licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
12161
const K_CART_TYPE{T} = Quantity{T,Unitful.𝐋^-1, Unitful.FreeUnits{(Ang^-1,),Unitful.𝐋^-1,nothing}} phases(kpoints::Vector{<:Vec3}, R::Vec3) = exp.(-2im * π .* dot.(kpoints, (R,))) function uniform_shifted_kgrid(::Type{T}, nkx::Integer, nky::Integer, nkz::Integer, gamma_center = false) where {T} t = [Vec3{T}(kx, ky, kz) for kx in 0:nkx-1, ky in 0:nky-1, kz in 0:nkz-1] s = Vec3(nkx, nky, nkz) t = map(t) do x (x .+ 0.5) ./ s .- 0.5 end if gamma_center shift = 0.5 .* ((s.+ 1) .% 2)./s t = map(t) do x x .+ shift end end return reshape(t, nkx * nky * nkz) end function uniform_shifted_kgrid(nkx::Integer, nky::Integer, nkz::Integer, gamma_center=false) return uniform_shifted_kgrid(Float64, nkx, nky, nkz, gamma_center) end function uniform_kgrid(nkx::Integer, nky::Integer, nkz::Integer) return reshape([Vec3{Float64}(kx, ky, kz) for kz in range(0, (1 - 1 / nkz); length = nkz), ky in range(0, (1 - 1 / nky); length = nky), kx in range(0, (1 - 1 / nkx); length = nkx)], nkx * nky * nkz) end abstract type AbstractKGrid{T} end core_kgrid(x::AbstractKGrid) = x.core k_cryst(x::AbstractKGrid) = core_kgrid(x).k_cryst k_cryst(x::Vec3) = x # k_cart(x::AbstractKGrid) = core_kgrid(x).k_cart # phase(x::AbstractKGrid) = core_kgrid(x).phase Base.length(kgrid::AbstractKGrid) = length(core_kgrid(kgrid)) struct CoreKGrid{T} <: AbstractKGrid{T} k_cryst::Vector{Vec3{T}} # k_cart ::Vector{Vec3{T}} #not needed for now # phase ::Vector{Complex{T}} end core_kgrid(x::CoreKGrid) = x Base.length(x::CoreKGrid) = length(x.k_cryst) abstract type KPoint{T<:AbstractFloat} end struct KBond{T<:AbstractFloat} # All matrices/operators are in wannier gauge, i.e. block-like gauge k_id1 :: Int #TODO: Optimize, can we drop these? k_id2 :: Int vr :: Vec3{K_CART_TYPE{T}} end Base.@kwdef mutable struct AbInitioKPoint{T} <: KPoint{T} k_cryst :: Vec3{T} k_cart :: Vec3{K_CART_TYPE{T}} eigvals :: Vector{T} #original eigenvalues, in hamiltonian gauge H :: Matrix{Complex{T}} # Hk in wannier gauge neighbors::Vector{KBond{T}} = KBond{T}[] overlaps::Vector{Matrix{Complex{T}}} = Matrix{Complex{T}}[] #already in wannier gauge hamis::Vector{Matrix{Complex{T}}} = Matrix{Complex{T}}[] #Hamiltonian element between the block-like states in wannier gauge uHu::Matrix{Matrix{Complex{T}}} = Matrix{Matrix{Complex{T}}}(undef, 0, 0) end k_cryst(k::AbInitioKPoint) = k.k_cryst struct AbInitioKGrid{T,SA} <: AbstractKGrid{T} kpoints::SA neighbor_weights::Vector{T} #ordered in the same way as neighbors in kpoints end num_states(chk, ik) = chk.ndimwin[ik] function disentanglement_range(chk, ik) first_band_id = findfirst(view(chk.lwindow, :, ik)) return first_band_id:first_band_id+num_states(chk, ik)-1 end function AbInitioKGrid(::Type{T}, eig_filename::AbstractString, chk_filename::AbstractString, nnkp_filename::AbstractString, mmn_filename::AbstractString, uHu_filename::AbstractString) where {T} eigenvalues = read_eig(eig_filename) wannier_chk_params = read_chk(chk_filename) v_mat = wannier_chk_params.V_matrix nwann = wannier_chk_params.n_wann kpoints = map(enumerate(wannier_chk_params.kpoints)) do (ik, k) @views v = v_mat[1:num_states(wannier_chk_params, ik), 1:nwann, ik] eigvals = eigenvalues[:, ik] return AbInitioKPoint{T}(; k_cryst = k, k_cart = wannier_chk_params.recip_cell * k, eigvals = eigenvalues[:, ik], H = v' * diagm(eigvals[disentanglement_range(wannier_chk_params, ik)]) * v) end fill_k_neighbors!(kpoints, nnkp_filename, wannier_chk_params.recip_cell) fill_overlaps!(kpoints, mmn_filename, uHu_filename, wannier_chk_params) return AbInitioKGrid(StructArray(kpoints), wannier_chk_params.neighbor_weights) end function AbInitioKGrid(eig_filename::AbstractString, chk_filename::AbstractString, nnkp_filename::AbstractString, mmn_filename::AbstractString, uHu_filename::AbstractString) return AbInitioKGrid(Float64, eig_filename, chk_filename, nnkp_filename, mmn_filename, uHu_filename) end function AbInitioKGrid(job::Job) wancalc = getfirst(x -> x isa Calculation{Wannier90}, job.calculations) if wancalc === nothing error("Coulnd't find a wannier calculation in job $job.") end wname = name(wancalc) wan_file = ext -> begin files = DFC.searchdir(job, "$wname.$ext") if isempty(files) error("Couldn't find $wname.$ext in job directory $(job.local_dir).") end return files[1] end return AbInitioKGrid(wan_file("eig"), wan_file("chk"), wan_file("nnkp"), wan_file("mmn"), wan_file("uHu")) end n_wannier_functions(grid::AbInitioKGrid) = size(grid.kpoints.overlaps[1], 1) n_nearest_neighbors(grid::AbInitioKGrid) = length(grid.kpoints.neighbors[1]) Base.length(grid::AbInitioKGrid) = length(grid.kpoints) struct HamiltonianKGrid{T,MT<:AbstractMatrix{Complex{T}},VT<:AbstractVector{T}} <: AbstractKGrid{T} core::CoreKGrid{T} Hk::Vector{MT} eigvals::Vector{VT} eigvecs::Vector{MT} end function HamiltonianKGrid(kpoints::Vector{<:Vec3}, args...) return HamiltonianKGrid(CoreKGrid(kpoints), args...) end @doc raw""" HamiltonianKGrid(hami::TBHamiltonian{T}, nk, H_function_k::Function = x -> nothing) where T HamiltonianKGrid(hami::TBHamiltonian{T}, k_grid, H_function_k::Function = x -> nothing) where T Takes a k grid, calculates Hk for each of them and diagonalizes. Only the eigenvectors and eigenvalues of Hk are stored, the `H_function_k` function is called on the intermediate Hk. """ function HamiltonianKGrid(hami::TBHamiltonian{T}, kpoints::Vector{<:Vec3}, Hk_function::Function = x -> nothing) where {T} # kpoints = [KPoint(k, blocksize(hami), R, zeros_block(hami)) for k in k_grid] n_eigvals = max(blocksize(hami)...) eigvals = hami[1].block isa AbstractMagneticMatrix ? [MagneticVector(zeros(T, n_eigvals)) for k in kpoints] : [zeros(T, n_eigvals) for k in kpoints] kgrid = HamiltonianKGrid(kpoints, [zeros_block(hami) for k in kpoints], eigvals, [zeros_block(hami) for k in kpoints]) nk = length(kpoints) calc_caches = [HermitianEigenWs(block(hami[1])) for i in 1:nthreads()] p = Progress(nk, 1, "Calculating H(k)...") @inbounds @threads for i in 1:nk Hk!(kgrid.eigvecs[i], hami, k_cryst(kgrid)[i]) copy!(kgrid.Hk[i], kgrid.eigvecs[i]) Hk_function(kgrid.Hk[i]) eigen!(kgrid.eigvals[i], kgrid.eigvecs[i], calc_caches[threadid()]) next!(p) end return kgrid end function Hk!(out::AbstractMatrix, tbhami::TBHamiltonian, kpoint::Vec3) fill!(out, zero(eltype(out))) fourier_transform(tbhami, kpoint) do i, iR, R_cart, b, fac @inbounds out[i] += fac * b.block[i] end end """ Hk(hamiltonian::TBHamiltonian, kpoint::Vec3) Hk!(hk::AbstractMatrix, hamiltonian::TBHamiltonian, kpoint::Vec3) Constructs the reciprocal Hamiltonian at a given _k_-point. """ function Hk(tbhami::TBHamiltonian, kpoint::Vec3) out = similar(tbhami[1].block) Hk!(out, tbhami, kpoint) return out end Hk(g::HamiltonianKGrid) = g.Hk eigvecs(g::HamiltonianKGrid) = g.eigvecs eigvals(g::HamiltonianKGrid) = g.eigvals "Fourier transforms the tight binding hamiltonian and calls the R_function with the current index and the phase." function fourier_transform(R_function::Function, tb_hami::TBHamiltonian{T}, kpoint::Vec3) where {T} for (iR, b) in enumerate(tb_hami) fac = ℯ^(2im * π * (b.R_cryst ⋅ kpoint)) for i in eachindex(block(b)) R_function(i, iR, b.R_cart, b, fac) end end end """ WannierBand Represents a Wannier interpolated band. See also [`wannierbands`](@ref). """ mutable struct WannierBand{T<:AbstractFloat,VT<:AbstractVector} <: DFC.AbstractBand kpoints_cryst::Vector{Vec3{T}} eigvals ::Vector{T} eigvec ::Vector{VT} end DFControl.eigvals(b::WannierBand) = b.eigvals function Base.show(io::IO, band::WannierBand) summary(io, band) string = """ $(length(band.kpoints_cryst)) k_points: $(band.kpoints_cryst[1]) -> $(band.kpoints_cryst[end]) mean energy: $(sum(band.eigvals)/length(band.eigvals)) eV """ println(io, string) return end """ wannierbands(hamiltonian::TBHamiltonian, kpoints::Vector{Vec3}) wannierbands(hamiltonian::TBHamiltonian, bands::Vector{DFControl.AbstractBand} Constructs the whole bandstructure for a given set of _k_-points and [`TBHamiltonian`](@ref TBOperator). """ function wannierbands(tbhamis::TBHamiltonian{T}, kpoints::Vector{<:Vec3}) where {T} matdim = blocksize(tbhamis, 2) kgrid = HamiltonianKGrid(tbhamis, kpoints) nbnd = size(tbhamis[1].block, 2) evals = [zeros(length(kpoints)) for i in 1:nbnd] evecs = [[similar(kgrid.eigvecs[1][:, 1]) for i in 1:length(kpoints)] for i in 1:nbnd] @threads for i in 1:length(kpoints) eigvals, eigvecs = kgrid.eigvals[i], kgrid.eigvecs[i] for e in 1:length(eigvals) evals[e][i] = eigvals[e] evecs[e][i] = eigvecs[:, e] end end return [WannierBand{T,eltype(evecs[1])}(kpoints, evals[i], evecs[i]) for i in 1:nbnd] end function wannierbands(tbhamis, dfbands::Vector{<:DFC.AbstractBand}) return wannierbands(tbhamis, dfbands[1].k_points_cryst) end function wannierbands(tbhamis, dfbands::Union{NamedTuple,Tuple}) return wannierbands(tbhamis, dfbands[1][1].k_points_cryst) end function energy_bins(binfunc::Function, wbands::Vector{<:WannierBand}, E_range, normalize_bins = false) nbins = length(E_range) - 1 bins = zeros(typeof(binfunc(wbands[1].eigvec[1])), nbins) # sum = zero(typeof(binfunc(bands[1].eigvec[1]))) nperbin = zeros(Int, nbins) for b in wbands for (e, v) in zip(b.eigvals, b.eigvec) ie = findfirst(i -> E_range[i] <= e <= E_range[i+1], 1:nbins) if ie === nothing continue end bins[ie] += binfunc(v) nperbin[ie] += 1 end end if normalize_bins #like taking the mean for i in 1:nbins if nperbin[i] > 0 bins[i] /= nperbin[i] end end end return bins end function character_contribution(wband::WannierBand, atoms::Vector{Atom}) contributions = zeros(length(wband.kpoints_cryst)) for (i, v) in enumerate(wband.eigvec) for a in atoms contributions[i] += norm(v[a])^2 end end return contributions end function DFControl.FileIO.pdos(wbands::Vector{<:WannierBand}, atoms::Vector{Atom}, dE = 0.02) Emin = minimum(wbands[1].eigvals) Emax = maximum(wbands[end].eigvals) E_range = range(Emin, Emax; step = dE) bins = energy_bins(wbands, E_range, false) do v tot = 0.0 for a in atoms tot += norm(v[a])^2 / dE end return tot end return (E = E_range, pdos = bins ./ length(wbands[1].kpoints_cryst)) end function kpdos(bands::Vector{<:WannierBand}, atoms::Vector{Atom}) return map(x -> character_contribution(x, atoms), bands) end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
4266
""" TBBlock Building block for [`TBOperator`](@ref). It holds the matrix elements of the operator between central and a shifted unit cell. Upon construction, the wigner-seitz shifts are taken into account to create the correct matrix elements between the Wannierfunctions, stored in `tb_block`. The `block` field is basically `tb_block` but with each element divided by the amount of Wigner-Seitz degeneracies and shifts which speeds up later _k_-point interpolation. """ struct TBBlock{T<:AbstractFloat,LT,M<:AbstractMatrix{Complex{T}}} R_cryst :: Vec3{Int} R_cart :: Vec3{LT} block :: M tb_block :: M end """ TBOperator Alias for a `Vector` of [`TBBlocks`](@ref TBBlock). Indexing with `NTuple{3,Int}` or `Vec3` is supported which allows for easily retrieving the [`TBBlock`](@ref) that corresponds to the shifted unit cell. Aliases: `TBHamiltonian`, `TBSpin` """ const TBOperator{T,LT,M} = Vector{TBBlock{T,LT,M}} const TBHamiltonian = TBOperator const TBSpin = TBOperator block(x::TBBlock) = x.block """ generate_TBBlocks(chk::NamedTuple, O_R::Vector) Generates the `Vector` of [`TBBlocks`](@ref TBBlock) from the Wannier90 checkpoint info in `chk`, and the real space operator `O_R`. This preapplies the Wigner Seitz shifts and degeneracies to speed up _k_-point interpolation. """ function generate_TBBlocks(chk::NamedTuple, O_R::Vector) c = chk.cell' R_cryst, degens = chk.ws_R_cryst, chk.ws_degens ws_shifts, ws_nshifts = chk.ws_shifts_cryst, chk.ws_nshifts out = [TBBlock(R, c * R, zeros(ComplexF64, chk.n_wann, chk.n_wann), zeros(ComplexF64, chk.n_wann, chk.n_wann)) for R in R_cryst] for (h, R, shifts, nshifts, d) in zip(O_R, R_cryst, ws_shifts, ws_nshifts, degens) for i in eachindex(h) ns = nshifts[i] frac = 1 / (ns * d) for is in 1:ns rcryst = R + shifts[i][is] h1 = out[rcryst] if h1 === nothing h1 = TBBlock(rcryst, c * rcryst, zeros(ComplexF64, chk.n_wann, chk.n_wann), zeros(ComplexF64, chk.n_wann, chk.n_wann)) push!(out, h1) end h1.block[i] += h[i] * frac h1.tb_block[i] = h[i] end end end # this doesn't do much but it should make things more hermitian for o in out other = out[-o.R_cryst] other.block .= (o.block' .+ other.block)./2 o.block .= (other.block' .+ o.block)./2 other.tb_block .= (o.tb_block' .+ other.tb_block)./2 o.tb_block .= (other.tb_block' .+ o.tb_block)./2 end return out end for f in (:getindex, :size, :similar) @eval Base.$f(h::TBBlock, args...) = $f(block(h), args...) end LinearAlgebra.eigen(h::TBBlock) = eigen(block(h)) Base.getindex(h::TBHamiltonian, R::Vec3{Int}) = getfirst(x -> x.R_cryst == R, h) #some small type piracy? Base.zeros(m::AbstractArray{T}) where {T} = fill!(similar(m), zero(T)) zeros_block(h::TBHamiltonian) = zeros(block(h[1])) similar_block(h::TBHamiltonian) = similar(block(h[1])) blocksize(h::TBHamiltonian, args...) = size(block(h[1]), args...) for op in (:+, :-, :*, :/) @eval function Base.$op(t::TBBlock{T}, v::T) where {T} return TBBlock(t.R_cart, t.R_cryst, $op(block(t), v), $op(t.tb_block, v)) end @eval function Base.$op(v::T, t::TBBlock{T}) where {T} return TBBlock(t.R_cart, t.R_cryst, $op(v, block(t)), $op(v, t.tb_block)) end @eval function Base.$op(t::TBBlock{T,M}, v::M) where {T,M} return TBBlock(t.R_cart, t.R_cryst, $op(block(t), v), $op(t.tb_block, v)) end @eval function Base.$op(v::M, t::TBBlock{T,M}) where {T,M} return TBBlock(t.R_cart, t.R_cryst, $op(v, block(t)), $op(v, t.tb_block)) end @eval function Base.$op(t::TBBlock{T,M}, v::TBBlock{T,M}) where {T,M} return TBBlock(t.R_cart, t.R_cryst, $op(block(t), block(v)), $op(t.tb_block, v.tb_block)) end end struct RmnBlock{T<:AbstractFloat} R_cart ::Vec3{T} R_cryst ::Vec3{Int} block ::Matrix{Point3{T}} end const TBRmn{T} = Vector{RmnBlock{T}}
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
31
div1(x, y) = div(x - 1, y) + 1
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
16269
struct WannierFunction{N, T<:AbstractFloat} <: AbstractArray{SVector{N, Complex{T}}, 3} points::Array{Point{3, T}, 3} values::Array{SVector{N, Complex{T}}, 3} end function WannierFunction(filename::AbstractString, points::Array{Point3{T}, 3}=read_points_from_xsf(filename)) where {T <: AbstractFloat} re = read_values_from_xsf(T, filename) values = [SVector(complex(a)) for a in re] return normalize(WannierFunction(points, values)) end function WannierFunction(filename_re::String, filename_im::String, points::Array{Point3{T}, 3} = read_points_from_xsf(filename_re)) where {T <: AbstractFloat} re, im = read_values_from_xsf.(T, (filename_re, filename_im)) values = [SVector(Complex(a, b)) for (a, b) in zip(re, im)] return normalize(WannierFunction(points, values)) end function WannierFunction(filename_up_re::String, filename_up_im::String, filename_down_re::String, filename_down_im::String, points::Array{Point3{T}, 3} = read_points_from_xsf(filename_up_re)) where {T <: AbstractFloat} up_re, up_im, down_re, down_im = read_values_from_xsf.(T, (filename_up_re, filename_up_im, filename_down_re, filename_down_im)) values = [SVector(Complex(a, b), Complex(c, d)) for (a, b, c, d) in zip(up_re, up_im, down_re, down_im)] return normalize(WannierFunction(points, values)) end WannierFunction(point_func::Function, points::Array) = normalize(WannierFunction(points, point_func.(points))) for f in (:size, :getindex, :setindex!) @eval @inline @propagate_inbounds Base.$f(x::WannierFunction, i...) = Base.$f(x.values, i...) end for f in (:length, :stride, :ndims, :axes, :strides) @eval @inline Base.$f(w::WannierFunction) = Base.$f(w.values) end Base.similar(x::WannierFunction,::Type{S}) where S = WannierFunction(x.points, similar(x.values, S)) Base.unsafe_convert(T::Type{<:Ptr}, x::WannierFunction) = unsafe_convert(T, x.values) Base.Broadcast.broadcastable(w::WannierFunction) = w.values #### LinearAlgebra overloads function LinearAlgebra.adjoint(w::WannierFunction) out = WannierFunction(w.points, similar(w.values)) adjoint!(out, w) end LinearAlgebra.adjoint!(w1::WannierFunction, w2::WannierFunction) = w1 .= adjoint.(w2) function LinearAlgebra.dot(w1::WannierFunction{T}, w2::WannierFunction{T}) where {T} s = zero(T) for (v1, v2) in zip(w1.values, w2.values) s += v1' * v2 end return real(s) end function LinearAlgebra.dot(v::Vector, wfs::Vector{<:WannierFunction}) res = WannierFunction(wfs[1].points, zeros(eltype(wfs[1].values), size(wfs[1].values))) for ic in 1:length(v) res .+= v[ic] .* wfs[ic] end return res end LinearAlgebra.dot(wfs::Vector{<:WannierFunction}, v::Vector) = dot(v, wfs) LinearAlgebra.norm(wfc::WannierFunction) = dot(wfc, wfc) LinearAlgebra.normalize!(wfc::WannierFunction) = wfc ./= sqrt(norm(wfc)) same_grid(w1::WannierFunction, w2::WannierFunction) = w1.points === w2.points function wan_op(op::Function, w1::W, w2::W) where {W <: WannierFunction} @assert same_grid(w1, w2) "Wannier functions are not defined on the same grid" return WannierFunction(w1.points, op(w1.values, w2.values)) end Base.:(+)(w1::WannierFunction, w2::WannierFunction) = wan_op(+, w1, w2) Base.:(*)(w1::WannierFunction, w2::WannierFunction) = wan_op(*, w1, w2) Base.:(-)(w1::WannierFunction, w2::WannierFunction) = wan_op(-, w1, w2) Base.:(*)(w1::WannierFunction, n::Number) = WannierFunction(w1.points, w1.values .* n) Base.:(*)(n::Number, w1::WannierFunction) = WannierFunction(w1.points, n .* w1.values) Base.:(/)(w1::WannierFunction, n::Number) = WannierFunction(w1.points, n ./ w1.values) Base.:(/)(n::Number, w1::WannierFunction) = WannierFunction(w1.points, w1.values ./ n) LinearAlgebra.dot(w1::WannierFunction, n::Number) = w1 * n LinearAlgebra.dot(n::Number, w1::WannierFunction) = n * w1 function generate_wannierfunctions(k_filenames::Vector{String}, chk_info, wannier_plot_supercell::NTuple{3,Int}, wan_plot_list=1:chk_info.n_wann) num_kpts = length(chk_info.kpoints) U = permutedims(chk_info.U_matrix, (2, 1, 3)) U_opt = permutedims(chk_info.U_matrix_opt,(2,1,3)) tu = read_unk(k_filenames[1]) nrx, nry, nrz = size(tu,1), size(tu,2), size(tu,3) supercell_xrange = -div(wannier_plot_supercell[1],2)*nrx : div(wannier_plot_supercell[1] + 1, 2)*nrx - 1 supercell_yrange = -div(wannier_plot_supercell[2],2)*nry : div(wannier_plot_supercell[2] + 1, 2)*nry - 1 supercell_zrange = -div(wannier_plot_supercell[3],2)*nrz : div(wannier_plot_supercell[3] + 1, 2)*nrz - 1 nx, ny, nz = length.((supercell_xrange, supercell_yrange, supercell_zrange)) nwfun = length(wan_plot_list) wfuncs_all = zeros(eltype(tu), nwfun, (wannier_plot_supercell .* (nrx, nry, nrz))...,size(tu, 5)) n_wann = chk_info.n_wann r_wan = zeros(eltype(tu), chk_info.n_wann, nrx, nry, nrz) p = Progress(length(chk_info.kpoints)) @inbounds for ik = 1:length(chk_info.kpoints) k = chk_info.kpoints[ik] unk_all = read_unk(k_filenames[ik]) for is = 1:size(tu, 5) u = U[wan_plot_list, :, ik] u_opt = U_opt[:, :, ik] inc_ids = findall(!iszero, chk_info.lwindow[:, ik]) fill!(r_wan, 0.0) for ib in 1:chk_info.ndimwin[ik] iib = inc_ids[ib] Threads.@threads for nz in 1:nrz for ny in 1:nry for nx in 1:nrx @simd for iw in 1:n_wann r_wan[iw, nx, ny, nz] += u_opt[iw, ib] * unk_all[nx,ny,nz,iib,is] end end end end end Threads.@threads for iisz in 1:nz isz = supercell_zrange[iisz] iz = mod1(isz, nrz) for iisy in 1:ny isy = supercell_yrange[iisy] iy = mod1(isy, nry) for iisx in 1:nx isx = supercell_xrange[iisx] ix = mod1(isx, nrx) scalfac = exp(2im*π*dot(k, Vec3((isx-1)/nrx, (isy-1)/nry, (isz-1)/nrz))) for ib in 1:n_wann rt = r_wan[ib, ix, iy, iz] * scalfac for iw in 1:nwfun wfuncs_all[iw, iisx, iisy, iisz, is] += u[iw, ib] * rt end end end end end end next!(p) end wfuncs_all ./= num_kpts if size(tu, 5) == 1 Threads.@threads for iw = 1:size(wfuncs_all, 1) tmaxx = 0.0 cmod = 1.0+0.0im for iisx in 1:nx for iisy in 1:ny for iisz in 1:nz w = wfuncs_all[iw, iisx, iisy, iisz, 1] t = abs2(w) if t > tmaxx tmaxx = t cmod = w end end end end cmod /= abs(cmod) @views wfuncs_all[:, :, :, iw, 1] ./= cmod end end str_cell = ustrip.(chk_info.cell) points = [str_cell * Point3((x-1)/nrx, (y-1)/nry, (z-1)/nrz) for x in supercell_xrange, y in supercell_yrange, z in supercell_zrange] if size(tu,5) == 1 wfuncs_out = Vector{WannierFunction{1, eltype(wfuncs_all).parameters[1]}}(undef, size(wfuncs_all, 1)) Threads.@threads for i=1:size(wfuncs_all, 1) wfuncs_out[i] = WannierFunction{1, eltype(wfuncs_all).parameters[1]}(points, map(x -> SVector(x), view(wfuncs_all,i, :, :, :, 1))) end return normalize!.(wfuncs_out) else wfuncs_out = Vector{WannierFunction{2, eltype(wfuncs_all).parameters[1]}}(undef, size(wfuncs_all, 1)) Threads.@threads for i=1:size(wfuncs_all, 1) wfuncs_out[i] = WannierFunction{2, eltype(wfuncs_all).parameters[1]}(points, map(x -> SVector(x), zip(view(wfuncs_all, i, :, :, :, 1), view(wfuncs_all, i, :, :, :, 2)))) end return wfuncs_out end end function generate_wannierfunctions(job::Job, supercell::NTuple{3,Int}, args...) tdir = job.dir unk_files = reverse(searchdir(job, "UNK")) chk_files = reverse(searchdir(job, ".chk")) if !DFC.Jobs.runslocal(job) tdir = mkpath(tempname()) for f in [unk_files; chk_files] fname = splitpath(f)[end] DFC.Servers.pull(job, fname, joinpath(tdir, fname)) end unk_files = reverse(searchdir(tdir, "UNK")) chk_files = reverse(searchdir(tdir, ".chk")) end if ismagnetic(job.structure) && Structures.iscolin(job.structure) && !any(Calculations.issoc, job.calculations) wfuncs = Vector{WannierFunction}[] for (is, s) in enumerate(("up", "down")) wan_calc = getfirst(x -> eltype(x) == Wannier90&& x[:spin] == s, job.calculations) chk_info = read_chk(joinpath(tdir, "$(wan_calc.name).chk")) unk_files = filter(x->occursin(".$is", x), searchdir(tdir, "UNK")) push!(wfuncs, generate_wannierfunctions(unk_files, chk_info, supercell, args...)) end wfuncs = (up=wfuncs[1], down=wfuncs[2]) else wan_calc = getfirst(x -> eltype(x)==Wannier90, job.calculations) chk_info = read_chk(joinpath(tdir, "$(wan_calc.name).chk")) unk_files = searchdir(tdir, "UNK") wfuncs = generate_wannierfunctions(unk_files, chk_info, supercell, args...) end if !DFC.Jobs.runslocal(job) rm(tdir, recursive=true) end return wfuncs end function bloch_sum(wfunc, kpoint; i_pos_offset = (0,0,0), i_neg_offset=(0,0,0)) cell_boundaries = div.(size(wfunc.points), 3) .+ 1 x = wfunc.points[cell_boundaries[1]+1, 1, 1] .- wfunc.points[1] y = wfunc.points[1, cell_boundaries[2]+1, 1] .- wfunc.points[1] z = wfunc.points[1, 1, cell_boundaries[3]+1] .- wfunc.points[1] bloch = WannierFunction(wfunc.points, zeros(eltype(wfunc.values), size(wfunc.values))) dims = size(wfunc.values) for i1 in -3:1:3, i2 in -3:1:3, i3 in -3:1:3 R_cryst = Vec3(i1, i2, i3) o1, o2, o3 = cell_boundaries .* R_cryst shiftvec = x * R_cryst[1] .+ y * R_cryst[2] .+ z*R_cryst[3] phase = ℯ^(2im*π*(R_cryst ⋅ kpoint)) if i1 + i2 + i3 == 0 continue end if i1 < 0 o1 += i_neg_offset[1] elseif i1 > 0 o1 += i_pos_offset[1] end if i2 < 0 o2 += i_neg_offset[2] elseif i2 > 0 o2 += i_pos_offset[2] end if i3 < 0 o3 += i_neg_offset[3] elseif i3 > 0 o3 += i_pos_offset[3] end for j3 in 1:dims[3] oid3 = mod1(j3 - o3, dims[3]) for j2 in 1:dims[2] oid2 = mod1(j2 - o2, dims[2]) for j1 in 1:dims[1] oid1 = mod1(j1 - o1, dims[1]) bloch.values[j1, j2, j3] += phase * wfunc.values[oid1, oid2, oid3] end end end end return bloch end "Calculates the angular momentum between two wavefunctions and around the center." function calc_angmom(wfc1::WannierFunction{N, T}, wfc2::WannierFunction{N, T}, center::Point3{T}, cutoff=Inf) where {N, T <: AbstractFloat} points = wfc1.points origin = points[1, 1, 1] da = points[2, 1, 1] - origin db = points[1, 2, 1] - origin dc = points[1, 1, 2] - origin V = SMatrix{3,3}(inv([convert(Array, da) convert(Array, db) convert(Array, dc)])') L = zero(Point3{Complex{T}}) c2 = cutoff^2 @inbounds for i2 in 2:size(wfc1, 3) for i1 in 2:size(wfc1, 2) for i in 2:size(wfc1, 1) r = points[i, i1, i2] - center if dot(r, r) < c2 dw_cryst = Point3(wfc2.values[i, i1, i2] - wfc2.values[i-1, i1, i2], wfc2.values[i, i1, i2] - wfc2.values[i, i1-1, i2], wfc2.values[i, i1, i2] - wfc2.values[i, i1, i2-1]) dw_cart = V * dw_cryst L += (wfc1.values[i, i1, i2]',) .* cross(r, dw_cart) end end end end return -1im * L end #this doesn't work I think # function calc_angmom_squared(wfc1::WannierFunction{N, T}, wfc2::WannierFunction{N, T}, center::Point3{T}) where {N, T <: AbstractFloat} # points = wfc1.points # origin = points[1, 1, 1] # da = points[2, 1, 1] - origin # db = points[1, 2, 1] - origin # dc = points[1, 1, 2] - origin # V = SMatrix{3,3}(inv([convert(Array, da) convert(Array, db) convert(Array, dc)])') # Lsq = zero(Complex{T}) # @inbounds for i2 = 2:size(wfc1)[3] # for i1 = 2:size(wfc1)[2] # for i = 2:size(wfc1)[1] # dw_cryst = Point3(wfc2.values[i, i1, i2] - wfc2.values[i-1, i1, i2], # wfc2.values[i, i1, i2] - wfc2.values[i, i1-1, i2], # wfc2.values[i, i1, i2] - wfc2.values[i, i1, i2-1]) # dw_cryst_sq = map(x->x .^2,dw_cryst) # r = points[i, i1, i2] - center # dw_cart = V * dw_cryst # Lsq += wfc1.values[i, i1, i2] ⋅ (r[2]^2 * (dw_cryst_sq[1] + dw_cryst_sq[3]) + # r[1]^2 * (dw_cryst_sq[2] + dw_cryst_sq[3]) + # r[3]^2 * (dw_cryst_sq[1] + dw_cryst_sq[2]) - # 2 * (r ⋅ dw_cryst + # r[2] * r[3] * dw_cryst[2] .* dw_cryst[3] + # r[1] * r[3] * dw_cryst[1] .* dw_cryst[3] + # r[1] * r[2] * dw_cryst[1] .* dw_cryst[2])) # end # end # end # return Lsq # end function calc_spin(wfc1::WannierFunction{2, T}, wfc2::WannierFunction{2, T}) where T <: AbstractFloat S = Point3(SMatrix{2, 2}(0, 1, 1, 0)/2, SMatrix{2, 2}(0, -1im, 1im, 0)/2, SMatrix{2, 2}(1, 0, 0, -1)/2) outS = zero(Point3{Complex{T}}) for (w1, w2) in zip(wfc1.values, wfc2.values) outS += (w1',) .* S .* (w2,) end return outS end "Calculates the dipole term between two wavefunctions. Make sure the wavefunctions are normalized!" function calc_dip(wfc1::WannierFunction{N, T}, wfc2::WannierFunction{N, T}) where {N, T <: AbstractFloat} out = zero(Point3{Complex{T}}) for (w1, w2, p) in zip(wfc1, wfc2, wfc1.points) out += w1' * w2 * p end return real(out) end # Is this code actually correct? # "Calculates the dipoles from the supplied wannier dipole output." # function calc_k_dips(dip_raw::Array{Tuple{Int, Int, Int, Int, Int, Point3{T}}}, kpoints::AbstractArray) where T<:AbstractFloat # dim = 0 # for i=1:length(dip_raw) # d = dip_raw[i][4] # if d > dim # dim = d # else # break # end # end # out = zeros(Point3{T}, dim, dim) # tmp = [[zeros(Complex{T}, 3)] for i=1:dim, i1=1:dim] # for i=1:size(dip_raw)[1] # d = dip_raw[i] # complex_part = 2π*(kpoints[1]*d[1]+kpoints[2]*d[2]+kpoints[3]*d[3]) # factor = exp(-1im * complex_part) # tmp[d[4],d[5]][1] += d[6][1] * factor # tmp[d[4],d[5]][2] += d[6][2] * factor # tmp[d[4],d[5]][3] += d[6][3] * factor # end # for i in eachindex(out) # out[i] = Point3(real(tmp[i][1]),real(tmp[i][2]),real(tmp[i][3])) # end # return Mat{2*dim, 2*dim, Point3{T}}([out zeros(out);zeros(out) out]) # end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
347
using Base.Sys using DFControl.Utils: searchdir cd(assetfile("Fe/")) big_files = searchdir(".", "bz2") if islinux() for f in big_files run(`bunzip2 $f`) end end job = Job(".") abgrid = DFW.AbInitioKGrid(job) big_files = map(x -> splitext(x)[1], big_files) if islinux() for f in big_files run(`bzip2 $f`) end end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
1440
nk = (5,5,5) R = DFW.Vec3(2, 0, 0) fermi = 11.4394 n_ωh = 300 n_ωv = 50 ωh = -30.0 ωv = 0.5 hami = DFW.read_colin_hami(DFW.read_chk(assetfile("wanup.chk")), DFW.read_chk(assetfile("wandn.chk")), DFW.read_eig(assetfile("wanup.eig")), DFW.read_eig(assetfile("wandn.eig"))) str = DFC.FileIO.wan_parse_calculation(assetfile("wanup.win")).structure ω_grid = DFW.setup_ω_grid(ωh, ωv, n_ωh, n_ωv) kpoints = DFW.ExchangeKGrid(hami, DFW.uniform_kgrid(nk...), R) @test isapprox(sum(sum.(kpoints.hamiltonian_kgrid.eigvals)), 28310.156014291606) @test isapprox(sum(kpoints.D), 0.07393119748780791 - 1.0312022655727505e-15im) g_caches = [fill!(similar(kpoints.hamiltonian_kgrid.eigvecs[1]), zero(ComplexF64)) for i=1:3] G = fill!(similar(kpoints.hamiltonian_kgrid.eigvecs[1]), zero(ComplexF64)) fill!(G, zero(ComplexF64)) DFW.integrate_Gk!(G, ω_grid[1], fermi, kpoints, g_caches); exch = calc_exchanges(hami, str.atoms, fermi; R=R, site_diagonal=false, nk=nk, n_ωh = n_ωh, n_ωv = n_ωv, ωh = ωh, ωv = ωv ) maxJ = maximum([tr(e.J) for e in exch]) @test isapprox(maxJ, 26.044428709929104) exch1 = calc_exchanges(hami, str.atoms, fermi; R=R, site_diagonal=true, nk=nk, n_ωh = n_ωh, n_ωv = n_ωv, ωh = ωh, ωv = ωv ) maxJ1 = maximum([sum(e.J) for e in exch1]) @test isapprox(maxJ, maxJ1)
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
6544
using DFWannier T= Float32 x = WannierModel{T}("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/","/home/ponet/Documents/PhD/GeTe/SOC/GeTe_bands.out",[[Atom(T[0.0,0.0,-0.0239129,-2*0.155854]...) for i=1:4]...,[Atom(T[0.0,0.0,5.5540692,2*0.318205]...) for i=1:4]...],true); x2 = WannierModel{T}("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/","/home/ponet/Documents/PhD/GeTe/SOC/GeTe_bands.out",[[Atom(T[0.0,0.0,-0.0239129,-0.155854]...) for i=1:4]...,[Atom(T[0.0,0.0,5.5540692,0.318205]...) for i=1:4]...]); using Plots @time test = calculate_eig_angmom_soc_bloch_gpu(x,90:0.1:110.); @time test1 = calculate_eig_angmom_soc_bloch_gpu(x,90:0.1:110.); @time test1 = calculate_eig_angmom_soc_bloch(x2,90:0.1:110.); plot(plot(test1[8],:angmom2_x),plot(test[8],:angmom2_x)) @time benchmark = construct_bloch_sum(x.wfcs[1],x.kpoints[1]); begin test1 = construct_bloch_sum(x.wfcs[1],x.kpoints[1]) assert(Array(test1.values)==Array(benchmark.values)) end test2 = calculate_eig_angmom_soc_bloch(x2,90:110.); using Plots test = construct_bloch_sum(x.wfcs[1],x.kpoints[1]) Array(test.values) test = construct_bloch_sum(x2.wfcs[1],x2.kpoints[1]) T=Float64 test_wfc1 = DFWannier.host2gpu(read_xsf_file("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/wan_00003.xsf",Atom{T}(0.0,0.0,0.1,0.1),T)) test_wfc2= DFWannier.host2gpu(read_xsf_file("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/wan_00004.xsf",Atom{T}(0.0,0.0,0.1,0.1),T)) dims = size(test_wfc1.values) cu_dims = CuArray(UInt32[dims...]) Lx = CuArray(zeros(Complex{T},dims)) Ly = CuArray(zeros(Complex{T},dims)) Lz = CuArray(zeros(Complex{T},dims)) n1 = CuArray(zeros(Complex{T},dims)) n2 = CuArray(zeros(Complex{T},dims)) grid = Array(test_wfc1.grid) origin = grid[1,1,1] a = grid[2,1,1] .- origin b = grid[1,2,1] .- origin c = grid[1,1,2] .- origin V = CuArray(inv([[a...] [b...] [c...]])) begin # indices = Array{Tuple{Tuple{Int32,Int32,Int32},Tuple{Int32,Int32,Int32}},1}() # coeff = Array{Complex{T},1}() indices = Array{Tuple{CuArray{Int32,1},CuArray{Int32,1}},1}() coeff = Array{CuArray{Complex{T},1},1}() k=T[0.2,0.2,0.3] for R1=-1:0,R2=-1:0,R3=-1:0 if R1+R2+R3 == 0 continue end R= R1*test_wfc1.cell[1]+R2*test_wfc1.cell[2]+R3*test_wfc1.cell[3] ind1,ind2 = DFWannier.find_start(test_wfc1,R,27) # push!(indices,((Int32(ind1[1]),Int32(ind1[2]),Int32(ind1[3])),(Int32(ind1[1]-ind2[1]),Int32(ind1[2]-ind2[2]),Int32(ind1[3]-ind2[3])))) push!(indices,(CuArray{Int32}([ind1...]),CuArray{Int32}([ind2...]))) # push!(coeff,Complex{T}(exp(dot(-2*pi*k,[R1,R2,R3])*1im))) push!(coeff,CuArray(Complex{T}(exp(dot(-2*pi*k,[R1,R2,R3])*1im)))) end dfprintln(length(indices),length(coeff)) k_wfcs = Array{Wfc3D_gpu{T},1}() #optimize so we dont redo the zero index ... for wfc in [test_wfc1,test_wfc2] push!(k_wfcs,Wfc3D_gpu(wfc.grid,CuArray(zeros(Complex{T},size(wfc.values))),wfc.cell,wfc.atom)) end end @time for i =1:2000 construct_bloch_sums([test_wfc1,test_wfc2],k_wfcs,k,CuArray(indices),CuArray(coeff)) end calculate_angmom(test_wfc1,test_wfc2,V,CuArray([test_wfc1.atom.center.x,test_wfc1.atom.center.y,test_wfc1.atom.center.z]),dims,Lx,Ly,Lz,n2,n2) using CUDAnative, CUDAdrv function haversine_cpu(lat1::Float32, lon1::Float32, lat2::Float32, lon2::Float32, radius::Float32) c1 = cospi(lat1 / 180.0f0) c2 = cospi(lat2 / 180.0f0) dlat = lat2 - lat1 dlon = lon2 - lon1 d1 = sinpi(dlat / 360.0f0) d2 = sinpi(dlon / 360.0f0) t = d2 * d2 * c1 * c2 a = d1 * d1 + t c = 2.0f0 * asin(min(1.0f0, sqrt(a))) return radius * c end function pairwise_dist_cpu(lat::Vector{Float32}, lon::Vector{Float32}) # allocate n = length(lat) rowresult = Array{Float32}(n, n) # brute force fill in each cell for i in 1:n, j in 1:n @inbounds rowresult[i, j] = haversine_cpu(lat[i], lon[i], lat[j], lon[j] , 6372.8f0) end return rowresult end # from https://devblogs.nvidia.com/parallelforall/fast-great-circle-distance-calculation-cuda-c/ function haversine_gpu(lat1::Float32, lon1::Float32, lat2::Float32, lon2::Float32, radius::Float32) # XXX: need to prefix math intrinsics with CUDAnative c1 = CUDAnative.cospi(lat1 / 180.0f0) c2 = CUDAnative.cospi(lat2 / 180.0f0) dlat = lat2 - lat1 dlon = lon2 - lon1 d1 = CUDAnative.sinpi(dlat / 360.0f0) d2 = CUDAnative.sinpi(dlon / 360.0f0) t = d2 * d2 * c1 * c2 a = d1 * d1 + t c = 2.0f0 * CUDAnative.asin(CUDAnative.min(1.0f0, CUDAnative.sqrt(a))) return radius * c end # pairwise distance calculation kernel function pairwise_dist_kernel(lat::CuDeviceVector{Float32}, lon::CuDeviceVector{Float32}, rowresult::CuDeviceMatrix{Float32}, n) i = (blockIdx().x-1) * blockDim().x + threadIdx().x j = (blockIdx().y-1) * blockDim().y + threadIdx().y if i <= n && j <= n # store to shared memory shmem = @cuDynamicSharedMem(Float32, 2*blockDim().x + 2*blockDim().y) if threadIdx().y == 1 shmem[threadIdx().x] = lat[i] shmem[blockDim().x + threadIdx().x] = lon[i] end if threadIdx().x == 1 shmem[2*blockDim().x + threadIdx().y] = lat[j] shmem[2*blockDim().x + blockDim().y + threadIdx().y] = lon[j] end sync_threads() # load from shared memory lat_i = shmem[threadIdx().x] lon_i = shmem[blockDim().x + threadIdx().x] lat_j = shmem[2*blockDim().x + threadIdx().y] lon_j = shmem[2*blockDim().x + blockDim().y + threadIdx().y] @inbounds rowresult[i, j] = haversine_gpu(lat_i, lon_i, lat_j, lon_j, 6372.8f0) end end function pairwise_dist_gpu(lat::Vector{Float32}, lon::Vector{Float32}) # upload lat_gpu = CuArray(lat) lon_gpu = CuArray(lon) # allocate n = length(lat) rowresult_gpu = CuArray{Float32}(n, n) # calculate launch configuration # NOTE: we want our launch configuration to be as square as possible, # because that minimizes shared memory usage ctx = CuCurrentContext() dev = device(ctx) total_threads = min(n, attribute(dev, CUDAdrv.MAX_THREADS_PER_BLOCK)) threads_x = floor(Int, sqrt(total_threads)) threads_y = total_threads ÷ threads_x threads = (threads_x, threads_y) blocks = ceil.(Int, n ./ threads) # calculate size of dynamic shared memory shmem = 2 * sum(threads) * sizeof(Float32) dfprintln(shmem) @cuda (blocks, threads, shmem) pairwise_dist_kernel(lat_gpu, lon_gpu, rowresult_gpu, n) return Array(rowresult_gpu) end # generate reasonable data const n = 10000 const lat = rand(Float32, n) .* 45 const lon = rand(Float32, n) .* -120 @test pairwise_dist_cpu(lat, lon) ≈ pairwise_dist_gpu(lat, lon)
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
2221
#!/opt/julia0.6/julia using DFWannier using CUDAnative using CuArrays CUDAnative.@profile begin T=Float64 test_wfc1 = DFWannier.host2gpu(read_xsf_file("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/wan_00003.xsf",Atom{T}(0.0,0.0,0.1,0.1),T)) test_wfc2= DFWannier.host2gpu(read_xsf_file("/home/ponet/Documents/PhD/GeTe/NSOC/paperxsf/wan_00004.xsf",Atom{T}(0.0,0.0,0.1,0.1),T)) dims = size(test_wfc1.values) cu_dims = CuArray(UInt32[dims...]) Lx = CuArray(zeros(Complex{T},dims)) Ly = CuArray(zeros(Complex{T},dims)) Lz = CuArray(zeros(Complex{T},dims)) n1 = CuArray(zeros(Complex{T},dims)) n2 = CuArray(zeros(Complex{T},dims)) grid = Array(test_wfc1.grid) origin = grid[1,1,1] a = grid[2,1,1] .- origin b = grid[1,2,1] .- origin c = grid[1,1,2] .- origin V = CuArray(inv([[a...] [b...] [c...]])) indices = Array{Tuple{Tuple{Int32,Int32,Int32},Tuple{Int32,Int32,Int32}},1}() t_coeff = Array{Complex{T}}(27) t=1 k=T[0.2,0.2,0.3] for R1=-1:1,R2=-1:1,R3=-1:1 R= R1*test_wfc1.cell[1]+R2*test_wfc1.cell[2]+R3*test_wfc1.cell[3] ind1,ind2 = DFWannier.find_start(test_wfc1,R,27) push!(indices,((Int32(ind1[1]),Int32(ind1[2]),Int32(ind1[3])),(Int32(ind1[1]-ind2[1]),Int32(ind1[2]-ind2[2]),Int32(ind1[3]-ind2[3])))) t_coeff[t] = Complex{T}(exp(dot(-2*pi*k,[R1,R2,R3])*1im)) t+=1 end coefficients = CuArray(t_coeff) cu_indices = CuArray(indices) k_wfcs = Array{Wfc3D_gpu{T},1}(2) for (n,wfc) in enumerate([test_wfc1,test_wfc2]) k_wfcs[n] = Wfc3D_gpu(wfc.grid,CuArray(zeros(Complex{T},size(wfc.values))),wfc.cell,wfc.atom) end # DFWannier.construct_bloch_sums([test_wfc1,test_wfc2],k_wfcs,k,cu_indices,coefficients) begin correct = calculate_angmom(test_wfc1,test_wfc2,V,CuArray([test_wfc1.atom.center.x,test_wfc1.atom.center.y,test_wfc1.atom.center.z]),dims,Lx,Ly,Lz,n2,n2) test = calculate_angmom(test_wfc1,test_wfc2,V,CuArray([test_wfc1.atom.center.x,test_wfc1.atom.center.y,test_wfc1.atom.center.z]),dims,Lx,Ly,Lz,n2,n2) @time for i =1:2000 test = calculate_angmom(test_wfc1,test_wfc2,V,CuArray([test_wfc1.atom.center.x,test_wfc1.atom.center.y,test_wfc1.atom.center.z]),dims,Lx,Ly,Lz,n2,n2) end assert(test==correct) end end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
276
nk = (2,2,2) R = DFW.Vec3(2, 0, 0) fermi = 13.129 n_ωh = 300 n_ωv = 50 ωh = -30.0 ωv = 0.5 hami = read_hamiltonian(assetfile("wanup.chk"), assetfile("wanup.eig")) wbands = wannierbands(hami, uniform_kgrid(nk...)) @test isapprox(sum(wbands[3].eigvals), 26.24675680998617)
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
2370
for F in (Float32, Float64) n = 3 tup = rand(Complex{F}, n, n) tdown = rand(Complex{F}, n, n) orig_up = Hermitian((tup + tup')/2) orig_dn = Hermitian((tdown + tdown')/2) colin = DFW.ColinMatrix(orig_up, orig_dn) normal_eig1, normal_eig2 = eigen(orig_up), eigen(orig_dn) cache = DFW.HermitianEigenWs(colin) cached_eig = eigen(colin, cache) @test sum(normal_eig1.values) + sum(normal_eig2.values) ≈ sum(cached_eig.values) @test Array(normal_eig1) ≈ Array(cached_eig)[1:n, 1:n] ≈ DFW.up(colin) @test Array(normal_eig2) ≈ Array(cached_eig)[1:n, n+1:end] ≈ DFW.down(colin) end for F in (Float32, Float64) t = rand(Complex{F}, 50, 50) orig = (t + t')/2 normal_eig = eigen(orig) cache = DFW.HermitianEigenWs(orig) cached_eig = eigen(orig, cache) @test sum(normal_eig.values) ≈ sum(cached_eig.values) @test Array(normal_eig) ≈ Array(cached_eig) ≈ orig end mat = rand(20, 20) ats = [DFControl.Atom(name=:Fe, element=DFControl.element(:Fe), position_cart=DFControl.Point3(0.0, 0.0,0.0).*DFControl.angstrom, position_cryst=DFControl.Point3(0.0,0.0,0.0), projections=[DFControl.Projection(Structures.orbital("d"), 1, 10)]), DFControl.Atom(name=:Fe, element=DFControl.element(:Fe), position_cart=DFControl.Point3(1.0, 0.0,0.0).*DFControl.angstrom, position_cryst=DFControl.Point3(1.0,0.0,0.0), projections=[DFControl.Projection(Structures.orbital("d"), 11, 20)])] noncolinmat = convert(DFW.NonColinMatrix, mat) @test mat[1] == noncolinmat[1] @test mat[2, 2] == noncolinmat[11, 11] @test mat[6, 6] == noncolinmat[13, 13] @test mat[11, 11] == noncolinmat[6, 6] @test mat[1, 2] == noncolinmat[1, 11] @test mat[2, 1] == noncolinmat[11, 1] @test mat[1, 6] == noncolinmat[1, 13] @test mat[11, 1] == noncolinmat[6, 1] @test noncolinmat[ats[1]] == [noncolinmat[1:5,1:5] noncolinmat[1:5, 11:15];noncolinmat[11:15, 1:5] noncolinmat[11:15, 11:15]] @test noncolinmat[ats[1], ats[2]] == [noncolinmat[1:5,6:10] noncolinmat[1:5, 16:20];noncolinmat[11:15, 6:10] noncolinmat[11:15, 16:20]] @test noncolinmat[ats[1], ats[2], DFW.Up()] == noncolinmat[1:5,6:10] @test noncolinmat[ats[1], ats[2], DFW.Down()] == noncolinmat[11:15, 16:20] @test noncolinmat[ats[1], ats[2], DFW.Up(), DFW.Down()] == noncolinmat[1:5,16:20] @test noncolinmat[ats[1], ats[2], DFW.Down(), DFW.Up()] == noncolinmat[11:15, 6:10]
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
1560
using DFWannier using ProfileView T = Float32 x = WannierModel{T}("/Users/ponet/Documents/Fysica/PhD/GeTe/colin/paperxsf/test1","/Users/ponet/Documents/Fysica/PhD/GeTe/fullrel/GeTe_bands.out",[[Atom(T[0.0,0.0,-0.0239129,-0.155854]...) for i=1:4]...,[Atom(T[0.0,0.0,5.5540692,0.318205]...) for i=1:4]...]); @time tbbandssoc = calculate_eig_cm_angmom_soc(x,90:0.2:110); Profile.clear() using BenchmarkTools @benchmark tbbandssoc = calculate_eig_cm_angmom_soc(x,90:0.2:110) @profile tbbandssoc1 = calculate_eig_cm_angmom_soc(x,50:0.2:110); @time calculate_angmom(x.wfcs[1],x.wfcs[3]) Profile.clear() Profile.init(1000000000, 0.00100000) ProfileView.view() @code_warntype read_xsf_file("/Users/ponet/Documents/Fysica/PhD/GeTe/colin/paperxsf/test1") struct perfTest val::Float64 function perfTest() new(rand(Float64)) end end struct perfTest2 val::Float64 t::Bool function perfTest2() new(rand(Float64),rand(Bool)) end end const test_array = [perfTest() for i=1:10000000] const test_array2 = [perfTest2() for i=1:10000000] function bench_test(t) out = 0.0 @inbounds for i=1:10000000 out += t[i].val end out end # using StaticArrays function bench_test2(t) out = 0.0 v = Array{perfTest2,1}(12) @inbounds for i=1:10:10000000 unsafe_copy!(v,1,t,i,12) @inbounds for j = 1:12 out += v[j].val end end out end function bench_test2(t) out = 0.0 @inbounds for i=1:10000000 out += t[i].val end out end using BenchmarkTools @code_native bench_test(test_array) @code_native bench_test2(test_array2)
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
4670
# EXCLUDE FROM TESTING # this file doesn't have an entry point, see `verify.jl` instead # Fast parallel reduction for Kepler hardware # - uses shuffle and shared memory to reduce efficiently # - support for large arrays # # Based on devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/ using CUDAdrv, CUDAnative # # Main implementation # # Reduce a value across a warp @inline function reduce_warp(op::Function, val::T)::T where {T} offset = CUDAnative.warpsize() ÷ UInt32(2) # TODO: this can be unrolled if warpsize is known... while offset > 0 val = op(val, shfl_down(val, offset)) offset ÷= UInt32(2) end return val end # Reduce a value across a block, using shared memory for communication @inline function reduce_block(op::Function, val_x::T,val_y::T,val_z::T)::T where {T} # shared mem for 32 partial sums shared = @cuStaticSharedMem(T, 32) # TODO: use fldmod1 (JuliaGPU/CUDAnative.jl#28) wid_x = div(threadIdx().x-UInt32(1), CUDAnative.warpsize()) + UInt32(1) wid_y = div(threadIdx().y-UInt32(1), CUDAnative.warpsize()) + UInt32(1) wid_z = div(threadIdx().z-UInt32(1), CUDAnative.warpsize()) + UInt32(1) lane_x = rem(threadIdx().x-UInt32(1), CUDAnative.warpsize()) + UInt32(1) lane_y = rem(threadIdx().y-UInt32(1), CUDAnative.warpsize()) + UInt32(1) lane_z = rem(threadIdx().z-UInt32(1), CUDAnative.warpsize()) + UInt32(1) # each warp performs partial reduction val_x = reduce_warp(op, val_x) val_y = reduce_warp(op, val_y) val_z = reduce_warp(op, val_z) # write reduced value to shared memory if lane_x == 1 @inbounds shared[wid_x] = val_x end if lane_y == 1 @inbounds shared[wid_y] = val_y end if lane_z == 1 @inbounds shared[wid_z] = val_z end # wait for all partial reductions sync_threads() # read from shared memory only if that warp existed @inbounds val_x = (threadIdx().x <= fld(blockDim().x, CUDAnative.warpsize())) ? shared[lane] : zero(T) @inbounds val_y = (threadIdx().y <= fld(blockDim().y, CUDAnative.warpsize())) ? shared[lane] : zero(T) @inbounds val_z = (threadIdx().z <= fld(blockDim().z, CUDAnative.warpsize())) ? shared[lane] : zero(T) # final reduce within first warp if wid_x == 1 val_x = reduce_warp(op, val_x) end if wid_y == 1 val_y = reduce_warp(op, val_x) end if wid_z == 1 val_z = reduce_warp(op, val_x) end return val_x+valy_y+val_z end # Reduce an array across a complete grid function reduce_grid(op::Function, input::CuDeviceVector{T}, output::CuDeviceVector{T}, len::CuDeviceVector{Integer}) where {T} # TODO: neutral element depends on the operator (see Base's 2 and 3 argument `reduce`) val = zero(T) # reduce multiple elements per thread (grid-stride loop) # TODO: step range (see JuliaGPU/CUDAnative.jl#12) i_x = (blockIdx().x-UInt32(1)) * blockDim().x + threadIdx().x i_y = (blockIdx().y-UInt32(1)) * blockDim().y + threadIdx().y i_z = (blockIdx().z-UInt32(1)) * blockDim().z + threadIdx().z step_x = blockDim().x * gridDim().x step_y = blockDim().y * gridDim().y step_z = blockDim().z * gridDim().z while i_x <= len[1] while i_y <= len[2] while i_z <= len[3] @inbounds val = op(val, input[i]) i_z+=step_z end i_y += step_y end i_x += step_x end val = reduce_block(op, val) if threadIdx().x == UInt32(1) @inbounds output[blockIdx().x] = val end return end """ Reduce a large array. Kepler-specific implementation, ie. you need sm_30 or higher to run this code. """ function gpu_reduce(op::Function, input::CuVector{T}, output::CuVector{T}) where {T} len = length(input) # TODO: these values are hardware-dependent, with recent GPUs supporting more threads threads = 512 blocks = min((len + threads - 1) ÷ threads, 1024) # the output array must have a size equal to or larger than the number of thread blocks # in the grid because each block writes to a unique location within the array. if length(output) < blocks throw(ArgumentError("output array too small, should be at least $blocks elements")) end @cuda (blocks,threads) reduce_grid(op, input, output, Int32(len)) @cuda (1,1024) reduce_grid(op, output, output, Int32(blocks)) return end ctx = CuCurrentContext() dev = device(ctx) if capability(dev) < v"3.0" warn("this example requires a newer GPU") exit(0) end len = 10^7 input = ones(Int32, len) # CPU cpu_val = reduce(+, input) # CUDAnative let gpu_input = CuArray(input) gpu_output = similar(gpu_input) gpu_reduce(+, gpu_input, gpu_output) gpu_val = Array(gpu_output)[1] @assert cpu_val == gpu_val end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
391
using DFWannier using Test using LinearAlgebra assetfile(f) = joinpath(@__DIR__, "assets", f) @time @testset "linalg" begin include("linalg.jl") end @time @testset "hami_calcs" begin include("hami_calcs.jl") end # @time @testset "berry" begin include("berry.jl") end @time @testset "exchanges" begin include("exchanges.jl") end @time @testset "wan_calcs" begin include("wan_calcs.jl") end
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
code
1677
import DFWannier: Point3, SVector import DFWannier: WannierFunction x_range = -1:0.01:1 y_range = -1:0.01:1 z_range = -1:0.01:1 wfc_grid = [Point3(x, y, z) for x in x_range, y in y_range, z in z_range] px_orb = normalize(WannierFunction(wfc_grid, [SVector(((p[1] + 0im) * ℯ^(-norm(p)^2)),) for p in wfc_grid])) px_orb2 = px_orb' LinearAlgebra.adjoint!(px_orb2, px_orb2) @test values(px_orb2) == values(px_orb) @test norm(px_orb) ≈ norm(px_orb2) ≈ 1.0 py_orb = normalize(WannierFunction(wfc_grid, [SVector(((p[2] + 0im) * ℯ^(-norm(p)^2)),) for p in wfc_grid])) pz_orb = normalize(WannierFunction(wfc_grid, [SVector(((p[3] + 0im) * ℯ^(-norm(p)^2)),) for p in wfc_grid])) @test dot(px_orb, py_orb) <= 1.0e-15 @test dot(px_orb, px_orb) ≈ 1.0 Lx = zeros(ComplexF64, 3, 3) Ly = zeros(ComplexF64, 3, 3) Lz = zeros(ComplexF64, 3, 3) for (i1, p1) in enumerate((px_orb, py_orb, pz_orb)), (i2, p2) in enumerate((px_orb, py_orb, pz_orb)) Lx[i1, i2], Ly[i1, i2], Lz[i1, i2] = DFW.calc_angmom(p1, p2, zero(Point3)) end @test norm(sum(Lx .- [0 0 0; 0 0 -im; 0 im 0])) < 1e-4 @test norm(sum(Ly .- [0 0 im; 0 0 0; -im 0 0])) < 1e-4 @test norm(sum(Lz .- [0 -im 0; im 0 0; 0 0 0])) < 1e-4 px_orb_up = normalize(WannierFunction(wfc_grid, [SVector((p[1] + 0im, zero(ComplexF64)) .* ℯ^(-norm(p)^2)) for p in wfc_grid])) px_orb_dn = normalize(WannierFunction(wfc_grid, [SVector((zero(ComplexF64), p[1] + 0im) .* ℯ^(-norm(p)^2)) for p in wfc_grid])) @test dot(px_orb_dn, px_orb_up) ≈ 0.0 @test DFW.calc_spin(px_orb_up, px_orb_up) ≈ DFW.Point3(0.0 + 0im, 0.0+0.0im, 0.5 + 0.0im) @test norm(DFW.calc_dip(px_orb, py_orb)) < 1e-17 @test norm(DFW.calc_dip(px_orb_up, px_orb_dn)) < 1e-17
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
1130
# DFWannier | **Documentation** | **Build Status** | |:----------------------------------------------------------------------------------- |:----------------------------------------------- | | [![][docs-img]][docs-url] [![][ddocs-img]][ddocs-url] | [![][ci-img]][ci-url] [![][ccov-img]][ccov-url] | [ddocs-img]: https://img.shields.io/badge/docs-dev-blue.svg [ddocs-url]: https://louisponet.github.io/DFWannier.jl/dev [docs-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-url]: https://louisponet.github.io/DFWannier.jl/stable [ccov-img]: https://codecov.io/gh/louisponet/DFWannier.jl/branch/master/graph/badge.svg?token=OJumiSp7H1 [ccov-url]: https://codecov.io/gh/louisponet/DFWannier.jl [ci-img]: https://github.com/louisponet/DFWannier.jl/workflows/CI/badge.svg?branch=master&event=push [ci-url]: https://github.com/louisponet/DFWannier.jl/actions [![Package Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/DFWannier)](https://pkgs.genieframework.com?packages=DFWannier)
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
2356
```@meta EditURL = "<unknown>/src/calculate_exchanges.jl" ``` ````@example calculate_exchanges using LinearAlgebra#hide BLAS.set_num_threads(1)#hide using DFWannier assets_dir = joinpath(splitdir(pathof(DFWannier))[1], "../test/assets") ```` We first read the colinear Hamiltonian from the outputs of wannier90. ````@example calculate_exchanges hami = read_hamiltonian(joinpath(assets_dir, "wanup.chk"), joinpath(assets_dir, "wandn.chk"), joinpath(assets_dir, "wanup.eig"), joinpath(assets_dir, "wandn.eig")) ```` We can the generate the bandstructure by first defining a k-path and then perform the interpolation. ````@example calculate_exchanges structure = read_w90_input(joinpath(assets_dir, "wanup.win")).structure ```` First we create some high symmetry kpoints then we explicitely interpolate between the high symmetry kpoints to form `bands_kpoints`. ````@example calculate_exchanges kpoints = [Vec3(0.0, 0.0, 0.5), Vec3(0.0, 0.5, 0.5), Vec3(0.5, 0.5, 0.5), Vec3(0.5, 0.5, 0.0), Vec3(0.5, 0.0, 0.0), Vec3(0.0, 0.0, 0.0)] band_kpoints = eltype(kpoints)[] for i = 1:length(kpoints)-1 for α in range(0, 1, 20) push!(band_kpoints, Vec3((1-α) .* kpoints[i] .+ α .* kpoints[i+1])) end end ```` In order to calculate the magnetic exchanges we need to specify the fermi level (e.g. can be found in an nscf output file), and we need to specify the atoms we want to calculate the exchanges between. We set the number of k points used for the kpoint interpolation, and number of frequency points to calculate the contour integral (`n_ωh`, `n_ωv`). ````@example calculate_exchanges exch = calc_exchanges(hami, structure[element(:Ni)], 12.0; nk=(5,5,5), n_ωh = 300, n_ωv = 30) ```` This leads to a list of exchanges where each holds the J matrix, whose trace is the actual exchange between the sites specified by `atom1` and `atom2`. To calculate the exchange between the atoms in the central unit cell and those in a shifted one we can use R. In this specific case we are calculating the exchanges towards the unit cell shifted twice along the `b` cell vector. ````@example calculate_exchanges exch = calc_exchanges(hami, structure[element(:Ni)], 12.0, R=(0,2,0); nk=(5,5,5), n_ωh = 300, n_ωv = 30) ````
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
800
# Exchanges ```@meta CurrentModule = DFWannier ``` Using the [`TBHamiltonian`](@ref TBOperator) and [`calc_exchanges`](@ref), it is possible to calculate the magnetic exchange parameters $J_{ij}$ between atoms $i$ and $j$ for the isotropic Heisenberg model:\\ $E = \sum_{i,j} J_{ij} \overrightarrow{S}_i \cdot \overrightarrow{S}_j$ This involves calculating the Green's functions $G$ and on-site magnetic field matrices $\Delta$, which then determine $J$ as $J_{ij} = \frac{1}{2\pi} \int_{-\infty}^{E_f} d\varepsilon \Delta_i G_{ij}^{\downarrow}(\varepsilon) \Delta_j G_{ji}^{\uparrow}(\varepsilon). See [Weak ferromagnetism in antiferromagnets: Fe2O3 and La2CuO4](https://elar.urfu.ru/bitstream/10995/111495/1/2-s2.0-33644554849.pdf). ```@docs Exchange2ndOrder Exchange4thOrder calc_exchanges ```
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
1775
```@meta EditURL = "<unknown>/src/generate_bandstructure.jl" ``` ````@example generate_bandstructure using DFWannier using Plots assets_dir = joinpath(splitdir(pathof(DFWannier))[1], "../test/assets") ```` We can use a .chk and .eig file to construct a tight binding Hamiltonian in the Wannier basis. ````@example generate_bandstructure hami = read_hamiltonian(joinpath(assets_dir, "Fe/Fe.chk"), joinpath(assets_dir, "Fe/Fe.eig")) ```` We can the generate the bandstructure by first defining a k-path and then perform the interpolation. ````@example generate_bandstructure structure = read_w90_input(joinpath(assets_dir, "Fe/Fe.win")).structure ```` First we create some high symmetry kpoints then we explicitely interpolate between the high symmetry kpoints to form `bands_kpoints`. ````@example generate_bandstructure kpoints = [Vec3(0.0, 0.0, 0.5), Vec3(0.0, 0.5, 0.5), Vec3(0.5, 0.5, 0.5), Vec3(0.5, 0.5, 0.0), Vec3(0.5, 0.0, 0.0), Vec3(0.0, 0.0, 0.0)] band_kpoints = eltype(kpoints)[] for i = 1:length(kpoints)-1 for α in range(0, 1, 20) push!(band_kpoints, Vec3((1-α) .* kpoints[i] .+ α .* kpoints[i+1])) end end bands = wannierbands(hami, band_kpoints) plot(bands) ```` We can also construct a colinear Tight Binding Hamiltonian by reading the outputs of up and down Wannierizations ````@example generate_bandstructure hami = read_hamiltonian(joinpath(assets_dir, "wanup.chk"), joinpath(assets_dir, "wandn.chk"), joinpath(assets_dir, "wanup.eig"), joinpath(assets_dir, "wandn.eig")) structure = read_w90_input(joinpath(assets_dir, "wanup.win")).structure bands = wannierbands(hami, band_kpoints) plot(bands) ````
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
528
# DFWannier Documentation This package is meant to be used as a post processing tool for Wannier90. It relies heavily on [`DFControl`](https://louisponet.github.io/DFControl.jl/stable). The main capabilities are - Generating the Tight-Binding Hamiltonian, Spin and dipole operators - Interpolating bands and other properties in _k_-space using said operators - Generating the real space Wannier functions - Calculate various Berry and geometric properties - Calculate the magnetic exchange parameters for the Heisenberg model
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
0.2.3
c8b8a89084dc4841c256be79813592574e76dcf5
docs
447
# Tight Binding Various tight binding operators can be generated using the outputs of Wannier90. ```@meta CurrentModule = DFWannier ``` ```@docs TBBlock TBOperator ``` The following functions can be used to generate specific operators. ```@docs read_hamiltonian read_spin read_r ``` ## Reciprocal The tight binding operators can be used to interpolate properties in reciprocal space. ```@docs Hk HamiltonianKGrid WannierBand wannierbands ```
DFWannier
https://github.com/louisponet/DFWannier.jl.git
[ "MIT" ]
1.2.0
412b250c1eb756212d79e00ed5019b2f096cb629
code
8000
#= InterpolatedRejectionSampling Copyright © 2019 Mark Wells <[email protected]> Distributed under terms of the AGPL-3.0 license. =# module InterpolatedRejectionSampling using Base.Iterators using Interpolations using Interpolations: Extrapolation using StatsBase: sample, Weights export irsample, irsample! @inline function midpoints(x::AbstractVector{Float64}) length(x) == 1 && return x retval = Vector{Float64}(undef, length(x)-1) @fastmath @inbounds @simd for i in eachindex(retval) retval[i] = (x[i ] + x[i+1])/2 end return retval end @inline function midpoints(x::AbstractRange{Float64}) length(x) == 1 && return x Δx = 0.5*step(x) return range(first(x)+Δx, stop=last(x)-Δx, length=length(x)-1) end @inline get_interp(interp::AbstractExtrapolation{Float64,N,ITPT,IT}, val::NTuple{N,Float64}) where {N,ITPT,IT} = interp(val...) #@inline get_knots(interp::Extrapolation{Float64,1,ITPT,BSpline{Linear},ET}) where {ITPT,ET} = first(interp.itp.ranges) #@inline get_knots(interp::Extrapolation{Float64,1,ITPT,Gridded{Linear},ET}) where {ITPT,ET} = first(interp.itp.knots) @inline get_knots(interp::Extrapolation{Float64,N,ITPT,BSpline{Linear},ET}) where {N,ITPT,ET} = interp.itp.ranges @inline get_knots(interp::Extrapolation{Float64,N,ITPT,Gridded{Linear},ET}) where {N,ITPT,ET} = interp.itp.knots @inline get_coefs(interp::Extrapolation{Float64,N,ITPT,BSpline{Linear},ET}) where {N,ITPT,ET} = interp.itp.itp.coefs @inline get_coefs(interp::Extrapolation{Float64,N,ITPT,Gridded{Linear},ET}) where {N,ITPT,ET} = interp.itp.coefs @inline get_Δ(x::AbstractVector) = length(x) > 1 ? diff(x) : 1 @inline integrate(interp::AbstractExtrapolation{Float64,N,ITPT,IT}, (x, Δx)::NTuple{2,NTuple{N,Float64}} ) where {N,ITPT,IT} = prod(Δx)*get_interp(interp, x) function integrate(knots::NTuple{N,AbstractVector{Float64}}, interp::AbstractExtrapolation{Float64,N,ITPT,IT} ) where {N,ITPT,IT} midknots = map(midpoints, knots) Δknots = map(get_Δ, knots) return sum(x -> integrate(interp, x), zip(product(midknots...), product(Δknots...))) end @inline integrate(interp::AbstractExtrapolation{Float64,N,ITPT,IT} ) where {N,ITPT,IT} = integrate(get_knots(interp), interp) @inline is_normalized(interp::AbstractExtrapolation{Float64,N,ITPT,IT} ) where {N,ITPT,IT} = isapprox(integrate(interp), one(Float64)) function normalize_interp(interp::AbstractExtrapolation{Float64,N,ITPT,IT}) where {N,ITPT,IT} knots = get_knots(interp) coefs = get_coefs(interp) A = integrate(interp) coefs ./= A return LinearInterpolation(knots, coefs) end @inline sliced_knots(k::AbstractVector{Float64}, s::T ) where T<:Union{Missing,Float64} = ismissing(s) ? k : [s] @inline sliced_knots(knots::NTuple{N,AbstractVector}, slice::AbstractVector{Union{Missing,Float64}} ) where N = ntuple(i -> sliced_knots(knots[i], slice[i]), Val(N)) struct Cells{Float64,N,ITPT,IT,ET} knots::NTuple{N,Vector} pmass::Array{Float64,N} cinds::CartesianIndices{N,NTuple{N,Base.OneTo{Int}}} interp::Extrapolation{Float64,N,ITPT,IT,ET} function Cells(interp::Extrapolation{Float64,N,ITPT,IT,ET}, knots::NTuple{N,AbstractVector} = get_knots(interp) ) where {T<:Union{Missing,Float64},N,ITPT,IT,ET} ksz = map(length, knots) midpnt = map(midpoints, knots) msz = map(length, midpnt) pmass = Array{Float64,N}(undef,msz) for (i,k) in enumerate(product(midpnt...)) pmass[i] = get_interp(interp, k) end pmass ./= sum(pmass) new{Float64,N,ITPT,IT,ET}(knots, pmass, CartesianIndices(msz), interp) end function Cells(interp::Extrapolation{Float64,N,ITPT,IT,ET}, slice::AbstractVector{Union{Missing,Float64}} ) where {N,ITPT,IT,ET} knots = get_knots(interp) sknots = sliced_knots(knots, slice) return Cells(interp, sknots) end end @inline get_interp(C::Cells{Float64,N,ITPT,IT,ET}, val::NTuple{N,Float64} ) where {N,ITPT,IT,ET} = get_interp(C.interp, val) import StatsBase.sample @inline sample(C::Cells) = sample(CartesianIndices(C.cinds), Weights(vec(C.pmass))) @inline _get_xmin(x::AbstractVector{Float64}, i::Int)::Float64 = x[i] @inline _get_span(x::AbstractVector{Float64}, i::Int)::Float64 = length(x) == 1 ? zero(Float64) : x[i+1] - x[i] struct Support{Float64,N} xmin::NTuple{N,Float64} span::NTuple{N,Float64} function Support(C::Cells{Float64,N}, cind::CartesianIndex{N}) where {N} xmin = ntuple(i -> _get_xmin(C.knots[i], cind.I[i])::Float64, Val(N)) span = ntuple(i -> _get_span(C.knots[i], cind.I[i])::Float64, Val(N)) new{Float64,N}(xmin,span) end end @inline Base.getindex(S::Support{Float64,N}, i::Int) where N = (S.xmin[i], S.span[i]) Base.iterate(S::Support{Float64,N}, state::Int=1) where N = state > N ? nothing : (S[state], state+1) @inline propose_sample(S::Support{Float64,N} ) where N = ntuple(i -> iszero(last(S[i])) ? first(S[i]) : first(S[i]) + rand()*last(S[i]), Val(N) ) @inline get_extrema(S::Support{Float64,N} ) where N = product(ntuple(i -> (first(S[i]), first(S[i]) + last(S[i])), Val(N) )... ) @inline maxmapreduce(f,a) = mapreduce(f, max, a) struct Envelope{Float64,N,ITPT,IT,ET} support::Support{Float64,N} maxvalue::Float64 interp::Extrapolation{Float64,N,ITPT,IT,ET} function Envelope(C::Cells{Float64,N,ITPT,IT,ET}, cind::CartesianIndex{N} ) where {N,ITPT,IT,ET} support = Support(C, cind) spnts = get_extrema(support) maxvalue = maxmapreduce(x -> get_interp(C,x), spnts) new{Float64,N,ITPT,IT,ET}(support, maxvalue, C.interp) end end @inline get_interp(E::Envelope{Float64,N,ITPT,IT,ET}, val::NTuple{N,Float64} ) where {N,ITPT,IT,ET} = get_interp(E.interp, val) @inline propose_sample(E::Envelope) = propose_sample(E.support) function rsample(E::Envelope{Float64,N,ITPT,IT,ET}) where {N,ITPT,IT,ET} while true samp = propose_sample(E) if rand()*E.maxvalue ≤ get_interp(E, samp) return samp end end error("unable to draw a sample after $maxruns runs") end function rsample(C::Cells) cind = sample(C) E = Envelope(C,cind) return rsample(E) end function rsample(interp::Extrapolation) C = Cells(interp) return rsample(C) end function irsample(knots::NTuple{N,AbstractVector{Float64}}, probs::AbstractArray{Float64,N} ) where N interp = LinearInterpolation(knots, probs) return rsample(interp) end function irsample(knots::NTuple{N,AbstractVector{Float64}}, probs::AbstractArray{Float64,N}, n::Int ) where N interp = LinearInterpolation(knots, probs) retval = Matrix{Float64}(undef, N, n) for s in eachcol(retval) s .= rsample(interp) end return retval end function rsample(interp::Extrapolation, slice::AbstractVector{Union{Missing,Float64}}) C = Cells(interp, slice) return rsample(C) end function irsample!(slices::AbstractMatrix{Union{Missing,Float64}}, knots::NTuple{N,AbstractVector{Float64}}, probs::AbstractArray{Float64,N} ) where N interp = LinearInterpolation(knots, probs) for s in eachcol(slices) s .= rsample(interp, s) end end end
InterpolatedRejectionSampling
https://github.com/m-wells/InterpolatedRejectionSampling.jl.git
[ "MIT" ]
1.2.0
412b250c1eb756212d79e00ed5019b2f096cb629
code
3838
using InterpolatedRejectionSampling using InterpolatedRejectionSampling: get_knots, integrate, normalize_interp, is_normalized, get_interp, maxmapreduce, Cells, sample, Support, iterate, propose_sample, get_extrema, Envelope, rsample, irsample, irsample! using Test using Interpolations using Random: seed! seed!(1234) slice = [missing,missing,0.3] knots = (π.*[0.0, sort(rand(20))..., 1.0], π.*[0.0, sort(rand(19))..., 1.0], π.*[0.0, sort(rand(18))..., 1.0]) coefs = [sin(x)*sin(y)*sin(z) for x=knots[1],y=knots[2],z=knots[3]] interp = LinearInterpolation(knots,coefs) ranges = (range(0, stop=π, length=20), range(0, stop=π, length=19), range(0, stop=π, length=18)) coefs_ranges = [sin(x)*sin(y)*sin(z) for x=ranges[1],y=ranges[2],z=ranges[3]] interp_ranges = LinearInterpolation(ranges,coefs_ranges) @testset "Utilities" begin @test get_knots(interp) === knots @test isapprox(integrate(interp), 8.0; atol = 0.5) @test get_knots(interp_ranges) === ranges @test isapprox(integrate(interp_ranges), 8.0; atol = 0.5) ninterp = normalize_interp(interp) @test isa(ninterp, AbstractExtrapolation) @test isapprox(integrate(ninterp), one(Float64)) @test is_normalized(ninterp) ninterp = normalize_interp(interp_ranges) @test isa(ninterp, AbstractExtrapolation) @test isapprox(integrate(ninterp), one(Float64)) @test is_normalized(ninterp) pnt = (0.2,1.0,0.9) @test get_interp(interp, pnt) === interp(pnt...) @test get_interp(interp_ranges, pnt) === interp_ranges(pnt...) @test maxmapreduce(x -> x^2, [0.0, 0.5, -2.0, 1.5]) == 4.0 end @testset "Cells" begin cells = Cells(interp) @test isa(cells, Cells) s = sample(cells) @test isa(s, CartesianIndex{3}) cells = Cells(interp,slice) @test isa(cells, Cells) s = sample(cells) @test isa(s, CartesianIndex{3}) cells = Cells(interp_ranges) @test isa(cells, Cells) end @testset "Support" begin cells = Cells(interp) s = sample(cells) supp = Support(cells, s) @test isa(supp, Support{Float64,3}) @test isa(iterate(supp), Tuple{NTuple{2,Float64}, Int}) @test isa(iterate(supp,2), Tuple{NTuple{2,Float64}, Int}) @test isa(iterate(supp,3), Tuple{NTuple{2,Float64}, Int}) @test isa(iterate(supp,4), Nothing) samp = propose_sample(supp) @test isa(samp, NTuple{3,Float64}) spnts = get_extrema(supp) @test length(spnts) == 8 @test eltype(spnts) == NTuple{3,Float64} end @testset "Envelope/rsample" begin cells = Cells(interp) s = sample(cells) envelope = Envelope(cells, s) @test isa(envelope, Envelope) @test isa(rsample(envelope), NTuple{3,Float64}) @test isa(rsample(interp), NTuple{3,Float64}) @test isa(rsample(interp, slice), NTuple{3,Float64}) end @testset "irsample/irsample!" begin @test isa(irsample(knots, coefs), NTuple{3,Float64}) samp = irsample(knots, coefs, 2) @test isa(samp, Matrix{Float64}) @test size(samp) == (3,2) slices = Matrix{Union{Missing,Float64}}(missing, 3, 3) slices[1,1], slices[1,2], slices[2,2] = 0.2, 0.3, 0.4 @test !iszero(count(ismissing, slices)) irsample!(slices, knots, coefs) @test iszero(count(ismissing, slices)) @test isa(convert(Matrix{Float64}, slices), Matrix{Float64}) @test isa(irsample(ranges, coefs_ranges), NTuple{3,Float64}) samp = irsample(ranges, coefs_ranges, 2) @test isa(samp, Matrix{Float64}) @test size(samp) == (3,2) slices = Matrix{Union{Missing,Float64}}(missing, 3, 3) slices[1,1], slices[1,2], slices[2,2] = 0.2, 0.3, 0.4 @test !iszero(count(ismissing, slices)) irsample!(slices, ranges, coefs_ranges) @test iszero(count(ismissing, slices)) @test isa(convert(Matrix{Float64}, slices), Matrix{Float64}) end
InterpolatedRejectionSampling
https://github.com/m-wells/InterpolatedRejectionSampling.jl.git
[ "MIT" ]
1.2.0
412b250c1eb756212d79e00ed5019b2f096cb629
docs
2492
# InterpolatedRejectionSampling.jl [![Build Status](https://travis-ci.com/m-wells/InterpolatedRejectionSampling.jl.svg?token=qtRCxXQJn8B2HN1f6h3k&branch=master)](https://travis-ci.com/m-wells/InterpolatedRejectionSampling.jl) [![codecov](https://codecov.io/gh/m-wells/InterpolatedRejectionSampling.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/m-wells/InterpolatedRejectionSampling.jl) [![Coveralls github](https://img.shields.io/coveralls/github/m-wells/InterpolatedRejectionSampling.jl)](https://coveralls.io/github/m-wells/InterpolatedPDFs.jl?branch=master) ## Draw samples from discrete multivariate distributions For a given discrete (n-dimensional) grid of values and the vectors that describe the span of the underlying space we can draw samples. The interpolation of the space is handled by [`Interpolations.jl`](https://github.com/JuliaMath/Interpolations.jl) # A simple example First we need to setup a discrete distribution ``` julia> X = range(0, π, length=10) julia> Y = range(0, π/4, length=9) julia> knots = (X,Y) julia> prob = [sin(x)+tan(y) for x in X, y in Y] 10×9 Array{Float64,2}: 0.0 0.0984914 0.198912 0.303347 … 0.668179 0.820679 1.0 0.34202 0.440512 0.540933 0.645367 1.0102 1.1627 1.34202 0.642788 0.741279 0.8417 0.946134 1.31097 1.46347 1.64279 0.866025 0.964517 1.06494 1.16937 1.5342 1.6867 1.86603 0.984808 1.0833 1.18372 1.28815 1.65299 1.80549 1.98481 0.984808 1.0833 1.18372 1.28815 … 1.65299 1.80549 1.98481 0.866025 0.964517 1.06494 1.16937 1.5342 1.6867 1.86603 0.642788 0.741279 0.8417 0.946134 1.31097 1.46347 1.64279 0.34202 0.440512 0.540933 0.645367 1.0102 1.1627 1.34202 1.22465e-16 0.0984914 0.198912 0.303347 0.668179 0.820679 1.0 ``` We can visualize the probability density matrix like so: ``` julia> using PyPlot julia> imshow(transpose(prob); extent = (knots[1][1], knots[1][end], knots[2][1], knots[2][end]), aspect = "auto", origin = "lower") julia> ax = gca() julia> ax.set_xlabel("x-axis [sin(x)]") julia> ax.set_ylabel("y-axis [tan(y)]") ``` To perform a sampling ``` julia> using InterpolatedRejectionSampling julia> n = 100_000 julia> xy = irsample(knots,prob,n) julia> hist2D(xy[1,:],xy[2,:]) julia> ax = gca() julia> ax.set_xlabel("x-axis [sin(x)]") julia> ax.set_ylabel("y-axis [tan(y)]") ```
InterpolatedRejectionSampling
https://github.com/m-wells/InterpolatedRejectionSampling.jl.git
[ "MIT" ]
0.1.0
0b5b2f6500e085defd85ca008cce05a3a44a00ca
code
624
using GBPirate using Documenter DocMeta.setdocmeta!(GBPirate, :DocTestSetup, :(using GBPirate); recursive=true) makedocs(; modules=[GBPirate], authors="Wimmerer <[email protected]> and contributors", repo="https://github.com/Wimmerer/GBPirate.jl/blob/{commit}{path}#{line}", sitename="GBPirate.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://Wimmerer.github.io/GBPirate.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/Wimmerer/GBPirate.jl", devbranch="main", )
GBPirate
https://github.com/Wimmerer/GBPirate.jl.git
[ "MIT" ]
0.1.0
0b5b2f6500e085defd85ca008cce05a3a44a00ca
code
1093
module GBPirate import SparseArrays using SuiteSparseGraphBLAS import LinearAlgebra: mul! export gbmul! function gbmul!(C::StridedVecOrMat{T}, A::SparseArrays.SparseMatrixCSC{T, Int64}, B::StridedVecOrMat{T}, α::Number, β::Number) where {T} Agb = GBMatrix{T}(size(A)) SuiteSparseGraphBLAS._packcscmatrix!(Agb, A.colptr, A.rowval, A.nzval) SuiteSparseGraphBLAS._makeshallow!(Agb) Bgb = GBMatrix{T}(size(B)) SuiteSparseGraphBLAS._packdensematrix!(Bgb, B) SuiteSparseGraphBLAS._makeshallow!(Bgb) Cgb = GBMatrix(size(C), convert(T, α)) gbset(Cgb, :format, :bycol) gbset(Cgb, :sparsity_control, :full) mul!(Cgb, Agb, Bgb; accum=*) # Done with Agb and Bgb now. # They do not need to be unpacked since they're shallow. # But packing modified the index vectors of A. A.colptr .+= 1 A.rowval .+= 1 return Cgb Ctemp = SuiteSparseGraphBLAS._unpackdensematrix!(Cgb) if iszero(β) copyto!(C, Ctemp) else C .*= Ctemp end ccall(:jl_free, Cvoid, (Ptr{T},), pointer(Ctemp)) return C end end
GBPirate
https://github.com/Wimmerer/GBPirate.jl.git
[ "MIT" ]
0.1.0
0b5b2f6500e085defd85ca008cce05a3a44a00ca
code
89
using GBPirate using Test @testset "GBPirate.jl" begin # Write your tests here. end
GBPirate
https://github.com/Wimmerer/GBPirate.jl.git
[ "MIT" ]
0.1.0
0b5b2f6500e085defd85ca008cce05a3a44a00ca
docs
415
# GBPirate [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://Wimmerer.github.io/GBPirate.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://Wimmerer.github.io/GBPirate.jl/dev) [![Build Status](https://github.com/Wimmerer/GBPirate.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/Wimmerer/GBPirate.jl/actions/workflows/CI.yml?query=branch%3Amain)
GBPirate
https://github.com/Wimmerer/GBPirate.jl.git
[ "MIT" ]
0.1.0
0b5b2f6500e085defd85ca008cce05a3a44a00ca
docs
176
```@meta CurrentModule = GBPirate ``` # GBPirate Documentation for [GBPirate](https://github.com/Wimmerer/GBPirate.jl). ```@index ``` ```@autodocs Modules = [GBPirate] ```
GBPirate
https://github.com/Wimmerer/GBPirate.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
1395
push!(LOAD_PATH,"../src/") using DecomposingPolynomialSystems using Documenter DocMeta.setdocmeta!(DecomposingPolynomialSystems, :DocTestSetup, :(using DecomposingPolynomialSystems); recursive=true) makedocs(; modules=[DecomposingPolynomialSystems], authors="Viktor Korotynskiy <[email protected]> and contributors", repo="https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl/blob/{commit}{path}#{line}", sitename="DecomposingPolynomialSystems.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://multivariatepolynomialsystems.github.io/DecomposingPolynomialSystems.jl", edit_link="main", assets=["assets/custom.css"], collapselevel=2 ), pages = [ "Introduction" => "index.md", "Sampling Polynomial Systems" => "sampling.md", "Symmetries" => [ "Scaling symmetries" => "symmetries/scalings.md", "Deck transformations" => "symmetries/deck.md", ], "Invariants" => [ "Invariants" => "invariants/invariants.md", ], "Decomposing Polynomial Systems" => [ "Decompose" => "decomposition/decompose.md", ] ], ) deploydocs(; repo="github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git", devbranch="main", )
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
686
module DecomposingPolynomialSystems import HomotopyContinuation const HC = HomotopyContinuation using HomotopyContinuation.ModelKit export @var, Variable, Expression, System using SparseArrays: SparseVector, SparseMatrixCSC, spzeros, AbstractSparseVector, findnz, sparse using Combinatorics: partitions, multiset_permutations, combinations using LinearAlgebra: nullspace using UnPack: @unpack include("utils.jl") include("sampled_system.jl") include("monomials.jl") # include("expression_map.jl") include("scalings.jl") include("interpolation.jl") include("deck_transformations.jl") # include("invariants.jl") # include("implicitization.jl") # include("decompose.jl") end # module
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
29453
export Tolerances, DeckTransformation, DeckTransformationGroup, symmetries_fixing_parameters_dense!, symmetries_fixing_parameters_graded!, symmetries_fixing_parameters!, symmetries_fixing_parameters, _deck_action, _deck_commutes_with_scaling, _scalings_commuting_with_deck, _sample_for_deck_computation!, _deck_vandermonde_matrix @kwdef struct Tolerances nullspace_atol::Float64=0 nullspace_rtol::Float64=0 rref_tol::Float64=1e-5 sparsify_tol::Float64=1e-5 end MiExpression = Union{Missing, Expression} struct DeckTransformation exprs::Vector{MiExpression} unknowns::Vector{Variable} parameters::Vector{Variable} function DeckTransformation(exprs, unknowns, parameters) # TODO: verify args return new(exprs, unknowns, parameters) end end Base.getindex(dt::DeckTransformation, inds...) = getindex(dt.exprs, inds...) function Base.show(io::IO, dt::DeckTransformation) println( io, "DeckTransformation: acts on $(phrase(length(dt.unknowns), "unknown")),", " fixes $(phrase(length(dt.parameters), "parameter"))", ) println(io, " action:") for i in 1:length(dt.exprs) print(io, " ", dt.unknowns[i], " ↦ ", dt.exprs[i]) i < length(dt.exprs) && print(io, "\n") end end """ DeckTransformationGroup A `DeckTransformationGroup` is the result of deck transformations computation. """ struct DeckTransformationGroup maps::Vector{DeckTransformation} group::GapObj F::SampledSystem end function DeckTransformationGroup(F::SampledSystem) symmetries = _init_symmetries(length(F.deck_permutations), unknowns(F)) return DeckTransformationGroup(symmetries, F) end function DeckTransformationGroup( symmetries::Vector{Vector{MiExpression}}, F::SampledSystem ) action = [DeckTransformation(symmetry, unknowns(F), parameters(F)) for symmetry in symmetries] return DeckTransformationGroup(action, to_group(deck_permutations(F)), F) end function Base.show(io::IO, deck::DeckTransformationGroup) println(io, "DeckTransformationGroup of order $(length(deck.maps))") println(io, " structure: ", order(deck.group) == 1 ? "trivial" : group_structure(deck.group)) print(io, " action:") for i in eachindex(deck.maps) println(io, "\n ", to_ordinal(i), " map:") for (j, var) in enumerate(unknowns(deck.F)) # action on parameters is trivial, don't show it print(io, " ", var, " ↦ ", deck.maps[i][j]) j < length(unknowns(deck.F)) && print(io, "\n") end end end Base.getindex(deck::DeckTransformationGroup, inds...) = getindex(deck.maps, inds...) function _denom_deg( num_deg::SparseVector{Tv,Ti}, grading::Grading{Tv,Ti}, var_id::Int ) where {Tv<:Integer,Ti<:Integer} denom_deg = spzeros(Tv, Ti, length(num_deg)) U₀ = grading.free_part if !isnothing(U₀) denom_deg[1:size(U₀,1)] = num_deg[1:size(U₀,1)] - U₀[:, var_id] end k = nfree(grading) for (sᵢ, Uᵢ) in grading.mod_part n_scalings = size(Uᵢ,1) denom_deg[(k+1):(k+n_scalings)] = mod.(num_deg[(k+1):(k+n_scalings)] - Uᵢ[:, var_id], sᵢ) k += n_scalings end return denom_deg end # function to_nconstraints_ninstances( # path_ids::Dict{Vector{Int}, Vector{Int}}, # samples::Dict{Vector{Int}, Samples} # ) # c_i_dict = Dict{Vector{Int}, NTuple{2, Int}}() # for key in keys(path_ids) # c_i_dict[key] = (length(path_ids[key]), ninstances(samples[key])) # end # return c_i_dict # end # function total_nconst_ninst( # c_i_dict::Dict{Vector{Int}, NTuple{2, Int}} # ) # cₜ, iₜ = 0, 0 # for (c, i) in values(c_i_dict) # cₜ += c*i # iₜ += i # end # return cₜ, iₜ # end # function pick_nconstraints_ninstances( # c_i_dict::Dict{Vector{Int}, NTuple{2, Int}}, # cₘᵢₙ::Int, # iₘᵢₙ::Int # ) # picked_c_i = Dict{Vector{Int}, NTuple{2, Int}}() # cₜ, iₜ = total_nconst_ninst(c_i_dict) # for (key, (cₖ, iₖ)) in c_i_dict # cₜ, iₜ = cₜ - cₖ*iₖ, iₜ - iₖ # Δc, Δi = cₘᵢₙ - cₜ, iₘᵢₙ - iₜ # if Δc ≤ 0 && Δi ≤ 0 # picked_c_i[key] = (0, 0) # continue # end # i = max(Δi, div(Δc, cₖ, RoundUp)) # i > iₖ && error("Not enough instances or constraints") # c = max(div(Δc, i, RoundUp), 1) # c > cₖ && error("Not enough instantces or constraints") # picked_c_i[key] = (c, i) # cₘᵢₙ, iₘᵢₙ = cₘᵢₙ - c*i, iₘᵢₙ - i # end # return picked_c_i # end # function _deck_vandermonde_matrix( # deck_permutation::Vector{Int}, # function_id::Int, # samples::Dict{Vector{Int}, Samples}, # path_ids_for_deck::Dict{Vector{Int}, Vector{Int}}, # eval_num_mons::Dict{Samples, EvaluatedMonomials}, # eval_denom_mons::Dict{Samples, EvaluatedMonomials}, # min_nconstraints::Int, # min_ninstances::Int # ) # n_num_mons = nmonomials(first(values(eval_num_mons))) # n_denom_mons = nmonomials(first(values(eval_denom_mons))) # n_mons = n_num_mons + n_denom_mons # c_i_dict = to_nconstraints_ninstances(path_ids_for_deck, samples) # picked_c_i = pick_nconstraints_ninstances(c_i_dict, min_nconstraints, min_ninstances) # ntotal_constraints, _ = total_nconst_ninst(picked_c_i) # A = zeros(ComplexF64, ntotal_constraints, n_mons) # @assert size(A, 1) >= size(A, 2) # row_offset = 0 # for (sampled_path_ids, samplesₖ) in samples # n_constraints, n_instances = picked_c_i[sampled_path_ids] # n_constraints == 0 && continue # sols = samplesₖ.solutions # ids_rel = Dict(zip(sampled_path_ids, 1:length(sampled_path_ids))) # deck_path_ids = path_ids_for_deck[sampled_path_ids] # eval_num = eval_num_mons[samplesₖ] # eval_denom = eval_denom_mons[samplesₖ] # for i in 1:n_constraints # path_id = deck_path_ids[i] # length(deck_path_ids) ≤ n_constraints always # deck_values = sols[function_id, ids_rel[deck_permutation[path_id]], 1:n_instances] # rows = (row_offset+1):(row_offset+n_instances) # A[rows, 1:nunkn_dep(eval_num)] = transpose(eval_num.unkn_dep[:, ids_rel[path_id], 1:n_instances]) # A[rows, (nunkn_dep(eval_num)+1):n_num_mons] = transpose(eval_num.param_only[:, 1:n_instances]) # A[rows, (n_num_mons+1):(n_num_mons+nunkn_dep(eval_denom))] = -transpose(eval_denom.unkn_dep[:, ids_rel[path_id], 1:n_instances]).*deck_values # A[rows, (n_num_mons+nunkn_dep(eval_denom)+1):end] = -transpose(eval_denom.param_only[:, 1:n_instances]).*deck_values # row_offset += n_instances # end # end # return A # end function _deck_vandermonde_matrix( deck_permutation::Vector{Int}, function_id::Int, samples::Dict{Vector{Int}, Samples}, eval_num_mons::Dict{Samples, EvaluatedMonomials}, eval_denom_mons::Dict{Samples, EvaluatedMonomials}, ) n_num_mons = nmonomials(first(values(eval_num_mons))) n_denom_mons = nmonomials(first(values(eval_denom_mons))) n_mons = n_num_mons + n_denom_mons A = zeros(ComplexF64, n_mons, n_mons) @assert size(A, 1) >= size(A, 2) row_offset = 0 for (sampled_path_ids, samplesₖ) in samples n_instances = min(n_mons-row_offset, ninstances(samplesₖ)) sols = samplesₖ.solutions ids_rel = Dict(zip(sampled_path_ids, 1:length(sampled_path_ids))) eval_num = eval_num_mons[samplesₖ] eval_denom = eval_denom_mons[samplesₖ] deck_values = sols[function_id, ids_rel[deck_permutation[1]], 1:n_instances] rows = (row_offset+1):(row_offset+n_instances) A[rows, 1:nunkn_dep(eval_num)] = transpose(eval_num.unkn_dep[:, ids_rel[1], 1:n_instances]) A[rows, (nunkn_dep(eval_num)+1):n_num_mons] = transpose(eval_num.param_only[:, 1:n_instances]) A[rows, (n_num_mons+1):(n_num_mons+nunkn_dep(eval_denom))] = -transpose(eval_denom.unkn_dep[:, ids_rel[1], 1:n_instances]).*deck_values A[rows, (n_num_mons+nunkn_dep(eval_denom)+1):end] = -transpose(eval_denom.param_only[:, 1:n_instances]).*deck_values row_offset += n_instances row_offset == n_mons && return A end end function _all_interpolated(symmetries::Vector{Vector{MiExpression}}) for symmetry in symmetries for expr in symmetry ismissing(expr) && return false end end return true end function _init_symmetries(n_symmetries::Int, unknowns::Vector{Variable}) symmetries = [[missing for j in eachindex(unknowns)] for i in 1:n_symmetries] symmetries = Vector{Vector{MiExpression}}(symmetries) symmetries[1] = Expression.(unknowns) # set the first to the identity return symmetries end function _interpolate_deck_function( deck_permutation::Vector{Int}, function_id::Int, samples::Dict{Vector{Int}, Samples}, # path_ids_for_deck::Dict{Vector{Int}, Vector{Int}}, eval_num_mons::Dict{Samples, EvaluatedMonomials}, eval_denom_mons::Dict{Samples, EvaluatedMonomials}, num_mons::AbstractMonomialVector, denom_mons::AbstractMonomialVector, tols::Tolerances; logging::Bool=false ) # min_nconstraints = length(num_mons) + length(denom_mons) + 5 # TODO: x^2 + ax + b example requires (+1) # min_ninstances = nparam_only(num_mons) + nparam_only(denom_mons) # TODO: understand A = _deck_vandermonde_matrix( deck_permutation, function_id, samples, # path_ids_for_deck, eval_num_mons, eval_denom_mons # min_nconstraints, # min_ninstances ) logging && println( "Created vandermonde matrix of size ", size(A) ) logging && println("Computing nullspace...") if tols.nullspace_rtol == 0 N = nullspace(A, atol=tols.nullspace_atol) else N = nullspace(A, atol=tols.nullspace_atol, rtol=tols.nullspace_rtol) end coeffs = transpose(N) logging && println("Size of the transposed nullspace: ", size(coeffs)) if size(coeffs, 1) == 0 return missing end logging && println("Computing the reduced row echelon form of the transposed nullspace...\n") coeffs = rref(coeffs, tols.rref_tol) sparsify!(coeffs, tols.sparsify_tol; digits=1) coeffs = remove_zero_nums_and_denoms(coeffs, num_mons, denom_mons) if size(coeffs, 1) == 0 return missing end coeffs = good_representative(coeffs) return rational_function(coeffs, num_mons, denom_mons; tol=tols.sparsify_tol) end function _interpolate_deck_function( deck_permutation::Vector{Int}, function_id::Int, samples::Dict{Vector{Int}, Samples}, # path_ids_for_deck::Dict{Vector{Int}, Vector{Int}}, eval_mons::Dict{Samples, EvaluatedMonomials}, mons::AbstractMonomialVector, tols::Tolerances; logging::Bool=false ) return _interpolate_deck_function( deck_permutation, function_id, samples, # path_ids_for_deck, eval_mons, eval_mons, mons, mons, tols; logging=logging ) end function orbit(deck_permutations::Vector{Vector{Int}}, el) return unique(vcat([perm[el] for perm in deck_permutations]...)) end # function path_ids_for_deck_computation(F::SampledSystem) # path_ids_all_deck = [Dict{Vector{Int}, Vector{Int}}() for _ in deck_permutations(F)] # for (i, deck) in enumerate(deck_permutations(F)) # path_ids_deck = path_ids_all_deck[i] # for path_ids_samples in keys(samples(F)) # if length(path_ids_samples) == nsolutions(F) # path_ids_deck[path_ids_samples] = path_ids_samples # else # path_ids_deck[path_ids_samples] = [] # for path_id in path_ids_samples # if deck[path_id] in path_ids_samples # push!(path_ids_deck[path_ids_samples], path_id) # end # end # end # end # end # return path_ids_all_deck # end # function min_nconstraints_among_deck( # path_ids_all_deck::Vector{Dict{Vector{Int}, Vector{Int}}}, # samples::Dict{Vector{Int}, Samples} # ) # return min([sum(length(path_ids_deck)*ninstances(samples[path_ids_samples]) for (path_ids_samples, path_ids_deck) in path_ids_all_deck[i]) for i in 1:length(path_ids_all_deck)]...) # end # function _sample_for_deck_computation!( # F::SampledSystem; # min_nconstraints::Int, # min_ninstances::Int # ) # path_ids_all_deck = path_ids_for_deck_computation(F) # min_nconst = min_nconstraints_among_deck(path_ids_all_deck, samples(F)) # Δ_ninstances = min_ninstances - ninstances(F) # Δ_min_nconst = min_nconstraints - min_nconst # n_sols = nsolutions(F) # if Δ_ninstances > 0 # if Δ_min_nconst > 0 # sample!(F; n_instances=div(Δ_min_nconst, n_sols)) # Δ_ninstances -= div(Δ_min_nconst, n_sols) # if Δ_ninstances > 0 # path_ids = orbit(deck_permutations(F), 1:max(div(mod(Δ_min_nconst, n_sols), Δ_ninstances, RoundUp), 1)) # sample!(F, path_ids=path_ids, n_instances=Δ_ninstances) # else # sample!(F; path_ids=orbit(deck_permutations(F), 1:mod(Δ_min_nconst, n_sols)), n_instances=1) # end # else # sample!(F; path_ids=orbit(deck_permutations(F), 1), n_instances=Δ_ninstances) # end # else # if Δ_min_nconst > 0 # sample!(F; n_instances=div(Δ_min_nconst, n_sols)) # sample!(F; path_ids=orbit(deck_permutations(F), 1:mod(Δ_min_nconst, n_sols)), n_instances=1) # end # end # return path_ids_for_deck_computation(F) # end function _sample_for_deck_computation( F::SampledSystem; n_instances::Int ) Δ_ninstances = n_instances - ninstances(F) if Δ_ninstances > 0 sample!(F; path_ids=orbit(deck_permutations(F), 1), n_instances=Δ_ninstances) end end function symmetries_fixing_parameters_graded!( F::SampledSystem, grading::Grading; degree_bound::Integer=1, param_dep::Bool=true, tols::Tolerances=Tolerances(), logging::Bool=false ) C = deck_permutations(F) symmetries = _init_symmetries(length(C), unknowns(F)) mons = DenseMonomialVector{Int8, Int16}(unknowns=unknowns(F), parameters=parameters(F)) for d in 1:degree_bound extend!(mons; degree=d, extend_params=param_dep) mon_classes = to_classes(mons, grading) mon_classes_vect = collect(values(mon_classes)) max_n_mons = max(length.(mon_classes_vect)...) # max_nparam_only = max(nparam_only.(mon_classes_vect)...) # path_ids_for_deck = _sample_for_deck_computation!( # F; # min_nconstraints = 2*max_n_mons, # TODO: understand this # min_ninstances = 2*max_n_mons # TODO: understand this # ) _sample_for_deck_computation(F; n_instances=2*max_n_mons) for (num_deg, num_mons) in mon_classes eval_num_mons = nothing for i in 1:nunknowns(F) denom_deg = _denom_deg(num_deg, grading, i) # i-th variable denom_mons = get(mon_classes, denom_deg, nothing) if !isnothing(denom_mons) num_denom_mons = vcat(num_mons, denom_mons) if iszero(gcd(num_denom_mons)) && !is_param_only(num_denom_mons) if isnothing(eval_num_mons) eval_num_mons = evaluate(num_mons, samples(F)) end eval_denom_mons = evaluate(denom_mons, samples(F)) for (j, symmetry) in enumerate(symmetries) if ismissing(symmetry[i]) symmetry[i] = _interpolate_deck_function( C[j], i, samples(F), # path_ids_for_deck[j], eval_num_mons, eval_denom_mons, num_mons, denom_mons, tols; logging=logging ) if logging && !ismissing(symmetry[i]) printstyled( "Good representative for the ", to_ordinal(j), " symmetry, variable ", unknowns(F)[i], ":\n", color=:red ) println(symmetry[i]) end end end end end end if _all_interpolated(symmetries) logging && printstyled("--- All symmetries are interpolated ---\n", color=:blue) return DeckTransformationGroup(symmetries, F) end end end return DeckTransformationGroup(symmetries, F) end function symmetries_fixing_parameters_dense!( F::SampledSystem; degree_bound::Integer=1, param_dep::Bool=true, tols::Tolerances=Tolerances(), logging::Bool=false ) C = deck_permutations(F) symmetries = _init_symmetries(length(C), unknowns(F)) mons = DenseMonomialVector{Int8, Int16}(unknowns=unknowns(F), parameters=parameters(F)) for d in 1:degree_bound logging && printstyled("Started interpolation for degree = ", d, "...\n"; color=:green) extend!(mons; degree=d, extend_params=param_dep) # path_ids_for_deck = _sample_for_deck_computation!( # F; # min_nconstraints = 2*length(mons)+1, # TODO: understand this # min_ninstances = 2*nparam_only(mons) # TODO: understand this # ) _sample_for_deck_computation(F; n_instances=2*length(mons)) logging && println("Evaluating monomials...\n") # TODO: pick samples for evaluation evaluated_mons = evaluate(mons, samples(F)) for (i, symmetry) in enumerate(symmetries) logging && printstyled("Interpolating the ", i, "-th deck transformation...\n"; color=:blue) for j in 1:nunknowns(F) if ismissing(symmetry[j]) symmetry[j] = _interpolate_deck_function( C[i], j, samples(F), # path_ids_for_deck[i], evaluated_mons, mons, tols; logging=logging ) if logging && !ismissing(symmetry[j]) printstyled( "Good representative for the ", i, "-th deck transformation, variable ", unknowns(F)[j], ":\n"; color=:red ) println(symmetry[j]) end end end end if _all_interpolated(symmetries) logging && printstyled("--- All deck transformations are interpolated ---\n"; color=:blue) return DeckTransformationGroup(symmetries, F) end end return DeckTransformationGroup(symmetries, F) end to_CC(scaling::Tuple{Tv, SparseVector{Tv,Ti}}) where {Tv<:Integer,Ti<:Integer} = [cis(2*pi*k/scaling[1]) for k in scaling[2]] function _deck_action( deck_permutation::Vector{Int}, (x₀, p₀)::NTuple{2, AbstractVector{<:Number}}, F::SampledSystem; tol::Real=1e-5 ) sols, params = all_solutions_samples(F).solutions, all_solutions_samples(F).parameters instance_id = rand(1:size(sols, 3)) p₁ = params[:, instance_id] p_inter = randn(ComplexF64, nparameters(F)) x₁ = track_parameter_homotopy(F.system, (x₀, p₀), p₁, p_inter) # along path γ in the parameter space x₁_id = findfirst(x₁, sols[:,:,instance_id]; tol=tol) isnothing(x₁_id) && return nothing Ψ_x₁ = sols[:,deck_permutation[x₁_id], instance_id] Ψ_x₀ = track_parameter_homotopy(F.system, (Ψ_x₁, p₁), p₀, p_inter) # should be along the same path γ return Ψ_x₀ end # supposes scaling is a symmetry of F function _deck_commutes_with_scaling( deck_permutation::Vector{Int}, scaling::Tuple{Tv, SparseVector{Tv,Ti}}, F::SampledSystem; tol::Real=1e-5 ) where {Tv<:Integer,Ti<:Integer} sols, params = all_solutions_samples(F).solutions, all_solutions_samples(F).parameters inst_id = rand(1:size(sols, 3)) p₀ = params[:, inst_id] Φ_p₀ = to_CC(scaling)[end-nparameters(F)+1:end].*p₀ sol_id = rand(1:size(sols, 2)) x₀ = sols[:, sol_id, inst_id] Ψ_x₀ = sols[:, deck_permutation[sol_id], inst_id] Φ_x₀ = to_CC(scaling)[1:nunknowns(F)].*x₀ ΦΨ_x₀ = to_CC(scaling)[1:nunknowns(F)].*Ψ_x₀ ΨΦ_x₀ = _deck_action(deck_permutation, (Φ_x₀, Φ_p₀), F; tol=tol) isnothing(ΨΦ_x₀) && return false return norm(ΦΨ_x₀-ΨΦ_x₀)<tol end function _all_deck_commute( F::SampledSystem, scaling::Tuple{Tv, SparseVector{Tv, Ti}}; tol::Real=1e-5 ) where {Tv<:Integer,Ti<:Integer} for deck_permutation in deck_permutations(F) if !_deck_commutes_with_scaling(deck_permutation, scaling, F; tol=tol) return false end end return true end function _scalings_commuting_with_deck(F::SampledSystem, scalings::ScalingGroup) grading = scalings.grading final_grading = Grading{Int8, Int16}(nfree(grading), grading.free_part, []) for (sᵢ, Uᵢ) in grading.mod_part Vᵢ = Array{Int}(undef, 0, size(Uᵢ, 2)) # TODO: Uᵢ ↦ all linear combinations of rows of Uᵢ (might not commute with 2 gens, but commutes with their combination) for j in axes(Uᵢ, 1) if _all_deck_commute(F, (sᵢ, Uᵢ[j, :])) Vᵢ = [Vᵢ; hcat(Uᵢ[j, :]...)] end end if size(Vᵢ, 1) > 0 push!(final_grading.mod_part, (sᵢ, Vᵢ)) end end return ScalingGroup(reduce(final_grading), scalings.vars) end function symmetries_fixing_parameters!( F::SampledSystem; degree_bound::Integer=1, param_dep::Bool=true, tols::Tolerances=Tolerances(), logging::Bool=false ) if length(deck_permutations(F)) == 1 # trivial group of symmetries return DeckTransformationGroup(F) end scalings = _scalings_commuting_with_deck(F, scaling_symmetries(F)) scalings = param_dep ? scalings : restrict_scalings(scalings, unknowns(F)) # TODO: justify! if isempty(grading(scalings)) logging && printstyled("Running dense version...\n", color=:green) return symmetries_fixing_parameters_dense!( F; degree_bound=degree_bound, param_dep=param_dep, tols=tols, logging=logging ) else logging && printstyled("Running graded version...\n", color=:green) return symmetries_fixing_parameters_graded!( F, grading(scalings); degree_bound=degree_bound, tols=tols, logging=logging ) end end """ symmetries_fixing_parameters(F::System; degree_bound=1, param_dep=true, kwargs...) Given a polynomial system F returns the group of symmetries of `F` that fix the parameters. The keyword argument `degree_bound` is used to set the upper bound for the degrees of numerator and denominator polynomials in expressions for the symmetries. The `param_dep` keyword argument specifies whether to consider functions of the symmetries to be dependent on the parameters of `F`. ```julia-repl julia> @var x[1:2] p[1:2]; julia> F = System([x[1]^2 - x[2]^2 - p[1], 2*x[1]*x[2] - p[2]]; variables=x, parameters=p); julia> symmetries_fixing_parameters(F; degree_bound=1, param_dep=false) DeckTransformationGroup of order 4 structure: C2 x C2 action: 1st map: x₁ ↦ x₁ x₂ ↦ x₂ 2nd map: x₁ ↦ -x₁ x₂ ↦ -x₂ 3rd map: x₁ ↦ im*x₂ x₂ ↦ -im*x₁ 4th map: x₁ ↦ -im*x₂ x₂ ↦ im*x₁ ``` """ function symmetries_fixing_parameters( # TODO: extend to take an expression map F::System; xp₀::Union{Nothing, NTuple{2, AbstractVector{<:Number}}}=nothing, degree_bound::Integer=1, param_dep::Bool=true, tols::Tolerances=Tolerances(), monodromy_options::Tuple=(), logging::Bool=false ) F = run_monodromy(F, xp₀; monodromy_options...) return symmetries_fixing_parameters!( F; degree_bound=degree_bound, param_dep=param_dep, tols=tols, logging=logging ) end # ----------------------- DEBUGGING TOOLS ----------------------- export deck_vandermonde_dense, deck_vandermonde_graded, to_multiexponent, reduced_nullspace, to_coefficients function reduced_nullspace(A::AbstractMatrix{<:Number}; tols::Tolerances=Tolerances()) if tols.nullspace_rtol == 0 N = nullspace(A, atol=tols.nullspace_atol) else N = nullspace(A, atol=tols.nullspace_atol, rtol=tols.nullspace_rtol) end N = transpose(N) size(N, 1) == 0 && return N N = rref(N, tols.rref_tol) sparsify!(N, tols.sparsify_tol; digits=1) return N end function deck_vandermonde_dense( F::SampledSystem; deck_id::Int, var::Variable, degree::Integer=1, param_dep::Bool=true, min_nconstraints::Function=mons->2*length(mons), min_ninstances::Function=mons->2*nparam_only(mons) ) mons = DenseMonomialVector{Int8, Int16}(unknowns=unknowns(F), parameters=parameters(F)) extend!(mons; degree=degree, extend_params=param_dep) path_ids_for_deck = _sample_for_deck_computation!( F; min_nconstraints = min_nconstraints(mons), min_ninstances = min_ninstances(mons) ) eval_mons = evaluate(mons, samples(F)) function_id = findfirst(x->x==var, unknowns(F)) return _deck_vandermonde_matrix( deck_permutations(F)[deck_id], function_id, samples(F), path_ids_for_deck[deck_id], eval_mons, eval_mons, min_nconstraints(mons), min_ninstances(mons) ), mons end function to_multiexponent(mon::Expression, vars::Vector{Variable}) es, cs = exponents_coefficients(mon, vars) if length(cs) > 1 || !isone(cs[1]) throw(ArgumentError("Input expression is not a monomial")) else return SparseVector{Int8,Int16}(sparse(es[:,1])) end end function deck_vandermonde_graded( F::SampledSystem, grading::Grading; deck_id::Int, var::Variable, deg::Integer=1, param_dep::Bool=true, num_mon::Expression, min_nconstraints::Function=(num_mons, denom_mons)->length(num_mons)+length(denom_mons)+2, min_ninstances::Function=(num_mons, denom_mons)->nparam_only(num_mons)+nparam_only(denom_mons) ) mons = DenseMonomialVector{Int8, Int16}(unknowns=unknowns(F), parameters=parameters(F)) extend!(mons; degree=deg, extend_params=param_dep) mon_classes = to_classes(mons, grading) var_id = findfirst(x->x==var, variables(F)) mexp = to_multiexponent(num_mon, variables(F)) num_deg = degree(mexp, grading) num_mons = mon_classes[num_deg] denom_deg = _denom_deg(num_deg, grading, var_id) denom_mons = get(mon_classes, denom_deg, nothing) isnothing(denom_mons) && error("denom_mons don't exist") path_ids_for_deck = _sample_for_deck_computation!( F; min_nconstraints = min_nconstraints(num_mons, denom_mons), min_ninstances = min_ninstances(num_mons, denom_mons) ) eval_num_mons = evaluate(num_mons, samples(F)) eval_denom_mons = evaluate(denom_mons, samples(F)) return _deck_vandermonde_matrix( deck_permutations(F)[deck_id], var_id, samples(F), path_ids_for_deck[deck_id], eval_num_mons, eval_denom_mons, min_nconstraints(num_mons, denom_mons), min_ninstances(num_mons, denom_mons) ), (num_mons, denom_mons) end function to_coefficients( expr::Expression, mons::SparseMonomialVector{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} es, cs = exponents_coefficients(expr, variables(mons)) mexps = [SparseVector{Tv,Ti}(sparse(esᵢ)) for esᵢ in eachcol(es)] ids = [findfirst(m, mons) for m in mexps] v = zeros(ComplexF64, length(mons)) v[ids] = cs return v end function to_coefficients( num_expr::Expression, denom_expr::Expression, num_mons::SparseMonomialVector{Tv,Ti}, denom_mons::SparseMonomialVector{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} return vcat(to_coefficients(num_expr, num_mons), to_coefficients(denom_expr, denom_mons)) end function to_coefficients( num_expr::Expression, denom_expr::Expression, mons::SparseMonomialVector{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} return to_coefficients(num_expr, denom_expr, mons, mons) end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
2925
export DecomposablePolynomialSystem, decompose struct DecomposablePolynomialSystem system::SampledSystem is_decomposable::Bool deck_transformations::Vector{Vector{Expression}} factorizing_maps::Vector{FactorizingMap} intermediate_varieties::Vector{SampledSystem} end DecomposablePolynomialSystem(system::SampledSystem, is_decomposable::Bool) = DecomposablePolynomialSystem(system, false, [], [], []) DecomposablePolynomialSystem(system::SampledSystem, deck_transformations::Vector{Vector{Expression}}, factorizing_maps::Vector{FactorizingMap}) = DecomposablePolynomialSystem(system, true, deck_transformations, factorizing_maps, [SampledSystem() for _ in eachindex(factorizing_maps)]) function decompose(F::System, xp0::Tuple{Vector{CC}, Vector{CC}}; degDeck::Int64=1, degFact::Int64=1, degImpl::Int64=1, tol::Float64=1e-5, paramDepDeck::Bool=false, paramDepFact::Bool=false)::DecomposablePolynomialSystem F = run_monodromy(F, xp0) if length(F.block_partitions) == 0 return DecomposablePolynomialSystem(F, false) end n_unknowns = length(xp0[1]) n_params = length(xp0[2]) n_sols = size(F.solutions, 2) paramDepDeck ? n_vars = n_unknowns + n_params : n_vars = n_unknowns n_instances_deck = Int(ceil(2/n_sols*binomial(n_vars + degDeck, n_vars))) paramDepFact ? n_vars = n_unknowns + n_params : n_vars = n_unknowns n_constraints = min([num_constraints(F.block_partitions[i]) for i in 1:length(F.block_partitions)]...) n_instances_fact = Int(ceil(1/n_constraints*binomial(n_vars + degFact, degFact))) F = sample_system(F, max(n_instances_deck, n_instances_fact)) deck_transformations = compute_deck_transformations(F, degree=degDeck, tol=tol, param_dep=paramDepDeck) factorizing_maps = compute_factorizing_maps(F, degree=degFact, tol=tol, param_dep=paramDepFact) n_new_unknowns = [length(factorizing_maps[i].map) + n_params for i in eachindex(factorizing_maps)] n_new_mons = [binomial(n_new_unknowns[i] + degImpl, degImpl) for i in eachindex(factorizing_maps)] n_instances_impl = max([Int(ceil(1/length(F.block_partitions[i])*n_new_mons[i])) for i in eachindex(factorizing_maps)]...) n_instances_impl = max(n_instances_impl, binomial(n_params + degImpl, degImpl)) F = sample_system(F, n_instances_impl) DPS = DecomposablePolynomialSystem(F, deck_transformations, factorizing_maps) for i in eachindex(factorizing_maps) factorizing_map = factorizing_maps[i] @var y[i, 1:length(factorizing_map.map)] DPS.intermediate_varieties[i] = implicitize(F, factorizing_map, F.block_partitions[i], new_vars=y, degree=degImpl) DPS.factorizing_maps[i].domain = Ref(DPS.system) DPS.factorizing_maps[i].image = Ref(DPS.intermediate_varieties[i]) DPS.factorizing_maps[i].monodromy_group = action_on_block(F.monodromy_group, F.block_partitions[i]) end return DPS end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
1538
export ExpressionMap struct ExpressionMap domain_vars::Vector{Variable} image_vars::Vector{Variable} exprs::Vector{Expression} function ExpressionMap(domain_vars, image_vars, funcs) # TODO: exclude empty vectors, repetitions in vars return new(domain_vars, image_vars, funcs) end end # TODO: what if vars not in funcs? What if funcs has variables not present in vars? function ExpressionMap(vars::Vector{Variable}, exprs::Vector{Expression}) @assert length(vars) == length(exprs) "#vars ≂̸ #exprs, specify image variables" return ExpressionMap(vars, vars, exprs) end Base.getindex(f::ExpressionMap, i::Int) = (f.image_vars[i], f.exprs[i]) function Base.getindex(f::ExpressionMap, var::Variable) id = findfirst(x->x==var, f.image_vars) if isnothing(id) error("The variable $(var) isn't present in the image variables") end return f.exprs[id] end # TODO function (f::ExpressionMap)(x) end # TODO function Base.:(∘)(f::ExpressionMap, g::ExpressionMap) end # TODO function is_dense(f::ExpressionMap) end function Base.show(io::IO, map::ExpressionMap) println(io, "ExpressionMap: ℂ$(superscriptnumber(length(map.domain_vars))) ⊃ X - - > ℂ$(superscriptnumber(length(map.exprs)))") println(io, " action:") if map.domain_vars == map.image_vars for (i, var) in enumerate(map.domain_vars) print(io, " ", var, " ↦ ", map.exprs[i]) i < length(map.domain_vars) && print(io, "\n") end else # TODO end end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
2267
export implicitize function evaluate_map_at_samples(factorizing_map::FactorizingMap, block_partition::Vector{Vector{Int}}, F::SampledSystem)::Array{ComplexF64, 3} n_unknowns = length(factorizing_map.map) n_blocks = length(block_partition) n_instances = size(F.parameters, 2) new_solutions = zeros(ComplexF64, n_unknowns, n_blocks, n_instances) for i in 1:n_instances params = F.parameters[:, i] for j in 1:n_blocks sol_idx = block_partition[j][1] sol = F.solutions[:, sol_idx, i] new_solutions[:, j, i] = ComplexF64.(expand.(subs(factorizing_map.map, vcat(variables(F.equations), parameters(F.equations)) => vcat(sol, params)))) end end return new_solutions end function implicitize(F::SampledSystem, factorizing_map::FactorizingMap, block_partition::Vector{Vector{Int}}; new_vars::Vector{Variable}=Vector{Variable}([]), mons::Vector{Expression}=Vector{Expression}([]), degree::Int64=0, tol::Float64=1e-5)::SampledSystem if isempty(factorizing_map.map) return SampledSystem() end new_solutions = evaluate_map_at_samples(factorizing_map, block_partition, F) if mons == [] mons = get_monomials(vcat(new_vars, parameters(F.equations)), degree) end if new_vars == [] @var y[1:length(factorizing_map.map)] new_vars = y end evaluated_mons = evaluate_monomials_at_samples(mons, new_solutions, F.parameters, vcat(new_vars, parameters(F.equations))) m, n, k = size(evaluated_mons) A = Matrix{ComplexF64}(transpose(reshape(evaluated_mons, m, n*k))) # A = A[1:m, 1:m] @assert size(A, 1) >= size(A, 2) coeffs = Matrix{ComplexF64}(transpose(nullspace(A))) if size(coeffs, 1) != 0 println("Computing the reduced row echelon form of the transposed nullspace...") coeffs = sparsify(rref(coeffs, tol), tol, digits=1) end G = System([dot(coeffs[i,:], mons) for i in 1:size(coeffs, 1)], variables=new_vars, parameters=parameters(F.equations)) mon = action_on_blocks(F.monodromy_group, block_partition) block_partitions = all_block_partitions(mon) deck = centralizer(mon) return SampledSystem(G, new_solutions, F.parameters, mon, block_partitions, deck) end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
9994
export rational_function, polynomial_function, remove_zero_nums_and_denoms using LinearAlgebra: norm, dot function rational_function( coeffs::AbstractVector{<:Number}, num_mons::AbstractMonomialVector, denom_mons::AbstractMonomialVector; logging::Bool=false, tol::Float64=1e-5 ) n_num_mons, n_denom_mons = length(num_mons), length(denom_mons) @assert length(coeffs) == n_num_mons + n_denom_mons num, denom = coeffs[1:n_num_mons], coeffs[n_num_mons+1:end] if norm(num) < tol @warn "Numerator close to zero" end @assert norm(denom) > tol nonzero_ids = findall(!iszero, denom) nonzero_denom = denom[nonzero_ids] if all(x->x==nonzero_denom[1], nonzero_denom) num /= nonzero_denom[1] sparsify!(num, tol; digits=1) denom[nonzero_ids] = ones(length(nonzero_ids)) end num, denom = simplify_numbers(num), simplify_numbers(denom) if logging println("numerator = ", sum(to_expressions(num_mons).*num)) println("denominator = ", sum(to_expressions(denom_mons).*denom)) end p = sum(to_expressions(num_mons).*num) q = sum(to_expressions(denom_mons).*denom) logging && println("rational function = ", p/q) return p/q end function polynomial_function( coeffs::AbstractVector{<:Number}, mons::AbstractMonomialVector; logging::Bool=false ) @assert length(coeffs) == length(mons.mds) p = sum(to_expressions(mons).*coeffs) logging && println("polynomial = ", p) return p end function check_func_type(func_type::String) if (func_type != "polynomial" && func_type != "rational") error("func_type argument must be either \"polynomial\" or \"rational\"") end end function reconstruct_function( coeffs::AbstractVector{<:Number}, mons::AbstractMonomialVector; func_type::String, logging::Bool=true, tol::Float64=1e-5 ) check_func_type(func_type) if func_type == "rational" return rational_function(coeffs, mons, mons, logging=logging, tol=tol) else return polynomial_function(coeffs, mons, logging=logging) end end function remove_zero_nums_and_denoms( coeffs::AbstractMatrix{<:Number}, num_mons::AbstractMonomialVector, denom_mons::AbstractMonomialVector; logging::Bool=false ) reasonable_rows = [] n_num_mons, n_denom_mons = length(num_mons), length(denom_mons) @assert size(coeffs, 2) == n_num_mons + n_denom_mons for i in axes(coeffs, 1) if (!iszero(coeffs[i, 1:n_num_mons]) && !iszero(coeffs[i, n_num_mons+1:end])) push!(reasonable_rows, i) elseif logging if iszero(coeffs[i, 1:n_num_mons]) println( "Denominator removed: ", polynomial_function(coeffs[i, n_num_mons+1:end], denom_mons) ) else println( "Numerator removed: ", polynomial_function(coeffs[i, 1:n_num_mons], num_mons) ) end end end return coeffs[reasonable_rows, :] end function remove_zero_nums_and_denoms( coeffs::AbstractMatrix{<:Number}, mons::AbstractMonomialVector; logging::Bool=false ) return _remove_zero_nums_and_denoms(coeffs, mons, mons, logging=logging) end function rational_functions( coeffs::AbstractMatrix{<:Number}, num_mons::AbstractMonomialVector, denom_mons::AbstractMonomialVector; logging::Bool=true, tol::Float64=1e-5 ) for k in eachindex(axes(coeffs, 1)) rational_function(coeffs[k,:], num_mons, denom_mons, logging=logging, tol=tol) println() end end function reconstruct_functions( coeffs::AbstractMatrix{<:Number}, mons::AbstractMonomialVector; func_type::String, logging::Bool=true, tol::Float64=1e-5 ) end function good_representative(coeffs::AbstractMatrix{<:Number}) return coeffs[findmin(vec(sum(coeffs .!= 0, dims=2)))[2], :] end # NOT READY YET... function best_representative(rational_functions::AbstractMatrix{<:Number}, tol::Float64) n_mons = Int(size(rational_functions, 2)/2) A = rational_functions[:,n_mons+1:end] A = [-1 zeros(1, n_mons-1); A] R = Matrix{CC}(transpose(nullspace(transpose(A)))) R = sparsify(rref(R, tol), tol, digits=1) # 1*R[1,:] + r2*R[2,:] + ... are the solutions a = R[:,2:end]*rational_functions[:,1:n_mons] # 1*a[1,:] + r2*a[2,:] + ... are possible numerators return nothing end function vandermonde_matrix( values::AbstractVector{<:Number}, eval_mons::AbstractMatrix{<:Number}, func_type::String ) check_func_type(func_type) if func_type == "polynomial" return [transpose(eval_mons) -values] elseif func_type == "rational" return [transpose(eval_mons) -transpose(eval_mons).*values] end end # supposes each md in mds is a multidegree in both unknowns and parameters # TODO: The implementation below (with _) is more efficient (approx 2x), # TODO: since it exploits the sparsity of multidegrees. REMOVE THIS METHOD? # function HomotopyContinuation.evaluate(mons::MonomialVector, samples::Samples) # solutions = samples.solutions # parameters = samples.parameters # n_unknowns, n_sols, n_instances = size(solutions) # mds = mons.mds # n_mds = length(mds) # evaluated_mons = zeros(CC, n_mds, n_sols, n_instances) # for i in 1:n_instances # params = view(parameters, :, i) # params_eval = [prod(params.^md[n_unknowns+1:end]) for md in mds] # sols = view(solutions, :, :, i) # for j in 1:n_mds # evaluated_mons[j, :, i] = vec(prod(sols.^mds[j][1:n_unknowns], dims=1)).*params_eval[j] # end # end # return evaluated_mons # end function interpolate( A::AbstractMatrix{CC}, mons::AbstractMonomialVector; func_type::String, tol::Float64=1e-5 ) check_func_type(func_type) @assert size(A, 1) >= size(A, 2) if func_type == "polynomial" @assert size(A, 2) == length(mons) else @assert size(A, 2) == 2*length(mons) end C = Matrix{CC}(transpose(nullspace(A))) C = sparsify(rref(C, tol), tol, digits=1) if size(C, 1) == 0 return nothing elseif size(C, 1) == 1 return reconstruct_function(C[1, :], mons, func_type=func_type) else # choose good/best representative return reconstruct_function(C[1, :], mons, func_type=func_type) end end # If samples are generated from a proper subvariety X ⊂ Cⁿ, then the method returns just one representative f # of the equivalence class of functions f+I(X) with the given values. Obviously, if X = Cⁿ, then there is only # one such function. function interpolate( values::AbstractVector{CC}, mons::AbstractMonomialVector, eval_mons::AbstractMatrix{CC}; func_type::String, tol::Float64=1e-5 ) check_func_type(func_type) A = vandermonde_matrix(values, eval_mons, func_type) return interpolate(A, mons, func_type=func_type, tol=tol) end function interpolate_vanishing_polynomials( samples::Samples, vars::Vector{Variable}, mons::AbstractMonomialVector; tol::Float64=1e-5 ) A = evaluate_monomials_at_samples(mons, samples, vars) A = reshape(A, size(A, 1), size(A, 2)*size(A, 3)) N = Matrix{CC}(transpose(nullspace(transpose(A)))) N = sparsify(rref(N, tol), tol, digits=1) return N*mons end function interpolate_vanishing_polynomials( samples::AbstractMatrix{CC}, vars::Vector{Variable}, mons::AbstractMonomialVector; tol::Float64=1e-5 ) @assert size(samples, 1) == length(vars) @assert size(samples, 2) >= length(mons) A = evaluate_monomials_at_samples(mons, samples, vars) N = Matrix{CC}(transpose(nullspace(transpose(A)))) N = sparsify(rref(N, tol), tol, digits=1) return N*mons end function interpolate_dense( samples::AbstractMatrix{CC}, values::AbstractVector{CC}; vars::Vector{Variable}, degree::Int, func_type::String, tol::Float64=1e-5 ) end function interpolate_sparse( samples::AbstractMatrix{CC}, values::AbstractVector{CC}; vars::Vector{Variable}, degree::Int, func_type::String, tol::Float64=1e-5 ) end function interpolate( samples::AbstractMatrix{CC}, values::AbstractVector{CC}; vars::Vector{Variable}, degree::Int, func_type::String, method::String, tol::Float64=1e-5 ) if method == "dense" return interpolate_dense(samples, values; vars=vars, degree=degree, func_type=func_type, tol=tol) elseif method == "sparse" return interpolate_sparse(samples, values; vars=vars, degree=degree, func_type=func_type, tol=tol) else error("Not supported method '", method, "' for interpolation") end end #----------- SPARSE INTERPOLATION TESTING ------------- function inv_chinese(d::Int, p::Vector{Int}) n = length(p) m = prod(p) D = zeros(Int, n) for i in 1:n D[i] = mod(d*invmod(Int(m/p[i]), p[i]), p[i]) end return D end function companion_matrix(λ::Vector{CC})::Matrix{CC} d = length(λ) return [[zeros(1,d-1); eye(d-1)] -λ] end function f(x, y) return x^20*y + 2*x^2 + 3*x + 4*y^11 + 5 end function interpolate_sparse() end # t = 5 # number of terms in f # p₁, p₂ = 139, 193 # pᵢ > deg(fₓᵢ) # m = p₁*p₂ # ω₁, ω₂ = cispi(2/p₁), cispi(2/p₂) # pᵢ-th roots of unity # ω = cispi(2/m) # α = [f(ω₁^s, ω₂^s) for s in 0:2*t-1] # H₀ = VV2M([[α[j] for j in i:i+t-1] for i in 1:t]) # h = -[α[i] for i in t+1:2*t] # Hh = [H₀ -h] # N = nullspace(Hh) # λ = M2V(p2a(N)) # M = companion_matrix(λ) # b = eigvals(M) # d = [mod(Int(round(log(ω, b[i]))), m) for i in 1:length(b)] # e = [inv_chinese(d[i], [p₁, p₂]) for i in 1:length(d)] # B = [transpose(VV2M([b.^i for i in 0:t-1])) -α[1:t]] # N = nullspace(B) # c = round.(M2V(p2a(N))) # @var x y # f_approx = dot(c, [prod([x,y].^e[i]) for i in 1:length(e)])
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
9137
export invariants function num_constraints(block_partition::Vector{Vector{Int}})::Int return length(block_partition)*(length(block_partition[1])-1) end function sumFromTo(m, n) return Int(n*(n+1)/2 - m*(m+1)/2) end function num_instances(n_unknowns::Int, n_params::Int, degree::Int, block_partition::Vector{Vector{Int}})::Int n_constraints = num_constraints(block_partition) n_all_mons = binomial(n_unknowns + n_params + degree, degree) n_param_mons = binomial(n_params + degree, degree) n_minors = sumFromTo(n_param_mons - 1, n_all_mons - 1) return Int(ceil(n_minors/n_constraints)) end function create_vandermonde_matrix(block_partition::Vector{Vector{Int}}, eval_mons::Array{ComplexF64, 3}, eval_param_mons::Array{ComplexF64, 2})::Matrix{ComplexF64} n_instances = size(eval_mons, 3) n_blocks = length(block_partition) block_size = length(block_partition[1]) n_constraints = num_constraints(block_partition) n_unknown_mons = size(eval_mons, 1) n_param_mons = size(eval_param_mons, 1) n_minors = sumFromTo(n_param_mons - 1, n_unknown_mons + n_param_mons - 1) A = zeros(ComplexF64, n_instances*n_constraints, n_minors) for i in 1:n_instances for j in 1:n_blocks block = block_partition[j] for k in 1:block_size-1 row_idx = (i - 1)*n_constraints + (j-1)*(block_size-1) + k col_idx = 1 for m in 1:n_unknown_mons for n in (m+1):n_unknown_mons M = eval_mons[[m,n], [block[k],block[k+1]], i] A[row_idx, col_idx] = det(M) col_idx += 1 end for n in 1:n_param_mons M = eval_mons[m, [block[k],block[k+1]], i] A[row_idx, col_idx] = (M[1]-M[2])*eval_param_mons[n, i] col_idx += 1 end end end end end return A end function interpolate_invariants(block_partition::Vector{Vector{Int}}, mons::Vector{Expression}, eval_mons::Array{ComplexF64, 3}, eval_param_mons::Array{ComplexF64, 2}, tol::Float64)::Matrix{ComplexF64} n_instances = size(eval_mons, 3) n_constraints = num_constraints(block_partition) n_unknown_mons = size(eval_mons, 1) n_param_mons = size(eval_param_mons, 1) n_minors = sumFromTo(n_param_mons - 1, n_unknown_mons + n_param_mons - 1) println("n_minors = ", n_minors) println("n_param_mons = ", n_param_mons) println("n_unknown_mons = ", n_unknown_mons) println("Creating vandermonde matrix of size ", (n_instances*n_constraints, n_minors), " from solutions...\n") A = create_vandermonde_matrix(block_partition, eval_mons, eval_param_mons) @assert size(A, 1) >= size(A, 2) println("Computing nullspace...") inv_minors = Matrix{ComplexF64}(transpose(nullspace(A))) println("Size of the transposed nullspace: ", size(inv_minors), "\n") if size(inv_minors, 1) != 0 println("Computing reduced row echelon form of the transposed nullspace...") inv_minors = sparsify(rref(inv_minors, tol), tol, digits=1) end return inv_minors end function invariants(F::SampledSystem; degree::Int, tol::Float64=1e-5, param_dep::Bool=true)::Vector{Matrix{ComplexF64}} params = parameters(F.equations) param_dep ? vars = vcat(variables(F.equations), params) : vars = variables(F.equations) param_dep ? n_params = length(params) : n_params = 0 mons = get_monomials_factorization(vars, degree, n_params) println(mons) println("Evaluating monomials...\n\n") eval_mons = evaluate_monomials_at_samples(mons, F.solutions, F.parameters, vars) println("eval_mons size = ", size(eval_mons)) param_mons = get_monomials(params, degree) eval_param_mons = evaluate_monomials_at_samples(param_mons, F.parameters, params) invs_minors = Vector{Matrix{ComplexF64}}([]) for i in 1:length(F.block_partitions) printstyled("Interpolating invariants for the ", i, "-th block partition...\n", color=:blue) push!(invs_minors, interpolate_invariants(F.block_partitions[i], mons, eval_mons, eval_param_mons, tol)) println() end return invs_minors end function invariants(F::System, xp0::Tuple{Vector{ComplexF64}, Vector{ComplexF64}}; degree::Int=0, tol::Float64=1e-5, expected_n_sols::Int=0, param_dep::Bool=true)::Tuple{SampledSystem, Vector{FactorizingMap}} F = run_monodromy(F, xp0, expected_n_sols=expected_n_sols) println("\nNumber of nontrivial block partitions: ", length(F.block_partitions), "\n") if isempty(F.block_partitions) return (F, []) end n_unknowns = length(xp0[1]) n_params = length(xp0[2]) n_constraints = min([num_constraints(F.block_partitions[i]) for i in 1:length(F.block_partitions)]...) param_dep ? n_vars = n_unknowns + n_params : n_vars = n_unknowns n_instances = max(Int(ceil(1/n_constraints*binomial(n_vars + degree, degree))), binomial(n_params + degree - 1, degree - 1)) F = sample_system(F, n_instances) return (F, compute_invariants(F, degree=degree, tol=tol, param_dep=param_dep)) end function multiplication_matrix(F::SampledSystem, f::Expression, B::Vector{Expression}, instance_id::Int) sols = F.samples.solutions[:, :, instance_id] n_sols = size(sols, 2) vars = variables(F.system) A = zeros(CC, n_sols, n_sols) for i in 1:n_sols A[:, i] = express_in_basis(F, f*B[i], B, instance_id=instance_id) end return sparsify(A, 1e-5) end function multiplication_matrix(F::SampledSystem, f::Expression, B::Vector{Expression}; degree::Int)::Matrix{Union{Nothing, Expression}} n_sols = size(F.samples.solutions, 2) M = Matrix{Union{Nothing, Expression}}(hcat([[nothing for i in 1:n_sols] for j in 1:n_sols]...)) for i in 1:n_sols M[:, i] = express_in_basis(F, f*B[i], B, degree) end return M end function monomial_basis(F::SampledSystem)::Vector{Expression} n_sols = size(F.samples.solutions, 2) sols = F.samples.solutions[:,:,1] # solutions for the 1st instance unknowns = variables(F.system) A = zeros(CC, n_sols, n_sols) n_indep = 1 indep_mons = Vector{Expression}([]) for i in 0:n_sols-1 mons = get_monomials_fixed_degree(unknowns, i) for j in eachindex(mons) A[:, n_indep] = [subs(mons[j], unknowns=>sols[:,k]) for k in 1:n_sols] if rank(A, atol=1e-8) == n_indep push!(indep_mons, mons[j]) n_indep += 1 if n_indep > n_sols return indep_mons end end end end @warn "Returned monomials don't form a basis!" return indep_mons end function eval_at_sols(F::SampledSystem, G::Vector{Expression})::Matrix{CC} sols = F.samples.solutions[:, :, 1] params = F.samples.parameters[:, 1] n_sols = size(sols, 2) n_elems = length(G) vars = vcat(variables(F.system), parameters(F.system)) A = zeros(CC, n_sols, n_elems) for i in 1:n_sols A[i, :] = subs(G, vars => vcat(sols[:,i], params)) end return A end function is_basis(F::SampledSystem, B::Vector{Expression})::Bool sols = F.samples.solutions[:, :, 1] n_sols = size(sols, 2) if length(B) < n_sols || length(B) > n_sols return false end A = eval_at_sols(F, B) N = nullspace(A) println("dim null = ", size(N, 2)) return size(N, 2) == 0 end function are_LI(F::SampledSystem, G::Vector{Expression})::Bool A = eval_at_sols(F, G) N = nullspace(A) println("dim null = ", size(N, 2)) return size(N, 2) == 0 end function express_in_basis(F::SampledSystem, f::Expression, B::Vector{Expression}; instance_id::Int)::Vector{CC} sols = F.samples.solutions[:, :, instance_id] params = F.samples.parameters[:, instance_id] n_sols = size(sols, 2) vars = vcat(variables(F.system), parameters(F.system)) A = zeros(CC, n_sols, n_sols+1) for i in 1:n_sols A[i, 1:n_sols] = subs(B, vars => vcat(sols[:, i], params)) A[i, n_sols+1] = -subs(f, vars => vcat(sols[:, i], params)) end c = nullspace(A) @assert size(c, 2) == 1 @assert abs(c[n_sols+1, 1]) > 1e-10 return sparsify(vec(p2a(c)), 1e-5) end function express_in_basis(F::SampledSystem, f::Expression, B::Vector{Expression}, degree::Int)::Vector{Union{Nothing,Expression}} _, n_sols, n_instances = size(F.samples.solutions) evals = zeros(CC, n_sols, n_instances) for i in 1:n_instances evals[:, i] = express_in_basis(F, f, B; instance_id=i) end params = parameters(F.system) mons = get_monomials(params, degree) println("n_mons = ", length(mons)) evaluated_mons = evaluate_monomials_at_samples(mons, F.samples.parameters, params) coeffs = Vector{Union{Nothing, Expression}}([nothing for i in 1:n_sols]) for i in 1:n_sols coeffs[i] = interpolate_dense(view(evals, i, :), mons, evaluated_mons, func_type="rational", tol=1e-5) end return coeffs end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
16346
export multiexponents, AbstractMonomialVector, DenseMonomialVector, SparseMonomialVector, iterate, extend!, evaluate, to_expressions, to_classes, nparam_only, nunkn_dep function multiexponents(; degree::Tv, nvars::Ti) where {Tv<:Integer,Ti<:Integer} mexps = [spzeros(Tv, Ti, nvars) for _ in 1:num_mons(nvars, degree)] k = 1 for n in 1:nvars for part::Vector{Tv} in partitions(degree, n) for vals in multiset_permutations(part, n) for inds in combinations(Ti.(1:nvars), n) mexps[k][inds] = vals k += 1 end end end end return mexps end abstract type AbstractMonomialVector end # Structure representing vector of monomials # Advantage: monomial evalution can be made more efficient mutable struct DenseMonomialVector{Tv<:Integer,Ti<:Integer} <: AbstractMonomialVector degree::Tv n::Int # length unknowns_mexps::Dict{Tv, Vector{SparseVector{Tv,Ti}}} # keys are degrees parameters_mexps::Dict{Tv, Vector{SparseVector{Tv,Ti}}} # keys are degrees unknowns::Vector{Variable} parameters::Vector{Variable} end function DenseMonomialVector{Tv,Ti}(; unknowns::Vector{Variable}, parameters::Vector{Variable} ) where {Tv<:Integer,Ti<:Integer} degree = zero(Tv) unknowns_mexps = Dict(0 => [spzeros(Tv, Ti, length(unknowns))]) parameters_mexps = Dict(0 => [spzeros(Tv, Ti, length(parameters))]) n = 1 return DenseMonomialVector{Tv,Ti}( degree, n, unknowns_mexps, parameters_mexps, unknowns, parameters ) end unknowns(mons::DenseMonomialVector) = mons.unknowns HC.parameters(mons::DenseMonomialVector) = mons.parameters variables(mons::DenseMonomialVector) = vcat(unknowns(mons), parameters(mons)) nunknowns(mons::DenseMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} = length(mons.unknowns) HC.nparameters(mons::DenseMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} = length(mons.parameters) nvariables(mons::DenseMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} = nunknowns(mons)+nparameters(mons) unknowns_deg(mons::DenseMonomialVector) = max(keys(mons.unknowns_mexps)...) parameters_deg(mons::DenseMonomialVector) = max(keys(mons.parameters_mexps)...) Base.length(mons::DenseMonomialVector) = mons.n nparam_only(mons::DenseMonomialVector) = num_mons_upto(nparameters(mons), parameters_deg(mons)) nunkn_dep(mons::DenseMonomialVector) = length(mons) - nparam_only(mons) to_expression( unknowns::Vector{Variable}, unkn_mexp::AbstractSparseVector, parameters::Vector{Variable}, param_mexp::AbstractSparseVector ) = prodpow(unknowns, unkn_mexp)*prodpow(parameters, param_mexp) function to_expressions(mons::DenseMonomialVector) return [to_expression( mons.unknowns, unkn_mexp, mons.parameters, param_mexp ) for (unkn_mexp, param_mexp) in mons] end function Base.show(io::IO, mons::DenseMonomialVector) println(io, "$(length(mons))-element $(typeof(mons))") print(io, "[", join(to_expressions(mons), ", "), "]") end function extend!( mons::DenseMonomialVector{Tv,Ti}; degree::Integer, extend_params::Bool=true ) where {Tv<:Integer,Ti<:Integer} degree = convert(Tv, degree) uexps, pexps = mons.unknowns_mexps, mons.parameters_mexps for d::Tv in mons.degree+1:degree uexps[d] = multiexponents(degree=d, nvars=Ti(nunknowns(mons))) end if extend_params for d::Tv in min(keys(pexps)...)+1:degree pexps[d] = multiexponents(degree=d, nvars=Ti(nparameters(mons))) end end mons.degree = degree mons.n = 0 for udeg in 0:unknowns_deg(mons) for pdeg in 0:parameters_deg(mons) if udeg+pdeg ≤ mons.degree mons.n += num_mons(nunknowns(mons), udeg)*num_mons(nparameters(mons), pdeg) else break end end end return mons end struct DenseMonVecState udeg::Int uid::Int pdeg::Int pid::Int end function pick_at_state( mons::DenseMonomialVector, state::DenseMonVecState ) @unpack udeg, uid, pdeg, pid = state uexps, pexps = mons.unknowns_mexps, mons.parameters_mexps return uexps[udeg][uid], pexps[pdeg][pid] end function next_state( mons::DenseMonomialVector, state::DenseMonVecState ) @unpack udeg, uid, pdeg, pid = state uexps, pexps = mons.unknowns_mexps, mons.parameters_mexps if uid < length(uexps[udeg]) return DenseMonVecState(udeg, uid+1, pdeg, pid) elseif pid < length(pexps[pdeg]) return DenseMonVecState(udeg, 1, pdeg, pid+1) elseif pdeg > 0 return DenseMonVecState(udeg, 1, pdeg-1, 1) elseif udeg > 0 return DenseMonVecState(udeg-1, 1, min(mons.degree-udeg+1, parameters_deg(mons)), 1) else return nothing end end function Base.iterate( mons::DenseMonomialVector, state::DenseMonVecState ) new_state = next_state(mons, state) isnothing(new_state) && return nothing return pick_at_state(mons, new_state), new_state end function Base.iterate(mons::DenseMonomialVector) state = DenseMonVecState(mons.degree, 1, 0, 1) return pick_at_state(mons, state), state end # Structure representing sparse monomial vector # Advantages: # 1) monomial evalution can be made more efficient # 2) we know how many param_only monomials are there (needed for picking samples for evaluation) struct SparseMonomialVector{Tv<:Integer,Ti<:Integer} <: AbstractMonomialVector unkn_dep_mexps::NTuple{2, Vector{SparseVector{Tv,Ti}}} param_only_mexps::Vector{SparseVector{Tv,Ti}} unknowns::Vector{Variable} parameters::Vector{Variable} end SparseMonomialVector{Tv,Ti}( unknowns::Vector{Variable}, parameters::Vector{Variable} ) where {Tv<:Integer,Ti<:Integer} = SparseMonomialVector{Tv,Ti}(([], []), [], unknowns, parameters) struct SparseMonVecState unkn_dep::Bool id::Int end function pick_at_state(mons::SparseMonomialVector{Tv,Ti}, state::SparseMonVecState) where {Tv<:Integer,Ti<:Integer} state.unkn_dep && return vcat(mons.unkn_dep_mexps[1][state.id], mons.unkn_dep_mexps[2][state.id]) return vcat(spzeros(Tv,Ti,nunknowns(mons)), mons.param_only_mexps[state.id]) end function Base.iterate(mons::SparseMonomialVector) length(mons) == 0 && return nothing unkn_dep = mons.unkn_dep_mexps if length(unkn_dep[1]) != 0 state = SparseMonVecState(true, 1) return pick_at_state(mons, state), state else state = SparseMonVecState(false, 1) return pick_at_state(mons, state), state end end function next_state( mons::SparseMonomialVector, state::SparseMonVecState ) @unpack unkn_dep, id = state if unkn_dep if id < length(mons.unkn_dep_mexps[1]) return SparseMonVecState(true, id+1) else if length(mons.param_only_mexps) != 0 return SparseMonVecState(false, 1) else return nothing end end else if id < length(mons.param_only_mexps) return SparseMonVecState(true, id+1) else return nothing end end end function Base.iterate( mons::SparseMonomialVector, state::SparseMonVecState ) new_state = next_state(mons, state) isnothing(new_state) && return nothing return pick_at_state(mons, new_state), new_state end function Base.findfirst(mexp::SparseVector{Tv,Ti}, mons::SparseMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} for (i, mon) in enumerate(mons) mexp == mon && return i end return nothing end unknowns(mons::SparseMonomialVector) = mons.unknowns HC.parameters(mons::SparseMonomialVector) = mons.parameters variables(mons::SparseMonomialVector) = vcat(unknowns(mons), parameters(mons)) nunknowns(mons::SparseMonomialVector) = length(mons.unknowns) HC.nparameters(mons::SparseMonomialVector) = length(mons.parameters) Base.length(mons::SparseMonomialVector) = length(mons.unkn_dep_mexps[1]) + length(mons.param_only_mexps) is_param_only(mons::SparseMonomialVector) = length(mons.unkn_dep_mexps[1]) == 0 nunkn_dep(mons::SparseMonomialVector) = length(mons.unkn_dep_mexps[1]) nparam_only(mons::SparseMonomialVector) = length(mons.param_only_mexps) function Base.vcat(monVs::SparseMonomialVector{Tv,Ti}...) where {Tv<:Integer,Ti<:Integer} return SparseMonomialVector{Tv,Ti}( (vcat([mons.unkn_dep_mexps[1] for mons in monVs]...), vcat([mons.unkn_dep_mexps[2] for mons in monVs]...)), vcat([mons.param_only_mexps for mons in monVs]...), monVs[1].unknowns, monVs[1].parameters ) end function Base.push!( mons::SparseMonomialVector{Tv,Ti}, (uexp, pexp)::NTuple{2, SparseVector{Tv,Ti}} ) where {Tv<:Integer,Ti<:Integer} if iszero(uexp) push!(mons.param_only_mexps, pexp) else push!(mons.unkn_dep_mexps[1], uexp) push!(mons.unkn_dep_mexps[2], pexp) end end function to_expressions(mons::SparseMonomialVector) return vcat( [to_expression( mons.unknowns, unkn_mexp, mons.parameters, param_mexp ) for (unkn_mexp, param_mexp) in zip(mons.unkn_dep_mexps...)], [prodpow(mons.parameters, mexp) for mexp in mons.param_only_mexps] ) end # TODO function Base.show(io::IO, mons::SparseMonomialVector) # println(io, "$(length(mons.mds))-element $(typeof(mons))") print(io, "[", join(to_expressions(mons), ", "), "]") end function Base.gcd(mons::SparseMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} if nparam_only(mons) == 0 return vcat( min.(mons.unkn_dep_mexps[1]...), min.(mons.unkn_dep_mexps[2]...) ) end return vcat( spzeros(Tv, Ti, nunknowns(mons)), min.(mons.unkn_dep_mexps[2]..., mons.param_only_mexps...) ) end struct SparseMatrixMonomialVector{Tv<:Integer,Ti<:Integer} <: AbstractMonomialVector unkn_dep_mexps::NTuple{2, SparseMatrixCSC{Tv,Ti}} param_only_mexps::SparseMatrixCSC{Tv,Ti} unknowns::Vector{Variable} parameters::Vector{Variable} end function SparseMatrixMonomialVector{Tv,Ti}( mons::SparseMonomialVector{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} unkn_dep_1 = length(mons.unkn_dep_mexps[1]) == 0 ? spzeros(nunknowns(mons), 0) : Base.reduce(hcat, mons.unkn_dep_mexps[1]) unkn_dep_2 = length(mons.unkn_dep_mexps[2]) == 0 ? spzeros(nparameters(mons), 0) : Base.reduce(hcat, mons.unkn_dep_mexps[2]) param_only = length(mons.param_only_mexps) == 0 ? spzeros(nparameters(mons), 0) : Base.reduce(hcat, mons.param_only_mexps) return SparseMatrixMonomialVector{Tv,Ti}( (unkn_dep_1, unkn_dep_2), param_only, mons.unknowns, mons.parameters ) end nunknowns(mons::SparseMatrixMonomialVector) = length(mons.unknowns) Base.length(mons::SparseMatrixMonomialVector) = size(mons.unkn_dep_mexps[1], 2) + size(mons.param_only_mexps, 2) is_param_only(mons::SparseMatrixMonomialVector) = size(mons.unkn_dep_mexps[1], 2) == 0 nunkn_dep(mons::SparseMatrixMonomialVector) = size(mons.unkn_dep_mexps[1], 2) nparam_only(mons::SparseMatrixMonomialVector) = size(mons.param_only_mexps, 2) function Base.vcat(monVs::SparseMatrixMonomialVector{Tv,Ti}...) where {Tv<:Integer,Ti<:Integer} return SparseMatrixMonomialVector{Tv,Ti}( (Base.reduce(hcat, [mons.unkn_dep_mexps[1] for mons in monVs]), Base.reduce(hcat, [mons.unkn_dep_mexps[2] for mons in monVs])), Base.reduce(hcat, [mons.param_only_mexps for mons in monVs]), monVs[1].unknowns, monVs[1].parameters ) end function to_expressions(mons::SparseMatrixMonomialVector) return vcat( [to_expression( mons.unknowns, mons.unkn_dep_mexps[1][:, i], mons.parameters, mons.unkn_dep_mexps[2][:, i] ) for i in axes(mons.unkn_dep_mexps[1], 2)], [prodpow(mons.parameters, mons.param_only_mexps[:, i]) for i in axes(mons.param_only_mexps, 2)] ) end function Base.gcd(mons::SparseMatrixMonomialVector{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} if nparam_only(mons) == 0 return vcat( vec(minimum(mons.unkn_dep_mexps[1]; dims=2)), vec(minimum(mons.unkn_dep_mexps[2]; dims=2)) ) elseif nunkn_dep(mons) == 0 return vcat( spzeros(Tv, Ti, nunknowns(mons)), vec(minimum(mons.param_only_mexps; dims=2)) ) else return vcat( spzeros(Tv, Ti, nunknowns(mons)), vec(minimum(hcat(minimum(mons.unkn_dep_mexps[2]; dims=2), minimum(mons.param_only_mexps; dims=2)); dims=2)) ) end end # Structure for evaluated monomials # Advatage: requires less memory (no need to duplicate values for param_only monomials) struct EvaluatedMonomials unkn_dep::Array{ComplexF64, 3} param_only::Array{ComplexF64, 2} end nunkn_dep(eval_mons::EvaluatedMonomials) = size(eval_mons.unkn_dep, 1) nparam_only(eval_mons::EvaluatedMonomials) = size(eval_mons.param_only, 1) nmonomials(eval_mons::EvaluatedMonomials) = nunkn_dep(eval_mons) + nparam_only(eval_mons) # TODO: test timings w/ and w/o selectdim prodpow( v::AbstractArray, e::AbstractSparseVector; ) = dropdims(prod(selectdim(v,1,e.nzind).^e.nzval; dims=1); dims=1) function HC.evaluate( mexps_dict::Dict{Tv, Vector{SparseVector{Tv,Ti}}}, samples::Array{P,N} ) where {Tv<:Integer, Ti<:Integer, P, N} evals = Dict{Tv, Array{P,N}}() for (d, mexps) in mexps_dict eval = zeros(P, length(mexps), size(samples)[2:end]...) for (i, mexp) in enumerate(mexps) eval[i, repeat([:], N-1)...] = prodpow(samples, mexp) end evals[d] = eval end return evals end function HC.evaluate( mons::DenseMonomialVector, samples::Samples ) unkn_evals = evaluate(mons.unknowns_mexps, samples.solutions) param_evals = evaluate(mons.parameters_mexps, samples.parameters) unkn_dep = zeros(ComplexF64, nunkn_dep(mons), nsolutions(samples), ninstances(samples)) param_only = zeros(ComplexF64, nparam_only(mons), ninstances(samples)) k = 0 for udeg in unknowns_deg(mons):-1:1 unkn_eval = unkn_evals[udeg] for pdeg in min(mons.degree-udeg, parameters_deg(mons)):-1:0 param_eval = param_evals[pdeg] for pid in axes(param_eval, 1) unkn_dep[(k+1):(k+size(unkn_eval, 1)), :, :] = unkn_eval.*reshape(param_eval[pid, :], 1, 1, :) k += size(unkn_eval, 1) end end end param_only = vcat([param_evals[pdeg] for pdeg in parameters_deg(mons):-1:0]...) # TODO: replace vcat? return EvaluatedMonomials(unkn_dep, param_only) end function HC.evaluate( mons::SparseMonomialVector, samples::Samples ) param_only = zeros(ComplexF64, nparam_only(mons), ninstances(samples)) for (i, mexp) in enumerate(mons.param_only_mexps) param_only[i, :] = prodpow(samples.parameters, mexp) end unkn_dep = zeros(ComplexF64, nunkn_dep(mons), nsolutions(samples), ninstances(samples)) for (i, (uexp, pexp)) in enumerate(zip(mons.unkn_dep_mexps...)) unkn_dep[i, :, :] = prodpow(samples.solutions, uexp).*transpose(prodpow(samples.parameters, pexp)) end return EvaluatedMonomials(unkn_dep, param_only) end function HC.evaluate( mons::SparseMatrixMonomialVector, samples::Samples ) param_only = zeros(ComplexF64, nparam_only(mons), ninstances(samples)) for i in axes(mons.param_only_mexps, 2) param_only[i, :] = prodpow(samples.parameters, mons.param_only_mexps[:, i]) end unkn_dep = zeros(ComplexF64, nunkn_dep(mons), nsolutions(samples), ninstances(samples)) for i in axes(mons.unkn_dep_mexps[1], 2) unkn_dep[i, :, :] = prodpow(samples.solutions, mons.unkn_dep_mexps[1][:, i]).*transpose(prodpow(samples.parameters, mons.unkn_dep_mexps[2][:, i])) end return EvaluatedMonomials(unkn_dep, param_only) end HC.evaluate( mons::AbstractMonomialVector, samples::Dict{T, Samples} ) where {T} = Dict(zip(values(samples), [evaluate(mons, s) for s in values(samples)]))
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
11803
export SampledSystem, MonodromyInfo, Samples, run_monodromy, sample!, unknowns, parameters, variables, nunknowns, nparameters, nvariables, nsolutions, nsamples, ninstances, samples, monodromy_permutations, block_partitions, deck_permutations using HomotopyContinuation: Result, MonodromyResult, nsolutions, ntracked, is_success, solution using HomotopyContinuation: ParameterHomotopy, Tracker, track const MONODROMY_SOLVE_REF = "https://www.juliahomotopycontinuation.org/HomotopyContinuation.jl/stable/monodromy/" const SOLVE_REF = "https://www.juliahomotopycontinuation.org/HomotopyContinuation.jl/stable/solve/" struct MonodromyInfo n_solutions::Int monodromy_permutations::Vector{Vector{Int}} block_partitions::Vector{Vector{Vector{Int}}} deck_permutations::Vector{Vector{Int}} end MonodromyInfo() = MonodromyInfo(1, [], [], []) struct Samples solutions::Array{ComplexF64, 3} # n_unknowns x n_sols x n_instances parameters::Array{ComplexF64, 2} # n_params x n_instances end Samples( sols::Matrix{ComplexF64}, params::Vector{ComplexF64} ) = Samples(reshape(sols, size(sols)..., 1), reshape(params, :, 1)) HC.nsolutions(samples::Samples) = size(samples.solutions, 2) ninstances(samples::Samples) = size(samples.parameters, 2) nsamples(samples::Samples) = nsolutions(samples)*ninstances(samples) mutable struct SampledSystem system::System mon_info::MonodromyInfo samples::Dict{Vector{Int}, Samples} # key: ids of solution paths end unknowns(F::System) = HC.variables(F) """ unknowns(F::SampledSystem) -> Vector{Variable} Returns the vector of unknowns of `F`. """ unknowns(F::SampledSystem) = unknowns(F.system) """ parameters(F::SampledSystem) -> Vector{Variable} Returns the vector of parameters of `F`. """ HC.parameters(F::SampledSystem) = parameters(F.system) variables(F::System) = vcat(unknowns(F), parameters(F)) # does a different thing than HC.variables """ variables(F::SampledSystem) -> Vector{Variable} Returns the concatenated vector of unknowns and parameters of `F`. """ variables(F::SampledSystem) = variables(F.system) """ nunknowns(F::SampledSystem) -> Int Returns the number of unknowns of `F`. """ nunknowns(F::SampledSystem) = length(unknowns(F)) # equivalent to HC.nvariables """ nparameters(F::SampledSystem) -> Int Returns the number of parameters of `F`. """ HC.nparameters(F::SampledSystem) = length(parameters(F)) """ nvariables(F::SampledSystem) -> Int Returns the number of variables of `F`. """ nvariables(F::SampledSystem) = length(variables(F)) # doesn't extend HC.nvariables, does a different thing """ nsolutions(F::SampledSystem) -> Int Returns the number of solutions of `F` obtained by [`run_monodromy`](@ref) method. """ HC.nsolutions(F::SampledSystem) = F.mon_info.n_solutions """ samples(F::SampledSystem) -> Dict{Vector{Int}, Samples} Returns the dictionary of samples of a polynomial system `F`. """ samples(F::SampledSystem) = F.samples """ ninstances(F::SampledSystem) -> Int Returns the number of sampled instances of `F`. """ ninstances(F::SampledSystem) = sum([ninstances(s) for s in values(samples(F))]) """ nsamples(F::SampledSystem) -> Int Returns the number of samples of `F`. Notice that `ninstances(F)*nsolutions(F)` doesn't have to be equal to `nsamples(F)`. """ function nsamples(F::SampledSystem) return sum([nsamples(s) for s in values(samples(F))]) end """ monodromy_permutations(F::SampledSystem) -> Vector{Vector{Int}} Returns the vector of monodromy permutations of `F` obtained by [`run_monodromy`](@ref). """ monodromy_permutations(F::SampledSystem) = F.mon_info.monodromy_permutations """ block_partitions(F::SampledSystem) -> Vector{Vector{Vector{Int}}} Returns the vector of all block partitions of the solutions of `F`. """ block_partitions(F::SampledSystem) = F.mon_info.block_partitions """ deck_permutations(F::SampledSystem) -> Vector{Vector{Int}} Returns the vector of deck permutations of the solutions (actions of deck transformations on the solutions) of `F`. """ deck_permutations(F::SampledSystem) = F.mon_info.deck_permutations (F::SampledSystem)( x₀::AbstractVector{<:Number}, p₀::AbstractVector{<:Number} ) = F.system(x₀, p₀) function _filter_permutations(perms::Matrix{Int})::Vector{Vector{Int}} nsols = length(perms[:,1]) return filter( x->!(0 in x) && (length(unique(x)) == nsols), eachcol(perms) ) end function SampledSystem(F::System, MR::MonodromyResult) sols, params = hcat(HC.solutions(MR)...), MR.parameters n_sols = size(sols, 2) if n_sols == 1 @warn "Monodromy result has only 1 solution, no monodromy group available" return SampledSystem( F, MonodromyInfo(), Dict([1] => Samples(sols, params)) ) end monodromy_permutations = _filter_permutations(HC.permutations(MR)) block_partitions = all_block_partitions(to_group(monodromy_permutations)) deck_permutations = to_permutations(centralizer(monodromy_permutations)) return SampledSystem( F, MonodromyInfo( n_sols, monodromy_permutations, block_partitions, deck_permutations ), Dict(Vector(1:n_sols) => Samples(sols, params)) ) end function Base.show(io::IO, F::SampledSystem) println(io, "SampledSystem with $(phrase(nsamples(F), "sample"))") print(io, " $(phrase(nunknowns(F), "unknown")): ", join(unknowns(F), ", ")) if !isempty(parameters(F)) print(io, "\n $(phrase(nparameters(F), "parameter")): ", join(parameters(F), ", ")) end print(io, "\n\n") println(io, " number of solutions: $(nsolutions(F))") print(io, " sampled instances: $(ninstances(F))") # print(io, " deck permutations: $(length(deck_permutations(F)))") end function random_samples(samples::Samples) instance_id = rand(1:ninstances(samples)) return M2VV(samples.solutions[:, :, instance_id]), samples.parameters[:, instance_id] end all_solutions_samples(F::SampledSystem) = samples(F)[Vector(1:nsolutions(F))] function random_samples( F::SampledSystem; path_ids::Vector{Int} ) samples = all_solutions_samples(F) instance_id = rand(1:ninstances(samples)) return M2VV(samples.solutions[:, path_ids, instance_id]), samples.parameters[:, instance_id] end """ run_monodromy(F::Union{System, AbstractSystem}, xp₀=nothing; options...) -> SampledSystem Runs [`monodromy_solve`]($(MONODROMY_SOLVE_REF)) on a given polynomial system `F` with starting solutions `xp₀[1]` and parameters `xp₀[2]` (if given). ```julia-repl julia> @var x a b; julia> F = System([x^3+a*x+b]; variables=[x], parameters=[a,b]); julia> F = run_monodromy(F, ([[1]], [1,-2]); max_loops_no_progress = 10) SampledSystem with 3 samples 1 unknown: x 2 parameters: a, b number of solutions: 3 sampled instances: 1 ``` """ function run_monodromy( F::Union{System, AbstractSystem}, xp₀::Union{Nothing, Tuple{AbstractVector{<:AbstractVector{<:Number}}, AbstractVector{<:Number}}}=nothing; options... ) if isnothing(xp₀) MR = HC.monodromy_solve(F; permutations=true, options...) else sols, p₀ = xp₀ MR = HC.monodromy_solve(F, sols, ComplexF64.(p₀); permutations=true, options...) end if length(HC.solutions(MR)) == 1 error("Only 1 solution found, no monodromy group available. Try running again...") end return SampledSystem(F, MR) end """ run_monodromy(F::SampledSystem, xp₀=nothing; options...) -> SampledSystem Reruns [`monodromy_solve`]($(MONODROMY_SOLVE_REF)) on a given sampled polynomial system `F`. """ function run_monodromy( F::SampledSystem, xp₀::Union{Nothing, Tuple{AbstractVector{<:AbstractVector{<:Number}}, AbstractVector{<:Number}}}=nothing; options... ) if isnothing(xp₀) sols, p₀ = random_samples(F; path_ids=Vector(1:nsolutions(F))) else sols, p₀ = xp₀ # TODO: do we need this? end MR = HC.monodromy_solve(F.system, sols, ComplexF64.(p₀); permutations=true, options...) if length(HC.solutions(MR)) == 1 error("Only 1 solution found, no monodromy group available. Try running again...") end return SampledSystem(F.system, MR) end function extract_samples( results::Vector{Tuple{Result, Vector{ComplexF64}}}, F::SampledSystem; resample::Bool=false ) n_tracked = ntracked(results[1][1]) n_instances = length(results) all_sols = zeros(ComplexF64, nunknowns(F), n_tracked, n_instances) all_params = zeros(ComplexF64, nparameters(F), n_instances) k = 1 for (res, p) in results sols = HC.solutions(res) if length(sols) == n_tracked all_sols[:, :, k] = hcat(sols...) all_params[:, k] = p k += 1 elseif !resample error("Number of solutions in the $(k)-th result is $(length(sols)), expected $(n_tracked)") end end for i in k:n_instances while true instance_id = rand(1:i-1) # TODO: what if i == 1? p₀ = all_params[:, instance_id] sols₀ = M2VV(all_sols[:, :, instance_id]) p₁ = randn(ComplexF64, nparameters(F)) res = HC.solve( F.system, sols₀, start_parameters = p₀, target_parameters = p₁ ) sols = HC.solutions(res) if length(sols) == n_tracked all_sols[:, :, i] = hcat(sols...) all_params[:, i] = p₁ break end end end return all_sols, all_params end """ sample!(F::SampledSystem; path_ids=Vector(1:nsolutions(F)), n_instances=1) -> SampledSystem Uses [`solve`]($(SOLVE_REF)) method to track the solutions of a poynomial system `F` with ids defined by `path_ids` to `n_instances` random parameters. """ function sample!( F::SampledSystem; path_ids::AbstractVector{Int}=1:nsolutions(F), n_instances::Int=1 ) (length(path_ids) == 0 || n_instances ≤ 0) && return F p₁s = [randn(ComplexF64, nparameters(F)) for _ in 1:n_instances] path_ids = sort(Vector{Int}(path_ids)) samples = get(F.samples, path_ids, nothing) if isnothing(samples) sols₀, p₀ = random_samples(F; path_ids=path_ids) res = HC.solve( F.system, sols₀, start_parameters = p₀, target_parameters = p₁s ) sols, params = extract_samples(res, F; resample=true) F.samples[path_ids] = Samples(sols, params) else sols₀, p₀ = random_samples(samples) res = HC.solve( F.system, sols₀, start_parameters = p₀, target_parameters = p₁s ) sols, params = extract_samples(res, F; resample=true) sols = cat(samples.solutions, sols; dims=3) params = cat(samples.parameters, params; dims=2) F.samples[path_ids] = Samples(sols, params) end return F end function track_parameter_homotopy( F::System, (x₀, p₀)::NTuple{2, AbstractVector{<:Number}}, p₁::AbstractVector{<:Number}, p_inter::AbstractVector{<:Number} # intermediate parameter ) H₁ = ParameterHomotopy(F; start_parameters=p₀, target_parameters=p_inter) res = track(Tracker(H₁), x₀) if !is_success(res) @warn "Tracking was not successful: stopped at t = $(res.t)" end H₂ = ParameterHomotopy(F; start_parameters=p_inter, target_parameters=p₁) res = track(Tracker(H₂), solution(res)) if !is_success(res) @warn "Tracking was not successful: stopped at t = $(res.t)" end return solution(res) end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
10166
export Grading, ScalingGroup, grading, scaling_symmetries using AbstractAlgebra: ZZ, matrix, GF, lift, hnf, snf_with_transform using LinearAlgebra: diag mutable struct Grading{Tv<:Integer,Ti<:Integer} nscalings::Int free_part::Union{Nothing, SparseMatrixCSC{Tv,Ti}} mod_part::Vector{Tuple{Tv, SparseMatrixCSC{Tv,Ti}}} end Grading{Tv,Ti}() where {Tv<:Integer,Ti<:Integer} = Grading{Tv,Ti}(0, nothing, []) function Grading{Tv,Ti}( s::Vector{Int}, U::Vector{Matrix{Int}} ) where {Tv<:Integer,Ti<:Integer} grading = Grading{Tv,Ti}() for (sᵢ, Uᵢ) in zip(s, U) if sᵢ == 0 grading.free_part = Uᵢ else push!(grading.mod_part, (sᵢ, Uᵢ)) end grading.nscalings += size(Uᵢ, 1) end return grading end nfree(grading::Grading) = isnothing(grading.free_part) ? 0 : size(grading.free_part, 1) nscalings(grading::Grading) = grading.nscalings Base.isempty(grading::Grading) = isnothing(grading.free_part) && isempty(grading.mod_part) Base.copy(grading::Grading) = Grading(grading.free_part, grading.mod_part) function _structure(grading::Grading) str = "" U₀ = grading.free_part if !isnothing(U₀) n_free = size(U₀, 1) free_str = n_free == 1 ? "ℤ" : "ℤ$(superscript(n_free))" str = str * free_str end for (i, (sᵢ, Uᵢ)) in enumerate(grading.mod_part) prod_str = isnothing(U₀) && i == 1 ? "" : " × " n_sᵢ = size(Uᵢ, 1) sᵢ_str = n_sᵢ == 1 ? "ℤ$(subscript(sᵢ))" : "ℤ$(subscript(sᵢ))$(superscript(n_sᵢ))" str = str * prod_str * sᵢ_str end return str end function Base.show(io::IO, grading::Grading) print(io, "Grading with $(phrase(nscalings(grading), "scaling"))") end SparseAction = Vector{Tuple{Variable, Expression}} """ ScalingGroup A `ScalingGroup` is the result of the [`scaling_symmetries`](@ref) computation. """ struct ScalingGroup{Tv<:Integer,Ti<:Integer} grading::Grading{Tv,Ti} structure::String vars::Vector{Variable} action::Tuple{Vector{SparseAction}, Vector{Tuple{Tv, Vector{SparseAction}}}} end ScalingGroup{Tv,Ti}( vars::Vector{Variable} ) where {Tv<:Integer,Ti<:Integer} = ScalingGroup(Grading{Tv,Ti}(), "N/A", vars, ([], [])) function create_action(vars::Vector{Variable}, base::Union{Number, Vector{Variable}}, U::SparseMatrixCSC) action = Vector{SparseAction}([[] for _ in axes(U, 1)]) for j in axes(U, 1) nzind, nzval = findnz(U[j, :]) b = typeof(base) <: Number ? base : base[j] exprs = (b.^nzval).*vars[nzind] action[j] = collect(zip(vars[nzind], exprs)) end return action end function ScalingGroup( grading::Grading{Tv,Ti}, vars::Vector{Variable} ) where {Tv<:Integer,Ti<:Integer} free_action = Vector{SparseAction}([]) U₀ = grading.free_part if !isnothing(U₀) if size(U₀, 1) == 1 @var λ λ = [λ] else @var λ[1:size(U₀, 1)] end free_action = create_action(vars, λ, U₀) end mod_action = Vector{Tuple{Tv, Vector{SparseAction}}}([]) for (sᵢ, Uᵢ) in grading.mod_part if sᵢ == 2 sᵢ_action = create_action(vars, -1, Uᵢ) elseif sᵢ == 4 sᵢ_action = create_action(vars, im, Uᵢ) else @var ω[Int(sᵢ)] sᵢ_action = create_action(vars, ω[1], Uᵢ) end push!(mod_action, (sᵢ, sᵢ_action)) end action = (free_action, mod_action) return ScalingGroup(grading, _structure(grading), vars, action) end grading(scalings::ScalingGroup) = scalings.grading Base.copy(s::ScalingGroup) = ScalingGroup(s.grading, s.structure, s.vars, s.action) function Base.show(io::IO, scalings::ScalingGroup) action = scalings.action n_free, n_mod = length(action[1]), length(action[2]) if n_free + n_mod == 0 print(io, "ScalingGroup with 0 scalings") return end println(io, "ScalingGroup isomorphic to $(scalings.structure)") if n_free != 0 print(io, " $(phrase(n_free, "free scaling")):") for free_action in scalings.action[1] print(io, "\n ") for (j, (var, expr)) in enumerate(free_action) print(io, var, " ↦ ", expr) j < length(free_action) && print(io, ", ") end end end if n_mod != 0 n_free != 0 && println(io, "\n") println(io, " modular scalings:") for (i, (sᵢ, sᵢ_actions)) in enumerate(scalings.action[2]) print(io, " $(length(sᵢ_actions)) of order $(sᵢ):") for mod_action in sᵢ_actions print(io, "\n ") for (j, (var, expr)) in enumerate(mod_action) print(io, var, " ↦ ", expr) j < length(mod_action) && print(io, ", ") end end i < length(scalings.action[2]) && print(io, "\n") end end end function _snf_scaling_symmetries(F::System)::Tuple{Vector{Int}, Vector{Matrix{Int}}} vars = vcat(F.variables, F.parameters) Es = [exponents_coefficients(f, vars)[1] for f in F.expressions] K = hcat([column_diffs(E) for E in Es]...) if size(K, 1) > size(K, 2) K = [K zeros(eltype(K), size(K, 1), size(K,1)-size(K,2))] end K = matrix(ZZ, K) S, U, _ = snf_with_transform(K) U, S = Matrix(U), Int.(diag(Matrix(S))) s = reverse(filter(el->el!=1, unique(S))) if length(s) == 0 return [], [] end idxs = [findall(x->x==el, S) for el in s] Us = [U[idxs[i], :] for i in eachindex(idxs)] return s, Us end function _hnf_reduce!( s::Vector{Int}, U::Vector{Matrix{Int}} ) for (i, (sᵢ, Uᵢ)) in enumerate(zip(s, U)) if sᵢ == 0 U[i] = Matrix(hnf(matrix(ZZ, Uᵢ))) else try U[i] = Int.(lift.(Matrix(hnf(matrix(GF(sᵢ), Uᵢ))))) catch U[i] = mod.(Uᵢ, sᵢ) end end end return s, U end function _hnf_reduce(grading::Grading{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} U₀ = grading.free_part red_grading = Grading{Tv,Ti}() if !isnothing(U₀) red_grading.free_part = Matrix(hnf(matrix(ZZ, U₀))) red_grading.nscalings = size(U₀, 1) end for (sᵢ, Uᵢ) in grading.mod_part try Uᵢ = lift.(Matrix(hnf(matrix(GF(sᵢ), Uᵢ)))) catch Uᵢ = mod.(Uᵢ, sᵢ) end push!(red_grading.mod_part, (sᵢ, Uᵢ)) red_grading.nscalings += size(Uᵢ, 1) end return red_grading end """ scaling_symmetries(F::System) Given a polynomial system `F` returns the group of scaling symmetries of `F`. The scalings that change the parameters are considered as well. ```julia-repl julia> @var x y a b c; julia> F = System([x^4+a^2+1, y^2+b+c]; variables=[x, y], parameters=[a,b,c]); julia> scaling_symmetries(F) ScalingGroup isomorphic to ℤ × ℤ₄ × ℤ₂ 1 free scaling: y ↦ y*λ, b ↦ b*λ^2, c ↦ c*λ^2 modular scalings: 1 of order 4: x ↦ -im*x, y ↦ im*y, b ↦ -b, c ↦ -c 1 of order 2: x ↦ -x, y ↦ -y, a ↦ -a ``` """ function scaling_symmetries(F::System) vars = vcat(F.variables, F.parameters) s, U = _snf_scaling_symmetries(F) length(s) == 0 && return ScalingGroup{Int8, Int16}(vars) _hnf_reduce!(s, U) return ScalingGroup(Grading{Int8, Int16}(s, U), vars) end scaling_symmetries(F::SampledSystem) = scaling_symmetries(F.system) # TODO: extend to remove rows dependent on other blocks function reduce(grading::Grading{Tv,Ti}) where {Tv<:Integer,Ti<:Integer} hnf_grading = _hnf_reduce(grading) red_grading = Grading{Tv,Ti}() U₀ = take_rows(!iszero, hnf_grading.free_part) if size(U₀, 1) != 0 red_grading.free_part = U₀ red_grading.nscalings = size(U₀, 1) end for (sᵢ, Uᵢ) in hnf_grading.mod_part Uᵢ = take_rows(!iszero, Uᵢ) if size(Uᵢ, 1) != 0 push!(red_grading.mod_part, (sᵢ, Uᵢ)) red_grading.nscalings += size(Uᵢ, 1) end end return red_grading end function restrict_scalings(scalings::ScalingGroup, var_ids::Vector{Int}) restr_grading = copy(scalings.grading) U₀ = restr_grading.free_part restr_grading.free_part = isnothing(U₀) ? nothing : U₀[:, var_ids] for (i, (sᵢ, Uᵢ)) in enumerate(restr_grading.mod_part) restr_grading.mod_part[i] = (sᵢ, Uᵢ[:, var_ids]) end return ScalingGroup(reduce(restr_grading), scalings.vars[var_ids]) end function restrict_scalings(scalings::ScalingGroup, vars::Vector{Variable}) var_ids = [findfirst(v->v==var, scalings.vars) for var in vars] if nothing in var_ids throw(ArgumentError("vars contains variables not present in scalings.vars")) end return restrict_scalings(scalings, var_ids) end scaling_symmetries( F::System, vars::Vector{Variable} ) = restrict_scalings(scaling_symmetries(F), vars) scaling_symmetries( F::SampledSystem, vars::Vector{Variable} ) = scaling_symmetries(F.system, vars) function HC.degree( mexp::SparseVector{Tv,Ti}, grading::Grading{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} deg = spzeros(Tv, Ti, nscalings(grading)) U₀ = grading.free_part if !isnothing(U₀) deg[1:size(U₀,1)] = U₀*mexp end k = nfree(grading) for (sᵢ, Uᵢ) in grading.mod_part deg[(k+1):(k+size(Uᵢ,1))] = mod.(Uᵢ*mexp, sᵢ) k += size(Uᵢ, 1) end return deg end function to_classes( mons::DenseMonomialVector{Tv,Ti}, grading::Grading{Tv,Ti} ) where {Tv<:Integer,Ti<:Integer} classes = Dict{SparseVector{Tv,Ti}, SparseMonomialVector{Tv,Ti}}() for (uexp, pexp) in mons deg = HC.degree(vcat(uexp, pexp), grading) if isnothing(get(classes, deg, nothing)) # the key doesn't exist classes[deg] = SparseMonomialVector{Tv,Ti}(mons.unknowns, mons.parameters) end push!(classes[deg], (uexp, pexp)) end new_classes = Dict{SparseVector{Tv,Ti}, SparseMatrixMonomialVector{Tv,Ti}}() for (deg, mons) in classes new_classes[deg] = SparseMatrixMonomialVector{Tv,Ti}(classes[deg]) end return new_classes end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
153
include("utils/basic.jl") include("utils/aliases.jl") include("utils/groups.jl") include("utils/Gauss-Jordan.jl") include("utils/algebraic_geometry.jl")
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
1327
export rref function rref!(A::Matrix{T}, ɛ=T <: Union{Rational,Integer} ? 0 : eps(norm(A,Inf))) where T nr, nc = size(A) i = j = 1 while i <= nr && j <= nc (m, mi) = findmax(abs.(A[i:nr,j])) mi = mi+i - 1 if m <= ɛ if ɛ > 0 A[i:nr,j] .= zero(T) end j += 1 else for k=j:nc # swap i-th and mi-th rows A[i, k], A[mi, k] = A[mi, k], A[i, k] end d = A[i,j] # == m for k = j:nc A[i,k] /= d # make pivot = 1 end for k = 1:nr # subtract multiple of pivot row from every row except i-th if k != i d = A[k,j] for l = j:nc A[k,l] -= d*A[i,l] end end end i += 1 j += 1 end end A end rrefconv(::Type{T}, A::Matrix) where {T} = rref!(copyto!(similar(A, T), A)) rref(A::Matrix{T}) where {T} = rref!(copy(A)) rref(A::Matrix{T}) where {T <: Complex} = rrefconv(CC, A) rref(A::Matrix{<:Number}, tol::Real) = rref!(copy(A), tol) rref(A::Matrix{T}) where {T <: Union{Integer, Float16, Float32}} = rrefconv(Float64, A) rref(A::AbstractMatrix, tol::Real) = rref(Matrix(A), tol)
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
462
using HomotopyContinuation: differentiate export jac function jac(F::System) return differentiate(F.expressions, F.variables) end function jac(F::System, x0::Vector{CC}) return Matrix{CC}(subs(differentiate(F.expressions, F.variables), F.variables => x0)) end function jac(F::System, xp0::Tuple{Vector{CC}, Vector{CC}}) return Matrix{CC}(subs(differentiate(F.expressions, F.variables), vcat(F.variables, F.parameters) => vcat(xp0[1], xp0[2]))) end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
26
export CC CC = ComplexF64
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
7628
export sparsify!, simplify_numbers, eye, a2p, p2a, num_mons, num_mons_upto a2p(M::AbstractMatrix{<:Number}) = [M; ones(eltype(M), 1, size(M, 2))] p2a(M::AbstractMatrix{<:Number}) = (M./M[end:end,:])[1:end-1,:] M2VV(M::AbstractMatrix) = [M[:,i] for i in axes(M, 2)] M2VM(M::AbstractMatrix) = [reshape(M[:,i], size(M,1), 1) for i in axes(M, 2)] function Base.copyto!(M::AbstractMatrix{T}, v::AbstractVector{AbstractVector{T}}; dim::Integer) where {T} for i in eachindex(v) copyto!(selectdim(M, dim, i), v[i]) end end xx(v) = [0 -v[3] v[2]; v[3] 0 -v[1]; -v[2] v[1] 0] xx2v(xx) = [-xx[2,3], xx[1,3], -xx[1,2]] eye(T, n::Integer) = Matrix{T}(I(n)) prodpow(v::AbstractVector, e::AbstractSparseVector) = prod(v[e.nzind].^e.nzval) num_mons(n::Integer, d::Integer) = n > 0 ? binomial(Int(n - 1 + d), Int(d)) : 0 num_mons_upto(n::Integer, d::Integer) = n > 0 ? binomial(Int(n + d), Int(d)) : 0 # TODO: test this function sparsify!(v::AbstractVector{<:Number}, tol::Real; digits::Integer=0) for j in eachindex(v) if abs(imag(v[j])) < tol v[j] = real(v[j]) elseif abs(round(imag(v[j]); digits=digits) - imag(v[j])) < tol v[j] = real(v[j]) + round(imag(v[j]); digits=digits)*im end if abs(real(v[j])) < tol v[j] = imag(v[j])*im elseif abs(round(real(v[j]); digits=digits) - real(v[j])) < tol v[j] = round(real(v[j]); digits=digits) + imag(v[j])*im end end end function sparsify!(M::AbstractMatrix{<:Number}, tol::Real; digits::Integer=0) for r in eachrow(M) sparsify!(r, tol; digits=digits) end end function simplify_numbers(v::Vector{<:Number}) v = Vector{Number}(v) for (i, vᵢ) in enumerate(v) try v[i] = Integer(vᵢ) catch try v[i] = Real(vᵢ) catch try v[i] = Complex{Integer}(vᵢ) catch end end end end return v end function to_ordinal(n::Integer)::String if mod(n, 10) == 1 mod(n, 100) == 11 && return "$(n)th" return "$(n)st" end if mod(n, 10) == 2 mod(n, 100) == 12 && return "$(n)th" return "$(n)nd" end if mod(n, 10) == 3 mod(n, 100) == 13 && return "$(n)th" return "$(n)rd" end return "$(n)th" end function subscript(n::Integer)::String c = n < 0 ? [Char(0x208B)] : [] for d in reverse(digits(abs(n))) push!(c, Char(0x2080+d)) end return join(c) end function superscript(n::Integer)::String c = n < 0 ? [Char(0x207B)] : [] for d in reverse(digits(abs(n))) if d == 0 push!(c, Char(0x2070)) end if d == 1 push!(c, Char(0x00B9)) end if d == 2 push!(c, Char(0x00B2)) end if d == 3 push!(c, Char(0x00B3)) end if d > 3 push!(c, Char(0x2070+d)) end end return join(c) end # TODO: eachcol? Base.findfirst( v::AbstractVector{<:Number}, M::AbstractMatrix{<:Number}; tol::Real=1e-5 ) = findfirst(i->norm(M[:,i]-v)<tol, axes(M,2)) take_rows( f::Function, M::AbstractMatrix{T} ) where {T} = M[[f(r) for r in eachrow(M)], :] function column_diffs(M::AbstractMatrix{T}) where {T<:Number} M = M - M[:,1]*ones(T, 1, size(M,2)) return M[:,2:end] end phrase(i::Integer, word::String) = i == 1 ? "$(i) $(word)" : "$(i) $(word)s" # function exprDet(M; expnd=true) # n = size(M, 1) # @assert(n == size(M, 2)) # if n == 1 return M[1,1] # elseif n == 2 # if expnd return expand(M[1,1]*M[2,2]-M[1,2]*M[2,1]) # else return M[1,1]*M[2,2]-M[1,2]*M[2,1] # end # else # if expnd return expand(sum([(-1)^(j+1)*M[1,j]*exprDet(M[2:n,filter(k->k!=j,convert(Vector,1:n))], expnd=expnd) for j=1:n])) # else return sum([(-1)^(j+1)*M[j,1]*exprDet(M[filter(k->k!=j,convert(Vector,1:n)), 2:n], expnd=expnd) for j=1:n]) # end # end # end # function exprAdj(M::Matrix{Expression}; expnd=true) # m, n = size(M) # @assert m == n # A = Matrix{Expression}(zeros(n, n)) # for i=1:n for j=1:n A[i,j] = (-1)^(i+j)*exprDet(M[1:end .!= i, 1:end .!= j], expnd=expnd) end end # return Matrix{Expression}(transpose(A)) # end # function exprInv(M::Matrix{Expression}) # m, n = size(M) # @assert m == n # return 1/exprDet(M)*exprAdj(M) # end # function get_specific_monomials(x::Vector{Variable}, d::Int64)::Vector{Expression} # mons = Vector{Expression}([1]) # n_vars = length(x) # append!(mons, x) # n_appended = n_vars # for i = 1:d-1 # M = mons[end-n_appended+1:end] * transpose(x) # for j = i+1:n_vars # append!(mons, M[1:j-i, j]) # end # n_appended = Int((n_vars-i)*(n_vars-i+1)/2) # end # return mons # end # function get_monomials(x::Vector{Variable}, d::Int64)::Vector{Expression} # return [prod(x.^exp) for exp in collect(multiexponents(length(x), d))] # end # # function get_monomials(x::Vector{Variable}, degrees::Vector{Int64})::Vector{Expression} # mons = [] # n = length(x) # for d in degrees # append!(mons, get_monomials(x, d)) # end # return mons # end # # Returns list of monomials up to degree d # function get_monomials(x::Vector{Variable}, d::Int)::Vector{Expression} # mons = Vector{Expression}([1]) # n_vars = length(x) # append!(mons, x) # k = 1 # for i = 1:d-1 # M = mons[(k + 1):(k + num_mons(n_vars, i))] * transpose(x) # for j = 1:n_vars # append!(mons, M[1:num_mons(j, i), j]) # end # k += num_mons(n_vars, i) # end # return mons # end # function next_deg_mons(x::Vector{Variable}, mons::Vector{Expression}, d::Int)::Vector{Expression} # new_mons = Vector{Expression}([]) # n_vars = length(x) # M = mons[(end-num_mons(n_vars, d-1)+1):end] * transpose(x) # for j = 1:n_vars # append!(new_mons, M[1:num_mons(j, d-1), j]) # end # return new_mons # end # function get_monomials_fixed_degree(x::Vector{Variable}, d::Int)::Vector{Expression} # if d == 0 return [1] end # if d == 1 return x end # mons = Vector{Expression}([1]) # n_vars = length(x) # append!(mons, x) # k = 1 # for i = 1:d-1 # M = mons[(k + 1):(k + num_mons(n_vars, i))] * transpose(x) # for j = 1:n_vars # append!(mons, M[1:num_mons(j, i), j]) # end # k += num_mons(n_vars, i) # if i == d-1 # return mons[(k+1):(k + num_mons(n_vars, d))] # end # end # end # # Returns list of monomials up to degree d for factorizing map # function get_monomials_factorization(x::Vector{Variable}, d::Int, n_params::Int)::Vector{Expression} # mons = Vector{Expression}([1]) # n_vars = length(x) # n_unknowns = n_vars - n_params # append!(mons, x[1:n_unknowns]) # k = 1 # for i = 1:d-1 # n_old_mons = num_mons(n_vars, i) - num_mons(n_params, i) # M = mons[(k + 1):(k + n_old_mons)] * transpose(x) # for j = 1:n_vars # n_new_mons = min(num_mons(j, i) - num_mons(j-n_unknowns, i), size(M, 1)) # append!(mons, M[1:n_new_mons, j]) # end # k += n_old_mons # end # popfirst!(mons) # return mons # end # # rewrite # # TODO: what is this? # function v2SymM(v) # n = Int((-1+sqrt(1+8*length(v)))/2) # M = zeros(n, n) # k = 1 # for i=1:n # for j=i:n # M[i,j] = M[j,i] = v[k] # k += 1 # end # end # return M # end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
3515
export group_structure, to_group, to_permutations using GAP: GapObj, julia_to_gap, gap_to_julia, Globals Gl = Globals to_gap = julia_to_gap to_julia = gap_to_julia group_structure(G::GapObj) = String(Gl.StructureDescription(G)) order(G::GapObj) = Gl.Order(G) function group_structure(perms::Vector{Vector{Int}}) return to_julia(Gl.StructureDescription(to_group(perms))) end function to_group(perms::Vector{Vector{Int}}) if length(perms) == 0 error("Cannot create a group: the list of permutations is empty") end Sym = Gl.SymmetricGroup(length(perms[1])) gap_gens = [Gl.PermList(to_gap(perm)) for perm in perms] Gal = to_gap(gap_gens) return Gl.Subgroup(Sym,Gal) end function perm_to_list(perm::GapObj, n::Int) return [Int(Gl.OnPoints(i, perm)) for i in 1:n] end function to_permutations(G::GapObj) elems_gap = Gl.Elements(G) n = Gl.LargestMovedPoint(Gl.Parent(G)) return [perm_to_list(elem, n) for elem in elems_gap] end centralizer(G::GapObj) = Gl.Centralizer(Gl.Parent(G), G) function centralizer(perms::Vector{Vector{Int}}) if length(perms) == 0 return GAP.evalstr( "Group(())" ) end Sym = Gl.SymmetricGroup(length(perms[1])) cents = [Gl.Centralizer(Sym, Gl.PermList(to_gap(perm))) for perm in perms] if length(cents) == 1 return cents[1] end return Gl.Intersection(cents...) end function block_partition(G::GapObj) n = Gl.LargestMovedPoint(G) return Vector{Vector{Int}}(to_julia(Gl.Blocks(G, to_gap(Vector(1:n))))) end function all_block_partitions(G::GapObj) all_blocks = to_julia(Vector{Vector{Int}}, Gl.AllBlocks(G)) n = Gl.LargestMovedPoint(G) block_partitions = Vector{Vector{Vector{Int}}}([]) for block in all_blocks block_partition = Gl.Blocks(G, to_gap(Vector{Int}(1:n)), to_gap(block)) push!(block_partitions, to_julia(Vector{Vector{Int}}, block_partition)) end return block_partitions end function action_on_blocks(G::GapObj, block_partition::Vector{Vector{Int}}) blocks_gap = to_gap([to_gap(block) for block in block_partition]) return Gl.Action(G, blocks_gap, Gl.OnSets) end function action_on_block( G::GapObj, block_partition::Vector{Vector{Int}}, block_id::Int ) n_blocks = length(block_partition) B = block_partition[block_id] block_size = length(B) elems = Set(vcat(block_partition...)) remaining = collect(setdiff(elems, Set(B))) new_blocks = to_gap([to_gap(sort(vcat([B[j]], remaining))) for j in 1:block_size]) S = Gl.Stabilizer(G, to_gap(B), Gl.OnSets) return Gl.Action(S, new_blocks, Gl.OnSets) end function action_on_given_blocks( G::GapObj, block_partition::Vector{Vector{Int}}, block_ids::Vector{Int} ) Bs = sort(vcat(block_partition[block_ids]...)) set_size = length(Bs) elems = Set(vcat(block_partition...)) remaining = collect(setdiff(elems, Set(Bs))) new_blocks = to_gap([to_gap(sort(vcat([Bs[j]], remaining))) for j in 1:set_size]) S = Gl.Stabilizer(G, to_gap(Bs), Gl.OnSets) return Gl.Action(S, new_blocks, Gl.OnSets) end # Intersection of all block stabilizers function kernel_of_action_on_blocks(G::GapObj, block_partition::Vector{Vector{Int}}) B1 = block_partition[1] K = Gl.Stabilizer(G, to_gap(B1), Gl.OnSets) n_blocks = length(block_partition) for i = 2:n_blocks Bi = block_partition[i] Si = Gl.Stabilizer(G, to_gap(Bi), Gl.OnSets) K = Gl.Intersection(K, Si) end return K end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
code
130
using DecomposingPolynomialSystems using Test @testset "DecomposingPolynomialSystems.jl" begin # Write your tests here. end
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
docs
1428
# DecomposingPolynomialSystems.jl [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://multivariatepolynomialsystems.github.io/DecomposingPolynomialSystems.jl/dev) DecomposingPolynomialSystems.jl is a Julia package that computes the symmetries that fix the parameters (specifically, the group of deck transformations) of a parametric polynomial system with finitely many solutions with a view towards decomposing the given polynomial system. ## Installation Enter the Pkg REPL by pressing `]` from the Julia REPL and then type ```julia add https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git ``` To get back to the Julia REPL, press backspace. ## Usage ### Computing symmetries ```julia using DecomposingPolynomialSystems @var x[1:2] p[1:2] F = System([x[1]^2 - x[2]^2 - p[1], 2*x[1]*x[2] - p[2]]; variables=x, parameters=p) symmetries_fixing_parameters(F; degree_bound=1, param_dep=false) ``` The result of the last command is the object of type `DeckTransformationGroup` that contains 4 deck transformations acting on the unknowns `x₁`, `x₂` of the polynomial system `F`: ``` DeckTransformationGroup of order 4 structure: C2 x C2 action: 1st map: x₁ ↦ x₁ x₂ ↦ x₂ 2nd map: x₁ ↦ -x₁ x₂ ↦ -x₂ 3rd map: x₁ ↦ im*x₂ x₂ ↦ -im*x₁ 4th map: x₁ ↦ -im*x₂ x₂ ↦ im*x₁ ``` where `im` is the imaginary unit. ### Computing invariants TBW ### Decomposition TBW
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
docs
444
# Introduction DecomposingPolynomialSystems.jl is a Julia package for decomposing systems of polynomial equations, i.e. representing a possibly complicated polynomial system as an equivalent sequence of simpler polynomial systems. ## Quick start TBW ## Contents ```@contents Pages = [ "sampling.md", ] Depth = 2 ``` **Computing symmetries** ```@contents Pages = [ "symmetries/scalings.md", "symmetries/deck.md", ] Depth = 2 ```
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
docs
754
# Sampling Polynomial Systems In this Julia package we deal with parametric polynomial systems with finitely many solutions for generic parameters. We use [`HomotopyContinuation.jl`](https://www.juliahomotopycontinuation.org/) to sample such polynomial systems. ## Run monodromy ```@docs run_monodromy ``` ## SampledSystem `SampledSystem` is a struct type that initially contains a polynomial system, the result of monodromy computations, and the solutions-parameters samples obtained with [`run_monodromy`](@ref) or [`sample!`](@ref). ```@docs unknowns parameters variables nunknowns nparameters nvariables nsolutions samples ninstances nsamples monodromy_permutations block_partitions deck_permutations ``` ## Sample system ```@docs sample! ```
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
docs
295
# Deck transformations Deck transformations of a parametric polynomial system are the birational maps that fix the parameters of the polynomial system. ## Computing deck transformations ```@docs symmetries_fixing_parameters ``` ## DeckTranfromationGroup ```@docs DeckTransformationGroup ```
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
1.0.0
0e592b369bff4c1d9ac484c2ee8603e6353f9d5d
docs
260
# Scaling symmetries Scaling symmetries of a (parametric) polynomial system are the maps that act by scaling individual variables of the formulation. ## Computing scaling symmetries ```@docs scaling_symmetries ``` ## ScalingGroup ```@docs ScalingGroup ```
DecomposingPolynomialSystems
https://github.com/MultivariatePolynomialSystems/DecomposingPolynomialSystems.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
444
using Documenter using Literate using TaskMaster Literate.markdown(joinpath(@__DIR__, "../examples/introduction.jl"), joinpath(@__DIR__,"src/"); credit = false, name = "index") Literate.markdown(joinpath(@__DIR__, "../examples/adaptive.jl"), joinpath(@__DIR__,"src/"); credit = false, name = "adaptive") makedocs(sitename="TaskMaster.jl",pages = ["index.md","adaptive.md"]) deploydocs( repo = "github.com/akels/TaskMaster.jl.git", )
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
1326
# # Adaptive # Here I show how one can use [Adaptive.jl](https://github.com/akels/Adaptive.jl) wrapper for [python adaptive package](https://github.com/python-adaptive/adaptive) to make adaptively sampled figures. Before we start, let's set up our environment by loading packages: using Distributed addprocs(2) using TaskMaster using Adaptive using PyPlot # where Adaptive.jl at the moment needs to be added directly from the GitHub repository. # ## AdaptiveLearner1D @everywhere f(x) = exp(-x^2) fig = figure() x = collect(range(-2,stop=2,length=200)) plot(x,f.(x),label=L"e^{-x^2}") xx = collect(range(-2,stop=2,length=20)) plot(xx,f.(xx),".-",label="even sampling") master = WorkMaster(f) learner1d = AdaptiveLearner1D((-2,+2)) loop = Loop(master,learner1d) evaluate!(loop,1:20) plot(learner1d.x,learner1d.y,".-",label="AdaptiveLearner1D") legend() savefig("learner1d.svg") # ![](learner1d.svg) # ## AdaptiveLearner2D @everywhere f(p) = exp(-p[1]^2 - p[2]^2) master = WorkMaster(f) learner2d = AdaptiveLearner2D([(-3,+3),(-3,+3)]) loop = Loop(master,learner2d) evaluate!(loop,learner->learner.loss()<0.05) fig = figure() p,tri,v = learner2d.points, learner2d.vertices, learner2d.values tricontourf(p[:,1],p[:,2],tri.-1,v) triplot(p[:,1],p[:,2],tri.-1,"k.-") savefig("learner2d.svg") # ![](learner2d.svg)
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
6522
# # Introduction # A very daunting thing to program is a feedback loop with parallelism. Parallelism introduces stochasticity and thus debugging a feedback loop, or the part which learns in such a system is painful. On the other hand, we have so many different kinds of systems which implement parallelism - processes, threads, GPUs, job schedulers, GRID, etc. And so one ends up writing non-reusable code a case by a case. # A TaskMater is an abstraction for all of those issues through two critical concepts - Master and Learner. Master is a process which takes input values from a channel `Master.tasks` and evaluates in an arbitrary fashion/order and puts that in `Master.results` channel as a tuple (input, output). One makes a concrete implementation which uses processes, threads, GPUs, TPUs, job scheduler, etc. for evaluation. Or one can treat Master as some process which comes from a piece of experimental equipment, for example, from a multi-head scanning tunnelling microscope. Or one could try to find optimal parameters for plant growth where parallelism is very natural. # The other concept is Learner which tries to learn from the Master by asking questions and receiving answers. Nature is that Master has received multiple questions, and he answers them in arbitrary order. Thus the Learner needs to be smart to optimize the objective. Again the Learner could be a computer program, animal (if you can teach them parallelism), or human pressing buttons. # Particularly in the case of a computer program, there is quite a variety. There is a class of learners where the programmer had programmed all cases of how the system should behave. My Python colleagues make a very great example in the [adaptive package](https://github.com/python-adaptive/adaptive), which allows adaptive function evaluation for reducing computational needs to make a beautiful figure (see Adaptive.jl for a wrapper). Another type of learners had been brainstormed in [this reedit](https://www.reddit.com/r/dataisbeautiful/comments/b8vv2p/i_wrote_a_python_package_to_do_adaptive_sampling/). The other class which might gain traction is a machine-learned Learner, for example, a plant state recognition algorithm with some ML to optimize the growth. # # Interface # For what follows we need to load and execute: using Distributed addprocs(2) # before loading TaskMaster. That would give us two workers to proceed. # To load the package, install it from the Julia central registry and execute: using TaskMaster # further on, we assume that it is loaded. # ## Learner # To see how to implement Learner, let's consider IgnorantLearner from the package. To initiate it, we do: learner = IgnorantLearner(1:4) # The first part of the interface is asking part. To `ask!` a point we execute: x1 = ask!(learner,4) x2 = ask!(learner,2) # x1 and x2 now would give us points which Learner thinks as most beneficial to reach the objective. The numbers 4 and 2 represent the input, for example, a random number in that purifying Learner from randomness. That is particularly useful when one wants to debug the Learner from output values alone (see debugging section). # The second part of the interface is telling about masters evaluated points to Learner. Let's say that x2=3 and thus y2=9 represent the results of the evaluation. Then to tell Learner about them we do: tell!(learner,(3,9)) # Which would affect the state of the Learner, giving us better predictions on where exciting things would happen even when x1 is still being evaluated. (That is the reason why ask is written with exclamation mark ask!). Ignorant Learner as the name implies would ignore this knowledge and would proceed with evaluating points given by iterator. # ## Master # To see how Master works, let's consider WorkMaster from the package. To initiate it, we need to define a function on all workers and then start Master: @everywhere f(x) = x^2 master = WorkMaster(f) # Now we can evaluate the function with specific values as simple as: put!(master.tasks,3) put!(master.tasks,5) # And take out the results: take!(master.results) # As one can see, it is pretty apparent to make ThreadMaster and other different kinds of Master implementations. # ## Loop # The third and the final concept is the Loop which represents the execution of master on the Loop. That can be initiated as follows: master = WorkMaster(f) learner = IgnorantLearner(1:10) loop = Loop(master,learner) # Also if one wishes to follow the learning process, it is possible to pass a function `iterhook(::Loop)` is executed in every iteration with constructor `Loop(::Master,::Learner,iterhook(::Loop))`. # Now the central part is the execution. If one knows the collection beforehand on what one wants to execute the Loop (so it is finite) one can do: output1 = evaluate!(loop,1:4) # Often, however, one wants to learn until some convergence criteria are being met. That one can also do by passing a stopping condition which is executed every time before a new point is asked: output2 = evaluate!(loop,learner->learner.state==7,5:9) # which will terminate when the Learner's state would be 7. A note is that evaluate would continue to execute the previous state of the Loop (thus exclamation mark !). # ## Debugging Learner # Let's imagine a situation where one had spent hours evaluating the function with a Learner. For some particular reason looking at the output, the Learner seems had misbehaved. The question then is how one could debug that? # A way the package overcomes such pitfall is by ensuring a deterministic process of `evaluate!` function which communicates with Master. This is why it is crucial that `ask!` does not have stochasticity inside but if needed, takes that from the input. That allows us to replay the history and explore the Learner's state as it evolved. # In TaskMaster that is implemented with `HisotyMaster` type. To see how to use it, let's apply it on the previous execution: output = [output1...,output2...] master = HistoryMaster(output,2) # where 2 is the number of unresolved points which were allowed during the original Masters run. Now to repeat the history, we do: learner = IgnorantLearner(1:10) loop = Loop(master,learner,loop->@show loop.learner.state) evaluate!(loop,learner->learner.state==7,1:9) # As you can see the `iterhook(::Loop)` makes a lot of sense for debugging. Also, HistoryMaster could be useful to write tests for Learner, so when code changes, one would immediately see the effects of that.
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
468
module TaskMaster abstract type Learner end ask!(learner::Learner) = error("For runner learner needs to implement ask! and tell! methods") tell!(learner::Learner,message) = error("For runner learner needs to implement ask! and tell! methods") abstract type Master end include("abstractions.jl") include("workmaster.jl") include("evaluate.jl") export captureslave!, releaseslave! export HistoryMaster, WorkMaster, Loop, IgnorantLearner, ask!, tell!, evaluate! end
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
1490
struct WrappedLearner <: Learner learner stop askhook tellhook end WrappedLearner(learner,stop) = WrappedLearner(learner, stop, (x,y)->nothing, (x,y)->nothing) function ask!(learner::WrappedLearner,input) if learner.stop(learner.learner) val = nothing else val = ask!(learner.learner,input) end learner.askhook(learner.learner,val) return val end function tell!(learner::WrappedLearner,message) tell!(learner.learner,message) learner.tellhook(learner.learner,message) end ### The interface probabily needs to be a little different mutable struct IgnorantLearner <: Learner iter state end IgnorantLearner(iter) = IgnorantLearner(iter,nothing) function ask!(learner::IgnorantLearner,input) if input==nothing return nothing end temp = learner.state==nothing ? iterate(learner.iter) : iterate(learner.iter,learner.state) if temp==nothing return nothing else val,learner.state = temp return val end end tell!(learner::IgnorantLearner,m) = nothing ### Something which would help to reproduce the state of the Learner. mutable struct HistoryMaster <: Master tasks results np end nparalel(master::HistoryMaster) = master.np function HistoryMaster(output,np) N = length(output) tasks = Channel{Any}(N) results = Channel{Tuple{Any,Any}}(N) for oi in output put!(results,oi) end HistoryMaster(tasks,results,np) end
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
2108
struct Loop master::Master learner::Learner iterhook::Function end Loop(master::Master,learner::Learner) = Loop(master,learner,x->nothing) function evaluate!(loop::Loop,inch,outch) np = nparalel(loop.master) unresolved = 0 x = 0 ### Needs to be some value of ask! output type while true if x!=nothing && unresolved<np && isopen(inch) i = take!(inch) x = ask!(loop.learner,i) if x!=nothing put!(loop.master.tasks,x) unresolved+=1 else close(inch) end else res = take!(loop.master.results) tell!(loop.learner,res) put!(outch,res) unresolved -= 1 if unresolved==0 break end end loop.iterhook(loop) end close(outch) end Looptr(master,learner) = inch -> Channel() do outch loop = Loop(master,learner) evaluate!(loop, inch, outch) end """ Evaluates until evaluate closes inchannel. """ function evaluate!(loop::Loop) inch = Channel(1) @async while true put!(inch,true) end inch |> Looptr(loop.master,loop.learner) |> collect end """ Easy way to evaluate master with learner and a stopping condition. """ function evaluate!(loop::Loop,stop::Function) wl = WrappedLearner(loop.learner, stop, (x,y)->nothing, (x,y)->nothing) loop = Loop(loop.master,wl,loop.iterhook) evaluate!(loop) end ### Channel(Map(identity)) is the only place where I use transducers. """ Evaluates until evaluate closes inchannel or iterator ends. Could be also used to pass random numbers. """ function evaluate!(loop::Loop,stop::Function,iter) wl = WrappedLearner(loop.learner, stop, (x,y)->nothing, (x,y)->nothing) loop = Loop(loop.master,wl,loop.iterhook) inch = Channel(1) @async begin for i in iter put!(inch,i) end close(inch) end inch |> Looptr(loop.master,loop.learner) |> collect end evaluate!(loop::Loop,iter) = evaluate!(loop,learner->false,iter)
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
1930
using Distributed mutable struct WorkMaster <: Master tasks results slaves end nparalel(master::WorkMaster) = length(master.slaves) """ Releases one worker (who is the next one of taking a new task) from the duty calculating function values given him by the master. Returns pid. """ function releaseslave!(master::WorkMaster) @assert length(master.slaves)>0 put!(master.tasks,nothing) while true for i in 1:length(master.slaves) ### I need to find first one which is free if isready(master.slaves[i])==true pid = master.slaves[i].where deleteat!(master.slaves,i) return pid end end end end """ Releases all workers from the Master's duties. """ function releaseall!(master::WorkMaster) for s in master.slaves put!(master.tasks,nothing) end for s in master.slaves wait(s) end pids = [s.where for s in master.slaves] master.slaves = [] return pids end """ Gives the slave a duty to follow orders of his new Master """ function captureslave!(pid,f::Function,master::WorkMaster) tasks, results = master.tasks, master.results wp = @spawnat pid begin while true x = take!(tasks) if x==nothing break else y = f(x) put!(results,(x,y)) end end end push!(master.slaves,wp) end WorkMaster(tasks,results) = WorkMaster(tasks,results,[]) function WorkMaster(f::Function,wpool::AbstractWorkerPool) tasks = RemoteChannel(()->Channel{Any}(10)) results = RemoteChannel(()->Channel{Tuple{Any,Any}}(10)) master = WorkMaster(tasks,results) for p in wpool.workers captureslave!(p,f,master) end return master end WorkMaster(f::Function) = WorkMaster(f,WorkerPool(nprocs()==1 ? [1] : workers()))
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
code
1066
using Distributed addprocs(2) using TaskMaster @everywhere f(x) = x^2 @info "Testing evaluate" master = WorkMaster(f) learner = IgnorantLearner(1:10) loop = Loop(master,learner) evaluate!(loop) @info "Testing evaluate with source" master = WorkMaster(f) learner = IgnorantLearner(1:10) loop = Loop(master,learner) output1 = evaluate!(loop,1:6) ### In a way looks like a transducer @info "Testing the debugger for Learner" master = HistoryMaster(output1,length(master.slaves)) learner = IgnorantLearner(1:10) loop = Loop(master,learner,loop->println("Learner state $(loop.learner.state)")) output2 = evaluate!(loop,1:6) @info "Testing evaluate with stopping condition" master = WorkMaster(f) learner = IgnorantLearner(1:10) loop = Loop(master,learner) evaluate!(loop,l->l.state==4) @info "Testing capturing and releasing of the slave" @everywhere f(x) = x^2 learner = IgnorantLearner(1:10) master = WorkMaster(f,WorkerPool()) captureslave!(2,f,master) captureslave!(3,f,master) @show releaseslave!(master) @show releaseslave!(master) @info "Success!!!"
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
0.1.0
a67577e309dd5fb21c0065aa0f7d573bdca68762
docs
2558
# TaskMaster [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://akels.github.io/TaskMaster.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://akels.github.io/TaskMaster.jl/dev) [![Build Status](https://travis-ci.org/akels/TaskMaster.jl.svg?branch=master)](https://travis-ci.org/akels/TaskMaster.jl) A very daunting thing to program is a feedback loop with parallelism. Parallelism introduces stochasticity and thus debugging a feedback loop, or the part which learns in such a system is painful. On the other hand, we have so many different kinds of systems which implement parallelism - processes, threads, GPUs, job schedulers, GRID, etc. And so one ends up writing non-reusable code a case by a case. A TaskMater is an abstraction for all of those issues through two critical concepts - Master and Learner. Master is a process which takes input values from a channel `Master.tasks` and evaluates in an arbitrary fashion/order and puts that in `Master.results` channel as a tuple (input, output). One makes a concrete implementation which uses processes, threads, GPUs, TPUs, job scheduler, etc. for evaluation. Or one can treat Master as some process which comes from a piece of experimental equipment, for example, from a multi-head scanning tunnelling microscope. Or one could try to find optimal parameters for plant growth where parallelism is very natural. The other concept is Learner which tries to learn from the Master by asking questions and receiving answers. Nature is that Master has received multiple questions, and he answers them in arbitrary order. Thus the Learner needs to be smart to optimize the objective. Again the Learner could be a computer program, animal (if you can teach them parallelism), or human pressing buttons. Particularly in the case of a computer program, there is quite a variety. There is a class of learners where the programmer had programmed all cases of how the system should behave. My Python colleagues make a very great example in the [adaptive package](https://github.com/python-adaptive/adaptive), which allows adaptive function evaluation for reducing computational needs to make a beautiful figure (see Adaptive.jl for a wrapper). Another type of learners had been brainstormed in [this reedit](https://www.reddit.com/r/dataisbeautiful/comments/b8vv2p/i_wrote_a_python_package_to_do_adaptive_sampling/). The other class which might gain traction is a machine-learned Learner, for example, a plant state recognition algorithm with some ML to optimize the growth.
TaskMaster
https://github.com/akels/TaskMaster.jl.git
[ "MIT" ]
1.4.0
ea3e54c2bdde39062abf5a9758a23735558705e1
code
3022
module TruncatedStacktraces using InteractiveUtils, MacroTools, Preferences const DISABLE = @load_preference("disable", true) || VERSION ≥ v"1.10" const VERBOSE = Ref(parse(Bool, get(ENV, "CI", string(DISABLE)))) VERBOSE_MSG = """ Some of the types have been truncated in the stacktrace for improved reading. To emit complete information in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.""" function __init__() @static if !DISABLE for type in InteractiveUtils.subtypes(Exception) if type == MethodError Base.Experimental.register_error_hint(type) do io, e, args, kwargs !VERBOSE[] && println(io, VERBOSE_MSG) end else Base.Experimental.register_error_hint(type) do io, e !VERBOSE[] && println(io, VERBOSE_MSG) end end end end end """ @truncate_stacktrace MyCustomType short_display_ordering... Convenience Macro to generate `Base.show` for `::Type{MyCustomType{...}}`. For example, lets say you have the following struct. ```julia struct MyCustomType{A, B, C} a::A b::B c::C end ``` Invoking `@truncate_stacktrace MyCustomType 3 1` generates the following code block automatically: ```julia function Base.show(io::IO, t::Type{<:(MyCustomType){var"##301", var"##302", var"##303"}}; ) where {var"##301", var"##302", var"##303"} if TruncatedStacktraces.VERBOSE[] invoke(show, Tuple{IO, Type}, io, t) else print(io, string(MyCustomType) * "{" * join([var"##303", var"##301"], ", ") * ", " * "…}") end end ``` """ macro truncate_stacktrace(l::Symbol, short_display...) @static if !DISABLE l = getproperty(__module__, l) pcount = __get_parameter_count(l) @assert __maximum(short_display, pcount) <= pcount && __minimum(short_display, 1) >= 1 name = :(Base.show) whereparams = ntuple(_ -> gensym(), pcount) args = Any[:(io::IO), :(t::Type{<:$l{$(whereparams...)}})] kwargs = [] body = quote wparams = [$(whereparams[[short_display...]]...)] any_not_defined = any(!@isdefined(w) for w in wparams) if TruncatedStacktraces.VERBOSE[] || any_not_defined invoke(show, Tuple{IO, Type}, io, t) else print(io, string($l) * "{" * join(wparams, ",") * $(length(short_display) == 0 ? "" : ",") * "…}") end end fdef = Dict(:name => name, :args => args, :kwargs => kwargs, :body => body, :whereparams => whereparams) return MacroTools.combinedef(fdef) end end __maximum(x, ::Int) = maximum(x) __maximum(::Tuple{}, t::Int) = t __minimum(x, ::Int) = minimum(x) __minimum(::Tuple{}, ::Int) = 1 function __get_parameter_count(T::Union{DataType, UnionAll}) length(Base.unwrap_unionall(T).parameters) end end
TruncatedStacktraces
https://github.com/SciML/TruncatedStacktraces.jl.git
[ "MIT" ]
1.4.0
ea3e54c2bdde39062abf5a9758a23735558705e1
code
1916
# default is disable = true, so explicitly enable first using Preferences, UUIDs Preferences.set_preferences!(UUID("781d530d-4396-4725-bb49-402e4bee1e77"), "disable" => false) using Test, TruncatedStacktraces @testset "Test that VERBOSE can remove the notice message" begin TruncatedStacktraces.VERBOSE[] = false error_msg = Ref{String}() try x catch e io = IOBuffer() showerror(io, e) error_msg[] = String(take!(io)) end @static if VERSION >= v"1.9.0-rc1" actual_error_msg = "UndefVarError: `x` not defined" * "\n\nSome of the types have been truncated in the" * " stacktrace for improved reading. To emit complete " * "information\nin the stack trace, evaluate " * "`TruncatedStacktraces.VERBOSE[] = true` and re-run the code.\n" else actual_error_msg = "UndefVarError: x not defined" * "\n\nSome of the types have been truncated in the" * " stacktrace for improved reading. To emit complete " * "information\nin the stack trace, evaluate " * "`TruncatedStacktraces.VERBOSE[] = true` and re-run the code.\n" end # Printing the hint message is broken in Julia 1.6 @static if v"1.6" <= VERSION < v"1.7" @test_broken error_msg[] == actual_error_msg else @test error_msg[] == actual_error_msg end TruncatedStacktraces.VERBOSE[] = true try x catch e io = IOBuffer() showerror(io, e) error_msg[] = String(take!(io)) end @static if VERSION >= v"1.9.0-rc1" actual_error_msg = "UndefVarError: `x` not defined" else actual_error_msg = "UndefVarError: x not defined" end @test error_msg[] == actual_error_msg end
TruncatedStacktraces
https://github.com/SciML/TruncatedStacktraces.jl.git
[ "MIT" ]
1.4.0
ea3e54c2bdde39062abf5a9758a23735558705e1
docs
10339
# TruncatedStacktraces.jl: Truncated and Simpler Stacktraces for the Julia Programming Language Don't you wish Julia stacktraces were simpler? Introducing TruncatedStacktraces.jl! The purpose of this package is to give package authors a single uniform system for implementing truncation of type printing in stack traces. > **Note** > Starting v1.10 a similar feature is inbuilt into julia. Starting julia v1.10, this package does nothing! ## Enabling TruncatedStacktraces.jl TruncatedStacktraces.jl is currently disabled by default, as it causes invalidations which will slow down package loading. It can be enabled using Preferences.jl. To enable it, create a `LocalPreferences.toml` with the following entry: ```toml [TruncatedStacktraces] disable = false ``` Alternatively, you can generate the `LocalPreferences.toml` using: ```julia using Preferences, UUIDs using TruncatedStacktraces Preferences.set_preferences!(TruncatedStacktraces, "disable" => false) # OR if you don't want to load TruncatedStacktraces.jl Preferences.set_preferences!(UUID("781d530d-4396-4725-bb49-402e4bee1e77"), "disable" => false) ``` In either case, you need to reload your packages (depending on TruncatedStacktraces) for the change to take effect. **TruncatedStacktraces is known to create invalidations, to remove these simply set the preference to disable it!** ## Users: How to Interact with TruncatedStacktraces.jl If a package you are using is making use of TruncatedStacktraces.jl, you will see shorter stack traces. Everything is easier to read by default! This looks like: ```julia [14] initialize!(integrator::ODEIntegrator{true, Tsit5{Static.False, …}, Vector{Float64}, Float64, …}, cache::Tsit5Cache{Vector{Float64}, …}) @ OrdinaryDiffEq C:\Users\accou\.julia\packages\OrdinaryDiffEq\0Pm1I\src\perform_step\low_order_rk_perform_step.jl:766 ``` But if you want to see the type in full glory, say to share with developers on Discourse, then you can opt to show the entire stacktrace via simply running: ```julia TruncatedStacktraces.VERBOSE[] = true ``` then if you run the code to error again, it will print out exactly what everyone wants to read: ```julia [14] initialize!(integrator::OrdinaryDiffEq.ODEIntegrator{Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, true, Vector{Float64}, Nothing, Float64, SciMLBase.NullParameters, Float64, Float64, Float64, Float64, Vector{Vector{Float64}}, ODESolution{Float64, 2, Vector{Vector{Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{Vector{Float64}}}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.InterpolationData{ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Vector{Vector{Float64}}, Vector{Float64}, Vector{Vector{Vector{Float64}}}, OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}}, DiffEqBase.DEStats, Nothing}, ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, SciMLBase.NullParameters, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.DEOptions{Float64, Float64, Float64, Float64, PIController{Rational{Int64}}, typeof(DiffEqBase.ODE_DEFAULT_NORM), typeof(LinearAlgebra.opnorm), Nothing, CallbackSet{Tuple{}, Tuple{}}, typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, Nothing, Nothing, Int64, Tuple{}, Tuple{}, Tuple{}}, Vector{Float64}, Float64, Nothing, OrdinaryDiffEq.DefaultInit}, cache::OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}) @ OrdinaryDiffEq C:\Users\accou\.julia\packages\OrdinaryDiffEq\0Pm1I\src\perform_step\low_order_rk_perform_step.jl:766 ``` Beautiful. You can turn it back into the not beautiful short stacktrace with the command: ```julia TruncatedStacktraces.VERBOSE[] = false ``` ## How to Opt A Package Into TruncatedStacktraces.jl Opting into TruncatedStacktraces.jl is easy: for every type that you want to omit the printing of something, use the macro `TruncatedStacktraces.@truncate_stacktrace` like: ```julia TruncatedStacktraces.@truncate_stacktrace ODEProblem 3 1 2 ``` where `3 1 2` gives the order of the types to print, with indices corresponding to the original type. For example, on a type `MyType{T1,T2,T3,T4}`, this will change the stacktrace printing to default to `MyType{T3,T1,T2,…}`. For any new error exception you add to your package, make sure to include the note from TruncatedStacktraces.jl on how to effect the type printing. This is done by adding `println(io, VERBOSE_MSG)` to the bottom of any error message. ## Default values * `TruncatedStacktraces.VERBOSE[]` defaults to `false` for non-CI workflows and to `true` for CI jobs. * `TruncatedStacktraces.DISABLE` defaults to `true`. ## How It's Implemented This is done by writing an overload on `Base.show` on the DataType which is conditional on `TruncatedStacktraces.VERBOSE[]`. For example, the following does this for the `SciMLBase.ODEProblem`: ```julia @static if !TruncatedStacktraces.DISABLE function Base.show(io::IO, t::Type{<:ODEProblem{uType, tType, isinplace}}) where {uType, tType, isinplace} if TruncatedStacktraces.VERBOSE[] invoke(show, Tuple{IO, Type}, io, t) else print(io, "ODEProblem{$isinplace,$uType,$tType,…}") end end end ``` ## FAQ: Why is this not in Base Julia? There are attempts like https://github.com/JuliaLang/julia/pull/48444, but no one agrees on what exactly to do and how to make it perfect. So until people agree, we can use this solution as a nice hack that gets the job done 90%. ## Related Projects Check out https://github.com/BioTurboNick/AbbreviatedStackTraces.jl which doesn't change type printing but instead the number of calls which are shown.
TruncatedStacktraces
https://github.com/SciML/TruncatedStacktraces.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
853
# Full model sampling, follows prescription from jax-ns paper using BenchmarkTools using CSV using NestedSamplers using PythonCall using Statistics using StatsBase rows = [] dims = [2, 4, 8, 16, 32] for D in dims model, true_lnZ = Models.CorrelatedGaussian(D) splr = Nested(D, 50D; proposal=Proposals.Slice(), bounds=Bounds.Ellipsoid) # run once to extract values from state, also precompile ch, state = sample(model, splr; dlogz=0.01, chain_type=Array) lnZ = state.logz lnZstd = state.logzerr tt = @belapsed sample($model, $splr; dlogz=0.01, chain_type=Array) dlnZ = abs(true_lnZ - lnZ) row = (; library="NestedSamplers.jl", D, t=median(tt), lnZ, lnZstd, dlnZ) @info "$row" push!(rows, row) end path = joinpath(@__DIR__, "sampling_results.csv") CSV.write(path, rows) @info "output saved to $path"
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1008
using Documenter using NestedSamplers DocMeta.setdocmeta!( NestedSamplers, :DocTestSetup, :(using NestedSamplers); recursive=true ) makedocs( sitename = "NestedSamplers.jl", pages = [ "Home" => "index.md", "Examples" => [ "Gaussian Shells" => "examples/shells.md", "Correlated Gaussian" => "examples/correlated.md", "Eggbox" => "examples/eggbox.md", ], "Benchmarks" => "benchmarks.md", "API/Reference" => "api.md" ], format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"), modules = [NestedSamplers], # https://github.com/JuliaLang/julia/pull/37085#issuecomment-683356098 doctestfilters = [ r"{([a-zA-Z0-9]+,\s?)+[a-zA-Z0-9]+}", r"(Array{[a-zA-Z0-9]+,\s?1}|Vector{[a-zA-Z0-9]+})", r"(Array{[a-zA-Z0-9]+,\s?2}|Matrix{[a-zA-Z0-9]+})", ] ) deploydocs(repo = "github.com/TuringLang/NestedSamplers.jl.git", push_preview=true, devbranch="main")
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1014
module NestedSamplers using LinearAlgebra using Random using Random: AbstractRNG, GLOBAL_RNG using AbstractMCMC using AbstractMCMC: AbstractSampler, AbstractModel, samples, save!! import AbstractMCMC: step, bundle_samples, mcmcsample using Distributions: quantile, UnivariateDistribution using LogExpFunctions: logaddexp, log1mexp using MCMCChains: Chains using ProgressLogging import StatsBase export Bounds, Proposals, Models, NestedModel, Nested include("model.jl") # The default model for nested sampling # load submodules include("bounds/Bounds.jl") using .Bounds include("proposals/Proposals.jl") using .Proposals include("staticsampler.jl") # The static nested sampler include("step.jl") # The stepping mechanics (extends AbstractMCMC) include("sample.jl") # Custom sampling (extends AbstractMCMC) include("models/Models.jl") using .Models end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
2523
struct PriorTransformAndLogLikelihood{T,L} prior_transform::T loglikelihood::L end function (f::PriorTransformAndLogLikelihood)(u) v = f.prior_transform(u) return (v, f.loglikelihood(v)) end prior_transform(f::PriorTransformAndLogLikelihood, u) = f.prior_transform(u) function loglikelihood_from_uniform(f::PriorTransformAndLogLikelihood, u) return last(prior_transform_and_loglikelihood(f, u)) end prior_transform_and_loglikelihood(f::PriorTransformAndLogLikelihood, u) = f(u) """ NestedModel(loglike, prior_transform) NestedModel(loglike, priors::AbstractVector{<:Distribution}) `loglike` must be callable with a signature `loglike(::AbstractVector)` where the length of the vector must match the number of parameters in your model. `prior_transform` must be a callable with a signature `prior_transform(::AbstractVector)` that returns the transformation from the unit-cube to parameter space. This is effectively the quantile or ppf of a statistical distribution. For convenience, if a vector of `Distribution` is provided (as a set of priors), a transformation function will automatically be constructed using `Distributions.quantile`. **Note:** `loglike` is the only function used for likelihood calculations. This means if you want your priors to be used for the likelihood calculations they must be manually included in the `loglike` function. """ struct NestedModel{F} <: AbstractModel prior_transform_and_loglikelihood::F end function NestedModel(loglike, prior_transform) return NestedModel(PriorTransformAndLogLikelihood(prior_transform, loglike)) end function NestedModel(loglike, priors::AbstractVector{<:UnivariateDistribution}) prior_transform(X) = quantile.(priors, X) return NestedModel(loglike, prior_transform) end function prior_transform(model, args...) return first(prior_transform_and_loglikelihood(model, args...)) end function prior_transform(model::NestedModel{<:PriorTransformAndLogLikelihood}, args...) return prior_transform(model.prior_transform_and_loglikelihood, args...) end function loglikelihood_from_uniform(model, args...) return last(prior_transform_and_loglikelihood(model, args...)) end function loglikelihood_from_uniform(model::NestedModel{<:PriorTransformAndLogLikelihood}, args...) return loglikelihood_from_uniform(model.prior_transform_and_loglikelihood, args...) end function prior_transform_and_loglikelihood(model::NestedModel, args...) return model.prior_transform_and_loglikelihood(args...) end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1322
### ### Interface Implementations for running full sampling loops ### using Printf StatsBase.sample(rng::AbstractRNG, model::AbstractModel, sampler::Nested; kwargs...) = mcmcsample(rng, model, sampler, nested_isdone; progressname="Nested Sampling", chain_type=Chains, kwargs...) StatsBase.sample(model::AbstractModel, sampler::Nested; kwargs...) = StatsBase.sample(GLOBAL_RNG, model, sampler; kwargs...) function nested_isdone(rng, model, sampler, samples, state, i; progress=true, maxiter=Inf, maxcall=Inf, dlogz=0.5, maxlogl=Inf, kwargs...) # 1) iterations exceeds maxiter done_sampling = state.it ≥ maxiter # 2) number of loglike calls has been exceeded done_sampling |= state.ncall ≥ maxcall # 3) remaining fractional log-evidence below threshold logz_remain = maximum(state.logl) - state.it / sampler.nactive delta_logz = logaddexp(state.logz, logz_remain) - state.logz done_sampling |= delta_logz ≤ dlogz # 4) last dead point loglikelihood exceeds threshold done_sampling |= state.logl_dead ≥ maxlogl # 5) number of effective samples # TODO if progress str = @sprintf "iter=%d\tncall=%d\tΔlogz=%.2g\tlogl=%.2g\tlogz=%.2g" i state.ncall delta_logz state.logl_dead state.logz print("\r\33[2K", str) end return done_sampling end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
3797
# Sampler and model implementations struct Nested{B, P <: AbstractProposal} <: AbstractSampler ndims::Int nactive::Int bounds::B enlarge::Float64 update_interval::Int min_ncall::Int min_eff::Float64 proposal::P dlv::Float64 end """ Nested(ndims, nactive; bounds=Bounds.MultiEllipsoid, proposal=:auto, enlarge=1.25, update_interval=default_update_interval(proposal, ndims), min_ncall=2nactive, min_eff=0.10) Static nested sampler with `nactive` active points and `ndims` parameters. `ndims` is equivalent to the number of parameters to fit, which defines the dimensionality of the prior volume used in evidence sampling. `nactive` is the number of live or active points in the prior volume. This is a static sampler, so the number of live points will be constant for all of the sampling. ## Bounds and Proposals `bounds` declares the Type of [`Bounds.AbstractBoundingSpace`](@ref) to use in the prior volume. The available bounds are described by [`Bounds`](@ref). `proposal` declares the algorithm used for proposing new points. The available proposals are described in [`Proposals`](@ref). If `proposal` is `:auto`, will choose the proposal based on `ndims` * `ndims < 10` - [`Proposals.Rejection`](@ref) * `10 ≤ ndims ≤ 20` - [`Proposals.RWalk`](@ref) * `ndims > 20` - [`Proposals.Slice`](@ref) The original nested sampling algorithm is roughly equivalent to using `Bounds.Ellipsoid` with `Proposals.Rejection`. The MultiNest algorithm is roughly equivalent to `Bounds.MultiEllipsoid` with `Proposals.Rejection`. The PolyChord algorithm is roughly equivalent to using `Proposals.RSlice`. ## Other Parameters * `enlarge` - When fitting the bounds to live points, they will be enlarged (in terms of volume) by this linear factor. * `update_interval` - How often to refit the live points with the bounds as a fraction of `nactive`. By default this will be determined using `default_update_interval` for the given proposal * `Proposals.Rejection` - `1.5` * `Proposals.RWalk` and `Proposals.RStagger` - `0.15 * walks` * `Proposals.Slice` - `0.9 * ndims * slices` * `Proposals.RSlice` - `2 * slices` * `min_ncall`: The minimum number of iterations before fitting the first bound; used to avoid shrinking the bounds before burn-in is completed. By default 2*`nactive`. * `min_eff`: Minimum efficiency `(samples accepted / samples generated)` before fitting the first bound; used to avoid shrinking the bounds before burn-in is completed By default 0.1. """ function Nested(ndims, nactive; bounds = Bounds.MultiEllipsoid, proposal = :auto, enlarge = 1.25, min_ncall=2nactive, min_eff=0.10, kwargs...) nactive < 2ndims && @warn "Using fewer than 2ndim ($(2ndims)) active points is discouraged" # get proposal if proposal === :auto proposal = if ndims < 10 Proposals.Rejection() elseif 10 ≤ ndims ≤ 20 Proposals.RWalk() else Proposals.Slice() end end dlv = log(nactive + 1) - log(nactive) update_interval_frac = get(kwargs, :update_interval, default_update_interval(proposal, ndims)) update_interval = round(Int, update_interval_frac * nactive) return Nested(ndims, nactive, bounds, enlarge, update_interval, min_ncall, min_eff, proposal, dlv) end default_update_interval(p::Proposals.Rejection, ndims) = 1.5 default_update_interval(p::Proposals.RWalk, ndims) = 0.15 * p.walks default_update_interval(p::Proposals.RStagger, ndims) = 0.15 * p.walks default_update_interval(p::Proposals.Slice, ndims) = 0.9 * ndims * p.slices default_update_interval(p::Proposals.RSlice, ndims) = 2.0 * p.slices
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
8179
function step(rng, model, sampler::Nested; kwargs...) # Initialize particles # us are in unit space, vs are in prior space us, vs, logl = init_particles(rng, model, sampler) # Find least likely point logl_dead, idx_dead = findmin(logl) u_dead = us[:, idx_dead] v_dead = vs[:, idx_dead] # update weight using trapezoidal rule logvol = log1mexp(-1 / sampler.nactive) logwt = logl_dead + logvol # sample a new live point without bounds point = rand(rng, eltype(us), sampler.ndims) bound = Bounds.fit(Bounds.NoBounds, us) proposal = Proposals.Rejection() u, v, ll, nc = proposal(rng, v_dead, logl_dead, bound, model) us[:, idx_dead] .= u vs[:, idx_dead] .= v logl[idx_dead] = ll ncall = since_update = nc # update evidence and information logz = logwt h = logl_dead - logz logzerr = sqrt(h / sampler.nactive) logvol -= 1 / sampler.nactive sample = (u = u_dead, v = v_dead, logwt = logwt, logl = logl_dead) state = (it = 1, ncall = ncall, us = us, vs = vs, logl = logl, logl_dead = logl_dead, logz = logz, logzerr = logzerr, h = h, logvol = logvol, since_update = since_update, has_bounds = false, active_bound = nothing) return sample, state end function step(rng, model, sampler, state; kwargs...) ## Update bounds pointvol = exp(state.logvol) / sampler.nactive # check if ready for first update if !state.has_bounds && state.ncall > sampler.min_ncall && state.it / state.ncall < sampler.min_eff @debug "First update: it=$(state.it), ncall=$(state.ncall), eff=$(state.it / state.ncall)" active_bound = Bounds.scale!(Bounds.fit(sampler.bounds, state.us, pointvol=pointvol), sampler.enlarge) since_update = 0 has_bounds = true # if accepted first update, is it time to update again? elseif iszero(state.since_update % sampler.update_interval) @debug "Updating bounds: it=$(state.it), ncall=$(state.ncall), eff=$(state.it / state.ncall)" active_bound = Bounds.scale!(Bounds.fit(sampler.bounds, state.us, pointvol=pointvol), sampler.enlarge) since_update = 0 has_bounds = true else active_bound = state.active_bound since_update = state.since_update + 1 has_bounds = state.has_bounds end ## Replace least-likely active point # Find least likely point logl_dead, idx_dead = findmin(state.logl) u_dead = state.us[:, idx_dead] v_dead = state.vs[:, idx_dead] # sample a new live point using bounds and proposal if has_bounds point, bound = rand_live(rng, active_bound, state.us) if isnothing(bound) # live point not inside active bounds: refit them active_bound = Bounds.scale!(Bounds.fit(sampler.bounds, state.us, pointvol=pointvol), sampler.enlarge) since_update = 0 point, bound = rand_live(rng, active_bound, point[:, :]) end u, v, logl, nc = sampler.proposal(rng, point, logl_dead, bound, model) else point = rand(rng, eltype(state.us), sampler.ndims) bound = Bounds.fit(Bounds.NoBounds, state.us) proposal = Proposals.Rejection() u, v, logl, nc = proposal(rng, point, logl_dead, bound, model) end state.us[:, idx_dead] .= u state.vs[:, idx_dead] .= v state.logl[idx_dead] = logl it = state.it + 1 ncall = state.ncall + nc since_update += nc # update weight logwt = state.logvol + logl_dead # update evidence and information logz = logaddexp(state.logz, logwt) h = (exp(logwt - logz) * logl_dead + exp(state.logz - logz) * (state.h + state.logz) - logz) logzerr = h ≥ 0 ? sqrt(h / sampler.nactive) : NaN logvol = state.logvol - 1 / sampler.nactive ## prepare returns sample = (u = u_dead, v = v_dead, logwt = logwt, logl = logl_dead) state = (it = it, ncall = ncall, us = state.us, vs = state.vs, logl = state.logl, logl_dead = logl_dead, logz = logz, logzerr = logzerr, h = h, logvol = logvol, since_update = since_update, has_bounds = has_bounds, active_bound = active_bound) return sample, state end function bundle_samples(samples, model::AbstractModel, sampler::Nested, state, ::Type{Chains}; add_live=true, param_names=missing, check_wsum=true, kwargs...) if add_live samples, state = add_live_points(samples, model, sampler, state) end vals = mapreduce(t -> hcat(t.v..., exp(t.logwt - state.logz)), vcat, samples) if check_wsum wsum = sum(vals[:, end, 1]) err = !iszero(state.logzerr) ? 3 * state.logzerr : 1e-3 isapprox(wsum, 1, atol=err) || @warn "Weights sum to $wsum instead of 1; possible bug" end # Parameter names if param_names === missing param_names = ["Parameter $i" for i in 1:length(vals[1, :]) - 1] end push!(param_names, "weights") return Chains(vals, param_names, Dict(:internals => ["weights"]), evidence=state.logz), state end function bundle_samples(samples, model::AbstractModel, sampler::Nested, state, ::Type{Array}; add_live=true, check_wsum=true, kwargs...) if add_live samples, state = add_live_points(samples, model, sampler, state) end vals = mapreduce(t -> hcat(t.v..., exp(t.logwt - state.logz)), vcat, samples) if check_wsum wsum = sum(vals[:, end]) err = !iszero(state.logzerr) ? 3 * state.logzerr : 1e-3 isapprox(wsum, 1, atol=err) || @warn "Weights sum to $wsum instead of 1; possible bug" end return vals, state end ## Helpers init_particles(rng, ndims, nactive, model) = init_particles(rng, Float64, ndims, nactive, model) init_particles(rng, model, sampler) = init_particles(rng, sampler.ndims, sampler.nactive, model) # loop and fill arrays, checking validity of points # will retry 100 times before erroring function init_particles(rng, T, ndims, nactive, model) us = rand(rng, T, ndims, nactive) vs_and_logl = mapslices( Base.Fix1(prior_transform_and_loglikelihood, model), us; dims=1 ) vs = mapreduce(first, hcat, vs_and_logl) logl = dropdims(map(last, vs_and_logl), dims=1) ntries = 1 while true any(isfinite, logl) && break rand!(rng, us) vs_and_logl .= mapslices( Base.Fix1(prior_transform_and_loglikelihood, model), us; dims=1 ) vs .= mapreduce(first, hcat, vs_and_logl) map!(last, logl, vs_and_logl) ntries += 1 ntries > 100 && error("After 100 attempts, could not initialize any live points with finite loglikelihood. Please check your prior transform and loglikelihood methods.") end # force -Inf to be a finite but small number to keep estimators from breaking @. logl[logl == -Inf] = -1e300 return us, vs, logl end # add remaining live points to `samples` function add_live_points(samples, model, sampler, state) logvol = -state.it / sampler.nactive - log(sampler.nactive) prev_logz = state.logz prev_h = state.h local logl, logz, h, logzerr N = length(samples) @inbounds for (i, idx) in enumerate(eachindex(state.logl)) # get new point u = state.us[:, idx] v = state.vs[:, idx] logl = state.logl[idx] # update sampler logwt = logvol + logl logz = logaddexp(prev_logz, logwt) h = (exp(logwt - logz) * logl + exp(prev_logz - logz) * (prev_h + prev_logz) - logz) logzerr = sqrt(h / sampler.nactive) prev_logz = logz prev_h = h sample = (u = u, v = v, logwt = logwt, logl = logl) save!!(samples, sample, N + i, model, sampler) end state = (it = state.it + sampler.nactive, us = state.us, vs = state.vs, logl = logl, logz = logz, logzerr = logzerr, logvol = logvol, since_update = state.since_update, has_bounds = state.has_bounds, active_bound = state.active_bound) return samples, state end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
4075
""" NestedSamplers.Bounds This module contains the different algorithms for bounding the prior volume. The available implementations are * [`Bounds.NoBounds`](@ref) - no bounds on the prior volume (equivalent to a unit cube) * [`Bounds.Ellipsoid`](@ref) - bound using a single ellipsoid * [`Bounds.MultiEllipsoid`](@ref) - bound using multiple ellipsoids in an optimal cluster """ module Bounds using LinearAlgebra using Random: GLOBAL_RNG, AbstractRNG using Clustering using Distributions: Categorical, Uniform using StatsBase: mean_and_cov export AbstractBoundingSpace, rand_live, randoffset """ Bounds.AbstractBoundingSpace{T<:Number} Abstract type for describing the bounding algorithms. For information about the interface, see the extended help (`??Bounds.AbstractBoundingSpace`) # Extended Help ## Interface The following functionality defines the interface for `AbstractBoundingSpace` for an example type `::MyBounds` | Function | Required | Description | |---------:|:--------:|:------------| | `Base.rand(::AbstractRNG, ::MyBounds)` | x | Sample a single point from the prior volume | | `Bounds.randoffset(::AbstractRNG, ::MyBounds)` | | Get a random offset from the center of the bounds. Required for random walk schemes, although a fallback is provided. | | `Base.in(point, ::MyBounds)` | x | Checks if the point is contained by the bounding space | | `Bounds.scale!(::MyBounds, factor)` | x | Scale the volume by the linear `factor`| | `Bounds.volume(::MyBounds)` | | Retrieve the current prior volume occupied by the bounds. | | `Bounds.fit(::Type{<:MyBounds}, points, pointvol=0)` | x | update the bounds given the new `points` each with minimum volume `pointvol`| | `Bounds.axes(::MyBounds)` | | Used for transforming points from the unit cube to the encompassing bound. Worth storing as a property. """ abstract type AbstractBoundingSpace{T <: Number} end Base.eltype(::AbstractBoundingSpace{T}) where {T} = T # convenience Base.rand(B::AbstractBoundingSpace) = rand(GLOBAL_RNG, B) Base.rand(B::AbstractBoundingSpace, N::Integer) = rand(GLOBAL_RNG, B, N) randoffset(B::AbstractBoundingSpace) = randoffset(GLOBAL_RNG, B) # fallback method Base.rand(rng::AbstractRNG, B::AbstractBoundingSpace, N::Integer) = reduce(hcat, rand(rng, B) for _ in 1:N) """ rand_live([rng], ::AbstractBoundingSpace, us) -> (u, bound) Returns a random live point and the bounds associated with it. """ function rand_live(rng::AbstractRNG, B::AbstractBoundingSpace, us) idx = rand(rng, Base.axes(us, 2)) u = us[:, idx] return u, u ∈ B ? B : nothing end rand_live(B::AbstractBoundingSpace, us) = rand_live(GLOBAL_RNG, B, us) function Base.show(io::IO, bound::B) where {T,B <: AbstractBoundingSpace{T}} base = nameof(B) |> string print(io, "$base{$T}(ndims=$(ndims(bound)))") return nothing end # --------------------------------------------------- """ Bounds.NoBounds([T=Float64], N) Unbounded prior volume; equivalent to the unit cube in `N` dimensions. This matches the original nested sampling derivation in Skilling (2004).[^1] [^1]: John Skilling, 2004, AIP 735, 395 ["Nested Sampling"](https://aip.scitation.org/doi/abs/10.1063/1.1835238) """ struct NoBounds{T} <: AbstractBoundingSpace{T} ndims::Int end NoBounds(D::Integer) = NoBounds{Float64}(D) NoBounds(T::Type, D::Integer) = NoBounds{T}(D) Base.ndims(B::NoBounds) = B.ndims randoffset(rng::AbstractRNG, b::NoBounds{T}) where {T} = rand(rng, Uniform(0, 1), ndims(b)) .- 0.5 .|> T Base.rand(rng::AbstractRNG, b::NoBounds{T}) where {T} = rand(rng, Uniform(0, 1), ndims(b)) .|> T Base.rand(rng::AbstractRNG, b::NoBounds{T}, N::Integer) where {T} = rand(rng, Uniform(0, 1), ndims(b), N) .|> T Base.in(pt, ::NoBounds) = all(p -> 0 < p < 1, pt) fit(::Type{<:NoBounds}, points::AbstractMatrix{T}; kwargs...) where T = NoBounds(T, size(points, 1)) scale!(b::NoBounds, factor) = b volume(::NoBounds{T}) where {T} = one(T) axes(b::NoBounds{T}) where {T} = Diagonal(ones(T, b.ndims)) include("ellipsoid.jl") include("multiellipsoid.jl") end # module Bounds
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
5396
""" Bounds.Ellipsoid([T=Float64], N) Bounds.Ellipsoid(center::AbstractVector, A::AbstractMatrix) An `N`-dimensional ellipsoid defined by ```math (x - center)^T A (x - center) = 1 ``` where `size(center) == (N,)` and `size(A) == (N,N)`. This implementation follows the algorithm presented in Mukherjee et al. (2006).[^2] [^2]: Pia Mukherjee, et al., 2006, ApJ 638 L51 ["A Nested Sampling Algorithm for Cosmological Model Selection"](https://iopscience.iop.org/article/10.1086/501068) """ mutable struct Ellipsoid{T} <: AbstractBoundingSpace{T} center::Vector{T} A::Matrix{T} axes::Matrix{T} axlens::Vector{T} volume::T end function Ellipsoid(center::AbstractVector, A::AbstractMatrix) axes, axlens = decompose(A) Ellipsoid(center, A, axes, axlens, _volume(A)) end Ellipsoid(ndim::Integer) = Ellipsoid(Float64, ndim) Ellipsoid(T::Type, ndim::Integer) = Ellipsoid(zeros(T, ndim), diagm(0 => ones(T, ndim))) Ellipsoid{T}(center::AbstractVector, A::AbstractMatrix) where {T} = Ellipsoid(T.(center), T.(A)) Base.broadcastable(e::Ellipsoid) = (e,) Base.ndims(ell::Ellipsoid) = length(ell.center) # Returns the volume of an ellipsoid given its axes matrix _volume(A::AbstractMatrix{T}) where {T} = T(volume_prefactor(size(A, 1))) / sqrt(det(A)) volume(ell::Ellipsoid) = ell.volume # Returns the principal axes axes(ell::Ellipsoid) = ell.axes decompose(A::AbstractMatrix) = decompose(Symmetric(A)) # ensure that eigen() always returns real values function decompose(A::Symmetric) E = eigen(A) axlens = @. 1 / sqrt(E.values) axes = E.vectors * Diagonal(axlens) return axes, axlens end # axes and axlens decompose(ell::Ellipsoid) = ell.axes, ell.axlens # Scale to new volume function scale!(ell::Ellipsoid, factor) # linear factor f = factor^(1 / ndims(ell)) ell.A ./= f^2 ell.axes .*= f ell.axlens .*= f ell.volume *= factor return ell end function endpoints(ell::Ellipsoid) axes, axlens = decompose(ell) # find major axis major_axis = axes[:, argmax(axlens)] return ell.center .- major_axis, ell.center .+ major_axis end function Base.in(x::AbstractVector, ell::Ellipsoid) d = x .- ell.center return dot(d, ell.A * d) ≤ 1.0 end randoffset(rng::AbstractRNG, ell::Ellipsoid{T}) where {T} = axes(ell) * randball(rng, T, ndims(ell)) Base.rand(rng::AbstractRNG, ell::Ellipsoid) = ell.center .+ randoffset(rng, ell) fit(E::Type{<:Ellipsoid}, x::AbstractMatrix{S}; pointvol = 0) where {S} = fit(E{float(S)}, x; pointvol = pointvol) function fit(E::Type{<:Ellipsoid{R}}, x::AbstractMatrix{S}; pointvol = 0) where {R,S} T = float(promote_type(R, S)) x = T.(x) ndim, npoints = size(x) # single element is an n-sphere with pointvol volume if npoints == 1 pointvol > 0 || error("Cannot compute bounding ellipsoid with one point without a valid pointvol (got $pointvol)") d = log(pointvol) - log(volume_prefactor(ndim)) r = exp(d / ndim) A = diagm(0 => fill(1 / r^2, ndim)) return Ellipsoid(vec(x), A) end # get estimators center, cov = mean_and_cov(x, 2) delta = x .- center # Covariance is smaller than r^2 by a factor of 1/(n+2) cov .*= ndim + 2 # Ensure cov is nonsingular targetprod = (npoints * pointvol / volume_prefactor(ndim))^2 make_eigvals_positive!(cov, targetprod) # get transformation matrix. Note: use pinv to avoid error when cov is all zeros A = pinv(cov) # calculate expansion factor necessary to bound each points f = diag(delta' * (A * delta)) fmax = maximum(f) # try to avoid round-off errors s.t. furthest point obeys # x^T A x < 1 - √eps flex = 1 - sqrt(eps(T)) if fmax > flex A .*= flex / fmax end ell = E(vec(center), A) if pointvol > 0 minvol = npoints * pointvol vol = volume(ell) vol < minvol && scale!(ell, minvol / vol) end return ell end # --------------------------------------------- # Helper functions """ volume_prefactor(::Integer) Volume constant for an n-dimensional sphere: for n even: (2pi)^(n /2) / (2 * 4 * ... * n) for n odd : 2 * (2pi)^((n-1)/2) / (1 * 3 * ... * n) """ function volume_prefactor(n::Integer) f, range = iseven(n) ? (1.0, 2:2:n) : (2.0, 3:2:n) for i in range f *= 2π / i end return f end # sample N samples from unit D-dimensional ball randball(T::Type, D::Integer, N::Integer) = randball(GLOBAL_RNG, T, D, N) function randball(rng::AbstractRNG, T::Type, D::Integer, N::Integer) z = randn(rng, T, D, N) z .*= rand(rng, T, 1, N).^(1 ./ D) ./ sqrt.(sum(p->p^2, z, dims = 1)) return z end # sample from unit D-dimensional ball randball(T::Type, D::Integer) = randball(GLOBAL_RNG, T, D) function randball(rng::AbstractRNG, T::Type, D::Integer) z = randn(rng, T, D) z .*= rand(rng)^(1 / D) / sqrt(sum(p->p^2, z)) return z end function make_eigvals_positive!(cov::AbstractMatrix, targetprod) E = eigen(cov) mask = E.values .< 1e-10 if any(mask) nzprod = prod(E.values[.!mask]) nzeros = count(mask) E.values[mask] .= (targetprod / nzprod)^(1 / nzeros) cov .= E.vectors * Diagonal(E.values) / E.vectors end return cov end make_eigvals_positive(cov::AbstractMatrix, targetprod) = make_eigvals_positive!(copy(cov), targetprod)
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
5142
""" Bounds.MultiEllipsoid([T=Float64], ndims) Bounds.MultiEllipsoid(::AbstractVector{Ellipsoid}) Use multiple [`Ellipsoid`](@ref)s in an optimal clustering to bound prior space. This implementation follows the MultiNest implementation outlined in Feroz et al. (2008,2009).[^3][^4] For more details about the bounding algorithm, see the extended help (`??Bounds.MultiEllipsoid`) [^3]: Feroz and Hobson, 2008, MNRAS 384, 2 ["Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses"](https://academic.oup.com/mnras/article/384/2/449/1023701) [^4]: Feroz et al., 2009, MNRAS 398, 4 ["MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics"](https://academic.oup.com/mnras/article/398/4/1601/981502) ## Extended help The multiple-ellipsoidal implementation is defined as follows: 1. Fit a [`Bounds.Ellipsoid`](@ref) to the sample. 2. Perform K-means clustering (here using [Clustering.jl](https://github.com/JuliaStats/Clustering.jl)) centered at the endpoints of the bounding ellipsoid. This defines two clusters within the sample. 3. If either cluster has fewer than two points, consider it ill-defined and end any recursion. 4. Fit [`Bounds.Ellipsoid`](@ref) to each of the clusters assigned in (2). 5. If the volume of the parent ellipsoid is more than twice the volume of the two child ellipsoids, recurse (1-5) to each child. To sample from this distribution, a random ellipsoid is selected, and a random sample is sampled from that ellipsoid. We then reverse this and find all of the ellipsoids which enclose the sampled point, and select one of those randomly for the enclosing bound. """ struct MultiEllipsoid{T} <: AbstractBoundingSpace{T} ellipsoids::Vector{Ellipsoid{T}} end MultiEllipsoid(ndims::Integer) = MultiEllipsoid(Float64, ndims) MultiEllipsoid(T::Type, ndims::Integer) = MultiEllipsoid([Ellipsoid(T, ndims)]) Base.eltype(::MultiEllipsoid{T}) where {T} = T Base.broadcastable(me::MultiEllipsoid) = (me,) Base.length(me::MultiEllipsoid) = length(me.ellipsoids) Base.ndims(me::MultiEllipsoid) = ndims(me.ellipsoids[1]) volume(me::MultiEllipsoid) = sum(volume, me.ellipsoids) function scale!(me::MultiEllipsoid, factor) scale!.(me.ellipsoids, factor) return me end function fit(::Type{<:MultiEllipsoid}, x::AbstractMatrix; pointvol = 0) parent = fit(Ellipsoid, x, pointvol = pointvol) ells = fit(MultiEllipsoid, x, parent, pointvol = pointvol) return MultiEllipsoid(ells) end function fit(::Type{<:MultiEllipsoid}, x::AbstractMatrix, parent::Ellipsoid; pointvol = 0) ndim, npoints = size(x) # Clustering will fail with fewer than k=2 points npoints ≤ 2 && return [parent] p1, p2 = endpoints(parent) starting_points = hcat(p1, p2) R = kmeans!(x, starting_points; maxiter = 10) labels = assignments(R) x1 = x[:, labels .== 1] x2 = x[:, labels .== 2] # if either cluster has fewer than ndim points, it is ill-defined if size(x1, 2) < 2ndim || size(x2, 2) < 2ndim return [parent] end # Getting bounding ellipsoid for each cluster ell1, ell2 = fit.(Ellipsoid, (x1, x2), pointvol = pointvol) # If total volume decreased by over half, recurse if volume(ell1) + volume(ell2) < 0.5volume(parent) return vcat(fit(MultiEllipsoid, x1, ell1, pointvol = pointvol), fit(MultiEllipsoid, x2, ell2, pointvol = pointvol)) end # Otherwise see if total volume is much larger than expected # and split into more than 2 clusters if volume(parent) > 2npoints * pointvol out = vcat(fit(MultiEllipsoid, x1, ell1, pointvol = pointvol), fit(MultiEllipsoid, x2, ell2, pointvol = pointvol)) sum(volume, out) < 0.5volume(parent) && return out end # Otherwise, return single bounding ellipse return [parent] end Base.in(x::AbstractVector, me::MultiEllipsoid) = any(ell->x ∈ ell, me.ellipsoids) function Base.rand(rng::AbstractRNG, me::MultiEllipsoid) length(me) == 1 && return rand(rng, me.ellipsoids[1]) vols = volume.(me.ellipsoids) weights = vols ./ sum(vols) local x while true # Select random ellipsoid idx = rand(rng, Categorical(weights)) ell = me.ellipsoids[idx] # Select point x = rand(rng, ell) # How many ellipsoids is the sample in n = count(ell -> x ∈ ell, me.ellipsoids) # Only accept with probability 1/n (n == 1 || rand(rng) < 1 / n) && break end return x end """ Returns a random live point and a bounding ellipsoid, since MultiEllipsoid doesn't have valid transformation axes """ function rand_live(rng::AbstractRNG, me::MultiEllipsoid, us) idx = rand(rng, Base.axes(us, 2)) u = us[:, idx] # find which Ellipsoid/s it overlaps with idxs = findall(ell -> u ∈ ell, me.ellipsoids) # TODO if point isn't bounded, update bounds if isempty(idxs) return u, nothing end # pick random encompassing ellipsoid idx = rand(rng, idxs) return u, me.ellipsoids[idx] end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
406
""" This module contains various statistical models in the form of [`NestedModel`](@ref)s. These models can be used for examples and for testing. * [`Models.GaussianShells`](@ref) * [`Models.CorrelatedGaussian`](@ref) """ module Models using ..NestedSamplers using Distributions using LinearAlgebra using LogExpFunctions include("shells.jl") include("correlated.jl") include("eggbox.jl") end # module
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
982
@doc raw""" Models.CorrelatedGaussian(ndims) Creates a highly-correlated Gaussian with the given dimensionality. ```math \mathbf\theta \sim \mathcal{N}\left(2\mathbf{1}, \mathbf{I}\right) ``` ```math \Sigma_{ij} = \begin{cases} 1 &\quad i=j \\ 0.95 &\quad i\neq j \end{cases} ``` ```math \mathcal{L}(\mathbf\theta) = \mathcal{N}\left(\mathbf\theta | \mathbf{0}, \mathbf\Sigma \right) ``` the analytical evidence of the model is ```math Z = \mathcal{N}\left(2\mathbf{1} | \mathbf{0}, \mathbf\Sigma + \mathbf{I} \right) ``` ## Examples ```jldoctest julia> model, lnZ = Models.CorrelatedGaussian(10); julia> lnZ -12.482738597926607 ``` """ function CorrelatedGaussian(ndims) priors = fill(Normal(2, 1), ndims) Σ = fill(0.95, ndims, ndims) Σ[diagind(Σ)] .= 1 cent_dist = MvNormal(Σ) loglike(X) = logpdf(cent_dist, X) model = NestedModel(loglike, priors) true_lnZ = logpdf(MvNormal(fill(2, ndims), Σ + I), zeros(ndims)) return model, true_lnZ end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
571
@doc raw""" Models.Eggbox() Eggbox/Egg carton likelihood function ```math z(x, y) = \left[a + \cos\frac{x}{b} \cdot \cos\frac{x}{b} \right]^5 ``` # Examples ```jldoctest julia> model, lnZ = Models.Eggbox(); julia> lnZ 235.88 ``` """ function Eggbox() tmax = 5π # uniform prior from 0, 1 prior(X) = X function loglike(X) a = cos(tmax * (2 * first(X) - 1) / 2) b = cos(tmax * (2 * last(X) - 1) / 2) return (2 + a * b)^5 end lnZ = 235.88 # where do we get this from?? return NestedModel(loglike, prior), lnZ end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
622
""" Models.GaussianShells() 2-D Gaussian shells centered at `[-3.5, 0]` and `[3.5, 0]` with a radius of 2 and a shell width of 0.1 # Examples ```jldoctest julia> model, lnZ = Models.GaussianShells(); julia> lnZ -1.75 ``` """ function GaussianShells() μ1 = [-3.5, 0] μ2 = [3.5, 0] prior(X) = 12 .* X .- 6 loglike(X) = logaddexp(logshell(X, μ1), logshell(X, μ2)) lnZ = -1.75 return NestedModel(loglike, prior), lnZ end function logshell(X, μ, radius=2, width=0.1) d = LinearAlgebra.norm(X - μ) norm = -log(sqrt(2 * π * width^2)) return norm - (d - radius)^2 / (2 * width^2) end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
15806
""" NestedSamplers.Proposals This module contains the different algorithms for proposing new points within a bounding volume in unit space. The available implementations are * [`Proposals.Rejection`](@ref) - samples uniformly within the bounding volume * [`Proposals.RWalk`](@ref) - random walks to a new point given an existing one * [`Proposals.RStagger`](@ref) - random staggering away to a new point given an existing one * [`Proposals.Slice`](@ref) - slicing away to a new point given an existing one * [`Proposals.RSlice`](@ref) - random slicing away to a new point given an existing one """ module Proposals using ..NestedSamplers: prior_transform_and_loglikelihood using ..Bounds using Random using LinearAlgebra using Parameters export AbstractProposal """ NestedSamplers.AbstractProposal The abstract type for live point proposal algorithms. # Interface Each `AbstractProposal` must have this function, ```julia (::AbstractProposal)(::AbstractRNG, point, loglstar, bounds, loglikelihood, prior_transform) ``` which, given the input `point` with loglikelihood `loglstar` inside a `bounds`, returns a new point in unit space, prior space, the loglikelihood, and the number of function calls. """ abstract type AbstractProposal end # ---------------------------------------- # Helper for checking unit-space bounds unitcheck(us) = all(u -> 0 < u < 1, us) """ Proposals.Rejection(;maxiter=100_000) Propose a new live point by uniformly sampling within the bounding volume and rejecting samples that do not meet the likelihood constraints. This follows the original nested sampling algorithm proposed in Skilling (2004)[^1] [^1]: John Skilling, 2004, AIP 735, 395 ["Nested Sampling"](https://aip.scitation.org/doi/abs/10.1063/1.1835238) ## Parameters - `maxiter` is the maximum number of samples that can be rejected before giving up and throwing an error. """ Base.@kwdef struct Rejection <: AbstractProposal maxiter::Int = 100_000 end @deprecate Uniform() Rejection() function (prop::Rejection)( rng::AbstractRNG, point::AbstractVector, logl_star, bounds::AbstractBoundingSpace, model ) ncall = 0 for _ in 1:prop.maxiter u = rand(rng, bounds) unitcheck(u) || continue v, logl = prior_transform_and_loglikelihood(model, u) ncall += 1 logl ≥ logl_star && return u, v, logl, ncall end throw(ErrorException("Couldn't generate a proper point after $(prop.maxiter) attempts including $ncall likelihood calls. Bounds=$bounds, logl_star=$logl_star.")) end Base.show(io::IO, p::Rejection) = print(io, "NestedSamplers.Proposals.Rejection") """ Proposals.RWalk(;ratio=0.5, walks=25, scale=1) Propose a new live point by random walking away from an existing live point. This follows the algorithm outlined in Skilling (2006).[^5] [^5]: Skilling, 2006, Bayesian Anal. 1(4), ["Nested sampling for general Bayesian computation"](https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-4/Nested-sampling-for-general-Bayesian-computation/10.1214/06-BA127.full) ## Parameters - `ratio` is the target acceptance ratio - `walks` is the minimum number of steps to take - `scale` is the proposal distribution scale, which will update _between_ proposals. """ @with_kw mutable struct RWalk <: AbstractProposal ratio = 0.5 walks = 25 scale = 1.0 @assert 1 / walks ≤ ratio ≤ 1 "Target acceptance ratio must be between 1/`walks` and 1" @assert walks > 1 "Number of steps must be greater than 1" @assert scale ≥ 0 "Proposal scale must be non-negative" end function (prop::RWalk)( rng::AbstractRNG, point::AbstractVector, logl_star, bounds::AbstractBoundingSpace, model; kwargs... ) # setup n = length(point) scale_init = prop.scale accept = reject = fail = nfail = nc = ncall = 0 local du, u_prop, logl_prop, u, v, logl while nc < prop.walks || iszero(accept) # get proposed point while true # check scale factor to avoid over-shrinking prop.scale < 1e-5 * scale_init && error("Random walk sampling appears to be stuck.") # transform to proposal distribution du = randoffset(rng, bounds) u_prop = @. point + prop.scale * du # inside unit-cube unitcheck(u_prop) && break fail += 1 nfail += 1 # check if stuck generating bad numbers if fail > 100 * prop.walks @warn "Random number generation appears extremely inefficient. Adjusting the scale-factor accordingly" fail = 0 prop.scale *= exp(-1/n) end end # check proposed point v_prop, logl_prop = prior_transform_and_loglikelihood(model, u_prop) if logl_prop ≥ logl_star u = u_prop v = v_prop logl = logl_prop accept += 1 else reject += 1 end nc += 1 ncall += 1 # check if stuck generating bad points if nc > 50 * prop.walks @warn "Random walk proposals appear to be extremely inefficient. Adjusting the scale-factor accordingly" prop.scale *= exp(-1/n) nc = accept = reject = 0 end end # update proposal scale using acceptance ratio update_scale!(prop, accept, reject, n) return u, v, logl, ncall end # update proposal scale using target acceptance ratio function update_scale!(prop, accept, reject, n) ratio = accept / (accept + reject) norm = max(prop.ratio, 1 - prop.ratio) * n scale = prop.scale * exp((ratio - prop.ratio) / norm) prop.scale = min(scale, sqrt(n)) return prop end """ Proposals.RStagger(;ratio=0.5, walks=25, scale=1) Propose a new live point by random staggering away from an existing live point. This differs from the random walk proposal in that the step size here is exponentially adjusted to reach a target acceptance rate _during_ each proposal, in addition to _between_ proposals. This follows the algorithm outlined in Skilling (2006).[^5] [^5]: Skilling, 2006, Bayesian Anal. 1(4), ["Nested sampling for general Bayesian computation"](https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-4/Nested-sampling-for-general-Bayesian-computation/10.1214/06-BA127.full) ## Parameters - `ratio` is the target acceptance ratio - `walks` is the minimum number of steps to take - `scale` is the proposal distribution scale, which will update _between_ proposals. """ @with_kw mutable struct RStagger <: AbstractProposal ratio = 0.5 walks = 25 scale = 1.0 @assert 1 / walks ≤ ratio ≤ 1 "Target acceptance ratio must be between 1/`walks` and 1" @assert walks > 1 "Number of steps must be greater than 1" @assert scale ≥ 0 "Proposal scale must be non-negative" end function (prop::RStagger)( rng::AbstractRNG, point::AbstractVector, logl_star, bounds::AbstractBoundingSpace, model; kwargs... ) #setup n = length(point) scale_init = prop.scale accept = reject = fail = nfail = nc = ncall = 0 stagger = 1 local du, u_prop, logl_prop, u, v, logl while nc < prop.walks || iszero(accept) # get proposed point while true # check scale factor to avoid over-shrinking prop.scale < 1e-5 * scale_init && error("Random walk sampling appears to be stuck.") # transform to proposal distribution du = randoffset(rng, bounds) u_prop = @. point + prop.scale * stagger * du # inside unit-cube unitcheck(u_prop) && break fail += 1 nfail += 1 # check if stuck generating bad numbers if fail > 100 * prop.walks @warn "Random number generation appears extremely inefficient. Adjusting the scale-factor accordingly" fail = 0 prop.scale *= exp(-1/n) end end # check proposed point v_prop, logl_prop = prior_transform_and_loglikelihood(model, u_prop) if logl_prop ≥ logl_star u = u_prop v = v_prop logl = logl_prop accept += 1 else reject += 1 end nc += 1 ncall += 1 # adjust _stagger_ to target an acceptance ratio of `prop.ratio` ratio = accept / (accept + reject) if ratio > prop.ratio stagger *= exp(1 / accept) elseif ratio < prop.ratio stagger /= exp(1 / reject) end # check if stuck generating bad points if nc > 50 * prop.walks @warn "Random walk proposals appear to be extremely inefficient. Adjusting the scale-factor accordingly" prop.scale *= exp(-1 / n) nc = accept = reject = 0 end end # update proposal scale using acceptance ratio update_scale!(prop, accept, reject, n) return u, v, logl, ncall end """ Proposals.Slice(;slices=5, scale=1) Propose a new live point by a series of random slices away from an existing live point. This is a standard _Gibbs-like_ implementation where a single multivariate slice is a combination of `slices` univariate slices through each axis. This follows the algorithm outlined in Neal (2003).[^6] [^6]: Neal, 2003, Ann. Statist. 31(3), ["Slice Sampling"](https://projecteuclid.org/journals/annals-of-statistics/volume-31/issue-3/Slice-sampling/10.1214/aos/1056562461.full) ## Parameters - `slices` is the minimum number of slices - `scale` is the proposal distribution scale, which will update _between_ proposals. """ @with_kw mutable struct Slice <: AbstractProposal slices = 5 scale = 1.0 @assert slices ≥ 1 "Number of slices must be greater than or equal to 1" @assert scale ≥ 0 "Proposal scale must be non-negative" end function (prop::Slice)( rng::AbstractRNG, point::AbstractVector, logl_star, bounds::AbstractBoundingSpace, model; kwargs... ) # setup n = length(point) nc = nexpand = ncontract = 0 local u, v, logl # modifying axes and computing lengths axes = Bounds.axes(bounds) axes = prop.scale .* axes' # slice sampling loop for it in 1:prop.slices # shuffle axis update order idxs = shuffle!(rng, collect(Base.axes(axes, 1))) # slice sample along a random direction for idx in idxs # select axis axis = axes[idx, :] u, v, logl, nc, nexpand, ncontract = sample_slice( rng, axis, point, logl_star, model, nc, nexpand, ncontract ) end # end of slice sample along a random direction end # end of slice sampling loop # update slice proposal scale based on the relative size of the slices compared to the initial guess prop.scale = prop.scale * nexpand / (2.0 * ncontract) return u, v, logl, nc end # end of function Slice """ Proposals.RSlice(;slices=5, scale=1) Propose a new live point by a series of random slices away from an existing live point. This is a standard _random_ implementation where each slice is along a random direction based on the provided axes. This more closely matches the PolyChord implementation outlined in Handley et al. (2015a,b).[^7][^8] [^7]: Handley, et al., 2015a, MNRAS 450(1), ["polychord: nested sampling for cosmology"](https://academic.oup.com/mnrasl/article/450/1/L61/986122) [^8]: Handley, et al., 2015b, MNRAS 453(4), ["polychord: next-generation nested sampling"](https://academic.oup.com/mnras/article/453/4/4384/2593718) ## Parameters - `slices` is the minimum number of slices - `scale` is the proposal distribution scale, which will update _between_ proposals. """ @with_kw mutable struct RSlice <: AbstractProposal slices = 5 scale = 1.0 @assert slices ≥ 1 "Number of slices must be greater than or equal to 1" @assert scale ≥ 0 "Proposal scale must be non-negative" end function (prop::RSlice)( rng::AbstractRNG, point::AbstractVector, logl_star, bounds::AbstractBoundingSpace, model; kwargs... ) # setup n = length(point) nc = nexpand = ncontract = 0 local u, v, logl # random slice sampling loop for it in 1:prop.slices # propose a direction on the unit n-sphere drhat = randn(rng, n) drhat /= norm(drhat) # transform and scale into parameter space axis = prop.scale .* (Bounds.axes(bounds) * drhat) u, v, logl, nc, nexpand, ncontract = sample_slice( rng, axis, point, logl_star, model, nc, nexpand, ncontract ) end # end of random slice sampling loop # update random slice proposal scale based on the relative size of the slices compared to the initial guess prop.scale = prop.scale * nexpand / (2.0 * ncontract) return u, v, logl, nc end # end of function RSlice # Method for slice sampling function sample_slice(rng, axis, u, logl_star, model, nc, nexpand, ncontract) # define starting window r = rand(rng) # initial scale/offset u_l = @. u - r * axis # left bound if unitcheck(u_l) v_l, logl_l = prior_transform_and_loglikelihood(model, u_l) else logl_l = -Inf end nc += 1 nexpand += 1 u_r = u_l .+ axis # right bound if unitcheck(u_r) v_r, logl_r = prior_transform_and_loglikelihood(model, u_r) else logl_r = -Inf end nc += 1 nexpand += 1 # stepping out left and right bounds while logl_l ≥ logl_star u_l .-= axis if unitcheck(u_l) v_l, logl_l = prior_transform_and_loglikelihood(model, u_l) else logl_l = -Inf end nc += 1 nexpand += 1 end while logl_r ≥ logl_star u_r .+= axis if unitcheck(u_r) v_r, logl_r = prior_transform_and_loglikelihood(model, u_r) else logl_r = -Inf end nc += 1 nexpand += 1 end # sample within limits. If the sample is not valid, shrink the limits until the `logl_star` bound is hit window_init = norm(u_r - u_l) # initial window size while true # define slice and window u_hat = u_r - u_l window = norm(u_hat) # check if the slice has shrunk to be ridiculously small window < 1e-5 * window_init && error("Slice sampling appears to be stuck.") # propose a new position r = rand(rng) u_prop = @. u_l + r * u_hat if unitcheck(u_prop) v_prop, logl_prop = prior_transform_and_loglikelihood(model, u_prop) else logl_prop = -Inf end nc += 1 ncontract += 1 # if success, then move to the new position if logl_prop ≥ logl_star return u_prop, v_prop, logl_prop, nc, nexpand, ncontract # if fail, then check if the new point is to the left/right of the original point along the proposal axis and update the bounds accordingly else s = dot(u_prop - u, u_hat) # check sign (+/-) if s < 0 # left u_l = u_prop elseif s > 0 # right u_r = u_prop else # if `s = 0` something has gone wrong error("Slice sampler has failed to find a valid point.") end end end # end of sample within limits while end end # module Proposals
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
163
@testset "Proposals.Uniform -> Proposals.Rejection deprecation" begin prop = @test_deprecated Proposals.Uniform() @test prop === Proposals.Rejection() end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
3490
const test_bounds = [ Bounds.Ellipsoid, Bounds.MultiEllipsoid ] const test_props = [ Proposals.Rejection(maxiter=Int(1e6)), Proposals.RWalk(ratio=0.5, walks=50), Proposals.RStagger(ratio=0.5, walks=50), Proposals.Slice(slices=10), Proposals.RSlice(slices=10) ] const MAXZSCORES = Dict(zip( Iterators.product(test_bounds, test_props), [4, 3, 9, 8, 6, 3, 5, 7, 4, 4] # rwalk is bad... )) function test_logz(measured, actual, error, bound, proposal) diff = measured - actual zscore = abs(diff) / error @test measured ≈ actual atol=MAXZSCORES[(bound, proposal)] * error end @testset "$(nameof(bound)), $(nameof(typeof(proposal)))" for bound in test_bounds, proposal in test_props @testset "Correlated Gaussian Conjugate Prior - ndims=$D" for D in [2, 4] model, logz = Models.CorrelatedGaussian(D) # match JAXNS paper setup, generally sampler = Nested(D, 50D; bounds=bound, proposal=proposal) chain, state = sample(rng, model, sampler; dlogz=0.01) chain_res = sample(rng, chain, Weights(vec(chain[:weights])), length(chain)) # test posteriors vals = Array(chain_res) means = mean(vals, dims=1) tols = 2std(vals, mean=means, dims=1) # 2-sigma μ = fill(2.0, D) Σ = fill(0.95, D, D) Σ[diagind(Σ)] .= 1 expected = Σ * ((Σ + I) \ μ) @test all(@.(abs(means - expected) < tols)) # logz test_logz(state.logz, logz, state.logzerr, bound, proposal) end @testset "Gaussian Shells" begin model, logz = Models.GaussianShells() sampler = Nested(2, 1000; bounds=bound, proposal=proposal) chain, state = sample(rng, model, sampler; dlogz=0.01) # logz test_logz(state.logz, logz, state.logzerr, bound, proposal) end @testset "Gaussian Mixture Model" begin σ = 0.1 μ1 = ones(2) μ2 = -ones(2) inv_σ = diagm(0 => fill(1 / σ^2, 2)) function logl(x) dx1 = x .- μ1 dx2 = x .- μ2 f1 = -dx1' * (inv_σ * dx1) / 2 f2 = -dx2' * (inv_σ * dx2) / 2 return logaddexp(f1, f2) end prior(X) = muladd.(10, X, -5) model = NestedModel(logl, prior) analytic_logz = log(4π * σ^2 / 100) spl = Nested(2, 1000, bounds=bound, proposal=proposal) chain, state = sample(rng, model, spl; dlogz=0.01) chain_res = sample(rng, chain, Weights(vec(chain[:weights])), length(chain)) test_logz(state.logz, analytic_logz, state.logzerr, bound, proposal) xmodes = sort!(findpeaks(chain_res[:, 1, 1])[1:2]) @test xmodes[1] ≈ -1 atol = σ @test xmodes[2] ≈ 1 atol = σ ymodes = sort!(findpeaks(chain_res[:, 2, 1])[1:2]) @test ymodes[1] ≈ -1 atol = σ @test ymodes[2] ≈ 1 atol = σ end @testset "Eggbox" begin model, logz = Models.Eggbox() sampler = Nested(2, 1000; bounds=bound, proposal=proposal) chain, state = sample(rng, model, sampler; dlogz=0.1) test_logz(state.logz, logz, state.logzerr, bound, proposal) chain_res = sample(rng, chain, Weights(vec(chain[:weights])), length(chain)) xmodes = sort!(findpeaks(chain_res[:, 1, 1])[1:5]) @test all(isapprox.(xmodes, 0.1:0.2:0.9, atol=0.2)) ymodes = sort!(findpeaks(chain_res[:, 2, 1])[1:5]) @test all(isapprox.(ymodes, 0.1:0.2:0.9, atol=0.2)) end end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
605
using AbstractMCMC using Distributions using LinearAlgebra using LogExpFunctions using MCMCChains using NestedSamplers using StableRNGs using StatsBase using Test rng = StableRNG(1234) AbstractMCMC.setprogress!(get(ENV, "CI", "false") == "false") include("utils.jl") @testset "Deprecations" begin include("deprecations.jl") end @testset "Bounds" begin include("bounds/bounds.jl") end @testset "Proposals" begin include("proposals/proposals.jl") end @testset "Sampler" begin include("sampler.jl") end @testset "Sampling" begin include("sampling.jl") end @testset "Models" begin include("models.jl") end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1128
using NestedSamplers: default_update_interval @testset "default helpers" begin @test default_update_interval(Proposals.Rejection(), 3) == 1.5 @test default_update_interval(Proposals.RWalk(), 10) == 3.75 @test default_update_interval(Proposals.RWalk(walks=10), 10) == 1.5 @test default_update_interval(Proposals.RStagger(), 10) == 3.75 @test default_update_interval(Proposals.RStagger(walks=10), 10) == 1.5 @test default_update_interval(Proposals.Slice(), 30) == 135 @test default_update_interval(Proposals.Slice(slices=10), 25) == 225 @test default_update_interval(Proposals.RSlice(), 30) == 10 @test default_update_interval(Proposals.RSlice(slices=10), 25) == 20 end spl = Nested(3, 100) @test spl.proposal isa Proposals.Rejection @test spl.bounds == Bounds.MultiEllipsoid @test spl.update_interval == 150 @test spl.enlarge == 1.25 @test spl.min_ncall == 200 @test spl.dlv ≈ log(101/100) spl = Nested(10, 1000) @test spl.proposal isa Proposals.RWalk @test spl.update_interval == 3750 spl = Nested(30, 1500) @test spl.proposal isa Proposals.Slice @test spl.update_interval == 202500
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
2023
@testset "Bundles" begin logl(x::AbstractVector) = exp(-x[1]^2 / 2) / √(2π) priors = [Uniform(-1, 1)] model = NestedModel(logl, priors) spl = Nested(1, 500) chains, _ = sample(rng, model, spl; dlogz=0.2, param_names=["x"], chain_type=Chains) val_arr, _ = sample(rng, model, spl; dlogz=0.2, chain_type=Array) @test size(chains, 2) == size(val_arr, 2) # test with add_live = false chains2, _ = sample(rng, model, spl; add_live=false, dlogz=0.2, param_names=["x"], chain_type=Chains) val_arr2, _ = sample(rng, model, spl; add_live=false, dlogz=0.2, chain_type=Array) @test size(chains2, 2) == size(val_arr2, 2) @test size(chains2, 1) < size(chains, 1) && size(val_arr2, 1) < size(val_arr, 1) # test check_wsum kwarg chains3, _ = sample(rng, model, spl; dlogz=0.2, param_names=["x"], chain_type=Chains) val_arr3, _ = sample(rng, model, spl; dlogz=0.2, chain_type=Array) @test size(chains3, 2) == size(val_arr3, 2) end @testset "Zero likelihood" begin logl(x::AbstractVector) = x[1] > 0 ? exp(-x[1]^2 / 2) / √(2π) : -Inf priors = [Uniform(-1, 1)] model = NestedModel(logl, priors) spl = Nested(1, 500) chains, _ = sample(rng, model, spl; param_names=["x"]) @test all(>(0), chains[:x][chains[:weights] .> 1e-10]) end @testset "Stopping criterion" begin logl(x::AbstractVector) = exp(-x[1]^2 / 2) / √(2π) priors = [Uniform(-1, 1)] model = NestedModel(logl, priors) spl = Nested(1, 500) chains, state = sample(rng, model, spl; add_live=false, dlogz=1.0) logz_remain = maximum(state.logl) + state.logvol delta_logz = logaddexp(state.logz, logz_remain) - state.logz @test delta_logz ≤ 1.0 chains, state = sample(rng, model, spl; add_live=false, maxiter=3) @test state.it == 3 chains, state = sample(rng, model, spl; add_live=false, maxcall=10) @test state.ncall == 10 chains, state = sample(rng, model, spl; add_live=false, maxlogl=0.2) @test state.logl[1] ≥ 0.2 end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1342
using IterTools using KernelDensity function integrate_on_grid(f, ranges, density) rs = [] for r in ranges step = (r[2] - r[1]) / density rmin = r[1] + step / 2 rmax = r[2] - step / 2 push!(rs, range(rmin, rmax, length=density)) end logsum = -1e300 for v in Iterators.product(rs...) logsum = log(exp(logsum) + f(v)) end logsum -= length(ranges) * log(density) return logsum end function integrate_on_grid(f, ranges) density = 100 logsum_old = -Inf while true logsum = integrate_on_grid(f, ranges, density) if abs(logsum - logsum_old) < 0.001 return logsum end logsum_old = logsum density *= 2 end end ## Contrib from Firefly.jl function findpeaks(samples::AbstractVector) k = kde(samples) # the sign of the difference will tell use whether we are increasing or decreasing # using rle gives us the points at which the sign switches (local extreema) runs = rle(sign.(diff(k.density))) # if we start going up, first extreme will be maximum, else minimum start = runs[1][1] == 1 ? 1 : 2 # find the peak indices at the local minima peak_idx = cumsum(runs[2])[start:2:end] sorted_idx = sortperm(k.density[peak_idx], rev=true) return k.x[peak_idx[sorted_idx]] end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
3659
# Helper that returns a random N-dimensional ellipsoid function random_ellipsoid(N::Integer) cov = rand(rng, N, N) while abs(det(cov)) < 1e-10 cov = rand(rng, N, N) end return Ellipsoid(zeros(N), pinv(cov * cov')) end const BOUNDST = [ Bounds.Ellipsoid, Bounds.MultiEllipsoid ] @testset "pathological cases" begin A_almost_symmetric = [2.6081830533175096e8 -5.4107420917559285e6 -1.9314298704966028e9 -2.360066561768968e9; -5.410742091755895e6 379882.440454782 6.715028007245775e7 2.0195280814040575e7; -1.931429870496611e9 6.715028007245693e7 9.811342987452753e10 -4.6579127705367036e7; -2.3600665617689605e9 2.0195280814042665e7 -4.6579127705418006e7 9.80946804720486e10] # shouldn't fail: ell = Bounds.Ellipsoid(zeros(4), A_almost_symmetric) Bounds.volume(ell) end @testset "interface - $B, $T, D=$D" for B in BOUNDST, T in [Float32, Float64], D in 1:20 # creation, inspection bound = B(T, D) @test eltype(bound) == T @test ndims(bound) == D # sampling sample = rand(rng, bound) @test eltype(sample) == T @test size(sample) == (D,) @test sample ∈ bound nsamples = 1000 samples = rand(rng, bound, nsamples) @test eltype(samples) == T @test size(samples) == (D, nsamples) @test all(samples[:, i] ∈ bound for i in axes(samples, 2)) # fitting bound = Bounds.fit(B, samples) @test eltype(bound) == T @test all(samples[:, i] ∈ bound for i in axes(samples, 2)) # robust fitting pv = Bounds.volume(bound) / size(samples, 2) bound2 = Bounds.fit(B, samples; pointvol = pv) @test Bounds.volume(bound2) ≈ Bounds.volume(bound) rtol = 1e-3 # volume and scaling volfrac = 0.5 bound_scaled = Bounds.scale!(deepcopy(bound), volfrac) @test Bounds.volume(bound) ≈ Bounds.volume(bound_scaled) / volfrac rtol = 1e-3 # expected number of points that will fall within inner bound npoints = 5000 expect = volfrac * npoints σ = sqrt((1 - volfrac) * expect) ninner = count(rand(rng, bound) ∈ bound_scaled for _ in 1:npoints) @test ninner ≈ expect atol = 3σ # printing @test sprint(show, bound) == "$(string(nameof(B))){$T}(ndims=$D)" # rand_live x = rand(rng, bound, 10) point, _bound = Bounds.rand_live(rng, bound, x) count(point ∈ x[:, i] for i in axes(x, 2)) == 1 Btarget = B ∈ [Bounds.MultiEllipsoid] ? Bounds.Ellipsoid : B @test _bound isa Btarget @test point ∈ _bound && point ∈ bound end @testset "interface - NoBounds, $T, D=$D" for T in [Float32, Float64], D in 1:20 # creation, inspection bound = Bounds.NoBounds(T, D) @test bound == Bounds.NoBounds{T}(D) @test eltype(bound) == T @test ndims(bound) == D # sampling sample = rand(rng, bound) @test eltype(sample) == T @test length(sample) == D @test sample ∈ bound samples = rand(rng, bound, 3) @test eltype(samples) == T @test size(samples) == (D, 3) @test all(samples[:, i] ∈ bound for i in axes(samples, 2)) # fitting samples = randn(rng, T, D, 100) @test Bounds.fit(Bounds.NoBounds, samples) == bound @test eltype(bound) == T # matches eltype # robust fitting pv = 1 / size(samples, 2) bound_fit = Bounds.fit(Bounds.NoBounds, samples; pointvol = pv) @test bound_fit == bound @test Bounds.volume(bound_fit) == 1 # volume and scaling bound_scaled = Bounds.scale!(deepcopy(bound), 0.5) @test bound_scaled == bound @test Bounds.volume(bound_scaled) == 1 @test Bounds.axes(bound) == Diagonal(ones(D)) end include("helpers.jl") include("ellipsoids.jl")
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
1484
using NestedSamplers.Bounds: Ellipsoid, MultiEllipsoid, fit, scale!, decompose, volume, volume_prefactor const NMAX = 20 @testset "ndims=$N" for N in 1:NMAX @testset "Spheres" begin scale = 5 center = 2scale .* ones(N) A = Matrix(I, N, N) ./ scale^2 ell = Ellipsoid(center, A) @test volume(ell) ≈ volume_prefactor(N) * scale^N axs, axlens = decompose(ell) @test axlens ≈ fill(scale, N) @test axs ≈ Bounds.axes(ell) @test norm.(eachcol(axs)) == fill(scale, N) end @testset "Scaling" begin scale = 1.5 center = zeros(N) A = diagm(0 => rand(rng, N)) ell = Ellipsoid(center, A) ell2 = Ellipsoid(center, A ./ scale^2) scale!(ell, scale^N) @test volume(ell) ≈ volume(ell2) @test ell.A ≈ ell2.A @test all(decompose(ell) .≈ decompose(ell2)) end @testset "Contains" begin E = 1e-7 ell = Ellipsoid(N) # Point just outside unit n-Spheres pt = (1 / √N + E) .* ones(N) @test pt ∉ ell # point just inside pt = (1 / √N - E) .* ones(N) @test pt ∈ ell A = diagm(0 => rand(rng, N)) ell = Ellipsoid(zeros(N), A) for i in 1:N axlen = 1 / sqrt(A[i, i]) pt = zeros(N) pt[i] = axlen + E @test pt ∉ ell pt[i] = axlen - E @test pt ∈ ell end end end # testset
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
575
using NestedSamplers.Bounds: randball, volume_prefactor @testset "Rand Sphere" begin for _ in 1:100, k in 1:10 x = randball(rng, Float64, k) @test sum(t->t^2, x) < 1 end end @testset "Volume Prefactor" begin @test volume_prefactor(1) ≈ 2 @test volume_prefactor(2) ≈ π @test volume_prefactor(3) ≈ 4 / 3 * π @test volume_prefactor(4) ≈ 1 / 2 * π^2 @test volume_prefactor(5) ≈ 8 / 15 * π^2 @test volume_prefactor(6) ≈ 1 / 6 * π^3 @test volume_prefactor(7) ≈ 16 / 105 * π^3 @test volume_prefactor(9) ≈ 32 / 945 * π^4 end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
code
2565
const PROPOSALS = [ Proposals.Rejection(), Proposals.RWalk(), Proposals.RStagger(), Proposals.Slice(), Proposals.RSlice() ] const BOUNDS = [ Bounds.NoBounds(2), Bounds.Ellipsoid(2), Bounds.MultiEllipsoid(2) ] @testset "interface - $(typeof(prop))" for prop in PROPOSALS, bound in BOUNDS logl(X) = -sum(x->x^2, X) prior(u) = 2u .- 1 # Uniform -1, to 1 us = 0.7 .* rand(rng, 2, 10) # live points should be within the ellipsoid point, _bound = Bounds.rand_live(rng, bound, us) loglstar = logl(prior(point)) u, v, logL = prop(rng, point, loglstar, _bound, NestedSamplers.PriorTransformAndLogLikelihood(prior, logl)) # simple bounds checks @test all(x -> 0 < x < 1, u) @test all(x -> -1 < x < 1, v) # check new point actually has better likelihood @test logl(v) == logL ≥ loglstar end @testset "Rejection" begin # printing @test sprint(show, Proposals.Rejection()) == "NestedSamplers.Proposals.Rejection" end @testset "RWalk" begin prop = Proposals.RWalk() @test prop.scale == 1 @test prop.ratio == 0.5 @test prop.walks == 25 @test_throws AssertionError Proposals.RWalk(ratio=-0.2) @test_throws AssertionError Proposals.RWalk(ratio=1.2) @test_throws AssertionError Proposals.RWalk(walks=0) @test_throws AssertionError Proposals.RWalk(walks=2, ratio=0.2) @test_throws AssertionError Proposals.RWalk(scale=-4) end @testset "RStagger" begin prop = Proposals.RStagger() @test prop.scale == 1 @test prop.ratio == 0.5 @test prop.walks == 25 @test_throws AssertionError Proposals.RStagger(ratio=-0.2) @test_throws AssertionError Proposals.RStagger(ratio=1.2) @test_throws AssertionError Proposals.RStagger(walks=0) @test_throws AssertionError Proposals.RStagger(walks=2, ratio=0.2) @test_throws AssertionError Proposals.RStagger(scale=-4) end @testset "unitcheck" begin @test Proposals.unitcheck(rand(rng, 1000)) @test !Proposals.unitcheck(randn(rng, 1000)) # works with tuples, too @test Proposals.unitcheck((0.3, 0.6, 0.8)) end @testset "Slice" begin prop = Proposals.Slice() @test prop.slices == 5 @test prop.scale == 1 @test_throws AssertionError Proposals.Slice(slices=-2) @test_throws AssertionError Proposals.Slice(scale=-3) end @testset "RSlice" begin prop = Proposals.RSlice() @test prop.slices == 5 @test prop.scale == 1 @test_throws AssertionError Proposals.RSlice(slices=-2) @test_throws AssertionError Proposals.RSlice(scale=-3) end
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
4506
# NestedSamplers.jl [![Build Status](https://github.com/TuringLang/NestedSamplers.jl/workflows/CI/badge.svg?branch=main)](https://github.com/TuringLang/NestedSamplers.jl/actions) [![PkgEval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/N/NestedSamplers.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html) [![Coverage](https://codecov.io/gh/TuringLang/NestedSamplers.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/TuringLang/NestedSamplers.jl) [![LICENSE](https://img.shields.io/github/license/TuringLang/NestedSamplers.jl?color=yellow)](LICENSE) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://TuringLang.github.io/NestedSamplers.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://TuringLang.github.io/NestedSamplers.jl/dev) Implementations of single- and multi-ellipsoidal nested sampling algorithms in pure Julia. We implement the [AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) interface, allowing straightforward sampling from a variety of statistical models. This package was heavily influenced by [nestle](https://github.com/kbarbary/nestle), [dynesty](https://github.com/joshspeagle/dynesty), and [NestedSampling.jl](https://github.com/kbarbary/NestedSampling.jl). ## Citing [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3950594.svg)](https://doi.org/10.5281/zenodo.3950594) If you use this library, or a derivative of it, in your work, please consider citing it. This code is built off a multitude of academic works, which have been noted in the docstrings where appropriate. These references, along with references for the more general calculations, can all be found in [CITATION.bib](CITATION.bib) ## Installation To use the nested samplers first install this library ```julia julia> ]add NestedSamplers ``` ## Usage For in-depth usage, see the [online documentation](https://TuringLang.github.io/NestedSamplers.jl/dev/). In general, you'll need to write a log-likelihood function and a prior transform function. These are supplied to a `NestedModel`, defining the statistical model ```julia using NestedSamplers using Distributions using LinearAlgebra logl(X) = logpdf(MvNormal([1, -1], I), X) prior(X) = 4 .* (X .- 0.5) # or equivalently priors = [Uniform(-2, 2), Uniform(-2, 2)] model = NestedModel(logl, priors) ``` after defining the model, set up the nested sampler. This will involve choosing the bounding space and proposal scheme, or you can rely on the defaults. In addition, we need to define the dimensionality of the problem and the number of live points. More points results in a more precise evidence estimate at the cost of runtime. For more information, see the docs. ```julia bounds = Bounds.MultiEllipsoid prop = Proposals.Slice(slices=10) # 1000 live points sampler = Nested(2, 1000; bounds=bounds, proposal=prop) ``` once the sampler is set up, we can leverage all of the [AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) interface, including the step iterator, transducer, and a convenience `sample` method. The `sample` method takes keyword arguments for the convergence criteria. **Note:** both the samples *and* the sampler state will be returned by `sample` ```julia using StatsBase chain, state = sample(model, sampler; dlogz=0.2) ``` you can resample taking into account the statistical weights, again using StatsBase ```julia chain_resampled = sample(chain, Weights(vec(chain["weights"])), length(chain)) ``` These are chains from [MCMCChains.jl](https://github.com/TuringLang/MCMCChains.jl), which offer a lot of flexibility in exploring posteriors, combining data, and offering lots of convenient conversions (like to `DataFrame`s). Finally, we can see the estimate of the Bayesian evidence ```julia using Measurements state.logz ± state.logzerr ``` ## Contributions and Support [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) **Primary Author:** Miles Lucas ([@mileslucas](https://github.com/mileslucas)) Contributions are always welcome! In general, contributions should follow [ColPrac](https://github.com/SciML/ColPrac). Take a look at the [issues](https://github.com/TuringLang/NestedSamplers.jl/issues) for ideas of open problems! To discuss ideas or plan contributions, open a [discussion](https://github.com/TuringLang/NestedSamplers.jl/discussions).
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
934
# API/Reference ```@index ``` ## Samplers ```@docs NestedModel Nested ``` ### Convergence There are a few convergence criteria available, by default the `dlogz` criterion will be used. * `dlogz=0.5` sample until the *fraction of the remaining evidence* is below the given value ([more info](https://dynesty.readthedocs.io/en/latest/overview.html#stopping-criteria)). * `maxiter=Inf` stop after the given number of iterations * `maxcall=Inf` stop after the given number of log-likelihood function calls * `maxlogl=Inf` stop after reaching the target log-likelihood ## Bounds ```@docs Bounds Bounds.AbstractBoundingSpace Bounds.NoBounds Bounds.Ellipsoid Bounds.MultiEllipsoid ``` ## Proposals ```@docs Proposals Proposals.AbstractProposal Proposals.Rejection Proposals.RWalk Proposals.RStagger Proposals.Slice Proposals.RSlice ``` ## Models ```@docs Models Models.GaussianShells Models.CorrelatedGaussian Models.Eggbox ```
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
2788
# Benchmarks The following benchmarks show the performance of NestedSamplers.jl. As with any statistical inference package, the likelihood function will often dominate the runtime. This is important to consider when comparing packages across different languages- in general a custom Julia likelihood function may be faster than the same code written in Python/numpy. As an example, compare the relative timings of these two simple Guassian likelihoods ```julia using BenchmarkTools using PyCall # julia version gauss_loglike(X) = sum(x -> exp(-0.5 * x^2) / sqrt(2π), X) # python version py""" import numpy as np def gauss_loglike(X): return np.sum(np.exp(-0.5 * X ** 2) / np.sqrt(2 * np.pi)) """ gauss_loglike_py = py"gauss_loglike" xs = randn(100) ``` ```julia @btime gauss_loglike($xs) ``` ``` 611.971 ns (0 allocations: 0 bytes) 26.813747896467206 ``` ```julia @btime gauss_loglike_py($xs) ``` ``` 13.129 μs (6 allocations: 240 bytes) 26.81374789646721 ``` In certain cases, you can use language interop tools (like [PyCall.jl](https://github.com/JuliaPy/PyCall.jl)) to use Julia likelihoods with Python libraries. ## Setup and system information The benchmark code can be found in the [`bench`](https://github.com/TuringLang/NestedSamplers.jl/blob/main/bench/) folder. The system information at the time these benchmarks were ran is ```julia julia> versioninfo() Julia Version 1.7.1 Commit ac5cc99908* (2021-12-22 19:35 UTC) Platform Info: OS: macOS (x86_64-apple-darwin20.5.0) CPU: Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-12.0.1 (ORCJIT, skylake) Environment: JULIA_NUM_THREADS = 1 ``` ## Highly-correlated multivariate Guassian This benchmark uses [`Models.CorrelatedGaussian`](@ref) and simply measures the time it takes to fully sample down to `dlogz=0.01`. This benchmark is exactly the same as the first benchmark detailed in the [JAXNS paper](https://ui.adsabs.harvard.edu/abs/2020arXiv201215286A/abstract). ### Timing ```@example sample-benchmark using CSV, DataFrames, NestedSamplers, Plots # hide benchdir = joinpath(dirname(pathof(NestedSamplers)), "..", "bench") # hide results = DataFrame(CSV.File(joinpath(benchdir, "sampling_results.csv"))) # hide plot(results.D, results.t, label="NestedSamplers.jl", marker=:o, yscale=:log10, # hide ylabel="runtime (s)", xlabel="prior dimension", leg=:topleft, ylims=(1e-2, 1e4)) # hide ``` ### Accuracy The following shows the Bayesian evidence estmiate as compared to the true value ```@example sample-benchmark plot(results.D, results.dlnZ, yerr=results.lnZstd, label="NestedSamplers.jl", # hide marker=:o, ylabel="ΔlnZ", xlabel="prior dimension", leg=:topleft) # hide hline!([0.0], c=:black, ls=:dash, alpha=0.7, label="") # hide ```
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
5228
```@meta CurrentModule = NestedSamplers ``` # NestedSamplers.jl [![GitHub](https://img.shields.io/badge/Code-GitHub-black.svg)](https://github.com/TuringLang/NestedSamplers.jl) [![Build Status](https://github.com/TuringLang/NestedSamplers.jl/workflows/CI/badge.svg?branch=main)](https://github.com/TuringLang/NestedSamplers.jl/actions) [![PkgEval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/N/NestedSamplers.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html) [![Coverage](https://codecov.io/gh/TuringLang/NestedSamplers.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/TuringLang/NestedSamplers.jl) [![LICENSE](https://img.shields.io/github/license/TuringLang/NestedSamplers.jl?color=yellow)](https://github.com/TuringLang/NestedSamplers.jl/blob/main/LICENSE) Implementations of single- and multi-ellipsoidal nested sampling algorithms in pure Julia. We implement the [AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) interface, allowing straightforward sampling from a variety of statistical models. This package was heavily influenced by [nestle](https://github.com/kbarbary/nestle), [dynesty](https://github.com/joshspeagle/dynesty), and [NestedSampling.jl](https://github.com/kbarbary/NestedSampling.jl). ## Citing [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3950594.svg)](https://doi.org/10.5281/zenodo.3950594) If you use this library, or a derivative of it, in your work, please consider citing it. This code is built off a multitude of academic works, which have been noted in the docstrings where appropriate. These references, along with references for the more general calculations, can all be found in [CITATION.bib](https://github.com/TuringLang/NestedSamplers.jl/blob/main/CITATION.bib) ## Installation To use the nested samplers first install this library ```julia julia> ]add NestedSamplers ``` ## Background For statistical background and a more in-depth introduction to nested sampling, I recommend the [dynesty documentation](https://dynesty.readthedocs.io/en/latest/overview.html). In short, nested sampling is a technique for simultaneously estimating the Bayesian evidence and the posterior distribution (according to [Bayes' theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem)) from nested iso-likelihood shells. These shells allow a quadrature estimate of the integral for the Bayesian evidence, which we can use for model selection, as well as the statistical weights for the underlying "live" points, which is where we get our posterior samples from! ## Usage The samplers are built using the [AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) interface. To use it, we need to create a [`NestedModel`](@ref). ```@example usage using Random using AbstractMCMC AbstractMCMC.setprogress!(false) Random.seed!(8452); nothing # hide ``` ```@example usage using Distributions using LinearAlgebra using NestedSamplers using LogExpFunctions: logaddexp # Gaussian mixture model σ = 0.1 μ1 = ones(2) μ2 = -ones(2) inv_σ = diagm(0 => fill(1 / σ^2, 2)) function logl(x) dx1 = x .- μ1 dx2 = x .- μ2 f1 = -dx1' * (inv_σ * dx1) / 2 f2 = -dx2' * (inv_σ * dx2) / 2 return logaddexp(f1, f2) end priors = [ Uniform(-5, 5), Uniform(-5, 5) ] # or equivalently prior_transform(X) = 10 .* X .- 5 # create the model # or model = NestedModel(logl, prior_transform) model = NestedModel(logl, priors); nothing # hide ``` now, we set up our sampling using [StatsBase](https://github.com/JuliaStats/StatsBase.jl). **Important: the state of the sampler is returned in addition to the chain by `sample`.** ```@example usage using StatsBase: sample, Weights # create our sampler # 2 parameters, 1000 active points, multi-ellipsoid. See docstring spl = Nested(2, 1000) # by default, uses dlogz for convergence. Set the keyword args here # currently Chains and Array are support chain_types chain, state = sample(model, spl; dlogz=0.2, param_names=["x", "y"]) # optionally resample the chain using the weights chain_res = sample(chain, Weights(vec(chain["weights"])), length(chain)); ``` let's take a look at the resampled posteriors ```@example usage using StatsPlots density(chain_res) # analytical posterior maxima vline!([-1, 1], c=:black, ls=:dash, subplot=1) vline!([-1, 1], c=:black, ls=:dash, subplot=2) ``` and compare our estimate of the Bayesian (log-)evidence to the analytical value ```@example usage analytic_logz = log(4π * σ^2 / 100) # within 2-sigma @assert isapprox(analytic_logz, state.logz, atol=2state.logzerr) ``` ## Contributions and Support [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) **Primary Author:** Miles Lucas ([@mileslucas](https://github.com/mileslucas)) Contributions are always welcome! In general, contributions should follow [ColPrac](https://github.com/SciML/ColPrac). Take a look at the [issues](https://github.com/TuringLang/NestedSamplers.jl/issues) for ideas of open problems! To discuss ideas or plan contributions, open a [discussion](https://github.com/TuringLang/NestedSamplers.jl/discussions).
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
2337
# Introduction Nested sampling is a statistical technique first described in Skilling (2004)[^1] as a method for estimating the Bayesian evidence. Conveniently, it also produces samples with importance weighting proportional to the posterior distribution. To understand what this means, we need to comprehend [Bayes' theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem). ## Bayes' theorem Bayes' theorem, in our nomenclature, is described as the relationship between the *prior*, the *likelihood*, the *evidence*, and the *posterior*. In its entirety- ```math p(\theta | x) = \frac{p(x | \theta)p(\theta)}{p(x)} ``` ### Posterior ``p(\theta | x)`` - the probability of the model parameters (``\theta``) conditioned on the data (``x``) ### Likelihood ``p(x | \theta)`` - the probability of the data (``x``) conditioned on the model parameters (``\theta``) ### Prior ``p(\theta)`` - the probability of the model parameters ### Evidence ``p(x)`` - the probability of the data If you are familiar with Bayesian statistics and Markov Chain Monte Carlo (MCMC) techniques, you should be somewhat familiar with the relationships between the posterior, the likelihood, and the prior. The evidence, though, is somewhat hard to describe; what does "the probability of the data" mean? Well, another way of writing the evidence, is this integral ```math p(x) \equiv Z = \int_\Omega{p(x | \theta) \mathrm{d}\theta} ``` which is like saying "the likelihood of the data [``p(x | \theta)``] integrated over *all of parameter space* [``\Omega``]". We have to write the probability this way, because the data are statistically dependent on the model parameters. This integral is intractable for all but the simplest combinations of distributions ([conjugate distributions](https://en.wikipedia.org/wiki/Conjugate_prior)), and therefore it must be estimated or approximated in some way. ## What can we do with the evidence? Before we get into approximating the Bayesian evidence, let's talk about why it's important. After all, for most MCMC applications it is simply a normalization factor to be ignored (how convenient!). ## Further reading For further reading, I recommend reading the cited sources in the footnotes, as well as the references below * [dynesty documentation](https://dynesty.readthedocs.io) [^1]: Skilling 2004
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
1906
# Correlated Gaussian This example will explore a highly-correlated Gaussian using [`Models.CorrelatedGaussian`](@ref). This model uses a conjuage Gaussian prior, see the docstring for the mathematical definition. ## Setup For this example, you'll need to add the following packages ```julia julia>]add Distributions MCMCChains Measurements NestedSamplers StatsBase StatsPlots ``` ```@setup correlated using AbstractMCMC using Random AbstractMCMC.setprogress!(false) Random.seed!(8452) ``` ## Define model ```@example correlated using NestedSamplers # set up a 4-dimensional Gaussian D = 4 model, logz = Models.CorrelatedGaussian(D) nothing; # hide ``` let's take a look at a couple of parameters to see what the likelihood surface looks like ```@example correlated using StatsPlots θ1 = range(-1, 1, length=1000) θ2 = range(-1, 1, length=1000) loglike = model.prior_transform_and_loglikelihood.loglikelihood logf = [loglike([t1, t2, 0, 0]) for t2 in θ2, t1 in θ1] heatmap( θ1, θ2, exp.(logf), aspect_ratio=1, xlims=extrema(θ1), ylims=extrema(θ2), xlabel="θ1", ylabel="θ2" ) ``` ## Sample ```@example correlated using MCMCChains using StatsBase # using single Ellipsoid for bounds # using Gibbs-style slicing for proposing new points sampler = Nested(D, 50D; bounds=Bounds.Ellipsoid, proposal=Proposals.Slice() ) names = ["θ_$i" for i in 1:D] chain, state = sample(model, sampler; dlogz=0.01, param_names=names) # resample chain using statistical weights chain_resampled = sample(chain, Weights(vec(chain[:weights])), length(chain)); nothing # hide ``` ## Results ```@example correlated chain_resampled ``` ```@example correlated corner(chain_resampled) ``` ```@example correlated using Measurements logz_est = state.logz ± state.logzerr diff = logz_est - logz println("logz: $logz") println("estimate: $logz_est") println("diff: $diff") nothing # hide ```
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
1829
# Eggbox This example will explore the classic eggbox function using [`Models.Eggbox`](@ref). ## Setup For this example, you'll need to add the following packages ```julia julia>]add Distributions MCMCChains Measurements NestedSamplers StatsBase StatsPlots ``` ```@setup eggbox using AbstractMCMC using Random AbstractMCMC.setprogress!(false) Random.seed!(8452) ``` ## Define model ```@example eggbox using NestedSamplers model, logz = Models.Eggbox() nothing; # hide ``` let's take a look at a couple of parameters to see what the log-likelihood surface looks like ```@example eggbox using StatsPlots x = range(0, 1, length=1000) y = range(0, 1, length=1000) loglike = model.prior_transform_and_loglikelihood.loglikelihood logf = [loglike([xi, yi]) for yi in y, xi in x] heatmap( x, y, logf, xlims=extrema(x), ylims=extrema(y), xlabel="x", ylabel="y", ) ``` ## Sample ```@example eggbox using MCMCChains using StatsBase # using multi-ellipsoid for bounds # using default rejection sampler for proposals sampler = Nested(2, 500) chain, state = sample(model, sampler; dlogz=0.01, param_names=["x", "y"]) # resample chain using statistical weights chain_resampled = sample(chain, Weights(vec(chain[:weights])), length(chain)); nothing # hide ``` ## Results ```@example eggbox chain_resampled ``` ```@example eggbox marginalkde(chain[:x], chain[:y]) plot!(xlims=(0, 1), ylims=(0, 1), sp=2) plot!(xlims=(0, 1), sp=1) plot!(ylims=(0, 1), sp=3) ``` ```@example eggbox density(chain_resampled, xlims=(0, 1)) vline!(0.1:0.2:0.9, c=:black, ls=:dash, sp=1) vline!(0.1:0.2:0.9, c=:black, ls=:dash, sp=2) ``` ```@example eggbox using Measurements logz_est = state.logz ± state.logzerr diff = logz_est - logz println("logz: $logz") println("estimate: $logz_est") println("diff: $diff") nothing # hide ```
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.8.3
3f462c3d9acbe06b0cda45e55bd06e033bab48a7
docs
1874
# Gaussian Shells This example will explore the classic Gaussian shells model using [`Models.GaussianShells`](@ref). ## Setup For this example, you'll need to add the following packages ```julia julia>]add Distributions MCMCChains Measurements NestedSamplers StatsBase StatsPlots ``` ```@setup shells using AbstractMCMC using Random AbstractMCMC.setprogress!(false) Random.seed!(8452) ``` ## Define model ```@example shells using NestedSamplers model, logz = Models.GaussianShells() nothing; # hide ``` let's take a look at a couple of parameters to see what the likelihood surface looks like ```@example shells using StatsPlots x = range(-6, 6, length=1000) y = range(-2.5, 2.5, length=1000) loglike = model.prior_transform_and_loglikelihood.loglikelihood logf = [loglike([xi, yi]) for yi in y, xi in x] heatmap( x, y, exp.(logf), xlims=extrema(x), ylims=extrema(y), xlabel="x", ylabel="y", ) ``` ## Sample ```@example shells using MCMCChains using StatsBase # using multi-ellipsoid for bounds # using default rejection sampler for proposals sampler = Nested(2, 1000) chain, state = sample(model, sampler; dlogz=0.05, param_names=["x", "y"]) # resample chain using statistical weights chain_resampled = sample(chain, Weights(vec(chain[:weights])), length(chain)); nothing # hide ``` ## Results ```@example shells chain_resampled ``` ```@example shells marginalkde(chain[:x], chain[:y]) plot!(xlims=(-6, 6), ylims=(-2.5, 2.5), sp=2) plot!(xlims=(-6, 6), sp=1) plot!(ylims=(-2.5, 2.5), sp=3) ``` ```@example shells density(chain_resampled) vline!([-5.5, -1.5, 1.5, 5.5], c=:black, ls=:dash, sp=1) vline!([-2, 2], c=:black, ls=:dash, sp=2) ``` ```@example shells using Measurements logz_est = state.logz ± state.logzerr diff = logz_est - logz println("logz: $logz") println("estimate: $logz_est") println("diff: $diff") nothing # hide ```
NestedSamplers
https://github.com/TuringLang/NestedSamplers.jl.git
[ "MIT" ]
0.1.3
e1032040d1be0b6a9bcfba77379c6384e301b24b
code
821
using BioSequenceMappings using Documenter DocMeta.setdocmeta!(BioSequenceMappings, :DocTestSetup, :(using BioSequenceMappings); recursive=true) makedocs(; modules=[BioSequenceMappings], authors="Pierre Barrat-Charlaix", sitename="BioSequenceMappings.jl", format=Documenter.HTML(; canonical="https://pierrebarrat.github.io/BioSequenceMappings.jl", edit_link="master", assets=String[], ), pages = [ "Quickstart" => "index.md", "Manual" => [ "Alphabets" => "alphabets.md", "Alignments" => "alignments.md", "Utilities" => "utilities.md" ], "Reference" => "reference.md" ], checkdocs=:exports, ) deploydocs(; repo="github.com/PierreBarrat/BioSequenceMappings.jl.git", devbranch="master", )
BioSequenceMappings
https://github.com/PierreBarrat/BioSequenceMappings.jl.git
[ "MIT" ]
0.1.3
e1032040d1be0b6a9bcfba77379c6384e301b24b
code
864
module BioSequenceMappings using FASTX using OneHotArrays using Random import Base: length, size import Base: in, ==, hash, convert, copy import Base: getindex, firstindex, lastindex, eachindex, view, keys import Base: iterate, eltype import Base: unique import Base: write include("alphabet.jl") export Alphabet export default_alphabet, symbols, translate export aa_alphabet, nt_alphabet include("alignment.jl") export Alignment, AbstractAlignment export eachsequence, sequence_length, sequence_number, subsample, subsample_random export find_sequence, match_sequences, named_sequences include("weights.jl") export compute_weights, compute_weights! include("IO.jl") export read_fasta include("misc.jl") export hamming, pairwise_hamming include("statistics.jl") export site_specific_frequencies, consensus, pairwise_frequencies, pairwise_correlations end
BioSequenceMappings
https://github.com/PierreBarrat/BioSequenceMappings.jl.git
[ "MIT" ]
0.1.3
e1032040d1be0b6a9bcfba77379c6384e301b24b
code
2534
""" read_fasta(fastafile::AbstractString; alphabet = :auto, kwargs...) read_fasta( fastafile::AbstractString, alphabet; weights = false, theta = 0.2, verbose = false, ) """ function read_fasta(fastafile::AbstractString; alphabet = :auto, kwargs...) return read_fasta(fastafile, alphabet; kwargs...) end function read_fasta(fastafile::AbstractString, alphabet::Symbol; kwargs...) alphabet = if alphabet == :auto alphabet = auto_alphabet_from_fasta(fastafile) else Alphabet(alphabet) end return read_fasta(fastafile, alphabet; kwargs...) end function read_fasta( fastafile::AbstractString, alphabet::Alphabet; weights = false, theta = 0.2, verbose = false, ) verbose && @info "Reading sequences from $fastafile using Alphabet $alphabet" data = map(FASTAReader(open(fastafile))) do rec description(rec), sequence(rec) end @assert allequal(Iterators.map(x -> length(x[2]), data)) """ All sequences must have the same length """ aln = Alignment( mapreduce(x -> alphabet(x[2]), hcat, data), alphabet; names = map(first, data) ) L, M = size(aln) verbose && @info "Found $M sequence of length $M" if weights compute_weights!(aln, theta) end return aln end function auto_alphabet_from_fasta(fastafile::AbstractString; n = 5) # first n sequences (at most) sequences = map(sequence, first(FASTAReader(open(fastafile)), n)) return auto_alphabet_from_sequences(sequences) end function auto_alphabet_from_sequences(sequences::AbstractVector{<:AbstractString}) characters = sort(unique(prod(sequences))) return if all(in(_DEFAULT_NT_ALPHABET_STRING), characters) Alphabet(:dna) elseif all(in(_DEFAULT_AA_ALPHABET_STRING), characters) Alphabet(:aa) elseif all(in(_DEFAULT_BINARY_ALPHABET_STRING), characters) Alphabet(:binary) else alphabet = Alphabet(prod(characters)) @warn "Could not find a default alphabet for characters $characters\ \n Using $alphabet" alphabet end end function Base.write(file::AbstractString, X::Alignment) return open(file, "w") do io write(io, X) end end function Base.write(io::IO, X::Alignment) return FASTAWriter(io) do fw for (i, seq) in enumerate(X) header = isempty(X.names[i]) ? "$i" : X.names[i] rec = FASTARecord(header, to_string(seq, X.alphabet)) write(fw, rec) end end end
BioSequenceMappings
https://github.com/PierreBarrat/BioSequenceMappings.jl.git
[ "MIT" ]
0.1.3
e1032040d1be0b6a9bcfba77379c6384e301b24b
code
14674
abstract type AbstractAlignment end ################################################################################### #################################### Alignment #################################### ################################################################################### """ mutable struct Alignment{A,T} where {A, T<:Integer} ``` data::Matrix{T} alphabet::Union{Nothing, Alphabet{A,T}} weights::Vector{Float64} = ones(size(dat,1))/size(dat,1) # phylogenetic weights of sequences names::Vector{String} = fill("", size(dat, 1)) ``` Biological sequences as vectors of type `T<:Integer`. `data` stores sequences in *columns*: `size(dat)` returns a tuple `(L, M)` with `L` the length and `M` the number of sequences. When displayed, shows `data` as an `MxL` matrix to match with traditional alignments. `alphabet{A,T}` represents the mapping between integers in `data` and biological symbols of type `A` (nucleotides, amino acids...). If `nothing`, the alignment cannot be mapped to biological sequences. `weights` represent phylogenetic weights, and are initialized to `1/M`. They must sum to 1. `names` are the label of sequences, and are expected to be in the same order as the columns of `data`. They do not have to be unique, and can be ignored **Important**: When built from a matrix, assumes that the sequences are stored in *columns*. ## Methods - `getindex(X::Alignment, i)` returns a matrix/vector `X.data[:, i]`. - `for s in X::Alignment` iterates over sequences. - `eachsequence(X::Alignment)` returns an iterator over sequences (`Vector{Int}`). - `eachsequence_weighted(X::Alignment)` returns an iterator over sequences and weights as tuples - `subaln(X::Alignment, idx)` constructs the subaln defined by index `idx`. """ @kwdef mutable struct Alignment{A, T<:Integer} <: AbstractAlignment data::Matrix{T} alphabet::Union{Nothing, Alphabet{A,T}} weights::Vector{Float64} = ones(size(data, 2))/size(data, 2) # phylogenetic weights of sequences names::Vector{String} = fill("", size(data, 2)) function Alignment{A,T}(data, alphabet, weights, ::Nothing) where {A, T} return Alignment{A,T}(data, alphabet, weights, fill("", size(data, 2))) end function Alignment{A,T}(data, alphabet, weights, names) where {A,T} @assert length(names) == length(weights) == size(data, 2) """\ Inconsistent sizes between `data`, `weight` and `names` \ - got $(size(data,2)), $(length(weights)), $(length(names)) """ # Check data and alphabet are consistent @assert isnothing(alphabet) || all(i -> in(i, alphabet), data) """\ Some elements of `data` are not in `alphabet` Alphabet: $alphabet Problematic data: $(data[findall(x -> !in(x, alphabet), data)]) """ # Check weights @assert all(>(0), weights) "Weights must be positive" @assert isapprox(sum(weights), 1; rtol = 1e-8) """ Weights must sum to 1 - got $(sum(weights)) """ alphabet_copy = isnothing(alphabet) ? nothing : copy(alphabet) return new{A,T}(Matrix(data), alphabet_copy, copy(weights), string.(names)) end end ################################################ ################# Constructors ################# ################################################ #= - from data matrix alone - kwargs to determine alphabet - from data + alphabet - from data + any alphabet constructor input (should be easy) =# function autofind_alphabet(data::AbstractMatrix{T}; verbose=true) where T <: Integer verbose && @info "Finding alphabet automatically from data ..." q = maximum(data) A = default_alphabet(q, T) verbose && @info "Found $A" return A end #= Different options for alphabet 1. an `Alphabet` of the right type --> main constructor 2. `nothing` --> special case 3. an `Alphabet` of the wrong type --> convert the data matrix if possible and fall back to 1 4. an input `X` to the `Alphabet` constructor: string or symbol --> call `Alphabet(X, T)` and fall back to 1 =# """ Alignment(data::AbstractMatrix, alphabet; kwargs...) `data` is a matrix of integers, with sequences stored in columns. `alphabet` can be either - an `Alphabet` - `nothing`: no conversion from integers to biological symbols. - something to build an alphabet from (*e.g.* a symbol like `:aa`, a string, ...). The constructor `Alphabet` will be called like so: `Alphabet(alphabet)`. If the types of `alphabet` and `data` mismatch, `data` is converted. `data` can also have the following shape: - vector of integer vectors, *e.g.* [[1,2], [3,4]]: each element is considered as a sequence - vector of integers: single sequence alignment """ function Alignment(data::AbstractMatrix{T}, alphabet::Alphabet{A,T}; kwargs...) where {A,T} return Alignment{A,T}(;data, alphabet, kwargs...) end function Alignment(data::AbstractMatrix{T}, ::Nothing; kwargs...) where T return Alignment{Nothing,T}(; data, alphabet=nothing, kwargs...) end function Alignment(D::AbstractMatrix{T}, alphabet::Alphabet{A,U}; kwargs...) where {A,T,U} data = convert(Matrix{U}, D) return Alignment(data, alphabet; kwargs...) # go to the first constructor end function Alignment(data::AbstractMatrix{T}, alphabet; kwargs...) where T return Alignment(data, Alphabet(alphabet, T); kwargs...) # go to first constructor end function Alignment(data::AbstractVector{<:AbstractVector{T}}, alphabet; kwargs...) where T # each element of `data` is one sequence return Alignment(reduce(hcat, data), alphabet; kwargs...) end function Alignment(data::AbstractVector{T}, alphabet; kwargs...) where T<:Integer return Alignment(reshape(data, length(data), 1), alphabet; kwargs...) end """ Alignment(data::AbstractMatrix{T}; alphabet = :auto, kwargs...) Keyword argument `alphabet` can be `:auto`, `:none`/`nothing`, or an input to the constructor `Alphabet`. Other keyword arguments are passed to the default constructor of `Alignment`. """ function Alignment( data::AbstractMatrix{T}; alphabet = :auto, verbose = true, kwargs... ) where T <: Integer A = if alphabet == :auto autofind_alphabet(data; verbose) elseif isnothing(alphabet) || in(alphabet, (:none, :no)) nothing else Alphabet(alphabet, T) end return Alignment(data, A; kwargs...) end function Alignment(data::AbstractVector{<:AbstractVector}; kwargs...) return Alignment(reduce(hcat, data); kwargs...) end function Alignment(data::AbstractVector{<:Integer}; kwargs...) return Alignment(reshape(data, length(data), 1); kwargs...) end ################################################ ##################### Misc ##################### ################################################ function Base.show(io::IO, X::Alignment) L, M = size(X) print(io, "Alignment of M=$M sequences of length L=$L") end function Base.show(io::IO, x::MIME"text/plain", X::Alignment) L, M = size(X) println(io, "Alignment of M=$M sequences of length L=$L - Shown as `MxL` matrix") show(io, x, X.data') end function Base.copy(X::Alignment{A,T}) where {A,T} return Alignment{A,T}(; data = copy(X.data), alphabet = copy(X.alphabet), weights = copy(X.weights), names = copy(X.names), ) end Base.convert(::Type{T}, X::Alignment{A,T}) where {A,T} = X Base.convert(::Type{Alignment{A,T}}, X::Alignment{A,T}) where {A,T} = X function Base.convert(::Type{I}, X::Alignment{A,J}) where {I<:Integer,A,J} return Alignment{A,I}(; data = convert(Matrix{I}, X.data), alphabet = convert(I, X.alphabet), weights = copy(X.weights), names = copy(X.names), ) end function Base.convert(::Type{Alignment{A,T}}, X::Alignment) where {A,T<:Integer} return convert(T, X) end ################################################################################### ################################# OneHotAlignment ################################# ################################################################################### #= to implement... =# @kwdef mutable struct OneHotAlignment{A,T} <: AbstractAlignment data::OneHotArray{UInt32, 2, 3, Matrix{UInt32}} alphabet::Union{Nothing, Alphabet{A,T}} weights::Vector{Float64} = ones(size(data, 2))/size(data, 2) # phylogenetic weights of sequences names::Vector{String} = fill("", size(data, 2)) function OneHotAlignment{A,T}(data, alphabet, weights, names) where {A,T} @assert length(names) == length(weights) == size(data, 3) """\ Inconsistent sizes between `data`, `weight` and `names` \ - got $(size(data,2)), $(length(weights)), $(length(names)) """ # Check data and alphabet are consistent @assert isnothing(alphabet) || all(i -> in(i, alphabet), 1:size(data,1)) """\ Some elements of `data` are not in `alphabet` """ # Check weights @assert all(>(0), weights) "Weights must be positive" @assert isapprox(sum(weights), 1; rtol = 1e-8) """ Weights must sum to 1 - got $(sum(weights)) """ return new{A,T}(data, alphabet, weights, names) end end function onehot(X::Alignment{A,T}) where {A,T} return OneHotAlignment{A,T}(; data = onehotbatch(X.data, 1:length(Alphabet(X))), alphabet = Alphabet(X), weights = X.weights, names = X.names, ) end ################################################################################### ################################# AbstractAlignment ############################### ################################################################################### ################################################ ############# Iterating / Indexing ############# ################################################ """ size(A::AbstractAlignment) Return a tuple with (in order) the length and the number of sequences. """ Base.size(aln::AbstractAlignment) = size(aln.data) Base.size(aln::AbstractAlignment, dim) = size(aln.data, dim) """ length(A::AbstractAlignment) Return the number of sequences in `A`. """ Base.length(aln::AbstractAlignment) = size(aln.data, ndims(aln.data)) Base.iterate(X::AbstractAlignment) = iterate(eachslice(X.data, dims=ndims(X.data))) function Base.iterate(X::AbstractAlignment, state) return iterate(eachslice(X.data, dims=ndims(X.data)), state) end """ eachsequence(X::AbstractAlignment[, indices]; skip) Return an iterator over the sequences in `X`. If `indices` is specified, consider only sequences at the corresponding indices. Use the integer argument `skip` to return only one sequence every `skip` (~ `1:skip:end`). """ function eachsequence(X::AbstractAlignment, indices) return Iterators.map(i -> selectdim(X.data, ndims(X.data), i), indices) end function eachsequence(X::AbstractAlignment; skip::Integer = 1) @assert skip > 0 "`skip` kwarg must be positive - instead $skip" return if skip == 1 eachslice(X.data, dims=ndims(X.data)) else eachsequence(X, 1:skip:size(X.data)[end]) end end """ named_sequences(X::AbstractAlignment; skip) Return an iterator of the form `(name, sequence)` over `X`. """ function named_sequences(X::AbstractAlignment, indices) return zip(X.names[indices], eachsequence(X, indices)) end function named_sequences(X::AbstractAlignment; skip::Integer = 1) @assert skip > 0 "`skip` kwarg must be positive - instead $skip" return if skip == 1 zip(X.names, eachslice(X.data, dims=ndims(X.data))) else indices = 1:skip:size(X.data)[end] zip(X.names[indices], eachsequence(X, indices)) end end # Different for OneHot and normal alignment Base.eltype(X::Alignment{A,T}) where {A,T} = AbstractVector{T} function Base.iterate(rX::Iterators.Reverse{<:AbstractAlignment}) iterate(Iterators.Reverse(eachslice(rX.itr.data, dims = ndims(rX.itr.data)))) end function Base.iterate(rX::Iterators.Reverse{<:AbstractAlignment}, state) iterate(Iterators.Reverse(eachslice(rX.itr.data, dims = ndims(rX.itr.data))), state) end Base.getindex(X::AbstractAlignment, i) = selectdim(X.data, ndims(X.data), i) # returns a view!!! Base.firstindex(X::AbstractAlignment) = 1 Base.lastindex(X::AbstractAlignment) = length(X) Base.view(X::AbstractAlignment, i) = getindex(X, i) Base.keys(X::AbstractAlignment) = LinearIndices(1:length(X)) """ subsample(X::AbstractAlignment, indices) Return an `Alignment` containing only the sequences of `X` at `indices`. """ subsample(X::AbstractAlignment, i::Int) = subsample(X, i:i) function subsample(X::AbstractAlignment, indices) data_copy = copy(X[indices]) Y = Alignment(data_copy, copy(X.alphabet)) Y.weights = X.weights[indices] / sum(X.weights[indices]) Y.names = X.names[indices] return Y end """ subsample_random(X::AbstractAlignment, m::Int) Return an `Alignment` with `m` sequences taking randomly from `X`. Sampling is done without replacement, meaning the `m` sequences are all at different positions in `X`. """ function subsample_random(X::AbstractAlignment, m::Int) M = length(X) @assert m < M "Cannot take $m different sequences from alignment of size $M" return subsample(X, randperm(M)[1:m]) end """ find_sequence(label::AbstractString, aln::AbstractAlignment) Find sequence with name `label` in `aln`, and return `(index, sequence)`. Scales as the number of sequences. !!! Return a *view* of the sequence. """ function find_sequence(label::AbstractString, aln::AbstractAlignment) i = findfirst(==(label), aln.names) return (i, isnothing(i) ? nothing : aln[i]) end """ match_sequences(pattern, aln::AbstractAlignment) Find sequences whose name matches `label` in `aln`, and return `(indices, sequences)`. Sequences are returned as columns. !!! Return a *view* of the sequences. """ function match_sequences(pattern, aln::AbstractAlignment) idx = findall(x -> occursin(pattern, x), aln.names) return idx, eachsequence(aln, idx) end ################################################ ##################### Misc ##################### ################################################ Alphabet(A::AbstractAlignment) = A.alphabet Base.unique(X::AbstractAlignment) = subsample(X, unique(i -> X[i], eachindex(X))) sequence_length(X::Alignment) = size(X, 1) sequence_length(X::OneHotAlignment) = size(X, 2) sequence_number(X::AbstractAlignment) = last(size(X)) function Random.rand(rng::AbstractRNG, X::Random.SamplerTrivial{<:AbstractAlignment}) M = sequence_number(X[]) return X[][rand(rng, 1:M)] end
BioSequenceMappings
https://github.com/PierreBarrat/BioSequenceMappings.jl.git