licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
2330
using DataStructures struct SpaceIndex value::Int end struct Spaces indices::IntDisjointSets # Union-Find datastructure dimensions::Dict{Int, Int} polyvars::Dict{Int, Vector{SpaceVariable}} end Spaces() = Spaces(IntDisjointSets(0), Dict{Int, Int}(), Dict{Int, Vector{SpaceVariable}}()) function new_space(spaces::Spaces) return SpaceIndex(push!(spaces.indices)) end function new_space(spaces::Spaces, dim::Int) space_index = new_space(spaces) spaces.dimensions[space_index.value] = dim return space_index end function new_space(spaces::Spaces, polyvars::Vector{SpaceVariable}) space_index = new_space(spaces) spaces.dimensions[space_index.value] = length(polyvars) spaces.polyvars[space_index.value] = polyvars return space_index end function merge_property(d::Dict, root, key1, key2, name) value = nothing if key1 in keys(d) v1 = d[key1] if key2 in keys(d) && v1 != d[key2] error("Sets lie on the same spaces but have different $name") end value = v1 elseif key2 in keys(d) value = d[key2] end if value !== nothing d[root] = value end end function merge_spaces(spaces::Spaces, a::SpaceIndex, b::SpaceIndex) root_a = find_root!(spaces.indices, a.value) root_b = find_root!(spaces.indices, b.value) root = root_union!(spaces.indices, root_a, root_b) # the properties my not be set at a.value when it is set at root_a.value merge_property(spaces.dimensions, root, root_a, root_b, "dimension") merge_property(spaces.polyvars, root, root_a, root_b, "polynomial variables") return SpaceIndex(root) end function space_dimension(spaces::Spaces, si::SpaceIndex) idx = find_root!(spaces.indices, si.value) if !haskey(spaces.dimensions, idx) error("Missing dimension information, use Ellipsoid(dimension=...) or PolySet(dimension=...)") end return spaces.dimensions[idx] end function space_polyvars(spaces::Spaces, si::SpaceIndex) idx = find_root!(spaces.indices, si.value) if !haskey(spaces.polyvars, idx) dim = space_dimension(spaces, si) DynamicPolynomials.@polyvar x[1:dim] spaces.polyvars[idx] = x end return spaces.polyvars[idx] end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3385
export boundary_point, tangent_cone struct BoundaryPoint{S} <: SymbolicVariable set::S symbol::Symbol end struct TangentCone{S} <: SymbolicVariable set::S symbol::Symbol end boundary_point(S, s::Symbol) = BoundaryPoint(S, s) tangent_cone(S, s::Symbol) = TangentCone(S, s) function tangent_cone(S, b::BoundaryPoint) @assert S === b.set tangent_cone(S, b.symbol) end variablify(t::BoundaryPoint) = BoundaryPoint(variablify(t.set), t.symbol) need_variablify(t::TangentCone) = need_variablify(t.set) variablify(t::TangentCone) = TangentCone(variablify(t.set), t.symbol) create_spaces(b::BoundaryPoint, spaces::Spaces) = create_spaces(b.set, spaces) create_spaces(t::TangentCone, spaces::Spaces) = create_spaces(t.set, spaces) function create_spaces(c::MembershipConstraint, spaces::Spaces) sub = create_spaces(c.member, spaces) sup = create_spaces(c.set, spaces) return merge_spaces(spaces, sub, sup) end clear_spaces(b::BoundaryPoint) = clear_spaces(b.set) clear_spaces(t::TangentCone) = clear_spaces(t.set) function clear_spaces(c::MembershipConstraint) clear_spaces(c.member) clear_spaces(c.set) end Sets.perspective_variable(b::BoundaryPoint) = Sets.perspective_variable(b.set) Sets.perspective_variable(t::TangentCone) = Sets.perspective_variable(t.set) function Sets.perspective_variable(c::MembershipConstraint) return synchronize_perspective( Sets.perspective_variable(c.member), Sets.perspective_variable(c.set) ) end function set_space( space::Space, ::MembershipConstraint{ <:Sets.LinearImage{<:BoundaryPoint}, <:Sets.LinearImage{<:TangentCone}} ) return set_space(space, DualSpace) end using LinearAlgebra function linear_algebraic_surface(set::Sets.PolarOf{<:Sets.Ellipsoid}, A, E) Q = set.set.Q return psd_constraint(Symmetric(-A * Q * E' - E * Q * A')) end function linear_algebraic_surface(set::Sets.PolarOf{<:Sets.ConvexPolySet}, A, E) v = MP.variables(set.set.p) DynamicPolynomials.@polyvar z[1:size(E, 1)] Ez = E' * z return JuMP.build_constraint( error, -dot(A' * z, [d(v => Ez) for d in MP.differentiate(set.set.p, v)]), SOSCone(), ) end function JuMP.build_constraint( _error::Function, member::Sets.LinearImage{BoundaryPoint{S}}, set::Sets.LinearImage{TangentCone{S}} ) where S <: Sets.PolarOf{<:Union{Sets.Ellipsoid, Sets.ConvexPolySet}} _set = member.set.set @assert set.set.set === _set return linear_algebraic_surface(_set, member.A, set.A) end function add_linear_algebraic_surface_domain( model, set::Sets.Ellipsoid, domain, A, E) Q = set.Q P = Symmetric(-A * Q * E' - E * Q * A') return _add_constraint_or_not(model, psd_in_domain(model, P, E' \ domain)) end function add_linear_algebraic_surface(model, set::Sets.PolarOf{<:Sets.Piecewise}, A, E) for (i, si) in enumerate(set.set.sets) add_linear_algebraic_surface_domain( model, si, set.set.pieces[i], A, E ) end end function JuMP.add_constraint( model::JuMP.Model, constraint::MembershipConstraint{ <:Sets.LinearImage{<:BoundaryPoint}, <:Sets.LinearImage{<:TangentCone} } ) _set = constraint.member.set.set @assert constraint.set.set.set === _set return add_linear_algebraic_surface(model, _set, constraint.member.A, constraint.set.A) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
4710
# Efficient implementation a' * Q * b that avoid unnecessary type promotion as # well as unnecessary allocation function quad_form(a::AbstractVector{<:Real}, Q::SymMatrix{<:Real}, b::AbstractVector{<:Real}) n = length(a) @assert n == LinearAlgebra.checksquare(Q) @assert n == length(b) out = zero(typeof(zero(eltype(a)) * zero(eltype(Q)) * zero(eltype(b)))) k = 0 for j in 1:n α = a[j] β = b[j] for i in 1:(j-1) k += 1 out += a[i] * Q.Q[k] * β out += α * Q.Q[k] * b[i] end k += 1 out += a[j] * Q.Q[k] * b[j] end return out end function quad_form(a::AbstractVector, Q::AbstractMatrix, b::AbstractVector) (n, m) = size(Q) n == length(a) || throw(DimensionMismatch()) m == length(b) || throw(DimensionMismatch()) U = MA.promote_operation(*, eltype(a), eltype(Q), eltype(b)) out = zero(MA.promote_operation(+, U, U)) for j in 1:m for i in 1:n out = MA.add_mul!!(out, a[i], Q[i, j], b[j]) end end return out end # Same as quad_form(a, Q, a) function quad_form(Q::Symmetric, a::AbstractVector) return quad_form(a, Q, a) end function quad_form(Q::Symmetric{JuMP.VariableRef}, a::AbstractVector{<:Real}) return quad_form(a, Q, a) end # We have x' Q x and we want y' Q y where y is obtained by substituting # vars for A * new_vars in x. We want to compute the matrix M such that # y = M z where z is the vector of monomials of degree d of new_vars # Then we will have y' Q y = z' M' Q M z struct GramTransformation{T, MT <: MP.AbstractMonomial, MVT <: AbstractVector{MT}} M::Matrix{T} monos::MVT end function apply_transformation(p::SumOfSquares.GramMatrix, t::GramTransformation) new_n = length(t.monos) new_Q = [quad_form(t.M[:, i], p.Q, t.M[:, j]) for j in 1:new_n for i in 1:j] return GramMatrix(SymMatrix(new_Q, new_n), t.monos) end function transformation(old_monos, A::AbstractMatrix, new_vars, d) new_monos = MP.monomials(new_vars, d) new_n = length(new_monos) M = zeros(eltype(A), length(old_monos), new_n) mapped_vars = A * new_vars # Cache the result of mapped_vars[i]^n powers = [Union{Nothing, eltype(mapped_vars)}[mapped_vars[i]] for i in eachindex(mapped_vars)] # Compute mapped_vars[i]^n by "Power by Squaring" and cache it in `powers` function _power(i, n) @assert n > 0 while n > length(powers[i]) push!(powers[i], nothing) end if powers[i][n] === nothing if isodd(n) powers[i][n] = mapped_vars[i] * _power(i, n - 1) else p_2 = _power(i, div(n, 2)) powers[i][n] = p_2 * p_2 end end return powers[i][n]::eltype(mapped_vars) end function _map(mono::MP.AbstractMonomial) exps = MP.exponents(mono) length(exps) == length(mapped_vars) || throw(ArgumentError("A monomial have less variables than `new_vars`")) cur = one(eltype(mapped_vars)) for i in eachindex(exps) if exps[i] > 0 cur *= _power(i, exps[i]) end end return cur end for i in eachindex(old_monos) y = _map(old_monos[i]) j = 1 for term in MP.terms(y) mono = MP.monomial(term) while j <= length(new_monos) && mono > new_monos[j] j += 1 end M[i, j] = MP.coefficient(term) end end return GramTransformation(M, new_monos) end # computes p ∘ A or more precisely p(variables(p) => A * new_vars) function apply_matrix(p::SumOfSquares.GramMatrix{T, <:MonomialBasis}, A::AbstractMatrix, new_vars, d) where T return apply_transformation(p, transformation(p.basis.monomials, A, new_vars, d)) end # computes A # μ or more precisely p(variables(p) => A * new_vars) function psd_constraint(Q::Symmetric) n = LinearAlgebra.checksquare(Q) q = [Q[i, j] for j in 1:n for i in 1:j] # For n == 0, it will create no constraint, for n == 1, it will simply # be a Nonnegatives constraint and for n == 2 it will be a rotated SOC. set = SumOfSquares.matrix_cone(MOI.PositiveSemidefiniteConeTriangle, n) return PolyJuMP.bridgeable(JuMP.build_constraint(error, q, set), JuMP.moi_function_type(typeof(q)), typeof(set)) end function psd_constraint(model, Q::Symmetric) return JuMP.add_constraint(model, psd_constraint(Q)) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
17977
abstract type AbstractVariable <: JuMP.AbstractVariable end abstract type HintPoint end # It will not really be the center and the center for z = 0 is the the same as for <h, x> = 0 struct CenterPoint{T} <: HintPoint h::Vector{T} end struct InteriorPoint{T} <: HintPoint h::Vector{T} end _β(model, ::InteriorPoint) = @variable(model) _b(model, h::InteriorPoint) = @variable(model, [1:length(h.h)]) function polar_perspective_ellipsoid(ell, point::HintPoint, z::SpaceVariable, x::Vector{SpaceVariable}) y = [z; x] H = Sets._householder(point.h) p = y' * H * Sets._perspective_cat(ell) * H * y return Sets.perspective_dual(Sets.Householder(ell, p, point.h, z, x)) end function polar_perspective_ellipsoid(model, Q::Symmetric{JuMP.VariableRef}, point::CenterPoint, z, x) psd_constraint(model, Q) ell = Sets.Ellipsoid(Q) return polar_perspective_ellipsoid(ell, point, z, x) end function polar_perspective_ellipsoid(model, Q::Symmetric{JuMP.VariableRef}, point::InteriorPoint, z, x) n = LinearAlgebra.checksquare(Q) @assert n == length(point.h) β = @variable(model, base_name="β") b = @variable(model, [1:length(point.h)], base_name="b") psd_constraint(model, Symmetric([β+1 b'; b Q])) ell = Sets.ShiftedEllipsoid(Q, b, β) return polar_perspective_ellipsoid(ell, point, z, x) end function perspective_dual_polyset(set, point::HintPoint, z::SpaceVariable, x::Vector{SpaceVariable}) y = [z; x] H = Sets._householder(point.h) p = Sets.perspective_gauge0(set)(y => H * y) return Sets.perspective_dual(Sets.Householder(set, p, point.h, z, x)) end # For `CenterPoint`, `q` should be non-perspective, need refactoring function perspective_dual_polyset(degree, q, point::InteriorPoint, z, x) set = Sets.ConvexPolynomialSet(degree, q, z, x) perspective_dual_polyset(set, point, z, x) end ### Polytope ### struct Polytope <: AbstractVariable symmetric::Bool dimension::Union{Nothing, Int} piecewise::Union{Polyhedra.Rep, Nothing} end function Polytope(; symmetric::Bool=false, dimension::Union{Int, Nothing}=nothing, piecewise::Union{Polyhedra.Rep, Nothing}=nothing, ) function update_dim(object, dim_fun) if object !== nothing d = dim_fun(object) if dimension === nothing dimension = d elseif dimension != d throw(DimensionMismatch()) end end end update_dim(piecewise, Polyhedra.fulldim) return Polytope(symmetric, dimension, piecewise) end Sets.space_variables(::Polytope) = nothing function variable_set(model::JuMP.AbstractModel, ell::Polytope, space::Space, space_dimension, space_polyvars) n = space_dimension if ell.symmetric if ell.piecewise === nothing set = Sets.PolarPoint(@variable(model, [1:n], base_name = "a")) else hashyperplanes(ell.piecewise) && error("hyperplanes not supported for piecewise") a = @variable(model, [1:nhalfspaces(ell.piecewise), 1:n], base_name="a") sets = [Sets.PolarPoint(a[i, :]) for i in 1:nhalfspaces(ell.piecewise)] set = Sets.Piecewise(sets, ell.piecewise) for i in eachindex(set.graph) for (j, v) in set.graph[i] if i < j # The constraints are the same for (i, j) and (j, i) λ = @variable(model, base_name="λc[$i,$j]") # Ensures continuity @constraint(model, sets[i].a - sets[j].a .== λ * v) # Ensures convexity # We need to ensure that `dot(sets[i].a, x)` is maximal # over when `piece[i]`; see Proposition 5 of [R21]. # # [R21] Raković, S. V. # *Control Minkowski–Lyapunov functions* # Automatica, Elsevier BV, 2021, 128, 109598 # # In fact, we only need this to hold locally to prove # convexity of each point so we can just check for every # neighbor. # Because <ai, x> = <aj, x> by the previous constraint, # we can check the gradient. @constraint(model, dot(sets[i].a, v) <= dot(sets[j].a, v), base_name="conv[$i,$j]") end end end end if space == PrimalSpace return set else @assert space == DualSpace return Polyhedra.polar(set) end else error("Non-symmetric polytope not supported yet") end end function JuMP.value(h::Sets.PolarPoint) return Sets.PolarPoint(JuMP.value.(h.a)) end ### Ellipsoid ### struct Ellipsoid <: AbstractVariable point::Union{Nothing, HintPoint} symmetric::Bool dimension::Union{Nothing, Int} guaranteed_psd::Bool # Is it already guaranteed that it is PSD ? e.g. by nth_root superset::Union{Sets.Ellipsoid, Nothing} piecewise::Union{Polyhedra.Rep, Nothing} end function Ellipsoid(; point::Union{Nothing, HintPoint}=nothing, symmetric::Bool=false, dimension::Union{Int, Nothing}=nothing, superset::Union{Sets.Ellipsoid, Nothing}=nothing, piecewise::Union{Polyhedra.Rep, Nothing}=nothing) function update_dim(object, dim_fun) if object !== nothing d = dim_fun(object) if dimension === nothing dimension = d elseif dimension != d throw(DimensionMismatch()) end end end update_dim(point, point -> length(point.h)) update_dim(superset, Sets.dimension) update_dim(piecewise, Polyhedra.fulldim) return Ellipsoid(point, symmetric, dimension, false, superset, piecewise) end Sets.space_variables(::Ellipsoid) = nothing function variable_set(model::JuMP.AbstractModel, ell::Ellipsoid, space::Space, space_dimension, space_polyvars) n = space_dimension function new_Q() # TODO, we should use constraiend variable instead in case direct mode is used. Q = @variable(model, [1:n, 1:n], Symmetric, base_name="Q") if !ell.guaranteed_psd psd_constraint(model, Q) end return Q end if ell.symmetric function new_piece() if space == PrimalSpace if ell.superset !== nothing Q = Symmetric(new_Q() + ell.superset.Q) else Q = new_Q() end return Sets.Ellipsoid(Q) else ell.superset === nothing || error("superset not supported in dual space") @assert space == DualSpace return Sets.Ellipsoid(new_Q()) end end if ell.piecewise === nothing set = new_piece() else hashyperplanes(ell.piecewise) && error("hyperplanes not supported for piecewise") sets = [new_piece() for i in 1:nhalfspaces(ell.piecewise)] set = Sets.Piecewise(sets, ell.piecewise) DynamicPolynomials.@polyvar x[1:n] q = [quad_form(set.Q, x) for set in sets] for i in eachindex(set.graph) for (j, v) in set.graph[i] if i < j # The constraints are the same for (i, j) and (j, i) @constraint(model, q[i] == q[j], domain = @set x'v == 0) # v corresponds to `-n_ij` in LCSS paper Δ = sets[i].Q * v - sets[j].Q * v inter = set.pieces[i] ∩ set.pieces[j] h = HalfSpace(Δ, zero(eltype(Δ))) @constraint(model, inter ⊆ h) end end end end if space == PrimalSpace return set else return Polyhedra.polar(set) end else ell.superset === nothing || error("superset not supported for non-symmetric Ellipsoid") ell.piecewise === nothing || error("piecewise not supported for non-symmetric Ellipsoid") if space == PrimalSpace error("Non-symmetric ellipsoid non implemented yet, use `Ellipsoid(symmetric=true)`.") else @assert space == DualSpace if ell.point === nothing throw(ArgumentError("Specify a point for nonsymmetric ellipsoid, e.g. `Ellipsoid(point=InteriorPoint([1.0, 0.0]))")) end return polar_perspective_ellipsoid(model, new_Q(), ell.point, data(model).perspective_polyvar, space_polyvars) end end end function JuMP.value(ell::Sets.Ellipsoid) return Sets.Ellipsoid(Symmetric(JuMP.value.(ell.Q))) end ### PolySet ### struct PolySet <: AbstractVariable point::Union{Nothing, HintPoint} symmetric::Bool degree::Int dimension::Union{Nothing, Int} convex::Bool variables::Union{Nothing, Vector{SpaceVariable}} superset::Union{Sets.PolySet, Nothing} basis::Type end function PolySet(; point::Union{Nothing, HintPoint}=nothing, symmetric::Bool=false, degree::Union{Int, Nothing}=nothing, dimension::Union{Int, Nothing}=nothing, convex::Bool=false, variables::Union{Vector{SpaceVariable}, Nothing}=nothing, superset::Union{Sets.PolySet, Nothing}=nothing, basis::Type=MultivariateBases.MonomialBasis) if degree === nothing error("Degree of PolySet not specified, use PolySet(degree=..., ...)") end if isodd(degree) throw(ArgumentError("Degree of PolySet not even")) end if dimension === nothing if point !== nothing dimension = length(point.h) end end if superset !== nothing if dimension === nothing dimension = Sets.dimension(superset) elseif dimension != Sets.dimension(superset) throw(DimensionMismatch()) end if variables === nothing variables = Sets.space_variables(superset) elseif variables != Sets.space_variables(superset) error("Space variables set does not correspond to superset space variables.") end end return PolySet(point, symmetric, degree, dimension, convex, variables, superset, basis) end Sets.space_variables(p::PolySet) = p.variables function constrain_convex(model, p, vars) hessian = MP.differentiate(p, vars, 2) # We do not just do `@constraint(model, p in SOSConvex())` as we would # like to have access to the PSD matrix of variables for the det volume heuristic y = [MP.similar_variable(eltype(hessian), gensym()) for i in 1:LinearAlgebra.checksquare(hessian)] q = dot(y, hessian * y) multipartite = SumOfSquares.Certificate.NewtonDegreeBounds(tuple(y,)) X = SumOfSquares.Certificate.monomials_half_newton_polytope(MP.monomials(q), multipartite) # If `X` is empty, we will need the following bridge JuMP.add_bridge(model, SumOfSquares.Bridges.Constraint.EmptyBridge) # If `length(X)` is 2, we will need the following bridge JuMP.add_bridge(model, SumOfSquares.Bridges.Constraint.PositiveSemidefinite2x2Bridge) set = SumOfSquares.matrix_cone(MOI.PositiveSemidefiniteConeTriangle, length(X)) Q = @variable(model, [1:MOI.dimension(set)]) @constraint(model, Q in set) s = SumOfSquares.build_gram_matrix( Q, MonomialBasis(X), MOI.PositiveSemidefiniteConeTriangle, Float64) @constraint(model, q == s) return MultivariateMoments.value_matrix(s) end function variable_set(model::JuMP.AbstractModel, set::PolySet, space::Space, space_dimension, space_polyvars) n = space_dimension d = data(model) # General all monomials of degree `degree`, we don't want monomials of # lower degree as the polynomial is homogeneous @assert iseven(set.degree) if set.symmetric monos = MP.monomials(space_polyvars, div(set.degree, 2)) else monos = MP.monomials(lift_space_variables(d, space_polyvars), div(set.degree, 2)) end basis = MultivariateBases.basis_covering_monomials(set.basis, monos) # TODO If `set.convex` and `set.symmetric`, no need for the poly to be SOS, see Lemma 6.33 of [BPT12] p = @variable(model, variable_type=SOSPoly(basis)) if set.convex set.superset === nothing || error("superset not supported for convex PolySet") if set.symmetric convexity_proof = constrain_convex(model, p, space_polyvars) if space == PrimalSpace return Sets.ConvexPolySet(set.degree, p, convexity_proof) else @assert space == DualSpace return Polyhedra.polar(Sets.ConvexPolySet(set.degree, p, convexity_proof)) end else constrain_convex(model, MP.subs(p, d.perspective_polyvar => 1), space_polyvars) if space == PrimalSpace error("Non-symmetric PolySet in PrimalSpace not implemented yet") else @assert space == DualSpace if set.point === nothing throw(ArgumentError("Specify a point for nonsymmetric polyset, e.g. `PolySet(point=InteriorPoint([1.0, 0.0]))")) end return perspective_dual_polyset(set.degree, p, set.point, d.perspective_polyvar, space_polyvars) end end else if set.symmetric if space == PrimalSpace if set.superset !== nothing p = SetProg.SumOfSquares.gram_operate(+, set.superset.p, p) end return Sets.PolySet(set.degree, p) else error("Non-convex PolySet not supported in $space") end else error("Non-convex nonsymmetric PolySet not implemented yet.") end end end _value(convexity_proof::Nothing) = nothing function _value(convexity_proof::MultivariateMoments.SymMatrix) return MultivariateMoments.SymMatrix(JuMP.value.(convexity_proof.Q), convexity_proof.n) end function JuMP.value(set::Sets.PolySet) return Sets.PolySet(set.degree, JuMP.value(set.p)) end function JuMP.value(set::Sets.ConvexPolySet) return Sets.ConvexPolySet(set.degree, JuMP.value(set.p), _value(set.convexity_proof)) end function JuMP.value(set::Sets.Polar) return Polyhedra.polar(JuMP.value(Polyhedra.polar(set))) end function JuMP.value(set::Sets.PerspectiveDual) return Sets.perspective_dual(JuMP.value(Sets.perspective_dual(set))) end function JuMP.value(set::Sets.Householder) return Sets.Householder(JuMP.value(set.set), JuMP.value(set.p), set.h, set.z, set.x) end function JuMP.value(set::Sets.ShiftedEllipsoid) return Sets.ShiftedEllipsoid(Symmetric(JuMP.value.(set.Q)), JuMP.value.(set.b), JuMP.value(set.β)) end function JuMP.value(set::Sets.ConvexPolynomialSet) return Sets.ConvexPolynomialSet(set.degree, JuMP.value(set.q), set.z, set.x) end function JuMP.value(set::Sets.Piecewise) return Sets.Piecewise(JuMP.value.(set.sets), set.polytope, set.pieces, set.graph) end ### SetVariableRef ### mutable struct SetVariableRef{M <: JuMP.AbstractModel, S <: AbstractVariable} <: JuMP.AbstractVariableRef model::M set::S name::String # `variable` is typically `Sets.AbstractSet{JuMP.VariableRef}` but it can # also be `Sets.AbstractSet{JuMP.AffExpr}` with `PolySet(superset = ...)`. variable::Union{Nothing, Sets.AbstractSet} space_index::Union{Nothing, SpaceIndex} end JuMP.name(vref::SetVariableRef) = vref.name function JuMP.build_variable(_error::Function, info::JuMP.VariableInfo, set::AbstractVariable) @assert !info.has_lb && !info.has_ub && !info.has_fix && !info.binary && !info.integer && !info.has_start return set end function JuMP.add_variable(model::JuMP.AbstractModel, set::AbstractVariable, name::String) vref = SetVariableRef(model, set, name, nothing, nothing) d = data(model) @assert d.state == Modeling push!(d.variables, vref) return vref end JuMP.value(vref::SetVariableRef) = JuMP.value(vref.variable) function clear_spaces(vref::SetVariableRef) vref.space_index = nothing end Sets.space_variables(::SetVariableRef) = nothing Sets.perspective_variable(::SetVariableRef) = nothing function create_spaces(vref::SetVariableRef, spaces::Spaces) if vref.space_index === nothing if Sets.space_variables(vref.set) === nothing if vref.set.dimension === nothing vref.space_index = new_space(spaces) else vref.space_index = new_space(spaces, vref.set.dimension) end else vref.space_index = new_space(spaces, Sets.space_variables(vref.set)) end end return vref.space_index end space_index(vref::SetVariableRef) = vref.space_index function load(model::JuMP.AbstractModel, vref::SetVariableRef) d = data(model) vref.variable = variable_set(model, vref.set, d.space, space_dimension(d.spaces, vref.space_index), space_polyvars(d.spaces, vref.space_index)) end variablify(p::Sets.Projection) = Polyhedra.project(variablify(p.set), p.indices)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
7290
module Sets using LinearAlgebra using RecipesBase import MultivariatePolynomials as MP import DynamicPolynomials import MultivariateBases as MB const VariableOrder = DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder} const MonomialOrder = MP.Graded{MP.LexOrder} const SpaceVariable = DynamicPolynomials.Variable{VariableOrder,MonomialOrder} const MonoBasis = MB.MonomialBasis{ DynamicPolynomials.Monomial{VariableOrder,MonomialOrder}, DynamicPolynomials.MonomialVector{VariableOrder,MonomialOrder}, } using Polyhedra abstract type AbstractSet{T} end """ struct Polar{T, S<:AbstractSet{T}} <: AbstractSet{T} set::S end The polar of the set `set`. """ struct Polar{T, S<:AbstractSet{T}} <: AbstractSet{T} set::S end const PolarOf{S} = Polar{<:Any, S} const PolarOrNot{S} = Union{S, PolarOf{S}} """ polar(set::AbstractSet) Return the polar of `set`. """ Polyhedra.polar(set::AbstractSet) = Polar(set) Polyhedra.polar(set::Polar) = set.set function print_support_function(set::Polar; kws...) print("h(S, x) =") _print_gauge_function(polar(set); kws...) end """ polar_representation(set::AbstractSet) Return a representation of the same set but in the polar space of the current representation of `set`. """ function polar_representation end """ gauge1(set::AbstractSet) Function `f(x)` such that `set` is the 1-sublevel set of `f`, i.e. `{ x | f(x) ≤ 1 }`. """ function gauge1 end """ struct PerspectiveDual{T, S <: AbstractSet{T}} <: AbstractSet{T} set::S end Set determined by the dual of the perspective cone of `set`. """ struct PerspectiveDual{T, S <: AbstractSet{T}} <: AbstractSet{T} set::S end const PerspectiveDualOf{S} = PerspectiveDual{<:Any, S} const PerspectiveDualOrPolarOrNot{S} = Union{PerspectiveDualOf{S}, PolarOrNot{S}} """ perspective_dual(set::AbstractSet) Return the set determined by the dual of the perspective cone of `set`. """ perspective_dual(set::AbstractSet) = PerspectiveDual(set) perspective_dual(set::PerspectiveDual) = set.set function scaling_function(set::PerspectiveDual) @assert length(space_variables(set)) == 2 vars = [perspective_variable(set); space_variables(set)] # z is a halfspace of the primal so a ray of the dual z = [1.0, 0.0, 0.0] in_set(Δ::Vector) = perspective_gauge0(set.set)(vars => z + Δ) < 0 @assert in_set(zeros(3)) return (Δz, Δx, Δy) -> begin Δ = [Δz, Δx, Δy] _in_set(λ::Real) = in_set(Δ * λ) λ = 1.0 while _in_set(λ) if λ > 1e10 error("Error in plotting : the `InteriorPoint` seems to be on the boundary") end λ *= 2 end λmin = 0.0 λmax = λ # Binary search. Invariant: in_set(λmin) and !in_set(λmax) while abs(λmin - λmax) > 1e-8 λ = (λmin + λmax) / 2 if _in_set(λ) λmin = λ else λmax = λ end end λ = (λmin + λmax) / 2 return 1 / λ end end # TODO rename space_dimension to avoid confusion with Polyhedra.dimension """ dimension(set::AbstractSet) Return the dimension of the space where the set `set` is defined. """ dimension(set::AbstractSet) = length(space_variables(set)) function dimension(set::Union{Polar, PerspectiveDual}) return dimension(set.set) end """ space_variables(set::AbstractSet) Return the variables of the space where the set `set` is defined or `nothing` if none are used. """ function space_variables end function space_variables(set::Union{Polar, PerspectiveDual}) return space_variables(set.set) end function perspective_variable(set::Union{Polar, PerspectiveDual}) return perspective_variable(set.set) end function perspective_gauge0 end function perspective_gauge1 end convexity_proof(set::Union{Polar, PerspectiveDual}) = convexity_proof(set.set) struct UnknownSet{T} <: AbstractSet{T} end include("transformations.jl") struct Piecewise{T, S<:AbstractSet{T}, U, Po <: Polyhedra.Polyhedron{U}, Pi} <: AbstractSet{T} sets::Vector{S} polytope::Po pieces::Vector{Pi} # TODO add adjacency graph in Polyhedra graph::Vector{Vector{Tuple{Int, Vector{U}}}} end function Piecewise(sets::Vector{<:AbstractSet}, polytope::Polyhedra.Polyhedron{U}) where U @assert length(sets) == nhalfspaces(polytope) points = [Set(incidentpointindices(polytope, hidx)) for hidx in eachindex(halfspaces(polytope))] graph = [Tuple{Int, Vector{U}}[] for i in eachindex(halfspaces(polytope))] if !(Polyhedra.origin(Polyhedra.pointtype(polytope), Polyhedra.fulldim(polytope)) in polytope) error("The origin is not in the polytope") end for (i, hi) in enumerate(halfspaces(polytope)) hi.β > 0 || error("The origin is not in the polytope") vi = hi.a / hi.β for (j, hj) in enumerate(halfspaces(polytope)) hi.β > 0 || error("The origin is not in the polytope") vj = hj.a / hj.β i == j && break if length(points[i] ∩ points[j]) ≥ fulldim(polytope) - 1 push!(graph[i], (j, vj - vi)) push!(graph[j], (i, vi - vj)) end end end function piece(i, h) # Need to be a polyhedron as `detecthlinearity` needs a solver in `add_constraint_inclusion_domain` return Polyhedra.polyhedron(hrep([HalfSpace(edge[2], zero(U)) for edge in graph[i]]), Polyhedra.DefaultLibrary{U}(Polyhedra.default_solver(polytope))) end pieces = [piece(i, h) for (i, h) in enumerate(halfspaces(polytope))] return Piecewise(sets, polytope, pieces, graph) end dimension(set::Piecewise) = Polyhedra.fulldim(set.polytope) space_variables(set::Piecewise) = space_variables(set.sets[1]) function scaling_function(set::Piecewise) g = scaling_function.(set.sets) return (x, y) -> begin v = [x, y] i = findfirst(piece -> v in piece, set.pieces) return g[i](x, y) end end function zero_eliminate(set::Piecewise, I) _elim(p) = Polyhedra.fixandeliminate(p, I, zeros(Polyhedra.coefficient_type(p), length(I))) J = setdiff(1:dimension(set), I) return Piecewise( [zero_eliminate(s, I) for s in set.sets], _elim(set.polytope), _elim.(set.pieces), map(set.graph) do adj map(adj) do iv iv[1], iv[2][J] end end ) end function _print_gauge_function(set::Piecewise; digits=6) DynamicPolynomials.@polyvar x[1:2] println() for (set, piece) in zip(set.sets, set.pieces) print(" ") _print_gauge_function(set, digits=digits) print(" if ") for (i, h) in enumerate(halfspaces(piece)) if i > 1 print(", ") end a = -h.a if count(!iszero, a) == 1 a /= abs(sum(a)) # Simplify printing end if digits !== nothing a = round.(a, digits=digits) end print(a'x) print(" ≥ 0") end println() end end include("polytope.jl") include("ellipsoids.jl") include("polynomials.jl") include("recipe.jl") end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
4310
abstract type AbstractEllipsoid{T} <: AbstractSet{T} end dimension(ell::AbstractEllipsoid) = LinearAlgebra.checksquare(ell.Q) struct HyperSphere <: AbstractEllipsoid{Bool} dim::Int end dimension(sphere::HyperSphere) = sphere.dim Polyhedra.polar(sphere::HyperSphere) = sphere """ struct Ellipsoid{T} <: AbstractEllipsoid{T} Q::Symmetric{T, Matrix{T}} end """ struct Ellipsoid{T} <: AbstractEllipsoid{T} Q::Symmetric{T, Matrix{T}} end ellipsoid(ell::Ellipsoid) = ell function Polyhedra.project(ell::Ellipsoid, I) return project(polar_representation(ell), I) end convexity_proof(ell::Ellipsoid) = ell.Q function scaling_function(ell::Ellipsoid) @assert dimension(ell) == 2 Q = ell.Q return (x, y) -> begin val = x^2 * Q[1, 1] + 2x*y * Q[1, 2] + y^2 * Q[2, 2] if -1e-8 < val < 0 # `sqrt` would error return zero(float(val)) end return sqrt(val) end end function ellipsoid(ell::PolarOf{<:Ellipsoid}) ellipsoid(polar_representation(ell)) end function polar_representation(ell::PolarOf{<:Ellipsoid}) Ellipsoid(inv(ell.set.Q)) end function polar_representation(ell::Ellipsoid) polar(Ellipsoid(inv(ell.Q))) end function zero_eliminate(ell::Ellipsoid, I) J = setdiff(1:dimension(ell), I) return Ellipsoid(Symmetric(ell.Q[J, J])) end function _print_gauge_function(ell::Ellipsoid; digits=6) DynamicPolynomials.@polyvar x[1:2] print(" ") Q = ell.Q if digits !== nothing Q = round.(Q, digits=digits) end println(x' * Q * x) end struct LiftedEllipsoid{T} P::Matrix{T} end dimension(ell::LiftedEllipsoid) = LinearAlgebra.checksquare(ell.P) - 1 function perspective_variables(ell::Union{Ellipsoid, LiftedEllipsoid}) return nothing end function space_variables(ell::Union{Ellipsoid, LiftedEllipsoid}) return nothing end function LiftedEllipsoid(t::Translation{<:Ellipsoid}) ell = t.set md = ell.Q * t.c δ = t.c' * md-1 d = -md D = ell.Q return LiftedEllipsoid(_perspective_cat(D, d, δ)) end function Bbβλ(P) B, b, β = _perspective_split(P) λ = dot(b, B \ b) - β @assert λ >= 0 B, b, β, λ end function ellipsoid(ell::LiftedEllipsoid) # P is # λ * [c'Qc-1 -c'Q # -Qc Q] # Let P be [β b'; b B] # We have # β = λ c'Qc - λ # b = -λ Qc <=> Q^{-1/2}b = -λ Q^{1/2} c # hence # λ c'Qc = β + λ # λ^2 c'Qc = b'Q^{-1}b = λ b'B^{-1}b <=> λ c'Qc = b'B^{-1}b # Hence λ = b'B^{-1}b - β B, b, β, λ = Bbβλ(ell.P) c = -(B \ b) Q = B / λ Translation(Ellipsoid(Symmetric(Q)), c) end function _perspective_split(P::AbstractMatrix) n = LinearAlgebra.checksquare(P) - 1 ix = 1 .+ (1:n) return P[ix, ix], P[1, ix], P[1, 1] end function _perspective_cat(D::AbstractMatrix, d::AbstractVector, δ) return [δ d' d D] end _perspective_cat(ell::Ellipsoid) = _perspective_cat(ell.Q, zeros(size(q.Q, 1)), -1.0) """ struct ShiftedEllipsoid{T} Q::Symmetric{T, Matrix{T}} b::Vector{S} β::S end Set ``\\{\\, x \\mid x^\\top Q x + 2 b^\\top x + \\beta \\le 0 \\,\\}``. """ struct ShiftedEllipsoid{T} <: AbstractEllipsoid{T} Q::Symmetric{T, Matrix{T}} b::Vector{T} β::T end _perspective_cat(q::ShiftedEllipsoid) = _perspective_cat(q.Q, q.b, q.β) convexity_proof(ell::ShiftedEllipsoid) = ell.Q function LiftedEllipsoid(qc::HouseDualOf{<:AbstractEllipsoid}) return LiftedEllipsoid(inv(_perspective_cat(perspective_dual(qc)))) end function ellipsoid(qc::HouseDualOf{<:AbstractEllipsoid}) return ellipsoid(LiftedEllipsoid(qc)) end function Polyhedra.project(ell::HouseDualOf{<:AbstractEllipsoid}, I::AbstractVector) return project(ellipsoid(ell), I) end function PerspectiveInteriorEllipsoid(ell::LiftedEllipsoid) Pd = inv(ell.P) H = _householder(h[state]) HPdH = H * Pd * H # HPdH is not like a solution what would be obtained by solving the program # since the λ computed for unlifting it is maybe not one. # Therefore, the S-procedure's λ for the constraints will be different. B, b, β, λ = Bbβλ(HPdH) ps[state] = y' * H * _perspective_cat(B/λ, b/λ, β/λ) * H * y error("TODO: LiftedEllipsoid -> PerspectiveInteriorEllipsoid") end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3706
using Polyhedra using SumOfSquares """ struct PolySet{T, B, U} <: AbstractSet{U} degree::Int p::GramMatrix{T, B, U} end Set ``\\{\\, x \\mid p(x) \\le 1 \\,\\}`` where `p` is a homogeneous polynomial of degree `degree`. """ struct PolySet{T, B, U} <: AbstractSet{U} degree::Int p::GramMatrix{T, B, U} end function space_variables(set::PolySet) return MP.variables(set.p) end """ struct ConvexPolySet{T, B, U} <: AbstractSet{U} degree::Int p::GramMatrix{T, B, U} convexity_proof::Union{Nothing, SumOfSquares.SymMatrix{T}} # may be nothing after applying LinearMap end Set ``\\{\\, x \\mid p(x) \\le 1 \\,\\}`` where `p` is a homogeneous polynomial of degree `degree`. """ struct ConvexPolySet{T, B, U} <: AbstractSet{U} degree::Int p::GramMatrix{T, B, U} convexity_proof::Union{Nothing, SumOfSquares.SymMatrix{T}} # may be nothing after applying LinearMap end function ConvexPolySet( degree::Int, p::GramMatrix{T, B, U}, convexity_proof::SumOfSquares.SymMatrix{T}) where {T, B, U} return ConvexPolySet{T, B, U}(degree, p, convexity_proof) end function ConvexPolySet( degree::Int, p::GramMatrix{S}, convexity_proof::SumOfSquares.SymMatrix{T}) where {S, T} U = promote_type(S, T) _convert(mat) = SumOfSquares.SymMatrix(convert(Vector{U}, mat.Q), mat.n) return ConvexPolySet( degree, GramMatrix(_convert(p.Q), p.basis), _convert(convexity_proof)) end function space_variables(set::ConvexPolySet) return MP.variables(set.p) end function dimension(set::ConvexPolySet) return MP.nvariables(set.p) end function gauge1(set::ConvexPolySet) return set.p end function zero_eliminate(set::ConvexPolySet, I) vars = space_variables(set)[I] K = findall(mono -> all(var -> iszero(MP.degree(mono, var)), vars), set.p.basis.monomials) Q = SumOfSquares.square_getindex(set.p.Q, K) monos = set.p.basis.monomials[K] J = setdiff(1:dimension(set), I) monos = DynamicPolynomials.MonomialVector( monos.vars[J], Vector{Int}[z[J] for z in monos.Z] ) p = SumOfSquares.GramMatrix(Q, MB.MonomialBasis(monos)) return ConvexPolySet(set.degree, p, nothing) end convexity_proof(set::ConvexPolySet) = set.convexity_proof function scaling_function(set::Union{PolySet, ConvexPolySet}) @assert dimension(set) == 2 # We convert the GramMatrix to a polynomial to avoid having to do the # conversion for every substitution. p = MP.polynomial(set.p) vars = MP.variables(p) @assert length(vars) == 2 vx, vy = vars return (x, y) -> p(vx => x, vy => y)^(1 / set.degree) end function _print_gauge_function(set::ConvexPolySet; digits=6) print(" ") p = MP.polynomial(set.p) if digits !== nothing p = round(p, digits=digits) end println(p) end """ struct ConvexPolynomialSet{T, U} <: AbstractSet{U} degree::Int q::GramMatrix{T, MonoBasis, u} z::SpaceVariable x::Vector{SpaceVariable} end Set ``\\{\\, (z, x) \\mid p(z, x) \\le 0 \\,\\}`` or ``H \\{\\, (z, x) \\mid q(z, x) \\le z^{\\texttt{degree}} \\,\\}`` where `p` and `q` are homogeneous polynomials of degree `degree` and `H` is a householder matrix. """ struct ConvexPolynomialSet{T, B, U} <: AbstractSet{U} degree::Int q::GramMatrix{T, B, U} z::SpaceVariable x::Vector{SpaceVariable} end perspective_gauge0(set) = set.q - set.z^set.degree perspective_variable(set::ConvexPolynomialSet) = set.z space_variables(set::ConvexPolynomialSet) = set.x function gauge1(set::ConvexPolynomialSet{T}) where T return MP.subs(set.q, perspective_variable(set) => one(T)) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
502
struct PolarPoint{T} <: AbstractSet{T} a::Vector{T} end dimension(h::PolarPoint) = length(h.a) space_variables(::PolarPoint) = nothing function scaling_function(h::PolarPoint) @assert dimension(h) == 2 return (x, y) -> begin return h.a[1] * x + h.a[2] * y end end function _print_gauge_function(h::PolarPoint; digits=6) DynamicPolynomials.@polyvar x[1:2] print(" ") a = h.a if digits !== nothing a = round.(a, digits=6) end println(x' * a) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3707
""" primal_contour(f::Function, npoints::Int) Return `npoints` points with equally spaced angles of the 1-sublevel set of the homogeneous function `f(x, y)`. """ function primal_contour(f::Function, npoints::Int) x = Vector{Float64}(undef, npoints) y = Vector{Float64}(undef, npoints) for (i, α) in enumerate(range(0, stop=2π - 2π/npoints, length=npoints)) x0 = cos(α) y0 = sin(α) r = f(x0, y0) # f is homogeneous so f(x0/r, y0/r) = 1 x[i] = x0 / r y[i] = y0 / r end return x, y end """ dual_contour(f::Function, nhalfspaces::Int, T::Type) Return a polytope of `nhalfspaces` halfspaces defined by normal vectors of equally spaced angles for the polar of the 1-sublevel set of the homogeneous function `f(x, y)`. """ function dual_contour(f::Function, nhalfspaces::Int, ::Type{T}, point::Vector{T} = [0.0, 0.0], x_axis::Vector{T} = [1.0, 0.0], y_axis::Vector{T} = [0.0, 1.0], cone = false) where T h = hrep(Polyhedra.HyperPlane{T, Vector{T}}[], Polyhedra.HalfSpace{T, Vector{T}}[], d=length(x_axis)) for α in range(0, stop=2π - 2π/nhalfspaces, length=nhalfspaces) ray = x_axis * cos(α) + y_axis * sin(α) λ = f(ray...) # We have f(ray/λ) = 1 so the halfspace is # (point + ray / λ) ⋅ x ≤ 1 for non-cone # (point + ray / λ) ⋅ x ≥ 0 for coen a = point + ray / λ intersect!(h, HalfSpace(cone ? -a : a, cone ? zero(T) : one(T))) end return polyhedron(h, Polyhedra.DefaultLibrary{T}(Polyhedra.OppositeMockOptimizer)) end function Polyhedra.planar_contour(sphere::HyperSphere; npoints=64) @assert dimension(sphere) == 2 return primal_contour((x, y) -> sqrt(x^2 + y^2), npoints) end function Polyhedra.planar_contour(ell::PerspectiveDualOrPolarOrNot{<:AbstractEllipsoid}; kws...) return Polyhedra.planar_contour(ellipsoid(ell); kws...) end function Polyhedra.planar_contour(set::Union{Ellipsoid, PolySet, ConvexPolySet, Piecewise}; npoints=64) return primal_contour(scaling_function(set), npoints) end function Polyhedra.planar_contour(set::PolarOf{<:Union{Piecewise{U}, ConvexPolySet{T, B, U}}}; npoints=64) where {T, B, U} return Polyhedra.planar_contour(dual_contour(scaling_function(Polyhedra.polar(set)), npoints, U)) end function Polyhedra.planar_contour(set::PerspectiveDual{T, <:Householder}; npoints=64) where T @assert dimension(set) == 2 # z is a halfspace of the primal so a ray of the dual z = [1.0, 0.0, 0.0] h1, h2 = set.set.h # a is a ray of the primal so a halfspace of the dual a = [1, h1, h2] b = [h1, -1, 0] @assert abs(dot(a, b)) < 1e-8 c = [h2 / (1 + h1^2), h1*h2 / (1 + h1^2), -1] @assert abs(dot(b, c)) < 1e-8 @assert abs(dot(a, c)) < 1e-8 polyhedron = dual_contour(scaling_function(set), npoints, T, z, b, c, true) # We fix z to 1.0 and eliminate it, this is cheap for H-rep return Polyhedra.planar_contour(fixandeliminate(polyhedron, 1, 1.0)) end function Polyhedra.planar_contour(t::Translation; kws...) @assert dimension(t) == 2 x, y = Polyhedra.planar_contour(t.set; kws...) return x .+ t.c[1], y .+ t.c[2] end @recipe function f(set::AbstractSet; npoints=64) @assert dimension(set) == 2 seriestype --> :shape legend --> false Polyhedra.planar_contour(set; npoints=npoints) end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
2663
struct Projection{S, I} set::S indices::I end Polyhedra.project(set, indices) = Projection(set, indices) function space_variables(p::Projection) vars = space_variables(p.set) if vars === nothing return nothing else return vars[p.indices] end end dimension(p::Projection) = length(p.indices) # A^{-1} * S struct LinearImage{S, T, MT <: AbstractMatrix{T}} <: AbstractSet{T} set::S A::MT end perspective_variable(li::LinearImage) = perspective_variable(li.set) space_variables(::LinearImage) = nothing dimension(li::LinearImage) = size(li.A, 1) # A^{-1} * S struct LinearPreImage{S, T, MT <: AbstractMatrix{T}} <: AbstractSet{T} set::S A::MT end # S + c struct Translation{S, T, VT <: AbstractVector{T}} <: AbstractSet{T} set::S c::VT end dimension(t::Translation) = length(t.c) space_variables(t::Translation) = space_variables(t.set) function Polyhedra.project(t::Translation, I) return Translation(Polyhedra.project(t.set, I), t.c[I]) end _perspective_cat(x::AbstractVector, z) = [z; x] _perspective_split(xz::AbstractVector) = xz[2:end], xz[1] """ householder(x) Householder reflection ```math I - 2 v v^T / (v^T v) ``` It is symmetric and orthogonal. """ function householder(x) y = copy(x) t = LinearAlgebra.reflector!(y) v = _perspective_cat(_perspective_split(y)[1], 1) I - t * v * v' end _householder(h) = householder(_perspective_cat(h, 1)) # We add 1, for perspective variable z struct Householder{T, S <: AbstractSet{T}, U} <: AbstractSet{T} set::S p::DynamicPolynomials.Polynomial{VariableOrder,MonomialOrder,U} h::Vector{Float64} z::SpaceVariable x::Vector{SpaceVariable} end perspective_gauge0(set::Householder) = set.p perspective_variable(set::Householder) = set.z space_variables(set::Householder) = set.x convexity_proof(set::Householder) = convexity_proof(set.set) const HouseDualOf{S, T, U} = PerspectiveDualOf{Householder{T, S, U}} function Polyhedra.project(set::Polar{T}, I) where T return Polyhedra.polar(zero_eliminate(Polyhedra.polar(set), setdiff(1:dimension(set), I))) end function zero_eliminate(set::Householder{T}, I) where T J = setdiff(1:dimension(set), I) p = MP.subs(set.p, set.x[I] => zeros(T, length(I))) return Householder(UnknownSet{T}(), p, set.h[J], set.z, set.x[J]) end function Polyhedra.project(set::PerspectiveDual, I) return perspective_dual(zero_eliminate(perspective_dual(set), setdiff(1:dimension(set), I))) end function _perspective_cat(set::Householder) H = _householder(set.h) return H * _perspective_cat(set.set) * H end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1846
using Test, LinearAlgebra using DynamicPolynomials using SetProg using Polyhedra @testset "L1 heuristic" begin @polyvar x y p = 2x^2*y + 3x + 4y^2 - 5x^4*y^2 + 6x^2 @test SetProg.rectangle_integrate(p, [2, 3]) ≈ -672 Q = [6 5 4 5 3 2 4 2 1] q = SetProg.GramMatrix(Q, SetProg.MP.monomials([x, y], 2)) @test SetProg.rectangle_integrate(polynomial(q), [2, 3]) ≈ 3465.6 @test SetProg.rectangle_integrate(polynomial(q), [1, 1]) ≈ 472/45 subset = SetProg.Sets.PolySet(4, q) v_rep(a, b) = polyhedron(convexhull([a, b], [-a, -b], [-a, b], [a, -b])) h_rep(a, b) = polyhedron(HalfSpace([1, 0], a) ∩ HalfSpace([-1, 0], a) ∩ HalfSpace([0, 1], b) ∩ HalfSpace([ 0, -1], b)) v_square = v_rep(1.0, 1.0) h_square = h_rep(1.0, 1.0) for square in [v_square, h_square] set = SetProg.Sets.Piecewise([subset, subset, subset, subset], square) @test SetProg.l1_integral(set, nothing) ≈ 472/45 end Q = [1 2 2 3] @test SetProg.rectangle_integrate(polynomial(Q, [x, y]), [2, 3]) ≈ 248 @test SetProg.rectangle_integrate(polynomial(Q, [x, y]), [1, 1]) ≈ 16/3 ell = SetProg.Sets.Ellipsoid(Symmetric(Q)) for square in [v_square, h_square] set = SetProg.Sets.Piecewise([ell, ell, ell, ell], square) @test SetProg.l1_integral(set, nothing) ≈ 16/3 end Δ = polyhedron(convexhull([0.0, 0.0], [1.0, 0.0], [1.0, 0.5])) Q = [0.0 0.5 0.5 0.0] ell = SetProg.Sets.Ellipsoid(Symmetric(Q)) @test SetProg.l1_integral(ell, Δ) ≈ 1/32 Q = [1.0 0.0 0.0 0.0] ell = SetProg.Sets.Ellipsoid(Symmetric(Q)) @test SetProg.l1_integral(ell, Δ) ≈ 1/8 Q = [0.0 0.0 0.0 1.0] ell = SetProg.Sets.Ellipsoid(Symmetric(Q)) @test SetProg.l1_integral(ell, Δ) ≈ 1/96 end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1679
using Test using LinearAlgebra using DynamicPolynomials using SetProg, SetProg.Sets @testset "Sets" begin @testset "ConvexPolySet" begin @polyvar x y P = SetProg.SumOfSquares.SymMatrix(Float64[1, 2, 3], 2) Q = SetProg.SumOfSquares.SymMatrix(BigInt[2, 3, 4], 2) basis = SetProg.Sets.MonoBasis(monomial_vector([x, y])) q = SetProg.Sets.ConvexPolySet(2, SetProg.SumOfSquares.GramMatrix(P, basis), Q) @test q isa SetProg.Sets.ConvexPolySet{BigFloat} end @testset "zero_eliminate" begin @polyvar x y z p = SetProg.GramMatrix{Float64}((i, j) -> convert(Float64, 8 - (i + j)), monomial_vector([x, y, z])) set = Sets.ConvexPolySet(2, p, nothing) el = Sets.zero_eliminate(set, 1:2) @test el.p.Q == 6ones(1, 1) el = Sets.zero_eliminate(set, 3:3) @test el.p.Q == [4 3; 3 2] el = Sets.zero_eliminate(set, 2:2) @test el.p.Q == [6 4; 4 2] @testset "Householder" begin p = SetProg.GramMatrix{Float64}((i, j) -> convert(Float64, 6 - (i + j)), monomial_vector([x, y])) set = SetProg.perspective_dual_polyset(2, p, SetProg.InteriorPoint(zeros(2)), z, [x, y]) @test set.set.p == 2x^2 + 6x*y + 4y^2 - z^2 @test set.set.h == zeros(2) @test set.set.x == [x, y] @test Sets.gauge1(set.set.set) == 2x^2 + 6x*y + 4y^2 set2 = Sets.project(set, [2]) @test set2.set.p == 4y^2 - z^2 @test set2.set.h == zeros(1) @test set2.set.x == [y] end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
4704
using LinearAlgebra using Test using SetProg using Polyhedra using JuMP @testset "Algebraic" begin □ = polyhedron(HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1)) @testset "Ellipsoid" begin @testset "John" begin mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); # Q = [1 0 # 0 1] # t = √det(Q) = 1 Q11 Q12 Q22 t MOI.Utilities.set_mock_optimize!(mock, mock -> MOI.Utilities.mock_optimize!(mock, [1.0, 0.0, 1.0, 1.0])); @variable(model, ◯, Ellipsoid(symmetric=true, dimension=2)) cref = @constraint(model, ◯ ⊆ □) @objective(model, Max, nth_root(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) == 1.0 @test JuMP.value(◯) isa SetProg.Sets.PolarEllipsoid @test JuMP.value(◯).Q == Symmetric([1.0 0.0; 0.0 1.0]) end @testset "Löwner" begin mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); # Q = [√2 0 # 0 √2] # t = √det(Q) = 2 Q11 Q12 Q22 t MOI.Utilities.set_mock_optimize!(mock, mock -> MOI.Utilities.mock_optimize!(mock, [0.5, 0.0, 0.5, 0.5])); @variable(model, ◯, Ellipsoid(symmetric=true, dimension=2)) cref = @constraint(model, □ ⊆ ◯) @objective(model, Min, nth_root(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) == 0.5 @test JuMP.value(◯) isa SetProg.Sets.Ellipsoid @test JuMP.value(◯).Q == Symmetric([0.5 0.0; 0.0 0.5]) end end @testset "Quartic" begin @testset "Inner" begin mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); # The PSD matrix for the variable is 3 x 3 so 3 * (3+1) / 2 = 6 # The PSD matrix for the convexity is 6 x 6 so 6 * (6+1) / 2 = 21 # entries # 1 variable for t # hence 28 variables MOI.Utilities.set_mock_optimize!(mock, mock -> MOI.Utilities.mock_optimize!(mock, ones(28))) @variable(model, ◯, PolySet(symmetric=true, degree=4, dimension=2, convex=true)) cref = @constraint(model, ◯ ⊆ □) @objective(model, Max, nth_root(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) == 1.0 @test JuMP.value(◯) isa SetProg.Sets.PolarPolySet{Float64} @test JuMP.value(◯).degree == 4 x, y = SetProg.data(model).polyvars @test polynomial(JuMP.value(◯).p) == x^4 + 2x^3*y + 3x^2*y^2 + 2x*y^3 + y^4 @test JuMP.value(◯).convexity_proof.n == 6 @test JuMP.value(◯).convexity_proof.Q == ones(21) @test JuMP.objective_value(model) == 1.0 end @testset "Outer" begin mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); MOI.Utilities.set_mock_optimize!(mock, mock -> MOI.Utilities.mock_optimize!(mock, ones(28))) @variable(model, ◯, PolySet(symmetric=true, degree=4, dimension=2, convex=true)) cref = @constraint(model, □ ⊆ ◯) @objective(model, Min, nth_root(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) == 1.0 @test JuMP.value(◯) isa SetProg.Sets.PolySet{Float64} @test JuMP.value(◯).degree == 4 x, y = SetProg.data(model).polyvars @test polynomial(JuMP.value(◯).p) == x^4 + 2x^3*y + 3x^2*y^2 + 2x*y^3 + y^4 @test JuMP.value(◯).convexity_proof.n == 6 @test JuMP.value(◯).convexity_proof.Q == ones(21) end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
747
using Test using SetProg @testset "apply_matrix" begin SetProg.DynamicPolynomials.@polyvar x[1:2] SetProg.DynamicPolynomials.@polyvar y[1:2] SetProg.DynamicPolynomials.@polyvar z[1:1] Q = [6 5 4 5 3 2 4 2 1] q = SetProg.GramMatrix(Q, SetProg.MP.monomials(x, 2)) p = SetProg.MP.polynomial(q) @testset "2x2 Float64" begin B = [2.0 3.0 4.0 5.0] qB = SetProg.apply_matrix(q, B, y, 2) @test qB isa SetProg.GramMatrix{Float64} @test qB == p(x => B * y) end @testset "2x1 Int" begin A = reshape([2, 3], 2, 1) qA = SetProg.apply_matrix(q, A, z, 2) @test qA isa SetProg.GramMatrix{Int} @test qA == p(x => A * z) end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
673
using SetProg using Polyhedra using JuMP const MOI = JuMP.MOI □ = polyhedron(HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1)) mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); # Q = [1 0 # 0 1] # t = √det(Q) = 1 Q11 Q12 Q22 t MOI.Utilities.set_mock_optimize!(mock, mock -> MOI.Utilities.mock_optimize!(mock, [1.0, 0.0, 1.0, 1.0])); @variable(model, ◯, PolySet(degree=4, dimension=2, convex=true)) cref = @constraint(model, ◯ ⊆ □) @objective(model, Max, nth_root(volume(◯))) SetProg.optimize!(model)
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3285
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials using JuMP @testset "Controlled invariant" begin config = MOI.Test.Config() @testset "Ellipsoid" begin # Q = [1 0 # 0 1] # t = √det(Q) = 1 Q = [1.0, -1/4, 1.0] t = √15/4 @testset "Homogeneous" begin Tests.ci_ell_homogeneous_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; t])), config) end @testset "Non-homogeneous" begin @testset "Ellipsoid" begin β = -1.0 b = [0.0, 0.0] Tests.ci_ell_nonhomogeneous_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; β; b; t])), config) end @testset "PolySet" begin β = -1.0 b = [0.0, 0.0] Q = [1.0, -0.5, 1.0] Tests.ci_quad_nonhomogeneous_test(bridged_mock(mock -> begin # Q[3] Q[2] b[2] # . Q[1] b[1] # . . β+1 MOI.Utilities.mock_optimize!(mock, [Q; b; β+1; 2Q]) end), config) end end @testset "Piecewise" begin @testset "Diamond/2D cross-polytope" begin Q1 = [1.0, -0.25, 1.0] Q2 = [1.0, -1.0, 1.0] Tests.ci_piecewise_semiell_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!( mock, [Q1; Q2; Q2; Q1; collect(1:MOI.get(mock, MOI.NumberOfVariables()) - 12)])), config) end @testset "mci" begin Q1 = [1.0, -1.0, 1.0] Q2 = [1.0, 0.0, 0.0] Q3 = [0.25, 0.5, 1.0] # 32-bit is failing: https://github.com/blegat/SetProg.jl/runs/4384813153?check_suite_focus=true if Sys.WORD_SIZE != 32 Tests.ci_piecewise_semiell_mci_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!( mock, [Q3; Q2; Q3; Q2; Q1; Q1; zeros(MOI.get(mock, MOI.NumberOfVariables()) - 18)], )), config, ) end end end end @testset "Quartic" begin # The PSD matrix for the variable is 3 x 3 so 3 * (3+1) / 2 = 6 # The PSD matrix for the convexity is 6 x 6 so 6 * (6+1) / 2 = 21 # entries # 1 variable for t # hence 28 variables ci_quartic_α = -1/8 ci_quartic_β = 1/4 ci_quartic_hess = 6 * [2.0, ci_quartic_α, 2.0, ci_quartic_α, 2.0, 2.0, 2.0, ci_quartic_α, ci_quartic_α, 2.0] sol = [1.0; ci_quartic_α; 6 - 2ci_quartic_β; ci_quartic_β; ci_quartic_α; 1.0; ci_quartic_hess] Tests.ci_quartic_homogeneous_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, sol)), config) end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1908
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials using JuMP @testset "Invariant" begin config = MOI.Test.Config() @testset "Maximal" begin # Q = [1 0 # 0 1] # t = √det(Q) = 1 Q = [1.0, 0.0, 1.0] t = 1.0 @testset "Homogeneous" begin @testset "Ellipsoid" begin Tests.maximal_invariant_ell_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; t])), config) end @testset "Convex Quadratic" begin Tests.maximal_convex_invariant_quad_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [1.0, 0.0, 1.0, 2.0, 0.0, 2.0, 2.0])), config) end end end @testset "Minimal" begin # Q = [0.5 0 # 0 0.5] # t = √det(Q) = 0.5 Q = [0.5, 0.0, 0.5] t = 0.5 @testset "Homogeneous" begin @testset "Ellipsoid" begin Tests.minimal_invariant_ell_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; t])), config) end @testset "Quadratic" begin @testset "Non-convex" begin Tests.minimal_invariant_quad_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [0.5, 0.0, 0.5])), config) end @testset "Convex" begin Tests.minimal_convex_invariant_quad_homogeneous_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [[0.5, 0.0, 0.5]; 2Q; 2t])), config) end end end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
179
include("Tests/Tests.jl") include("utilities.jl") using Test, JuMP include("square.jl") include("invariant.jl") include("controlled_invariant.jl") include("switched_system.jl")
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
631
include("solver_preamble.jl") using MosekTools optimizer_constructor = optimizer_with_attributes(Mosek.Optimizer, "QUIET" => true) config = MOI.Test.Config(atol=1e-3, rtol=1e-3) @testset "Mosek" begin @testset "Square" begin Tests.square_test(optimizer_constructor, config) end @testset "Invariant in Square" begin Tests.invariant_test(optimizer_constructor, config) end @testset "Controlled Invariant in Square" begin Tests.ci_test(optimizer_constructor, config) end @testset "Switched System" begin Tests.switched_system_test(optimizer_constructor, config) end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
5606
using LinearAlgebra using Test using RecipesBase using DynamicPolynomials using SetProg, SetProg.Sets RecipesBase.is_key_supported(k::Symbol) = true # Plots normally defines this function recipe(set, npoints) result = RecipesBase.apply_recipe(Dict{Symbol, Any}(:npoints => npoints), set) return result[1].args end function recipe_test(set, exp_x, exp_y, npoints=4) x, y = recipe(set, npoints) @test x ≈ exp_x @test y ≈ exp_y end @testset "Recipe" begin Q = [1.0 0.0; 0.0 1.0] @testset "Ellipsoid" begin @testset "Circle" begin for circle in [Sets.HyperSphere(2), Sets.Ellipsoid(Symmetric(Q))] recipe_test(circle, [1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]) recipe_test(Sets.polar(circle), [1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]) end end @testset "Shifted Circle" begin for circle in [Sets.HyperSphere(2), Sets.Ellipsoid(Symmetric(Q))] shifted = Sets.Translation(circle, [1.0, 2.0]) recipe_test(shifted, [2.0, 1.0, 0.0, 1.0], [2.0, 3.0, 2.0, 1.0]) end end @testset "Scaled circle" begin scaled_circle = Sets.Ellipsoid(Symmetric(2Q)) recipe_test(scaled_circle, [1/√2, 0.0, -1/√2, 0.0], [0.0, 1/√2, 0.0, -1/√2]) recipe_test(Sets.polar(scaled_circle), [√2, 0.0, -√2, 0.0], [0.0, √2, 0.0, -√2]) end end @testset "Polynomial" begin @polyvar x y z @testset "Circle" begin p = SetProg.GramMatrix{Float64}((i, j) -> convert(Float64, i == j), monomial_vector([x, y])) circle = Sets.PolySet(2, p) recipe_test(circle, [1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]) end @testset "Convex Circle" begin p = SetProg.GramMatrix{Float64}((i, j) -> convert(Float64, i == j), monomial_vector([x, y])) circle = Sets.ConvexPolySet(2, p, nothing) recipe_test(circle, [1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]) recipe_test(Sets.polar(circle), [-1.0, -1.0, 1.0, 1.0, -1.0], [-1.0, 1.0, 1.0, -1.0, -1.0]) end @testset "Scaled circle" begin p = SetProg.GramMatrix{Float64}((i, j) -> 2convert(Float64, i == j), monomial_vector([x, y])) circle = Sets.ConvexPolySet(2, p, nothing) recipe_test(circle, [1/√2, 0.0, -1/√2, 0.0], [0.0, 1/√2, 0.0, -1/√2]) recipe_test(Sets.polar(circle), [-√2, -√2, √2, √2, -√2], [-√2, √2, √2, -√2, -√2]) end @testset "Non-homogeneous Circle" begin @testset "Basic" begin q = SetProg.GramMatrix(Float64[0 0 0 0 1 0 0 0 1], monomial_vector([z, y, x])) shifted_circle = SetProg.perspective_dual_polyset(2, q, SetProg.InteriorPoint(zeros(2)), z, [x, y]) recipe_test(shifted_circle, [-1.0, -1.0, 1.0, 1.0, -1.0], [-1.0, 1.0, 1.0, -1.0, -1.0]) end @testset "Scaled" begin q = SetProg.GramMatrix(Float64[0 0 0 0 2 0 0 0 2], monomial_vector([z, y, x])) shifted_circle = SetProg.perspective_dual_polyset(2, q, SetProg.InteriorPoint(zeros(2)), z, [x, y]) recipe_test(shifted_circle, [-√2, -√2, √2, √2, -√2], [-√2, √2, √2, -√2, -√2]) end @testset "z-Scaled" begin # z: -1/2 + 1 = 1/2 q = SetProg.GramMatrix([1/2 0 0 0 1 0 0 0 1], monomial_vector([z, y, x])) shifted_circle = SetProg.perspective_dual_polyset(2, q, SetProg.InteriorPoint(zeros(2)), z, [x, y]) recipe_test(shifted_circle, [-√2, -√2, √2, √2, -√2], [-√2, √2, √2, -√2, -√2]) end end end @testset "Piecewise" begin polytope = polyhedron(HalfSpace([1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([-1, 1], 1) ∩ HalfSpace([-1, -1], 1) ∩ HalfSpace([1, -1], 1), lib) Q_1 = [1.0 0.0 0.0 0.0] Q_2 = [0.0 0.0 0.0 1.0] Q_3 = [1.0 0.0 0.0 1.0] Q_4 = [1.0 1.0 1.0 1.0] Q_5 = [ 1.0 -0.5 -0.5 1.0] set = Sets.Piecewise(Sets.Ellipsoid.(Symmetric.([Q_1, Q_2, Q_3, Q_4, Q_5])), polytope) recipe_test( set, [1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0] ) recipe_test( set, [1.0, 1.0, 0.0, -1/√2, -1.0, -0.5, -0.0, 1/√3], [0.0, 1.0, 1.0, 1/√2, 0.0, -0.5, -1.0, -1/√3], 8 ) α = 0.4142135623730951 β = 0.732050807568877 recipe_test( Sets.polar(set), [-1.0, -1.0, -α, 0.0, 1.0, 1.0, β, -1.0], [-1.0, α, 1.0, 1.0, 0.0, -β, -1.0, -1.0], 8) end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
257
import GLPK const lp_solver = GLPK.Optimizer import Polyhedra const lib = Polyhedra.DefaultLibrary{Float64}(lp_solver) include("Sets.jl") include("apply.jl") include("variables.jl") include("L1_heuristic.jl") include("recipes.jl") include("mock_tests.jl")
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
311
# In `solver_tests.jl` we want to load the preamble only once but if we load # several time, say `csdp_tests.jl`, from the REPL it may be because we modify # the tests in-between so we want to reload it if !(@isdefined shared_preamble) || !shared_preamble include("Tests/Tests.jl") using Test, JuMP end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
980
import Pkg using Test function solver_test(name::Symbol) if string(name) in keys(Pkg.installed()) ok = false try @eval import $name ok = true catch e @warn("The solver $name cannot be imported, run `] build $name`.") end if ok @testset "$name" begin include("$(lowercase(string(name)))_tests.jl") end end else @warn("The solver $name is not installed, run `] add $name`.") end end include("solver_preamble.jl") shared_preamble = true # LP solvers #solver_test(:GLPK) # SOCP solvers #solver_test(:ECOS) # SDP solvers (SOC is reformulated into SDP) #solver_test(:CSDP) #solver_test(:SDPA) # SDP+SOC solvers solver_test(:Mosek) #solver_test(:SeDuMi) #solver_test(:SCS) # If we re-run `solver_tests.jl`, it may be because we changed `Tests/Tests.jl`. shared_preamble = false nothing # Show nothing when `include` is called from REPL
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1063
using LinearAlgebra, Test using DynamicPolynomials using SetProg, SetProg.Sets const MOI = SetProg.JuMP.MOI @testset "Spaces" begin B = Symmetric([1.0 0.0; 0.0 1.0]) b = [0.0, 0.0] β = 1.0 h = [0.0, 0.0] @polyvar x y z dual = Sets.PerspectiveInteriorCone(B, b, β, [z, x, y], h) ◯ = Sets.perspective_dual(dual) mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}()) model = JuMP.direct_model(mock); Q = [1.0, 0.0, 1.0] t = 1.0 # The difference will be zero hence we put `zeros(6)` mock_optimize!(mock) = MOI.Utilities.mock_optimize!(mock, [Q; β; b; zeros(6); t]) MOI.Utilities.set_mock_optimize!(mock, mock_optimize!) @variable(model, ◯◯, Ellipsoid(point=SetProg.InteriorPoint(h))) cref = @constraint(model, ◯◯ ⊆ ◯) @objective(model, Max, nth_root(volume(◯◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) == t @test JuMP.value(◯◯).p == ◯.p end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
4292
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials using JuMP const quartic_inner_poly = [3.1518541833100864, -0.1617384194869734] const quartic_inner_obj = 6.447419478140056 const quartic_inner_α = 5.6567546886722795 const quartic_inner_convexity = [12.0, 0.0, quartic_inner_α, 0.0, quartic_inner_poly[1]+2quartic_inner_poly[2], quartic_inner_α, 8.48516455194103, 0.0, 0.0, 12.0] const quartic_outer_β = 0.30177574048813055 const quartic_outer_γ = 0.5936049698923986 const quartic_outer_λ = -0.09857757888257276 const quartic_outer_obj = 1.611854896946893 const quartic_outer_α = 0.7928996242545062 const quartic_outer_convexity = [3.621308885857567, 0.0, quartic_outer_α, 0.0, 0.08578956499151169, quartic_outer_α, 1.5, 0.0, 0.0, 3.6212933687704307] @testset "Square" begin config = MOI.Test.Config() @testset "Ellipsoid" begin @testset "John" begin # Q = [1 0 # 0 1] # t = √det(Q) = 1 Q = [1.0, 0.0, 1.0] t = 1.0 @testset "Homogeneous" begin Tests.john_homogeneous_square_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; t])), config) end @testset "Non-homogeneous" begin @testset "Ellipsoid" begin β = -1.0 b = [0.0, 0.0] Tests.john_nonhomogeneous_ell_square_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [Q; β; b; t])), config) end @testset "PolySet" begin β = 1.0 b = [0.0, 0.0] Tests.john_nonhomogeneous_quad_square_test(bridged_mock(mock -> begin # Q[3] Q[2] b[2] # . Q[1] b[1] # . . β-1 MOI.Utilities.mock_optimize!(mock, [Q[3]; Q[2]; Q[1]; b[2]; b[1]; β-1; 2Q]) end), config) end end @testset "Piecewise" begin Q1 = ones(3) Q2 = [1.0, -1.0, 1.0] Tests.piecewise_semiell_inner_homogeneous_◇_square_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!( mock, [Q1; Q2; Q2; Q1])), config) Q = [1.0, 0.0, 1.0] Tests.piecewise_semiell_inner_homogeneous_□_square_test( bridged_mock(mock -> MOI.Utilities.mock_optimize!( mock, [Q; Q; Q; Q])), config) end end @testset "Löwner" begin # Q = [√2 0 # 0 √2] # t = √det(Q) = 2 Q11 Q12 Q22 t Tests.löwner_homogeneous_square_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, [0.5, 0.0, 0.5, 0.5])), config) end end @testset "Quartic" begin @testset "Inner" begin # The PSD matrix for the variable is 3 x 3 so 3 * (3+1) / 2 = 6 # The PSD matrix for the convexity is 4 x 4 so 4 * (5+1) / 2 = 10 # entries # 1 variable for t # hence 17 variables sol = [1.0; 0.0; quartic_inner_poly; 0.0; 1.0; quartic_inner_convexity; quartic_inner_obj] Tests.quartic_inner_homogeneous_square_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, sol)), config) end @testset "Outer" begin sol = [quartic_outer_β; 0.0; quartic_outer_γ; quartic_outer_λ; 0.0; quartic_outer_β; quartic_outer_convexity; quartic_outer_obj] Tests.quartic_outer_homogeneous_square_test(bridged_mock(mock -> MOI.Utilities.mock_optimize!(mock, sol)), config) end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3168
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials import DynamicPolynomials using JuMP @testset "Switched System" begin config = MOI.Test.Config() @testset "Ellipsoid" begin @testset "Feasible" begin optimize!(mock) = MOIU.mock_optimize!( mock, MOI.OPTIMAL, (MOI.FEASIBLE_POINT, zeros(3))) Tests.feasible_switched_system_ell_test(bridged_mock(optimize!), config) end @testset "Infeasible" begin optimize!(mock) = MOIU.mock_optimize!( mock, MOI.INFEASIBLE, MOI.NO_SOLUTION, MOI.INFEASIBILITY_CERTIFICATE, (MOI.VectorOfVariables, SetProg.SumOfSquares.PositiveSemidefinite2x2ConeTriangle) => [[0.00282108, 0.0, 0.00282108]], (MOI.VectorAffineFunction{Float64}, SetProg.SumOfSquares.PositiveSemidefinite2x2ConeTriangle) => [[0.00117187, 0.0, 2.82044], [2.82044, 0.0, 0.00117187]] ) Tests.infeasible_switched_system_ell_test(bridged_mock(optimize!), config) end end @testset "Quadratic" begin @testset "Feasible" begin optimize!(mock) = MOIU.mock_optimize!( mock, MOI.OPTIMAL, (MOI.FEASIBLE_POINT, zeros(3))) Tests.feasible_switched_system_quad_test(bridged_mock(optimize!), config) end # Blocked by a bug in MockOptimizer which does not implement support for MomentMatrixAttribute correctly # @testset "Infeasible" begin # function optimize!(mock) # MOI.set(mock, MOI.TerminationStatus(), MOI.INFEASIBLE) # MOI.set(mock, MOI.PrimalStatus(), MOI.NO_SOLUTION) # MOI.set(mock, MOI.DualStatus(), MOI.INFEASIBILITY_CERTIFICATE) # DynamicPolynomials.@polyvar x[1:2] # for (F, S) in MOI.get(mock, MOI.ListOfConstraints()) # if F == MOI.VectorAffineFunction{Float64} # cis = MOI.get(mock, MOI.ListOfConstraintIndices{F, S}()) # function _moment_matrix(q) # SetProg.SumOfSquares.build_moment_matrix(q, monomial_vector(x)) # end # MOI.set(mock, SetProg.SumOfSquares.MomentMatrixAttribute(), # cis[1], _moment_matrix([0.00336272, 0.0, 5.64559])) # MOI.set(mock, SetProg.SumOfSquares.MomentMatrixAttribute(), # cis[2], _moment_matrix([5.64559, 0.0, 0.00336272])) # end # end # end # Tests.infeasible_switched_system_quad_test(bridged_mock(optimize!), config) # end end @testset "Quartic" begin @testset "Feasible" begin α = 11.814054544955727 optimize!(mock) = MOIU.mock_optimize!( mock, MOI.OPTIMAL, (MOI.FEASIBLE_POINT, [α, 0.0, 0.0, -α, -0.0, α])) Tests.feasible_switched_system_quartic_test(bridged_mock(optimize!), config) end @testset "Infeasible" begin # Blocked for the same reason than quad end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
543
using Test using SetProg function bridged_mock(mock_optimize!::Function...; # We use a UF to add support for SOSCone, ... so that # we don't have to set the variables created by the SOS # bridges model = MOIU.UniversalFallback(MOI.Utilities.Model{Float64}())) mock = MOI.Utilities.MockOptimizer(model) bridged = MOI.Bridges.full_bridge_optimizer(mock, Float64) MOI.Utilities.set_mock_optimize!(mock, mock_optimize!...) return bridged end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
1869
using Test using SetProg @testset "Variables" begin @testset "Ellipsoid" begin @testset "Dimension" begin model = Model() @variable(model, S, Ellipsoid()) err = ErrorException("Missing dimension information, use Ellipsoid(dimension=...) or PolySet(dimension=...)") @test_throws err JuMP.optimize!(model) end for d in 1:3 @test Ellipsoid(point=SetProg.InteriorPoint(ones(d))).dimension == d end @testset "Missing Point" begin model = Model() @variable(model, E, Ellipsoid(dimension=2)) @objective(model, Max, nth_root(volume(E))) # Force dual space err = ArgumentError("Specify a point for nonsymmetric ellipsoid, e.g. `Ellipsoid(point=InteriorPoint([1.0, 0.0]))") @test_throws err JuMP.optimize!(model) end end @testset "PolySet" begin err = ErrorException("Degree of PolySet not specified, use PolySet(degree=..., ...)") @test_throws err PolySet(dimension=1) @test_throws ArgumentError("Degree of PolySet not even") PolySet(degree=1) @testset "Dimension" begin model = Model() @variable(model, S, PolySet(degree=2)) err = ErrorException("Missing dimension information, use Ellipsoid(dimension=...) or PolySet(dimension=...)") @test_throws err JuMP.optimize!(model) end #@testset "Convex" begin # model = Model() # @variable(model, E, PolySet(degree=2, dimension=2)) # @objective(model, Max, nth_root(volume(E))) # err = ErrorException("Cannot optimize volume of non-convex polynomial sublevel set. Use PolySet(convex=true, ...)") # @test_throws err begin # JuMP.optimize!(model) # end #end end end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
339
module Tests using JuMP import GLPK const lp_solver = optimizer_with_attributes(GLPK.Optimizer, "presolve" => GLPK.GLP_ON) import Polyhedra const lib = Polyhedra.DefaultLibrary{Float64}(lp_solver) include("utilities.jl") include("square.jl") include("invariant.jl") include("controlled_invariant.jl") include("switched_system.jl") end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
7852
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials const MP = MultivariatePolynomials import DynamicPolynomials using JuMP function ci_square_test(optimizer, config::MOI.Test.Config, inner::Bool, variable::SetProg.AbstractVariable, metric::Function, objective_value, set_test, nvars=nothing) model = _model(optimizer) □ = polyhedron(HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1)) @variable(model, ◯, variable) if inner cref = @constraint(model, ◯ ⊆ □) else cref = @constraint(model, □ ⊆ ◯) end Δt = 0.5 A = [1.0 Δt] E = [1.0 0.0] if variable.symmetric @constraint(model, A * ◯ ⊆ E * ◯) else @constraint(model, A * ◯ ⊆ E * ◯, S_procedure_scaling = 1.0) end @objective(model, inner ? MOI.MAX_SENSE : MOI.MIN_SENSE, metric(volume(◯))) SetProg.optimize!(model) if nvars !== nothing @test nvars == num_variables(model) end @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) ≈ objective_value atol=config.atol rtol=config.rtol set_test(JuMP.value(◯)) end function ci_ell_homogeneous_test(optimizer, config) ci_square_test(optimizer, config, true, Ellipsoid(symmetric=true, dimension=2), nth_root, √15/4, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.Ellipsoid{Float64}} @test Sets.polar(◯).Q ≈ Symmetric([1.0 -1/4; -1/4 1.0]) atol=config.atol rtol=config.rtol end) end function ci_ell_nonhomogeneous_test(optimizer, config) ci_square_test(optimizer, config, true, Ellipsoid(point=SetProg.InteriorPoint([0.0, 0.0])), nth_root, √15/4, ◯ -> begin @test ◯ isa Sets.PerspectiveDual{Float64, Sets.Householder{Float64, Sets.ShiftedEllipsoid{Float64}, Float64}} z = Sets.perspective_variable(◯) x, y = Sets.space_variables(◯) ◯_dual = Sets.perspective_dual(◯) @test ◯_dual.p ≈ -z^2 + x^2 - x*y/2 + y^2 atol=config.atol rtol=config.rtol @test ◯_dual.set.Q ≈ Symmetric([1.0 -1/4; -1/4 1.0]) atol=config.atol rtol=config.rtol @test ◯_dual.set.b ≈ [0.0, 0.0] atol=config.atol rtol=config.rtol @test ◯_dual.set.β ≈ -1.0 atol=config.atol rtol=config.rtol @test Sets._householder(◯_dual.h) ≈ [-1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0] atol=config.atol rtol=config.rtol end) end function ci_piecewise_semiell_homogeneous_test(optimizer, config) ci_square_test( optimizer, config, true, Ellipsoid(symmetric=true, piecewise=◇), set -> L1_heuristic(set), 19 / 6, p◯ -> begin @test p◯ isa Sets.Polar ◯ = p◯.set @test ◯ isa Sets.Piecewise{Float64, Sets.Ellipsoid{Float64}} @test length(◯.sets) == 4 Q1 = Symmetric([ 1.0 -0.25 -0.25 1.0]) Q2 = Symmetric([ 1.0 -1.0 -1.0 1.0]) _test_piece(◯, [-0.5, -0.5], Q1, config) _test_piece(◯, [0.5, -0.5], Q2, config) _test_piece(◯, [-0.5, 0.5], Q2, config) _test_piece(◯, [0.5, 0.5], Q1, config) end, 24, ) end function ci_piecewise_semiell_mci_homogeneous_test(optimizer, config) polar_mci = polyhedron(convexhull([1.0, 0.0], [-1.0, 0.0], [0.0, 1.0], [0.0, -1.0], [1.0, 0.5], [-1.0, -0.5]), lib) ci_square_test( optimizer, config, true, Ellipsoid(symmetric=true, piecewise=polar_mci), set -> L1_heuristic(set), 2.9909434642487316, p◯ -> begin @test p◯ isa Sets.Polar ◯ = p◯.set @test ◯ isa Sets.Piecewise{Float64, Sets.Ellipsoid{Float64}} @test length(◯.sets) == 6 Q1 = Symmetric([ 1.0 -1.0 -1.0 1.0]) Q2 = Symmetric([ 1.0 0.0 0.0 0.0]) Q3 = Symmetric([ 0.25 0.5 0.5 1.0]) _test_piece(◯, [1.5, 0.5], Q2, config) _test_piece(◯, [0.5, -0.5], Q1, config) _test_piece(◯, [0.5, 0.75], Q3, config) _test_piece(◯, [-0.5, 0.5], Q1, config) _test_piece(◯, [-1.5, -0.5], Q2, config) _test_piece(◯, [-1, -0.75], Q3, config) end, 25, ) end function ci_quad_nonhomogeneous_test(optimizer, config) ci_square_test(optimizer, config, true, PolySet(degree=2, convex=true, point=SetProg.InteriorPoint([0.0, 0.0])), set -> L1_heuristic(set, [1.0, 1.0]), 8/3, ◯ -> begin @test ◯ isa Sets.PerspectiveDual{Float64, Sets.Householder{Float64, Sets.ConvexPolynomialSet{Float64, SetProg.Sets.MonoBasis, Float64}, Float64}} z = Sets.perspective_variable(◯) x, y = Sets.space_variables(◯) ◯_dual = Sets.perspective_dual(◯) # The coefficient of `x*y` does not influence the volume # and with the values of the other parameters, it should # simply be in the interval [-2, -0.5]. α = MP.coefficient(◯_dual.p, x*y) @test α ≥ -2 - 2config.atol - config.rtol @test α ≤ -0.5 + 0.5config.atol + config.rtol @test ◯_dual.p ≈ -z^2 + x^2 + α*x*y + y^2 atol=config.atol rtol=config.rtol end) end function ci_quartic_homogeneous_test(optimizer, config) ci_square_test(optimizer, config, true, PolySet(symmetric=true, degree=4, convex=true), set -> L1_heuristic(set, [1.0, 1.0]), 0.4, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.ConvexPolySet{Float64, SetProg.Sets.MonoBasis, Float64}} @test Sets.polar(◯).degree == 4 x, y = variables(Sets.polar(◯).p) α = MP.coefficient(Sets.polar(◯).p, x^3*y) / 2 q = x^4 + 2α*x^3*y + 6x^2*y^2 + 2α*x*y^3 + y^4 @test all(eigvals(Matrix(Sets.polar(◯).p.Q)) .≥ -config.atol) @test polynomial(Sets.polar(◯).p) ≈ q atol=config.atol rtol=config.rtol convexity_proof = Sets.convexity_proof(◯) @test convexity_proof.n == 4 hess = 6 * [2.0, α, 2.0, α, 2.0, 2.0, 2.0, α, α, 2.0] Hess = SetProg.SumOfSquares.MultivariateMoments.SymMatrix(hess, 4) @test all(eigvals(Matrix(Hess)) .≥ -config.atol) @test convexity_proof.Q ≈ hess atol=config.atol rtol=config.rtol end) end const ci_tests = Dict( "ci_ell_homogeneous" => ci_ell_homogeneous_test, "ci_ell_nonhomogeneous" => ci_ell_nonhomogeneous_test, "ci_piecewise_semiell_homogeneous" => ci_piecewise_semiell_homogeneous_test, "ci_piecewise_semiell_mci_homogeneous" => ci_piecewise_semiell_mci_homogeneous_test, "ci_quad_nonhomogeneous" => ci_quad_nonhomogeneous_test, "ci_quartic_homogeneous" => ci_quartic_homogeneous_test ) @test_suite ci
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
4001
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials import DynamicPolynomials using JuMP function invariant_square_test(optimizer, config::MOI.Test.Config, inner::Bool, variable::SetProg.AbstractVariable, metric::Function, objective_value, set_test) model = _model(optimizer) □ = polyhedron(HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1), lib) @variable(model, ◯, variable) if inner cref = @constraint(model, ◯ ⊆ □) else cref = @constraint(model, □ ⊆ ◯) end A = [0.0 -1.0 1.0 0.0] if variable.symmetric @constraint(model, A * ◯ ⊆ ◯) else @constraint(model, A * ◯ ⊆ ◯, S_procedure_scaling = 1.0) end @objective(model, inner ? MOI.MAX_SENSE : MOI.MIN_SENSE, metric(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) ≈ objective_value atol=config.atol rtol=config.rtol return set_test(JuMP.value(◯)) end function maximal_invariant_ell_homogeneous_test(optimizer, config) invariant_square_test( optimizer, config, true, Ellipsoid(symmetric=true, dimension=2), nth_root, 1.0, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.Ellipsoid{Float64}} @test Sets.polar(◯).Q ≈ Symmetric([1.0 0.0; 0.0 1.0]) atol=config.atol rtol=config.rtol end) end function maximal_convex_invariant_quad_homogeneous_test(optimizer, config) invariant_square_test( optimizer, config, true, PolySet(degree=2, convex=true, symmetric=true), nth_root, 2.0, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.ConvexPolySet{Float64, SetProg.Sets.MonoBasis, Float64}} x, y = Sets.space_variables(◯) ◯_polar = Sets.polar(◯) @test ◯_polar.p ≈ x^2 + y^2 atol=config.atol rtol=config.rtol end) end function minimal_invariant_ell_homogeneous_test(optimizer, config) invariant_square_test( optimizer, config, false, Ellipsoid(symmetric=true, dimension=2), nth_root, 0.5, ◯ -> begin @test ◯ isa Sets.Ellipsoid{Float64} @test ◯.Q ≈ Symmetric([0.5 0.0; 0.0 0.5]) atol=config.atol rtol=config.rtol end) end function minimal_invariant_quad_homogeneous_test(optimizer, config) invariant_square_test( optimizer, config, false, PolySet(degree=2, symmetric=true), set -> L1_heuristic(set, ones(2)), 4/3, ◯ -> begin @test ◯ isa Sets.PolySet{Float64, SetProg.Sets.MonoBasis} x, y = Sets.space_variables(◯) @test ◯.p ≈ 0.5x^2 + 0.5y^2 atol=config.atol rtol=config.rtol end) end function minimal_convex_invariant_quad_homogeneous_test(optimizer, config) invariant_square_test( optimizer, config, false, PolySet(degree=2, convex=true, symmetric=true), nth_root, 1.0, ◯ -> begin @test ◯ isa Sets.ConvexPolySet{Float64, SetProg.Sets.MonoBasis} x, y = Sets.space_variables(◯) @test ◯.p ≈ 0.5x^2 + 0.5y^2 atol=config.atol rtol=config.rtol end) end const invariant_tests = Dict("maximal_invariant_ell_homogeneous_test" => maximal_invariant_ell_homogeneous_test, "maximal_convex_invariant_quad_homogeneous_test" => maximal_convex_invariant_quad_homogeneous_test, "minimal_invariant_ell_homogeneous_test" => minimal_invariant_ell_homogeneous_test, "minimal_invariant_quad_homogeneous_test" => minimal_invariant_quad_homogeneous_test, "minimal_convex_invariant_quad_homogeneous_test" => minimal_convex_invariant_quad_homogeneous_test) @test_suite invariant
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
8811
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials import DynamicPolynomials using JuMP const □ = polyhedron(HalfSpace([1, 0], 1.0) ∩ HalfSpace([-1, 0], 1) ∩ HalfSpace([0, 1], 1) ∩ HalfSpace([0, -1], 1)) const ◇ = polyhedron(convexhull([1.0, 0], [0, 1], [-1, 0], [0, -1]), lib) function square_test(optimizer, config::MOI.Test.Config, inner::Bool, variable::SetProg.AbstractVariable, metric::Function, objective_value, set_test) model = _model(optimizer) @variable(model, ◯, variable) if inner cref = @constraint(model, ◯ ⊆ □) else cref = @constraint(model, □ ⊆ ◯) end @objective(model, inner ? MOI.MAX_SENSE : MOI.MIN_SENSE, metric(volume(◯))) SetProg.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.objective_sense(model) == MOI.MAX_SENSE @test JuMP.objective_value(model) ≈ objective_value atol=config.atol rtol=config.rtol set_test(JuMP.value(◯)) end function john_homogeneous_square_test(optimizer, config) square_test(optimizer, config, true, Ellipsoid(symmetric=true, dimension=2), nth_root, 1.0, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.Ellipsoid{Float64}} @test Sets.polar(◯).Q ≈ Symmetric([1.0 0.0; 0.0 1.0]) atol=config.atol rtol=config.rtol end) end function john_nonhomogeneous_ell_square_test(optimizer, config) square_test(optimizer, config, true, Ellipsoid(point=SetProg.InteriorPoint([0.0, 0.0])), nth_root, 1.0, ◯ -> begin @test ◯ isa Sets.PerspectiveDual{Float64, Sets.Householder{Float64, Sets.ShiftedEllipsoid{Float64}, Float64}} z = Sets.perspective_variable(◯) x, y = Sets.space_variables(◯) ◯_dual = Sets.perspective_dual(◯) @test ◯_dual.p ≈ -z^2 + x^2 + y^2 atol=config.atol rtol=config.rtol @test Sets._householder(◯_dual.h) ≈ [-1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0] atol=config.atol rtol=config.rtol @test ◯_dual.set.Q ≈ Symmetric([1.0 0.0; 0.0 1.0]) atol=config.atol rtol=config.rtol @test ◯_dual.set.b ≈ [0.0, 0.0] atol=config.atol rtol=config.rtol @test ◯_dual.set.β ≈ -1.0 atol=config.atol rtol=config.rtol end) end function john_nonhomogeneous_quad_square_test(optimizer, config) square_test(optimizer, config, true, PolySet(degree=2, convex=true, point=SetProg.InteriorPoint([0.0, 0.0])), set -> L1_heuristic(set, [1.0, 1.0]), 8/3, ◯ -> begin @test ◯ isa Sets.PerspectiveDual{Float64, Sets.Householder{Float64, Sets.ConvexPolynomialSet{Float64, SetProg.Sets.MonoBasis, Float64}, Float64}} z = Sets.perspective_variable(◯) x, y = Sets.space_variables(◯) ◯_dual = Sets.perspective_dual(◯) @test ◯_dual.p ≈ -z^2 + x^2 + y^2 atol=config.atol rtol=config.rtol end) end function löwner_homogeneous_square_test(optimizer, config) square_test(optimizer, config, false, Ellipsoid(symmetric=true, dimension=2), nth_root, 0.5, ◯ -> begin @test ◯ isa Sets.Ellipsoid @test ◯.Q ≈ Symmetric([0.5 0.0 0.0 0.5]) atol=config.atol rtol=config.rtol end) end function piecewise_semiell_inner_homogeneous_◇_square_test(optimizer, config) square_test(optimizer, config, true, Ellipsoid(symmetric=true, piecewise=◇), set -> L1_heuristic(set), 4, p◯ -> begin @test p◯ isa Sets.Polar ◯ = p◯.set @test ◯ isa Sets.Piecewise{Float64, Sets.Ellipsoid{Float64}} @test length(◯.sets) == 4 Q1 = Symmetric([ 1.0 1.0 1.0 1.0]) Q2 = Symmetric([ 1.0 -1.0 -1.0 1.0]) _test_piece(◯, [-0.5, -0.5], Q1, config) _test_piece(◯, [0.5, -0.5], Q2, config) _test_piece(◯, [-0.5, 0.5], Q2, config) _test_piece(◯, [0.5, 0.5], Q1, config) end) end function piecewise_semiell_inner_homogeneous_□_square_test(optimizer, config) square_test(optimizer, config, true, Ellipsoid(symmetric=true, piecewise=□), set -> L1_heuristic(set), 8/3, p◯ -> begin @test p◯ isa Sets.Polar ◯ = p◯.set @test ◯ isa Sets.Piecewise{Float64, Sets.Ellipsoid{Float64}} @test length(◯.sets) == 4 Q = Symmetric([1.0 0.0 0.0 1.0]) @test ◯.sets[1].Q ≈ Q atol=config.atol rtol=config.rtol @test ◯.sets[2].Q ≈ Q atol=config.atol rtol=config.rtol @test ◯.sets[3].Q ≈ Q atol=config.atol rtol=config.rtol @test ◯.sets[4].Q ≈ Q atol=config.atol rtol=config.rtol end) end const quartic_inner_poly = [3.1518541833100864, -0.1617384194869734] const quartic_inner_obj = 6.447419478140056 const quartic_inner_α = 5.6567546886722795 const quartic_inner_convexity = [12.0, 0.0, quartic_inner_α, 0.0, quartic_inner_poly[1]+2quartic_inner_poly[2], quartic_inner_α, 8.48516455194103, 0.0, 0.0, 12.0] function quartic_inner_homogeneous_square_test(optimizer, config) square_test(optimizer, config, true, PolySet(symmetric=true, degree=4, dimension=2, convex=true), nth_root, quartic_inner_obj, ◯ -> begin @test ◯ isa Sets.Polar{Float64, Sets.ConvexPolySet{Float64, SetProg.Sets.MonoBasis, Float64}} ◯_polar = Sets.polar(◯) @test ◯_polar.degree == 4 x, y = variables(◯_polar.p) @test polynomial(◯_polar.p) ≈ x^4 + quartic_inner_convexity[5]*x^2*y^2 + y^4 atol=config.atol rtol=config.rtol convexity_proof = Sets.convexity_proof(◯) @test convexity_proof.n == 4 @test convexity_proof.Q ≈ quartic_inner_convexity atol=config.atol rtol=config.rtol end) end const quartic_outer_β = 0.30177574048813055 const quartic_outer_γ = 0.5936049698923986 const quartic_outer_λ = -0.09857757888257276 const quartic_outer_obj = 1.611854896946893 const quartic_outer_α = 0.7928996242545062 const quartic_outer_convexity = [3.621308885857567, 0.0, quartic_outer_α, 0.0, 0.08578956499151169, quartic_outer_α, 1.5, 0.0, 0.0, 3.6212933687704307] function quartic_outer_homogeneous_square_test(optimizer, config) square_test(optimizer, config, false, PolySet(symmetric=true, degree=4, dimension=2, convex=true), nth_root, quartic_outer_obj, ◯ -> begin @test ◯ isa Sets.ConvexPolySet{Float64, SetProg.Sets.MonoBasis, Float64} @test ◯.degree == 4 x, y = variables(◯.p) @test polynomial(◯.p) ≈ quartic_outer_β*x^4 + (quartic_outer_γ+2quartic_outer_λ)*x^2*y^2 + quartic_outer_β*y^4 atol=config.atol rtol=config.rtol convexity_proof = Sets.convexity_proof(◯) @test convexity_proof.n == 4 @test convexity_proof.Q ≈ quartic_outer_convexity atol=config.atol rtol=config.rtol end) end const square_tests = Dict( "john_homogeneous_square" => john_homogeneous_square_test, "john_nonhomogeneous_ell_square" => john_nonhomogeneous_ell_square_test, "john_nonhomogeneous_quad_square" => john_nonhomogeneous_quad_square_test, "löwner_homogeneous_square" => löwner_homogeneous_square_test, "piecewise_semiell_inner_homogeneous_◇_square" => piecewise_semiell_inner_homogeneous_◇_square_test, "piecewise_semiell_inner_homogeneous_□_square" => piecewise_semiell_inner_homogeneous_□_square_test, "quartic_inner_homogeneous_square" => quartic_inner_homogeneous_square_test, "quartic_outer_homogeneous_square" => quartic_outer_homogeneous_square_test ) @test_suite square
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
5564
using LinearAlgebra using Test using SetProg, SetProg.Sets using Polyhedra using MultivariatePolynomials using DynamicPolynomials using JuMP function switched_system_test(optimizer, config::MOI.Test.Config, variable::SetProg.AbstractVariable, γ, feasible, objective_value, set_test, dual_test) model = _model(optimizer) @variable(model, ◯, variable) # See https://github.com/blegat/SwitchOnSafety.jl/blob/master/examples/LPJ17e43.ipynb A1 = [1 0 1 0] / γ A2 = [0 1 0 -1] / γ cref1 = @constraint(model, A1 * ◯ ⊆ ◯) cref2 = @constraint(model, A2 * ◯ ⊆ ◯) if objective_value !== nothing @objective(model, MOI.MAX_SENSE, L1_heuristic(volume(◯), ones(2))) end SetProg.optimize!(model) if objective_value === nothing @test JuMP.objective_sense(model) == MOI.FEASIBILITY_SENSE else @test JuMP.objective_sense(model) == MOI.MIN_SENSE end if feasible @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.primal_status(model) == MOI.FEASIBLE_POINT if objective_value !== nothing @test JuMP.objective_value(model) ≈ objective_value atol=config.atol rtol=config.rtol end return set_test(JuMP.value(◯)) else #@test JuMP.termination_status(model) == MOI.INFEASIBLE # Mosek returns SLOW_PROGRESS @test JuMP.dual_status(model) == MOI.INFEASIBILITY_CERTIFICATE return dual_test(cref1, cref2) end end function feasible_switched_system_ell_test(optimizer, config, ε=1e-3) Q = [1.0 0.0 0.0 1.0] superset = SetProg.Sets.Ellipsoid(Symmetric(Q)) switched_system_test( optimizer, config, Ellipsoid(symmetric=true, superset=superset), √2 + ε, true, 4/3, ◯ -> begin @test ◯ isa Sets.Ellipsoid{Float64} @test ◯.Q ≈ Q atol=config.atol rtol=config.rtol end, (cref1, cref2) -> begin end) end function infeasible_switched_system_ell_test(optimizer, config, ε=1e-3) Q = [1.0 0.0 0.0 1.0] superset = SetProg.Sets.Ellipsoid(Symmetric(Q)) switched_system_test( optimizer, config, Ellipsoid(symmetric=true, superset=superset), √2 - ε, false, NaN, ◯ -> begin end, (cref1, cref2) -> begin function ispsd(q) Q = [q[1] q[2]; q[2] q[3]] return all(eigvals(Q) .≥ -config.atol) end @test ispsd(JuMP.dual(cref1)) @test ispsd(JuMP.dual(cref2)) end) end function superset(x, d) q = SetProg.SumOfSquares.GramMatrix(SetProg.SumOfSquares.SOSDecomposition(x.^d)) return SetProg.Sets.PolySet(2d, q) end function feasible_switched_system_quad_test(optimizer, config, ε=1e-3) @polyvar x[1:2] switched_system_test( optimizer, config, PolySet(symmetric=true, degree=2, superset=superset(x, 1)), √2 + ε, true, 8/3, ◯ -> begin @test ◯ isa Sets.PolySet{Float64, SetProg.Sets.MonoBasis} @test polynomial(◯.p) ≈ x[1]^2 + x[2]^2 atol=config.atol rtol=config.rtol end, (cref1, cref2) -> begin end) end function infeasible_switched_system_quad_test(optimizer, config, ε=1e-3) @polyvar x[1:2] switched_system_test( optimizer, config, PolySet(symmetric=true, degree=2, superset=superset(x, 1)), √2 - ε, false, NaN, ◯ -> begin end, (cref1, cref2) -> begin function ispsd(M) return all(eigvals(Matrix(M.Q)) .≥ -config.atol) end @test ispsd(SetProg.SumOfSquares.moment_matrix(cref1)) @test ispsd(SetProg.SumOfSquares.moment_matrix(cref2)) end) end function feasible_switched_system_quartic_test(optimizer, config, ε=1e-2) @polyvar x[1:2] switched_system_test( optimizer, config, PolySet(symmetric=true, degree=4, superset=superset(x, 2)), 1.0 + ε, true, 10.001105454190741, ◯ -> begin @test ◯ isa Sets.PolySet{Float64, SetProg.Sets.MonoBasis} α = 11.814054544955727 @test polynomial(◯.p) ≈ (α+1) * x[1]^4 - 2α * x[1]^2*x[2]^2 + (α+1) * x[2]^4 atol=config.atol rtol=config.rtol end, (cref1, cref2) -> begin end) end function infeasible_switched_system_quartic_test(optimizer, config, ε=2e-1) @polyvar x[1:2] switched_system_test( optimizer, config, PolySet(symmetric=true, degree=4, superset=superset(x, 2)), 1.0 - ε, false, nothing, ◯ -> begin end, (cref1, cref2) -> begin function ispsd(M) return all(eigvals(Matrix(M.Q)) .≥ -config.atol) end @test ispsd(SetProg.SumOfSquares.moment_matrix(cref1)) @test ispsd(SetProg.SumOfSquares.moment_matrix(cref2)) end) end const switched_system_tests = Dict("feasible_switched_system_ell" => feasible_switched_system_ell_test, "infeasible_switched_system_ell" => infeasible_switched_system_ell_test, "feasible_switched_system_quad" => feasible_switched_system_quad_test, "infeasible_switched_system_quad" => infeasible_switched_system_quad_test, "feasible_switched_system_quartic" => feasible_switched_system_quartic_test, "infeasible_switched_system_quartic" => infeasible_switched_system_quartic_test) @test_suite switched_system
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
code
3046
using Test, JuMP function _model(optimizer::MOI.AbstractOptimizer) MOI.empty!(optimizer) return direct_model(optimizer) end function _model(optimizer_constructor) return Model(optimizer_constructor) end #""" # @test_suite setname subsets # #Defines a function `setname_test(model, config, exclude)` that runs the tests #defined in the dictionary `setname_tests` with the model `model` and config #`config` except the tests whose dictionary key is in `exclude`. If `subsets` is #`true` then each test runs in fact multiple tests hence the `exclude` argument #is passed as it can also contains test to be excluded from these subsets of #tests. #""" macro test_suite(setname, subsets=false) testname = Symbol(string(setname) * "_test") testdict = Symbol(string(testname) * "s") if subsets runtest = :( f(model, config, exclude) ) else runtest = :( f(model, config) ) end esc(:( function $testname(model, config::$MOI.Test.Config, exclude::Vector{String} = String[]) for (name,f) in $testdict if name in exclude continue end @testset "$name" begin $runtest end end end )) end # Utilities for building the mock `optimize!` from the solution of a solver # Variables primal values for inner bridged model function print_value(v, atol) i = round(v) if isapprox(v, i, atol=atol) print(float(i)) else print(v) end end function inner_variable_value(model, atol=1e-4) inner = backend(model) println("optimize!(mock) = MOIU.mock_optimize!(mock,") println(JuMP.termination_status(model)) if JuMP.primal_status(model) != MOI.NO_SOLUTION values = MOI.get(inner, MOI.VariablePrimal(), MOI.get(inner, MOI.ListOfVariableIndices())) print("(MOI.FEASIBLE_POINT, [") for (i, v) in enumerate(values) if i > 1 print(", ") end print_value(v, atol) end print("])") else print("MOI.NO_SOLUTION") end println(",") if JuMP.dual_status(model) != MOI.NO_SOLUTION for (F, S) in MOI.get(inner, MOI.ListOfConstraints()) print("($F, $S) => [") for ci in MOI.get(inner, MOI.ListOfConstraintIndices{F, S}()) print(MOI.get(inner, MOI.ConstraintDual(), ci)) print(", ") end println("])") end end println(")") end # Constraint dual values for inner bridged model # The order between the pieces might vary so it's more robust # to find at which index is a piece using a known point in the interior of the piece function _test_piece(set, point, Q, config) is_in = [point in piece for piece in set.pieces] @test count(is_in) == 1 i = findfirst(is_in) @test set.sets[i].Q ≈ Q atol=config.atol rtol=config.rtol return end
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
docs
6759
# SetProg | **Documentation** | **Build Status** | **Social** | |:-----------------:|:----------------:|:----------:| | [![][docs-stable-img]][docs-stable-url] | [![Build Status][build-img]][build-url] | [![Gitter][gitter-img]][gitter-url] | | [![][docs-latest-img]][docs-latest-url] | [![Codecov branch][codecov-img]][codecov-url] | [<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Discourse_logo.png/799px-Discourse_logo.png" width="64">][discourse-url] | JuMP extension for Set Programming : optimization with set variables and inclusion/containment constraints. This package allows the formulation of a mathematical program involving set variables and inclusion/membership constraints in addition to classical variables and constraints supported by JuMP. ## Documentation - [**STABLE**][docs-stable-url] &mdash; **most recently tagged version of the documentation.** - [**LATEST**][docs-latest-url] &mdash; *in-development version of the documentation.* ## Variables The variables can either be * a `Polytope`; * an `Ellipsoid`, or a piecewise semi-ellipsoid; * a `Polyset`, that is the 1-sublevel set of a polynomial of degree `2d`. ```julia @variable model S Polytope(piecewise=p) # polytope defined over the pieces defined by `p` @variable model S Ellipsoid() @variable model S Ellipsoid(piecewise=p) # piecewise semi-ellipsoid defined over the pieces defined by `p` @variable model S PolySet(d) # 1-sublevel set of a polynomial of degree 2d @variable model S PolySet(d, convex=true) # Convex 1-sublevel set of a polynomial of degree 2d @variable model S PolySet(d, symmetric=true) # 1-sublevel set of a polynomial of degree 2d symmetric around the origin @variable model S PolySet(d, symmetric=true, point=SetProg.CenterPoint([1, 0])) # 1-sublevel set of a polynomial of degree 2d symmetric around the [1, 0] ``` ## Expressions The following operations are allowed: | Operation | Description | |-----------|-------------------------------| | A\*S | Linear mapping | But more operations are planned to be added: | Operation | Description | |-----------|-------------------------------| | S + x | Translation of `S` by `x` | | S1 + S2 | Minkowski sum | | S1 ∩ S2 | Intersection of `S1` and `S2` | | S1 ∪ S2 | Union of `S1` and `S2` | | polar(S) | Polar of S | ## Constraints The following constraints are implemented | Operation | Description | |-----------|--------------------------| | x ∈ S | `x` is contained in `S` | | S1 ⊆ S2 | `S1` is included in `S2` | | S1 ⊇ S2 | `S1` is included in `S2` | ## Examples Consider a polytope ```julia using Polyhedra diamond = HalfSpace([1, 1], 1) ∩ HalfSpace([-1, -1], 1) ∩ HalfSpace([1, -1], 1) ∩ HalfSpace([-1, 1], 1) simplex = HalfSpace([1, 1], 1) ∩ HalfSpace([-1, 0], 0) ∩ HalfSpace([0, -1], 0) ``` Pick an SDP solver (see [here](https://www.juliaopt.org/JuMP.jl/stable/installation/#Getting-Solvers-1) for a list) ```julia using CSDP # Optimizer optimizer_constructor = CSDP.Optimizer ``` To compute the maximal symmetric ellipsoid contained in the polytope `diamond` defined above (i.e. [Löwner-John ellipsoid](https://github.com/rdeits/LoewnerJohnEllipsoids.jl)): ```julia using SetProg model = Model(optimizer_constructor) @variable(model, S, Ellipsoid(symmetric=true)) @constraint(model, S ⊆ diamond) @objective(model, Max, nth_root(volume(S))) optimize!(model) ``` We specify in the example that the ellipsoid is symmetric around the origin to simplify the computation as the solver does not need to look for the center so the SDP problem that need to be solved has a smaller size. We can visualize the result with [Plots](http://juliaplots.org/) as follows: ```julia using Plots plot(polyhedron(diamond), ratio=1) plot!(value(S)) ``` To compute the maximal ellipsoid contained in `simplex`, we don't need to specify the center but at least a point in the interior of the ellipsoid. The SDP formulation used will then determine the center and shape of the ellipsoid simultaneously in the same SDP. For the interior point, we take the chebyshev center of the simplex (which can be found by solving an LP). This the center of the sphere of maximal volume in the simplex so one might rightly guess that is is in the interior of the maximal ellispoid contained in the simplex. ```julia using SetProg cheby_center, cheby_radius = chebyshevcenter(simplex, optimizer_constructor) interior_point = SetProg.InteriorPoint(cheby_center) model = Model(optimizer_constructor) @variable(model, S, Ellipsoid(point=interior_point)) @constraint(model, S ⊆ simplex) @objective(model, Max, nth_root(volume(S))) optimize!(model) ``` We now visualize the result: ```julia using Plots plot(polyhedron(simplex), ratio=1) plot!(value(S)) ``` To compute the maximal invariant set contained in a polytope (*not yet implemented*): ```julia using SetProg model = Model(optimizer_constructor) @variable(model, S, Polytope()) @constraint(model, S ⊆ diamond) @constraint(model, A*S ⊆ S) # Invariance constraint @objective(model, Max, volume(S)) optimize!(model) ``` To compute the maximal invariant ellipsoid contained in the polytope `diamond` defined above: ```julia using SetProg model = Model(optimizer_constructor) @variable(model, S, Ellipsoid(symmetric=true)) @constraint(model, S ⊆ diamond) @constraint(model, A*S ⊆ S) # Invariance constraint @objective(model, Max, nth_root(volume(S))) optimize!(model) ``` To compute the maximal algebraic-invariant ellipsoid (i.e. `AS ⊆ ES`) contained in the polytope `diamond` defined above: ```julia using SetProg model = Model(optimizer_constructor) @variable(model, S, Ellipsoid(symmetric=true))) @constraint(model, S ⊆ diamond) @constraint(model, A*S ⊆ E*S) # Invariance constraint @objective(model, Max, L1_heuristic(volume(S), ones(Polyhedra.fulldim(P)))) optimize!(model) ``` [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-stable-url]: https://blegat.github.io/SetProg.jl/stable [docs-latest-url]: https://blegat.github.io/SetProg.jl/dev [build-img]: https://github.com/blegat/SetProg.jl/workflows/CI/badge.svg?branch=master [build-url]: https://github.com/blegat/SetProg.jl/actions?query=workflow%3ACI [codecov-img]: http://codecov.io/github/blegat/SetProg.jl/coverage.svg?branch=master [codecov-url]: http://codecov.io/github/blegat/SetProg.jl?branch=master [gitter-url]: https://gitter.im/JuliaPolyhedra/Lobby?utm_source=share-link&utm_medium=link&utm_campaign=share-link [gitter-img]: https://badges.gitter.im/JuliaPolyhedra/Lobby.svg [discourse-url]: https://discourse.julialang.org/c/domain/opt
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.4.0
7fe53b00c86f4bd820ea7d8d97dcb3cf3287e0eb
docs
342
# SetProg [SetProg](https://github.com/blegat/SetProg.jl) is a JuMP extension for Set Programming : optimization with set variables and inclusion/containment constraints. This package allows the formulation of a mathematical programming involving both classical variables and constraints supported by JuMP and set variables and constraints.
SetProg
https://github.com/blegat/SetProg.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
674
using Documenter, LoopTools makedocs(; modules=[LoopTools], authors="Feng-Kun Guo", repo="https://github.com/fkguo/LoopTools.jl/blob/{commit}{path}#L{line}", sitename="LoopTools.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://fkguo.github.io/LoopTools.jl", assets=String[], ), pages=[ "Home" => "index.md", "Definitions" => "definitions.md", "Example" => "example.md" ], ) deploydocs(; repo="github.com/fkguo/LoopTools.jl.git", target = "build", deps = nothing, make = nothing, branch = "gh-pages" # push_preview=true, )
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
2313
# The 1-point one-loop integrals const aa0 = 1; const aa00 = 4 const acoef = (:aa0, :aa00) @doc raw""" A0i(id, m^2) one-point tensor coefficient for `id` ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int d^D q \frac{\{1, g_{μν} \} }{q^2-m^2} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε```. Special cases: | `id` | Int | Description | |:---|:---:|:---| | `aa0` |`1` | scalar one-point one-loop function, i.e., `A0(m^2)` | | `aa00` | `4` | coefficient of ``g_{μν}`` | """ function A0i end # somehow here the returning type must be ComplexF64 is I use the original LoopTools_jll. # otherwise there would be a EXCEPTION_ACCESS_VIOLATION to crash julia function A0i(id, msq::Real) _a0i = ccall((:a0i_, libooptools), ComplexF64, (Ref{Int64}, Ref{Float64}), id, msq) return real(_a0i) # we know this must be real end A0i(id, msq::Complex) = ccall((:a0ic_, libooptools), ComplexF64, (Ref{Int64}, Ref{ComplexF64}), id, msq) @doc raw""" A0(m^2) the scalar one-point one-loop function ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int d^D q \frac{1}{q^2-m^2} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. """ A0(msq::Real) = A0i(aa0, msq) # ccall((:a0_, libooptools), ComplexF64, (Ref{Float64},), msq) A0(msq) = ccall((:a0c_, libooptools), ComplexF64, (Ref{ComplexF64},), msq) A00(msq) = A0i(aa00, msq) """ Aget(m^2; val_only = false) the finite piece of all one-point tensor coefficients. See also [`aget`](@ref). * `val_only = false`, return a `NamedTuple`; otherwise return an `NTuple`. """ Aget @doc raw""" aget(msq) return all one-point coefficients; each one is characterized by three numbers, with the later two coefficients of ``ε^{-1}`` and ``ε^{-2}``, respectively. See also [`Aget`](@ref) and [`agetsym`](@ref). """ aget @doc raw""" aput!(res::Vector{ComplexF64}, msq) return all one-point coefficients to the preallocated array `res` of length 6. See also [`aget`](@ref) and [`agetsym`](@ref). """ aput! _define_get('A', 1, 2) function aget(msq::Real) ccall((:aput_, libooptools), Cvoid, (Ptr{Vector{ComplexF64}}, Ref{Float64}, Csize_t), _Ares_, msq, 6) _Ares_ end # slower than `Aget` Agetnocache(msq) = NamedTuple{(:aa0, :aa00)}((A0i(aa0, msq), A0i(aa00, msq)) )
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
3646
# The 2-point one-loop integrals const bb0 = 1; const bb1 = 4; const bb00 = 7 const bb11 = 10; const bb001 = 13; const bb111 = 16 const dbb0 = 19; const dbb1 = 22; const dbb00 = 25; const dbb11 = 28; const dbb001 = 31 const bcoef = (:bb0, :bb1, :bb00, :bb11, :bb001, :bb111, :dbb0, :dbb1, :dbb00, :dbb11, :dbb001) @doc raw""" B0i(id, p^2, m1^2, m2^2) two-point tensor coefficient for `id` ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{({\rm numerator})\, d^D q }{(q^2-m_1^2)\left[(q+p)^2-m_2^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. Special cases: | `id` | Int | Description | |:---|:---:|:---| | `bb0` (`dbb0`) |`1` (`19`) | (derivative of) scalar two-point one-loop function | | `bb1` (`dbb1`) | `4` (`22`) | (derivative of) coefficient of ``p_{μ}`` | | `bb00` (`dbb00`) | `7` (`25`) | (derivative of) coefficient of ``g_{μν}`` | | `bb11` (`dbb11`) | `10` (`28`) | (derivative of) coefficient of ``p_μ p_ν`` | | `bb001` (`dbb001`) | `13` (`31`) | (derivative of) coefficient of ``g_{μν}p_ρ`` | | `bb111` | `16` | coefficient of ``p_μ p_ν p_ρ`` | Functions `B0`, `B1`, `B00`, `B11`, `B001` and `B111` are defined. """ function B0i(id, psq::Real, m1sq::Real, m2sq::Real) ccall((:b0i_, libooptools), ComplexF64, (Ref{Int64}, Ref{Float64}, Ref{Float64}, Ref{Float64}), id, psq, m1sq, m2sq) end function B0i(id, psq, m1sq, m2sq) ccall((:b0ic_, libooptools), ComplexF64, (Ref{Int64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), id, psq, m1sq, m2sq) end @doc raw""" B0(p^2, m1^2, m2^2) the scalar two-point one-loop function ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{d^D q }{(q^2-m_1^2)\left[(q+p)^2-m_2^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. """ B0 "Coefficients of two-point tensor loop integral. See `B0i`." B00, B11, B001, B111, DB0, DB1, DB00, DB11 for f in (:B0, :B1, :B00, :B11, :B001, :B111, :DB0, :DB1, :DB00, :DB11) ff = lowercase(string("$(f)_")) @eval function ($f)(psq::Real, m1sq::Real, m2sq::Real) ccall(($ff, libooptools), ComplexF64, (Ref{Float64}, Ref{Float64}, Ref{Float64}), psq, m1sq, m2sq) end end for f in (:B0, :B1, :B00, :B11, :B001, :B111, :DB0, :DB1, :DB00, :DB11) ff = lowercase(string("$(f)c_")) @eval function ($f)(psq, m1sq, m2sq) ccall(($ff, libooptools), ComplexF64, (Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), psq, m1sq, m2sq) end end """ Bget(p^2, m1^2, m2^2; val_only = false) return the finite piece of all two-point coefficients. See also [`bget`](@ref). * `val_only = false`, return a `NamedTuple`; otherwise return an `NTuple`. """ Bget @doc raw""" bget(p^2, m1^2, m2^2) return all two-point coefficients; each one is characterized by three numbers, with the later two coefficients of ``ε^{-1}`` and ``ε^{-2}``, respectively. See also [`Bget`](@ref) and [`bgetsym`](@ref). """ bget @doc raw""" bput!(res::Vector{ComplexF64}, p^2, m1^2, m2^2) return all two-point coefficients to the preallocated array `res` of length 33. See also [`bget`](@ref) and [`bgetsym`](@ref). """ bput! # define bget and Bget _define_get('B', 3, 11) function bget(p::Real, m1::Real, m2::Real) ccall((:bput_, libooptools), Cvoid, (Ptr{Vector{ComplexF64}}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Csize_t), _Bres_, p, m1, m2, 33) _Bres_ end # Bgetnocache let _str_ = join(["B0i($i, psq, m1sq, m2sq)," for i in bcoef]) Meta.parse(string("Bgetnocache(psq, m1sq, m2sq) = NamedTuple{bcoef}((", _str_[1:end-1], "))")) |> eval end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
4312
# The 3-point one-loop integrals const cc0 = 1; const cc1 = 4; const cc2 = 7; const cc00 = 10; const cc11 = 13; const cc12 = 16; const cc22 = 19; const cc001 = 22; const cc002 = 25; const cc111 = 28; const cc112 = 31; const cc122 = 34; const cc222 = 37; const cc0000 = 40; const cc0011 = 43; const cc0012 = 46; const cc0022 = 49; const cc1111 = 52; const cc1112 = 55; const cc1122 = 58; const cc1222 = 61; const cc2222 = 64 const ccoef = (:cc0, :cc1, :cc2, :cc00, :cc11, :cc12, :cc22, :cc001, :cc002, :cc111, :cc112, :cc122, :cc222, :cc0000, :cc0011, :cc0012, :cc0022, :cc1111, :cc1112, :cc1122, :cc1222, :cc2222) @doc raw""" C0i(id, p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2) three-point tensor coefficient for `id` ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{({\rm numerator})\, d^D q }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. Special cases: | `id` | Int | Description | |:---|:---:|:---| | `cc0` |`1` | scalar three-point one-loop function | | `cc1` | `4` | coefficient of ``k_{1μ}`` | | `cc2` | `7` | coefficient of ``k_{2μ}`` | | `cc00` | `10` | coefficient of ``g_{μν}`` | | `cc11` | `13` | coefficient of ``k_{1μ} k_{1ν}`` | | `cc12` | `16` | coefficient of ``k_{1μ} k_{2ν}`` | | `cc22` | `19` | coefficient of ``k_{2μ} k_{2ν}`` | | `...` | `...` | `...` | | `cc2222` | `64` | coefficient of ``k_{2μ} k_{2ν} k_{2ρ} k_{2σ}`` | where $k_{1,2}$ are related to $p_{1,2}$ by ``k_{j} = \sum_{i=1}^j p_i``. """ function C0i(id, p1sq::Real, p2sq::Real, p3sq::Real, m1sq::Real, m2sq::Real, m3sq::Real) ccall((:c0i_, libooptools), ComplexF64, (Ref{Int64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}), id, p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) end function C0i(id, p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) ccall((:c0ic_, libooptools), ComplexF64, (Ref{Int64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), id, p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) end @doc raw""" C0(p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2) the scalar three-point one-loop function ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{d^D q }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. """ function C0(p1sq::Real, p2sq::Real, p3sq::Real, m1sq::Real, m2sq::Real, m3sq::Real) ccall((:c0_, libooptools), ComplexF64, (Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}), p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) end function C0(p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) ccall((:c0c_, libooptools), ComplexF64, (Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), p1sq, p2sq, p3sq, m1sq, m2sq, m3sq) end """ Cget(p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2; val_only = false) return the finite piece of all three-point coefficients. See also [`cget`](@ref). * `val_only = false`, return a `NamedTuple`; otherwise return an `NTuple`. """ Cget @doc raw""" cget(p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2) return all three-point coefficients; each one is characterized by three numbers, with the later two coefficients of ``ε^{-1}`` and ``ε^{-2}``, respectively. See also [`Cget`](@ref) and [`cgetsym`](@ref). """ cget @doc raw""" cput!(res::Vector{ComplexF64}, p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2) return all three-point coefficients to the preallocated array `res` of length 66. See also [`cget`](@ref) and [`cgetsym`](@ref). """ cput! _define_get('C', 6, 22) function cget(p1sq::Real, p2sq::Real, p3sq::Real, m1sq::Real, m2sq::Real, m3sq::Real) ccall((:cput_, libooptools), Cvoid, (Ptr{Vector{ComplexF64}}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Csize_t), _Cres_, p1sq, p2sq, p3sq, m1sq, m2sq, m3sq, 66) _Cres_ end # Cgetnocache let _str_ = join(["C0i($i, p1,p2,p1p2,m1,m2,m3)," for i in ccoef]) Meta.parse( string("Cgetnocache(p1, p2, p1p2, m1, m2, m3) = NamedTuple{ccoef}((", _str_[1:end-1], "))") ) |> eval end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
6298
# The 4-point one-loop integrals const dd0 = 1; const dd1 = 4; const dd2 = 7; const dd3 = 10; const dd00 = 13; const dd11 = 16; const dd12 = 19; const dd13 = 22; const dd22 = 25; const dd23 = 28; const dd33 = 31; const dd001 = 34; const dd002 = 37; const dd003 = 40; const dd111 = 43; const dd112 = 46; const dd113 = 49; const dd122 = 52; const dd123 = 55; const dd133 = 58; const dd222 = 61; const dd223 = 64; const dd233 = 67; const dd333 = 70; const dd0000 = 73; const dd0011 = 76; const dd0012 = 79; const dd0013 = 82; const dd0022 = 85; const dd0023 = 88; const dd0033 = 91; const dd1111 = 94; const dd1112 = 97; const dd1113 = 100; const dd1122 = 103; const dd1123 = 106; const dd1133 = 109; const dd1222 = 112; const dd1223 = 115; const dd1233 = 118; const dd1333 = 121; const dd2222 = 124; const dd2223 = 127; const dd2233 = 130; const dd2333 = 133; const dd3333 = 136; const dd00001 = 139; const dd00002 = 142; const dd00003 = 145; const dd00111 = 148; const dd00112 = 151; const dd00113 = 154; const dd00122 = 157; const dd00123 = 160; const dd00133 = 163; const dd00222 = 166; const dd00223 = 169; const dd00233 = 172; const dd00333 = 175; const dd11111 = 178; const dd11112 = 181; const dd11113 = 184; const dd11122 = 187; const dd11123 = 190; const dd11133 = 193; const dd11222 = 196; const dd11223 = 199; const dd11233 = 202; const dd11333 = 205; const dd12222 = 208; const dd12223 = 211; const dd12233 = 214; const dd12333 = 217; const dd13333 = 220; const dd22222 = 223; const dd22223 = 226; const dd22233 = 229; const dd22333 = 232; const dd23333 = 235; const dd33333 = 238 const dcoef = (:dd0, :dd1, :dd2, :dd3, :dd00, :dd11, :dd12, :dd13, :dd22, :dd23, :dd33, :dd001, :dd002, :dd003, :dd111, :dd112, :dd113, :dd122, :dd123, :dd133, :dd222, :dd223, :dd233, :dd333, :dd0000, :dd0011, :dd0012, :dd0013, :dd0022, :dd0023, :dd0033, :dd1111, :dd1112, :dd1113, :dd1122, :dd1123, :dd1133, :dd1222, :dd1223, :dd1233, :dd1333, :dd2222, :dd2223, :dd2233, :dd2333, :dd3333, :dd00001, :dd00002, :dd00003, :dd00111, :dd00112, :dd00113, :dd00122, :dd00123, :dd00133, :dd00222, :dd00223, :dd00233, :dd00333, :dd11111, :dd11112, :dd11113, :dd11122, :dd11123, :dd11133, :dd11222, :dd11223, :dd11233, :dd11333, :dd12222, :dd12223, :dd12233, :dd12333, :dd13333, :dd22222, :dd22223, :dd22233, :dd22333, :dd23333, :dd33333) @doc raw""" D0i(id, p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2) four-point tensor coefficient for `id` ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{({\rm numerator})\, d^D q }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right] \left[(q+p_1+p_2+p_3)^2-m_4^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. Special cases: | `id` | Int | Description | |:---|:---:|:---| | `dd0` |`1` | scalar four-point one-loop function | | `dd1` | `4` | coefficient of ``k_{1μ}`` | | `dd2` | `7` | coefficient of ``k_{2μ}`` | | `dd3` | `10` | coefficient of ``k_{3μ}`` | | `dd00` | `13` | coefficient of ``g_{μν}`` | | `...` | `...` | `...` | | `dd33333` | `238` | coefficient of ``k_{3μ} k_{3ν} k_{3ρ} k_{3σ} k_{3λ}`` | where $k_{1,2,3}$ are related to the external momenta $p_{1,2,3}$ by ``k_{j} = \sum_{i=1}^j p_i``. """ function D0i(id, p1sq::Real, p2sq::Real, p3sq::Real, p4sq::Real, p12sq::Real, p23sq::Real, m1sq::Real, m2sq::Real, m3sq::Real, m4sq::Real) ccall((:d0i_, libooptools), ComplexF64, (Ref{Int64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}), id, p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq) end function D0i(id, p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq) ccall((:d0ic_, libooptools), ComplexF64, (Ref{Int64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), id, p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq) end @doc raw""" D0(p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2) the scalar four-point one-loop function ```math \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int \frac{d^D q }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right] \left[(q+p_1+p_2+p_3)^2-m_4^2\right]} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. """ D0(p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq) = D0i(dd0, p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq) """ Dget(p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2; val_only = false) return the finite piece of all four-point coefficients. See also [`dget`](@ref). * `val_only = false`, return a `NamedTuple`; otherwise return an `NTuple`. """ Dget @doc raw""" dget(p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2) return all four-point coefficients; each one is characterized by three numbers, with the later two coefficients of ``ε^{-1}`` and ``ε^{-2}``, respectively. See also [`Dget`](@ref) and [`dgetsym`](@ref). """ dget @doc raw""" dput!(res::Vector{ComplexF64}, p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2) return all four-point coefficients to the preallocated array `res` of length 240. See also [`dget`](@ref) and [`dgetsym`](@ref). """ dput! _define_get('D', 10, 80) function dget(p1sq::Real, p2sq::Real, p3sq::Real, p4sq::Real, p12sq::Real, p23sq::Real, m1sq::Real, m2sq::Real, m3sq::Real, m4sq::Real) ccall((:dput_, libooptools), Cvoid, (Ptr{Vector{ComplexF64}}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Csize_t), _Dres_, p1sq, p2sq, p3sq, p4sq, p12sq, p23sq, m1sq, m2sq, m3sq, m4sq, 240) _Dres_ end # Dgetnocache let _str_ = join(["D0i($i, p1,p2,p3,p4,p12,p23,m1,m2,m3,m4)," for i in dcoef]) Meta.parse(string("Dgetnocache(p1,p2,p3,p4,p12,p23,m1,m2,m3,m4) = NamedTuple{dcoef}((", _str_[1:end-1], "))") ) |> eval end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
7567
# The 5-point one-loop integrals const ee0 = 1; const ee1 = 4; const ee2 = 7; const ee3 = 10; const ee4 = 13; const ee00 = 16; const ee11 = 19; const ee12 = 22; const ee13 = 25; const ee14 = 28; const ee22 = 31; const ee23 = 34; const ee24 = 37; const ee33 = 40; const ee34 = 43; const ee44 = 46; const ee001 = 49; const ee002 = 52; const ee003 = 55; const ee004 = 58; const ee111 = 61; const ee112 = 64; const ee113 = 67; const ee114 = 70; const ee122 = 73; const ee123 = 76; const ee124 = 79; const ee133 = 82; const ee134 = 85; const ee144 = 88; const ee222 = 91; const ee223 = 94; const ee224 = 97; const ee233 = 100; const ee234 = 103; const ee244 = 106; const ee333 = 109; const ee334 = 112; const ee344 = 115; const ee444 = 118; const ee0000 = 121; const ee0011 = 124; const ee0012 = 127; const ee0013 = 130; const ee0014 = 133; const ee0022 = 136; const ee0023 = 139; const ee0024 = 142; const ee0033 = 145; const ee0034 = 148; const ee0044 = 151; const ee1111 = 154; const ee1112 = 157; const ee1113 = 160; const ee1114 = 163; const ee1122 = 166; const ee1123 = 169; const ee1124 = 172; const ee1133 = 175; const ee1134 = 178; const ee1144 = 181; const ee1222 = 184; const ee1223 = 187; const ee1224 = 190; const ee1233 = 193; const ee1234 = 196; const ee1244 = 199; const ee1333 = 202; const ee1334 = 205; const ee1344 = 208; const ee1444 = 211; const ee2222 = 214; const ee2223 = 217; const ee2224 = 220; const ee2233 = 223; const ee2234 = 226; const ee2244 = 229; const ee2333 = 232; const ee2334 = 235; const ee2344 = 238; const ee2444 = 241; const ee3333 = 244; const ee3334 = 247; const ee3344 = 250; const ee3444 = 253; const ee4444 = 256 const ecoef = (:ee0, :ee1, :ee2, :ee3, :ee4, :ee00, :ee11, :ee12, :ee13, :ee14, :ee22, :ee23, :ee24, :ee33, :ee34, :ee44, :ee001, :ee002, :ee003, :ee004, :ee111, :ee112, :ee113, :ee114, :ee122, :ee123, :ee124, :ee133, :ee134, :ee144, :ee222, :ee223, :ee224, :ee233, :ee234, :ee244, :ee333, :ee334, :ee344, :ee444, :ee0000, :ee0011, :ee0012, :ee0013, :ee0014, :ee0022, :ee0023, :ee0024, :ee0033, :ee0034, :ee0044, :ee1111, :ee1112, :ee1113, :ee1114, :ee1122, :ee1123, :ee1124, :ee1133, :ee1134, :ee1144, :ee1222, :ee1223, :ee1224, :ee1233, :ee1234, :ee1244, :ee1333, :ee1334, :ee1344, :ee1444, :ee2222, :ee2223, :ee2224, :ee2233, :ee2234, :ee2244, :ee2333, :ee2334, :ee2344, :ee2444, :ee3333, :ee3334, :ee3344, :ee3444, :ee4444 ) @doc raw""" E0i(id, p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2) five-point tensor coefficient for `id` ```math \begin{aligned} \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int d^D q & \frac{({\rm numerator}) }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right] \left[(q+p_1+p_2+p_3)^2-m_4^2\right]} \\ &\times \frac1{\left[(q+p_1+p_2+p_3+p_4)^2-m_5^2\right]} \end{aligned} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. Special cases: | `id` | Int | Description | |:---|:---:|:---| | `ee0` |`1` | scalar five-point one-loop function | | `ee1` | `4` | coefficient of ``k_{1μ}`` | | `ee2` | `7` | coefficient of ``k_{2μ}`` | | `ee3` | `10` | coefficient of ``k_{3μ}`` | | `ee00` | `13` | coefficient of ``g_{μν}`` | | `...` | `...` | `...` | | `ee4444` | `256` | coefficient of ``k_{4μ} k_{4ν} k_{4ρ} k_{4σ}`` | where $k_{1,2,3,4}$ are related to the external momenta $p_{1,2,3,4}$ by ``k_{j} = \sum_{i=1}^j p_i``. """ function E0i(id, p1sq::Real, p2sq::Real, p3sq::Real, p4sq::Real, p5sq::Real, p12sq::Real, p23sq::Real, p34sq::Real, p45sq::Real, p51sq::Real, m1sq::Real, m2sq::Real, m3sq::Real, m4sq::Real, m5sq::Real) ccall((:e0i_, libooptools), ComplexF64, (Ref{Int64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}), id, p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq) end function E0i(id, p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq) ccall((:e0ic_, libooptools), ComplexF64, (Ref{Int64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}), id, p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq) end @doc raw""" E0(p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2) the scalar five-point one-loop function ```math \begin{aligned} \frac{μ^{4-D}}{iπ^{D/2} r_Γ} \int d^D q & \frac{1 }{(q^2-m_1^2)\left[(q+p_1)^2-m_2^2\right] \left[(q+p_1+p_2)^2-m_3^2\right] \left[(q+p_1+p_2+p_3)^2-m_4^2\right]} \\ &\times \frac1{\left[(q+p_1+p_2+p_3+p_4)^2-m_5^2\right]} \end{aligned} ``` with ``r_Γ = \frac{Γ^2(1-ε)Γ(1+ε)}{Γ(1-2ε)}``, ``D=4-2ε``. """ E0(p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq) = E0i(ee0, p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq) """ Eget(p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2; val_only = false) return the finite piece of all five-point coefficients. See also [`eget`](@ref). * `val_only = false`, return a `NamedTuple`; otherwise return an `NTuple`. """ Eget @doc raw""" eget(p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2) return all five-point coefficients; each one is characterized by three numbers, with the later two coefficients of ``ε^{-1}`` and ``ε^{-2}``, respectively. See also [`Eget`](@ref) and [`egetsym`](@ref). """ eget @doc raw""" eput!(res::Vector{ComplexF64}, p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2) return all five-point coefficients to the preallocated array `res` of length 258. See also [`eget`](@ref) and [`egetsym`](@ref). """ eput! _define_get('E', 15, 86) # for all real args, if using the one from _defince_get, julia would crash; # this does not happen for other cases, don't know why # _Eres_ defined via _define_get; function eget(p1sq::Real, p2sq::Real, p3sq::Real, p4sq::Real, p5sq::Real, p12sq::Real, p23sq::Real, p34sq::Real, p45sq::Real, p51sq::Real, m1sq::Real, m2sq::Real, m3sq::Real, m4sq::Real, m5sq::Real) ccall((:eput_, libooptools), Cvoid, (Ptr{Vector{ComplexF64}}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Csize_t), _Eres_, p1sq, p2sq, p3sq, p4sq, p5sq, p12sq, p23sq, p34sq, p45sq, p51sq, m1sq, m2sq, m3sq, m4sq, m5sq, 258) _Eres_ end # Egetnocache let _str_ = join(["E0i($i, p1,p2,p3,p4,p5,p12,p23,p34,p45,p51,m1,m2,m3,m4,m5)," for i in ecoef]) Meta.parse(string("Egetnocache(p1,p2,p3,p4,p5,p12,p23,p34,p45,p51,m1,m2,m3,m4,m5) = NamedTuple{ecoef}((", _str_[1:end-1], "))") ) |> eval end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
430
@doc """ Li2(x) return the dilogarithm of ``x``. """ Li2(x) = ccall((:li2c_, libooptools), ComplexF64, (Ref{ComplexF64},), x) Li2(x::Real) = ccall((:li2_, libooptools), ComplexF64, (Ref{Float64},), x) @doc """ Li2omx(x) return the dilogarithm of ``1-x``. """ Li2omx(x) = ccall((:li2omxc_, libooptools), ComplexF64, (Ref{ComplexF64},), x) Li2omx(x::Real) = ccall((:li2omx_, libooptools), ComplexF64, (Ref{Float64},), x)
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
2617
__precompile__(true) module LoopTools export A0, A0i, A00, Aget, aget, Agetnocache, Li2, Li2omx, B0, B0i, B1, B00, B11, B001, B111, DB0, DB1, DB00, DB11, Bget, bget, Bgetnocache, C0, C0i, Cget, cget, Cgetnocache, aput!, bput!, cput!, dput!, eput!, D0, D0i, Dget, dget, Dgetnocache, E0, E0i, Eget, eget, Egetnocache export aa0, bb0, bb1, bb00, bb11, bb001, bb111 export dbb0, dbb1, dbb00, dbb11, dbb001 export cc0, cc1, cc2, cc00, cc11, cc12, cc22, cc001, cc002, cc111, cc112, cc122 export cc222, cc0000, cc0011, cc0012, cc0022, cc1111, cc1112, cc1122, cc1222, cc2222 export dd0, dd1, dd2, dd3, dd00, dd11, dd12, dd13, dd22, dd23, dd33, dd001, dd002, dd003 export dd111, dd112, dd113, dd122, dd123, dd133, dd222, dd223, dd233, dd333 export dd0000, dd0011, dd0012, dd0013, dd0022, dd0023, dd0033, dd1111, dd1112, dd1113, dd1122, dd1123, dd1133, dd1222, dd1223, dd1233, dd1333, dd2222, dd2223, dd2233, dd2333, dd3333, dd00001, dd00002, dd00003, dd00111, dd00112, dd00113, dd00122, dd00123, dd00133, dd00222, dd00223, dd00233, dd00333, dd11111, dd11112, dd11113, dd11122, dd11123, dd11133, dd11222, dd11223, dd11233, dd11333, dd12222, dd12223, dd12233, dd12333, dd13333, dd22222, dd22223, dd22233, dd22333, dd23333, dd33333 export ee0, ee1, ee2, ee3, ee4, ee00, ee11, ee12, ee13, ee14, ee22, ee23, ee24, ee33, ee34, ee44, ee001, ee002, ee003, ee004, ee111, ee112, ee113, ee114, ee122, ee123, ee124, ee133, ee134, ee144, ee222, ee223, ee224, ee233, ee234, ee244, ee333, ee334, ee344, ee444, ee0000, ee0011, ee0012, ee0013, ee0014, ee0022, ee0023, ee0024, ee0033, ee0034, ee0044, ee1111, ee1112, ee1113, ee1114, ee1122, ee1123, ee1124, ee1133, ee1134, ee1144, ee1222, ee1223, ee1224, ee1233, ee1234, ee1244, ee1333, ee1334, ee1344, ee1444, ee2222, ee2223, ee2224, ee2233, ee2234, ee2244, ee2333, ee2334, ee2344, ee2444, ee3333, ee3334, ee3344, ee3444, ee4444 export libooptools export ltexi, clearcache, markcache, restorecache, getcmpbits, setcmpbits, getversionkey, setversionkey, getdebugkey, setdebugkey, getmaxdev, setmaxdev, setdebugrange, getwarndigits, setwarndigits, geterrdigits, seterrdigits, getdelta, setdelta, getmudim, setmudim, getlambda, setlambda, getminmass, setminmass, getuvdiv, setuvdiv, getzeroeps, setzeroeps, setdiffeps, getepsi export acoef, bcoef, ccoef, dcoef, ecoef export DRResult, ε, agetsym, bgetsym, cgetsym, dgetsym, egetsym using LoopTools_jll include("init.jl") include("meta.jl") include("A.jl") include("B.jl") include("C.jl") include("D.jl") include("E.jl") include("Li2.jl") include("utils.jl") include("sym.jl") end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
93
# initialize LoopTools function __init__() ccall((:ltini_, libooptools), Cvoid, ()) end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
2200
# E functions have 15 arguments, this list is sufficient const _for_args = "a,b,c,d,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t" # internal function, to define the Lget and lget functions # L: 'A', 'B', 'C', 'D', 'E' for 1 to 5 point integrals # args: the arguments of these integrals # narg: No. of arguments; 1 for A, 3 for B, 6 for C, 10 for D, 15 for E # ncoef: No. of tensor coefficients; 2 for A, 11 for B, 22 for C, 80 for D, 86 for E function _define_get(L, narg::Int, ncoef::Int) _args = _for_args[1:(2narg-1)] _size = 3ncoef _l = lowercase(L) _str_ = join(["Ref{ComplexF64}," for _ in 1:narg]) _str2_ = join(["_a[$(3i-2)]," for i in 1:ncoef]) # define lget functions Meta.parse( string("const _$(L)res_ = Vector{ComplexF64}(undef, $(_size));", "function $(_l)get($(_args));", "ccall((:$(_l)putc_, libooptools), Cvoid,", "(Ptr{Vector{ComplexF64}},", _str_, "Csize_t),", "_$(L)res_,", _args, ", $(_size) ); _$(L)res_; end") ) |> eval # define Lget functions Meta.parse( string("function $(L)get($(_args); val_only = false);", "_a = $(_l)get($(_args));", "val_only ? (", _str2_[1:end-1], ") : ", "NamedTuple{$(_l)coef}((", _str2_[1:end-1], "));", "end" ) ) |> eval # define lput! functions Meta.parse( string("function $(_l)put!(res::Vector{ComplexF64}, $(_args));", """@assert length(res)==$(3ncoef) "length should be $(3ncoef)";""", "ccall((:$(_l)putc_, libooptools), Cvoid,", "(Ptr{Vector{ComplexF64}},", _str_, "Csize_t),", "res,", _args, ", $(_size) ); res; end") ) |> eval end # prototype; much shorter using metaprogramming as above # function Bget(psq, m1sq, m2sq) # NamedTuple{bcoef}( # (B0i(bb0, psq, m1sq, m2sq), B0i(bb1, psq, m1sq, m2sq), B0i(bb00, psq, m1sq, m2sq), # B0i(bb11, psq, m1sq, m2sq), B0i(bb001, psq, m1sq, m2sq), B0i(bb111, psq, m1sq, m2sq), # B0i(dbb0, psq, m1sq, m2sq), B0i(dbb1, psq, m1sq, m2sq), B0i(dbb00, psq, m1sq, m2sq), # B0i(dbb11, psq, m1sq, m2sq), B0i(dbb001, psq, m1sq, m2sq) ) # ) # end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
1995
using SymbolicUtils: @syms, @rule, @acrule, _iszero, Chain, Postwalk @syms ε::Real _r1 = @rule ~x::_iszero / ~y => 0 _r2 = @acrule ~x::_iszero + ~y => ~y _simplify = Postwalk(Chain([_r1, _r2, _r2])) @doc raw""" DRResult(c0, c1, c2) arrange the coefficients of ``1/ε``, corresponding to the `Mathematica` version of the same name. `1/ε` corresponds to `DR1eps` in the `Mathematica` version. """ DRResult(c0, c1, c2) = _simplify(c0 + c1/ε + c2/ε^2) function _round(x; kws...) imag(x) < sqrt(eps(1.0)) && (x = real(x)) return round(x; kws...) end function _define_getsym(L, narg::Int, ncoef::Int) l = lowercase(L) _args = _for_args[1:(2narg-1)] Meta.parse( string("function $(l)getsym($(_args));", "_$(L)res = $(l)get($(_args));", "_b = _round.(_$(L)res, digits=6);", "NamedTuple{$(l)coef}(DRResult(_b[3i-2], _b[3i-1], _b[3i]) for i = 1:$(ncoef));", "end" ) ) |> eval end _define_getsym('A', 1, 2) _define_getsym('B', 3, 11) _define_getsym('C', 6, 22) _define_getsym('D', 10, 80) _define_getsym('E', 15, 86) @doc raw""" agetsym(msq) return all one-point coefficients with terms of ``ε^{-1}`` and ``ε^{-2}`` kept symbolically. """ agetsym @doc raw""" bgetsym(p^2, m1^2, m2^2) return all two-point coefficients with terms of ``ε^{-1}`` and ``ε^{-2}`` kept symbolically. """ bgetsym @doc raw""" cgetsym(p1^2, p2^2, (p1+p2)^2, m1^2, m2^2, m3^2) return all three-point coefficients with terms of ``ε^{-1}`` and ``ε^{-2}`` kept symbolically. """ cgetsym @doc raw""" dgetsym(p1^2, p2^2, p3^2, p4^2, (p1+p2)^2, (p2+p3)^2, m1^2, m2^2, m3^2, m4^2) return all four-point coefficients with terms of ``ε^{-1}`` and ``ε^{-2}`` kept symbolically. """ dgetsym @doc raw""" egetsym(p1^2, p2^2, p3^2, p4^2, p5^2, (p1+p2)^2, (p2+p3)^2, (p3+p4)^2, (p4+p5)^2, (p5+p1)^2, m1^2, m2^2, m3^2, m4^2, m5^2) return all five-point coefficients with terms of ``ε^{-1}`` and ``ε^{-2}`` kept symbolically. """ egetsym
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
3915
for f in (:ltexi, :clearcache, :markcache, :restorecache) ff = string("$(f)_") @eval ($f)() = ccall(($ff, libooptools), Cvoid, ()) end for f in (:getversionkey, :getcmpbits, :getdebugkey, :getwarndigits, :geterrdigits, :getepsi) ff = string("$(f)_") @eval ($f)() = ccall(($ff, libooptools), Int64, ()) end for f in (:setversionkey, :setcmpbits, :setdebugkey, :setwarndigits, :seterrdigits) ff = string("$(f)_") @eval ($f)(b::Int) = ccall(($ff, libooptools), Cvoid, (Ref{Int64},), b) end for f in (:getmaxdev, :getdelta, :getmudim, :getlambda, :getminmass, :getuvdiv, :getzeroeps, :getdiffeps) ff = string("$(f)_") @eval ($f)() = ccall(($ff, libooptools), Float64, ()) end for f in (:setmaxdev, :setdelta, :setmudim, :setlambda, :setminmass, :setuvdiv, :setzeroeps, :setdiffeps) ff = string("$(f)_") @eval ($f)(b::Real) = ccall(($ff, libooptools), Cvoid, (Ref{Float64},), b) end """ setdebugrange(f::Int, t::Int) The integrals are listed in the output with a unique serial number. If the list of integrals becomes too long, one can select only a range of serial numbers for viewing. """ setdebugrange(f::Int, t::Int) = ccall((:setdebugrange_, libooptools), Cvoid, (Ref{Int64}, Ref{Int64}), f, t ) """ ltexi() summary of errors. """ ltexi """ clearcache() remove all integrals from the cache. """ clearcache """ markcache() mark the current cache pointers. """ markcache """ restorecache() restore cache pointers marked by `markcache()`. """ restorecache """ getcmpbits() the number of bits for the cache-lookup precision. The default is 62 for double precision, 64 for quadruple precision. """ getcmpbits """ setcmpbits(b::Int) set the number of bits for cache-lookup precision. """ setcmpbits """ getversionkey() return the version key; the loop integrals are implemented using different versions (Denner, `FF`). For more information, see Section 1.3.10 of the `LoopTools` manual. """ getversionkey """ setversionkey(k::Int) set the version key to choose the implementations of various functions and whether checking is performed. """ setversionkey """ getmaxdev() setmaxdev(b::Real) set the tolerance of the deviation between different implementations of functions. The default value is 1e-12 for issuing warnings. """ getmaxdev, setmaxdev """ getdebugkey() setdebugkey() Debugging output can be turned on. """ getdebugkey, setdebugkey @doc raw""" getzeroeps() setzeroeps(b::Real) A given quantity `x` is tested to be zero if `|x|` is smaller than `getzeroeps()`. Default value: ``10^{-22}``. """ getzeroeps, setzeroeps @doc raw""" getdiffeps() setdiffeps(b::Real) Two quantities are tested for equality if the absolute value of their difference is smaller than `getdiffoeps()`. Default value: ``10^{-12}``. """ getdiffeps, setdiffeps @doc raw""" getdelta() setdelta(Δ::Real) `getdelta()` returns the value of ``\Delta``, the finite piece of UV divergence, default to `0` (the ``\overline{MS}`` scheme); change by `setdelta(Δ)`. """ getdelta, setdelta @doc raw""" getlambda() setlambda(λ::Real) `getdelta()` returns the value of ``\lambda^2`` for regularizing the IR divergence. It is positive for photon-mass regularization; ``0``, ``-1`` and ``-2`` give the finite piece, coefficients of the ``ε^{-1}`` and ``ε^{-2}``, respectively. Change by `setlambda(λ)`. """ getlambda, setlambda @doc raw""" getmudim() setmudim(μ::Real) The dimensional regularization scale ``μ``; the default value is `1.0`. """ getmudim, setmudim @doc raw""" getminmass() setminmass(m::Real) For regularizing collinear divergence. """ getminmass, setminmass @doc raw""" getuvdiv() setuvdiv(x::Real) Switch on (`x=1`, default) or off (`x=0`) the UV divergence part of ``1/ε``. """ getuvdiv, setuvdiv
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
code
91
using LoopTools using Test @testset "LoopTools.jl" begin # Write your tests here. end
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
docs
554
# LoopTools <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://fkguo.github.io/LoopTools.jl/stable) --> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://fkguo.github.io/LoopTools.jl/dev) [![Build Status](https://github.com/fkguo/LoopTools.jl/workflows/CI/badge.svg)](https://github.com/fkguo/LoopTools.jl/actions) This is a julia wrapper of functions in the [LoopTools package](http://www.feynarts.de/looptools/) for computing one-loop integrals. Install by `] add https://github.com/fkguo/LoopTools.jl.git`.
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
docs
5157
# Definitions Copied from the [`LoopTools` manual](https://github.com/fkguo/LoopTools.jl/blob/master/docs/LT215Guide.pdf). For details about the tensor reduction of one-loop integrals, see *A. Denner, S. Dittmaier, Reduction schemes for one-loop tensor integrals* [[hep-ph/0509141]](https://inspirehep.net/literature/692154). ## General one-loop integral Consider a general one-loop integral shown as follows: ![momentum flow in in the loop](loop_general.png) The tensor loop integral is defined as ```math T_{\mu_1\mu_2...\mu_P}^N = \frac{\mu^{4-D}}{i\pi^{D/2} r_\Gamma} \int d^D q \frac{ q_{\mu_1}q_{\mu_2}...q_{\mu_P} }{(q^2-m_1^2)\left[(q+k_1)^2-m_2^2\right] \cdots \left[(q+k_{N-1})^2-m_N^2\right]} ``` with ``r_\Gamma = \frac{\Gamma^2(1-\varepsilon) \Gamma(1+\varepsilon)}{\GammaΓ(1-2\varepsilon)}``, ``D=4-2\varepsilon``. The momentum flow is shown in the figure. We have ```math \begin{aligned} & p_1 = k_1, \quad p_2 = k_2 - k_1, \quad \ldots, \quad p_N = k_N - k_{N-1}, \\ & k_1 = p_1, \quad k_2 = p_1 + p_2, \quad \ldots, \quad k_N = \sum_{i = 1}^N p_i . \end{aligned} ``` ## Tensor coefficients The 1-point, 2-point, 3-point, 4-point and 5-point scalar loop integrals are denoted by `A0`, `B0`, `C0`, `D0` and `E0`, respectively. The 1-loop tensor integral can be decomposed as ```math \begin{aligned} B_\mu & = k_{1\mu} B_1, \\ B_{\mu\nu} & = g_{\mu\nu} B_{00} + k_{1\mu} k_{1\nu} B_{11}, \\ C_\mu &= k_{1\mu} C_1 + k_{2\mu} C_2 \\ C_{\mu\nu} &= g_{\mu\nu} C_{00} + \sum_{i,j=1}^2 k_{i\mu}k_{j\nu} C_{ij}, \\ C_{\mu\nu\rho} &= \sum_{i=1}^2 \left(g_{\mu\nu}k_{i\rho} + g_{\nu\rho} k_{i\mu} + g_{\mu\rho} k_{i\nu} \right) C_{00i} + \sum_{i,j,\ell=1}^2 k_{i\mu}k_{j\nu}k_{\ell \rho} C_{ij\ell}, \\ D_\mu &= \sum_{i=1}^3 k_{i\mu} D_i ,\\ D_{\mu\nu} &= g_{\mu\nu} D_{00} + \sum_{i,j=1}^3 k_{i\mu}k_{j\nu} D_{ij}, \\ D_{\mu\nu\rho} &= \sum_{i=1}^3 \left(g_{\mu\nu}k_{i\rho} + g_{\nu\rho} k_{i\mu} + g_{\mu\rho} k_{i\nu} \right) D_{00i} + \sum_{i,j,\ell=1}^3 k_{i\mu}k_{j\nu}k_{\ell \rho} D_{ij\ell}, \\ D_{\mu\nu\rho\sigma} &= \left( g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho} \right) D_{0000} + \sum_{i,j,\ell,m=1}^3 k_{i\mu}k_{j\nu}k_{\ell \rho}k_{m\sigma} D_{ij\ell m} \\ &\phantom{=} + \sum_{i,j=1}^3 \left(g_{\mu\nu}k_{i\rho}k_{j\sigma} + g_{\nu\rho} k_{i\mu}k_{j\sigma} + g_{\mu\rho} k_{i\nu}k_{j\sigma} + g_{\mu\sigma}k_{i\nu}k_{j\rho} + g_{\nu\sigma}k_{i\mu}k_{j\rho} + g_{\rho\sigma}k_{i\mu}k_{j\nu} \right) D_{00ij} . \\ \end{aligned} ``` ## Conventions for the momenta Consider the triangle diagram: ![triangle](triangle.png) The 3-point loop function can be written either in terms of the external momenta as ```math C\left(p_1^2, p_2^2, (p_1+p_2)^2, m_1^2, m_2^2, m_3^2 \right), ``` or in terms of the momenta $k_i$ as ```math C\left(k_1^2, (k_1-k_2)^2, k_2^2, m_1^2, m_2^2, m_3^2 \right). ``` The coefficients computed are the coefficients of the momenta $k_i$, e.g., $C_1$ and $C_{112}$ are the coefficients of $k_{1\mu}$ and $k_{1\mu}k_{1\nu}k_{2\rho}$, respectively. The advantage of this basis is that the tensor-coefficient functions are totally symmetric in the indices. ## UV, IR and collinear divergences ### UV divergence Using dimensional regularization, the UV divergence has the form ``1/\varepsilon -\gamma_E+\log(4\pi)`` with $\varepsilon = (4-D)/2$. The 1-point scalar loop reads ```math A_0(m^2) = m^2 \left[ \Delta + \log\left( \frac{\mu^2}{m^2} \right) + 1 \right], ``` where $\Delta = 1/\varepsilon -\gamma_E+\log(4\pi)$. In `LoopTools`, the UV divergence is kept as the ``1/\varepsilon`` part, and the finite part of this combination is set as ``\Delta``, which is $0$ (default value in `LoopTools`) in the ``\overline{\rm MS}`` scheme. Setting ``\Delta=-2`` reproduces the one-loop functions of constrained differential renormalization in [Nucl.Phys.B 537 (1999) 561](https://inspirehep.net/literature/472202). A change of ``\Delta`` can be absorbed by a change of the dim. reg. scale ``\mu``: ``\mu_{\rm new}^2 = e^\Delta\mu_{\rm old}^2``. Relevant functions: [`getdelta/setdelta`](@ref getdelta) and [`getmudim/setmudim`](@ref getmudim). ### IR divergence The treatment of the IR divergence is controlled by the parameter ``\lambda^2``. - ``\lambda^2>0``: photon-mass regularization. - In dim. reg., ``\lambda^2=0`` gives the finite piece of the result, and ``\lambda^2=-1`` and ``\lambda^2=-2`` return the coefficients of ``1/\varepsilon`` and ``1/\varepsilon^2``, respectively. Relevant functions: [`getlambda/setlambda`](@ref getlambda). For ``\lambda^2\leq0``, the ``\varepsilon^{-1}`` component contains both the UV and IR divergences. The UV part can be switched off and on by `setuvdiv(1)` and `setuvdiv(0)`, respectively. Relevant functions: [`getuvdiv/setuvdiv`](@ref getuvdiv). ### Collinear divergence For the collinear divergence, there is a parameter ``m_{\rm min}^2``; all arguments smaller than that are set to 0 to detect the existence of collinear divergence. If there is a IR divergence, then ``m_{\rm min}^2`` is substituted back to ``p_i^2``. Relevant functions: [`getminmass/setminmass`](@ref getminmass).
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
docs
1769
# Examples ![triangle](triangle.png) Let us compute the 3-point loop integral: ```math C\left(p_1^2, p_2^2, (p_1+p_2)^2, m_1^2, m_2^2, m_3^2 \right) ``` with some hadron masses as input. Tensor-coefficients: ```@example 1 using LoopTools using PrettyPrinting, BenchmarkTools (@btime Cget(1.87^2, 2.9^2, 5.28^2, 4.36^2, 2.01^2, 0.89^2) ) |> pprint ``` Here we used `Cget` (upper case for the first letter) which returns only the finite piece. If `val_only=true` (default to `false`), then numerical values are given as an `NTuple`. If we want also the coefficients of ``1/\varepsilon`` and ``\varepsilon^{-2}``, we need `cget` (lower case) or `cgetsym`, see below. Scalar integral: ```@example 1 # or simply using `C0` C0i(cc0, 1.87^2, 2.9^2, 5.28^2, 4.36^2, 2.01^2, 0.89^2) ``` Preallocate a vector to receive results from `bput!`: ```@example 1 const res = Vector{ComplexF64}(undef, 33) @btime bput!(res, 1, 0.1, 0.1) pprint(res) ``` The same result can be obtained using `bget(1, 0.1, 0.1)`, which takes only the `p^2, m1^2, m2^2` as the arguments, and the preallocated array has already been defined inside the package as `LoopTools._Bres_` (`LoopTools._Cres_` for the three-point loop and so on). Writing out the ``\varepsilon^{-1}`` (corresponding to `DR1eps` in the `Mathematica` version) terms explicitly: ```@example 1 bgetsym(1, 0.1, 0.1) |> pprint ``` ```@example 1 Bget(1, 0.1, 0.1, val_only = true) ``` Real and imaginary parts of a three-point scalar integral showing the effect of the Landau singularity: ```@example 1 using Plots; default(frame=:box, minorticks=4) c0(x) = -C0(1.87^2, x^2, 5.28^2, (4.36-0.05im)^2, 2.01^2, 0.89^2 ) plot(2.5:0.001:3.4, x-> real(c0(x)), label="Re" ) plot!(2.5:0.001:3.4, x-> imag(c0(x)), label="Im" ) ```
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.1.2
17a7dec09490b2857341327e7a39e28a651a371f
docs
328
```@meta CurrentModule = LoopTools ``` # LoopTools.jl For more information about the loop integrals, see the [`LoopTools` manual](https://github.com/fkguo/LoopTools.jl/blob/master/docs/LT215Guide.pdf). [The LoopTools Visitor Center](http://www.feynarts.de/looptools/) ```@index ``` ```@autodocs Modules = [LoopTools] ```
LoopTools
https://github.com/fkguo/LoopTools.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
386
using Documenter, ErrorfreeArithmetic makedocs( modules = [ErrorfreeArithmetic], format = :html, sitename = "ErrorfreeArithmetic", pages = [ "Package" => "index.md", "Errorfree Arithmetic" => "intro.md", "Basic usage" => "usage.md" ] ) deploydocs( repo = "github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git", target = "build" )
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
1265
module ErrorfreeArithmetic export SysFloat, # error-free transformations two_sum, two_diff, two_prod, two_square, three_sum, three_diff, three_prod, four_sum, four_diff, ad_minus_bc, two_fma, three_fma, two_muladd, # error-free transformations with magnitude sorted arguments two_hilo_sum, two_lohi_sum, two_hilo_diff, two_lohi_diff, three_hilo_sum, three_lohi_sum, three_hilo_diff, three_lohi_diff, four_hilo_sum, four_lohi_sum, four_hilo_diff, four_lohi_diff, # least-error transformations, as close to error-free as possible two_div, two_inv, two_sqrt, # error-free remainders div_rem, sqrt_rem using Base: IEEEFloat """ SysFloat SysFloats are floating point types with processor fma support. """ const SysFloat = Union{Float64, Float32} """ FloatWithFMA Floats with FMA support fused multiply-add, fma(x,y,z) """ FloatWithFMA if isdefined(Main, :DoubleFloats) const FloatWithFMA = Union{Float64, Float32, Float16, Double64, Double32, Double16} else const FloatWithFMA = Union{Float64, Float32, Float16} end include("errorfree.jl") include("errorfree_tuples.jl") include("leasterror.jl") include("remainder.jl") end # ErrorfreeArithmetic
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
1383
#= from "Error-free transformations in real and complex floating point arithmetics" by Stef Graillat and Valérie Ménissier-Morain 2007 International Symposium on Nonlinear Theory and its Applications NOLTA'07, Vancouver, Canada, September 16-19, 2007 =# @inline function two_sum(a::Complex{T}, b::Complex{T}) where {T<:Real} hi1, lo1 = two_sum(a.re, b.re) hi2, lo2 = two_sum(a.im, b.im) hi = Complex{T}(hi1, hi2) lo = Complex{T}(lo1, lo2) return hi, lo end @inline function two_diff(a::Complex{T}, b::Complex{T}) where {T<:Real} hi1, lo1 = two_diff(a.re, b.re) hi2, lo2 = two_diff(a.im, b.im) hi = Complex{T}(hi1, hi2) lo = Complex{T}(lo1, lo2) return hi, lo end #= from "Error-free transformations in real and complex floating point arithmetics" by Stef Graillat and Valérie Ménissier-Morain 2007 International Symposium on Nonlinear Theory and its Applications NOLTA'07, Vancouver, Canada, September 16-19, 2007 =# @inline function four_prod(a::Complex{T}, b::Complex{T}) where {T<:Real} hi1, lo1 = two_prod(a.re, b.re) hi2, lo2 = two_prod(a.im, b.im) hi3, lo3 = two_prod(a.re, b.im) hi4, lo4 = two_prod(a.im, b.re) hi5, lo5 = two_sum(hi1, -hi2) hi6, lo6 = two_sum(hi3, hi4) p = Complex{T}(hi5, hi6) q = Complex{T}(lo5, lo6) r = Complex{T}(lo1, lo3) s = Complex{T}(-lo2, lo4) return p,q,r,s end
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
10348
""" two_sum(a, b) Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_sum(a::T, b::T) where {T<:Real} hi = a + b v = hi - a lo = (a - (hi - v)) + (b - v) return hi, lo end """ three_sum(a, b, c) Computes `hi = fl(a+b+c)` and `md = err(a+b+c), lo = err(md)`. """ function three_sum(a::T,b::T,c::T) where {T} t0, t1 = two_sum(a, b) hi, t2 = two_sum(t0, c) md, lo = two_sum(t1, t2) hi, md = two_hilo_sum(hi,md) return hi, md, lo end function three_sum_magnitudes(a::T, b::T, c::T) where {T} a, b, c = magnitude_maxtomin(a, b, c) b, c = two_hilo_sum(b, c) a, b = two_hilo_sum(a, b) b, c = two_hilo_sum(b, c) a, b = two_hilo_sum(a, b) return a,b,c end """ two_sum(a, b, c) Computes `hi = fl(a+b+c)` and `lo = err(a+b+c)`. """ function two_sum(a::T,b::T,c::T) where {T} hi1, lo1 = two_sum(b, c) hi2, lo2 = two_sum(a, hi1) lo12 = lo1 + lo2 hi, lo = two_hilo_sum(hi2, lo12) return hi, lo end """ four_sum(a, b, c, d) Computes `hi = fl(a+b+c+d)` and `hm = err(a+b+c+d), ml = err(hm), lo = err(ml)`. """ function four_sum(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_sum(a, b) t2, t3 = two_sum(c, d) hi, t4 = two_sum(t0, t2) t5, lo = two_sum(t1, t3) hm, ml = two_sum(t4, t5) ml, lo = two_hilo_sum(ml, lo) hm, ml = two_hilo_sum(hm, ml) hi, hm = two_hilo_sum(hi,hm) return hi, hm, ml, lo end function vec_sum(x0::T, x1::T, x2::T, x3::T) where {T} s3 = x3 s2, e3 = two_sum(x2, s3) s1, e2 = two_sum(x1, s2) s0, e1 = two_sum(x0, s1) return s0,e1,e2,e3 end function vsum_errbranch(x::NTuple{4,T}) where {T} y = zeros(T, 4) r = zeros(T, 4) e = zeros(T, 4) j = 1 e[1] = x[1] for i = 1:2 r[i], t = two_sum(e[i], x[i+1]) if t !== zero(T) y[j] = r[i] e[i+1] = t j += 1 else e[i+1] = r[i] end end y[j], y[j+1] = two_sum(e[3], x[4]) return y end function foursum(x1::T, x2::T, x3::T, x4::T) where {T} a1, a2 = two_sum(x1, x2) b1, b2 = two_sum(x3, x4) c1, c2 = two_sum(a1, b1) d1, d2 = two_sum(a2, b2) e1to4 = vec_sum(c1,c2,d1,d2) y = vsum_errbranch(e1to4) return (y...,) end """ three_sum(a, b, c, d) Computes `hi = fl(a+b+c+d)` and `md = err(a+b+c+d), lo = err(md)`. """ function three_sum(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_sum(a , b) t0, t2 = two_sum(t0, c) hi, t3 = two_sum(t0, d) t0, t1 = two_sum(t1, t2) hm, t2 = two_sum(t0, t3) # here, t0 >= t3 ml = t1 + t2 return hi, hm, ml end """ two_sum(a, b, c, d) Computes `hi = fl(a+b+c+d)` and `lo = err(a+b+c+d)`. """ function two_sum(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_sum(a , b) t0, t2 = two_sum(t0, c) hi, t3 = two_sum(t0, d) t0, t1 = two_sum(t1, t2) lo = t0 + t3 return hi, lo end """ five_sum(a, b, c, d, e) Computes `s = fl(a+b+c+d+e)` and `e1 = err(a+b+c+d), e2 = err(e1), e3 = err(e2), e4 = err(e3)`. """ function five_sum(v::T, w::T, x::T, y::T, z::T) where {T} t0, t4 = two_sum(y, z) t0, t3 = two_sum(x, t0) t0, t2 = two_sum(w, t0) a, t1 = two_sum(v, t0) t0, t3 = two_sum(t3, t4) t0, t2 = two_sum(t2, t0) b, t1 = two_sum(t1, t0) t0, t2 = two_sum(t2, t3) c, t1 = two_sum(t1, t0) d, e = two_sum(t1, t2) return a, b, c, d, e end """ two_diff(a, b) Computes `s = fl(a-b)` and `e = err(a-b)`. """ @inline function two_diff(a::T, b::T) where {T} hi = a - b a1 = hi + b b1 = hi - a1 lo = (a - a1) - (b + b1) return hi, lo end """ three_diff(a, b, c) Computes `s = fl(a-b-c)` and `e1 = err(a-b-c), e2 = err(e1)`. """ function three_diff(a::T,b::T,c::T) where {T} s, t = two_diff(-b, c) x, u = two_sum(a, s) y, z = two_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ four_diff(a, b, c, d) Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`. """ function four_diff(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_diff(a , b) t0, t2 = two_diff(t0, c) hi, t3 = two_diff(t0, d) t0, t1 = two_sum(t1, t2) hm, t2 = two_sum(t0, t3) # here, t0 >= t3 ml, lo = two_sum(t1, t2) return hi, hm, ml, lo end """ two_square(a) Computes `hi = fl(a*a)` and `lo = fl(err(a*a))`. """ @inline function two_square(a::T) where {T} hi = a * a lo = fma(a, a, -hi) hi, lo end """ two_prod(a, b) Computes `hi = fl(a*b)` and `lo = fl(err(a*b))`. """ @inline function two_prod(a::T, b::T) where {T} hi = a * b lo = fma(a, b, -hi) hi, lo end """ three_prod(a, b, c) Computes `hi = fl(a*b*c)` and `md = err(a*b*c), lo = err(md)`. """ function three_prod(a::T, b::T, c::T) where {T} abhi, ablo = two_prod(a, b) hi, abhiclo = two_prod(abhi, c) ablochi, abloclo = two_prod(ablo, c) md, lo, tmp = three_sum(ablochi, abhiclo, abloclo) return hi, md, lo end #= three_fma algorithm from Sylvie Boldo and Jean-Michel Muller Some Functions Computable with a Fused-mac =# """ three_fma(a, b, c) Computes `hi = fl(fma(a,b,c))` and `md = fl(err(fma(a,b,c))), lo = fl(err(md))`. """ function three_fma(a::T, b::T, c::T) where {T} hi = fma(a, b, c) hi0, lo0 = two_prod(a, b) hi1, lo1 = two_sum(c, lo0) hi2, lo2 = two_sum(hi0, hi1) y = ((hi2 - hi) + lo2) md, lo = two_hilo_sum(y, lo1) return hi, md, lo end """ two_fma(a, b, c) Computes `hi = fl(fma(a,b,c))` and `lo = fl(err(fma(a,b,c)))`. """ function two_fma(a::T, b::T, c::T) where {T} hi = fma(a, b, c) hi0, lo0 = two_prod(a, b) hi1, lo1 = two_sum(c, lo0) hi2, lo2 = two_sum(hi0, hi1) lo2 += lo1 lo = (hi2 - hi) + lo2 return hi, lo end """ two_muladd(a, b, c) Computes `hi = fl(muladd(a,b,c))` and `lo = fl(err(muladd(a,b,c)))`. """ function two_muladd(a::T, b::T, c::T) where {T} hi = fma(a, b, c) c_minus_hi = c - hi lo = muladd(a, b, c_minus_hi) return hi, lo end # with arguments sorted by magnitude """ two_hilo_sum(a, b) *unchecked* requirement `|a| ≥ |b|` Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_hilo_sum(a::T, b::T) where {T} hi = a + b lo = b - (hi - a) return hi, lo end """ two_lohi_sum(a, b) *unchecked* requirement `|b| ≥ |a|` Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_lohi_sum(a::T, b::T) where {T} hi = b + a lo = a - (hi - b) return hi, lo end """ two_hilo_diff(a, b) *unchecked* requirement `|a| ≥ |b|` Computes `hi = fl(a-b)` and `lo = err(a-b)`. """ @inline function two_hilo_diff(a::T, b::T) where {T} hi = a - b lo = (a - hi) - b hi, lo end """ two_lohi_diff(a, b) *unchecked* requirement `|b| ≥ |a|` Computes `hi = fl(a-b)` and `lo = err(a-b)`. """ @inline function two_lohi_diff(a::T, b::T) where {T} hi = b - a lo = (b - hi) - a hi, lo end """ three_hilo_sum(a, b, c) *unchecked* requirement `|a| ≥ |b| ≥ |c|` Computes `x = fl(a+b+c)` and `y = err(a+b+c), z = err(y)`. """ function three_hilo_sum(a::T,b::T,c::T) where {T} s, t = two_hilo_sum(b, c) x, u = two_hilo_sum(a, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ three_lohi_sum(a, b, c) *unchecked* requirement `|c| ≥ |b| ≥ |a|` Computes `x = fl(a+b+c)` and `y = err(a+b+c), z = err(y)`. """ function three_lohi_sum(a::T,b::T,c::T) where {T} s, t = two_hilo_sum(b, a) x, u = two_hilo_sum(c, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ three_hilo_diff(a, b, c) *unchecked* requirement `|a| ≥ |b| ≥ |c|` Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`. """ function three_hilo_diff(a::T,b::T,c::T) where {T} s, t = two_hilo_diff(b, -c) x, u = two_hilo_sum(a, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ three_lohi_diff(a, b, c) *unchecked* requirement `|c| ≥ |b| ≥ |a|` Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`. """ function three_lohi_diff(c::T,b::T,a::T) where {T} s, t = two_hilo_diff(b, -c) x, u = two_hilo_sum(a, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ four_hilo_sum(a, b, c, d) *unchecked* requirement `|a| ≥ |b| ≥ |c| ≥ |d|` Computes `hi = fl(a+b+c+d)` and `hm = err(a+b+c+d), ml = err(hm), lo = err(ml)`. """ function four_hilo_sum(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_hilo_sum(a , b) t0, t2 = two_hilo_sum(t0, c) hi, t3 = two_hilo_sum(t0, d) t0, t1 = two_hilo_sum(t1, t2) hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3 ml, lo = two_hilo_sum(t1, t2) return hi, hm, ml, lo end """ four_lohi_sum(a, b, c, d) *unchecked* requirement `|d| ≥ |c| ≥ |b| ≥ |a|` Computes `hi = fl(a+b+c+d)` and `hm = err(a+b+c+d), ml = err(hm), lo = err(ml)`. """ function four_lohi_sum(d::T,c::T,b::T,a::T) where {T} t0, t1 = two_hilo_sum(a , b) t0, t2 = two_hilo_sum(t0, c) hi, t3 = two_hilo_sum(t0, d) t0, t1 = two_hilo_sum(t1, t2) hm, t2 = two_hilo_sum(t0, t3) ml, lo = two_hilo_sum(t1, t2) return hi, hm, ml, lo end """ four_hilo_diff(a, b, c, d) *unchecked* requirement `|a| ≥ |b| ≥ |c| ≥ |d|` Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`. """ function four_hilo_diff(a::T,b::T,c::T,d::T) where {T} t0, t1 = two_hilo_diff(a, b) t0, t2 = two_hilo_diff(t0, c) hi, t3 = two_hilo_diff(t0, d) t0, t1 = two_hilo_sum(t1, t2) hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3 ml, lo = two_hilo_sum(t1, t2) return hi, hm, ml, lo end """ four_hilo_diff(a, b, c, d) *unchecked* requirement `|d| ≥ |c| ≥ |b| ≥ |a|` Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`. """ function four_lohi_diff(d::T,c::T,b::T,a::T) where {T} t0, t1 = two_hilo_diff(a, b) t0, t2 = two_hilo_diff(t0, c) hi, t3 = two_hilo_diff(t0, d) t0, t1 = two_hilo_sum(t1, t2) hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3 ml, lo = two_hilo_sum(t1, t2) return hi, hm, ml, lo end
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
4911
""" two_sum(a, b) Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_sum(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .+ b v = hi .- a lo = (a .- (hi .- v)) .+ (b .- v) return hi, lo end """ two_sum(a, b, c) Computes `hi = fl(a+b+c)` and `lo = err(a+b+c)`. """ function two_sum(a::T,b::T,c::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} s, t = two_sum(b, c) hi, u = two_sum(a, s) lo = u .+ t hi, lo = two_hilo_sum(hi, lo) return hi, lo end """ three_sum(a, b, c, d) Computes `hi = fl(a+b+c+d)` and `md = err(a+b+c+d), lo = err(md)`. """ function three_sum(a::T,b::T,c::T,d::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} t0, t1 = two_sum(a , b) t0, t2 = two_sum(t0, c) hi, t3 = two_sum(t0, d) t0, t1 = two_sum(t1, t2) hm, t2 = two_sum(t0, t3) # here, t0 >= t3 ml = t1 .+ t2 return hi, hm, ml end """ two_sum(a, b, c, d) Computes `hi = fl(a+b+c+d)` and `lo = err(a+b+c+d)`. """ function two_sum(a::T,b::T,c::T,d::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} t0, t1 = two_sum(a , b) t0, t2 = two_sum(t0, c) hi, t3 = two_sum(t0, d) t0, t1 = two_sum(t1, t2) lo = t0 .+ t3 return hi, lo end """ two_diff(a, b) Computes `s = fl(a-b)` and `e = err(a-b)`. """ @inline function two_diff(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .- b a1 = hi .+ b b1 = hi .- a1 lo = (a .- a1) .- (b .+ b1) return hi, lo end """ three_diff(a, b, c) Computes `s = fl(a-b-c)` and `e1 = err(a-b-c), e2 = err(e1)`. """ function three_diff(a::T,b::T,c::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} negb = (-).(b) s, t = two_diff(negb, c) x, u = two_sum(a, s) y, z = two_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ two_square(a) Computes `s = fl(a*a)` and `e = err(a*a)`. """ @inline function two_square(a::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .* a neghi = (-).(hi) lo = (fma).(a, a, neghi) hi, lo end """ two_prod(a, b) Computes `s = fl(a*b)` and `e = err(a*b)`. """ @inline function two_prod(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .* b neghi = (-).(hi) lo = (fma).(a, b, neghi) hi, lo end #= three_fma algorithm from Sylvie Boldo and Jean-Michel Muller Some Functions Computable with a Fused-mac =# """ three_fma(a, b, c) Computes `s = fl(fma(a,b,c))` and `e1 = err(fma(a,b,c)), e2 = err(e1)`. """ function three_fma(a::T, b::T, c::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} x = (fma).(a, b, c) y, z = two_prod(a, b) t, z = two_sum(c, z) t, u = two_sum(y, t) y = ((t .- x) .+ u) y, z = two_hilo_sum(y, z) infs = isinf.(x) if any(infs) ys = [y...] zs = [z...] ys[infs] .= zero(F) zs[infs] .= zero(F) y = (ys...,) z = (zs...,) end return x, y, z end # with arguments sorted by magnitude """ two_hilo_sum(a, b) *unchecked* requirement `|a| ≥ |b|` Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_hilo_sum(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .+ b lo = b .- (hi .- a) return hi, lo end """ two_lohi_sum(a, b) *unchecked* requirement `|b| ≥ |a|` Computes `hi = fl(a+b)` and `lo = err(a+b)`. """ @inline function two_lohi_sum(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = b .+ a lo = a .- (hi .- b) return hi, lo end """ two_hilo_diff(a, b) *unchecked* requirement `|a| ≥ |b|` Computes `hi = fl(a-b)` and `lo = err(a-b)`. """ @inline function two_hilo_diff(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = a .- b lo = (a .- hi) .- b hi, lo end """ two_lohi_diff(a, b) *unchecked* requirement `|b| ≥ |a|` Computes `hi = fl(a-b)` and `lo = err(a-b)`. """ @inline function two_lohi_diff(a::T, b::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} hi = b .- a lo = (b .- hi) .- a hi, lo end """ three_hilo_diff(a, b, c) *unchecked* requirement `|a| ≥ |b| ≥ |c|` Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`. """ function three_hilo_diff(a::T,b::T,c::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} negc = (-).(c) s, t = two_hilo_diff(b, negc) x, u = two_hilo_sum(a, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end """ three_lohi_diff(a, b, c) *unchecked* requirement `|c| ≥ |b| ≥ |a|` Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`. """ function three_lohi_diff(c::T,b::T,a::T) where {N, F<:Base.IEEEFloat, T<:NTuple{N,F}} negc = (-).(c) s, t = two_hilo_diff(b, negc) x, u = two_hilo_sum(a, s) y, z = two_hilo_sum(u, t) x, y = two_hilo_sum(x, y) return x, y, z end
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
2157
const two27 = Float64(1<<27) const two12 = Float32(1<<12) const two6 = Float16(1<<6) """ extractscalar Split a value relative to an integral power of 2 hi is the high order part of p, lo is the residual part hi + lo === p """ for (T,P) in ((:Float64, 53), (:Float32, 24), (:Float16, 11)) @eval begin @inline function extractscalar(value::$T) powoftwo = ldexp(one($T), ($P- exponent(value)) >> 1) # P == precision(Float64) return extractscalar(powoftwo, value) end end end function extractscalar(powoftwo::T, value::T) where {T} hi = (powoftwo + value) - powoftwo lo = value - hi return hi, lo end """ two_cube(a) Computes `s = fl(a*a*a)` and `e1 = err(a*a*a)`. """ function two_cube(value::T) where {T} hi, lo = extractscalar(value) hhh = three_prod(hi, hi, hi) hhl = three_prod(hi, hi, 3*lo) hll = three_prod(hi, 3*lo, lo) lll = three_prod(lo, lo, lo) himh = four_sum(hhh[1], hhl[1], hhh[2], hll[1]) mllo = four_sum(hhl[2], hll[2], lll[1], lll[2]) hilo = four_sum(himh[1], himh[2], mllo[1], mllo[2]) return hilo[1], hilo[2] end """ three_cube(a) Computes `s = fl(a*a*a)` and `e1 = err(a*a*a), e2 = err(e1)`. """ function three_cube(value::T) where {T} hi, lo = extractscalar(value) hhh = three_prod(hi, hi, hi) hhl = three_prod(hi, hi, 3*lo) hll = three_prod(hi, 3*lo, lo) lll = three_prod(lo, lo, lo) himh = four_sum(hhh[1], hhl[1], hhh[2], hll[1]) mllo = four_sum(hhl[2], hll[2], lll[1], lll[2]) hilo = four_sum(himh[1], himh[2], mllo[1], mllo[2]) return hilo[1], hilo[2], hilo[3] end """ four_cube(a) Computes `s = fl(a*a*a)` and `e1 = err(a*a*a), e2 = err(e1), e3 = err(e2)`. """ function three_cube(value::T) where {T} hi, lo = extractscalar(value) hhh = three_prod(hi, hi, hi) hhl = three_prod(hi, hi, 3*lo) hll = three_prod(hi, 3*lo, lo) lll = three_prod(lo, lo, lo) himh = four_sum(hhh[1], hhl[1], hhh[2], hll[1]) mllo = four_sum(hhl[2], hll[2], lll[1], lll[2]) hilo = four_sum(himh[1], himh[2], mllo[1], mllo[2]) return hilo end
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
1337
@inline function two_inv(b::T) where {T} hi = inv(b) lo = fma(-hi, b, one(T)) lo /= b return hi, lo end @inline function two_div(a::T, b::T) where {T} hi = a / b lo = fma(-hi, b, a) lo /= b return hi, lo end @inline function two_sqrt(a::T) where {T} hi = sqrt(a) lo = fma(-hi, hi, a) lo /= 2 lo /= hi return hi, lo end """ ad_minus_bc(a, b, c, d) Computes the determinant of a 2x2 matrix. """ function ad_minus_bc(a::T, b::T, c::T, d::T) where {T} adhi, adlo = two_prod(a,d) bchi, bclo = two_prod(b,c) return four_sum(adhi, adlo, -bchi, -bclo) end #= "Concerning the division, the elementary rounding error is generally not a floating point number, so it cannot be computed exactly. Hence we cannot expect to obtain an error free transformation for the division. ... This means that the computed approximation is as good as we can expect in the working precision." -- http://perso.ens-lyon.fr/nicolas.louvet/LaLo05.pdf While the sqrt algorithm is not strictly an errorfree transformation, it is known to be reliable and is recommended for general use. "Augmented precision square roots, 2-D norms and discussion on correctly reounding xsqrt(x^2 + y^2)" by Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel, Hean-Michel Muller, Peter Kornerup =#
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
733
""" div_rem(x, y) Computes `quotient = fl(x/y)` and `remainder = x - quotient*y` such that `(x-remainder) / y = quotient`. """ @inline function div_rem(x::T, y::T) where {T} quotient = x / y remainder = fma(-y, quotient, x) return quotient, remainder end """ sqrt_rem(x) Computes `root = fl(sqrt(x))` and `remainder = x - root*root` such that `sqrt(x-remainder) = root`. """ @inline function sqrt_rem(x::T) where {T} root = sqrt(x) remainder = fma(-root, root, x) return root, remainder end #= Those remainders are exact. For more informations, applications and additional references, see the introduction of Sylvie Boldo and Jean-Michel Muller Some Functions Computable with a Fused-mac =#
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
code
4199
using ErrorfreeArithmetic using Test Base.BigFloat(x::T) where {T} = Base.convert(BigFloat, x) function hilo(::Type{T}, x::BigFloat) where {T} hi = T(x) lo = T(x - hi) return hi, lo end function himdlo(::Type{T}, x::BigFloat) where {T} hi = T(x) md = T(x - hi) lo = T(x - hi - md) return hi, md, lo end function calc_two_sum(a::T, b::T) where {T} aa, bb = BigFloat(a), BigFloat(b) ab = aa + bb return hilo(T, ab) end function calc_two_diff(a::T, b::T) where {T} aa, bb = BigFloat(a), BigFloat(b) ab = aa - bb return hilo(T, ab) end function calc_two_prod(a::T, b::T) where {T} aa, bb = BigFloat(a), BigFloat(b) ab = aa * bb return hilo(T, ab) end function calc_two_square(a::T) where {T} aa = BigFloat(a) ab = aa * aa return hilo(T, ab) end function calc_two_cube(a::T) where {T} aa = BigFloat(a) ab = aa * aa * aa return hilo(T, ab) end function calc_two_inv(a::T) where {T} aa = BigFloat(a) ab = inv(aa) return hilo(T, ab) end function calc_two_div(a::T, b::T) where {T} aa, bb = BigFloat(a), BigFloat(b) ab = aa / bb return hilo(T, ab) end function calc_two_sqrt(a::T) where {T} aa = BigFloat(a) ab = sqrt(aa) return hilo(T, ab) end function calc_two_cbrt(a::T) where {T} aa = BigFloat(a) ab = cbrt(aa) return hilo(T, ab) end function calc_three_sum(a::T, b::T, c::T) where {T} aa, bb, cc = BigFloat(a), BigFloat(b), BigFloat(c) abc = aa + bb + cc return himdlo(T, abc) end function calc_three_diff(a::T, b::T, c::T) where {T} aa, bb, cc = BigFloat(a), BigFloat(b), BigFloat(c) abc = aa - bb - cc return himdlo(T, abc) end function calc_three_prod(a::T, b::T, c::T) where {T} aa, bb, cc = BigFloat(a), BigFloat(b), BigFloat(c) abc = aa * bb * cc return himdlo(T, abc) end function isclosest(lo::T, low::T) where {T} lo === low || ((abs(lo - low) <= abs(lo - nextfloat(low))) && (abs(lo - low) <= abs(lo - prevfloat(low)))) end function test_two_sum(a::T, b::T) where {T} hi, lo = two_sum(a, b) high, low = calc_two_sum(a, b) hi === high && lo === low end function test_two_diff(a::T, b::T) where {T} hi, lo = two_diff(a, b) high, low = calc_two_diff(a, b) hi === high && lo === low end function test_two_square(a::T) where {T} hi, lo = two_square(a) high, low = calc_two_square(a) hi === high && lo === low end function test_two_cube(a::T) where {T} hi, lo = two_cube(a) high, low = calc_two_cube(a) hi === high && lo === low end function test_two_prod(a::T, b::T) where {T} hi, lo = two_prod(a, b) high, low = calc_two_prod(a, b) hi === high && lo === low end function test_two_sqrt(a::T) where {T} hi, lo = two_sqrt(a) high, low = calc_two_sqrt(a) hi === high && isclosest(lo, low) end #= function test_two_cbrt(a::T) where {T} hi, lo = two_cbrt(a) high, low = calc_two_cbrt(a) hi === high && isclosest(lo, low) end =# function test_two_inv(a::T) where {T} hi, lo = two_inv(a) high, low = calc_two_inv(a) hi === high && isclosest(lo, low) end function test_two_div(a::T, b::T) where {T} hi, lo = two_div(a, b) high, low = calc_two_div(a, b) hi === high && isclosest(lo, low) end function test_three_sum(a::T, b::T, c::T) where {T} hi, md, lo = three_sum(a, b, c) high, mid, low = calc_three_sum(a, b, c) hi === high && md === mid && lo === low end function test_three_diff(a::T, b::T, c::T) where {T} hi, md, lo = three_diff(a, b, c) high, mid, low = calc_three_diff(a, b, c) hi === high && md === mid && lo === low end function test_three_prod(a::T, b::T, c::T) where {T} hi, md, lo = three_prod(a, b, c) high, mid, low = calc_three_prod(a, b, c) hi === high && md === mid && lo === low end a = sqrt(2.0) b = sqrt(987654.0) c = cbrt(456.125) @test test_two_sum(a, b) @test test_two_diff(a, b) @test test_two_square(b) @test test_two_prod(a, b) @test test_two_inv(b) @test test_two_div(a, b) @test test_two_sqrt(b) @test test_three_sum(a, b, c) @test test_three_diff(a, b, c) @test test_three_prod(a, b, c)
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.5.2
d6863c556f1142a061532e79f611aa46be201686
docs
4287
# ErrorfreeArithmetic.jl Error-free transformations are used to get results with extra accuracy. #### Copyright © 2016-2020 by Jeffrey Sarnoff. Released under the MIT License. ----- [![Build Status](https://travis-ci.org/JeffreySarnoff/ErrorfreeArithmetic.jl.svg?branch=master)](https://travis-ci.org/JeffreySarnoff/ErrorfreeArithmetic.jl) ----- ## exports - The number that begins a function name always matches the number of values returned. - the values returned are of descending magnitude and non-overlapping when added. - The number that begins a function name often matches the number of arguments expected. - `two_inv` and `two_sqrt` are single argument functions returning two values *These are error-free transformations.* - `two_sum`, `two_diff`, `two_prod` - `two_square`, `two_cube` - `three_sum`, `three_diff`, `three_prod` - `two_fma`, `three_fma` - `four_sum`, `four_diff` *These are error-free transformations with magnitude sorted arguments.* - `two_hilo_sum`, `two_lohi_sum` - `two_hilo_diff`, `two_lohi_diff` - `three_hilo_sum`, `three_lohi_sum` - `three_hilo_diff`, `three_lohi_diff` - `four_hilo_sum`, `four_lohi_sum` - `four_hilo_diff`, `four_lohi_diff` *These are least-error transformations, as close to error-free as possible.* - `two_inv`, `two_sqrt` - `two_div` ### naming The routines named with the prefix `two_` return a two-tuple holding `(high_order_part, low_order_part)`. Those named with the prefix `three_` return a three-tuple holding `(high_part, mid_part, low_part)`. ## introduction Error-free transformations return a tuple of the nominal result and the residual from the result (the left-over part). Error-free addition sums two floating point values (a, b) and returns two floating point values (hi, lo) such that: * `(+)(a, b) == hi` * `|hi| > |lo|` and `(+)(hi, lo) == hi` *abs(hi) and abs(lo) do not share significant bits* Here is how it is done: ```julia function add_errorfree(a::T, b::T) where T<:Union{Float64, Float32} a_plus_b_hipart = a + b b_asthe_summand = a_plus_b_hipart - a a_plus_b_lopart = (a - (a_plus_b_hipart - b_asthe_summand)) + (b - b_asthe_summand) return a_plus_b_hipart, a_plus_b_lopart end a = Float32(1/golden^2) # 0.3819_6602f0 b = Float32(pi^3) # 31.0062_7700f0 a_plus_b = a + b # 31.3882_4300f0 hi, lo = add_errorfree(a,b) # (31.3882_4300f0, 3.8743_0270f-7) a_plus_b == hi # true abs(hi) > abs(lo) && hi + lo == hi # true ``` The `lo` part is a portion of the accurate value, it is (most of) the residuum that the `hi` part could not represent. The `hi` part runs out of significant bits before the all of the accurate value is represented. We can see this: ```julia a = Float32(1/golden^2) # 0.3819_6602f0 b = Float32(pi^3) # 31.0062_7700f0 hi, lo = add_errorfree(a,b) # (31.3882_4300f0, 3.8743_0270f-7) a_plus_b_accurate = BigFloat(a) + BigFloat(b) lo_accurate = Float32(a_plus_b_accurate - hi) lo == lo_accurate # true ``` ## use This package is intended to be used in the support of other work. All routines expect Float64 or Float32 or Float16 values. ## references Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi Accurate Sum and Dot Product SIAM J. Sci. Comput., 26(6), 1955–1988. Published online: 25 July 2006 [DOI: 10.1137/030601818](http://dx.doi.org/10.1137/030601818) Stef Graillat, Valérie Ménissier-Morain Error-Free Transformations in Real and Complex Floating Point Arithmetic International Symposium on Nonlinear Theory and its Applications (NOLTA'07), Sep 2007, Vancouver, Canada. Proceedings of International Symposium on Nonlinear Theory and its Applications (NOLTA'07), pp.341-344. https://hal.archives-ouvertes.fr/hal-01306229 Sylvie Boldo, Stef Graillat, and Jean-Michel Muller On the robustness of the 2Sum and Fast2Sum algorithms ACM Transactions on Mathematical Software, Association for Computing Machinery, 2017 https://hal.inria.fr/ensl-01310023
ErrorfreeArithmetic
https://github.com/JeffreySarnoff/ErrorfreeArithmetic.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
217
using Documenter, LSODA makedocs( modules=[LSODA], doctest = false ) deploydocs( deps = Deps.pip("mkdocs","python-markdown-math"), repo = "github.com/rveltz/LSODA.jl.git", julia = "release" )
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
846
__precompile__() module LSODA using Compat, DiffEqBase import DiffEqBase: solve using LinearAlgebra, Printf using LSODA_jll const warnkeywords = (:save_idxs, :d_discontinuities, :isoutofdomain, :unstable_check, :calck, :progress, :timeseries_steps, :dense, :dtmin, :dtmax, :internalnorm, :gamma, :beta1, :beta2, :qmax, :qmin, :qoldinit) function __init__() global warnlist = Set(warnkeywords) end abstract type LSODAAlgorithm <: DiffEqBase.AbstractODEAlgorithm end struct lsoda <: LSODAAlgorithm end SciMLBase.alg_order(alg::lsoda) = 12 export lsoda, lsoda_0, lsoda_opt_t, lsoda_context_t, lsoda_prepare, lsoda_reset, lsoda_opt_t, lsoda_free, lsoda_evolve!, UserFunctionAndData export LSODAAlgorithm, solve include("types_and_consts.jl") include("handle.jl") include("solver.jl") include("common.jl") end # module
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
6948
@noinline function old_cfunction(f, r, a) ccall(:jl_function_ptr, Ptr{Cvoid}, (Any, Any, Any), f, r, a) end ## Common Interface Solve Functions mutable struct CommonFunction{F,P} func::F p::P neq::Cint end function commonfun(t::T1,y::T2,yp::T3,comfun::CommonFunction) where {T1,T2,T3} y_ = unsafe_wrap(Array,y,comfun.neq) ydot_ = unsafe_wrap(Array,yp,comfun.neq) comfun.func(ydot_,y_,comfun.p,t) return Int32(0) end function DiffEqBase.__solve( prob::DiffEqBase.AbstractODEProblem{uType,tupType,isinplace}, alg::LSODAAlgorithm, timeseries=[],ts=[],ks=[]; verbose=true, abstol=1/10^6,reltol=1/10^3, tstops=Float64[], saveat=Float64[], maxiter=Int(1e5), callback=nothing, timeseries_errors=true, save_everystep=isempty(saveat), save_start = save_everystep || isempty(saveat) || typeof(saveat) <: Number ? true : prob.tspan[1] in saveat, userdata=nothing, alias_u0=false, kwargs...) where {uType,tupType,isinplace} tType = eltype(tupType) if verbose warned = !isempty(kwargs) && check_keywords(alg, kwargs, warnlist) if !(typeof(prob.f) <: DiffEqBase.AbstractParameterizedFunction) if DiffEqBase.has_tgrad(prob.f) @warn("Explicit t-gradient given to this stiff solver is ignored.") warned = true end if DiffEqBase.has_jac(prob.f) @warn("Explicit Jacobian given to this stiff solver is ignored.") warned = true end end warned && warn_compat() end if prob.f.mass_matrix != I error("This solver is not able to use mass matrices.") end if callback != nothing || :callback in keys(prob.kwargs) error("LSODA is not compatible with callbacks.") end tspan = prob.tspan t0 = tspan[1] T = tspan[end] if typeof(saveat) <: Number if (tspan[1]:saveat:tspan[end])[end] == tspan[end] saveat_vec = convert(Vector{tType},collect(tType,tspan[1]+saveat:saveat:tspan[end])) else saveat_vec = convert(Vector{tType},collect(tType,tspan[1]+saveat:saveat:(tspan[end]-saveat))) end else saveat_vec = convert(Vector{tType},collect(saveat)) end if !isempty(saveat_vec) && saveat_vec[end] == tspan[2] pop!(saveat_vec) end if !isempty(saveat_vec) && saveat_vec[1] == tspan[1] save_ts = sort(unique([saveat_vec;T])) else save_ts = sort(unique([t0;saveat_vec;T])) end if T < save_ts[end] error("Final saving timepoint is past the solving timespan") end if t0 > save_ts[1] error("First saving timepoint is before the solving timespan") end if !isempty(tstops) error("tstops is not supported for this solver. Please use saveat instead") end if typeof(prob.u0) <: Number u0 = [prob.u0] else if alias_u0 u0 = vec(prob.u0) else u0 = vec(deepcopy(prob.u0)) end end sizeu = size(prob.u0) ### Fix the more general function to Sundials allowed style if !isinplace && (typeof(prob.u0)<:Vector{Float64} || typeof(prob.u0)<:Number) f! = (du,u,p,t) -> (du[:] = prob.f(u,p,t); nothing) elseif !isinplace && typeof(prob.u0)<:AbstractArray f! = (du,u,p,t) -> (du[:] = vec(prob.f(reshape(u,sizeu),p,t)); nothing) elseif typeof(prob.u0)<:Vector{Float64} f! = prob.f else # Then it's an in-place function on an abstract array f! = (du,u,p,t) -> (prob.f(reshape(du,sizeu),reshape(u,sizeu),p,t); nothing) end ures = Vector{Float64}[] push!(ures,u0) utmp = copy(u0) utmp2= copy(u0) ttmp = [t0] t = [t0] t2 = [t0] save_start ? ts = [t0] : ts = typeof(t0)[] neq = Int32(length(u0)) comfun = CommonFunction(f!,prob.p,neq) atol = ones(Float64,neq) rtol = ones(Float64,neq) if typeof(abstol) == Float64 atol *= abstol else atol = copy(abstol) end if typeof(reltol) == Float64 rtol *= reltol else rtol = copy(reltol) end GC.@preserve comfun atol rtol begin global ___ref = comfun opt = lsoda_opt_t(mxstep = maxiter) opt.ixpr = 0 opt.rtol = pointer(rtol) opt.atol = pointer(atol) if save_everystep itask_tmp = 2 else itask_tmp = 1 end opt.itask = itask_tmp function get_cfunction(comfun::T) where T @cfunction commonfun Cint (Cdouble, Ptr{Cdouble}, Ptr{Cdouble}, Ref{T}) end fex_c = get_cfunction(comfun) ctx = lsoda_context_t() ctx.function_ = fex_c ctx.neq = neq ctx.state = 1 ctx.data = pointer_from_objref(comfun) ch = ContextHandle(ctx) lsoda_prepare(ctx,opt) for k in 2:length(save_ts) ttmp[1] = save_ts[k] if t[1] < ttmp[1] while t[1] < ttmp[1] lsoda(ctx, utmp, t, ttmp[1]) if t[1] > ttmp[1] # overstepd, interpolate back t2[1] = t[1] # save step values copyto!(utmp2,utmp) # save step values opt.itask = 1 # change to interpolating lsoda(ctx, utmp, t, ttmp[1]) opt.itask = itask_tmp push!(ures, copy(utmp)) push!(ts, t[1]) # don't overstep the last timestep if k != length(save_ts) && save_ts[k+1] > t2[1] push!(ures, copy(utmp2)) push!(ts, t2[1]) end copyto!(utmp, utmp2) t[1] = t2[1] else push!(ures, copy(utmp)) push!(ts,t[1]) end end else t2[1] = t[1] # save step values copyto!(utmp2, utmp) # save step values opt.itask = 1 # change to interpolating lsoda(ctx, utmp, t, ttmp[1]) opt.itask = itask_tmp push!(ures, copy(utmp)) push!(ts, t[1]) if k != length(save_ts) && save_ts[k+1] > t2[1] # don't overstep the last timestep push!(ures,copy(utmp2)) push!(ts,t2[1]) end copyto!(utmp,utmp2) t[1] = t2[1] end end ### Finishing Routine timeseries = uType[] save_start ? start_idx = 1 : start_idx = 2 if typeof(prob.u0)<:Number for i=start_idx:length(ures) push!(timeseries,ures[i][1]) end else for i=start_idx:length(ures) push!(timeseries,reshape(ures[i],sizeu)) end end lsoda_free(ch) global ___ref = nothing end DiffEqBase.build_solution(prob, alg, ts, timeseries, timeseries_errors = timeseries_errors, retcode = ReturnCode.Success) end
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
730
abstract type AbstractLSODAHandle end mutable struct ContextHandle <: AbstractLSODAHandle ctx::lsoda_context_t freed::Bool function (::Type{ContextHandle})(ctx::lsoda_context_t) h = new(ctx,false) finalizer(release_handle,h) return h end end release_handle(ch::ContextHandle) = lsoda_free(ch) function lsoda_free(ch::ContextHandle) if !ch.freed lsoda_free(ch.ctx) ch.freed = true end nothing end # Now wrap the rest of the APIs for convenience lsoda_reset(ch::ContextHandle) = lsoda_reset(ch.ctx) lsoda_prepare(ch::ContextHandle,opt::lsoda_opt_t) = lsoda_prepare(ch.ctx,opt) lsoda(ch::ContextHandle,y::Vector,t::Vector{Float64},tout) = lsoda(ch.ctx,y,t,tout)
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
3780
function lsodafun(t::T1, y::T2, yp::T3, userfun::UserFunctionAndData) where {T1, T2, T3} y_ = unsafe_wrap(Array,y,userfun.neq) ydot_ = unsafe_wrap(Array,yp,userfun.neq) userfun.func(t, y_, ydot_,userfun.data) return Int32(0) end function lsoda_0(f::Function, y0::Vector{Float64}, tspan::Vector{Float64}; userdata::Any=nothing, reltol::Union{Float64,Vector}=1e-4, abstol::Union{Float64,Vector}=1e-10) neq = Int32(length(y0)) userfun = UserFunctionAndData(f, userdata,neq) atol = ones(Float64,neq) rtol = ones(Float64,neq) if typeof(abstol) == Float64 atol *= abstol else atol = copy(abstol) end if typeof(reltol) == Float64 rtol *= reltol else rtol = copy(reltol) end t = Float64[tspan[1]] tout = Float64[tspan[2]] y = copy(y0) # opt = lsoda_opt_t() opt.ixpr = 0 opt.rtol = pointer(rtol) opt.atol = pointer(atol) opt.itask = 1 # ctx = lsoda_context_t() ctx.function_ = @cfunction($lsodafun,Cint,(Cdouble,Ptr{Cdouble},Ptr{Cdouble},Ref{UserFunctionAndData})).ptr ctx.neq = neq ctx.state = 1 ctx.data = pointer_from_objref(userfun) lsoda_prepare(ctx,opt) for i=1:12 lsoda(ctx,y,t,tout[1]) @assert (ctx.state >0) string("LSODA error istate = ", ctx.state) @printf("at t = %12.4e y= %14.6e %14.6e %14.6e\n",t[1],y[1], y[2], y[3]) tout[1] *= 10.0E0 end end """ lsoda(f::Function, y0::Vector{Float64}, tspan::Vector{Float64}; userdata::Any=nothing, reltol::Union{Float64,Vector}=1e-4, abstol::Union{Float64,Vector}=1e-10) Solves a set of ordinary differential equations using the LSODA algorithm. The vector field encoded in an inplace f::Function needs to have the self-explanatory arguments f(t, y, ydot, data) """ function lsoda(f::Function, y0::Vector{Float64}, tspan::Vector{Float64}; userdata::Any=nothing, reltol::Union{Float64,Vector}=1e-4, abstol::Union{Float64,Vector}=1e-10,nbsteps = 10000) neq = Int32(length(y0)) userfun = UserFunctionAndData(f, userdata, neq) atol = ones(Float64,neq) rtol = ones(Float64,neq) yres = zeros(length(tspan), length(y0)) if typeof(abstol) == Float64 atol *= abstol else atol = copy(abstol) end if typeof(reltol) == Float64 rtol *= reltol else rtol = copy(reltol) end t = Float64[tspan[1]] tout = Float64[tspan[2]] y = copy(y0) opt = lsoda_opt_t() opt.mxstep = nbsteps opt.ixpr = 0 opt.rtol = pointer(rtol) opt.atol = pointer(atol) opt.itask = 1 ctx_ptr = lsoda_context_t() ctx_ptr.function_ = @cfunction($lsodafun,Cint,(Cdouble,Ptr{Cdouble},Ptr{Cdouble},Ref{UserFunctionAndData})).ptr ctx_ptr.neq = neq ctx_ptr.state = 1 ctx_ptr.data = pointer_from_objref(userfun) lsoda_prepare(ctx_ptr,opt) yres[1,:] = y0 for k in 2:length(tspan) tout[1] = tspan[k] lsoda(ctx_ptr,y,t,tout[1]) @assert (ctx_ptr.state >0) string("LSODA error istate = ", ctx_ptr.state, ", error = ",unsafe_string(ctx_ptr.error)) yres[k,:] = copy(y) end lsoda_free(ctx_ptr) return yres end """ lsoda_evolve!(ctx::lsoda_context_t,y::Vector{Float64},tspan::Vector{Float64}) Solves a set of ordinary differential equations using the LSODA algorithm and the context variable ctx. This avoid re-allocating ctx. You have to be carefull to remember the current time or this function will return an error. """ function lsoda_evolve!(ctx::lsoda_context_t,y::Vector{Float64},tspan::Vector{Float64}) @assert ctx.neq == length(y) # if userdata !== nothing # # this functionality is not working yet # # ctx.data.data = userdata # # unsafe_pointer_to_objref(ctx.data).data = userdata # end t = Float64[tspan[1]] tout = Float64[tspan[2]] lsoda(ctx,y,t,tout[1]) @assert (ctx.state >0) string("LSODA error istate = ", ctx.state) end
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
3052
using Parameters, Compat @with_kw mutable struct lsoda_common_t yh::Ptr{Ptr{Cdouble}}= C_NULL wm::Ptr{Ptr{Cdouble}}= C_NULL ewt::Ptr{Cdouble}= C_NULL savf::Ptr{Cdouble}= C_NULL acor::Ptr{Cdouble}= C_NULL ipvt::Ptr{Cint}= C_NULL memory::Ptr{Nothing}= C_NULL h::Cdouble = 0. hu::Cdouble = 0. rc::Cdouble = 0. tn::Cdouble = 0. tsw::Cdouble = 0. pdnorm::Cdouble = 0. crate::Cdouble = 0. el::NTuple{14,Cdouble} = ntuple(x->Cdouble(0), 14) elco::NTuple{13,NTuple{14,Cdouble}} = ntuple(x->ntuple(x->Cdouble(0), 14),13) tesco::NTuple{13,NTuple{4,Cdouble}} = ntuple(x->ntuple(x->Cdouble(0), 4),13) hold::Cdouble = 0. rmax::Cdouble = 0. pdest::Cdouble = 0. pdlast::Cdouble = 0. ialth::Cint = 0 ipup::Cint = 0 nslp::Cint = 0 icount::Cint = 0 irflag::Cint = 0 imxer::Cint = 0 illin::Cint = 0 nhnil::Cint = 0 nslast::Cint = 0 jcur::Cint = 0 meth::Cint = 0 mused::Cint = 0 nq::Cint = 0 nst::Cint = 0 ncf::Cint = 0 nfe::Cint = 0 nje::Cint = 0 nqu::Cint = 0 miter::Cint = 0 end @with_kw mutable struct lsoda_opt_t ixpr::Cint = 0 mxstep::Cint = 0 mxhnil::Cint = 0 mxordn::Cint = 0 mxords::Cint = 0 tcrit::Cdouble = 0. h0::Cdouble = 0. hmax::Cdouble = 0. hmin::Cdouble = 0. hmxi::Cdouble = 0. itask::Cint = 0 rtol::Ptr{Cdouble} = C_NULL atol::Ptr{Cdouble} = C_NULL end const _lsoda_f = Ptr{Nothing} @with_kw mutable struct lsoda_context_t function_::_lsoda_f = C_NULL data::Ptr{Nothing} = C_NULL ## neq::Cint = 0 state::Cint = 0 error::Cstring = C_NULL common::Ptr{lsoda_common_t} = C_NULL opt::Ptr{lsoda_opt_t} = C_NULL end const lsoda_context_t_ptr = Ptr{lsoda_context_t} mutable struct UserFunctionAndData func::Function data::Any neq::Cint UserFunctionAndData(func::Function, data::Any, neq::Cint) = new(func, data, neq) end # UserFunctionAndData(func::Function) = func # UserFunctionAndData(func::Function, data::Nothing) = func # UserFunctionAndData(func::Function, data::Nothing, neq::Cint) = func function lsoda_prepare(ctx::lsoda_context_t,opt::lsoda_opt_t) return ccall((:lsoda_prepare,liblsoda),Cint, (Ref{lsoda_context_t},Ref{lsoda_opt_t}), Ref(ctx),Ref(opt)) end function lsoda(ctx::lsoda_context_t,y::Vector,t::Vector{Float64},tout) return ccall((:lsoda,liblsoda),Cint, (Ref{lsoda_context_t},Ref{Cdouble},Ref{Cdouble},Cdouble), Ref(ctx),y,t,tout[1]) end function lsoda_reset(ctx::lsoda_context_t) ccall((:lsoda_reset,liblsoda),Nothing,(Ref{lsoda_context_t},),Ref(ctx)) end # written to wrap lsoda_free from C library but never used in practise as # lsoda_context_t variables are handled on Julia's side function lsoda_free(ctx::lsoda_context_t) ccall((:lsoda_free,liblsoda),Nothing,(Ref{lsoda_context_t},),Ref(ctx)) nothing end function lsoda_free(ctx::Ref{lsoda_context_t}) ccall((:lsoda_free,liblsoda),Nothing,(Ref{lsoda_context_t},),(ctx)) nothing end
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
233
using LSODA using Test # write your own tests here println("--> test1 =============") include("test1.jl") println("\n--> test2 =============") include("test2.jl") println("\n--> test common =============") include("test_common.jl")
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
1196
using LSODA, Printf function fex(t::T1, y::T2, ydot::T3, data::T4) where {T1, T2, T3, T4} x = unsafe_wrap(Array,y,neq) xdot = unsafe_wrap(Array,ydot,neq) xdot[1]=1.0E4 * x[2] * x[3] - .04E0 * x[1] xdot[3]=3.0E7 * x[2] * x[2] xdot[2]= -xdot[1] - xdot[3] return Int32(0) end fex_c = @cfunction(fex,Cint,(Cdouble,Ptr{Cdouble},Ptr{Cdouble},Ptr{Nothing})) const atol = Array{Float64}(undef,3) const rtol = Array{Float64}(undef,3) t = Array{Float64}(undef,1) tout = Array{Float64}(undef,1) const y = Array{Float64}(undef,3) const neq = Int32(3) y[1] = 1.0E0 y[2] = 0.0E0 y[3] = 0.0E0 t[1] = 0.0E0 tout[1] = 0.4E0 opt = lsoda_opt_t() opt.ixpr = 0 opt.rtol = pointer(rtol) opt.atol = pointer(atol) opt.itask = 1 rtol[1] = 1.0E-4 rtol[2] = 1.0E-4 rtol[3] = 1.0E-4 atol[1] = 1.0E-6 atol[2] = 1.0E-10 atol[3] = 1.0E-6 ctx = lsoda_context_t() ctx.function_ = fex_c ctx.neq = neq ctx.state = 1 lsoda_prepare(ctx,opt) @time for i=1:12 lsoda(ctx,y,t,tout[1]) Printf.@printf("at t = %12.4e y= %14.6e %14.6e %14.6e\n",t[1],y[1], y[2], y[3]) if (ctx.state <= 0) error("error istate = ", ctx.state) end tout[1] *= 10.0E0 end println("Done!") lsoda_free(ctx)
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
1286
using LSODA function rhs!(t, x, ydot, data) ydot[1]=1.0E4 * x[2] * x[3] - .04E0 * x[1] ydot[3]=3.0E7 * x[2] * x[2] ydot[2]=-ydot[1] - ydot[3] nothing end y0 = [1.,0.,0.] println("\n####################################\n--> Use of a old wrapper for speed comparison") tspan = [0., 0.4] @time LSODA.lsoda_0(rhs!, y0, tspan, reltol= 1e-4,abstol = Vector([1.e-6,1.e-10,1.e-6])) @time LSODA.lsoda_0(rhs!, y0, tspan, reltol= 1e-4,abstol = Vector([1.e-6,1.e-10,1.e-6])) # case with a vector println("\n####################################\n--> Use of a vector of times where output is required") tspan = [4 .* 10.0^k for k=-1:10] res = LSODA.lsoda(rhs!, y0, tspan, reltol= 1e-4,abstol = Vector([1.e-6,1.e-10,1.e-6])) res = @time LSODA.lsoda(rhs!, y0, tspan, reltol= 1e-4,abstol = Vector([1.e-6,1.e-10,1.e-6])) println(res) # #case where we don't have to declare a new context println("\n####################################\n--> Use of a lsoda_evolve!") # y0 = [1.,0.,0.] # tspan = [4.*10.0^k for k=-1:10] # ctx, _ = LSODA.lsoda(rhs!, y0, tspan[1:2], reltol= 1e-4,abstol = Vector([1.e-6,1.e-10,1.e-6])) # @time for k=2:length(tspan) # LSODA.lsoda_evolve!(ctx,y0,tspan[k-1:k]) # @printf("at t = %12.4e y= %14.6e %14.6e %14.6e\n",tspan[k],y0[1], y0[2], y0[3]) # end # lsoda_free(ctx)
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
code
1040
using LSODA, ODEProblemLibrary, Test import ODEProblemLibrary: prob_ode_linear, prob_ode_2Dlinear prob = prob_ode_linear sol = solve(prob,lsoda(),saveat=[1/2]) @test sol.t == [1/2,1] prob = prob_ode_2Dlinear sol = solve(prob,lsoda(),saveat=[1/2]) @test sol.t == [1/2,1] sol = solve(prob,lsoda(),saveat=1/10) @test sol.t == collect(0:1/10:1) prob = prob_ode_linear sol = solve(prob,lsoda()) sol = solve(prob,lsoda(),save_everystep=true,saveat=[1/2]) @test 1/2 ∈ sol.t prob = prob_ode_2Dlinear sol = solve(prob,lsoda(),save_everystep=true,saveat=[1/2]) @test 1/2 ∈ sol.t sol = solve(prob,lsoda(),save_everystep=true,saveat=1/2) @test 1/2 ∈ sol.t sol = solve(prob,lsoda(),save_everystep=true,saveat=[1/10,1/5,3/10])#,2/5,1/2,3/5,7/10]) @test 1/10 ∈ sol.t @test 1/5 ∈ sol.t @test 3/10 ∈ sol.t sol = solve(prob,lsoda(),save_everystep=true,saveat=1/10) for i in 2:length(sol.t) @test sol.t[i] > sol.t[i-1] end for k in 0:1/10:1 @test k ∈ sol.t end sol = solve(prob,lsoda(),save_start=false,saveat=1/10) sol.t[1] == 0.1 sol.u[1] != prob.u0
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
docs
4362
[![CI](https://github.com/rveltz/LSODA.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/rveltz/LSODA.jl/actions/workflows/CI.yml) [![Coverage Status](https://coveralls.io/repos/github/rveltz/LSODA.jl/badge.svg?branch=master)](https://coveralls.io/github/rveltz/LSODA.jl?branch=master) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://rveltz.github.io/LSODA.jl/stable) [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://rveltz.github.io/LSODA.jl/latest) # LSODA.jl ## Introduction **LSODA.jl** is a Julia package that interfaces to the [liblsoda](https://github.com/sdwfrost/liblsoda) library, developed by [Simon Frost](http://www.vet.cam.ac.uk/directory/[email protected]) ([@sdwfrost](http://github.com/sdwfrost)), thereby providing a way to use the LSODA algorithm from Linda Petzold and Alan Hindmarsh from [Julia](http://julialang.org/). **[Clang.jl](https://github.com/ihnorton/Clang.jl)** has been used to write the library and **[Sundials.jl](https://github.com/JuliaDiffEq/Sundials.jl)** was a inspiring source. ## Installation To install this package, run the command `add LSODA`. ## Simplified Functions To solve an ODE, one can call the simplified solver: ```julia function rhs!(t, x, ydot, data) ydot[1]=1.0E4 * x[2] * x[3] - .04E0 * x[1] ydot[3]=3.0E7 * x[2] * x[2] ydot[2]=-ydot[1] - ydot[3] nothing end y0 = [1.,0.,0.] tspan = [0., 0.4] res = lsoda(rhs!, y0, tspan, reltol= 1e-4, abstol = Vector([1.e-6,1.e-10,1.e-6])) ``` To reproduce the test example from liblsoda, on can use: ```julia lsoda_0(rhs!, y0, tspan, reltol= 1e-4, abstol = Vector([1.e-6,1.e-10,1.e-6])) ``` This should give the following. ``` at t = 4.0000e-01 y= 9.851712e-01 3.386380e-05 1.479493e-02 at t = 4.0000e+00 y= 9.055333e-01 2.240655e-05 9.444430e-02 at t = 4.0000e+01 y= 7.158403e-01 9.186334e-06 2.841505e-01 at t = 4.0000e+02 y= 4.505250e-01 3.222964e-06 5.494717e-01 at t = 4.0000e+03 y= 1.831976e-01 8.941774e-07 8.168016e-01 at t = 4.0000e+04 y= 3.898729e-02 1.621940e-07 9.610125e-01 at t = 4.0000e+05 y= 4.936362e-03 1.984221e-08 9.950636e-01 at t = 4.0000e+06 y= 5.161832e-04 2.065786e-09 9.994838e-01 at t = 4.0000e+07 y= 5.179811e-05 2.072030e-10 9.999482e-01 at t = 4.0000e+08 y= 5.283524e-06 2.113420e-11 9.999947e-01 at t = 4.0000e+09 y= 4.658945e-07 1.863579e-12 9.999995e-01 at t = 4.0000e+10 y= 1.423392e-08 5.693574e-14 1.000000e+00 ``` ## JuliaDiffEq Common Interface The functionality of LSODA.jl can be accessed through the JuliaDiffEq common interface. To do this, you build a problem object for like: ```julia using LSODA, DiffEqBase function rhs!(du, u, p, t) du[1]=1.0E4 * u[2] * u[3] - .04E0 * u[1] du[3]=3.0E7 * u[2] * u[2] du[2]=-du[1] - du[3] nothing end y0 = [1.,0.,0.] tspan = (0., 0.4) prob = ODEProblem(rhs!,y0,tspan) ``` This problem is solved by LSODA by using the lsoda() algorithm in the common `solve` command as follows: ```julia sol = solve(prob,lsoda()) ``` Many keyword arguments can be used to control the solver, its tolerances, and its output formats. For more information, please see the [DifferentialEquations.jl documentation](https://juliadiffeq.github.io/DiffEqDocs.jl/latest/). ## Citing If using the algorithm through the DifferentialEquations.jl common interface, please cite: ``` @article{rackauckas2017differentialequations, title={Differentialequations. jl--a performant and feature-rich ecosystem for solving differential equations in julia}, author={Rackauckas, Christopher and Nie, Qing}, journal={Journal of Open Research Software}, volume={5}, number={1}, year={2017}, publisher={Ubiquity Press} } ``` For the original algorithm, please cite: - Alan Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in Scientific Computing, edited by Robert Stepleman, Elsevier, 1983, ISBN13: 978-0444866073, LC: Q172.S35. - K Radhakrishnan, Alan Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, Technical report UCRL-ID-113855, Lawrence Livermore National Laboratory, December 1993. - Linda Petzold, Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations, SIAM J. Sci. and Stat. Comput., 4(1), 136–148.
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.7.5
49c00ced68a8033b30fb1009b8dea7871aa9e928
docs
2444
# LSODA.jl: the LSODA algorithm for solving ordinary differential equations ```@contents ``` ## Introduction **LSODA.jl** is a Julia package that interfaces to the [liblsoda](https://github.com/sdwfrost/liblsoda) library, developped by [Simon Frost](http://www.vet.cam.ac.uk/directory/[email protected]) ([@sdwfrost](http://github.com/sdwfrost)), thereby providing a way to use the LSODA algorithm from Linda Petzold and Alan Hindmarsh from [Julia](http://julialang.org/). **[Clang.jl](https://github.com/ihnorton/Clang.jl)** has been used to write the library and **[Sundials.jl](https://github.com/JuliaDiffEq/Sundials.jl)** was a inspiring source. ## Installation To install this package, run the command `Pkg.clone("https://github.com/rveltz/LSODA.jl.git")` ## Example We first need to load the library. ```julia using LSODA ``` We next need to define a function that provides the derivatives `ydot` given the time, `t`, initial conditions, `y`, and optionally some additional data, `data`. Note that this function modifies `ydot` in-place and returns `nothing`. ```julia function rhs!(t, y, ydot, data) ydot[1]=1.0E4 * y[2] * y[3] - .04E0 * y[1] ydot[3]=3.0E7 * y[2] * y[2] ydot[2]=-ydot[1] - ydot[3] nothing end ``` The model can be solved by providing an initial condition for the state variables, and a time span over which to simulate. ``` y0 = [1.,0.,0.] tspan = [0., 0.4] res = lsoda(rhs!, y0, tspan, reltol= 1e-4, abstol = Vector([1.e-6,1.e-10,1.e-6])) ``` This should give the following. ``` at t = 4.0000e-01 y= 9.851712e-01 3.386380e-05 1.479493e-02 at t = 4.0000e+00 y= 9.055333e-01 2.240655e-05 9.444430e-02 at t = 4.0000e+01 y= 7.158403e-01 9.186334e-06 2.841505e-01 at t = 4.0000e+02 y= 4.505250e-01 3.222964e-06 5.494717e-01 at t = 4.0000e+03 y= 1.831976e-01 8.941774e-07 8.168016e-01 at t = 4.0000e+04 y= 3.898729e-02 1.621940e-07 9.610125e-01 at t = 4.0000e+05 y= 4.936362e-03 1.984221e-08 9.950636e-01 at t = 4.0000e+06 y= 5.161832e-04 2.065786e-09 9.994838e-01 at t = 4.0000e+07 y= 5.179811e-05 2.072030e-10 9.999482e-01 at t = 4.0000e+08 y= 5.283524e-06 2.113420e-11 9.999947e-01 at t = 4.0000e+09 y= 4.658945e-07 1.863579e-12 9.999995e-01 at t = 4.0000e+10 y= 1.423392e-08 5.693574e-14 1.000000e+00 ``` ## Application programming interface ### Functions ```@docs lsoda ``` ```@docs lsoda_evolve! ```
LSODA
https://github.com/rveltz/LSODA.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
395
using Documenter, WiSER makedocs( format = Documenter.HTML(), sitename = "WiSER.jl", authors = "Hua Zhou, Chris German", clean = true, debug = true, pages = [ "index.md", "model_fitting.md", "simulation.md" ] ) deploydocs( repo = "github.com/OpenMendel/WiSER.jl.git", target = "build", deps = nothing, make = nothing )
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
16855
module WiSER using Base: kwarg_decl using DataFrames, Tables, LinearAlgebra, MathOptInterface using Printf, Reexport, Statistics, CategoricalArrays import LinearAlgebra: BlasReal, copytri! import DataFrames: DataFrame using Random import Random: GLOBAL_RNG const MOI = MathOptInterface @reexport using Ipopt @reexport using NLopt @reexport using StatsModels @reexport using Distributions export # types WSVarLmmObs, WSVarLmmModel, # functions coef, coefnames, coeftable, confint, DataFrame, fit!, init_ls!, init_mom!, nlsv_obj!, nclusters, nobs, rand!, respdists, rvarlmm, rvarlmm!, stderror, update_res!, update_wtmat!, vcov """ WSVarLmmObs WSVarLmmObs(y, X, Z, W) A realization of within-subject variance linear mixed model data instance. # Positional Arguments: `y`: the response vector `X`: the mean fixed effects covariate matrix `Z`: the random location effects covariate matrix `W`: the within-subject variance fixed effects covariate matrix """ struct WSVarLmmObs{T <: BlasReal} # data y :: Vector{T} # response Xt :: Matrix{T} # X should include a column of 1's Zt :: Matrix{T} # Random effect covars Wt :: Matrix{T} # Covariates that affect WS variability # working arrays obj :: Vector{T} # instance objective value ∇β :: Vector{T} # gradient ∇τ :: Vector{T} ∇Lγ :: Matrix{T} Hββ :: Matrix{T} # hessian Hττ :: Matrix{T} HτLγ :: Matrix{T} HLγLγ :: Matrix{T} res :: Vector{T} # residual vector res2 :: Vector{T} # residual vector.^2 resnrm2 :: Vector{T} # sum of residual squares expwτ :: Vector{T} # hold exp.(W * τ) ztz :: Matrix{T} # Z'Z ztres :: Vector{T} # Z'res zlltzt_dg :: Vector{T} storage_n1 :: Vector{T} storage_p1 :: Vector{T} storage_q1 :: Vector{T} storage_pn :: Matrix{T} storage_qn :: Matrix{T} storage_ln :: Matrix{T} storage_pp :: Matrix{T} storage_qq :: Matrix{T} storage_qp :: Matrix{T} storage_q◺n :: Matrix{T} # Woodbury structure for weight matrix Vinv = Dinv - U * U' Dinv :: Vector{T} Ut :: Matrix{T} # for weighted objective eval rt_Dinv_r :: Vector{T} rt_UUt_r :: Vector{T} rt_U :: Matrix{T} Dinv_r :: Vector{T} rt_UUt :: Matrix{T} Zt_Dinv_r :: Vector{T} rt_UUt_Z :: Matrix{T} diagUUt_Dinv :: Vector{T} Dinv_Z_L :: Matrix{T} UUt_Z_L :: Matrix{T} Ut_D_U :: Matrix{T} Zt_Dinv_Z :: Matrix{T} Lt_Zt_Dinv_Z_L :: Matrix{T} Zt_UUt_Z :: Matrix{T} Lt_Zt_UUt_Z_L :: Matrix{T} # for gradient wrt τ diagDVRV :: Vector{T} # for gradient wrt Lγ Zt_Dinv :: Matrix{T} Zt_UUt_rrt_Dinv_Z :: Matrix{T} Zt_UUt_rrt_UUt_Z :: Matrix{T} Zt_UUt :: Matrix{T} Lt_Zt_Dinv_r :: Vector{T} Zt_Vinv_r :: Vector{T} # for Hessian wrt τ Wt_D_Dinv :: Matrix{T} sqrtDinv_UUt :: Vector{T} Ut_kr_Ut :: Matrix{T} Wt_D_Ut_kr_Utt :: Matrix{T} Wt_D_sqrtdiagDinv_UUt :: Matrix{T} # for Hessian wrt Lγ Zt_Vinv_Z :: Matrix{T} Zt_Vinv :: Matrix{T} end function WSVarLmmObs( y::AbstractVector{T}, X::AbstractMatrix{T}, Z::AbstractMatrix{T}, W::AbstractMatrix{T} ) where T <: BlasReal n, p, q, l = size(X, 1), size(X, 2), size(Z, 2), size(W, 2) q◺ = ◺(q) # working arrays obj = Vector{T}(undef, 1) ∇β = Vector{T}(undef, p) ∇τ = Vector{T}(undef, l) ∇Lγ = Matrix{T}(undef, q, q) Hββ = Matrix{T}(undef, p, p) Hττ = Matrix{T}(undef, l, l) HτLγ = Matrix{T}(undef, l, q◺) HLγLγ = Matrix{T}(undef, q◺, q◺) res = Vector{T}(undef, n) res2 = Vector{T}(undef, n) resnrm2 = Vector{T}(undef, 1) expwτ = Vector{T}(undef, n) ztz = transpose(Z) * Z ztres = Vector{T}(undef, q) zlltzt_dg = Vector{T}(undef, n) storage_n1 = Vector{T}(undef, n) storage_p1 = Vector{T}(undef, p) storage_q1 = Vector{T}(undef, q) storage_pn = Matrix{T}(undef, p, n) storage_qn = Matrix{T}(undef, q, n) storage_ln = Matrix{T}(undef, l, n) storage_pp = Matrix{T}(undef, p, p) storage_qq = Matrix{T}(undef, q, q) storage_qp = Matrix{T}(undef, q, p) storage_q◺n = Matrix{T}(undef, q◺, n) # added for weighted estimating equations Dinv = Vector{T}(undef, n) #stores diag(exp(-wτ_0)) Ut = Matrix{T}(undef, q, n) # denote, r as residual vector D as diagonal(exp(wτ)) # added for weigthed estimating equations rt_Dinv_r = Vector{T}(undef, 1) rt_UUt_r = Vector{T}(undef, 1) rt_U = Matrix{T}(undef, 1, q) Dinv_r = Vector{T}(undef, n) rt_UUt = Matrix{T}(undef, 1, n) Zt_Dinv_r = Vector{T}(undef, q) rt_UUt_Z = Matrix{T}(undef, 1, q) diagUUt_Dinv = Vector{T}(undef, n) Dinv_Z_L = Matrix{T}(undef, n, q) UUt_Z_L = Matrix{T}(undef, n, q) Ut_D_U = Matrix{T}(undef, q, q) Zt_Dinv_Z = Matrix{T}(undef, q, q) Lt_Zt_Dinv_Z_L = Matrix{T}(undef, q, q) Zt_UUt_Z = Matrix{T}(undef, q, q) Lt_Zt_UUt_Z_L = Matrix{T}(undef, q, q) # for gradient wrt τ diagDVRV = Vector{T}(undef, n) # for gradient wrt Lγ Zt_Dinv = Matrix{T}(undef, q, n) Zt_UUt_rrt_Dinv_Z = Matrix{T}(undef, q, q) Zt_UUt_rrt_UUt_Z = Matrix{T}(undef, q, q) Zt_UUt = Matrix{T}(undef, q, n) Lt_Zt_Dinv_r = Vector{T}(undef, q) Zt_Vinv_r = Vector{T}(undef, q) # for Hessian wrt τ Wt_D_Dinv = Matrix{T}(undef, l, n) sqrtDinv_UUt = Vector{T}(undef, n) Ut_kr_Ut = Matrix{T}(undef, abs2(q), n) Wt_D_Ut_kr_Utt = Matrix{T}(undef, l, abs2(q)) Wt_D_sqrtdiagDinv_UUt = Matrix{T}(undef, l, n) # for Hessian wrt Lγ Zt_Vinv_Z = Matrix{T}(undef, q, q) Zt_Vinv = Matrix{T}(undef, q, n) # constructor WSVarLmmObs{T}( y, transpose(X), transpose(Z), transpose(W), obj, ∇β, ∇τ, ∇Lγ, Hββ, Hττ, HτLγ, HLγLγ, res, res2, resnrm2, expwτ, ztz, ztres, zlltzt_dg, storage_n1, storage_p1, storage_q1, storage_pn, storage_qn, storage_ln, storage_pp, storage_qq, storage_qp, storage_q◺n, Dinv, Ut, rt_Dinv_r, rt_UUt_r, rt_U, Dinv_r, rt_UUt, Zt_Dinv_r, rt_UUt_Z, diagUUt_Dinv, Dinv_Z_L, UUt_Z_L, Ut_D_U, Zt_Dinv_Z, Lt_Zt_Dinv_Z_L, Zt_UUt_Z, Lt_Zt_UUt_Z_L, diagDVRV, Zt_Dinv, Zt_UUt_rrt_Dinv_Z, Zt_UUt_rrt_UUt_Z, Zt_UUt, Lt_Zt_Dinv_r, Zt_Vinv_r, Wt_D_Dinv, sqrtDinv_UUt, Ut_kr_Ut, Wt_D_Ut_kr_Utt, Wt_D_sqrtdiagDinv_UUt, Zt_Vinv_Z, Zt_Vinv) end """ WSVarLmmModel Within-subject variance linear mixed model, which contains a vector of `WSVarLmmObs` as data, model parameters, and working arrays. WSVarLmmModel(obsvec; obswts, meannames, renames, wsvarnames) # Positional arguments - `obsvec`: Vector of WSVarLmmObs # Keyword arguments - `obswts`: Subject-level weight vector of observation weights, length of the `obsvec` object. - `meannames`: Names of the mean fixed effects covariates - `renames`: Names of the random location effects covariates - `wsvarnames`: Names of the ws variance fixed effects covariates """ struct WSVarLmmModel{T <: BlasReal} <: MOI.AbstractNLPEvaluator # data data :: Vector{WSVarLmmObs{T}} respname :: String meannames :: Vector{String} # names of mean fixed effect variables renames :: Vector{String} # names of random location effect variables wsvarnames :: Vector{String} # names of ws var fixed effect variables meanformula :: FormulaTerm reformula :: FormulaTerm wsvarformula :: FormulaTerm ids :: Union{Vector{<:AbstractString}, Vector{<:Int}} # IDs of individuals/clusters in order obswts :: Vector{T} # individual/cluster weights # dimenions p :: Int # number of mean parameters in linear regression q :: Int # number of random effects l :: Int # number of parameters for modeling WS variability m :: Int # number of individuals/clusters nis :: Vector{Int} # number of observations per cluster nsum :: Int # number of observations (summed across individuals) # sufficient statistics xtx :: Matrix{T} # sum_i Xi'Xi xty :: Vector{T} # sum_i Xi'yi wtw :: Matrix{T} # sum_i Wi'Wi ztz2 :: Matrix{T} # sum_i Zi'Zi ⊗ Zi'Zi ztz2od :: Matrix{T} # sum_i (Zi'Zi ⊗ Zi'Zi - (Zi' ⊙ Zi')(Zi' ⊙ Zi')') # parameters β :: Vector{T} # p-vector of mean regression coefficients τ :: Vector{T} # l-vector of WS variability regression coefficients Lγ :: Matrix{T} # q by q lower triangular Cholesky factor of cov(γ) Σγ :: Matrix{T} # q by q covariance matrix of γ # working arrays ∇β :: Vector{T} ∇τ :: Vector{T} ∇Lγ :: Matrix{T} ∇Σγ :: Vector{T} Hββ :: Matrix{T} Hττ :: Matrix{T} HτLγ :: Matrix{T} HLγLγ :: Matrix{T} HΣγΣγ :: Matrix{T} # weighted NLS or unweighted NLS iswtnls :: Vector{Bool} # multi-threading or not ismthrd :: Vector{Bool} # model has been fit or not isfitted :: Vector{Bool} # for sandwich estimator ψ :: Vector{T} Ainv :: Matrix{T} B :: Matrix{T} vcov :: Matrix{T} end function WSVarLmmModel( obsvec :: Vector{WSVarLmmObs{T}}; obswts :: Vector = [], respname :: String = "y", meannames :: Vector{String} = ["x$i" for i in 1:size(obsvec[1].Xt, 1)], renames :: Vector{String} = ["z$i" for i in 1:size(obsvec[1].Zt, 1)], wsvarnames :: Vector{String} = ["w$i" for i in 1:size(obsvec[1].Wt, 1)], meanformula :: FormulaTerm = FormulaTerm(term(Symbol(respname)), sum(term.(Symbol.(meannames)))), reformula :: FormulaTerm = FormulaTerm(term(Symbol(respname)), sum(term.(Symbol.(renames)))), wsvarformula:: FormulaTerm = FormulaTerm(term(Symbol(respname)), sum(term.(Symbol.(wsvarnames)))), ids :: Union{Vector{<:AbstractString}, Vector{Int}} = collect(1:length(obsvec)) ) where T <: BlasReal # dimensions p = size(obsvec[1].Xt, 1) q = size(obsvec[1].Zt, 1) l = size(obsvec[1].Wt, 1) m = length(obsvec) nis = map(o -> length(o.y), obsvec) nsum = sum(nis) q◺ = ◺(q) # sufficient statistics xtx = zeros(T, p, p) xty = zeros(T, p) wtw = zeros(T, l, l) ztz2 = zeros(T, abs2(q), abs2(q)) ztz2od = zeros(T, abs2(q), abs2(q)) for obs in obsvec # accumulate Xi'Xi BLAS.syrk!('U', 'N', T(1), obs.Xt, T(1), xtx) # accumulate Xi'yi BLAS.gemv!('N', T(1), obs.Xt, obs.y, T(1), xty) # accumulate Wi' * Wi BLAS.syrk!('U', 'N', T(1), obs.Wt, T(1), wtw) # accumulate Zi'Zi ⊗ Zi'Zi kron_axpy!(obs.ztz, obs.ztz, ztz2) # accumualte (Zi' ⊙ Zi')(Zi' ⊙ Zi')' # Ut_kr_Ut used as scratch space to store Zi' ⊙ Zi' kr_axpy!(obs.Zt, obs.Zt, fill!(obs.Ut_kr_Ut, 0)) BLAS.syrk!('U', 'N', T(1), obs.Ut_kr_Ut, T(1), ztz2od) end ztz2od .= ztz2 .- ztz2od copytri!( xtx, 'U') copytri!( wtw, 'U') copytri!( ztz2, 'U') copytri!(ztz2od, 'U') # parameters β = Vector{T}(undef, p) τ = Vector{T}(undef, l) Lγ = Matrix{T}(undef, q, q) Σγ = Matrix{T}(undef, q, q) # gradients ∇β = Vector{T}(undef, p) ∇τ = Vector{T}(undef, l) ∇Lγ = Matrix{T}(undef, q, q) ∇Σγ = Vector{T}(undef, abs2(q)) Hββ = Matrix{T}(undef, p, p) Hττ = Matrix{T}(undef, l, l) HτLγ = Matrix{T}(undef, l, q◺) HLγLγ = Matrix{T}(undef, q◺, q◺) HΣγΣγ = Matrix{T}(undef, abs2(q), abs2(q)) # weighted NLS fitting or not iswtnls = [false] # multi-threading or not ismthrd = [false] # has been fit or not isfitted = [false] # sandwich estimator ψ = Vector{T}(undef, p + q◺ + l) Ainv = Matrix{T}(undef, p + q◺ + l, p + q◺ + l) B = Matrix{T}(undef, p + q◺ + l, p + q◺ + l) vcov = Matrix{T}(undef, p + q◺ + l, p + q◺ + l) # constructor WSVarLmmModel{T}( obsvec, respname, meannames, renames, wsvarnames, meanformula, reformula, wsvarformula, ids, obswts, p, q, l, m, nis, nsum, xtx, xty, wtw, ztz2, ztz2od, β, τ, Lγ, Σγ, ∇β, ∇τ, ∇Lγ, ∇Σγ, Hββ, Hττ, HτLγ, HLγLγ, HΣγΣγ, iswtnls, ismthrd, isfitted, ψ, Ainv, B, vcov) end coefnames(m::WSVarLmmModel) = [m.meannames; m.wsvarnames] coef(m::WSVarLmmModel) = [m.β; m.τ] nobs(m::WSVarLmmModel) = m.nsum nclusters(m::WSVarLmmModel) = m.m stderror(m::WSVarLmmModel) = [sqrt(m.vcov[i, i]) for i in 1:(m.p + m.l)] vcov(m::WSVarLmmModel) = m.vcov # include variance parts of Lγ? confint(m::WSVarLmmModel, level::Real) = hcat(coef(m), coef(m)) + stderror(m) * quantile(Normal(), (1. - level) / 2.) * [1. -1.] confint(m::WSVarLmmModel) = confint(m, 0.95) function getformula(m::WSVarLmmModel, s::String) frmla = s == "mean" ? m.meanformula : s == "var" ? m.wsvarformula : s == "re" ? m.reformula : nothing rhs = length(terms(frmla.rhs)) == 1 ? string(term(frmla.rhs)) : join(frmla.rhs, " + ") return m.respname * " ~ " * rhs end function coeftable(m::WSVarLmmModel) mstder = stderror(m) mcoefs = coef(m) wald = mcoefs ./ mstder pvals = 2 * Distributions.ccdf.(Normal(), abs.(wald)) StatsModels.CoefTable(hcat(mcoefs, mstder, wald, pvals), ["Estimate", "Std. Error", "Z", "Pr(>|Z|)"], coefnames(m), 4, 3) end function Base.show(io::IO, m::WSVarLmmModel) if !m.isfitted[1] @warn("The model has not been fit.") return nothing end println(io) println(io, "Within-subject variance estimation by robust regression (WiSER)") println(io) println(io, "Mean Formula:") println(io, getformula(m, "mean")) println(io, "Random Effects Formula:") println(io, getformula(m, "re")) println(io, "Within-Subject Variance Formula:") println(io, getformula(m, "var")) println(io) println(io, "Number of individuals/clusters: $(m.m)") println(io, "Total observations: $(m.nsum)") println(io) println(io, "Fixed-effects parameters:") show(io, coeftable(m)) println(io) println(io, "Random effects covariance matrix Σγ:") Base.print_matrix(IOContext(io, :compact => true), [m.renames m.Σγ]) println(io) println(io) end function config_solver(solver::MOI.AbstractOptimizer, solver_config::Dict) for (key, val) in solver_config MOI.set(solver, MOI.RawOptimizerAttribute(key), val) end end include("nls.jl") include("initialization.jl") include("fit.jl") include("df.jl") include("rand.jl") include("multivariate_calculus.jl") include("sandwich.jl") end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
7067
""" DataFrame(m::WSVarLmmModel) Convert the data in `WSVarLmmModel` to a `DataFrame`. """ function DataFrame(m::WSVarLmmModel) p, q, l, n = m.p, m.q, m.l, m.nsum # preallocate arrays id = Vector{eltype(m.ids)}(undef, n) y = Matrix{Float64}(undef, n, 1) X = Matrix{Float64}(undef, n, p) Z = Matrix{Float64}(undef, n, q) W = Matrix{Float64}(undef, n, l) addweight = !isempty(m.obswts) if addweight weights = Vector{Float64}(undef, n) end #get names to reconstruct Dataframe properly meannames = map(x -> join(x[2:end], ": "), (split.(m.meannames, ": "))) renames = map(x -> join(x[2:end], ": "), (split.(m.renames, ": "))) wsvarnames = map(x -> join(x[2:end], ": "), (split.(m.wsvarnames, ": "))) # gather data offset = 1 for (i, vlmmobs) in enumerate(m.data) ni = length(vlmmobs.y) rangei = offset:(offset + ni - 1) id[rangei] .= m.ids[i] y[rangei] = vlmmobs.y X[rangei, :] = transpose(vlmmobs.Xt) Z[rangei, :] = transpose(vlmmobs.Zt) W[rangei, :] = transpose(vlmmobs.Wt) if addweight weights[rangei] .= m.obswts[i] end offset += ni end # Skip repeated variables in X, Z, W and don't copy interaction terms Xcols = .![occursin("&", meanname) for meanname in meannames] Zcols = .![(zname in meannames || occursin("&", zname)) for zname in renames] Wcols = .![(wname in meannames || wname in renames || occursin("&", wname)) for wname in wsvarnames] # Construct DataFrame df = hcat(DataFrame(id = id), DataFrame(y, [m.respname]), DataFrame(X[:, Xcols], meannames[Xcols]), DataFrame(Z[:, Zcols], renames[Zcols]), DataFrame(W[:, Wcols], wsvarnames[Wcols])) if addweight df[!, :obswts] = weights end allnames = union(meannames, renames, wsvarnames) filter!(x -> !occursin("&", x), allnames) # Create columns for factored variables (for reusing original formula and GWAS) isfactor = occursin.(": ", allnames) splitnames = map(x -> split(x, ": ")[1], allnames) for name in unique(splitnames) numfactors = findall(isequal.(name, splitnames)) if (length(numfactors) == 1 && .!(any(isfactor[numfactors]))) continue end factors = map(x -> join(split(x, ": ")[2:end], ": "), allnames[numfactors]) valholder = repeat([""], n) for factor in factors dfname = join([name, factor], ": ") valholder[df[!, dfname] .== 1] .= factor end valholder[valholder .== ""] .= "Reference" df[!, name] = valholder df[!, name] = levels!(CategoricalArray(df[!, name]), ["Reference"; factors]); end df end """ WSVarLmmModel(meanformula::FormulaTerm, reformula::FormulaTerm, wsvarformula::FormulaTerm, idvar::Union{String, Symbol}, tbl) Constructor of `WSVarLmmModel` from a Tables.jl compatible source. # Positional arguments - `meanformula`: formula for the mean fixed effects β (variables in X matrix). - `reformula`: formula for the mean random effects γ (variables in Z matrix). - `wsvarformula`: formula for the within-subject variance effects τ (variables in W matrix). - `idvar`: id variable for groupings. - `tbl:` data table holding all of the data for the model. It can be a `DataFrame` or column-based table such as an `IndexedTable` from JuliaDB. # Keyword arguments - `wtvar`: variable name corresponding to the observation weights in the datatable. # Example ``` vlmm3 = WSVarLmmModel(@formula(y ~ 1 + x2 + x3 + x4 + x5), @formula(y ~ 1 + z2 + z3), @formula(y ~ 1 + w2 + w3 + w4 + w5), "id", df) ``` """ WSVarLmmModel( meanformula :: FormulaTerm, reformula :: FormulaTerm, wsvarformula :: FormulaTerm, idvar :: Union{String, Symbol}, tbl; wtvar :: Union{String, Symbol} = "" ) = WSVarLmmModel(meanformula, reformula, wsvarformula, idvar, columntable(tbl); wtvar = wtvar) function WSVarLmmModel( meanformula :: FormulaTerm, reformula :: FormulaTerm, wsvarformula :: FormulaTerm, idvar :: Union{String, Symbol}, tbl :: T; wtvar :: Union{String, Symbol} = "" ) where T <: Tables.ColumnTable idvar = Symbol(idvar) iswtvar = !isempty(string(wtvar)) # keep original non-schema applied formulas for model object orig_meanformla = deepcopy(meanformula) orig_reformla = deepcopy(reformula) orig_wsvarformla = deepcopy(wsvarformula) function varlmmobs(tab) y, X = modelcols(meanformula, tab) Z = modelmatrix(reformula, tab) W = modelmatrix(wsvarformula, tab) return WSVarLmmObs(y, X, Z, W) end # collect all terms to perform dropping properly if iswtvar alltermformula = meanformula.lhs ~ sum(term.(union(terms(meanformula.rhs), terms(reformula.rhs), terms(wsvarformula.rhs)))) + term(idvar) + term(Symbol(wtvar)) else alltermformula = meanformula.lhs ~ sum(term.(union(terms(meanformula.rhs), terms(reformula.rhs), terms(wsvarformula.rhs)))) + term(idvar) end tbl, _ = StatsModels.missing_omit(tbl, alltermformula) # apply df-wide schema meanformula = apply_schema(meanformula, schema(meanformula, tbl))#, ydict)) reformula = apply_schema(reformula, schema(reformula, tbl))#, ydict)) wsvarformula = apply_schema(wsvarformula, schema(wsvarformula, tbl))#, ydict)) # variable names respname = string(meanformula.lhs) meannames = StatsModels.coefnames(meanformula.rhs) # either array{Names} or string of one variable meannames = typeof(meannames) <: Array ? ["β$i: " for i in 1:length(meannames)] .* meannames : ["β1: " * meannames] renames = StatsModels.coefnames(reformula.rhs) renames = typeof(renames) <: Array ? ["γ$i: " for i in 1:length(renames)] .* renames : ["γ1: " * renames] wsvarnames = StatsModels.coefnames(wsvarformula.rhs) wsvarnames = typeof(wsvarnames) <: Array ? ["τ$i: " for i in 1:length(wsvarnames)] .* wsvarnames : ["τ1: " * wsvarnames] # build grouped dataframe and record ID order gdf = DataFrames.groupby(DataFrame(tbl, copycols = false), idvar) ids = map(x -> x[1], keys(gdf)) if isempty(string(wtvar)) wts = [] else cnames = Tables.columnnames(tbl) wtvar = Symbol(wtvar) wtvar in cnames || error("weight variable $wtvar not in datatable $tbl") wts = combine(gdf, wtvar => first)[!, 2] end obsvec = combine(varlmmobs, gdf)[!, 2] varlmm = WSVarLmmModel(obsvec, respname = respname, meannames = meannames, renames = renames, wsvarnames = wsvarnames, ids = ids, obswts = wts, meanformula = orig_meanformla, reformula = orig_reformla, wsvarformula = orig_wsvarformla) return varlmm end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
8309
""" fit!(m::WSVarLmmModel, solver=IpoptSolver(print_level=0, mehrotra_algorithm="yes", max_iter=100); init=init_ls!(m), runs = 2) Fit a `WSVarLmmModel` object using a weighted NLS method. # Positional arguments - `m::WSVarLmmModel`: Model to fit. - `solver`: Nonlinear programming solver to use. Common choices include: - `Ipopt.IpoptSolver(print_level=0, mehrotra_algorithm="yes", warm_start_init_point="yes", max_iter=100)`. - `Ipopt.IpoptSolver(print_level=0, watchdog_shortened_iter_trigger=3, max_iter=100)`. - `Ipopt.IpoptSolver(print_level=0, max_iter=100)`. - `KNITRO.KnitroSolver(outlev=3)`. (Knitro is commercial software) - `NLopt.NLoptSolver(algorithm=:LD_MMA, maxeval=4000)`. - `NLopt.NLoptSolver(algorithm=:LD_LBFGS, maxeval=4000)`. # Keyword arguments - `init`: Initialization strategy. `fit!` will use `m.τ` and `m.Lγ` to set the weight matrices `Vi` and solve the weighted NLS to obtain an estimate for `m.β`, `m.τ`, and `m.Lγ`. Choices for `init` include - `init_ls!(m)` (default): initialize by the least squares analytical solution. - `init_mom!(m)`: initialize by the unweighted NLS (MoM). - `m`: initilize from user supplied values in `m.τ` and `m.Lγ`. - `runs::Integer`: Number of weighted NLS runs; default is 2. Each run will use the newest `m.τ` and `m.Lγ` to update the weight matrices `Vi` and solve the new weighted NLS. - `parallel::Bool`: Multi-threading or not. Default is `false`. - `verbose::Bool`: Verbose display or not, Default is `true`. """ function fit!( m :: WSVarLmmModel{T}, solver :: MOI.AbstractOptimizer = Ipopt.Optimizer(); solver_config::Dict = Dict("print_level" => 0, "mehrotra_algorithm" => "yes", "warm_start_init_point" => "yes", "max_iter" => 100), init :: WSVarLmmModel{T} = init_ls!(m), runs :: Integer = 2, parallel :: Bool = false, verbose :: Bool = true, throw_on_failure :: Bool = false, ) where {T<:BlasReal} solvertype = typeof(solver) solvertype <: Ipopt.Optimizer || @warn("Optimizer object is $solvertype, `solver_config` may need to be defined.") # Pass options to solver config_solver(solver, solver_config) # set up NLP optimization problem npar = m.l + ◺(m.q) MOI.empty!(solver) lb = T[] ub = T[] NLPBlock = MOI.NLPBlockData( MOI.NLPBoundsPair.(lb, ub), m, true ) par0 = Vector{T}(undef, npar) modelpar_to_optimpar!(par0, m) solver_pars = MOI.add_variables(solver, npar) for i in 1:npar MOI.set(solver, MOI.VariablePrimalStart(), solver_pars[i], par0[i]) end MOI.set(solver, MOI.NLPBlock(), NLPBlock) MOI.set(solver, MOI.ObjectiveSense(), MOI.MIN_SENSE) # optimize weighted NLS m.iswtnls[1] = true m.ismthrd[1] = parallel xsol = similar(par0) βprev, τprev, Lγprev = similar(m.β), similar(m.τ), similar(m.Lγ) for run in 1:runs copyto!(βprev, m.β); copyto!(τprev, m.τ), copyto!(Lγprev, m.Lγ) tic = time() # start timing # update Vi, then β and residuals with WLS update_wtmat!(m) # update τ and Lγ by WNLS modelpar_to_optimpar!(par0, m) for i in 1:npar MOI.set(solver, MOI.VariablePrimalStart(), solver_pars[i], par0[i]) end MOI.optimize!(solver) toc = time() optstat = MOI.get(solver, MOI.TerminationStatus()) optstat in (MOI.LOCALLY_SOLVED, MOI.ALMOST_LOCALLY_SOLVED) || (throw_on_failure ? error("Optimization unsuccessful; got $optstat") : @warn("Optimization unsuccessful; got $optstat")) # Get solver solution values fill!(xsol, zero(T)) for i in eachindex(xsol) xsol[i] = MOI.get(solver, MOI.VariablePrimal(), MOI.VariableIndex(i)) end optimpar_to_modelpar!(m, xsol) verbose && @printf( "run = %d, ‖Δβ‖ = %f, ‖Δτ‖ = %f, ‖ΔL‖ = %f, status = %s, time(s) = %f\n", run, norm(m.β - βprev ), norm(m.τ - τprev ), norm(m.Lγ - Lγprev), optstat, toc - tic) end m.isfitted[1] = true # refresh objective, gradient, and Hessian mul!(m.Σγ, m.Lγ, transpose(m.Lγ)) nlsv_obj!(m, true, true, false) # sandwich estimator sandwich!(m) m end """ modelpar_to_optimpar!(par, m) Translate model parameters in `m` to optimization variables in `par`. """ function modelpar_to_optimpar!( par :: AbstractVector{T}, m :: WSVarLmmModel{T} ) where {T<:BlasReal} q, l = m.q, m.l # τ copyto!(par, m.τ) # Lγ offset = l + 1 @inbounds for j in 1:q, i in j:q par[offset] = i == j ? log(max(m.Lγ[i, j], floatmin(T))) : m.Lγ[i, j] offset += 1 end par end """ optimpar_to_modelpar!(m, par) Translate optimization variables in `par` to the model parameters in `m`. """ function optimpar_to_modelpar!( m :: WSVarLmmModel{T}, par :: Vector{T} ) where {T<:BlasReal} q, l = m.q, m.l # τ copyto!(m.τ, 1, par, 1, l) # Lγ fill!(m.Lγ, 0) offset = l + 1 @inbounds for j in 1:q, i in j:q m.Lγ[i, j] = i == j ? exp(par[offset]) : par[offset] offset += 1 end m end function MOI.initialize( m :: WSVarLmmModel, requested_features :: Vector{Symbol} ) for feat in requested_features if !(feat in MOI.features_available(m)) error("Unsupported feature $feat") end end end MOI.features_available(m::WSVarLmmModel) = [:Grad, :Hess] function MOI.eval_objective( m :: WSVarLmmModel{T}, par :: AbstractVector{T} ) where {T<:BlasReal} optimpar_to_modelpar!(m, par) nlsv_obj!(m, false, false, false) end function MOI.eval_objective_gradient( m :: WSVarLmmModel{T}, grad :: Vector{T}, par :: AbstractVector{T} ) where {T<:BlasReal} q, l = m.q, m.l optimpar_to_modelpar!(m, par) obj = nlsv_obj!(m, true, false, false) # gradient wrt τ copyto!(grad, m.∇τ) # gradient wrt Lγ offset = l + 1 @inbounds for j in 1:q, i in j:q # traverse lower triangular of Lγ[i, j] grad[offset] = m.∇Lγ[i, j] i == j && (grad[offset] *= m.Lγ[i, j]) offset += 1 end end function MOI.eval_constraint( m :: WSVarLmmModel, g :: Vector{T}, par :: AbstractVector{T} ) where {T<:BlasReal} return nothing end function MOI.hessian_lagrangian_structure(m::WSVarLmmModel) # our Hessian is a dense matrix, work on the upper triangular part npar = m.l + ◺(m.q) arr1 = Vector{Int}(undef, ◺(npar)) arr2 = Vector{Int}(undef, ◺(npar)) idx = 1 @inbounds for j in 1:npar, i in 1:j arr1[idx] = i arr2[idx] = j idx += 1 end return collect(zip(arr1, arr2)) end function MOI.eval_hessian_lagrangian( m :: WSVarLmmModel, H :: AbstractVector{T}, par :: AbstractVector{T}, σ :: T, μ :: AbstractVector{T} ) where {T<:BlasReal} q, l = m.q, m.l # refresh obj, gradient, and hessian optimpar_to_modelpar!(m, par) nlsv_obj!(m, true, true, false) # Hττ idx = 1 @inbounds for j in 1:l, i in 1:j H[idx] = m.Hττ[i, j] idx += 1 end j = 1 # index columns of HτLγ and HLγLγ @inbounds for j2 in 1:q, j1 in j2:q # traverse lower triangular of Lγ[j1, j2] # HτLγ for i in 1:l # i index rows of HτLγ H[idx] = m.HτLγ[i, j] j1 == j2 && (H[idx] *= m.Lγ[j1, j2]) idx += 1 end # HLγLγ i = 1 # index rows of HLγLγ for i2 in 1:q, i1 in i2:q # traverse lower triangular of Lγ[i1, i2] i > j && break # skip lower triangular of HLγLγ H[idx] = m.HLγLγ[i, j] # different diagonal entries of Lγ i1 == i2 && (H[idx] *= m.Lγ[i1, i2]) j1 == j2 && (H[idx] *= m.Lγ[j1, j2]) # same diagonal entry of Lγ i1 == i2 == j1 == j2 && (H[idx] += m.∇Lγ[j1, j2] * m.Lγ[j1, j2]) idx += 1 i += 1 end j += 1 end lmul!(σ, H) end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
8445
""" init_ls!(m::WSVarLmmModel; gniters::Integer = 5) Initialize parameters of a `WSVarLmmModel` object from least squares estimate. `m.β` is initialized to be `inv(sum(xi'xi)) * sum(xi'yi)`. `m.Σγ` is initialized to be `inv(sum(zi'zi⊗zi'zi)) * sum(zi'ri⊗zi'ri)`. `m.τ` is initialized to be `inv(sum(wi'wi)) * sum(wi'log(abs2(ri)))`. If `gniters > 0`, run `gniters` Gauss-Newton iterations to improve τ. """ function init_ls!( m :: WSVarLmmModel{T}; gniters :: Integer = 5, noise_level :: T = zero(T), rng = Random.GLOBAL_RNG ) where T <: BlasReal # dimensions q, l = m.q, m.l # LS estimate for β _, info = LAPACK.potrf!('U', copyto!(m.Hββ, m.xtx)) info > 0 && throw("design matrix X is rank deficient") LAPACK.potrs!('U', m.Hββ, copyto!(m.β, m.xty)) # refresh residuals update_res!(m) # accumulate quantities for initilizing Σγ and τ fill!(m.∇τ , 0) # to accumulate Wi' * log(ri.^2) fill!(m.∇Σγ, 0) # to accumulate Zi'ri ⊗ Zi'ri fill!(m.Lγ , 0) # scratch space to accumulate Zi'diag(r) diag(r)Zi for obs in m.data n = length(obs.y) # storage_n1 = log(diag(rr')) map!(r2 -> log(max(r2, floatmin(T))), obs.storage_n1, obs.res2) # accumulate Wi' * log(ri.^2) BLAS.gemv!('N', T(1), obs.Wt, obs.storage_n1, T(1), m.∇τ) # accumulate Zi'ri ⊗ Zi'ri kron_axpy!(obs.ztres, obs.ztres, m.∇Σγ) # storage_qn = Zi'diag(r) copyto!(obs.storage_qn, obs.Zt) @inbounds for j in 1:n, i in 1:q obs.storage_qn[i, j] *= obs.res[j] end # accmulate vec(Zi'diag(r) diag(r)Zi) BLAS.syrk!('U', 'N', T(1), obs.storage_qn, T(1), m.Lγ) end if noise_level != zero(T) # add random noise to guarantee full rank of Z m.Lγ .+= randn!(rng, m.∇Lγ) .* noise_level end copytri!(m.Lγ, 'U') # LS estimate for Σγ _, info = LAPACK.potrf!('U', copyto!(m.HΣγΣγ, m.ztz2od)) info > 0 && throw("design matrix Z is rank defficient") # sum_i (Zi'ri ⊗ Zi'ri - vec(Zi'diag(r) diag(r)Zi)) @inbounds for i in eachindex(m.∇Σγ) m.∇Σγ[i] -= m.Lγ[i] end LAPACK.potrs!('U', m.HΣγΣγ, m.∇Σγ) _, info = LAPACK.potrf!('L', copyto!(m.Lγ, m.∇Σγ)) # make upper triangular of Lγ zero @inbounds for j in 2:q, i in 1:j-1 m.Lγ[i, j] = 0 end # Σγ is singular; set columns L[:, info:end] = 0 if info > 0 @warn("starting Lγ is rank deficient") @inbounds for j in info:q, i in j:q m.Lγ[i, j] = 0 end end # regress log(ri .* ri) on Wi to initialize τ _, info = LAPACK.potrf!('U', copyto!(m.Hττ, m.wtw)) info > 0 && throw("design matrix W is singular") LAPACK.potrs!('U', m.Hττ, copyto!(m.τ, m.∇τ)) # quick return if no GN iterations requested gniters == 0 && (return m) # Gauss-Newton iterations to improve τ # NLS responses: obs.storage_n1 = res^2 - diag(Z L Lt Zt) for obs in m.data n = length(obs.y) # storage_qn = Lγ' * Zt mul!(obs.storage_qn, transpose(m.Lγ), obs.Zt) # storage_n1 = diag(rr' - Z * L * L' * Zt) @inbounds for j in 1:n obs.storage_n1[j] = obs.res2[j] for i in 1:q obs.storage_n1[j] -= abs2(obs.storage_qn[i, j]) end end end # Gauss-Newton iterations for iter in 1:gniters # accumulate ∇ and FIM fill!(m.∇τ, 0) fill!(m.Hττ, 0) for obs in m.data n = length(obs.y) mul!(obs.expwτ, transpose(obs.Wt), m.τ) obs.expwτ .= exp.(obs.expwτ) # storage_ln = Wt * diag(expwτ) copyto!(obs.storage_ln, obs.Wt) @inbounds for j in 1:n, i in 1:l obs.storage_ln[i, j] *= obs.expwτ[j] end # ∇i = Wt * diag(expwτ) * (ypseudo - expwτ) # expwτ = ypseudo - expwτ obs.expwτ .= obs.storage_n1 .- obs.expwτ BLAS.gemv!('N', T(1), obs.storage_ln, obs.expwτ, T(1), m.∇τ) # Hi = Wt * diag(expwτ) * diag(expwτ) * W BLAS.syrk!('U', 'N', T(1), obs.storage_ln, T(1), m.Hττ) end # Gauss-Newton update LAPACK.potrf!('U', m.Hττ) LAPACK.potrs!('U', m.Hττ, m.∇τ) # newton direction m.τ .+= m.∇τ end mul!(m.Σγ, m.Lγ, transpose(m.Lγ)) m end # """ # init_mom!(m::WSVarLmmModel, solver; init = init_ls!(m), parallel = false) # Initialize `τ` and `Lγ` of a `VarLmmModel` object by method of moment (MoM) # using residulas in `m.obs[i].res`. It involves solving an unweighted NLS problem. # # Position arguments # - `m`: A `WSVarLmmModel` object. # - `solver`: NLP solver. Default is `IpoptSolver(print_level=0, mehrotra_algorithm="yes", # warm_start_init_point="yes", max_iter=100)`. # # Keyword arguments # - `init`: Initlizer for the NLS problem. Default is `init_ls!(m)`. If `init=m`, # then it uses the values provided in `m.τ` and `m.Lγ` as starting point. # - `parallel::Bool`: Multi-threading. Default is `false`. # """ # function init_mom!( # m :: WSVarLmmModel{T}, # solver = Ipopt.IpoptSolver(print_level = 0, mehrotra_algorithm = "yes", # warm_start_init_point = "yes", # warm_start_bound_push = 1e-6, max_iter = 100); # init :: WSVarLmmModel = init_ls!(m), # parallel :: Bool = false # ) where T <: BlasReal # # set up NLP optimization problem # npar = m.l + ◺(m.q) # optm = MathProgBase.NonlinearModel(solver) # lb = fill(-Inf, npar) # ub = fill( Inf, npar) # MathProgBase.loadproblem!(optm, npar, 0, lb, ub, Float64[], Float64[], :Min, m) # # optimize unweighted obj function (MoM estimator) # m.iswtnls[1] = false # m.ismthrd[1] = parallel # par0 = zeros(npar) # modelpar_to_optimpar!(par0, m) # MathProgBase.setwarmstart!(optm, par0) # MathProgBase.optimize!(optm) # optimpar_to_modelpar!(m, MathProgBase.getsolution(optm)) # optstat = MathProgBase.status(optm) # optstat == :Optimal || # @warn("Optimization unsuccesful; got $optstat") # mul!(m.Σγ, m.Lγ, transpose(m.Lγ)) # m # end """ init_mom!(m::WSVarLmmModel, solver; init = init_ls!(m), parallel = false) Initialize `τ` and `Lγ` of a `VarLmmModel` object by method of moment (MoM) using residulas in `m.obs[i].res`. It involves solving an unweighted NLS problem. # Position arguments - `m`: A `WSVarLmmModel` object. - `solver`: NLP solver. Default is `IpoptSolver(print_level=0, mehrotra_algorithm="yes", warm_start_init_point="yes", max_iter=100)`. # Keyword arguments - `init`: Initlizer for the NLS problem. Default is `init_ls!(m)`. If `init=m`, then it uses the values provided in `m.τ` and `m.Lγ` as starting point. - `parallel::Bool`: Multi-threading. Default is `false`. """ function init_mom!( m :: WSVarLmmModel{T}, solver :: MOI.AbstractOptimizer = Ipopt.Optimizer(); solver_config::Dict = Dict("print_level" => 0, "mehrotra_algorithm" => "yes", "warm_start_init_point" => "yes", "max_iter" => 100), init :: WSVarLmmModel = init_ls!(m), parallel :: Bool = false ) where T <: BlasReal # Pass options to solver config_solver(solver, solver_config) # set up NLP optimization problem npar = m.l + ◺(m.q) MOI.empty!(solver) lb = T[] ub = T[] NLPBlock = MOI.NLPBlockData( MOI.NLPBoundsPair.(lb, ub), m, true ) par0 = Vector{T}(undef, npar) modelpar_to_optimpar!(par0, m) solver_pars = MOI.add_variables(solver, npar) for i in 1:npar MOI.set(solver, MOI.VariablePrimalStart(), solver_pars[i], par0[i]) end MOI.set(solver, MOI.NLPBlock(), NLPBlock) MOI.set(solver, MOI.ObjectiveSense(), MOI.MIN_SENSE) # optimize unweighted obj function (MoM estimator) m.iswtnls[1] = false m.ismthrd[1] = parallel MOI.optimize!(solver) # output optstat = MOI.get(solver, MOI.TerminationStatus()) optstat in (MOI.LOCALLY_SOLVED, MOI.ALMOST_LOCALLY_SOLVED) || @warn("Optimization unsuccessful; got $optstat") xsol = similar(par0) for i in eachindex(xsol) xsol[i] = MOI.get(solver, MOI.VariablePrimal(), MOI.VariableIndex(i)) end optimpar_to_modelpar!(m, xsol) mul!(m.Σγ, m.Lγ, transpose(m.Lγ)) m end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
5963
export ◺, commutation, CopyMatrix, kron_axpy!, kr_axpy!, kr, mul!, vech, Ct_At_kron_A_KC, Ct_At_kron_A_KC!, Ct_A_kron_B_C, Ct_A_kron_B_C!, Ct_A_kr_B, Ct_A_kr_B! import LinearAlgebra: mul! """ ◺(n::Integer) Triangular number `n * (n + 1) / 2`. """ @inline ◺(n::Integer) = (n * (n + 1)) >> 1 """ kron_axpy!(A, X, Y) Overwrite `Y` with `A ⊗ X + Y`. Same as `Y += kron(A, X)` but more memory efficient. """ function kron_axpy!( A::AbstractVecOrMat{T}, X::AbstractVecOrMat{T}, Y::AbstractVecOrMat{T} ) where T <: Real m, n = size(A, 1), size(A, 2) p, q = size(X, 1), size(X, 2) @assert size(Y, 1) == m * p @assert size(Y, 2) == n * q @inbounds for j in 1:n coffset = (j - 1) * q for i in 1:m a = A[i, j] roffset = (i - 1) * p for l in 1:q r = roffset + 1 c = coffset + l for k in 1:p Y[r, c] += a * X[k, l] r += 1 end end end end Y end """ kr_axpy!(A, X, Y) Overwrite `Y` with `A ⊙ X + Y`, where `⊙` stands for the Khatri-Rao (columnwise Kronecker) product. `A` and `X` need to have same number of columns. """ function kr_axpy!( A::AbstractVecOrMat{T}, X::AbstractVecOrMat{T}, Y::AbstractVecOrMat{T} ) where T <: Real @assert size(A, 2) == size(X, 2) == size(Y, 2) m, n, p = size(A, 1), size(A, 2), size(X, 1) @inbounds for j in 1:n r = 1 for i in 1:m aij = A[i, j] for k in 1:p Y[r, j] += aij * X[k, j] r += 1 end end end Y end kr(A::AbstractVecOrMat{T}, X::AbstractVecOrMat{T}) where T <: Real = kr_axpy!(A, X, zeros(T, size(A, 1) * size(X, 1), size(A, 2))) struct CopyMatrix <: AbstractMatrix{Int} n::Int end Base.size(C::CopyMatrix) = (abs2(C.n), (C.n * (C.n + 1)) >> 1) Base.IndexStyle(::Type{<:CopyMatrix}) = IndexCartesian() function Base.getindex(C::CopyMatrix, i::Int, j::Int) r, c = CartesianIndices((1:C.n, 1:C.n))[i].I if r ≥ c && j == (c - 1) * C.n - ((c - 2) * (c - 1)) >> 1 + r - c + 1 return 1 else return 0 end end """ mul!(result, A, C::CopyMatrix) Right-multiplying a matrix `A` by a copying matrix is equivalent to keeping the columns of `A` corresponding to the lower triangular indices. """ function LinearAlgebra.mul!( result :: AbstractVecOrMat, A :: AbstractVecOrMat, C :: CopyMatrix ) n = isqrt(size(A, 2)) m = size(A, 1) @assert size(result, 1) == m @assert size(result, 2) == (n * (n + 1)) >> 1 ac, rc = 0, 0 @inbounds for j in 1:n, i in 1:n ac += 1 i < j && continue rc += 1 for k in 1:m result[k, rc] = A[k, ac] end end result end """ mul!(result, Ct::Transpose{Int, CopyMatrix}, A) Left-multiplying a matrix `A` by transpose of a copying matrix is equivalent to keeping the rows of `A` corresponding to the lower triangular indices. """ LinearAlgebra.mul!( result :: AbstractVecOrMat, Ct :: Transpose{Int, CopyMatrix}, A :: AbstractVecOrMat ) = mul!(transpose(result), transpose(A), Ct.parent) """ vech!(v::AbstractVector, A::AbstractVecOrMat) Overwrite vector `v` by the entries from lower triangular part of `A`. """ function vech!(v::AbstractVector, A::AbstractVecOrMat) m, n = size(A, 1), size(A, 2) idx = 1 @inbounds for j in 1:n, i in j:m v[idx] = A[i, j] idx += 1 end v end function commutation(m::Integer, n::Integer) K = zeros(Int, m * n, m * n) colK = 1 @inbounds for j in 1:n, i in 1:m rowK = n * (i - 1) + j K[rowK, colK] = 1 colK += 1 end K end """ vech(A::AbstractVecOrMat) -> AbstractVector Return the entries from lower triangular part of `A` as a vector. """ function vech(A::AbstractVecOrMat) m, n = size(A, 1), size(A, 2) vech!(similar(A, n * m - (n * (n - 1)) >> 1), A) end """ Ct_At_kron_A_KC!(H, A, B) Overwrite `H` by `H + C'(A'⊗A)KC`, where `K` is the commutation matrix and `C` is the copying matrix. """ function Ct_At_kron_A_KC!(H::AbstractMatrix, A::AbstractMatrix) q = size(A, 1) @assert size(A, 2) == q @assert size(H, 1) == size(H, 2) == (q * (q + 1)) >> 1 j = 1 @inbounds for w in 1:q, s in w:q i = 1 for r in 1:q, v in r:q H[i, j] += A[s, r] * A[v, w] i += 1 end j += 1 end H end function Ct_At_kron_A_KC(A) n◺ = ◺(size(A, 1)) H = zeros(eltype(A), n◺, n◺) Ct_At_kron_A_KC!(H, A) end """ Ct_A_kron_B_C!(H, A, B) Overwrite `H` by `H + C'(A⊗B)C`, where `C` is the copying matrix. """ function Ct_A_kron_B_C!( H::AbstractMatrix, A::AbstractMatrix, B::AbstractMatrix, ) q = size(A, 1) @assert size(A, 2) == size(B, 1) == size(B, 2) == q j = 1 @inbounds for s in 1:q, w in s:q i = 1 for r in 1:q, v in r:q H[i, j] += A[r, s] * B[v, w] i += 1 end j += 1 end H end function Ct_A_kron_B_C(A, B) n◺ = ◺(size(A, 1)) H = zeros(eltype(A), n◺, n◺) Ct_A_kron_B_C!(H, A, B) end """ Ct_A_kr_B!(H, A, B) Overwrite `H` by `H + C'(A⊙B)`, where `C` is the copying matrix and `⊙` is the Khatri-Rao (column-wise Kronecker) product. """ function Ct_A_kr_B!(H, A, B) @assert size(A) == size(B) (q, n) = size(A) @inbounds for c in 1:n r = 1 for ia in 1:q a = A[ia, c] for ib in ia:q H[r, c] += a * B[ib, c] r += 1 end end end H end function Ct_A_kr_B(A, B) @assert size(A) == size(B) (q, n) = size(A) H = zeros(eltype(A), ◺(q), n) Ct_A_kr_B!(H, A, B) end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
20847
""" nlsv_obj!(obs::WSVarLmmObs, β, τ, Lγ, needgrad::Bool) nlsv_obj!(m::WSVarLmmModel; needgrad::Bool) Evaluate the nonlinear least squares (NLS) criterion for variance estimation at the given data and parameter values. Gradient is calculated if `needgrad=true`. Expected Hessian is calculated if `needhess=true`. If `updateres=true`, update mean level residuals first. If `m.iswtnls[1]=true`, evaluate the weighted `nlsv_obj!()` function. `update_wtmat!(m)` should be called to update the weight matrix componentsprior to using the weighted version of `nlsv_obj!()`. """ function nlsv_obj!( obs :: WSVarLmmObs{T}, β :: Vector{T}, τ :: Vector{T}, Lγ :: Matrix{T}, # must be lower triangular :: Val{false}, # un-weighted fitting needgrad :: Bool = true, needhess :: Bool = true, updateres :: Bool = false ) where T <: BlasReal (q, n) = size(obs.Zt) l = size(obs.Wt, 1) ########### # objective ########### # update the residual vector ri = y_i - Xi β updateres && update_res!(obs, β) # obs.storage_qq = (Z' * Z) * L copyto!(obs.storage_qq, obs.ztz) BLAS.trmm!('R', 'L', 'N', 'N', T(1), Lγ, obs.storage_qq) # ∇Lγ = (Z' * Z) * L * L' * (Z' * Z) for now, needed for gradient later needgrad && BLAS.syrk!('U', 'N', T(1), obs.storage_qq, T(0), obs.∇Lγ) # HLγLγ = C'(L'Z'Z ⊗ Z'ZL)KC for now, needed for hessian later needhess && Ct_At_kron_A_KC!(fill!(obs.HLγLγ, 0), obs.storage_qq) # obs.storage_qq = L' * (Z' * Z) * L BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.storage_qq) # storage_qn = L' * Z' copyto!(obs.storage_qn, obs.Zt) BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.storage_qn) # storage_q◺n = Cq' * (L'Z' ⊙ Z'), needed for hessian later needhess && Ct_A_kr_B!(fill!(obs.storage_q◺n, 0), obs.storage_qn, obs.Zt) # storage_q1 = L' * Z' * res copyto!(obs.storage_q1, obs.ztres) BLAS.trmv!('L', 'T', 'N', Lγ, obs.storage_q1) # update W * τ mul!(obs.expwτ, transpose(obs.Wt), τ) obs.obj[1] = (1//2) * (abs2(norm(obs.storage_qq)) + abs2(obs.resnrm2[1])) obs.obj[1] -= abs2(norm(obs.storage_q1)) map!(exp, obs.expwτ, obs.expwτ) @inbounds for j in 1:n obs.obj[1] += (1//2) * abs2(obs.expwτ[j]) obs.zlltzt_dg[j] = 0 for i in 1:q obs.zlltzt_dg[j] += abs2(obs.storage_qn[i, j]) end obs.obj[1] += obs.expwτ[j] * (obs.zlltzt_dg[j] - obs.res2[j]) end ########### # gradient ########### if needgrad # wrt τ @inbounds for j in 1:n Rjj = obs.res2[j] - obs.expwτ[j] - obs.zlltzt_dg[j] obs.storage_n1[j] = Rjj * obs.expwτ[j] end BLAS.gemv!('N', T(-1), obs.Wt, obs.storage_n1, T(0), obs.∇τ) # wrt Lγ # ∇Lγ = (Z' * R * Z) * Lγ # obs.storage_qn = obs.Zt * Diagonal(sqrt.(obs.expwτ)) @inbounds for j in 1:n sqrtej = sqrt(obs.expwτ[j]) for i in 1:q obs.storage_qn[i, j] = sqrtej * obs.Zt[i, j] end end # ∇Lγ = (Z' * Z) * L * L' * (Z' * Z) was computed earlier # ∇Lγ += storage_qn * storage_qn' - ztres * ztres' BLAS.syrk!('U', 'N', T(1), obs.storage_qn, T(1), obs.∇Lγ) BLAS.syrk!('U', 'N', T(-1), obs.ztres, T(1), obs.∇Lγ) copytri!(obs.∇Lγ, 'U') # so far ∇Lγ holds ∇Σγ, now ∇Lγ = ∇Σγ * Lγ # obs.∇Lγ = obs.∇Σγ, collect all then multiply by Lγ at model level for ∇Lγ. # BLAS.trmm!('R', 'L', 'N', 'N', T(2), Lγ, obs.∇Lγ) end ########### # hessian ########### if needhess # Hττ = W' * Diagonal(expwτ.^2) * W # storage_ln = W' * Diagonal(expwτ) @inbounds for j in 1:n ej = obs.expwτ[j] for i in 1:l obs.storage_ln[i, j] = ej * obs.Wt[i, j] end end BLAS.syrk!('U', 'N', T(1), obs.storage_ln, T(0), obs.Hττ) copytri!(obs.Hττ, 'U') # HτLγ = 2 W' * Diagonal(expwτ) * (L'Z' ⊙ Z')' * Cq # storage_ln = W' * Diagonal(expwτ) was computed above # storage_q◺n = Cq' * (L'Z' ⊙ Z') was computed earlier BLAS.gemm!('N', 'T', T(2), obs.storage_ln, obs.storage_q◺n, T(0), obs.HτLγ) # HLγLγ = 2 [ C'(L'Z'ZL ⊗ Z'Z)C + C'(L'Z'Z ⊗ Z'ZL)KC ] # HLγLγ = C'(L'Z'Z ⊗ Z'ZL)KC was calcualted earlier Ct_A_kron_B_C!(obs.HLγLγ, obs.storage_qq, obs.ztz) lmul!(2, obs.HLγLγ) end obs.obj[1] end function nlsv_obj!( obs :: WSVarLmmObs{T}, β :: Vector{T}, τ :: Vector{T}, Lγ :: Matrix{T}, # must be lower triangular :: Val{true}, # weighted fitting needgrad :: Bool = true, needhess :: Bool = true, updateres :: Bool = false, ) where T <: BlasReal (q, n) = size(obs.Zt) l = size(obs.Wt, 1) # update the residual vector ri = y_i - Xi β updateres && update_res!(obs, β) # Precompute and fill necessary objects if needgrad fill!(obs.∇τ, 0) end if needhess fill!(obs.Hττ, 0) fill!(obs.HτLγ, 0) fill!(obs.storage_q◺n, 0) end # obs.expwτ = exp.(Wτ) mul!(obs.expwτ, transpose(obs.Wt), τ) # for ∇Lγ need storage_n1 = diag(exp.(0.5Wτ)) obs.expwτ .= exp.(obs.expwτ) needgrad && (obs.storage_n1 .= sqrt.(obs.expwτ)) # terms to compute and store mul!(obs.Lt_Zt_Dinv_r, transpose(Lγ), obs.Zt_Dinv_r) mul!(obs.Dinv_Z_L, transpose(obs.Zt_Dinv), Lγ) mul!(obs.UUt_Z_L, transpose(obs.Zt_UUt), Lγ) # Lt_Zt_Dinv_Z_L = Zt_Dinv_Z * L mul!(obs.Lt_Zt_Dinv_Z_L, obs.Zt_Dinv_Z, Lγ) BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.Lt_Zt_Dinv_Z_L) # Lt_Zt_UUt_Z_L = Zt_UUt_Z_L mul!(obs.Lt_Zt_UUt_Z_L, obs.Zt_UUt_Z, Lγ) BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.Lt_Zt_UUt_Z_L) # Evalute objective function and precompute diag(Vinv*R*Vinv) for ∇τ ############# # objective # ############# # objective function sums obs.obj[1] = zero(T) obs.obj[1] += abs2(obs.rt_Dinv_r[1]) #1 obs.obj[1] -= 2 * obs.rt_UUt_r[1] * obs.rt_Dinv_r[1] #2 obs.obj[1] += abs2(obs.rt_UUt_r[1]) #7 # calculate Ut * D * U fill!(obs.Ut_D_U, 0) @inbounds for k in 1:n, j in 1:q, i in j:q obs.Ut_D_U[i, j] += obs.Ut[j, k] * obs.Ut[i, k] * obs.expwτ[k] end copytri!(obs.Ut_D_U, 'L') if needgrad # storage_qn = Ut_D_U_Ut mul!(obs.storage_qn, obs.Ut_D_U, obs.Ut) fill!(obs.diagDVRV, 0) @inbounds for j in 1:n, i in 1:q #avx speeds up obs.diagDVRV[j] -= obs.storage_qn[i, j] * obs.Ut[i, j] * obs.expwτ[j] #τ 8 end end @inbounds @simd for j in 1:n obs.obj[1] += (-2 * abs2(obs.Dinv_r[j]) #3 + 4 * obs.rt_UUt[j] * obs.Dinv_r[j] #4 - 2 * abs2(obs.rt_UUt[j]) # 8 + abs2(obs.Dinv[j]) * obs.expwτ[j] #11 - 2 * obs.diagUUt_Dinv[j] * obs.expwτ[j]) * obs.expwτ[j] #12 end if needgrad @inbounds @simd for j in 1:n obs.diagDVRV[j] += (abs2(obs.Dinv_r[j]) #τ 1 - 2 * obs.Dinv_r[j] * obs.rt_UUt[j] #τ 2 - abs2(obs.Dinv[j]) * obs.expwτ[j] #τ 3 + 2 * obs.diagUUt_Dinv[j] * obs.expwτ[j] #τ 4 + abs2(obs.rt_UUt[j])) * obs.expwτ[j] #τ 7 end end @inbounds for j in 1:q #j-i looping for memory access for i in 1:n obs.obj[1] += 2 * (abs2(obs.Dinv_Z_L[i, j]) # 13 - obs.UUt_Z_L[i, j] * obs.Dinv_Z_L[i, j] # 14 - obs.Dinv_Z_L[i, j] * obs.UUt_Z_L[i, j] # 16 + abs2(obs.UUt_Z_L[i, j])) * obs.expwτ[i]# 17 end end if needgrad @inbounds for j in 1:q for i in 1:n obs.diagDVRV[i] += (-abs2(obs.Dinv_Z_L[i, j]) #τ 5 + 2 * obs.Dinv_Z_L[i, j] * obs.UUt_Z_L[i, j] #τ 6 - abs2(obs.UUt_Z_L[i, j])) * obs.expwτ[i] #τ 9 end end end #obs.storage_qq = L' * Z' * UU' * rr' * Dinv * Z * L copyto!(obs.storage_qq, obs.Zt_UUt_rrt_Dinv_Z) BLAS.trmm!('L', 'L', 'T', 'N', one(T), Lγ, obs.storage_qq) BLAS.trmm!('R', 'L', 'N', 'N', one(T), Lγ, obs.storage_qq) #for #9 #use ∇Lγ as temporary storage #obs.∇Lγ = L' Zt_UUt_rrt_UUt_Z * L copyto!(obs.∇Lγ, obs.Zt_UUt_rrt_UUt_Z) BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.∇Lγ) BLAS.trmm!('R', 'L', 'N', 'N', T(1), Lγ, obs.∇Lγ) #for #10 @inbounds for j in 1:q obs.obj[1] -= 2 * abs2(obs.Lt_Zt_Dinv_r[j]) #5 obs.obj[1] += 2 * obs.storage_qq[j, j] #9 obs.obj[1] -= 2 * obs.∇Lγ[j, j] # 10 for i in 1:q obs.obj[1] += obs.Ut_D_U[i, j]^2 #15 obs.obj[1] += 2 * obs.rt_UUt_Z[i] * Lγ[i, j] * obs.Lt_Zt_Dinv_r[j] #6 obs.obj[1] += abs2(obs.Lt_Zt_Dinv_Z_L[i, j]) #18 obs.obj[1] -= 2 * obs.Lt_Zt_Dinv_Z_L[i, j] * obs.Lt_Zt_UUt_Z_L[i,j] #19 obs.obj[1] += abs2(obs.Lt_Zt_UUt_Z_L[i, j]) #20 end end obs.obj[1] *= (1//2) ############ # Gradient # ############ if needgrad #wrt τ #∇τ = -W' * diag(D * Vinv * R * Vinv) BLAS.gemv!('N', T(-1), obs.Wt, obs.diagDVRV, T(0), obs.∇τ) #wrt Lγ # ∇Lγ = -2(Z' * Vinv * R * Vinv * Z * L # obs.storage_qq = (Z' * Vinv * Z) * L copyto!(obs.storage_qq, obs.Zt_Vinv_Z) BLAS.trmm!('R', 'L', 'N', 'N', T(1), Lγ, obs.storage_qq) #∇Lγ = Z' * Vinv * Z * L * L' * Z' * Vinv * Z BLAS.syrk!('U', 'N', T(1), obs.storage_qq, T(0), obs.∇Lγ) # obs.storage_qn = Zt_Vinv * sqrt.(D) # storage_n1 = diag(exp^{1/2 Wt}) @inbounds for j in 1:n, i in 1:q obs.storage_qn[i, j] = obs.storage_n1[j] * obs.Zt_Vinv[i, j] end # obs.∇Lγ += Zt_Vinv_D_Vinv_Z BLAS.syrk!('U', 'N', T(1), obs.storage_qn, T(1), obs.∇Lγ) # obs.∇Lγ += Zt_Vinv_rrt_Vinv_Z BLAS.syr!('U', T(-1), obs.Zt_Vinv_r, obs.∇Lγ) copytri!(obs.∇Lγ, 'U') # obs.∇Lγ = obs.∇Σγ, collect all then multiply by Lγ at model level for ∇Lγ. end ########### # Hessian # ########### if needhess #wrt τ # Hττ = W' * D * Vinv .* Vinv * D * W # storage_ln = Wt * D @inbounds @simd for j in 1:n for i in 1:l obs.storage_ln[i, j] = obs.Wt[i, j] * obs.expwτ[j] end end @inbounds for j in 1:n, i in 1:l obs.Wt_D_Dinv[i, j] = obs.Dinv[j] * obs.storage_ln[i, j] obs.Wt_D_sqrtdiagDinv_UUt[i, j] = obs.storage_ln[i, j] * obs.sqrtDinv_UUt[j] end BLAS.syrk!('U', 'N', T(1), obs.Wt_D_Dinv, T(0), obs.Hττ) #first term BLAS.syrk!('U', 'N', T(-2), obs.Wt_D_sqrtdiagDinv_UUt, T(1), obs.Hττ) #second term mul!(obs.Wt_D_Ut_kr_Utt, obs.storage_ln, transpose(obs.Ut_kr_Ut)) BLAS.syrk!('U', 'N', T(1), obs.Wt_D_Ut_kr_Utt, T(1), obs.Hττ) #third term copytri!(obs.Hττ, 'U') #wrt HτLγ # HτLγ = 2 W' * Diagonal(expwτ) * (L'Z'(V^-1) ⊙ Z'(V^-1))' * Cq # storage_ln = W' * Diagonal(expwτ) was computed above # storage_q◺n = Cq' * (L'Z'(V^-1) ⊙ Z'(V^-1)) copyto!(obs.storage_qn, obs.Zt_Vinv) BLAS.trmm!('L', 'L', 'T', 'N', one(T), Lγ, obs.storage_qn) Ct_A_kr_B!(obs.storage_q◺n, obs.storage_qn, obs.Zt_Vinv) BLAS.gemm!('N', 'T', T(2), obs.storage_ln, obs.storage_q◺n, zero(T), obs.HτLγ) #wrt HLγLγ # HLγLγ = 2 [ C'(L'Z'(V^-1)ZL ⊗ Z'(V^-1)Z)C + C'(L'Z'(V^-1)Z ⊗ Z'(V^-1)ZL)KC ] # obs.storage_qq = (Z' (V^-1) Z) * L copyto!(obs.storage_qq, obs.Zt_Vinv_Z) BLAS.trmm!('R', 'L', 'N', 'N', T(1), Lγ, obs.storage_qq) # HLγLγ = C'(L'Z' (V^-1) Z ⊗ Z' (V^-1) ZL)KC first Ct_At_kron_A_KC!(fill!(obs.HLγLγ, 0), obs.storage_qq) # obs.storage_qq = L' * (Z' (V^-1) Z) * L BLAS.trmm!('L', 'L', 'T', 'N', T(1), Lγ, obs.storage_qq) Ct_A_kron_B_C!(obs.HLγLγ, obs.storage_qq, obs.Zt_Vinv_Z) lmul!(2, obs.HLγLγ) end obs.obj[1] end """ nlsv_obj!(m::WSVarLmmModel, needgrad::Bool, needhess:Bool, updateres::Bool) Calculate the objective function of a `WSVarLmmModel` object and optionally the gradient and hessian. """ function nlsv_obj!( m :: WSVarLmmModel{T}, needgrad :: Bool = true, needhess :: Bool = true, updateres :: Bool = false ) where T <: BlasReal # accumulate obj and gradient obj = zero(T) if needgrad fill!( m.∇β, 0) fill!( m.∇τ, 0) fill!( m.∇Lγ, 0) end if needhess fill!(m.Hττ , 0) fill!(m.HτLγ , 0) fill!(m.HLγLγ, 0) end if m.ismthrd[1] Threads.@threads for obs in m.data nlsv_obj!(obs, m.β, m.τ, m.Lγ, Val(m.iswtnls[1]), needgrad, needhess, updateres) end for obs in 1:length(m.data) wtobs = isempty(m.obswts) ? one(T) : T(m.obswts[obs]) obj += wtobs * m.data[obs].obj[1] if needgrad BLAS.axpy!(wtobs, m.data[obs].∇τ , m.∇τ ) BLAS.axpy!(wtobs, m.data[obs].∇Lγ , m.∇Lγ) end if needhess BLAS.axpy!(wtobs, m.data[obs].Hττ , m.Hττ ) BLAS.axpy!(wtobs, m.data[obs].HτLγ , m.HτLγ ) BLAS.axpy!(wtobs, m.data[obs].HLγLγ, m.HLγLγ) end end else for obs in 1:length(m.data) wtobs = isempty(m.obswts) ? one(T) : T(m.obswts[obs]) obj += wtobs * nlsv_obj!(m.data[obs], m.β, m.τ, m.Lγ, Val(m.iswtnls[1]), needgrad, needhess, updateres) if needgrad BLAS.axpy!(wtobs, m.data[obs].∇τ , m.∇τ ) BLAS.axpy!(wtobs, m.data[obs].∇Lγ , m.∇Lγ) end if needhess BLAS.axpy!(wtobs, m.data[obs].Hττ , m.Hττ ) BLAS.axpy!(wtobs, m.data[obs].HτLγ , m.HτLγ ) BLAS.axpy!(wtobs, m.data[obs].HLγLγ, m.HLγLγ) end end end # multiply m.∇Lγ by Lγ once instead of at observation level needgrad && BLAS.trmm!('R', 'L', 'N', 'N', T(2), m.Lγ, m.∇Lγ) obj end """ update_res!(obs, β) Update the residual vector of `obs::WSVarLmmObs` according to `β`. """ function update_res!( obs :: WSVarLmmObs{T}, β :: Vector{T} ) where T <: BlasReal BLAS.gemv!('T', T(-1), obs.Xt, β, T(1), copyto!(obs.res, obs.y)) obs.res2 .= abs2.(obs.res) obs.resnrm2[1] = sum(obs.res2) mul!(obs.ztres, obs.Zt, obs.res) obs.res end """ update_res!(m::WSVarLmmModel) Update residual vector of each observation in `m` according to `m.β`. """ function update_res!(m::WSVarLmmModel{T}) where T <: BlasReal for obs in m.data update_res!(obs, m.β) end nothing end """ update_wtmat!(m::WSVarLmmModel) Update the observation weight matrix according to the parameter values `m.τ` and `m.Lγ`. Update `m.β` by WLS and update the residuals accordingly. Precompute and store various objects needed to evaluate the objective function, gradient, and Hessian. At return, - `m.data[i].∇β = Xi' inv(Vi) ri` - `m.data[i].Hββ = Xi' inv(Vi) Xi` - `m.∇β = sum_i Xi' inv(Vi) ri` - `m.Hββ = sum_i Xi' inv(Vi) Xi` """ function update_wtmat!(m::WSVarLmmModel{T}) where T <: BlasReal p, q = m.p, m.q # update Dinv and U such that Vinv = Dinv - U * U' # accumulate quantities for updating β fill!(m.Hββ, 0) fill!(m.∇β , 0) for (idx, obs) in enumerate(m.data) # Form Dinv - UU^T (Woodbury structure of Vi inverse) n = length(obs.y) # Step 1: assemble Iq + Lt Zt diag(e^{-η}) Z L # storage_qn = Lt Zt Diagonal(e^{-0.5η}) # storage_pn = Xt Diagonal(e^{-0.5η}) # storage_n1 = Diagonal(e^{-0.5η}) * y copyto!(obs.storage_qn, obs.Zt) BLAS.trmm!('L', 'L', 'T', 'N', T(1), m.Lγ, obs.storage_qn) mul!(obs.expwτ, transpose(obs.Wt), m.τ) @inbounds for j in 1:n invsqrtj = exp(-(1//2)obs.expwτ[j]) obs.Dinv[j] = abs2(invsqrtj) for i in 1:q obs.storage_qn[i, j] *= invsqrtj end for i in 1:p obs.storage_pn[i, j] = invsqrtj * obs.Xt[i, j] end obs.storage_n1[j] = invsqrtj * obs.y[j] end # storage_qq = Iq + Lt Zt diag(e^{-η}) Z L BLAS.syrk!('U', 'N', T(1), obs.storage_qn, T(0), obs.storage_qq) @inbounds for i in 1:q obs.storage_qq[i, i] += 1 end # Step 2: Cholesky: (Iq + Lt Zt diag(e^{-η}) Z L) = R'R LAPACK.potrf!('U', obs.storage_qq) # storage_qn = inv(R') Lt Zt diag(exp(-0.5η)) BLAS.trsm!('L', 'U', 'T', 'N', T(1), obs.storage_qq, obs.storage_qn) # storage_qp = inv(R') Lt Zt diag(exp(-η)) X = U' X mul!(obs.storage_qp, obs.storage_qn, transpose(obs.storage_pn)) # Step 3: accumulate X' Vinv X = X' Dinv X - X' U U' X BLAS.syrk!('U', 'N', T(1), obs.storage_pn, T(0), obs.Hββ) BLAS.syrk!('U', 'T', T(-1), obs.storage_qp, T(1), obs.Hββ) copytri!(obs.Hββ, 'U') wtobs = isempty(m.obswts) ? one(T) : T(m.obswts[idx]) BLAS.axpy!(wtobs, obs.Hββ, m.Hββ) # Step 4: accumulate X' Vinv y = X' Dinv y - X' U U' y mul!(obs.∇β, obs.storage_pn, obs.storage_n1) mul!(obs.storage_q1, obs.storage_qn, obs.storage_n1) BLAS.gemv!('T', T(-1), obs.storage_qp, obs.storage_q1, T(1), obs.∇β) BLAS.axpy!(wtobs, obs.∇β, m.∇β) end # update β by WLS copytri!(m.Hββ, 'U') copyto!(m.data[1].storage_pp, m.Hββ) # m.data[1].storage_pp as scratch space _, info = LAPACK.potrf!('U', m.data[1].storage_pp) info > 0 && throw("sum_i Xi' Vi^{-1} Xi is not positive definite") LAPACK.potrs!('U', m.data[1].storage_pp, copyto!(m.β, m.∇β)) # update residuals according to new β update_res!(m) # precompute quantities for obj, grad and Hess evaluations for obs in m.data n = length(obs.y) # update obs.∇β = X' Vinv (y - Xβ) = X' Vinv y - X' Vinv X β BLAS.gemv!('N', T(-1), obs.Hββ, m.β, T(1), obs.∇β) # Update: Dinv_r, rt_Dinv_r, Ut = R'^{-1/2} Lt Zt diag(exp(-η)) # storange_qn = R'^{-1/2} Lt Zt diag(exp(-0.5η)) from 1st loop copyto!(obs.Ut, obs.storage_qn) obs.rt_Dinv_r[1] = 0 @inbounds for j in 1:n obs.Dinv_r[j] = obs.Dinv[j] * obs.res[j] obs.rt_Dinv_r[1] += obs.Dinv[j] * obs.res2[j] invsqrtj = sqrt(obs.Dinv[j]) for i in 1:q obs.Ut[i, j] *= invsqrtj end end # Zt_Dinv_r mul!(obs.Zt_Dinv_r, obs.Zt, obs.Dinv_r) # rt_U and rt_UUt_r mul!(obs.rt_U, transpose(obs.res), transpose(obs.Ut)) obs.rt_UUt_r[1] = abs2(norm(obs.rt_U)) # rt_UUt mul!(obs.rt_UUt, obs.rt_U, obs.Ut) # rt_UUt_Z mul!(obs.rt_UUt_Z, obs.rt_UUt, transpose(obs.Zt)) # Zt_Dinv_r mul!(obs.Zt_Dinv_r, obs.Zt, obs.Dinv_r) # storage_qq = Ut * Z mul!(obs.storage_qq, obs.Ut, transpose(obs.Zt)) mul!(obs.Zt_UUt, transpose(obs.storage_qq), obs.Ut) # storage_qn = Zt * Dinv fill!(obs.diagUUt_Dinv, 0) @inbounds for j in 1:n invj = obs.Dinv[j] for i in 1:q obs.diagUUt_Dinv[j] += abs2(obs.Ut[i, j]) obs.storage_qn[i, j] = obs.Zt[i, j] * invj end obs.diagUUt_Dinv[j] *= invj end copyto!(obs.Zt_Dinv, obs.storage_qn) # obs.Zt_Vinv = Z' * Dinv copyto!(obs.Zt_Vinv, obs.storage_qn) mul!(obs.Zt_Dinv_Z, obs.storage_qn, transpose(obs.Zt)) # storage_qq = Zt * U mul!(obs.storage_qq, obs.Zt, transpose(obs.Ut)) BLAS.syrk!('U', 'N', T(1), obs.storage_qq, T(0), obs.Zt_UUt_Z) copytri!(obs.Zt_UUt_Z, 'U') # for gradient wrt Lγ mul!(obs.Zt_UUt_rrt_Dinv_Z, transpose(obs.rt_UUt_Z), transpose(obs.Zt_Dinv_r)) BLAS.syrk!('U', 'T', T(1), obs.rt_UUt_Z, T(0), obs.Zt_UUt_rrt_UUt_Z) copytri!(obs.Zt_UUt_rrt_UUt_Z, 'U') # for Hessian wrt τ map!(sqrt, obs.sqrtDinv_UUt, obs.diagUUt_Dinv) fill!(obs.Ut_kr_Ut, 0) kr_axpy!(obs.Ut, obs.Ut, obs.Ut_kr_Ut) # From earlier, obs.Zt_Vinv = Z' * Dinv, continue forming it BLAS.axpy!(T(-1), obs.Zt_UUt, obs.Zt_Vinv) copyto!(obs.Zt_Vinv_Z, obs.Zt_Dinv_Z) BLAS.axpy!(T(-1), obs.Zt_UUt_Z, obs.Zt_Vinv_Z) mul!(obs.Zt_Vinv_r, obs.Zt_Vinv, obs.res) end nothing end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
9398
rand!(m :: WSVarLmmModel; kwargs...) = rand!(GLOBAL_RNG, m; kwargs...) rvarlmm(Xs::Array{Matrix}, Zs::Array{Matrix}, Ws::Array{Matrix}, β::Vector, τ::Vector; kwargs...) = rvarlmm(GLOBAL_RNG, Xs, Zs, Ws, β, τ; kwargs...) rvarlmm!(meanformula::FormulaTerm, reformula::FormulaTerm, wsvarformula::FormulaTerm, idvar::Union{Symbol, String}, datatable::DataFrame, β::Vector, τ::Vector; kwargs...) = rvarlmm!(GLOBAL_RNG, meanformula, reformula, wsvarformula, idvar,datatable, β, τ; kwargs...) rvarlmm(X, Z, W, β, τ, Lγω, Lγ, lγω, γω, z, respdist; kwargs...) = rvarlmm(GLOBAL_RNG, X, Z, W, β, τ, Lγω, Lγ, lγω, γω, z, respdist; kwargs...) eval_respdist(μy, vy, respdist; kwargs...) = eval_respdist(GLOBAL_RNG, μy, vy, respdist; kwargs...) """ rand!(m::WSVarLmmModel; respdist = MvNormal, γωdist = MvNormal, Σγω = [], kwargs...) Replaces the responses `m.data[i].y` with a simulated response based on: - The data in the model object's data `X, Z, W` matrices. - The parameter values in the model. - The condistribution distribution of the response given the random effects. - The distribution of the random effects. - If simulating from MvTDistribution, you must specify the degrees of freedom via `df = x`. """ function rand!(rng::AbstractRNG, m :: WSVarLmmModel; respdist = MvNormal, γωdist = MvNormal, Σγω = [], kwargs...) q = m.q isempty(Σγω) ? Σγω = [m.Lγ * transpose(m.Lγ) zeros(q); zeros(1, q) 0.0] : Σγω Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] γω = Vector{Float64}(undef, q + 1) z = similar(γω) for ob in m.data copyto!(ob.y, rvarlmm(rng, transpose(ob.Xt), transpose(ob.Zt), transpose(ob.Wt), m.β, m.τ, Lγω, Lγ, lγω, γω, z, respdist; kwargs...)) end end """ rvarlmm(Xs::Array{Matrix}, Zs::Array{Matrix}, Ws::Array{Matrix}, β::Vector, τ::Vector; respdist = MvNormal, Σγ=[], Σγω=[]) Generate a simulated response from the `WSVarLmmModel` based on: - `Xs`: array of each clusters `X`: mean fixed effects covariates - `Zs`: array of each clusters `Z`: random location effects covariates - `Ws`: array of each clusters `W`: within-subject variance fixed effects covariates - `β`: mean fixed effects vector - `τ`: within-subject variance fixed effects vector - `respdist`: the distribution for response. Default is MvNormal. - `Σγ`: random location effects covariance matrix. - `Σγω`: joint random location and random scale effects covariance matrix (if generating from full model) Output is an array of simulated responses that match the ordering in `Xs, Zs, Ws`. ----------- rvarlmm!(meanformula::FormulaTerm, reformula::FormulaTerm, wsvarformula::FormulaTerm, idvar::Union{Symbol, String}, datatable, β::Vector, τ::Vector; respdist = MvNormal, Σγ=[], Σγω=[], respname::Symbol = :y) Generate a simulated response from the VarLMM model based on a DataFrame `datatable`. Note: **the datatable MUST be ordered by grouping variable for it to generate in the correct order. This can be checked via `datatable == sort(datatable, idvar)`. The response is based on: - `meanformula`: represents the formula for the mean fixed effects `β` (variables in X matrix) - `reformula`: represents the formula for the mean random effects γ (variables in Z matrix) - `wsvarformula`: represents the formula for the within-subject variance fixed effects τ (variables in W matrix) - `idvar`: the id variable for groupings. - `datatable`: DataFrame for the model. For this function it **must be in order**. - `β`: mean fixed effects vector - `τ`: within-subject variance fixed effects vector - `respdist`: the distribution for response. Default is MvNormal. - `Σγ`: random location effects covariance matrix. - `Σγω`: joint random location and random scale effects covariance matrix (if generating from full model) - `respname`: symbol representing the simulated response variable name. `rvarlmm!()` produces a column in the datatable representing the new response. It also returns the column `y` as a vector. The datatable **must** be ordered by the ID variable for generated responses to match. """ function rvarlmm(rng::AbstractRNG, Xs::Array{Matrix{T}}, Zs::Array{Matrix{T}}, Ws::Array{Matrix{T}}, β::Vector{T}, τ::Vector{T}; respdist = MvNormal, Σγ=[], Σγω=[], kwargs..., ) where T <: BlasReal @assert length(Xs) == length(Zs) == length(Ws) "Number of provided X, Z, and W matrices do not match" isempty(Σγ) && isempty(Σγω) && error("Neither the covariance matrix for γ nor the covariance matrix for (γ, ω) have been specified. One must be.") q = size(Zs[1], 2) # Get Cholesky Factor isempty(Σγω) ? Σγω = [Σγ zeros(q); zeros(1, q) 0.0] : Σγω Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] γω = Vector{Float64}(undef, q + 1) z = similar(γω) y = map(i -> rvarlmm(rng, Xs[i], Zs[i], Ws[i], β, τ, Lγω, Lγ, lγω, γω, z, respdist), 1:length(Xs)) return y end function rvarlmm!(rng::AbstractRNG, meanformula::FormulaTerm, reformula::FormulaTerm, wsvarformula::FormulaTerm, idvar::Union{Symbol, String}, datatable::DataFrame, β::Vector{T}, τ::Vector{T}; respdist = MvNormal, Σγ=[], Σγω=[], respname::Symbol = :y, kwargs... ) where T <: BlasReal isempty(Σγ) && isempty(Σγω) && error("Neither the covariance matrix for γ nor the covariance matrix for (γ, ω) have been specified. One must be.") if typeof(idvar) <: String idvar = Symbol(idvar) end function rvarlmmob(rng, f1, f2, f3, subdata, β, τ, Lγω, Lγ, lγω, γω, z, respdist) X = modelmatrix(f1, subdata) Z = modelmatrix(f2, subdata) W = modelmatrix(f3, subdata) return rvarlmm(rng, X, Z, W, β, τ, Lγω, Lγ, lγω, γω, z, respdist) end #apply df-wide schema meanformula = apply_schema(meanformula, schema(meanformula, datatable)) reformula = apply_schema(reformula, schema(reformula, datatable)) wsvarformula = apply_schema(wsvarformula, schema(wsvarformula, datatable)) q = length(StatsModels.coefnames(reformula.rhs)) # Get Cholesky Factor isempty(Σγω) ? Σγω = [Σγ zeros(q); zeros(1, q) 0.0] : Σγω Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] γω = Vector{Float64}(undef, q + 1) z = similar(γω) # Need sortperm of groupby var... # if typeof(datatable) <: IndexedTable # y = JuliaDB.groupby(x -> rvarlmmob(meanformula, reformula, wsvarformula, # x, β, τ, Lγω, Lγ, lγω, γω, z, respdist, kwargs...), datatable, idvar) |> # x -> column(x, 2) |> x -> vcat(x...) # datatable = JuliaDB.transform(datatable, respname => y) # else # y = JuliaDB.groupby(x -> rvarlmmob(meanformula, reformula, wsvarformula, # x, β, τ, Lγω, Lγ, lγω, γω, z, respdist, kwargs...), table(datatable), idvar) |> # x -> column(x, 2) |> x -> vcat(x...) y = combine(x -> rvarlmmob(rng, meanformula, reformula, wsvarformula, x, β, τ, Lγω, Lγ, lγω, γω, z, respdist, kwargs...), groupby(datatable, idvar)) |> x -> x[!, 2] datatable[!, respname] = y # end return datatable end function rvarlmm(rng::AbstractRNG, X, Z, W, β, τ, Lγω, Lγ, lγω, γω, z, respdist; kwargs...) q = size(Lγ, 1) mul!(γω, Lγω, Distributions.rand!(rng, Normal(), z)) # generate y μy = X * β + Z * γω[1:q] @views vy = exp.(W * τ .+ dot(γω[1:q], lγω) .+ γω[end]) y = eval_respdist(rng, μy, vy, respdist; kwargs...) return y end function eval_respdist(rng::AbstractRNG, μy, vy, respdist; df = []) if respdist == MvNormal || respdist == Normal return rand(rng, MvNormal(μy, Diagonal(vy))) elseif respdist == MvTDist isempty(df) ? error("degree of freedom for MvTDist not specified, use 'df' = x.") : return rand(rng, MvTDist(df, μy, Matrix(Diagonal(vy)))) elseif respdist == Gamma θparam = vy ./ μy αparam = abs2.(μy) ./ vy all(θparam .> 0) && all(αparam .> 0) || error("The current parameter/data does not allow for Gamma to be used. α, θ params must be > 0.") return map((α, θ) -> rand(rng, Gamma(α, θ)), αparam, θparam) elseif respdist == InverseGaussian λparam = μy.^3 ./ vy return map((μ , λ) -> rand(rng, InverseGaussian(μ , λ)), μy, λparam) elseif respdist == InverseGamma αparam = (abs2.(μy) .- 2) ./ vy θparam = μy .* (αparam .- 1) all(θparam .> 0) && all(αparam .> 0) || error("The current parameter/data does not allow for InverseGamma to be used. α, θ params must be > 0.") return map((α, θ) -> rand(rng, InverseGamma(α, θ)), αparam, θparam) elseif respdist == Uniform bparams = μy .+ 0.5sqrt.(12vy) aparams = 2μy .- bparams return map((a, b) -> rand(rng, InverseGamma(a, b)), aparams, bparams) else error("Response distribution $respdist is not valid. Run respdists() to see available options.") end end respdists() = [:MvNormal, :MvTDist, :Gamma, :InverseGaussian, :InverseGamma, :Uniform]
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
1633
""" sandwich!(m::WSVarLmmModel) Calculate the sandwich estimator of the asymptotic covariance of the parameters, based on values `m.Hββ`, `m.Hττ`, `m.HτLγ`, `m.HLγLγ`, `m.data[i].∇β`, `m.data[i].∇τ`, and `m.data[i].∇Lγ`. `m.vcov` is updated by the sandwich estimator and returned. """ function sandwich!(m::WSVarLmmModel{T}) where T <: BlasReal p, q, l = m.p, m.q, m.l minv = inv(m.m) # form A matrix in the sandwich formula fill!(m.Ainv, 0) m.Ainv[ 1:p, 1:p ] = m.Hββ m.Ainv[ (p + 1):(p + l), (p + 1):(p + l)] = m.Hττ m.Ainv[ (p + 1):(p + l), (p + l + 1):end ] = m.HτLγ m.Ainv[(p + l + 1):end, (p + l + 1):end ] = m.HLγLγ copytri!(m.Ainv, 'U') lmul!(minv, m.Ainv) # form B matrix in the sandwich formula fill!(m.B, 0) for obs in m.data copyto!(m.ψ, 1 , obs.∇β) copyto!(m.ψ, p + 1, obs.∇τ) offset = p + l + 1 @inbounds for j in 1:q, i in j:q m.ψ[offset] = obs.∇Lγ[i, j] offset += 1 end BLAS.syr!('U', T(1), m.ψ, m.B) end copytri!(m.B, 'U') lmul!(minv, m.B) # calculuate A (pseudo)-inverse Aeval, Aevec = eigen(Symmetric(m.Ainv)) @inbounds for j in 1:size(m.Ainv, 2) ej = Aeval[j] invsqrtej = ej > sqrt(eps(T)) ? inv(sqrt(ej)) : T(0) for i in 1:size(m.Ainv, 1) Aevec[i, j] *= invsqrtej end end mul!(m.Ainv, Aevec, transpose(Aevec)) # calculate vcov mul!(Aevec , m.Ainv, m.B ) # use Avec as scratch space mul!(m.vcov, Aevec, m.Ainv) m.vcov .*= minv end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
2150
module DFTest # Test for df.jl and rand.jl functions using DataFrames, Tables, LinearAlgebra, Random, Test, WiSER Random.seed!(123) rng = MersenneTwister(123) t = columntable(( id = [1; 1; 2; 3; 3; 3; 4], y = [missing; randn(rng, 6)], x1 = ones(7), x2 = randn(rng, 7), x3 = randn(rng, 7), z1 = ones(7), z2 = randn(rng, 7), w1 = ones(7), w2 = randn(rng, 7), w3 = randn(rng, 7), obswts = [2.0; 2.0; 1.0; 0.5; 0.5; 0.5; 1.0])) df = DataFrame(t) f1 = @formula(y ~ x1 + x2 + x3) f2 = @formula(y ~ z1 + z2) f3 = @formula(y ~ w1 + w2 + w3) vlma = WSVarLmmModel(f1, f2, f3, :id, t; wtvar = :obswts) dfa = DataFrame(vlma) vlmb = WSVarLmmModel(f1, f2, f3, :id, df; wtvar = :obswts) dfb = DataFrame(vlmb) β = zeros(3) τ = zeros(3) Σγ = Matrix{Float64}(I, 2, 2) y = [randn(rng, 2) for i in 1:3] Xs = [randn(rng, 2, 3) for i in 1:3] Ws = [randn(rng, 2, 3) for i in 1:3] Zs = [randn(rng, 2, 2) for i in 1:3] @testset "WSVarLmmModel Constructor" begin @test dfa == dfb == DataFrames.dropmissing(df) end @testset "Simulating Response" begin @test rvarlmm!(rng, f1, f2, f3, :id, df, β, τ; Σγ = Σγ, respname = :response)[1, :response] ≈ -3.7193661312903674 @test rvarlmm(rng, Xs, Zs, Ws, β, τ; Σγ = Σγ)[1][1] ≈ 2.3445518865974098 @test "response" in names(df) vlma.β .= 0 vlma.τ .= 0 vlma.Lγ .= [1. 0; 0 1.] ytest = vlma.data[1].y[1] WiSER.rand!(rng, vlma) @test vlma.data[1].y[1] != ytest ytest = vlma.data[1].y[1] WiSER.rand!(rng, vlma; respdist = MvNormal) @test vlma.data[1].y[1] != ytest ytest = vlma.data[1].y[1] WiSER.rand!(rng, vlma; respdist = MvTDist, df = 10) @test vlma.data[1].y[1] != ytest ytest = vlma.data[1].y[1] vlma.β[1] = 30. WiSER.rand!(rng, vlma; respdist = Gamma) @test vlma.data[1].y[1] != ytest ytest = vlma.data[1].y[1] WiSER.rand!(rng, vlma; respdist = InverseGaussian) @test vlma.data[1].y[1] != ytest ytest = vlma.data[1].y[1] WiSER.rand!(rng, vlma; respdist = InverseGamma) @test vlma.data[1].y[1] != ytest end end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
3072
module MVCalculusTest using BenchmarkTools, LinearAlgebra, Random, Test, WiSER @testset "kron_axpy!" begin Random.seed!(123) m, n = 100, 50 p, q = 30, 20 A = randn(m, n) X = randn(p, q) Y1 = zeros(m * p, n * q) kron_axpy!(A, X, Y1) @test Y1 == kron(A, X) bm = @benchmark kron_axpy!($A, $X, $Y1) setup=(fill!($Y1, 0)) display(bm); println() @test allocs(bm) == 0 Y2 = zeros(n * p, m * q) kron_axpy!(transpose(A), X, Y2) @test Y2 == kron(transpose(A), X) bm = @benchmark kron_axpy!($(transpose(A)), $X, $Y2) setup=(fill!($Y2, 0)) display(bm); println() @test allocs(bm) == 0 Y3 = zeros(m * q, n * p) kron_axpy!(A, transpose(X), Y3) @test Y3 == kron(A, transpose(X)) bm = @benchmark kron_axpy!($A, $(transpose(X)), $Y3) setup=(fill!($Y3, 0)) display(bm); println() @test allocs(bm) == 0 Y4 = zeros(n * q, m * p) kron_axpy!(transpose(A), transpose(X), Y4) @test Y4 == kron(transpose(A), transpose(X)) bm = @benchmark kron_axpy!($(transpose(A)), $(transpose(X)), $Y4) setup=(fill!($Y4, 0)) display(bm); println() @test allocs(bm) == 0 end @testset "kr_axpy!" begin Random.seed!(123) m, n, p = 100, 50, 30 A = randn(m, n) X = randn(p, n) Y1 = zeros(m * p, n) kr_axpy!(A, X, Y1) @test Y1 == reshape([A[i1, j] * X[i2, j] for i2 in 1:p, i1 in 1:m, j in 1:n], m * p, n) bm = @benchmark kr_axpy!($A, $X, $Y1) setup=(fill!($Y1, 0)) display(bm); println() @test allocs(bm) == 0 end @testset "CopyMatrix" begin Random.seed!(123) n = 50 C = CopyMatrix(n) @test size(C) == (n * n, (n * (n + 1)) >> 1) # display(C); println() # display(Matrix{Float64}(C)); println() M = randn(n, n) @test vec(LowerTriangular(M)) == C * vech(LowerTriangular(M)) @test vec(M)' * C == vech(M)' @test C' * vec(M) == vech(M) result1 = similar(vec(M)' * C) bm = @benchmark mul!($result1, $(transpose(vec(M))), $C) display(bm); println() @test allocs(bm) == 0 result2 = similar(C' * vec(M)) bm = @benchmark mul!($result2, $(transpose(C)), $(vec(M))) display(bm); println() @test_skip allocs(bm) == 0 end @testset "Ct_At_kron_A_KC" begin Random.seed!(123) q = 5 q◺ = WiSER.◺(q) A = randn(q, q); A = A'A * LowerTriangular(randn(q, q)) H = Ct_At_kron_A_KC(A) Cq = CopyMatrix(q) Kqq = commutation(q, q) @test size(H) == (q◺, q◺) @test issymmetric(H) @test H == Cq' * kron(A', A) * Kqq * Cq bm = @benchmark Ct_At_kron_A_KC!($H, $A) setup=(fill!($H, 0)) display(bm); println() @test allocs(bm) == 0 end @testset "Ct_A_kron_B_C" begin Random.seed!(123) q = 5 q◺ = WiSER.◺(q) A = randn(q, q); A = A'A B = randn(q, q); B = B'B H = Ct_A_kron_B_C(A, B) Cq = CopyMatrix(q) @test size(H) == (q◺, q◺) @test issymmetric(H) @test all(eigvals(Symmetric(H)) .≥ 0) @test H == Cq' * kron(A, B) * Cq bm = @benchmark Ct_A_kron_B_C!($H, $A, $B) setup=(fill!($H, 0)) display(bm); println() @test allocs(bm) == 0 end @testset "Ct_A_kr_B" begin Random.seed!(123) q, n = 5, 10 q◺ = ◺(q) A = randn(q, n) B = randn(q, n) H = Ct_A_kr_B(A, B) Cq = CopyMatrix(q) @test size(H) == (q◺, n) @test H == Cq' * kr(A, B) bm = @benchmark Ct_A_kr_B!($H, $A, $B) setup=(fill!($H, 0)) display(bm); println() @test allocs(bm) == 0 end end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
6686
# Test on a student T (conditional distribution of Y), gamma (distribution of γ), # inv-gamma (distribution of ω) simulation data example module MvtGammaInvgammaTest using Distributions, InteractiveUtils, LinearAlgebra using Random, Roots, SpecialFunctions, Test, WiSER @info "MvT Gamma InvGamma Test" @info "generate data" Random.seed!(1234) rng = MersenneTwister(1234) # dimensions m = 1000 # number of individuals ns = rand(rng, 20:20, m) # numbers of observations per individual p = 5 # number of fixed effects, including intercept q = 3 # number of random effects, including intercept l = 5 # number of WS variance covariates, including intercept obsvec = Vector{WSVarLmmObs{Float64}}(undef, m) # true parameter values βtrue = [ 0.1; 6.5; -3.5; 1.0; 5 ] τtrue = [-1.5; 1.5; -0.5; 0.0; 0.0] Σγ = [1.5 0.5 0.3; 0.5 1.0 0.2; 0.3 0.2 0.5]; δγω = [0.0; 0.0; 0.0] # for easier generation of (γ, ω) σω = 1.0 Σγω = [Σγ δγω; δγω' σω] Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] # parameters for Gamma random deviate ω # If X ∼ Gamma(α, θ), then E[-ln(X)] = - ψ(α) - ln(θ), Var[-ln(X)] = ψ'(α). # ωi = log(inv(X)) = - log(X) # We want Var[ωi] = ψ'(α) = σω and E[ωi] = - ψ(α) - ln(θ) = 0 ωα = Roots.find_zero(x -> trigamma(x) - σω, 1) ωα > 1 || error("ωα needs to be >1 for the existence of mean of inverse-gamma") ωθ = exp(-digamma(ωα)) # parameters for Gamma random deviate γ # If X ∼ Gamma(α, θ), then E[X] = αθ, Var[X] = αθ^2. # We want Var[X] = 1 and don't care about mean (will shift it to 0) γα = 4 # shape parameter γθ = sqrt(inv(γα)) # scale parameter # degree of freedom for t ν = 6 # generate data γ = Vector{Float64}(undef, q) z = similar(γ) # hold vector of iid std normal for i in 1:m # first column intercept, remaining entries iid std normal X = Matrix{Float64}(undef, ns[i], p) X[:, 1] .= 1 @views randn!(rng, X[:, 2:p]) # first column intercept, remaining entries iid std normal Z = Matrix{Float64}(undef, ns[i], q) Z[:, 1] .= 1 @views randn!(rng, Z[:, 2:q]) # first column intercept, remaining entries iid std normal W = Matrix{Float64}(undef, ns[i], l) W[:, 1] .= 1 @views randn!(rng, W[:, 2:l]) # generate ω ∼ log-inv-gamma(ωα, ωθ) ω = -log(rand(rng, Gamma(ωα, ωθ))) # generate random effects: γ = Lγ * z # z is iid Gamma with variance 1 and shifted to have mean 0 Distributions.rand!(rng, Gamma(γα, γθ), z) z .-= γα * γθ # shift to have mean 0 mul!(γ, Lγ, z) # generate y from t distribution (ν, μy, σ2ϵ) μy = X * βtrue + Z * γ σ2ϵ = W * τtrue .+ dot(γ, lγω) .+ ω ysd = exp.(0.5 .* (σ2ϵ)) # note: variance of T(ν) is ν / (ν - 2) y = μy + sqrt(((ν - 2) / ν)) .* ysd .* rand(rng, TDist(ν), ns[i]) # form a VarLmmObs instance obsvec[i] = WSVarLmmObs(y, X, Z, W) end # form WSVarLmmModel vlmm = WSVarLmmModel(obsvec); @testset "fit! (start from LS fit)" begin println(); println(); println() for solver in [ # KNITRO.KnitroSolver(outlev=3), # outlev 0-6 Ipopt.Optimizer() # Ipopt.IpoptSolver(print_level=0, watchdog_shortened_iter_trigger=3, max_iter=100), # Ipopt.IpoptSolver(print_level = 0) # Ipopt.IpoptSolver(print_level = 3, hessian_approximation = "limited-memory"), # Ipopt.IpoptSolver(print_level = 3, obj_scaling_factor = 1 / m) # instable # Ipopt.IpoptSolver(print_level = 5, mu_strategy = "adaptive") # same speed # NLopt.NLoptSolver(algorithm = :LD_SLSQP, maxeval = 4000) # NLopt.NLoptSolver(algorithm = :LD_MMA, maxeval = 4000), # NLopt.NLoptSolver(algorithm = :LD_LBFGS, maxeval = 4000) # NLopt.NLoptSolver(algorithm = :LN_BOBYQA, ftol_rel = 1e-12, ftol_abs = 1e-8, maxeval = 10000) ] println("----------") @show solver println("----------") @info "init_ls!" @time init_ls!(vlmm) println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() @info "unweighted obj/gradient/hessian at init_ls" @show nlsv_obj!(vlmm, true, true, true) # println("∇β") # display(vlmm.∇β); println() # println("∇τ") # display(vlmm.∇τ); println() # println("∇Lγ") # display(vlmm.∇Lγ); println() # println("Hββ") # display(vlmm.Hββ); println() # println("Hττ") # display(vlmm.Hττ); println() # println("HτLγ") # display(vlmm.HτLγ); println() # println("HLγLγ") # display(vlmm.HLγLγ); println() # println("∇:") # ∇ = [vlmm.∇τ; vech(vlmm.∇Lγ)] # display(∇); println() # println("FIM:") # FIM = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(FIM); println() # @show eigvals(Symmetric(FIM)) # @show Symmetric(FIM) \ ∇ @info "init_mom!" @time init_mom!(vlmm, solver) println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() @info "weighted obj/gradient/hessian at init_ls" init_ls!(vlmm) vlmm.iswtnls[1] = true update_wtmat!(vlmm) @show nlsv_obj!(vlmm, true, true, true) # println("∇β") # display(vlmm.∇β); println() # println("∇τ") # display(vlmm.∇τ); println() # println("∇Lγ") # display(vlmm.∇Lγ); println() # println("Hββ") # display(vlmm.Hββ); println() # println("Hττ") # display(vlmm.Hττ); println() # println("HτLγ") # display(vlmm.HτLγ); println() # println("HLγLγ") # display(vlmm.HLγLγ); println() println("∇:") ∇ = [vlmm.∇τ; vech(vlmm.∇Lγ)] display(∇); println() # println("FIM:") # FIM = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(FIM); println() # @show eigvals(Symmetric(FIM)) # @show Symmetric(FIM) \ ∇ @info "WNLS fitting" @time WiSER.fit!(vlmm, solver, runs=2) # start from init_ls by default @info "obj at solution" @show nlsv_obj!(vlmm, true, true) @info "estimates at solution" println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() # @info "gradient at solution" # @show vlmm.∇β # @show vlmm.∇τ # @show vlmm.∇Lγ @test sqrt(abs2(norm(vlmm.∇τ)) + abs2(norm(vlmm.∇Lγ))) < 1e-5 # @info "Hessian at solution" # @show vlmm.Hββ # @show vlmm.HLγLγ # @show vlmm.HτLγ # @show vlmm.Hττ @info "inference at solution" show(vlmm) end end end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
5684
# Test on a normal (conditional distribution of Y), normal (distribution of γ), # , lognormal (distribution of ω) simulation data example module NormalNormalLognormalTest using BenchmarkTools, InteractiveUtils using LinearAlgebra, Profile, Random, Test, WiSER @info "Normal Normal LogNormal Test" @info "generate data" Random.seed!(123) rng = MersenneTwister(123) # dimensions m = 1000 # number of individuals ns = rand(rng, 20:20, m) # numbers of observations per individual p = 5 # number of fixed effects, including intercept q = 3 # number of random effects, including intercept l = 5 # number of WS variance covariates, including intercept obsvec = Vector{WSVarLmmObs{Float64}}(undef, m) # true parameter values βtrue = [ 0.1; 6.5; -3.5; 1.0; 5 ] τtrue = [-5.5; 1.5; -0.5; 0.0; 0.0] Σγ = [1.5 0.5 0.3; 0.5 1.0 0.2; 0.3 0.2 0.5]; δγω = [0.2; 0.1; 0.05] σω = [1.0] Σγω = [Σγ δγω; δγω' σω] Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] # generate data γω = Vector{Float64}(undef, q + 1) z = similar(γω) # hold vector of iid std normal for i in 1:m # first column intercept, remaining entries iid std normal X = Matrix{Float64}(undef, ns[i], p) X[:, 1] .= 1 @views randn!(rng, X[:, 2:p]) # first column intercept, remaining entries iid std normal Z = Matrix{Float64}(undef, ns[i], q) Z[:, 1] .= 1 @views randn!(rng, Z[:, 2:q]) # first column intercept, remaining entries iid std normal W = Matrix{Float64}(undef, ns[i], l) W[:, 1] .= 1 @views randn!(rng, W[:, 2:l]) # generate random effects: γω = Lγω * z mul!(γω, Lγω, randn!(rng, z)) # generate y μy = X * βtrue + Z * γω[1:q] @views ysd = exp.(0.5 .* (W * τtrue .+ dot(γω[1:q], lγω) .+ γω[end])) y = ysd .* randn(rng, ns[i]) .+ μy # form a VarLmmObs instance obsvec[i] = WSVarLmmObs(y, X, Z, W) end # form VarLmmModel vlmm = WSVarLmmModel(obsvec); @testset "fit! (start from LS fit)" begin println(); println(); println() for solver in [ # KNITRO.KnitroSolver(outlev=3), # outlev 0-6 Ipopt.Optimizer() # Ipopt.IpoptSolver(print_level=0, watchdog_shortened_iter_trigger=3, max_iter=100), # Ipopt.IpoptSolver(print_level = 0) # Ipopt.IpoptSolver(print_level = 3, hessian_approximation = "limited-memory"), # Ipopt.IpoptSolver(print_level = 3, obj_scaling_factor = 1 / m) # less accurae, grad at 10^{-1} # Ipopt.IpoptSolver(print_level = 3, mu_strategy = "adaptive") # same speek # NLopt.NLoptSolver(algorithm = :LD_SLSQP, maxeval = 4000) # NLopt.NLoptSolver(algorithm = :LD_MMA, maxeval = 4000), # NLopt.NLoptSolver(algorithm = :LD_LBFGS, maxeval = 4000) # NLopt.NLoptSolver(algorithm = :LN_BOBYQA, ftol_rel = 1e-12, ftol_abs = 1e-8, maxeval = 10000) ] println("----------") @show solver println("----------") @info "init_ls!" @time init_ls!(vlmm) println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() @info "unweighted obj/gradient/hessian at init_ls" @show nlsv_obj!(vlmm, true, true, true) # println("∇β") # display(vlmm.∇β); println() # println("∇τ") # display(vlmm.∇τ); println() # println("∇Lγ") # display(vlmm.∇Lγ); println() # println("Hββ") # display(vlmm.Hββ); println() # println("Hττ") # display(vlmm.Hττ); println() # println("HτLγ") # display(vlmm.HτLγ); println() # println("HLγLγ") # display(vlmm.HLγLγ); println() # println("∇:") # ∇ = [vlmm.∇τ; vech(vlmm.∇Lγ)] # display(∇); println() # println("FIM:") # FIM = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(FIM); println() # @show eigvals(Symmetric(FIM)) # @show Symmetric(FIM) \ ∇ @info "init_mom!" @time init_mom!(vlmm, solver) println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() @info "weighted obj/gradient/hessian at init_ls" init_ls!(vlmm) vlmm.iswtnls[1] = true update_wtmat!(vlmm) @show nlsv_obj!(vlmm, true, true, true) # println("∇β") # display(vlmm.∇β); println() # println("∇τ") # display(vlmm.∇τ); println() # println("∇Lγ") # display(vlmm.∇Lγ); println() # println("Hββ") # display(vlmm.Hββ); println() # println("Hττ") # display(vlmm.Hττ); println() # println("HτLγ") # display(vlmm.HτLγ); println() # println("HLγLγ") # display(vlmm.HLγLγ); println() println("∇:") ∇ = [vlmm.∇τ; vech(vlmm.∇Lγ)] display(∇); println() # println("FIM:") # FIM = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(FIM); println() # @show eigvals(Symmetric(FIM)) # @show Symmetric(FIM) \ ∇ @info "WNLS fitting" @time WiSER.fit!(vlmm, solver, runs=2) @info "obj at solution" @show nlsv_obj!(vlmm, true, true) @info "estimates at solution" println("β") display([βtrue vlmm.β]); println() println("τ") display([τtrue vlmm.τ]); println() println("Lγω") display(vlmm.Lγ); println() display(Lγ); println() # @info "gradient at solution" # @show vlmm.∇β # @show vlmm.∇τ # @show vlmm.∇Lγ @test sqrt(abs2(norm(vlmm.∇τ)) + abs2(norm(vlmm.∇Lγ))) < 1e-5 # @info "Hessian at solution" # @show vlmm.Hββ # @show vlmm.HLγLγ # @show vlmm.HτLγ # @show vlmm.Hττ @info "inference at solution" show(vlmm) end end end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
5750
module PerfTest using BenchmarkTools, InteractiveUtils using LinearAlgebra, Profile, Random, Test, WiSER @info "generate data" Random.seed!(123) # dimensions m = 6000 # number of individuals ns = rand(5:11, m) # numbers of observations per individual p = 5 # number of fixed effects, including intercept q = 3 # number of random effects, including intercept l = 5 # number of WS variance covariates, including intercept obsvec = Vector{WSVarLmmObs{Float64}}(undef, m) # true parameter values βtrue = [0.1; 6.5; -3.5; 1.0; 5] τtrue = [-1.5; 1.5; -0.5; zeros(l - 3)] Σγ = Matrix(Diagonal([2.0; 1.2; rand(q - 2)])) # full rank case δγω = [0.2; 0.1; rand(q - 2) ./ 10] σω = [1.0] Σγω = [Σγ δγω; δγω' σω] Lγω = cholesky(Symmetric(Σγω), check = false).L Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] # generate data γω = Vector{Float64}(undef, q + 1) z = similar(γω) # hold vector of iid std normal for i in 1:m # first column intercept, remaining entries iid std normal X = Matrix{Float64}(undef, ns[i], p) X[:, 1] .= 1 @views randn!(X[:, 2:p]) # first column intercept, remaining entries iid std normal Z = Matrix{Float64}(undef, ns[i], q) Z[:, 1] .= 1 @views randn!(Z[:, 2:q]) # first column intercept, remaining entries iid std normal W = Matrix{Float64}(undef, ns[i], l) W[:, 1] .= 1 @views randn!(W[:, 2:l]) # generate random effects: γω = Lγω * z mul!(γω, Lγω, randn!(z)) # generate y μy = X * βtrue + Z * γω[1:q] @views ysd = exp.(0.5 .* (W * τtrue .+ dot(γω[1:q], lγω) .+ γω[end])) y = ysd .* randn(ns[i]) .+ μy # form a VarLmmObs instance obsvec[i] = WSVarLmmObs(y, X, Z, W) end # form VarLmmModel vlmm = WSVarLmmModel(obsvec); @testset "init_ls!" begin # least squares starting point init_ls!(vlmm) @show vlmm.β @show vlmm.τ @show vlmm.Lγ # @info "type stability" # @code_warntype init_ls!(vlmm) @info "benchmark" bm = @benchmark init_ls!($vlmm, gniters=5) display(bm); println() @test_skip allocs(bm) == 0 # @info "profile" # Profile.clear() # @profile @btime init_ls!(vlmm; gniters=5) # Profile.print(format=:flat) end @testset "update_wtmat!" begin # set parameter values to be the truth copy!(vlmm.β, βtrue) copy!(vlmm.τ, τtrue) vlmm.τ[1] = τtrue[1] + 0.5(abs2(lω) + abs2(norm(lγω + Lγ'lγω))) vlmm.Lγ .= Lγ @show vlmm.β @show vlmm.τ @show vlmm.Lγ # update weight matrix update_wtmat!(vlmm) @show vlmm.β @show vlmm.∇β # @show vlmm.Hββ # @info "type stability" # @code_warntype update_wtmat!(vlmm) @info "benchmark" bm = @benchmark update_wtmat!($vlmm) display(bm); println() @test allocs(bm) == 0 # @info "profile" # Profile.clear() # @profile @btime update_wtmat!(vlmm) # Profile.print(format=:flat) end @testset "nlsv_obj! (unweighted)" begin # set parameter values to be the truth copy!(vlmm.β, βtrue) copy!(vlmm.τ, τtrue) vlmm.τ[1] = τtrue[1] + 0.5(abs2(lω) + abs2(norm(lγω + Lγ'lγω))) vlmm.Lγ .= Lγ @show vlmm.β @show vlmm.τ @show vlmm.Lγ # evaluate objective (at truth) @info "obj/grad/hessian at true parameter values" vlmm.iswtnls[1] = false @show nlsv_obj!(vlmm, true, true, true) @show vlmm.∇β @show vlmm.∇τ @show vlmm.∇Lγ H = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(H); println() @test norm(H - transpose(H)) / norm(H) < 1e-8 @test all(eigvals(Symmetric(H)) .≥ 0) # @info "type stability" # @code_warntype nlsv_obj!(vlmm.data[1], vlmm.β, vlmm.τ, vlmm.Lγ, true) # @code_warntype nlsv_obj!(vlmm, true) @info "benchmark" # bm = @benchmark nlsv_obj!($vlmm.data[1], $vlmm.β, $vlmm.τ, $vlmm.Lγ, true) # display(bm) # @test allocs(bm) == 0 bm = @benchmark nlsv_obj!($vlmm, true, true, true) display(bm); println() @test allocs(bm) == 0 # @info "profile" # Profile.clear() # @profile @btime nlsv_obj!($vlmm, true, true) # Profile.print(format=:flat) end @testset "nlsv_obj! (weighted)" begin # set parameter values to be the truth copy!(vlmm.β, βtrue) copy!(vlmm.τ, τtrue) vlmm.τ[1] = τtrue[1] + 0.5(abs2(lω) + abs2(norm(lγω + Lγ'lγω))) vlmm.Lγ .= Lγ @show vlmm.β @show vlmm.τ @show vlmm.Lγ # update_wtmat then evaluate at the truth update_wtmat!(vlmm) vlmm.iswtnls[1] = true @show nlsv_obj!(vlmm, true, true, true) @show vlmm.∇β @show vlmm.∇τ @show vlmm.∇Lγ H = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(H); println() @test norm(H - transpose(H)) / norm(H) < 1e-8 @test all(eigvals(Symmetric(H)) .≥ 0) # @info "type stability" # @code_warntype nlsv_obj!(vlmm.data[1], vlmm.β, vlmm.τ, vlmm.Lγ, true) # @code_warntype nlsv_obj!(vlmm, true) @info "benchmark" bm = @benchmark nlsv_obj!($vlmm, true, true, true) display(bm); println() @test allocs(bm) == 0 # @info "profile" # Profile.clear() # @profile @btime nlsv_obj!($vlmm, true, true, true) # Profile.print(format=:flat) end @testset "nlsv_obj! (weighted) - parallel" begin # set parameter values to be the truth copy!(vlmm.β, βtrue) copy!(vlmm.τ, τtrue) vlmm.τ[1] = τtrue[1] + 0.5(abs2(lω) + abs2(norm(lγω + Lγ'lγω))) vlmm.Lγ .= Lγ @show vlmm.β @show vlmm.τ @show vlmm.Lγ # update_wtmat then evaluate at the truth update_wtmat!(vlmm) vlmm.iswtnls[1] = true vlmm.ismthrd[1] = true @show nlsv_obj!(vlmm, true, true, true) @show vlmm.∇β @show vlmm.∇τ @show vlmm.∇Lγ H = [vlmm.Hττ vlmm.HτLγ; vlmm.HτLγ' vlmm.HLγLγ] # display(H); println() @test norm(H - transpose(H)) / norm(H) < 1e-8 @test all(eigvals(Symmetric(H)) .≥ 0) # @info "type stability" # @code_warntype nlsv_obj!(vlmm.data[1], vlmm.β, vlmm.τ, vlmm.Lγ, true) # @code_warntype nlsv_obj!(vlmm, true) @info "benchmark" vlmm.iswtnls[1] = true vlmm.ismthrd[1] = true bm = @benchmark nlsv_obj!($vlmm, true, true, true) display(bm); println() # @info "profile" # Profile.clear() # @profile @btime nlsv_obj!($vlmm, true, true, true) # Profile.print(format=:flat) end end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
233
module PkgTest include("df_test.jl") include("normal_normal_lognormal_test.jl") # include("mvt_gamma_invgamma_test.jl") # include("mvcalc_test.jl") # include("perf_test.jl") # include("startingpoint_test.jl") end # PkgTest module
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
code
4912
# This test reproduces a case, where all starting strategies failed to # produce a reasonable estimate. Estimated τ diverges. module DebugTest using DataFrames, LinearAlgebra, Random, Test, WiSER function createvlmm(t, k, j) p = 5 # number of fixed effects, including intercept q = 2 # number of random effects, including intercept l = 5 # number of WS variance covariates, including intercept q◺ = ◺(q) # true parameter values global βtrue = [0.1; 6.5; -3.5; 1.0; 5] global τtrue = [0.0; 0.5; -0.2; 0.5; 0.0] Σγ = Matrix(Diagonal([2.0; 1.2])) δγω = [0.2; 0.1] σω = [1.0] Σγω = [Σγ δγω; δγω' σω] Lγω = cholesky(Symmetric(Σγω), check = false).L global Lγ = Lγω[1:q, 1:q] lγω = Lγω[q + 1, 1:q] lω = Lγω[q + 1, q + 1] vechLγ = vech(Lγ) # generate data γω = Vector{Float64}(undef, q + 1) z = similar(γω) # hold vector of iid std normal intervals = zeros(p + l, 2) #hold intervals curcoverage = zeros(p + l) #hold current coverage resutls trueparams = [βtrue; τtrue] #hold true parameters #simulation parameters samplesizes = collect(1000:1000:6000) ns = [10; 25; 50; 100; 1000] m = samplesizes[t] ni = ns[k] # number of observations per individual obsvec = Vector{WSVarLmmObs{Float64}}(undef, m) println("rep $j obs per person $ni samplesize $m") Random.seed!(j + 100000k + 1000t) for i in 1:m # first column intercept, remaining entries iid std normal X = Matrix{Float64}(undef, ni, p) X[:, 1] .= 1 @views Distributions.rand!(Normal(), X[:, 2:p]) # first column intercept, remaining entries iid std normal Z = Matrix{Float64}(undef, ni, q) Z[:, 1] .= 1 @views Distributions.rand!(Normal(), Z[:, 2:q]) # first column intercept, remaining entries iid std normal W = Matrix{Float64}(undef, ni, l) W[:, 1] .= 1 @views Distributions.rand!(Normal(), W[:, 2:l]) # generate random effects: γω = Lγω * z mul!(γω, Lγω, Distributions.rand!(Normal(), z)) # generate y μy = X * βtrue + Z * γω[1:q] @views vy = exp.(W * τtrue .+ dot(γω[1:q], lγω) .+ γω[end]) y = rand(MvNormal(μy, Diagonal(vy))) # form a VarLmmObs instance obsvec[i] = WSVarLmmObs(y, X, Z, W) end # form VarLmmModel vlmm = WSVarLmmModel(obsvec); return vlmm end vlmm1 = createvlmm(1, 1, 203) # trouble case # vlmm1 = createvlmm(2, 1, 233) ### If you revert back to initialize intercept only these cases will also fail: # ts = [2, 2, 2, 4, 1, 3, 2, 1, 1, 2] # ks = [1, 1, 1, 1, 2, 1, 2, 1, 1, 1] # js = [35, 53, 109, 148, 168, 174, 100, 7, 203, 233] # solver = Ipopt.IpoptSolver(print_level=0) solver = Ipopt.IpoptSolver(print_level=0, mehrotra_algorithm="yes", max_iter=100) # solver = NLopt.NLoptSolver(algorithm = :LN_BOBYQA, # ftol_rel = 1e-12, ftol_abs = 1e-8, maxeval = 10000) # solver = NLopt.NLoptSolver(algorithm = :LD_SLSQP, maxeval = 4000) # solver = NLopt.NLoptSolver(algorithm = :LD_MMA, maxeval = 4000) # solver = NLopt.NLoptSolver(algorithm = :LD_LBFGS, maxeval = 4000) @info "starting point by LS init_ls!" WiSER.init_ls!(vlmm1) println("β"); display(vlmm1.β); println() println("τ"); display(vlmm1.τ); println() println("Lγ"); display(vlmm1.Lγ); println() @show norm(vlmm1.β - βtrue) @show norm(vlmm1.τ[2:end] - τtrue[2:end]) @show norm(vlmm1.Lγ - Lγ) @info "unweighted NLS fit (start from LS)" @time init_mom!(vlmm1, solver) println("β"); display(vlmm1.β); println() println("τ"); display(vlmm1.τ); println() println("Lγ"); display(vlmm1.Lγ); println() @show norm(vlmm1.β - βtrue) @show norm(vlmm1.τ[2:end] - τtrue[2:end]) @show norm(vlmm1.Lγ - Lγ) # @info "weighted NLS fit (start from true τ and LS β, Σγ)" # init_ls!(vlmm1) # # vlmm1.τ .= [-0.1; 0.5; -0.2; 0.5; 0.0] # # vlmm1.τ .= [0.27, 0.14, -0.04, 0.13, -0.02] # LS (x5 works) # # vlmm1.τ .= [2.09, 0.13, -0.019, 0.15, -0.0007] # log-LS (x5 works) # fit!(vlmm1, solver; init = vlmm1, runs = 2) # println("β"); display(vlmm1.β); println() # println("τ"); display(vlmm1.τ); println() # println("Lγ"); display(vlmm1.Lγ); println() # show(vlmm1) @info "weighted fit (start from LS)" @time fit!(vlmm1, solver; init = init_ls!(vlmm1), runs = 2) println("β"); display(vlmm1.β); println() println("τ"); display(vlmm1.τ); println() println("Lγ"); display(vlmm1.Lγ); println() @show norm(vlmm1.β - βtrue) @show norm(vlmm1.τ[2:end] - τtrue[2:end]) @show norm(vlmm1.Lγ - Lγ) @info "weighted fit (start from MoM)" @time fit!(vlmm1, solver; init = init_mom!(vlmm1, solver), runs = 2) println("β"); display(vlmm1.β); println() println("τ"); display(vlmm1.τ); println() println("Lγ"); display(vlmm1.Lγ); println() @show norm(vlmm1.β - βtrue) @show norm(vlmm1.τ[2:end] - τtrue[2:end]) @show norm(vlmm1.Lγ - Lγ) end
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
docs
2249
# WiSER.jl | **Documentation** | **Build Status** | **Code Coverage** | |-------------------|------------------|--------------------| | [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://openmendel.github.io/WiSER.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://openmendel.github.io/WiSER.jl/dev/) | [![Build Status](https://github.com/OpenMendel/WiSER.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/OpenMendel/WiSER.jl/actions/workflows/ci.yml) | [![codecov](https://codecov.io/gh/OpenMendel/WiSER.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/OpenMendel/WiSER.jl) | WiSER stands for **wi**thin-**s**ubject variance **e**stimation by **r**obust regression. It is a regression aproach for estimating the effects of predictors on the within-subject variation in a longitudinal setting. WiSER.jl requires Julia v1.0 or later. See documentation for usage. I This package is registered in the default Julia package registry, and can be installed through standard package installation procedure: e.g., running the following code in Julia REPL. ```julia using Pkg pkg"add WiSER" ``` ## Citation The methods and applications of this software package are detailed in the following publication: *German CA, Sinsheimer JS, Zhou J, Zhou H. WiSER: Robust and scalable estimation and inference of within-subject variances from intensive longitudinal data. Biometrics. 2021 Jun 18:10.1111/biom.13506. doi: 10.1111/biom.13506. Epub ahead of print. PMID: 34142722; PMCID: PMC8683571.* If you use [OpenMendel](https://openmendel.github.io) analysis packages in your research, please cite the following reference in the resulting publications: *Zhou H, Sinsheimer JS, Bates DM, Chu BB, German CA, Ji SS, Keys KL, Kim J, Ko S, Mosher GD, Papp JC, Sobel EM, Zhai J, Zhou JJ, Lange K. OPENMENDEL: a cooperative programming project for statistical genetics. Hum Genet. 2020 Jan;139(1):61-71. doi: 10.1007/s00439-019-02001-z. Epub 2019 Mar 26. PMID: 30915546; PMCID: [PMC6763373](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763373/).* ## Acknowledgments This project has been supported by the National Institutes of Health under awards R01GM053275, R01HG006139, R25GM103774, and 1R25HG011845.
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
docs
7479
# WiSER.jl Introduction `WiSER.jl` implements a regression method for modeling the within-subject variability of a longitudinal measurement. It stands for **wi**thin-**s**ubject variance **e**stimation by robust **r**egression. This package requires Julia v1.0 or later, which can be obtained from https://julialang.org/downloads/ or by building Julia from the sources in the https://github.com/JuliaLang/julia repository. The package has not yet been registered and must be installed using the repository location. Start Julia and use the ] key to switch to the package manager REPL ```{julia} (@v1.5) Pkg> add https://github.com/OpenMendel/WiSER.jl ``` Use the backspace key to return to the Julia REPL. ## Model WiSER was created to efficiently estimate effects of covarariates on within-subject (WS) variability in logitudinal data. The following graphic depicts the motiviation for WiSER and what it can model. ![](https://raw.githubusercontent.com/OpenMendel/WiSER.jl/master/docs/src/notebooks/wisermotivation.png) The figure above displays systolic blood pressure (SBP) measured for two patients followed up over 40-visits. At baseline, we see a difference in both mean and variability of SBP between the two patients. After the 20th visit, patient 1 goes on blood pressure medication and their mean and WS variance of SBP more similarly match patient 2's. It can be of clinical importance to model what factors associated with these baseline differences in mean and WS variance as well as how being on medication (a time-varying covariate) affects these measures. WiSER is able to simultaneously model (time-invariant and time-varying) covariates' effects on mean and within-subject variability of longitudinal traits. The mean fixed effects are estimated in $\boldsymbol{\beta}$, the within-subject variance fixed effects are estimated by $\boldsymbol{\tau}$, and the random effects covariance matrix is estimated in $\boldsymbol{\Sigma}_{\boldsymbol{\gamma}}$. ## Model Details In addition to mean levels, it can be important to model factors influencing within-subject variability of longitudinal outcomes. We utilize a modified linear mixed effects model that allows for within-subject variability to be modeled through covariates. It is motivated by a Mixed Effects Multiple Location Scale Model introduced by [Dzubar et al. (2020)](https://link.springer.com/article/10.3758/s13428-019-01322-1), but WiSER dispenses with the normal assumptions and is much faster than the likelihood method implemented in the [MixWILD](https://reach-lab.github.io/MixWildGUI/) software. The procedure assumes the following model for the data: Data: - ``y_{ij}`` longitudinal response of subject ``i`` at time ``j`` - ``\textbf{x}_{ij}`` mean fixed effects covariates of subject ``i`` at time ``j`` - ``\textbf{z}_{ij}`` random (location) effects covariates of subject ``i`` at time ``j`` - ``\textbf{w}_{ij}`` within-subject variance fixed effects covariates of subject ``i`` at time ``j`` Parameters: - ``\boldsymbol{\beta}`` mean fixed effects - ``\boldsymbol{\tau}`` within-subject variance fixed effects - ``\boldsymbol{\boldsymbol{\gamma}_i}`` random location effects of subject ``i`` - ``\boldsymbol{\Sigma}_{\boldsymbol{\gamma}}`` random (location) effects covariance matrix - ``\omega_i`` random scale effect of subject ``i`` - ``\sigma_\omega^2`` variance of random scale effect - ``\boldsymbol{\Sigma}_{\boldsymbol{\gamma} \omega}`` joint random effects covariance matrix Other: - ``\mathcal{D(a, b)}`` unspecified distribution with mean ``a`` and variance ``b`` - ``\epsilon_{ij}`` error term of subject ``i`` and time ``j`` capturing within-subject variability The longitduinal data are modeled via: ```math \begin{aligned} y_{ij} &=& \textbf{x}_{ij}^T\boldsymbol{\beta} + \textbf{z}_{ij}^T\boldsymbol{\gamma}_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim \mathcal{D}(0, \sigma_{\epsilon_{ij}}^2), \\ \boldsymbol{\gamma_i} &=& (\gamma_{i1}, \gamma_{i2}, \cdots, \gamma_{iq})^T \sim \mathcal{D}(\mathbf{0}_{q}, \boldsymbol{\Sigma}_{\boldsymbol{\gamma}}), \end{aligned} ``` where ```math \begin{aligned} \sigma_{\epsilon_{ij}}^2 = \exp (\textbf{w}_{ij}^T \boldsymbol{\tau} + \boldsymbol{\ell}_{\boldsymbol{\gamma} \omega}^T \boldsymbol{\gamma_i} + \omega_i), \quad \omega_i \sim \mathcal{D}(0, \sigma_\omega^2) \end{aligned} ``` represents the within-subject variance with $\boldsymbol{\ell}_{\gamma \omega}^T$ coming from the Cholesky factor of the covariance matrix of the joint distribution of random effects ($\boldsymbol{\gamma}_i$, $\omega_i$). The joint distribution of random effects is ```math \begin{aligned} \begin{pmatrix} \boldsymbol{\gamma_i} \\ \omega_i \end{pmatrix} \sim \mathcal{D}(\mathbf{0}_{q+1}, \boldsymbol{\Sigma}_{\boldsymbol{\gamma} \omega}) \end{aligned} ``` and denote the Cholesky decomposition of the covariance matrix $\boldsymbol{\Sigma_{\gamma w}}$ as ```math \begin{aligned} \boldsymbol{\Sigma}_{\boldsymbol{\gamma} \omega} &=& \begin{pmatrix} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}} & \boldsymbol{\sigma}_{\boldsymbol{\gamma} \omega} \\ \boldsymbol{\sigma}_{\boldsymbol{\gamma} \omega}^T & \sigma_\omega^2 \end{pmatrix} = \textbf{L} \textbf{L}^T, \quad \textbf{L} = \begin{pmatrix} \textbf{L}_{\boldsymbol{\gamma}} & \mathbf{0} \\ \boldsymbol{\ell}_{\boldsymbol{\gamma} \omega}^T & \ell_{\omega} \end{pmatrix}, \end{aligned} ``` where $\textbf{L}_{\boldsymbol{\gamma}}$ is a $q \times q$ upper triangular matrix with positive diagonal entries and $\ell_{\omega} > 0$. The elements of $\boldsymbol{\Sigma}_{\boldsymbol{\gamma} \omega}$ can be expressed in terms of the Cholesky factors as: ```math \begin{aligned} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}} &=& \textbf{L}_{\boldsymbol{\gamma}} \textbf{L}_{\boldsymbol{\gamma}}^T \\ \boldsymbol{\sigma}_{\boldsymbol{\gamma} \omega} &=& \textbf{L}_{\boldsymbol{\gamma}} \boldsymbol{\ell}_{\boldsymbol{\gamma} \omega} \\ \sigma_\omega^2 &=& \boldsymbol{\ell}_{\boldsymbol{\gamma} \omega}^T \boldsymbol{\ell}_{\boldsymbol{\gamma} \omega} + \ell_{\omega}^2 \end{aligned} ``` In Dzubuar et al's estimation, they assume all unspecified distributions above are Normal distributions. Our estimation procedure is robust and only needs that the mean and variance of those random variables hold. In their MixWILD software, they fit the model through maximum likelihood, requiring numerically intensive numerical integration. We have derived a computationally efficient and statistically robust method for obtaining estimates of $\boldsymbol{\beta}, \boldsymbol{\tau}, \text{and}, \boldsymbol{\Sigma_\gamma}$. The mean fixed effects $\boldsymbol{\beta}$ are estimated by weighted least squares, while the variance components $\boldsymbol{\tau}$ and $\boldsymbol{\Sigma_\gamma}$ are estimated via a weighted nonlinear least squares approach motivated by the method of moments. WiSER does not estimate any parameters associated with the random scale effect $\omega_i$ or any association between $\boldsymbol{\gamma}_i$ and $\omega_i$. These are treated as nuissance parameters that get absorbed into the intercept of $\boldsymbol{\tau}$. **NOTE**: When the true data has a random scale effect with non-zero variance $\sigma^2_\omega$, WiSER's estimates of $\boldsymbol{\beta}$, non-intercept values of $\boldsymbol{\tau}$, and $\boldsymbol{\Sigma_\gamma}$ are consistent. In this case, the intercept of $\boldsymbol{\tau}$ absorbs effects from $\sigma^2_\omega$.
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
docs
37986
# Model Fitting `WiSER.jl` implements a regression method for modeling the within-subject variability of a longitudinal measurement. It stands for **wi**thin-**s**ubject variance **e**stimation by robust **r**egression. Here we cover model construction and parameter estimation using WiSER. ```julia using CSV, DataFrames, WiSER ``` ## Example data The example dataset, `sbp.csv`, is contained in `data` folder of the package. It is a simulated datatset with 500 individuals, each having 9 to 11 observations. The outcome, systolic blood pressure (SBP), is a function of other covariates. Below we read in the data as a `DataFrame` using the [CSV package](https://juliadata.github.io/CSV.jl). WiSER.jl can take other data table objects that comply with the `Tables.jl` format, such as `IndexedTables` from the [JuliaDB](https://github.com/JuliaData/JuliaDB.jl) package. ```julia filepath = normpath(joinpath(dirname(pathof(WiSER)), "../data/")) df = DataFrame(CSV.File(filepath * "sbp.csv")); ``` ```jldoctest 5011×8 DataFrame Row │ id sbp agegroup gender bmi meds bmi_std obswt │ Int64 Float64 Float64 String Float64 String Float64 Float64 ──────┼──────────────────────────────────────────────────────────────────────── 1 │ 1 159.586 3.0 Male 23.1336 NoMeds -1.57733 4.0 2 │ 1 161.849 3.0 Male 26.5885 NoMeds 1.29927 4.0 3 │ 1 160.484 3.0 Male 24.8428 NoMeds -0.154204 4.0 4 │ 1 161.134 3.0 Male 24.9289 NoMeds -0.0825105 4.0 5 │ 1 165.443 3.0 Male 24.8057 NoMeds -0.185105 4.0 6 │ 1 160.053 3.0 Male 24.1583 NoMeds -0.72415 4.0 7 │ 1 162.1 3.0 Male 25.2543 NoMeds 0.188379 4.0 8 │ 1 163.153 3.0 Male 24.3951 NoMeds -0.527037 4.0 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 5005 │ 500 155.672 3.0 Female 24.4651 NoMeds -0.468741 3.0 5006 │ 500 148.389 3.0 Female 25.8129 NoMeds 0.653514 3.0 5007 │ 500 152.491 3.0 Female 24.5818 NoMeds -0.371555 3.0 5008 │ 500 153.844 3.0 Female 25.721 NoMeds 0.57693 3.0 5009 │ 500 150.164 3.0 Female 24.3545 NoMeds -0.560843 3.0 5010 │ 500 150.248 3.0 Female 23.8532 NoMeds -0.978159 3.0 5011 │ 500 152.433 3.0 Female 26.1232 NoMeds 0.911814 3.0 ``` ## Formulate model First we will create a `WSVarLmmModel` object from the dataframe. The `WSVarLmmModel()` function takes the following arguments: - `meanformula`: the formula for the mean fixed effects β (variables in X matrix). - `reformula`: the formula for the mean random effects γ (variables in Z matrix). - `wsvarformula`: the formula for the within-subject variance fixed effects τ (variables in W matrix). - `idvar`: the id variable for groupings. - `tbl`: the datatable holding all of the data for the model. Can be a `DataFrame` or various types of tables that comply with `Tables.jl` formatting, such as an `IndexedTable`. - `wtvar`: Optional argument of variable name holding subject-level weights in the `tbl`. For documentation of the `WSVarLmmModel` function, type `?WSVarLmmModel` in Julia REPL. ```@docs WSVarLmmModel ``` We will model sbp as a function of age, gender, and bmi_std. `bmi_std` is the centered and scaled `bmi`. The following commands fit the following model: $\text{sbp}_{ij} = \beta_0 + \beta_1 \cdot \text{agegroup}_{ij} + \beta_2 \cdot \text{gender}_{i} + \beta_3 \cdot \text{bmi}_{ij} + \gamma_{i0} + \gamma_{i1} \cdot \text{bmi} + \epsilon_{ij}$ ``\epsilon_{ij}`` has mean 0 and variance ``\sigma^2_{\epsilon_{ij}}`` ``\gamma_{i} = (\gamma_{i0}, \gamma_{i1})`` has mean **0** and variance ``\Sigma_\gamma`` $\sigma^2_{\epsilon_{ij}} = \exp(\tau_0 + \tau_1 \cdot \text{agegroup}_{ij} + \tau_2 \cdot \text{gender}_{i} + \tau_3 \cdot \text{bmi}_{ij})$ ```julia vlmm = WSVarLmmModel( @formula(sbp ~ 1 + agegroup + gender + bmi_std + meds), @formula(sbp ~ 1 + bmi_std), @formula(sbp ~ 1 + agegroup + meds + bmi_std), :id, df); ``` The `vlmm` object has the appropriate data formalated above. We can now use the `fit!()` function to fit the model. ## Fit model Main arguments of the `fit!()` function are: * `m::WSVarLmmModel`: The model to fit. * `solver`: Non-linear programming solver to be used. * `runs::Integer`: Number of weighted nonlinear least squares runs. Default is 2. For a complete documentation, type `?WSVarLmmModel` in Julia REPL. ```@docs fit! ``` ```julia WiSER.fit!(vlmm) ``` ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit https://github.com/coin-or/Ipopt ****************************************************************************** run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.201188 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.080523 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi_std 0.296424 0.0139071 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.5212 0.393792 -6.40 <1e-09 τ2: agegroup 1.50759 0.135456 11.13 <1e-28 τ3: meds: OnMeds -0.435225 0.0621076 -7.01 <1e-11 τ4: bmi_std 0.0052695 0.0224039 0.24 0.8140 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00196 0.0181387 "γ2: bmi_std" 0.0181387 0.000549357 The estimated coefficients and random effects covariance parameters can be retrieved by ```julia coef(vlmm) ``` 9-element Vector{Float64}: 106.3082866175766 14.984423626293006 10.074886642511672 0.29642385700569635 -10.110677648545401 -2.5211956122840613 1.5075882029989467 -0.43522497609297117 0.005269501831413771 or individually ```julia vlmm.β ``` 5-element Vector{Float64}: 106.3082866175766 14.984423626293006 10.074886642511672 0.29642385700569635 -10.110677648545401 ```julia vlmm.τ ``` 4-element Vector{Float64}: -2.5211956122840613 1.5075882029989467 -0.43522497609297117 0.005269501831413771 ```julia vlmm.Σγ ``` 2×2 Matrix{Float64}: 1.00196 0.0181387 0.0181387 0.000549357 The variance-covariance matrix of the estimated parameters (β, τ, Lγ) can be rerieved by ```julia vlmm.vcov ``` 12×12 Matrix{Float64}: 0.0206899 -0.00753187 -0.00618382 … -0.000123531 0.0644858 -0.00753187 0.00400999 0.000152994 4.07896e-5 -0.0194226 -0.00618382 0.000152994 0.0100558 4.35497e-5 -0.0299542 5.60981e-5 -4.80751e-5 0.000108448 8.06623e-6 0.00149567 -0.00311952 -0.000362412 0.00122535 -7.1571e-5 0.0168424 -0.00652959 0.00207365 0.00276734 … 0.00217472 -1.70443 0.00229271 -0.000743467 -0.000951293 -0.000740359 0.58213 -0.000719608 0.000263081 0.000294779 0.000197117 -0.152908 3.10756e-5 1.70391e-5 -0.00011849 -5.50781e-5 0.0266044 0.000166021 -3.24178e-6 -0.00011537 9.0954e-6 -0.00139559 -0.000123531 4.07896e-5 4.35497e-5 … 7.84536e-5 -0.0244586 0.0644858 -0.0194226 -0.0299542 -0.0244586 19.1312 Confidence intervals for $\boldsymbol{\beta}, \boldsymbol{\tau}$ can be obtained by `confint`. By default it returns 95% confidence intervals ($\alpha$ level = 0.05). ```julia confint(vlmm) ``` 9×2 Matrix{Float64}: 106.026 106.59 14.8603 15.1085 9.87834 10.2714 0.269167 0.323681 -10.3516 -9.86976 -3.29301 -1.74938 1.2421 1.77308 -0.556954 -0.313496 -0.0386413 0.0491803 ```julia # 90% confidence interval confint(vlmm, 0.1) ``` 9×2 Matrix{Float64}: 106.29 106.326 14.9765 14.9924 10.0623 10.0875 0.294676 0.298171 -10.1261 -10.0952 -2.57068 -2.47171 1.49057 1.52461 -0.44303 -0.42742 0.0024542 0.00808481 **Note**: The default solver for WiSER.jl is : `Ipopt.IpoptSolver(print_level=0, mehrotra_algorithm = "yes", warm_start_init_point="yes", max_iter=100)` This was chosen as it a free, open-source solver and the options typically reduce line search and lead to much faster fitting than other options. However, it can be a bit more instable. Below are tips to help improve estimation if the fit seems very off or fails. Switching the solver options or removing them and assigning it to the base Ipopt Solver `Ipopt.IpoptSolver(max_iter=100)` can take longer to converge but is usually a bit more stable. ## Tips for improving estimation `fit!` may fail due to various reasons. Often it indicates ill-conditioned data or an inadequate model. Following strategies may improve the fit. ### Standardize continuous predictors In above example, we used the standardardized `bmi`. If we used the original `bmi` variable, the estimates of τ are instable, reflected by the large standard errors. ```julia # using unscaled bmi causes ill-conditioning vlmm_bmi = WSVarLmmModel( @formula(sbp ~ 1 + agegroup + gender + bmi + meds), @formula(sbp ~ 1 + bmi), @formula(sbp ~ 1 + agegroup + meds + bmi), :id, df); WiSER.fit!(vlmm_bmi) ``` run = 1, ‖Δβ‖ = 0.208950, ‖Δτ‖ = 0.445610, ‖ΔL‖ = 2.027674, status = Optimal, time(s) = 0.079164 run = 2, ‖Δβ‖ = 0.032012, ‖Δτ‖ = 0.014061, ‖ΔL‖ = 0.780198, status = Optimal, time(s) = 0.125981 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi + meds Random Effects Formula: sbp ~ 1 + bmi Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ──────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ──────────────────────────────────────────────────────────── β1: (Intercept) 100.131 0.319906 313.00 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi 0.246808 0.0115793 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.63101 17.2804 -0.15 0.8790 τ2: agegroup 1.50759 5.69286 0.26 0.7911 τ3: meds: OnMeds -0.435225 1.37021 -0.32 0.7508 τ4: bmi 0.00438748 0.0281074 0.16 0.8760 ──────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 0.484542 0.00557087 "γ2: bmi" 0.00557087 0.000380843 ### Increase `runs` Increasing `runs` (default is 2) takes more computing resources but can be useful to get more precise estimates. If we set `runs=3` when using original `bmi` (ill-conditioned), the estimated τ are more accurate. The estimate of Σγ is still off though. ```julia # improve estimates from ill-conditioned data by more runs WiSER.fit!(vlmm_bmi, runs=3) ``` run = 1, ‖Δβ‖ = 0.208950, ‖Δτ‖ = 0.445610, ‖ΔL‖ = 2.027674, status = Optimal, time(s) = 0.085767 run = 2, ‖Δβ‖ = 0.032012, ‖Δτ‖ = 0.014061, ‖ΔL‖ = 0.780198, status = Optimal, time(s) = 0.129032 run = 3, ‖Δβ‖ = 0.008059, ‖Δτ‖ = 0.000678, ‖ΔL‖ = 0.083976, status = Optimal, time(s) = 0.154331 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi + meds Random Effects Formula: sbp ~ 1 + bmi Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ──────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ──────────────────────────────────────────────────────────── β1: (Intercept) 100.139 0.315745 317.15 <1e-99 β2: agegroup 14.9839 0.0633172 236.65 <1e-99 β3: gender: Male 10.0753 0.10027 100.48 <1e-99 β4: bmi 0.246528 0.0114083 21.61 <1e-99 β5: meds: OnMeds -10.1109 0.122778 -82.35 <1e-99 τ1: (Intercept) -2.63079 0.453424 -5.80 <1e-08 τ2: agegroup 1.5079 0.0253371 59.51 <1e-99 τ3: meds: OnMeds -0.435791 0.051245 -8.50 <1e-16 τ4: bmi 0.00436541 0.0178825 0.24 0.8071 ──────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 0.377439 0.00949012 "γ2: bmi" 0.00949012 0.000238614 ### Try different nonlinear programming (NLP) solvers A different solver may remedy the issue. By default, `WiSER.jl` uses the [Ipopt](https://github.com/jump-dev/Ipopt.jl) solver, but it can use any solver that supports [MathProgBase.jl](https://github.com/JuliaOpt/MathProgBase.jl). Check documentation of `fit!` for commonly used NLP solvers. In our experience, [Knitro.jl](https://github.com/JuliaOpt/KNITRO.jl) works the best, but it is a commercial software. ```julia # watchdog_shortened_iter_trigger option in IPOPT can sometimes be more robust to numerical issues WiSER.fit!(vlmm, Ipopt.IpoptSolver(print_level=0, watchdog_shortened_iter_trigger=3, max_iter=100)) ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.081864 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.068715 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi_std 0.296424 0.0139071 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.5212 0.393792 -6.40 <1e-09 τ2: agegroup 1.50759 0.135456 11.13 <1e-28 τ3: meds: OnMeds -0.435225 0.0621076 -7.01 <1e-11 τ4: bmi_std 0.0052695 0.0224039 0.24 0.8140 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00196 0.0181387 "γ2: bmi_std" 0.0181387 0.000549357 ```julia # print Ipopt iterates for diagnostics WiSER.fit!(vlmm, Ipopt.IpoptSolver(print_level=5, mehrotra_algorithm="yes", warm_start_init_point="yes")) ``` This is Ipopt version 3.13.4, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation). Number of nonzeros in equality constraint Jacobian...: 0 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 28 Total number of variables............................: 7 variables with only lower bounds: 0 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 0 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 2.8331778e+04 0.00e+00 1.00e+02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 2.8314110e+04 0.00e+00 2.49e+01 -11.0 3.08e-01 - 1.00e+00 1.00e+00f 1 2 2.8312135e+04 0.00e+00 3.32e+00 -11.0 2.63e-01 - 1.00e+00 1.00e+00f 1 3 2.8311752e+04 0.00e+00 1.36e+00 -11.0 2.08e-01 - 1.00e+00 1.00e+00f 1 4 2.8311700e+04 0.00e+00 3.34e-01 -11.0 1.25e-01 - 1.00e+00 1.00e+00f 1 5 2.8311697e+04 0.00e+00 2.79e-02 -11.0 3.98e-02 - 1.00e+00 1.00e+00f 1 6 2.8311697e+04 0.00e+00 2.40e-04 -11.0 3.48e-03 - 1.00e+00 1.00e+00f 1 7 2.8311697e+04 0.00e+00 5.47e-06 -11.0 2.47e-05 - 1.00e+00 1.00e+00f 1 8 2.8311697e+04 0.00e+00 9.63e-08 -11.0 1.20e-08 - 1.00e+00 1.00e+00f 1 9 2.8311697e+04 0.00e+00 5.21e-09 -11.0 1.61e-10 - 1.00e+00 1.00e+00f 1 Number of Iterations....: 9 (scaled) (unscaled) Objective...............: 1.6226171160602307e+04 2.8311697021847336e+04 Dual infeasibility......: 5.2103428765066918e-09 9.0910940997446232e-09 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00 Overall NLP error.......: 5.2103428765066918e-09 9.0910940997446232e-09 Number of objective function evaluations = 10 Number of objective gradient evaluations = 10 Number of equality constraint evaluations = 0 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 0 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 9 Total CPU secs in IPOPT (w/o function evaluations) = 0.008 Total CPU secs in NLP function evaluations = 0.057 EXIT: Optimal Solution Found. run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.081372 This is Ipopt version 3.13.4, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation). Number of nonzeros in equality constraint Jacobian...: 0 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 28 Total number of variables............................: 7 variables with only lower bounds: 0 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 0 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 2.7170793e+04 0.00e+00 1.52e+01 0.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 2.7170194e+04 0.00e+00 3.80e+00 -11.0 3.15e-01 - 1.00e+00 1.00e+00f 1 2 2.7170055e+04 0.00e+00 1.91e+00 -11.0 3.07e-01 - 1.00e+00 1.00e+00f 1 3 2.7170020e+04 0.00e+00 9.10e-01 -11.0 2.86e-01 - 1.00e+00 1.00e+00f 1 4 2.7170013e+04 0.00e+00 3.93e-01 -11.0 2.47e-01 - 1.00e+00 1.00e+00f 1 5 2.7170011e+04 0.00e+00 1.35e-01 -11.0 1.82e-01 - 1.00e+00 1.00e+00f 1 6 2.7170011e+04 0.00e+00 2.58e-02 -11.0 9.30e-02 - 1.00e+00 1.00e+00f 1 7 2.7170011e+04 0.00e+00 1.16e-03 -11.0 2.12e-02 - 1.00e+00 1.00e+00f 1 8 2.7170011e+04 0.00e+00 9.88e-06 -11.0 9.61e-04 - 1.00e+00 1.00e+00f 1 9 2.7170011e+04 0.00e+00 2.64e-07 -11.0 2.10e-06 - 1.00e+00 1.00e+00f 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 10 2.7170011e+04 0.00e+00 4.68e-09 -11.0 6.64e-09 - 1.00e+00 1.00e+00f 1 Number of Iterations....: 10 (scaled) (unscaled) Objective...............: 2.7170011141755771e+04 2.7170011141755771e+04 Dual infeasibility......: 4.6827675070915120e-09 4.6827675070915120e-09 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00 Overall NLP error.......: 4.6827675070915120e-09 4.6827675070915120e-09 Number of objective function evaluations = 11 Number of objective gradient evaluations = 11 Number of equality constraint evaluations = 0 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 0 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 10 Total CPU secs in IPOPT (w/o function evaluations) = 0.008 Total CPU secs in NLP function evaluations = 0.057 EXIT: Optimal Solution Found. run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.068690 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi_std 0.296424 0.0139071 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.5212 0.393792 -6.40 <1e-09 τ2: agegroup 1.50759 0.135456 11.13 <1e-28 τ3: meds: OnMeds -0.435225 0.0621076 -7.01 <1e-11 τ4: bmi_std 0.0052695 0.0224039 0.24 0.8140 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00196 0.0181387 "γ2: bmi_std" 0.0181387 0.000549357 ```julia # use Knitro (require installation of Knitro software and Knitro.jl) # Using KNITRO # WiSER.fit!(vlmm, KNITRO.KnitroSolver(outlev=3)); ``` ```julia # use NLopt WiSER.fit!(vlmm, NLopt.NLoptSolver(algorithm=:LD_MMA, maxeval=4000)) ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.162196, ‖ΔL‖ = 0.100050, status = Optimal, time(s) = 0.148150 run = 2, ‖Δβ‖ = 0.005248, ‖Δτ‖ = 0.008747, ‖ΔL‖ = 0.001335, status = Optimal, time(s) = 0.052991 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633238 236.63 <1e-99 β3: gender: Male 10.0749 0.100277 100.47 <1e-99 β4: bmi_std 0.296421 0.0139114 21.31 <1e-99 β5: meds: OnMeds -10.1106 0.122912 -82.26 <1e-99 τ1: (Intercept) -2.53263 0.102707 -24.66 <1e-99 τ2: agegroup 1.51161 0.038887 38.87 <1e-99 τ3: meds: OnMeds -0.435901 0.0524849 -8.31 <1e-16 τ4: bmi_std 0.0057698 0.0218516 0.26 0.7917 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00228 0.0179118 "γ2: bmi_std" 0.0179118 0.00441744 Using a different solver can even help without the need for standardizing predictors. If we use the NLOPT solver with the `LD_MMA` algorithm on the model where bmi is not standardized we don't see heavily inflated standard errors. ```julia # Using other solvers can work without standardizing WiSER.fit!(vlmm_bmi, NLopt.NLoptSolver(algorithm=:LD_MMA, maxeval=4000)) ``` run = 1, ‖Δβ‖ = 0.208950, ‖Δτ‖ = 0.143776, ‖ΔL‖ = 1.528229, status = Optimal, time(s) = 0.604965 run = 2, ‖Δβ‖ = 0.026830, ‖Δτ‖ = 0.000125, ‖ΔL‖ = 0.000257, status = Optimal, time(s) = 0.046570 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi + meds Random Effects Formula: sbp ~ 1 + bmi Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 100.126 0.323755 309.26 <1e-99 β2: agegroup 14.9849 0.0633317 236.61 <1e-99 β3: gender: Male 10.0748 0.10029 100.46 <1e-99 β4: bmi 0.246967 0.0117298 21.05 <1e-97 β5: meds: OnMeds -10.1094 0.122977 -82.21 <1e-99 τ1: (Intercept) -3.01501 0.811039 -3.72 0.0002 τ2: agegroup 1.50948 0.0468194 32.24 <1e-99 τ3: meds: OnMeds -0.426979 0.0519209 -8.22 <1e-15 τ4: bmi 0.0192299 0.0368267 0.52 0.6016 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 3.89413 -0.127903 "γ2: bmi" -0.127903 0.00561294 ### Try different starting points Initialization matters as well. By default, `fit!` uses a crude least squares estimate as the starting point. We can also try a method of moment estimate or user-supplied values. ```julia # MoM starting point WiSER.fit!(vlmm, init = init_mom!(vlmm)) ``` run = 1, ‖Δβ‖ = 0.036245, ‖Δτ‖ = 0.188207, ‖ΔL‖ = 0.127483, status = Optimal, time(s) = 0.062208 run = 2, ‖Δβ‖ = 0.006798, ‖Δτ‖ = 0.009128, ‖ΔL‖ = 0.050049, status = Optimal, time(s) = 0.059064 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ──────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ──────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.143831 739.12 <1e-99 β2: agegroup 14.9846 0.063327 236.62 <1e-99 β3: gender: Male 10.0747 0.100282 100.46 <1e-99 β4: bmi_std 0.296596 0.013989 21.20 <1e-99 β5: meds: OnMeds -10.1107 0.122973 -82.22 <1e-99 τ1: (Intercept) -2.52233 0.218068 -11.57 <1e-30 τ2: agegroup 1.5079 0.0759423 19.86 <1e-87 τ3: meds: OnMeds -0.434951 0.0549139 -7.92 <1e-14 τ4: bmi_std 0.00527178 0.0220323 0.24 0.8109 ──────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00193 0.0180064 "γ2: bmi_std" 0.0180064 0.000967577 ```julia # user-supplied starting point in vlmm.β, vlmm.τ, vlmm.Lγ vlmm.β .= [106.0; 15.0; 10.0; 0.3; -10.0] vlmm.τ .= [-2.5; 1.5; -0.5; 0.0] vlmm.Lγ .= [1.0 0.0; 0.0 0.0] fit!(vlmm, init = vlmm) ``` run = 1, ‖Δβ‖ = 0.337743, ‖Δτ‖ = 0.069850, ‖ΔL‖ = 0.017323, status = Optimal, time(s) = 0.078268 run = 2, ‖Δβ‖ = 0.003050, ‖Δτ‖ = 0.004463, ‖ΔL‖ = 0.001185, status = Optimal, time(s) = 0.104889 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ──────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ──────────────────────────────────────────────────────────── β1: (Intercept) 106.309 0.143859 738.98 <1e-99 β2: agegroup 14.984 0.0633192 236.64 <1e-99 β3: gender: Male 10.0754 0.100275 100.48 <1e-99 β4: bmi_std 0.296078 0.0136905 21.63 <1e-99 β5: meds: OnMeds -10.1108 0.122807 -82.33 <1e-99 τ1: (Intercept) -2.52144 0.0576657 -43.73 <1e-99 τ2: agegroup 1.50787 0.0253351 59.52 <1e-99 τ3: meds: OnMeds -0.436135 0.0512042 -8.52 <1e-16 τ4: bmi_std 0.00525556 0.0214765 0.24 0.8067 ──────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00203 0.0184422 "γ2: bmi_std" 0.0184422 0.000339423 ## Additional Features WiSER.jl has additional features that may benefit some users. These include parallelizaiton and observation weights. ### Parallelization WiSER.jl by default will not run objective function evaluations in parallel, but one at a time. In many cases (small number of individuals/relatively small number of observations per individual) it is faster to not parallelize the code as the internal overhead in setting up evaluations on multiple threads takes longer than the evaluations. However, with large numbers of observations per individual, or many individuals, it can be faster to parallelize. In order to allow for parallelization, the julia environmental variable `JULIA_NUM_THREADS` should be set to a value greater than 1. This must be set before julia launches and can be done in couple ways: - Setting a default number of threads for Julia to launch with in a `.bash_profile` file by adding a line `export JULIA_NUM_THREADS=X`. where X is the number of threads you wish to make the default. - Before launching julia in the terminal, export the variable as done below: ``` $ export JULIA_NUM_THREADS=X $ julia ``` This is different from the threads available used by BLAS commands. To check this number of threads for parallelization, run the following: ```julia Threads.nthreads() ``` 4 We see there are 4 threads available. To parallelize the objective function in WiSER, simply add the keyword argument `parallel = true` in the `fit!()` function. ```julia WiSER.fit!(vlmm, parallel = true) ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.237454 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.158717 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi_std 0.296424 0.0139071 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.5212 0.393792 -6.40 <1e-09 τ2: agegroup 1.50759 0.135456 11.13 <1e-28 τ3: meds: OnMeds -0.435225 0.0621076 -7.01 <1e-11 τ4: bmi_std 0.0052695 0.0224039 0.24 0.8140 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00196 0.0181387 "γ2: bmi_std" 0.0181387 0.000549357 We can see slight timing differences at this sample size: ```julia @time WiSER.fit!(vlmm, parallel = false); ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.065098 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.070394 0.141617 seconds (417 allocations: 38.531 KiB) ```julia @time WiSER.fit!(vlmm, parallel = true); ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.150904 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.164348 0.325590 seconds (1.95 k allocations: 174.953 KiB) ### Observation Weights It can be useful for some users to fit WiSER with observation weights. We have implemented this feature, which can be done in the model constructor via the `wtvar` keyword. Note: Within each individual, observation weights are the same. We assume weights are per-indiviudal. In the example data, the dataframe has a column `obswt`, corresponding to observation weights for each individual. ```julia vlmm_wts = WSVarLmmModel( @formula(sbp ~ 1 + agegroup + gender + bmi_std + meds), @formula(sbp ~ 1 + bmi_std), @formula(sbp ~ 1 + agegroup + meds + bmi_std), :id, df; wtvar = :obswt); @time WiSER.fit!(vlmm_wts) ``` run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.158033, ‖ΔL‖ = 0.102058, status = Optimal, time(s) = 0.062162 run = 2, ‖Δβ‖ = 0.006134, ‖Δτ‖ = 0.007594, ‖ΔL‖ = 0.056873, status = Optimal, time(s) = 0.078738 0.146753 seconds (447 allocations: 40.500 KiB) Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ──────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ──────────────────────────────────────────────────────────── β1: (Intercept) 106.309 0.143971 738.41 <1e-99 β2: agegroup 14.9841 0.0633336 236.59 <1e-99 β3: gender: Male 10.0748 0.100288 100.46 <1e-99 β4: bmi_std 0.296066 0.0139064 21.29 <1e-99 β5: meds: OnMeds -10.1101 0.122602 -82.46 <1e-99 τ1: (Intercept) -2.51639 0.267541 -9.41 <1e-20 τ2: agegroup 1.50717 0.0914489 16.48 <1e-60 τ3: meds: OnMeds -0.445596 0.0366911 -12.14 <1e-33 τ4: bmi_std 0.00634263 0.00812327 0.78 0.4349 ──────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.05449 0.0279852 "γ2: bmi_std" 0.0279852 0.000792437
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
docs
7657
# Simulating responses The `rvarlmm()` and `rvarlmm!()` functions can be used to generate a respone from user-supplied data and parameters. The `rand!()` command can be used to overwrite the response in a VarLmmModel object based on the parameters and optional user-supplied distribution. The `rand!(m::WSVarLmmModel; respdist = MvNormal, γωdist = MvNormal, Σγω = [], kwargs...)` function replaces the responses `m.data[i].y` with a simulated response based on: - The data in the model object's data `X, Z, W` matrices. - The parameter values in the model. - The conditional distribution of the response given the random effects. - The distribution of the random effects. - If simulating from MvTDistribution, you must specify the degrees of freedom via `df = x`. The `rvarlmm()` takes arrays of matricies of the data in addition to the reponse. It generates a simulated response from the VarLMM model based on: - `Xs`: array of each clusters `X`: mean fixed effects covariates - `Zs`: array of each clusters `Z`: random location effects covariates - `Ws`: array of each clusters `W`: within-subject variance fixed effects covariates - `β`: mean fixed effects vector - `τ`: within-subject variance fixed effects vector - `respdist`: the distribution for response. Default is MvNormal. - `Σγ`: random location effects covariance matrix. - `Σγω`: joint random location and random scale effects covariance matrix (if generating from full model). - If simulating from MvTDistribution, you must specify the degrees of freedom via `df = x`. The `rvarlmm!()` function can be used to generate a simulated response from the VarLMM model based on a dataframe and place the generated response into the datatable with the `respname` field. Note: **the dataframe MUST be ordered by grouping variable for it to generate in the correct order.** This can be checked via `dataframe == sort(dataframe, idvar)`. The response is based on: - `meanformula`: represents the formula for the mean fixed effects `β` (variables in X matrix) - `reformula`: represents the formula for the mean random effects γ (variables in Z matrix) - `wsvarformula`: represents the formula for the within-subject variance fixed effects τ (variables in W matrix) - `idvar`: the id variable for groupings. - `dataframe`: the dataframe holding all of the data for the model. For this function it **must be in order**. - `β`: mean fixed effects vector - `τ`: within-subject variance fixed effects vector - `respdist`: the distribution for response. Default is MvNormal. - `Σγ`: random location effects covariance matrix. - `Σγω`: joint random location and random scale effects covariance matrix (if generating from full model) - `respname`: symbol representing the simulated response variable name. - If simulating from MvTDistribution, you must specify the degrees of freedom via `df = x`. For both functions, only one of the Σγ or Σγω matrices have to be specified in order to use the function. Σγ can be used to specify that the generative model will not include a random scale component. It outputs `ys`: an array of reponse `y` that match the order of the data arrays (`Xs, Zs, Ws`). We can start by loading the pacakges, data, and fitting a model. ```julia using CSV, DataFrames, Random, WiSER filepath = normpath(joinpath(dirname(pathof(WiSER)), "../data/")) df = DataFrame(CSV.File(filepath * "sbp.csv")) vlmm = WSVarLmmModel( @formula(sbp ~ 1 + agegroup + gender + bmi_std + meds), @formula(sbp ~ 1 + bmi_std), @formula(sbp ~ 1 + agegroup + meds + bmi_std), :id, df); WiSER.fit!(vlmm) ``` ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit https://github.com/coin-or/Ipopt ****************************************************************************** run = 1, ‖Δβ‖ = 0.037311, ‖Δτ‖ = 0.166678, ‖ΔL‖ = 0.100999, status = Optimal, time(s) = 0.215811 run = 2, ‖Δβ‖ = 0.005220, ‖Δτ‖ = 0.006748, ‖ΔL‖ = 0.048735, status = Optimal, time(s) = 0.083461 Within-subject variance estimation by robust regression (WiSER) Mean Formula: sbp ~ 1 + agegroup + gender + bmi_std + meds Random Effects Formula: sbp ~ 1 + bmi_std Within-Subject Variance Formula: sbp ~ 1 + agegroup + meds + bmi_std Number of individuals/clusters: 500 Total observations: 5011 Fixed-effects parameters: ─────────────────────────────────────────────────────────── Estimate Std. Error Z Pr(>|Z|) ─────────────────────────────────────────────────────────── β1: (Intercept) 106.308 0.14384 739.07 <1e-99 β2: agegroup 14.9844 0.0633245 236.63 <1e-99 β3: gender: Male 10.0749 0.100279 100.47 <1e-99 β4: bmi_std 0.296424 0.0139071 21.31 <1e-99 β5: meds: OnMeds -10.1107 0.122918 -82.26 <1e-99 τ1: (Intercept) -2.5212 0.393792 -6.40 <1e-09 τ2: agegroup 1.50759 0.135456 11.13 <1e-28 τ3: meds: OnMeds -0.435225 0.0621076 -7.01 <1e-11 τ4: bmi_std 0.0052695 0.0224039 0.24 0.8140 ─────────────────────────────────────────────────────────── Random effects covariance matrix Σγ: "γ1: (Intercept)" 1.00196 0.0181387 "γ2: bmi_std" 0.0181387 0.000549357 Once the model has been fit, we can overwrite the response variable simulating a new response based on the model's current parameters. This is done by calling the `rand!()` function on the model object. Here we simulate from a multivariate normal dsitribution for $y$. ```julia yoriginal = copy(vlmm.data[1].y) Random.seed!(123) WiSER.rand!(vlmm; respdist = MvNormal) [yoriginal vlmm.data[1].y] ``` 9×2 Matrix{Float64}: 159.586 163.223 161.849 161.898 160.484 160.667 161.134 165.167 165.443 162.258 160.053 163.019 162.1 162.065 163.153 161.422 166.675 160.552 Other response distributions have been coded. To get a list of available distributions use `respdists()` ```julia respdists() ``` 6-element Vector{Symbol}: :MvNormal :MvTDist :Gamma :InverseGaussian :InverseGamma :Uniform ```julia WiSER.rand!(vlmm; respdist = InverseGamma) vlmm.data[1].y ``` 9-element Vector{Float64}: 163.1357991396798 165.1430739396795 162.08532565729797 159.6822122192519 161.57688777672846 164.58912923247945 157.98192168704628 164.12521616207954 163.73003300792996 We can also simulate a response variable from a dataframe and a formula. If you don't want to overwrite the response variable in the dataframe, you can use the `respname` optional keyword argument to specify the desired variable name to save the response variable as. ```julia df = DataFrame(id = [1; 1; 2; 3; 3; 3; 4], y = randn(7), x2 = randn(7), x3 = randn(7), z2 = randn(7), w2 = randn(7), w3 = randn(7)) f1 = @formula(y ~ 1 + x2 + x3) f2 = @formula(y ~ 1 + z2) f3 = @formula(y ~ 1 + w2 + w3) β = zeros(3) τ = zeros(3) Σγ = [1. 0.; 0. 1.] rvarlmm!(f1, f2, f3, :id, df, β, τ; Σγ = Σγ, respname = :response) [df[!, :y] df[!, :response]] ``` 7×2 Matrix{Float64}: -0.474718 0.0945213 -0.615475 2.06463 -0.577114 3.7559 -1.14809 1.66547 -0.53171 -0.250939 1.26381 -0.400644 -1.32798 -1.67888
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.6
84b26e39bce597a45909a57b86d21751a628c723
docs
589
# Instructions for modify WiSER.jl package documentation Changes to the package documentation are done by modifying the Jupyter notebooks in this folder. Follow following steps. 1. On terminal, within the `WiSER/docs/src/notebooks` folder, start julia. 2. To exactly reproduce the notebooks, activate the enrivonment by `import Pkg; Pkg.activate()`. 3. Work on the notebooks for any documentation changes and improvement. 4. To save updated documentation, in Jupyter notebook, `File -> Download as -> Markdown (.md)` download the Markdown (.md) files in the `WiSER/docs/src` folder.
WiSER
https://github.com/OpenMendel/WiSER.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
462
using Documenter, SigmaRidgeRegression makedocs(; modules=[SigmaRidgeRegression], format=Documenter.HTML(), pages=[ "Home" => "index.md", ], repo="https://github.com/nignatiadis/SigmaRidgeRegression.jl/blob/{commit}{path}#L{line}", sitename="SigmaRidgeRegression.jl", authors="Nikos Ignatiadis <[email protected]>", assets=String[], ) deploydocs(; repo="github.com/nignatiadis/SigmaRidgeRegression.jl", )
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
6189
using Pkg Pkg.activate(@__DIR__) using RCall using SigmaRidgeRegression using StatsBase using Plots using Statistics using Random using MLJ using Tables using LaTeXTabulars using LaTeXStrings using BenchmarkTools R""" data("CLL_data", package="MOFAdata") # use methylation data, gene expression data and drug responses as predictors CLL_data <- CLL_data[1:3] CLL_data <- lapply(CLL_data,t) ngr <- sapply(CLL_data,ncol) CLL_data <- Reduce(cbind, CLL_data) #only include patient samples profiles in all three omics CLL_data2 <- CLL_data[apply(CLL_data,1, function(p) !any(is.na(p))),] dim(CLL_data2) # prepare design matrix and response X <- CLL_data2[,!grepl("D_002", colnames(CLL_data))] y <- rowMeans(CLL_data2[,grepl("D_002", colnames(CLL_data))]) annot <- rep(1:3, times = ngr-c(5,0,0)) # group annotations to drugs, meth and RNA ngr_prime <- ngr-c(5,0,0) """ # run with seed from Velten & Huber R""" set.seed(9876) foldid <- sample(rep(seq(10), length=nrow(X))) """ @rget foldid resample_ids = [ ( findall(foldid .!= k), findall(foldid .== k) ) for k in 1:10 ] @rget X @rget y @rget ngr_prime groups = GroupedFeatures(Int.(ngr_prime)) Random.seed!(1) rand_idx = sample(1:121, 121, replace=false) Xdrug_resample = X[rand_idx, 1:305] Xgaussian = randn(121, 100) Xnoise = [X Xdrug_resample Xgaussian] groups_noise = GroupedFeatures([Int.(ngr_prime); 305; 100]) X_table = MLJ.table(X); X_plus_noise = MLJ.table(Xnoise); function single_table_line(X, y, resampling, _model, model_name; tuning_name=nothing, sigdigits=3) ridge_machine = machine(_model, X, y) fit!(ridge_machine) best_param = ridge_machine.report.best_param if isnothing(tuning_name) tuning_string ="" else best_param = round(best_param; sigdigits=sigdigits) tuning_string = L"%$(tuning_name) = %$(best_param)" end λs = round.(deepcopy(ridge_machine.report.best_λs), sigdigits=sigdigits) #if isa(_model.ridge, SingleGroupRidgeRegressor) # λs = fill(λs[1], 3) #end ridge_benchmark = @benchmark fit!(machine($(_model), $(X), $(y))) time_loo = round(mean(ridge_benchmark.times)/(1e9), sigdigits=sigdigits) eval_ridge = evaluate!(ridge_machine, resampling=resampling, measure=rms) _rmse = round(eval_ridge.measurement[1], sigdigits=sigdigits) #[model_name, tuning_string, λs, _rmse, time_loo] [model_name, tuning_string, λs..., time_loo, _rmse] end single_ridge = SingleGroupRidgeRegressor(decomposition = :woodbury, groups=groups, λ=1.0, center=true, scale=true) loo_single_ridge = LooRidgeRegressor(ridge = deepcopy(single_ridge)) single_ridge_noise = SingleGroupRidgeRegressor(decomposition = :woodbury, groups=groups_noise, λ=1.0, center=true, scale=true) loo_single_ridge_noise = LooRidgeRegressor(ridge = deepcopy(single_ridge_noise)) sigma_ridge = SigmaRidgeRegressor(groups=groups, decomposition = :woodbury, σ=0.01, center=true, scale=true) loo_sigmaridge = LooRidgeRegressor(ridge=deepcopy(sigma_ridge), tuning=SigmaRidgeRegression.DefaultTuning(scale=:linear, param_min_ratio=0.001)) sigma_ridge_noise = SigmaRidgeRegressor(groups=groups_noise, decomposition = :woodbury, σ=0.01, center=true, scale=true) loo_sigmaridge_noise = LooRidgeRegressor(ridge=deepcopy(sigma_ridge_noise), tuning=SigmaRidgeRegression.DefaultTuning(scale=:linear, param_min_ratio=0.001)) multi_ridge = MultiGroupRidgeRegressor(groups; decomposition = :woodbury, center=true, scale=true) loo_multi_ridge = LooRidgeRegressor(ridge = deepcopy(multi_ridge), rng=MersenneTwister(1)) multi_ridge_noise = MultiGroupRidgeRegressor(groups_noise; decomposition = :woodbury, center=true, scale=true) loo_multi_ridge_noise = LooRidgeRegressor(ridge = deepcopy(multi_ridge_noise), rng=MersenneTwister(1)) #CV(nfolds=5, shuffle=true, rng=1)) glasso = GroupLassoRegressor(groups=groups, decomposition = :woodbury, center=true, scale=true) cv_glasso = TunedRidgeRegressor(ridge=deepcopy(glasso), resampling= Holdout(shuffle=true, rng=1), tuning=DefaultTuning(param_min_ratio=1e-5)) glasso_noise = GroupLassoRegressor(groups=groups_noise, decomposition = :woodbury, center=true, scale=true) cv_glasso_noise = TunedRidgeRegressor(ridge=deepcopy(glasso_noise), resampling= Holdout(shuffle=true, rng=1), tuning=DefaultTuning(param_min_ratio=1e-5)) line_single_ridge = single_table_line(X_table, y, resample_ids, loo_single_ridge, "\textbf{Single Ridge}") line_single_ridge_noise = single_table_line(X_plus_noise, y, resample_ids, loo_single_ridge_noise, "\textbf{Single Ridge}") line_sigma_ridge = single_table_line(X_table, y, resample_ids, loo_sigmaridge, L"$\sigmacv$\textbf{-Ridge}"; tuning_name=L"\sigmacv") line_sigma_ridge_noise = single_table_line(X_plus_noise, y, resample_ids, loo_sigmaridge_noise, L"$\sigmacv$\textbf{-Ridge}"; tuning_name=L"\sigmacv") line_multi_ridge = single_table_line(X_table, y, resample_ids, loo_multi_ridge, "\textbf{Multi Ridge}") line_multi_ridge_noise = single_table_line(X_plus_noise, y, resample_ids, loo_multi_ridge_noise, "\textbf{Multi Ridge}") line_glasso = single_table_line(X_table, y, resample_ids, cv_glasso, L"\textbf{Group Lasso}", tuning_name=L"$\widehat{\lambda}^{gl}") line_glasso_noise = single_table_line(X_plus_noise, y, resample_ids, cv_glasso_noise, L"\textbf{Group Lasso}", tuning_name=L"$\widehat{\lambda}^{gl}") tbl_spec = Tabular("lllllll") line1 = ["", "Tuning", L"$\widehat{\lambda}_{\text{Drugs}}$", L"\widehat{\lambda}_{\text{Methyl}}", L"\widehat{\lambda}_{\text{RNA}}", "Time (s)", "10-fold RMSE"] lines = [line1, Rule(), line_sigma_ridge, line_single_ridge, line_multi_ridge, line_glasso] latex_tabular("cll_analysis.tex", tbl_spec, lines) tbl_spec2 = Tabular("lllllllll") line1 = ["", "Tuning", L"$\widehat{\lambda}_{\text{Drugs}}$", L"\widehat{\lambda}_{\text{Methyl}}", L"\widehat{\lambda}_{\text{RNA}}", L"\widehat{\lambda}_{\text{Noise1}}", L"\widehat{\lambda}_{\text{Noise2}}", "Time (s)", "10-fold RMSE"] lines = [line1, Rule(), line_sigma_ridge_noise, line_single_ridge_noise, line_multi_ridge_noise, line_glasso_noise] latex_tabular("cll_analysis_noise.tex", tbl_spec2, lines)
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
8415
using Pkg Pkg.activate(@__DIR__) using Pkg.Artifacts using CSV using DataFrames using StatsBase using SigmaRidgeRegression using LaTeXStrings using LinearAlgebra using MLJ using Random using ColorSchemes using Plots using StatsPlots using PGFPlotsX #------------------------------------------------------------------ # Code that generated the Artifact file Artifacts.toml #------------------------------------------------------------------ #using ArtifactUtils #add_artifact!( # "Artifacts.toml", # "YearPredictionMSD", # "https://archive.ics.uci.edu/ml/machine-learning-databases/00203/YearPredictionMSD.txt.zip", # force=true, # ) #-------------------------------------------------------------------------------------- # Command below may take a while since it will automatically download the Million Song # Dataset from the UCI repository (around 400 MB). #-------------------------------------------------------------------------------------- msd_filepath = joinpath(artifact"YearPredictionMSD", "YearPredictionMSD.txt") msd = CSV.File(msd_filepath, header=false) |> DataFrame function feature_map(X) #; noisegroups=10, noisefeatures=50) mean_features = X[:, 1:12] var_features = X[:, 13:24] sd_features = sqrt.(var_features) #cv_features = sd_features ./ abs.(mean_features) cov_features = X[:, 25:90] cor_features = zeros(size(cov_features)) cnt = 0 for offset=1:11 for i=1:(12-offset) cnt = cnt + 1 cor_features[:,cnt] = cov_features[:,cnt] ./ sqrt.(var_features[:,i] .* var_features[:,i+offset]) end end #noise_features = randn(size(X,1)#, noisegroups*noisefeatures ) grp = GroupedFeatures([12, 12, 66, 66]) #, fill(noisefeatures, noisegroups))) (MLJ.table([mean_features sd_features cov_features cor_features]), grp) end Y = Float64.(msd[:, 1]) X, groups = feature_map(Matrix(msd[:, 2:91])) train_idx = 1:463_715 test_idx = (1:51_630) .+ 463_715 single_ridge = SingleGroupRidgeRegressor(decomposition = :cholesky, groups=groups, λ=1.0, center=true, scale=true) loo_single_ridge = LooRidgeRegressor(ridge = deepcopy(single_ridge)) sigma_ridge = SigmaRidgeRegressor(groups=groups, decomposition = :cholesky, σ=0.01, center=true, scale=true) loo_sigmaridge = LooRidgeRegressor(ridge=deepcopy(sigma_ridge), tuning=SigmaRidgeRegression.DefaultTuning(scale=:linear, param_min_ratio=0.001)) multi_ridge = MultiGroupRidgeRegressor(groups; decomposition = :cholesky, center=true, scale=true) loo_multi_ridge = LooRidgeRegressor(ridge = deepcopy(multi_ridge), rng=MersenneTwister(1)) glasso = GroupLassoRegressor(groups=groups, decomposition = :cholesky, center=true, scale=true) holdout_glasso = TunedRidgeRegressor(ridge=deepcopy(glasso), resampling= Holdout(shuffle=true, rng=1), tuning=DefaultTuning(param_min_ratio=1e-5)) ns_subsample = [200; 500; 1000] n_montecarlo = 20 Random.seed!(1) mse_array = Array{Float64}(undef, length(ns_subsample), n_montecarlo, 4) time_array = Array{Float64}(undef, length(ns_subsample), n_montecarlo, 4) λs_array = Array{Any}(undef, length(ns_subsample), n_montecarlo, 4) for (k, n_subsample) in enumerate(ns_subsample) for j in Base.OneTo(n_montecarlo) train_idx_subsample = sample(train_idx, n_subsample, replace=false) resampling_idx = [(train_idx_subsample, test_idx)] for (i,mach) in enumerate([loo_sigmaridge, loo_single_ridge, loo_multi_ridge, holdout_glasso]) time_array[k,j,i] = @elapsed begin _mach = machine(mach, X, Y) _eval = evaluate!(_mach, resampling=resampling_idx, measure=l2) end mse_array[k,j,i] = _eval.measurement[1] λs_array[k,j,i] = deepcopy(_mach.report.best_λs) end end end pgfplotsx() push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amsmath}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amssymb}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{bm}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\blambda}{\bm{\lambda}}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\risk}[1]{\bm{R}(#1)}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage[bbgreekl]{mathbbol}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\sigmacv}{\bbsigma}") _orange = RGB{Float64}(0.933027,0.665164,0.198652) _orange2 = RGB{Float64}(0.85004,0.540122,0.136212) method_names = [L"\sigmacv-\textrm{Ridge}" L"\textrm{Single Ridge}" L"\textrm{Multi Ridge}" L"\textrm{Group Lasso}"] _thickness_scaling = 1.8 mse_plot = plot( dotplot(method_names, mse_array[1,:,:], title=L"n\;=\;%$(ns_subsample[1])", frame = :box, grid=nothing, yguide = "Mean squared error", label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, thickness_scaling = _thickness_scaling, ylim = (88,141), color=_orange), dotplot(method_names, mse_array[2,:,:], title=L"n\;=\;%$(ns_subsample[2])", frame = :box, grid=nothing, label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, ylim = (88,141), thickness_scaling = _thickness_scaling, color=_orange), dotplot(method_names, mse_array[3,:,:], title=L"n\;=\;%$(ns_subsample[3])", frame = :box, grid=nothing, label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, thickness_scaling = _thickness_scaling, ylim = (88,141), color=_orange), size=(1650,400), layout=(1,3)) savefig(mse_plot, "one_million_songs_mse.pdf") time_plot = plot( dotplot(method_names, time_array[1,:,:], title=L"n\;=\;%$(ns_subsample[1])", frame = :box, grid=nothing, yguide = "Time (seconds)", label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, ylim = (-0.5,10.5), thickness_scaling = _thickness_scaling, color=_orange), dotplot(method_names, time_array[2,:,:], title=L"n\;=\;%$(ns_subsample[2])", frame = :box, grid=nothing, label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, thickness_scaling = _thickness_scaling, ylim = (-0.5,10.5), color=_orange), dotplot(method_names, time_array[3,:,:], title=L"n\;=\;%$(ns_subsample[3])", frame = :box, grid=nothing, label=nothing, markerstrokecolor=_orange2, markerstrokewidth=0.5, thickness_scaling = _thickness_scaling, ylim = (-0.5,10.5), color=_orange), size=(1650,400), layout=(1,3)) savefig(time_plot, "one_million_songs_time.pdf") _trunc = 20 λs_mean = min.(getindex.(λs_array,1), 20) λs_std = min.(getindex.(λs_array,2), 20) λs_cov = min.(getindex.(λs_array,3), 20) λs_cor = min.(getindex.(λs_array,4), 20) λs_sigma_ridge = [λs_mean[1,:,1] λs_std[1,:,1] λs_cov[1,:,1] λs_cor[1,:,1]] feature_names = ["mean" "std" "cov" "cor"] λs_names = [L"\hat{\lambda}_{\textrm{%$n}}" for n in feature_names] λ_plot_params = (frame = :box, grid=nothing, label="", markerstrokecolor=:purple, markerstrokewidth=0.5, markercolor= RGB{Float64}(205/256,153/256,255/256), thickness_scaling = 1.7, ylim = (-0.9,_trunc + 0.8)) #λ_yguide=L"\min\{\widehat{\lambda},20\}", method_names_short = [L"\sigmacv-\textrm{Ridge}" L"\textrm{Single}" L"\textrm{Multi}" L"\textrm{GLasso}"] plot( dotplot(method_names_short, λs_mean[1,:,:]; yguide=L"\min\{\widehat{\lambda},20\}", title=λs_names[1]), dotplot(method_names_short, λs_std[1,:,:], title=λs_names[2]), dotplot(method_names_short, λs_cov[1,:,:], title=λs_names[3]), dotplot(method_names_short, λs_cor[1,:,:], title=λs_names[4]), size=(1500,270), layout=(1,4); λ_plot_params...) savefig("one_million_song_lambdas_n200.pdf") plot( dotplot(method_names_short, λs_mean[2,:,:]; yguide=L"\min\{\widehat{\lambda},20\}"), dotplot(method_names_short, λs_std[2,:,:]), dotplot(method_names_short, λs_cov[2,:,:]), dotplot(method_names_short, λs_cor[2,:,:]), size=(1500,260), layout=(1,4); λ_plot_params...) savefig("one_million_song_lambdas_n1000.pdf") plot( dotplot(method_names_short, λs_mean[3,:,:]; yguide=L"\min\{\widehat{\lambda},20\}"), dotplot(method_names_short, λs_std[3,:,:]), dotplot(method_names_short, λs_cov[3,:,:]), dotplot(method_names_short, λs_cor[3,:,:]), size=(1500,260), layout=(1,4); λ_plot_params...) savefig("one_million_song_lambdas_n5000.pdf")
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git
[ "MIT" ]
0.2.0
e0510282ebde7e9e1ca6ffe9dc255a110ee657f6
code
4278
using Pkg Pkg.activate(@__DIR__) using SigmaRidgeRegression using LinearAlgebra using StatsBase using Plots using Statistics using MLJ using LaTeXStrings using Random using PGFPlotsX pgfplotsx() push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amsmath}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{amssymb}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage{bm}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\usepackage[bbgreekl]{mathbbol}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\sigmacv}{\bbsigma}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\loo}{\operatorname{CV}^*}") push!(PGFPlotsX.CUSTOM_PREAMBLE, raw"\newcommand{\blambda}{\bm{\lambda}}") main_cols = [:purple :green :grey]# [:black :purple :green] Random.seed!(1) σ = 4.0 grp = GroupedFeatures([25;25;25]) n = 400 p = grp.p #ρ = 0.7 #Σ = [ρ^(abs(i-j)) for i=1:p,j=1:p] #Σ_chol = cholesky(Σ) X = randn(n, p)# * Σ_chol.UL αs = sqrt.([4.0;8.0;12.0]) #r#ange(2.0, 2.75, 3.5; length=3)#1.0:5.0 β = random_betas(grp, αs) group_summary(grp, β, norm) sum(abs2, β) Y = X*β .+ σ .* randn(n) loo_ridge = LooRidgeRegressor(ridge=SingleGroupRidgeRegressor(λ=1.0)) loo_ridge_machine = machine(loo_ridge, MLJ.table(X), Y) loo_sigma_ridge = LooRidgeRegressor(ridge=SigmaRidgeRegressor(groups=grp), tuning=SigmaRidgeRegression.DefaultTuning(scale=:linear, param_min_ratio=0.001)) loo_sigmaridge_machine = machine(loo_sigma_ridge, MLJ.table(X), Y) fit!(loo_ridge_machine) fit!(loo_sigmaridge_machine) σs = loo_sigmaridge_machine.report.params loo_sigmaridge_machine.report.loos param_subset = loo_sigmaridge_machine.report.params .<= 6.2 λs = Matrix(hcat(loo_sigmaridge_machine.report.λs...)') λs_subset = λs[param_subset, :] βs_list = [fit!(machine(SigmaRidgeRegressor(groups=grp, σ=σ), MLJ.table(X),Y)).fitresult.coef for σ in σs] βs = Matrix(hcat(βs_list...)') plot(loo_sigmaridge_machine.report.params[param_subset], λs_subset) plot(loo_sigmaridge_machine.report.params, loo_sigmaridge_machine.report.loos) loo_λ = loo_ridge_machine.report.best_param #with gr #plot(sqrt.(σs_squared1), mypath1.loos) pl_left = plot(loo_sigmaridge_machine.report.params[param_subset], λs_subset, legend=:topleft, linecolor=main_cols, linestyle=[ :dot :dashdot :dash], xlab=L"\sigmacv", ylab=L"\widehat{\lambda}(\sigmacv)", background_color_legend = :transparent, foreground_color_legend = :transparent, grid = nothing, frame=:box, label=["Group 1" "Group 2" "Group 3"], thickness_scaling = 1.8, size=(550,400)) savefig(pl_left, "intro_figure_left.tikz") pl_right = plot(loo_sigmaridge_machine.report.params[param_subset], loo_sigmaridge_machine.report.loos[param_subset], color=:darkblue, grid = nothing, frame=:box, background_color_legend = :transparent, foreground_color_legend = :transparent, xlab=L"\sigmacv", ylab=L"\loo(\sigmacv)", label=nothing, thickness_scaling = 1.8, size=(550,400), ylim=(18.2,19.2), yticks=[18.4;18.6;18.8;19.0]) savefig(pl_right, "intro_figure_right.tikz") pl_left_tree = plot(loo_sigmaridge_machine.report.params, λs, ylim = (0,15), legend=:topleft, color=main_cols, linestyle=[ :dot :dashdot :dash], background_color_legend = :transparent, foreground_color_legend = :transparent, grid = nothing, frame=:box, xlab=L"\sigmacv", ylab= L"\widehat{\lambda}_k(\sigmacv)", label=["Group 1" "Group 2" "Group 3"], thickness_scaling = 1.8, size=(550,400)) savefig(pl_left_tree, "christmas_tree_left.tikz") cols_rep = hcat([fill(col, 1, 25) for col in [:purple; :green; :grey]]...) ltype_rep = hcat([fill(lt, 1, 25) for lt in [:solid; :dash; :dot]]...) pl_right_tree = plot(σs, βs, alpha=0.6, linewidth=0.8, label="", grid = nothing, frame=:box, ylab= L"\widehat{w}_j(\widehat{\blambda}(\sigmacv))", xlab=L"\sigmacv", color=cols_rep, ylim=(-2.1,2.1), thickness_scaling = 1.8, size=(550,400)) savefig(pl_right_tree, "christmas_tree_right.tikz")
SigmaRidgeRegression
https://github.com/nignatiadis/SigmaRidgeRegression.jl.git