatrix, UInt16}(),
@Layout((16,2)), @Layout((2,4)))
end
end
tiled_copy = make_tiled_copy(MoYe.CopyAtom{MoYe.UniversalCopy{UInt16, UInt16}, UInt16}(),
@Layout((16,2)), @Layout((2,4)))
tiled_copy_kernel(g_in, g_out, tiled_copy, smem_layout)
@test g_out == g_in
end
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 159 | using MoYe, Test
function test_alloc()
x = ArrayEngine{Float32}(one, static(10))
@gc_preserve sum(x)
end
@test @allocated(test_alloc()) == 0
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3946 | using MoYe, Test, JET
@testset "Product" begin
@inferred MoYe.product_like(((_2, _2), _2), ((_32, _512), _2048))
end
@testset "Capacity" begin
@test capacity(((2, 3, (1, 1)), 4)) == 24
@test_opt capacity(((2, 3, (1, 1)), 4))
end
@testset "Repeat like" begin
@test MoYe.repeat_like((2,3,4), 1) == (1,1,1)
@test MoYe.repeat_like(typeof((2,3,4)), 1) == (1,1,1)
@test_opt MoYe.repeat_like((2,3,4), 1)
@test_opt MoYe.repeat_like(typeof((2,3,4)), 1)
@test MoYe.repeat_like(((2,3), (4,5)), 1) == ((1,1), (1,1))
@test MoYe.repeat_like(typeof(((2,3), (4,5))), 1) == ((1,1), (1,1))
@test_opt MoYe.repeat_like(((2,3), (4,5)), 1)
@test_opt MoYe.repeat_like(typeof(((2,3), (4,5))), 1)
end
@testset "Shape Division" begin
@test MoYe.shape_div((12, 3), (2, 3)) == (6, 1)
@test_opt MoYe.shape_div((12, 3), (2, 3))
@test MoYe.shape_div((12, 3), 3) == (4, 3)
@test_opt MoYe.shape_div((12, 3), 3)
@test MoYe.shape_div(12, (3, 4)) == 1
@test_opt MoYe.shape_div(12, (3, 4))
end
@testset "Slice" begin
@test MoYe.slice((3, 4), (2, :)) == (4,)
@test_opt MoYe.slice((3, 4), (2, :))
@test MoYe.slice((3, (4, 5)), (:, (2, :))) == (3, 5)
@test_opt MoYe.slice((3, (4, 5)), (:, (2, :)))
@test MoYe.slice(((2, 4), (4, 2)), (:, (:, :))) == ((2, 4), 4, 2)
@test_opt MoYe.slice(((2, 4), (4, 2)), (:, (:, :)))
end
@testset "Elementwise Comparison" begin
@test elem_less((1, 2, 3), (1, 2, 4)) == true
@test elem_less((1, 2, 3), (1, 2, 3)) == false
@test elem_less((1, 2, 3), (1, 2, 3, 1)) == true
@test elem_less((1, 2, 3, 1), (1, 2, 3)) == false
@test elem_less(((1, 2, 3),), ((1, 2, 3),)) == false
@test elem_less(((1, 2, 3),), ((1, 2, 4),)) == true
@test elem_less(((1, 2, 3),), ((1, 2, 3), 1)) == true
@test elem_less(((1, 2, 3), 1), ((1, 2, 3), 2)) == true
@test elem_less(((1, 2, 3), 2), ((1, 2, 4), 1)) == false
@test elem_less(((1, 2), (3, 4)), ((5, 6), (7, 8))) == true
@test elem_less(((1, 2), (3, 4)), ((1, 2), (7, 8))) == true
@test elem_less(((1, 2), (3, 4)), ((1, 2), (1, 8))) == false
@test elem_less(((1, 2), (3, 4)), ((3, 4), (3, 4))) == false
@test elem_less(((1, 2), (3, 4)), ((3, 4), (3, 4, 1))) == true
@test elem_less(((1, 2), (3, 4)), ((3, 4), (3, 4), 1)) == true
@test_opt elem_less(((1, 2), (3, 4)), ((3, 4), (3, 4), 1))
end
@testset "Colexicographical Comparison" begin
@test colex_less((1, 2, 3), (1, 2, 4)) == true
@test colex_less((1, 2, 3), (1, 2, 3)) == false
@test colex_less((1, 2, 3), (1, 1, 2, 3)) == true
@test colex_less((1, 1, 2, 3), (1, 2, 3)) == false
@test colex_less(((1, 2, 3),), ((1, 2, 3),)) == false
@test colex_less(((0, 2, 3),), ((1, 2, 3),)) == true
@test colex_less(((1, 2, 3),), (1, (1, 2, 3))) == true
@test colex_less((1, (1, 2, 3)), (2, (1, 2, 3))) == true
@test colex_less((2, (1, 2, 3)), (1, (2, 2, 3))) == true
@test colex_less(((1, 2), (3, 4)), ((5, 6), (7, 8))) == true
@test colex_less(((1, 2), (3, 4)), ((2, 3), (3, 4))) == true
@test colex_less(((1, 2), (3, 4)), ((1, 3), (3, 4))) == true
@test colex_less(((5, 4), (3, 4)), ((3, 4), (3, 4))) == false
@test colex_less(((1, 2), (3, 4)), ((1, 1, 2), (3, 4))) == true
@test_opt colex_less(((1, 2), (3, 4)), ((1, 1, 2), (3, 4)))
end
@testset "Increment" begin
@test increment((1, 1), (3, 4)) == (2, 1)
@test increment((3, 1), (3, 4)) == (1, 2)
@test increment((3, 4), (3, 4)) == (1, 1)
@test increment((2, (2, 1), 1), (2, (2, 3), 3)) == (1, (1, 2), 1)
@test increment((2, (2, 2), 1), (2, (2, 3), 3)) == (1, (1, 3), 1)
@test increment((2, (2, 3), 1), (2, (2, 3), 3)) == (1, (1, 1), 2)
@test increment((2, (2, 3), 3), (2, (2, 3), 3)) == (1, (1, 1), 1)
@test_opt increment((2, (2, 3), 3), (2, (2, 3), 3))
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 19783 | using MoYe, Test, JET
using Static: One
@testset "Int32" begin
a = @Layout (2, (2, 2)) (2, (1, 4))
idx_a = a(Int32(2))
@test typeof(idx_a) == Int32
b = make_layout((Int32(2), Int32(4)))
idx_b = b(Int32(2))
@test typeof(idx_b) == Int32
end
@testset "Macro Layout" begin
@test @Layout((2, (2, 2)), (4, (1, 2))) ==
make_layout(static((2, (2, 2))), static((4, (1, 2))))
@test @Layout(2, 4) == make_layout(_2, _4)
@test @Layout((2, (2, 2))) == make_layout(static((2, (2, 2))))
@test @Layout(2) == make_layout(_2)
@test @Layout((2, (2, 2)), GenColMajor) == make_layout(static((2, (2, 2))), GenColMajor)
@test @Layout(2, GenColMajor) == make_layout(_2, GenColMajor)
@test @Layout((2, (2, 2)), GenRowMajor) == make_layout(static((2, (2, 2))), GenRowMajor)
@test @Layout(2, GenRowMajor) == make_layout(_2, GenRowMajor)
end
@testset "Flatten" begin
@test flatten(make_layout(((4, 3), 1), ((3, 1), 0))) ==
make_layout((4, 3, 1), (3, 1, 0))
@test_opt flatten(make_layout(((4, 3), 1), ((3, 1), 0)))
end
@testset "Coalesce" begin
@test coalesce(@Layout((2, (1, 6)), (1, (6, 2)))) == @Layout(12, 1)
@test_opt coalesce(@Layout((2, (1, 6)), (1, (6, 2))))
@test_opt MoYe.bw_coalesce(MoYe.One(), (1,), (48,), 2, 1)
function test_coalesce(layout)
@test_opt coalesce(layout)
coalesce_layout = coalesce(layout)
@test depth(coalesce_layout) <= One()
@test size(coalesce_layout) == size(layout)
for i in One():size(layout)
@test coalesce_layout(i) == layout(i)
end
end
let layout = make_layout(_1, Int(0))
test_coalesce(layout)
end
let layout = make_layout(_1, _1)
test_coalesce(layout)
end
let layout = make_layout(tuple(_2, _4))
test_coalesce(layout)
end
let layout = make_layout(tuple(_2, _4, _6))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(1), static(6)), tuple(static(1), static(6), static(2)))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(1), static(6)), tuple(static(1), 7, static(2)))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(1), static(6)), tuple(static(4), 7, static(8)))
test_coalesce(layout)
end
let layout = make_layout(tuple(2, static(4), static(6)))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), 4, static(6)))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(4), 6))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(4)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(4), static(6)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(2, static(4), static(6)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), 4, static(6)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(4), 6), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), static(1), static(3)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), 1, static(3)), GenRowMajor)
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), 1, static(3)), tuple(static(2), 4, static(4)))
test_coalesce(layout)
end
let layout = make_layout(tuple(static(2), 1, static(3)), tuple(static(2), Int(0), static(4)))
test_coalesce(layout)
end
let layout = Layout(tuple(tuple(static(2), static(2)), tuple(static(2), static(2))),
tuple(tuple(static(1), static(4)), tuple(static(8), static(32))))
test_coalesce(layout)
end
end
@testset "Composition" begin
@test make_layout(20, 2) ∘ make_layout((4, 5), (1, 4)) == make_layout((4, 5), (2, 8))
@test make_layout(20, 2) ∘ make_layout((4, 5), (5, 1)) == make_layout((4, 5), (10, 2))
@test_opt make_layout(20, 2) ∘ make_layout((4, 5), (1, 4))
@test_opt make_layout(20, 2) ∘ make_layout((4, 5), (5, 1))
function test_composition(A,B)
@test_opt A ∘ B
C = A ∘ B
@test MoYe.iscompatible(B,C)
for i in static(1):size(C)
@test C(i) == A(B(i))
end
end
let a = @Layout(1,0), b = @Layout(1,0)
test_composition(a, b)
end
let a = @Layout(1,0), b = @Layout(1,1)
test_composition(a, b)
end
let a = @Layout(1,1), b = @Layout(1,0)
test_composition(a, b)
end
let a = @Layout(1,1), b = @Layout(1,1)
test_composition(a, b)
end
let a = @Layout((4,)), b = @Layout((4,))
test_composition(a, b)
end
let a = @Layout((4,), (2,)), b = @Layout((4,))
test_composition(a, b)
end
let a = @Layout((4,), (0,)), b = @Layout((4,))
test_composition(a, b)
end
let a = @Layout((4,)), b = @Layout((4,), (0,))
test_composition(a, b)
end
let a = @Layout((4,)), b = @Layout((1,), (0,))
test_composition(a, b)
end
let a = @Layout((4,)), b = @Layout((2,))
test_composition(a, b)
end
let a = @Layout((4,), (2,)), b = @Layout((2,))
test_composition(a, b)
end
let a = @Layout((4,)), b = @Layout((2,), (2,))
test_composition(a, b)
end
let a = @Layout((4,), (2,)), b = @Layout((2,), (2,))
test_composition(a, b)
end
let a = @Layout((4,3)), b = @Layout((12,))
test_composition(a, b)
end
let a = @Layout((12,)), b = @Layout((4,3))
test_composition(a, b)
end
let a = @Layout((12,), (2,)), b = @Layout((4,3))
test_composition(a, b)
end
let a = @Layout((12,)), b = @Layout((4,3), (3,1))
test_composition(a, b)
end
let a = @Layout((12,), (2,)), b = @Layout((4,3), (3,1))
test_composition(a, b)
end
let a = @Layout((12,)), b = @Layout((2,3), (2,4))
test_composition(a, b)
end
let a = @Layout((4,3)), b = @Layout((4,3))
test_composition(a, b)
end
let a = @Layout((4,3)), b = @Layout((6,), (2,))
test_composition(a, b)
end
let a = @Layout((4,3)), b = @Layout((6,2), (2,1))
test_composition(a, b)
end
let a = @Layout((4,3), (3,1)), b = @Layout((4,3))
test_composition(a, b)
end
let a = @Layout((4,3), (3,1)), b = @Layout((12,))
test_composition(a, b)
end
let a = @Layout((4,3), (3,1)), b = @Layout((6,), (2,))
test_composition(a, b)
end
let a = @Layout((4,3), (3,1)), b = @Layout((6,2), (2,1))
test_composition(a, b)
end
let a = @Layout((8,8)), b = @Layout(((2,2,2),(2,2,2)), ((1,16,4),(8,2,32)))
test_composition(a, b)
end
let a = @Layout((8,8), (8,1)), b = @Layout(((2,2,2),(2,2,2)), ((1,16,4),(8,2,32)))
test_composition(a, b)
end
let a = @Layout(((4,2),), ((1,16),)), b = @Layout((4,2), (2,1))
test_composition(a, b)
end
let a = @Layout((2,2), (2,1)), b = @Layout((2,2), (2,1))
test_composition(a, b)
end
let a = @Layout((4,8,2)), b = @Layout((2,2,2), (2,8,1))
test_composition(a, b)
end
let a = @Layout((4,8,2), (2,8,1)), b = @Layout((2,2,2), (1,8,2))
test_composition(a, b)
end
let a = @Layout((4,8,2), (2,8,1)), b = @Layout((4,2,2), (2,8,1))
test_composition(a, b)
end
@testset "Dynamic" begin
let a = make_layout(12, 1), b = make_layout(static(4), static(1))
test_composition(a, b)
end
let a = make_layout(12, 1), b = make_layout(static(4), 1)
test_composition(a, b)
end
let a = make_layout(12, static(1)), b = make_layout(static(4), 1)
test_composition(a, b)
end
let a = make_layout(12, static(1)), b = make_layout(static(4), static(1))
test_composition(a, b)
end
let a = make_layout(tuple(12, 3), tuple(1, 24)), b = make_layout(tuple(static(4)), tuple(static(1)))
test_composition(a, b)
end
let a = make_layout(16, 2), b = make_layout(4, 2)
test_composition(a, b)
end
let a = make_layout(tuple(128, 24, 5), tuple(1, 128, 3072)), b = make_layout(64, 2)
test_composition(a, b)
end
let a = make_layout(tuple(128, 24, 5), tuple(1, 128, 3072)), b = make_layout(480, static(32))
test_composition(a, b)
end
end
end
@testset "Complement" begin
@test complement(@Layout(4, 1), static(24)) == @Layout(6, 4)
@test complement(@Layout(6, 4), static(24)) == @Layout(4, 1)
@test_opt complement(@Layout(4, 1), static(24))
@test_opt complement(@Layout(6, 4), static(24))
function test_complement(l, cotarget)
@test_opt complement(l, cotarget)
result = complement(l, cotarget)
@test size(result) ≥ cotarget ÷ size(filter(l))
@test cosize(result) ≤ cld(cotarget, cosize(l)) * cosize(l)
completed = make_layout(l, result)
@test cosize(completed) ≥ cotarget
for i in 2:size(result)
@test result(i-1) < result(i)
for j in 1:size(l)
@test result(i) != l(j)
end
end
@test size(result) ≤ cosize(result)
@test cosize(result) ≥ cotarget ÷ size(filter(l))
@test cosize(completed) ≤ cosize(result) + cosize(l)
@test cosize(result) ≥ cotarget ÷ size(filter(l))
if MoYe.dynamic(MoYe.is_static(stride(make_layout(l, result))))
@test size(complement(make_layout(l, result))) == 1
end
end
test_complement(l::Layout) = test_complement(l, cosize(l))
let layout = @Layout(1,0)
test_complement(layout)
test_complement(layout, static(2))
end
let layout = @Layout(1,1)
test_complement(layout)
test_complement(layout, static(2))
end
let layout = @Layout(1,2)
test_complement(layout, One())
test_complement(layout, static(2))
test_complement(layout, static(8))
end
let layout = @Layout(4,0)
test_complement(layout, One())
test_complement(layout, static(2))
test_complement(layout, static(8))
end
let layout = @Layout(4,1)
test_complement(layout, One())
test_complement(layout, static(2))
test_complement(layout, static(8))
end
let layout = @Layout(4,2)
test_complement(layout, One())
test_complement(layout)
test_complement(layout, static(16))
end
let layout = @Layout(4,4)
test_complement(layout, One())
test_complement(layout)
test_complement(layout, static(17))
end
let layout = @Layout(2,4)
test_complement(layout)
end
let layout = @Layout(2,3)
test_complement(layout)
end
let layout = @Layout((2,4), (1,4))
test_complement(layout)
end
let layout = @Layout((2,4,8), (8,1,64))
test_complement(layout)
end
let layout = @Layout((2,4,8), (8,1,0))
test_complement(layout)
test_complement(layout, static(460))
end
let layout = @Layout(((2,2), (2,2)), ((1,4), (8,32)))
test_complement(layout)
end
end
@testset "Product" begin
tile = @Layout((2, 2), (1, 2))
matrix_of_tiles = @Layout((3, 4), (4, 1))
@testset "Logical product" begin
result = logical_product(tile, matrix_of_tiles)
@test shape(result) == ((2, 2), (3, 4))
@test stride(result) == ((1, 2), (16, 4))
@test_opt logical_product(tile, matrix_of_tiles)
@test logical_product(@Layout(1), @Layout((2,2))) == @Layout((1,(2,2)))
function test_logical_product(A,B)
@test_opt logical_product(A,B)
C = logical_product(A,B)
@test rank(C) == 2
@test MoYe.iscompatible(A, first(C))
end
let vec = @Layout(1,0), tile = @Layout(1,0)
test_logical_product(vec, tile)
end
let vec = @Layout(1,1), tile = @Layout(1,0)
test_logical_product(tile, vec)
end
let vec = @Layout(1,1), tile = @Layout(1,1)
test_logical_product(vec, tile)
end
let vec = @Layout(3,1), tile = @Layout(4,0)
test_logical_product(tile, vec)
end
let vec = @Layout(3,0), tile = @Layout(4,0)
test_logical_product(vec, tile)
end
let vec = @Layout(3,2), tile = @Layout(4,1)
test_logical_product(vec, tile)
end
let vec = @Layout((3,)), tile = @Layout((2,4))
test_logical_product(vec, tile)
end
let vec = @Layout((8,(2,2))), tile = @Layout(4,2)
test_logical_product(vec, tile)
end
let vec = @Layout((2,2)), tile = @Layout((3,3), (3,1))
test_logical_product(vec, tile)
end
let vec = @Layout(3,32), tile = @Layout((8,8))
test_logical_product(vec, tile)
end
let vec = @Layout(((2,2),(2,2)), ((1,4),(8,32))), tile = @Layout((2,2), (1,2))
test_logical_product(vec, tile)
end
let vec = @Layout(((2,2),(2,2)), ((1,4),(8,32))), tile = @Layout((2,2), (2,1))
test_logical_product(vec, tile)
end
end
@testset "Blocked product" begin
result = blocked_product(tile, matrix_of_tiles, true)
@test shape(result) == ((2, 3), 8)
@test stride(result) == ((1, 16), 2)
@test_opt blocked_product(static(tile), static(matrix_of_tiles), true)
end
@testset "Raked product" begin
result = raked_product(tile, matrix_of_tiles, true)
@test shape(result) == ((3, 2), (4, 2))
@test stride(result) == ((16, 1), (4, 2))
@test_opt raked_product(static(tile), static(matrix_of_tiles), true)
end
@testset "Zipped product" begin
result = zipped_product(tile, matrix_of_tiles)
@test shape(result) == ((2, 2), (3, 4))
@test stride(result) == ((1, 2), (16, 4))
@test_opt zipped_product(static(tile), static(matrix_of_tiles))
end
@testset "Tiled product" begin
result = tiled_product(tile, matrix_of_tiles)
@test shape(result) == ((2, 2), 3, 4)
@test stride(result) == ((1, 2), 16, 4)
@test_opt tiled_product(static(tile), static(matrix_of_tiles))
end
end
@testset "Division" begin
tile = @Layout((2, 2), (1, 2))
matrix_of_tiles = @Layout((3, 4), (4, 1))
raked_prod = raked_product(tile, matrix_of_tiles)
subtile = (@Layout(2, 3), @Layout(2, 4))
@testset "Logical division" begin
@test logical_divide(@Layout(16, 3), @Layout(4, 1)) == @Layout((4, 4), (3, 12))
@test logical_divide(@Layout(16, 3), @Layout(4, 4)) == @Layout((4, 4), (12, 3))
@test logical_divide(@Layout(16, 3), @Layout(4, 2)) ==
@Layout((4, (2, 2)), (6, (3, 24)))
@test logical_divide(@Layout(16, 3), @Layout((2, 2), (4, 1))) ==
@Layout(tuple((2, 2), (2, 2)), tuple((12, 3), (6, 24)))
@test logical_divide(raked_prod, subtile) ==
@Layout(((2, 3), (2, 4)), ((1, 16), (2, 4)))
@test_opt logical_divide(raked_prod, subtile)
@test_call logical_divide(raked_prod, subtile)
function test_logical_divide(A, B)
@test_opt logical_divide(A,B)
C = logical_divide(A,B)
@test rank(C) == 2
@test MoYe.iscompatible(B, first(C))
end
let layout = @Layout(1, 0),
tile = @Layout(1, 0)
test_logical_divide(layout, tile)
end
let layout = @Layout(1, 0),
tile = @Layout(1, 1)
test_logical_divide(layout, tile)
end
let layout = @Layout(1, 1),
tile = @Layout(1, 0)
test_logical_divide(layout, tile)
end
let layout = @Layout(1, 1),
tile = @Layout(1, 1)
test_logical_divide(layout, tile)
end
let layout = @Layout(6, 1),
tile = @Layout(2, 1)
test_logical_divide(layout, tile)
end
let layout = @Layout(6, 1),
tile = @Layout(2, 3)
test_logical_divide(layout, tile)
end
let layout = @Layout((6, 6), (1, 12)),
tile = @Layout((6, 3), (3, 1))
test_logical_divide(layout, tile)
end
let layout = @Layout((6, 6), (12, 1)),
tile = @Layout((6, 3), (3, 1))
test_logical_divide(layout, tile)
end
let layout = @Layout(32),
tile = @Layout((2, 8))
test_logical_divide(layout, tile)
end
let layout = @Layout((4, 1), (1, 1)),
tile = @Layout(2, 1)
test_logical_divide(layout, tile)
end
let layout = @Layout((4, 1), (1, 1)),
tile = @Layout(2, 2)
test_logical_divide(layout, tile)
end
let layout = @Layout((8, 8), (1, 8)),
tile = @Layout((32, 2))
test_logical_divide(layout, tile)
end
let layout = @Layout((8, 8), (8, 1)),
tile = @Layout((32, 2))
test_logical_divide(layout, tile)
end
end
@testset "Zipped division" begin
@test zipped_divide(raked_prod, subtile) ==
@Layout(((2, 2), (3, 4)), ((1, 2), (16, 4)))
@test_opt zipped_divide(static(raked_prod), static(subtile))
end
@testset "Tiled division" begin
@test tiled_divide(raked_prod, subtile) ==
@Layout(((2, 2), 3, 4), ((1, 2), 16, 4))
@test_opt zipped_divide(static(raked_prod), static(subtile))
end
end
@testset "Inverse" begin
@testset "Right Inverse" begin
function test_right_inverse(l)
inv_l = right_inverse(l)
@test_opt right_inverse(l)
@test_call right_inverse(l)
for i in 1:size(inv_l)
@test l(inv_l(i)) == i
end
end
test_right_inverse(@Layout(1, 0))
test_right_inverse(@Layout(1, 1))
test_right_inverse(@Layout((4,), (0,)))
test_right_inverse(@Layout((4,), (1,)))
test_right_inverse(@Layout((4,), (2,)))
test_right_inverse(@Layout((1,1), (0,0)))
test_right_inverse(@Layout((3,7), (0,0)))
test_right_inverse(@Layout((1,), (1,)))
test_right_inverse(@Layout((2,4), (0,2)))
test_right_inverse(@Layout((8,4)))
test_right_inverse(@Layout((8,4), (4,1)))
test_right_inverse(@Layout((2,4,6)))
test_right_inverse(@Layout((2,4,6), (4,1,8)))
test_right_inverse(@Layout((2,4,4,6), (4,1,0,8)))
test_right_inverse(@Layout((4,2), (1,16)))
test_right_inverse(@Layout((4,2), (1,5)))
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1556 | using Test, SafeTestsets, CUDA
@safetestset "Tuple Algorithms" begin include("tuple_alg.jl") end
@safetestset "IntTuple" begin include("int_tuple.jl") end
@safetestset "Stride" begin include("stride.jl") end
@safetestset "Layout" begin include("layout.jl") end
@safetestset "Static" begin include("static.jl") end
@safetestset "Engine" begin include("engine.jl") end
@testset "MoYeArray" begin
@safetestset "MoYeArray" begin include("array.jl") end
@safetestset "Broadcast" begin include("broadcast.jl") end
end
@safetestset "Tiling" begin include("tiling.jl") end
@safetestset "Copy" begin include("copy.jl") end
if CUDA.functional()
@testset "Device" begin
@safetestset "Memory" begin include("device/memory.jl") end
@safetestset "MMA" begin include("device/mmaop.jl") end
@safetestset "MMATraits" begin include("device/mmatraits.jl") end
@safetestset "Pointer" begin include("device/pointer.jl") end
@safetestset "LDMatrix" begin include("device/ldmatrix.jl") end
@safetestset "Broadcast" begin include("device/broadcast.jl") end
@safetestset "Tiled Copy" begin include("device/tiled_copy.jl") end
@safetestset "MatMul" begin include("device/matmul.jl") end
end
end
@testset "Host" begin
@safetestset "CPU MatMul" begin include("host/tiling_matmul.jl") end
@safetestset "Copy Async" begin include("host/copy_async.jl") end
end
@testset "Tiled MMA" begin
@safetestset "Tiled MMA" begin include("tiled_mma.jl") end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 312 | using MoYe, Test, Static
using Static: One
layout = make_layout(static((3, 4)), static((1, 2)))
@test sizeof(layout) == 0
@test size(layout) isa StaticInt
@test cosize(layout) isa StaticInt
@test depth(layout) isa StaticInt
@test layout(One()) isa StaticInt
@test layout(static((1, 2))) isa StaticInt
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2337 | using MoYe, Test, JET
@testset "Coordinate to Index" begin
@testset "1-D Coordinate" begin
@test coord_to_index(5, (3, 4), (2, 8)) == 11
@test coord_to_index(7, (3, 4), (2, 8)) == 17
@test coord_to_index(12, (3, 4), (2, 8)) == 29
@test_opt coord_to_index(5, (3, 4), (2, 8))
@test_opt coord_to_index(7, (3, 4), (2, 8))
@test_opt coord_to_index(12, (3, 4), (2, 8))
end
@testset "h-D Coordinate" begin
@test coord_to_index((2, 2), (3, 4), (2, 8)) == 11
@test coord_to_index((1, 3), (3, 4), (2, 8)) == 17
@test coord_to_index((3, 4), (3, 4), (2, 8)) == 29
@test_opt coord_to_index((2, 2), (3, 4), (2, 8))
@test_opt coord_to_index((1, 3), (3, 4), (2, 8))
@test_opt coord_to_index((3, 4), (3, 4), (2, 8))
end
@testset "R-D Coordinate" begin
@test coord_to_index((2, 3), (3, (2, 2)), (2, (16, 8))) == 11
@test coord_to_index((1, 2), (3, (2, 2)), (2, (16, 8))) == 17
@test coord_to_index((3, 4), (3, (2, 2)), (2, (16, 8))) == 29
@test_opt coord_to_index((2, 3), (3, (2, 2)), (2, (16, 8)))
@test_opt coord_to_index((1, 2), (3, (2, 2)), (2, (16, 8)))
@test_opt coord_to_index((3, 4), (3, (2, 2)), (2, (16, 8)))
end
@testset "Default Stride" begin
#@test_throws DimensionMismatch coord_to_index(5, (3, 4))
@test coord_to_index((1, 2), (3, 4)) == 4
@test coord_to_index((2, 3), (3, 4)) == 8
@test coord_to_index((3, 4), (3, 4)) == 12
@test_opt coord_to_index((1, 2), (3, 4))
@test_opt coord_to_index((2, 3), (3, 4))
@test_opt coord_to_index((3, 4), (3, 4))
end
end
@testset "Index to Coord" begin
@test index_to_coord(9, (3, 4), (1, 3)) == (3, 3)
@test index_to_coord(10, (3, 4), (1, 3)) == (1, 4)
@test_opt index_to_coord(9, (3, 4), (1, 3))
@test_opt index_to_coord(10, (3, 4), (1, 3))
@test_throws DimensionMismatch index_to_coord(9, (3, 4), (1, 3, 5))
end
@testset "Default Major" begin
@test compact_col_major(static((3, 4, 5))) === static((1, 3, 12))
@test compact_row_major(static((3, 4, 5))) === static((20, 5, 1))
@test_opt compact_col_major((3, 4, 5))
@test_opt compact_row_major((3, 4, 5))
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1014 | using MoYe, Test
A_data = collect(1:48*8*7)
B_data = collect(1:40*9*8)
C_data = collect(1:48*7*40*9)
A = MoYeArray(pointer(A_data), @Layout((48*7,8)))
B = MoYeArray(B_data, @Layout((40*9,8)))
C = MoYeArray(C_data, @Layout((48*7,40*9)))
# Tile size
tiled_mma = MoYe.make_tiled_mma(MMAOP_16x8x8_F16F16F16F16_TN(), @Layout((3,5)))
@test tile_size(tiled_mma, _1) == 16 * 3
@test tile_size(tiled_mma, _2) == 8 * 5
@test tile_size(tiled_mma, _3) == 8
thr_mma = MoYe.get_slice(tiled_mma, 1)
thr_C = partition_C(thr_mma, C)
thr_A = partition_A(thr_mma, A)
thr_B = partition_B(thr_mma, B)
@test size(thr_C, 2) == 7
@test size(thr_C, 3) == 9
@test size(thr_A, 2) == 7
@test size(thr_A, 3) == 1
@test size(thr_B, 2) == 9
@test size(thr_B, 3) == 1
frag_C = partition_fragment_C(thr_mma, C)
frag_A = partition_fragment_A(thr_mma, A)
frag_B = partition_fragment_B(thr_mma, B)
@test size(frag_C) == size(thr_C)
@test size(frag_A) == size(thr_A)
@test size(frag_B) == size(thr_B)
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 142 | using MoYe, Test
a = MoYeArray(pointer([i for i in 1:48]), @Layout((6,8)))
tile = @tile a (_3, _2) (1, :);
@test rank(tile.layout) == 3
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2527 | using MoYe, Test, JET
using MoYe: make_tuple
@testset "Unflatten" begin
@test unflatten((1, 2, 3), (0, 0, 0)) == (1, 2, 3)
@test unflatten((1, 2, 3, 4), (0, (0, (0, 0)))) == (1, (2, (3, 4)))
@test unflatten((1, 2, 3, 4), ((0, 0), (0, 0))) == ((1, 2), (3, 4))
@test unflatten((1, 2, 3, 4, 5), (0, (0, 0), 0)) == (1, (2, 3), 4)
@test unflatten((1, 2, 3, 4, 5, 6), (0, (0, (0, (0, (0, 0)))))) == (1, (2, (3, (4, (5, 6)))))
@test unflatten((), ()) == ()
end
@testset "Front" begin
@test MoYe.front(((2, 3), 4)) === 2
@test_opt MoYe.front(((2, 3), 4))
end
@testset "Back" begin
@test MoYe.back((2, (3, 4))) === 4
@test_opt MoYe.back(((2, 3), 4))
end
@testset "Tuple Cat" begin
@test MoYe.tuple_cat((1, 2), (3, 4)) === (1, 2, 3, 4)
@test_opt MoYe.tuple_cat((1, 2), (3, 4))
end
@testset "Insert" begin
@test MoYe.insert((1, 2, 3), 10, 2) === (1, 10, 2, 3)
@test_opt MoYe.insert((1, 2, 3), 10, 2)
end
@testset "Remove" begin
@test MoYe.remove((1, 2, 3), _2) === (1, 3)
@test_opt MoYe.remove((1, 2, 3), _2)
end
@testset "Replace" begin
@test replace((1, 2, 3), 10, 2) === (1, 10, 3)
@test_opt replace((1, 2, 3), 10, 2)
end
@testset "Unwrap" begin
@test MoYe.unwrap(((1,))) === 1
@test_opt MoYe.unwrap(((1,)))
end
@testset "Append" begin
@test MoYe.append((1, 2), 3) === (1, 2, 3)
@test_opt MoYe.append((1, 2), 3)
@test MoYe.append((1, 2), 3, _4) === (1, 2, 3, 3)
@test_opt MoYe.append((1, 2), 3, _4)
end
@testset "Prepend" begin
@test MoYe.prepend((1, 2), 3) === (3, 1, 2)
@test_opt MoYe.prepend((1, 2), 3)
@test MoYe.prepend((1, 2), 3, _4) === (3, 3, 1, 2)
@test_opt MoYe.prepend((1, 2), 3, _4)
end
@testset "Exclusive scan" begin
MoYe.escan(*, (1, 2, 3, 4, 5), 10) === (10, 10, 20, 60, 240)
@test_opt MoYe.escan(*, (1, 2, 3, 4, 5), 10)
end
@testset "zip2_by" begin
@test MoYe.zip2_by((('A', 'a'), (('B', 'b'), ('C', 'c')), 'd'), (0, (0, 0))) ==
(('A', ('B', 'C')), ('a', ('b', 'c'), 'd'))
@test_opt MoYe.zip2_by((('A', 'a'), (('B', 'b'), ('C', 'c')), 'd'), (0, (0, 0)))
end
@testset "Make Tuple" begin
t = typeof(static((1,2,3)))
t2 = make_tuple(t)
@test t2 === static((1,2,3))
t3 = typeof(static((1,2,(3,4))))
t4 = make_tuple(t3)
@test t4 === static((1,2,(3,4)))
t5 = typeof(static((1,2,(3,4),5)))
t6 = make_tuple(t5)
@test t6 === static((1,2,(3,4),5))
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 251 | using MoYe, CUDA, Test
function f()
a = MoYeArray{Float64}(undef, @Layout((3,2)))
fill!(a, one(eltype(a)))
a .= a .* 2
@cushow sum(a)
b = CUDA.exp.(a)
@cushow sum(b)
return nothing
end
@test_nowarn @cuda f()
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3908 | using Test, MoYe, CUDA
@inline _getfirst(x::UInt32) = x
@inline _getfirst(x) = getfield(x, 1)
if MoYe.LLVM.version().major>=15
@testset "Compile to LLVM" begin
function kernel(op)
A = MoYeSharedArray(UInt32, @Layout((32,32)))
a_frag = op(pointer(A, threadIdx().x*Int32(4)))
@cushow Float32(_getfirst(a_frag))
return nothing
end
op_to_intrinsic = Dict(MoYe.ldmatrix_ops_list)
for op_name in keys(op_to_intrinsic)
op = @eval MoYe.$(Symbol(op_name))
buf = IOBuffer()
@device_code_llvm io = buf @cuda launch=false kernel(op())
asm = String(take!(copy(buf)))
@test occursin(op_to_intrinsic[op_name], asm)
end
end
@testset "16x8x16_F16F16F16F16" begin
function kernel(A,B,C, smemlayout_A, smemlayout_B, thread_layout)
moye_A = MoYeArray(pointer(A), @Layout((16,16))) # M-major
moye_B = MoYeArray(pointer(B), @Layout((16,8))) # K-major
moye_C = MoYeArray(pointer(C.parent), @Layout((16, 8), (8, 1)))
smem_A = MoYeSharedArray(Float16, smemlayout_A) # K-major
smem_B = MoYeSharedArray(Float16, smemlayout_B) # K-major
threadtile_A = @parallelize moye_A thread_layout threadIdx().x
threadtile_B = @parallelize moye_B thread_layout threadIdx().x
threadtile_smem_A = @parallelize smem_A thread_layout threadIdx().x
threadtile_smem_B = @parallelize smem_B thread_layout threadIdx().x
for i in eachindex(threadtile_A)
threadtile_smem_A[i] = threadtile_A[i]
end
for i in eachindex(threadtile_B)
threadtile_smem_B[i] = threadtile_B[i]
end
sync_threads()
smem_B′ = MoYe.transpose(smem_B) # (N, K) (8, 16)
frag_A = MoYeArray{Float16}(undef, @Layout((8,)))
frag_B = MoYeArray{Float16}(undef, @Layout((4,)))
frag_C = MoYeArray{Float16}(undef, @Layout((4,)))
zeros!(frag_C)
# loading from shared memory to registers
ld_A = MoYe.LDSM_U32x4_N()
ld_B = MoYe.LDSM_U32x2_N()
recasted_smem_A = recast(UInt128, smem_A) # 16x2
recasted_smem_B = recast(UInt128, smem_B′) # 8x2
# or parallelize then recast
copytile_smem_A = @parallelize recasted_smem_A @Layout((16, 2)) threadIdx().x
copytile_smem_B = @parallelize recasted_smem_B @Layout((8, 2)) threadIdx().x
recasted_frag_A = recast(UInt32, frag_A)
recasted_frag_B = recast(UInt32, frag_B)
copyto!(ld_A, recasted_frag_A, copytile_smem_A)
copyto!(ld_B, recasted_frag_B, copytile_smem_B)
# good syntax here
traits = MoYe.MMATraits{MoYe.MMAOP_16x8x16_F16F16F16F16_TN}()
@gc_preserve MoYe.mma_unpack!(traits, frag_C, frag_A, frag_B, frag_C)
recasted_moye_C = recast(UInt32, moye_C) # 16x4
recasted_frag_C = recast(UInt32, frag_C) # 2x1
row, col = fldmod1(threadIdx().x, Int32(4))
# awkward manual indexing
recasted_moye_C[row, col] = recasted_frag_C[1]
recasted_moye_C[row+8, col] = recasted_frag_C[2]
return nothing
end
smemlayout_A = @Layout((16, 16), (16, 1))
smemlayout_B = @Layout((16, 8), (1, 16))
thread_layout = @Layout (16, 2)
A = CUDA.rand(Float16, 16, 16)
B = CUDA.rand(Float16, 16, 8)
C = transpose(CUDA.rand(Float16, 8, 16)) # row-major, this is awkward
@cuda threads=32 kernel(A,B,C, smemlayout_A, smemlayout_B, thread_layout)
CUDA.synchronize()
@test A * B ≈ C
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2181 | using MoYe, CUDA, Test
function matmul_kernel(A, sA_layout, tA,
B, sB_layout, tB,
C, tC)
M = size(A, 1)
N = size(B, 1)
K = size(A, 2)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A, (M, K))
mB = MoYeArray(B, (N, K))
mC = MoYeArray(C, (M, N))
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
tAgA = @parallelize gA tA threadIdx().x
tBgB = @parallelize gB tB threadIdx().x
tAsA = @parallelize sA tA threadIdx().x
tBsB = @parallelize sB tB threadIdx().x
# mma partition
tCsA = @parallelize sA tC threadIdx().x (1, :)
tCsB = @parallelize sB tC threadIdx().x (:, 1)
tCgC = @parallelize gC tC threadIdx().x
# accumulator
tCrC = similar(tCgC)
zeros!(tCrC)
for k in axes(tAgA, 3)
copyto!(tAsA, view(tAgA, :, :, k))
copyto!(tBsB, view(tBgB, :, :, k))
cp_async_wait()
sync_threads()
@gc_preserve gemm!(tCrC, tCsA, tCsB, tCrC)
sync_threads()
end
copyto!(tCgC, tCrC)
return nothing
end
function matmul(A, B, C)
bM = _128
bN = _128
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM + _1))
sB_layout = make_layout((bN, bK), (_1, bN + _1))
tA = @Layout (32, 8)
tB = @Layout (32, 8)
tC = @Layout (16, 16)
threads = Int(size(tC))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, tA,
B, sB_layout, tB,
C, tC)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
CUDA.synchronize()
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 702 | using MoYe, Test, CUDA
using Static: One
@testset "Global Memory" begin
a = CUDA.rand(Float32, 10)
a = CUDA.cudaconvert(a)
MoYeArray(pointer(a), static((2, 5)))
end
@testset "Shared Memory" begin
ptr = MoYe.SharedMemory(Float32, _10)
MoYeArray(ptr, static((2, 5)))
end
@testset "Register Memory" begin
@test_nowarn MoYeArray{Float32}(undef, static((2, 5)))
a = CUDA.rand(Float32, 8, 16)
a = CUDA.cudaconvert(a)
gmem_8sx16d = MoYeArray(pointer(a), (_8, 16))
rmem = make_fragment_like(view(gmem_8sx16d, :, 1))
@test rmem.layout.shape == tuple(_8)
@test rmem.layout.stride == tuple(One())
@test length(rmem.engine) == 8
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1141 | using Test, MoYe, CUDA
@inline make_fragment(::Type{MoYe.Registers{T,S}}) where {T, S} = MoYeArray{T}(undef, (static(S),))
_float32(x::Number) = Float32(x)
_float32(x::VecElement) = Float32(x.value)
_one(::Type{NTuple{N, VecElement{T}}}) where {N, T} = ntuple(i -> VecElement(one(T)), Val(N))
_one(x) = one(x)
@testset "Compile to LLVM" begin
function kernel(mma_op)
a_frag = make_fragment(mma_op.ARegisters)
b_frag = make_fragment(mma_op.BRegisters)
c_frag = make_fragment(mma_op.CRegisters)
fill!(a_frag, _one(eltype(a_frag)))
fill!(b_frag, _one(eltype(b_frag)))
fill!(c_frag, _one(eltype(c_frag)))
d_frag = mma_op(a_frag, b_frag, c_frag)
@cushow _float32(getfield(d_frag,1)[1])
return
end
op_to_intrinsic = Dict(MoYe.mma_ops_list)
for op_name in keys(op_to_intrinsic)
op = @eval MoYe.$(Symbol(op_name))
buf = IOBuffer()
@device_code_llvm io = buf @cuda threads=32 kernel(op())
asm = String(take!(copy(buf)))
@test occursin(get(op_to_intrinsic, "$op", ""), asm)
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3308 | using Test, MoYe, CUDA
@testset "Size of MMATraits" begin
for mmaop in [MoYe.MMAOP_16x8x8_F16F16F16F16_TN,
MoYe.MMAOP_16x8x8_F32F16F16F32_TN,
MoYe.MMAOP_16x8x8_F32BF16BF16F32_TN,
MoYe.MMAOP_16x8x16_F16F16F16F16_TN,
MoYe.MMAOP_16x8x16_F32F16F16F32_TN,
MoYe.MMAOP_16x8x16_F32BF16BF16F32_TN]
@test sizeof(MoYe.MMATraits{mmaop}()) == 0
end
end
@testset "16x8x16_F16F16F16F16" begin
function kernel(A,B,C, smemlayout_A, smemlayout_B, thread_layout)
moye_A = MoYeArray(pointer(A), @Layout((16,16))) # M-major
moye_B = MoYeArray(pointer(B), @Layout((16,8))) # K-major
moye_C = MoYeArray(pointer(C.parent), @Layout((16, 8), (8, 1)))
smem_A = MoYeSharedArray(Float16, smemlayout_A) # K-major
smem_B = MoYeSharedArray(Float16, smemlayout_B) # K-major
threadtile_A = @parallelize moye_A thread_layout threadIdx().x
threadtile_B = @parallelize moye_B thread_layout threadIdx().x
threadtile_smem_A = @parallelize smem_A thread_layout threadIdx().x
threadtile_smem_B = @parallelize smem_B thread_layout threadIdx().x
for i in eachindex(threadtile_A)
threadtile_smem_A[i] = threadtile_A[i]
end
for i in eachindex(threadtile_B)
threadtile_smem_B[i] = threadtile_B[i]
end
sync_threads()
smem_B′ = MoYe.transpose(smem_B) # (N, K) (8, 16)
frag_A = MoYeArray{Float16}(undef, @Layout((8,)))
frag_B = MoYeArray{Float16}(undef, @Layout((4,)))
frag_C = MoYeArray{Float16}(undef, @Layout((4,)))
zeros!(frag_C)
# loading from shared memory to registers
ld_A = MoYe.LDSM_U32x4_N()
ld_B = MoYe.LDSM_U32x2_N()
recasted_smem_A = recast(UInt128, smem_A) # 16x2
recasted_smem_B = recast(UInt128, smem_B′) # 8x2
# or parallelize then recast
copytile_smem_A = @parallelize recasted_smem_A @Layout((16, 2)) threadIdx().x
copytile_smem_B = @parallelize recasted_smem_B @Layout((8, 2)) threadIdx().x
recasted_frag_A = recast(UInt32, frag_A)
recasted_frag_B = recast(UInt32, frag_B)
copyto!(ld_A, recasted_frag_A, copytile_smem_A)
copyto!(ld_B, recasted_frag_B, copytile_smem_B)
# good syntax here
traits = MoYe.MMATraits{MoYe.MMAOP_16x8x16_F16F16F16F16_TN}()
@gc_preserve MoYe.mma_unpack!(traits, frag_C, frag_A, frag_B, frag_C)
recasted_moye_C = recast(UInt32, moye_C) # 16x4
recasted_frag_C = recast(UInt32, frag_C) # 2x1
row, col = fldmod1(threadIdx().x, Int32(4))
# awkward manual indexing
recasted_moye_C[row, col] = recasted_frag_C[1]
recasted_moye_C[row+8, col] = recasted_frag_C[2]
return nothing
end
smemlayout_A = @Layout((16, 16), (16, 1))
smemlayout_B = @Layout((16, 8), (1, 16))
thread_layout = @Layout (16, 2)
A = CUDA.rand(Float16, 16, 16)
B = CUDA.rand(Float16, 16, 8)
C = transpose(CUDA.rand(Float16, 8, 16)) # row-major, this is awkward
@cuda threads=32 kernel(A,B,C, smemlayout_A, smemlayout_B, thread_layout)
CUDA.synchronize()
@test Array(A*B) ≈ Array(C)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 303 | using MoYe, Test, CUDA
p = reinterpret(Core.LLVMPtr{Int32, AS.Global}, 0)
p2 = reinterpret(Core.LLVMPtr{Int32, AS.Shared}, 0)
x = MoYeArray(p, @Layout(3));
x2 = MoYeArray(p2, @Layout(3));
@test isgmem(x) == true
@test isgmem(x2) == false
@test issmem(x) == false
@test issmem(x2) == true
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 3377 | using CUDA, MoYe, Test
function tiled_copy_kernel(g_in, g_out, tiled_copy, smem_layout)
t_g_in = MoYeArray(pointer(g_in), smem_layout)
t_g_out = MoYeArray(pointer(g_out), smem_layout)
t_smem=MoYeSharedArray(UInt16, smem_layout)
tid=threadIdx().x
for i in tid:size(tiled_copy):size(t_smem.layout)
@inbounds t_smem[i] = t_g_in[i]
end
thr_copy = get_slice(tiled_copy, tid)
tXsX = partition_S(thr_copy, t_smem)
tXgX = partition_D(thr_copy, t_g_out)
tXrX = MoYeArray{UInt16}(undef, tXgX.layout.shape)
# smem to rmem
copyto!(tiled_copy, tXrX, tXsX)
# rmem to gmem
copyto!(tXgX, tXrX)
@inbounds tXrX.engine[1] # compiler bug, have to load
return nothing
end
@testset "UniversalCopy" begin
@testset "32 x 32" begin
g_in = [UInt16(i) for i in 1:32*32]
g_out = zeros(UInt16, 32*32)
cu_g_in = CuArray(g_in)
cu_g_out = CuArray(g_out)
smem_layout = @Layout (32,32) (1,32)
tiled_copy = make_tiled_copy(MoYe.CopyAtom{MoYe.UniversalCopy{UInt16, UInt16}, UInt16}(),
@Layout((16,2)), @Layout((2,4)))
@cuda threads=32 tiled_copy_kernel(cu_g_in, cu_g_out, tiled_copy, smem_layout)
@test cu_g_out == cu_g_in
end
@testset "32 x 8" begin
g_in = [UInt16(i) for i in 1:32*8]
g_out = zeros(UInt16, 32*8)
cu_g_in = CuArray(g_in)
cu_g_out = CuArray(g_out)
smem_layout = @Layout (32, (2, 4)) (2, (1, 64))
tiled_copy = make_tiled_copy(MoYe.CopyAtom{MoYe.UniversalCopy{UInt16, UInt16}, UInt16}(),
@Layout((32,1)), @Layout((1,8)))
@cuda threads=32 tiled_copy_kernel(cu_g_in, cu_g_out, tiled_copy, smem_layout)
@test cu_g_out == cu_g_in
end
end
@testset "LDMATRIX" begin
@testset "32 x 32" begin
g_in = [UInt16(i) for i in 1:32*32]
g_out = zeros(UInt16, 32*32)
smem_layout = @Layout (32,32) (1,32)
cu_g_in = CuArray(g_in)
cu_g_out = CuArray(g_out)
for ldmatrix in [:LDSM_U32x1_N, :LDSM_U32x2_N, :LDSM_U32x4_N]
@testset "$ldmatrix" begin
@eval tiled_copy = make_tiled_copy(MoYe.CopyAtom{$ldmatrix, UInt16}(),
@Layout((16,2)), @Layout((2,4)))
@cuda threads=32 tiled_copy_kernel(cu_g_in, cu_g_out, tiled_copy, smem_layout)
@test cu_g_out == cu_g_in
fill!(cu_g_out, zero(UInt16))
end
end
end
@testset "32 x 8" begin
g_in = [UInt16(i) for i in 1:32*8]
g_out = zeros(UInt16, 32*8)
cu_g_in = CuArray(g_in)
cu_g_out = CuArray(g_out)
smem_layout = @Layout (32, (2, 4)) (2, (1, 64))
for ldmatrix in [:LDSM_U32x1_N, :LDSM_U32x2_N, :LDSM_U32x4_N]
@testset "$ldmatrix" begin
@eval tiled_copy = make_tiled_copy(MoYe.CopyAtom{$ldmatrix, UInt16}(),
@Layout((32,1)), @Layout((1,8)))
@cuda threads=32 tiled_copy_kernel(cu_g_in, cu_g_out, tiled_copy, smem_layout)
@test cu_g_out == cu_g_in
fill!(cu_g_out, zero(UInt16))
end
end
end
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 2980 | using MoYe, Test, CUDA
function copy_kernel(dest, src, smemlayout, blocklayout, threadlayout)
smem = MoYe.SharedMemory(eltype(dest), cosize(smemlayout))
moye_smem = MoYeArray(smem, smemlayout)
moye_dest = MoYeArray(dest)
moye_src = MoYeArray(src)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocktile_dest = @tile moye_dest (bM, bN) (blockIdx().x, blockIdx().y)
blocktile_src = @tile moye_src (bM, bN) (blockIdx().x, blockIdx().y)
threadtile_dest = @parallelize blocktile_dest threadlayout threadIdx().x
threadtile_src = @parallelize blocktile_src threadlayout threadIdx().x
threadtile_smem = @parallelize moye_smem threadlayout threadIdx().x
copyto!(threadtile_smem, threadtile_src)
cp_async_wait()
copyto!(threadtile_dest, threadtile_smem)
return nothing
end
function test_copy_async(M, N)
a = CUDA.rand(Float32, M, N)
b = CUDA.rand(Float32, M, N)
blocklayout = @Layout (32, 32) # 32 * 32 elements in a block
smemlayout = @Layout (32, 32) # 32 * 32 elements in shared memory
threadlayout = @Layout (32, 8) # 32 * 8 threads in a block
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocks = (cld(M, bM), cld(N, bN))
threads = MoYe.dynamic(size(threadlayout))
@cuda blocks=blocks threads=threads copy_kernel(a, b, smemlayout, blocklayout, threadlayout)
CUDA.synchronize()
@test a == b
end
if CUDA.functional()
test_copy_async(2048, 2048)
end
function transpose_kernel(dest, src, smemlayout, blocklayout, threadlayout)
moye_smem = MoYeSharedArray(eltype(dest), smemlayout)
moye_src = MoYeArray(src)
moye_dest = MoYeArray(dest)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocktile_src = @tile moye_src (bM, bN) (blockIdx().x, blockIdx().y)
blocktile_dest = @tile moye_dest (bN, bM) (blockIdx().y, blockIdx().x)
threadtile_dest = @parallelize blocktile_dest threadlayout threadIdx().x
threadtile_src = @parallelize blocktile_src threadlayout threadIdx().x
threadtile_smem = @parallelize moye_smem threadlayout threadIdx().x
copyto!(threadtile_smem, threadtile_src)
cp_async_wait()
sync_threads()
moye_smem′ = MoYe.transpose(moye_smem)
threadtile_smem′ = @parallelize moye_smem′ threadlayout threadIdx().x
copyto!(threadtile_dest, threadtile_smem′)
return nothing
end
function test_transpose(M, N)
a = CUDA.rand(Float32, M, N)
b = CUDA.rand(Float32, N, M)
blocklayout = @Layout (32, 32)
smemlayout = @Layout (32, 32) (1, 33)
threadlayout = @Layout (32, 8)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocks = (cld(M, bM), cld(N, bN))
threads = MoYe.dynamic(size(threadlayout))
@cuda blocks=blocks threads=threads transpose_kernel(a, b, smemlayout, blocklayout, threadlayout)
CUDA.synchronize()
@test a == transpose(b)
end
if CUDA.functional()
test_transpose(2048, 2048)
end
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | code | 1068 | using MoYe, Test
# C = A * B^T
M = 4*32
N = 4*32
K = 8*32
A = rand(M, K)
B = rand(N, K)
C = zeros(M, N)
threadlayout = @Layout (4, 4)
moye_A = MoYeArray(pointer(A), (M, K))
moye_B = MoYeArray(pointer(B), (N, K))
moye_C = MoYeArray(pointer(C), (M, N))
tile_A = @parallelize moye_A threadlayout 1 (_1, :)
tile_B = @parallelize moye_B threadlayout 1 (:, _1)
GC.@preserve A B C begin
moye_A = MoYeArray(pointer(A), (M, K))
moye_B = MoYeArray(pointer(B), (N, K))
moye_C = MoYeArray(pointer(C), (M, N))
Threads.@threads :static for i in 1:Threads.nthreads()
tile_A = @parallelize moye_A threadlayout Threads.threadid() (_1, :)
tile_B = @parallelize moye_B threadlayout Threads.threadid() (:, _1)
tile_C = @parallelize moye_C threadlayout Threads.threadid()
for k in 1:size(tile_A, 2)
for m in 1:size(tile_C, 1)
for n in 1:size(tile_C, 2)
tile_C[m, n] += tile_A[m, k] * tile_B[n, k]
end
end
end
end
end
@test C ≈ A * transpose(B)
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 959 | # MoYe
[](https://YichengDWu.github.io/MoYe.jl/stable/)
[](https://YichengDWu.github.io/MoYe.jl/dev/)
[](https://github.com/YichengDWu/MoYe.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/YichengDWu/MoYe.jl)
`MoYe.jl` is NVIDIA's [Cutlass/CuTe](https://github.com/NVIDIA/cutlass/blob/main/) implemented in Julia.
The primary purpose of developing this library is my desire to learn CuTe.
The name **Mo Ye** is derived from an ancient Chinese [legend of swordsmiths](https://en.wikipedia.org/wiki/Gan_Jiang_and_Mo_Ye).
The documentation is mostly my learning notes. Please refer to CuTe's documentation for more details.
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 2147 | ```@meta
CurrentModule = MoYe
```
# MoYe
Documentation for [MoYe](https://github.com/YichengDWu/MoYe.jl).
## Quick Start
```julia
julia> data = [i for i in 1:48];
julia> a = MoYeArray(data, @Layout((6,8)))
6×8 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{6}, Static.StaticInt{8}}, Tuple{Static.StaticInt{1}, Static.StaticInt{6}}}} with indices _1:_6×_1:_8:
1 7 13 19 25 31 37 43
2 8 14 20 26 32 38 44
3 9 15 21 27 33 39 45
4 10 16 22 28 34 40 46
5 11 17 23 29 35 41 47
6 12 18 24 30 36 42 48
julia> subtile_a = @tile a (_3, _4) (1, 2)
3×4 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{3}, Static.StaticInt{4}}, Tuple{Static.StaticInt{1}, Static.StaticInt{6}}}} with indices _1:_3×_1:_4:
25 31 37 43
26 32 38 44
27 33 39 45
julia> workitems_a = @parallelize subtile_a (_3, _2) (1, 1)
1×2 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{1}, Static.StaticInt{2}}, Tuple{Static.StaticInt{0}, Static.StaticInt{12}}}} with indices _1:_1×_1:_2:
25 37
julia> for i in eachindex(workitems_a)
workitems_a[i] = 0
end
julia> a
6×8 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{6}, Static.StaticInt{8}}, Tuple{Static.StaticInt{1}, Static.StaticInt{6}}}} with indices _1:_6×_1:_8:
1 7 13 19 0 31 0 43
2 8 14 20 26 32 38 44
3 9 15 21 27 33 39 45
4 10 16 22 28 34 40 46
5 11 17 23 29 35 41 47
6 12 18 24 30 36 42 48
julia> @tile subtile_a (_3, _1) (1, 2)
3×1 MoYeArray{Int64, 2, ViewEngine{Int64, Ptr{Int64}}, Layout{2, Tuple{Static.StaticInt{3}, Static.StaticInt{1}}, Tuple{Static.StaticInt{1}, Static.StaticInt{0}}}} with indices _1:_3×_1:_1:
31
32
33
```
## Tile Iterator
```@repl
using MoYe
data = collect(1:36);
A = MoYeArray(data, @Layout((4,9)))
tiled_A = zipped_divide(A, (@Layout(2), @Layout(3))) # 2 × 3 tile
for i in axes(tiled_A, 2)
@show view(tiled_A, :, i)
end
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 176 | ## MoYeArray
```@meta
CurrentModule = MoYe
```
## Index
```@index
Pages = ["array.md"]
```
```@docs
ViewEngine
ArrayEngine
MoYeArray
recast
zeros!
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 151 | # MMA/Copy Atom
```@meta
CurrentModule = MoYe
```
## Index
```@index
Pages = ["atom.md"]
```
```@docs
make_tiled_mma
make_tiled_copy
print_typst
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 271 | ## Data Movement
```@meta
CurrentModule = MoYe
```
## Index
```@index
Pages = ["copy.md"]
```
```@docs
copyto!(dest::MoYeArray, src::MoYeArray)
copyto!(ldmatrix::AbstractLdMatrix, dest::MoYeArray, src::MoYeArray)
cp_async_wait
cp_async_commit
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 831 | # Layout
```@meta
CurrentModule = MoYe
```
## Index
```@index
Pages = ["layout.md"]
```
## Constructors
```@docs
Layout
@Layout
make_layout
```
## Fundamentals
```@docs
size(::Layout)
rank(::Layout)
depth(::Layout)
cosize(::Layout)
getindex(layout::Layout, Is::IntType...)
```
## Compact Layout
```@docs
GenColMajor
GenRowMajor
```
## Algebra
### Concatenation
```@docs
cat(::Layout...)
make_layout(::Layout...)
```
### Composition
```@docs
composition
```
### Complement
```@docs
complement
```
### Inverse
```@docs
left_inverse
right_inverse
```
### Product
```@docs
logical_product
blocked_product
raked_product
```
### Division
```@docs
logical_divide
zipped_divide
tiled_divide
```
### Miscellaneous
```@docs
coalesce
flatten(layout::Layout)
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 124 | ```@meta
CurrentModule = MoYe
```
## Index
```@index
Pages = ["tiling.md"]
```
```@docs
@tile
@parallelize
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 1264 | # MoYeArray
[`MoYeArray`](@ref) befinits from the [`Layout`](@ref) to be able to create
all kinds of special arrays. For example, we can create a `FillArray`-like array
```@repl array
using MoYe
MoYeArray{Float64}(one, @Layout((3,4), (0, 0)))
ans.engine
```
As you can see the array only contains one element. Under the hood, the physical length
of that array is calculated by [`cosize`](@ref):
```@repl array
cosize(@Layout((3,4), (0, 0)))
```
The underlying implementation of MoYeArray determines that linear indexing is actually periodic.
```@repl array
function f()
B = MoYeArray([1,2,3], @Layout((3,), (1,)))
@show @inbounds B[4], B[5], B[6], B[7]
end
f();
```
We can also easily create a so-called `BlockArray`:
```@repl array
data = collect(1:48);
B=MoYeArray(data, @Layout(((2,3), (2,4)), ((1, 16), (2, 4))))
```
Here we created a 2x3 block array with 2x4 blocks. The first mode is the index
of the block, the second mode is the index within the block.
## Slicing
It is **required** to use the syntax `view(a, ids...) or `@view a[ids...]`, depenting on your tast.
```@repl array
data = [i for i in 1:164];
a = MoYeArray(data, ((_3, 2), (2, _5, _2)), ((4,1), (_2, 13, 100)))
b = @view a[2, :]
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 4208 | ## Memcpy Async
With the NVIDIA Ampere architecture, you can asynchronously copy data between GPU global memory and shared memory and not tie up threads to shepherd data movement.
To utilize this feature, we simply change the `TiledCopy` to the following
```julia
copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{TA}, TA}(),
@Layout((32, 8)),
@Layout((1, 1)))
copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{TB}, TB}(),
@Layout((32, 8)),
@Layout((1, 1)))
```
The updated kernel function.
```julia
function matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
thr_copy_a = get_slice(copy_A, threadIdx().x)
tAgA = partition_S(thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
thr_copy_b = get_slice(copy_B, threadIdx().x)
tBgB = partition_S(thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
# mma partition
thr_mma = get_slice(mma_C, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
# accumulator
tCrC = make_fragment_C(thr_mma, tCgC)
zeros!(tCrC)
for k in axes(tAgA, 4)
copyto!(copy_A, tAsA, view(tAgA, :, :, :, k))
copyto!(copy_B, tBsB, view(tBgB, :, :, :, k))
cp_async_wait()
@gc_preserve gemm!(mma_C, tCrC, tCsA, tCsB, tCrC)
sync_threads()
end
copyto!(tCgC, tCrC)
return nothing
end
function matmul(A, B, C)
bM = _128
bN = _128
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM + _1))
sB_layout = make_layout((bN, bK), (_1, bN + _1))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{TA}, TA}(),
@Layout((32, 8)),
@Layout((1, 1)))
copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{TB}, TB}(),
@Layout((32, 8)),
@Layout((1, 1)))
mma_C = make_tiled_mma(UniversalFMA{TA,TB, TC}(), # MMA operation
@Layout((32,8))) # Atom layout
threads = Int(size(mma_C))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
CUDA.synchronize()
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
```
## Vectorized copy
We can change `CPOP_ASYNC_CACHEALWAYS{TA}/CPOP_ASYNC_CACHEALWAYS{TB}` to `CPOP_ASYNC_CACHEALWAYS{Float64}` to enable vectorized copies
from global memory to shared memory. However, doing so will resul in a memory misaligned error. This is because we have padded `sA`
and `sB` by one row. The element at `[1,2]` is not aligned to 8 bytes as required by the copy_async instruction, hence the error. We also need the following changes
```julia
sA_layout = make_layout((bM, bK), (_1, bM + _2))
sB_layout = make_layout((bN, bK), (_1, bN + _2))
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 1204 | # Broadcasting
Broadcasting is only defined for [`MoYeArray`](@ref)s with static sizes.
In-place broadcasting preserves the original layout.
Out-of-place broadcasting always returns an owning array of a compact layout with
the same shape and the stride ordered the same.
```@repl bc
using MoYe
a = MoYeArray{Float64}(undef, @Layout((3,2), (2,1)))
fill!(a, 1.0);
a .* 3
a .+ a
```
```@repl bc
b = MoYeArray{Float64}(undef, @Layout((3,), (2,))) |> zeros!; # Create a vector
a .- b
```
## On GPU
(In-place) broadcasting on device should just work:
```julia
julia> function f()
a = MoYeArray{Float64}(undef, @Layout((3,2)))
fill!(a, one(eltype(a)))
a .= a .* 2
@cushow sum(a)
b = CUDA.exp.(a)
@cushow sum(b)
return nothing
end
f (generic function with 1 method)
julia> @cuda f()
sum(a) = 12.000000
sum(b) = 44.334337
CUDA.HostKernel{typeof(f), Tuple{}}(f, CuFunction(Ptr{CUDA.CUfunc_st} @0x0000026e00ca1af0, CuModule(Ptr{CUDA.CUmod_st} @0x0000026e15cfc900, CuContext(0x0000026da1fff8b0, instance e5a1871b578f5adb))), CUDA.KernelState(Ptr{Nothing} @0x0000000204e00000))
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 4920 | # Layout
Mathematically, a `Layout` represents a function that maps a logical coordinate to a 1-D index space that can be used to index into an array. It consists of a `shape` and a `stride`, wherein the `shape` determines the domain, and the `stride` establishes the mapping through an inner product. `shape` and `stride` are both defined by (recursive) tuples of integers.
For example, we can construct a vector with stride 2
```@repl layout
using MoYe
struct StrideVector
data
layout
end
Base.getindex(x::StrideVector, i) = x.data[x.layout(i)]
a = StrideVector(collect(1:8), Layout(4, 2))
@show a[1] a[2] a[3] a[4];
```
## Fundamentals
```@repl layout
using MoYe
layout_2x4 = Layout((2, (2, 2)), (4, (1, 2)))
print("Shape: ", shape(layout_2x4))
print("Stride: ", stride(layout_2x4))
print("Size: ", size(layout_2x4)) # the domain is (1,2,...,8)
print("Rank: ", rank(layout_2x4))
print("Depth: ", depth(layout_2x4))
print("Cosize: ", cosize(layout_2x4))
layout_2x4 # this can be viewed as a row-major matrix
```
### Compile-time-ness of values
You can also use static integers:
```@repl layout
static_layout = @Layout (2, (2, 2)) (4, (1, 2))
typeof(static_layout)
sizeof(static_layout)
```
#### Different results from static Layout vs dynamic Layout
It is expected to get results that **appears** to be different when the layout
is static or dynamic. For example,
```@repl layout
layout = @Layout (2, (1, 6)) (1, (6, 2))
print(coalesce(layout))
```
is different from
```@repl layout
layout = Layout((2, (1, 6)), (1, (6, 2)))
print(coalesce(layout))
```
But they **are** mathematically equivalent. Static information allows us to simplify the
result as much as possible, whereas dynamic layouts result in dynamic checking hence type
instability.
## Coordinate space
The coordinate space of a `Layout` is determined by its `Shape`. This coordinate space can be viewed in three different ways:
1. h-D coordinate space: Each element in this space possesses the exact hierarchical structure as defined by the Shape. Here `h` stands for "hierarchical".
2. 1-D coordinate space: This can be visualized as the colexicographically flattening of the coordinate space into a one-dimensional space.
3. R-D coordinate space: In this space, each element has the same rank as the Shape, but each mode (top-level axis) of the `Shape` is colexicographically flattened into a one-dimensional space. Here `R` stands for the rank of the layout.
```@repl layout
layout_2x4(2, (1, 2)) # h-D coordinate
layout_2x4(2, 3) # R-D coordinate
layout_2x4(6) # 1-D coordinate
```
## Layout Algebra
### Concatenation
A `layout` can be expressed as the concatenation of its sublayouts.
```@repl layout
layout_2x4[2] # get the second sublayout
tuple(layout_2x4...) # splatting a layout into sublayouts
make_layout(layout_2x4...) # concatenating sublayouts
for sublayout in layout_2x4 # iterating a layout
@show sublayout
end
```
### Complement
Let's assume that we are dealing with a vector of 24 elements.
Our goal is to partition this vector into six tiles, each consisting of four elements, following a specific pattern: gather every 4 elements at even indices to a tile.
This operation creates a new layout where we collect every second element until we have four elements, and then repeat this process for the rest of the vector.
The resulting layout would resemble:
```julia
1 2 3 4 5 6
+----+----+----+----+----+----+
1 | 1 | 2 | 9 | 10 | 17 | 18 |
+----+----+----+----+----+----+
2 | 3 | 4 | 11 | 12 | 19 | 20 |
+----+----+----+----+----+----+
3 | 5 | 6 | 13 | 14 | 21 | 22 |
+----+----+----+----+----+----+
4 | 7 | 8 | 15 | 16 | 23 | 24 |
+----+----+----+----+----+----+
```
`complement` computes the first row of this new layout.
```@repl layout
print_layout(complement(@Layout(4,2), 24))
```
The layout `Layout(4,2)` and it complement gives us the desired new layout.
```@repl layout
print_layout(make_layout(@Layout(4, 2),complement(@Layout(4, 2), 24)))
```
### Product
#### Logical product
```@repl layout
tile = @Layout((2,2), (1,2));
print_layout(tile)
matrix_of_tiles = @Layout((3,4), (4,1));
print_layout(matrix_of_tiles)
print_layout(logical_product(tile, matrix_of_tiles))
```
#### Blocked product
```@repl layout
print_layout(blocked_product(tile, matrix_of_tiles))
```
#### Raked product
```@repl layout
print_layout(raked_product(tile, matrix_of_tiles))
```
### Division
#### Logical division
```@repl layout
raked_prod = raked_product(tile, matrix_of_tiles);
subtile = (Layout(2,3), Layout(2,4));
print_layout(logical_divide(raked_prod, subtile))
```
#### Zipped division
```@repl layout
print_layout(zipped_divide(raked_prod, subtile))
```
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 7509 | # MatMul

In this tutorial, we explore matrix multiplication using MoYe.jl , specifically computing the product $C = A * B^\top$. Here, matrix $A$ has dimensions $(M, K)$, matrix $B$ has dimensions $(K, N)$, and the resulting matrix $C$ will have dimensions $(M, N)$.
First, we divide the task among each block. We use a tile of size (bM, bN) to partition C, with each block responsible for computing one tile. The tile's index is determined by (blockIdx().x, blockIdx().y).
Computing a tile requires all values from A of shape (dM, K) and B of shape (dN, K). To reduce global memory access (since A, B, and C are stored in global memory), we further partition A and B along the K dimension, sequentially loading elements of sizes (dM, dK) and (dN, dK) into shared memory, then performing the matrix multiplication and accumulating the results into the tile of C.
The partition of the global memory corresponds to the following three lines of code:
```julia
gC = @tile C (bM, bN) (blockIdx().x, blockIdx().y) # (bM, bN)
gA = @tile A (bM, bK) (blockIdx().x, :) # (bM, bK, K/bK)
gB = @tile B (bN, bK) (blockIdx().y, :) # (bN, bK, K/bK)
```
For the specific partition syntax, please refer to [`@tile`](@ref). Here, `gA` represents `A` in shared memory. Next, we use a for loop to index-slice the last dimension of gA and gB (denoted as `k`), loading them into shared memory. The code for this step is:
```julia
sA = MoYeSharedArray(eltype(gA), sA_layout) # (bM, bK)
sB = MoYeSharedArray(eltype(gB), sB_layout) # (bN, bK)
```
`MoYeSharedArray` automatically allocates shared memory of size `cosize(sA_layout) + cosize(sB_layout)` and returns a `MoYeArray`. We will explain how to define the layouts for sA and sB later; for now, it's only necessary to know that they are predefined at compile time.
We then need to define how thread groups collectively copy from global to shared memory. There are many ways to organize threads, which will be discussed later, such as:
```julia
tA = @Layout (32, 8)
tB = @Layout (32, 8)
```
This implies that there are 32x8 threads arranged in a column-major format. Next, we use them to partition the arrays:
```julia
tAgA = @parallelize tA threadIdx().x # (THR_M, THR_K, k)
tBgB = @parallelize tB threadIdx().x # (THR_M, THR_K)
tAsA = @parallelize sA threadIdx().x # (THR_N, THR_K, k)
tBsB = @parallelize sB threadIdx().x # (THR_N, THR_K)
```
For the specific syntax, please refer to [`@parallelize`](@ref). After the partition, copying is simply:
```julia
copyto!(tAsA, view(tAgA, :, :, k))
copyto!(tBsB, view(tBgB, :, :, k))
```
After copying, we proceed to the actual matrix-multiply-accumulate (mma) computation. Similarly, we need to define a layout for the thread group for this purpose:
```julia
tC = @Layout (16, 16)
```
Then we use it to partition gC:
```julia
tCgC = @parallelize gC tC threadIdx().x # (THR_M, THR_N)
tCrC = similar(tCgC)
```
To reduce memory access to C, we also create an array `tCrC` stored in registers, which serves as the accumulator in the mma computation. After the computation, the contents are copied back into `tCgC`.
A and B are slightly different because computing an element in C requires an entire row from A and an entire column from B, which is reflected in the following code:
```julia
tCsA = @parallelize sA tC threadIdx().x (1, :) # (THR_M, bK)
tCsB = @parallelize sB tC threadIdx().x (:, 1) # (THR_N, bK)
```
Congratulations, you have now completed all the partitions, and finally, we can compute the matrix multiplication, just as we would on a CPU:
```julia
for k in axes(tCsA, 2)
for m in axes(tCsA, 1)
for n in axes(tCsB, 1)
@inbounds tCrC[m, n] += tCsA[m, k] * tCsB[n, k]
end
end
end
```
You can also call [`gemm!`] to perform the same operation:
```julia
gemm!(tCrC, tCsA, tCsB, tCrC)
```
The complete kernel code is as follows:
```julia
function matmul_kernel(A, sA_layout, tA,
B, sB_layout, tB,
C, tC)
sA = MoYeSharedArray(eltype(A), sA_layout) # (bM, bK)
sB = MoYeSharedArray(eltype(B), sB_layout) # (bN, bK)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :) # (bM, bN)
gB = @tile mB (bN, bK) (blockIdx().y, :) # (bM, bK, K/bK)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y) # (bN, bK, K/bK)
# copy partition
tAgA = @parallelize gA tA threadIdx().x # (THR_M, THR_K, k)
tBgB = @parallelize gB tB threadIdx().x # (THR_M, THR_K)
tAsA = @parallelize sA tA threadIdx().x # (THR_N, THR_K, k)
tBsB = @parallelize sB tB threadIdx().x # (THR_N, THR_K)
# mma partition
tCsA = @parallelize sA tC threadIdx().x (1, :) # (THR_M, bK)
tCsB = @parallelize sB tC threadIdx().x (:, 1) # (THR_N, bK)
tCgC = @parallelize gC tC threadIdx().x # (THR_M, THR_N)
# accumulator
tCrC = similar(tCgC) # (THR_M, THR_N)
zeros!(tCrC)
for k in axes(tAgA, 3)
copyto!(tAsA, view(tAgA, :, :, k))
copyto!(tBsB, view(tBgB, :, :, k))
cp_async_wait()
sync_threads()
@gc_preserve gemm!(tCrC, tCsA, tCsB, tCrC)
sync_threads()
end
copyto!(tCgC, tCrC)
return nothing
end
```
We still missed a few points, such as:
1. How to design `sA_layout` and `sB_layout`?
For shared memory, we no longer need to consider column-major or row-major but simply need to **avoid bank conflicts**. This can be simply achieved by padding one column.
```julia
sA_layout = make_layout((bM, bK), (_1, bM + _1))
sB_layout = make_layout((bN, bK), (_1, bN + _1))
```
2. How to design `tC`?
The design of `tC` is quite flexible; it only needs to satisfy that the shape of `tC` evenly divides `(bM, bN)`.
3. How to design `tA` and `tB`?
You generally want every 32 threads to access contiguous elements in A and B, so the specific design depends on the memory layout of A and B. This technique is known as **memory coalescing**.
The `matmul` function looks like this:
```julia
function matmul(A, B, C)
bM = _128
bN = _128
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM + _1))
sB_layout = make_layout((bN, bK), (_1, bN + _1))
tA = @Layout (32, 8)
tB = @Layout (32, 8)
tC = @Layout (16, 16)
threads = Int(size(tC))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, tA,
B, sB_layout, tB,
C, tC)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
CUDA.synchronize()
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
```
This concludes the guide to implementing matrix multiplication with MoYe.jl, focusing on efficient memory management and
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 7420 | ## Overlap global-to-shared copies with mma compute
We can overlap global-to-shared memory copies with mma compute.

To do this we will explicitly load data from shared memory to registers for
the mma computation and submit a new load from global memory to shared memory for the next tile
before compute.
```julia
function matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
thr_copy_a = get_slice(copy_A, threadIdx().x)
tAgA = partition_S(thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
thr_copy_b = get_slice(copy_B, threadIdx().x)
tBgB = partition_S(thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
# Copy gmem to smem for k_tile=1
copyto!(copy_A, tAsA, view(tAgA, :, :, :, _1))
copyto!(copy_B, tBsB, view(tBgB, :, :, :, _1))
# mma partition
thr_mma = get_slice(mma_C, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
# mma registers
tCrA = make_fragment_A(thr_mma, tCsA) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB) # (MMA, MMA_N, MMA_K)
tCrC = make_fragment_C(thr_mma, tCgC) # (MMA, MMA_M, MMA_N)
zeros!(tCrC)
k_max = size(tAgA, 4)
for k in 1:k_max
cp_async_wait()
sync_threads()
# copy from smem to rmem
copyto!(tCrA, tCsA)
copyto!(tCrB, tCsB)
sync_threads()
if k < k_max
copyto!(copy_A, tAsA, view(tAgA, :, :, :, k+1))
copyto!(copy_B, tBsB, view(tBgB, :, :, :, k+1))
end
@gc_preserve gemm!(mma_C, tCrC, tCrA, tCrB, tCrC)
end
copyto!(tCgC, tCrC)
return nothing
end
```
## Double buffer
We can also overlap shared-to-registers memory copies with mma compute.
To do this we will need to allocate two shared memory buffers, one for the current compute and one
for the next tile. We prefetch the next tile from global memory to shared memory asynchronously.

```julia
@views function matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
sA = MoYeSharedArray(eltype(A), sA_layout) # (bM, bK, 2)
sB = MoYeSharedArray(eltype(B), sB_layout) # (bN, bK, 2)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
thr_copy_a = get_slice(copy_A, threadIdx().x)
tAgA = partition_S(thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(thr_copy_a, sA) # (CPY, CPY_M, CPY_K, 2)
thr_copy_b = get_slice(copy_B, threadIdx().x)
tBgB = partition_S(thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(thr_copy_b, sB) # (CPY, CPY_N, CPY_K, 2)
# Copy gmem to smem for k_tile=1
copyto!(copy_A, tAsA[:, :, :, 1], tAgA[:, :, :, _1])
copyto!(copy_B, tBsB[:, :, :, 1], tBgB[:, :, :, _1])
# mma partition
thr_mma = get_slice(mma_C, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K, 2)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K, 2)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
# mma registers
tCrA = make_fragment_A(thr_mma, tCsA[:, :, :, _1]) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB[:, :, :, _1]) # (MMA, MMA_N, MMA_K)
tCrC = make_fragment_C(thr_mma, tCgC) # (MMA, MMA_M, MMA_N)
zeros!(tCrC)
cp_async_wait()
sync_threads()
# Copy smem to rmem for k_block=1
smem_read = 1
smem_write = 2
tCsA_p = view(tCsA, :, :, :, smem_read)
tCsB_p = view(tCsB, :, :, :, smem_read)
copyto!(tCrA[:, :, 1], tCsA_p[:, :, _1])
copyto!(tCrB[:, :, 1], tCsB_p[:, :, _1])
k_tile_max = size(tAgA, 4)
k_block_max = static_size(tCrA, 3)
for k_tile in 1:k_tile_max
@loopinfo unroll for k_block in _1:k_block_max
k_block_next = k_block + 1
if k_block == k_block_max
cp_async_wait()
sync_threads()
tCsA_p = view(tCsA, :, :, :, smem_read)
tCsB_p = view(tCsB, :, :, :, smem_read)
k_block_next = 1
end
copyto!(tCrA[:, :, k_block_next], tCsA_p[:, :, k_block_next])
copyto!(tCrB[:, :, k_block_next], tCsB_p[:, :, k_block_next])
if k_block == _1 && k_tile<k_tile_max
copyto!(copy_A, tAsA[:, :, :, smem_write], tAgA[:, :, :, k_tile+1])
copyto!(copy_B, tBsB[:, :, :, smem_write], tBgB[:, :, :, k_tile+1])
smem_read, smem_write = smem_write, smem_read
end
@gc_preserve gemm!(mma_C, tCrC, tCrA[:, :, k_block], tCrB[:, :, k_block], tCrC)
end
end
copyto!(tCgC, tCrC)
return nothing
end
function matmul(A, B, C)
bM = _128
bN = _128
bK = _8
sA_layout = make_layout((bM, bK, _2), (_1, bM + _2, (bM + _2) * bK))
sB_layout = make_layout((bN, bK, _2), (_1, bN + _2, (bN + _2) * bK))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{Float64}, TA}(),
@Layout((32, 8)),
@Layout((2, 1)))
copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{Float64}, TB}(),
@Layout((32, 8)),
@Layout((2, 1)))
mma_C = make_tiled_mma(UniversalFMA{TA,TB, TC}(), # MMA operation
@Layout((32, 8))) # Atom layout
threads = Int(size(mma_C))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
CUDA.synchronize()
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 17208 | # Tensor Cores
Tensor cores are specialized hardware accelerators designed to optimize matrix operations, which are crucial for deep learning and artificial intelligence algorithms.
Enabling tensor cores can be as straightforward as modifying a single line of code in the existing `matmul_kernel` function:
```julia
mma = make_tiled_mma(MMAOP_8x8x4_F32F16F16F32_NT(),
atom_layout,
tiler)
```
!!! note
The NT in MMAOP_8x8x4_F32F16F16F32_NT indicates that A is in M-major order and B is in N-major order.
Let's explore a minimal example
```julia
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN())
print_typst(mma)
```

At first glance, the diagram may seem complex, but the concept is straightforward: the threads collective load data from matrices `A` and `B` according to the specified layout. During the matrix multiply-accumulate (MMA) computation, data is internally shared among threads—a process that is not transparent to the user. Once the computation is complete, each thread stores the results as dictated by the layout of matrix `C` shown in the illustration.
```julia
function matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
thr_copy_a = get_slice(copy_A, threadIdx().x)
tAgA = partition_S(thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
thr_copy_b = get_slice(copy_B, threadIdx().x)
tBgB = partition_S(thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
# mma partition
thr_mma = get_slice(mma, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
tCrA = make_fragment_A(thr_mma, tCsA) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB)
tCrC = make_fragment_C(thr_mma, tCgC)
zeros!(tCrC)
# copy from global to shared
copyto!(copy_A, tAsA, view(tAgA, :, :, :, _1))
copyto!(copy_B, tBsB, view(tBgB, :, :, :, _1))
cp_async_wait()
# copy from shared to registers
copyto!(tCrA, tCsA)
copyto!(tCrB, tCsB)
@gc_preserve gemm!(mma, tCrC, tCrA, tCrB, tCrC)
copyto!(tCgC, tCrC)
@inbounds tCrC[1] # compiler bug, have to load after copyto!
return nothing
end
function matmul(A, B, C)
bM = _16
bN = _8
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM))
sB_layout = make_layout((bN, bK), (bK, _1))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TA}(),
@Layout((4, 8)),
@Layout((4, 1)))
copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt64}, TB}(),
@Layout((8, 4), (4, 1)),
@Layout((1, 2)))
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN())
threads = Int(size(mma))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma)
end
function test()
A = CuArray(reshape(collect(1:16*8) .* 1f0, (16,8)))
B = CuArray(reshape(collect(1:8*8) .* 1f0, (8,8)))
C = CuArray(ones(Float32, (16,8)))
matmul(A, B', C)
CUDA.synchronize()
@test C == A * B
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
```
## LDMatrix
The `ldmatrix` instruction at the warp level facilitates the loading of data from shared memory into registers and suffles them to align with a tensor core MMA operation.
Given a tensor core MMA operation, the shuffling can be "inverted" to obtain a `TiledCopy` count for the shuffling.
```julia
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN())
smem_copy_A = make_tiled_copy_A(CopyAtom{LDSM_U32x4_N, Float32}(), mma)
print_typst(smem_copy_A)
```

The resulting layout on the right hand side matches the layout of A in the `mma`.
!!! note
The `TN` in `MMAOP_16x8x8_F32TF32TF32F32_TN` means that both A and B are in `K`-major order.
The `N` in `LDSM_U32x4_N` means the source array is `K`-major order.
!!! note
The `ldmatrix` requires four consecutive threads to load 16 consecutive bytes, demanding that the layout of `A` in shared memory meet this specification.
For B:
```julia
smem_copy_B = make_tiled_copy_B(CopyAtom{LDSM_U32x2_N, Float32}(), mma)
print_typst(smem_copy_B)
```

!!! Note
The visualization of `B` in `mma` is draw as `(K, N)` but `(N, K)` in `smem_copy_B`.
We then use `smem_copy_A` and `smem_copy_B` to re-tile the shared memory and registers
```julia
smem_thr_copy_A = get_slice(smem_copy_A, threadIdx().x)
smem_thr_copy_B = get_slice(smem_copy_B, threadIdx().x)
tCsA_retiled = partition_S(smem_thr_copy_A, sA)
tCsB_retiled = partition_S(smem_thr_copy_B, sB)
tCrA_retiled = retile_D(smem_thr_copy_A, tCrA)
tCrB_retiled = retile_D(smem_thr_copy_B, tCrB)
```
Complete code:
```julia
function matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# gmem copy partition
gmem_thr_copy_a = get_slice(gmem_copy_A, threadIdx().x)
tAgA = partition_S(gmem_thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(gmem_thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
gmem_thr_copy_b = get_slice(gmem_copy_B, threadIdx().x)
tBgB = partition_S(gmem_thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(gmem_thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
# copy from global to shared
copyto!(gmem_copy_A, tAsA, view(tAgA, :, :, :, _1))
copyto!(gmem_copy_B, tBsB, view(tBgB, :, :, :, _1))
# mma partition
thr_mma = get_slice(mma, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
tCrA = make_fragment_A(thr_mma, tCsA) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB) # (MMA, MMA_N, MMA_K)
tCrC = make_fragment_C(thr_mma, tCgC) # (MMA, MMA_M, MMA_N)
zeros!(tCrC)
# retile
smem_thr_copy_A = get_slice(smem_copy_A, threadIdx().x)
smem_thr_copy_B = get_slice(smem_copy_B, threadIdx().x)
tCsA_retiled = partition_S(smem_thr_copy_A, sA)
tCsB_retiled = partition_S(smem_thr_copy_B, sB)
tCrA_retiled = retile_D(smem_thr_copy_A, tCrA)
tCrB_retiled = retile_D(smem_thr_copy_B, tCrB)
cp_async_wait()
# copy from shared to registers
copyto!(smem_copy_A, tCrA_retiled, tCsA_retiled)
copyto!(smem_copy_B, tCrB_retiled, tCsB_retiled)
@gc_preserve gemm!(mma, tCrC, tCrA, tCrB, tCrC)
copyto!(tCgC, tCrC)
@inbounds tCrC[1] # compiler bug, have to load after copyto!
return nothing
end
function matmul(A, B, C)
bM = _16
bN = _8
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM))
sB_layout = make_layout((bN, bK), (bK, _1))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
gmem_copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TA}(),
@Layout((4, 8)),
@Layout((4, 1)))
gmem_copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt64}, TB}(),
@Layout((8, 4), (4, 1)),
@Layout((1, 2)))
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN())
# Note: A is M-major so we can only use `UniversalCopy`
smem_copy_A = make_tiled_copy_A(CopyAtom{UniversalCopy{TA}, TA}(), mma)
smem_copy_B = make_tiled_copy_B(CopyAtom{LDSM_U32x2_N, TB}(), mma)
threads = Int(size(mma))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
end
```
## Tiled LdMatrix
So far we have only talked about how to use a single `ldmatrix` instruction.
We can use `tile_to_shape` to tile it to a larger shape.
```julia
sB_atom_layout = make_layout((_8, _8), (_8, _1))
sB_layout = tile_to_shape(sB_atom_layout, static((24, 16)))
print_layout(sB_atom_layout)
print_layout(sB_layout)
```
Note how the internal layout of `sB_atom_layout` is preserved in `sB_layout`.
Updated code:
```julia
function matmul(A, B, C)
bM = _16
bN = _8
bK = _16
sA_atom_layout = @Layout (16, 8) (1, 16)
sB_atom_layout = @Layout (8, 8) (8, 1)
sA_layout = MoYe.tile_to_shape(sA_atom_layout, (bM, bK))
sB_layout = MoYe.tile_to_shape(sB_atom_layout, (bN, bK))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
gmem_copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TA}(),
@Layout((4, 8)),
@Layout((4, 1)))
gmem_copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TB}(),
@Layout((8, 4), (4, 1)),
@Layout((1, 4)))
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN())
# Note: A is M-major so we can only use `UniversalCopy`
smem_copy_A = make_tiled_copy_A(CopyAtom{UniversalCopy{TA}, TA}(), mma)
smem_copy_B = make_tiled_copy_B(CopyAtom{LDSM_U32x2_N, TB}(), mma)
threads = Int(size(mma))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
end
function test()
A = CUDA.randn(Float32, 16, 16) # M-major
B = CUDA.randn(Float32, 16, 8) # K-major
C = CUDA.randn(Float32, 16, 8)
matmul(A, B', C)
CUDA.synchronize()
@test C == A * B
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
```
## Double buffering
```julia
@views function matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
sA = MoYeSharedArray(eltype(A), sA_layout) # (bM, bK, 2)
sB = MoYeSharedArray(eltype(B), sB_layout) # (bN, bK, 2)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# gmem copy partition
gmem_thr_copy_A = get_slice(gmem_copy_A, threadIdx().x)
tAgA = partition_S(gmem_thr_copy_A, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(gmem_thr_copy_A, sA) # (CPY, CPY_M, CPY_K, 2)
gmem_thr_copy_B = get_slice(gmem_copy_B, threadIdx().x)
tBgB = partition_S(gmem_thr_copy_B, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(gmem_thr_copy_B, sB) # (CPY, CPY_N, CPY_K, 2)
# Copy gmem to smem for k_tile=1
copyto!(gmem_copy_A, tAsA[:, :, :, _1], tAgA[:, :, :, _1])
copyto!(gmem_copy_B, tBsB[:, :, :, _1], tBgB[:, :, :, _1])
# mma partition
thr_mma = get_slice(mma, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K, 2)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K, 2)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
tCrA = make_fragment_A(thr_mma, tCsA[:, :, :, _1]) # (MMA, MMA_M, MMA_K)
tCrB = make_fragment_B(thr_mma, tCsB[:, :, :, _1]) # (MMA, MMA_N, MMA_K)
tCrC = make_fragment_C(thr_mma, tCgC) # (MMA, MMA_M, MMA_N)
zeros!(tCrC)
# retile
smem_thr_copy_A = get_slice(smem_copy_A, threadIdx().x)
smem_thr_copy_B = get_slice(smem_copy_B, threadIdx().x)
tCsA_retiled = partition_S(smem_thr_copy_A, sA) # (MMA, MMA_M, MMA_K, 2)
tCsB_retiled = partition_S(smem_thr_copy_B, sB) # (MMA, MMA_N, MMA_K, 2)
tCrA_retiled = retile_D(smem_thr_copy_A, tCrA) # (MMA, MMA_M, MMA_K)
tCrB_retiled = retile_D(smem_thr_copy_B, tCrB) # (MMA, MMA_N, MMA_K)
cp_async_wait()
sync_threads()
# Copy smem to rmem for k_block=1
smem_read = 1
smem_write = 2
tCsA_p = view(tCsA_retiled, :, :, :, smem_read)
tCsB_p = view(tCsB_retiled, :, :, :, smem_read)
copyto!(smem_copy_A, tCrA_retiled[:, :, _1], tCsA_p[:, :, _1])
copyto!(smem_copy_B, tCrB_retiled[:, :, _1], tCsB_p[:, :, _1])
k_tile_max = size(tAgA, 4)
k_block_max = static_size(tCrA, 3)
for k_tile in 1:k_tile_max
@loopinfo unroll for k_block in _1:k_block_max
k_block_next = k_block + 1
if k_block == k_block_max
cp_async_wait()
sync_threads()
tCsA_p = view(tCsA_retiled, :, :, :, smem_read)
tCsB_p = view(tCsB_retiled, :, :, :, smem_read)
k_block_next = 1
end
copyto!(smem_copy_A, tCrA_retiled[:, :, k_block_next], tCsA_p[:, :, k_block_next])
copyto!(smem_copy_B, tCrB_retiled[:, :, k_block_next], tCsB_p[:, :, k_block_next])
if k_block == _1 && k_tile<k_tile_max
copyto!(gmem_copy_A, tAsA[:, :, :, smem_write], tAgA[:, :, :, k_tile+1])
copyto!(gmem_copy_B, tBsB[:, :, :, smem_write], tBgB[:, :, :, k_tile+1])
smem_read, smem_write = smem_write, smem_read
end
@gc_preserve gemm!(mma, tCrC, tCrA[:, :, k_block], tCrB[:, :, k_block], tCrC)
end
end
copyto!(tCgC, tCrC)
sync_threads()
return nothing
end
function matmul(A, B, C)
bM = _128
bN = _128
bK = _16
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
mma = make_tiled_mma(MMAOP_16x8x8_F32TF32TF32F32_TN(),
@Layout((2,2,1), (2,1,1)),
(_32,_32,_8))
gmem_copy_A = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TA}(),
@Layout((16, 8)),
@Layout((4, 1)))
gmem_copy_B = make_tiled_copy(CopyAtom{CPOP_ASYNC_CACHEALWAYS{UInt128}, TB}(),
@Layout((32, 4), (4, 1)),
@Layout((1, 4)))
# A is M-major so we cannot use LDSM_U32x4_N
smem_copy_A = make_tiled_copy_A(CopyAtom{UniversalCopy{TA}, TA}(), mma)
smem_copy_B = make_tiled_copy_B(CopyAtom{LDSM_U32x4_N, TB}(), mma)
sA_atom_layout = @Layout (32, 8) (1, 32)
sB_atom_layout = @Layout (8, 16) (16, 1)
sA_layout = tile_to_shape(sA_atom_layout, (bM, bK, _2))
sB_layout = tile_to_shape(sB_atom_layout, (bN, bK, _2))
threads = Int(size(mma))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, gmem_copy_A, smem_copy_A,
B, sB_layout, gmem_copy_B, smem_copy_B,
C, mma)
end
function test()
A = CUDA.randn(Float32, 2048, 256) # M-major
B = CUDA.randn(Float32, 256, 2048) # K-major
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B', C)
CUDA.synchronize()
@test C == A * B
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 8836 | Tiled Copy
We have already introduced how to copy data using @tile and @partition. This process might still appear somewhat cumbersome, and `TiledCopy` serves to simplify it.
Consider the following example where we employ six threads to transfer an array src of shape (4, 9) into another array dst with the identical shape. The relationship mapping logic coordinates to thread IDs can be visualized as:
```julia
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
```
Here, each thread is assigned a data segment defined by the layout (2,3):(1,2). The group of threads operates within a layout of (2,3):(3,1), referred to as `val_layout` and `thr_layout`, respectively.
To begin, we initialize these arrays:
```@repl tiled_copy
using MoYe
src_buffer = collect(1:36) .* 0.1;
src = MoYeArray(src_buffer, @Layout((4,9)))
dst_buffer = zeros(36);
dst = MoYeArray(dst_buffer, make_layout((_4,_9)));
```
We then proceed to set up a `TiledCopy`:
```@repl tiled_copy
thr_layout = @Layout (2, 3) (3, 1)
val_layout = @Layout (2, 3) (1, 2)
tiled_copy = make_tiled_copy(
CopyAtom{UniversalCopy{Float64}, Float64}(),
thr_layout,
val_layout)
```
The second parameter Float64 in CopyAtom indicates that the copied data is of `Float64` type. `UniversalCopy{Float64}` is used for vectorized copy operations, meaning that the data is recast to Float64, i.e., without vectorization. Here is a vectorized `TiledCopy`
```julia
tiled_copy_vec = make_tiled_copy(
CopyAtom{UniversalCopy{UInt128}, Float64}(),
thr_layout,
val_layout)
```
Note that vectorized copy must be comatiable with `val_layout`, i.e., `val_layout` needs to have
enough and divisible number of elements to be vectorized.
You can visualize this `tiled_copy` by using `print_typst(tiled_copy)`. Visit [typst](https://typst.app), copy the printed string, and you will see the following image:

The two tables respectively represent the thread distribution of src and dst, which are the same here. There are also some PTX instructions involved in reallocating each thread's data, for example:
```julia
print_typst(make_tiled_copy(MoYe.CopyAtom{LDSM_U32x4_N, UInt16}(),
@Layout((16,2)), @Layout((2,4))));
```

As you can see, both thr_layout and val_layout are actually defined on dst.
We will go back to `ldmatrix` when we talk about tensor cores.
Returning to our example, after making the `tiled_copy`, we can use it to partition data.
```@repl tiled_copy
thr_idx = 2;
thr_copy = get_slice(tiled_copy, thr_idx);
dst_t = partition_D(thr_copy, dst);
dst_t.layout
src_t = partition_S(thr_copy, src);
src_t.layout
copyto!(tiled_copy, dst_t, src_t);
dst
```
You can see that the second thread has completed the copy. The shape of `dst_t` is `(CPY, CPY_M, CPY_K)` representing
the the num of values handle by a thread in a single tile, and the demensions tiled in `dst`'s shape. Notably,
the left most mode of `CPY` stands for the number of `vectorized` values. In this case it is 1, but try changing to `UniversalCopy{UInt128}` and see how the result changes.
The NVIDIA Ampere architecture supports cuda::memcpy_async for asynchronously copying data between GPU global memory and shared memory without needing threads to orchestrate the data movement. In previous architectures, copying from global memory to shared memory usually involved registers for intermediation, corresponding to this syntax:
```@repl tiled_copy
thr_idx = 3;
thr_copy = get_slice(tiled_copy, thr_idx);
dst_t = partition_D(thr_copy, dst);
src_t = partition_S(thr_copy, src);
dst_r = make_fragment_like(dst_t);
copyto!(tiled_copy, dst_r, src_t);
copyto!(tiled_copy, dst_t, dst_r);
dst
```
## TiledMMA
In this section, we'll show you how to use `TiledMMA` to replace an mma partition. First, invoke the function make_tiled_mma as follows:
```@repl tiled_copy
mma_C = make_tiled_mma(UniversalFMA{TA,TB, TC}(), # MMA operation
@Layout((16,16))) # Atom layout
```
You can experiment with replacing `UniversalFMA` with another `MMAOp` and use print_typst to view the results. Here are the predefined MMAOps:
```@repl tiled_copy
MoYe.mma_ops_list
```
```julia
thr_mma = get_slice(mma_C, threadIdx().x);
tCsA = partition_A(sA);
tCsB = partition_B(sB);
tCgC = partition_C(gC);
tCrC = make_fragment_like(tCgC)
```
These instructions operate on tensor cores, a topic we haven't covered yet (but will soon!).
## MatMul
Now, we use `TiledCopy` and `TiledMMA` to upgrade the previous matmul_kernel.
```julia
function matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
sA = MoYeSharedArray(eltype(A), sA_layout)
sB = MoYeSharedArray(eltype(B), sB_layout)
mA = MoYeArray(A)
mB = MoYeArray(B)
mC = MoYeArray(C)
bM = size(sA_layout, 1)
bN = size(sB_layout, 1)
bK = size(sB_layout, 2)
gA = @tile mA (bM, bK) (blockIdx().x, :)
gB = @tile mB (bN, bK) (blockIdx().y, :)
gC = @tile mC (bM, bN) (blockIdx().x, blockIdx().y)
# copy partition
thr_copy_a = get_slice(copy_A, threadIdx().x)
tAgA = partition_S(thr_copy_a, gA) # (CPY, CPY_M, CPY_K, k)
tAsA = partition_D(thr_copy_a, sA) # (CPY, CPY_M, CPY_K)
tArA = make_fragment_like(tAsA) # (CPY, CPY_M, CPY_K)
thr_copy_b = get_slice(copy_B, threadIdx().x)
tBgB = partition_S(thr_copy_b, gB) # (CPY, CPY_N, CPY_K, k)
tBsB = partition_D(thr_copy_b, sB) # (CPY, CPY_N, CPY_K)
tBrB = make_fragment_like(tBsB) # (CPY, CPY_N, CPY_K)
# mma partition
thr_mma = get_slice(mma_C, threadIdx().x)
tCsA = partition_A(thr_mma, sA) # (MMA, MMA_M, MMA_K)
tCsB = partition_B(thr_mma, sB) # (MMA, MMA_M, MMA_K)
tCgC = partition_C(thr_mma, gC) # (MMA, MMA_M, MMA_N)
# overlap copy and compute
copyto!(copy_A, tArA, view(tAgA, :, :, :, _1))
copyto!(copy_B, tBrB, view(tBgB, :, :, :, _1))
# accumulator
tCrC = make_fragment_C(thr_mma, tCgC)
zeros!(tCrC)
k_max = size(tAgA, 4)
for k in 1:k_max
sync_threads()
copyto!(tAsA, tArA)
copyto!(tBsB, tBrB)
sync_threads()
# load the next tile
k_next = k < k_max ? k+1 : k
copyto!(copy_A, tArA, view(tAgA, :, :, :, k_next))
copyto!(copy_B, tBrB, view(tBgB, :, :, :, k_next))
@gc_preserve gemm!(mma_C, tCrC, tCsA, tCsB, tCrC)
end
copyto!(tCgC, tCrC)
return nothing
end
function matmul(A, B, C)
bM = _128
bN = _128
bK = _8
sA_layout = make_layout((bM, bK), (_1, bM + _1))
sB_layout = make_layout((bN, bK), (_1, bN + _1))
TA = eltype(A)
TB = eltype(B)
TC = eltype(C)
copy_A = make_tiled_copy(CopyAtom{UniversalCopy{TA}, TA}(),
@Layout((32, 8)),
@Layout((1, 1)))
copy_B = make_tiled_copy(CopyAtom{UniversalCopy{TB}, TB}(),
@Layout((32, 8)),
@Layout((1, 1)))
mma_C = make_tiled_mma(UniversalFMA{TA,TB, TC}(), # MMA operation
@Layout((32,8))) # Atom layout
threads = Int(size(mma_C))
blocks = (cld(size(A, 1), bM), cld(size(B, 1), bN))
@cuda threads=threads blocks=blocks matmul_kernel(A, sA_layout, copy_A,
B, sB_layout, copy_B,
C, mma_C)
end
function test()
A = CUDA.randn(Float32, 2048, 256)
B = CUDA.randn(Float32, 2048, 256)
C = CUDA.randn(Float32, 2048, 2048)
matmul(A, B, C)
CUDA.synchronize()
@test C == A * B'
CUDA.unsafe_free!(A)
CUDA.unsafe_free!(B)
CUDA.unsafe_free!(C)
end
test()
```
## Vectorized copy
As previously mentioned, you can change to `UniversalCopy{Float64}` or `UniversalCopy{UInt128}`
to enabled vectoried copy. But we also need to keep in mind the copies are **coalesced**.
For example, the following one is not coalesced
```julia
copy_A = make_tiled_copy(CopyAtom{UniversalCopy{Float64}, TA}(),
@Layout((32, 8)),
@Layout((4, 1)))
```
since thread 1 is loading from `[1], [2]` and thead 2 is loading from `[5], [6]`.
Theses are coalesced:
```julia
copy_A = make_tiled_copy(CopyAtom{UniversalCopy{Float64}, TA}(),
@Layout((32, 8)),
@Layout((2, 1)))
copy_A = make_tiled_copy(CopyAtom{UniversalCopy{UInt128}, TA}(),
@Layout((32, 8)),
@Layout((4, 1)))
``` | MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"BSD-3-Clause"
] | 4.0.0 | bdb497426ba0848924f73995feac59f34c495d28 | docs | 7198 | # Matrix Transpose Tutorial
This tutorial illustrates the process copying data between global memory and shared memory using `MoYe`.
In this tutorial, we will use the following configuration:
- Array size: 2048 x 2048
- Block size: 32 x 32
- Thread size: 32 x 8
## Copy Kernel
We start with a copy kernel.
```julia
using MoYe, Test, CUDA
function copy_kernel(dest, src, smemlayout, blocklayout, threadlayout)
moye_smem = MoYeSharedArray(eltype(dest), smemlayout)
moye_dest = MoYeArray(dest)
moye_src = MoYeArray(src)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocktile_dest = @tile moye_dest (bM, bN) (blockIdx().x, blockIdx().y)
blocktile_src = @tile moye_src (bM, bN) (blockIdx().x, blockIdx().y)
threadtile_dest = @parallelize blocktile_dest threadlayout threadIdx().x
threadtile_src = @parallelize blocktile_src threadlayout threadIdx().x
threadtile_smem = @parallelize moye_smem threadlayout threadIdx().x
for i in eachindex(threadtile_smem)
threadtile_smem[i] = threadtile_src[i]
end
for i in eachindex(threadtile_dest)
threadtile_dest[i] = threadtile_smem[i]
end
return nothing
end
function test_copy_async(M, N)
a = CUDA.rand(Float32, M, N)
b = CUDA.rand(Float32, M, N)
blocklayout = @Layout (32, 32) # 32 * 32 elements in a block
smemlayout = @Layout (32, 32) # 32 * 32 elements in shared memory
threadlayout = @Layout (32, 8) # 32 * 8 threads in a block
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocks = (cld(M, bM), cld(N, bN))
threads = Int(size(threadlayout))
@cuda blocks=blocks threads=threads copy_kernel(a, b, smemlayout, blocklayout, threadlayout)
CUDA.synchronize()
@test a == b
end
test_copy_async(2048, 2048)
```
## Code Explanation
The device function follows these steps:
1. Allocate shared memory using `MoYeSharedArray` with a static layout.
2. Wrap the destination and source arrays with dynamic layouts.
3. Get the size of each block in the grid (bM and bN).
4. Create local tiles for the destination and source arrays using [`@tile`](@ref).
5. Partition the local tiles into thread tiles using [`@parallelize`](@ref).
6. Copy data from the source thread tile to the shared memory thread tile.
7. Synchronize threads.
8. Copy data back from the shared memory thread tile to the destination thread tile.
The host function tests the copy_kernel function with the following steps:
1. Define the dimensions M and N for the source and destination arrays.
2. Create random GPU arrays a and b with the specified dimensions using CUDA.rand.
3. Define the block and thread layouts using [`@Layout`](@ref) for creating **static** layouts.
4. Calculate the number of blocks in the grid using `cld`. Here we assume the divisibility.
A few things to notice here:
1. [`@tile`](@ref) means that all of our blocks cover the entire array.
2. Each block contains 32 x 32 elements of the original array, but we have 32 x 8 threads per block, which means that each thread processes 4 elements. The code
```julia
@parallelize blocktile_dest threadlayout threadIdx().x
```
returns the set of elements that the thread corresponding to threadIdx().x is processing, which in this case is an array of length 4.
3. Once we have completed all the tiling, we just perform computations as if we were dealing with a regular array:
```julia
for i in eachindex(threadtile_smem)
threadtile_smem[i] = threadtile_src[i]
end
```
You need not concern yourself with index bookkeeping, it is implicitly handled by the layout; instead, concentrate on the computation aspect, as it is a fundamental objective of MoYe.jl.
Additionally, you can use the [`copyto!`](@ref) function for static `MoYeArray` with two key feature: copying from global memory to shared memory automatically calls `cp.async` (Requires `sm_80` or higher), and automatic vectorization when possible.
Here is how it would look like using `copyto!`.
```julia
function copy_kernel(dest, src, smemlayout, blocklayout, threadlayout)
moye_smem = MoYeSharedArray(eltype(dest), smemlayout)
moye_dest = MoYeArray(dest)
moye_src = MoYeArray(src)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocktile_dest = @tile moye_dest (bM, bN) (blockIdx().x, blockIdx().y)
blocktile_src = @tile moye_src (bM, bN) (blockIdx().x, blockIdx().y)
threadtile_dest = @parallelize blocktile_dest threadlayout threadIdx().x
threadtile_src = @parallelize blocktile_src threadlayout threadIdx().x
threadtile_smem = @parallelize moye_smem threadlayout threadIdx().x
copyto!(threadtile_smem, threadtile_src)
cp_async_wait()
copyto!(threadtile_dest, threadtile_smem)
return nothing
end
```
## Padding Shared Memory
Note that in the above code, the layout of the shared memory is the same as the block layout. However, we often need to pad the shared array to avoid bank conflicts. We just need to change one line of code:
```julia
smemlayout = @Layout (32, 32) (1, 31) # pad one row
```
Also note that our kernel will recompile for different static layout parameters.
## Transpose kernel
Now we turn to the transpose kernel.
```julia
function transpose_kernel(dest, src, smemlayout, blocklayout, threadlayout)
moye_smem = MoYeSharedArray(eltype(dest), smemlayout)
moye_src = MoYeArray(src)
moye_dest = MoYeArray(dest)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocktile_src = @tile moye_src (bM, bN) (blockIdx().x, blockIdx().y)
blocktile_dest = @tile moye_dest (bN, bM) (blockIdx().y, blockIdx().x)
threadtile_dest = @parallelize blocktile_dest threadlayout threadIdx().x
threadtile_src = @parallelize blocktile_src threadlayout threadIdx().x
threadtile_smem = @parallelize moye_smem threadlayout threadIdx().x
copyto!(threadtile_smem, threadtile_src)
cp_async_wait()
sync_threads()
moye_smem′ = MoYe.transpose(moye_smem)
threadtile_smem′ = @parallelize moye_smem′ threadlayout threadIdx().x
copyto!(threadtile_dest, threadtile_smem′)
return nothing
end
function test_transpose(M, N)
a = CUDA.rand(Float32, M, N)
b = CUDA.rand(Float32, N, M)
blocklayout = @Layout (32, 32)
smemlayout = @Layout (32, 32) (1, 33)
threadlayout = @Layout (32, 8)
bM = size(blocklayout, 1)
bN = size(blocklayout, 2)
blocks = (cld(M, bM), cld(N, bN))
threads = Int(size(threadlayout))
@cuda blocks=blocks threads=threads transpose_kernel(a, b, smemlayout, blocklayout, threadlayout)
CUDA.synchronize()
@test a == transpose(b)
end
test_transpose(2048, 2048)
```
It is almost identical to the copy kernel, but we would need to transpose the shared memory by simply transposing its layout
```julia
moye_smem′ = MoYe.transpose(moye_smem)
```
and then compute the new thread tiles. Note that each thread would work on different elements now so we need to call `sync_threads()`.
| MoYe | https://github.com/YichengDWu/MoYe.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 629 | using CBFV
using Documenter
makedocs(;
modules=[CBFV],
authors="Stefan Bringuier <[email protected]> and contributors",
repo="https://github.com/JuliaMatSci/CBFV.jl/blob/{commit}{path}#L{line}",
sitename="CBFV.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://JuliaMatSci.github.io/CBFV.jl",
assets=String[],
),
pages=[
"Intro" => "index.md",
"Examples" => "examples.md",
"API" => "api.md",
],
)
Modules = [CBFV]
deploydocs(;
repo="github.com/JuliaMatSci/CBFV.jl",
devbranch="master"
)
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 396 | # see LICENSE
module CBFV
using ProgressBars
using CSV
using DataFrames
export FileName
export readdatabasefile
export processelementdatabase
export processinputdata
export generatefeatures
include("GlobalConst.jl")
include("Types.jl")
include("Errors.jl")
include("Databases.jl")
include("ParseFormula.jl")
include("Composition.jl")
include("ProcessData.jl")
include("Featurization.jl")
end
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 1845 | # see LICENSE
"""
elementalcomposition(formula;frmtarray=true)
Construct a element count fdictionary.
# Arguments
-`formula::String`: chemical formula
-`frmtarray::Bool`: flag indicating type of return value
# Returns
-`amountelement::Dict{String,Float64} or Tuple{Array,Array}`
""" function elementalcomposition(formula::String;frmtarray=true)
elementmap = parseformula(formula)
amountelement = Dict{String,Float64}()
for (key,val) in elementmap
if abs(val) ≥ 1.0e-4
amountelement[key] = val
end
end
return frmtarray ? dicttoarray(amountelement) : amountelement
end # function elementalcomposition
"""
fractionalcomposition(formula;frmtarray=true)
Construct a composition fraction dictionary.
# Arguments
-`formula::String`: chemical formula
-`frmtarray::Bool`: flag indicating type of return value
# Returns
-`compositionfrac::Dict{String,Float64} or Tuple{Array,Array}`
""" function fractionalcomposition(formula::String;frmtarray=true)
# this part we need the function call frmtarray=false
amountelement = elementalcomposition(formula,frmtarray=false)
natoms = sum(abs.(values(amountelement)))
compositionfrac = Dict(key => amountelement[key]/natoms for key in keys(amountelement))
return frmtarray ? dicttoarray(compositionfrac) : compositionfrac
end # function fractionalcomposition
"""
dicttoarray(dict)
convert a dictionary of Dict{String,T<:Number} to two arrays of keys and values.
# Arguments
-`dict::Dict{String,Number}`: dictionary to convert
# Returns
-`k::Array{Number}`: an array corresponding to the keys
-`v::Array{Number}`: an array corresponding to the values
""" function dicttoarray(dict::Dict{String,T}) where T<:Number
k = [a for a in keys(dict)]
v = [c for c in values(dict)]
return k,v
end # function dicttoarray | CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 1694 | # see LICENSE
"""
generate_available_databases()
# Returns
-`dictfiles::Dict{String,String}`: database name and filename+extension
# TODO
- This will eventually get replaced by using and `Artifcats.toml` that will
provide the interface for getting the database.
""" function generate_available_databases()
path = joinpath(rootdir,"databases");
listfiles = split.(readdir(path),".")
dictfiles = Dict(String(l[1])=>joinpath(path,l[1]*"."*l[2]) for l in listfiles)
pop!(dictfiles,"README")
return dictfiles
end # function generatedatabases
show_available_databases() = show(keys(generate_available_databases()))
"""
readdatabasefile(pathtofile)
Returns DataFrame of an elemental database file in [databases/](databases/)
# Arguments
- `pathtofile::String`: path to the CSV formatted file to read
- `stringtype::Type{Union{String,InlineString}}=String` : `CSV.jl` string storage type
- `pool::Bool=false` : `CSV.File` will pool `String` column values.
# Returns
- `data::DataFrame`: the dataframe representation of the csv file.
!!! note
Some of the behaviors of `CSV.jl` will create data types that are inconnsistant with
the several function argument types in `CBFV`. If you use this function to read the
data files the data frame constructed via CSV will work properly.
"""
function readdatabasefile(pathtofile::AbstractString;
stringtype::Type{T}=String,
pool=false) where T<:Union{String,InlineString}
# Use CSV and dataframes
data = CSV.File(pathtofile,stringtype=stringtype,pool=pool) |> DataFrame
return data
end # function readdatabasefile
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 1490 | # see LICENSE
function checkifempty(dataframe::DataFrame)
if isempty(dataframe)
error("Dataframe is empty!")
end
return nothing
end
function checkdataframe(dataframe::DataFrame)
if !hasproperty(dataframe,:formula) && !hasproperty(dataframe,:target)
error("Dataframe is missing columns :formula or :target")
end
return nothing
end
function checkcombineallowed(dataframe::DataFrame)
#extrprops = dataframe[!,Not([:formula,:target])]
if !isempty(dataframe)
return true
else
@warn "Combining of features requested but none exist, skipping!"
return false
end
end
function elementmissinginfo(element::String,formula::String)
@info("The elemental database didn't contain the $(element) in for \n
input formula $(formula), so values is being set to NaN.")
end # elementmissing
function elementwarn(element,formula;row=nothing)
if row !== nothing
@warn("$(element) in chemical formula $(formula) on row $(row) is not a valid symbol
or is an unsupported element, this formula/entry is being skipped.")
else
@warn("$(element) in chemical formula $(formula) is not a valid symbol
or is an unsupported element, this formula/entry is being skipped.")
end
return nothing
end # function elementwarn
function databaseerror(name::String)
error("The database or file name $(name) could not be found or loaded")
return nothing
end # function databaseerror | CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 9645 | # see LICENSE
""" combinefeatures(features,extras)
combinefeatures(features,featnames,extras)
Combines existing features in data with the prepared features. Returns additional
vector of column names for a database.
# Arguments
- `features::AbstractArray`: Generated features of data
- `extras::DataFrame`: The data frame representation of the orignial data.
- `featnames::Vector`: The column names of the generated features.
# Returns
- `newfeatures::AbstractArray`: Combined features
- `combfeatnames::Vector{String}`: Combined names of feature columns.
"""
function combinefeatures(features::AbstractArray, extras::DataFrame)
if checkcombineallowed(extras)
extrasarry = Array(extras)
newfeatures = hcat(features, extrasarry)
else
newfeatures = features
end
return newfeatures
end # function combinefeatures
combinefeatures(features::AbstractArray, featnames::Vector, extras::DataFrame) = begin
if checkcombineallowed(extras)
extrasarry = Array(extras)
newfeatures = hcat(features, extrasarry)
combfeatnames = vcat(featnames, names(extras))
else
newfeatures = features
combfeatnames = featnames
end
return newfeatures,combfeatnames
end
"""
assignfeatures(processeddata,formulae,sumfeatures)
This is the primary function that assigns the features based on the CBFV approach. For more
details its best to see the original python CBFV and references in README file.
# Arguments
- `processeddata::Vector{Dict{Symbol,Any}}` : the formulas processed against elemental database
- `formulae::AbstractArray` : the formula string values, this should be some subtype of `Array{String,1}`
- `sumfeatures::Bool=false` : wheter to create a `sum_` feature vector
# Returns
- `featuresarry::Vector{Matrix{Float64}}` : feature vectors for each row in original data set.
- `skippedformula::Vector{String}` : skipped formulas
!!! note
The `generatefeatures` call does not do anything (i.e. return) the skippedformulas.
"""
function assignfeatures(processeddata::Vector{Dict{Symbol,Any}},
formulae::AbstractArray,
sumfeatures::Bool=false)
iterformulae = ProgressBar(1:length(formulae))
skippedformula = Array{String,1}()
features = Vector{Matrix{Float64}}(undef, length(formulae))
Threads.@threads for i in iterformulae
formula = formulae[i]
amount = processeddata[i][:amount]::Vector{Float64}
properties = processeddata[i][:eleprops]::Matrix{Float64}
# Each formula has a n-element by m-feature matrix representation.
# Construct all the feature vectors
frange = [e[2] - e[1] for e in extrema(properties, dims=1)]
fmax = maximum(properties, dims=1)
fmin = minimum(properties, dims=1)
_, fraccomp = fractionalcomposition(formula)
favg = sum(fraccomp .* properties, dims=1) #FIX: Not sure whats going on here
fdev = sum(fraccomp .* abs.(properties .- favg), dims=1)
prominant = isapprox.(fraccomp, maximum(fraccomp))
fmode = minimum(properties[prominant, :], dims=1)
fweight = sumfeatures ? sum(amount .* properties, dims=1) : amount .* properties
if sumfeatures
features[i] = hcat(fweight, favg, fdev, frange, fmax, fmin, fmode)
else
features[i] = hcat(favg, fdev, frange, fmax, fmin, fmode)
end
set_description(iterformulae, "Assigning features...")
end
featuresarry = reduce(vcat, features)
return featuresarry, skippedformula
end # function assignfeatures
"""
constructfeaturedataframe(featcolnames,features,extrafeatures,sumfeatures)
Return a `DataFrame` data type given the features with column names and if extra features
are to be added. In addition if the summation statistics should be used as a feature. The
column name prefixes are fixed based on the CBFV approach which is to use the formula statistical
moments from the element features in the formula.
# Arguments
- `featcolnames::Vector{String}` : The name of the columns for the feature vectors
- `features::Array{Float64,2}` : The feature vectors
- `extrafeatures::Tuple{Bool,DataFrame}` : These are the features carried from the input data
- `sumfeatures::Bool` : wheter or not to add sum statistics feature vector
# Returns
- `DataFrame` : the dataframe for the features
"""
function constructfeaturedataframe(featcolnames::Vector{String},
features::Array{Float64,2},
extrafeatures::Tuple{Bool,DataFrame},
sumfeatures::Bool)
if sumfeatures
colprefixes = ["sum_", "avg_", "dev_", "range_", "max_", "min_", "mode_"]
else
colprefixes = ["avg_", "dev_", "range_", "max_", "min_", "mode_"]
end
modcolnames = []
for p in colprefixes
push!(modcolnames, fill(p, length(featcolnames)) .* featcolnames)
end
featnames = reduce(vcat, modcolnames)
dictfeatnames = Dict{String,Vector}()
if extrafeatures[1]
combfeatures,combinedfeatnames = combinefeatures(features, featnames, extrafeatures[2])
for (i, n) in enumerate(combinedfeatnames)
dictfeatnames[n] = combfeatures[:,i]
end
else
for (i, n) in enumerate(featnames)
dictfeatnames[n] = features[:, i]
end
end
return DataFrame(dictfeatnames)
end # function constructfeaturedataframe
"""
generatefeatures(data; elementdata,dropduplicate,combine,sumfeatures,returndataframe)
generatefeatures(dataname; kwargs...)
This is the primary function for generating the CBFV features for a dataset of formulas with or without
existing features. This function will process the input data and grab the provided element database. The
assigning of features is then executed based on the CBFV approach. If the `returndataframe=true` then a
`DataFrame` data type is returned by this function with the added columns `:target` and `:formula`.
!!! note
I am not using `OrderedDict` so the column names will be arranged based on the native `Dict`
ordering.
# Arguments
- `data::DataFrame`: This is the data set that you want to be featurized for example.
- `elementdata::Union{String,FileName} or Union{String,DataFrame}`: The name of the internal database or the file path and
name to an external database.
- `dropduplicate::Bool=true`: Option to drop duplicate entries.
- `combine::Bool=false`: Option to combine existing features in `data` with the generated feature set.
- `sumfeatures::Bool=false`: Option to include the `sum_` feature columns.
- `returndataframe::Bool=true`: Option to return a `DataFrame`. Will include `:target` and `:formula` columns.
# Returns
- `generatedataframe::DataFrame`
- `formulae::Vector{String}, features::Array{Number,2}, targets::Vector{Number}`
The following featurization schemes are included within CBFV.jl:
- `oliynyk` (default)
- `magpie`
- `mat2vec`
- `jarvis`
- `onehot`
- `random_200`
```@example
using DataFrames
using CBFV
d = DataFrame(:formula=>["Tc1V1","Cu1Dy1","Cd3N2"],:target=>[248.539,66.8444,91.5034])
generatefeatures(d)
```
"""
function generatefeatures(data::DataFrame,
elementdata::Union{String,DataFrame}="oliynyk";
dropduplicate=true,
combine=false,
sumfeatures=false,
returndataframe=true)
# Remove duplicate entries
if dropduplicate
moddata = unique(data)
else
moddata = data
end
# Process input data
checkdataframe(data)
formulae = moddata[!, :formula]
featcolnames, processeddata = processinputdata(moddata, elementdata)
targets = [row[:target] for row in processeddata]
# Featurization
features, skippedformulas = assignfeatures(processeddata,
formulae,
sumfeatures)
# Extra features from original data
extrafeatures = moddata[!, Not([:formula, :target])]
if combine checkifempty(extrafeatures) end
if returndataframe
generatedataframe = constructfeaturedataframe(featcolnames, features, (combine, extrafeatures), sumfeatures)
generatedataframe[!, :formula] = formulae
generatedataframe[!, :target] = targets
return generatedataframe
else
if combine
combinefeatures(features, extrafeatures)
end
return formulae, features, targets
end
end # function generatefeaturesdata
generatefeatures(data::DataFrame;
elementdata::Union{FileName,String}="oliynyk",
dropduplicate=true,
combine=false,
sumfeatures=false,
returndataframe=true) = begin
if typeof(elementdata) == FileName
elementdataframe = readdatabasefile(elementdata.fullpath)
generatefeatures(data,elementdataframe,
dropduplicate=dropduplicate,
combine=combine,
sumfeatures=sumfeatures,
returndataframe=returndataframe)
else
generatefeatures(data,elementdata,
dropduplicate=dropduplicate,
combine=combine,
sumfeatures=sumfeatures,
returndataframe=returndataframe)
end
end
generatefeatures(dataname::String; kwargs...) = begin
# Digest data file before processing
data = readdatabasefile(dataname)::DataFrame
generatefeatures(data; kwargs...)
end
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 717 | # see LICENSE
global const rootsrc = @__DIR__
global const rootdir = joinpath(@__DIR__,"../")
global const allowedperiodictable = (
"H","He","Li","B","Be","C","N","O","F","Ne",
"Na","Mg","Al","Si","P","S","Cl","Ar",
"K","Ca","Sc","Ti","V","Cr","Mn","Fe","Co","Ni","Cu","Zn","Ga","Ge","As","Se","Br","Kr",
"Rb","Sr","Y","Zr","Nb","Mo","Tc","Ru","Rh","Pd","Ag","Cd","In","Sn","Sb","Te","I","Xe",
"Cs","Ba","La","Ce","Pr","Nd","Pm","Sm","Eu","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu","Hf","Ta","W","Re","Os","Ir","Pt","Au","Hg","Tl","Pb","Bi","Po","At","Rn",
"Fr","Ra","Ac","Th","Pa","U","Np","Pu","Am","Cm","Bk","Cf","Es","Fm","Md","No","Lr","Rf","Db","Sg","Bh","Hs","Mt","Ds","Rg","Cn","Nh","Fl","Mc","Lv","Ts","Og"
)
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 4772 | # see LICENSE
"""
stripamt(element::String)
Strip the amount associated with element.
!!! Note
Doesn't handle fractional amounts.
""" stripamt(element::String) = begin
charints = ['0','1','2','3','4','5','6','7','8','9']
strip(element,charints)
end
"""
splitcap(formula::String)
Split a formula by capital letters.
""" splitcap(formula::String) = begin
regex = r"(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z][0-9])"
split(formula,regex)
end
"""
replacechar(formula)
Remove and replace characters based. Function assumes default keys `@`, `[`, and `]`
to swap others can be added via keyword argument.
# Arguments
- `formula::String`: the chemical formula, e.g. CO2, H2O
- `addswapkeys::Array{Pair{String,String}}=[Pair("","")]`: additional characters to swap.
# Returns
- `formula::String`
""" function replacechar(formula::String;addswapkeys=[Pair("","")])
swapkeys = [Pair("@",""),Pair("[","("),Pair("]",")")];
if addswapkeys != [Pair("","")]
for addkey in addswapkeys
push!(swapkeys,addkey)
end
end
modformula = formula
for key in swapkeys
modformula = replace(modformula,key)
end
return modformula
end # function replacechar
"""
setdefaultdict(formula)
Initializes the default dictionary of type Dict{String,Float64}. Each element is set to 0.
""" function setdefaultdict(formula::String)
defaultdict = Dict{String,Float64}()
elements = findall(r"([A-Z][a-z]*)",formula)
for e in elements
defaultdict[formula[e]] = 0.00e0
end
return defaultdict
end # function getdefaultdict
"""
getrepresentation(formulaunit;molfactor=1)
Return the formula elemental make-up in terms of multiples of a given element in chemical
formula. Amount due to molecular complexes in chemical formula (e.g., Li3Fe2(PO4)3 ) are handeled with
keyword argument
# Arguments
-`formulaunit::String`: the chemical formula for provided unit, e.g. CO2, H2O
-`molfactor::Integer`: the repeating occurance of molecular complexes, e.g., XX(PO)3
# Returns
-`elementalamount::Dict{String,Float64}`
""" function getrepresentation(formulaunit::String;molfactor=1.00e0)
elementalamount = setdefaultdict(formulaunit);
#Assign amount to each element in formula
elementgroups = findall(r"([A-Z][a-z]*)\s*([-*\.\d]*)",formulaunit);
for eg in elementgroups
el,amt = map(String,match(r"([A-Z][a-z]?)([-*\.\d]*)?",formulaunit[eg]).captures)
famt = isempty(amt) ? 1.00e0 : parse(Float64,amt)
if el ∈ allowedperiodictable
elementalamount[el] += famt*molfactor
else
elementwarn(el,formulaunit)
end
end
return elementalamount
end # function getrepresentation
"""
rewriteformula(formula::String)
If formula contains molecular units in the form of AB(CD3)2, rewrite as ABC2D6.
# Arguments
- `formula::String`: A chemical formula such as Li3Fe2(PO4)3 to rewrite
# Returns
- 'modformula::String`: the rewritten chemical formula such as Li3F2P3O12.
""" function rewriteformula(formula::String)
modformula = formula
molecularunits = eachmatch(r"\(([^\(\)]+)\)\s*([\.\d]*)",formula)
for molunit in molecularunits
molecule,repeat = map(String,molunit.captures)
frepeat = isempty(repeat) ? 1.00e0 : parse(Float64,repeat)
elementgroups = findall(r"([A-Z][a-z]*)\s*([-*\.\d]*)",molecule);
molrewrite = ""
for eg in elementgroups
element,amount = map(String,match(r"([A-Z][a-z]?)(\d*\d?)",molecule[eg]).captures)
famount = isempty(amount) ? 1.00e0 : parse(Float64,amount)
famount *= frepeat
molrewrite *= "$(element)$(famount)"
end
modformula = replace(modformula,molunit.match => molrewrite)
end
return modformula
end #function rewriteformula
"""
parseformula(formula::String)
Creates a dictionary of elements and stoichiometry for compound formula. If formula is
written with molecular groupings (e.g., Li3Fe2(PO4)3), then rewrite string.
# Arguments
-`formula::String`: the chemical formula, e.g., Li3Fe2(PO4)3
# Returns
-`Dict{String,Int}`: returns the function call which produces a composition dictionary
""" function parseformula(formula::String)
modformula = replacechar(formula) :: String
#Check if formula match of type AB(CD)3
molecularunits = match(r"\(([^\(\)]+)\)\s*([\.\d]*)",modformula)
if molecularunits ≠ nothing
modformula = rewriteformula(modformula)
end
formuladict = getrepresentation(modformula)
return formuladict
end # function parseformula
parseformula(formula::Symbol) = parseformula(String(formula))
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 7027 | # see LICENSE
"""
replacemissing!(data)
replace missing values in columns of a dataframe with average value of that column.
# Arguments
- `data::DataFrame`: data frame with missing values.
# Modifies
- `data::DataFrame`: changes `missing` values to mane values of column.
""" function replacemissing!(data::DataFrame)
columnnames = names(data[!, Not(:element)])
statdata = describe(data);
for (i,n) in enumerate(columnnames)
data[!,n] = coalesce.(data[!,n],statdata[i,:mean])
end
end
"""
removeunsupported!(datainput,elementproperties)
Handle cases where compound can't be processed because it isn't an allowed element symbol.
# Arguments
- `datainput::DataFrame`: data frame representation of input data set.
- `elementproperties::Abstract`: Array of elements with properties for featurization.
# Modifies
- `datainput`: removes unsupported items.
"""
function removeunsupported!(datainput::DataFrame)
formulas = copy(datainput[!, :formula])
rows = range(1, nrow(datainput),step=1)
splitformulas = keys.(getrepresentation.(formulas))
for i = 1:length(formulas)
for el in splitformulas[i]
if stripamt(el) ∉ allowedperiodictable
# modify so that only those rows not equal are kept.
elementwarn(el, formulas[i], row=rows[i])
filter!(row -> row.formula != formulas[i], datainput)
end
end
end
end # function removeunsupported!
"""
extractproperties(elements,properties,formulaelements,formula)
returns an array of properties for elements that are in a formula.
# Arguments
- `elements::Vector{String}`: supported elements from elemental database.
- `properties::AbstractArray`: array formatted database element properties
- `formulaelements::Array{String,1}`: elements form a formula in array format.
- `formula::String`: the formula name.
# Returns
- `extractdedproperties::Array{Any,2}`: parsed/selected element properties from elementproperties.
"""
function extractproperties(elements::Vector{String},
properties::Array{T,2},
formulaelements::Array{String,1},
formula::String) where T<:Number
_, m = size(properties)
l = length(formulaelements)
extractedproperties = Array{Float64,2}(undef, l, m)
for (i, e) in enumerate(formulaelements)
if stripamt(e) ∉ elements
elementmissinginfo(e, formula)
extractedproperties[i, :] = fill(NaN, m)
else
coordinate = findfirst(x -> x == e, elements)
extractedproperties[i, :] = properties[coordinate, :]
end
end
return extractedproperties
end # function extractproperties
"""
getelementpropertydatabase(databasename)
Reads a elemental database file given its name.
# Arguments
- `databasename::String="oliynyk"`: name of internally available database file. See [databases](CBFV/databases)
# Returns
- `database::DataFrame`
"""
function getelementpropertydatabase(databasename::String="oliynyk")
#Check if databasename in database folder using function call
databases = generate_available_databases()::Dict{String,String}
if databasename ∈ keys(databases)
database = readdatabasefile(databases[databasename])
else
databaseerror(databasename)
end
return database::DataFrame
end # function elementpropertydatabase
"""
processelementdatabase(data)
Takes the element feature dataframe and process it to return a
dictionary with values of type `Array{String,N}`` and a Array representation
of the entire database.
# Arguments
- `data::DataFrame`: element feature dataframe from database file
# Returns
- `elementproperties::Dict{Symbol,Array{String,N}}` : dictionary with keys `:symbols`,`:index`, and `:missing` which return Array{String,N} values for the dataframe
- `arrayrepresentation::Array{Any,2}`: representation of the dataframe
"""
function processelementdatabase(data::DataFrame;replacemissing=true)
if replacemissing
replacemissing!(data)
end
elementsymbols = convert(Vector{String}, data[!, :element])
elementindex = collect(1:nrow(data))
elementmissing = collect(setdiff(
Set(allowedperiodictable), Set(elementsymbols)
))::Array{String,1}
elementinfo = Dict(:symbols => elementsymbols,
:index => elementindex,
:missing => elementmissing)
arrayrepresentation = Tables.matrix(data[!, Not(:element)])
columnnames = names(data[!, Not(:element)])
return elementinfo, columnnames, arrayrepresentation
end # function processelementdatabase
processelementdatabase(databasename::String;kwargs...) = begin
data = getelementpropertydatabase(databasename)
processelementdatabase(data,kwargs...)
end
processelementdatabase(databasepath::FileName;kwargs...) = begin
data = readdatabasefile(databasepath.fullpath)
processelementdatabase(data,kwargs...)
end
"""
processinputdata(datainput,elementdatabase)
Take the data set that contains the formula's, target values, and additional features
and then extract the elemental properties from the element database provided. Also
get the column/feature used in the element properties.
# Arguments
- `datainput::DataFrame`: data containing columns `:formula` and `:target`.
- `elementfeatures::Array{Number,2}`: element feature set based on database
# Returns
- `elpropnames::Array{String,1}`: The names of the properties in elemental database
- `processeddata::Vector{Dict{Symbol,Any}}`: The processed input data based on elemental database.
"""
function processinputdata(datainput::DataFrame, elementdatabase::DataFrame)
elementinfo, elpropnames, elementsproperties = processelementdatabase(elementdatabase)
checkdataframe(datainput)
removeunsupported!(datainput)
n, _ = size(datainput)
processeddata = Vector{Dict{Symbol,Any}}(undef, n)
#CHECK: Is this a performant iterator
table = Tables.namedtupleiterator(datainput[!, [:formula, :target]])
i = 1
itertable = ProgressBar(table)
for row in itertable
formula, target = row[1], row[2]
elements, amount = elementalcomposition(formula)
extractedproperties = extractproperties(elementinfo[:symbols],
elementsproperties,
elements, formula)
processeddata[i] = Dict(:elements => elements,
:amount => amount,
:eleprops => extractedproperties,
:target => target)
i += 1
set_description(itertable, "Preparing input data...")
end
return elpropnames, processeddata
end # function processinputdata
processinputdata(datainput::DataFrame, elementdatabasename::String) = begin
eledb = getelementpropertydatabase(elementdatabasename)
processinputdata(datainput, eledb)
end
processinputdata(datainput::DataFrame) = begin
eledb = getelementpropertydatabase("oliynyk")
processinputdata(datainput, eledb)
end | CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 150 | # see LICENSE
"""
generatefeatures Datatype for multiple dispatch. Allows for passing
external database.
""" struct FileName
fullpath::String
end | CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | code | 5008 | using CBFV
using Test
using CSV, DataFrames
@testset "CBFV.jl" begin
@testset "Types.jl constructors" begin
begin
afile = CBFV.FileName("test/file.txt")
@test afile.fullpath == "test/file.txt"
end
end # Types.jl tesset
@testset "ProcessFormulaInput.jl functions" begin
@test CBFV.replacechar("Y3N@C80") == "Y3NC80"
@test CBFV.replacechar("Li3Fe2[PO4]3") == "Li3Fe2(PO4)3"
@test CBFV.replacechar("SiO_2",addswapkeys=[Pair("_","")]) == "SiO2"
@test CBFV.setdefaultdict("SiO2") == Dict("Si"=>0,"O"=>0)
@test CBFV.getrepresentation("PO4",molfactor=3) == Dict("P"=>3,"O"=>12)
@test CBFV.getrepresentation("SiO2") == Dict("Si"=>1,"O"=>2)
@test CBFV.rewriteformula("Li3Fe2(PO4)3") == "Li3Fe2P3.0O12.0"
@test CBFV.rewriteformula("Si(OH)4(CO2)3") == "SiO4.0H4.0C3.0O6.0"
begin
correct = Dict("Li"=>3,"Fe"=>2,"P"=>3,"O"=>12);
output = CBFV.parseformula("Li3Fe2[PO4]3")
@test output == correct
end
begin
correct = Dict("Y"=>3,"N"=>1,"C"=>80);
output = CBFV.parseformula("Y3N@C80")
@test output == correct
end
begin
correct = Dict("H"=>4,"O"=>2);
output = CBFV.parseformula("(H2O)(H2O)")
@test output == correct
end
correct = Dict("H"=>2,"O"=>1);
output = CBFV.parseformula("(H2O)0.5(H2O)0.5")
@test output == correct
end # ProcessFormulaInput.jl testset
@testset "Composition.jl functions" begin
begin
correct = Dict("Li"=>3,"Fe"=>2,"P"=>3,"O"=>12);
output = CBFV.elementalcomposition("Li3Fe2[PO4]3",frmtarray=false)
@test output == correct
end
begin
correct = Dict("Y"=>3/84,"N"=>1/84,"C"=>80/84)
output = CBFV.fractionalcomposition("Y3N@C80",frmtarray=false)
@test output == correct
end
begin
correct = (["Y","C","N"],[3/84 , 80/84 , 1/84])
output = CBFV.fractionalcomposition("Y3N@C80")
@test correct == output
end
end # Composition.jl testset
@testset "Databases.jl functions" begin
@test typeof(CBFV.generate_available_databases()) == Dict{String,String}
# @test CBFV.show_available_databases() == nothing
end # Databases.jl testset
@testset "ProcessData.jl functions" begin
@test typeof(CBFV.getelementpropertydatabase()) == DataFrame
begin
eletest = DataFrame(:element => ["Pr","Ni","Ru"],
:C0 => [58.7, 257.5, 562.1],
:C1 => [25.6, 171.8, 183.8],
:C2 => [0.0, 0.0, 0.0],
:C3 => [0.0, 0.0, 0.0])
# NOTE: Ficticious materials
inputtest = DataFrame(:formula=>["PrNi2","PrNi","PrRuNi3"],:target=>[1000.0,1200.0,2400.0])
colnames,processdata = CBFV.processinputdata(inputtest,eletest)
@test typeof(colnames) == Vector{String}
@test processdata[1][:elements] == ["Pr","Ni"]
@test processdata[1][:amount] == [1.0,2.0]
@test processdata[2][:eleprops] == [58.7 25.6 0.0 0.0; 257.5 171.8 0.0 0.0]
@test processdata[2][:target] == 1200.0
@test processdata[3][:elements] == ["Pr","Ni","Ru"]
@test processdata[3][:amount] == [1.0,3.0,1.0]
inputtest = DataFrame(:formula=>["PrX2","PrNi","PrRuQ3"],:target=>[1000.0,1200.0,2400.0])
eleinfo,processdata = CBFV.processinputdata(inputtest,eletest)
@test length(processdata) == 1
@test processdata[1][:elements] == ["Pr","Ni"]
@test processdata[1][:amount] == [1.0,1.0]
@test !isnothing(CBFV.processinputdata(inputtest))
end
end # ProcessData.jl testset
@testset "Featurization.jl functions" begin
d = DataFrame(:formula=>["Tc1V1","Cu1Dy1","Cd3N2"],
:property=>[1.0,0.5,1.0],
:target=>[248.539,66.8444,91.5034])
featdb = CBFV.generatefeatures(d,returndataframe=true)
tmpfile = tempname()
CSV.write(tmpfile,d)
@test featdb == CBFV.generatefeatures(tmpfile,returndataframe=true)
@test CBFV.generatefeatures(d,combine=true)[!,:property] == d[!,:property]
testdb = CSV.File("pycbfv_test_data.csv") |> DataFrame
@test length(names(featdb[!,Not([:target,:formula])])) == length(names(testdb))
@testset "Column $n" for n in names(testdb)
@test testdb[!,n] ≈ featdb[!,n]
end
featdb_ext = CBFV.generatefeatures(d,
elementdata=CBFV.FileName((@__DIR__)*"/../databases/oliynyk.csv"))
@test featdb_ext == featdb
end # Featurization.jl testset
end
| CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
|
[
"MIT"
] | 0.1.0 | 81fba898c4e80b8549f5348b74d08197a04afc85 | docs | 4817 | # CBFV.jl : A simple composition-based feature vectorization utility in Julia
[](https://juliamatsci.github.io/CBFV.jl/stable) [](https://juliamatsci.github.io/CBFV.jl/dev) [](https://github.com/JuliaMatSci/CBFV.jl/actions)[](https://codecov.io/gh/JuliaMatSci/CBFV.jl)
This is a Julia rewrite of the [python tool](https://github.com/kaaiian/CBFV) to create a composition-based feature vector representation for machine learning with materials science data. The ideas and methodology are discussed in the recent article:
>Wang, Anthony Yu-Tung; Murdock, Ryan J.; Kauwe, Steven K.; Oliynyk, Anton O.; Gurlo, Aleksander; Brgoch, Jakoah; Persson, Kristin A.; Sparks, Taylor D., [Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices](https://doi.org/10.1021/acs.chemmater.0c01907), *Chemistry of Materials* **2020**, *32 (12)*: 4954–4965. DOI: [10.1021/acs.chemmater.0c01907](https://doi.org/10.1021/acs.chemmater.0c01907).
and the original python source code(s) can be found here:
- [https://github.com/anthony-wang/BestPractices/tree/master/notebooks/CBFV](https://github.com/anthony-wang/BestPractices/tree/master/notebooks/CBFV)
- [https://github.com/kaaiian/CBFV](https://github.com/kaaiian/CBFV)
## Example Use
The input data set should have a least two columns with the header/names `formula` and `target`.
```julia
using DataFrames
using CBFV
data = DataFrame("name"=>["Rb2Te","CdCl2","LaN"],"bandgap_eV"=>[1.88,3.51,1.12])
rename!(data,Dict("name"=>"formula","bandgap_eV"=>"target"))
features = generatefeatures(data)
```
The thing to note is you most likely will still want to post-process the generated feature data using some transformation to scale the data. The [StatsBase.jl](https://juliastats.org/StatsBase.jl/stable/transformations/) package provides some basic fetures for this, although the input needs to be `AbstractMatrix{<:Real}` rather than a `DataFrame`. This can be achieved using `generatefeatures(data,returndataframe=false)`
## Supported Featurization Schemes
As with the orignal CBFV python package the following element databases are available:
- `oliynyk` (default): Database from A. Oliynyk.
- `magpie`: [Materials Agnostic Platform for Informatics and Exploration](https://bitbucket.org/wolverton/magpie/src/master/)
- `mat2vec`: [Word embeddings capture latent knowledge from materials science](https://github.com/materialsintelligence/mat2vec)
- `jarvis`: [Joint Automated Repository for Various Integrated Simulations provided by U.S. National Institutes of Standards and Technologies.](https://jarvis.nist.gov/)
- `onehot`: Simple one hot encoding scheme, i.e., diagonal elemental matrix.
- `random_200`: 200 random elemental properties (I'm assuming).
However, `CBFV.jl` will allow you to provide your own element database to featurize with. Also, the current implementation reads the saved `.csv` file in [`databases`](@ref), however, this is prone to potential issues (ex. out of date files). To alleviate this I will change the implementation to utilize `Pkg.Artificats` with a `Artificats.toml` file that enables grabbing the datafiles needed from a server if they don't exist locally already.
### Julia Dependencies
This is a relatively small package so there aren't a lot of dependencies. The required packages are:
- CSV
- DataFrames
- ProgressBars
## Citations
Pleae cite the following when and if you use this package in your work:
```bibtex
@misc{CBFV.jl,
author = {Bringuier, Stefan},
year = {2021},
title = {CBFV.jl - A simple composition based feature vectorization Julia utility},
url = {https://github.com/JuliaMatSci/CBFV.jl},
}
```
In addition, please also consider citing the original python implementation and tutorial paper.
```bibtex
@misc{CBFV,
author = {Kauwe, Steven and Wang, Anthony Yu-Tung and Falkowski, Andrew},
title = {CBFV: Composition-based feature vectors},
url = {https://github.com/kaaiian/CBFV}
}
```
```bibtex
@article{Wang2020bestpractices,
author = {Wang, Anthony Yu-Tung and Murdock, Ryan J. and Kauwe, Steven K. and Oliynyk, Anton O. and Gurlo, Aleksander and Brgoch, Jakoah and Persson, Kristin A. and Sparks, Taylor D.},
year = {2020},
title = {Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices},
url = {https://doi.org/10.1021/acs.chemmater.0c01907},
pages = {4954--4965},
volume = {32},
number = {12},
issn = {0897-4756},
journal = {Chemistry of Materials},
doi = {10.1021/acs.chemmater.0c01907}
}
``` | CBFV | https://github.com/JuliaMatSci/CBFV.jl.git |
Subsets and Splits