licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 15783 | ## %PREDICTMD_GENERATED_BY%
using PredictMDExtra
PredictMDExtra.import_all()
using PredictMD
PredictMD.import_all()
using CSVFiles
using CategoricalArrays
using DataFrames
using DecisionTree
using Distributions
using FileIO
using GLM
using IterTools
using Knet
using LIBSVM
using LinearAlgebra
using PredictMD
using PredictMDAPI
using PredictMDExtra
using RDatasets
using Random
using StatsModels
using Test
using Unitful
const Schema = StatsModels.Schema
# PREDICTMD IF INCLUDE TEST STATEMENTS
logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing"))
if isnothing(logger)
logger_stream = devnull
else
logger_stream = logger.stream
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
### Begin project-specific settings
DIRECTORY_CONTAINING_THIS_FILE = @__DIR__
PROJECT_DIRECTORY = dirname(
joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...)
)
PROJECT_OUTPUT_DIRECTORY = joinpath(
PROJECT_DIRECTORY,
"output",
)
mkpath(PROJECT_OUTPUT_DIRECTORY)
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots"))
# PREDICTMD IF INCLUDE TEST STATEMENTS
@debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,)
if PredictMD.is_travis_ci()
PredictMD.cache_to_path!(
;
from = ["cpu_examples", "breast_cancer_biopsy", "output",],
to = [PROJECT_OUTPUT_DIRECTORY],
)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
### End project-specific settings
### Begin model comparison code
Kernel = LIBSVM.Kernel
Random.seed!(999)
trainingandtuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_features_df.csv",
)
trainingandtuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_labels_df.csv",
)
testing_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_features_df.csv",
)
testing_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_labels_df.csv",
)
training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_features_df.csv",
)
training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_labels_df.csv",
)
tuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_features_df.csv",
)
tuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_labels_df.csv",
)
trainingandtuning_features_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_features_df_filename;
type_detect_rows = 100,
)
)
trainingandtuning_labels_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_labels_df_filename;
type_detect_rows = 100,
)
)
testing_features_df = DataFrames.DataFrame(
FileIO.load(
testing_features_df_filename;
type_detect_rows = 100,
)
)
testing_labels_df = DataFrames.DataFrame(
FileIO.load(
testing_labels_df_filename;
type_detect_rows = 100,
)
)
training_features_df = DataFrames.DataFrame(
FileIO.load(
training_features_df_filename;
type_detect_rows = 100,
)
)
training_labels_df = DataFrames.DataFrame(
FileIO.load(
training_labels_df_filename;
type_detect_rows = 100,
)
)
tuning_features_df = DataFrames.DataFrame(
FileIO.load(
tuning_features_df_filename;
type_detect_rows = 100,
)
)
tuning_labels_df = DataFrames.DataFrame(
FileIO.load(
tuning_labels_df_filename;
type_detect_rows = 100,
)
)
smoted_training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_features_df.csv",
)
smoted_training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_labels_df.csv",
)
smoted_training_features_df = DataFrames.DataFrame(
FileIO.load(
smoted_training_features_df_filename;
type_detect_rows = 100,
)
)
smoted_training_labels_df = DataFrames.DataFrame(
FileIO.load(
smoted_training_labels_df_filename;
type_detect_rows = 100,
)
)
logistic_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"logistic_classifier.jld2",
)
random_forest_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"random_forest_classifier.jld2",
)
c_svc_svm_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"c_svc_svm_classifier.jld2",
)
nu_svc_svm_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"nu_svc_svm_classifier.jld2",
)
knet_mlp_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"knet_mlp_classifier.jld2",
)
# PREDICTMD IF INCLUDE TEST STATEMENTS
logistic_classifier = nothing
Test.@test isnothing(logistic_classifier)
random_forest_classifier = nothing
Test.@test isnothing(random_forest_classifier)
c_svc_svm_classifier = nothing
Test.@test isnothing(c_svc_svm_classifier)
nu_svc_svm_classifier = nothing
Test.@test isnothing(nu_svc_svm_classifier)
knet_mlp_classifier = nothing
Test.@test isnothing(knet_mlp_classifier)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
logistic_classifier =
PredictMD.load_model(logistic_classifier_filename)
random_forest_classifier =
PredictMD.load_model(random_forest_classifier_filename)
c_svc_svm_classifier =
PredictMD.load_model(c_svc_svm_classifier_filename)
nu_svc_svm_classifier =
PredictMD.load_model(nu_svc_svm_classifier_filename)
knet_mlp_classifier =
PredictMD.load_model(knet_mlp_classifier_filename)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
# PREDICTMD IF INCLUDE TEST STATEMENTS
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
all_models = PredictMD.AbstractFittable[
logistic_classifier,
random_forest_classifier,
c_svc_svm_classifier,
nu_svc_svm_classifier,
knet_mlp_classifier,
]
single_label_name = :Class
negative_class = "benign"
positive_class = "malignant"
single_label_levels = [negative_class, positive_class]
categorical_label_names = Symbol[single_label_name]
continuous_label_names = Symbol[]
label_names = vcat(categorical_label_names, continuous_label_names)
println(
logger_stream, string(
"Single label binary classification metrics, training set, ",
"fix sensitivity",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
training_features_df,
training_labels_df,
single_label_name,
positive_class;
sensitivity = 0.95,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, training set, ",
"fix specificity",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
training_features_df,
training_labels_df,
single_label_name,
positive_class;
specificity = 0.95,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, training set, ",
"maximize F1 score",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
training_features_df,
training_labels_df,
single_label_name,
positive_class;
maximize = :f1score,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, training set, ",
"maximize Cohen's kappa",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
training_features_df,
training_labels_df,
single_label_name,
positive_class;
maximize = :cohen_kappa,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, testing set, ",
"fix sensitivity",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class;
sensitivity = 0.95,
);
allrows = true,
allcols = true,
splitcols = false,
)
# PREDICTMD IF INCLUDE TEST STATEMENTS
metrics = PredictMD.singlelabelbinaryclassificationmetrics(all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class;
sensitivity = 0.95)
auprc_row = first(
findall(
strip.(metrics[:metric]) .== "AUPRC"
)
)
Test.@test(
strip(metrics[auprc_row, :metric]) == "AUPRC"
)
Test.@test(
metrics[auprc_row, Symbol("Logistic regression")] > 0.910
)
Test.@test(
metrics[auprc_row, Symbol("Random forest")] > 0.910
)
Test.@test(
metrics[auprc_row, Symbol("SVM (C-SVC)")] > 0.910
)
Test.@test(
metrics[auprc_row, Symbol("SVM (nu-SVC)")] > 0.910
)
Test.@test(
metrics[auprc_row, Symbol("Knet MLP")] > 0.910
)
aurocc_row = first(
findall(
strip.(metrics[:metric]) .== "AUROCC"
)
)
Test.@test(
metrics[aurocc_row, :metric] == "AUROCC"
)
Test.@test(
metrics[aurocc_row, Symbol("Logistic regression")] > 0.910
)
Test.@test(
metrics[aurocc_row, Symbol("Random forest")] > 0.910
)
Test.@test(
metrics[aurocc_row, Symbol("SVM (C-SVC)")] > 0.910
)
Test.@test(
metrics[aurocc_row, Symbol("SVM (nu-SVC)")] > 0.910
)
Test.@test(
metrics[aurocc_row, Symbol("Knet MLP")] > 0.910
)
avg_precision_row = first(
findall(
strip.(metrics[:metric]) .== "Average precision"
)
)
Test.@test(
strip(metrics[avg_precision_row, :metric]) == "Average precision"
)
Test.@test(
metrics[avg_precision_row, Symbol("Logistic regression")] > 0.910
)
Test.@test(
metrics[avg_precision_row, Symbol("Random forest")] > 0.910
)
Test.@test(
metrics[avg_precision_row, Symbol("SVM (C-SVC)")] > 0.910
)
Test.@test(
metrics[avg_precision_row, Symbol("SVM (nu-SVC)")] > 0.910
)
Test.@test(
metrics[avg_precision_row, Symbol("Knet MLP")] > 0.910
)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
println(
logger_stream, string(
"Single label binary classification metrics, testing set, ",
"fix specificity",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class;
specificity = 0.95,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, testing set, ",
"maximize F1 score",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class;
maximize = :f1score,
);
allrows = true,
allcols = true,
splitcols = false,
)
println(
logger_stream, string(
"Single label binary classification metrics, testing set, ",
"maximize Cohen's kappa",
)
)
show(
logger_stream, PredictMD.singlelabelbinaryclassificationmetrics(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class;
maximize = :cohen_kappa,
);
allrows = true,
allcols = true,
splitcols = false,
)
rocplottesting = PredictMD.plotroccurve(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class,
);
# PREDICTMD IF INCLUDE TEST STATEMENTS
filename = string(
tempname(),
"_",
"rocplottesting",
".pdf",
)
rm(filename; force = true, recursive = true,)
@debug("Attempting to test that the file does not exist...", filename,)
Test.@test(!isfile(filename))
@debug("The file does not exist.", filename, isfile(filename),)
PredictMD.save_plot(filename, rocplottesting)
if PredictMD.is_force_test_plots()
@debug("Attempting to test that the file exists...", filename,)
Test.@test(isfile(filename))
@debug("The file does exist.", filename, isfile(filename),)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
display(rocplottesting)
PredictMD.save_plot(
joinpath(
PROJECT_OUTPUT_DIRECTORY,
"plots",
"rocplottesting.pdf",
),
rocplottesting,
)
prplottesting = PredictMD.plotprcurve(
all_models,
testing_features_df,
testing_labels_df,
single_label_name,
positive_class,
);
# PREDICTMD IF INCLUDE TEST STATEMENTS
filename = string(
tempname(),
"_",
"prplottesting",
".pdf",
)
rm(filename; force = true, recursive = true,)
@debug("Attempting to test that the file does not exist...", filename,)
Test.@test(!isfile(filename))
@debug("The file does not exist.", filename, isfile(filename),)
PredictMD.save_plot(filename, prplottesting)
if PredictMD.is_force_test_plots()
@debug("Attempting to test that the file exists...", filename,)
Test.@test(isfile(filename))
@debug("The file does exist.", filename, isfile(filename),)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
display(prplottesting)
PredictMD.save_plot(
joinpath(
PROJECT_OUTPUT_DIRECTORY,
"plots",
"prplottesting.pdf",
),
prplottesting,
)
### End model comparison code
# PREDICTMD IF INCLUDE TEST STATEMENTS
if PredictMD.is_travis_ci()
PredictMD.path_to_cache!(
;
to = ["cpu_examples", "breast_cancer_biopsy", "output",],
from = [PROJECT_OUTPUT_DIRECTORY],
)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
## %PREDICTMD_GENERATED_BY%
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 10858 | ## %PREDICTMD_GENERATED_BY%
using PredictMDExtra
PredictMDExtra.import_all()
using PredictMD
PredictMD.import_all()
using CSVFiles
using CategoricalArrays
using DataFrames
using DecisionTree
using Distributions
using FileIO
using GLM
using IterTools
using Knet
using LIBSVM
using LinearAlgebra
using PredictMD
using PredictMDAPI
using PredictMDExtra
using RDatasets
using Random
using StatsModels
using Test
using Unitful
const Schema = StatsModels.Schema
# PREDICTMD IF INCLUDE TEST STATEMENTS
logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing"))
if isnothing(logger)
logger_stream = devnull
else
logger_stream = logger.stream
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
### Begin project-specific settings
DIRECTORY_CONTAINING_THIS_FILE = @__DIR__
PROJECT_DIRECTORY = dirname(
joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...)
)
PROJECT_OUTPUT_DIRECTORY = joinpath(
PROJECT_DIRECTORY,
"output",
)
mkpath(PROJECT_OUTPUT_DIRECTORY)
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots"))
# PREDICTMD IF INCLUDE TEST STATEMENTS
if PredictMD.is_travis_ci()
PredictMD.cache_to_path!(
;
from = ["cpu_examples", "breast_cancer_biopsy", "output",],
to = [PROJECT_OUTPUT_DIRECTORY],
)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
# PREDICTMD IF INCLUDE TEST STATEMENTS
@debug("PROJECT_OUTPUT_DIRECTORY: ", PROJECT_OUTPUT_DIRECTORY,)
if PredictMD.is_travis_ci()
PredictMD.cache_to_path!(
;
from = ["cpu_examples", "breast_cancer_biopsy", "output",],
to = [PROJECT_OUTPUT_DIRECTORY],
)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
### End project-specific settings
### Begin model output code
Kernel = LIBSVM.Kernel
Random.seed!(999)
trainingandtuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_features_df.csv",
)
trainingandtuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_labels_df.csv",
)
testing_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_features_df.csv",
)
testing_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_labels_df.csv",
)
training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_features_df.csv",
)
training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_labels_df.csv",
)
tuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_features_df.csv",
)
tuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_labels_df.csv",
)
trainingandtuning_features_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_features_df_filename;
type_detect_rows = 100,
)
)
trainingandtuning_labels_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_labels_df_filename;
type_detect_rows = 100,
)
)
testing_features_df = DataFrames.DataFrame(
FileIO.load(
testing_features_df_filename;
type_detect_rows = 100,
)
)
testing_labels_df = DataFrames.DataFrame(
FileIO.load(
testing_labels_df_filename;
type_detect_rows = 100,
)
)
training_features_df = DataFrames.DataFrame(
FileIO.load(
training_features_df_filename;
type_detect_rows = 100,
)
)
training_labels_df = DataFrames.DataFrame(
FileIO.load(
training_labels_df_filename;
type_detect_rows = 100,
)
)
tuning_features_df = DataFrames.DataFrame(
FileIO.load(
tuning_features_df_filename;
type_detect_rows = 100,
)
)
tuning_labels_df = DataFrames.DataFrame(
FileIO.load(
tuning_labels_df_filename;
type_detect_rows = 100,
)
)
smoted_training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_features_df.csv",
)
smoted_training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_labels_df.csv",
)
smoted_training_features_df = DataFrames.DataFrame(
FileIO.load(
smoted_training_features_df_filename;
type_detect_rows = 100,
)
)
smoted_training_labels_df = DataFrames.DataFrame(
FileIO.load(
smoted_training_labels_df_filename;
type_detect_rows = 100,
)
)
logistic_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"logistic_classifier.jld2",
)
random_forest_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"random_forest_classifier.jld2",
)
c_svc_svm_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"c_svc_svm_classifier.jld2",
)
nu_svc_svm_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"nu_svc_svm_classifier.jld2",
)
knet_mlp_classifier_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"knet_mlp_classifier.jld2",
)
# PREDICTMD IF INCLUDE TEST STATEMENTS
logistic_classifier = nothing
Test.@test isnothing(logistic_classifier)
random_forest_classifier = nothing
Test.@test isnothing(random_forest_classifier)
c_svc_svm_classifier = nothing
Test.@test isnothing(c_svc_svm_classifier)
nu_svc_svm_classifier = nothing
Test.@test isnothing(nu_svc_svm_classifier)
knet_mlp_classifier = nothing
Test.@test isnothing(knet_mlp_classifier)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
logistic_classifier =
PredictMD.load_model(logistic_classifier_filename)
random_forest_classifier =
PredictMD.load_model(random_forest_classifier_filename)
c_svc_svm_classifier =
PredictMD.load_model(c_svc_svm_classifier_filename)
nu_svc_svm_classifier =
PredictMD.load_model(nu_svc_svm_classifier_filename)
knet_mlp_classifier =
PredictMD.load_model(knet_mlp_classifier_filename)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
# PREDICTMD IF INCLUDE TEST STATEMENTS
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
PredictMD.predict_proba(logistic_classifier, smoted_training_features_df)
PredictMD.predict_proba(random_forest_classifier, smoted_training_features_df)
PredictMD.predict_proba(c_svc_svm_classifier, smoted_training_features_df)
PredictMD.predict_proba(nu_svc_svm_classifier, smoted_training_features_df)
PredictMD.predict_proba(knet_mlp_classifier, smoted_training_features_df)
PredictMD.predict_proba(logistic_classifier,testing_features_df)
PredictMD.predict_proba(random_forest_classifier,testing_features_df)
PredictMD.predict_proba(c_svc_svm_classifier,testing_features_df)
PredictMD.predict_proba(nu_svc_svm_classifier,testing_features_df)
PredictMD.predict_proba(knet_mlp_classifier,testing_features_df)
PredictMD.predict(logistic_classifier,smoted_training_features_df)
PredictMD.predict(random_forest_classifier,smoted_training_features_df)
PredictMD.predict(c_svc_svm_classifier,smoted_training_features_df)
PredictMD.predict(nu_svc_svm_classifier,smoted_training_features_df)
PredictMD.predict(knet_mlp_classifier,smoted_training_features_df)
PredictMD.predict(logistic_classifier,testing_features_df)
PredictMD.predict(random_forest_classifier,testing_features_df)
PredictMD.predict(c_svc_svm_classifier,testing_features_df)
PredictMD.predict(nu_svc_svm_classifier,testing_features_df)
PredictMD.predict(knet_mlp_classifier,testing_features_df)
single_label_name = :Class
negative_class = "benign"
positive_class = "malignant"
PredictMD.predict(logistic_classifier,smoted_training_features_df, positive_class, 0.3)
PredictMD.predict(random_forest_classifier,smoted_training_features_df, positive_class, 0.3)
PredictMD.predict(c_svc_svm_classifier,smoted_training_features_df, positive_class, 0.3)
PredictMD.predict(nu_svc_svm_classifier,smoted_training_features_df, positive_class, 0.3)
PredictMD.predict(knet_mlp_classifier,smoted_training_features_df, positive_class, 0.3)
PredictMD.predict(logistic_classifier,testing_features_df, positive_class, 0.3)
PredictMD.predict(random_forest_classifier,testing_features_df, positive_class, 0.3)
PredictMD.predict(c_svc_svm_classifier,testing_features_df, positive_class, 0.3)
PredictMD.predict(nu_svc_svm_classifier,testing_features_df, positive_class, 0.3)
PredictMD.predict(knet_mlp_classifier,testing_features_df, positive_class, 0.3)
### End model output code
# PREDICTMD IF INCLUDE TEST STATEMENTS
PredictMD.get_underlying(logistic_classifier)
PredictMD.get_underlying(random_forest_classifier)
PredictMD.get_underlying(c_svc_svm_classifier)
PredictMD.get_underlying(nu_svc_svm_classifier)
PredictMD.get_underlying(knet_mlp_classifier)
PredictMD.get_history(logistic_classifier)
PredictMD.get_history(random_forest_classifier)
PredictMD.get_history(c_svc_svm_classifier)
PredictMD.get_history(nu_svc_svm_classifier)
PredictMD.get_history(knet_mlp_classifier)
PredictMD.parse_functions!(logistic_classifier)
PredictMD.parse_functions!(random_forest_classifier)
PredictMD.parse_functions!(c_svc_svm_classifier)
PredictMD.parse_functions!(nu_svc_svm_classifier)
PredictMD.parse_functions!(knet_mlp_classifier)
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
# PREDICTMD IF INCLUDE TEST STATEMENTS
if PredictMD.is_travis_ci()
PredictMD.path_to_cache!(
;
to = ["cpu_examples", "breast_cancer_biopsy", "output",],
from = [PROJECT_OUTPUT_DIRECTORY],
)
end
# PREDICTMD ELSE
# PREDICTMD ENDIF INCLUDE TEST STATEMENTS
## %PREDICTMD_GENERATED_BY%
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 6773 | import InteractiveUtils # stdlib
import Pkg # stdlib
import Test # stdlib
import Random
Random.seed!(999)
@debug(string("Julia depot paths: "), Base.DEPOT_PATH)
@debug(string("Julia load paths: "), Base.LOAD_PATH)
InteractiveUtils.versioninfo(verbose=true)
@debug(string("Attempting to import PredictMD...",))
import PredictMD
@debug(string("Successfully imported PredictMD.",))
@debug(string("PredictMD version: "),PredictMD.version(),)
@debug(
string("PredictMD package directory: "),
PredictMD.package_directory(),
)
@debug(string("Attempting to import PredictMDExtra...",))
import PredictMDExtra
@debug(string("Successfully imported PredictMDExtra.",))
@debug(string("PredictMDExtra version: "),PredictMDExtra.version(),)
@debug(
string("PredictMDExtra package directory: "),
PredictMDExtra.package_directory(),
)
@debug(string("Julia depot paths: "), Base.DEPOT_PATH)
@debug(string("Julia load paths: "), Base.LOAD_PATH)
if group_includes_block(TEST_GROUP, TestBlockUnitTests())
Test.@testset "Unit tests" begin
if false
else
unit_test_interval_string = "[,)"
end
@debug(
"unit_test_interval_string: ",
unit_test_interval_string,
)
if !is_interval(unit_test_interval_string)
throw(
ArgumentError(
string(
"$(unit_test_interval_string) ",
"is not a valid interval",
)
)
)
end
unit_test_interval = construct_interval(
unit_test_interval_string
)
@debug(
"unit_test_interval: ",
unit_test_interval,
)
testmodulea_filename = joinpath("PredictMDTestModuleA","PredictMDTestModuleA.jl",)
testmoduleb_filename = joinpath(
"PredictMDTestModuleB",
"directory1",
"directory2",
"directory3",
"directory4",
"directory5",
"PredictMDTestModuleB.jl",
)
testmodulec_filename = joinpath(
PredictMD.maketempdir(),
"PredictMDTestModuleC.jl",
)
rm(testmodulec_filename; force = true, recursive = true)
open(testmodulec_filename, "w") do io
write(io, "module PredictMDTestModuleC end")
end
include(testmodulea_filename)
include(testmoduleb_filename)
include(testmodulec_filename)
test_directory = dirname(@__FILE__)
unit_test_directory = joinpath(test_directory, "unit")
include("unit-tests-type-definitions.jl")
for (root, dirs, files) in walkdir(unit_test_directory)
Test.@testset "$(root)" begin
for file in files
if endswith(lowercase(strip(file)), ".jl")
file_path = joinpath(root, file)
if interval_contains_x(unit_test_interval,
strip(file))
Test.@testset "$(file_path)" begin
@debug("Running $(file_path)")
include(file_path)
end
end
end
end
end
end
end
end
temp_generate_examples_dir = joinpath(
PredictMD.maketempdir(),
"generate_examples",
"PredictMDTEMP",
"examples",
)
rm(
temp_generate_examples_dir;
force = true,
recursive = true,
)
Test.@testset "Integration tests" begin
Test.@testset "Generate examples " begin
Test.@test(
temp_generate_examples_dir == PredictMD.generate_examples(
temp_generate_examples_dir;
scripts = true,
include_test_statements = true,
markdown = false,
notebooks = false,
execute_notebooks = false,
)
)
end
Test.@testset "Boston housing regression example (CPU) " begin
@debug("Testing Boston housing regression example (CPU)")
boston_housing_tests = [
"01_preprocess_data.jl" => TestBlockIntegration1(),
"02_linear_regression.jl" => TestBlockIntegration1(),
"03_random_forest_regression.jl" => TestBlockIntegration2(),
"04_knet_mlp_regression.jl" => TestBlockIntegration2(),
"05_compare_models.jl" => TestBlockIntegration3(),
"06_get_model_output.jl" => TestBlockIntegration3(),
]
for test_pair in boston_housing_tests
test_file = test_pair[1]
test_block = test_pair[2]
if group_includes_block(TEST_GROUP, test_block)
Test.@testset "cpu_examples/bostonhousing/src/$(test_file)" begin
include(
joinpath(
temp_generate_examples_dir,
"cpu_examples",
"boston_housing",
"src",
test_file,
)
)
end
end
end
end
Test.@testset "Breast cancer biopsy classification (CPU)" begin
@debug("Testing breast cancer biopsy classification example (CPU)")
breast_cancer_tests = [
"01_preprocess_data.jl" => TestBlockIntegration4(),
"02_smote.jl" => TestBlockIntegration4(),
"03_logistic_classifier.jl" => TestBlockIntegration4(),
"04_random_forest_classifier.jl" => TestBlockIntegration5(),
"05_c_svc_svm_classifier.jl" => TestBlockIntegration5(),
"06_nu_svc_svm_classifier.jl" => TestBlockIntegration5(),
"07_knet_mlp_classifier.jl" => TestBlockIntegration6(),
"08_compare_models.jl" => TestBlockIntegration7(),
"09_get_model_output.jl" => TestBlockIntegration7(),
]
for test_pair in breast_cancer_tests
test_file = test_pair[1]
test_block = test_pair[2]
if group_includes_block(TEST_GROUP, test_block)
Test.@testset "cpu_examples/breastcancer/src/$(test_file)" begin
include(
joinpath(
temp_generate_examples_dir,
"cpu_examples",
"breast_cancer_biopsy",
"src",
test_file,
)
)
end
end
end
end
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 7291 | abstract type AbstractTestBlock
end
struct TestBlockUnitTests <: AbstractTestBlock
end
struct TestBlockIntegration1 <: AbstractTestBlock
end
struct TestBlockIntegration2 <: AbstractTestBlock
end
struct TestBlockIntegration3 <: AbstractTestBlock
end
struct TestBlockIntegration4 <: AbstractTestBlock
end
struct TestBlockIntegration5 <: AbstractTestBlock
end
struct TestBlockIntegration6 <: AbstractTestBlock
end
struct TestBlockIntegration7 <: AbstractTestBlock
end
group_includes_block(::AbstractTestGroup, ::AbstractTestBlock) = true
group_includes_block(::TestGroupDefault, ::AbstractTestBlock) = true
group_includes_block(::TestGroupAll, ::AbstractTestBlock) = true
group_includes_block(::TestGroupTestPlots, ::AbstractTestBlock) = true
group_includes_block(::TestGroupImportOnly, ::AbstractTestBlock) = false
group_includes_block(::TestGroupTravis1, ::TestBlockUnitTests) = true
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration1) = true
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis1, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis2, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration2) = true
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis2, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis3, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration3) = true
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis3, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis4, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration4) = true
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis4, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis5, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration5) = true
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis5, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis6, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration6) = true
group_includes_block(::TestGroupTravis6, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupTravis7, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupTravis7, ::TestBlockIntegration7) = true
group_includes_block(::TestGroupDocker1, ::TestBlockUnitTests) = true
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupDocker1, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupDocker2, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration1) = true
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration2) = true
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration3) = true
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupDocker2, ::TestBlockIntegration7) = false
group_includes_block(::TestGroupDocker3, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration4) = true
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration5) = true
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration6) = true
group_includes_block(::TestGroupDocker3, ::TestBlockIntegration7) = true
group_includes_block(::TestGroupDocker4, ::TestBlockUnitTests) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration1) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration2) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration3) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration4) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration5) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration6) = false
group_includes_block(::TestGroupDocker4, ::TestBlockIntegration7) = false
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 1578 | import PredictMD
abstract type AbstractTestGroup end
struct TestGroupDefault <: AbstractTestGroup end
struct TestGroupAll <: AbstractTestGroup end
struct TestGroupTestPlots <: AbstractTestGroup end
struct TestGroupImportOnly <: AbstractTestGroup end
struct TestGroupTravis1 <: AbstractTestGroup end
struct TestGroupTravis2 <: AbstractTestGroup end
struct TestGroupTravis3 <: AbstractTestGroup end
struct TestGroupTravis4 <: AbstractTestGroup end
struct TestGroupTravis5 <: AbstractTestGroup end
struct TestGroupTravis6 <: AbstractTestGroup end
struct TestGroupTravis7 <: AbstractTestGroup end
struct TestGroupDocker1 <: AbstractTestGroup end
struct TestGroupDocker2 <: AbstractTestGroup end
struct TestGroupDocker3 <: AbstractTestGroup end
struct TestGroupDocker4 <: AbstractTestGroup end
const TEST_GROUP_STRING_TO_INSTANCE = Dict{String, AbstractTestGroup}(
#
"default" => TestGroupDefault(),
#
"all" => TestGroupAll(),
#
"test-plots" => TestGroupTestPlots(),
#
"import-only" => TestGroupImportOnly(),
#
"travis-1" => TestGroupTravis1(),
"travis-2" => TestGroupTravis2(),
"travis-3" => TestGroupTravis3(),
"travis-4" => TestGroupTravis4(),
"travis-5" => TestGroupTravis5(),
"travis-6" => TestGroupTravis6(),
"travis-7" => TestGroupTravis7(),
#
"docker-1" => TestGroupDocker1(),
"docker-2" => TestGroupDocker2(),
"docker-3" => TestGroupDocker3(),
"docker-4" => TestGroupDocker4(),
)
const TEST_GROUP_INSTANCE_TO_STRING = PredictMD.inverse(
TEST_GROUP_STRING_TO_INSTANCE
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 1454 | import PredictMD
if get(ENV, "PKGEVAL", "") == "true"
ENV["PREDICTMD_TEST_GROUP"] = "all"
end
if PredictMD.is_travis_ci() && !haskey(ENV, "PREDICTMD_TEST_GROUP")
ENV["PREDICTMD_TEST_GROUP"] = lowercase(
strip(
get(
ENV,
"GROUP",
"",
)
)
)
end
const _test_group_environment_variable = lowercase(
strip(
get(
ENV,
"PREDICTMD_TEST_GROUP",
""
)
)
)
if length(_test_group_environment_variable) == 0
const _test_group_value = "default"
else
const _test_group_value = _test_group_environment_variable
end
if haskey(TEST_GROUP_STRING_TO_INSTANCE, _test_group_value)
const TEST_GROUP = TEST_GROUP_STRING_TO_INSTANCE[_test_group_value]
@info(
string(
"PREDICTMD_TEST_GROUP: \"",
TEST_GROUP_INSTANCE_TO_STRING[TEST_GROUP],
"\"",
)
)
else
const _valid_test_group_values = string(
"\"",
join(
sort(collect(keys(TEST_GROUP_STRING_TO_INSTANCE))),
"\", \"",
),
"\"",
)
error(
string(
"\"",
_test_group_value,
"\" is not a valid value for PREDICTMD_TEST_GROUP. ",
"Valid values are: ",
_valid_test_group_values,
".",
)
)
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 851 | import InteractiveUtils
import Pkg
import Test
@debug(string("Julia depot paths: "), Base.DEPOT_PATH)
@debug(string("Julia load paths: "), Base.LOAD_PATH)
logger = Base.CoreLogging.current_logger_for_env(Base.CoreLogging.Debug, Symbol(splitext(basename(something(@__FILE__, "nothing")))[1]), something(@__MODULE__, "nothing"))
@debug(string("Julia version info: ",))
if !isnothing(logger)
InteractiveUtils.versioninfo(logger.stream; verbose=true)
end
@debug(string("Attempting to import PredictMD...",))
import PredictMD
@debug(string("Successfully imported PredictMD.",))
@debug(string("PredictMD version: "),PredictMD.version(),)
@debug(string("PredictMD package directory: "),PredictMD.package_directory(),)
@debug(string("Julia depot paths: "), Base.DEPOT_PATH)
@debug(string("Julia load paths: "), Base.LOAD_PATH)
PredictMD.import_all()
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 5351 | abstract type AbstractInterval end
struct NoBoundsInterval <: AbstractInterval
end
struct LowerAndUpperBoundInterval <: AbstractInterval
left::String
right::String
function LowerAndUpperBoundInterval(
left::String,
right::String,
)::LowerAndUpperBoundInterval
correct_left = strip(left)
correct_right = strip(right)
result::LowerAndUpperBoundInterval = new(
correct_left,
correct_right,
)
return result
end
end
struct LowerBoundOnlyInterval <: AbstractInterval
left::String
function LowerBoundOnlyInterval(
left::String,
)::LowerBoundOnlyInterval
correct_left = strip(left)
result::LowerBoundOnlyInterval = new(
correct_left,
)
return result
end
end
struct UpperBoundOnlyInterval <: AbstractInterval
right::String
function UpperBoundOnlyInterval(
right::String,
)::UpperBoundOnlyInterval
correct_right = strip(right)
result::UpperBoundOnlyInterval = new(
correct_right,
)
return result
end
end
function is_interval(x::String)::Bool
if is_no_bounds_interval(x)
return true
elseif is_lower_bound_only_interval(x)
return true
elseif is_upper_bound_only_interval(x)
return true
elseif is_lower_and_upper_bound_interval(x)
return true
else
return false
end
end
function get_lower_and_upper_bound_interval_regex()::Regex
lower_and_upper_bound_interval_regex::Regex =
r"\[(\w\w*?)\,(\w\w*?)\)"
return lower_and_upper_bound_interval_regex
end
function get_lower_bound_only_interval_regex()::Regex
lower_bound_only_interval_regex::Regex =
r"\[(\w\w*?)\,\)"
return lower_bound_only_interval_regex
end
function get_upper_bound_only_interval_regex()::Regex
upper_bound_only_interval_regex::Regex =
r"\[\,(\w\w*?)\)"
return upper_bound_only_interval_regex
end
function get_no_bounds_interval_regex()::Regex
no_bounds_interval_regex::Regex =
r"\[\,\)"
return no_bounds_interval_regex
end
function is_no_bounds_interval(x::String)::Bool
result::Bool = occursin(
get_no_bounds_interval_regex(),
x,
)
return result
end
function is_lower_and_upper_bound_interval(x::String)::Bool
result::Bool = occursin(
get_lower_and_upper_bound_interval_regex(),
x,
)
return result
end
function is_lower_bound_only_interval(x::String)::Bool
result::Bool = occursin(
get_lower_bound_only_interval_regex(),
x,
)
return result
end
function is_upper_bound_only_interval(x::String)::Bool
result::Bool = occursin(
get_upper_bound_only_interval_regex(),
x,
)
return result
end
function construct_interval(x::String)::AbstractInterval
if is_no_bounds_interval(x)
result = NoBoundsInterval()
elseif is_lower_bound_only_interval(x)
loweronly_regexmatch::RegexMatch = match(
get_lower_bound_only_interval_regex(),
x,
)
loweronly_left::String = strip(
convert(String, loweronly_regexmatch[1])
)
result = LowerBoundOnlyInterval(loweronly_left)
elseif is_upper_bound_only_interval(x)
upperonly_regexmatch::RegexMatch = match(
get_upper_bound_only_interval_regex(),
x,
)
upperonly_right::String = strip(
convert(String, upperonly_regexmatch[1])
)
result = UpperBoundOnlyInterval(upperonly_right)
elseif is_lower_and_upper_bound_interval(x)
lowerandupper_regexmatch::RegexMatch = match(
get_lower_and_upper_bound_interval_regex(),
x,
)
lowerandupper_left::String = strip(
convert(String, lowerandupper_regexmatch[1])
)
lowerandupper_right::String = strip(
convert(String, lowerandupper_regexmatch[2])
)
result = LowerAndUpperBoundInterval(
lowerandupper_left,
lowerandupper_right,
)
else
error("argument is not a valid interval")
end
return result
end
function interval_contains_x(
interval::NoBoundsInterval,
x::AbstractString,
)::Bool
result::Bool = true
return result
end
function interval_contains_x(
interval::LowerAndUpperBoundInterval,
x::AbstractString,
)::Bool
x_stripped::String = strip(convert(String, x))
left::String = strip(interval.left)
right::String = strip(interval.right)
result::Bool = (left <= x_stripped) && (x_stripped < right)
return result
end
function interval_contains_x(
interval::LowerBoundOnlyInterval,
x::AbstractString,
)::Bool
x_stripped::String = strip(convert(String, x))
left::String = strip(interval.left)
result::Bool = left <= x_stripped
return result
end
function interval_contains_x(
interval::UpperBoundOnlyInterval,
x::AbstractString,
)
x_stripped::String = strip(convert(String, x))
right::String = strip(interval.right)
result::Bool = x_stripped < right
return result
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 574 | import Test
ENV["PREDICTMD_IS_RUNTESTS"] = "true"
Test.@testset "PredictMD.jl" begin
ENV["PREDICTMD_IS_RUNTESTS"] = "true"
import PredictMDExtra
PredictMDExtra.import_all()
include("intervals.jl")
include("import-predictmd.jl")
include("define-test-groups.jl")
include("define-test-blocks.jl")
include("get-test-group.jl")
include("set-predictmd-test-plots.jl")
include("set-predictmd-open-plots-during-tests.jl")
include("all-testsets.jl")
ENV["PREDICTMD_IS_RUNTESTS"] = "false"
end
ENV["PREDICTMD_IS_RUNTESTS"] = "false"
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 312 | if length(
lowercase(strip(get(ENV, "PREDICTMD_OPEN_PLOTS_DURING_TESTS", "")))
) == 0
ENV["PREDICTMD_OPEN_PLOTS_DURING_TESTS"] = "false"
end
@debug(
string(
"PREDICTMD_OPEN_PLOTS_DURING_TESTS: \"",
ENV["PREDICTMD_OPEN_PLOTS_DURING_TESTS"],
"\"",
)
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 1226 | if length(lowercase(strip(get(ENV, "PREDICTMD_TEST_PLOTS", "")))) == 0
ENV["PREDICTMD_TEST_PLOTS"] = "false"
end
if isa(TEST_GROUP, TestGroupAll)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTestPlots)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis1)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis2)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis3)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis4)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis5)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupTravis6)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupDocker1)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupDocker2)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupDocker3)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
if isa(TEST_GROUP, TestGroupDocker4)
ENV["PREDICTMD_TEST_PLOTS"] = "true"
end
@info(
string(
"PREDICTMD_TEST_PLOTS: \"",
ENV["PREDICTMD_TEST_PLOTS"],
"\"",
)
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 693 | import PredictMD
import Test
Test.@test( isdir(PredictMD.package_directory()) )
Test.@test( isdir(PredictMD.package_directory("ci")) )
Test.@test( isdir(PredictMD.package_directory("ci", "travis")) )
Test.@test( isdir(PredictMD.package_directory(PredictMDTestModuleA)) )
Test.@test( isdir(PredictMD.package_directory(PredictMDTestModuleB)) )
Test.@test( isdir( PredictMD.package_directory(
PredictMDTestModuleB, "directory2",
) ) )
Test.@test( isdir( PredictMD.package_directory(
PredictMDTestModuleB, "directory2", "directory3",
) ) )
Test.@test_throws(
ErrorException,
PredictMD.package_directory(PredictMDTestModuleC),
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 157 | import PredictMD
import Test
# Test.@test(typeof(PredictMD.registry_url_list()) <: Vector{String})
# Test.@test(length(PredictMD.registry_url_list()) > 0)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 789 | import PredictMD
import Test
Test.@test( Base.VERSION >= VersionNumber("1.0") )
Test.@test( PredictMD.version() > VersionNumber(0) )
Test.@test(
PredictMD.version() ==
PredictMD.version(PredictMD)
)
Test.@test(
PredictMD.version() ==
PredictMD.version(first(methods(PredictMD.eval)))
)
Test.@test(
PredictMD.version() ==
PredictMD.version(PredictMD.eval)
)
Test.@test(
PredictMD.version() ==
PredictMD.version(PredictMD.eval, (Any,))
)
Test.@test( PredictMD.version(PredictMDTestModuleA) == VersionNumber("1.2.3") )
Test.@test( PredictMD.version(PredictMDTestModuleB) == VersionNumber("4.5.6") )
Test.@test_throws(
ErrorException,
PredictMD.TomlFile(joinpath(PredictMD.maketempdir(),"1","2","3","4")),
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 232 | import PredictMDAPI
struct Foo_Fittable{T} <: PredictMDAPI.AbstractFittable
x::T
end
struct Bar_Fittable{T} <: PredictMDAPI.AbstractFittable
x::T
end
struct Baz_Fittable{T} <: PredictMDAPI.AbstractFittable
x::T
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 33 | module PredictMDTestModuleA end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 33 | module PredictMDTestModuleB end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 83 | import PredictMD
import Test
Test.@test length(PredictMD.registry_url_list()) > 0
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 299 | import Test
import PredictMD
a = PredictMD.version()
Test.@test( typeof(a) == VersionNumber )
Test.@test( typeof(a) === VersionNumber )
Test.@test( a != VersionNumber(0) )
Test.@test( a > VersionNumber(0) )
Test.@test( a > VersionNumber("0.1.0") )
Test.@test( a < VersionNumber("123456789.0.0") )
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 753 | import Test
import PredictMD
a = PredictMD.package_directory()
Test.@test( isdir(a) )
b = PredictMD.package_directory(
"assets",
)
Test.@test( isdir(b) )
Test.@test( dirname(b) == a )
c = PredictMD.package_directory(
"assets",
"icd",
)
Test.@test( isdir(c) )
Test.@test( dirname(c) == b )
d = PredictMD.package_directory(
"assets",
"icd",
"icd9",
)
Test.@test( isdir(d) )
Test.@test( dirname(d) == c )
e = PredictMD.package_directory(
"assets",
"icd",
"icd9",
"ccs"
)
Test.@test( isdir(e) )
Test.@test( dirname(e) == d )
f = PredictMD.package_directory(
"assets",
"icd",
"icd9",
"ccs",
"AppendixASingleDX.txt"
)
Test.@test( dirname(f) == e )
Test.@test( isfile(f) )
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 377 | import PredictMD
import PredictMD.Cleaning
Test.@test(
PredictMD.Cleaning.x_contains_y("abc", ["xyz", "abc", "123",])
)
Test.@test(
!PredictMD.Cleaning.x_contains_y("abc", ["xyz", "opqrst", "123",])
)
Test.@test(
PredictMD.Cleaning.symbol_begins_with(:abcdefg, "abc")
)
Test.@test(
!PredictMD.Cleaning.symbol_begins_with(:abcdefg, "xyz")
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 68 | import PredictMD
PredictMD.import_all()
PredictMD.import_all(Main)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 200 | import PredictMD
import Test
if PredictMD.is_travis_ci_on_linux()
Test.@test( PredictMD.is_filesystem_root("/") )
Test.@test_throws(ErrorException, PredictMD.find_package_directory("/"))
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 186 | import PredictMD
import Test
if PredictMD.is_travis_ci()
Test.@testset "Testing print_list_of_package_imports()" begin
PredictMD.print_list_of_package_imports()
end
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 169 | import PredictMD
import Test
tmpdir = PredictMD.maketempdir()
tmpfile = joinpath(tmpdir, "Project.toml")
Test.@test_throws(ErrorException, PredictMD.TomlFile(tmpfile))
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 186 | import PredictMD
import Test
Test.@test_throws ErrorException PredictMD.simple_linear_regression([1, 2], [])
Test.@test_throws ErrorException PredictMD.simple_linear_regression([], [])
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 3680 | import DataFrames
import PredictMD
import Test
Test.@test_throws(
ErrorException,
PredictMD.calculate_smote_pct_under(;pct_over=-111,minority_to_majority_ratio=0.5),
)
Test.@test_throws(
ErrorException,
PredictMD.calculate_smote_pct_under(;pct_over=100,minority_to_majority_ratio=-1.5),
)
features_df_0rows = DataFrames.DataFrame()
labels_df_0rows = DataFrames.DataFrame()
labels_df_3rows = DataFrames.DataFrame()
labels_df_3rows[:y] = [1,2,3]
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "",
minorityclass = "",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_3rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
minority_to_majority_ratio = 1,
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
minority_to_majority_ratio = 1,
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_0rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
minority_to_majority_ratio = 1,
),
)
Test.@test_throws(
ErrorException,
PredictMD.smote(features_df_0rows,
labels_df_3rows,
Symbol[],
:y;
majorityclass = "majorityclass",
minorityclass = "minorityclass",
minority_to_majority_ratio = 1,
),
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 188 | Test.@test_throws ErrorException PredictMD.generate_examples(PredictMD.maketempdir())
Test.@test_throws ErrorException PredictMD.generate_examples(PredictMD.maketempdir(); scripts = true)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 620 | import Test
import PredictMD
y_true = [3, -0.5, 2, 7,]
y_pred = [2.5, 0.0, 2, 8,]
Test.@test(
isapprox(
PredictMD.r2_score(y_true, y_pred,),
0.948;
atol = 0.001,
)
)
y_true = [1,2,3,]
y_pred = [1,2,3,]
Test.@test(
isapprox(
PredictMD.r2_score(y_true, y_pred,),
1.0;
)
)
y_true = [1,2,3,]
y_pred = [2,2,2,]
Test.@test(
isapprox(
PredictMD.r2_score(y_true, y_pred,),
0.0;
)
)
y_true = [1,2,3,]
y_pred = [3,2,1,]
Test.@test(
isapprox(
PredictMD.r2_score(y_true, y_pred,),
-3.0;
)
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 477 | import Test
import PredictMD
table1 = [20 5; 10 15]
Test.@test(
isapprox(PredictMD.cohen_kappa(table1), 0.4; atol = 0.00000000001)
)
table2 = [45 15; 25 15]
Test.@test(
isapprox(PredictMD.cohen_kappa(table2), 0.1304; atol = 0.0001)
)
table3 = [25 35; 5 35]
Test.@test(
isapprox(PredictMD.cohen_kappa(table3), 0.2593; atol = 0.0001)
)
table4 = [9 3 1; 4 8 2 ; 2 1 6]
Test.@test(
isapprox(PredictMD.cohen_kappa(table4), 0.45; atol = 0.001)
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 26037 | import PredictMD
import StatsBase
import Test
Test.@test_throws(ArgumentError, PredictMD.get_number_in_each_fold(1, 2))
Test.@test_throws(DimensionMismatch, PredictMD.get_top_level_num_folds(PredictMD.CrossValidation{Int}(PredictMD.CrossValidation{Int}[PredictMD.CrossValidation{Int}(; all_indices = [1,2,3,4,5,6,7,8,9,10], num_folds_per_level = (2,2,2))], Vector{Int}[])))
Test.@test(PredictMD.get_top_level_num_folds(PredictMD.CrossValidation{Int}(PredictMD.CrossValidation{Int}[], Vector{Int}[])) == 0)
Test.@testset "CrossValidation" begin
Test.@testset "get_number_in_each_fold" begin
@debug("get_number_in_each_fold")
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 1)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 1) == [100] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 2)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 2) == [50, 50] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 3)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 3) == [34, 33, 33] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 4)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 4) == [25, 25, 25, 25] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 5)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 5) == [20, 20, 20, 20, 20] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 6)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 6) == [17, 17, 17, 17, 16, 16] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 7)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 7) == [15, 15, 14, 14, 14, 14, 14] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 8)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 8) == [13, 13, 13, 13, 12, 12, 12, 12] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 9)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 9) == [12, 11, 11, 11, 11, 11, 11, 11, 11] )
Test.@test( sum(PredictMD.get_number_in_each_fold(100, 10)) == 100 )
Test.@test( PredictMD.get_number_in_each_fold(100, 10) == [10, 10, 10, 10, 10, 10, 10, 10, 10, 10] )
end
Test.@testset "get_indices_in_each_fold" begin
@debug("get_indices_in_each_fold")
Test.@test( PredictMD.get_indices_in_each_fold([1,2,3,4,5,6,7,8,9,10], 3) == [[1,2,3,4], [5,6,7], [8,9,10]] )
Test.@test( PredictMD.get_indices_in_each_fold([5,6,7,8,9,10], 3) == [[5,6], [7,8], [9,10]] )
Test.@test( PredictMD.get_indices_in_each_fold([1,2,3,4,8,9,10], 3) == [[1,2,3], [4,8], [9,10]] )
Test.@test( PredictMD.get_indices_in_each_fold([1,2,3,4,5,6,7], 3) == [[1,2,3], [4,5], [6,7]] )
end
Test.@testset "get_leavein_indices on vector of integers" begin
@debug("get_leavein_indices")
Test.@test( PredictMD.get_leavein_indices([1,2,3,4,5,6,7,8,9,10], 3, 1) == [5,6,7,8,9,10] )
Test.@test( PredictMD.get_leavein_indices([1,2,3,4,5,6,7,8,9,10], 3, 2) == [1,2,3,4,8,9,10] )
Test.@test( PredictMD.get_leavein_indices([1,2,3,4,5,6,7,8,9,10], 3, 3) == [1,2,3,4,5,6,7] )
end
Test.@testset "get_leaveout_indices on vector of integers" begin
@debug("get_leaveout_indices")
Test.@test( PredictMD.get_leaveout_indices([1,2,3,4,5,6,7,8,9,10], 3, 1) == [1,2,3,4] )
Test.@test( PredictMD.get_leaveout_indices([1,2,3,4,5,6,7,8,9,10], 3, 2) == [5,6,7] )
Test.@test( PredictMD.get_leaveout_indices([1,2,3,4,5,6,7,8,9,10], 3, 3) == [8,9,10] )
end
Test.@testset "nested cross validation, integer indices, small" begin
@debug("nested cross validation, integer indices, small")
cv = PredictMD.CrossValidation{Int}(; all_indices = [1,2,3,4,5,6,7,8,9,10], num_folds_per_level = (2,2,2))
Test.@test( isa(cv, PredictMD.CrossValidation{Int}) )
Test.@test( !PredictMD.isleaf(cv) )
Test.@test( PredictMD.get_top_level_num_folds(cv) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv, 1) == [1,2,3,4,5] )
Test.@test( PredictMD.get_leaveout_indices(cv, 2) == [6,7,8,9,10] )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv) )
cv_1 = PredictMD.get_leavein_cv(cv, 1)
Test.@test( !PredictMD.isleaf(cv_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1, 1) == [6,7,8] )
Test.@test( PredictMD.get_leaveout_indices(cv_1, 2) == [9,10] )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1) )
cv_2 = PredictMD.get_leavein_cv(cv, 2)
Test.@test( !PredictMD.isleaf(cv_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2, 1) == [1,2,3])
Test.@test( PredictMD.get_leaveout_indices(cv_2, 2) == [4,5])
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2) )
cv_1_1 = PredictMD.get_leavein_cv(cv_1, 1)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1_1) )
Test.@test( !PredictMD.isleaf(cv_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1_1, 1) == [9] )
Test.@test( PredictMD.get_leaveout_indices(cv_1_1, 2) == [10] )
cv_1_2 = PredictMD.get_leavein_cv(cv_1, 2)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1_2) )
Test.@test( !PredictMD.isleaf(cv_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1_2, 1) == [6, 7] )
Test.@test( PredictMD.get_leaveout_indices(cv_1_2, 2) == [8] )
cv_2_1 = PredictMD.get_leavein_cv(cv_2, 1)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2_1) )
Test.@test( !PredictMD.isleaf(cv_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2_1, 1) == [4] )
Test.@test( PredictMD.get_leaveout_indices(cv_2_1, 2) == [5] )
cv_2_2 = PredictMD.get_leavein_cv(cv_2, 2)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2_2) )
Test.@test( !PredictMD.isleaf(cv_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2_2, 1) == [1,2] )
Test.@test( PredictMD.get_leaveout_indices(cv_2_2, 2) == [3] )
cv_1_1_1 = PredictMD.get_leavein_cv(cv_1_1, 1)
Test.@test( PredictMD.isleaf(cv_1_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_1_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_1_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_1_1) == [10] )
cv_1_1_2 = PredictMD.get_leavein_cv(cv_1_1, 2)
Test.@test( PredictMD.isleaf(cv_1_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_1_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_1_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_1_2) == [9] )
cv_1_2_1 = PredictMD.get_leavein_cv(cv_1_2, 1)
Test.@test( PredictMD.isleaf(cv_1_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_2_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_2_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_2_1) == [8] )
cv_1_2_2 = PredictMD.get_leavein_cv(cv_1_2, 2)
Test.@test( PredictMD.isleaf(cv_1_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_2_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_2_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_2_2) == [6,7] )
cv_2_1_1 = PredictMD.get_leavein_cv(cv_2_1, 1)
Test.@test( PredictMD.isleaf(cv_2_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_1_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_1_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_1_1) == [5] )
cv_2_1_2 = PredictMD.get_leavein_cv(cv_2_1, 2)
Test.@test( PredictMD.isleaf(cv_2_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_1_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_1_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_1_2) == [4] )
cv_2_2_1 = PredictMD.get_leavein_cv(cv_2_2, 1)
Test.@test( PredictMD.isleaf(cv_2_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_2_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_2_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_2_1) == [3] )
cv_2_2_2 = PredictMD.get_leavein_cv(cv_2_2, 2)
Test.@test( PredictMD.isleaf(cv_2_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_2_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_2_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_2_2) == [1,2] )
end
Test.@testset "nested cross validation, range indices, small" begin
@debug("nested cross validation, range indices, small")
cv_integers = PredictMD.CrossValidation{Int}(; all_indices = [1,2,3,4,5,6,7,8,9,10], num_folds_per_level = (2,2,2))
Test.@test( isa(cv_integers, PredictMD.CrossValidation{Int}) )
cv_ranges = PredictMD.CrossValidation{UnitRange{Int}}(cv_integers)
Test.@test( isa(cv_ranges, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( !PredictMD.isleaf(cv_ranges) )
Test.@test( PredictMD.get_top_level_num_folds(cv_ranges) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_ranges, 1) == [1:5] )
Test.@test( PredictMD.get_leaveout_indices(cv_ranges, 2) == [6:10] )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_ranges) )
cv_1 = PredictMD.get_leavein_cv(cv_ranges, 1)
Test.@test( !PredictMD.isleaf(cv_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1, 1) == [6:8] )
Test.@test( PredictMD.get_leaveout_indices(cv_1, 2) == [9:10] )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1) )
cv_2 = PredictMD.get_leavein_cv(cv_ranges, 2)
Test.@test( !PredictMD.isleaf(cv_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2, 1) == [1:3])
Test.@test( PredictMD.get_leaveout_indices(cv_2, 2) == [4:5])
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2) )
cv_1_1 = PredictMD.get_leavein_cv(cv_1, 1)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1_1) )
Test.@test( !PredictMD.isleaf(cv_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1_1, 1) == [9:9] )
Test.@test( PredictMD.get_leaveout_indices(cv_1_1, 2) == [10:10] )
cv_1_2 = PredictMD.get_leavein_cv(cv_1, 2)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_1_2) )
Test.@test( !PredictMD.isleaf(cv_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_1_2, 1) == [6:7] )
Test.@test( PredictMD.get_leaveout_indices(cv_1_2, 2) == [8:8] )
cv_2_1 = PredictMD.get_leavein_cv(cv_2, 1)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2_1) )
Test.@test( !PredictMD.isleaf(cv_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2_1, 1) == [4:4] )
Test.@test( PredictMD.get_leaveout_indices(cv_2_1, 2) == [5:5] )
cv_2_2 = PredictMD.get_leavein_cv(cv_2, 2)
Test.@test_throws( ArgumentError, PredictMD.get_leavein_indices(cv_2_2) )
Test.@test( !PredictMD.isleaf(cv_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2) == 2 )
Test.@test( PredictMD.get_leaveout_indices(cv_2_2, 1) == [1:2] )
Test.@test( PredictMD.get_leaveout_indices(cv_2_2, 2) == [3:3] )
cv_1_1_1 = PredictMD.get_leavein_cv(cv_1_1, 1)
Test.@test( PredictMD.isleaf(cv_1_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_1_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_1_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_1_1) == [10:10] )
cv_1_1_2 = PredictMD.get_leavein_cv(cv_1_1, 2)
Test.@test( PredictMD.isleaf(cv_1_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_1_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_1_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_1_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_1_2) == [9:9] )
cv_1_2_1 = PredictMD.get_leavein_cv(cv_1_2, 1)
Test.@test( PredictMD.isleaf(cv_1_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_2_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_2_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_2_1) == [8:8] )
cv_1_2_2 = PredictMD.get_leavein_cv(cv_1_2, 2)
Test.@test( PredictMD.isleaf(cv_1_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_1_2_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_1_2_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_1_2_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_1_2_2) == [6:7] )
cv_2_1_1 = PredictMD.get_leavein_cv(cv_2_1, 1)
Test.@test( PredictMD.isleaf(cv_2_1_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_1_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_1_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_1_1) == [5:5] )
cv_2_1_2 = PredictMD.get_leavein_cv(cv_2_1, 2)
Test.@test( PredictMD.isleaf(cv_2_1_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_1_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_1_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_1_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_1_2) == [4:4] )
cv_2_2_1 = PredictMD.get_leavein_cv(cv_2_2, 1)
Test.@test( PredictMD.isleaf(cv_2_2_1) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2_1) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_2_1, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_2_1, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_2_1) == [3:3] )
cv_2_2_2 = PredictMD.get_leavein_cv(cv_2_2, 2)
Test.@test( PredictMD.isleaf(cv_2_2_2) )
Test.@test( PredictMD.get_top_level_num_folds(cv_2_2_2) == 0 )
Test.@test_throws( ArgumentError, PredictMD.get_leaveout_indices(cv_2_2_2, 1) )
Test.@test_throws( ArgumentError, PredictMD.get_leavein_cv(cv_2_2_2, 1) )
Test.@test( PredictMD.get_leavein_indices(cv_2_2_2) == [1:2] )
end
Test.@testset "nested cross validation, integer indices, large" begin
@debug("nested cross validation, integer indices, large")
num_samples = 1_000
master_cv = PredictMD.CrossValidation{Int}(; all_indices = collect(1:num_samples), num_folds_per_level = (3,5,7))
Test.@test( isa(master_cv, PredictMD.CrossValidation{Int}) )
Test.@test( PredictMD.get_all_indices(master_cv) == 1:num_samples)
Test.@test( !PredictMD.isleaf(master_cv) )
Test.@test( PredictMD.get_top_level_num_folds(master_cv) == 3 )
for i = 1:3
@debug("i = $(i)")
testing_indices = PredictMD.get_leaveout_indices(master_cv, i)
supertuning_tuning_training_cv = PredictMD.get_leavein_cv(master_cv, i)
Test.@test( length(intersect(testing_indices, PredictMD.get_all_indices(supertuning_tuning_training_cv))) == 0 )
Test.@test( sort(unique(union(testing_indices, PredictMD.get_all_indices(supertuning_tuning_training_cv)))) == 1:num_samples )
Test.@test( !PredictMD.isleaf(supertuning_tuning_training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(supertuning_tuning_training_cv) == 5 )
for j = 1:5
@debug("j = $(j)")
supertuning_indices = PredictMD.get_leaveout_indices(supertuning_tuning_training_cv, j)
tuning_training_cv = PredictMD.get_leavein_cv(supertuning_tuning_training_cv, j)
Test.@test( !PredictMD.isleaf(tuning_training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(tuning_training_cv) == 7 )
for k = 1:7
@debug("k = $(k)")
tuning_indices = PredictMD.get_leaveout_indices(tuning_training_cv, k)
training_cv = PredictMD.get_leavein_cv(tuning_training_cv, k)
Test.@test( PredictMD.isleaf(training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(training_cv) == 0 )
training_indices = PredictMD.get_leavein_indices(training_cv)
Test.@test( length(intersect(testing_indices, supertuning_indices)) == 0 )
Test.@test( length(intersect(testing_indices, tuning_indices)) == 0 )
Test.@test( length(intersect(testing_indices, training_indices)) == 0 )
Test.@test( length(intersect(supertuning_indices, tuning_indices)) == 0 )
Test.@test( length(intersect(supertuning_indices, training_indices)) == 0 )
Test.@test( length(intersect(tuning_indices, training_indices)) == 0 )
end
end
end
end
Test.@testset "nested cross validation, range indices, large" begin
@debug("nested cross validation, range indices, large")
num_samples = 1_000
master_cv_integers = PredictMD.CrossValidation{Int}(; all_indices = collect(1:num_samples), num_folds_per_level = (3,5,7))
Test.@test( isa(master_cv_integers, PredictMD.CrossValidation{Int}) )
master_cv_ranges = PredictMD.CrossValidation{UnitRange{Int}}(master_cv_integers)
Test.@test( isa(master_cv_ranges, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( !PredictMD.isleaf(master_cv_ranges) )
Test.@test( PredictMD.get_top_level_num_folds(master_cv_ranges) == 3 )
for i = 1:3
@debug("i = $(i)")
testing_indices = PredictMD.get_leaveout_indices(master_cv_ranges, i)
supertuning_tuning_training_cv = PredictMD.get_leavein_cv(master_cv_ranges, i)
Test.@test( !PredictMD.isleaf(supertuning_tuning_training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(supertuning_tuning_training_cv) == 5 )
for j = 1:5
@debug("j = $(j)")
supertuning_indices = PredictMD.get_leaveout_indices(supertuning_tuning_training_cv, j)
tuning_training_cv = PredictMD.get_leavein_cv(supertuning_tuning_training_cv, j)
Test.@test( !PredictMD.isleaf(tuning_training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(tuning_training_cv) == 7 )
for k = 1:7
@debug("k = $(k)")
tuning_indices = PredictMD.get_leaveout_indices(tuning_training_cv, k)
training_cv = PredictMD.get_leavein_cv(tuning_training_cv, k)
Test.@test( PredictMD.isleaf(training_cv) )
Test.@test( PredictMD.get_top_level_num_folds(training_cv) == 0 )
training_indices = PredictMD.get_leavein_indices(training_cv)
Test.@test( length(intersect(testing_indices, supertuning_indices)) == 0 )
Test.@test( length(intersect(testing_indices, tuning_indices)) == 0 )
Test.@test( length(intersect(testing_indices, training_indices)) == 0 )
Test.@test( length(intersect(supertuning_indices, tuning_indices)) == 0 )
Test.@test( length(intersect(supertuning_indices, training_indices)) == 0 )
Test.@test( length(intersect(tuning_indices, training_indices)) == 0 )
end
end
end
end
Test.@testset "roundtrip CV integer indices <-> CV range indices" begin
@debug("roundtrip CV integer indices <-> CV range indices")
num_samples = 1_000
cv_integer_1 = PredictMD.CrossValidation{Int}(; all_indices = collect(1:num_samples), num_folds_per_level = (3,5,7))
cv_ranges_2 = PredictMD.CrossValidation{UnitRange{Int}}(cv_integer_1)
cv_integer_3 = PredictMD.CrossValidation{Int}(cv_ranges_2)
cv_ranges_4 = PredictMD.CrossValidation{UnitRange{Int}}(cv_integer_3)
cv_integer_5 = PredictMD.CrossValidation{Int}(cv_ranges_4)
cv_ranges_6 = PredictMD.CrossValidation{UnitRange{Int}}(cv_integer_5)
cv_integer_7 = PredictMD.CrossValidation{Int}(cv_ranges_6)
cv_ranges_8 = PredictMD.CrossValidation{UnitRange{Int}}(cv_integer_7)
cv_integer_9 = PredictMD.CrossValidation{Int}(cv_ranges_8)
Test.@test( isa(cv_integer_1, PredictMD.CrossValidation{Int}) )
Test.@test( isa(cv_integer_3, PredictMD.CrossValidation{Int}) )
Test.@test( isa(cv_integer_5, PredictMD.CrossValidation{Int}) )
Test.@test( isa(cv_integer_7, PredictMD.CrossValidation{Int}) )
Test.@test( isa(cv_integer_9, PredictMD.CrossValidation{Int}) )
Test.@test( isa(cv_ranges_2, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( isa(cv_ranges_4, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( isa(cv_ranges_6, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( isa(cv_ranges_8, PredictMD.CrossValidation{UnitRange{Int}}) )
Test.@test( cv_integer_1 == cv_integer_3 == cv_integer_5 == cv_integer_7 == cv_integer_9)
Test.@test( cv_ranges_2 == cv_ranges_4 == cv_ranges_6 == cv_ranges_8)
end
Test.@testset "vectors_to_ranges" begin
@debug("vectors_to_ranges")
x = Int[
12, 28, 27, 24, 21, 30, 6, 10, 4, 18,
16, 36, 35, 29, 15, 9, 19, 34, 17, 5,
23, 3, 26, 37, 20, 11, 7,
]
y = UnitRange{Int}[
3:7, 9:12, 15:21, 23:24, 26:30, 34:37,
]
Test.@test y == PredictMD.vector_to_ranges(x)
vector_1 = StatsBase.sample(1:100_000_000, 100_000)
unique!(vector_1)
sort!(vector_1)
ranges_2 = PredictMD.vector_to_ranges(vector_1)
vector_3 = PredictMD.ranges_to_vector(ranges_2)
ranges_4 = PredictMD.vector_to_ranges(vector_3)
vector_5 = PredictMD.ranges_to_vector(ranges_4)
ranges_6 = PredictMD.vector_to_ranges(vector_5)
vector_7 = PredictMD.ranges_to_vector(ranges_6)
ranges_8 = PredictMD.vector_to_ranges(vector_7)
vector_9 = PredictMD.ranges_to_vector(ranges_8)
Test.@test vector_1 == vector_3 == vector_5 == vector_7 == vector_9
Test.@test ranges_2 == ranges_4 == ranges_6 == ranges_8
end
Test.@testset "ranges_to_vectors" begin
@debug("ranges_to_vectors")
x = Int[
12, 28, 27, 24, 21, 30, 6, 10, 4, 18,
16, 36, 35, 29, 15, 9, 19, 34, 17, 5,
23, 3, 26, 37, 20, 11, 7,
]
y = UnitRange{Int}[
3:7, 9:12, 15:21, 23:24, 26:30, 34:37,
]
Test.@test sort(x) == PredictMD.ranges_to_vector(y)
ranges_1 = Vector{UnitRange{Int}}(undef, 0)
for i = 1:100
a = StatsBase.sample((i)*(1_000_000):(i+1)*(1_000_000))
b = StatsBase.sample((i)*(1_000_000):(i+1)*(1_000_000))
push!(ranges_1, min(a,b):max(a,b))
end
unique!(ranges_1)
sort!(ranges_1)
vector_2 = PredictMD.ranges_to_vector(ranges_1)
ranges_3 = PredictMD.vector_to_ranges(vector_2)
vector_4 = PredictMD.ranges_to_vector(ranges_3)
ranges_5 = PredictMD.vector_to_ranges(vector_4)
vector_6 = PredictMD.ranges_to_vector(ranges_5)
ranges_7 = PredictMD.vector_to_ranges(vector_6)
vector_8 = PredictMD.ranges_to_vector(ranges_7)
ranges_9 = PredictMD.vector_to_ranges(vector_8)
Test.@test ranges_1 == ranges_3 == ranges_5 == ranges_7 == ranges_9
Test.@test vector_2 == vector_4 == vector_6 == vector_8
end
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 492 | features_df = DataFrames.DataFrame()
labels_df = DataFrames.DataFrame()
labels_df[:y] = [1,2,3]
Test.@test_throws(ErrorException, PredictMD.split_data(features_df,
labels_df,
2.0))
Test.@test_throws(ErrorException, PredictMD.split_data(features_df,
labels_df,
0.5))
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 709 | Test.@test( PredictMD.remove_all_full_stops(".1.2.3.4.") == "1234" )
Test.@test( PredictMD.remove_all_full_stops("1234") == "1234" )
PredictMD.parse_icd_icd9_ccs_appendixasingledx_file!()
PredictMD.parse_icd_icd9_ccs_appendixasingledx_file!()
PredictMD.parse_icd_icd9_ccs_appendixasingledx_file!()
Test.@test(PredictMD.single_level_dx_ccs_number_to_name(1) == "Tuberculosis")
Test.@test(PredictMD.single_level_dx_ccs_number_to_name(2) == "Septicemia (except in labor)")
Test.@test(
all(sort(unique(
PredictMD.single_level_dx_ccs_to_list_of_icd9_codes(107))) .==
sort(unique(["42741", "42742", "4275"])))
)
Test.@test(PredictMD.icd9_code_to_single_level_dx_ccs("42741") == 107)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 28675 | import PredictMD
import Test
Test.@test Base.IteratorEltype(PredictMD.SimplePipeline{String, Vector}) == Base.HasEltype()
Test.@test Base.IteratorSize(PredictMD.SimplePipeline{String, Vector}) == Base.HasShape{1}()
Test.@test Base.IndexStyle(PredictMD.SimplePipeline{String, Vector}) == Base.IndexLinear()
a = PredictMD.SimplePipeline("name", PredictMD.AbstractFittable[])
Test.@test PredictMD.ispipeline(a)
Test.@test PredictMD.isflat(a)
Test.@test a isa PredictMD.SimplePipeline
Test.@test isempty(a)
Test.@test length(a) == 0
Test.@test ndims(a) == 1
Test.@test length(size(a)) == 1
Test.@test size(a) == (0,)
Test.@test size(a)[1] == 0
PredictMD.get_underlying(a)
PredictMD.get_history(a)
empty!(a)
Test.@test !PredictMD.ispipeline(Foo_Fittable(0))
b = Foo_Fittable(11) |> Bar_Fittable(22)
c = Foo_Fittable(11) |> Bar_Fittable(22) |> Baz_Fittable(30)
d = Foo_Fittable(11) |> Bar_Fittable(22) |> Baz_Fittable(30) |> Foo_Fittable(40) |> Bar_Fittable(50) |> Baz_Fittable(60)
e = PredictMD.SimplePipeline("name", PredictMD.AbstractFittable[Baz_Fittable(11)])
Test.@test PredictMD.ispipeline(b)
Test.@test PredictMD.ispipeline(c)
Test.@test PredictMD.ispipeline(d)
Test.@test PredictMD.ispipeline(e)
Test.@test PredictMD.isflat(b)
Test.@test PredictMD.isflat(c)
Test.@test PredictMD.isflat(d)
Test.@test PredictMD.isflat(e)
Test.@test b isa PredictMD.SimplePipeline
Test.@test c isa PredictMD.SimplePipeline
Test.@test d isa PredictMD.SimplePipeline
Test.@test e isa PredictMD.SimplePipeline
Test.@test !isempty(b)
Test.@test !isempty(c)
Test.@test !isempty(d)
Test.@test !isempty(e)
Test.@test length(b) == 2
Test.@test ndims(b) == 1
Test.@test length(size(b)) == 1
Test.@test size(b) == (2,)
Test.@test size(b)[1] == 2
Test.@test length(c) == 3
Test.@test ndims(c) == 1
Test.@test length(size(c)) == 1
Test.@test size(c) == (3,)
Test.@test size(c)[1] == 3
Test.@test length(d) == 6
Test.@test ndims(d) == 1
Test.@test length(size(d)) == 1
Test.@test size(d) == (6,)
Test.@test size(d)[1] == 6
Test.@test length(e) == 1
Test.@test ndims(e) == 1
Test.@test length(size(e)) == 1
Test.@test size(e) == (1,)
Test.@test size(e)[1] == 1
Test.@test b[1] == Foo_Fittable(11)
Test.@test b[2] == Bar_Fittable(22)
Test.@test c[1] == Foo_Fittable(11)
Test.@test c[2] == Bar_Fittable(22)
Test.@test c[3] == Baz_Fittable(30)
Test.@test c[1:3] == [Foo_Fittable(11), Bar_Fittable(22), Baz_Fittable(30)]
Test.@test view(c, 2:3)[1] == Bar_Fittable(22)
Test.@test view(c, 2:3)[2] == Baz_Fittable(30)
for x in c
Test.@test x isa PredictMD.AbstractFittable
end
c[2] = Foo_Fittable(22)
Test.@test c[1] == Foo_Fittable(11)
Test.@test c[2] == Foo_Fittable(22)
Test.@test c[3] == Baz_Fittable(30)
Test.@test e[1] == Baz_Fittable(11)
for x in e
Test.@test x == Baz_Fittable(11)
end
Test.@test isassigned(e, 1)
Test.@test isa(Foo_Fittable(11) |> Bar_Fittable(22), PredictMD.SimplePipeline)
Test.@test isa(PredictMD.SimplePipeline("", [Foo_Fittable(11)]) |> Bar_Fittable(22), PredictMD.SimplePipeline)
Test.@test isa(Foo_Fittable(11) |> PredictMD.SimplePipeline("", [Bar_Fittable(22)]), PredictMD.SimplePipeline)
Test.@test isa(PredictMD.SimplePipeline("", [Foo_Fittable(11)]) |> PredictMD.SimplePipeline("", [Bar_Fittable(22)]), PredictMD.SimplePipeline)
f = Foo_Fittable(1) |> Foo_Fittable(2) |> Foo_Fittable(3) |> Foo_Fittable(4) |> Foo_Fittable(5) |> Foo_Fittable(6) |> Foo_Fittable(7)
Test.@test PredictMD.ispipeline(f)
Test.@test PredictMD.isflat(f)
for x in f
Test.@test x isa Foo_Fittable
end
for i = 1:length(f)
Test.@test f[i] isa Foo_Fittable
Test.@test f[i] == Foo_Fittable(i)
Test.@test f[i].x == i
end
for i = 1:size(f,1)
Test.@test f[i] isa Foo_Fittable
Test.@test f[i] == Foo_Fittable(i)
Test.@test f[i].x == i
end
for i = 1:size(f)[1]
Test.@test f[i] isa Foo_Fittable
Test.@test f[i] == Foo_Fittable(i)
Test.@test f[i].x == i
end
Test.@test ndims(f) == 1
Test.@test length(f) == 7
Test.@test size(f) == (7,)
Test.@test size(f)[1] == 7
Test.@test length(size(f)) == 1
g = Foo_Fittable(1) |> Bar_Fittable(2) |> Baz_Fittable(3) |> Foo_Fittable(4) |> Bar_Fittable(5) |> Baz_Fittable(6) |> Foo_Fittable(7)
Test.@test PredictMD.ispipeline(g)
Test.@test PredictMD.isflat(g)
for x in g
Test.@test x isa PredictMD.AbstractFittable
end
for i = 1:length(g)
Test.@test g[i] isa PredictMD.AbstractFittable
Test.@test g[i].x == i
end
for i = 1:size(g,1)
Test.@test g[i] isa PredictMD.AbstractFittable
Test.@test g[i].x == i
end
for i = 1:size(g)[1]
Test.@test g[i] isa PredictMD.AbstractFittable
Test.@test g[i].x == i
end
Test.@test ndims(g) == 1
Test.@test length(g) == 7
Test.@test size(g) ==(7,)
Test.@test size(g)[1] == 7
Test.@test length(size(g)) == 1
h = Foo_Fittable(11) |> Bar_Fittable(22)
i = PredictMD.SimplePipeline([Foo_Fittable(11)]) |> Bar_Fittable(22)
j = Foo_Fittable(11) |> PredictMD.SimplePipeline([Bar_Fittable(22)])
k = PredictMD.SimplePipeline([Foo_Fittable(11)]) |> PredictMD.SimplePipeline([Bar_Fittable(22)])
Test.@test PredictMD.ispipeline(h)
Test.@test PredictMD.ispipeline(i)
Test.@test PredictMD.ispipeline(j)
Test.@test PredictMD.ispipeline(k)
Test.@test PredictMD.isflat(h)
Test.@test PredictMD.isflat(i)
Test.@test PredictMD.isflat(j)
Test.@test PredictMD.isflat(k)
Test.@test h[1] == Foo_Fittable(11)
Test.@test i[1] == Foo_Fittable(11)
Test.@test j[1] == Foo_Fittable(11)
Test.@test k[1] == Foo_Fittable(11)
Test.@test h[2] == Bar_Fittable(22)
Test.@test i[2] == Bar_Fittable(22)
Test.@test j[2] == Bar_Fittable(22)
Test.@test k[2] == Bar_Fittable(22)
Test.@test h[1].x == 11
Test.@test i[1].x == 11
Test.@test j[1].x == 11
Test.@test k[1].x == 11
Test.@test h[2].x == 22
Test.@test i[2].x == 22
Test.@test j[2].x == 22
Test.@test k[2].x == 22
aa = PredictMD.SimplePipeline([Foo_Fittable(10), Foo_Fittable(20), Foo_Fittable(30)]; name = "aa")
bb = PredictMD.SimplePipeline([Foo_Fittable(40), Foo_Fittable(50), Foo_Fittable(60)]; name = "bb")
cc = PredictMD.SimplePipeline([Foo_Fittable(70), Foo_Fittable(80), Foo_Fittable(90)]; name = "cc")
Test.@test PredictMD.ispipeline(aa)
Test.@test PredictMD.ispipeline(bb)
Test.@test PredictMD.ispipeline(cc)
Test.@test PredictMD.isflat(aa)
Test.@test PredictMD.isflat(bb)
Test.@test PredictMD.isflat(cc)
dd = PredictMD.SimplePipeline([Foo_Fittable(100), Foo_Fittable(110), Foo_Fittable(120)]; name = "dd")
ee = PredictMD.SimplePipeline([Foo_Fittable(130), Foo_Fittable(140), Foo_Fittable(150)]; name = "ee")
Test.@test PredictMD.ispipeline(dd)
Test.@test PredictMD.ispipeline(ee)
Test.@test PredictMD.isflat(dd)
Test.@test PredictMD.isflat(ee)
ff = PredictMD.SimplePipeline([Foo_Fittable(160), Foo_Fittable(170), Foo_Fittable(180)]; name = "ff")
gg = PredictMD.SimplePipeline([Foo_Fittable(190), Foo_Fittable(200), Foo_Fittable(210)]; name = "gg")
Test.@test PredictMD.ispipeline(ff)
Test.@test PredictMD.ispipeline(gg)
Test.@test PredictMD.isflat(ff)
Test.@test PredictMD.isflat(gg)
hh = PredictMD.SimplePipeline([aa, bb, cc])
ii = PredictMD.SimplePipeline([dd, ee])
jj = PredictMD.SimplePipeline([ff, gg])
Test.@test PredictMD.ispipeline(hh)
Test.@test PredictMD.ispipeline(ii)
Test.@test PredictMD.ispipeline(jj)
Test.@test !PredictMD.isflat(hh)
Test.@test !PredictMD.isflat(ii)
Test.@test !PredictMD.isflat(jj)
kk = PredictMD.SimplePipeline([hh])
ll = PredictMD.SimplePipeline([ii, jj]) |> Foo_Fittable(220)
Test.@test PredictMD.ispipeline(kk)
Test.@test PredictMD.ispipeline(ll)
Test.@test !PredictMD.ispipeline(Foo_Fittable(220))
Test.@test !PredictMD.isflat(kk)
Test.@test !PredictMD.isflat(ll)
mm = PredictMD.SimplePipeline([kk, ll])
Test.@test PredictMD.ispipeline(mm)
Test.@test !PredictMD.isflat(mm)
mm_flattened = PredictMD.flatten(mm)
Test.@test PredictMD.ispipeline(mm_flattened)
Test.@test PredictMD.isflat(mm_flattened)
Test.@test mm_flattened isa PredictMD.SimplePipeline
for x in mm_flattened
Test.@test x isa Foo_Fittable
end
for i = 1:length(mm_flattened)
Test.@test mm_flattened[i] isa Foo_Fittable
Test.@test mm_flattened[i] == Foo_Fittable(i*10)
Test.@test mm_flattened[i].x == i*10
end
for i = 1:size(mm_flattened,1)
Test.@test mm_flattened[i] isa Foo_Fittable
Test.@test mm_flattened[i] == Foo_Fittable(i*10)
Test.@test mm_flattened[i].x == i*10
end
for i = 1:size(mm_flattened)[1]
Test.@test mm_flattened[i] isa Foo_Fittable
Test.@test mm_flattened[i] == Foo_Fittable(i*10)
Test.@test mm_flattened[i].x == i*10
end
Test.@test length(mm_flattened) == 22
Test.@test ndims(mm_flattened) == 1
Test.@test length(size(mm_flattened)) == 1
Test.@test size(mm_flattened) == (22,)
Test.@test size(mm_flattened)[1] == 22
Test.@test mm_flattened[1] == Foo_Fittable(10)
Test.@test mm_flattened[2] == Foo_Fittable(20)
Test.@test mm_flattened[3] == Foo_Fittable(30)
Test.@test mm_flattened[4] == Foo_Fittable(40)
Test.@test mm_flattened[5] == Foo_Fittable(50)
Test.@test mm_flattened[6] == Foo_Fittable(60)
Test.@test mm_flattened[7] == Foo_Fittable(70)
Test.@test mm_flattened[8] == Foo_Fittable(80)
Test.@test mm_flattened[9] == Foo_Fittable(90)
Test.@test mm_flattened[10] == Foo_Fittable(100)
Test.@test mm_flattened[11] == Foo_Fittable(110)
Test.@test mm_flattened[12] == Foo_Fittable(120)
Test.@test mm_flattened[13] == Foo_Fittable(130)
Test.@test mm_flattened[14] == Foo_Fittable(140)
Test.@test mm_flattened[15] == Foo_Fittable(150)
Test.@test mm_flattened[16] == Foo_Fittable(160)
Test.@test mm_flattened[17] == Foo_Fittable(170)
Test.@test mm_flattened[18] == Foo_Fittable(180)
Test.@test mm_flattened[19] == Foo_Fittable(190)
Test.@test mm_flattened[20] == Foo_Fittable(200)
Test.@test mm_flattened[21] == Foo_Fittable(210)
Test.@test mm_flattened[22] == Foo_Fittable(220)
mm_flat_on_creation_in_one_step_from_some_primitives = aa |> bb |> cc |> dd |> ee |> ff |> gg |> Foo_Fittable(220)
Test.@test PredictMD.ispipeline(mm_flat_on_creation_in_one_step_from_some_primitives)
Test.@test PredictMD.isflat(mm_flat_on_creation_in_one_step_from_some_primitives)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives isa PredictMD.SimplePipeline
for x in mm_flat_on_creation_in_one_step_from_some_primitives
Test.@test x isa Foo_Fittable
end
for i = 1:length(mm_flat_on_creation_in_one_step_from_some_primitives)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_one_step_from_some_primitives,1)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_one_step_from_some_primitives)[1]
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[i].x == i*10
end
Test.@test length(mm_flat_on_creation_in_one_step_from_some_primitives) == 22
Test.@test ndims(mm_flat_on_creation_in_one_step_from_some_primitives) == 1
Test.@test length(size(mm_flat_on_creation_in_one_step_from_some_primitives)) == 1
Test.@test size(mm_flat_on_creation_in_one_step_from_some_primitives) == (22,)
Test.@test size(mm_flat_on_creation_in_one_step_from_some_primitives)[1] == 22
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[1] == Foo_Fittable(10)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[2] == Foo_Fittable(20)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[3] == Foo_Fittable(30)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[4] == Foo_Fittable(40)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[5] == Foo_Fittable(50)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[6] == Foo_Fittable(60)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[7] == Foo_Fittable(70)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[8] == Foo_Fittable(80)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[9] == Foo_Fittable(90)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[10] == Foo_Fittable(100)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[11] == Foo_Fittable(110)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[12] == Foo_Fittable(120)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[13] == Foo_Fittable(130)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[14] == Foo_Fittable(140)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[15] == Foo_Fittable(150)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[16] == Foo_Fittable(160)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[17] == Foo_Fittable(170)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[18] == Foo_Fittable(180)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[19] == Foo_Fittable(190)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[20] == Foo_Fittable(200)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[21] == Foo_Fittable(210)
Test.@test mm_flat_on_creation_in_one_step_from_some_primitives[22] == Foo_Fittable(220)
mm_flat_on_creation_in_one_step_from_all_primitives = Foo_Fittable(10) |> Foo_Fittable(20) |> Foo_Fittable(30) |> Foo_Fittable(40) |> Foo_Fittable(50) |> Foo_Fittable(60) |> Foo_Fittable(70) |> Foo_Fittable(80) |> Foo_Fittable(90) |> Foo_Fittable(100) |> Foo_Fittable(110) |> Foo_Fittable(120) |> Foo_Fittable(130) |> Foo_Fittable(140) |> Foo_Fittable(150) |> Foo_Fittable(160) |> Foo_Fittable(170) |> Foo_Fittable(180) |> Foo_Fittable(190) |> Foo_Fittable(200) |> Foo_Fittable(210) |> Foo_Fittable(220)
Test.@test PredictMD.ispipeline(mm_flat_on_creation_in_one_step_from_all_primitives)
Test.@test PredictMD.isflat(mm_flat_on_creation_in_one_step_from_all_primitives)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives isa PredictMD.SimplePipeline
for x in mm_flat_on_creation_in_one_step_from_all_primitives
Test.@test x isa Foo_Fittable
end
for i = 1:length(mm_flat_on_creation_in_one_step_from_all_primitives)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_one_step_from_all_primitives,1)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_one_step_from_all_primitives)[1]
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[i].x == i*10
end
Test.@test length(mm_flat_on_creation_in_one_step_from_all_primitives) == 22
Test.@test ndims(mm_flat_on_creation_in_one_step_from_all_primitives) == 1
Test.@test length(size(mm_flat_on_creation_in_one_step_from_all_primitives)) == 1
Test.@test size(mm_flat_on_creation_in_one_step_from_all_primitives) == (22,)
Test.@test size(mm_flat_on_creation_in_one_step_from_all_primitives)[1] == 22
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[1] == Foo_Fittable(10)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[2] == Foo_Fittable(20)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[3] == Foo_Fittable(30)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[4] == Foo_Fittable(40)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[5] == Foo_Fittable(50)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[6] == Foo_Fittable(60)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[7] == Foo_Fittable(70)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[8] == Foo_Fittable(80)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[9] == Foo_Fittable(90)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[10] == Foo_Fittable(100)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[11] == Foo_Fittable(110)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[12] == Foo_Fittable(120)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[13] == Foo_Fittable(130)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[14] == Foo_Fittable(140)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[15] == Foo_Fittable(150)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[16] == Foo_Fittable(160)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[17] == Foo_Fittable(170)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[18] == Foo_Fittable(180)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[19] == Foo_Fittable(190)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[20] == Foo_Fittable(200)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[21] == Foo_Fittable(210)
Test.@test mm_flat_on_creation_in_one_step_from_all_primitives[22] == Foo_Fittable(220)
hh_flat = aa |> bb |> cc
ii_flat = dd |> ee
jj_flat = ff |> gg
kk_flat = hh_flat
ll_flat = ii_flat |> jj_flat |> Foo_Fittable(220)
mm_flat_on_creation_in_multiple_steps_from_some_primitives = kk_flat |> ll_flat
Test.@test !PredictMD.ispipeline(Foo_Fittable(220))
Test.@test PredictMD.ispipeline(aa)
Test.@test PredictMD.ispipeline(bb)
Test.@test PredictMD.ispipeline(cc)
Test.@test PredictMD.ispipeline(dd)
Test.@test PredictMD.ispipeline(ee)
Test.@test PredictMD.ispipeline(ff)
Test.@test PredictMD.ispipeline(gg)
Test.@test PredictMD.ispipeline(hh_flat)
Test.@test PredictMD.ispipeline(ii_flat)
Test.@test PredictMD.ispipeline(jj_flat)
Test.@test PredictMD.ispipeline(kk_flat)
Test.@test PredictMD.ispipeline(ll_flat)
Test.@test PredictMD.ispipeline(mm_flat_on_creation_in_multiple_steps_from_some_primitives)
Test.@test PredictMD.isflat(aa)
Test.@test PredictMD.isflat(bb)
Test.@test PredictMD.isflat(cc)
Test.@test PredictMD.isflat(dd)
Test.@test PredictMD.isflat(ee)
Test.@test PredictMD.isflat(ff)
Test.@test PredictMD.isflat(gg)
Test.@test PredictMD.isflat(hh_flat)
Test.@test PredictMD.isflat(ii_flat)
Test.@test PredictMD.isflat(jj_flat)
Test.@test PredictMD.isflat(kk_flat)
Test.@test PredictMD.isflat(ll_flat)
Test.@test PredictMD.isflat(mm_flat_on_creation_in_multiple_steps_from_some_primitives)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives isa PredictMD.SimplePipeline
for x in mm_flat_on_creation_in_multiple_steps_from_some_primitives
Test.@test x isa Foo_Fittable
end
for i = 1:length(mm_flat_on_creation_in_multiple_steps_from_some_primitives)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_multiple_steps_from_some_primitives,1)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_multiple_steps_from_some_primitives)[1]
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[i].x == i*10
end
Test.@test length(mm_flat_on_creation_in_multiple_steps_from_some_primitives) == 22
Test.@test ndims(mm_flat_on_creation_in_multiple_steps_from_some_primitives) == 1
Test.@test length(size(mm_flat_on_creation_in_multiple_steps_from_some_primitives)) == 1
Test.@test size(mm_flat_on_creation_in_multiple_steps_from_some_primitives) == (22,)
Test.@test size(mm_flat_on_creation_in_multiple_steps_from_some_primitives)[1] == 22
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[1] == Foo_Fittable(10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[2] == Foo_Fittable(20)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[3] == Foo_Fittable(30)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[4] == Foo_Fittable(40)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[5] == Foo_Fittable(50)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[6] == Foo_Fittable(60)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[7] == Foo_Fittable(70)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[8] == Foo_Fittable(80)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[9] == Foo_Fittable(90)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[10] == Foo_Fittable(100)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[11] == Foo_Fittable(110)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[12] == Foo_Fittable(120)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[13] == Foo_Fittable(130)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[14] == Foo_Fittable(140)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[15] == Foo_Fittable(150)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[16] == Foo_Fittable(160)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[17] == Foo_Fittable(170)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[18] == Foo_Fittable(180)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[19] == Foo_Fittable(190)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[20] == Foo_Fittable(200)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[21] == Foo_Fittable(210)
Test.@test mm_flat_on_creation_in_multiple_steps_from_some_primitives[22] == Foo_Fittable(220)
aa_frombasepipe = Foo_Fittable(10) |> Foo_Fittable(20) |> Foo_Fittable(30)
bb_frombasepipe = Foo_Fittable(40) |> Foo_Fittable(50) |> Foo_Fittable(60)
cc_frombasepipe = Foo_Fittable(70) |> Foo_Fittable(80) |> Foo_Fittable(90)
dd_frombasepipe = Foo_Fittable(100) |> Foo_Fittable(110) |> Foo_Fittable(120)
ee_frombasepipe = Foo_Fittable(130) |> Foo_Fittable(140) |> Foo_Fittable(150)
ff_frombasepipe = Foo_Fittable(160) |> Foo_Fittable(170) |> Foo_Fittable(180)
gg_frombasepipe = Foo_Fittable(190) |> Foo_Fittable(200) |> Foo_Fittable(210)
hh_flat = aa_frombasepipe |> bb_frombasepipe |> cc_frombasepipe
ii_flat = dd_frombasepipe |> ee_frombasepipe
jj_flat = ff_frombasepipe |> gg_frombasepipe
kk_flat = hh_flat
ll_flat = ii_flat |> jj_flat |> Foo_Fittable(220)
mm_flat_on_creation_in_multiple_steps_from_all_primitives = kk_flat |> ll_flat
Test.@test !PredictMD.ispipeline(Foo_Fittable(220))
Test.@test PredictMD.ispipeline(aa_frombasepipe)
Test.@test PredictMD.ispipeline(bb_frombasepipe)
Test.@test PredictMD.ispipeline(cc_frombasepipe)
Test.@test PredictMD.ispipeline(dd_frombasepipe)
Test.@test PredictMD.ispipeline(ee_frombasepipe)
Test.@test PredictMD.ispipeline(ff_frombasepipe)
Test.@test PredictMD.ispipeline(gg_frombasepipe)
Test.@test PredictMD.ispipeline(hh_flat)
Test.@test PredictMD.ispipeline(ii_flat)
Test.@test PredictMD.ispipeline(jj_flat)
Test.@test PredictMD.ispipeline(kk_flat)
Test.@test PredictMD.ispipeline(ll_flat)
Test.@test PredictMD.ispipeline(mm_flat_on_creation_in_multiple_steps_from_all_primitives)
Test.@test PredictMD.isflat(aa_frombasepipe)
Test.@test PredictMD.isflat(bb_frombasepipe)
Test.@test PredictMD.isflat(cc_frombasepipe)
Test.@test PredictMD.isflat(dd_frombasepipe)
Test.@test PredictMD.isflat(ee_frombasepipe)
Test.@test PredictMD.isflat(ff_frombasepipe)
Test.@test PredictMD.isflat(gg_frombasepipe)
Test.@test PredictMD.isflat(hh_flat)
Test.@test PredictMD.isflat(ii_flat)
Test.@test PredictMD.isflat(jj_flat)
Test.@test PredictMD.isflat(kk_flat)
Test.@test PredictMD.isflat(ll_flat)
Test.@test PredictMD.isflat(mm_flat_on_creation_in_multiple_steps_from_all_primitives)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives isa PredictMD.SimplePipeline
for x in mm_flat_on_creation_in_multiple_steps_from_all_primitives
Test.@test x isa Foo_Fittable
end
for i = 1:length(mm_flat_on_creation_in_multiple_steps_from_all_primitives)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_multiple_steps_from_all_primitives,1)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i].x == i*10
end
for i = 1:size(mm_flat_on_creation_in_multiple_steps_from_all_primitives)[1]
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] isa Foo_Fittable
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i] == Foo_Fittable(i*10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[i].x == i*10
end
Test.@test length(mm_flat_on_creation_in_multiple_steps_from_all_primitives) == 22
Test.@test ndims(mm_flat_on_creation_in_multiple_steps_from_all_primitives) == 1
Test.@test length(size(mm_flat_on_creation_in_multiple_steps_from_all_primitives)) == 1
Test.@test size(mm_flat_on_creation_in_multiple_steps_from_all_primitives) == (22,)
Test.@test size(mm_flat_on_creation_in_multiple_steps_from_all_primitives)[1] == 22
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[1] == Foo_Fittable(10)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[2] == Foo_Fittable(20)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[3] == Foo_Fittable(30)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[4] == Foo_Fittable(40)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[5] == Foo_Fittable(50)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[6] == Foo_Fittable(60)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[7] == Foo_Fittable(70)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[8] == Foo_Fittable(80)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[9] == Foo_Fittable(90)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[10] == Foo_Fittable(100)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[11] == Foo_Fittable(110)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[12] == Foo_Fittable(120)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[13] == Foo_Fittable(130)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[14] == Foo_Fittable(140)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[15] == Foo_Fittable(150)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[16] == Foo_Fittable(160)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[17] == Foo_Fittable(170)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[18] == Foo_Fittable(180)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[19] == Foo_Fittable(190)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[20] == Foo_Fittable(200)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[21] == Foo_Fittable(210)
Test.@test mm_flat_on_creation_in_multiple_steps_from_all_primitives[22] == Foo_Fittable(220)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 126 | import PredictMD
PredictMD.probability_calibration_scores_and_fractions(
[0, 0, 0], [0., 0., 0.];
window = -1,
)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 718 | import DataFrames
import PredictMD
import Test
a = DataFrames.DataFrame()
a[:x] = ["foo", "foo", "foo", "bar", "bar", "bar"]
contrasts = PredictMD.DataFrameFeatureContrasts(a, [:x])
transformer = PredictMD.MutableDataFrame2DecisionTreeTransformer([:x], :y)
PredictMD.set_feature_contrasts!(transformer, contrasts)
Test.@test length(PredictMD.transform(transformer, a)) == 6
b = DataFrames.DataFrame()
b[:x] = ["bar", "foo"]
Test.@test length(PredictMD.transform(transformer, b)) == 2
c = DataFrames.DataFrame()
c[:x] = ["foo", "bar", "baz"]
Test.@test_throws KeyError PredictMD.transform(transformer, c)
d = DataFrames.DataFrame()
Test.@test_throws ErrorException PredictMD.DataFrameFeatureContrasts(d, [:x, :x])
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 1055 | import DataFrames
import PredictMD
import Test
x = Union{Missing, String}["foo", "bar", "foo", missing, "bar"]
Test.@test(
length(PredictMD.get_unique_values(x; skip_missings = true)) == 2
)
Test.@test(
length(PredictMD.get_unique_values(x; skip_missings = false)) == 3
)
Test.@test(
length(PredictMD.get_unique_values_skip_missings(x)) == 2
)
Test.@test(
length(PredictMD.get_unique_values_include_missings(x)) == 3
)
Test.@test(
PredictMD.get_number_of_unique_values(x; skip_missings = true) == 2
)
Test.@test(
PredictMD.get_number_of_unique_values(x; skip_missings = false) == 3
)
Test.@test(
PredictMD.get_number_of_unique_values_skip_missings(x) == 2
)
Test.@test(
PredictMD.get_number_of_unique_values_include_missings(x) == 3
)
df = DataFrames.DataFrame()
df[:a] = [1,2,3,4,5,6,7]
df[:b] = [1,1,1,1,1,1,1]
df_constant_cols = PredictMD.find_constant_columns(df)
Test.@test length(df_constant_cols) == 1
Test.@test df_constant_cols == [:b]
Test.@test all(df_constant_cols .== [:b])
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 298 | import PredictMD
import Test
a = Union{String, Missing}["foo", "bar", "foo"]
b = PredictMD.disallowmissing(a)
Test.@test isa(b, Vector{String})
Test.@test b == String["foo", "bar", "foo"]
c = Union{String, Missing}["foo", "bar", missing]
Test.@test_throws MethodError PredictMD.disallowmissing(c)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 168 | import PredictMD
import Test
a = PredictMD.predictionsassoctodataframe(Dict(:x => [0.3], :y => [0.7]), Symbol[])
Test.@test a[1, :x] == 0.3
Test.@test a[1, :y] == 0.7
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 312 | import PredictMD
import Test
Test.@test PredictMD.is_make_examples() isa Bool
Test.@test PredictMD.is_make_docs() isa Bool
Test.@test PredictMD.is_deploy_docs() isa Bool
Test.@test PredictMD.is_docs_or_examples() == PredictMD.is_make_examples() ||
PredictMD.is_make_docs() ||
PredictMD.is_deploy_docs()
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 103 | import PredictMD
import Test
Test.@test_throws ErrorException PredictMD.simple_moving_average([], -1)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 575 | import Test
import PredictMD
dict_1 = Dict()
Test.@test( PredictMD.is_one_to_one(dict_1) )
dict_1_inverted = PredictMD.inverse(dict_1)
dict_2 = Dict()
dict_2["hello"] = :hola
dict_2["goodbye"] = :adios
Test.@test( PredictMD.is_one_to_one(dict_2) )
dict_2_inverted = PredictMD.inverse(dict_2)
Test.@test( dict_2_inverted[:hola] == "hello" )
Test.@test( dict_2_inverted[:adios] == "goodbye")
dict_3 = Dict()
dict_3[1] = "odd"
dict_3[2] = "even"
dict_3[3] = "odd"
Test.@test( !PredictMD.is_one_to_one(dict_3) )
Test.@test_throws(ErrorException, PredictMD.inverse(dict_3))
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 30 | import Test
import PredictMD
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 6248 | import Test
import DataFrames
import PredictMD
my_vector = Vector{Any}(undef, 5)
my_vector[1] = Float64(1.1)
my_vector[2] = Float64(2.2)
my_vector[3] = DataFrames.missing
my_vector[4] = Float64(4.4)
my_vector[5] = DataFrames.missing
Test.@test(eltype(my_vector) == Any)
my_vector_fixed = PredictMD.fix_type(my_vector)
Test.@test(eltype(my_vector_fixed) == Union{Float64, DataFrames.Missing})
Test.@test( PredictMD.fix_type(nothing) == nothing )
Test.@test( PredictMD.fix_type(3.14) == 3.14 )
dict_1 = Dict()
dict_1[Symbol(:x)] = Float64(1.1)
dict_1[Symbol(:y)] = Float64(2.2)
dict_1[Symbol(:z)] = Float64(3.3)
Test.@test(typeof(dict_1) <: Dict{Any, Any})
Test.@test(length(dict_1) == 3)
dict_2 = PredictMD.fix_type(dict_1)
Test.@test(typeof(dict_2) <: Dict{Symbol, Float64})
Test.@test(length(dict_2) == 3)
Test.@test(dict_1[:x] == 1.1)
Test.@test(dict_1[:y] == 2.2)
Test.@test(dict_1[:z] == 3.3)
dict_3 = PredictMD.fix_type(dict_2)
Test.@test(typeof(dict_3) <: Dict{Symbol, Float64})
Test.@test(length(dict_3) == 3)
Test.@test(dict_1[:x] == 1.1)
Test.@test(dict_1[:y] == 2.2)
Test.@test(dict_1[:z] == 3.3)
dict_4 = PredictMD.fix_type(dict_3)
Test.@test(typeof(dict_4) <: Dict{Symbol, Float64})
Test.@test(length(dict_4) == 3)
Test.@test(dict_1[:x] == 1.1)
Test.@test(dict_1[:y] == 2.2)
Test.@test(dict_1[:z] == 3.3)
Test.@test( PredictMD.fix_type(nothing) == nothing )
Test.@test( PredictMD.fix_type(nothing) == nothing )
vector_1 = []
push!(vector_1, Float64(1.0))
push!(vector_1, Float64(2.0))
push!(vector_1, Float64(3.0))
Test.@test(typeof(vector_1) <: Vector{Any})
Test.@test(length(vector_1) == 3)
Test.@test(size(vector_1) == (3,))
vector_2 = PredictMD.fix_type(vector_1)
Test.@test(typeof(vector_2) <: Vector{Float64})
Test.@test(length(vector_2) == 3)
Test.@test(size(vector_2) == (3,))
Test.@test(vector_1[1] == 1.0)
Test.@test(vector_1[2] == 2.0)
Test.@test(vector_1[3] == 3.0)
vector_3 = PredictMD.fix_type(vector_2)
Test.@test(typeof(vector_3) <: Vector{Float64})
Test.@test(length(vector_3) == 3)
Test.@test(size(vector_3) == (3,))
Test.@test(vector_1[1] == 1.0)
Test.@test(vector_1[2] == 2.0)
Test.@test(vector_1[3] == 3.0)
vector_4 = PredictMD.fix_type(vector_3)
Test.@test(length(vector_4) == 3)
Test.@test(size(vector_4) == (3,))
Test.@test(typeof(vector_4) <: Vector{Float64})
Test.@test(vector_1[1] == 1.0)
Test.@test(vector_1[2] == 2.0)
Test.@test(vector_1[3] == 3.0)
##############################################################################
array_1 = Array{Any}(undef, 2,3,4)
array_1[1,1,1] = Float64(10)
array_1[1,1,2] = Float64(20)
array_1[1,1,3] = Float64(30)
array_1[1,1,4] = Float64(40)
array_1[1,2,1] = Float64(50)
array_1[1,2,2] = Float64(60)
array_1[1,2,3] = Float64(70)
array_1[1,2,4] = Float64(80)
array_1[1,3,1] = Float64(90)
array_1[1,3,2] = Float64(100)
array_1[1,3,3] = Float64(110)
array_1[1,3,4] = Float64(120)
array_1[2,1,1] = Float64(130)
array_1[2,1,2] = Float64(140)
array_1[2,1,3] = Float64(150)
array_1[2,1,4] = Float64(160)
array_1[2,2,1] = Float64(170)
array_1[2,2,2] = Float64(180)
array_1[2,2,3] = Float64(190)
array_1[2,2,4] = Float64(200)
array_1[2,3,1] = Float64(210)
array_1[2,3,2] = Float64(220)
array_1[2,3,3] = Float64(230)
array_1[2,3,4] = Float64(240)
Test.@test(typeof(array_1) <: Array{Any, 3})
Test.@test(length(array_1) == 24)
Test.@test(size(array_1) == (2,3,4,))
array_2 = PredictMD.fix_type(array_1)
Test.@test(typeof(array_2) <: Array{Float64, 3})
Test.@test(length(array_2) == 24)
Test.@test(size(array_2) == (2,3,4,))
Test.@test(array_2[1,1,1] == 10)
Test.@test(array_2[1,1,2] == 20)
Test.@test(array_2[1,1,3] == 30)
Test.@test(array_2[1,1,4] == 40)
Test.@test(array_2[1,2,1] == 50)
Test.@test(array_2[1,2,2] == 60)
Test.@test(array_2[1,2,3] == 70)
Test.@test(array_2[1,2,4] == 80)
Test.@test(array_2[1,3,1] == 90)
Test.@test(array_2[1,3,2] == 100)
Test.@test(array_2[1,3,3] == 110)
Test.@test(array_2[1,3,4] == 120)
Test.@test(array_2[2,1,1] == 130)
Test.@test(array_2[2,1,2] == 140)
Test.@test(array_2[2,1,3] == 150)
Test.@test(array_2[2,1,4] == 160)
Test.@test(array_2[2,2,1] == 170)
Test.@test(array_2[2,2,2] == 180)
Test.@test(array_2[2,2,3] == 190)
Test.@test(array_2[2,2,4] == 200)
Test.@test(array_2[2,3,1] == 210)
Test.@test(array_2[2,3,2] == 220)
Test.@test(array_2[2,3,3] == 230)
Test.@test(array_2[2,3,4] == 240)
array_3 = PredictMD.fix_type(array_2)
Test.@test(typeof(array_3) <: Array{Float64, 3})
Test.@test(length(array_3) == 24)
Test.@test(size(array_3) == (2,3,4,))
Test.@test(array_3[1,1,1] == 10)
Test.@test(array_3[1,1,2] == 20)
Test.@test(array_3[1,1,3] == 30)
Test.@test(array_3[1,1,4] == 40)
Test.@test(array_3[1,2,1] == 50)
Test.@test(array_3[1,2,2] == 60)
Test.@test(array_3[1,2,3] == 70)
Test.@test(array_3[1,2,4] == 80)
Test.@test(array_3[1,3,1] == 90)
Test.@test(array_3[1,3,2] == 100)
Test.@test(array_3[1,3,3] == 110)
Test.@test(array_3[1,3,4] == 120)
Test.@test(array_3[2,1,1] == 130)
Test.@test(array_3[2,1,2] == 140)
Test.@test(array_3[2,1,3] == 150)
Test.@test(array_3[2,1,4] == 160)
Test.@test(array_3[2,2,1] == 170)
Test.@test(array_3[2,2,2] == 180)
Test.@test(array_3[2,2,3] == 190)
Test.@test(array_3[2,2,4] == 200)
Test.@test(array_3[2,3,1] == 210)
Test.@test(array_3[2,3,2] == 220)
Test.@test(array_3[2,3,3] == 230)
Test.@test(array_3[2,3,4] == 240)
array_4 = PredictMD.fix_type(array_3)
Test.@test(typeof(array_4) <: Array{Float64, 3})
Test.@test(length(array_4) == 24)
Test.@test(size(array_4) == (2,3,4,))
Test.@test(array_4[1,1,1] == 10)
Test.@test(array_4[1,1,2] == 20)
Test.@test(array_4[1,1,3] == 30)
Test.@test(array_4[1,1,4] == 40)
Test.@test(array_4[1,2,1] == 50)
Test.@test(array_4[1,2,2] == 60)
Test.@test(array_4[1,2,3] == 70)
Test.@test(array_4[1,2,4] == 80)
Test.@test(array_4[1,3,1] == 90)
Test.@test(array_4[1,3,2] == 100)
Test.@test(array_4[1,3,3] == 110)
Test.@test(array_4[1,3,4] == 120)
Test.@test(array_4[2,1,1] == 130)
Test.@test(array_4[2,1,2] == 140)
Test.@test(array_4[2,1,3] == 150)
Test.@test(array_4[2,1,4] == 160)
Test.@test(array_4[2,2,1] == 170)
Test.@test(array_4[2,2,2] == 180)
Test.@test(array_4[2,2,3] == 190)
Test.@test(array_4[2,2,4] == 200)
Test.@test(array_4[2,3,1] == 210)
Test.@test(array_4[2,3,2] == 220)
Test.@test(array_4[2,3,3] == 230)
Test.@test(array_4[2,3,4] == 240)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 3486 | import DataFrames
import PredictMD
import Random
import Test
Test.@testset "linearly independent" begin
num_rows = 1_000
x = randn(Random.MersenneTwister(1), num_rows)
x1 = randn(Random.MersenneTwister(2), num_rows)
x11 = randn(Random.MersenneTwister(3), num_rows)
y = randn(Random.MersenneTwister(4), num_rows)
y1 = randn(Random.MersenneTwister(5), num_rows)
y11 = randn(Random.MersenneTwister(6), num_rows)
z = randn(Random.MersenneTwister(7), num_rows)
z1 = randn(Random.MersenneTwister(8), num_rows)
z11 = randn(Random.MersenneTwister(9), num_rows)
df = DataFrames.DataFrame(
:x => x,
:x1 => x1,
:x11 => x11,
:y => y,
:y1 => y1,
:y11 => y11,
:z => z,
:z1 => z1,
:z11 => z11,
)
Test.@test(PredictMD.columns_are_linearly_independent(df))
Test.@test(
PredictMD.columns_are_linearly_independent(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z, :z1, :z11],
)
)
Test.@test(length(PredictMD.linearly_dependent_columns(df)) == 0)
Test.@test(
length(
PredictMD.linearly_dependent_columns(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z, :z1, :z11],
),
) == 0
)
end
Test.@testset "linearly dependent" begin
num_rows = 1_000
x = randn(Random.MersenneTwister(10), num_rows)
x1 = randn(Random.MersenneTwister(11), num_rows)
x11 = randn(Random.MersenneTwister(12), num_rows)
y = randn(Random.MersenneTwister(13), num_rows)
y1 = randn(Random.MersenneTwister(14), num_rows)
y11 = randn(Random.MersenneTwister(15), num_rows)
z = 2*x .+ 3*y
z1 = randn(Random.MersenneTwister(17), num_rows)
z11 = randn(Random.MersenneTwister(18), num_rows)
df = DataFrames.DataFrame(
:x => x,
:x1 => x1,
:x11 => x11,
:y => y,
:y1 => y1,
:y11 => y11,
:z => z,
:z1 => z1,
:z11 => z11,
)
Test.@test(!PredictMD.columns_are_linearly_independent(df))
Test.@test(
!PredictMD.columns_are_linearly_independent(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z, :z1, :z11],
)
)
Test.@test(length(PredictMD.linearly_dependent_columns(df)) == 1)
Test.@test(
length(
PredictMD.linearly_dependent_columns(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z, :z1, :z11],
)
) == 1
)
result1 = PredictMD.linearly_dependent_columns(df)
result2 = PredictMD.linearly_dependent_columns(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z, :z1, :z11],
)
Test.@test(
all(result1.==[:x]) || all(result1.==[:y]) || all(result1.==[:z])
)
Test.@test(
all(result2.==[:x]) || all(result2.==[:y]) || all(result2.==[:z])
)
DataFrames.deletecols!(df, [:z])
Test.@test(PredictMD.columns_are_linearly_independent(df))
Test.@test(
PredictMD.columns_are_linearly_independent(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z1, :z11],
)
)
Test.@test(length(PredictMD.linearly_dependent_columns(df)) == 0)
Test.@test(
length(
PredictMD.linearly_dependent_columns(
df,
[:x, :x1, :x11, :y, :y1, :y11, :z1, :z11],
)
) == 0
)
end
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | code | 525 | import PredictMD
import Test
Test.@test_throws ErrorException PredictMD.trapz([1, 2, 3], [])
Test.@test_throws ErrorException PredictMD.trapz([], [])
Test.@test_throws ErrorException PredictMD.trapz([1, 2, 1], [4, 5, 4])
x_1 = collect(0:0.00001:1)
f_1(t) = t^2
y_1 = f_1.(x_1)
I_1 = PredictMD.trapz(x_1, y_1)
Test.@test isapprox(I_1, 1/3; atol=0.00000001)
x_2 = collect(0:0.00001:1)
f_2(t) = (t^2) * (tanh(t))
y_2 = f_2.(x_2)
I_2 = PredictMD.trapz(x_2, y_2)
Test.@test isapprox(I_2, 0.207068855098706896; atol=0.00000001)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 3346 | # Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at [email protected]. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 5947 | # PredictMD - Uniform interface for machine learning in Julia
[![Zenodo][zenodo-img]][zenodo-url]
[![Documentation (stable)][docs-stable-img]][docs-stable-url]
[![Documentation (development)][docs-development-img]][docs-development-url]
[![PkgEval][pkgeval-img]][pkgeval-url]
[![Continuous integration (CI)][ghactions-ci-img]][ghactions-ci-url]
[![Code coverage][codecov-img]][codecov-url]
[zenodo-img]: https://zenodo.org/badge/109460252.svg
[zenodo-url]: https://doi.org/10.5281/zenodo.1291209
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://predictmd.net/stable
[docs-development-img]: https://img.shields.io/badge/docs-development-blue.svg
[docs-development-url]: https://predictmd.net/development
[pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/P/PredictMD.named.svg
[pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/P/PredictMD.html
[ghactions-ci-img]: https://github.com/bcbi/PredictMD.jl/workflows/CI/badge.svg?branch=master
[ghactions-ci-url]: https://github.com/bcbi/PredictMD.jl/actions?query=workflow%3ACI+branch%3Amaster
[codecov-img]: https://codecov.io/gh/bcbi/PredictMD.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/bcbi/PredictMD.jl/branch/master
[PredictMD](https://predictmd.net) is a free and open-source Julia package that provides a uniform interface for machine learning.
PredictMD makes it easy to automate machine learning workflows and create reproducible machine learning pipelines.
It is the official machine learning framework of the [Brown Center for Biomedical Informatics](https://github.com/bcbi).
| Table of Contents |
| ----------------- |
| [1. Installation](#installation) |
| [2. Run the test suite after installing](#run-the-test-suite-after-installing) |
| [3. Citing](#citing) |
| [4. Docker image](#docker-image) |
| [5. Documentation](#documentation) |
| [6. Related Repositories](#related-repositories) |
| [7. Contributing](#contributing) |
## Installation
PredictMD is registered in the Julia General registry. Therefore, to install PredictMD, simply open Julia and run the following four lines:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
Pkg.add("PredictMDFull")
import PredictMDFull
```
## Run the test suite after installing
After you install PredictMD, you should run the test suite to make sure that
everything is working. You can run the test suite by running the following five lines in Julia:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
Pkg.test("PredictMD")
```
## Citing
If you use PredictMD in research, please
cite the software using the following DOI:
<a href="https://doi.org/10.5281/zenodo.1291209">
<img
src="https://zenodo.org/badge/109460252.svg"/>
</a>
## Docker image
Alternatively, you can use the PredictMD Docker image for easy installation. Download and start the container by running the following line:
```bash
docker run --name predictmd -it dilumaluthge/predictmd /bin/bash
```
Once you are inside the container, you can start Julia by running the following line:
```bash
julia
```
In Julia, run the following line to load PredictMD:
```julia
import PredictMDFull
```
You can run the test suite by running the following four lines in Julia:
```julia
import Pkg
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
Pkg.test("PredictMD")
```
After you have exited the container, you can return to it by running the following line:
```bash
docker start -ai predictmd
```
To delete your container, run the following line:
```bash
docker container rm -f predictmd
```
To also delete the downloaded image, run the following line:
```bash
docker image rm -f dilumaluthge/predictmd
```
## Documentation
The [PredictMD documentation](https://predictmd.net/stable) contains
useful information, including instructions for use, example code, and a
description of
PredictMD's internals.
## Related Repositories
- [BCBIRegistry](https://github.com/bcbi/BCBIRegistry) - Julia package registry for the Brown Center for Biomedical Informatics (BCBI)
- [ClassImbalance.jl](https://github.com/bcbi/ClassImbalance.jl) - Sampling-based methods for correcting for class imbalance in two-category classification problems
- [OfflineRegistry](https://github.com/DilumAluthge/OfflineRegistry) - Generate a custom Julia package registry, mirror, and depot for use on workstations without internet access
- [PredictMD-docker](https://github.com/DilumAluthge/PredictMD-docker) - Docker and Singularity images for PredictMD
- [PredictMD-roadmap](https://github.com/bcbi/PredictMD-roadmap) - Roadmap for the PredictMD machine learning pipeline
- [PredictMD.jl](https://github.com/bcbi/PredictMD.jl) - Uniform interface for machine learning in Julia
- [PredictMDAPI.jl](https://github.com/bcbi/PredictMDAPI.jl) - Provides the abstract types and generic functions that define the PredictMD application programming interface (API)
- [PredictMDExtra.jl](https://github.com/bcbi/PredictMDExtra.jl) - Install all of the dependencies of PredictMD (but not PredictMD itself)
- [PredictMDFull.jl](https://github.com/bcbi/PredictMDFull.jl) - Install PredictMD and all of its dependencies
- [PredictMDSanitizer.jl](https://github.com/bcbi/PredictMDSanitizer.jl) - Remove potentially sensitive data from trained machine learning models
## Contributing
If you would like to contribute to the PredictMD source code, please read the instructions in [CONTRIBUTING.md](CONTRIBUTING.md).
## Acknowledgements
- This work was supported in part by National Institutes of Health grants U54GM115677, R01LM011963, and R25MH116440. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
- PredictMD was created by [Dilum P. Aluthge](https://aluthge.com) and Ishan Sinha.
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 3745 | ## Instructions
Select the test group to run by setting the `PREDICTMD_TEST_GROUP` environment variable before running the test suite.
For example, to run the `all` test group, you would run the following lines in Julia:
```julia
ENV["PREDICTMD_TEST_GROUP"] = "all"
import Pkg
Pkg.test("PredictMD")
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
```
## Available test groups
| group | `default` | `all` | `test-plots` | `import-only` | `travis-1` | `travis-2` | `travis-3` | `travis-4` | `travis-5` | `travis-6` | `travis-7` | `docker-1` | `docker-2` | `docker-3` | `docker-4` |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Import package | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Unit tests | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: |
| Integration tests 1/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Integration tests 2/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Integration tests 3/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Integration tests 4/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Integration tests 5/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Integration tests 6/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Integration tests 7/7 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :white_check_mark: | :x: |
| Plot tests 1/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Plot tests 2/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Plot tests 3/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: |
| Plot tests 4/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Plot tests 5/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Plot tests 6/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :x: | :white_check_mark: | :x: |
| Plot tests 7/7 | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: | :x: | :x: | :x: | :x: | :white_check_mark: | :x: | :x: | :white_check_mark: | :x: |
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 2695 | # Zenodo entry for PredictMD
This document contains instructions for updating the Zenodo entry for PredictMD.
First go to [https://doi.org/10.5281/zenodo.1291209](https://doi.org/10.5281/zenodo.1291209), and then click on the yellow "Edit" button to edit the most recent release. Then, fill out the following fields with the specified values:
## Upload type:
Software
## Basic information
### Title:
PredictMD - Uniform interface for machine learning in Julia
### Authors:
| Name | Affiliation | ORCID |
| --- | -------- | ---- |
| Aluthge DP | Brown Center for Biomedical Informatics, Brown University | 0000-0002-9247-0530 |
| Sinha I | Brown Center for Biomedical Informatics, Brown University | 0000-0001-7796-819X |
| Stey P | Brown Center for Biomedical Informatics, Brown University | 0000-0003-2112-6756 |
| Restrepo MI | Brown Center for Biomedical Informatics, Brown University | 0000-0002-2708-8984 |
| Chen ES | Brown Center for Biomedical Informatics, Brown University | 0000-0002-6181-3369 |
| Sarkar IN | Brown Center for Biomedical Informatics, Brown University | 0000-0003-2054-7356 |
### Description:
PredictMD is a free and open-source Julia package that provides a uniform interface for machine learning.
### Language:
English
### Keywords:
* biomedical informatics
* Julia
* machine learning
* statistics
### Additional notes:
Development of PredictMD was supported in part by National Institutes of Health grants U54GM115677, R01LM011963, and R25MH116440. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
## License
MIT License
## Related/alternate identifiers
### Related identifiers:
(Replace `vMAJOR.MINOR.PATCH` with the appropriate version number. In our example, you would replace `vMAJOR.MINOR.PATCH` with `v3.6.0`.)
| Identifier | Relationship | Optional. Resource type of the related identifier. |
| ---- | ---- | ---- |
| `https://github.com/bcbi/PredictMD.jl/tree/vMAJOR.MINOR.PATCH` | is supplemented by this upload | Software |
| `https://github.com/bcbi/PredictMD.jl/tree/vMAJOR.MINOR.PATCH` | is an alternate identifier of this upload | Software |
| `https://github.com/bcbi/PredictMD.jl/releases/tag/vMAJOR.MINOR.PATCH` | is an alternate identifier of this upload | Software |
| `https://predictmd.net/vMAJOR.MINOR.PATCH` | documents this upload | Software documentation |
| `https://predictmd.net` | compiled/created this upload | Software documentation |
After you have entered the correct information in all of the above fields, click the white "Save" button, and then click the blue "Publish" button. Congratulations, you are finished!
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 834 | ---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- Browser [e.g. chrome, safari]
- Version [e.g. 22]
**Smartphone (please complete the following information):**
- Device: [e.g. iPhone6]
- OS: [e.g. iOS8.1]
- Browser [e.g. stock browser, safari]
- Version [e.g. 22]
**Additional context**
Add any other context about the problem here.
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 595 | ---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 1022 | # [Docker image](@id docker_image)
You can use the PredictMD Docker image for easy installation of PredictMD and all of its dependencies. Download and start the container by running the following line:
```bash
docker run --name predictmd -it dilumaluthge/predictmd /bin/bash
```
Once you are inside the container, you can start Julia by running the following line:
```bash
julia
```
In Julia, run the following line to load PredictMD:
```julia
import PredictMDFull
```
You can run the test suite by running the following four lines in Julia:
```julia
import Pkg
ENV["PREDICTMD_TEST_GROUP"] = "all"
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
Pkg.test("PredictMD")
```
After you have exited the container, you can return to it by running the following line:
```bash
docker start -ai predictmd
```
To delete your container, run the following line:
```bash
docker container rm -f predictmd
```
To also delete the downloaded image, run the following line:
```bash
docker image rm -f dilumaluthge/predictmd
```
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 1119 | # PredictMD
[PredictMD](https://predictmd.net) is a free and open-source Julia package that provides a uniform
interface for machine learning.
PredictMD makes it easy to automate machine learning workflows and
create reproducible machine learning pipelines.
## Installation
PredictMD is registered in the Julia General registry. Therefore, to install PredictMD, simply open Julia and run the following four lines:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
Pkg.add("PredictMDFull")
import PredictMDFull
```
## Running the package tests
You can run the default PredictMD test suite by running the
following five lines in Julia:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
Pkg.test("PredictMD")
```
To run the full test suite, which includes
tests of the plotting functionality, run the following six
lines in Julia:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
ENV["PREDICTMD_TEST_GROUP"] = "all"
Pkg.test("PredictMDExtra")
Pkg.test("PredictMDFull")
Pkg.test("PredictMD")
```
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 1745 | # Requirements for plotting
There are no requirements in order to run PredictMD--you can train, run,
and evaluate models without installing any additional software. However, in
order to generate plots (e.g. ROC curves), you need to install LaTeX on
your system. See below for instructions on installing LaTeX.
Once you have installed LaTeX, you can test PredictMD's
plotting functionality by running two lines in Julia:
```julia
import Pkg
Pkg.activate("PredictMDEnvironment"; shared = true)
ENV["PREDICTMD_TEST_GROUP"] = "test-plots"
Pkg.test("PredictMD")
```
If you do not want to install LaTeX on your computer, you can use the [Docker image](@ref docker_image).
## Installing LaTeX
To confirm that LaTeX is installed on your system, open a terminal window and
run the following command:
```bash
latex -v
```
You should see an output message that looks something like this:
```
pdfTeX 3.14159265-2.6-1.40.18 (TeX Live 2017)
kpathsea version 6.2.3
Copyright 2017 Han The Thanh (pdfTeX) et al.
There is NO warranty. Redistribution of this software is
covered by the terms of both the pdfTeX copyright and
the Lesser GNU General Public License.
For more information about these matters, see the file
named COPYING and the pdfTeX source.
Primary author of pdfTeX: Han The Thanh (pdfTeX) et al.
Compiled with libpng 1.6.29; using libpng 1.6.29
Compiled with zlib 1.2.11; using zlib 1.2.11
Compiled with xpdf version 3.04
```
If you receive an error (e.g. "command not found"), download and install a
TeX distribution from the appropriate link below:
* Windows: [https://tug.org/protext/](https://tug.org/protext/)
* macOS: [https://tug.org/mactex/](https://tug.org/mactex/)
* GNU/Linux: [https://tug.org/texlive/](https://tug.org/texlive/)
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 1130 | # Generating example files locally
You can generate the example files using the `generate_examples`
function. Instructions for using the `generate_examples` are given below.
In the following code snippets, `output_directory` is the directory where
you want to save the generated example files. `output_directory` should NOT
be an existing directory. If `output_directory` already exists, you should
delete it before running the `generate_examples` function.
## Generating scripts (.jl files)
To generate the examples as Julia scripts (.jl files), use the
following code.
```julia
PredictMD.generate_examples(output_directory; scripts = true)
```
## Generating IJulia/Jupyter notebooks (.ipynb files)
To generate the examples as IJulia/Jupyter notebooks (.ipynb files), use the
following code. `output_directory` is the directory where you want to save
the generated example files. `output_directory` should NOT be an existing
directory. If `output_directory` already exists, you should delete it before
running the `generate_examples` function.
```julia
PredictMD.generate_examples(output_directory; notebooks = true)
```
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 965 | # Documentation of internals
```@contents
Pages = ["internals.md"]
```
## Modules
```@autodocs
Modules = [
PredictMD,
PredictMD.Cleaning,
PredictMD.Compilation,
PredictMD.GPU,
PredictMD.Server,
]
Order = [:module]
```
## Constants
```@autodocs
Modules = [
PredictMD,
PredictMD.Cleaning,
PredictMD.Compilation,
PredictMD.GPU,
PredictMD.Server,
]
Order = [:constant]
```
## Types
```@autodocs
Modules = [
PredictMD,
PredictMD.Cleaning,
PredictMD.Compilation,
PredictMD.GPU,
PredictMD.Server,
]
Order = [:type]
```
## Functions
```@autodocs
Modules = [
PredictMD,
PredictMD.Cleaning,
PredictMD.Compilation,
PredictMD.GPU,
PredictMD.Server,
]
Order = [:function]
```
## Macros
```@autodocs
Modules = [
PredictMD,
PredictMD.Cleaning,
PredictMD.Compilation,
PredictMD.GPU,
PredictMD.Server,
]
Order = [:macro]
```
## Index
```@index
```
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 28 | # Boston housing regression
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.34.21 | 6af1dc255a34ea50e2ea16f11dfe941a2c3965ad | docs | 38 | # Breast cancer biopsy classification
| PredictMD | https://github.com/bcbi/PredictMD.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 553 | using BubbleBath
using Distributions: Uniform
using Plots
function circle(x,y,r,n=500)
θ = LinRange(0, 2π, n)
x .+ r.*sin.(θ), y .+ r.*cos.(θ)
end # function
radius_pdf = Uniform(1,5)
extent = (100, 50)
ϕ_max = 0.4
spheres = bubblebath(radius_pdf, ϕ_max, extent)
ϕ = round(packing_fraction(spheres, extent), digits=3)
plot(
xlims=(0,extent[1]), ylims=(0,extent[2]),
ratio=1, legend=false, grid=false,
title="target ϕ=$(ϕ_max); actual ϕ=$(ϕ)"
)
for s in spheres
plot!(circle(s.pos..., s.radius), seriestype=:shape)
end
plot!() | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 858 | using BubbleBath
using Distributions: Exponential
using Plots
function circle(x,y,r,n=100)
θ = LinRange(0, 2π, n)
x .+ r.*sin.(θ), y .+ r.*cos.(θ)
end # function
Lx = 400
Ly = 400
extent = (Lx,Ly)
R = 50
D = 60
spheres = [
Sphere((Lx/2-D,Ly/2-D), R),
Sphere((Lx/2+D,Ly/2-D), R),
Sphere((Lx/2,Ly/2+3D/4), R)
]
radius_pdf = Exponential(2.0)
ϕ_max = 0.25 - packing_fraction(spheres, extent)
min_distance = 2.0
bubblebath!(spheres, radius_pdf, ϕ_max, extent; min_distance)
plot(
xlims=(0,extent[1]), ylims=(0,extent[2]),
ratio=1, legend=false,
grid=false, axis=false,
bgcolor=:transparent,
size=(Lx,Ly)
)
for i in eachindex(spheres)
s = spheres[i]
plot!(circle(s.pos..., s.radius),
seriestype = :shape, lw = 0,
fillcolor = i ≤ 3 ? i : :gray,
alpha = i ≤ 3 ? 1.0 : 0.7,
)
end
plot!() | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 586 | using BubbleBath
using Distributions: Uniform
using Plots
function circle(x,y,r,n=500)
θ = LinRange(0, 2π, n)
x .+ r.*sin.(θ), y .+ r.*cos.(θ)
end # function
radius_pdf = Uniform(1,5)
extent = (100, 50)
ϕ_max = 0.4
min_distance = 2.0
spheres = bubblebath(radius_pdf, ϕ_max, extent; min_distance)
ϕ = round(packing_fraction(spheres, extent), digits=3)
plot(
xlims=(0,extent[1]), ylims=(0,extent[2]),
ratio=1, legend=false, grid=false,
title="target ϕ=$(ϕ_max); actual ϕ=$(ϕ)"
)
for s in spheres
plot!(circle(s.pos..., s.radius), seriestype=:shape)
end
plot!() | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 759 | using BubbleBath
using Distributions: Uniform
using Plots
function circle(x₀,y₀,z₀,r,n=20)
θ = LinRange(-π, π, n)
φ = LinRange(0, π, n)
x = x₀ .+ r.*cos.(θ).*sin.(φ)'
y = y₀ .+ r.*sin.(θ).*sin.(φ)'
z = z₀ .+ r.*ones(n).*cos.(φ)'
return x, y, z
end # function
radius_pdf = Uniform(10, 25)
extent = (100, 100, 100)
ϕ_max = 0.3
min_distance = 10.0
spheres = bubblebath(radius_pdf, ϕ_max, extent; min_distance)
ϕ = round(packing_fraction(spheres, extent), digits=3)
plot(
xlims=(0,extent[1]), ylims=(0,extent[2]), zlims=(0,extent[3]),
size=(400,400), aspect_ratio=:equal,
legend=false, colorbar=false,
ticks=0:50:100,
camera=(20,20)
)
for s in spheres
surface!(circle(s.pos..., s.radius), alpha=0.7)
end
plot!() | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 710 | module BubbleBath
using LinearAlgebra: norm
using Random: AbstractRNG, default_rng
export Sphere
"""
Sphere(pos::NTuple{D,Real}, radius::Real) where D
Create a `Sphere{D}` object centered at `pos` with radius `radius`.
"""
struct Sphere{D}
pos::NTuple{D,Float64}
radius::Float64
function Sphere(pos::NTuple{D,Real}, radius::Real) where D
if radius ≤ 0
throw(ArgumentError("Sphere radius must be a non-negative real number."))
end
new{D}(Float64.(pos), Float64(radius))
end
end
Sphere(pos::AbstractVector{<:Real}, radius::Real) = Sphere(Tuple(pos), radius)
include("bubblebath_algorithm.jl")
include("walkmaps.jl")
include("packing_fraction.jl")
end
| BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 8471 | export bubblebath, bubblebath!
"""
bubblebath(
radius_pdf, ϕ_max::Real, extent::NTuple{D,Real};
through_boundaries = false,
max_tries = 10000, max_fails = 100,
verbose = true
) where D
Generate a bath of spheres in the domain `extent`,
extracting radii from `radius_pdf` trying to reach a target
packing fraction `ϕ_max`.
The domain is filled with spheres in order of decreasing radius.
## Keywords
* `min_distance = 0.0`: Minimum allowed distance between spheres.
Negative values can be used to allow overlaps.
* `through_boundaries = false`: Whether spheres can cross through the domain boundaries.
* `max_tries = 10000`: Maximum number of insertion tries for each sphere.
When `max_tries` is reached, the sphere is discarded and the algorithm moves on
to the next one.
* `max_fails = 100`: Maximum number of failures (i.e. discarded spheres) allowed.
Once `max_fails` is reached, the program halts.
* `verbose = true`: Whether info logs should be printed.
* `rng = Random.default_rng()`: Random number generator.
If a negative `min_distance` is used or `through_boundaries` is set to true,
the packing fraction estimated during the generation will not correspond to the
real packing fraction of the system.
In these cases, `ϕ_max` has only a *semi*-quantitative value.
"""
function bubblebath(
radius_pdf,
ϕ_max::Real,
extent::NTuple{D,Real};
min_distance::Real = 0.0,
through_boundaries = false,
max_tries = 10000,
max_fails = 100,
verbose = true,
rng = default_rng()
)::Vector{Sphere{D}} where D
radii = generate_radii(radius_pdf, ϕ_max, extent; max_tries, verbose, rng)
bubblebath(radii, extent;
min_distance, through_boundaries, max_tries, max_fails, verbose, rng
)
end
"""
generate_radii(
radius_pdf, ϕ_max::Real, extent::NTuple{D,Real};
max_tries = 10000, verbose = true, rng = default_rng()
) where D
Generate a vector of radii from the `radius_pdf` distribution,
with a limit packing fraction `ϕ_max` in the domain `extent`.
"""
function generate_radii(
radius_pdf,
ϕ_max::Real,
extent::NTuple{D,Real};
max_tries = 10000,
verbose = true,
rng = default_rng()
)::Vector{Float64} where D
# allow ϕ_max=1 as a way to fill the box as much as possible
if ~(0 < ϕ_max ≤ 1)
throw(ArgumentError("Packing fraction should be between 0 and 1."))
end
radii = Float64[]
V₀ = prod(extent)
tries = 0
while true
r = rand(rng, radius_pdf)
V = volume(r, D)
ϕ = (sum(volume.(radii,D))+V)/V₀
if ϕ ≤ ϕ_max
push!(radii, r)
else
tries += 1
tries > max_tries && break
end
end
if verbose
@info "Generated $(length(radii)) spheres."
end
return radii
end
"""
bubblebath(
radii::Vector{<:Real}, extent::NTuple{D,Real};
min_distance = 0.0,
through_boundaries = false,
max_tries = 10000, max_fails = 100,
verbose = true,
rng = default_rng()
) where D
Generate a bath of spheres with radii `radii` in the domain `extent`.
"""
function bubblebath(
radii::Vector{<:Real},
extent::NTuple{D,Real};
min_distance::Real = 0.0,
through_boundaries = false,
max_tries = 10000,
max_fails = 100,
verbose = true,
rng = default_rng()
)::Vector{Sphere{D}} where D
spheres = Sphere{D}[]
bubblebath!(spheres, radii, extent;
min_distance, through_boundaries, max_tries, max_fails, verbose, rng
)
return spheres
end
"""
is_overlapping(p::NTuple{D,Real}, r::Real, spheres::Vector{Sphere{D}}) where D
Test if a sphere of radius `r` centered at `p` overlaps with any sphere in `spheres`.
Surface contact is not counted as overlap.
"""
function is_overlapping(
p::NTuple{D,Real}, r::Real,
spheres::Vector{Sphere{D}}
)::Bool where D
for sphere in spheres
if is_overlapping(p, r, sphere)
return true
end
end
return false
end
"""
is_overlapping(p₁::NTuple{D,Real}, r₁::Real, s₂::Sphere{D}) where D
Test if a sphere of radius `r₁` centered at `p₁` overlaps with sphere `s₂`.
Surface contact is not counted as overlap.
"""
@inline function is_overlapping(
p₁::NTuple{D,Real}, r₁::Real,
s₂::Sphere{D}
)::Bool where D
is_overlapping(p₁, r₁, s₂.pos, s₂.radius)
end
"""
is_overlapping(p₁::NTuple{D,Real}, r₁::Real, p₂::NTuple{D,Real}, r₂::Real) where D
Test if two spheres with radii `r₁` and `r₂`, centered at `p₁` and `p₂` respectively,
are overlapping. Surface contact is not counted as overlap.
"""
@inline function is_overlapping(
p₁::NTuple{D,Real}, r₁::Real,
p₂::NTuple{D,Real}, r₂::Real
)::Bool where D
norm(p₁ .- p₂) < r₁ + r₂
end
"""
is_inside_boundaries(pos::NTuple{D,Real}, radius::Real, extent::NTuple{D,Real}) where D
Check if a sphere of radius `radius` centered at `pos` is within domain `extent`.
"""
function is_inside_boundaries(
pos::NTuple{D,Real}, radius::Real, extent::NTuple{D,Real}
)::Bool where D
for i in 1:D
if !(radius ≤ pos[i] ≤ extent[i]-radius)
return false
end
end
return true
end
"""
bubblebath!(
spheres::Vector{Sphere{D}},
radius_pdf, ϕ_max::Real, extent::NTuple{D,Real};
min_distance::Real = 0.0, through_boundaries = false,
max_tries = 10000, max_fails = 100,
verbose = true, rng = default_rng()
) where D
In-place version of `bubblebath`, adds new spheres to the `spheres`
vector, which can be already populated.
Here, `ϕ_max` does **not** account for spheres that might
already be present in the `spheres` vector.
E.g. if `packing_fraction(spheres, extent)` is 0.2 and `ϕ_max=0.3`,
then the algorithm generates new spheres for a packing fraction of 0.3,
which upon insertion will (try to) add up to a total packing fraction of 0.5.
To account for the pre-initialized spheres, decrease `ϕ_max` accordingly
(`ϕ_max = 0.3-packing_fraction(spheres,extent)` giving 0.1 for this example).
"""
function bubblebath!(
spheres::Vector{Sphere{D}},
radius_pdf,
ϕ_max::Real,
extent::NTuple{D,Real};
min_distance::Real = 0.0,
through_boundaries = false,
max_tries = 10000,
max_fails = 100,
verbose = true,
rng = default_rng()
)::Nothing where D
radii = generate_radii(radius_pdf, ϕ_max, extent; max_tries, verbose, rng)
bubblebath!(spheres, radii, extent;
min_distance, through_boundaries, max_tries, max_fails, verbose, rng
)
end
"""
bubblebath!(
spheres::Vector{Sphere{D}},
radii::Vector{<:Real}, extent::NTuple{D,Real};
min_distance::Real = 0.0, through_boundaries = false,
max_tries = 10000, max_fails = 100,
verbose = true, rng = default_rng()
) where D
In-place version of `bubblebath`, adds new spheres to the
`spheres` vector (which can be already populated).
"""
function bubblebath!(
spheres::Vector{Sphere{D}},
radii::Vector{<:Real},
extent::NTuple{D,Real};
min_distance::Real = 0.0,
through_boundaries = false,
max_tries = 10000,
max_fails = 100,
verbose = true,
rng = default_rng()
)::Nothing where D
for r in radii
if r ≤ 0
throw(ArgumentError("Sphere radii must be non-negative real numbers."))
end
end
n₀ = length(spheres)
sizehint!(spheres, length(spheres)+n₀)
fails = 0
for radius in sort(radii, rev=true)
tries = 0
Δ = through_boundaries ? 0.0 : radius
while true
if tries > max_tries
if fails > max_fails
@warn "Reached max. number of tries. Interrupting."
@goto packing_complete
else
fails += 1
break
end
end
pos = Δ .+ Tuple(rand(rng, D)) .* (extent .- 2Δ)
isvalid_pos = (
!is_overlapping(pos, radius+min_distance, spheres) &&
(through_boundaries || is_inside_boundaries(pos, radius, extent))
)
if isvalid_pos
push!(spheres, Sphere(pos, radius))
break
else
tries += 1
end
end
end
@label packing_complete
if verbose
@info "$(length(spheres)-n₀)/$(length(radii)) new spheres inserted."
end
return nothing
end
| BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 2089 | export packing_fraction
"""
packing_fraction(spheres::Vector{Sphere{D}}, extent::NTuple{D,Real}) where D
Evaluate the packing fraction of `spheres` in domain `extent`.
This measurement is not exact if spheres are overlapping or cross through the
domain boundaries.
"""
function packing_fraction(
spheres::Vector{Sphere{D}},
extent::NTuple{D,Real}
)::Float64 where D
V₀ = prod(extent)
V = 0.0
for sphere in spheres
V += volume(sphere)
end
return V/V₀
end
"""
volume(sphere::Sphere{2})
Evaluate volume of two-dimensional sphere, i.e. the area of a circle (πr²).
"""
volume(sphere::Sphere{2})::Float64 = π * sphere.radius^2
"""
volume(sphere::Sphere{3})
Evaluate volume of a three-dimensional sphere (4πr³/3)
"""
volume(sphere::Sphere{3})::Float64 = 4π/3 * sphere.radius^3
"""
packing_fraction(radii::Vector{Real}, extent::NTuple{D,Real}) where D
Evaluate the packing fraction of a collection of spheres with radii `radii`
in domain `extent`.
This measurement is not exact if spheres are overlapping or cross through the
domain boundaries.
"""
function packing_fraction(
radii::Vector{<:Real},
extent::NTuple{D, Real}
)::Float64 where D
V₀ = prod(extent)
V = 0.0
for radius in radii
V += volume(radius, D)
end
return V/V₀
end
"""
volume(r::Real, D::Int)
Evaluate volume of a sphere of radius `r` in `D` dimensions.
Only D=2 and D=3 currently supported.
"""
function volume(r::Real, D::Int)::Float64
if D == 2
return π*r^2
elseif D == 3
return 4π/3*r^3
end
end
"""
packing_fraction(wm::BitArray)
Evaluate the packing fraction in a walkmap `wm`.
If `wm` was generated with `probe_radius=0` this represents
the real packing fraction, instead if `probe_radius` was not
zero, it represents the effective packing fraction experienced
by the probe.
Unlike the other instances of `packing_fraction`, this one
is exact, independently of overlaps and boundary conditions,
within the resolution of the walkmap.
"""
packing_fraction(wm::BitArray) = 1 - count(wm)/length(wm) | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 2672 | export walkmap
"""
walkmap(
spheres::AbstractVector{Sphere{D}}, extent::NTuple{D,<:Real},
resolution::Real, probe_radius::Real = 0;
boundaries::Symbol = :cut
) where D
Generate a walkmap for the given configuration of `spheres` in the domain
`extent`, with the desired `resolution.`
A positive `probe_radius` restricts the walkable space assuming that the
"probe" has a finite size.
`boundaries` can be set to `:cut` or `:wrap` to define how to deal with
spheres that cross through the domain boundaries (in case there is any).
"""
function walkmap(
spheres::AbstractVector{Sphere{D}},
extent::NTuple{D,<:Real},
resolution::Real,
probe_radius::Real = 0;
boundaries::Symbol = :cut
)::BitArray{D} where D
grid = ntuple(i -> (resolution/2):resolution:(extent[i]-resolution/2), D)
itr = Iterators.product(grid...)
BitArray{D}([is_walkable(pos, probe_radius, spheres, extent, boundaries) for pos in itr])
end
"""
is_walkable(
pos::NTuple{D,<:Real}, r::Real, spheres::AbstractVector{Sphere{D}},
extent::NTuple{D,<:Real}, boundaries::Symbol
) where D
Determines whether an object of size `r` can occupy position `pos`
in a domain `extent` filled by `spheres`.
"""
function is_walkable(
pos::NTuple{D,<:Real}, r::Real,
spheres::AbstractVector{Sphere{D}},
extent::NTuple{D,<:Real}, boundaries::Symbol
)::Bool where D
if boundaries == :cut
return is_walkable(pos, r, spheres)
elseif boundaries == :wrap
return is_walkable_periodic(pos, r, spheres, extent)
else
throw(ArgumentError(
"Mode $(boundaries) unrecognized. Choose between `:cut` and `:wrap`."
))
end
end
function is_walkable(
pos::NTuple{D,<:Real}, r::Real, spheres::AbstractVector{Sphere{D}}
)::Bool where D
for sphere in spheres
if ~is_walkable(pos, r, sphere)
return false
end
end
return true
end
function is_walkable(pos::NTuple{D,<:Real}, r::Real, sphere::Sphere{D})::Bool where D
return norm(pos .- sphere.pos) ≥ r + sphere.radius
end
function is_walkable_periodic(
pos::NTuple{D,<:Real}, r::Real,
spheres::AbstractVector{Sphere{D}}, extent::NTuple{D,<:Real}
)::Bool where D
for sphere in spheres
if ~is_walkable_periodic(pos, r, sphere, extent)
return false
end
end
return true
end
function is_walkable_periodic(
pos::NTuple{D,<:Real}, r::Real,
sphere::Sphere{D}, extent::NTuple{D,<:Real}
)::Bool where D
a = @. (pos - sphere.pos) / extent
d = @. (a - round(a)) * extent # minimum-image distance
return norm(d) ≥ r + sphere.radius
end | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | code | 11734 | using BubbleBath
using Distributions: Uniform
using LinearAlgebra: norm
using Random: Xoshiro
using Test
function capture_stderr(f, args, kwargs)
original_stderr = stderr
out_read, out_write = redirect_stderr()
f(args...; kwargs...)
# without this the program hangs if f does not write to stderr
@info "dummy text"
close(out_write)
data = readavailable(out_read)
close(out_read)
s = String(copy(data))
redirect_stderr(original_stderr)
return s
end
@testset "BubbleBath.jl" begin
@testset "Spheres" begin
# sphere dimensionality is always inherited from pos
radius = 1
pos = ntuple(_ -> 5.0, 2)
sphere = Sphere(pos, radius)
@test sphere isa Sphere{2}
pos = ntuple(_ -> 5.0, 3)
sphere = Sphere(pos, radius)
@test sphere isa Sphere{3}
# check fields are assigned correctly
@test sphere.pos == pos
@test sphere.radius == radius
# should work identically when pos is NTuple{D,Float64} or NTuple{D,Int}
pos = ntuple(_ -> 5, 3)
sphere2 = Sphere(pos, radius)
@test sphere2.pos == sphere.pos
# if pos is an AbstractVector it should be converted to a tuple
pos = rand(3)
sphere = Sphere(pos, 1)
@test sphere.pos == Tuple(pos)
pos = 1:5
sphere = Sphere(pos, 1)
@test sphere.pos == Tuple(pos)
# non-positive radius not allowed
@test_throws ArgumentError Sphere((5,5), 0)
@test_throws ArgumentError Sphere((5,5), -1)
end
@testset "Bubblebath" begin
L = 10
extent = ntuple(_ -> L, 3)
r = 4.0
# negative radii not allowed
@test_throws ArgumentError bubblebath([-r], extent)
# packing fraction must be ϕ∈(0,1]
@test_throws ArgumentError bubblebath([r], -0.1, extent)
@test_throws ArgumentError bubblebath([r], 1.1, extent)
bath = bubblebath([r], extent)
# should be a vector with only one sphere
@test bath isa Vector{Sphere{3}}
@test length(bath) == 1
# sphere radius should be r
@test bath[1].radius == r
# sphere position should not overlap with domain boundaries
for i in 1:3
@test r ≤ bath[1].pos[i] ≤ L-r
end
# packing fraction should be volume of the sphere over domain volume
ϕ = packing_fraction(bath, extent)
@test ϕ ≈ (4π*r^3/3)/prod(extent)
L = 10
extent = ntuple(_ -> L, 3)
r = 8.0
# with a large sphere radius (r > L/2),
# if through_boundaries = false (default), sphere can't be inserted
bath = bubblebath([r], extent)
@test isempty(bath)
# if max fails are reached, should print info message
msg = capture_stderr(bubblebath,
([r,r], extent),
(max_tries=0, max_fails=0)
)
@test contains(msg, "Reached max. number of tries")
# if through_boundaries = true, it will surely cross all domain boundaries
bath = bubblebath([r], extent; through_boundaries=true)
for i in 1:3
@test !(r ≤ bath[1].pos[i] ≤ L-r)
end
extent = (10, 15, 12)
radius_pdf = Uniform(1, 2)
ϕ_max = 0.4
bath = bubblebath(radius_pdf, ϕ_max, extent)
# all the spheres should have radius between 1 and 2
@test all(map(s -> 1 ≤ s.radius ≤ 2, bath))
# no sphere should cross domain boundaries
@test all(map(s -> BubbleBath.is_inside_boundaries(s.pos, s.radius, extent), bath))
# packing fraction is below ϕ_max
ϕ = packing_fraction(bath, extent)
@test ϕ ≤ ϕ_max
extent = ntuple(_ -> 10, 3)
radius_pdf = [2.0]
ϕ_max = 0.4
min_distance = 0.5
bath = bubblebath(radius_pdf, ϕ_max, extent; min_distance)
# all spheres should be at distance > min_distance (between their surfaces)
surface_distances = vec([
norm(bath[i].pos .- bath[j].pos) - (bath[i].radius + bath[j].radius)
for i in eachindex(bath), j in eachindex(bath) if j>i
])
@test all(surface_distances .≥ min_distance)
# test the verbose keyword
L = 10
extent = (L,L)
radius_pdf = Uniform(1,2)
ϕ_max = 0.3
msg = capture_stderr(bubblebath,
(radius_pdf, ϕ_max, extent),
(verbose=true,) # default
)
@test contains(msg, r"Generated \d+ spheres")
@test contains(msg, r"\d+/\d+ new spheres inserted")
msg = capture_stderr(bubblebath,
(radius_pdf, ϕ_max, extent),
(verbose=false,)
)
@test ~contains(msg, r"Generated \d+ spheres")
@test ~contains(msg, r"\d+/\d+ new spheres inserted")
end
@testset "In-place Bubbleath" begin
L = 50
extent = (L,L)
# initialize with one sphere of radius 3
spheres = [Sphere((L/2,L/2), 3.0)]
# add 10 more spheres of radius 1
r = 1.0
radii = repeat([r], 10)
bubblebath!(spheres, radii, extent)
# should be a total of 11 spheres
@test length(spheres) == 11
@test count(map(s -> s.radius==3, spheres)) == 1
@test count(map(s -> s.radius==1, spheres)) == 10
# the new spheres should not overlap with the original one
overlaps = [
norm(spheres[1].pos .- s.pos) ≤ spheres[1].radius + s.radius
for s in spheres[2:end]
]
@test !(any(overlaps))
L = 10
extent = (L,L)
r = L/2
spheres_old = [Sphere((L/2,L/2), r)] # largest sphere to fit extent
spheres_new = copy(spheres_old)
# should add nothing since r is too large to fit another sphere
bubblebath!(spheres_new, [r], extent)
@test spheres_new == spheres_old
# if max fails are reached, should print info message
max_tries = 1
max_fails = 1
msg = capture_stderr(bubblebath!,
(spheres_new, [r,r], extent),
(max_tries=0, max_fails=0)
)
@test contains(msg, "Reached max. number of tries")
end
@testset "RNG" begin
L = 50
extent = (L,L)
radius_pdf = Uniform(5, 10)
ϕ_max = 0.35
rng = Xoshiro(1)
spheres_1 = bubblebath(radius_pdf, ϕ_max, extent; rng)
rng = Xoshiro(1)
spheres_2 = bubblebath(radius_pdf, ϕ_max, extent; rng)
@test spheres_1 == spheres_2
end
@testset "Walkmap" begin
extent = (10, 10)
pos = (5,5)
r = 3
spheres = [Sphere(pos, r)]
res = 0.1
wm = walkmap(spheres, extent, res)
# walkmap has same dimensions as extent
@test ndims(wm) == length(extent)
extent = (5.07, 12.0, 8.15)
pos = (3, 3, 3)
r = 1
spheres = [Sphere(pos, r)]
res = 0.1
wm = walkmap(spheres, extent, res)
# res defines the size of wm
n_nodes = @. floor(Int, extent / res)
@test size(wm) == n_nodes
extent = (10, 10)
pos = (5, 5)
r = 3
spheres = [Sphere(pos, r)]
res = 0.1
wm = walkmap(spheres, extent, res)
xs = range(res/2, extent[1]-res/2; step=res)
ys = range(res/2, extent[2]-res/2; step=res)
grid = (xs, ys)
function getidx(pos, grid, res)
ntuple(i ->
findfirst(j -> grid[i][j]-res/2 ≤ pos[i] ≤ grid[i][j]+res/2,
eachindex(grid[i])
),
length(pos)
)
end
# wm should be 0 in positions occupied by spheres
p₁ = pos
p₂ = pos .+ (r-res/2, 0)
p₃ = pos .+ (-r/6, r/6)
I₁, I₂, I₃ = map(p -> CartesianIndex(getidx(p,grid,res)), (p₁,p₂,p₃))
@test ~wm[I₁]
@test ~wm[I₂]
@test ~wm[I₃]
# 1 in unoccupied positions
p₄ = pos .+ (r+res/2, 0)
p₅ = pos .+ (0, r+1)
I₄, I₅ = map(p -> CartesianIndex(getidx(p,grid,res)), (p₄,p₅))
@test wm[I₄]
@test wm[I₅]
# if probe_radius>0 the occupied region increases
wm₂ = walkmap(spheres, extent, res, 1.0)
I = CartesianIndex(getidx(pos.+(r+0.5,0), grid, res))
@test wm[I] && ~wm₂[I]
# put a sphere at the boundary
extent = (10, 10)
pos = (0, 5)
r = 4
spheres = [Sphere(pos, r)]
res = 0.1
xs = range(res/2, extent[1]-res/2; step=res)
ys = range(res/2, extent[2]-res/2; step=res)
grid = (xs, ys)
wm₁ = walkmap(spheres, extent, res) # boundaries = :cut
wm₂ = walkmap(spheres, extent, res; boundaries=:wrap)
# if boundaries=:cut the opposite edge is free
I = CartesianIndex(getidx((10-res,5), grid, res))
@test wm₁[I]
# if boundaries=:wrap the oppposite edge is occupied
@test ~wm₂[I]
# throw error if boundaries is not :cut or :wrap
@test_throws ArgumentError walkmap(spheres, extent, res; boundaries=:periodic)
end
@testset "Packing fraction" begin
# packing fraction should match theoretical values
L = 10
extent = (L,L)
r = 4
bath = bubblebath([r], extent)
@test packing_fraction(bath, extent) ≈ π*r^2 / L^2
extent = (L,L,L)
bath = bubblebath([r], extent)
@test packing_fraction(bath, extent) ≈ 4π*r^3/3 / L^3
# test same behavior on radii vector instead of bath
@test packing_fraction([r], (L,L)) ≈ π*r^2 / L^2
@test packing_fraction([r], (L,L,L)) ≈ 4π*r^3/3 / L^3
# an empty collection should give 0 packing fraction
@test packing_fraction(Sphere{2}[], (L,L)) == 0
@test packing_fraction(Float64[], (L,L)) == 0
# packing fractions produced by bubblebath should never be > ϕ_max
extent = (8, 10)
radius_pdf = Uniform(2,5)
ϕ_max = 0.2
bath = bubblebath(radius_pdf, ϕ_max, extent)
@test packing_fraction(bath, extent) ≤ ϕ_max
extent = (8, 10, 12)
radius_pdf = Uniform(2,5)
ϕ_max = 0.2
bath = bubblebath(radius_pdf, ϕ_max, extent)
@test packing_fraction(bath, extent) ≤ ϕ_max
# pre-initialize a bath
extent = (15, 15)
r = 3
bath = [Sphere((7.5,7.5), r)]
ϕ₀ = packing_fraction(bath, extent) # ≈ 0.126
# fill with more spheres
radius_pdf = [0.1]
ϕ_max = 0.3
bubblebath!(bath, radius_pdf, ϕ_max, extent)
# final ϕ will be ϕ_max+ϕ₀ ≈ 0.426
@test packing_fraction(bath, extent) ≈ ϕ_max+ϕ₀ atol=0.02
bath = [Sphere((7.5,7.5), r)]
bubblebath!(bath, radius_pdf, ϕ_max-ϕ₀, extent)
# now final ϕ will be ϕ_max
@test packing_fraction(bath, extent) ≈ ϕ_max atol=0.02
# packing fraction of a walkmap
extent = (10, 10)
r = 3
spheres = [Sphere((5,5), r)]
ϕ₁ = packing_fraction(spheres, extent)
res = 0.1
wm = walkmap(spheres, extent, res)
ϕ₂ = packing_fraction(wm)
@test ϕ₂ ≈ ϕ₁ atol=res^2
# if half of a sphere goes through a boundary
# packing fraction of the walkmap is correct
spheres = [Sphere((10,5), r)]
ϕ = (π*r^2 / prod(extent)) / 2 # exact packing fraction
ϕ₀ = packing_fraction(spheres, extent)
wm₁ = walkmap(spheres, extent, res)
wm₂ = walkmap(spheres, extent, res; boundaries=:wrap)
ϕ₁ = packing_fraction(wm₁)
ϕ₂ = packing_fraction(wm₂)
@test ϕ₀ ≈ 2ϕ
@test ϕ₁ ≈ ϕ atol=res^2
@test ϕ₂ ≈ 2ϕ atol=res^2
end
end
| BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 0.2.1 | f0c51786db6be8c3a957b6afb67e7707995206b8 | docs | 3485 | # BubbleBath.jl
<p align="center" width="100%">
<img src="examples/bubblebath_logo.svg">
</p>
[](https://github.com/mastrof/BubbleBath.jl/actions)
[](https://codecov.io/gh/mastrof/BubbleBath.jl)
Generate loose packings of spheres in orthorhombic domains, in 2 and 3 dimensions.
## Features
* Fill a domain with spheres from a given distribution of radii to reach a target
packing fraction, or from already-sampled radii.
* Control minimum allowed distance between spheres.
* Decide whether spheres can cross through domain boundaries or not.
`BubbleBath.jl` just employs the trivial brute-force method,
with the only peculiarity that spheres are introduced in
order of decreasing radius.
Dense packings are obtained with reasonable performance,
but spatial correlations between sphere sizes are introduced.
This is **not** an algorithm to generate tight, space-filling packings.
## Example usage
The package exports a `Sphere{D}` type, which is just a wrapper around a
position `pos::NTuple{D,Float64}` and a radius `radius::Float64`, and
the `bubblebath` function, which creates a loose packing of spheres in a domain.
To generate a (2D) distribution of spheres with radii uniformly distributed
within 1 and 5, in a rectangular domain of edges 100 and 50,
with a packing fraction 0.4, we can do
```julia
using BubbleBath
using Distributions: Uniform
radius_pdf = Uniform(1,5)
extent = (100, 50)
ϕ_max = 0.4
bath = bubblebath(radius_pdf, ϕ_max, extent)
```

If we want to impose a minimal distance between the surface of spheres,
the `min_distance` keyword can be used
```julia
radius_pdf = Uniform(1,5)
extent = (100, 50)
ϕ_max = 0.4
min_distance = 2.0
bath = bubblebath(radius_pdf, ϕ_max, extent; min_distance)
```

Again, the procedure in 3D is identical
```julia
radius_pdf = Uniform(10,25)
extent = (100, 100, 100)
ϕ_max = 0.3
min_distance = 10.0
bath = bubblebath(radius_pdf, ϕ_max, extent; min_distance)
```

We can verify that the generated radii closely match the chosen distribution, even at relatively high packing fractions.
```julia
using Distributions: Exponential
θ = 3.0 # average radius
radius_pdf = Exponential(θ)
extent = ntuple(_->300, 3)
bath1 = bubblebath(radius_pdf, 0.3, extent)
# this can take a while
bath2 = bubblebath(radius_pdf, 0.6, extent)
r1 = map(s -> s.radius, bath1)
r2 = map(s -> s.radius, bath2)
```

Finally, `bubblebath` also has an in-place version `bubblebath!`, which can operate on pre-initialised
vectors of `Sphere`s.
For example, to produce the `BubbleBath.jl` logo:
```julia
using Distributions: Exponential
# initialise vector with three spheres at desired locations
Lx = 400
Ly = 400
extent = (Lx,Ly)
R = 50
D = 60
spheres = [
Sphere((Lx/2-D,Ly/2-D), R),
Sphere((Lx/2+D,Ly/2-D), R),
Sphere((Lx/2,Ly/2+3D/4), R)
]
# add new spheres with exponential distribution of radii
radius_pdf = Exponential(2.0)
ϕ_max = 0.25 - packing_fraction(spheres, extent)
min_distance = 2.0
bubblebath!(spheres, radius_pdf, ϕ_max, extent; min_distance)
```
<img src="examples/2d_inplace.svg" width="600"> | BubbleBath | https://github.com/mastrof/BubbleBath.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 2555 | #!/usr/bin/env julia
using Cumulants
using JLD2
using FileIO
using ArgParse
#import Cumulants: mom2cums
include("../test/testfunctions/leeuw_cumulants_no_nested_func.jl")
"""
comptime(data::Matrix{Float}, f::Function, m::Int)
Returns Float, a computional time of m'th statisitics calulation of multivariate data
"""
function comptime(data::Matrix{Float64}, f::Function, m::Int)
f(data[1:4, 1:4], m)
t = time_ns()
f(data, m)
Float64(time_ns()-t)/1.0e9
end
"""
comtimes(m::Int, t::Vector{Int}, n::Vector{Int}, f::Function)
Returns Matrix, a computional time of m'th statisitics of multivariate data,
given statisitcs's order m, number of variables n, number of data realisation t
"""
function comtimes(m::Int, t::Vector{Int}, n::Vector{Int}, f::Function)
compt = zeros(length(n), length(t))
for i in 1:length(t)
for j in 1:length(n)
data = randn(t[i], n[j])
println("n = ", n[j])
println("t = ", t[i])
compt[j,i] = comptime(data, f, m)
end
end
compt
end
"""
savecomptime(m::Int, T::Vector{Int}, n::Vector{Int}, cache::Bool)
Save a file in jld2 format of the computional times of moment, naivemoment, rawmoment
"""
function savecomptime(m::Int, t::Vector{Int}, n::Vector{Int})
filename = replace("res/"*string(m)*string(t)*string(n)*"leeuw_cums.jld2", "["=>"_")
filename = replace(filename, "]"=>"")
fs = [cumulants_upto_p, cumulants]
compt = Dict{String, Any}()
for f in fs
fname = "$(f)"
println(fname)
println("called function " , fname)
push!(compt, fname => comtimes(m, t, n, f))
end
push!(compt, "t" => t)
push!(compt, "n" => n)
push!(compt, "m" => m)
push!(compt, "x" => "n")
push!(compt, "functions" => [["cumulants_upto_p", "cumulants"]])
save(filename, compt)
end
"""
main(args)
Returns file of the speedup of momant, naivemoment rawmoment, ....
Takes optional arguments from bash
"""
function main(args)
s = ArgParseSettings("description")
@add_arg_table s begin
"--order", "-m"
help = "m, the order of cumulant, ndims of cumulant's tensor"
default = 4
arg_type = Int
"--nvar", "-n"
nargs = '*'
default = [20, 24, 28]
help = "n, numbers of marginal variables"
arg_type = Int
"--dats", "-t"
help = "t, numbers of data records"
nargs = '*'
default = [10000]
arg_type = Int
end
parsed_args = parse_args(s)
m = parsed_args["order"]
n = parsed_args["nvar"]
t = parsed_args["dats"]
savecomptime(m, t, n)
end
main(ARGS)
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 1650 | #!/usr/bin/env julia
using Cumulants
using JLD2
using FileIO
using ArgParse
function comptime(data::Matrix{Float64}, ccalc::Function, m::Int, b::Int)
ccalc(data[1:4, 1:4], m, 2)
t = time_ns()
ccalc(data, m, b)
Float64(time_ns()-t)/1.0e9
end
function savect(t::Vector{Int}, n::Int, m::Int)
maxb = round(Int, sqrt(n))
comptimes = zeros(maxb, length(t))
println("max block size = ", maxb)
for k in 1:length(t)
data = randn(t[k], n)
for b in 1:maxb
comptimes[b, k] = comptime(data, cumulants, m, b)
println("n = ", n)
println("bloks size = ", b)
end
end
filename = replace("res/$(m)_$(t)_$(n)_nblocks.jld2", "["=>"")
filename = replace(filename, "]"=>"")
compt = Dict{String, Any}("cumulants"=> comptimes)
push!(compt, "t" => t)
push!(compt, "n" => n)
push!(compt, "m" => m)
push!(compt, "x" => "block size")
push!(compt, "block size" => [collect(1:maxb)...])
push!(compt, "functions" => [["cumulants"]])
save(filename, compt)
end
function main(args)
s = ArgParseSettings("description")
@add_arg_table s begin
"--order", "-m"
help = "m, the order of cumulant, ndims of cumulant's tensor"
default = 4
arg_type = Int
"--nvar", "-n"
default = 48
help = "n, numbers of marginal variables"
arg_type = Int
"--dats", "-t"
help = "t, numbers of data records"
nargs = '*'
default = [10000, 20000]
arg_type = Int
end
parsed_args = parse_args(s)
m = parsed_args["order"]
n = parsed_args["nvar"]
t = parsed_args["dats"]
savect(t::Vector{Int}, n::Int, m::Int)
end
main(ARGS)
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 2139 | #!/usr/bin/env julia
using Cumulants
using JLD2
using FileIO
using ArgParse
using Distributed
function comptime(data::Matrix{Float64}, ccalc::Function, m::Int, b::Int)
ccalc(data[1:4, 1:4], m, b)
t = time_ns()
ccalc(data, m, b)
Float64(time_ns()-t)/1.0e9
end
function comptimesonprocs(t::Int, n::Int, m::Int, p::Int, b::Int)
data = randn(t, n)
times = zeros(p)
for i in 1:p
addprocs(i)
println("number of workers = ", nworkers())
eval(Expr(:toplevel, :(@everywhere using Cumulants)))
times[i] = comptime(data, moment, m, b)
rmprocs(workers())
end
times
end
function savect(t::Int, n::Int, m::Int, maxprocs::Int, b::Int)
comptimes = zeros(maxprocs)
comptimes = comptimesonprocs(t,n,m,maxprocs, b)
onec = fill(comptimes[1], maxprocs)
filename = replace("res/$(m)_$(t)_$(n)_$(b)_nprocs.jld2", "["=>"")
filename = replace(filename, "]"=>"")
compt = Dict{String, Any}("cumulants"=> onec, "cumulantsnc"=> comptimes)
push!(compt, "t" => [t])
push!(compt, "n" => n)
push!(compt, "m" => m)
push!(compt, "x" => "procs")
push!(compt, "procs" => collect(1:maxprocs))
push!(compt, "functions" => [["cumulants", "cumulantsnc"]])
save(filename, compt)
end
function main(args)
s = ArgParseSettings("description")
@add_arg_table s begin
"--order", "-m"
help = "m, the order of cumulant, ndims of cumulant's tensor"
default = 4
arg_type = Int
"--nvar", "-n"
default = 50
help = "n, numbers of marginal variables"
arg_type = Int
"--dats", "-t"
help = "t, numbers of data records"
#nargs = '*'
default = 100000
arg_type = Int
"--maxprocs", "-p"
help = "maximal number of procs"
default = 4
arg_type = Int
"--blocksize", "-b"
help = "set a block size"
default = 2
arg_type = Int
end
parsed_args = parse_args(s)
m = parsed_args["order"]
n = parsed_args["nvar"]
t = parsed_args["dats"]
p = parsed_args["maxprocs"]
b = parsed_args["blocksize"]
savect(t::Int, n::Int, m::Int, p::Int, b::Int)
end
main(ARGS)
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 2473 | #!/usr/bin/env julia
using Cumulants
using JLD2
using FileIO
using ArgParse
"""
comptime(data::Matrix{Float}, f::Function, m::Int)
Returns Float, a computional time of m'th statisitics calulation of multivariate data
"""
function comptime(data::Matrix{Float64}, f::Function, m::Int)
f(data[1:4, 1:4], m)
t = time_ns()
f(data, m)
Float64(time_ns()-t)/1.0e9
end
"""
comtimes(m::Int, t::Vector{Int}, n::Vector{Int}, f::Function)
Returns Matrix, a computional time of m'th statisitics of multivariate data,
given statisitcs's order m, number of variables n, number of data realisation t
"""
function comtimes(m::Int, t::Vector{Int}, n::Vector{Int}, f::Function)
compt = zeros(length(n), length(t))
for i in 1:length(t)
for j in 1:length(n)
data = randn(t[i], n[j])
println("n = ", n[j])
println("t = ", t[i])
compt[j,i] = comptime(data, f, m)
end
end
compt
end
"""
savecomptime(m::Int, T::Vector{Int}, n::Vector{Int}, cache::Bool)
Save a file in jld2 format of the computional times of moment, naivemoment, rawmoment
"""
function savecomptime(m::Int, t::Vector{Int}, n::Vector{Int})
filename = replace("res/"*string(m)*string(t)*string(n)*".jld2", "["=>"_")
filename = replace(filename, "]"=>"")
fs = [moment, naivemoment, cumulants, naivecumulant]
compt = Dict{String, Any}()
for f in fs
fname = "$(f)"
println("called function " , fname)
push!(compt, fname => comtimes(m, t, n, f))
end
push!(compt, "t" => t)
push!(compt, "n" => n)
push!(compt, "m" => m)
push!(compt, "x" => "n")
push!(compt, "functions" => [["naivemoment", "moment"], ["naivecumulant", "cumulants"]])
save(filename, compt)
end
"""
main(args)
Returns file of the speedup of momant, naivemoment rawmoment, ....
Takes optional arguments from bash
"""
function main(args)
s = ArgParseSettings("description")
@add_arg_table s begin
"--order", "-m"
help = "m, the order of cumulant, ndims of cumulant's tensor"
default = 4
arg_type = Int
"--nvar", "-n"
nargs = '*'
default = [20, 24, 28]
help = "n, numbers of marginal variables"
arg_type = Int
"--dats", "-t"
help = "t, numbers of data records"
nargs = '*'
default = [10000]
arg_type = Int
end
parsed_args = parse_args(s)
m = parsed_args["order"]
n = parsed_args["nvar"]
t = parsed_args["dats"]
savecomptime(m, t, n)
end
main(ARGS)
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 1266 | #!/usr/bin/env julia
using Distributions
using FileIO
using JLD2
using Random
using SpecialFunctions
"""
gendat(nu::Int, t::Int)
Returns Matrix{Float64} - t realisations from t-student multivatiate distribution
with nu degress of freedom
"""
function gendat(nu::Int, t::Int = 150000000)
cm = [[1. 0.7 0.7 0.7];[0.7 1. 0.7 0.7]; [0.7 0.7 1. 0.7]; [0.7 0.7 0.7 1]]
p = MvTDist(nu, [0., 0., 0., 0.],cm)
return Array(transpose(rand(p, t)))
end
"""
tmom(nu::Int, k::Int)
Returns Float64, the k'th moment of standard t distribution with nu degreed of
freedom
"""
tmom(nu::Int, k::Int) = gamma((k+1)/2)*gamma((nu-k)/2)*nu^(k/2)/(sqrt(pi)*gamma(nu/2))
"""
tcum(nu::Int, k::Int)
Returns Float64, the k'th cumulant of standard t distribution with nu degreed of
freedom
"""
function tcum(nu::Int, k::Int)
if k in (1,3,5)
return 0.
elseif k == 2
return tmom(nu, 2)
elseif k == 4
return tmom(nu, 4) - 3*tmom(nu, 2)^2
elseif k == 6
return tmom(nu, 6) - 15*tmom(nu, 4)*tmom(nu, 2) + 30*tmom(nu, 2)^3
end
end
function main()
nu = 14
Random.seed!(42)
data = gendat(nu::Int)
d = Dict{String, Any}("theoretical diag" => Float64[tcum(14, k) for k in 1:6])
push!(d, "data" => data)
save("data/datafortests.jld2", d)
end
main()
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 281 | #!/usr/bin/env julia
using JLD2
using FileIO
using Cumulants
function main()
d = try load("data/datafortests.jld2")
catch
println("please run gendata.jl")
return ()
end
c = cumulants(d["data"], 6)
save("data/cumulants.jld2", Dict("cumulants" => c))
end
main()
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 1169 | #!/usr/bin/env julia
using JLD2
using FileIO
using SymmetricTensors
using PyCall
@pyimport matplotlib as mpl
using PyPlot
mpl.rc("text", usetex=true)
mpl.rc("font", family="serif", size = 8)
"""
pltdiag()
Plots a chart of superdiagonal elements of cumulants of and its theoretical values
"""
function pltdiag()
tdiag = try load("datafortests.jld2")["theoretical diag"]
catch
println("please run test/gandata.jl and test/testondata.jl")
return ()
end
cum = try load("cumulants.jld2")["cumulants"]
catch
println("please run test/testondata.jl")
return ()
end
n = cum[1].dats
fig, ax = subplots(figsize = (3., 2.3))
col = ["cyan", "brown", "green", "red", "blue", "black"]
for order in (2,4,5,6)
c = cum[order]
ax[:plot](diag(c), "o", color = col[order], label = "$order cumulant", markersize=3)
ax[:plot]([fill(tdiag[order], n)...], "--", color = col[order], label = "theoretical")
end
PyPlot.ylabel("superdiagonal elements", labelpad = -1)
PyPlot.xlabel("superdiagonal index", labelpad = -3)
ax[:legend](fontsize = 4.5, loc = 5)
fig[:savefig]("diagcumels.pdf")
end
function main()
pltdiag()
end
main()
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 1724 | #!/usr/bin/env julia
using PyCall
using PyPlot
using JLD2
using FileIO
using ArgParse
function singleplot(filename::String, name::String, compare::String = "")
d = load(filename*".jld2")
if compare == ""
comptimes = d[name]
ylab = "computional time [s]"
else
comptimes = d[name]./d[compare]
ylab = "speedup"
end
x = d["x"]
t = d["t"]
m = d["m"]
fig, ax = subplots(figsize = (2.5, 2.))
col = ["red", "blue", "black", "green", "yellow", "orange"]
marker = [":s", ":o", ":v", ":<", ":>", ":d"]
for i in 1:size(comptimes, 2)
tt = t[i]
ax[:plot](d[x], comptimes[:,i], marker[i], label= "t = $tt", color = col[i], markersize=2.5, linewidth = 1)
end
PyPlot.ylabel(ylab, labelpad = -1)
PyPlot.xlabel(x, labelpad = -1)
if maximum(comptimes) > 10
f = matplotlib[:ticker][:ScalarFormatter]()
f[:set_powerlimits]((-3, 2))
else
f = matplotlib[:ticker][:FormatStrFormatter]("%.1f")
end
ax[:yaxis][:set_major_formatter](f)
ax[:legend](fontsize = 6, loc = 2, ncol = 1)
subplots_adjust(left = 0.22, bottom = 0.20,top=0.92)
fig[:savefig](name*filename*".pdf")
end
"""
pltspeedup(comptimes::Array{Float}, m::Int, n::Vector{Int}, T::Vector{Int}, label::String)
Returns a figure in .pdf format of the computional speedup of cumulants function
"""
function pltspeedup(filename::String)
d = load(filename)
filename = replace(filename, ".jld2"=>"")
for f in d["functions"]
singleplot(filename::String, f...)
end
end
function main(args)
s = ArgParseSettings("description")
@add_arg_table s begin
"file"
help = "the file name"
arg_type = String
end
parsed_args = parse_args(s)
pltspeedup(parsed_args["file"])
end
main(ARGS)
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 502 | module Cumulants
using SymmetricTensors
using Combinatorics
using Distributions
using Distributed
import SymmetricTensors: pyramidindices, ind2range, sizetest, getblockunsafe
import Distributions: moment
if VERSION >= v"1.3"
using CompilerSupportLibraries_jll
end
#calculates moments and cumulants using block structures (SymmetricTensors)
include("cumulant.jl")
#naive implementation
include("naivecumulants.jl")
export moment, cumulants, naivecumulant, naivemoment
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 9177 | # following code is used to caclulate moments in SymmetricTensor form ##
"""
blockel(X::Matrix{T}, i::Tuple, j::Tuple, b::Int)
Returns Float, the element of the block (indexed by j) of the moment's tensor
of X, at index cd i inside a block, where b is a standard blocks' size
```jldoctest
julia> M = [1. 2. 5. 6. ; 3. 4. 7. 8.];
julia> blockel(M, (1,1), (1,1), 2)
5.0
julia> blockel(M, (1,1), (2,2), 2)
37.0
```
"""
function blockel(data, mi, mj, b)
ret = 0.
t = size(data, 1)
for l in 1:t
temp = 1.
for k in 1:length(mi)
@inbounds ind = (mj[k]-1)*b+mi[k]
@inbounds temp *= data[l,ind]
end
ret += temp
end
ret/t
end
"""
momentblock(X::Matrix{T}, j::Tuple, dims::Tuple, b::Int)
Returns a block of a moment's tensor of X. A block is indexed by j and if size dims,
b is a standatd block size.
```jldoctest
julia> M = [1. 2. 5. 6. ; 3. 4. 7. 8.];
julia> momentblock(M, (1,1), (2,2), 2)
2×2 Array{Float64,2}:
5.0 7.0
7.0 10.0
```
"""
function momentblock(X::Matrix{T}, j::Tuple, dims::Tuple,
b::Int) where {T <: AbstractFloat}
ret = zeros(T, dims)
for ind = 1:(prod(dims))
i = Tuple(CartesianIndices(dims)[ind])
@inbounds ret[i...] = blockel(X, i, j, b)
end
ret
end
"""
usebl(bind::Tuple, n::Int, b::Int, nbar::Int)
Returns: Tuple{Int}, sizes of the last block
"""
function usebl(bind::Tuple, n::Int, b::Int, nbar::Int)
bl = n - b*(nbar-1)
map(i -> (i == nbar) ? (bl) : (b), bind)
end
"""
momentn1c(X::Matrix{Float}, m::Int, b::Int)
Returns: SymmetricTensor{Float, m}, a tensor of the m'th moment of X, where b
is a block size. Uses 1 core implementation
"""
function moment1c(X::Matrix{T}, m::Int, b::Int=2) where T <: AbstractFloat
n = size(X, 2)
sizetest(n, b)
nbar = mod(n,b)==0 ? n÷b : n÷b + 1
ret = arraynarrays(T, fill(nbar, m)...,)
for j in pyramidindices(m, nbar)
dims = (mod(n,b) == 0 || !(nbar in j)) ? (fill(b,m)...,) : usebl(j, n, b, nbar)
@inbounds ret[j...] = momentblock(X, j, dims, b)
end
SymmetricTensor(ret; testdatstruct = false)
end
"""
momentnc(X::Matrix}, m::Int, b::Int)
Returns: SymmetricTensor{Float, m}, a tensor of the m'th moment of X, where b
is a block size. Uses multicore parallel implementation via pmap()
"""
function momentnc(x::Matrix{T}, m::Int, b::Int = 2) where T <: AbstractFloat
t = size(x, 1)
f(z::Matrix{T}) = moment1c(z, m, b)
k = length(workers())
r = mod(t,k)==0 ? t÷k : t÷k + 1
y = [x[ind2range(i, r, t), :] for i in 1:k]
ret = pmap(f, y)
(r*sum(ret[1:(end-1)])+(t-(k-1)*r)*ret[end])/t
end
"""
moment(X::Matrix}, m::Int, b::Int)
Returns: SymmetricTensor{Float, m}, a tensor of the m'th moment of X, where b
is a block size. Calls 1 core or multicore moment function.
"""
moment(X::Matrix{T}, m::Int, b::Int=2) where T <: AbstractFloat =
(size(X,1)/10>nworkers()>1) ? momentnc(X, m, b) : moment1c(X, m, b)
# ---- following code is used to caclulate cumulants in SymmetricTensor form----
"""
Type that stores a partition of multiindex into subests, sizes of subests,
size of original multitindex and number of subsets
"""
mutable struct IndexPart
part::Vector{Vector{Int64}}
subsetslen::Vector{Int64}
nind::Int
npart::Int
(::Type{IndexPart})(part::Vector{Vector{Int64}}, subsetslen::Vector{Int64},
nind::Int, npart::Int) = new(part, subsetslen, nind, npart)
end
"""
indpart(nind::Int, npart::Int, e::Int = 1)
Returns vector of IndexPart type, that includes partitions of set [1, 2, ..., nind]
into npart subests of size != e, sizes of each subest, size of original set and
number of partitions
```jldoctest
julia>indpart(4,2)
3-element Array{Cumulants.IndexPart,1}:
IndexPart(Array{Int64,1}[[1,2],[3,4]],[2,2],4,2)
IndexPart(Array{Int64,1}[[1,3],[2,4]],[2,2],4,2)
IndexPart(Array{Int64,1}[[1,4],[2,3]],[2,2],4,2)
```
"""
function indpart(nind::Int, npart::Int, e::Int = 1)
part_set = IndexPart[]
for part in partitions(1:nind, npart)
subsetslen = map(length, part)
if !(e in subsetslen)
push!(part_set, IndexPart(part, subsetslen, nind, npart))
end
end
part_set
end
"""
accesscum(mulind::Tuple{Int, ...}, ::IndexPart,
cum::SymmetricTensor{Float}...)
Returns: vector of blocks from cumulants. Each block correspond to a subests
of partition (part) of multiindex (multiind).
```jldoctest
julia> cum = SymmetricTensor([1.0 2.0 3.0; 2.0 4.0 6.0; 3.0 6.0 5.0]);
julia> accesscum((1,1,1,1), IndexPart(Array{Int64,1}[[1,2],[3,4]],[2,2],4,2), cum)
Array{Float64,N}[
[1.0 2.0; 2.0 4.0],
[1.0 2.0; 2.0 4.0]]
julia> accesscum((1,1,1,2), IndexPart(Array{Int64,1}[[1,2],[3,4]],[2,2],4,2), cum)
Array{Float64,N}[
[1.0 2.0; 2.0 4.0],
[3.0 0.0; 6.0 0.0]]
julia> accesscum((1,1,1,1), IndexPart(Array{Int64,1}[[1,4],[2,3]],[2,2],4,2), cum)
Array{Float64,N}[
[1.0 2.0; 2.0 4.0],
[1.0 2.0; 2.0 4.0]]
```
"""
function accesscum(mulind::Tuple, part::IndexPart,
cum::SymmetricTensor{T}...) where T <: AbstractFloat
blocks = Array{Array{T}}(undef, part.npart)
sq = cum[1].sqr || !(cum[1].bln in mulind)
for k in 1:part.npart
data = getblockunsafe(cum[part.subsetslen[k]], mulind[part.part[k]])
if sq
@inbounds blocks[k] = data
else
ind = map(i -> 1:size(data,i), 1:part.subsetslen[k])
datapadded = zeros(T, fill(cum[1].bls, part.subsetslen[k])...,)
@inbounds datapadded[ind...] = data
@inbounds blocks[k] = datapadded
end
end
blocks
end
"""
outprodblocks(n::Int, part::Vector{Vector{Int}}, blocks::Vector{Array{T}}
Returns: n dims Array of outer product of blocks, given partition of indices, part.
```jldoctest
julia> blocks = 2-element Array{Array{Float64,N},1}[[1.0 2.0; 2.0 4.0], [1.0 2.0; 2.0 4.0]];
julia> outprodblocks(IndexPart(Array{Int64,1}[[1,2],[3,4]],[2,2],4,2), blocks)
2×2×2×2 Array{Float64,4}:
[:, :, 1, 1] =
1.0 2.0
2.0 4.0
[:, :, 2, 1] =
2.0 4.0
4.0 8.0
[:, :, 1, 2] =
2.0 4.0
4.0 8.0
[:, :, 2, 2] =
4.0 8.0
8.0 16.0
```
"""
function outprodblocks(inp::IndexPart,
blocks::Vector{Array{T}}) where T <: AbstractFloat
b = size(blocks[1], 1)
block = zeros(T, fill(b, inp.nind)...,)
for i = 1:(b^inp.nind)
muli = Tuple(CartesianIndices((fill(b, inp.nind)...,))[i])
@inbounds block[muli...] =
mapreduce(k -> blocks[k][muli[inp.part[k]]...], *, 1:inp.npart)
end
block
end
"""
outerprodcum(retd::Int, npart::Int, cum::SymmetricTensor...; exclpartlen::Int = 1)
Returns retd dims outer products of npart cumulants in SymmetricTensor form.
exclpartlen is a length of partitions to be excluded in calculations,
in this algorithm exclpartlen = 1
```jldoctest
julia> cum = SymmetricTensor([1.0 2.0 3.0; 2.0 4.0 6.0; 3.0 6.0 5.0]);
julia> outerprodcum(4,2,cum, cum)
SymmetricTensors.SymmetricTensor{Float64,4}(Union{Array{Float64,4}, Void}[[3.0 6.0; 6.0 12.0]
[6.0 12.0; 12.0 24.0]
[6.0 12.0; 12.0 24.0]
[12.0 24.0; 24.0 48.0] nothing; nothing nothing]
Union{Array{Float64,4}, Void}[nothing nothing; nothing nothing]
Union{Array{Float64,4}, Void}[[9.0 18.0; 18.0 36.0]
[18.0 36.0; 36.0 72.0] nothing; nothing nothing]
Union{Array{Float64,4}, Void}[[23.0 46.0; 46.0 92.0] [45.0; 90.0]; nothing [75.0]], 2, 2, 3, false)
```
"""
function outerprodcum(retd::Int, npart::Int,
cum::SymmetricTensor{T}...;
exclpartlen::Int = 1) where T <: AbstractFloat
parts = indpart(retd, npart, exclpartlen)
prodcum = arraynarrays(T, fill(cum[1].bln, retd)...,)
for muli in pyramidindices(retd, cum[1].bln)
block = zeros(T, fill(cum[1].bls, retd)...,)
for part in parts
blocks = accesscum(muli, part, cum...)
@inbounds block += outprodblocks(part, blocks)
end
if !cum[1].sqr && cum[1].bln in muli
ran = map(k->cum[1].bln == muli[k] ? (1:cum[1].dats% cum[1].bls) : (1:cum[1].bls), 1:retd)
@inbounds block = block[ran...]
end
@inbounds prodcum[muli...] = block
end
SymmetricTensor(prodcum; testdatstruct = false)
end
"""
cumulant(X::Vector{Matrix}, cum::SymmetricTensor...)
Returns: SymmetricTensor{Float, m}, a tensor of the m'th cumulant of X, given Vector
of cumulants of order 2, ..., m-2
"""
function cumulant(X::Matrix{T}, cum::SymmetricTensor{T}...) where T <: AbstractFloat
m = length(cum) + 2
ret = moment(X, m, cum[1].bls)
for sigma in 2:div(m, 2)
ret -= outerprodcum(m, sigma, cum...)
end
ret
end
"""
cumulants(X::Matrix, m::Int, b::Int)
Returns [SymmetricTensor{Float, 1}, SymmetricTensor{Float, 2}, ...,
SymmetricTensor{Float, m}], vector of cumulant tensors
```
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> convert(Array, cumulants(M, 3)[3])
2×2×2 Array{Float64,3}:
[:, :, 1] =
0.0 0.0
0.0 0.0
[:, :, 2] =
0.0 0.0
0.0 0.0
```
"""
function cumulants(X::Matrix{T}, m::Int = 4, b::Int = 2) where T <: AbstractFloat
cvec = Array{SymmetricTensor{T}}(undef, m)
cvec[1] = moment1c(X, 1, b)
X = X .- mean(X, dims=1)
for i = 2:m
@inbounds cvec[i] = (i < 4) ? moment1c(X, i, b) : cumulant(X, cvec[1:(i-2)]...)
end
cvec
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 5615 | # --- calculates moment's tensor
"""
momel(X::Matrix{Float}, ind::Tuple)
Returns Float, an element of moment's tensor at ind multiindex
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> momel(M, (1,1,1,1))
0.4318298020613279
```
"""
@inline momel(X::Matrix{T}, multind::Tuple) where T<: AbstractFloat = blockel(X, multind, multind, 0)
"""
naivemoment(data::Matrix{Float}, m::Int)
Returns Array{Float, m} the m'th moment tensor
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> naivemoment(M, 3)
2×2×2 Array{Float64,3}:
[:, :, 1] =
-0.523092 0.142552
0.142552 -0.0407653
[:, :, 2] =
0.142552 -0.0407653
-0.0407653 0.0120729
```
"""
function naivemoment(X::Matrix{T}, m::Int = 4) where T<: AbstractFloat
n = size(X, 2)
moment = zeros(T, fill(n, m)...,)
for i = 1:(n^m)
ind = Tuple(CartesianIndices((fill(n, m)...,))[i])
@inbounds moment[ind...] = momel(X, ind)
end
moment
end
# --- uses the naive method to calculate cumulants 2 - 6
"""
mixel(X::Matrix{T}, ind::Tuple)
Returns Float, mixed element for cumulants 4-6 at ind multi-index
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> mixel(M, (1,1,1,1))
-1.232956812564408
mixel(M, (1,1,1,1,1,1))
1.015431116914347
```
"""
function mixel(X::Matrix{T}, i::Tuple) where T<: AbstractFloat
a = zero(T)
if length(i) == 4
a -= momel(X, (i[1],i[2]))*momel(X, (i[3],i[4]))
a -= momel(X, (i[1],i[3]))*momel(X, (i[2],i[4])) + momel(X, (i[1],i[4]))*momel(X, (i[2],i[3]))
elseif length(i) == 5
a -= momel(X, (i[1],i[2],i[3]))*momel(X, (i[4],i[5])) + momel(X, (i[1],i[2],i[4]))*momel(X, (i[3],i[5]))
a -= momel(X, (i[1],i[2],i[5]))*momel(X, (i[3],i[4])) + momel(X, (i[2],i[3],i[4]))*momel(X, (i[1],i[5]))
a -= momel(X, (i[2],i[3],i[5]))*momel(X, (i[1],i[4])) + momel(X, (i[1],i[3],i[4]))*momel(X, (i[2],i[5]))
a -= momel(X, (i[1],i[3],i[5]))*momel(X, (i[2],i[4])) + momel(X, (i[3],i[4],i[5]))*momel(X, (i[1],i[2]))
a -= momel(X, (i[2],i[4],i[5]))*momel(X, (i[1],i[3])) + momel(X, (i[1],i[4],i[5]))*momel(X, (i[2],i[3]))
elseif length(i) == 6
a1 = -momel(X, (i[1],i[2],i[3]))*momel(X, (i[4],i[5], i[6])) - momel(X, (i[1],i[2],i[4]))*momel(X, (i[3],i[5], i[6]))
a1 -= momel(X, (i[1],i[2],i[5]))*momel(X, (i[3],i[4], i[6])) + momel(X, (i[1],i[2],i[6]))*momel(X, (i[3],i[4], i[5]))
a1 -= momel(X, (i[1],i[3],i[4]))*momel(X, (i[2],i[5], i[6])) + momel(X, (i[1],i[3],i[5]))*momel(X, (i[2],i[4], i[6]))
a1 -= momel(X, (i[1],i[3],i[6]))*momel(X, (i[2],i[4], i[5])) + momel(X, (i[1],i[4],i[5]))*momel(X, (i[2],i[3], i[6]))
a1 -= momel(X, (i[1],i[4],i[6]))*momel(X, (i[2],i[3], i[5])) + momel(X, (i[1],i[5],i[6]))*momel(X, (i[2],i[3], i[4]))
a2 = -momel(X, (i[1],i[2],i[3],i[4]))*momel(X, (i[5], i[6])) - momel(X, (i[1],i[2],i[3],i[5]))*momel(X, (i[4],i[6]))
a2 -= momel(X, (i[1],i[2],i[3],i[6]))*momel(X, (i[4], i[5])) + momel(X, (i[1],i[2],i[4],i[5]))*momel(X, (i[3], i[6]))
a2 -= momel(X, (i[1],i[2],i[4],i[6]))*momel(X, (i[3], i[5])) + momel(X, (i[1],i[2],i[5],i[6]))*momel(X, (i[3], i[4]))
a2 -= momel(X, (i[3],i[4],i[5],i[6]))*momel(X, (i[1], i[2])) + momel(X, (i[1],i[3],i[4],i[5]))*momel(X, (i[2], i[6]))
a2 -= momel(X, (i[1],i[3],i[4],i[6]))*momel(X, (i[2], i[5])) + momel(X, (i[1],i[3],i[5],i[6]))*momel(X, (i[2], i[4]))
a2 -= momel(X, (i[2],i[4],i[5],i[6]))*momel(X, (i[1], i[3])) + momel(X, (i[1],i[4],i[5],i[6]))*momel(X, (i[2], i[3]))
a2 -= momel(X, (i[2],i[3],i[5],i[6]))*momel(X, (i[1], i[4])) + momel(X, (i[2],i[3],i[4],i[6]))*momel(X, (i[1], i[5]))
a2 -= momel(X, (i[2],i[3],i[4],i[5]))*momel(X, (i[1], i[6]))
a3 = -momel(X, (i[1],i[2]))*momel(X, (i[3],i[4]))*momel(X, (i[5], i[6]))
a3 -= momel(X, (i[1],i[2]))*momel(X, (i[3],i[5]))*momel(X, (i[4], i[6]))
a3 -= momel(X, (i[1],i[2]))*momel(X, (i[3],i[6]))*momel(X, (i[4], i[5]))
a3 -= momel(X, (i[1],i[3]))*momel(X, (i[2],i[4]))*momel(X, (i[5], i[6]))
a3 -= momel(X, (i[1],i[3]))*momel(X, (i[2],i[5]))*momel(X, (i[4], i[6]))
a3 -= momel(X, (i[1],i[3]))*momel(X, (i[2],i[6]))*momel(X, (i[4], i[5]))
a3 -= momel(X, (i[1],i[4]))*momel(X, (i[2],i[3]))*momel(X, (i[5], i[6]))
a3 -= momel(X, (i[1],i[5]))*momel(X, (i[2],i[3]))*momel(X, (i[4], i[6]))
a3 -= momel(X, (i[1],i[6]))*momel(X, (i[2],i[3]))*momel(X, (i[4], i[5]))
a3 -= momel(X, (i[1],i[4]))*momel(X, (i[2],i[5]))*momel(X, (i[3], i[6]))
a3 -= momel(X, (i[1],i[4]))*momel(X, (i[2],i[6]))*momel(X, (i[3], i[5]))
a3 -= momel(X, (i[1],i[5]))*momel(X, (i[2],i[4]))*momel(X, (i[3], i[6]))
a3 -= momel(X, (i[1],i[6]))*momel(X, (i[2],i[4]))*momel(X, (i[3], i[5]))
a3 -= momel(X, (i[1],i[5]))*momel(X, (i[2],i[6]))*momel(X, (i[3], i[4]))
a3 -= momel(X, (i[1],i[6]))*momel(X, (i[2],i[5]))*momel(X, (i[3], i[4]))
a += a1+a2-2*a3
end
a
end
"""
naivecumulant(data::Matrix, m::Int)
Returns Array{Float, m} the m'th cumulant tensor
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> naivecumulant(M, 3)
2×2×2 Array{Float64,3}:
[:, :, 1] =
0.0 0.0
0.0 0.0
[:, :, 2] =
0.0 0.0
0.0 0.0
```
"""
function naivecumulant(X::Matrix{T}, m::Int = 4) where T<: AbstractFloat
m < 7 || throw(AssertionError("naive implementation of $m cumulant not supported"))
if m == 1
return naivemoment(X,m)
end
X = X .- mean(X, dims=1)
ret = naivemoment(X,m)
if m in [4,5,6]
n = size(X, 2)
for i = 1:(n^m)
ind = Tuple(CartesianIndices((fill(n, m)...,))[i])
@inbounds ret[ind...] += mixel(X, ind)
end
end
return ret
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 5770 | using Test
using SymmetricTensors
using Cumulants
using Distributions
using Combinatorics
using Random
using Distributed
import Base: rand
import Cumulants: indpart, momentblock, blockel, accesscum, outprodblocks,
IndexPart, outerprodcum, usebl, momel, mixel
import SymmetricTensors: pyramidindices
include("testfunctions/pyramidcumulants.jl")
include("testfunctions/mom2cum.jl")
include("testfunctions/leeuw_cumulants_no_nested_func.jl")
Random.seed!(42)
x = randn(10,4);
d = MvLogNormal(x'*x)
data = Array(rand(d, 50)')
@testset "Helper functions" begin
@testset "moment helpers" begin
M = [1. 2. 5. 6. ; 3. 4. 7. 8.]
@test blockel(M, (1, 1), (1, 1), 2) == 5.0
@test blockel(M, (1, 1), (2, 2), 2) == 37.0
@test usebl((1, 1, 3), 5, 2, 3) == (2, 2, 1)
@test momentblock(M, (1, 1), (2, 2), 2) == [[5.0 7.0]; [7.0 10.0]]
end
end
@testset "Moment" begin
M = [-0.88626 0.279571; -0.704774 0.131896]
@testset "naivemoment" begin
@test isapprox((naivemoment(M, 3))[:, :, 1], [-0.523092 0.142552; 0.142552 -0.0407653], atol=1.0e-5)
@test isapprox((naivemoment(M, 3))[:, :, 2], [0.142552 -0.0407653; -0.0407653 0.0120729], atol=1.0e-5)
end
@testset "pyramidmoment" begin
@test isapprox((pyramidmoment(M, 3))[:, :, 1], [-0.523092 0.142552; 0.142552 -0.0407653], atol=1.0e-5)
@test isapprox((pyramidmoment(M, 3))[:, :, 2], [0.142552 -0.0407653; -0.0407653 0.0120729], atol=1.0e-5)
end
@testset "2" begin
@test Array(moment(data, 2)) ≈ naivemoment(data, 2)
end
@testset "3" begin
@test Array(moment(data, 3)) ≈ naivemoment(data, 3)
end
@testset "4" begin
@test Array(moment(data, 4)) ≈ naivemoment(data, 4)
@test Array(moment(data, 4, 3)) ≈ naivemoment(data, 4)
end
end
@testset "Exceptions" begin
@testset "Size of blocks" begin
@test_throws Exception (DimensionMismatch, moment(data, 4, 25))
@test_throws Exception (DimensionMismatch, cumulants(data, 3, 25))
end
end
@testset "Cumulant helper functions" begin
indexpart = indpart(4,2)
@testset "indpart" begin
@test indexpart[1].part == [[1, 2], [3, 4]]
@test indexpart[2].part == [[1, 3], [2, 4]]
@test indexpart[3].part == [[1, 4], [2, 3]]
end
@testset "operation on blocks" begin
c2 = SymmetricTensor([1.0 2.0 3.0; 2.0 4.0 6.0; 3.0 6.0 5.0])
blocks = accesscum((1,1,1,1), indexpart[1], c2,c2)
@test blocks == [[1.0 2.0; 2.0 4.0], [1.0 2.0; 2.0 4.0]]
@test accesscum((1,1,1,2), indexpart[1], c2,c2) == [[1.0 2.0; 2.0 4.0],
[3.0 0.0; 6.0 0.0]]
@test accesscum((1,1,1,2), indexpart[3], c2,c2) == [[3.0 0.0; 6.0 0.0],
[1.0 2.0; 2.0 4.0]]
block = outprodblocks(indexpart[1], blocks)
@test block[:, :, 1, 1] == [1.0 2.0; 2.0 4.0]
@test block[:, :, 1, 2] == [2.0 4.0; 4.0 8.0]
@test vec((outerprodcum(4, 2, c2, c2).frame[1, 1, 1, 1])[1, 1, :, :]) == [3.0, 6.0, 6.0, 12.0]
end
end
gaus_dat = [[-0.88626 0.279571];
[-0.704774 0.131896]]
@testset "Cumulants vs naive implementation" begin
@testset "Test naive implentation" begin
@test naivecumulant(gaus_dat, 3) ≈ zeros(Float64, 2, 2, 2)
end
cn = [naivecumulant(data, i) for i = 1:6]
@testset "Square blocks" begin
c1, c2, c3, c4, c5, c6 = cumulants(data, 6, 2)
@test Array(c1) ≈ cn[1]
@test Array(c2) ≈ cn[2]
@test Array(c3) ≈ cn[3]
@test Array(c4) ≈ cn[4]
@test Array(c5) ≈ cn[5]
@test Array(c6) ≈ cn[6]
end
@testset "Non-square blocks" begin
c1, c2, c3, c4, c5, c6 = cumulants(data, 6, 3)
@test Array(c1) ≈ cn[1]
@test Array(c2) ≈ cn[2]
@test Array(c3) ≈ cn[3]
@test Array(c4) ≈ cn[4]
@test Array(c5) ≈ cn[5]
@test Array(c6) ≈ cn[6]
end
end
@testset "test pyramid implementation" begin
cn1, cn2, cn3, cn4, cn5, cn6, cn7, cn8 = pyramidcumulants(gaus_dat, 8)
@test isapprox(cn1, naivecumulant(gaus_dat, 1), atol=1.0e-6)
@test cn2 ≈ naivecumulant(gaus_dat, 2)
@test cn3 ≈ zeros(Float64, 2, 2, 2)
@test isapprox(cn4, zeros(Float64, 2, 2, 2, 2), atol=0.001)
@test cn5 ≈ zeros(Float64, 2, 2, 2, 2, 2)
@test isapprox(cn6, zeros(Float64, 2, 2, 2, 2, 2, 2), atol=0.0001)
@test cn7 ≈ zeros(Float64, 2, 2, 2, 2, 2, 2, 2)
@test isapprox(cn8, zeros(Float64, 2, 2, 2, 2, 2, 2, 2, 2), atol=1.0e-5)
end
@testset "Tests cumulants vs implementation from raw moments" begin
c1, c2, c3, c4, c5, c6 = cumulants(data, 6, 2)
cm1, cm2, cm3, cm4, cm5, cm6 = mom2cums(data, 6)
@test cm2 ≈ Array(c2)
@test cm3 ≈ Array(c3)
@test cm4 ≈ Array(c4)
@test cm5 ≈ Array(c5)
@test cm6 ≈ Array(c6)
llc = first_four_cumulants(data)
@test llc[:c2] ≈ Array(c2)
@test llc[:c3] ≈ Array(c3)
@test llc[:c4] ≈ Array(c4)
end
cn1, cn2, cn3, cn4, cn5, cn6, cn7, cn8 = pyramidcumulants(data[:, 1:2], 8)
@testset "Cumulants vs pyramid implementation square blocks" begin
c1, c2, c3, c4, c5, c6, c7, c8 = cumulants(data[:, 1:2], 8, 2)
@test Array((cumulants(gaus_dat, 3))[3]) ≈ zeros(Float64, 2, 2, 2)
@test Array(c1) ≈ cn1
@test Array(c2) ≈ cn2
@test Array(c3) ≈ cn3
@test Array(c4) ≈ cn4
@test Array(c5) ≈ cn5
@test Array(c6) ≈ cn6
@test Array(c7) ≈ cn7
@test Array(c8) ≈ cn8
end
addprocs(2)
@everywhere using Cumulants
@everywhere import Cumulants: momentnc
@testset "test momentnc" begin
x = ones(100, 2)
m = momentnc(x ,2, 2)
@test Array(m) == [1.0 1.0; 1.0 1.0]
end
@testset "Cumulants parallel implementation" begin
c11, c12, c13, c14, c15, c16, c17, c18 = cumulants(data[:, 1:2], 8, 2)
@test Array(c12) ≈ cn2
@test Array(c13) ≈ cn3
@test Array(c14) ≈ cn4
@test Array(c15) ≈ cn5
@test Array(c16) ≈ cn6
@test Array(c17) ≈ cn7
@test Array(c18) ≈ cn8
x = [1. 2. 3. 4. 5. 6. .7 .8 .9]
@test Array(moment(x,1)) == [1., 2., 3., 4., 5., 6., .7, .8, .9]
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 3061 | using Combinatorics
using DataStructures
# implementation of J. De Leeuw Multivariate Cumulants in R (2012)
function outer(a::Vector{T}, b::Vector{T}) where T<: AbstractFloat
sa = size(a,1)
sb = size(b,1)
z = zeros(T, sa*sb)
k = 1
for i = 1:sb
for j = 1:sa
@inbounds z[k] = a[j]*b[i]
k += 1
end
end
return z
end
function setparts(n)
ret = zeros(Int, n, length(partitions(collect(1:n))))
for (i, partition) in enumerate(partitions(collect(1:n)))
group = 1
for p in partition
for j in p
ret[j,i] = group
end
group += 1
end
end
ret
end
function raw_moments_upto_p(x, p=4)
n, m = size(x)
if p==1
return vcat(1, mean(x, axis=2))
end
y = zeros(eltype(x), (m+1)^p)
for i in 1:n
xi = vcat(1, x[i,:])
#z = kron([xi for _ in 1:p]...)
z = xi
for j in 2:p
z = outer(xi, z)
end
y += z
end
reshape(y, repeat([m+1],p)...)./n
end
function cumulants_from_raw_moments(raw)
dimr = size(raw)
nvar::Int64 = dimr[1]
cumu = zeros(eltype(raw), dimr...)
nele = prod(dimr)
ldim = length(dimr)
spp = Array{Array{Int64,2}}(undef, ldim)
qpp::Array{Int64} = Array{Int64}(undef, ldim)
rpp = Array{Any}(undef, ldim)
function one_cumulant_from_raw_moments(jnd, raw)
jnd = [jnd[find(jnd.!=1)]...] - 1
nnd = length(jnd)
ndr::Int64 = size(raw)[1]
nrt = length(size(raw))
raw = rpp[nnd]
nvar = ndr - 1
nraw = max(1, length(size(raw)))
sp = spp[nraw]
_, nbell = size(sp)
sterm = 0.0
for i in 1:nbell
ind = sp[:, i]
und = unique(ind)
term = qpp[length(und)]
for j in und
knd = jnd[find(ind.==j)] + 1
lnd = vcat(knd, repeat([1], nraw - length(knd)))
term *= raw[lnd...]
end
sterm += term
end
return sterm
end
for i in 1:ldim
spp[i] = setparts(i)
qpp[i] = factorial(i)
if mod(i,2)==1
qpp[i] = -qpp[i]
end
rpp[i] = raw[hcat([collect(1:nvar) for i in 1:i])...]
end
qpp = vcat(1, qpp)
for i in 2:nele
ind = ind2sub(dimr, i)
cumu[i] = one_cumulant_from_raw_moments(ind, raw)
end
return cumu
end
function cumulants_upto_p(x, p = 4)
return cumulants_from_raw_moments(raw_moments_upto_p(x, p))
end
function first_four_cumulants(x)
cumu = cumulants_upto_p(x)
nsel = 2:size(cumu)[1]
OrderedDict(:c1 => cumu[1, 1, 1, nsel],
:c2 => cumu[1, 1, nsel, nsel],
:c3 => cumu[1, nsel, nsel, nsel],
:c4 => cumu[nsel, nsel, nsel, nsel]
)
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 3273 | using Combinatorics
using DataStructures
# implementation of J. De Leeuw Multivariate Cumulants in R (2012)
function outer(a::Vector{T}, b::Vector{T}) where T<: AbstractFloat
sa = size(a,1)
sb = size(b,1)
z = zeros(T, sa*sb)
k = 1
for i = 1:sb
for j = 1:sa
@inbounds z[k] = a[j]*b[i]
k += 1
end
end
return z
end
function setparts(n)
ret = zeros(Int, n, length(partitions(collect(1:n))))
for (i, partition) in enumerate(partitions(collect(1:n)))
group = 1
for p in partition
for j in p
ret[j,i] = group
end
group += 1
end
end
ret
end
function raw_moments_upto_p(x, p=4)
n, m = size(x)
if p==1
return vcat(1, mean(x, axis=2))
end
y = zeros(eltype(x), (m+1)^p)
for i in 1:n
xi = vcat(1, x[i,:])
#z = kron([xi for _ in 1:p]...)
z = xi
for j in 2:p
z = outer(xi, z)
end
y += z
end
reshape(y, repeat([m+1],p)...)./n
end
mutable struct CumulantsState
spp::Array{Array{Int64,2}}
qpp::Array{Int64}
rpp::Array{Any}
end
function CumulantsState(ldim)
spp = Array{Array{Int64,2}}(undef, ldim)
qpp = Array{Int64}(undef, ldim)
rpp = Array{Any}(undef, ldim)
return CumulantsState(spp, qpp, rpp)
end
function one_cumulant_from_raw_moments(state::CumulantsState, jnd, raw)
jnd = [jnd[findall(jnd.!=1)]...] .- 1
nnd = length(jnd)
ndr::Int64 = size(raw)[1]
nrt = length(size(raw))
raw = state.rpp[nnd]
nvar = ndr - 1
nraw = max(1, length(size(raw)))
sp = state.spp[nraw]
_, nbell = size(sp)
sterm = 0.0
for i in 1:nbell
ind = sp[:, i]
und = unique(ind)
term = state.qpp[length(und)]
for j in und
knd = jnd[findall(ind.==j)] .+ 1
lnd = vcat(knd, repeat([1], nraw - length(knd)))
term *= raw[lnd...]
end
sterm += term
end
return sterm
end
function cumulants_from_raw_moments(raw::Array{T, N}) where {T<: AbstractFloat, N}
dimr = size(raw)
nvar::Int64 = dimr[1]
cumu = zeros(eltype(raw), dimr...)
nele = prod(dimr)
ldim = length(dimr)
state = CumulantsState(ldim)
for i in 1:ldim
state.spp[i] = setparts(i)
state.qpp[i] = factorial(i)
if mod(i,2)==1
state.qpp[i] = -state.qpp[i]
end
inde = hcat([collect(1:nvar) for k in 1:i])
state.rpp[i] = raw[inde..., fill(1, N-length(inde))...,]
end
state.qpp = vcat(1, state.qpp)
for i in 2:nele
ind = Tuple(CartesianIndices(dimr)[i])
cumu[i] = one_cumulant_from_raw_moments(state, ind, raw)
end
return cumu
end
function cumulants_upto_p(x, p = 4)
return cumulants_from_raw_moments(raw_moments_upto_p(x, p))
end
function first_four_cumulants(x)
cumu = cumulants_upto_p(x)
nsel = 2:size(cumu)[1]
OrderedDict(:c1 => cumu[1, 1, 1, nsel],
:c2 => cumu[1, 1, nsel, nsel],
:c3 => cumu[1, nsel, nsel, nsel],
:c4 => cumu[nsel, nsel, nsel, nsel]
)
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 3416 | """
outer!(z::Vector{Float}, a::Vector{Float}, b::Vector{Float})
Return z - Vector{Float} , vectorsed outer/kroneker product o vectors a and b
Auxiliary function for rawmoment
"""
function outer!(z::Vector{T}, a::Vector{T}, b::Vector{T}) where T<: AbstractFloat
sa = size(a,1)
sb = size(b,1)
m = 1
for i = 1:sb for j = 1:sa
@inbounds z[m] = a[j]*b[i]
m += 1
end
end
end
"""
updvec!(A::Vector{Float}, B::Vector{Float})
Returns updated Vector{Float} A, by adding elementwisely Vector{Float} B
Auxiliary function for rawmoment
"""
function updvec!(A::Vector{T}, B::Vector{T}) where T<: AbstractFloat
n = size(A, 1)
for i=1:n
@inbounds A[i] += B[i]
end
return A
end
"""
rawmoment(X::Matrix{T}, m::Int = 4)
Simmilar to raw_moments_upto_p in R, does not expoloit tensor's symmetry
pyramid structures and blocks
Returns Array{Float, m}, the m'th moment's tensor
"""
function rawmoment(X::Matrix{T}, m::Int = 4) where T<: AbstractFloat
t,n = size(X)
if m == 1
return mean(X, dims=1)[1,:]
else
z = [map(i -> zeros(T, n^i), 1:m)...]
y = zeros(T, n^m)
for i in 1:t
xi = X[i, :]
z[1] = xi
for j in 2:m
outer!(z[j], xi, z[j-1])
end
updvec!(y, z[m])
end
end
reshape(y/t, fill(n, m)...)
end
"""
raw_moments_upto_k(X::Matrix, k::Int = 4)
Returns [Array{Float, 1}, ..., Array{Float, k}] noncentral moment tensors of
order 1, ..., k
"""
raw_moments_upto_k(X::Matrix{T}, k::Int = 4) where T<: AbstractFloat =
[rawmoment(X, i) for i in 1:k]
"""
cumulants_from_moments(raw::Vector{Array{Float, i}, m = 1:k})
Returns [Array{Float, 1}, ..., Array{Float, k}] cumulant tensors of order 1, ..., k
Uses relation between cumulants and multivariate moments from e.g.
c_{ijkl} = m_{ijkl} - m_{ijk} m_{l} [4] - m_{ij} m_{kl} [3] + 2 m_{ij} m_{k} m_{l}
-6 m_{i} m_{j} m_{k} m_{l}
"""
function cumulants_from_moments(raw::Vector{Array{T}}) where T<: AbstractFloat
k = length(raw)
cumarr = Array{Array{Float64}}(undef, k)
for j in 1:k
dimr = size(raw[j])
cumu = zeros(Float64, dimr)
ldim = length(dimr)
spp = collect(partitions(1:ldim))
qpp = [(-1)^i*factorial(i) for i in 0:(ldim-1)]
sppl = [map(length, spp[i]) for i in 1:length(spp)]
for i in 1:prod(dimr)
@inbounds ind = Tuple(CartesianIndices(dimr)[i])
@inbounds cumu[ind...] = onecumulant(ind, raw, spp, sppl, qpp)
end
cumarr[j] = cumu
end
cumarr
end
"""
onecumulant(ind::Tuple, raw::Vector{Array}, spp::Vector, sppl::Vector{Vector}, dpp::Vector)
raw - vector of moment's tensors, spp - vector of partitions, sppl - vector of sizes of partitions
dpp - vector of a factor for each product of moments (a factorial factor).
Returns Array{Float, n} the n'th cumulant tensor
"""
function onecumulant(ind::Tuple, raw::Vector{Array{T}}, spp::Vector,
sppl::Vector{Vector{Int}}, dpp::Vector{Int}) where T<: AbstractFloat
ret = zero(T)
for i in 1:length(spp)
part = spp[i]
beln = length(part)
k = sppl[i]
temp = one(T)
for r in 1:beln
temp *= raw[k[r]][ind[part[r]]...]
end
ret += dpp[beln]*temp
end
ret
end
"""
cumulatsfrommoments(x::Matrix{Float}, k::Int)
Returns a vector of 1,2, .., k dims Arrays{Float} of cumulant tensors
"""
mom2cums(x::Matrix{T}, k::Int) where T<: AbstractFloat =
cumulants_from_moments(raw_moments_upto_k(x, k))
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | code | 3146 | #--- seminaive formula uses partitions and reccurence, but does not use blocks
"""
part(n::Int)
Returns Vector{Vector{Vector}} that includes all partitions of set [1, 2, ..., m]
into subests of size > 1 and < m
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> part(4)
3-element Array{Array{Array{Int64,1},1},1}:
Array{Int64,1}[[1,2],[3,4]]
Array{Int64,1}[[1,3],[2,4]]
Array{Int64,1}[[1,4],[2,3]]
```
"""
function part(m::Int)
parts = Vector{Vector{Int}}[]
for part in partitions(1:m)
subsetslen = map(length, part)
if !((1 in subsetslen) | (m in subsetslen))
@inbounds push!(parts, part)
end
end
parts
end
"""
pyramidmoment(data::Matrix, m::Int)
Returns Array{Float, m}, the m'th moment tensor
```jldoctest
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> pyramidmoment(M, 3)
2×2×2 Array{Float64,3}:
[:, :, 1] =
-0.523092 0.142552
0.142552 -0.0407653
[:, :, 2] =
0.142552 -0.0407653
-0.0407653 0.0120729
```
"""
function pyramidmoment(data::Matrix{T}, m::Int) where T<: AbstractFloat
n = size(data,2)
ret = zeros(T, fill(n, m)...)
for ind in pyramidindices(m, n)
@inbounds temp = momel(data, ind)
for per in collect(permutations([ind...]))
@inbounds ret[per...] = temp
end
end
ret
end
"""
mixedel(cum::Vector{Array{T}}, mulind::Tuple, parts::Vector{Vector{Vector{Int}}})
Returns Float, element of the sum of products of lower cumulants at given
multi-index and set of its partitions
"""
function mixedel(cum::Vector{Array{T}}, mulind::Tuple,
parts::Vector{Vector{Vector{Int}}}) where T<: AbstractFloat
sum = 0.
for k = 1:length(parts)
prod = 1.
for el in parts[k]
@inbounds prod*= cum[size(el,1)][mulind[el]...]
end
sum += prod
end
sum
end
"""
mixedarr(cumulants::Vector{Array}, m::Int)
Returns Array{Float, m}, the mixed array (sum of products of lower cumulants)
"""
function mixedarr(cumulants::Vector{Array{T}}, m::Int) where T<: AbstractFloat
n = size(cumulants[1], 1)
sumofprod = zeros(fill(n, m)...)
parts = part(m)
for ind in pyramidindices(m, n)
pyramid = mixedel(cumulants, ind, parts)
for per in collect(permutations([ind...]))
@inbounds sumofprod[per...] = pyramid
end
end
sumofprod
end
"""
pyramidcumulants(X::Matrix{Float}, m::Int)
Returns [Array{Float, 2}, ..., Array{Float, m}], vector co cumulants tensors of order
2, .., m
```
julia> M = [[-0.88626 0.279571];[-0.704774 0.131896]];
julia> pyramidcumulants(M, 3)[2]
2×2×2 Array{Float64,3}:
[:, :, 1] =
0.0 0.0
0.0 0.0
[:, :, 2] =
0.0 0.0
0.0 0.0
```
"""
function pyramidcumulants(X::Matrix{T}, m::Int = 4) where T<: AbstractFloat
cumulants = Array{T}[]
push!(cumulants, pyramidmoment(X, 1))
X = X .- mean(X, dims=1)
for i in 2:m
if i < 4
push!(cumulants, pyramidmoment(X, i))
else
cumulant = pyramidmoment(X, i) - mixedarr(cumulants, i)
push!(cumulants, cumulant)
end
end
cumulants
end
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 1.0.6 | ecdae283cbdb5518bf3fdb61ff99eb973fab580b | docs | 8876 | # Cumulants.jl
[](https://coveralls.io/github/iitis/Cumulants.jl?branch=master)
[](https://doi.org/10.5281/zenodo.3446199)
Calculates cumulant tensors of any order for multivariate data.
Functions return tensor or array of tensors in `SymmetricTensors` type. Requires [SymmetricTensors.jl](https://github.com/ZKSI/SymmetricTensors.jl). To convert to array, run:
```julia
julia> Array(data::SymmetricTensors{T, N})
```
As of 01/01/2017 [kdomino](https://github.com/kdomino) is the lead maintainer of this package.
## Installation
Within Julia, run
```julia
pkg> add Cumulants
```
to install the files. Julia 1.0 or later is required.
## Functions
### Moment
```julia
julia> moment(data::Matrix{T}, m::Int, b::Int = 2) where T<: AbstractFloat
```
Returns a `SymmetricTensor{T, m}` of the moment of order `m` of multivariate data represented by a `t` by `n` matrix, i.e. data with `n` marginal variables and `t` realisations. The argument `b` with defalt value `2`, is an optional `Int` that determines the size
of the blocks in `SymmetricTensors` type.
```julia
julia> data = reshape(collect(1.:15.),(5,3))
5×3 Array{Float64,2}:
1.0 6.0 11.0
2.0 7.0 12.0
3.0 8.0 13.0
4.0 9.0 14.0
5.0 10.0 15.0
```
```julia
julia> m = moment(data, 3)
SymmetricTensor{Float64,3}(Union{Nothing, Array{Float64,3}}[[45.0 100.0; 100.0 230.0]
[100.0 230.0; 230.0 560.0] nothing; nothing nothing]
Union{Nothing, Array{Float64,3}}[[155.0 360.0; 360.0 890.0] [565.0; 1420.0]; nothing [2275.0]], 2, 2, 3, false)
```
To convert to array use:
```julia
julia> Array(m)
3×3×3 Array{Float64,3}:
[:, :, 1] =
45.0 100.0 155.0
100.0 230.0 360.0
155.0 360.0 565.0
[:, :, 2] =
100.0 230.0 360.0
230.0 560.0 890.0
360.0 890.0 1420.0
[:, :, 3] =
155.0 360.0 565.0
360.0 890.0 1420.0
565.0 1420.0 2275.0
```
### Cumulants
```julia
julia> cumulants(data::Matrix{T}, m::Int = 4, b::Int = 2) where T<: AbstractFloat
```
Returns a vector of `SymmetricTensor{T, i}` `i = 1,2,3,...,m` of cumulants of
order `1,2,3,...,m`. Cumulants are calculated for multivariate data represented
by matrix of size `t` by `n`, i.e. data with `n` marginal variables and `t`
realisations.
```julia
julia> c = cumulants(data, 3);
julia> c[2]
SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[2.0 2.0; 2.0 2.0] [2.0; 2.0]; nothing [2.0]], 2, 2, 3, false)
julia> c[3]
SymmetricTensor{Float64,3}(Union{Nothing, Array{Float64,3}}[[0.0 0.0; 0.0 0.0]
[0.0 0.0; 0.0 0.0] nothing; nothing nothing]
Union{Nothing, Array{Float64,3}}[[0.0 0.0; 0.0 0.0] [0.0; 0.0]; nothing [0.0]], 2, 2, 3, false)
```
To convert to array:
```julia
julia> Array(c[2])
3×3 Array{Float64,2}:
2.0 2.0 2.0
2.0 2.0 2.0
2.0 2.0 2.0
julia> Array(c[3])
3×3×3 Array{Float64,3}:
[:, :, 1] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 3] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
```
#### Block size
The argument `b` with default value `2`, is an optional `Int`
that determines a size of blocks in `SymmetricTensors` type. This block size `b` is the parameter that affect
the algorithm performance, for most cases the performance is optimal for `b = 2, 3`. The block size must
fulfil `0 < b ≦ size(data, 2)` otherwise error will be raised. For the performance analysis for various bolck sizes see `Section 5.2.1` in
Krzysztof Domino, Piotr Gawron, Łukasz Pawela, *Efficient Computation of Higher-Order Cumulant Tensors*, SIAM J. Sci. Comput. 40, A1590 (2018) [](https://doi.org/10.1137/17M1149365), https://arxiv.org/abs/1701.05420. For benchmarking one can also use `benchmarks/comptimeblocks.jl`
The purpose of this package is to compute moments and cumulants for multivariate data. It works for univariate data `X` structured in the form of matrix with `size(X, 2) = 1` if taking `b=1`. Such univariate application is not efficient however.
```julia
julia> X = [1., 2., 3., 4.];
julia> X = reshape(X, (4,1));
julia> c = cumulants(X,4,1);
julia> map(x -> Array(x)[1], c)
4-element Array{Float64,1}:
2.5
1.25
0.0
-2.125
```
We do not suply exact univariate fisher's k-statistics.
#### Parallel computation
Parallel computation is efficient for large number of data realisations, e.g. `t = 1000000`. For parallel computation just run
```julia
julia> addprocs(n)
julia> @everywhere using Cumulants
```
Naive algorithms of moment and cumulant tensors calculations are also available.
```julia
julia> naivemoment(data::Matrix{T}, m::Int = 4) where T<: AbstractFloat
```
Returns array{T, m} of the m'th moment of data. calculated using a naive algorithm.
```julia
julia> naivemoment(data, 3)
3×3×3 Array{Float64,3}:
[:, :, 1] =
45.0 100.0 155.0
100.0 230.0 360.0
155.0 360.0 565.0
[:, :, 2] =
100.0 230.0 360.0
230.0 560.0 890.0
360.0 890.0 1420.0
[:, :, 3] =
155.0 360.0 565.0
360.0 890.0 1420.0
565.0 1420.0 2275.0
```
```julia
julia> naivecumulant(data::Matrix{T}, m::Int = 4) where T<: AbstractFloat
```
Returns `Array{T, m}` of the `m`'th cumulant of data, calculated using a naive algorithm. Works for `1 <= m < 7`, for `m >= 7` throws exception.
```julia
julia> naivecumulant(data, 2)
3×3 Array{Float64,2}:
2.0 2.0 2.0
2.0 2.0 2.0
2.0 2.0 2.0
```
```julia
julia> naivecumulant(data, 3)
3×3×3 Array{Float64,3}:
[:, :, 1] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 3] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
```
# Performance analysis, folder `benchmarks`
To analyse the computational time of cumulants vs naivecumulants and moment vs naivemoment, we supply the executable script `comptimes.jl`.
This script returns to a .jld file computational times, given following parameters:
* `-m (Int)`: cumulant's order, by default `m = 4`,
* `-n (vararg Int)`: numbers of marginal variables, by default `m = 20 24 28`,
* `-t (vararg Int)`: number of realisations of random variable, by defalut `t = 10000`.
Be careful while using `n`>`4` and large `m`, where naive algorithms might need a large computational time and memory usage. Naive algorithms does not use the block structures, hence they computes and stores a whole cumulant tensor regardless its symmetry. All comparisons performed by this script use one core.
To analyse the computational time of cumulants for different block sizes `1 =< b =< Int(sqrt(n))`, we supply the executable script `comptimeblocks.jl`.
This script returns to a .jld file computational times, given following parameters:
* `-m (Int)`: cumulant's order, by default `m = 4`,
* `-n (Int)`: numbers of marginal variables, by default `m = 48`,
* `-t (vararg Int)`: number of realisations of random variable, by default `t = 10000 20000`.
Computational times and parameters are saved in the .jld file in /res directory. All comparisons performed by this script use one core.
To analyse the computational time of moment on different numbers of processes, we supply the executable script `comptimeprocs.jl`.
This script returns to a .jld file computational times, given following parameters:
* `-m (Int)`: moment's order, by default `m = 4`,
* `-n (Int)`: numbers of marginal variables, by default `m = 50`,
* `-t (Int)`: number of realisations of random variable, by default `t = 100000`,
* `-p (Int)`: maximal number of processes, by default `p = 4`,
* `-b (Int)`: blocks size, by default `b = 2`.
All result files are saved in /res directory. To plot a graph run /res/plotcomptimes.jl followed by a `*.jld` file name
For the computational example on data use the following.
The script `gandata.jl` generates `t = 150000000` realisations of `n = 4` dimensional data form the `t`-multivariate distribution with `ν = 14` degrees of freedom, and theoretical
super-diagonal elements of those cumulants. Results are saved in `data/datafortests.jld`
The script `testondata.jl` computes cumulant tensors of order `m = 1 - 6` for `data/datafortests.jld`, results are saved in `data/cumulants.jld`.
To read `cumulants.jld` please run
```julia
julia> using JLD
julia> using SymmetricTensors
julia> load("cumulants.jld")
```
To plot super-diagonal elements of those cumulants and their theoretical values from t-student distribution pleas run `plotsuperdiag.jl`
# Citing this work
Krzysztof Domino, Piotr Gawron, Łukasz Pawela, *Efficient Computation of Higher-Order Cumulant Tensors*, SIAM J. Sci. Comput. 40, A1590 (2018) [](https://doi.org/10.1137/17M1149365), https://arxiv.org/abs/1701.05420
This project was partially financed by the National Science Centre, Poland – project number 2014/15/B/ST6/05204.
| Cumulants | https://github.com/iitis/Cumulants.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 328 | module QuadratureOnImplicitRegions
using FastGaussQuadrature,LinearAlgebra,ForwardDiff
import FiniteDiff.finite_difference_gradient! #non-allocating gradient
export algoim_nodes_weights
# export algoim_quad #nneds work
include("algoim.jl")
# include("integrate_f.jl") #Needs some work
include("algoim_functions.jl")
end
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 4702 |
function algoim_nodes_weights(ψ::F,sgn::N,a::Vector{T},b::Vector{S},q::I) where {F,N,T,I,S}
x_ref,w_ref=gausslegendre(q)
U=Float64.(vcat(a',b'))
return algoim_nodes_weights([ψ], [sgn],U,x_ref,w_ref)
end
function algoim_nodes_weights(ψ_list,s_list,U::Matrix{T},x_ref,w_ref,recursion_depth=1) where T
d=size(U,2);
if d==1
x,w=d1_case(ψ_list,s_list,U,x_ref,w_ref)
return x,w
end
xc=(U[1,:] + U[2,:])/2 #midpoint
n_samples=100; #total number of samples
nnsamples=Int(round(n_samples^(1/d))) # number of samples per dimension
Samples=linsamples_creator(U,nnsamples)
for i=length(s_list):-1:1
ψ=ψ_list[i]
ψ_xc=ψ(xc)
min_ψ=minimum(ψ(x) for x in eachcol(Samples))
max_ψ=maximum(ψ(x) for x in eachcol(Samples))
#=
Here, I deviated a bit from the paper, to make the case ψ(x)=norm(x)^2 works on [0,ε]^d
=#
if min_ψ*max_ψ≥0
if s_list[i]*ψ(xc)≥0
s_list=deleteat!(copy(s_list),i)
ψ_list=deleteat!(copy(ψ_list),i)
else
return Matrix{T}(undef,d,0), Float64[]
end
end
end
if isempty(s_list)
x,w=tensor_GL_rule(U,x_ref,w_ref)
return x,w;
end
new_ψ_list=Vector{Function}(undef,0)
new_s_list=Vector{Float64}(undef,0)
#the direction of the most change in ψ_1
ψ_1=ψ_list[1];
k=argmax(abs.(ForwardDiff.gradient(ψ_1,xc)))
xkL=U[1,k];
xkU=U[2,k];
g=zeros(d)
gtemp=zeros(d)
δ=fill(-Inf,d)
for i in eachindex(s_list)
ψ=ψ_list[i]
# δ[:] .=fill(-Inf,d)
fill!(δ,-Inf)
# g[:] .=ForwardDiff.gradient(ψ,xc)
finite_difference_gradient!(g,ψ,xc)
for i in axes(Samples,2)
# gtemp[:] .=ForwardDiff.gradient(ψ,Samples[:,i])
finite_difference_gradient!(gtemp,ψ, @view Samples[:,i])
for kk=1:d
δ[kk]=max(δ[kk],abs(gtemp[kk]-g[kk]))
end
end
if abs(g[k])>δ[k]&& norm(g + δ)^2/(g[k]-δ[k])^2<20
ψ_L=(x->ψ(insert_kth(x,k,xkL)))
ψ_U=(x->ψ(insert_kth(x,k,xkU)))
si_L=sgn(g[k],s_list[i],-1);
si_U=sgn(g[k],s_list[i],1);
# new_ψ_list=vcat(new_ψ_list,ψ_L,ψ_U);
# new_s_list=vcat(new_s_list,si_L,si_U)
push!(new_ψ_list,ψ_L,ψ_U)
push!(new_s_list,si_L,si_U)
else #subdivide the domain (unless it is too small)
Volume=prod(U[2,:] - U[1,:]);
if recursion_depth>=16
flag=true
for i in eachindex(s_list)
if s_list[i]*ψ_list[i](xc)<= 0 flag=false end
end
printstyled("Warning: lower order method used in $U\n";color=:red)
if flag
return xc, Volume
else
return Vector{Float64}[],Float64[];
end
end
kk=argmax(U[2,:]-U[1,:])
U1=copy(U);U2=copy(U);
U1[2,kk]=(U[1,kk]+U[2,kk])/2.0;
U2[1,kk]=(U[1,kk]+U[2,kk])/2.0;
x1,w1=algoim_nodes_weights(ψ_list,s_list,U1,x_ref,w_ref,recursion_depth+1);
x2,w2=algoim_nodes_weights(ψ_list,s_list,U2,x_ref,w_ref,recursion_depth+1);
x= hcat(x1,x2)
w=vcat(w1,w2)
return x,w
end
end
U_tilde=hcat(U[:,1:k-1],U[:,k+1:end])
x_tilde,w_tilde=algoim_nodes_weights(new_ψ_list,new_s_list,U_tilde,x_ref,w_ref) #(d-1)xN matrix
QQ=Vector{T}(undef,d-1)
#This part is the one using 90% of the allocations
#estimate the number of nodes
cnt=0
for ii in axes(x_tilde,2)
QQ[:] .=@view x_tilde[:,ii] #(d-1) vector
# PP=w_tilde[ii]
ψ_list_tilde=[t->ψ(insert_kth(QQ,k,t)) for ψ in ψ_list]
cnt+=d1_count_subintervals(ψ_list_tilde,s_list,[xkL;xkU])
end
x=Matrix{T}(undef,d,cnt*length(x_ref))
w=Vector{T}(undef,cnt*length(x_ref))
j=1
for ii in axes(x_tilde,2)
QQ[:] .=@view x_tilde[:,ii]
PP=w_tilde[ii]
ψ_list_tilde=[t->ψ(insert_kth(QQ,k,t)) for ψ in ψ_list]
x_slice,w_slice=d1_case(ψ_list_tilde,s_list,[xkL;xkU],x_ref,w_ref)
n=length(w_slice)
if isempty(w_slice) continue end
w[j:j+n-1] .= PP*w_slice
# x[:,j:j+n] = [repeat(QQ[1:k-1],1,n);x_slice;repeat(QQ[k:end],1,n)]
x[1:k-1,j:j+n-1] = repeat(QQ[1:k-1],1,n)
x[k,j:j+n-1] = x_slice
x[k+1:end,j:j+n-1] = repeat(QQ[k:end],1,n)
j+=n
end
return x,w
end | QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 5749 | sgn(m,s,σ)= ( m==σ*s ? σ*m : 0.0)
find_root(ψ::F,a::T,b::T) where {F,T<:Integer} = find_root(ψ,Float64(a),Float64(b))
find_roots(ψ::F,a::T,b::T) where {F,T<:Integer} = find_roots(ψ,Float64(a),Float64(b))
find_roots(ψ_list::Vector{F},a::T,b::T) where {F,T<:Integer} = find_roots(ψ_list,Float64(a),Float64(b))
"""
find_root(ψ::F,a::T,b::T)
Finds a root of a function ψ in the open interval `(a,b)`
"""
function find_root(ψ::F,a::T,b::T) where {F,T<:AbstractFloat}
if ψ(a)*ψ(b)≥0 error("Find_root failed: Choose a smaller interval") end
c=b
cnext=(a+b)/2
while abs(c-cnext)>4eps(T)
c=cnext
cnext=cnext-ψ(cnext)/ForwardDiff.derivative(ψ,cnext)
end
return c
end
"""
find_roots(ψ::F,a::T,b::T) where {F,T}
Returns multiple roots of ψ in the open interval `[a,b]`
"""
function find_roots(ψ::F,a::T,b::T) where {F,T}
n=10 #split the interval [a,b] into n sub-intervals
h=(b-a)/n
Z=Vector{Float64}(undef,0)
for i=0:n-1
if ψ(a+i*h)*ψ(a+(i+1)*h)<0
z=find_root(ψ,a+i*h,a+(i+1)*h)
push!(Z,z)
end
end
for i=1:n if ψ(a+i*h)==0 push!(Z,a+i*h) end end
sort!(Z)
#remove duplicates
for i=length(Z):-1:2
if abs(Z[i]-Z[i-1])≤4eps(T)
deleteat!(Z,i)
end
end
return Z
end
"""
find_roots(ψ_list::Vector{F},a::T,b::T) where {F,T}
Returns multiple roots of multiple functions ψ in the closed interval `[a,b]`, it includes the endpoints by default even if they are not roots.
"""
function find_roots(ψ_list::Vector{F},a::T,b::T) where {F,T}
n=20 #split the interval [a,b] into n sub-intervals
h=(b-a)/n
Z=[a,b]
for ψ in ψ_list
zer=find_roots(ψ,a,b)
append!(Z,zer)
end
sort!(Z)
Z
end
"""
shifted_gl(x_ref::Vector{T},w_ref::Vector{T},a::T,b::T)
Shifts the Gauss-Legendre rule (x_ref,w_ref) from `(-1,1)` to the interval [a,b]
"""
function shifted_gl(x_ref::Vector{T},w_ref::Vector{T},a::T,b::T) where T
x,w=similar(x_ref),similar(w_ref)
for i in eachindex(x) x[i]=(a+b)/2+(b-a)/2*x_ref[i] end
for i in eachindex(w) w[i]=(b-a)/2*w_ref[i] end
return x,w
end
"""
shifted_gl!(x_ref::Vector{T},w_ref::Vector{T},a::T,b::T,x::Vector{T},w::Vector{T})
Shifts the Gauss-Legendre rule (x_ref,w_ref) from `(-1,1)` to the interval [a,b] and stores them in x,w.
"""
function shifted_gl!(x_ref::Vector{T},w_ref::Vector{T},a::T,b::T,x::Vector{T},w::Vector{T}) where T
for i in eachindex(x) x[i]=(a+b)/2+(b-a)/2*x_ref[i] end
for i in eachindex(w) w[i]=(b-a)/2*w_ref[i] end
return
end
"""
d1_count_subintervals(ψ_list,s_list,domain)
Counts how many sub-intervals of domain satisfiy s_iψ_i≥0
"""
function d1_count_subintervals(ψ_list,s_list,domain)
Z=find_roots(ψ_list,domain[1],domain[2])
cnt=0
n=length(Z)
for i=1:n-1
a=Z[i];b=Z[i+1];c=(a+b)/2
flag=true
for i in eachindex(ψ_list)
if s_list[i]*ψ_list[i](c)<0
flag=false;break;
end
end
if flag
cnt+=1
end
end
return cnt
end
"""
d1_case(ψ_list,s_list,domain,x_ref,w_ref)
Returns a quadrature rule on the subset where s_i*ψ_i<0 (see the paper).
"""
function d1_case(ψ_list,s_list,domain,x_ref,w_ref)
Z=find_roots(ψ_list,domain[1],domain[2])
x=Vector{eltype(x_ref)}(undef,0)
w=Vector{eltype(w_ref)}(undef,0)
xloc=similar(x_ref)
wloc=similar(w_ref)
n=length(Z)
for i=1:n-1
a=Z[i];b=Z[i+1];c=(a+b)/2
flag=true
for i in eachindex(ψ_list)
if s_list[i]*ψ_list[i](c)<0
flag=false;break;
end
end
if flag
shifted_gl!(x_ref,w_ref,a,b,xloc,wloc)
append!(x,xloc)
append!(w,wloc)
end
end
return reshape(x,1,:),w
end
"""
tensor_GL_rule(U::Matrix{T},x_ref::Vector{T},w_ref::Vector{T})
Returns a matrix x and a vector w (multidimensional quadrature)
Credit for the idea:
https://discourse.julialang.org/t/about-storing-the-results-of-iterators-product-into-an-array-efficiently/115504
"""
function tensor_GL_rule(U::Matrix{T},x_ref::Vector{T},w_ref::Vector{T}) where T
d=size(U,2)
n=size(x_ref,1)
X=[(U[1,i]+U[2,i])/2 .+ x_ref .* (U[2,i]-U[1,i])/2 for i=1:d]
W=[ w_ref/2 .* (U[2,i]-U[1,i]) for i=1:d]
x_tuples=collect(Iterators.product(X...))
x=Matrix(reshape(reinterpret(T, x_tuples), d, n^d))
w=[prod(A) for A in collect(Iterators.product(W...))[:]]
return x,w
end
"""
linsamples_creator(U::Matrix{T},n::I) where {T,I}
returns sample points in the cuboid U (as columns).
"""
function linsamples_creator(U::Matrix{T},n::I) where {T,I}
d=size(U,2);
#linspaces in each direction
lins=[range(U[1,i],U[2,i],n) for i=1:d];
#Iterators.product returns the cartesian product as an object,
# collect makes it a matrix and [:] makes it a vector of tuples.
x_tuples= collect(Iterators.product(lins...))
return Matrix(reshape(reinterpret(T, x_tuples), d, n^d))
end
# remove_kth(x::Vector,k::Integer)=vcat(x[1:k-1],x[k+1:end]);
# remove_kth(x::Number,k::Integer)=Vector{typeof(x)}(undef,0);
function remove_kth(x::V,k::I) where {I,V<:AbstractVector}
return deleteat!(copy(x),k)
end
function remove_kth(x::T,k::I) where {I,T<:Number}
return Vector{T}(undef,0)
end
function insert_kth(x::V,k::I,t::T) where {I,V<:AbstractVector,T<:Number}
[@view x[1:k-1];t;@view x[k:end]]
end
function insert_kth(x::N,k::I,t::S) where {N<:Number,I,S<:Number}
if k==1
return [t,x]
elseif k==2
return [x,t]
end
end
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 5868 | #instead of returning nodes and weights, we can integrate a function f directly.
#this should be faster.
"""
int_f_1d(f,N,a,b)
integrate f(x) on [a,b] using N quadrature points
"""
function int_f_1d(f,N,a,b)
x,w=lgwtjl(N,a,b)
return w'*f.(x)
end
# int_f_1d(x->x^3,4,0,1) ==1/4
# int_f_1d(x->sin(x),10,0,π) ==2
# int_f_1d(x->x^3,4,1,3) ==20
function d1_int_f(f,ψ_list,s_list,domain,q)
#The one-dimensional case. s_list and psi_list
# have the same length
zer=findroots(ψ_list,domain);
flag=1;
s=0.0
for i=1:length(zer)-1
a=zer[i];b=zer[i+1];c=(a+b)/2;
#check to see if s_i*psi_i(c)>0 for all i
#I used count: if there is an instance where
# psi_i(c)*s_i<0, then flag is 0.
flag=count([s_list[i]*ψ_list[i](c)<0
for i=1:length(s_list)])==0;
if flag #psi_i(c)s_i>0 for all i
s+=int_f_1d(f,q,a,b)
end
end
return s
end
# d1_int_f(x->x^3,[x->x-1.5],[-1],[0,2],10)≈ 1.5^4/4
function algoim_quad(f::Function,ψ::Function,sgn::Number,a,b,q::Integer)
U=vcat(a',b')
∇ψ=x-> ForwardDiff.gradient(ψ,x)
return algoim_quad(f,[ψ],[∇ψ],[sgn],U,q)
end
function algoim_quad(f,ψ_list::Vector,∇ψ_list::Vector,s_list::Vector,U,q::Integer,recursion_depth=1)::Float64
#integrate a function f
d=size(U,2);
if d==1
return d1_int_f(f,ψ_list,s_list,U,q);
end
xc=(U[1,:] + U[2,:])/2
n_samples=15625;
n_samples=4096;#less samples: faster
n_samples=729;#less samples: faster
nnsamples=Int(round(n_samples^(1/d)));
Samples=linsamples_creator(U,nnsamples)
for i=length(s_list):-1:1
ψ=ψ_list[i];
ψ_xc=ψ(xc);
ψ_x=ψ.(Samples)
δ=maximum(abs.(ψ_x .- ψ_xc));
# println("ψ_xc =$ψ_xc ,δ = $δ")
#pruning
# if abs(ψ_xc)>=δ #does not prune certain cases such as norm(x)^2 on [0,1]
if minimum(ψ_x)*maximum(ψ_x) >=0
if s_list[i]*ψ_xc>=0
#remove \psi_i
s_list=vcat(s_list[1:i-1],s_list[i+1:end]);
ψ_list=vcat(ψ_list[1:i-1],ψ_list[i+1:end]);
∇ψ_list=vcat(∇ψ_list[1:i-1],∇ψ_list[i+1:end]);
else
#nothing
return 0.0;
end
end
end
if isempty(s_list)
x,w=tensor_GL_rule(U,q);
return w'*f.(x);
end
new_ψ_list=Vector{Function}(undef,0)
new_∇ψ_list=Vector{Function}(undef,0)
new_s_list=Vector{Float64}(undef,0)
ψ_1=ψ_list[1];
∇ψ_1=∇ψ_list[1];
#this does not strike me as the best method to choose k
k=argmax(abs.(∇ψ_1(xc)))
# println("dimension $(length(xc)), direction chosen $k, U=$U")
# k=argmax(abs.(sum(∇ψ_1.(Samples))))
xkL=U[1,k];
xkU=U[2,k];
for i=1:length(s_list)
ψ=ψ_list[i]
∇ψ=∇ψ_list[i]
g=∇ψ(xc);
∇ψ_x=hcat([∇ψ(Samples[ii]) for ii=1:n_samples]...)
#\delta is the max on each row
δ=[maximum(abs.(∇ψ_x[kk,:] .- g[kk])) for kk=1:d]
if abs(g[k])>δ[k]&& norm(g + δ)^2/(g[k]-δ[k])^2<20
#The restriction to the faces in the e_k direction.
#I am using [x][1:k-1] instead of x[1:k-1] since
# Vector[1:0] is well defined (empty array) but Number[1:0] is not.
ψ_L=(x->ψ(insert_kth(x,k,xkL)))
ψ_U=(x->ψ(insert_kth(x,k,xkU)))
∇ψ_L=x->remove_kth(∇ψ(insert_kth(x,k,xkL)),k)
∇ψ_U=x->remove_kth(∇ψ(insert_kth(x,k,xkU)),k)
# println("xkL,xkU=$xkL, $xkU , psi L and psi U defined")
si_L=sgn(g[k],s_list[i],-1);
si_U=sgn(g[k],s_list[i],1);
new_ψ_list=vcat(new_ψ_list,ψ_L,ψ_U);
new_∇ψ_list=vcat(new_∇ψ_list,∇ψ_L,∇ψ_U);
new_s_list=vcat(new_s_list,si_L,si_U)
else
Volume=prod(U[2,:] - U[1,:]);
# if Volume<1e-3 #should be changed to something like #iterations>15
if recursion_depth>=16
#flag=1 if psi_i*s_i>0 for all i
flag=prod([s_list[i]*ψ_list[i](xc)>0 for i=1:length(s_list)]);
# display(flag)
# display(∇ψ_x)
# println("xc= $xc, ψ=[ $(ψ_list[1](xc))]")
# println(" ψ(0,0)= $(ψ_list[1]([0,0.0]))")
printstyled("Warning: lower order method used in $U\n";color=:red)
# println((g,δ,k,abs(g[k]), δ[k], norm(g + δ)^2/(g[k]-δ[k])^2))
if flag #low order method
return f(xc)*Volume;
else
return 0.0;
end
end
# println("Domain split into two")
kk=argmax(U[2,:]-U[1,:]);
U1=deepcopy(U);U2=deepcopy(U);
U1[2,kk]=(U[1,kk]+U[2,kk])/2.0;
U2[1,kk]=(U[1,kk]+U[2,kk])/2.0;
i1=algoim_quad(f,ψ_list,∇ψ_list,s_list,U1,q,recursion_depth+1);
i2=algoim_quad(f,ψ_list,∇ψ_list,s_list,U2,q,recursion_depth+1);
return i1+i2;
end
end
U_tilde=hcat(U[:,1:k-1],U[:,k+1:end]);
F_tilde=x->F1d(x,f,ψ_list,s_list,k,xkL,xkU,q)
return algoim_quad(F_tilde, new_ψ_list,new_∇ψ_list,new_s_list,U_tilde,q)
end
function restrict(x::Vector,t::Number,k::Integer)#replace x[k] by t
return vcat(x[1:k-1],t,x[k+1:end])
end
function restrict(x::Number,t::Number,k::Integer)#replace x[k] by t
if k==1 return [t,x] end
if k==2 return [x,t] end
end
function F1d(x,f,ψ_list,s_list,k,a,b,q)
f_tilde=t->f(restrict(x,t,k))
ψ_list_tilde=[t->ψ(restrict(x,t,k)) for ψ in ψ_list]
return d1_int_f(f_tilde,ψ_list_tilde,s_list,[a,b],q)
end
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 1536 | using QuadratureOnImplicitRegions
using Test
using SpecialFunctions
@testset "QuadratureOnImplicitRegions.jl" begin
# Write your tests here.
ψ(x)=x'*x-1
## Testing the weights (should sum up to the area):
#quarter of a circle
a,b=zeros(2), ones(2)
x,w=algoim_nodes_weights(ψ,-1.0, a,b,10)
@test sum(w) ≈ π/4
#ellipse of radii 1,1/2
ell(x) = x[1]^2+(2*x[2])^2 -1.0
a,b=-2ones(2),2ones(2)
x,w=algoim_nodes_weights(ell,-1.0, a,b,10)
@test sum(w) ≈ π/2
#1/8 of a sphere
a,b=zeros(3), ones(3)
x,w=algoim_nodes_weights(ψ,-1.0, a,b,10)
@test sum(w) ≈ π/6
## Testing the quadrature rule for polynomials
#This help to make sure that the nodes are mapped approperiately.
#Note: Keep in mind that this quadrature is not exact (even for polynomials).
#quarter of a circle
a,b=zeros(2), ones(2)
x,w=algoim_nodes_weights(ψ,-1.0, a,b,11)
# ∫∫ x^i dxdy on the quarter circle
# = √π/4*Γ((i+1)/2)/Γ(2+i/i)
for i=1:10
exact_integral= √π/4 * gamma((i+1)/2)/gamma(2+i/2)
approximate_integral= w'x[1,:].^i
@test exact_integral≈ approximate_integral
end
# ∫∫ x^i y^j dxdy on the quarter circle
# = Γ((i+1)/2)Γ((j+3)/2)/(2(j+1)Γ(2+(i+j)/2))
for i=1:10
for j=1:10
exact_integral=gamma((i+1)/2)*gamma((j+3)/2)/(2(j+1)*gamma(2+(i+j)/2))
approximate_integral=w'*(x[1,:].^i .* x[2,:].^j)
@test exact_integral≈ approximate_integral
end
end
end
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | code | 3112 | using QuadratureOnImplicitRegions
using Test
using Plots #to plot the quad points
#Example 1:
#consider the unit interval Ω=[0,1]², split into two regions:
#Ω₁= {(x,y)∈Ω | x^2+y^2< 1 }
# and Ω₂= {(x,y)∈Ω | x^2+y^2>1 }
# Our goal is to generate quadrature nodes and weights on each region (subdomain)
ψ(x)= x'*x-1.0 #basically x^2+y^2 -1
a,b=zeros(2), ones(2) #the unit interval.
quad_order=10 #the higher, the more accurate the quadrature is
xy1,w1=algoim_nodes_weights(ψ,-1.0, a,b,quad_order)
xy2,w2=algoim_nodes_weights(ψ,+1.0, a,b,quad_order)
#test the sum of the weights (it is equal to the area of each region)
@test sum(w1)≈ π/4
@test sum(w2)≈ (1-π/4)
#xy a matrix (each column is a node):
x1,y1= xy1[1,:] , xy1[2,:]
x2,y2= xy2[1,:] , xy2[2,:]
#visualize the quadrature nodes:
#the rectangle
rect_x=[a[1],b[1],b[1],a[1],a[1]]
rect_y=[a[2],a[2],b[2],b[2],a[2]]
P=plot(rect_x,rect_y,c=:black,label="Ω",legend=:outerleft,axis=false,grid=false)
#the interface ψ=0
plot!(P,range(a[1],b[1],50),
range(a[2],b[2],50),(x,y)->ψ([x,y]),levels=[0.0],c=:green,seriestype=:contour,label="ψ=0",cbar=false)
#the quadrature nodes
scatter!(P,x1,y1,c=:blue,label="Ω₁")
scatter!(P,x2,y2,c=:red,label="Ω₂")
savefig(P,"tutorial/example_1.png")
#Example 2:
#Consider the domain [-2,2]² split by the unit circle into the unit disk and the remainder.
#It can be handled similarly to the previous example. The algorithm will detect the need to split the domain automatically.
ψ(x)= x'*x-1.0 #the same as before
a,b=-2ones(2), 2ones(2)
quad_order=5
xy1,w1=algoim_nodes_weights(ψ,-1.0, a,b,quad_order)
xy2,w2=algoim_nodes_weights(ψ,+1.0, a,b,quad_order)
# need quad_order≥20 to achieve this accuracy. For the sake of this tutorial, we will use a smaller quad_order
# @test sum(w1)≈ π
# @test sum(w2)≈ 16-π
#plotting the quad points as before
x1,y1= xy1[1,:] , xy1[2,:]
x2,y2= xy2[1,:] , xy2[2,:]
rect_x=[a[1],b[1],b[1],a[1],a[1]]
rect_y=[a[2],a[2],b[2],b[2],a[2]]
P2=plot(rect_x,rect_y,c=:black,label="Ω",legend=:outerleft,axis=false,grid=false)
plot!(P2,range(a[1],b[1],50),
range(a[2],b[2],50),(x,y)->ψ([x,y]),levels=[0.0],c=:green,seriestype=:contour,label="ψ=0",cbar=false)
scatter!(P2,x1,y1,c=:blue,label="Ω₁")
scatter!(P2,x2,y2,c=:red,label="Ω₂")
savefig(P2,"tutorial/example_2.png")
#Example 3:
#It is the same as example 1, but in three dimensions
ψ(x)= x'*x-1.0 #the same as before
a,b=zeros(3), ones(3)
quad_order=5
xyz1,w1=algoim_nodes_weights(ψ,-1.0, a,b,quad_order)
xyz2,w2=algoim_nodes_weights(ψ,+1.0, a,b,quad_order)
x1,y1,z1= xyz1[1,:],xyz1[2,:],xyz1[3,:]
x2,y2,z2= xyz2[1,:],xyz2[2,:],xyz2[3,:]
#the unit cube
A=[0,1,1,0,0]
B=[0,0,1,1,0]
C=[0,0,0,0,0]
D=[1,1,1,1,1]
P3=plot()
plot!(P3,A,B,C,label="Ω",c=:black,axis=false,grid=false)
plot!(P3,A,B,D,c=:black,label=nothing)
plot!(P3,A,C,B,c=:black,label=nothing)
plot!(P3,A,D,B,c=:black,label=nothing)
P31=deepcopy(P3)
P32=deepcopy(P3)
scatter!(P31,x1,y1,z1,c=:blue,label="Ω₁")
scatter!(P32,x2,y2,z2,c=:red,label="Ω₂")
plot!(P31,camera=(60,15))
# plot(P32,camera=(30,30))
savefig(P31,"tutorial/example_3.png")
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 0.2.0 | 38e36bad296e56f1ddf022029dd30129fcc5aff2 | docs | 2053 | # QuadratureOnImplicitRegions
[](https://github.com/hmegh/QuadratureOnImplicitRegions.jl/actions/workflows/CI.yml?query=branch%3Amain)
This package implements a quadrature method on implicitly defined regions following the algorithm in:
[R. I. Saye, High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles, SIAM Journal on Scientific Computing, 37(2), A993-A1019 (2015).](https://epubs.siam.org/doi/10.1137/140966290).
---
# Simple exmaples:
Let $\Omega=[0,1]^2$ and let $\psi(x,y)=x^2+y^2-1$. Our goal is to create quadrature nodes and weights on the subdomains:
$$\Omega_1=\left\\{(x,y)\in \Omega : \psi(x,y)<0\right\\},\qquad
\Omega_2=\left\\{(x,y)\in \Omega : \psi(x,y)>0\right\\}.$$
```julia
using QuadratureOnImplicitRegions
ψ(x)= x'*x-1.0
a,b=zeros(2), ones(2) #the unit interval.
quad_order=10
#the nodes and weights on Ω₁
xy1,w1=algoim_nodes_weights(ψ,-1.0, a,b,quad_order)
#the nodes and weights on Ω₂
xy2,w2=algoim_nodes_weights(ψ,+1.0, a,b,quad_order)
```
To plot the nodes, please see [this tutorial](https://github.com/Hmegh/QuadratureOnImplicitRegions.jl/blob/main/tutorial/circle_and_sphere.jl).
<p align="center">
<img src="https://github.com/Hmegh/QuadratureOnImplicitRegions.jl/assets/8241188/8926d082-3b1c-48cb-a888-3882b1288f7f" width="250"
height=auto/>
</p>
The same syntax can be used for higher dimensional regions. For example, in the case of the intersection of the unit sphere and unit cube, we only need to adjust `a` and `b`:
```julia
using QuadratureOnImplicitRegions
ψ(x)= x'*x-1.0
a,b=zeros(3), ones(3) #the unit cube.
quad_order=5
xyz1,w1=algoim_nodes_weights(ψ,-1.0, a,b,quad_order)
```
For the outer region, we only need to change `-1.0` to `1.0`
<p align="center">
<img src="https://github.com/Hmegh/QuadratureOnImplicitRegions.jl/assets/8241188/43354dab-7818-46eb-8ee2-c65b394b0369" width="250"
height=auto/>
</p>
| QuadratureOnImplicitRegions | https://github.com/Hmegh/QuadratureOnImplicitRegions.jl.git |
|
[
"MIT"
] | 2.1.0 | d7c686c778f2d8a43d831ef6bb9bad9053159340 | code | 13477 | module Neo4j
using HTTP
using JSON
using DocStringExtensions
using Base64
export getgraph, version, createnode, getnode, deletenode, setnodeproperty, getnodeproperty,
getnodeproperties, updatenodeproperties, deletenodeproperties, deletenodeproperty,
addnodelabel, addnodelabels, updatenodelabels, deletenodelabel, getnodelabels,
getnodesforlabel, getlabels, getrel, getrels, getneighbors, createrel, deleterel, getrelproperty,
getrelproperties, updaterelproperties, cypherQuery
export Connection, Result
const DEFAULT_HOST = "localhost"
const DEFAULT_PORT = 7474
const DEFAULT_URI = "/db/data/"
const JSONObject{T <: AbstractString} = Union{Dict{T,Any},Nothing} # UTF8String
const JSONArray = Union{Vector,Nothing}
const JSONData{T <: AbstractString} = Union{JSONObject,JSONArray,T,Number,Nothing}
const QueryData = Union{Dict{Any,Any},Nothing}
# ----------
# Connection
# ----------
"""
Connection()
### Examples
```julia-repl
julia> con = Neo4j.Connection("localhost")
Neo4j.Connection(false, "localhost", 7474, "/db/data/", "http://localhost:7474/db/data/", "", "")
```
"""
struct Connection
host::AbstractString #UTF8String
tls::Bool
port::Int
path::AbstractString #UTF8String
url::AbstractString #UTF8String
user::AbstractString #UTF8String
password::AbstractString #UTF8String
Connection(host::T; port = DEFAULT_PORT, path = DEFAULT_URI, tls = false, user = "", password = "") where {T <: AbstractString} =
new(string(host), tls, port, string(path), string("http://$host:$port$path"), string(user), string(password))
Connection() = Connection(DEFAULT_HOST)
end
function connurl(c::Connection)
proto = ifelse(c.tls, "https", "http")
"$(proto)://$(c.host):$(c.port)$(c.path)"
end
function connurl(c::Connection, suffix::T) where {T <: AbstractString}
url = connurl(c)
"$(url)$(suffix)"
end
function connheaders(c::Connection)
headers = Dict(
"Accept" => "application/json; charset=UTF-8",
"content-type" => "application/json",
"Host" => "$(c.host):$(c.port)")
if c.user != "" && c.password != ""
payload = "$(c.user):$(c.password)" |> base64encode
headers["Authorization"] = "Basic $(payload)"
end
headers
end
# -----
# Graph
# -----
struct Graph
# TODO extensions
node::AbstractString #UTF8String
node_index::AbstractString #UTF8String
relationship_index::AbstractString #UTF8String
extensions_info::AbstractString #UTF8String
relationship_types::AbstractString #UTF8String
batch::AbstractString #UTF8String
cypher::AbstractString #UTF8String
indexes::AbstractString #UTF8String
constraints::AbstractString #UTF8String
transaction::AbstractString #UTF8String
node_labels::AbstractString #UTF8String
version::AbstractString #UTF8String
connection::Connection
relationship::AbstractString #UTF8String # Not in the spec
end
# UTF8String
Graph(data::Dict{T,Any}, conn::Connection) where {T <: AbstractString} = Graph(data["node"], data["node_index"], data["relationship_index"],
data["extensions_info"], data["relationship_types"], data["batch"], data["cypher"], data["indexes"],
data["constraints"], data["transaction"], data["node_labels"], data["neo4j_version"], conn,
"$(conn.url)relationship")
function getgraph(conn::Connection)
resp = HTTP.get(conn.url; headers=connheaders(conn))
if resp.status != 200
error("Connection to server unsuccessful: $(resp.status)")
end
Graph(Dict{AbstractString,Any}(JSON.parse(String(resp.body))), conn) # UTF8String
end
function getgraph()
getgraph(Connection())
end
# ----
# Node
# ----
struct Node
# TODO extensions
paged_traverse::AbstractString #UTF8String
labels::AbstractString #UTF8String
outgoing_relationships::AbstractString #UTF8String
traverse::AbstractString #UTF8String
all_typed_relationships::AbstractString #UTF8String
all_relationships::AbstractString #UTF8String
property::AbstractString #UTF8String
self::AbstractString #UTF8String
outgoing_typed_relationships::AbstractString #UTF8String
properties::AbstractString #UTF8String
incoming_relationships::AbstractString #UTF8String
incoming_typed_relationships::AbstractString #UTF8String
create_relationship::AbstractString #UTF8String
data::JSONObject
metadata::Dict{AbstractString, Any} #UTF8String
id::Int64
graph::Graph
#Constructors
Node() = new()
Node(data::JSONObject, graph::Graph) = new(data["paged_traverse"], data["labels"],
data["outgoing_relationships"], data["traverse"], data["all_typed_relationships"],
data["all_relationships"], data["property"],
data["self"], data["outgoing_typed_relationships"], data["properties"],
data["incoming_relationships"], data["incoming_typed_relationships"],
data["create_relationship"], data["data"], data["metadata"],
split(data["self"], "/")[end] |> Meta.parse, graph)
end
# ----------
# Statements
# ----------
struct Statement
statement::AbstractString
parameters::Dict
end
# -------
# Results
# -------
struct Result
results::Vector
errors::Vector
end
# ------------
# Transactions
# ------------
include("transaction.jl")
# --------
# Requests
# --------
function request(url::AbstractString, method::Function, exp_code::Int,
headers::Dict{T, T}; jsonDict::JSONData = nothing,
query::QueryData = nothing)::AbstractString where {T <: AbstractString}
resp = nothing
try
# Simplified to a single call
body = jsonDict != nothing ? JSON.json(jsonDict) : ""
resp = method(url; headers = headers, body=body, query=query)
catch ex
# Handle status errors specifically.
if ex isa HTTP.ExceptionRequest.StatusError
resp = ex.response
else
rethrow(ex)
end
finally
if resp.status != exp_code
respdata = JSON.parse(String(resp.body))
if respdata !== nothing && "message" in keys(respdata)
error("Neo4j error: $(respdata["message"])")
else
error("Neo4j error: $(url) returned $(resp.status)")
end
end
# Great, return the response body
return String(resp.body)
end
end
# -----------------
# External requests
# -----------------
function createnode(graph::Graph, props::JSONData = nothing)
resp = request(graph.node, HTTP.post, 201, connheaders(graph.connection); jsonDict=props)
jsrsp = Dict{AbstractString,Any}(JSON.parse(resp)) # UTF8String
# @show typeof(jsrsp)
Node(jsrsp, graph)
end
function getnode(graph::Graph, id::Int)
url = "$(graph.node)/$id"
resp = request(url, HTTP.get, 200, connheaders(graph.connection))
Node(Dict{AbstractString,Any}(JSON.parse(resp)), graph) # UTF8String
end
function getnode(node::Node)
getnode(node.graph, node.id)
end
function deletenode(node::Node)
request(node.self, HTTP.delete, 204, connheaders(node.graph.connection))
end
function deletenode(graph::Graph, id::Int)
node = getnode(graph, id)
deletenode(node)
end
function setnodeproperty(node::Node, name::T, value::Any) where {T <: AbstractString}
url = replace(node.property, "{key}" => name)
request(url, HTTP.put, 204, connheaders(node.graph.connection); jsonDict=value)
end
function setnodeproperty(graph::Graph, id::Int, name::T, value::Any) where {T <: AbstractString}
node = getnode(graph, id)
setnodeproperty(node, name, value)
end
function updatenodeproperties(node::Node, props::JSONObject)
resp = request(node.properties, HTTP.put, 204, connheaders(node.graph.connection); jsonDict=props)
end
function getnodeproperty(node::Node, name::T) where {T <: AbstractString}
url = replace(node.property, "{key}" => name)
resp = request(url, HTTP.get, 200, connheaders(node.graph.connection))
JSON.parse(resp)
end
function getnodeproperties(node::Node)
resp = request(node.properties, HTTP.get, 200, connheaders(node.graph.connection))
JSON.parse(resp)
end
function getnodeproperties(graph::Graph, id::Int)
node = getnode(graph, id)
getnodeproperties(node)
end
function deletenodeproperties(node::Node)
request(node.properties, HTTP.delete, 204, connheaders(node.graph.connection))
end
function deletenodeproperty(node::Node, name::T) where {T <: AbstractString}
url = replace(node.property, "{key}" => name)
request(url, HTTP.delete, 204, connheaders(node.graph.connection))
end
function addnodelabel(node::Node, label::T) where {T <: AbstractString}
request(node.labels, HTTP.post, 204, connheaders(node.graph.connection); jsonDict=label)
end
function addnodelabels(node::Node, labels::JSONArray)
request(node.labels, HTTP.post, 204, connheaders(node.graph.connection); jsonDict=labels)
end
function updatenodelabels(node::Node, labels::JSONArray)
request(node.labels, HTTP.put, 204, connheaders(node.graph.connection); jsonDict=labels)
end
function deletenodelabel(node::Node, label::T) where {T <: AbstractString}
url = "$(node.labels)/$label"
request(url, HTTP.delete, 204, connheaders(node.graph.connection))
end
function getnodelabels(node::Node)
resp = request(node.labels, HTTP.get, 200, connheaders(node.graph.connection))
JSON.parse(resp)
end
function getnodesforlabel(graph::Graph, label::T, props::JSONObject=nothing) where {T <: AbstractString}
# TODO Shouldn't this url be available in the api somewhere?
url = "$(graph.connection.url)label/$label/nodes"
resp = request(url, HTTP.get, 200, connheaders(graph.connection); query=props)
[Node(Dict{AbstractString,Any}(nodedata), graph) for nodedata = JSON.parse(resp)]
end
function getlabels(graph::Graph)
resp = request(graph.node_labels, HTTP.get, 200, connheaders(graph.connection))
JSON.parse(resp)
end
# -------------
# Relationships
# -------------
struct Relationship
relstart::AbstractString #UTF8String
property::AbstractString #UTF8String
self::AbstractString #UTF8String
properties::AbstractString #UTF8String
metadata::Dict{AbstractString ,Any} #UTF8String
reltype::AbstractString #UTF8String
relend::AbstractString #UTF8String
data::JSONObject
id::Int
graph::Graph
end
Relationship(data::JSONObject, graph::Graph) = Relationship(data["start"], data["property"],
data["self"], data["properties"], data["metadata"], data["type"], data["end"], data["data"],
split(data["self"], "/")[end] |> Meta.parse, graph)
function getrels(node::Node; incoming::Bool = true, outgoing::Bool = true)
rels = Vector{Relationship}()
if(incoming)
resp = request(node.incoming_relationships, HTTP.get, 200, connheaders(node.graph.connection))
for rel=JSON.parse(resp)
push!(rels, Relationship(Dict{AbstractString,Any}(rel), node.graph)) #UTF8String
end
end
if(outgoing)
resp = request(node.outgoing_relationships, HTTP.get, 200, connheaders(node.graph.connection))
for rel=JSON.parse(resp)
push!(rels, Relationship(Dict{AbstractString,Any}(rel), node.graph)) #UTF8String
end
end
rels
end
function getneighbors(node::Node; incoming::Bool = true, outgoing::Bool = true)
neighbors = Vector{Node}()
# Do incoming
if(incoming)
rels = getrels(node, incoming = true, outgoing = false)
for rel=rels
resp = request(rel.relstart, HTTP.get, 200, connheaders(node.graph.connection))
push!(neighbors, Node(Dict{AbstractString,Any}(JSON.parse(resp)), node.graph)) # UTF8String
end
end
if(outgoing)
rels = getrels(node, incoming = false, outgoing = true)
for rel=rels
resp = request(rel.relend, HTTP.get, 200, connheaders(node.graph.connection))
push!(neighbors, Node(Dict{AbstractString,Any}(JSON.parse(resp)), node.graph)) # UTF8String
end
end
neighbors
end
function getrel(graph::Graph, id::Int)
url = "$(graph.relationship)/$id"
resp = request(url, HTTP.get, 200, connheaders(graph.connection))
Relationship(Dict{AbstractString,Any}(JSON.parse(resp)), graph) # UTF8String
end
function createrel(from::Node, to::Node, reltype::AbstractString; props::JSONObject=nothing)
body = Dict{AbstractString, Any}("to" => to.self, "type" => uppercase(reltype)) # UTF8String
if props !== nothing
body["data"] = props
end
resp = request(from.create_relationship, HTTP.post, 201, connheaders(from.graph.connection), jsonDict=body)
Relationship(Dict{AbstractString,Any}(JSON.parse(resp)), from.graph) # UTF8String
end
function deleterel(rel::Relationship)
request(rel.self, HTTP.delete, 204, connheaders(rel.graph.connection))
end
function getrelproperty(rel::Relationship, name::AbstractString)
url = replace(rel.property, "{key}" => name)
resp = request(url, HTTP.get, 200, connheaders(rel.graph.connection))
JSON.parse(resp)
end
function getrelproperties(rel::Relationship)
resp = request(rel.properties, HTTP.get, 200, connheaders(rel.graph.connection))
JSON.parse(resp)
end
function updaterelproperties(rel::Relationship, props::JSONObject)
request(rel.properties, HTTP.put, 204, connheaders(rel.graph.connection); jsonDict=props)
end
# ------------
# Cypher query
# ------------
include("cypherQuery.jl")
end # module
| Neo4j | https://github.com/glesica/Neo4j.jl.git |
|
[
"MIT"
] | 2.1.0 | d7c686c778f2d8a43d831ef6bb9bad9053159340 | code | 3890 |
using DataFrames, Missings;
"""
$(SIGNATURES)
Retrieve molecular identifier from other databases, `targetDb`, for single or mulitple query IDs, `queryId`,
and moreover information on Ensembl gene, transcript and peptide IDs, such as ID and genomic loation.
### Arguments
- `conn::Neo4j.Connection` : a valid connection to a Neo4j graph DB instance.
- `cypher::String` : Cypher `MATCH` query returning tabular data.
- `params::Pair` : parameters which are passed on to the cypher query.
- `elTypes::Vector{Type}` : column types can be provided manually as a Vector{Type}
- `nRowsElTypeCheck::Int` : Number of rows which are used to determine column datatypes (defaults to 1000)
### Examples
```julia-repl
julia> cypherQuery(
Neo4j.Connection("localhost"),
"MATCH (p :Person {name: {name}}) RETURN p.name AS Name, p.age AS Age;",
"name" => "John Doe")
```
"""
function cypherQuery(
conn::Connection,
cypher::AbstractString,
params::Pair...;
elTypes::Vector{DataType} = Vector{DataType}(),
nRowsElTypeCheck::Int = 1000)::DataFrames.DataFrame
url = connurl(conn, "transaction/commit")
headers = connheaders(conn)
body = Dict("statements" => [Statement(cypher, Dict(params))])
resp = HTTP.post(url; headers=headers, body=JSON.json(body))
if resp.status != 200
error("Failed to commit transaction ($(resp.status)): $(txn)\n$(resp)")
end
respdata = JSON.parse(String(resp.body))
if !isempty(respdata["errors"])
error(join(map(i -> (i * ": " * respdata["errors"][1][i]), keys(respdata["errors"][1])), "\n"));
end
# parse results into data sink
# Result(respdata["results"], respdata["errors"])
if !isempty(respdata["results"][1]["data"])
return parseResults(respdata["results"][1], elTypes = elTypes, nRowsElTypeCheck = nRowsElTypeCheck);
else
return DataFrames.DataFrame();
end
end
# Currently only supports DataFrames.DataFrame objects
# -> Future: Allow different data sink types, such as tables from JuliaDB
function parseResults(res::Dict{String, Any}; elTypes::Vector{DataType} = Vector(), nRowsElTypeCheck::Int = 100)::DataFrames.DataFrame
# Get elementary types from a column where there is no NA value (nothing)
if isempty(elTypes)
elTypes = getElTypes(res["data"], nRowsElTypeCheck);
end
colNames = Symbol.(collect(res["columns"])) # collect(Symbol, res["columns"]);
nRows = length(res["data"]);
# x = DataFrames.DataFrame(elTypes, colNames, nRows);
x = DataFrames.DataFrame(colNames .=> [type[] for type in elTypes])
for rowVal in res["data"]
row = rowVal["row"]
if row !== nothing
push!(x, row)
end
end
return x;
end
function getElTypes(x::Vector{Any}, nRowsElTypeCheck::Int = 0)::Vector{Type}
nRecords = length(x);
elTypes::Vector{Type} = Type[Union{Nothing, Missings.Missing} for i in 1:length(x[1]["row"])];
nMaxRows = nRecords;
# elTypes = Type[Union{Nothing, Missings.Missing} for i in 1:length(x[1]["row"])];
nMaxRows = (nRowsElTypeCheck != 0 && nRowsElTypeCheck <= nMaxRows) ? nRowsElTypeCheck : nRecords;
checkIdx = trues(length(x[1]["row"]));
for i in 1:nMaxRows
# check each column individually
for el in findall(checkIdx)
if !(x[i]["row"][el] == nothing)
if !(typeof(x[i]["row"][el]) === Array{Any,1})
elTypes[el] = i > 1 ?
Union{typeof(x[i]["row"][el]), Missings.Missing} :
typeof(x[i]["row"][el]);
else
elTypes[el] = i > 1 ?
Union{Vector{typeof(x[i]["row"][el][1])}, Missings.Missing} :
Vector{typeof(x[i]["row"][el][1])};
end
checkIdx[el] = false;
end
end
if isempty(findall(checkIdx))
break;
end
end
return elTypes;
end
| Neo4j | https://github.com/glesica/Neo4j.jl.git |
|
[
"MIT"
] | 2.1.0 | d7c686c778f2d8a43d831ef6bb9bad9053159340 | code | 2412 | # Transactions
# A transaction is the primary type through which the database is accessed. A
# transaction can be a single request, or it can be held open through many
# requests as a means of batching jobs together.
export transaction, rollback, commit
struct Transaction
conn::Connection
commit::AbstractString
location::AbstractString
statements::Vector{Statement}
end
# TODO: Provide a version that accepts statements.
function transaction(conn::Connection)::Transaction
url = connurl(conn, "transaction")
headers = connheaders(conn)
body = Dict("statements" => [ ])
resp = HTTP.post(url; headers=headers, body=JSON.json(body))
if resp.status != 201
error("Failed to connect to database ($(resp.status)): $(conn)\n$(resp)")
end
respdata = JSON.parse(String(resp.body))
# Get the header with entry "Location"
location = filter(h->h[1]=="Location", resp.headers)
if length(location) == 0
error("Could not header with key 'Location' in response body of the transaction.")
end
return Transaction(conn, respdata["commit"], location[1][2], Statement[])
end
function (txn::Transaction)(cypher::AbstractString, params::Pair...;
submit::Bool=false)
append!(txn.statements, [Statement(cypher, Dict(params))])
if submit
url = txn.location
headers = connheaders(txn.conn)
body = Dict("statements" => txn.statements)
resp = HTTP.post(url; headers=headers, body=JSON.json(body))
if resp.status != 200
error("Failed to submit transaction ($(resp.status)): $(txn)\n$(resp)")
end
respdata = JSON.parse(String(resp.body))
empty!(txn.statements)
result = Result(respdata["results"], respdata["errors"])
return result
end
end
function commit(txn::Transaction)::Result
url = txn.commit
headers = connheaders(txn.conn)
body = Dict("statements" => txn.statements)
resp = HTTP.post(url; headers=headers, body=JSON.json(body))
if resp.status != 200
error("Failed to commit transaction ($(resp.status)): $(txn)\n$(resp)")
end
respdata = JSON.parse(String(resp.body))
return Result(respdata["results"], respdata["errors"])
end
function rollback(txn::Transaction)::HTTP.Response
url = txn.location
headers = connheaders(txn.conn)
resp = HTTP.delete(url; headers=headers)
if resp.status != 200
error("Failed to rollback transaction ($(resp.status)): $(txn)\n$(resp)")
end
return resp
end
| Neo4j | https://github.com/glesica/Neo4j.jl.git |
|
[
"MIT"
] | 2.1.0 | d7c686c778f2d8a43d831ef6bb9bad9053159340 | code | 8217 | using Neo4j, DataFrames
using Test
@testset "Module imports" begin
@test (@isdefined Neo4j) == true
@test typeof(Neo4j) == Module
end
# defaults for testing
global username = "neo4j"
global passwd = "neo5j"
global graph = nothing
global conn = nothing
@testset "Creating a connection to localhost" begin
try
global graph = getgraph()
catch
@info "[TEST] Anonymous connection failed! Creating a Neo4j connection to localhost:7474 with neo4j:$(passwd) credentials..."
#Trying with security.
global conn = Neo4j.Connection("localhost"; user=username, password=passwd);
global graph = getgraph(conn);
end
global conn = graph.connection;
end
@testset "Checking version of connected graph = Neo4j $(ascii(graph.version))..." begin
# Have to account for newer Neo4j! Using version text - ref: http://docs.julialang.org/en/release-0.4/manual/strings/
@test VersionNumber(graph.version) > v"2.0.0" # convert(VersionNumber, graph.version) > v"2.0.0"
# Check that
@test graph.node == "http://localhost:7474/db/data/node"
end
global barenode = nothing
global propnode = nothing
@testset "Nodes: CRUD, properties, and labels..." begin
global barenode = Neo4j.createnode(graph)
@test barenode.self == "http://localhost:7474/db/data/node/$(barenode.id)"
global propnode = Neo4j.createnode(graph, Dict{AbstractString,Any}("a" => "A", "b" => 1)) #UTF8String
@test propnode.data["a"] == "A"
@test propnode.data["b"] == 1
global gotnode = getnode(graph, propnode.id)
@test gotnode.id == propnode.id
@test gotnode.data["a"] == "A"
@test gotnode.data["b"] == 1
setnodeproperty(barenode, "a", "A")
global barenode = getnode(barenode)
@test barenode.data["a"] == "A"
global props = getnodeproperties(propnode)
@test props["a"] == "A"
@test props["b"] == 1
@test length(props) == 2
updatenodeproperties(barenode, Dict{AbstractString,Any}("a" => 1, "b" => "A")) #UTF8String
global barenode = getnode(barenode)
@test barenode.data["a"] == 1
@test barenode.data["b"] == "A"
deletenodeproperties(barenode)
global barenode = getnode(barenode)
@test length(barenode.data) == 0
deletenodeproperty(propnode, "b")
global propnode = getnode(propnode)
@test length(propnode.data) == 1
@test propnode.data["a"] == "A"
addnodelabel(barenode, "A")
global barenode = getnode(barenode)
@test getnodelabels(barenode) == ["A"]
addnodelabels(barenode, ["B", "C"])
global barenode = getnode(barenode)
global labels = getnodelabels(barenode)
@test "A" in labels
@test "B" in labels
@test "C" in labels
@test length(labels) == 3
updatenodelabels(barenode, ["D", "E", "F"])
global barenode = getnode(barenode)
global labels = getnodelabels(barenode)
@test "D" in labels
@test "E" in labels
@test "F" in labels
@test length(labels) == 3
deletenodelabel(barenode, "D")
global barenode = getnode(barenode)
global labels = getnodelabels(barenode)
@test "E" in labels
@test "F" in labels
@test length(labels) == 2
global nodes = getnodesforlabel(graph, "E")
@test length(nodes) > 0
@test barenode.id in [n.id for n = nodes]
global labels = getlabels(graph)
end
@testset "Relationships: CRUD, neighbors" begin
global rel1 = createrel(barenode, propnode, "test"; props=Dict{AbstractString,Any}("a" => "A", "b" => 1)); #UTF8String
global rel1alt = getrel(graph, rel1.id);
@test rel1.reltype == "TEST"
@test rel1.data["a"] == "A"
@test rel1.data["b"] == 1
@test rel1.id == rel1alt.id
global endnode = Neo4j.createnode(graph, Dict{AbstractString,Any}("a" => "A", "b" => 1)) # UTF8String
global rel2 = createrel(propnode, endnode, "test"; props=Dict{AbstractString,Any}("a" => "A", "b" => 1)); # UTF8String
@test length(Neo4j.getrels(endnode)) == 1
@test length(Neo4j.getrels(propnode)) == 2
@test length(Neo4j.getrels(barenode)) == 1
@test length(Neo4j.getrels(endnode, incoming=true, outgoing=false)) == 1
@test length(Neo4j.getrels(endnode, incoming=false, outgoing=true)) == 0
@test length(Neo4j.getrels(propnode, incoming=true, outgoing=false)) == 1
@test length(Neo4j.getrels(propnode, incoming=false, outgoing=true)) == 1
global neighbors = Neo4j.getneighbors(propnode)
@test length(neighbors) == 2
global neighbors = Neo4j.getneighbors(propnode, incoming=true, outgoing=false)
@test length(neighbors) == 1
@test neighbors[1].metadata["id"] == barenode.metadata["id"]
global neighbors = Neo4j.getneighbors(propnode, incoming=false, outgoing=true)
@test length(neighbors) == 1
@test neighbors[1].metadata["id"] == endnode.metadata["id"]
global rel1prop = getrelproperties(rel1);
@test rel1prop["a"] == "A"
@test rel1prop["b"] == 1
@test length(rel1prop) == 2
@test getrelproperty(rel1, "a") == "A"
@test getrelproperty(rel1, "b") == 1
deleterel(rel1)
deleterel(rel2)
@test_throws ErrorException getrel(graph, rel1.id)
@test_throws ErrorException getrel(graph, rel2.id)
end
@testset "Nodes: Deleting nodes (cleaning up)" begin
deletenode(graph, barenode.id)
deletenode(graph, propnode.id)
@test_throws ErrorException getnode(graph, barenode.id)
@test_throws ErrorException getnode(graph, propnode.id)
end
# --- New transaction code from Glesica source ---
function createnode(txn, name, age; submit=false)
q = "CREATE (n:Neo4jjl) SET n.name = {name}, n.age = {age}"
txn(q, "name" => name, "age" => age; submit=submit)
end
@testset "Transactions" begin
global loadtx = transaction(conn)
@test length(loadtx.statements) == 0
createnode(loadtx, "John Doe", 20)
@test length(loadtx.statements) == 1
createnode(loadtx, "Jane Doe", 20)
@test length(loadtx.statements) == 2
global query = "MATCH (n:Neo4jjl) WHERE n.age = {age} RETURN n.name";
global people = loadtx(query, "age" => 20; submit=true)
@test length(loadtx.statements) == 0
@test length(people.results) == 3
@test length(people.errors) == 0
global matchresult = people.results[3]
@test matchresult["columns"][1] == "n.name"
@test "John Doe" in [row["row"][1] for row = matchresult["data"]]
@test "Jane Doe" in [row["row"][1] for row = matchresult["data"]]
global loadresult = commit(loadtx)
@test length(loadresult.results) == 0
@test length(loadresult.errors) == 0
global query = "MATCH (n:Neo4jjl) WHERE n.age = {age} DELETE n"
global deletetx = transaction(conn)
deletetx(query, "age" => 20)
global deleteresult = commit(deletetx)
@test length(deleteresult.results) == 1
@test length(deleteresult.results[1]["columns"]) == 0
@test length(deleteresult.results[1]["data"]) == 0
@test length(deleteresult.errors) == 0
global rolltx = transaction(conn)
global person = createnode(rolltx, "John Doe", 20; submit=true)
@test length(rolltx.statements) == 0
@test length(person.results) == 1
@test length(person.errors) == 0
rollback(rolltx)
global rolltx = transaction(conn)
global rollresult = rolltx("MATCH (n:Neo4jjl) WHERE n.name = 'John Doe' RETURN n"; submit=true)
@test length(rollresult.results) == 1
@test length(rollresult.results[1]["columns"]) == 1
@test length(rollresult.results[1]["data"]) == 0
@test length(rollresult.errors) == 0
end
# --- New cypherQuery using transaction/commit endpoint ---
@testset "DataFrames with cypherQuery()" begin
# Open transaction and create node
global loadtx = transaction(conn)
createnode(loadtx, "John Doe", 20; submit=true)
Neo4j.commit(loadtx)
global matchresult = cypherQuery(conn,
"MATCH (n:Neo4jjl {name: {name}}) RETURN n.name AS Name, n.age AS Age;",
"name" => "John Doe")
@test DataFrames.DataFrame(Name = "John Doe", Age = 20) == matchresult
# Cleanup
global deletetx = transaction(conn)
global query = "MATCH (n:Neo4jjl) WHERE n.age = {age} DELETE n"
deletetx(query, "age" => 20)
global deleteresult = commit(deletetx)
end
| Neo4j | https://github.com/glesica/Neo4j.jl.git |
|
[
"MIT"
] | 2.1.0 | d7c686c778f2d8a43d831ef6bb9bad9053159340 | docs | 1544 | > This project is no longer actively maintained and probably doesn't work with recent versions of
> Neo4j. PRs to fix aspects of its functionality are still welcome.
# Neo4j.jl
[](https://github.com/glesica/Neo4j.jl/actions/workflows/CI.yml)
[](https://codecov.io/github/glesica/Neo4j.jl?branch=master)
A [Julia](http://julialang.org) client for the [Neo4j](http://neo4j.org) graph
database.
Really easy to use, have a look at ```test/runtests.jl``` for the available methods.
## Basic Usage
```julia
c = Connection("localhost"; user="neo4j", password="neo4j")
tx = transaction(c)
tx("CREATE (n:Lang) SET n.name = \$name", "name" => "Julia")
tx("MATCH (n:Lang) RETURN n LIMIT {limit}", "limit" => 10)
results = commit(tx)
```
You can also submit a transaction to the server without committing it. This
will return a result set but will keep the transaction open both on the client
and server:
```julia
results = tx("MATCH (n) RETURN n"; submit=true)
```
Rollbacks are also supported:
```julia
rollback(tx)
```
If the goal is to simply run a MATCH query and get the result in the form of a
`DataFrames.DataFrame` object, the `cypherQuery` function can be used.
The `cypherQuery` implementation performs the query in a single transaction which
automatically opens and closes the transaction:
```julia
results = cypherQuery(c, "MATCH (n) RETURN n.property AS Property")
```
| Neo4j | https://github.com/glesica/Neo4j.jl.git |
|
[
"MIT"
] | 0.3.0 | 855371d8fdfaed46dbb32a7c57a42db4441b9247 | code | 3176 | module StaticGraphs
using Graphs
using JLD2
using SparseArrays
import Base:
convert, eltype, show, ==, Pair, Tuple, in, copy, length, issubset, zero, one,
size, getindex, setindex!, length, IndexStyle
import Graphs:
_NI, AbstractEdge, AbstractEdgeIter,
src, dst, edgetype, nv, ne, vertices, edges, is_directed,
has_vertex, has_edge, inneighbors, outneighbors,
indegree, outdegree, degree, insorted, squash,
AbstractGraphFormat, loadgraph, savegraph, reverse
import Graphs.SimpleGraphs:
AbstractSimpleGraph,
fadj,
badj,
SimpleEdge,
AbstractSimpleEdge
export
AbstractStaticGraph,
StaticEdge,
StaticGraph,
StaticDiGraph,
StaticDiGraphEdge,
# weight,
# weighttype,
# get_weight,
out_edges,
in_edges,
SGraph,
SDiGraph,
SGFormat,
SDGFormat
include("utils.jl")
const AbstractStaticEdge{T} = AbstractSimpleEdge{T}
const StaticEdge{T} = SimpleEdge{T}
"""
AbstractStaticGraph{T, U}
An abstract type representing a simple graph structure parameterized by integer types
- `T`: the type representing the graph's vertices
- `U`: the type representing the number of edges in the graph
"""
abstract type AbstractStaticGraph{T<:Integer, U<:Integer} <: AbstractSimpleGraph{T} end
vectype(g::AbstractStaticGraph{T, U}) where T where U = T
indtype(g::AbstractStaticGraph{T, U}) where T where U = U
eltype(x::AbstractStaticGraph) = vectype(x)
function show(io::IO, g::AbstractStaticGraph)
dir = is_directed(g) ? "directed" : "undirected"
print(io, "{$(nv(g)), $(ne(g))} $dir simple static {$(vectype(g)), $(indtype(g))} graph")
end
@inline function _fvrange(g::AbstractStaticGraph, s::Integer)
@inbounds r_start = g.f_ind[s]
@inbounds r_end = g.f_ind[s + 1] - 1
return r_start:r_end
end
@inline function fadj(g::AbstractStaticGraph, s::Integer)
r = _fvrange(g, s)
return view(g.f_vec, r)
end
@inline fadj(g::AbstractStaticGraph) = [fadj(g, v) for v in vertices(g)]
nv(g::AbstractStaticGraph{T, U}) where T where U = T(length(g.f_ind) - 1)
vertices(g::AbstractStaticGraph{T, U}) where T where U = Base.OneTo(nv(g))
has_edge(g::AbstractStaticGraph, e::AbstractStaticEdge) =
insorted(dst(e), outneighbors(g, src(e)))
edgetype(g::AbstractStaticGraph{T}) where T = StaticEdge{T}
edges(g::AbstractStaticGraph) = StaticEdgeIter(g)
has_vertex(g::AbstractStaticGraph, v::Integer) = v in vertices(g)
outneighbors(g::AbstractStaticGraph, v::Integer) = fadj(g, v)
inneighbors(g::AbstractStaticGraph, v::Integer) = badj(g, v)
zero(g::T) where T<:AbstractStaticGraph = T()
copy(g::T) where T <: AbstractStaticGraph = T(copy(g.f_vec), copy(g.f_ind))
const StaticGraphEdge = StaticEdge
const StaticDiGraphEdge = StaticEdge
include("staticgraph.jl")
include("staticdigraph.jl")
include("persistence.jl")
const SGraph = StaticGraph
const SDiGraph = StaticDiGraph
const StaticEdgeIter{G} = Graphs.SimpleGraphs.SimpleEdgeIter{G}
eltype(::Type{StaticEdgeIter{StaticGraph{T, U}}}) where T where U = StaticGraphEdge{T}
eltype(::Type{StaticEdgeIter{StaticDiGraph{T, U}}}) where T where U = StaticDiGraphEdge{T}
include("overrides.jl")
end # module
| StaticGraphs | https://github.com/JuliaGraphs/StaticGraphs.jl.git |
|
[
"MIT"
] | 0.3.0 | 855371d8fdfaed46dbb32a7c57a42db4441b9247 | code | 2418 | import Graphs.LinAlg: adjacency_matrix
import Graphs: induced_subgraph
adjacency_matrix(g::StaticGraph{I,U}, T::DataType; dir = :out!) where I<:Integer where U<:Integer =
SparseMatrixCSC{T,I}(nv(g), nv(g), g.f_ind, g.f_vec, ones(T, ne(g)*2))
function adjacency_matrix(g::StaticDiGraph{I,U}, T::DataType; dir = :out) where I<:Integer where U<:Integer
if dir == :in
return SparseMatrixCSC{T,I}(nv(g), nv(g), g.f_ind, g.f_vec, ones(T, ne(g)*2))
end
z = SparseMatrixCSC{T,I}(nv(g), nv(g), g.b_ind, g.b_vec, ones(T, ne(g)))
dir != :out && @warn("direction `$dir` not defined for adjacency matrices on StaticGraphs; defaulting to `out`")
return z
end
# induced subgraphs preserve the eltypes of the vertices.
function induced_subgraph(g::StaticDiGraph{I, U}, vlist::AbstractVector{T}) where T <: Integer where I <: Integer where U<:Integer
vlist_len = length(vlist)
f_vec = Vector{I}()
b_vec = Vector{I}()
f_ind = Vector{U}([1])
b_ind = Vector{U}([1])
let vset = I.(vlist) # needed because of julialang/julia/ issue #15276
sizehint!(f_ind, vlist_len+1)
sizehint!(b_ind, vlist_len+1)
vlist_len == length(vset) || throw(ArgumentError("Vertices in subgraph list must be unique"))
fpos = 1
bpos = 1
@inbounds for v in vlist
o = filter(x -> x in vset, outneighbors(g, v))
i = filter(x -> x in vset, inneighbors(g, v))
fpos += length(o)
bpos += length(i)
append!(f_vec, o)
append!(b_vec, i)
push!(f_ind, fpos)
push!(b_ind, bpos)
end
end
return StaticDiGraph(f_vec, f_ind, b_vec, b_ind), T.(vlist)
end
function induced_subgraph(g::StaticGraph{I, U}, vlist::AbstractVector{T}) where T <: Integer where I <: Integer where U<:Integer
vlist_len = length(vlist)
f_vec = Vector{I}()
f_ind = Vector{U}([1])
let vset = I.(vlist) # needed because of julialang/julia/ issue #15276
sizehint!(f_ind, vlist_len + 1)
vlist_len == length(vset) || throw(ArgumentError("Vertices in subgraph list must be unique"))
fpos = 1
for v in vlist
o = filter(x -> x in vset, outneighbors(g, v))
fpos += length(o)
append!(f_vec, o)
push!(f_ind, fpos)
end
end
return StaticGraph(f_vec, f_ind), T.(vlist)
end
| StaticGraphs | https://github.com/JuliaGraphs/StaticGraphs.jl.git |
Subsets and Splits