licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
11319
# Linear trapezoidal, Dose 100, Dosetime 0, no tau refdict = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ], :Tlag => [0 0 0 0 0.5 0 0 0 0 0], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9585.4218 10112.176 5396.5498 9317.8358 9561.26 6966.598 7029.5735 7110.6745 8315.0803 5620.8945 ], :AUMClast => [ 333582.48 298701.39 186032.06 313955.9 315181.56 226977.06 219797.71 240526.05 277613.98 154893.06 ], :AUCall => [ 9585.4218 10112.1760 5396.5498 9317.8358 9561.2600 6966.5980 7029.5735 7110.6745 8315.0803 5620.8945 ], :Rsq => [ 0.78607696 0.99276359 0.81358898 0.91885869 0.85335995 0.95011904 0.97031231 0.94796904 0.94753789 0.88092269 ], :ARsq => [ 0.71476928 0.99035145 0.77630678 0.83771737 0.82891994 0.92517856 0.96041642 0.92195356 0.92130684 0.86391165 ], :NpLZ => [ 5 5 7 3 8 4 5 4 4 9 ], :Kel => [ 0.0033847439 0.014106315 0.0032914304 0.0076953442 0.0068133279 0.0076922807 0.012458956 0.0089300798 0.0056458649 0.017189737 ], :HL => [ 204.78571 49.137367 210.59148 90.073577 101.73401 90.109450057666 55.634451 77.619371 122.77077 40.323315 ], :Clast_pred => [ 117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857 ], :AUCinf => [ 42925.019 16154.93 26026.183 22004.078 25820.275 16001.76 11688.953 15446.21 24865.246 8075.3242 ], :AUCpct => [ 77.669383 37.405019 79.26492 57.65405 62.969953 56.463551 39.861391 53.964925 66.559429 30.394194 ], :MRTlast => [ 34.801023 29.538786 34.472406 33.69408 32.964438 32.58076 31.267574 33.826053 33.386807 27.556657 ], :MRTinf => [ 293.16224 71.937917 305.04073 130.69968 149.96684 128.24114 79.498252 114.8571 176.97811 58.746446 ], :Clinf => [ 0.0023296437 0.0061900608 0.0038422846 0.0045446122 0.0038729255 0.0062493127 0.0085550864 0.0064740799 0.0040216775 0.012383404 ], :Vzinf => [ 0.68827768 0.43881487 1.1673601 0.59056646 0.56843374 0.8124135 0.68666158 0.72497447 0.71232266 0.72039519 ], ) # Linear up Log down, Dose 100, Dosetime 0.25, tau 9 refdict2 = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 121.239 62.222 49.849 52.421 0 57.882 19.95 22.724 105.438 13.634 ], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9566.59680869131 10054.28647805950 5392.45721941379 9297.09633445033 9519.18087436122 6948.98562111745 6988.77263241364 7058.81896352039 8302.36808633358 5486.83888944199 ], :AUMCtau => [ 5477.20423544297 8367.57088170951 3455.34643479800 6014.64604481587 6609.78830163090 5064.72384740413 4976.96365993911 2863.00517022791 5386.88322025614 4713.47970846693 ], :AUCall => [ 9566.59680869131 10054.28647805950 5392.45721941379 9297.09633445033 9519.18087436122 6948.98562111745 6988.77263241364 7058.81896352039 8302.36808633358 5486.83888944199 ], :Rsq => [ 0.786076957 0.992763591 0.81358898 0.918858685 0.853359952 0.95011904 0.970312315 0.94796904 0.947537895 0.88092269 ], :ARsq => [ 0.714769276 0.990351454 0.776306776 0.83771737 0.828919944 0.92517856 0.96041642 0.92195356 0.921306842 0.863911645 ], # LZint :LZint => [ 5.00848559255328 5.42889759540296 4.44064607555325 5.16688496904739 5.14735707974283 4.82967584017057 5.01074587961482 4.96847859724365 4.94725938794774 4.89636108788302 ], :Kel => [ 0.00338474394000776 0.01410631494324980 0.00329143037249282 0.00769534422298109 0.00681332791154901 0.00769228066663777 0.01245895597676470 0.00893007980967252 0.00564586491870971 0.01718973683041960 ], :HL => [ 204.785706938398 49.137367437811 210.591476080649 90.073577019460 101.734011566509 90.109450057666 55.634451382012 77.619371308325 122.770769499451 40.323315440951 ], :Clast_pred => [ 117.3057799 82.53668981 66.93105694 100.7679335 105.2983206 71.93994201 61.17270231 75.60427664 93.76176158 38.81085735 ], :AUCinf => [ 42906.1941313004 16097.0411126277 26022.0900281352 21983.3384532182 25778.1957695968 15984.1473646863 11648.1518057779 15394.3547690766 24852.5337997128 7941.2685538530 ], :AUCpct => [ 77.7034598328254 37.5395365663056 79.2773861992505 57.7084419901233 63.0727419426760 56.5257660444885 40.0010169085628 54.1467046238288 66.5934743183831 30.9072744205350 ], :MRTtauinf => [ 299.791671096989 74.654997085457 305.919973652938 143.538421744963 173.022067431888 124.653434795141 92.735873637166 175.461862330056 178.810514188399 69.516339753006 ], :Cltau => [ 0.078847213948573 0.054590500813083 0.132511872732088 0.074823364534525 0.076283206573122 0.089747243392665 0.092646906460213 0.130442680913677 0.081991954283052 0.103060243120434 ], :Vztau => [ 23.2948829648816 3.8699335037324 40.2596615257358 9.7231991664617 11.1961742577834 11.6671826317919 7.4361693413954 14.6071125559694 14.5224789228203 5.9954520617241 ], :AUCtau => [ 1268.27563070553 1831.82052757491 754.64936037981 1336.48093242129 1310.90451610924 1114.24035123260 1079.36685444479 766.62024499617 1219.63186357018 970.30626915116 ], ) ################################################################################ # Linear Trapezoidal with Linear Interpolation, Dose 120, Dosetime 0.0, tau 12 refdict3 = Dict( :Cmax => [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482], :Tmax => [1 1 1.5 1 4 2.5 2.5 4 3 2], :Cdose => [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], :Clast => [112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191], :AUClast => [9585.4218 10112.176 5396.5498 9317.8358 9561.26 6966.598 7029.5735 7110.6745 8315.0803 5620.8945], :AUMCtau => [9984.8168 14630.0690 6024.4953 10299.7210 11466.1230 8467.3568 9003.0193 6457.0058 10095.8180 8367.3005], :AUCall => [9585.4218 10112.1760 5396.5498 9317.8358 9561.2600 6966.5980 7029.5735 7110.6745 8315.0803 5620.8945], :Rsq => [0.78607696 0.99276359 0.81358898 0.91885869 0.86367664 0.95011904 0.97031231 0.94796904 0.94753789 0.87969895], :ARsq => [0.71476928 0.99035145 0.77630678 0.83771737 0.84420187 0.92517856 0.96041642 0.92195356 0.92130684 0.86766884], # LZint :LZint => [5.0084856 5.4288976 4.4406461 5.166885 5.1496027 4.8296758 5.0107459 4.9684786 4.9472594 4.8651403], :Kel => [0.0033847439 0.0141063150 0.0032914304 0.0076953442 0.0068579883 0.0076922807 0.0124589560 0.0089300798 0.0056458649 0.0165437520], :HL => [204.785706938398 49.1373674378108 210.591476080649 90.0735770194602 101.071502239954 90.109450057666 55.6344513820121 77.6193713083247 122.770769499451 41.8978220179993], :Clast_pred => [117.30578 82.53669 66.931057 100.76793 105.19623 71.939942 61.172702 75.604277 93.761762 39.408841], :AUCinf => [42925.019 16154.93 26026.183 22004.078 25714.393 16001.76 11688.953 15446.21 24865.246 8171.1624], :AUCpct => [77.669383 37.405019 79.26492 57.6540502829908 62.817478 56.463551 39.861391 53.964925 66.559429 31.210589], :MRTtauinf => [302.40303 75.590599 312.72083 148.34069 172.0933 130.19061 91.908297 161.57402 176.30461 70.260736], #Cltau, CLss :Cltau => [0.07185191 0.050414459 0.12240579 0.070132959 0.06902661 0.085106504 0.083532913 0.10859036 0.073251565 0.092756742], :Vztau => [21.228167 3.5738929 37.18924 9.113687 10.06514 11.063884 6.7046479 12.160066 12.974374 5.6067536], :AUCtau => [1670.1018 2380.2695 980.34575 1711.0358 1738.46 1409.998 1436.5595 1105.0705 1638.1903 1293.7065], ) ################################################################################ #4 Log trapezoidal ATM, Dose 120, Dosetime 0, tau 12 refdict4 = Dict( :Cmax => [ 190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482 ], :Tmax => [ 1 1 1.5 1 4 2.5 2.5 4 3 2 ], :Cdose => [ 0 0 0 0 0 0 0 0 0 0 ], :Clast => [ 112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191 ], :AUClast => [ 9572.8582 10054.0367665966 5391.5322 9296.2179 9518.6531 6948.5757 6987.0645 7064.7816 8298.9634 5485.6538 ], :AUMCtau => [ 9973.8062 14631.1197073321 6022.9286 10307.954 11473.081 8471.0956 8982.0378 6271.7444 10040.829690586 8361.7894 ], :AUCall => [ 9572.8582 10054.0367665966 5391.5322 9296.2179 9518.6531 6948.5757 6987.0645 7064.7816 8298.9634 5485.6538 ], :Rsq => [ 0.78607696 0.99276359 0.81358898 0.91885869 0.85335995 0.95011904 0.97031231 0.94796904 0.94753789 0.88092269 ], :ARsq => [ 0.71476928 0.99035145 0.77630678 0.83771737 0.82891994 0.92517856 0.96041642 0.92195356 0.92130684 0.86391165 ], # LZint :LZint => [ 5.0084856 5.4288976 4.4406461 5.166885 5.1473571 4.8296758 5.0107459 4.9684786 4.9472594 4.8963611 ], :Kel => [ 0.003384744 0.014106315 0.00329143 0.007695344 0.006813328 0.007692281 0.012458956 0.00893008 0.005645865 0.017189737 ], :HL => [ 204.78571 49.137367 210.59148 90.073577 101.73401 90.109450057666 55.634451 77.619371 122.77077 40.323315 ], :Clast_pred => [ 117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857 ], :AUCinf => [ 42912.456 16096.791 26021.165 21982.4599914207 25777.668 15983.737 11646.444 15400.317 24849.129 7940.0834 ], :AUCpct => [ 77.692122 37.540119 79.280204 57.710748 63.074033 56.527216 40.006884 54.12574 66.602599 30.911888 ], :MRTtauinf => [ 302.63508 75.323724 313.06798 148.31081 172.5577 130.22554 91.866692 164.91799 176.98523 68.167555 ], :Cltau => [ 0.071927102 0.050429351 0.12256044 0.070184147 0.069035447 0.0852177496596485 0.08379761 0.11110872 0.073575577 0.092819834 ], :Vztau => [ 21.250382 3.5749486 37.236223 9.1203389 10.132412 11.078346 6.7258934 12.442074 13.031764 5.399724 ], :AUCtau => [ 1668.3558 2379.5666 979.10878 1709.7878 1738.2375 1408.1573 1432.0218 1080.0233 1630.976 1292.8271 ], ) ################################################################################ urefdict = Dict{Symbol, Float64}( #:N_Samples => 5, #:Dose => 100, :Rsq => 0.90549162, :ARsq => 0.81098324, #Rsq_adjusted #:Corr_XY => -0.95157323, #:No_points_lambda_z => 3, :Kel => 0.13445441, #Lambda_z #:Lambda_z_intercept => 0.79280975, #:Lambda_z_lower => 4, #:Lambda_z_upper => 15, :HL => 5.1552579, #HL_Lambda_z #:Span => 2.1337439, #:Tlag => 0, :Tmax => 1.5, #Tmax_Rate :Maxrate => 4, #Max_Rate #:Mid_Pt_last => 15, :Rlast => 0.33333333, #Rate_last #:Rate_last_pred => 0.2940497, :AUClast => 17.125, #AURC_last #:AURC_last_D => 0.17125, :Vol => 11, #Vol_UR :AR => 16, #Amount_Recovered :Prec => 16, #Percent_Recovered :AUCall => 17.125, #AURC_all :AUCinf => 19.604155, #AURC_INF_obs :AUCpct => 12.646069, #AURC_%Extrap_obs #:AURC_INF_pred => 19.311984, #:AURC_%Extrap_pred => 11.324493, )
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
37
using MetidaNCA include("tests.jl")
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
48664
#using MetidaNCA using Test using DataFrames, CSV, Plots, Unitful import TypedTables: Table path = dirname(@__FILE__) io = IOBuffer(); pkdata2 = CSV.File(joinpath(path, "csv", "pkdata2.csv")) |> DataFrame multtimepk = CSV.File(joinpath(path, "csv", "multtime.csv")) |> DataFrame missingpk = CSV.File(joinpath(path, "csv", "missingpk.csv")) |> DataFrame aucallpk = CSV.File(joinpath(path, "csv", "aucalltest.csv")) |> DataFrame upkdata = CSV.File(joinpath(path, "csv", "upkdata.csv")) |> DataFrame pddata = CSV.File(joinpath(path, "csv", "pddata.csv")) |> DataFrame lloqpk = CSV.File(joinpath(path, "csv", "lloqpk.csv")) |> DataFrame include("refdicts.jl") # Cmax # Tmax # Cdose # Tlag # Clast # AUClast # AUMClast / AUMCtau # AUCall # Rsq # Adjusted Rsq # Kel # HL # LZint # Clast_pred # AUCinf # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct # MRTlast # MRTinf / MRTtauinf # MRTinf_pred # Cllast # Clinf / Cltau # Vzlast # Vzinf / Vztau # Vssinf # AUCtau # Ctau # Cavg # Ctaumin # Accind # Fluc # Fluctau # Swing # Swingtau @testset " Basic API test " begin # Basic dataset scenario ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) show(io, ds) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint) @test MetidaNCA.getid(dsnca, :, :Subject) == collect(1:10) show(io, dsnca) # pkimport method with keywords @test_nowarn MetidaNCA.pkimport(pkdata2; time = :Time, conc = :Concentration) # Export to tables mtds = MetidaNCA.metida_table(ds) mtdst = Table(ds) @test size(mtds, 1) == size(pkdata2, 1) dsncafromds = MetidaNCA.nca(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) sort!(dsncafromds, :Subject) @test dsnca[:, :AUClast] == dsncafromds[:, :AUClast] # Plotting # If typesort defined and NoPageSort() return one plot pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Subject, pagesort = MetidaNCA.NoPageSort(), sort = Dict(:Formulation => "R")) @test isa(pl, Plots.Plot) == true pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Formulation, pagesort = MetidaNCA.NoPageSort(), legend = true) @test isa(pl, Plots.Plot) == true pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Subject, sort = Dict(:Formulation => "R"), legend = true) @test length(pl) == 10 pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Formulation, legend = true) @test length(pl) == 10 # If no typesort and no pagesort returns array of pairs id => plot pl = @test_nowarn MetidaNCA.pkplot(ds; elim = true, ls = true) @test length(pl) == 10 pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Subject, pagesort = :Formulation, elim = true, ls = true, title = "Plots") @test length(pl) == 2 pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = :Formulation, pagesort = :Subject, xticksn = 8, yticksn = 10) @test length(pl) == 10 # If MetidaNCA.NoPageSort() return one plot pl = @test_nowarn MetidaNCA.pkplot(ds; pagesort = MetidaNCA.NoPageSort(), xticksn = 8, yticksn = 10) @test isa(pl, Plots.Plot) == true pl = @test_nowarn MetidaNCA.pkplot(ds; pagesort = [:Subject, :Formulation], legend = false) @test length(pl) == 10 pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = [:Subject, :Formulation], legend = true) @test length(pl) == 10 pl = @test_nowarn MetidaNCA.pkplot(ds; typesort = [:Subject, :Formulation], pagesort = MetidaNCA.NoPageSort(), legend = true) @test isa(pl, Plots.Plot) == true # Return plot for PKSubject @test_nowarn pl = MetidaNCA.pkplot(ds[1]; ylims = (0, 250), yscale = :log10, legend = false) @test_nowarn pl = MetidaNCA.pkplot(ds[1]; elim = true, ls = false) @test_nowarn MetidaNCA.plotstyle(40) pl = MetidaNCA.pkplot(ds[3]) pl = MetidaNCA.pkplot!(ds[2]; yscale = :log10) kr = MetidaNCA.ElimRange(kelstart = 4, kelend = 12, kelexcl = Int[5,6]) MetidaNCA.setkelrange!(ds, kr, [1,2,3]) dsnca = MetidaNCA.nca!(ds) pl = @test_nowarn MetidaNCA.pkplot(ds[1]; elim = true) MetidaNCA.setkelauto!(ds, true) #Plot from NCA result DataSet @test_nowarn MetidaNCA.pkplot(dsncafromds[1]; ylims = (0, 10), yscale = :log10, legend = false) @test_nowarn MetidaNCA.pkplot(dsncafromds; typesort = :Subject, pagesort = :Formulation, elim = true, ls = true, title = "Plots") # Unknown typesort @test_nowarn pl = MetidaNCA.pkplot(ds; typesort = :unknown) #pyplot() #@test_nowarn pl = MetidaNCA.pkplot(ds[1]; ylims = (0, 10), yscale = :log2, legend = false) #@test_nowarn pl = MetidaNCA.pkplot(ds[1]; ylims = (0, 10), yscale = :ln, legend = false) # setdosetime! MetidaNCA.setdosetime!(ds, MetidaNCA.DoseTime(dose = 100, time = 0.25)) @test first(MetidaNCA.nca!(ds)[:, :Cdose]) == 0 # Single subject scenario tdat = pkdata2[1:16, :Time] cdat = pkdata2[1:16, :Concentration] ds = MetidaNCA.pkimport(tdat, cdat) show(io, ds) show(io, MetidaNCA.getdosetime(ds)) show(io, MetidaNCA.getkelrange(ds)) sbj = MetidaNCA.nca!(ds) show(io, sbj) show(io, MetidaNCA.getkeldata(sbj)) ct = MetidaNCA.ctmax(ds) @test sbj[:Cmax] == ct[1] @test sbj[:Tmax] == ct[2] dsncafromds = MetidaNCA.nca(pkdata2[1:16, :], :Time, :Concentration) @test sbj[:AUClast] ≈ dsncafromds[:AUClast] dsncafromds = MetidaNCA.nca(tdat, cdat) @test sbj[:AUClast] ≈ dsncafromds[:AUClast] # Missing NaN dsncafromds = MetidaNCA.nca(missingpk, :Time, :Concentration, io = io, verbose = 2, dosetime = MetidaNCA.DoseTime(dose = 100, time = 0, tau = 48)) @test sbj[:AUClast] ≈ dsncafromds[:AUClast] auc048 = dsncafromds[:AUCtau] missingpkl = deepcopy(missingpk) missingpkl[18, :Concentration] = missing dsncafromds = MetidaNCA.nca(missingpkl, :Time, :Concentration, io = io, verbose = 2) @test auc048 ≈ dsncafromds[:AUClast] # Missing string LLOQ dsncafromds = MetidaNCA.nca(lloqpk, :Time, :Concentration, io = io, verbose = 2, warn = false) @test sbj[:AUClast] ≈ dsncafromds[:AUClast] dsncafromds = MetidaNCA.nca(missingpk, :Time, :Concentration, intpm = :luld, io = io, verbose = 2) @test dsncafromds[:AUClast] ≈ 9585.189297075749 # Test wirh elimination range - start time is NaN dsncafromds2 = MetidaNCA.nca(missingpk, :Time, :Concentration, intpm = :luld, io = io, verbose = 2, kelauto = false, elimrange = MetidaNCA.ElimRange(kelstart = 13, kelend = 18)) @test dsncafromds2[:AUClast] ≈ 9585.189297075749 dsncafromds = MetidaNCA.nca(missingpk, :Time, :Concentration; limitrule = MetidaNCA.LimitRule(;lloq = 0, btmax = 0, atmax = NaN, nan = NaN, rm = true)) @test sbj[:AUClast] ≈ dsncafromds[:AUClast] dsncafromds = MetidaNCA.pkimport(missingpk, :Time, :Concentration, :Subject; limitrule = MetidaNCA.LimitRule(;lloq = 0, btmax = 0, atmax = NaN, nan = NaN, rm = true)) # Multiple time @test_logs (:warn,"Not all time values is unique ([96.0, 4.0, 2.5]), last observation used! ((1,))") (:warn,"Some concentration values maybe not a number, try to fix.") ds = MetidaNCA.pkimport(multtimepk, :Time, :Concentration, :Subject) dsmultt = MetidaNCA.pdimport(multtimepk, :Time, :Concentration, :Subject; warn = false) @test MetidaNCA.gettime(dsmultt[1]) ≈ [0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 12.0 24.0 48.0 72.0 96.0] @test MetidaNCA.getobs(dsmultt[1]) ≈ [0.0 178.949 190.869 164.927 139.962 129.59 131.369 150.854 121.239 139.229 128.52 143.243 144.964 133.16 137.271 112.846 0.0] # Apply modify! function function newparam(data) data.result[:AUChalf] = data.result[:AUClast] / 2 end dsncafromds = MetidaNCA.nca(missingpk, :Time, :Concentration; limitrule = MetidaNCA.LimitRule(;lloq = 0, btmax = 0, atmax = NaN, nan = NaN, rm = true), modify! = newparam) dsncafromds[:AUChalf] ≈ dsncafromds[:AUClast] / 2 #redirect_stderr(Base.DevNull()) missingpk.ConcentrationStr = string.(missingpk.Concentration) @test_logs (:warn, "Some concentration values maybe not a number, try to fix.") (:warn, "Value missing parsed as `NaN`") pkiw = MetidaNCA.pkimport(missingpk, :Time, :ConcentrationStr) end @testset " #1 Linear trapezoidal, Dose 100, Dosetime 0, no tau " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint) @test MetidaNCA.cmax(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1])) == refdict[:Cmax][1] @test MetidaNCA.tmax(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1])) == refdict[:Tmax][1] @test round(MetidaNCA.auc(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1])), sigdigits = 8) == refdict[:AUCall][1] # Cmax @test dsnca[:, :Cmax] == refdict[:Cmax] # Tmax @test dsnca[:, :Tmax] == refdict[:Tmax] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.(refdict[:Cdose], sigdigits = 6) # Tlag @test round.(dsnca[:, :Tlag], sigdigits = 6) == round.(refdict[:Tlag], sigdigits = 6) # Clast @test dsnca[:, :Clast] == refdict[:Clast] # AUClast @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.(refdict[:AUClast], sigdigits = 6) # AUMClast @test round.(dsnca[:, :AUMClast], sigdigits = 6) == round.(refdict[:AUMClast], sigdigits = 6) # AUCall @test round.(dsnca[:, :AUCall], sigdigits = 6) == round.(refdict[:AUCall], sigdigits = 6) # Rsq @test round.(dsnca[:, :Rsq], digits = 6) == round.(refdict[:Rsq], digits = 6) # Adjusted Rsq @test round.(dsnca[:, :ARsq], digits = 6) == round.(refdict[:ARsq], digits = 6) # NpLZ - Number points for Kel @test round.(dsnca[:, :NpLZ], digits = 6) == round.(refdict[:NpLZ], digits = 6) # Kel @test round.(dsnca[:, :Kel], sigdigits = 6) == round.(refdict[:Kel], sigdigits = 6) # HL @test round.(dsnca[:, :HL], sigdigits = 5) == round.(refdict[:HL], sigdigits = 5) # Clast_pred @test round.(dsnca[:, :Clast_pred], sigdigits = 6) == round.(refdict[:Clast_pred], sigdigits = 6) # AUCinf @test round.(dsnca[:, :AUCinf], sigdigits = 6) == round.(refdict[:AUCinf], sigdigits = 6) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct @test round.(dsnca[:, :AUCpct], sigdigits = 5) == round.(refdict[:AUCpct], sigdigits = 5) # MRTlast @test round.(dsnca[:, :MRTlast], digits = 6) == round.(refdict[:MRTlast], digits = 6) # MRTinf @test round.(dsnca[:, :MRTinf], digits = 5) == round.(refdict[:MRTinf], digits = 5) # MRTinf_pred # Cllast # Clinf @test round.(dsnca[:, :Clinf], sigdigits = 6) == round.(refdict[:Clinf], sigdigits = 6) # Vzlast # Vzinf @test round.(dsnca[:, :Vzinf], sigdigits = 6) == round.(refdict[:Vzinf], sigdigits = 6) # Vssinf end @testset " #2 Linear up Log down, Dose 100, Dosetime 0.25, tau 9 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld) # Cmax @test dsnca[:, :Cmax] == refdict2[:Cmax] # Tmax @test dsnca[:, :Tmax] == refdict2[:Tmax] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.(refdict2[:Cdose], sigdigits = 6) # Tlag #= @test round.(dsnca[:, :Tlag], sigdigits = 6) == round.([0 0 0 0 0.25 0 0 0 0 0], sigdigits = 6) =# # Clast @test dsnca[:, :Clast] == refdict2[:Clast] # AUClast @test round.(dsnca[:, :AUClast], digits = 6) == round.(refdict2[:AUClast], digits = 6) # AUMClast / AUMCtau @test round.(dsnca[:, :AUMCtau], digits = 6) == round.(refdict2[:AUMCtau], digits = 6) # AUCall @test round.(dsnca[:, :AUCall], digits = 6) == round.(refdict2[:AUCall], digits = 6) # Rsq # Adjusted Rsq # LZint @test round.(dsnca[:, :LZint], digits = 6) == round.(refdict2[:LZint], digits = 6) # Kel @test round.(dsnca[:, :Kel], digits = 6) == round.(refdict2[:Kel], digits = 6) # HL @test round.(dsnca[:, :HL], digits = 6) == round.(refdict2[:HL], digits = 6) # Clast_pred @test round.(dsnca[:, :Clast_pred], digits = 6) == round.(refdict2[:Clast_pred], digits = 6) # AUCinf @test round.(dsnca[:, :AUCinf], digits = 6) == round.(refdict2[:AUCinf], digits = 6) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct @test round.(dsnca[:, :AUCpct], digits = 6) == round.(refdict2[:AUCpct], digits = 6) # MRTlast # MRTinf / MRTtauinf @test round.(dsnca[:, :MRTtauinf], digits = 6) == round.(refdict2[:MRTtauinf], digits = 6) # MRTinf_pred # Cllast # Clinf / Cltau @test round.(dsnca[:, :Cltau], digits = 6) == round.(refdict2[:Cltau], digits = 6) # Vzlast # Vzinf / Vztau @test round.(dsnca[:, :Vztau], digits = 6) == round.(refdict2[:Vztau], digits = 6) # Vssinf # AUCtau @test round.(dsnca[:, :AUCtau], digits = 6) == round.(refdict2[:AUCtau], digits = 6) end @testset " #3 Linear trapezoidal, IV, Dose 120, Dosetime 0.0, tau 12" begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 120, time = 0, tau = 12)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :iv, calcm = :lint) # Cmax @test dsnca[:, :Cmax] == refdict3[:Cmax] # Tmax @test dsnca[:, :Tmax] == refdict3[:Tmax] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.(refdict3[:Cdose], sigdigits = 6) # Tlag #@test round.(dsnca[:, :Tlag], sigdigits = 6) == round.(refdict3[:Tlag], sigdigits = 6) # Clast @test dsnca[:, :Clast] == refdict3[:Clast] # AUClast @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.(refdict3[:AUClast], sigdigits = 6) # AUMClast / AUMCtau @test round.(dsnca[:, :AUMCtau], sigdigits = 6) == round.(refdict3[:AUMCtau], sigdigits = 6) # AUCall @test round.(dsnca[:, :AUCall], sigdigits = 6) == round.(refdict3[:AUCall], sigdigits = 6) # Rsq # Adjusted Rsq # LZint @test round.(dsnca[:, :LZint], sigdigits = 6) == round.(refdict3[:LZint], sigdigits = 6) # Kel @test round.(dsnca[:, :Kel], sigdigits = 6) == round.(refdict3[:Kel], sigdigits = 6) # HL @test round.(dsnca[:, :HL], sigdigits = 6) == round.(refdict3[:HL], sigdigits = 6) # Clast_pred @test round.(dsnca[:, :Clast_pred], sigdigits = 6) == round.(refdict3[:Clast_pred], sigdigits = 6) # AUCinf @test round.(dsnca[:, :AUCinf], sigdigits = 6) == round.(refdict3[:AUCinf], sigdigits = 6) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct @test round.(dsnca[:, :AUCpct], sigdigits = 6) == round.(refdict3[:AUCpct], sigdigits = 6) # MRTlast # MRTinf / MRTtauinf @test round.(dsnca[:, :MRTtauinf], sigdigits = 6) == round.(refdict3[:MRTtauinf], sigdigits = 6) # MRTinf_pred # Cllast # Clinf / Cltau @test round.(dsnca[:, :Cltau], sigdigits = 6) == round.(refdict3[:Cltau], sigdigits = 6) # Vzlast # Vzinf / Vztau @test round.(dsnca[:, :Vztau], sigdigits = 6) == round.(refdict3[:Vztau], sigdigits = 6) # Vssinf # AUCtau @test round.(dsnca[:, :AUCtau], sigdigits = 6) == round.(refdict3[:AUCtau], sigdigits = 6) # AUClast # AUMClast / AUMCtau # AUCall # Rsq # Adjusted Rsq # Kel # HL # LZint # Clast_pred # AUCinf # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct # MRTlast # MRTinf / MRTtauinf # MRTinf_pred # Cllast # Clinf / Cltau # Vzlast # Vzinf / Vztau # Vssinf # AUCtau # Ctau # Cavg # Ctaumin # Accind # Fluc # Fluctau # Swing # Swingtau end @testset " #4 Log trapezoidal ATM, Dose 120, Dosetime 0, tau 12 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 120, time = 0, tau = 12)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :logt) # Cmax @test dsnca[:, :Cmax] == refdict4[:Cmax] # Tmax @test dsnca[:, :Tmax] == refdict4[:Tmax] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 4) == round.(refdict4[:Cdose], sigdigits = 4) # Tlag # Clast @test dsnca[:, :Clast] == refdict4[:Clast] # AUClast @test round.(dsnca[:, :AUClast], digits = 4) == round.(refdict4[:AUClast], digits = 4) # AUMClast / AUMCtau @test round.(dsnca[:, :AUMCtau], digits = 3) == round.(refdict4[:AUMCtau], digits = 3) # AUCall @test round.(dsnca[:, :AUCall], digits = 4) == round.(refdict4[:AUCall], digits = 4) # Rsq # Adjusted Rsq # LZint @test round.(dsnca[:, :LZint], digits = 6) == round.(refdict4[:LZint], digits = 6) # Kel @test round.(dsnca[:, :Kel], digits = 6) == round.(refdict4[:Kel], digits = 6) # HL @test round.(dsnca[:, :HL], digits = 3) == round.(refdict4[:HL], digits = 3) # Clast_pred @test round.(dsnca[:, :Clast_pred], digits = 4) == round.(refdict4[:Clast_pred], digits = 4) # AUCinf @test round.(dsnca[:, :AUCinf], digits = 3) == round.(refdict4[:AUCinf], digits = 3) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct @test round.(dsnca[:, :AUCpct], digits = 4) == round.(refdict4[:AUCpct], digits = 4) # MRTlast # MRTinf / MRTtauinf @test round.(dsnca[:, :MRTtauinf], digits = 4) == round.(refdict4[:MRTtauinf], digits = 4) # MRTinf_pred # Cllast # Clinf / Cltau @test round.(dsnca[:, :Cltau], digits = 6) == round.(refdict4[:Cltau], digits = 6) # Vzlast # Vzinf / Vztau @test round.(dsnca[:, :Vztau], digits = 6) == round.(refdict4[:Vztau], digits = 6) # Vssinf # AUCtau @test round.(dsnca[:, :AUCtau], digits = 4) == round.(refdict4[:AUCtau], digits = 4) #= @test dsnca[:, :Cmax] == [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482] # Tmax @test dsnca[:, :Tmax] == [1 1 1.5 1 4 2.5 2.5 4 3 2] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.([0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], sigdigits = 6) # Tlag #= @test round.(dsnca[:, :Tlag], sigdigits = 6) == round.([0 0 0 0 0.5 0 0 0 0 0], sigdigits = 6) =# # Clast @test dsnca[:, :Clast] == [112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191] # AUClast @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.([9572.8582 10054.0370 5391.5322 9296.2179 9518.6531 6948.5757 6987.0645 7064.7816 8298.9634 5485.6538], sigdigits = 6) =# end @testset " Linear up Log down ATM, Dose 120, Dosetime 0, tau 12 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 120, time = 0, tau = 12)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) @test MetidaNCA.cmax(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1])) == 190.869 @test MetidaNCA.tmax(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1])) == 1 @test round(MetidaNCA.auc(MetidaNCA.gettime(ds[1]), MetidaNCA.getobs(ds[1]), calcm = :luldt), sigdigits = 8) == round(9573.810558691312, sigdigits = 8) # Cmax @test dsnca[:, :Cmax] == [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482] # Tmax @test dsnca[:, :Tmax] == [1 1 1.5 1 4 2.5 2.5 4 3 2] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.([0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], sigdigits = 6) # Tlag @test round.(dsnca[:, :Tlag], sigdigits = 6) == round.([0 0 0 0 0.5 0 0 0 0 0], sigdigits = 6) # Clast @test dsnca[:, :Clast] == [112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191] @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.([9573.810558691312 10054.286478059563 5392.457219413793 9297.096334450325 9519.181808199797 6948.985621117448 6988.960344867885 7073.306755718137 8303.373085532965 5486.838889441992], sigdigits = 6) @test round.(dsnca[:, :AUCinf], sigdigits = 6) == round.([42913.407881300096 16097.04111262767 26022.090028134975 21983.33845321829 25778.19670343543 15984.14736468632 11648.33951823218 15408.84256127436 24853.53879891218 7941.268553852982], sigdigits = 6) end @testset " Linear up Log down, Dose 120, Dosetime 0, tau 12 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 120, time = 0, tau = 12)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld) # Cmax @test dsnca[:, :Cmax] == [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482] # Tmax @test dsnca[:, :Tmax] == [1 1 1.5 1 4 2.5 2.5 4 3 2] # Cdose @test round.(dsnca[:, :Cdose], sigdigits = 6) == round.([0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0], sigdigits = 6) # Tlag #= @test round.(dsnca[:, :Tlag], sigdigits = 6) == round.([0 0 0 0 0.5 0 0 0 0 0], sigdigits = 6) =# # Clast @test dsnca[:, :Clast] == [112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191] # AUClast @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.([9573.8106 10054.286 5392.4572 9297.0963 9519.1809 6948.9856 6988.7726 7073.0922 8303.3586 5486.8389], sigdigits = 6) # AUMCtau @test round.(dsnca[:, :AUMCtau], sigdigits = 6) == round.([9995.4521 14645.001 6030.6644 10314.429 11475.22 8486.2318 9023.7903 6403.6719 10120.542 8376.0054], sigdigits = 6) # AUCall @test round.(dsnca[:, :AUCall], sigdigits = 6) == round.([9573.8106 10054.286 5392.4572 9297.0963 9519.1809 6948.9856 6988.7726 7073.0922 8303.3586 5486.8389 ], sigdigits = 6) # Rsq @test round.(dsnca[:, :Rsq], digits = 6) == round.([0.78607696 0.99276359 0.81358898 0.91885869 0.85335995 0.95011904 0.97031231 0.94796904 0.94753789 0.88092269], digits = 6) # Adjusted Rsq @test round.(dsnca[:, :ARsq], digits = 6) == round.([0.71476928 0.99035145 0.77630678 0.83771737 0.82891994 0.92517856 0.96041642 0.92195356 0.92130684 0.86391165], digits = 6) # Kel @test round.(dsnca[:, :Kel], sigdigits = 6) == round.([0.0033847439 0.014106315 0.0032914304 0.0076953442 0.0068133279 0.0076922807 0.012458956 0.0089300798 0.0056458649 0.017189737], sigdigits = 6) # HL @test round.(dsnca[:, :HL], sigdigits = 5) == round.([204.78571 49.137367 210.59148 90.073577 101.73401 90.10945 55.634451 77.619371 122.77077 40.323315], sigdigits = 5) # Clast_pred @test round.(dsnca[:, :Clast_pred], sigdigits = 6) == round.([117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857], sigdigits = 6) # AUCinf @test round.(dsnca[:, :AUCinf], sigdigits = 6) == round.([42913.408 16097.041 26022.09 21983.338 25778.196 15984.147 11648.152 15408.628 24853.524 7941.2686], sigdigits = 6) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct @test round.(dsnca[:, :AUCpct], sigdigits = 5) == round.([77.690398 37.539537 79.277386 57.708442 63.072742 56.525766 40.001017 54.096548 66.59082 30.907274], sigdigits = 5) # MRTlast #= @test round.(dsnca[:, :MRTlast], digits = 6) == round.([34.801023 29.538786 34.472406 33.69408 32.964438 32.58076 31.267574 33.826053 33.386807 27.556657], digits = 6) =# # MRTtauinf @test round.(dsnca[:, :MRTtauinf], digits = 4) == round.([302.522490 75.321653 312.895820 148.293830 172.561490 130.198390 91.786365 163.779880 176.558310 68.172066], digits = 4 ) # MRTinf_pred # Cllast # Cltau @test round.(dsnca[:, :Cltau], sigdigits = 6) == round.([0.071896833 0.050424060 0.122488280 0.070172356 0.069035042 0.085192949 0.083697775 0.110260280 0.073377834 0.092799594], sigdigits = 6) # Vzlast # Vztau @test round.(dsnca[:, :Vztau], sigdigits = 6) == round.([21.241439 3.574574 37.214301 9.118807 10.132353 11.075122 6.717880 12.347065 12.996739 5.398547], sigdigits = 6) # Vssinf end @testset " Linear trapezoidal, Dose 100, Dosetime 2.0, tau 10 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 2.0, tau = 10)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint) # Cmax @test dsnca[:, :Cmax] == [150.854 234.091 100.943 165.177 169.334 154.648 153.254 138.327 167.347 125.482] # Tmax @test dsnca[:, :Tmax] == [4 2 2 2 4 2.5 2.5 4 3 2] # Cdose # Tlag # Clast # AUClast @test round.(dsnca[:, :AUClast], digits = 3) == round.([9283.0588 9774.9218 5255.0335 9051.5985 9441.4205 6781.2608 6858.7153 6885.9150 8094.8320 5495.0990], digits = 3) # AUMClast / AUMCtau @test round.(dsnca[:, :AUMCtau], digits = 3) == round.([6915.4913 10105.3000 4166.2103 7068.4668 8032.4660 5775.6840 6243.2670 4442.4953 6999.9440 5849.5573], digits = 3) # AUCall # Rsq # Adjusted Rsq # Kel # HL # LZint @test round.(dsnca[:, :LZint], sigdigits = 6) == round.([5.0084856 5.4288976 4.4406461 5.166885 5.1473571 4.8296758 5.0107459 4.9684786 4.9472594 4.8963611], sigdigits = 6) # Clast_pred @test round.(dsnca[:, :Clast_pred], digits = 3) == round.([117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857], digits = 3) # AUCinf @test round.(dsnca[:, :AUCinf], digits = 3) == round.([42622.6560 15817.6760 25884.6660 21737.8410 25700.4350 15816.4220 11518.0940 15221.4510 24644.9980 7949.5287], digits = 3) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct # MRTlast # MRTinf / MRTtauinf @test round.(dsnca[:, :MRTtauinf], digits = 3) == round.([306.68478 72.36944 303.54748 145.34822 153.74241 123.86557 85.934338 167.95643 168.74491 63.074784], digits = 3) # MRTinf_pred # Cllast # Clinf / Cltau # Vzlast # Vzinf / Vztau # Vssinf # AUCtau @test round.(dsnca[:, :AUCtau], digits = 3) == round.([1367.7388 2043.0158 838.8295 1444.7985 1618.6205 1224.6608 1265.7013 880.311 1417.942 1167.911], digits = 3) # Ctau @test round.(dsnca[:, :Ctau], sigdigits = 6) == round.([144.964 196.035 76.027 132.257 154.066 113.751 123.37 134.133 135.58 106.476], sigdigits = 6) # Cavg @test round.(dsnca[:, :Cavg], digits = 3) == round.([136.77388 204.30158 83.88295 144.47985 161.86205 122.46608 126.57013 88.0311 141.7942 116.7911], digits = 3) # Ctaumin @test round.(dsnca[:, :Ctaumin], sigdigits = 6) == round.([121.239 196.026 69.985 128.398 151.452 102.16 105.513 22.724 105.438 106.476], sigdigits = 6) # Accind @test round.(dsnca[:, :Accind], digits = 3) == round.([30.047153 7.600775 30.884671 13.501282 15.182793 13.506455 8.5367345 11.705549 18.216783 6.3317425], digits = 3) # Fluc @test round.(dsnca[:, :Fluc], sigdigits = 6) == round.([21.652527 18.631770 36.906189 25.456145 11.047679 42.859216 37.719011 131.320640 43.661165 16.273500], sigdigits = 6) # Swing @test round.(dsnca[:, :Swing], sigdigits = 6) == round.([0.24426958 0.19418342 0.44235193 0.28644527 0.11807041 0.51378230 0.45246557 5.08726460 0.58716023 0.17850032], sigdigits = 6) end @testset " Linear trapezoidal, Dose 100, Dosetime 0.0, tau 100 " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.0, tau = 100)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld) # Cmax @test dsnca[:, :Cmax] == [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482] # Tmax @test dsnca[:, :Tmax] == [1 1 1.5 1 4 2.5 2.5 4 3 2] # Cdose # Tlag # Clast # AUClast @test round.(dsnca[:, :AUClast], digits = 3) == round.([9573.810559 10054.28648 5392.457219 9297.096334 9519.180874 6948.985621 6988.772632 7073.092214 8303.358586 5486.838889], digits = 3) # AUMClast / AUMCtau @test round.(dsnca[:, :AUMCtau], digits = 3) == round.([599491.4507 469656.5157 341841.895 530699.316 554228.2569 381802.405 343144.4367 402118.7541 487552.4608 233710.5713], digits = 3) # AUCall # Rsq # Adjusted Rsq # Kel # HL # LZint @test round.(dsnca[:, :LZint], sigdigits = 6) == round.([5.0084856 5.4288976 4.4406461 5.166885 5.1473571 4.8296758 5.0107459 4.9684786 4.9472594 4.8963611], sigdigits = 6) # Clast_pred @test round.(dsnca[:, :Clast_pred], digits = 3) == round.([117.30578 82.53669 66.931057 100.76793 105.29832 71.939942 61.172702 75.604277 93.761762 38.810857], digits = 3) # AUCinf @test round.(dsnca[:, :AUCinf], digits = 3) == round.([42913.4078813004 16097.0411126277 26022.0900281352 21983.3384532182 25778.1957695968 15984.1473646863 11648.1518057779 15408.6280190766 24853.5242997128 7941.2685538530], digits = 3) # AUCinf_pred # AUMCinf # AUMCinf_pred # AUCpct # MRTlast # MRTinf / MRTtauinf @test round.(dsnca[:, :MRTtauinf], digits = 3) == round.([286.7298872 73.32812486 309.1287691 131.3893596 155.1600979 126.8510359 79.61736185 117.5547609 177.1315649 60.86551733], digits = 3) # MRTinf_pred # Cllast # Clinf / Cltau # Vzlast # Vzinf / Vztau # Vssinf # AUCtau @test round.(dsnca[:, :AUCtau], digits = 3) == round.([12646.63632 11996.6718 7195.902904 11794.11692 12274.83395 8729.151856 8395.400098 8930.999936 10727.4135 6389.420453], digits = 3) # Ctau @test round.(dsnca[:, :Ctau], sigdigits = 6) == round.([106.6989373 55.60460942 61.0383917 81.23535402 87.01010737 58.00027625 43.15724396 58.8781831 80.05171762 23.98401112], sigdigits = 6) # Cavg @test round.(dsnca[:, :Cavg], digits = 3) == round.([126.4663632 119.966718 71.95902904 117.9411692 122.7483395 87.29151856 83.95400098 89.30999936 107.274135 63.89420453], digits = 3) # Ctaumin @test round.(dsnca[:, :Ctaumin], sigdigits = 6) == round.([0 0 0 0 0 0 0 0 0 0], sigdigits = 6) # Accind @test round.(dsnca[:, :Accind], digits = 3) == round.([3.482585727 1.322732351 3.565571971 1.862990767 2.024054788 1.863483514 1.403869629 1.693257481 2.318008606 1.218397838], digits = 3) # Fluc @test round.(dsnca[:, :Fluc], sigdigits = 6) == round.([150.9247164 217.7078813 146.3958052 176.8186643 137.9521716 177.1626872 182.5452012 154.8841126 155.9993935 196.3902687], sigdigits = 6) # Swing # Swing tau @test round.(dsnca[:, :Swingtau], sigdigits = 6) == round.([0.788855679643705 3.697038657747540 0.725880991766796 1.567133516128610 0.946141719805552 1.666332127921700 2.551060863661350 1.349376164748240 1.090486062900490 4.231902178181850], sigdigits = 6) end @testset " Linear up Log down, Dose 100, Dosetime 0.25, tau 9 IV " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :iv, calcm = :luld) @test dsnca[:, :Cdose] == [178.949 62.222 49.849 52.421 0.0 57.882 19.95 142.34985100539438 113.362 13.634] end @testset " Linear trapezoidal, Dose 120, Dosetime 0, tau 12 IV " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 120, time = 0.0, tau = 12)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :iv, calcm = :lint) @test dsnca[:, :Cmax] == [190.869 261.177 105.345 208.542 169.334 154.648 153.254 138.327 167.347 125.482] @test round.(dsnca[:, :Clast], sigdigits = 6) == round.([112.846 85.241 67.901 97.625 110.778 69.501 58.051 74.437 93.44 42.191], sigdigits = 6) @test round.(dsnca[:, :Clast_pred], sigdigits = 6) == round.([117.30578 82.53669 66.931057 100.76793 105.19623 71.939942 61.172702 75.604277 93.761762 39.408841], sigdigits = 6) @test round.(dsnca[:, :AUClast], sigdigits = 6) == round.([9585.4218 10112.176 5396.5498 9317.8358 9561.26 6966.598 7029.5735 7110.6745 8315.0803 5620.8945], sigdigits = 6) @test round.(dsnca[:, :AUCinf], sigdigits = 6) == round.([42925.019 16154.93 26026.183 22004.078 25714.393 16001.76 11688.953 15446.21 24865.246 8171.1624], sigdigits = 6) @test round.(dsnca[:, :Ctau], sigdigits = 6) == round.([144.964 196.035 76.027 132.257 154.066 113.751 123.37 134.133 135.58 106.476], sigdigits = 6) @test round.(dsnca[:, :HL], sigdigits = 5) == round.([204.78571 49.137367 210.59148 90.073577 101.0715 90.10945 55.634451 77.619371 122.77077 41.897822], sigdigits = 5) end @testset " Linear trapezoidal, Dose 100, Dosetime 0, no tau AUCall " begin dsnca = MetidaNCA.nca(aucallpk, :Time, :Concentration; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0), adm = :ev, calcm = :lint) @test dsnca[:AUClast] ≈ 9585.4218 aucl = MetidaNCA.linauc(72, 96, 112.846, 0) dsnca[:AUClast] + aucl ≈ dsnca[:AUCall] end @testset " Partials " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0.25, 9.25)]) v1 = dsnca[:, Symbol("AUC_0.25_9.25")] ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld) v2 = dsnca[:, :AUCtau] ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0.25, 9.25), [0.25, 9], Pair(1, 3)], verbose = 3, io = io) v3 = dsnca[:, Symbol("AUC_0.25_9.25")] @test v1 ≈ v2 atol=1E-6 @test v3 ≈ [1264.305068205526 1827.9316525749111 751.5337978798051 1333.204619921286 1310.904516109241 1110.6227262325967 1078.119979444785 772.3366199961695 1213.5372385701808 969.4541441511578] atol=1E-6 ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0.0, tau = 100)) sort!(ds, :Subject) @test_throws ErrorException dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0.25, 100)], prtext = :err) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0, 100)], prtext = :last) @test dsnca[:, :AUClast] ≈ dsnca[:, :AUC_0_100] atol=1E-6 dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0, 100)], prtext = :extr) @test dsnca[:, :AUCtau] ≈ dsnca[:, :AUC_0_100] atol=1E-6 dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, partials = [(0, 72)], prtext = :last) @test dsnca[:, :AUCall] ≈ dsnca[:, :AUC_0_72] atol=1E-6 end @testset " set-get*! tests " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) sort!(ds, :Subject) #= @testset " #1 setkelauto! " begin ka = MetidaNCA.setkelauto!(ds[1], false) @test MetidaNCA.getkelauto(ka) == true dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) end =# @testset " setdosetime! " begin dt = MetidaNCA.DoseTime(dose = 110, time = 2.1, tau = 10) MetidaNCA.setdosetime!(ds[1], dt) dts = MetidaNCA.getdosetime(ds[1]) @test dts.dose == 110 @test dts.time == 2.1 @test dts.tau == 10 dt2 = MetidaNCA.DoseTime(dose = 100, time = 2.2, tau = 9) MetidaNCA.setdosetime!(ds, dt2, 4) MetidaNCA.setdosetime!(ds, dt2, [1,2,3]) MetidaNCA.setdosetime!(ds, dt2, Dict(:Formulation => "R")) MetidaNCA.setdosetime!(ds, dt2) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) end @testset " #2 setkelauto! " begin kr = MetidaNCA.ElimRange(kelstart = 4, kelend = 12) MetidaNCA.setkelrange!(ds, kr; kelauto = true) MetidaNCA.setkelauto!(ds, false, 4) MetidaNCA.setkelauto!(ds, false, [1,2,3]) MetidaNCA.setkelauto!(ds, false, Dict(:Formulation => "R")) MetidaNCA.setkelauto!(ds, false) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) @test MetidaNCA.getkelauto(ds[1]) == false end ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) sort!(ds, :Subject) @testset " setkelrange! " begin dsnca1 = deepcopy(MetidaNCA.nca!(ds[1], adm = :ev, calcm = :luldt)) kr = MetidaNCA.ElimRange(kelstart = 12, kelend = 16) MetidaNCA.setkelrange!(ds[1], kr) dsnca2 = deepcopy(MetidaNCA.nca!(ds[1], adm = :ev, calcm = :luldt)) @test dsnca1.data.keldata.ar[3] ≈ 0.7147692761075757 @test dsnca1.data.keldata.ar[3] ≈ dsnca2.data.keldata.ar[1] @test dsnca1.data.keldata.a[3] ≈ dsnca2.data.keldata.a[1] @test dsnca1.data.keldata.b[3] ≈ dsnca2.data.keldata.b[1] kr = MetidaNCA.ElimRange(kelstart = 12, kelend = 16, kelexcl = Int[5,6]) MetidaNCA.setkelrange!(ds[1], kr) dsnca3 = deepcopy(MetidaNCA.nca!(ds[1], adm = :ev, calcm = :luldt)) @test dsnca1.data.keldata.ar[3] ≈ dsnca3.data.keldata.ar[1] @test dsnca1.data.keldata.a[3] ≈ dsnca3.data.keldata.a[1] @test dsnca1.data.keldata.b[3] ≈ dsnca3.data.keldata.b[1] kr = MetidaNCA.ElimRange(kelexcl = Int[5,6]) MetidaNCA.setkelrange!(ds[1], kr; kelauto = true) dsnca4 = deepcopy(MetidaNCA.nca!(ds[1], adm = :ev, calcm = :luldt)) @test dsnca1.data.keldata.ar[3] ≈ dsnca4.data.keldata.ar[3] @test dsnca1.data.keldata.a[3] ≈ dsnca4.data.keldata.a[3] @test dsnca1.data.keldata.b[3] ≈ dsnca4.data.keldata.b[3] kr = MetidaNCA.ElimRange(kelstart = 4, kelend = 12, kelexcl = Int[5,6]) MetidaNCA.setkelrange!(ds[1], kr) krs = MetidaNCA.getkelrange(ds[1]) @test krs.kelstart == 4 @test krs.kelend == 12 @test krs.kelexcl == [5,6] kr2 = MetidaNCA.ElimRange(kelstart = 3, kelend = 12, kelexcl = Int[7]) MetidaNCA.setkelrange!(ds, kr2, 4) MetidaNCA.setkelrange!(ds, kr2, [1,2,3]) MetidaNCA.setkelrange!(ds, kr2, Dict(:Formulation => "R")) MetidaNCA.setkelrange!(ds, kr2) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) end end @testset " applylimitrule! " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) sort!(ds, :Subject) lr = MetidaNCA.LimitRule(;lloq = 0.5, btmax = 0.0, atmax = NaN, nan = NaN, rm = true) MetidaNCA.applylimitrule!(ds[1], lr) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) lr = MetidaNCA.LimitRule(;lloq = 0.5, btmax = 0.5, atmax = NaN, nan = NaN, rm = true) function af(sbj) sbj.id[:Subject] == 1 end MetidaNCA.applylimitrule!(af, ds, lr) @test ds[1].obs[1] ≈ 0.5 MetidaNCA.applylimitrule!(ds, lr, 2) @test ds[2].obs[1] ≈ 0.5 MetidaNCA.applylimitrule!(ds, lr, 3:4) @test ds[3].obs[1] ≈ 0.5 @test ds[4].obs[1] ≈ 0.5 MetidaNCA.applylimitrule!(ds, lr, Dict(:Formulation => "R")) @test ds[7].obs[1] ≈ 0.5 MetidaNCA.applylimitrule!(ds, lr) @test ds[6].obs[1] ≈ 0.5 ds = MetidaNCA.pkimport(missingpk, :Time, :Concentration) @test ismissing(ds.obs[13]) @test isnan(ds.obs[15]) @test length(ds) == 18 MetidaNCA.applylimitrule!(ds, lr) @test length(ds) == 16 ds = MetidaNCA.pkimport(missingpk, :Time, :Concentration) lr = MetidaNCA.LimitRule(;lloq = 180, btmax = 0.0, atmax = 0.5, nan = 1000, rm = false) MetidaNCA.applylimitrule!(ds, lr) @test ds.obs == [0.0 0.0 190.869 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1000.0 0.5 1000.0 0.5 0.5 0.5] end @testset " kel " begin ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) sort!(ds, :Subject) kr1 = MetidaNCA.ElimRange(kelstart = 4, kelend = 12, kelexcl = Int[5,6]) kr2 = MetidaNCA.ElimRange(kelstart = 3, kelend = 12, kelexcl = Int[7]) MetidaNCA.setkelrange!(ds, kr1, Dict(:Formulation => "T")) MetidaNCA.setkelrange!(ds, kr2, Dict(:Formulation => "R")) sub1 = MetidaNCA.subset(ds, Dict(:Formulation => "T")) @test MetidaNCA.getkelrange(sub1[1]) == kr1 sub2 = MetidaNCA.subset(ds, Dict(:Formulation => "R")) @test MetidaNCA.getkelrange(sub2[1]) == kr2 dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luldt) end @testset " Output " begin io = IOBuffer(); ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) @test_nowarn dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint, verbose = 1, io = io) show(io, ds[1]) dt = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9) MetidaNCA.setdosetime!(ds, dt) @test_nowarn dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld, verbose = 1, io = io) show(io, ds[1]) kr = MetidaNCA.ElimRange(kelstart = 10, kelend = 16, kelexcl = Int[13,14]) MetidaNCA.setkelrange!(ds, kr; kelauto = false) show(io, ds[1]) @test_nowarn dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint, verbose = 2, io = io) # UPK io = IOBuffer(); upkds = MetidaNCA.upkimport(upkdata, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) @test_nowarn show(io, upkds[1]) @test_nowarn dsnca = MetidaNCA.nca!(upkds, verbose = 2, io = io) upkds = MetidaNCA.upkimport(upkdata, :st, :et, :conc, :vol; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) upkds = MetidaNCA.upkimport(upkdata[!, :st], upkdata[!, :et], upkdata[!, :conc], upkdata[!, :vol]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) unca = MetidaNCA.nca!(upkds) @test_nowarn show(io, upkds) @test_nowarn show(io, unca) @test_nowarn MetidaNCA.nca(upkdata, :st, :et, :conc, :vol; type = :ur, dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) # PD io = IOBuffer(); pd = MetidaNCA.pdimport(pddata, :time, :obs, :subj; bl = 1.5, th = 5.0) pd_res = MetidaNCA.nca!(pd[1], verbose = 2, io = io) pd_rds = MetidaNCA.nca!(pd, verbose = 2, io = io) pd_rds = MetidaNCA.nca!(pd; calcm = :luld, verbose = 2, io = io) pd_rds = MetidaNCA.nca!(pd; calcm = :logt, verbose = 2, io = io) pd_rds = MetidaNCA.nca!(pd; calcm = :luldt, verbose = 2, io = io) @test_nowarn show(io, pd[1]) @test_nowarn show(io, pd) @test_nowarn show(io, pd_res) @test_nowarn show(io, pd_rds) end @testset " timefilter " begin io = IOBuffer(); ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) ds2 = MetidaNCA.timefilter(ds, (0.75, 24)) @test minimum(ds2[1].time) >= 0.75 @test maximum(ds2[1].time) <= 24 ds2 = MetidaNCA.timefilter(ds, LinRange(0.75, 24, 2)) @test minimum(ds2[1].time) >= 0.75 @test maximum(ds2[1].time) <= 24 end @testset " Sparse PK " begin obs = [0.2 0.3 0.4 0.3 0.2 0.1] time = [1 2 3 4 5 6] auc = MetidaNCA.auc_sparse(time, obs) @test auc ≈ 1.35 atol=1E-5 @test_throws ErrorException MetidaNCA.auc_sparse([1], [1]) @test_throws ErrorException MetidaNCA.auc_sparse([1,2], [1,2,3]) @test_throws ErrorException MetidaNCA.auc_sparse([2,1], [1,2]) end include("upktest.jl") include("pdtest.jl") #Unitful @testset " Unitful " begin io = IOBuffer(); upk = deepcopy(pkdata2) upk.Time = upk.Time .* u"hr" upk.Concentration = upk.Concentration .* u"ng/ml" uds = MetidaNCA.pkimport(upk, :Time, :Concentration, [:Subject, :Formulation]) ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]) upknca = MetidaNCA.nca!(uds, calcm = :lint) pknca = MetidaNCA.nca!(ds, calcm = :lint) @test upknca[:, :AUClast] ≈ pknca[:, :AUClast] .* u"ng*hr/ml" @test upknca[:, :Kel] ≈ pknca[:, :Kel] .* u"1/hr" upknca = MetidaNCA.nca!(uds, calcm = :luldt) pknca = MetidaNCA.nca!(ds, calcm = :luldt) udt = MetidaNCA.DoseTime(dose = 100u"mg", time = 0.25u"hr", tau = 9u"hr") dt = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9) MetidaNCA.setdosetime!(uds, udt) MetidaNCA.setdosetime!(ds, dt) upknca = MetidaNCA.nca!(uds, calcm = :lint) pknca = MetidaNCA.nca!(ds, calcm = :lint) upknca = MetidaNCA.nca!(uds, calcm = :luldt) pknca = MetidaNCA.nca!(ds, calcm = :luldt) @test upknca[:, :AUCtau] ≈ pknca[:, :AUCtau] .* u"ng*hr/ml" @test upknca[:, :MRTtauinf] ≈ pknca[:, :MRTtauinf] .* u"hr" upk = deepcopy(upkdata) upk.st = upk.st .* u"hr" upk.et = upk.et .* u"hr" upk.conc = upk.conc .* u"ng/ml" upk.vol = upk.vol .* u"l" uds = MetidaNCA.upkimport(upk, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100u"mg", time = 0u"hr")) @test_nowarn pknca = MetidaNCA.nca!(uds) upd = deepcopy(pddata) upd.time = upd.time .* u"hr" upd.obs = upd.obs .* u"m" pd = MetidaNCA.pdimport(upd, :time, :obs; bl = 3.0, th = 1.5, id = Dict(:subj => 1)) @test_nowarn pd_rds = MetidaNCA.nca!(pd); #pd_rds = MetidaNCA.nca!(pd, io = io, verbose = 2) end @testset " Precompile " begin data = MetidaNCA.metida_table([0.,1.,2.,3.,4.,2.,1.,0.], [0.,1.,2.,3.,4.,5.,6.,7.], names = (:conc, :time)) pki = MetidaNCA.pkimport(data, :time, :conc; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0, tau = 5.5)) @test_nowarn MetidaNCA.nca!(pki) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
code
1134
@testset " #5 Urine data; Linear-trapezoidal rule " begin upkds = MetidaNCA.upkimport(upkdata, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100.0, time = 0)) unca = MetidaNCA.nca!(upkds) for k in keys(urefdict) @test unca[1, k] ≈ urefdict[k] atol=1E-4 end @test_nowarn show(io, upkds) @test_nowarn show(io, unca) upkdatac = deepcopy(upkdata) upkdatac.st = float.(upkdatac.st) upkdatac[1, :st] = NaN @test_throws ErrorException MetidaNCA.upkimport(upkdatac, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) upkdatac = deepcopy(upkdata) upkdatac.et = float.(upkdatac.et) upkdatac[1, :et] = NaN @test_throws ErrorException MetidaNCA.upkimport(upkdatac, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) upkdatac = deepcopy(upkdata) upkdatac.et = float.(upkdatac.et) upkdatac[1, :et] = 1.5 @test_throws ErrorException MetidaNCA.upkimport(upkdatac, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) end
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
2700
# MetidaNCA This program comes with absolutely no warranty. No liability is accepted for any loss and risk to public health resulting from use of this software. | Version | Cover | Build | Docs | |---------|-------|-------|------| |[![version](https://juliahub.com/docs/MetidaNCA/version.svg)](https://juliahub.com/ui/Packages/MetidaNCA/p2tSH)|[![codecov](https://codecov.io/gh/PharmCat/MetidaNCA.jl/branch/main/graph/badge.svg?token=A9eyT9g0WZ)](https://codecov.io/gh/PharmCat/MetidaNCA.jl)|![Tier 1](https://github.com/PharmCat/MetidaNCA.jl/workflows/Tier%201/badge.svg) | [![Latest docs](https://img.shields.io/badge/docs-latest-blue.svg)](https://pharmcat.github.io/MetidaNCA.jl/dev/) [![Stable docs](https://img.shields.io/badge/docs-stable-blue.svg)](https://pharmcat.github.io/MetidaNCA.jl/stable/)| Non-compartment PK analysis (NCA). Pharmacokinetics, sometimes abbreviated as PK, is a branch of pharmacology dedicated to determine the fate of substances administered to a living organism. When analyzing pharmacokinetic data, one generally employs either model fitting using nonlinear regression analysis or non-compartmental analysis techniques (NCA). The method one actually employs depends on what is required from the analysis. If the primary requirement is to determine the degree of exposure following administration of a drug (such as AUC), and perhaps the drug's associated pharmacokinetic parameters, such as clearance, elimination half-life, T (max), C (max), etc., then NCA is generally the preferred methodology to use in that it requires fewer assumptions than model-based approaches.[*] PK urine parameters and PD parameters such as Time Above/Below Baseline/Threshold can be also calculated. Also this package include recipes for plotting PK/PD data. * Gabrielsson J, Weiner D. Non-compartmental analysis. Methods Mol Biol. 2012;929:377-89. doi: 10.1007/978-1-62703-050-2_16. PMID: 23007438. ## Installation ```julia import Pkg; Pkg.add("MetidaNCA") ``` ## Test ```julia Pkg.test("MetidaNCA") ``` ## First step ```julia using DataFrames, CSV, MetidaNCA pkdata2 = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pkdata2.csv")) |> DataFrame ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint, verbose = 2) ``` ## Plots ![Plot 1](https://raw.githubusercontent.com/PharmCat/MetidaNCA.jl/main/img/plot2.png) ![Plot 2](https://raw.githubusercontent.com/PharmCat/MetidaNCA.jl/main/img/plot5.png) ![Plot 3](https://raw.githubusercontent.com/PharmCat/MetidaNCA.jl/main/img/plot6.png)
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
14370
--- title: MetidaNCA validation report author: Vladimir Arnautov date: `j import Dates; Dates.Date(Dates.now())` --- ```julia; echo = false using Dates, DataFrames, CSV, PrettyTables, Latexify ``` # Introduction and package description This is Non-compartment anlysis software. The package is designed for batch processing of pharmacokinetic data. See documentation: * Dev: [https://pharmcat.github.io/MetidaNCA.jl/dev/](https://pharmcat.github.io/MetidaNCA.jl/dev/) * Stable: [https://pharmcat.github.io/MetidaNCA.jl/stable/](https://pharmcat.github.io/MetidaNCA.jl/stable/) ## Validation purpose The main validation purpose is confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled. ## Requirements * Julia 1.6 (or higher) installed for Operating System/OS Version/Architecture in Tier 1 list *Tier 1: Julia is guaranteed to build from source and pass all tests on these platforms when built with the default options. Official binaries are always available and CI is run on every commit to ensure support is actively maintained.* ## Developer software life cycle * Development stage * Testing procedures development * Performing testing procedures on local machine * Push to development branch * Make pull request to main branch * Performing testing procedures with GitHub Actions * Make pull request to the official registry of general Julia packages (if nessesary) * Make release (if previous completed) ### Versions * X.Y.Z - patch release (no breaking changes) * X.Y.0 - minor release (may include breaking changes if X = 0) * X.0.0 - major release (breaking changes, changes in public API) * 0.#.# - no stable public API * 1.#.# or higher - stable public API ## Build support ### Tier 1 * julia-version: 1.6, 1.7, 1.8 * julia-arch: x64 * os: ubuntu-latest, macOS-latest, windows-latest \pagebreak # Installation ## System information * Julia version: `j Sys.VERSION` * Current machine: `j Sys.MACHINE` ## Installation method MetidaNCA.jl can be installed by executing the following command in REPL: ```julia; eval = false import Pkg; Pkg.add("MetidaNCA") ``` ## Version check The installation process is checking within each testing job via GitHub Actions. Also GitHub Action [chek](https://github.com/JuliaRegistries/General/blob/master/.github/workflows/automerge.yml) performed before merging into JuliaRegistries/General repository (see [Automatic merging of pull requests](https://github.com/JuliaRegistries/General#automatic-merging-of-pull-requests)). ```julia; echo = false; results = "hidden" using MetidaNCA, Pkg pkgversion(m::Module) = Pkg.TOML.parsefile(joinpath(dirname(string(first(methods(m.eval)).file)), "..", "Project.toml"))["version"] ver = pkgversion(MetidaNCA) ``` Current package version: ```julia; echo = false; results = "tex" ver ``` # Operation qualification This part of validation based on testing procedures entails running software products under known conditions with defined inputs and documented outcomes that can be compared to their predefined expectations. All documented public API included in testing procedures and part of critical internal methods. Testing procedures can be found in `test` directory. ## Coverage Code coverage report available on [Codecov.io](https://app.codecov.io/gh/PharmCat/MetidaNCA.jl). Test procedures include all public API methods check. * Coverage goal: >= 90.0% ## Data Validation data available in the repository and included in the package. See Appendix 1. ## Testing results ```julia Pkg.test("MetidaNCA") ``` \pagebreak # Performance qualification Purpose of this testing procedures to demonstrate performance for some critical tasks. Results from MetidaNCA compared with Phoenix WinNonlin 8.0 results, see Appendix 2. ## Parameter's names description ```julia; echo = false, results = "tex" dfn = DataFrame( ["Cmax" "Maximum concentration" "Tmax" "Time at Cmax" "Cdose" "Concentration at dose time" "Clast" "Last non-zero concentration" "AUClast" "AUC to Clast" "AUMClast" "AUMC to Clast" "AUCall" "AUC with all values" "Rsq" "r square" "ARsq" "Adjusted r square" "Kel" "Terminal elimination constant" "HL" "Half live or T1/2" "LZint" "Intercept" "Clast_pred" "Predicted Clast" "AUCinf" "AUC extrapolated to infinity" "AUCpct" "Percentage AUClast from AUCinf" "MRTlast" "Mean Residence Time (last)" "MRTinf" "Mean Residence Time (inf)" "Clinf" "Clearence" "Vzinf" "Volume of distribution" "AUCtau" "AUC in Tau range" "AUMCtau" "AUMC in Tau range" "MRTtauinf" "MRT based on Tau" "Cltau" "Clearence in Tau range" "Vztau" "Volume of distribution in Tau range"], ["Name", "Description"]) pkdata2 = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pkdata2.csv")) |> DataFrame upkdata = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "upkdata.csv")) |> DataFrame pddata = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pddata.csv")) |> DataFrame ds = MetidaNCA.pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = MetidaNCA.DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) #pretty_table(dfn; tf = tf_ascii_rounded) show(latexify(dfn; latex=false)) ``` Table: Parameter description \pagebreak ## Output example **Import data:** ```julia; eval = false pkdata2 = CSV.File( joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pkdata2.csv") ) |> DataFrame ds = pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) ``` **Execute NCA:** ```julia; echo = true; wrap = false; line_width = 75 MetidaNCA.nca!(ds[1], adm = :ev, calcm = :lint, verbose = 1) ``` \pagebreak ## Results ### Linear-trapezoidal rule; Extravascular; Dosetime 0.0; No Tau; Dose 100 **Code:** ```julia; eval = false nca!(ds, adm = :ev, calcm = :lint) ``` ```julia; echo = false, results = "tex" include("refdict.jl") header = ["Parameter", "Subject", "Value", "Reference", "Difference"] list = [:Cmax :Tmax :Cdose :Clast :AUClast :AUMClast :AUCall :Rsq :ARsq :Kel :HL :Clast_pred :AUCinf :AUCpct :MRTlast :MRTinf :Clinf :Vzinf] dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :lint) subjects = MetidaNCA.getid(dsnca, :, :Subject) dft = DataFrame("Parameter"=>[], "Subject"=>[], "Value"=>[], "Reference"=>[], "Difference"=>[]) for l in list vals = round.(dsnca[:, l], sigdigits = 6) refs = round.(refdict[l], sigdigits = 6) mx = hcat(fill(l, length(vals)), subjects, vals, refs, vals .- refs) df = DataFrame(mx, header) df.Subject = string.(Int.(df.Subject)) append!(dft, df) end show(latexify(dft)) ``` Table: Plasma data results, Linear-trapezoidal rule, Extravascular \pagebreak ### Linear-Up Log-Down; Extravascular; Dosetime 0.25; Tau 9; Dose 100 **Code:** ```julia; eval = false setdosetime!(ds, DoseTime(dose = 100, time = 0.25, tau = 9)) nca!(ds, adm = :ev, calcm = :luld) ``` ```julia; echo = false, results = "tex" list = [:Cmax :Tmax :Cdose :Clast :AUClast :AUCtau :AUMCtau :AUCall :Rsq :ARsq :Kel :HL :Clast_pred :AUCinf :AUCpct :MRTtauinf :Cltau :Vztau] dt = MetidaNCA.DoseTime(dose = 100, time = 0.25, tau = 9) MetidaNCA.setdosetime!(ds, dt) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :luld) subjects = MetidaNCA.getid(dsnca, :, :Subject) dft = DataFrame("Parameter"=>[], "Subject"=>[], "Value"=>[], "Reference"=>[], "Difference"=>[]) for l in list vals = round.(dsnca[:, l], sigdigits = 6) refs = round.(refdict2[l], sigdigits = 6) mx = hcat(fill(l, length(vals)), subjects, vals, refs, vals .- refs) df = DataFrame(mx, header) df.Subject = string.(Int.(df.Subject)) append!(dft, df) end show(latexify(dft)) ``` Table: Plasma data results, Linear-Up Log-Down, Extravascular \pagebreak ### Linear-trapezoidal rule; Intravascular; Dosetime 0.0; Tau 12; Dose 120 **Code:** ```julia; eval = false setdosetime!(ds, DoseTime(dose = 120, time = 0.0, tau = 12)) nca!(ds, adm = :iv, calcm = :lint) ``` ```julia; echo = false, results = "tex" list = [:Cmax :Tmax :Cdose :Clast :AUClast :AUCtau :AUMCtau :AUCall :Rsq :ARsq :Kel :HL :Clast_pred :AUCinf :AUCpct :MRTtauinf :Cltau :Vztau] dt = MetidaNCA.DoseTime(dose = 120, time = 0.0, tau = 12) MetidaNCA.setdosetime!(ds, dt) dsnca = MetidaNCA.nca!(ds, adm = :iv, calcm = :lint) subjects = MetidaNCA.getid(dsnca, :, :Subject) dft = DataFrame("Parameter"=>[], "Subject"=>[], "Value"=>[], "Reference"=>[], "Difference"=>[]) for l in list vals = round.(dsnca[:, l], sigdigits = 6) refs = round.(refdict3[l], sigdigits = 6) mx = hcat(fill(l, length(vals)), subjects, vals, refs, vals .- refs) df = DataFrame(mx, header) df.Subject = string.(Int.(df.Subject)) append!(dft, df) end show(latexify(dft)) ``` Table: Plasma data results, Linear-trapezoidal rule, Intravascular \pagebreak ### Linear/Log Trapezoidal rule; Extravascular; Dosetime 0.0; Tau 12; Dose 120 **Code:** ```julia; eval = false setdosetime!(ds, DoseTime(dose = 120, time = 0.0, tau = 12)) nca!(ds, adm = :ev, calcm = :logt) ``` ```julia; echo = false, results = "tex" list = [:Cmax :Tmax :Cdose :Clast :AUClast :AUCtau :AUMCtau :AUCall :Rsq :ARsq :Kel :HL :Clast_pred :AUCinf :AUCpct :MRTtauinf :Cltau :Vztau] dt = MetidaNCA.DoseTime(dose = 120, time = 0.0, tau = 12) MetidaNCA.setdosetime!(ds, dt) dsnca = MetidaNCA.nca!(ds, adm = :ev, calcm = :logt) subjects = MetidaNCA.getid(dsnca, :, :Subject) dft = DataFrame("Parameter"=>[], "Subject"=>[], "Value"=>[], "Reference"=>[], "Difference"=>[]) for l in list vals = round.(dsnca[:, l], sigdigits = 6) refs = round.(refdict4[l], sigdigits = 6) mx = hcat(fill(l, length(vals)), subjects, vals, refs, vals .- refs) df = DataFrame(mx, header) df.Subject = string.(Int.(df.Subject)) append!(dft, df) end show(latexify(dft)) ``` Table: Plasma data results, Linear/Log Trapezoidal rule, Extravascular \pagebreak ### Urine data; Linear-trapezoidal rule; Extravascular; Dosetime 0.0; Dose 100 **Code:** ```julia; eval = false upkds = upkimport(upkdata, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100)) MetidaNCA.nca!(upkds) ``` ```julia; echo = false, results = "tex" list = collect(keys(urefdict)) upkds = MetidaNCA.upkimport(upkdata, :st, :et, :conc, :vol, :subj; dosetime = MetidaNCA.DoseTime(dose = 100)) dsnca = MetidaNCA.nca!(upkds) pname = string.(list) vals = zeros(Float64, length(list)) refs = zeros(Float64, length(list)) for i = 1: length(list) vals[i] = round(dsnca[1, list[i]], sigdigits = 6) refs[i] = round(urefdict[list[i]], sigdigits = 6) end mx = hcat(pname, vals, refs, vals .- refs) df = DataFrame(mx, ["Parameter", "Value", "Reference", "Difference"]) show(latexify(df)) ``` Table: Urine data results \pagebreak ### Pharmacodynamics data; Linear-trapezoidal rule **Code:** ```julia; eval = false pd = MetidaNCA.pdimport(pddata, :time, :obs; bl = 3.0, th = 1.5, id = Dict(:subj => 1)) pdres = MetidaNCA.nca!(pd) ``` ```julia; echo = false, results = "tex" list = collect(keys(pdrefdict)) pd = MetidaNCA.pdimport(pddata, :time, :obs; bl = 3.0, th = 1.5, id = Dict(:subj => 1)) pdres = MetidaNCA.nca!(pd) pname = string.(list) vals = zeros(Float64, length(list)) refs = zeros(Float64, length(list)) for i = 1: length(list) vals[i] = round(pdres[list[i]], sigdigits = 6) refs[i] = round(pdrefdict[list[i]], sigdigits = 6) end mx = hcat(pname, vals, refs, vals .- refs) df = DataFrame(mx, ["Parameter", "Value", "Reference", "Difference"]) show(latexify(df)) ``` Table: Pharmacodynamics data results \pagebreak # Glossary * Installation qualification (IQ) - Establishing confidence that process equipment and ancillary systems are compliant with appropriate codes and approved design intentions, and that manufacturer's recommendations are suitably considered. * Operational qualification (OQ) Establishing confidence that process equipment and sub-systems are capable of consistently operating within established limits and tolerances. * Product performance qualification (PQ) - Establishing confidence through appropriate testing that the finished product produced by a specified process meets all release requirements for functionality and safety. * Repository - GitHub repository: https://github.com/PharmCat/MetidaNCA.jl * Master branch - main branch on GitHub ([link](https://github.com/PharmCat/MetidaNCA.jl/tree/main)). * Current machine - pc that used for validation report generating. # Reference * [General Principles of Software Validation; Final Guidance for Industry and FDA Staff](https://www.fda.gov/media/73141/download) * [Guidance for Industry Process Validation: General Principles and Practices](https://www.fda.gov/files/drugs/published/Process-Validation--General-Principles-and-Practices.pdf) * [Glossary of Computer System Software Development Terminology](https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/glossary-computer-system-software-development-terminology-895) \pagebreak # Appendix 1 ### Testing PK dataset. ```julia; echo = false pretty_table(pkdata2; tf = tf_ascii_rounded, header = names(pkdata2)) ``` \pagebreak ### Testing urine PK dataset. ```julia; echo = false pretty_table(upkdata; tf = tf_ascii_rounded, header = names(upkdata)) ``` \pagebreak ### Testing PD dataset. ```julia; echo = false pretty_table(pddata; tf = tf_ascii_rounded, header = names(pddata)) ``` \pagebreak # Appendix 2 ### Reference output. Avialible at [https://github.com/PharmCat/MetidaNCA.jl/tree/main/docs/src/pdf](https://github.com/PharmCat/MetidaNCA.jl/tree/main/docs/src/pdf). See [Appendix 2.1.pdf](https://github.com/PharmCat/MetidaNCA.jl/blob/main/docs/src/pdf/Appendix2.1.pdf), [Appendix 2.2.pdf](https://github.com/PharmCat/MetidaNCA.jl/blob/main/docs/src/pdf/Appendix2.2.pdf), [Appendix 2.3.pdf](https://github.com/PharmCat/MetidaNCA.jl/blob/main/docs/src/pdf/Appendix2.3.pdf), [Appendix 2.4.pdf](https://github.com/PharmCat/MetidaNCA.jl/blob/main/docs/src/pdf/Appendix2.4.pdf), [Appendix 2.5.pdf](https://github.com/PharmCat/MetidaNCA.jl/blob/main/docs/src/pdf/Appendix2.5.pdf).
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
1506
# API ## Main ### nca! ```@docs MetidaNCA.nca! ``` ### nca ```@docs MetidaNCA.nca ``` ### pkimport ```@docs MetidaNCA.pkimport ``` ### upkimport ```@docs MetidaNCA.upkimport ``` ### pdimport ```@docs MetidaNCA.pdimport ``` ## Types ### DoseTime ```@docs MetidaNCA.DoseTime ``` ### ElimRange ```@docs MetidaNCA.ElimRange ``` ### LimitRule ```@docs MetidaNCA.LimitRule ``` ### MetidaNCA.PKSubject ```@docs MetidaNCA.PKSubject ``` ### MetidaNCA.NCAResult ```@docs MetidaNCA.NCAResult ``` ## Functions ### applylimitrule! ```@docs MetidaNCA.applylimitrule! ``` ### getbl ```@docs MetidaNCA.getbl ``` ### getdosetime ```@docs MetidaNCA.getdosetime ``` ### getkelauto ```@docs MetidaNCA.getkelauto ``` ### getkelrange ```@docs MetidaNCA.getkelrange ``` ### getkeldata ```@docs MetidaNCA.getkeldata ``` ### getth ```@docs MetidaNCA.getth ``` ### pkplot ```@docs MetidaNCA.pkplot ``` ### setbl! ```@docs MetidaNCA.setbl! ``` ### setdosetime! ```@docs MetidaNCA.setdosetime! ``` ### setkelauto! ```@docs MetidaNCA.setkelauto! ``` ### setkelrange! ```@docs MetidaNCA.setkelrange! ``` ### setth! ```@docs MetidaNCA.setth! ``` ### timefilter ```@docs MetidaNCA.timefilter ``` ## Atomic ### auc_sparse ```@docs MetidaNCA.auc_sparse ``` > **Warning** > Atomic functions: `cmax`, `tmax`, `auc` not exported, use `import MetidaNCA: cmax, tmax, auc;`. ### auc ```@docs MetidaNCA.auc ``` ### cmax ```@docs MetidaNCA.cmax ``` ### tmax ```@docs MetidaNCA.tmax ```
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
3142
# Details ## Using LimitRule ```julia ll = LimitRule(;lloq = 0.1, btmax = 0.0, atmax = NaN, nan = NaN, rm = true) ``` It means that all values below `lloq` will be replaced by `btmax` before Tmax and replaced by `atmax` after Tmax; `NaN` values will be replaced by `nan`. If `rm` is `true`, all `NaN` values will be deleted. See also: [`applylimitrule!`](@ref). ## Using DoseTime ```julia dt = DoseTime(dose = 200.0, time = 0.0) ``` DoseTime can be appliet to each subject or dataset and can be used with [`pkimport`](@ref). ```julia ds = pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = dt) ``` DoseTime for staedy-state PK: ```julia dt = DoseTime(dose = 100.0, time = 0.25, tau = 9.0) ``` See also: [`setdosetime!`](@ref). ## Calculation steps for PK NCA ### Step 1 Filter all values before dose time and `NaN` or `missing` values after last measurable concentration. If TAU set, calculate start and end timepoints for AUCtau. ### Step 2 Cmax, Tmax calculation. Interpolate `NaN` and `missing` values. !!! note If more than one maximum - only first observation used for define Tmax. ### Step 3 Exclude interpolated points from calculation (add to `excltime`). Elimination parameters calculation. Find last concentration > 0 and time for last concentration > 0. !!! note If `kelstart` or `kelend` in `excltime` then `kelauto` set to `true`. !!! note If `kelauto` is `true` than range of observations for elimination will start from Tmax if administration set as `iv`, and from next observation after Tmax in other cases. ### Step 4 Shift all time values by dose time. ### Step 5 Calculate dose concentration (Cdose). !!! note If there is no concentration for dosing time: * If administration set as `iv` if 1st observation > than 2nd and both > 0 - Dose concentration is log-extrapolated, else set as 1st observation. * If administration not `iv`, than if Tau used Dose concentration set as minimal concentration, in other case set as 0. ### Step 6 Calculate areas. !!! note If AUClast is 0, than AUClast, AUMClast and AUCall set as `NaN`, so other dependent parameters is `NaN` too. ### Step 7 Calculate steady-state parameters. !!! note If end of tau interval lies between two observation, than interpolation used to compute Ctau and partial AUCs; `intpm` keyword used to define interpolation method. If end of tau interval lies after all observation, than extrapolation used to compute Ctau and partial AUCs. Extrapolation based on using elimination parameters. ## [Unitful details](@id unitful_details) !!! warning **Unitful.jl** MetidaNCA can work with [Unitful.jl](https://painterqubits.github.io/Unitful.jl/stable/). There is no guarantee that all functions will work without errors. All validation procedures with Unitful should be done manually before use. !!! warning **Dose and time settings** If you are using Unitful, check `dositime` settings: `DoseTime(dose = 100u"mg", time = 0u"hr")`. For properly results all values should have units (including time and concentration data in data table).
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
3338
# Examples ```@setup ncaexample ENV["GKSwstype"] = "nul" ``` ## Import Use [`pkimport`](@ref) to import PK data from table to subject set. ```@example ncaexample using MetidaNCA, CSV, DataFrames; pkdata2 = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pkdata2.csv")) |> DataFrame ds = pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = DoseTime(dose = 100, time = 0)) sort!(ds, :Subject) ``` ## NCA Perform NCA analysis with [`nca!`](@ref). Access to result set is similar to DataFrame or any table. Find parameter list [here](@ref parameter_list). ```@example ncaexample dsnca = nca!(ds, adm = :ev, calcm = :lint) dsnca[:, :AUClast] ``` ## Partial AUC ```@example ncaexample dsnca = nca!(ds, adm = :ev, calcm = :lint, partials = [(1, 7)]) dsnca[:, :AUC_1_7] ``` ## Result modification or custom parameter function ```@example ncaexample # Define modify! function for new parameter function newparam(data) data.result[:AUChalf] = data.result[:AUClast] / 2 end dsncanp = nca!(ds, modify! = newparam) dsncanp[1][:AUChalf] ``` Function `newparam` applyed to [`NCAResult`](@ref). ## Print output ```@example ncaexample dsnca = nca!(ds[1], adm = :ev, calcm = :lint, verbose = 2); ``` ## Plotting ```@example ncaexample using Plots p = pkplot(ds; typesort = :Subject, pagesort = NoPageSort(), filter = Dict(:Formulation => "R")) png(p, "plot1.png") p = pkplot(ds; typesort = :Formulation, pagesort = NoPageSort(), legend = true) png(p, "plot2.png") p = pkplot(ds; elim = true, ls = true) png(p[1][2], "plot3.png") # If pagesort used - return pairs with `Page ID` => `Plot` p = pkplot(ds; typesort = :Subject, pagesort = :Formulation) png(p[1][2], "plot4.png") ``` #### Plot 1 ![](plot1.png) #### Plot 2 ![](plot2.png) #### Plot 3 ![](plot3.png) #### Plot 4 ![](plot4.png) ## Set dose time You can set dose time with [`setdosetime!`](@ref) for whole subject set or for selected subjects. ```@example ncaexample dt = DoseTime(dose = 200, time = 0) setdosetime!(ds, dt, Dict(:Formulation => "R")) dsnca = nca!(ds) dsnca[:, :Dose] ``` ## Set range for elimination By default no exclusion or range specified. With [`setkelrange!`](@ref) elimination range and exclusion can be specified for whole subject set or for any selected subjects. ```@example ncaexample kr = ElimRange(kelstart = 4, kelend = 12, kelexcl = Int[5,6]) setkelrange!(ds, kr, [1,2,3]) dsnca = nca!(ds) p = pkplot(ds[1]; elim = true) png(p, "plot5.png") getkeldata(ds[1]) ``` #### Plot 5 ![](plot5.png) ## Without import You can use [`nca`](@ref) for NCA analysis directly from tabular data. ```@example ncaexample dsnca = nca(pkdata2, :Time, :Concentration, [:Subject, :Formulation]; dosetime = DoseTime(dose = 100, time = 0)) sort!(dsnca, :Subject) dsnca[:, :AUClast] ``` ## PD subject Use [`pdimport`](@ref) to import PD data from table to subject set. #### Import & NCA ```@example ncaexample pddata = CSV.File(joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pddata.csv")) |> DataFrame pd = MetidaNCA.pdimport(pddata, :time, :obs, :subj; bl = 1.5, th = 5.0) MetidaNCA.nca!(pd[1]) ``` #### PD subject plotting ```@example ncaexample p = MetidaNCA.pkplot(pd[1], drawth = true, drawbl = true) png(p, "plot6.png") ``` ![](plot6.png)
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
2093
# MetidaNCA ```@meta CurrentModule = MetidaNCA ``` Non-compartment pharmacokinetic analysis (NCA). The package is designed for batch processing of pharmacokinetic data. *This program comes with absolutely no warranty. No liability is accepted for any loss and risk to public health resulting from use of this software. *Always validate software with known results before use. ## NCA Pharmacokinetics, sometimes abbreviated as PK, is a branch of pharmacology dedicated to determine the fate of substances administered to a living organism. When analyzing pharmacokinetic data, one generally employs either model fitting using nonlinear regression analysis or non-compartmental analysis techniques (NCA). The method one actually employs depends on what is required from the analysis. If the primary requirement is to determine the degree of exposure following administration of a drug (such as AUC), and perhaps the drug's associated pharmacokinetic parameters, such as clearance, elimination half-life, T (max), C (max), etc., then NCA is generally the preferred methodology to use in that it requires fewer assumptions than model-based approaches. ## Validation Validation report: [validation_report.pdf](./validation_report.pdf). Appendix 2: [Appendix2.1.pdf](./pdf/Appendix2.1.pdf), [Appendix2.2.pdf](./pdf/Appendix2.2.pdf), [Appendix2.3.pdf](./pdf/Appendix2.3.pdf), [Appendix2.4.pdf](./pdf/Appendix2.4.pdf), [Appendix2.5.pdf](./pdf/Appendix2.5.pdf). ## Unitful See [Unitful details](@ref unitful_details). ## Contents ```@contents Pages = [ "examples.md", "parameters.md", "api.md", ] Depth = 3 ``` ## Reference * Makoid C, Vuchetich J, Banakar V (1996-1999), Basic Pharmacokinetics; * Gabrielsson and Weiner (1997), Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications; * Gibaldi and Perrier (1982), Pharmacokinetics; * Wagner (1975), Fundamentals of Clinical Pharmacokinetics. * Gabrielsson J, Weiner D. Non-compartmental analysis. Methods Mol Biol. 2012;929:377-89. doi: 10.1007/978-1-62703-050-2_16. PMID: 23007438.
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.5.13
e7a74076e469eb9611b204bab0cc9e5c69453894
docs
4271
# [Parameter list](@id parameter_list) ## Basic parameters ### :Cmax Maximum concentration from dose time to dose time + tau (if tau > 0). Firs observation used. ### :Tmax Time at maximum concentration from dose time to dose time + tau (if tau > 0). Firs observation used. ### :Cdose By default dose time is 0. If concentration at dose time present in observation list - this concentration will be used. For extravascular setting (:ev) if τ used (τ > 0) Cdose set as minimum concentration from dose time to τ time [:Ctaumin](#:Ctaumin), else set equal to zero. For IV (:iv) if 1-st observation > 2-nd observation > 0 then logarithmic extrapolation used, else set equal to 1-st observation. ### AUC / AUMC Area under Curve / Area under the Moment Curve. ```math AUC = \sum_{n=1}^N AUC_{n} ``` ```math AUMC = \sum_{n=1}^N AUMC_{n} ``` Where `AUCn`/`AUMCn`- partial AUC/AUMC. #### Linear trapezoidal rule ```math AUC\mid_{t_1}^{t_2} = \delta t \times \frac{C_1 + C_2}{2} ``` ```math AUMC\mid_{t_1}^{t_2} = \delta t \times \frac{t_1 \times C_1 + t_2 \times C_2}{2} ``` #### Logarithmic trapezoidal rule ```math AUC\mid_{t_1}^{t_2} = \delta t \times \frac{ C_2 - C_1}{ln(C_2/C_1)} ``` ```math AUMC\mid_{t_1}^{t_2} = \delta t \times \frac{t_2 \times C_2 - t_1 \times C_1}{ln(C_2/C_1)} - \delta t^2 \times \frac{ C_2 - C_1}{ln(C_2/C_1)^2} ``` #### Interpolation ##### Linear interpolation rule ```math C_x = C_1 + \frac{(t_x-t_1)\times(C_2 - C_1)}{t_2 - t_1} ``` ##### Logarithmic interpolation rule ```math C_x = exp\left(ln(C_1) + \frac{(t_x-t_1)\times(ln(C_2) - ln(C_1))}{t_2 - t_1}\right) ``` #### :AUClast Area under the curve from dose time to last observed concentration (>0). #### :AUMClast Area under the Moment Curve from dose time to last observed concentration (>0). Dose time is the starting point for this calculation. #### :AUCall All values used to calculate AUC. ### :Kel 𝝺z - elimination constant. Linear regression at the terminal phase used for logarithmic transformed concentration data. ### :HL Half-Life; T1/2 ```math HL = ln(2) / \lambda_z ``` ### :Rsq Coefficient of determination (R²). ### :ARsq Adjusted coefficient of determination (R²). ### :NpLZ Number of points for elimination calculation. ### :MRTlast Mean residence time (MRT) from the dose time to the time of the last observed concentration. ```math MRT_{last} = AUMC_{last} / AUC_{last} ``` ## If :Kel calculated ### :AUCinf AUC extrapolated from the last observed concentration to infinity. ```math AUC_\infty = AUC_{last} + \frac{C_{last}}{\lambda_z} ``` ### :AUMCinf AUMC extrapolated from the last observed concentration to infinity. ```math AUMC_\infty = AUMC_{last} + \frac{t_{last}\times C_{last}}{\lambda_z} + \frac{C_{last}}{\lambda_z^2} ``` ### :AUCpct Percentage of AUCinf due to extrapolation from the last observed concentration to infinity. ```math AUCpct = (AUC_\infty - AUC_{last}) / AUC_\infty * 100 \% ``` #### :AUCinf_pred AUC extrapolated to infinity from the predicted concentration. ```math AUC_{\infty pred} = AUC_{last} + \frac{C_{last pred}}{\lambda_z} ``` ## If Dose used ### Clearance #### :Cllast ```math CL_{last} = Dose / AUC_{last} ``` #### :Clinf Total body clearance for extravascular administration. ```math CL_\infty = Dose / AUC_\infty ``` #### :Vzinf Volume of distribution based on the terminal phase. ## Steady-state parameters (If τ used) τ-time = dose_time + τ ### :AUCtau Area under the curve from dose time to τ-time. ### :AUMCtau Area under the Moment Curve from the dose time to τ-time. ### :Ctau Concentration at τ-time. ### :Ctaumin Minimum concentration from the dose time to τ-time. ### :Cavg ```math C_{avg} = AUC_\tau / \tau ``` ### :Fluc Fluctuation ```math Fluc = ( C_{max} - C_{\tau min} ) / C_{avg} * 100 \% ``` ### :Fluctau Fluctuation Tau ```math Fluc\tau = ( C_{max} - C_{\tau} ) / C_{avg} * 100 \% ``` ### :Accind Accumulation index. ```math Accind = \frac{1}{1 - exp(-\lambda_z \tau)} ``` ### :MRTtauinf ```math MRT_{\tau\inf} = (AUMC_\tau + \tau * (AUC_\infty - AUC_\tau)) / AUC_\tau ``` ### :Swing ```math Swing = (C_{max} - C_{\tau min}) / C_{\tau min} ``` ### :Swingtau ```math Swing_{\tau} = (C_{max} - C_{\tau}) / C_{\tau} ```
MetidaNCA
https://github.com/PharmCat/MetidaNCA.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
1420
using Documenter, Microstructure push!(LOAD_PATH, "../src/") mathengine = MathJax3( Dict( :loader => Dict("load" => ["[tex]/require", "[tex]/mathtools"]), :tex => Dict( "inlineMath" => [["\$", "\$"], ["\\(", "\\)"]], "packages" => ["base", "ams", "autoload", "mathtools", "require"], ), ), ) makedocs(; sitename="Microstructure.jl", authors="Ting Gong", modules=[Microstructure], clean=true, doctest=false, linkcheck=true, warnonly=[:docs_block, :missing_docs, :cross_references, :linkcheck], format = Documenter.HTML(; mathengine=mathengine, sidebar_sitename = false, prettyurls = get(ENV, "CI", nothing) == "true" ), pages=[ "Home" => "index.md", "Getting started" => "getting_started.md", "Manual" => Any[ "manual/dMRI.md", "manual/compartments.md", "manual/models.md", "manual/estimators.md", "manual/multithreads.md", ], "Tutorials" => Any[ "tutorials/1_build_models.md", "tutorials/2_quality_of_fit.md", "tutorials/3_data_generation.md", "tutorials/4_noise_propagation.md", "tutorials/5_model_selection.md", ], "guide.md", ], ) deploydocs(; repo="github.com/Tinggong/Microstructure.jl.git", push_preview=true)
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
249
# Development version module Microstructure include("dMRI.jl") include("values.jl") include("compartments.jl") include("models_smt.jl") include("estimators_mcmc.jl") include("estimators_nn.jl") include("threading.jl") include("diagnostics.jl") end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
16305
# This script builds compartment structs with fields of relevant tissue parameters and # forward functions inferencing signals from the compartment model and imaging protocol. # # Featuring spherical mean based models with compartmental relaxation-weighting. using LinearAlgebra, SpecialFunctions export Cylinder, Stick, Zeppelin, Iso, Sphere, compartment_signals, Compartment, smt_signals # export compartment_signals!, smt_signals! """ Compartment Type is an abstract type that includes the `Cylinder`, `Stick`, `Zeppelin`, `Sphere` and `Iso` type. A Compartment Type object contains relevant tissue parameters that affect the MRI signals. Each type of compartment contain a `t2` field for combined-diffusion-T2 imaging. When your data supports only T2-weighted compartment modelling, i.e. acquired with single-TE, set the `t2` field to zero for conventional dMRI modelling. """ abstract type Compartment end """ Cylinder( da::Float64, dpara::Float64, d0::Float64, t2::Float64 ) Return a Cylinder Type object with the cylinder diameter `da`, parallel diffusivity `dpara`, the intrinsic diffusivity `d0` and the T2 relaxation time `t2`. # Examples ```julia-repl julia> Cylinder(da = 3.0e-6, dpara = 1.8e-9, d0 = 1.7e-9, t2 = 90e-3) Cylinder(3.0e-6, 1.8e-9, 1.7e-9, 0.09) ``` """ Base.@kwdef mutable struct Cylinder <: Compartment da::Float64 = 3.0e-6 dpara::Float64 = 0.6e-9 d0::Float64 = 0.6e-9 t2::Float64 = 0.0 end """ Stick(dpara::Float64, t2::Float64) Return a Stick Type object with parallel diffusivity `dpara` and T2 relaxation time `t2`. The perpendicular diffusivity of a Stick model is zero. # Examples ```julia-repl julia> Stick(dpara = 1.7e-6, t2 = 60e-3) Stick(1.7e-6, 0.06) ``` """ Base.@kwdef mutable struct Stick <: Compartment dpara::Float64 = 0.6e-9 t2::Float64 = 0.0 end """ Zeppelin( dpara::Float64, dperp_frac::Float64, t2::Float64 ) Return a Zeppelin Type object with parallel diffusivity `dpara`, axially symmetric perpendicular diffusivity represented as a fraction of the parallel diffusivity `dperp_frac`, and the T2 relaxation time `t2`. # Examples ```julia-repl julia> Zeppelin(dpara = 1.7e-6, dperp_frac = 0.5, t2 = 0.0) Zeppelin(1.7e-6, 0.5, 0.0) ``` """ Base.@kwdef mutable struct Zeppelin <: Compartment dpara::Float64 = 0.6e-9 dperp_frac::Float64 = 0.5 t2::Float64 = 0.0 end """ Sphere( diff::Float64, size::Float64, t2::Float64 ) Return a Sphere Type object with diffusivity within sphere `diff`, spherical radius `size`, and T2 relaxation time `t2`. # Examples ```julia-repl julia> Sphere(diff = 3.0e-9, size = 8.0e-6, t2 = 45e-3) Sphere(3.0e-9, 8.0e-6, 0.045) ``` """ Base.@kwdef mutable struct Sphere <: Compartment diff::Float64 = 2e-9 size::Float64 = 4e-6 t2::Float64 = 0.0 end """ Iso(diff::Float64, t2=Float64) Return an isotropic tensor with diffusivity `diff` and T2 relaxation time `t2`. This compartment can be used to represent CSF (`diff` = free water) or dot compartment (`diff` = 0). The latter is for immobile water typically seen in ex vivo tissue. This compartment can also represent an isotropic extra-cellular environment with diffusivity `diff` slower than free water. # Examples ```julia-repl julia> Iso(diff = 3.0e-9,t2 = 2000.0e-3) Iso(3.0e-9, 2.0) ``` ```julia-repl julia> Iso(diff = 0.0) Iso(0.0, 0.0) ``` """ Base.@kwdef mutable struct Iso <: Compartment diff::Float64 = 2e-9 t2::Float64 = 0.0 end """ compartment_signals(model::Compartment,protocol::Protocol) Return compartment signals given a compartment object `model` and a imaging `protocol`. `model` can be the `Cylinder`/`Zeppelin`/`Stick`/`Sphere`/`Iso` Type. When `t2` in compartment `model` is set as default (0), relaxation-weightings are not considered in the signal equation. ### References If you use these compartments to build models, please cite the recommended references. # For using any compartment in current release, please cite the following references for expressions of spherical mean/power averaging: Callaghan, P.T., Jolley, K.W., Lelievre, J., 1979. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys J 28, 133. https://doi.org/10.1016/S0006-3495(79)85164-4 Kroenke, C.D., Ackerman, J.J.H., Yablonskiy, D.A., 2004. On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn Reson Med 52, 1052–1059. https://doi.org/10.1002/MRM.20260 Kaden, E., Kruggel, F., Alexander, D.C., 2016. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn Reson Med 75, 1752–1763. https://doi.org/10.1002/MRM.25734 # Consider the following reference for overview of all tissue compartments: Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C., 2012. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 59, 2241–2254. # Cylinder compartment: Van Gelderen, P., Des Pres, D., Van Zijl, P.C.M., Moonen, C.T.W., 1994. Evaluation of Restricted Diffusion in Cylinders. Phosphocreatine in Rabbit Leg Muscle. J Magn Reson B 103, 255–260. https://doi.org/10.1006/JMRB.1994.1038 Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B., 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389. https://doi.org/10.1016/j.neuroimage.2010.05.043 Fan, Q., Nummenmaa, A., Witzel, T., Ohringer, N., Tian, Q., Setsompop, K., Klawiter, E.C., Rosen, B.R., Wald, L.L., Huang, S.Y., 2020. Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. Neuroimage 222. Andersson, M., Pizzolato, M., Kjer, H.M., Skodborg, K.F., Lundell, H., Dyrby, T.B., 2022. Does powder averaging remove dispersion bias in diffusion MRI diameter estimates within real 3D axonal architectures? Neuroimage 248. # Sphere compartment: Neuman, C.H., 1974. Spin echo of spins diffusing in a bounded medium. J Chem Phys 4508–4511. https://doi.org/10.1063/1.1680931 Balinov, B., Jönsson, B., Linse, P., Söderman, O., 1993. The NMR Self-Diffusion Method Applied to Restricted Diffusion. Simulation of Echo Attenuation from Molecules in Spheres and between Planes. J Magn Reson A 104, 17–25. https://doi.org/10.1006/JMRA.1993.1184 # Stick compartment: Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn Reson Med 50, 1077–1088. https://doi.org/10.1002/MRM.10609 Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C., 2012. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 59, 2241–2254. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072 # Zeppelin & Iso: Alexander, D.C., 2008. A General Framework for Experiment Design in Diffusion MRI and Its Application in Measuring Direct Tissue-Microstructure Features. Magn Reson Med 60, 439–448. https://doi.org/10.1002/mrm.21646 Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C., 2012. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 59, 2241–2254. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072 # Compartmental T2-weighting: Veraart, J., Novikov, D.S., Fieremans, E., 2017. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times. https://doi.org/10.1016/j.neuroimage.2017.09.030 Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O., Englund, E., Mårtensson, J., Westin, C.F., Nilsson, M., 2019. Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp 40, 2529–2545. https://doi.org/10.1002/hbm.24542 Gong, T., Tong, Q., He, H., Sun, Y., Zhong, J., Zhang, H., 2020. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times. Neuroimage 217. https://doi.org/10.1016/j.neuroimage.2020.116906 Gong, T., Tax, C.M., Mancini, M., Jones, D.K., Zhang, H., Palombo, M., 2023. Multi-TE SANDI: Quantifying compartmental T2 relaxation times in the grey matter. Toronto. """ function compartment_signals(model::Cylinder, prot::Protocol) # use this vector repeatedly to collect signals signals = zeros(length(prot.bval)) # these two steps are not counted in allocations when using StaticVectors (for BesselJ_Roots) alphm = BesselJ_RootsCylinder ./ (model.da ./ 2.0) c1 = 1.0 ./ ( model.d0 .^ 2.0 .* alphm .^ 6.0 .* ((model.da ./ 2.0) .^ 2.0 .* alphm .^ 2.0 .- 1.0) ) # these two will not be allocated if protocol is decleared using SVector c2 = .-prot.tsmalldel .- prot.tdelta c3 = prot.tsmalldel .- prot.tdelta ### this is not faster #signals = MVector{N,Float64}(zeros(length(prot.bval),)) #c2 = SVector{N,Float64}(-prot.tsmalldel .- prot.tdelta) #c3 = SVector{N,Float64}(prot.tsmalldel .- prot.tdelta) for i in 1:(10::Int) # up to 10th order a = model.d0 .* alphm[i] .^ 2.0 signals .= signals .+ c1[i] .* ( 2.0 .* a .* prot.tsmalldel .- 2.0 .+ 2.0 .* exp.(-a .* prot.tsmalldel) .+ 2.0 .* exp.(-a .* prot.tdelta) .- exp.(a .* c2) .- exp.(a .* c3) ) end signals .= -2 .* gmr .^ 2 .* prot.gvec .^ 2 .* signals signals .= exp.(signals) .* sqrt.(pi ./ 4.0 ./ (prot.bval .* model.dpara .+ signals)) .* erf.(sqrt.(prot.bval .* model.dpara .+ signals)) signals[findall(iszero, prot.bval)] .= 1.0 iszero(model.t2) && return signals return signals .* exp.(-prot.techo ./ model.t2) end # Stick signals function compartment_signals(model::Stick, prot::Protocol) signals = smt_signals(prot, model.dpara, 0.0) iszero(model.t2) && return signals return signals .* exp.(-prot.techo ./ model.t2) end # Zeppelin signals function compartment_signals(model::Zeppelin, prot::Protocol) dperp = model.dpara .* model.dperp_frac signals = smt_signals(prot, model.dpara, dperp) iszero(model.t2) && return signals # t2 not considered return signals .* exp.(-prot.techo ./ model.t2) end # Sphere signals function compartment_signals(model::Sphere, prot::Protocol) signals = zeros(length(prot.tdelta)) alphm = BesselJ_RootsSphere ./ model.size c1 = alphm .^ (-4.0) ./ (alphm .^ 2.0 .* model.size .^ 2.0 .- 2.0) c2 = -prot.tsmalldel .- prot.tdelta c3 = prot.tsmalldel .- prot.tdelta for i in 1:(31::Int) #eachindex(alphm) a = model.diff .* alphm[i] .^ 2.0 signals .= signals .+ c1[i] .* ( 2.0 .* prot.tsmalldel .- ( 2.0 .+ exp.(a .* c3) .- 2.0 .* exp.(-a .* prot.tsmalldel) .- 2.0 .* exp.(-a .* prot.tdelta) .+ exp.(a .* c2) ) ./ a ) end signals .= exp.(-2.0 .* gmr .^ 2.0 .* prot.gvec .^ 2.0 ./ model.diff .* signals) signals[findall(iszero, prot.bval)] .= 1.0 iszero(model.t2) && return signals # t2 not considered return signals .* exp.(-prot.techo ./ model.t2) end # Isotropic signals function compartment_signals(model::Iso, prot::Protocol) iszero(model.t2) && return exp.(-prot.bval .* model.diff) return exp.(-prot.bval .* model.diff .- prot.techo ./ model.t2) end # Spherical mean signals given parallel and perpendicular diffusivities function smt_signals(prot::Protocol, dpara::Float64, dperp::Float64) signals = prot.bval .* (dpara .- dperp) signals .= exp.(-prot.bval .* dperp) .* sqrt.(pi ./ 4.0 ./ signals) .* erf.(sqrt.(signals)) signals[findall(iszero, prot.bval)] .= 1.0 return signals end ###################### to test mutating functions ###################################### """ under testing mutating signals """ function compartment_signals!(signals::Vector{Float64}, model::Cylinder, prot::Protocol) # set to 0 and collect signals signals .= 0.0 # these two steps are not counted in allocations when using StaticVectors (for BesselJ_Roots) alphm = BesselJ_RootsCylinder ./ (model.da ./ 2.0) c1 = 1.0 ./ ( model.d0 .^ 2.0 .* alphm .^ 6.0 .* ((model.da ./ 2.0) .^ 2.0 .* alphm .^ 2.0 .- 1.0) ) # these two will not be allocated if protocol is decleared using SVector c2 = .-prot.tsmalldel .- prot.tdelta c3 = prot.tsmalldel .- prot.tdelta for i in 1:(10::Int) # up to 10th order a = model.d0 .* alphm[i] .^ 2.0 signals .= signals .+ c1[i] .* ( 2.0 .* a .* prot.tsmalldel .- 2.0 .+ 2.0 .* exp.(-a .* prot.tsmalldel) .+ 2.0 .* exp.(-a .* prot.tdelta) .- exp.(a .* c2) .- exp.(a .* c3) ) end signals .= -2 .* gmr .^ 2 .* prot.gvec .^ 2 .* signals signals .= exp.(signals) .* sqrt.(pi ./ 4.0 ./ (prot.bval .* model.dpara .+ signals)) .* erf.(sqrt.(prot.bval .* model.dpara .+ signals)) signals[findall(iszero, prot.bval)] .= 1.0 iszero(model.t2) && return signals signals .= signals .* exp.(-prot.techo ./ model.t2) return signals end # Stick signals function compartment_signals!(signals::Vector{Float64}, model::Stick, prot::Protocol) smt_signals!(signals, prot, model.dpara, 0.0) iszero(model.t2) && return signals signals .= signals .* exp.(-prot.techo ./ model.t2) return signals end # Zeppelin signals function compartment_signals!(signals::Vector{Float64}, model::Zeppelin, prot::Protocol) dperp = model.dpara .* model.dperp_frac smt_signals!(signals, prot, model.dpara, dperp) iszero(model.t2) && return signals # t2 not considered signals .= signals .* exp.(-prot.techo ./ model.t2) return signals end # Sphere signals function compartment_signals!(signals::Vector{Float64}, model::Sphere, prot::Protocol) signals .= 0.0 alphm = BesselJ_RootsSphere ./ model.size c1 = alphm .^ (-4.0) ./ (alphm .^ 2.0 .* model.size .^ 2.0 .- 2.0) c2 = -prot.tsmalldel .- prot.tdelta c3 = prot.tsmalldel .- prot.tdelta for i in 1:(31::Int) #eachindex(alphm) a = model.diff .* alphm[i] .^ 2.0 signals .= signals .+ c1[i] .* ( 2.0 .* prot.tsmalldel .- ( 2.0 .+ exp.(a .* c3) .- 2.0 .* exp.(-a .* prot.tsmalldel) .- 2.0 .* exp.(-a .* prot.tdelta) .+ exp.(a .* c2) ) ./ a ) end signals .= exp.(-2.0 .* gmr .^ 2.0 .* prot.gvec .^ 2.0 ./ model.diff .* signals) signals[findall(iszero, prot.bval)] .= 1.0 iszero(model.t2) && return signals # t2 not considered signals .= signals .* exp.(-prot.techo ./ model.t2) return signals end # Isotropic signals function compartment_signals!(signals::Vector{Float64}, model::Iso, prot::Protocol) signals .= exp.(-prot.bval .* model.diff) iszero(model.t2) && return nothing signals .= signals .* exp.(-prot.techo ./ model.t2) return signals end # Spherical mean signals given parallel and perpendicular diffusivities function smt_signals!( signals::Vector{Float64}, prot::Protocol, dpara::Float64, dperp::Float64 ) signals .= prot.bval .* (dpara .- dperp) signals .= exp.(-prot.bval .* dperp) .* sqrt.(pi ./ 4.0 ./ signals) .* erf.(sqrt.(signals)) signals[findall(iszero, prot.bval)] .= 1.0 return signals end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
9718
# I/O functions for images and protocols # Include functions to perform direction average using Fibers, DelimitedFiles, Statistics, StaticArrays export dMRI, Protocol, spherical_mean, spherical_mean!, normalize_smt!, dmri_write, dmri_read, dmri_read_times, dmri_read_times!, dmri_read_time """ dMRI(nifti::MRI, tdelta::Vector{Float64}, dsmalldel::Vector{Float64}, techo::Vector{Float64}, smt::Bool) Return a dMRI Type object with MRI object `nifti`, and additional volume-wise experimental settings `tdelta`, `tsmalldel`, `techo`, and `smt` for identifing smt signals. """ mutable struct dMRI nifti::MRI tdelta::Vector{Float64} tsmalldel::Vector{Float64} techo::Vector{Float64} smt::Bool end """ initialize dMRI structure from MRI or Array """ dMRI(mri::MRI) = dMRI( mri, Vector{Float64}(zeros(mri.nframes)), Vector{Float64}(zeros(mri.nframes)), Vector{Float64}(zeros(mri.nframes)), false, ) """ Read nifti and text files to dMRI object; variable number of input text files """ function dmri_read(imagefile::String, infiles::String...) mri = mri_read(imagefile) dmri = dmri_read_times(mri, infiles) return dmri end """ Called by dmri_read; Tuple holds variable number of input text files Run alone to construct a dMRI from mri object and text files """ function dmri_read_times(mri::MRI, infiles::Tuple{Vararg{String}}) dmri = dMRI(mri) dmri_read_times!(dmri, infiles) # round b table; .element-wise openration dmri.nifti.bval .= round.(dmri.nifti.bval ./ 50.0) .* 50.0 dmri.nifti.bval[dmri.nifti.bval .<= 100.0] .= 0.0 # set delta/smalldel to 0 when b = 0 index = iszero.(dmri.nifti.bval) dmri.tdelta[index] .= 0.0 dmri.tsmalldel[index] .= 0.0 return dmri end """ read txt files and update dMRI fields according to file extensions """ function dmri_read_times!(dmri::dMRI, infiles::Tuple{Vararg{String}}) for file in infiles tab, ext = dmri_read_time(file) if ext == "techo" dmri.techo = vec(tab) elseif ext == "tdelta" dmri.tdelta = vec(tab) elseif ext == "tsmalldel" dmri.tsmalldel = vec(tab) elseif ext == "bvals" dmri.nifti.bval = vec(tab) elseif ext == "bvecs" dmri.nifti.bvec = tab else error("Unindentified file extension") end end return dmri end """ read vectors and get file extension from input file """ function dmri_read_time(infile::String) if !isfile(infile) error("Could not find input file") end # find input file extention idot = findlast(isequal('.'), infile) ext = lowercase(infile[(idot + 1):end]) # read file tab = readdlm(infile) return tab, ext end """ mutating dmri structure after direction averaging """ function spherical_mean!(dmri::dMRI) if dmri.smt == true error("The input contains already spherical mean signals") end # select unique combinations of bval, techo, tdelta, tsmalldel sets = [dmri.nifti.bval dmri.techo dmri.tdelta dmri.tsmalldel] combinations = unique(sets; dims=1) # sortting to help check signals when bval/techo are not in assending order ind = sortperm(combinations[:,1]) combinations = combinations[ind,:] ind = sortperm(combinations[:,2]) combinations = combinations[ind,:] # initialize new volume nsets = size(combinations, 1) volsize = size(dmri.nifti.vol) vol = Array{AbstractFloat}(undef, volsize[1:3]..., nsets) # direction average persets for i in 1:nsets index = [] for j in 1:volsize[4] if sets[j, :] == combinations[i, :] append!(index, j) end end vol[:, :, :, i] .= mean(dmri.nifti.vol[:, :, :, index]; dims=4) end # update related fields dmri.nifti.bval = combinations[:, 1] dmri.techo = combinations[:, 2] dmri.tdelta = combinations[:, 3] dmri.tsmalldel = combinations[:, 4] dmri.nifti.vol = vol dmri.nifti.bvec = zeros(nsets, 3) dmri.nifti.nframes = nsets dmri.smt = 1 return nothing end """ normalize signals with minimal TE and b=0 volume; save the first volume (all 1) for the associated acquistion parameters in the normalizing volume """ function normalize_smt!(dmri::dMRI) if dmri.nifti.bval[1] != 0 error("First volume is not from b=0") end nvol = length(dmri.nifti.bval) vol_b0 = dmri.nifti.vol[:, :, :, 1] for i in 1:nvol dmri.nifti.vol[:, :, :, i] = dmri.nifti.vol[:, :, :, i] ./ vol_b0 end return nothing end """ Apply universal scaling to smt signals """ function scale_smt!(dmri::dMRI) end """ spherical_mean( image_file::String, save::Bool=true, acq_files::String... ) Perform direction average on input DWI images `image_file` and return an MRI object with normalized spherical mean signal and associated imaging protocol. `image_file` is the full path of the DWI image file; `save` indicates whether to save the smt and normalized smt image volumes and protocol. If saving the files, nifti and text file (.btable) will be saved in the same path as the input data. Finall, variable number of `acq_files` are text files that tell you acquistion parameters of each DWI in the `image_file`. Accepted file extensions are .bvals/.bvecs/.techo/.tdelta/.tsmalldel for b-values, gradient directions, echo times, diffusion gradient seperation and duration times. Besides .bvals/.bvecs for conventional modelling, .tdelta/.tsmalldel files are needed for any models that estimate size, e.g. axon diameter, soma radius. .techo is needed if your data is collected with multiple echo-time and you want to do combined-diffusion relaxometry modelling. The format of a .tdelta/.tsmalldel/.techo file is similar to a .bvals file (a vector with the length equal to the number of DWI volumes). Unit in the .tdelta/.tsmalldel/.techo file is ms. """ function spherical_mean( infile_image::String, save::Bool=true, infiles::String... ) mri = mri_read(infile_image) dmri = dmri_read_times(mri, infiles) spherical_mean!(dmri) if save datapath = infile_image[1:findlast(isequal('/'), infile_image)] dmri_write(dmri, datapath, "diravg.nii.gz") end # default to normalize signals normalize_smt!(dmri) if save datapath = infile_image[1:findlast(isequal('/'), infile_image)] dmri_write(dmri, datapath, "diravg_norm.nii.gz") end prot = Protocol(dmri) return dmri.nifti, prot end """ dmri_write(dmri::dMRI, datapath::String, filename::String) Write the nifti volume in a dMRI object to nifti file and associated protocol as b-table text files in the given `datapath` and `filename`. """ function dmri_write(dmri::dMRI, datapath::String, outfile::String) mri_write(dmri.nifti, datapath * outfile) # find input file name idot = findfirst(isequal('.'), outfile) name = lowercase(outfile[1:(idot - 1)]) prot = Protocol(dmri) btable = hcat(prot.bval, prot.techo, prot.tdelta, prot.tsmalldel, prot.gvec) writedlm(datapath * name * ".btable", btable, ' ') return nothing end """ Protocol( bval::Vector{Float64} techo::Vector{Float64} tdelta::Vector{Float64} tsmalldel::Vector{Float64} gvec::Vector{Float64} ) Return a Protocol Type object to hold parameters in acquisition protocol relavent for modelling including b-values, tcho times, diffusion gradient seperation, duration and strengh. Unit convention: most text files use s/mm^2 for b-values and ms for time while they are converted to SI unit in the Protocol. b-values (s/m^2); time (s); size (m); G (T/m) Protocol( filename::String ) Return a Protocol Type object from a b-table file generated from spherical_mean function. Protocol( bval::Vector{Float64}, techo::Vector{Float64}, tdelta::Vector{Float64}, tsmalldel::Vector{Float64}, ) Calculate `gvec` and return a Ptotocol Type object from provided parameters. """ struct Protocol bval::Vector{Float64} techo::Vector{Float64} tdelta::Vector{Float64} tsmalldel::Vector{Float64} gvec::Vector{Float64} #bvec::AbstractMatrix{Float64} #qvec=gmr.*tsmalldel.*gvec end # make protocols from acq vectors #function Protocol(bval::SVector{<:Any,Float64}, techo::SVector{<:Any,Float64}, tdelta::SVector{<:Any,Float64}, tsmalldel::SVector{<:Any,Float64}) # gvec = 1.0 ./ gmr ./ tsmalldel .* sqrt.(bval ./ (tdelta .- tsmalldel ./ 3.0)) # Protocol(bval, techo, tdelta, tsmalldel, gvec) #end function Protocol( bval::Vector{Float64}, techo::Vector{Float64}, tdelta::Vector{Float64}, tsmalldel::Vector{Float64}, ) gvec = 1.0 ./ gmr ./ tsmalldel .* sqrt.(bval ./ (tdelta .- tsmalldel ./ 3.0)) return Protocol(bval, techo, tdelta, tsmalldel, gvec) end """ Make protocol from a dMRI object """ function Protocol(dmri::dMRI) return Protocol( dmri.nifti.bval .* 1.0e6, dmri.techo .* 1.0e-3, dmri.tdelta .* 1.0e-3, dmri.tsmalldel .* 1.0e-3, ) end # make protocol from btable file function Protocol(infile::String) if !isfile(infile) error("Could not find btable file") end # find input file extention idot = findlast(isequal('.'), infile) ext = lowercase(infile[(idot + 1):end]) if ext != "btable" error("Input is not a btable") end # read file and make protocol tab = readdlm(infile) return Protocol(tab[:, 1], tab[:, 2], tab[:, 3], tab[:, 4], tab[:, 5]) end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
6916
using MCMCDiagnosticTools, Statistics using DataFrames, Gadfly export Sampler, run_diagnostics, plot_diagnostics """ Change the number of samples in a sampler """ function Sampler(sampler::Sampler, nsamples::Int64) return Sampler(; params=sampler.params, prior_range=sampler.prior_range, proposal=sampler.proposal, paralinks=sampler.paralinks, nsamples=nsamples, burnin=sampler.burnin, thinning=sampler.thinning, ) end """ run_diagnostics( meas::Vector{Float64}, protocol::Protocol, model_start::BiophysicalModel, sampler::Sampler, draws::Vector{Int64}, rng_seed::Int64=1, noise::Noisemodel=Noisemodel(), ) Return chain diagnostics tested with different sampling length. This function is useful for optimizing sampler for a given model. # References Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. and Bürkner, P.C., 2021. Rank-normalization, folding, and localization: An improved R ̂ for assessing convergence of MCMC (with discussion). Bayesian analysis, 16(2), pp.667-718. """ function run_diagnostics( meas::Vector{Float64}, protocol::Protocol, model_start::BiophysicalModel, sampler::Sampler, draws::Vector{Int64}, rng_seed::Int64=1, noise::Noisemodel=Noisemodel(), ) ratio = zeros(length(draws)) diagnostics = DataFrame(; Parameters=String[], NSamples=Int[], ESS=Float64[], SplitR=Float64[], MCSE=Float64[], Estimate=Float64[], ErrorRatio=Float64[], ) for (i, nsamples) in enumerate(draws) sampler = Sampler(sampler, nsamples) chain = mcmc!(model_start, meas, protocol, sampler, noise, rng_seed) for para in sampler.params if chain[para][1] isa Vector fracs = reduce(hcat, chain[para]) for i in axes(fracs, 1) diagns = ess_rhat(fracs[i, (sampler.burnin + 1):end]; split_chains=2) se = mcse(fracs[i, (sampler.burnin + 1):end]; kind=Statistics.mean) estimate = mean(fracs[i, (sampler.burnin + 1):(sampler.thinning):end]) push!( diagnostics, ( "f" * string(i), nsamples, diagns[:ess], diagns[:rhat], se, estimate, se / estimate, ), ) end else diagns = ess_rhat(chain[para][(sampler.burnin + 1):end]; split_chains=2) se = mcse(chain[para][(sampler.burnin + 1):end]; kind=Statistics.mean) estimate = mean(chain[para][(sampler.burnin + 1):(sampler.thinning):end]) push!( diagnostics, ( para, nsamples, diagns[:ess], diagns[:rhat], se, estimate, se / estimate, ), ) end end ratio[i] = sum(chain["move"]) / nsamples end return diagnostics, ratio end function run_diagnostics( meas::Vector{Float64}, protocol::Protocol, model_start::BiophysicalModel, sampler::Tuple{Sampler,Sampler}, draws::Vector{Int64}, rng_seed::Int64=1, noise::Noisemodel=Noisemodel(), ) ratio = zeros(length(draws)) diagnostics = DataFrame(; Parameters=String[], NSamples=Int[], ESS=Float64[], SplitR=Float64[], MCSE=Float64[], Estimate=Float64[], ErrorRatio=Float64[], ) for (i, nsamples) in enumerate(draws) sampler_full = Sampler(sampler[1], nsamples) chain = mcmc!(model_start, meas, protocol, sampler_full, noise, rng_seed) sampler_sub = Sampler(sampler[2], nsamples) pertub = draw_samples(sampler_sub, noise, "dict") mcmc!(chain, model_start, meas, protocol, sampler_sub, pertub, noise) for para in sampler_full.params if chain[para][1] isa Vector fracs = reduce(hcat, chain[para]) for i in axes(fracs, 1) diagns = ess_rhat( fracs[i, (sampler_full.burnin + 1):end]; split_chains=2 ) se = mcse(fracs[i, (sampler_full.burnin + 1):end]; kind=Statistics.mean) estimate = mean( fracs[i, (sampler_full.burnin + 1):(sampler_full.thinning):end] ) push!( diagnostics, ( "f" * string(i), nsamples, diagns[:ess], diagns[:rhat], se, estimate, se / estimate, ), ) end else diagns = ess_rhat( chain[para][(sampler_full.burnin + 1):end]; split_chains=2 ) se = mcse(chain[para][(sampler_full.burnin + 1):end]; kind=Statistics.mean) estimate = mean( chain[para][(sampler_full.burnin + 1):(sampler_full.thinning):end] ) push!( diagnostics, ( para, nsamples, diagns[:ess], diagns[:rhat], se, estimate, se / estimate, ), ) end end ratio[i] = sum(chain["move"]) / nsamples end return diagnostics, ratio end """ Visualize diagnostics for model parameter """ function plot_diagnostics(diagno::DataFrame) set_default_plot_size(30cm, 15cm) p0 = Gadfly.plot() p1 = Gadfly.plot(diagno, x=:NSamples, y=:ESS, color=:Parameters, Geom.point, Geom.line, linestyle=[:dash]) p2 = Gadfly.plot(diagno, x=:NSamples, y=:SplitR, color=:Parameters, Geom.point, Geom.line, linestyle=[:dash]) p3 = Gadfly.plot(diagno, x=:NSamples, y=:MCSE, color=:Parameters, Geom.point, Geom.line, linestyle=[:dash]) p4 = Gadfly.plot(diagno, x=:NSamples, y=:Estimate, color=:Parameters, Geom.point, Geom.line, linestyle=[:dash]) p5 = Gadfly.plot(diagno, x=:NSamples, y=:ErrorRatio, color=:Parameters, Geom.point, Geom.line, linestyle=[:dash]) return gridstack([p1 p2 p0; p3 p4 p5]) end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
28790
# MCMC estimation using Random, Distributions, StaticArrays export Sampler, Noisemodel, mcmc!, subsampler, logp_gauss, logp_rician, update!, increment!, getsubfield, draw_samples, draw_samples!, findsubfield """ Noisemodel(logpdf::Function, sigma_start::Float64, sigma_range::Tuple{Float64,Float64}, proposal::Distribution) Return a Noisemodel object with `logpdf` Function to calculate log likelihood of measurements (set this between `logp_gauss` and `logp_rician`), `sigma_start` as the starting value of noise level, `sigma_range` as prior range and `proposal` distribution for MCMC sampling. # Examples ```julia-repl julia> Noisemodel() Noisemodel(Microstructure.logp_gauss, 0.01, (0.005, 0.1), Distributions.Normal{Float64}(μ=0.0, σ=0.005)) ``` ```julia-repl julia> Noisemodel(logpdf = logp_rician, sigma_start = 0.02, proposal = Normal(0,0.001)) Noisemodel(Microstructure.logp_rician, 0.02, (0.005, 0.1), Normal{Float64}(μ=0.0, σ=0.001)) ``` """ Base.@kwdef struct Noisemodel logpdf::Function = logp_gauss sigma_start::Float64 = 0.01 sigma_range::Tuple{Float64,Float64} = (0.001, 0.1) proposal::Distribution = Normal(0, 0.005) end """ logp_gauss(measurements, predictions, sigma) logpdf with Gaussian noise model. `sigma` is the standard deviation of Gaussian noise """ function logp_gauss(measurements::Vector{Float64}, predictions::Vector{Float64}, sigma::Float64) # test adapted changes when including first b0 measurement preds = @view predictions[2:end] meas = @view measurements[2:end] n = length(preds) return -sum((preds .- meas) .^ 2.0) ./ 2.0 ./ sigma .^ 2.0 .- n ./ 2.0 .* log.(2.0 .* pi .* sigma .^ 2.0) end """ logp_rician(measurements, predictions, sigma) logpdf with Rician noise model `sigma` is the standard deviation of the Gaussian noise underlying the Rician noise """ function logp_rician(measurements::Vector{Float64}, predictions::Vector{Float64}, sigma::Float64) # test adapted changes when including first b0 measurement preds = @view predictions[2:end] meas = @view measurements[2:end] return logpdf(Product(Rician.(preds, sigma)), meas) end """ Sampler( params::Tuple{Vararg{String}}, prior_range::Tuple{Vararg{Tuple{Float64, Float64}}}, proposal::Tuple{Vararg{<:Any}}, paralinks::Tuple{Vararg{Pair{String}}}, nsamples::Int64 burnin::Int64 thinning::Int64 ) Return a Sampler Type object for a biophysical model. # Examples ```julia-repl julia>Sampler( params = ("axon.da","axon.dpara","extra.dperp_frac","fracs"), prior_range = ((1.0e-7,1.0e-5),(0.01e-9,0.9e-9),(0.0, 1.0),(0.0,1.0)), proposal = (Normal(0,0.25e-6), Normal(0,0.025e-9), Normal(0,0.05), MvNormal([0.0025 0 0;0 0.0001 0; 0 0 0.0001])), paralinks = ("axon.d0" => "axon.dpara", "extra.dpara" => "axon.dpara"), nsamples = 70000, burnin = 20000 ) Sampler(("axon.da", "axon.dpara", "extra.dperp_frac", "fracs"), ((1.0e-7, 1.0e-5), (1.0e-11, 9.0e-10), (0.0, 1.0), (0.0, 1.0)), (Normal{Float64}(μ=0.0, σ=2.5e-7), Normal{Float64}(μ=0.0, σ=2.5e-11), Normal{Float64}(μ=0.0, σ=0.05), ZeroMeanFullNormal( dim: 3 μ: Zeros(3) Σ: [0.0025 0.0 0.0; 0.0 0.0001 0.0; 0.0 0.0 0.0001] ) ), ("axon.d0" => "axon.dpara", "extra.dpara" => "axon.dpara"), 70000, 20000, 1) ``` """ Base.@kwdef struct Sampler params::Tuple{Vararg{String}} # parameters to sample prior_range::Tuple{Vararg{Tuple{Float64,Float64}}} # range for priors proposal::Tuple{Vararg{<:Any}} # proposal distributions paralinks::Tuple{Vararg{Pair{String}}} = () # parameter links used in modelling nsamples::Int64 burnin::Int64 = 0 thinning::Int64 = 1 end """ Draw pertubations used in MCMC mutating pertubations """ function draw_samples!( pertubations::Vector{<:Any}, sampler::Sampler, noise::Noisemodel=Noisemodel() ) @inbounds for (i, para) in enumerate(sampler.params) if para != "fracs" pertubations[i] = rand(sampler.proposal[i], sampler.nsamples) else # convert the fraction matrix to vectors pertubation = rand(sampler.proposal[i], sampler.nsamples) pertubations[i] = [vec(pertubation[:, i]) for i in 1:(sampler.nsamples)] end end return pertubations[end] = rand(noise.proposal, sampler.nsamples) end """ draw_samples(sampler::Sampler, noise::Noisemodel , container::String) Generate pertubations used in MCMC for tissue parameters and sigma using the proposals """ function draw_samples(sampler::Sampler, noise::Noisemodel, container::String) if container == "vec" pertubations = [ Vector{Any}(undef, sampler.nsamples) for i in 1:((1 + length(sampler.params))::Int) ] @inbounds for (i, para) in enumerate(sampler.params) pertubation = rand(sampler.proposal[i], sampler.nsamples) if pertubation isa Vector pertubations[i] = pertubation else pertubations[i] = [vec(pertubation[:, i]) for i in 1:(sampler.nsamples)] end end pertubations[end] = rand(noise.proposal, sampler.nsamples) elseif container == "dict" pertubations = Dict() @inbounds for (i, para) in enumerate(sampler.params) # pertubation could be a vector or a matrix from multi-variant proposal pertubation = rand(sampler.proposal[i], sampler.nsamples) if pertubation isa Vector push!(pertubations, para => pertubation) else push!( pertubations, para => [vec(pertubation[:, i]) for i in 1:(sampler.nsamples)] ) # for vector fracs end end push!(pertubations, "sigma" => rand(noise.proposal, sampler.nsamples)) else error("use vec or dict") end return pertubations end """ draw_samples(sampler::Sampler, container::String) Generate pertubations used in MCMC for tissue parameters """ function draw_samples(sampler::Sampler, container::String) if container == "vec" pertubations = [ Vector{Any}(undef, sampler.nsamples) for i in 1:length(sampler.params) ] @inbounds for (i, para) in enumerate(sampler.params) pertubation = rand(sampler.proposal[i], sampler.nsamples) if pertubation isa Vector pertubations[i] = pertubation else pertubations[i] = [vec(pertubation[:, i]) for i in 1:(sampler.nsamples)] end end elseif container == "dict" pertubations = Dict() @inbounds for (i, para) in enumerate(sampler.params) # pertubation could be a vector or a matrix from multi-variant proposal pertubation = rand(sampler.proposal[i], sampler.nsamples) if pertubation isa Vector push!(pertubations, para => pertubation) else push!( pertubations, para => [vec(pertubation[:, i]) for i in 1:(sampler.nsamples)] ) # for vector fracs end end else error("use vec or dict") end return pertubations end """ Define a subsampler sampling a subset of parameters in the sampler using index vector for keeping parameters """ function subsampler( sampler::Sampler, index::Vector{Int64}, paralinks::Tuple{Vararg{Pair{String}}}=() ) params = sampler.params[index] prior_range = sampler.prior_range[index] proposal = sampler.proposal[index] return Sampler(; params=params, prior_range=prior_range, proposal=proposal, paralinks=paralinks, nsamples = sampler.nsamples, burnin = sampler.burnin, thinning = sampler.thinning ) end """ After testing and optimizing sampler parameters for a model, add default sampler for the model for convenience here. Examples given here are ExCaliber with two-stage MCMC and MTE_SMT; these sampling parameters are not optimised yet. """ function Sampler(model::BiophysicalModel, nsamples::Int64, burnin::Int64=0, thinning::Int64=1) modeltype = typeof(model) # tesing if modeltype == ExCaliber # set the tissue parameters you want to estimate in the model; paras = ("axon.da", "axon.dpara", "extra.dperp_frac", "fracs") # set parameter links paralinks = ("axon.d0" => "axon.dpara", "extra.dpara" => "axon.dpara") # set the range of priors and proposal distributions pararange = ((1.0e-7, 1.0e-5), (0.01e-9, 0.9e-9), (0.0, 1.0), (0.0, 1.0)) # use MvNormal for proposal of fractions proposal = ( Normal(0, 0.25e-6), Normal(0, 0.025e-9), Normal(0, 0.05), MvNormal([0.0025 0;0 0.0001]), # 3-compartment model with 2 free fraction parameters ) #; equal to (Normal(0,0.05),Normal(0,0.01)) for fracs # setup sampler and noise model sampler = Sampler(; params=paras, prior_range=pararange, proposal=proposal, paralinks=paralinks, nsamples = nsamples, burnin = burnin, thinning = thinning ) return (sampler, subsampler(sampler, [1, 4], ())) elseif modeltype == MTE_SMT # under testing params = ("axon.t2", "extra.dperp_frac", "extra.t2", "fracs") prior_range = ((30e-3, 150e-3), (0.0, 1.0), (30e-3, 150e-3), (0.0, 1.0)) proposal = ( Normal(0, 10e-3), Normal(0, 0.1), Normal(0, 10e-3), Normal(0, 0.1), ) paralinks = () sampler = Sampler(; params=params, prior_range=prior_range, proposal=proposal, paralinks=paralinks, nsamples = nsamples, burnin = burnin, thinning = thinning ) return (sampler, subsampler(sampler, [1, 3, 4], ())) elseif modeltype == MTE_SANDI # under testing elseif modeltype == SANDI # under testing else error("Model not defined") end end """ Method 1 generates pertubations within function, creates and returns a dict chain, and modify final model estimates in place. This method is useful in checking a few voxels, e.g. for quality of fitting, chain dignostics and optimizing sampler for models. mcmc!( estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, noise::Noisemodel = Noisemodel(), rng::Int64 = 1 ) ```julia-repl julia> chain = mcmc!(estimates, measurements, protocol, sampler, noise_model, rng) ``` Method 2 takes `chain` and `pertubations` as input, mutating `chain` in place which can be used to calculate finial estimates and uncertainties. This method is used for processing larger dataset, e.g. for whole-barin/slices. This method is used together with multi-threads processing that pre-allocate spaces for caching chains, avoiding creating them for each voxel. This method also reuses `pertubations` for faster computation speed; we usually use very large numbers of pertubations (e.g. ~10^4) to densely sample the proposal distributions. mcmc!( chain::Vector{Any}, estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, pertubations::Vector{Vector{Any}}, noise::Noisemodel = Noisemodel() ) ```julia-repl julia> mcmc!(chain, estimates, meas, protocol, sampler, pertubations, noise_model)) ``` # References For using MCMC in microsturcture imaging, here are some recommended references: Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn Reson Med 50, 1077–1088. https://doi.org/10.1002/MRM.10609 Alexander, D.C., 2008. A General Framework for Experiment Design in Diffusion MRI and Its Application in Measuring Direct Tissue-Microstructure Features. Magn Reson Med 60, 439–448. https://doi.org/10.1002/mrm.21646 """ function mcmc!( estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, noise::Noisemodel=Noisemodel(), rng::Int64=1, ) Random.seed!(rng) # create chain and pertubations chain = create_chain(sampler, "dict") pertubations = draw_samples(sampler, noise, "dict") # get logp_start from the start model and sigma defined in sampler and noise model object sigma = noise.sigma_start logp_start = noise.logpdf(meas, model_signals(estimates, protocol), sigma) @inbounds for i in 1:(sampler.nsamples::Int) # get current pertubation pertubation = Tuple(para => pertubations[para][i] for para in sampler.params) # get the next sample location and check if it is within prior ranges outliers = increment!(estimates, pertubation, sampler.prior_range) sigma += pertubations["sigma"][i] if iszero(outliers) && !outlier_checking(sigma, noise.sigma_range) # update linked parameters in model update!(estimates, sampler.paralinks) # update logp logp_next = noise.logpdf(meas, model_signals(estimates, protocol), sigma) # acception ratio if rand(Float64) < min(1, exp(logp_next - logp_start)) move = 1 logp_start = copy(logp_next) else move = 0 # move estimates back to previous location decrement!(estimates, pertubation) update!(estimates, sampler.paralinks) sigma -= pertubations["sigma"][i] end else move = 0 # move next back to current location decrement!(estimates, pertubation) sigma -= pertubations["sigma"][i] end record_chain!(chain, estimates, sampler.params, i, move, sigma, logp_start) end #update model object as the mean values of selected samples update!( estimates, Tuple( para => mean(chain[para][(sampler.burnin+1):(sampler.thinning):end]) for para in sampler.params ), ) update!(estimates, sampler.paralinks) return chain end # method 2.1: mutate vector chain and use provided vector pertubations; this is used in multi-threads processing large dataset function mcmc!( chain::Vector{Any}, estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, pertubations::Vector{Vector{Any}}, noise::Noisemodel=Noisemodel(), ) # get logp_start from the start model and sigma defined in sampler and noise model object sigma = noise.sigma_start logp_start = noise.logpdf(meas, model_signals(estimates, protocol), sigma) N = length(sampler.params) @inbounds for i in 1:(sampler.nsamples::Int) # get current pertubation pertubation = Tuple(sampler.params[j] => pertubations[j][i] for j in 1:(N::Int)) # get the next sample location and check if it is within prior ranges outliers = increment!(estimates, pertubation, sampler.prior_range) sigma += pertubations[end][i] if iszero(outliers) && !outlier_checking(sigma, noise.sigma_range) # update linked parameters in model update!(estimates, sampler.paralinks) # update logp logp_next = noise.logpdf(meas, model_signals(estimates, protocol), sigma) # acception ratio if rand(Float64) < min(1, exp.(logp_next - logp_start)) move = 1 logp_start = copy(logp_next) else move = 0 # move estimates back to previous location decrement!(estimates, pertubation) update!(estimates, sampler.paralinks) sigma -= pertubations[end][i] end else move = 0 # move next back to current location decrement!(estimates, pertubation) sigma -= pertubations[end][i] end record_chain!(chain, estimates, sampler.params, i, move, sigma, logp_start) end #update model object as the mean values of selected samples update!( estimates, Tuple( sampler.params[j] => mean(chain[j][(sampler.burnin+1):(sampler.thinning):end]) for j in 1:(N::Int) ), ) update!(estimates, sampler.paralinks) return nothing end # method 2.2: mutate dict chain and use provided dict pertubations; this is useful when doing two stage mcmc demonstration function mcmc!( chain::Dict{Any,Any}, estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, pertubations::Dict{Any,Any}, noise::Noisemodel=Noisemodel(), ) #empty_chain!(chain) # get logp_start from the start model and sigma defined in sampler and noise model object sigma = noise.sigma_start logp_start = noise.logpdf(meas, model_signals(estimates, protocol), sigma) @inbounds for i in 1:(sampler.nsamples::Int) # get current pertubation pertubation = Tuple(para => pertubations[para][i] for para in sampler.params) # get the next sample location and check if it is within prior ranges outliers = increment!(estimates, pertubation, sampler.prior_range) sigma += pertubations["sigma"][i] if iszero(outliers) && !outlier_checking(sigma, noise.sigma_range) # update linked parameters in model update!(estimates, sampler.paralinks) # update logp logp_next = noise.logpdf(meas, model_signals(estimates, protocol), sigma) # acception ratio if rand(Float64) < min(1, exp.(logp_next - logp_start)) move = 1 logp_start = copy(logp_next) else move = 0 # move estimates back to previous location decrement!(estimates, pertubation) update!(estimates, sampler.paralinks) sigma -= pertubations["sigma"][i] end else move = 0 # move next back to current location decrement!(estimates, pertubation) sigma -= pertubations["sigma"][i] end record_chain!(chain, estimates, sampler.params, i, move, sigma, logp_start) end #update model object as the mean values of selected samples update!( estimates, Tuple( para => mean(chain[para][(sampler.burnin+1):(sampler.thinning):end]) for para in sampler.params ), ) update!(estimates, sampler.paralinks) return nothing end ## testing: mcmc with given noise level sigma function mcmc!( estimates::BiophysicalModel, meas::Vector{Float64}, protocol::Protocol, sampler::Sampler, sigma::Float64, rng::Int64=1, ) Random.seed!(rng) # create chain and pertubations chain = create_chain(sampler, "dict") pertubations = draw_samples(sampler, "dict") # get logp_start from the start model and sigma logp_start = noise.logpdf(meas, model_signals(estimates, protocol), sigma) @inbounds for i in 1:(sampler.nsamples::Int) # get current pertubation pertubation = Tuple(para => pertubations[para][i] for para in sampler.params) # get the next sample location and check if it is within prior ranges outliers = increment!(estimates, pertubation, sampler.prior_range) if iszero(outliers) # update linked parameters in model update!(estimates, sampler.paralinks) # update logp logp_next = noise.logpdf(meas, model_signals(estimates, protocol), sigma) # acception ratio if rand(Float64) < min(1, exp(logp_next - logp_start)) move = 1 logp_start = copy(logp_next) else move = 0 # move estimates back to previous location decrement!(estimates, pertubation) update!(estimates, sampler.paralinks) end else move = 0 # move next back to current location decrement!(estimates, pertubation) end record_chain!(chain, estimates, sampler.params, i, move, sigma, logp_start) end #update model object as the mean values of selected samples update!( estimates, Tuple( para => mean(chain[para][(sampler.burnin+1):(sampler.thinning):end]) for para in sampler.params ), ) update!(estimates, sampler.paralinks) return chain end function record_chain!( chain::Dict{String,Vector{Any}}, estimates::BiophysicalModel, params::Tuple{Vararg{String}}, move::Int64, sigma::Float64, logp::Float64, ) # record estimates to chain for para in params push!(chain[para], getsubfield(estimates, para)) end push!(chain["sigma"], sigma) push!(chain["logp"], logp) push!(chain["move"], move) return nothing end function record_chain!( chain::Dict{Any,Any}, estimates::BiophysicalModel, params::Tuple{Vararg{String}}, i::Int64, move::Int64, sigma::Float64, logp::Float64, ) for para in params chain[para][i] = getsubfield(estimates, para) end chain["sigma"][i] = sigma chain["logp"][i] = logp chain["move"][i] = move return nothing end function record_chain!( chain::Vector{Any}, estimates::BiophysicalModel, params::Tuple{Vararg{String}}, i::Int64, move::Int64, sigma::Float64, logp::Float64, ) for (j, para) in enumerate(params) chain[j][i] = getsubfield(estimates, para) end chain[end - 2][i] = sigma chain[end - 1][i] = logp chain[end][i] = move return nothing end """ update!(model::BiophysicalModel, fields::Tuple{Vararg{Pair{String, <:Any}}}) update fields and subfields of a model object using (1) given pairs containing the fieldnames and values to update; can be values or parameter links ```julia-repl julia> update!(ExCaliber(),("axon.da" => 3e-6, "axon.d0" => "axon.dpara")) ``` (2) another model object and fieldnames ```julia-repl julia> update!(model_target, model_source, fieldnames) ``` """ # update parameter and values pairs; allow mixed type in specification function update!(model::BiophysicalModel, allfields::Tuple{Vararg{Pair{String,<:Any}}}) for pair in allfields update!(model, pair) end return nothing end function update!(model::BiophysicalModel, pair::Pair{String,Float64}) # find the compartment and corresponding field to update ind = findfirst('.', pair[1]) if !isnothing(ind) compname = Symbol(pair[1][1:(ind - 1)]) subfield = Symbol(pair[1][(ind + 1):end]) # update subfield comp = getfield(model, compname) setfield!(comp, subfield, pair[2]) else setfield!(model, Symbol(pair[1]), pair[2]) end return nothing end # update only fracs function update!(model::BiophysicalModel, pair::Pair{String,Vector{Float64}}) setfield!(model, Symbol(pair[1]), pair[2]) return nothing end # update parameters using given parameter links function update!(model::BiophysicalModel, pair::Pair{String,String}) # find the compartment and corresponding field to update compname, field = findsubfield(pair[1]) # find the value from given parameter link compname2, field2 = findsubfield(pair[2]) value = getfield(getfield(model, compname2), field2) # update subfield comp = getfield(model, compname) setfield!(comp, field, value) return nothing end # Updating a model object using values from another object function update!( model::BiophysicalModel, source::BiophysicalModel, fields::Tuple{Vararg{String}} ) for field in fields value = getsubfield(source, field) update!(model, field => value) end return nothing end """ getsubfiled(model, fieldname) Get field/subfield values from a model object that can be used to update fields """ function getsubfield(model::BiophysicalModel, field::String) # find the compartment and corresponding field to update ind = findfirst('.', field) if !isnothing(ind) compname = Symbol(field[1:(ind - 1)]) subfield = Symbol(field[(ind + 1):end]) # update subfield value = getfield(getfield(model, compname), subfield) else value = getfield(model, Symbol(field)) end return value end function findsubfield(field::String) ind = findfirst('.', field) compname = Symbol(field[1:(ind - 1)]) subfield = Symbol(field[(ind + 1):end]) return compname, subfield end """ decrement!(model::BiophysicalModel, fields::Tuple{Vararg{Pair{String, <:Any}}}) Move estimates back to previous location before current pertubation. No bounds checking. """ function decrement!(model::BiophysicalModel, allfields::Tuple{Vararg{Pair{String,<:Any}}}) for pair in allfields decrement!(model, pair) end return nothing end # Decrement fields function decrement!(model::BiophysicalModel, pair::Pair{String,Float64}) # find the compartment and corresponding field to update ind = findfirst('.', pair[1]) if !isnothing(ind) # update subfield compname = Symbol(pair[1][1:(ind - 1)]) field = Symbol(pair[1][(ind + 1):end]) comp = getfield(model, compname) value = getfield(comp, field) - pair[2] setfield!(comp, field, value) else #update field field = Symbol(pair[1]) value = getfield(model, field) - pair[2] setfield!(model, field, value) end return nothing end function decrement!(model::BiophysicalModel, pair::Pair{String,Vector{Float64}}) field = Symbol(pair[1]) value = getfield(model, field) .- pair[2] setfield!(model, field, value) return nothing end """ increment!( model::BiophysicalModel, pairs::Tuple{Vararg{Pair{String, <:Any}}}, ranges::Tuple{Vararg{Tuple{Float64, Float64}}} ) Increment model estimates in place and return outliers by checking prior ranges. `model`: a biophysical model; `pairs`: paras of fields/subfiedls and values to add; fieldname => value2add; `ranges`: prior range. """ function increment!( model::BiophysicalModel, allfields::Tuple{Vararg{Pair{String,<:Any}}}, bounds::Tuple{Vararg{Tuple{Float64,Float64}}}, ) outliers = 0 for (i, pair) in enumerate(allfields) outliers += increment!(model, pair, bounds[i]) end return outliers end # for fraction vectors function increment!( model::BiophysicalModel, pair::Pair{String,Vector{Float64}}, bounds::Tuple{Float64,Float64}, ) field = Symbol(pair[1]) value = getfield(model, field) .+ pair[2] setfield!(model, field, value) return outlier_checking(value, bounds) end # for other fields function increment!( model::BiophysicalModel, pair::Pair{String,Float64}, bounds::Tuple{Float64,Float64} ) # find the compartment and corresponding field to updates ind = findfirst('.', pair[1]) if !isnothing(ind) compname = Symbol(pair[1][1:(ind - 1)]) field = Symbol(pair[1][(ind + 1):end]) # get updated subfield value comp = getfield(model, compname) value = getfield(comp, field) + pair[2] setfield!(comp, field, value) return outlier_checking(value, bounds) else field = Symbol(pair[1]) value = getfield(model, field) + pair[2] setfield!(model, field, value) return outlier_checking(value, bounds) end end """ outlier_checking(value,(lowerbound,upperbound)) Check if a value is an outlier given a range (lowerbound,upperbound); return true if considered outlier. When `value` is a vector which means it represents fractions, the method checks if any elements or the sum of all the elements contain an outlier; return the number of outliers encounted. """ function outlier_checking(value::Float64, bounds::Tuple{Float64,Float64}) return (value < bounds[1] || value > bounds[2]) end function outlier_checking(fracs::Vector{Float64}, bounds::Tuple{Float64,Float64}) s = sum(fracs) outliers = outlier_checking(s, bounds) for i in eachindex(fracs) outliers += outlier_checking(fracs[i], bounds) end return outliers end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
14018
using ProgressMeter using Flux, Distributions, Random, Statistics export NetworkArg, TrainingArg, prepare_training, create_mlp, generate_samples, train_loop!, test, losses_rmse, losses_corr, losses_rmse_kl, losses_rmse_corr """ NetworkArg( model::BiophysicalModel protocol::Protocol params::Tuple{Vararg{String}} prior_range::Tuple{Vararg{Tuple{Float64,Float64}}} # range for priors prior_dist::Tuple{Vararg{<:Any}} paralinks::Tuple{Vararg{Pair{String,<:String}}} = () noise_type::String = "Gaussian" # "Rician" sigma_range::Tuple{Float64, Float64} sigma_dist::Distribution nsamples::Int64 nin::Int64 nout::Int64 hidden_layers::Tuple{Vararg{Int64}} dropoutp::Union{<:AbstractFloat, Tuple{Vararg{<:AbstractFloat}}} actf::Function ) Return a `NetworkArg` object with necessary parameters to construct a neural network model and generate training samples for specifc biophysical model. A test network architecture and training samples can be automaticlly determined from the modelling task by using function NetworkArg(model, protocol, params, prior_range, prior_dist, paralinks, noisetype, sigma_range, sigma_dist) """ Base.@kwdef struct NetworkArg model::BiophysicalModel protocol::Protocol params::Tuple{Vararg{String}} prior_range::Tuple{Vararg{Tuple{Float64,Float64}}} # range for priors prior_dist::Tuple{Vararg{<:Any}} paralinks::Tuple{Vararg{Pair{String,<:String}}} = () noise_type::String = "Gaussian" # "Rician" sigma_range::Tuple{Float64, Float64} sigma_dist::Distribution nsamples::Int64 nin::Int64 nout::Int64 hidden_layers::Tuple{Vararg{Int64}} dropoutp::Union{<:AbstractFloat, Tuple{Vararg{<:AbstractFloat}}} actf::Function = relu6 # activate function for output layer end """ TrainingArg( batchsize::Int64 lossf::Function lr::Float64 epoch::Int64 tv_split::Float64 patience::Tuple{Int64,Int64} ) Return `TrainingArg` Type object with fields related to how network will be trained. batch size; loss function; learning rate; number of epoches; validation/training data split; patience for train loss plateau, patience for validation loss to increase. Patiences are currently not applied when training and validating on generated training samples from uniform parameter distributions, therefore training will stop when reaching the number of epoches. The patience parameter will be considered in the future when training with real data or generated data with other distributions. """ Base.@kwdef struct TrainingArg batchsize::Int64 = 128 lossf::Function = Flux.Losses.mse lr::Float64 = 0.001 epoch::Int64 = 100 tv_split::Float64 = 0.2 patience::Tuple{Int64,Int64} = (10, 30) end """ NetworkArg(model, protocol,params,paralinks,tissuetype,sigma,noise_type,dropoutp=0.2) Use the inputs related to biophysical models to determine network architecture and number of training samples for test return a full defined NetworkArg struct Reference for adjusting the number of training samples: Shwartz-Ziv, R., Goldblum, M., Bansal, A., Bruss, C.B., LeCun, Y., & Wilson, A.G. (2024). Just How Flexible are Neural Networks in Practice? (Easier task and smaller MLPs have higher effective model complexity (can fit more training samples than network parameters; for more complex tasks and larger MLPs, the number of training samples can be set as similar to the number of network parameters to improve training efficiency) """ function NetworkArg( model::BiophysicalModel, protocol::Protocol, params::Tuple{Vararg{String}}, prior_range::Tuple{Vararg{Tuple{Float64,Float64}}}, prior_dist::Tuple{Vararg{<:Any}}, paralinks::Tuple{Vararg{Pair{String,<:String}}}, noise_type::String, sigma_range::Tuple{Float64, Float64}, sigma_dist::Distribution, dropoutp=0.2, actf = relu6, ) nin = length(protocol.bval) nout = 0 for para in params nout += length(getsubfield(model, para)) end hidden_layers = (nin * 4, nin * nout, nout * 8) num = (nin, hidden_layers..., nout) # the number of trainable parameters in the network npar = 0 for i in 1:(length(num) - 1) npar += (num[i] + 1) * num[i + 1] end # adjust "50" nsamples = npar * 50 arg = NetworkArg( model, protocol, params, prior_range, prior_dist, paralinks, noise_type, sigma_range, sigma_dist, nsamples, nin, nout, hidden_layers, dropoutp, actf, ) return arg end """ prepare_training(arg::NetworkArg) Return (`mlp`, `inputs`, `labels`, `gt`); `mlp` is the multi-layer perceptron network model for the biophysical model; `inputs` and `labels` are arrays of signals and scaled tissue parameters used for supervised training; and `gt` is a dict containing the ground truth tissue parameters without applying scaling. Scaling is applied in the training labels to ensure different tissue parameters are roughly in the same range as they are optimized together. """ function prepare_training(arg::NetworkArg, rng_seed::Int) mlp = create_mlp(arg.nin, arg.nout, arg.hidden_layers, arg.dropoutp, arg.actf) (inputs, labels, gt) = generate_samples( arg.model, arg.protocol, arg.params, arg.prior_range, arg.prior_dist, arg.nsamples, arg.paralinks, arg.sigma_range, arg.sigma_dist, arg.noise_type, rng_seed, ) return mlp, inputs, labels, gt end """ create_mlp( ninput::Int, noutput::Int, hiddenlayers::Tuple{Vararg{Int}}, dropoutp::Union{<:AbstractFloat,Tuple{Vararg{<:AbstractFloat}}} ) Return a `mlp` with `ninput`/`noutput` as the number of input/output channels, and number of units in each layer specified in `hiddenlayers`; 'dropoutp' contains the dropout probalibities for dropout layers; it can be a single value (one dropout layer before output) or same length as the hidden layers """ function create_mlp( ninput::Int, noutput::Int, hiddenlayers::Tuple{Vararg{Int}}, dropoutp::Union{<:AbstractFloat,Tuple{Vararg{<:AbstractFloat}}}, out_actf::Function=relu6, ) num = (ninput, hiddenlayers...) layers_dense = [Dense(num[i] => num[i + 1], relu) for i in 1:(length(num) - 1)] if length(dropoutp) == 1 mlp = Chain(layers_dense..., Dropout(Float32.(dropoutp)), Dense(hiddenlayers[end] => noutput, out_actf)) elseif length(dropoutp)==length(hiddenlayers) layers_dropout = [Dropout(Float32.(dropoutp[i])) for i in eachindex(dropoutp)] layers = Any[] for i in eachindex(dropoutp) push!(layers, layers_dense[i]) push!(layers, layers_dropout[i]) end mlp = Chain(layers..., Dense(hiddenlayers[end] => noutput, out_actf)) else error("Numbers of dropout and hidden layer don't match") end return mlp end """ generate_samples( model::BiophysicalModel, protocol::Protocol, params::Tuple{Vararg{String}}, prior_range::Tuple{Vararg{Tuple{Float64,Float64}}}, prior_dist::Tuple{Vararg{<:Any}}, nsample::Int, paralinks::Tuple{Vararg{Pair{String}}}, sigma_range::Tuple{Float64, Float64}, sigma::Distribution, noise_type::String="Gaussian", rng_seed, ) Generate and return training samples for a model using given priors of tissue parameters and specified noise model (`"Gaussian"` or `"Rician"`) and noise level. """ function generate_samples( model::BiophysicalModel, protocol::Protocol, params::Tuple{Vararg{String}}, prior_range::Tuple{Vararg{Tuple{Float64,Float64}}}, prior_dist::Tuple{Vararg{<:Any}}, nsample::Int, paralinks::Tuple{Vararg{Pair{String}}}, sigma_range::Tuple{Float64, Float64}, sigma_dist::Distribution, noise_type::String="Gaussian", rng_seed::Int=1, ) params_labels = [] params_gt = Dict() Random.seed!(rng_seed) for (p, para) in enumerate(params) if !hasfield(typeof(model), Symbol(para)) if isnothing(prior_dist[p]) vecs = prior_range[p][1] .+ (prior_range[p][2] - prior_range[p][1]) .* rand(Float64, nsample) else vecs = rand(truncated(prior_dist[p], prior_range[p][1], prior_range[p][2]), nsample) end push!( params_labels, (vecs ./ prior_range[p][2])', ) push!(params_gt, para => vecs) elseif para == "fracs" vecs = rand(prior_dist[p], nsample) push!(params_labels, vecs[1:(end - 1), :]) if model.fracs isa Vector vecs = [vecs[1:(end - 1), i] for i in 1:nsample] else vecs = [vecs[1, i] for i in 1:nsample] end push!(params_gt, para => vecs) end end params_labels = reduce(vcat, params_labels) # simulate signals nvol = length(protocol.bval) signals = zeros(nvol, nsample) for i in 1:nsample update!(model, Tuple(para => params_gt[para][i] for para in params)) update!(model, paralinks) signals[:, i] = model_signals(model, protocol) end # add gaussian noise to get training inputs noise_level = rand(truncated(sigma_dist, sigma_range[1], sigma_range[2]), nsample) if (noise_type == "Gaussian") | (noise_type == "gaussian") for i in 1:nsample signals[:, i] .= signals[:,i] .+ rand(Normal(0, noise_level[i]), nvol) signals[:,i] = signals[:,i] ./ signals[1,i] end elseif (noise_type == "Rician") | (noise_type == "rician") for i in 1:nsample signals[:,i] .= sqrt.( (signals[:,i] .+ rand(Normal(0, noise_level[i]), nvol)) .^ 2.0 .+ rand(Normal(0, noise_level[i]), nvol) .^ 2.0 ) signals[:,i] = signals[:,i] ./ signals[1,i] end else error("Noise type not indentified") end return Float32.(signals), Float32.(params_labels), params_gt end """ train_loop!( mlp::Chain, arg::TrainingArg, inputs::Array{Float64,2}, labels::Array{Float64,2} ) Train and update the `mlp` and return a Dict of training logs with train loss, training data loss and validation data loss for each epoch. """ function train_loop!( mlp::Chain{T}, arg::TrainingArg, inputs::Array{<:AbstractFloat,2}, labels::Array{<:AbstractFloat,2} ) where {T} opt_state = Flux.setup(Adam(arg.lr), mlp) tv_index = floor(Int64, size(inputs, 2) * arg.tv_split) val_set = Flux.DataLoader( (@views inputs[:, 1:tv_index], @views labels[:, 1:tv_index]); batchsize=arg.batchsize, ) train_set = Flux.DataLoader( (@views inputs[:, (tv_index + 1):end], @views labels[:, (tv_index + 1):end]); batchsize=arg.batchsize, ) # function to calculate validation/training data loss loss(mlp, x, y) = arg.lossf(mlp(x), y) data_loss(mlp, dataset) = mean(loss(mlp, data...) for data in dataset) train_log = Dict("train_loss" => [], "val_data_loss" => [], "train_data_loss" => []) print("Training ...") @showprogress for epoch in 1:(arg.epoch) losses = 0.0 for (i, data) in enumerate(train_set) input, label = data val, grads = Flux.withgradient(mlp) do m # Any code inside here is differentiated. result = m(input) arg.lossf(result, label) end # add batch loss losses += val # Detect loss of Inf or NaN. Print a warning, and then skip update! if !isfinite(val) @warn "loss is $val on item $i" epoch continue end Flux.update!(opt_state, mlp, grads[1]) end #println("Epoch #" * string(epoch) * "; training loss: " * string(losses / length(train_set))) # Save the epoch train/val loss to log push!(train_log["train_loss"], losses / length(train_set)) push!(train_log["val_data_loss"], data_loss(mlp, val_set)) push!(train_log["train_data_loss"], data_loss(mlp, train_set)) end return train_log end """ test(mlp::Chain, data::Array{<:AbstractFloat,2}, ntest) Return mean and standard deviation of estimations by applying a trained `mlp` to test data for `ntest` times with dropout layer on. """ function test(mlp::Chain{T}, data::Array{<:AbstractFloat,2}, ntest) where {T} est = [] est_std = [] Flux.trainmode!(mlp) for i in 1:size(data, 2) test = mlp(data[:, i]) for j in 1:(ntest - 1) test = hcat(test, mlp(data[:, i])) end push!(est, dropdims(mean(test; dims=2); dims=2)) push!(est_std, dropdims(std(test; dims=2); dims=2)) end return est, est_std end """ RMSE loss """ function losses_rmse(y, yy) return sqrt.(Flux.Losses.mse(y, yy)) end # test loss function losses_corr(y,yy) n=size(y,1) corr = (n*sum(y.*yy,dims=1) - sum(y,dims=1).*sum(yy,dims=1))./ sqrt.((n*sum(y.^2,dims=1)-sum(y,dims=1).^2).*(n*sum(yy.^2,dims=1)-sum(yy,dims=1).^2)) return -mean(corr) end function losses_rmse_kl(y, yy) return 0.8*sqrt.(Flux.Losses.mse(y, yy)) + 0.2*Flux.Losses.kldivergence(y,yy) end function losses_rmse_corr(y, yy) return 0.8*losses_rmse(y, yy) + 0.2*losses_corr(y,yy) end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
11472
# Definitions of biophysical models. # # This script builds model structs with fields of tissue compartments and signal fractions, # and forward functions inferencing signals from the model struct and imaging protocol. # # quickly fetch literature models # you can also add your models with desired combinations of compartments here export model_signals, SANDI, SANDIdot, MTE_SANDI, ExCaliber, MTE_SMT, print_model, BiophysicalModel, ExCaliber_beta #model_signals! """ All models in this page belong to the BiophysicalModel Type. You can also build your models with desired combinations of compartments using a similar syntax. In each model, all compartmental parameters can be considered "free parameters" and sampled using MCMC. This is designed to offer maximum flexibility in adjusting model assumptions, but it doesn't guarantee reliable estimation of all parameters. It's common that we need to fix or link some tissue parameters based on our data measurement protocols and our tissue parameters of interest. Parameter fixing and linking can be achieved by settings in MCMC sampler in the estimator module. """ abstract type BiophysicalModel end """ SANDI( soma::Sphere, neurite::Stick, extra::Iso, fracs::Vector{Float64} ) The soma and neurite density imaging (SANDI) model uses a sphere compartment to model the cell soma, a stick compartment to model the neurite and an isotropic diffusion compartment for the extra-cellular space; It includes all the tissue parameters in each compartment and a `fracs` vector representing the fraction of intra-soma signal and intra-neurite signal (the extra-cellular signal fraction is 1-sum(fracs)). For SANDI model, ignore the field of `t2` in all compartments and set them to 0. # Reference Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang, H., 2020. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215. https://doi.org/10.1016/j.neuroimage.2020.116835 """ Base.@kwdef mutable struct SANDI <: BiophysicalModel soma::Sphere = Sphere(; diff=3.0e-9) neurite::Stick = Stick() extra::Iso = Iso() fracs::Vector{Float64} = [0.4, 0.3] end """ MTE_SANDI( soma::Sphere neurite::Stick extra::Iso fracs::Vector{Float64} S0norm::Float64 ) For Multi-echo-SANDI (MTE-SANDI) model, consider the `t2` values in all compartments, and the fractions estimated will be non-T2-weighted compartment fractions in comparison to the model mentioned above. `S0norm` is the relaxation-weighting free signal from all compartments S(b=0,t=0) normalised by S(b=0,t=TEmin). # Reference Gong, T., Tax, C.M., Mancini, M., Jones, D.K., Zhang, H., Palombo, M., 2023. Multi-TE SANDI: Quantifying compartmental T2 relaxation times in the grey matter. Toronto. """ Base.@kwdef mutable struct MTE_SANDI <: BiophysicalModel soma::Sphere = Sphere(; diff=3.0e-9) neurite::Stick = Stick() extra::Iso = Iso() fracs::Vector{Float64} = [0.4, 0.3] end """ SANDIdot( soma::Sphere neurite::Stick extra::Iso dot::Iso fracs::Vector{Float64} ) SANDIdot model includes additionally a dot compartment for SANDI model; the dot compartment is considered as immobile water and is more commonly seen in ex vivo imaging. For SANDIdot model, ignore the field of t2 in all compartments and set them to 0. The fraction vector represents fractions of the soma, neurite and dot with the fraction of extra being 1-sum(fracs). # Reference Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B., 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389. https://doi.org/10.1016/j.neuroimage.2010.05.043 Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C., 2012. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 59, 2241–2254. Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang, H., 2020. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215. https://doi.org/10.1016/j.neuroimage.2020.116835 """ Base.@kwdef mutable struct SANDIdot <: BiophysicalModel soma::Sphere = Sphere(; diff=2.0e-9) neurite::Stick = Stick(; dpara=0.6e-9) extra::Iso = Iso(; diff=0.8e-9) dot::Iso = Iso(; diff=0.0) fracs::Vector{Float64} = [0.5, 0.3, 0.1] end """ ExCaliber( axon::Cylinder, extra::Zeppelin, dot::Iso, fracs::Vector{Float64} ) ExCaliber is a multi-compartment model for estimating axon diameter. It can be used for ex vivo imaging when the diffusivity in the ISO compartment is set to 0 (dot compatment), and for in vivo imaging if the diffusivity of the ISO compartment is set to free water in tissue (CSF compartment). # Reference Fan, Q., Nummenmaa, A., Witzel, T., Ohringer, N., Tian, Q., Setsompop, K., ... & Huang, S. Y. (2020). Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. Neuroimage, 222, 117197. Gong, T., Maffei, C., Dann, E., Lee, H.-H., Lee Hansol, Huang, S., Suzanne, H., Yendiki, A., 2024. Imaging the relationship of axon diameter and myelination in macaque and human brain, in: ISMRM. """ Base.@kwdef mutable struct ExCaliber <: BiophysicalModel axon::Cylinder = Cylinder() extra::Zeppelin = Zeppelin() dot::Iso = Iso(; diff=0.0) fracs::Vector{Float64} = [0.7, 0.1] end # test model including extra CSF compartment Base.@kwdef mutable struct ExCaliber_beta <: BiophysicalModel axon::Cylinder = Cylinder() extra::Zeppelin = Zeppelin() csf::Iso = Iso(; diff=2.0e-9) dot::Iso = Iso(; diff=0.0) fracs::Vector{Float64} = [0.7, 0.1, 0.1] end """ MTE_SMT( axon::Stick = Stick() extra::Zeppelin = Zeppelin() fracs::Float64 = 0.5 ) This is a model using multi-TE spherical mean technique for lower b-value in vivo imaging. Compartmental T2s are considered. There is not a specific reference for this model yet, but you can refer to previous work related to this topic: Kaden, E., Kruggel, F., Alexander, D.C., 2016. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn Reson Med 75, 1752–1763. https://doi.org/10.1002/MRM.25734 Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., & Alexander, D. C. (2016). Multi-compartment microscopic diffusion imaging. NeuroImage, 139, 346-359. Veraart, J., Novikov, D.S., Fieremans, E., 2017. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times. https://doi.org/10.1016/j.neuroimage.2017.09.030 Gong, T., Tong, Q., He, H., Sun, Y., Zhong, J., Zhang, H., 2020. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times. Neuroimage 217. https://doi.org/10.1016/j.neuroimage.2020.116906 """ Base.@kwdef mutable struct MTE_SMT <: BiophysicalModel axon::Stick = Stick() extra::Zeppelin = Zeppelin() fracs::Float64 = 0.5 end """ model_signals(model::BiophysicalModel,prot::Protocol[,links]) Reture predicted model signals from BiophysicalModel `model` and imaging protocol 'prot'. `links` is a optional argument that specify parameter links in the model. """ function model_signals(excaliber::ExCaliber, prot::Protocol) fextra = 1 - sum(excaliber.fracs) signals = excaliber.fracs[1] .* compartment_signals(excaliber.axon, prot) .+ fextra .* compartment_signals(excaliber.extra, prot) .+ excaliber.fracs[2] return signals end function model_signals(excaliber::ExCaliber_beta, prot::Protocol) fextra = 1 - sum(excaliber.fracs) signals = excaliber.fracs[1] .* compartment_signals(excaliber.axon, prot) .+ fextra .* compartment_signals(excaliber.extra, prot) .+ excaliber.fracs[2] .* compartment_signals(excaliber.csf, prot) .+ excaliber.fracs[3] return signals end function model_signals(sandi::SANDIdot, prot::Protocol) fextra = 1.0 - sum(sandi.fracs) signals = sandi.fracs[1] .* compartment_signals(sandi.soma, prot) .+ sandi.fracs[2] .* compartment_signals(sandi.neurite, prot) .+ fextra .* compartment_signals(sandi.extra, prot) .+ sandi.fracs[3] return signals end function model_signals(sandi::SANDI, prot::Protocol) fextra = 1.0 - sum(sandi.fracs) signals = sandi.fracs[1] .* compartment_signals(sandi.soma, prot) .+ sandi.fracs[2] .* compartment_signals(sandi.neurite, prot) .+ fextra .* compartment_signals(sandi.extra, prot) return signals end function model_signals(sandi::MTE_SANDI, prot::Protocol) fextra = 1.0 - sum(sandi.fracs) signals = ( sandi.fracs[1] .* compartment_signals(sandi.soma, prot) .+ sandi.fracs[2] .* compartment_signals(sandi.neurite, prot) .+ fextra .* compartment_signals(sandi.extra, prot) ) return signals ./ signals[1] end function model_signals(model::MTE_SMT, prot::Protocol) signals = ( model.fracs .* compartment_signals(model.axon, prot) .+ (1.0 .- model.fracs) .* compartment_signals(model.extra, prot) ) return signals ./ signals[1] end """ print_model(model::BiophysicalModel) Helper function to check all tissue parameters in a model """ function print_model(model::BiophysicalModel) println(typeof(model), ":") for field in fieldnames(typeof(model)) comp = getfield(model, field) subfield = fieldnames(typeof(comp)) println(field, subfield) end end ########################## # dev # test mutating implementation function model_signals!(signals::Vector{Float64}, excaliber::ExCaliber, prot::Protocol) signals .= 0.0 signals_com = similar(signals) fextra = 1 - sum(excaliber.fracs) compartment_signals!(signals_com, excaliber.axon, prot) signals .= signals .+ excaliber.fracs[1] .* signals_com compartment_signals!(signals_com, excaliber.extra, prot) signals .= signals .+ fextra .* signals_com compartment_signals!(signals_com, excaliber.csf, prot) signals .= signals .+ excaliber.fracs[2] .* signals_com signals .= signals .+ excaliber.fracs[3] return nothing end # test mutating implementation function model_signals!( signals::Vector{Float64}, signals_com::Vector{Float64}, excaliber::ExCaliber, prot::Protocol, ) signals .= 0.0 fextra = 1 - sum(excaliber.fracs) compartment_signals!(signals_com, excaliber.axon, prot) signals .= signals .+ excaliber.fracs[1] .* signals_com compartment_signals!(signals_com, excaliber.extra, prot) signals .= signals .+ fextra .* signals_com compartment_signals!(signals_com, excaliber.csf, prot) signals .= signals .+ excaliber.fracs[2] .* signals_com signals .= signals .+ excaliber.fracs[3] return nothing end # update parameter links and get model signals function model_signals( model::BiophysicalModel, prot::Protocol, links::Tuple{Vararg{Pair{String,String}}} ) PMI.update!(model, links) return model_signals(model, prot) end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
10593
using ProgressMeter export pre_allocate, empty_chain!, create_chain, threading """ This method runs multi-threads MCMC estimation on dMRI data using a specified biophysical model, calls the voxel threading method and save estimated parameters as nifti files. `savedir` includes both output path and file name prefix. Two-stage MCMC sampling methods are run if provided sampler is a Tuple of two samplers, where it will sample all the unknown parameters using the first sampler then sample target tissue parameters in the second sampler while fixing the rest parameters to posterior means in the first MCMC. threading( model_start::BiophysicalModel, sampler::Union{Sampler,Tuple{Sampler,Sampler}}, dmri::MRI, mask::MRI, protocol::Protocol, noise_model::Noisemodel, savedir::String, ) Methods that return mean and standard deviation of estimations from measurements array of size [Nmeas, Nvoxels] using single-stage or two-stage MCMC. threading( model_start::BiophysicalModel, sampler::Sampler, measurements::Array{Float64,2}, protocol::Protocol, noise_model::Noisemodel, ) threading( model_start::BiophysicalModel, sampler::Tuple{Sampler,Sampler}, measurements::Array{Float64,2}, protocol::Protocol, noise_model::Noisemodel, ) """ function threading( model_start::BiophysicalModel, sampler::Union{Sampler,Tuple{Sampler,Sampler}}, dmri::MRI, mask::MRI, protocol::Protocol, noise_model::Noisemodel, datadir::String, rng::Int64=1, ) indexing = dropdims(mask.vol; dims=4) # put measurments in first dimension for faster iteration meas = Float64.(permutedims(dmri.vol[indexing .> 0, :], (2, 1))) # multi-threads processing of voxels within tissue mask Random.seed!(rng) est, est_std = threading(model_start, sampler, meas, protocol, noise_model) sampler isa Tuple ? params = sampler[1].params : params = sampler.params print("saving nifti files...") for (ip, para) in enumerate(params) if est[ip][1] isa Vector mri = MRI(mask, length(est[ip][1]), Float64) mri.vol[indexing .> 0, :] .= reduce(hcat, est[ip])' mri_write(mri, datadir * para * ".mean.nii.gz") mri.vol[indexing .> 0, :] .= reduce(hcat, est_std[ip])' mri_write(mri, datadir * para * ".std.nii.gz") else mri = MRI(mask, 1, Float64) mri.vol[indexing .> 0] .= est[ip] mri_write(mri, datadir * para * ".mean.nii.gz") mri.vol[indexing .> 0] .= est_std[ip] mri_write(mri, datadir * para * ".std.nii.gz") end end print("Complete!") return nothing end # threading voxels; this can be used alone for real or simulated data without reading data from nifti files function threading( model_start::BiophysicalModel, sampler::Sampler, meas::Array{Float64,2}, protocol::Protocol, noise_model::Noisemodel, ) datasize = size(meas) pertubations = draw_samples(sampler, noise_model, "vec") (measurements, estimates, chains, est, est_std) = pre_allocate( model_start, sampler, datasize ) print("MCMC sampling...") @showprogress Threads.@threads for iv in 1:(datasize[2]::Int) # for voxels in the same thread, use the allocated space repeatedly td = Threads.threadid() measurements[td] .= meas[:, iv] # ignore voxels when normalized signals containing NaN or values larger than 1 sum(measurements[td]) == NaN && continue maximum(measurements[td]) > 1 && continue # if want to use the same starting point for all voxels, add these two steps update!(estimates[td], model_start, sampler.params) update!(estimates[td], sampler.paralinks) mcmc!(chains[td], estimates[td], measurements[td], protocol, sampler, pertubations) for ip in 1:length(sampler.params) est[ip][iv] = mean( chains[td][ip][(sampler.burnin+1):(sampler.thinning):(sampler.nsamples)] ) est_std[ip][iv] = std( chains[td][ip][(sampler.burnin+1):(sampler.thinning):(sampler.nsamples)] ) end end return est, est_std end # voxel threading functions for two-stage MCMC sampling where you sample all the unknown parameters # in the first MCMC then fix and sample the other parameters in the second MCMC # Take dict pertubations and dict chain for reuse function threading( model_start::BiophysicalModel, sampler::Tuple{Sampler, Sampler}, meas::Array{Float64,2}, protocol::Protocol, noise_model::Noisemodel, ) datasize = size(meas) pertubations = draw_samples(sampler[1], noise_model, "dict") (measurements, estimates, chains, est, est_std) = pre_allocate( model_start, sampler, datasize ) print("MCMC sampling...") @showprogress Threads.@threads for iv in 1:(datasize[2]::Int) # for voxels in the same thread, use the allocated space repeatedly td = Threads.threadid() measurements[td] .= meas[:, iv] # ignore voxels when normalized signals containing NaN or values larger than 1 sum(measurements[td]) == NaN && continue maximum(measurements[td]) > 1 && continue # if want to use the same starting point for all voxels, add these two steps update!(estimates[td], model_start, sampler[1].params) update!(estimates[td], sampler[1].paralinks) mcmc!(chains[td], estimates[td], measurements[td], protocol, sampler[1], pertubations) mcmc!(chains[td], estimates[td], measurements[td], protocol, sampler[2], pertubations) for (ip, para) in enumerate(sampler[1].params) est[ip][iv] = mean( chains[td][para][(sampler[1].burnin+1):(sampler[1].thinning):(sampler[1].nsamples)] ) est_std[ip][iv] = std( chains[td][para][(sampler[1].burnin+1):(sampler[1].thinning):(sampler[1].nsamples)] ) end end return est, est_std end """ pre_allocate( model::BiophysicalModel, sampler::Sampler, datasize::Tuple{Int64,Int64} ) pre_allocate( model::BiophysicalModel, sampler::Tuple{Sampler,Sampler}, datasize::Tuple{Int64,Int64} ) Allocating spaces for caching computing results based on `model`, `sampler` and `datasize`. `datasize` is the size of data (Nmeas, Nvoxels) """ function pre_allocate( model::BiophysicalModel, sampler::Sampler, datasize::Tuple{Int64,Int64} ) # temporal vectors to cache data in each mcmc; repeatedly used by threads measurements = [Vector{Float64}(undef, datasize[1]) for td in 1:Threads.nthreads()] estimates = [deepcopy(model) for td in 1:Threads.nthreads()] # chain space for each thread chains = [create_chain(sampler, "vec") for td in 1:Threads.nthreads()] # arrays hosting mean and std of samples est = [] for i in eachindex(sampler.params) np = rand(sampler.proposal[i]) if np isa Vector push!(est, fill(fill(NaN, length(np)), datasize[2])) else push!(est, [NaN for _ in 1:datasize[2]]) end end est_std = deepcopy(est) return measurements, estimates, chains, est, est_std end function pre_allocate( model::BiophysicalModel, sampler::Tuple{Sampler,Sampler}, datasize::Tuple{Int64,Int64} ) # temporal vectors to cache data in each mcmc; repeatedly used by threads measurements = [Vector{Float64}(undef, datasize[1]) for td in 1:Threads.nthreads()] estimates = [deepcopy(model) for td in 1:Threads.nthreads()] # chain space for each thread chains = [create_chain(sampler[1], "dict") for td in 1:Threads.nthreads()] # arrays hosting mean and std of samples est = [] for i in eachindex(sampler[1].params) np = rand(sampler[1].proposal[i]) if np isa Vector push!(est, fill(fill(NaN, length(np)), datasize[2])) else push!(est, [NaN for _ in 1:datasize[2]]) end end est_std = deepcopy(est) return measurements, estimates, chains, est, est_std end """ create_chain(sampler, container) create undefied container ("vec" or "dict") for saving mcmc chain """ function create_chain(sampler::Sampler, container::String) example = rand.(sampler.proposal) if container == "vec" # vec to store chains chain = [] for i in eachindex(example) if example[i] isa Vector push!(chain, vec(similar(example[i], typeof(example[i]), sampler.nsamples))) else push!(chain, Vector{Float64}(undef, sampler.nsamples)) end end # add space for sigma,logp and move for dignostics push!(chain, Vector{Float64}(undef, sampler.nsamples)) push!(chain, Vector{Float64}(undef, sampler.nsamples)) push!(chain, Vector{Int64}(undef, sampler.nsamples)) elseif container == "dict" # dict to store chains chain = Dict() for i in eachindex(example) if example[i] isa Vector push!( chain, sampler.params[i] => vec(similar(example[i], typeof(example[i]), sampler.nsamples)), ) else push!(chain, sampler.params[i] => Vector{Float64}(undef, sampler.nsamples)) end end # add sigma,logp and move for dignostics push!(chain, "sigma" => Vector{Float64}(undef, sampler.nsamples)) push!(chain, "logp" => Vector{Float64}(undef, sampler.nsamples)) push!(chain, "move" => Vector{Float64}(undef, sampler.nsamples)) else error("Use vec or dict") end return chain end """ empty some parameters in the chain while keeping keys """ function empty_chain!(chain::Dict{String,Vector{Any}}, keys::Tuple{Vararg{String}}) for key in keys empty!(chain[key]) end empty!(chain["sigma"]) empty!(chain["logp"]) empty!(chain["move"]) return nothing end """ create empty chain """ function empty_chain(sampler::Sampler) # dict to store chains chain = Dict(para => [] for para in sampler.params) # add sigma,logp and move for dignostics push!(chain, "sigma" => []) push!(chain, "logp" => []) push!(chain, "move" => []) return chain end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
2903
# Constants used in modelling # # SI units are used in computations but we need to pay attention to some conventions between text files and computation # Units used: s (second), m (meter), T (tesla), s/m^2, m^2/s, T/m # # In text files, e.g. bval, techo, tdelta and tsmalldel, units are s/mm^2 for b-values and ms for times. # Protocols reading from text files will automatically convert units based on the convention. # # In ploting or visualize microstructure parameters, ms (t2),um (size),and um^2/ms (diffusivity) are used. # # b-values: 1 ms/um^2 = 10^3 s/mm^2 = 10^9 s/m^2 # G: 1000 mT/m = 1 T/m # diffusivity: 1 um^2/ms = 10^-9 m^2/s using StaticArrays """ gyromagnetic ratio """ const gmr = 2.67 * 1e8 #rad/s/T # Up to 10th order const BesselJ_RootsCylinder = @SVector [ 1.84118378134066 5.33144277352503 8.53631636634629 11.7060049025921 14.8635886339090 18.0155278626818 21.1643698591888 24.3113268572108 27.4570505710592 30.6019229726691 ] # Calculated from camino function BesselJ_RootsSphere # Up to 31st const BesselJ_RootsSphere = @SVector [ 2.0815759778181 5.94036999057271 9.20584014293667 12.404445021902 15.5792364103872 18.7426455847748 21.8996964794928 25.052825280993 28.2033610039524 31.3520917265645 34.499514921367 37.6459603230864 40.7916552312719 43.9367614714198 47.0813974121542 50.2256516491831 53.3695918204908 56.5132704621986 59.6567290035279 62.8000005565198 65.9431119046553 69.0860849466452 72.2289377620154 75.3716854092873 78.5143405319308 81.6569138240367 84.7994143922025 87.9418500396598 91.0842274914688 94.2265525745684 97.368830362901 ] """ scaling_factors lookup table (parameter range, unit scaling, further scaling to similar range (<=1)) """ const scalings_in_vivo = Dict( "dpara" => ((0.5e-9, 3.0e-9), 1.0e9, 1.0 / 3.0), "d0" => ((0.5e-9, 3.0e-9), 1.0e9, 1.0 / 3.0), "diff" => ((0.5e-9, 3.0e-9), 1.0e9, 1.0 / 3.0), "da" => ((0.1e-6, 10.0e-6), 1.0e6, 1.0 / 10.0), "size" => ((0.1e-6, 10.0e-6), 1.0e6, 1.0 / 10.0), "t2" => ((20.0e-3, 200.0e-3), 1.0e3, 1.0 / 200.0), "dperp_frac" => ((0.0, 1.0), 1.0, 1.0), "fracs" => ((0.0, 1.0), 1.0, 1.0), "S0norm" => ((1.0, 5.0), 1.0, 1.0 / 5.0), ) const scalings_ex_vivo = Dict( "dpara" => ((0.1e-9, 1.2e-9), 1.0e9, 1.0 / 1.2), "d0" => ((0.1e-9, 1.2e-9), 1.0e9, 1.0 / 1.2), "diff" => ((0.1e-9, 2.0e-9), 1.0e9, 1.0 / 2.0), "da" => ((0.1e-6, 10.0e-6), 1.0e6, 1.0 / 5.0), "size" => ((0.1e-6, 10.0e-6), 1.0e6, 1.0 / 10.0), "t2" => ((10.0e-3, 150.0e-3), 1.0e3, 1.0 / 150.0), "dperp_frac" => ((0.0, 1.0), 1.0, 1.0), "fracs" => ((0.0, 1.0), 1.0, 1.0), "S0norm" => ((1.0, 5.0), 1.0, 1.0 / 5.0), ) const scalings = Dict("in_vivo" => scalings_in_vivo, "ex_vivo" => scalings_ex_vivo)
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
115
using Microstructure using Test @testset "Microstructure.jl" begin include("test_compartment.jl") ### end
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
code
1686
using Microstructure using Test axon = Cylinder(; da=2.0e-6) extra = Zeppelin() iso = Iso() sphere = Sphere() bval = [1000, 2500, 5000, 7500, 11100, 18100, 25000, 43000] .* 1.0e6 techo = 40.0 .* ones(8) .* 1e-3 tdelta = 15.129 .* ones(8) .* 1e-3 tsmalldel = 11.0 .* ones(8) .* 1e-3 prot = Protocol(bval, techo, tdelta, tsmalldel) digits = 6 @test round.(compartment_signals(axon, prot), digits=digits) == round.( [ 0.830306256448048, 0.660977107327415, 0.500413251789382, 0.411543391237258, 0.336884386133270, 0.260507095967021, 0.218862593318336, 0.161439844983240, ], digits=digits, ) @test round.(compartment_signals(extra, prot), digits=digits) == round.( [ 0.672953994843349, 0.376716014811867, 0.148013602779966, 0.060161061844622, 0.017211501723351, 0.001665325091163, 1.789612484149176e-04, 6.163836418812522e-07, ], digits=digits, ) @test round.(compartment_signals(iso, prot), digits=digits) == round.( [ 0.135335283236613, 0.006737946999085, 4.539992976248477e-05, 3.059023205018258e-07, 2.283823312361578e-10, 1.899064673586898e-16, 1.928749847963932e-22, 4.473779306181057e-38, ], digits=digits, ) @test round.(compartment_signals(sphere, prot), digits=digits) == round.( [ 0.926383765355293, 0.825994848716073, 0.682267490105489, 0.563549432273578, 0.427936553427585, 0.250562419120995, 0.147833680281184, 0.0373258948718356, ], digits=digits, )
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
2396
<img src="docs/src/assets/logo_main.png#gh-light-mode-only" width=400> <img src="docs/src/assets/logo-dark.png#gh-dark-mode-only" width=400> [![Build Status](https://github.com/Tinggong/Microstructure.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/Tinggong/Microstructure.jl/actions/workflows/CI.yml?query=branch%3Amain) Microstructure.jl is a Julia package for fast and probabilistic microstructure imaging. It features flexible and extendable compartment modeling with diffusion MRI and combined diffusion-relaxometry MRI and provides generic estimators including Markov Chain Monte Carlo (MCMC) sampling methods and Monte Carlo dropout with neural networks. Microstructure.jl is under active development, testing and optimization and updates will be shared throughout this process. You are welcome to try it out and provide feedback on any issues encountered. Microstructure.jl has a developing [documentation website](https://tinggong.github.io/Microstructure.jl/dev/) introducing functional API and features of the package. More tutorials and recommendations will be coming soon. **Updates!** We have a [preprint](https://arxiv.org/abs/2407.06379) if you are interested in knowing more: Gong, T., & Yendiki, A. (2024). Microstructure. jl: a Julia Package for Probabilistic Microstructure Model Fitting with Diffusion MRI. arXiv preprint arXiv:2407.06379. ### Installation To install Microstructure.jl, open Julia and enter the package mode by typing `]`, then add the package, which will install the latest released version: ```julia julia> ] (@v1.10) pkg> add Microstructure ``` If you want to keep up to date with the developing version I am working on, remove the current installation and add the repository directly: ```julia (@v1.10) pkg> rm Microstructure (@v1.10) pkg> add https://github.com/Tinggong/Microstructure.jl.git ``` ### Relationship to Other Packages Microstructure.jl focuses on tissue microstructure estimation. If you are also interested in fiber orientation and tractography, please check out [Fibers.jl](https://github.com/lincbrain/Fibers.jl). Additional, Microstructure.jl uses I/O functions from Fibers.jl for reading and writing NIfTI image files. ### Acknowledgements Development of this package is supported by the NIH National Institute of Neurologic Disorders and Stroke (grants UM1-NS132358, R01-NS119911, R01-NS127353).
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
1926
# Minimal steps Here includes the minimal steps for you to get started with your MRI dataset. Visit tutorial and manual pages for more feature demonstrations. ### Start julia in terminal with multi-threads ```terminal ~ % julia --threads auto ``` You can also set enviornment variable by adding `export JULIA_NUM_THREADS=auto` in your bash profile, which will use multi-threads automatically when you start julia. ### Load the package in Julia In your julia script or REPL: ```julia julia> using Microstructure ``` ### Read dMRI data and perform spherical mean Provide full path to the DWI file and acquisition files with following extensions: dwiname.bvals, dwiname.bvecs, dwiname.techo, dwiname.tdelta and dwiname.tsmalldel. Provide all or a subset of the acquisition files depending on the data and model you use. ```julia julia> (dMRI, protocol) = spherical_mean( datadir * "/dwiname.nii.gz", save=true, datadir * "dwiname.bvals", datadir * "dwiname.bvecs", datadir * "dwiname.techo", datadir * "dwiname.tdelta", datadir * "dwiname.tsmalldel") ``` You might also need to read a tissue mask to define the region you want to process: ```julia julia> using Fibers julia> mask = mri_read(datadir * "/mask.nii.gz") ``` ### Specify the model we want to use and get a MCMC sampler for it Here, we use a multi-echo spherical mean model which is curently under testing as an example: ```julia julia> model_start = MTE_SMT(axon = Stick(dpara = 1.7e-9, t2 = 90e-3), extra = Zeppelin(dpara = 1.7e-9, t2 = 60e-3)) julia> sampler_smt = Sampler(model_start) ``` ### MCMC Estimation ```julia julia> savename = datadir * "/mte_smt." julia> threading(model_start, sampler_smt, dMRI, mask, protocol, Noisemodel(), savename) ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
3170
# What is Microstructure.jl for? Microstructure.jl is a Julia toolbox aiming at fast and probabilistic microstructure imaging with diffusion and combined diffusion-relaxometry MRI. Microstructure imaging enables the estimation of biologically meaningful cellular parameters from MRI data. This is achieved by simplifying the tissue within a voxel into multiple compartments representing different cellular structures, e.g. axons and cell bodies etc. Each tissue compartment has unique features that affect the MR signals under a measurement protocol, thus allowing their estimation through solving an inverse problem. Since MRI measurements are typically noisy and exhibit varying sensitivities to tissue features, point estimation methods, which provide a single estimate of each tissue parameter, are often insufficient for understanding the meaningfulness of the estimated tissue parameters. To address this issue, many previous studies have investigated more extensive methods such as Markov Chain Monte Carlo (MCMC) sampling, to sample the posterior distributions of tissue parameters and thereby obtain the probability of the estimates. However, such methods have seen limited applications in neuroimaging studies due to the significantly longer computation time required for analyzing whole-brain datasets. Microstructure.jl aims to reduce the computation time required for probabilistic microstructure imaging by leveraging Julia's high performance design. It does not directly address limitations in microstructure modelling itself but aims to serve as a flexible tool to better investigate modelling assumptions and model performance. General recommendations for model fitting will be shared after testing and optimization. If you are interested, please try it out! The getting started page includes the minimal steps for beginning with your MRI dataset. Visit manual and upcoming tutorials for more feature demonstrations, recommendations and references! ### Feature Summary - Combined diffusion-relaxometry compartment modelling - Flexible in creating models and adjusting assumptions - Generic MCMC and neural network estimators - Faster MCMC with Parallel computing - Compatible with the probabilistic programming language [Turing.jl](https://turinglang.org/dev/) ### Installation To install Microstructure.jl, type ] in Julia to enter package mode and add the package: ```julia julia> ] (@v1.10) pkg> add Microstructure ``` Microstructure.jl is under active development and is frequently updated. To ensure you have the latest version, use the following command in the package mode: ```julia (@v1.10) pkg> up Microstructure ``` ### Relationship to Other Packages Microstructure.jl focuses on tissue microstructure estimation. If you are also interested in fiber orientation and tractography, please check out [Fibers.jl](https://github.com/lincbrain/Fibers.jl). Microstructure.jl also uses I/O functions from Fibers.jl for reading and writing mri image files. ### Acknowledgements Development of this package is supported by the NIH National Institute of Neurologic Disorders and Stroke (grants UM1-NS132358, R01-NS119911, R01-NS127353).
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
727
# Tissue Compartments This page introduces Compartment types with fields of relevant tissue parameters and forward functions inferencing signals from the compartment model and imaging protocol. Featuring spherical mean based models with compartmental relaxation-weighting. ## Overview ```@docs Compartment ``` ### Axonal and dendritic compartments ```@docs Cylinder ``` ```@docs Stick ``` ### Extra-cellular compartment ```@docs Zeppelin ``` ### Cell body compartment ```@docs Microstructure.Sphere ``` ### CSF and dot compartment ```@docs Iso ``` ## Compartment signals This function implements different methods for different compartment Types to generate compartment signals. ```@docs compartment_signals ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
343
# I/O functions This page introduces functions for reading dMRI data and protocols for microstructure imaging. ### Read from DWI data and get spherical mean signals & imaging protocols ```@docs spherical_mean ``` ### The dMRI and Protocol type ```@docs dMRI ``` ```@docs Protocol ``` Write image and save protocol ```@docs dmri_write ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
1785
# Estimators This page introduces two types of estimators in Microstructure.jl for estimating parameters and quantifying uncertainties: the Markov Chain Monte Carlo (MCMC) sampling method and Monte Carlo dropout using neural networks. These two types of estimators are flexibly parametrized, allowing you to specify sampling options for MCMC and training options for neural networks. ## MCMC MCMC methods aim to generate independent samples from the posterior distributions of tissue parameters given certain MRI measurements. You will need to tune the sampler parameters for a specific biophysical model. ### Define a sampler for your model ```@docs Sampler ``` ### Define a noise model ```@docs Noisemodel ``` ### Run MCMC on your model and data ```@docs mcmc! ``` Function mcmc! runs on single thread and suitable for testing sampler parameters and inspecting chains for small dataset. After optimizing sampler parameters, if you are processing datasets with many voxels, use the threading function for multi-threads processing. Refer to multi-threads page for more details. ## Neural Networks This module currently includes simple multi-layer perceptrons and training data generation function, which allows supervised training of the MLPs on synthesised data with given training parameter distributions. ### Specify a network model for your task ```@docs NetworkArg ``` ### Specify training parameters ```@docs TrainingArg ``` ### Prepare network and data for training ```@docs prepare_training ``` "prepare_training" calls two functions to generate task specific MLP and training samples: ```@docs create_mlp ``` ```@docs generate_samples ``` ### Training on generated training samples ```@docs train_loop! ``` ### Test on you data ```@docs test ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
567
# Microstructure Models This page introduces several biophysical models. A biophysical model includes several tissue compartments and other parameters including compartment fractions and signals. ```@docs BiophysicalModel ``` ## dMRI models ### WM models ```@docs ExCaliber ``` ### GM models ```@docs SANDI ``` ```@docs SANDIdot ``` ## Combined diffusion-relaxometry models ```@docs MTE_SMT ``` ```@docs MTE_SANDI ``` ## Prediction of MRI signals This function implements different methods for different BiophysicalModel types. ```@docs model_signals ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
707
# Multi threads Multi-threads processing is recommended when using MCMC estimation. The neural network estimators are relatively fast and take only minutes training on CPU. ### Start julia in terminal with multi-threads ```terminal ~ % julia --threads auto ``` You can also set enviornment variable by adding `export JULIA_NUM_THREADS=auto` in your bash profile, which will use multi-threads automatically when you start julia. ### Multi-threads for MCMC estimation ```@docs threading ``` Function threading calls pre_allocate and mcmc! for multi-threads processing. When provided sampler is a Tuple containing two Samplers, it uses a two-stage MCMC to get final estimates. ```@docs pre_allocate ```
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
3802
# How to build a microstructure model This page introduces some simple steps for you to observe how tissue microstructrure parameters affect dMRI spherical mean signals using some biphysical models. ## 1. diffusion MRI model Load the module ````julia using Microstructure ```` Specify the acquisition parameters and make a protocol. In real case, you can read a protocol from your acquisition text files ````julia bval = [0, 1000, 2500, 5000, 7500, 11100, 18100, 25000, 43000].*1.0e6 n = length(bval) techo = 40.0.*ones(n,).*1e-3 tdelta = 15.192.*ones(n,).*1e-3 tsmalldel = 11.0.*ones(n,).*1e-3 prot = Protocol(bval,techo,tdelta,tsmalldel) ```` Specify a model containing all the tissue parameters. Here, the example ExCaliber is a model for estimating axon diameter in ex vivo tissue using the spherical mean technique ````julia estimates = ExCaliber() ```` You can check how the tissue is modelled by printing the model. It will give you all the tissue compartments ````julia print_model(estimates) ```` You can check the values in the tissue model by using @show macro. This will show the default values if you didn't specify parameters when declare a model ````julia @show estimates ```` You can specify tissue parameters when declearing a model; fields/subfiedls that are not specified will take the default values ````julia estimates = ExCaliber( axon = Cylinder(da = 4.0e-6, dpara = 0.7e-9)) ```` You can change the fields/subfields of a decleared model struct by using update! funciton. a. update a field/subfields ````julia undate!(estimates, "axon.da" => 5.0e-6) ```` It's common that we need to link certain tissue parameters in some models as they may not be distinguishable under the experimental condition. b. update a field/subfield using parameter links. ````julia update!(estimates,"axon.d0" => "axon.dpara") ```` c. update multiple parameters ````julia update!(estimates,("axon.da" => 5.0e-6, "axon.dpara" => 0.5e-9, "axon.d0" => "axon.dpara", "extra.dpara" => "axon.dpara")) ```` Now we can use the model and protocol to generate some mri signals ````julia signals = model_signals(estimates,prot) ```` We can add some noise to the signals to make them look like real measurements ````julia using Random, Distributions sigma = 0.01 # SNR=100 at S(b=0,t=TEmin) (b=0 of minimal TE) noise = Normal(0,sigma) ```` Add some Gaussian noise ````julia meas = signals .+ rand(noise,size(signals)) ```` or Rician noise ````julia meas_rician = sqrt.((signals .+ rand(noise,size(signals))).^2.0 .+ rand(noise,size(signals)).^2.0) ```` You can check the predict signals and simulated measurements by ploting them ````julia using Plots plot(prot.bval, signals, label="predicted signals", lc=:black, lw=2) scatter!(prot.bval, meas, label="noisy measurements", mc=:red, ms=2, ma=0.5) xlabel!("b-values [s/m^2]") ```` ## 2. Combined Diffusion-relaxometry model Now let's look at a diffusion-relaxometry model MTE-SANDI. Similarly, declear a model object and check the values ````julia model = MTE_SANDI() print_model(model) @show model ```` MTE_SANDI requires data acquired at multiple echo times to solve the inverse problem and we will define a different protocol for it. Make a multi-TE protocol ````julia nTE = 4 nb = 9 bval = repeat([0, 1000, 2500, 5000, 7500, 11100, 18100, 25000, 43000].*1.0e6, outer=nTE) techo = repeat([32, 45, 60, 78].*1e-3, inner=9) tdelta = 15.192.*ones(nTE*nb,).*1e-3 tsmalldel = 11.0.*ones(nTE*nb,).*1e-3 prot = Protocol(bval,techo,tdelta,tsmalldel) ```` Let's see how multi-TE signals look like ````julia signals = model_signals(model, prot) meas = signals .+ rand(noise,size(signals)) plot(signals, label="predicted signals", lc=:black, lw=2) scatter!(meas, label="noisy measurements", mc=:red, ms=2, ma=0.5) ````
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
67
# How to check quality of fitting and mcmc samples Constructing...
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
88
# How to generate training datasets Constructing... Also checkout Manual - Estimators
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
57
# How to evaluate accuracy and precision Constructing...
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.6
a7c86ae9e497817fe18b7580eaceb1c7d3304b92
docs
37
# Which model to use Constructing...
Microstructure
https://github.com/Tinggong/Microstructure.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
8766
__precompile__(true) module PandasLite using PyCall using Compat using TableTraits using Dates export values, np, pd export @pytype, @pyasvec include("index.jl") const np = PyNULL() const pd = PyNULL() function __init__() copy!(np, pyimport_conda("numpy", "numpy")) copy!(pd, pyimport_conda("pandas", "pandas")) empty!(type_map) # for behaving nicely in system image for (pandas_expr, julia_type) in pre_type_map type_map[pandas_expr()] = julia_type end for (pytype, jltype) in type_map PyCall.pytype_mapping(pytype, jltype) end PyCall.pytype_mapping(np.float32, Float32) PyCall.pytype_mapping(np.float64, Float64) PyCall.pytype_mapping(np.int32, Int32) PyCall.pytype_mapping(np.int64, Int64) if get(ENV, "PD_NO_CONSOLID", "0") == "1" noconsolidation() end end version() = VersionNumber(pd.__version__) const pre_type_map = [] # Maps a python object corresponding to a PandasLite class to a Julia type which # wraps that class. const type_map = Dict{PyObject, Type}() abstract type PandasWrapped end PyCall.PyObject(x::PandasWrapped) = x.pyo macro pytype(name, class) quote mutable struct $(name) <: PandasWrapped pyo::PyObject $(esc(name))(pyo::PyObject) = new(pyo) $(esc(name))(args...; kwargs...) = ($class)()(args...; kwargs...) end # This won't work until PyCall is updated to support # the Julia 1.0 iteration protocol. function Base.iterate(x::$name, state...) res = Base.iterate(x.pyo, state...) if res === nothing return nothing else value, state = res return value, state end end Base.convert(::Type{$name}, o::PyObject) = $name(o) push!(pre_type_map, ($class, $name)) end end function Base.Array(x::PyObject) if hasproperty(x, :dtype) x_kind = x.dtype.kind if x_kind == "M" return map(z -> unix2datetime(z / 1e9), x.view("int64")) elseif x_kind == "m" return map(z -> Millisecond(z / 1e6), x.view("int64")) elseif x_kind == "O" && get(x, 0) isa String return convert(Array{String}, x) elseif x_kind == "O" return map(z -> convert(PyAny, z), convert(PyAny, x)) end end convert(PyAny, x) end Base.Array(x::PandasWrapped) = Array(x."values") function Base.values(x::PandasWrapped) # Zero-copy conversion to a Julia native type is possible if hasproperty(x.pyo, :dtype) x_kind = x.dtype.kind if x_kind in ["i", "u", "f", "b"] pyarray = convert(PyArray, x."values") if pyarray.f_contig dims, T, ptr = size(pyarray), eltype(pyarray), pyarray.data if Int(ptr) % Base.datatype_alignment(T) == 0 return unsafe_wrap(Array, ptr, dims) else Aflat = unsafe_wrap(Array, Ptr{UInt8}(ptr), prod(dims) * sizeof(T)) return reshape(reinterpret(T, Aflat), dims) end end end end Array(x) end struct StringRange{T <: AbstractString} start::T stop::T end (::Colon)(start::T, stop::T) where T <: AbstractString = StringRange{T}(start, stop) Base.show(io::IO, r::StringRange) = print(io, '"', r.start, '"', ':', '"', r.stop, '"') PyCall.PyObject(x::Colon) = pybuiltin("slice")(nothing, nothing, nothing) PyCall.PyObject(x::StringRange) = pybuiltin("slice")(x.start, x.stop) fix_arg(x) = x fix_arg(x::StepRange) = pybuiltin("slice")(x.start, x.start + length(x) * x.step, x.step) fix_arg(x::UnitRange) = fix_arg(StepRange(x.start, 1, x.stop)) fix_arg(x, offset) = fix_arg(x) fix_arg(x::Union{Integer, AbstractArray{<:Integer}}, offset) = offset ? fix_arg(x .- 1) : fix_arg(x) macro pyasvec(class) index_expr = quote function Base.getindex(pyt::$class, args...) offset = should_offset(pyt, args...) new_args = tuple([fix_arg(arg, offset) for arg in args]...) new_args = (length(new_args) == 1 ? new_args[1] : new_args) pyt.__getitem__(new_args) end Base.view(pyt::$class, is...) = Base.getindex(x, is...) function Base.setindex!(pyt::$class, value, idxs...) offset = should_offset(pyt, idxs...) new_idx = [fix_arg(idx, offset) for idx in idxs] if length(new_idx) > 1 pyt.__setitem__(tuple(new_idx...), value) else pyt.__setitem__(new_idx[1], value) end end end length_expr = if class in [:Iloc, :Loc] :(Base.length(x::$class) = x.obj.__len__()) else :(Base.length(x::$class) = x.__len__()) end quote $index_expr $length_expr Base.lastindex(x::$class) = length(x) Base.lastindex(x::$class, i) = size(x, i) end end @pytype DataFrame () -> pd.core.frame."DataFrame" @pytype Series () -> pd.core.series."Series" @pytype Iloc () -> pd.core.indexing."_iLocIndexer" @pytype Loc () -> pd.core.indexing."_LocIndexer" @pytype Index () -> version() < VersionNumber(1) ? pd.core.index."Index" : pd.core.indexes.multi."Index" @pytype MultiIndex () -> version() < VersionNumber(1) ? pd.core.index."MultiIndex" : pd.core.indexes.multi."MultiIndex" @pytype GroupBy () -> pd.core.groupby."DataFrameGroupBy" @pytype SeriesGroupBy () -> pd.core.groupby."SeriesGroupBy" @pytype Rolling () -> pd.core.window."Rolling" export DataFrame, Series, Iloc, Index, MultiIndex, GroupBy, SeriesGroupBy, Rolling Base.size(x::Union{Loc, Iloc}) = x.obj.shape Base.size(df::PandasWrapped, i::Integer) = size(df)[i] Base.size(df::PandasWrapped) = df.shape Base.ndims(df::PandasWrapped) = length(size(df)) Base.isempty(df::PandasWrapped) = df.empty Base.empty!(df::PandasWrapped) = df.drop(df.index, inplace = true) should_offset(::Any, args...) = false should_offset(::Union{Iloc, Index, MultiIndex}, args...) = true @pyasvec Series @pyasvec Loc @pyasvec Iloc @pyasvec DataFrame @pyasvec Index @pyasvec MultiIndex @pyasvec GroupBy @pyasvec SeriesGroupBy @pyasvec Rolling Base.show(io::IO, df::PandasWrapped) = println(io, df.__str__()) for (jl_op, py_op, py_opᵒ) in [(:+, :__add__, :__add__), (:*, :__mul__, :__mul__), (:/, :__truediv__, :__rtruediv__), (:-, :__sub__, :__rsub__), (:(==), :__eq__, :__eq__), (:!=, :__ne__, :__ne__), (:>, :__gt__, :__lt__), (:<, :__lt__, :__gt__), (:>=, :__ge__, :__le__), (:<=, :__le__, :__ge__), (:&, :__and__, :__and__), (:|, :__or__, :__or__)] @eval begin Base.$jl_op(x::PandasWrapped, y) = x.$py_op(y) Base.$jl_op(y, x::PandasWrapped) = x.$py_opᵒ(y) Base.$jl_op(x::PandasWrapped, y::PandasWrapped) = invoke($jl_op, Tuple{PandasWrapped, Any}, x, y) end end for (jl_op, py_op) in [(:-, :__neg__), (:!, :__neg__)] @eval Base.$jl_op(x::PandasWrapped) = x.$py_op() end include("operators_v6.jl") DataFrame(pairs::Pair...) = DataFrame(Dict(pairs...)) function Base.eltype(s::Series) dtype_map = Dict( np.dtype("int8") => Int8, np.dtype("uint8") => UInt8, np.dtype("int16") => Int16, np.dtype("uint16") => UInt16, np.dtype("int32") => Int32, np.dtype("uint32") => UInt32, np.dtype("int64") => Int64, np.dtype("uint64") => UInt64, np.dtype("float16") => Float16, np.dtype("float32") => Float32, np.dtype("float64") => Float64, np.dtype("object") => String, ) get(dtype_map, s.dtype, Any) end Base.eltype(df::DataFrame) = Tuple{[eltype(df[c]) for c in df.columns]...} function Base.map(f::Function, s::Series) if eltype(s) <: Real Series([f(_) for _ in values(s)]) else Series([f(_) for _ in s]) end end Base.get(df::PandasWrapped, key, default) = df.get(key, default) Base.getindex(s::Series, c::CartesianIndex{1}) = s[c[1]] Base.copy(df::PandasWrapped) = df.copy() include("tabletraits.jl") function DataFrame(obj) y = _construct_pandas_from_iterabletable(obj) if y === nothing return invoke(DataFrame, Tuple{Vararg{Any}}, obj) else return y end end Base.getproperty(x::PandasWrapped, s::Symbol) = s == :pyo ? getfield(x, s) : getproperty(x.pyo, s) Base.getproperty(x::PandasWrapped, s::String) = getproperty(x.pyo, s) function Base.setproperty!(x::PandasWrapped, s::Symbol, v) if s == :pyo return setfield!(x, s, v) else setproperty!(x.pyo, s, v) end end include("miscellaneous.jl") end
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
925
Base.getindex(o::PyObject, s) = o.__getitem__(s) Base.getindex(o::PyObject, is...) = getindex(o, is) Base.setindex!(o::PyObject, v, s) = o.__setitem__(s, v) Base.setindex!(o::PyObject, v, is...) = setindex!(o, v, is) Base.getindex(o::PyObject, s::Union{Symbol, AbstractString}) = invoke(getindex, Tuple{PyObject, Any}, o, s) Base.setindex!(o::PyObject, v, s::Union{Symbol, AbstractString}) = invoke(setindex!, Tuple{PyObject, Any, Any}, o, v, s) Base.getindex(o::PyObject, i::Integer) = invoke(getindex, Tuple{PyObject, Any}, o, i) Base.getindex(o::PyObject, i1::Integer, i2::Integer) = getindex(o, (i1, i2)) Base.getindex(o::PyObject, is::Integer...) = getindex(o, is) Base.setindex!(o::PyObject, v, i::Integer) = invoke(setindex!, Tuple{PyObject, Any, Any}, o, v, i) Base.setindex!(o::PyObject, v, i1::Integer, i2::Integer) = setindex!(o, (i1, i2), v) Base.setindex!(o::PyObject, v, is::Integer...) = setindex!(o, is, v)
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
1258
export pdhcat, pdvcat, noconsolidation Base.setindex!(df::DataFrame, v::AbstractArray, col::Union{Symbol, String}) = setindex!(df, v, [col]) function Base.setindex!(df::DataFrame, v::AbstractArray, cols) if isempty(df) df_merge = DataFrame(v, copy = false, columns = cols) df.pyo = df_merge.pyo elseif size(v, 1) == length(df) && !issubset(cols, df.columns) ndims(v) == 1 && (v = reshape(v, :, 1)) df_set = DataFrame(v, copy = false, columns = cols, index = df.index) df_merge = df.merge(df_set, left_index = true, right_index = true, copy = false) df.pyo = df_merge.pyo else df[cols] = DataFrame(v) end return df end function pdhcat(dfs...) dfs = filter(!isempty, collect(dfs)) df = dfs[1] for dfn in dfs[2:end] df = df.merge(dfn, left_index = true, right_index = true, copy = false) end return df end pdvcat(xs...) = pd.concat([xs...], axis = 0, ignore_index = true) function noconsolidation() py""" def _consolidate_inplace(self): pass def _consolidate(self): return self.blocks from pandas.core.internals import BlockManager BlockManager._consolidate_inplace = _consolidate_inplace BlockManager._consolidate = _consolidate """ end
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
323
import Base: ==, >, <, >=, <=, != for (op, pyop) in [(:(==), :__eq__), (:>, :__gt__), (:<, :__lt__), (:>=, :__ge__), (:<=, :__le__), (:!=, :__ne__)] @eval function Base.broadcast(::typeof($op), s::PandasWrapped, x) method = s.pyo.$(QuoteNode(pyop)) pandas_wrap(pycall(method, PyObject, x)) end end
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
1757
using IteratorInterfaceExtensions using TableTraitsUtils import DataValues IteratorInterfaceExtensions.isiterable(x::DataFrame) = true TableTraits.isiterabletable(x::DataFrame) = true function TableTraits.getiterator(df::DataFrame) col_names_raw = [c for c in df.columns] col_names = Symbol.(col_names_raw) column_data = [eltype(df[c]) == String ? [df[c].iloc[j] for j in 1:length(df)] : values(df[c]) for c in col_names_raw] return create_tableiterator(column_data, col_names) end TableTraits.supports_get_columns_copy_using_missing(df::DataFrame) = true function TableTraits.get_columns_copy_using_missing(df::PandasLite.DataFrame) # return a named tuple of columns here col_names_raw = [c for c in df.columns] col_names = Symbol.(col_names_raw) cols = (Array(eltype(df[c]) == String ? [df[c].iloc[j] for j in 1:length(df)] : df[c]) for c in col_names_raw) return NamedTuple{tuple(col_names...)}(tuple(cols...)) end function _construct_pandas_from_iterabletable(source) y = create_columns_from_iterabletable(source, errorhandling = :returnvalue) isnothing(y) && return nothing columns, column_names = y[1], y[2] cols = Dict{Symbol,Any}(i[1] => i[2] for i in zip(column_names, columns)) for (k,v) in pairs(cols) if eltype(v) <: DataValues.DataValue T = eltype(eltype(v)) if T <: AbstractFloat cols[k] = T[get(i, NaN) for i in v] elseif T <: Integer cols[k] = Float64[DataValues.isna(i) ? NaN : Float64(get(i)) for i in v] else throw(ArgumentError("Can't create a PandasLite.DataFrame from a source that has missing data.")) end end end return DataFrame(cols) end
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
1390
using PandasLite using Dates using Test df = pd.DataFrame(Dict(:name => ["a", "b"], :age => [27, 30])) age = values(df.age) age[2] = 31 @test df.loc[1, "age"] == 31 df = pd.read_csv(joinpath(dirname(@__FILE__), "test.csv")) @test isa(df, PandasLite.DataFrame) include("test_tabletraits.jl") @test !isempty(df) empty!(df) @test isempty(df) x = pd.Series([3, 5], index = [:a, :b]) @test x.a == 3 @test x["a"] == 3 @test x.loc["a"] == 3 @test x.b == 5 @test x.iloc[1] == 3 @test x.iloc[2] == 5 @test x.iloc[end] == 5 @test length(x) == 2 @test values(x + 1) == [4, 6] @test x.sum() == 8 @test eltype(x) == Int @test all(x.iloc[1:2] == x) # rolling roll = pd.Series([1,2,3,4,5]).rolling(3) @test isequal(values(roll.mean()), [NaN, NaN, 2.0, 3.0, 4.0]) # groupy group = pd.DataFrame(Dict("group" => ["a", "b", "a"], "value" => [1, 2, 3])).groupby("group")[["value"]] @test isequal(values(group.sum()), [4; 2;;]) df = pd.DataFrame() df["a"] = [1] df["b"] = pd.to_datetime("2015-01-01") df["c"] = pd.to_timedelta("0.5 hour") df["d"] = "abcde" @test Array(df["a"]) == values(df["a"]) == [1] @test Array(df["b"]) == values(df["b"]) == [DateTime(2015, 1, 1)] @test Array(df["c"]) == values(df["c"]) == [Millisecond(1800000)] @test Array(df["d"]) == values(df["d"]) == ["abcde"] @test Array(df["a"] / 2) == values(df["a"] / 2) == [0.5] @test Array(2 / df["a"]) == values(2 / df["a"]) == [2]
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
code
1702
using PandasLite using IteratorInterfaceExtensions using TableTraits using DataValues using Test @testset "TableTraits" begin table_array = [(a=1, b="John", c=3.2), (a=2, b="Sally", c=5.8)] df = DataFrame(table_array) @test collect(df.columns) == ["a", "b", "c"] @test values(df[:a]) == [1,2] @test values(df[:c]) == [3.2, 5.8] @test [df[:b].iloc[i] for i in 1:2] == ["John", "Sally"] @test TableTraits.isiterabletable(df) == true it = IteratorInterfaceExtensions.getiterator(df) @test eltype(it) == NamedTuple{(:a,:b,:c),Tuple{Int,String,Float64}} it_collected = collect(it) @test eltype(it_collected) == NamedTuple{(:a,:b,:c),Tuple{Int,String,Float64}} @test length(it_collected) == 2 @test it_collected[1] == (a=1, b="John", c=3.2) @test it_collected[2] == (a=2, b="Sally", c=5.8) @test TableTraits.supports_get_columns_copy_using_missing(df) == true cols = TableTraits.get_columns_copy_using_missing(df) @test cols == (a=[1,2], b=["John", "Sally"], c=[3.2, 5.8]) table_array2 = [(a=1, b=DataValue("John"), c=3.2), (a=2, b=DataValue("Sally"), c=5.8)] @test_throws ArgumentError DataFrame(table_array2) table_array3 = [(a=DataValue{Int}(), b="John", c=DataValue(3.2)), (a=DataValue(2), b="Sally", c=DataValue{Float64}())] df3 = DataFrame(table_array3) it3_collected = collect(IteratorInterfaceExtensions.getiterator(df3)) @test length(it3_collected) == 2 @test isnan(it3_collected[1].a) @test it3_collected[1].b == "John" @test it3_collected[1].c == 3.2 @test it3_collected[2].a == 2 @test it3_collected[2].b == "Sally" @test isnan(it3_collected[2].c) cols3 = TableTraits.get_columns_copy_using_missing(df3) @test isequal(cols3, (a=[NaN,2.], b=["John", "Sally"], c=[3.2, NaN])) end
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.13
4b15e702e8b0385a4696f520250030529eb29269
docs
3611
PandasLite.jl ============= [![Build Status](https://github.com/AStupidBear/PandasLite.jl/workflows/CI/badge.svg)](https://github.com/AStupidBear/PandasLite.jl/actions) [![Coverage](https://codecov.io/gh/AStupidBear/PandasLite.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/AStupidBear/PandasLite.jl) A fork of Pandas.jl whose syntax is closer to native pandas. This package provides a Julia interface to the excellent [pandas](http://pandas.pydata.org/pandas-docs/stable/) package. It sticks closely to the pandas API. One exception is that integer-based indexing is automatically converted from Python's 0-based indexing to Julia's 1-based indexing. Installation -------------- You must have pandas installed. Usually you can do that on the command line by typing ``` pip install pandas ``` It also comes with the Anaconda and Enthought Python distributions. Then in Julia, type ```julia Pkg.add("PandasLite") using PandasLite ``` Usage --------- ```julia >> using PandasLite >> df = DataFrame(Dict(:age=>[27, 29, 27], :name=>["James", "Jill", "Jake"])) age name 0 27 James 1 29 Jill 2 27 Jake [3 rows x 2 columns] >> df.describe() age count 3.000000 mean 27.666667 std 1.154701 min 27.000000 25% 27.000000 50% 27.000000 75% 28.000000 max 29.000000 [8 rows x 1 columns] df[:age] 0 27 1 29 2 27 Name: age, dtype: int64 >> df2 = DataFrame(Dict(:income=>[45, 101, 87]), index=["Jake", "James", "Jill"]) >> df3 = df.merge(df2, left_on="name", right_index=true) age name income 0 27 James 101 1 29 Jill 87 2 27 Jake 45 [3 rows x 3 columns] >> df3.iloc[1:2, 2:3] name income 0 James 101 1 Jill 87 [2 rows x 2 columns] >> df3.groupby("age").mean() income age 27 73 29 87 [2 rows x 1 columns] >> df3.query("income>85") age name income 0 27 James 101 1 29 Jill 87 [2 rows x 3 columns] >> Array(df3) 3x3 Array{Any,2}: 27 "James" 101 29 "Jill" 87 27 "Jake" 45 >> df3.plot() ``` Input/Output ------------- Example: ```julia df = pd.read_csv("my_csv_file.csv") # Read in a CSV file as a dataframe df.to_json("my_json_file.json") # Save a dataframe to disk in JSON format ``` Performance ------------ Most PandasLite operations on medium to large dataframes are very fast, since the overhead of calling into the Python API is small compared to the time spent inside PandasLite' highly efficient C implementation. Setting and getting individual elements of a dataframe or series is slow however, since it requires a round-trip of communication with Python for each operation. Instead, use the ``values`` method to get a version of a series or homogeneous dataframe that requires no copying and is as fast to access and write to as a Julia native array. Example: ```julia >> x_series = Series(randn(10000)) >> @time x[1] elapsed time: 0.000121945 seconds (2644 bytes allocated) >> x_values = values(x_series) >> @time x_values[1] elapsed time: 2.041e-6 seconds (64 bytes allocated) >> x_native = randn(10000) >> @time x[1] elapsed time: 2.689e-6 seconds (64 bytes allocated) ``` Changes to the values(...) array propogate back to the underlying series/dataframe: ```julia >> x_series.iloc[1] -0.38390854447454037 >> x_values[1] = 10 >> x_series.iloc[1] 10 ``` Caveats ---------- Panels-related functions are still unwrapped, as well as a few other obscure functions. Note that even if a function is not wrapped explicitly, it can still be called using various methods from [PyCall](https://github.com/stevengj/PyCall.jl).
PandasLite
https://github.com/AStupidBear/PandasLite.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
2152
module RenderJay const SMALL_NUM = 0.000001 const GREAT_NUM = 100000.0 const p = 1.0/(2.0 * pi) const INV_PI = 1.0/pi using CSV, LightXML, DataFrames, DelimitedFiles, LinearAlgebra, ProgressMeter, SharedArrays, ImageMagick, Images include("structs.jl") export normalize export Asset export Bvh export Camera export Coord export Geometry export Cylinder export Cone export Mesh export Point export Ray export Hook include("transform.jl") export translate_ray export transform_tzy export carthesian2spherical export spherical2carthesian export relazi export get_extremes export transform export transform_forward export transform_inverse export rotate_forward export rotate_inverse export weibull include("create.jl") export create_ray export create_coords include("bvh.jl") export make_boxes export produce_bvh_data export median_cut export build_containing_box export produce_bounding_boxes export make_bvh include("light.jl") export make_sky export background_radiance export sample_skymap include("render.jl") export trace_back export render_pixel export render_image include("brdf.jl") export cross_scalars export normalize_scalars export project2normal export sample_f export propagate export compute_propagation_of_reflectance export compute_propagation_of_transmittance export distr export geom export fresnel export cooktorrance export compute_half_vector export ct_sampler export pure_reflection export rpv include("intersect.jl") export hit_box export intersect_bvh export intersect export intersect_scene include("shader.jl") export lambertian_shader export bilambertian_shader export pure_reflection_shader export rpv_shader export lambertian_path_shader export bilambertian_path_shader export rpv_path_shader export pure_reflection_path_shader export lightsource_path_shader include("io.jl") export read_shaders export read_items export read_items_no_load_bvh export read_items_load_bvh export read_camera export read_skymap export read_scene export read_cylinder_data export read_cylinder export read_cone_data export read_cone export read_mesh_data export read_mesh export write_bvh export read_bvh end # module
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
5978
function cross_scalars(ax::T, ay::T, az::T, bx::T, by::T, bz::T) where {T<:AbstractFloat} cx = ay*bz-az*by cy = az*bx-ax*bz cz = ax*by-ay*bx return cx, cy, cz end function normalize_scalars(x::T, y::T, z::T) where {T<:AbstractFloat} l = sqrt(x*x + y*y + z*z) x = x / l y = y / l z = z / l return x, y, z end function project2normal(fx::T, fy::T, fz::T, nx::T, ny::T, nz::T) where {T<:AbstractFloat} ax::T = 0.0034 ay::T = 0.0071 az::T = 1.0000 bx, by, bz = cross_scalars(ax, ay, az, nx, ny, nz) cx, cy, cz = normalize_scalars(bx, by, bz) dx, dy, dz = cross_scalars(cx, cy, cz, nx, ny, nz) ex, ey, ez = normalize_scalars(dx, dy, dz) gx, gy, gz = normalize_scalars(fx, fy, fz) hx = gx * ex + gy * cx + gz * nx hy = gx * ey + gy * cy + gz * ny hz = gx * ez + gy * cz + gz * nz return hx, hy, hz end function sample_f() x1 = rand() x2 = rand() phi = x1*2.0*pi theta = acos(x2) return theta, phi end function propagate(Ix::T, Iy::T, Iz::T, dx::T, dy::T, dz::T) where {T<:AbstractFloat} x = Ix + dx * SMALL_NUM y = Iy + dy * SMALL_NUM z = Iz + dz * SMALL_NUM ray = Ray(x, y, z, dx, dy, dz) return ray end function compute_propagation_of_reflectance(Ix::T, Iy::T, Iz::T, nx::T, ny::T, nz::T) where {T<:AbstractFloat} t, p = sample_f() fx, fy, fz = spherical2carthesian(t, p) dx, dy, dz = project2normal(fx, fy, fz, nx, ny, nz) x = Ix + dx * SMALL_NUM y = Iy + dy * SMALL_NUM z = Iz + dz * SMALL_NUM ray = Ray(x, y, z, dx, dy, dz) return ray end function compute_propagation_of_transmittance(Ix::T, Iy::T, Iz::T, nx::T, ny::T, nz::T) where {T<:AbstractFloat} t, p = sample_f() fx, fy, fz = spherical2carthesian(t, p) dx, dy, dz = project2normal(fx, fy, fz, -nx, -ny, -nz) x = Ix + dx * SMALL_NUM y = Iy + dy * SMALL_NUM z = Iz + dz * SMALL_NUM ray = Ray(x, y, z, dx, dy, dz) return ray end function distr(nx::T, ny::T, nz::T, hx::T, hy::T, hz::T, alpha::T) where {T<:AbstractFloat} alpha2 = alpha^2 NoH = nx*hx+ny*hy+nz*hz NoH2 = NoH*NoH den = NoH2 * alpha2 + (1 - NoH2) chi = NoH > 0 ? 1 : 0 return (chi * alpha2) / (np.pi * den * den) end function geom(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T, hx::T, hy::T, hz::T, alpha::T) where {T<:AbstractFloat} VoH = vx*hx + vy*hy + vz*hz VoN = vx*nx + vy*ny + vz*nz m = VoH/VoN chi = m > 0 ? 1 : 0 VoH2 = VoH * VoH tan2 = (1 - VoH2) / VoH2 return (chi*2) / (1 + sqrt(1 + alpha * alpha * tan2)) end function fresnel(vx::T, vy::T, vz::T, hx::T, hy::T, hz::T, eta::T, k::T) where {T<:AbstractFloat} VoH = vx*hx + vy*hy + vz*hz k2 = k^2 num = (eta-1)^2 + 4*eta*(1-VoH)^5 + k2 den = (eta+1)^2 + k^2 return num/den end function cooktorrance(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T, sx::T, sy::T, sz::T, alpha::T, eta::T, k::T) where {T<:AbstractFloat} h = compute_half_vector(vx, vy, vz, sx, sy, sz) F = fresnel(vx, vh, vz, hx, hy, hz, eta, k) G = geom(vx, vy, vz, nx, ny, nz, hx, hy, hz, alpha) * geom(sx, sy, sz, nx, ny, nz, hx, hy, hz, alpha) D = distr(nx, ny, nz, hx, hy, hz, alpha) cosT = sx*nx + sy*ny + sz*nz sinT = sqrt(1-cosT*cosT) nom = F*G*D*sinT NoV = nx*vx + ny*vy + nz*vz HoN = nx*hx + ny*hy + nz*hz den = 4*NoV*HoN+0.05 fs = nom/den return fs end function compute_half_vector(vx::T, vy::T, vz::T, sx::T, sy::T, sz::T) where {T<:AbstractFloat} hx, hy, hz = normalize_scalars(vx+sx, vy+sy, vz+sz) return hx, hy, hz end function ct_sampler(alpa::T) where {T<:AbstractFloat} jota1, jota2 = rand(2) num = alpha * sqrt(jota1) den = sqrt(1-jota1) theta = atan(num/den) phi = jota2*2.0*pi return theta, phi end function pure_reflection(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T) where {T<:AbstractFloat} NoV = nx*vx + ny*vy + nz*vz rx = 2.0 * NoV * nx - vx ry = 2.0 * NoV * ny - vy rz = 2.0 * NoV * nz - vz return rx, ry, rz end function rpv(theta_zero::T, theta::T, phi::T, rho_zero::T, rho_c::T, captheta::T, k::T) where {T<:AbstractFloat} cos_theta = cos(theta) cos_theta_zero = cos(theta_zero) cos_phi = cos(phi) tan_theta_zero = tan(theta_zero) tan_theta = tan(theta) cosg = cos_theta*cos_theta_zero + sin(theta)*sin(theta_zero)*cos_phi captheta_square = captheta^2 G = ((tan_theta_zero^2 + tan_theta^2) - (2*tan_theta_zero*tan_theta*cos_phi))^0.5 M = (cos_theta_zero^(k-1) * cos_theta^(k-1)) / (cos_theta_zero+cos_theta)^(k-1) FHG = (1-captheta_square) / (1+2*captheta*cosg+captheta_square)^1.5 H = 1+(1-rho_c)/(1+G) rho_sfc = rho_zero * M * FHG * H return rho_sfc end function rpv(theta_zero::T, theta::T, phi::T, rho_zero::Array{T}, rho_c::Array{T}, captheta::Array{T}, k::Array{T}) where {T<:AbstractFloat} cos_theta = cos(theta) cos_theta_zero = cos(theta_zero) cos_phi = cos(phi) tan_theta_zero = tan(theta_zero) tan_theta = tan(theta) cosg = cos_theta*cos_theta_zero + sin(theta)*sin(theta_zero)*cos_phi G = ((tan_theta_zero^2 + tan_theta^2) - (2*tan_theta_zero*tan_theta*cos_phi))^0.5 n = size(k,1) rho_sfc = Array{T}(undef, n) for i=1:n captheta_square = captheta[i]^2 M = (cos_theta_zero^(k[i]-1) * cos_theta^(k[i]-1)) / (cos_theta_zero+cos_theta)^(k[i]-1) FHG = (1 - captheta_square) / (1 + 2 * captheta[i] * cosg + captheta_square)^1.5 H = 1 + (1 - rho_c[i]) / (1 + G) rho_sfc[i] = rho_zero[i] * M * FHG * H end return rho_sfc end function rpv(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T, sx::T, sy::T, sz::T, rho_zero::T, rho_c::T, captheta::T, k::T) where {T<:AbstractFloat} phi = relazi(vn, vy, vz, nx, ny, nz, sx, sy, sz) theta = acos(vx*nx + vy*ny + vz*nz) theta_zero = acos(sx*nx + sy*ny + sz*nz) rho_sfc = RPV(theta_zero, theta, phi, rho_zero, rho_c, captheta, k) return rho_sfc end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
9164
function make_boxes(box::Vector{T}, n::S, scale_factor::T) where {T<:AbstractFloat, S<:Integer} # Generates data for testing bvh, returns a set of n boxes inside box minx, miny, minz, maxx, maxy, maxz = box dx::T = abs(maxx - minx) * (1.0 - scale_factor) dy::T = abs(maxy - miny) * (1.0 - scale_factor) dz::T = abs(maxz - minz) * (1.0 - scale_factor) sx::T = abs(maxx - minx) * scale_factor sy::T = abs(maxy - miny) * scale_factor sz::T = abs(maxz - minz) * scale_factor newBoxes::Array{T,2} = zeros(6, n) for i=1:n a = rand() * dx + minx b = rand() * dy + miny c = rand() * dz + minz newBoxes[:,i] = [a, b, c, a+sx, b+sy, c+sz] end return newBoxes end function produce_bvh_data(bounding_boxes::Array{T,2}) where T<:AbstractFloat # BVH with one leaf per end node n::Int = size(bounding_boxes, 2) m::Int = 2*n-1 outerbox::Vector{T} = build_containing_box(bounding_boxes) bvh_boxes::Array{T,2} = zeros(6, m) bvh_boxes[:,1] = outerbox bb2bvh::Array{Int,1} = ones(n) # bounding boxes pointing to their node in the bvh bvh2bb::Array{Int,1} = zeros(m) bb_idx::Array{Int,1} = collect(1:n) left_child::Array{Int} = ones(m) right_child::Array{Int} = ones(m) writeCursor::Int = 1 #axis::Char = 'x' cutDirection::Array{Char} = ['x' for i::Int = 1:m] @showprogress for readCursor::Int = 1:m # sequence through the BVH nodes top-down and slice, if multiple leaves are left within #if readCursor % 1000 === 0 # println(readCursor, " / ", m) #end subset_idx = bb_idx[bb2bvh .== readCursor] if size(subset_idx, 1) == 0 continue end if size(subset_idx, 1) == 1 bvh2bb[readCursor] = subset_idx[1] end if size(subset_idx, 1) > 1 axis = cutDirection[readCursor] idxs_left, idxs_right, axis = median_cut(bounding_boxes[:,subset_idx]; axis=axis) idxs_left, idxs_right = subset_idx[idxs_left], subset_idx[idxs_right] writeCursor += 1 bvh_boxes[:,writeCursor] = build_containing_box(bounding_boxes[:,idxs_left]) bb2bvh[idxs_left] .= writeCursor left_child[readCursor] = writeCursor cutDirection[writeCursor] = axis writeCursor += 1 bvh_boxes[:,writeCursor] = build_containing_box(bounding_boxes[:,idxs_right]) bb2bvh[idxs_right] .= writeCursor right_child[readCursor] = writeCursor cutDirection[writeCursor] = axis end end # 1D arrays seem to be faster than a 2D array, even if column-major... minx::Array{T,1} = bvh_boxes[1,:] miny::Array{T,1} = bvh_boxes[2,:] minz::Array{T,1} = bvh_boxes[3,:] maxx::Array{T,1} = bvh_boxes[4,:] maxy::Array{T,1} = bvh_boxes[5,:] maxz::Array{T,1} = bvh_boxes[6,:] return minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child, bb2bvh end function median_cut(bounding_boxes::Array{T,2}; axis::Char=x) where {T<:AbstractFloat} n::Int = size(bounding_boxes,2) a::Vector{T} = zeros(n) if axis == 'x' for i::Int = 1:n a[i] = bounding_boxes[1,i] end s = sortperm(a) m = floor(Int, size(a,1) / 2) idx_left = s[1:m] idx_right = s[m+1:end] axis = 'y' elseif axis == 'y' for i::Int = 1:n a[i] = bounding_boxes[2,i] end s = sortperm(a) m = floor(Int, size(a,1) / 2) idx_left = s[1:m] idx_right = s[m+1:end] axis = 'z' elseif axis == 'z' for i::Int = 1:n a[i] = bounding_boxes[3,i] end s = sortperm(a) m = floor(Int, size(a,1) / 2) idx_left = s[1:m] idx_right = s[m+1:end] axis = 'x' end return idx_left, idx_right, axis end function build_containing_box(boxes::Array{T,2}) where {T<:AbstractFloat} minx::T = Inf miny::T = Inf minz::T = Inf maxx::T = -1.0*Inf maxy::T = -1.0*Inf maxz::T = -1.0*Inf n::Int = size(boxes,2) for i::Int = 1:n if boxes[1,i] < minx # minPoint.x minx = boxes[1,i] end if boxes[4,i] > maxx # maxPoint.x maxx = boxes[4,i] end if boxes[2,i] < miny # minPoint.y miny = boxes[2,i] end if boxes[5,i] > maxy # maxPoint.y maxy = boxes[5,i] end if boxes[3,i] < minz # minPoint.z minz = boxes[3,i] end if boxes[6,i] > maxz # maxPoint.z maxz = boxes[6,i] end end box::Vector{T} = [minx, miny, minz, maxx, maxy, maxz] return box end function produce_bounding_boxes(mesh::Mesh) n = size(mesh.v1x, 1) boxes::Array{Float32, 2} = zeros(6, n) for i=1:n minx = min(mesh.v1x[i], mesh.v2x[i], mesh.v3x[i]) miny = min(mesh.v1y[i], mesh.v2y[i], mesh.v3y[i]) minz = min(mesh.v1z[i], mesh.v2z[i], mesh.v3z[i]) maxx = max(mesh.v1x[i], mesh.v2x[i], mesh.v3x[i]) maxy = max(mesh.v1y[i], mesh.v2y[i], mesh.v3y[i]) maxz = max(mesh.v1z[i], mesh.v2z[i], mesh.v3z[i]) boxes[:,i] = [minx, miny, minz, maxx, maxy, maxz] end return boxes end function produce_bounding_boxes(cylinder::Cylinder) n = size(cylinder.m1x, 1) boxes::Array{Float32, 2} = zeros(6, n) for i=1:n minx = min(cylinder.m1x[i], cylinder.m2x[i]) miny = min(cylinder.m1y[i], cylinder.m2y[i]) minz = min(cylinder.m1z[i], cylinder.m2z[i]) maxx = max(cylinder.m1x[i], cylinder.m2x[i]) maxy = max(cylinder.m1y[i], cylinder.m2y[i]) maxz = max(cylinder.m1z[i], cylinder.m2z[i]) r = cylinder.radius[i] boxes[:,i] = [minx-r, miny-r, minz-r, maxx+r, maxy+r, maxz+r] end return boxes end function produce_bounding_boxes(cone::Cone) n = size(cone.m1x, 1) boxes::Array{Float32, 2} = zeros(6, n) for i=1:n minx = min(cone.m1x[i] - cone.radius_base[i], cone.v2x[i] - cone.radius_tip[i]) miny = min(cone.m1y[i] - cone.radius_base[i], cone.v2y[i] - cone.radius_tip[i]) minz = min(cone.m1z[i] - cone.radius_base[i], cone.v2z[i] - cone.radius_tip[i]) maxx = max(cone.m1x[i] + cone.radius_base[i], cone.v2x[i] + cone.radius_tip[i]) maxy = max(cone.m1y[i] + cone.radius_base[i], cone.v2y[i] + cone.radius_tip[i]) maxz = max(cone.m1z[i] + cone.radius_base[i], cone.v2z[i] + cone.radius_tip[i]) boxes[:,i] = [minx, miny, minz, maxx, maxy, maxz] end return boxes end function make_bvh(bb::AbstractArray{T}) where {T<:AbstractFloat} # create bvh from bounding boxes (6xN array) minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child, bb2bvh = produce_bvh_data(bb) bvh = Bvh(minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child) return bvh end function make_bvh(geometry::Geometry{T,S,A,E}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray, E<:AbstractArray} # use this function only for meshes; scenes are handled below... boxes = produce_bounding_boxes(geometry) minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child, bb2bvh = produce_bvh_data(boxes) bvh = Bvh(minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child) return bvh end function make_bvh(assets::Array{Asset{Float64, Int64},1}, mesh_bvhs::Array{Bvh{Float64, Int64, Array{Float64,1}, Array{Int64,1}},1}) n = size(assets, 1) boxes::Array{Float64, 2} = zeros(6, n) for i=1:n p = assets[i].oidx xoff = assets[i].xoff yoff = assets[i].yoff zoff = assets[i].zoff beta = assets[i].beta gamma = assets[i].gamma xmin = mesh_bvhs[p].xmin[1] ymin = mesh_bvhs[p].ymin[1] zmin = mesh_bvhs[p].zmin[1] xmax = mesh_bvhs[p].xmax[1] ymax = mesh_bvhs[p].ymax[1] zmax = mesh_bvhs[p].zmax[1] x1, y1, z1 = transform(xmin, ymin, zmin, xoff, yoff, zoff, beta, gamma) x2, y2, z2 = transform(xmin, ymin, zmax, xoff, yoff, zoff, beta, gamma) x3, y3, z3 = transform(xmin, ymax, zmin, xoff, yoff, zoff, beta, gamma) x4, y4, z4 = transform(xmin, ymax, zmax, xoff, yoff, zoff, beta, gamma) x5, y5, z5 = transform(xmax, ymin, zmin, xoff, yoff, zoff, beta, gamma) x6, y6, z6 = transform(xmax, ymin, zmax, xoff, yoff, zoff, beta, gamma) x7, y7, z7 = transform(xmax, ymax, zmin, xoff, yoff, zoff, beta, gamma) x8, y8, z8 = transform(xmax, ymax, zmax, xoff, yoff, zoff, beta, gamma) txmin = min(x1, x2, x3, x4, x5, x6, x7, x8) tymin = min(y1, y2, y3, y4, y5, y6, y7, y8) tzmin = min(z1, z2, z3, z4, z5, z6, z7, z8) txmax = max(x1, x2, x3, x4, x5, x6, x7, x8) tymax = max(y1, y2, y3, y4, y5, y6, y7, y8) tzmax = max(z1, z2, z3, z4, z5, z6, z7, z8) boxes[:,i] = [txmin, tymin, tzmin, txmax, tymax, tzmax] end minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child, bb2bvh = produce_bvh_data(boxes) scene_bvh::Bvh{Float64, Int64, Array{Float64,1}, Array{Int64,1}} = Bvh(minx, miny, minz, maxx, maxy, maxz, bvh2bb, left_child, right_child) return scene_bvh end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
684
function create_ray(x1::T, y1::T, z1::T, x2::T, y2::T, z2::T) where {T<:AbstractFloat} dx = x2 - x1 dy = y2 - y1 dz = z2 - z1 l = sqrt((dx^dx) + (dy*dy) + (dz*dz)) dx = dx / l dy = dy / l dz = dz / l ray = Ray(x1, y1, z1, dx, dy, dz) return ray end function create_coords(camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}} # construct an array of coordinate, just for the shape... coords = Array{Coord{S}}(undef, camera.xResolution, camera.yResolution) for x::S=1:camera.xResolution for y::S=1:camera.yResolution coords[x,y] = Coord(x, y) end end return coords end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
9376
function hit_box(minx::T, miny::T, minz::T, maxx::T, maxy::T, maxz::T, ray::Ray{T}) where {T<:AbstractFloat} minx2v1 = minx - ray.x maxx2v1 = maxx - ray.x miny2v1 = miny - ray.y maxy2v1 = maxy - ray.y minz2v1 = minz - ray.z maxz2v1 = maxz - ray.z tmin = minx2v1 / ray.dx tmax = maxx2v1 / ray.dx if tmin > tmax tmin, tmax = tmax, tmin end tymin = miny2v1 / ray.dy tymax = maxy2v1 / ray.dy if tymin > tymax tymin, tymax = tymax, tymin end if (tmin > tymax) || (tymin > tmax) return false end if tymin > tmin tmin = tymin end if tymax < tmax tmax = tymax end tzmin = minz2v1 / ray.dz tzmax = maxz2v1 / ray.dz if tzmin > tzmax tzmin, tzmax = tzmax, tzmin end if (tmin > tzmax) || (tzmin > tmax) return false end return true end function intersect_bvh(bvh::Bvh{T,S,A,E}, ray::Ray{T}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} #NOTE:these two vector take about a third of the time of this function and furthermore the pushes take a long time too... # the hit_box line takes surprisingly little, with only 586/4505 q::Vector = [1] leaf_idxs::Vector{S} = [] while size(q, 1) > 0 i = pop!(q) minx, miny, minz, maxx, maxy, maxz = bvh.xmin[i], bvh.ymin[i], bvh.zmin[i], bvh.xmax[i], bvh.ymax[i], bvh.zmax[i] if hit_box(minx, miny, minz, maxx, maxy, maxz, ray)::Bool if bvh.left_child[i] > 1 && bvh.right_child[i] > 1 q = push!(q, bvh.left_child[i], bvh.right_child[i]) end if bvh.bvh2bb[i] > 0 leaf_idxs = push!(leaf_idxs, bvh.bvh2bb[i]) end end end return leaf_idxs end function intersect(cone::Cone{T,S,A,E}, i::S, ray::Ray) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray, E<:AbstractArray} # intersect ray with cone/cylinder... xoff = cone.m1x[i] yoff = cone.m1y[i] zoff = cone.m1z[i] beta = cone.beta[i] gamma = cone.gamma[i] tray = transform_tzy(ray, -xoff, -yoff, -zoff, -beta, -gamma) a::Float64 = tray.dx^2 + tray.dy^2 - tray.dz^2 * cone.aa[i] b::Float64 = 2 * tray.x * tray.dx + 2 * tray.y * tray.dy - 2 * cone.r1a[i] * tray.dz - 2 * tray.z * ray.dz * cone.aa[i] c::Float64 = tray.x^2 + tray.y^2 - cone.r1sq[i] - 2 * cone.r1a[i] * tray.z - cone.aa[i] * tray.z^2 d::Float64 = b^2 - (4*a*c) t1::Float64 = Inf t2::Float64 = Inf t::Float64 = Inf if d > 0 t1 = (-1.0*b - sqrt(d))/(2*a) t2 = (-1.0*b + sqrt(d))/(2*a) end # choose the smallest, non-negative solution for t if t1 <= 0 if t2 > 0 t = t2 end else if t2 <= 0 t = t1 elseif t1 < t2 t = t1 else t = t2 end end # t1 and t2 can both be negative, hence t can be negative! hit::Bool = false tI = Point{T}(tray.x + tray.dx * t, tray.y + tray.dy * t, tray.z + tray.dz * t) if (t > 0) && (tI.z > 0.0) && (tI.z < cone.length[i]) hit = true end I = Point{T}(ray.x + ray.dx * t, ray.y + ray.dy * t, ray.z + ray.dz * t) xx::Float64 = tI.x^2 yy::Float64 = tI.y^2 rcirc::Float64 = sqrt(xx + yy) nx::Float64, ny::Float64, nz::Float64 = normalize(tI.x, tI.y, cone.a[i] * -1.0 * rcirc) nx, ny, nz = transform(nx, ny, nz, xoff, yoff, zoff, beta, gamma) normal::Point = Point{T}(nx, ny, nz) return hit, I, normal, t end function intersect(cylinder::Cylinder{T,S,A,E}, i::S, ray::Ray) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray, E<:AbstractArray} # intersect ray with cylinder... xoff = cylinder.m1x[i] yoff = cylinder.m1y[i] zoff = cylinder.m1z[i] beta = cylinder.beta[i] gamma = cylinder.gamma[i] tray = transform_tzy(ray, -xoff, -yoff, -zoff, -beta, -gamma) a::Float64 = tray.dx^2 + tray.dy^2 b::Float64 = 2 * tray.x * tray.dx + 2 * tray.y * tray.dy c::Float64 = tray.x^2 + tray.y^2 - cylinder.rsq[i] d::Float64 = b^2 - (4*a*c) t1::Float64 = Inf t2::Float64 = Inf t::Float64 = Inf if d > 0 t1 = (-1.0*b - sqrt(d))/(2*a) t2 = (-1.0*b + sqrt(d))/(2*a) end # choose the smallest, non-negative solution for t if t1 <= 0 if t2 > 0 t = t2 end else if t2 <= 0 t = t1 elseif t1 < t2 t = t1 else t = t2 end end # t1 and t2 can both be negative, hence t can be negative! hit::Bool = false tI = Point{T}(tray.x + tray.dx * t, tray.y + tray.dy * t, tray.z + tray.dz * t) if (t > 0) && (tI.z > 0.0) && (tI.z < cylinder.length[i]) hit = true end I = Point{T}(ray.x + ray.dx * t, ray.y + ray.dy * t, ray.z + ray.dz * t) nx::Float64, ny::Float64, nz::Float64 = normalize(tI.x, tI.y, 0.0) nx, ny, nz = transform(nx, ny, nz, xoff, yoff, zoff, beta, gamma) normal::Point = Point{T}(nx, ny, nz) return hit, I, normal, t end function intersect(mesh::Mesh{T,S,A,E}, i::S, ray::Ray{T}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} w0x = ray.x - mesh.v1x[i] w0y = ray.y - mesh.v1y[i] w0z = ray.z - mesh.v1z[i] a = -((mesh.nx[i] * w0x) + (mesh.ny[i] * w0y) + (mesh.nz[i] * w0z)) b = (ray.dx * mesh.nx[i]) + (ray.dy * mesh.ny[i]) + (ray.dz * mesh.nz[i]) if abs(b) < SMALL_NUM nullPoint = Point{T}(Inf, Inf, Inf) return false, nullPoint, nullPoint, Inf # parallel end r = a / b if r < 0.0 nullPoint = Point{T}(Inf, Inf, Inf) return false, nullPoint, nullPoint, r # away end # point of plane intersection x = ray.x + r * ray.dx y = ray.y + r * ray.dy z = ray.z + r * ray.dz I = Point{T}(x, y, z) N = Point{T}(mesh.nx[i], mesh.ny[i], mesh.nz[i]) mx = x - mesh.v1x[i] my = y - mesh.v1y[i] mz = z - mesh.v1z[i] mu = (mx * mesh.ux[i]) + (my * mesh.uy[i]) + (mz * mesh.uz[i]) mw = (mx * mesh.wx[i]) + (my * mesh.wy[i]) + (mz * mesh.wz[i]) s = ((mesh.uw[i] * mw) - (mesh.ww[i] * mu)) / mesh.D[i] if (s < 0.0) | (s > 1.0) return false, I, N, r # outside end t = ((mesh.uw[i] * mu) - (mesh.uu[i] * mw)) / mesh.D[i] if (t < 0.0) | ((s + t) > 1.0) return false, I, N, r # outside end return true, I, N, r # ray intersects triangle end function intersect(geometry::Geometry{T,S,A,E}, ray::Ray{T}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} hit::Bool = false In::Point{T} = Point{T}(Inf, Inf, Inf) eidx::S = 0 normal::Point{T} = Point{T}(Inf, Inf, Inf) rmin::T = Inf # intersect mesh facets eidxs::Array{S,1} = collect(1:size(geometry.mtl, 1)) for i::S in eidxs hit_, Ix_, Iy_, Iz_, r_ = intersect(geometry, i, ray) if (hit_ === true) && (r_ < rmin) eidx = i rmin = r_ In = Point{T}(Ix_, Iy_, Iz_) normal = Point{T}(nx, ny, nz) hit = true end end return hit, In, eidx, normal, rmin end function intersect(geometry::Geometry{T,S,A,E}, bvh::Bvh{T,S,A,E}, ray::Ray{T}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} hit::Bool = false In::Point{T} = Point{T}(Inf, Inf, Inf) eidx::S = 0 normal::Point{T} = Point{T}(Inf, Inf, Inf) rmin::T = Inf # intersect mesh facets #eidxs = collect(1:size(geometry.mtl, 1)) eidxs::Array{S,1} = intersect_bvh(bvh, ray) for i::S in eidxs # and see if it is nearest hit_, I_, N_, r_ = intersect(geometry, i, ray) if (hit_ === true) && (r_ < rmin) eidx = i rmin = r_ In = I_ normal = N_ hit = true end end return hit, In, eidx, normal, rmin end function intersect_scene(assets::Array{Asset{T,S},1}, geometries::AbstractArray{Geometry{T,S,A,E},1}, geometry_bvhs::AbstractArray{Bvh{T,S,A,E},1}, scene_bvh::Bvh{T,S,A,E}, ray::Ray{T}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} hit::Bool = false In::Point{T} = Point{T}(Inf, Inf, Inf) nrml::Point{T} = Point{T}(Inf, Inf, Inf) tray::Ray{T} = Ray{T}(Inf, Inf, Inf, Inf, Inf, Inf) rmin::T = Inf instidx::S = 0 aidx::S = 0 # asset index oidx::S = 0 # object index / geometry index eidx::S = 0 # element index (of the geometry indexed with oidx) #aidxs::Array{S} = collect(1:length(assets)) aidxs::Array{S} = intersect_bvh(scene_bvh, ray) for i::S in aidxs oidx_ = assets[i].oidx xoff = assets[i].xoff yoff = assets[i].yoff zoff = assets[i].zoff beta = assets[i].beta gamma = assets[i].gamma geometry = geometries[oidx_] geometry_bvh = geometry_bvhs[oidx_] tray_ = transform_tzy(ray, -xoff, -yoff, -zoff, -beta, -gamma) hit_, In_, eidx_, nrml_, rmin_ = intersect(geometry, geometry_bvh, tray_) if (hit_ === true) && (rmin_ < rmin) hit = true x = ray.x + ray.dx * rmin_ y = ray.y + ray.dy * rmin_ z = ray.z + ray.dz * rmin_ In = Point{T}(x, y, z) tray = tray_ nrml = nrml_ rmin = rmin_ aidx = i oidx = oidx_ eidx = eidx_ end end return hit, In, tray, nrml, rmin, aidx, oidx, eidx end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
16555
################################################################## # # I/O functionality... # ################################################################## # to specify the type of the "geometries" array allequal(x) = all(y->y==x[1],x) function read_shaders(shaderXML::Array{XMLElement,1}) shaders = Function[] for el in shaderXML n = find_element(el, "function") shaderName = content(n) s = Symbol(shaderName) shader = getfield(Main, s) args = child_elements(find_element(el, "args")) d = Dict() for arg in args if occursin(",", content(arg)) # array of values... a = parse.(Float64, split(content(arg), ",")) varName = Symbol(name(arg)) push!(d, varName => a) else # a scalar... b = convert(Float64, content(arg)) varName = Symbol(name(arg)) push!(d, varName => b) end end # assert that number of arguments equals number of specified spectral bands (i.e., for camera)... # not sure how to implement such an assertion... f = (Ix, Iy, Iz, vx, vy, vz, nx, ny, nz) -> shader(Ix, Iy, Iz, vx, vy, vz, nx, ny, nz; d...) shaders = push!(shaders, f) #ds = push!(ds, d) end return shaders #, ds end function read_items(xroot::XMLElement ; add_one=false, load_bvh=true, base_path::AbstractString="") if load_bvh assets, geometries, palettes, geometry_bvhs = read_items_load_bvh(xroot ; add_one=add_one, base_path=base_path) return assets, geometries, palettes, geometry_bvhs else assets, geometries, palettes = read_items_no_load_bvh(xroot ; add_one=add_one, base_path=base_path) return assets, geometries, palettes end end function read_items_no_load_bvh(xroot::XMLElement ; add_one=false, base_path::AbstractString="") oid = 0 pid = 0 assets = Asset{Float64, Int64}[] geom_args = [] geometries = Array{Geometry{Float64, Int64, Array{Float64,1}, Array{Int64,1}},1}(undef, 0) # could implement a supertype Geometry? palettes = Array{Vector{Function},1}(undef, 0) @showprogress for item in xroot["item"] # collect geometry... geometry_type = attribute(item, "geometry") geometry_src = attribute(item, "src") if !isabspath(geometry_src) geometry_src = joinpath(base_path, geometry_src) end geom_arg = (geometry_type, geometry_src) # check if geometry in set; add if not... if !(geom_arg in geom_args) if geometry_type === "mesh" geometry = read_mesh(geometry_src; add_one=add_one, load_bvh=false) push!(geometries, geometry) elseif geometry_type === "cylinder" geometry = read_cylinder(geometry_src; add_one=add_one, load_bvh=false) push!(geometries, geometry) elseif geometry_type === "cone" geometry = read_cone(geometry_src; add_one=add_one, load_bvh=false) push!(geometries, geometry) elseif geometry_type === "balls" geometry = read_ball(geometry_src; add_one=add_one, load_bvh=false) push!(geometries, geometry) else println( string("Cannot read << ", geometry_src, " >> of type << ", geometry_type, " >>, skipping item...") ) continue end push!(geom_args, geom_arg) end # find the index... oid = -1 for (j, v) in enumerate(geom_args) if geom_arg == v oid = j end end # collect shaders (notice that palettes do not have to be unique, # unlike geometries which are bigger/consume more memory... palette = read_shaders(item["shader"]) push!(palettes, palette) pid += 1 # collect hooks... hooks = item["hook"] for hook in hooks x = parse(Float64, content(hook["x"][1])) y = parse(Float64, content(hook["y"][1])) z = parse(Float64, content(hook["z"][1])) beta = parse(Float64, content(hook["beta"][1])) gamma = parse(Float64, content(hook["gamma"][1])) asset = Asset(x, y, z, beta, gamma, oid, pid) push!(assets, asset) end end # conversion may or may not help you, but will first # require new functions to be defined for render_pixel, # specific for mesh, cylinder, ball, disk... ## convert array of type Any[] to a precise composite type, if at all possible... #if allequal([typeof(geometries[i]) for i=1:length(geometries)]) # geometries = convert.(typeof(geometries[1]), geometries) #end return assets, geometries, palettes end function read_items_load_bvh(xroot::XMLElement ; add_one=false, base_path::AbstractString="") oid = 0 pid = 0 assets = Asset{Float64, Int64}[] geom_args = [] geometries = Array{Geometry{Float64, Int64, Array{Float64,1}, Array{Int64,1}},1}(undef, 0) # could implement a supertype Geometry? geometry_bvhs = Array{Bvh{Float64, Int64, Array{Float64,1}, Array{Int64,1}},1}(undef, 0) palettes = Array{Vector{Function},1}(undef, 0) @showprogress for item in xroot["item"] # collect geometry... geometry_type = attribute(item, "geometry") geometry_src = attribute(item, "src") if !isabspath(geometry_src) geometry_src = joinpath(base_path, geometry_src) end geom_arg = (geometry_type, geometry_src) # check if geometry in set; add if not... if !(geom_arg in geom_args) if geometry_type === "mesh" geometry, bvh = read_mesh(geometry_src; add_one=add_one, load_bvh=true) push!(geometries, geometry) push!(geometry_bvhs, bvh) elseif geometry_type === "cylinder" geometry, bvh = read_cylinder(geometry_src; add_one=add_one, load_bvh=true) push!(geometries, geometry) push!(geometry_bvhs, bvh) elseif geometry_type === "cone" geometry, bvh = read_cone(geometry_src; add_one=add_one, load_bvh=true) push!(geometries, geometry) push!(geometry_bvhs, bvh) elseif geometry_type === "balls" geometry, bvh = read_ball(geometry_src; add_one=add_one, load_bvh=true) push!(geometries, geometry) push!(geometry_bvhs, bvh) else println( string("Cannot read << ", geometry_src, " >> of type << ", geometry_type, " >>, skipping item...") ) continue end push!(geom_args, geom_arg) end # find the index... oid = -1 for (j, v) in enumerate(geom_args) if geom_arg == v oid = j end end # collect shaders (notice that palettes do not have to be unique, # unlike geometries which are bigger/consume more memory... palette = read_shaders(item["shader"]) push!(palettes, palette) pid += 1 # collect hooks... hooks = item["hook"] for hook in hooks x = parse(Float64, content(hook["x"][1])) y = parse(Float64, content(hook["y"][1])) z = parse(Float64, content(hook["z"][1])) beta = parse(Float64, content(hook["beta"][1])) gamma = parse(Float64, content(hook["gamma"][1])) asset = Asset(x, y, z, beta, gamma, oid, pid) push!(assets, asset) end end # conversion may or may not help you, but will first # require new functions to be defined for render_pixel, # specific for mesh, cylinder, ball, disk... # convert array of type Any[] to a precise composite type, if at all possible... #if allequal([typeof(geometries[i]) for i=1:length(geometries)]) # geometries = convert.(typeof(geometries[1]), geometries) #end return assets, geometries, palettes, geometry_bvhs end function read_camera(xroot::XMLElement) u = xroot["camera"][1] eyeX = parse(Float64, content(find_element(u, "eyeX"))) eyeY = parse(Float64, content(find_element(u, "eyeY"))) eyeZ = parse(Float64, content(find_element(u, "eyeZ"))) lookX = parse(Float64, content(find_element(u, "lookX"))) lookY = parse(Float64, content(find_element(u, "lookY"))) lookZ = parse(Float64, content(find_element(u, "lookZ"))) eyePoint = [eyeX, eyeY, eyeZ] lookAtPoint = [lookX, lookY, lookZ] fov = parse(Float64, content(find_element(u, "fov"))) xRes = parse(Int, content(find_element(u, "xResolution"))) yRes = parse(Int, content(find_element(u, "yResolution"))) nBands = parse(Int, content(find_element(u, "nBands"))) rppx = parse(Int, content(find_element(u, "rppx"))) nBounces = parse(Int, content(find_element(u, "nBounces"))) camera = Camera(eyePoint, lookAtPoint, fov, xRes, yRes, nBands, rppx, nBounces) return camera end function read_skymap(xroot::XMLElement ; base_path::AbstractString="") sky_src = attribute(xroot["sky"][1], "src") if !isabspath(sky_src) sky_src = joinpath(base_path, sky_src) end skymap = readdlm(sky_src, ',', Float64) return skymap end function read_scene(scenefn::AbstractString ; add_one=false) # scenefn is the full path (and filename) of the scene (XML) file abs_scenefn = abspath(scenefn) base_path, _ = splitdir(abs_scenefn) f = read(abs_scenefn, String) xml = parse_file(abs_scenefn) xroot = root(xml) assets, geometries, palettes, geometry_bvhs = read_items(xroot ; add_one=add_one, load_bvh=true, base_path=base_path) camera = read_camera(xroot) skymap = read_skymap(xroot ; base_path=base_path) abs_scene_bvhfn = string(abs_scenefn[1:end-3], "csv") if !isfile(abs_scene_bvhfn) scene_bvh = make_bvh(assets, geometry_bvhs) write_bvh(scene_bvh, abs_scene_bvhfn) end scene_bvh = read_bvh(abs_scene_bvhfn) return assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera end function read_cylinder_data(cylinder_src; add_one=false) # loading the axes and diameters... mfn = joinpath(cylinder_src, "m.csv") lfn = joinpath(cylinder_src, "l.csv") dfn = joinpath(cylinder_src, "d.csv") mtlfn = joinpath(cylinder_src, "mtl.csv") m::Array{Float64, 2} = readdlm(mfn, ',', Float64) l::Array{Int, 2} = readdlm(lfn, ',', Int) d::Array{Float64, 1} = vec(readdlm(dfn, ',', Float64)) mtl::Array{Int, 1} = vec(readdlm(mtlfn, ',', Int)) if add_one t += 1 end return m, l, d, mtl end function read_cylinder(cylinder_src::AbstractString; add_one=false, load_bvh=true) m, l, d, mtl = read_cylinder_data(cylinder_src; add_one=add_one) cylinder = Cylinder(m, l, d, mtl) if load_bvh === true bvhfn = joinpath(cylinder_src, "bvh.csv") if !isfile(bvhfn) bvh = make_bvh(cylinder) write_bvh(bvh, bvhfn) end bvh = read_bvh(bvhfn) return cylinder, bvh else return cylinder end end function read_cone_data(cone_src::AbstractString; add_one=false) # loading the axes and diameters... mfn = joinpath(cone_src, "m.csv") lfn = joinpath(cone_src, "l.csv") d1fn = joinpath(cone_src, "d1.csv") d2fn = joinpath(cone_src, "d2.csv") mtlfn = joinpath(cone_src, "mtl.csv") m::Array{Float64, 2} = readdlm(mfn, ',', Float64) l::Array{Int, 2} = readdlm(lfn, ',', Int) d1::Array{Float64, 1} = vec(readdlm(df1n, ',', Float64)) d2::Array{Float64, 1} = vec(readdlm(df2n, ',', Float64)) mtl::Array{Int, 1} = vec(readdlm(mtlfn, ',', Int)) if add_one t += 1 end return m, l, d1, d2, mtl end function read_cone(cone_src::AbstractString; add_one=false, load_bvh=true) m, l, d, mtl = read_cone_data(cone_src; add_one=add_one) cone = Cone(m, l, d, mtl) if load_bvh === true bvhfn = joinpath(cone_src, "bvh.csv") if !isfile(bvhfn) bvh = make_bvh(cone) write_bvh(bvh, bvhfn) end bvh = read_bvh(bvhfn) return cone, bvh else return cone end end function read_disk_data(disk_scr::AbstractString; add_one=false) # loading the centers, normal vectors, and diameters... pfn = joinpath(disk_scr, "/p.csv") nfn = joinpath(disk_scr, "/n.csv") dfn = joinpath(disk_scr, "/d.csv") mtlfn = joinpath(disk_scr, "/mtl.csv") p::Array{Float64, 2} = readdlm(pfn, ',', Float64) n::Array{Int, 2} = readdlm(nfn, ',', Int) d::Array{Float64, 1} = vec(readdlm(dfn, ',', Float64)) mtl::Array{Int, 1} = vec(readdlm(mtlfn, ',', Int)) if add_one t += 1 end return p, n, d, mtl end function read_disk(disk_scr::AbstractString; add_one=false, load_bvh=true) p, n, d, mtl = read_disk_data(disk_scr; add_one=add_one) disk = Disk(p, n, d, mtl) if load_bvh === true bvhfn = joinpath(disk_scr, "/bvh.csv") if !isfile(bvhfn) bvh = make_bvh(disk) write_bvh(bvh, bvhfn) end bvh = read_bvh(bvhfn) return disk, bvh else return disk end end function read_ball_data(ball_scr::AbstractString; add_one=false) # loading the centers, normal vectors, and diameters... pfn = joinpath(ball_scr, "/p.csv") dfn = joinpath(ball_src, "/d.csv") mtlfn = string(ball_scr, "/mtl.csv") p::Array{Float64, 2} = readdlm(pfn, ',', Float64) n::Array{Int, 2} = readdlm(nfn, ',', Int) d::Array{Float64, 1} = vec(readdlm(dfn, ',', Float64)) mtl::Array{Int, 1} = vec(readdlm(mtlfn, ',', Int)) if add_one t += 1 end return p, d, mtl end function read_ball(ball_scr::AbstractString; add_one=false, load_bvh=true) p, d, mtl = read_ball_data(ball_scr; add_one=add_one) ball = Ball(p, d, mtl) if load_bvh === true bvhfn = joinpath(ball_scr, "/bvh.csv") if !isfile(bvhfn) bvh = make_bvh(ball) write_bvh(bvh, bvhfn) end bvh = read_bvh(bvhfn) return ball, bvh else return ball end end function read_mesh_data(mesh_src; add_one=false) # loading the triangles and creating the mesh... vfn = joinpath(mesh_src, "v.csv") tfn = joinpath(mesh_src, "t.csv") mtlfn = joinpath(mesh_src, "mtl.csv") v::Array{Float64, 2} = readdlm(vfn, ',', Float64) t::Array{Int, 2} = readdlm(tfn, ',', Int) if add_one t += 1 end mtl::Array{Int, 1} = vec(readdlm(mtlfn, ',', Int)) return v, t, mtl end function read_mesh(mesh_src::AbstractString; add_one=false, load_bvh=true) # mesh_src is the full path of the mesh folder, where the v, t and mtl files are stored v, t, mtl = read_mesh_data(mesh_src; add_one=add_one) mesh = Mesh(v, t, mtl) if load_bvh === true bvhfn = joinpath(mesh_src, "bvh.csv") if !isfile(bvhfn) bvh = make_bvh(mesh) write_bvh(bvh, bvhfn) end bvh = read_bvh(bvhfn) return mesh, bvh else return mesh end end function write_bvh(bvh::Bvh, bvhfn::AbstractString) # bvhfn is the full path (and filename) of the BVH df = DataFrame(xmin=bvh.xmin, ymin=bvh.ymin, zmin=bvh.zmin, xmax=bvh.xmax, ymax=bvh.ymax, zmax=bvh.zmax, bvh2bb=bvh.bvh2bb, left_child=bvh.left_child, right_child=bvh.right_child) CSV.write(bvhfn, df, delim=" ") end function read_bvh(bvhfn::AbstractString) # bvhfn is the full path (and filename) of the BVH df = CSV.read(bvhfn, DataFrame) #delim=" ") xmin::Array{Float64}, ymin::Array{Float64}, zmin::Array{Float64}, xmax::Array{Float64}, ymax::Array{Float64}, zmax::Array{Float64} = convert(Array{Float64}, df.xmin), convert(Array{Float64}, df.ymin), convert(Array{Float64}, df.zmin), convert(Array{Float64}, df.xmax), convert(Array{Float64}, df.ymax), convert(Array{Float64}, df.zmax) bvh2bb::Array{Int}, right_child::Array{Int}, left_child::Array{Int} = convert(Array{Int}, df.bvh2bb), convert(Array{Int}, df.right_child), convert(Array{Int}, df.left_child) bvh = Bvh{Float64, Int, Array{Float64,1}, Array{Int,1}}(xmin, ymin, zmin, xmax, ymax, zmax, bvh2bb, left_child, right_child) return Bvh(xmin, ymin, zmin, xmax, ymax, zmax, bvh2bb, left_child, right_child) end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
1506
function make_sky(light_pos::A, power::Integer, ambient::T, diffusePortion::T) where {T<:AbstractFloat, A<:AbstractArray{T,1}} skymap::AbstractArray{T,2} = zeros(3600, 900) azi::T = 0 zen::T = 0 for i=1:3600 for j=1:900 azi = float(i)/1800.0*pi zen = float(j)/1800.0*pi xi, yi, zi = spherical2carthesian(azi, zen) skymap[i,j] = background_radiance([xi, yi, zi], light_pos, power, ambient, diffusePortion) end end return skymap end function background_radiance(hemi_sample::Vector{T}, light_pos::Vector{T}, power::Int, ambient::T, diffusePortion) where {T<:AbstractFloat} # expand this function with sun position, atmospheric model, etc. direct::T = max(0.0, dot(light_pos, hemi_sample))^power diffuse::T = max(0.0, dot(light_pos, hemi_sample))^1 directPortion::T = 1. - diffusePortion dirrad::T = directPortion * direct diffrad::T = diffusePortion * diffuse radiance::T = (1.0-ambient) * (dirrad + diffrad) + ambient return radiance end function sample_skymap(skymap::AbstractArray{T, 2}, dx::T, dy::T, dz::T) where {T<:AbstractFloat} phi::T, theta::T = carthesian2spherical(dx, dy, dz) v::T = phi*1800.0/pi # convert to an index... i::Int = round(Int, v) w::T = theta*1800.0/pi j::Int = round(Int, w) if i === 0 i = 1 elseif i > 3600 i = 3600 end if j === 0 j = 1 elseif j > 900 j = 900 end radiance::T = skymap[i, j] return radiance end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
12430
function trace_back(geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, ray::Ray{T}, nBands::S, maxNumberOfCycles::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} # traces ray/photon for rendering count_while_loop = 0 continue_iterating::Bool = true radiance::Vector{T} = ones(nBands) .* GREAT_NUM mtl::Int = 0 hit::Bool = false while continue_iterating count_while_loop += 1 if count_while_loop >= maxNumberOfCycles continue_iterating = false continue end hit_, In, eidx, nrml, rmin = intersect(geometry, ray) if hit_ === true hit = true mtl = geometry.mtl[eidx] scatter, ray, r = shaders[mtl](In.x, In.y, In.z, -ray.dx, -ray.dy, -ray.dz, nrml.x, nrml.y, nrml.z) radiance .*= r if scatter === false continue_iterating = false end else radiance .*= 0.0 continue_iterating = false end end return hit, radiance end function trace_back(geometry::Geometry{T,S,A,E}, geometry_bvh::Bvh{T,S,A,E}, shaders::Vector{Function}, ray::Ray{T}, nBands::S, maxNumberOfCycles::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} # traces ray/photon for rendering count_while_loop = 0 continue_iterating::Bool = true radiance::Vector{T} = ones(nBands) .* GREAT_NUM mtl::Int = 0 hit::Bool = false while continue_iterating count_while_loop += 1 if count_while_loop >= maxNumberOfCycles continue_iterating = false continue end hit_, In, eidx, nrml, rmin = intersect(geometry, geometry_bvh, ray) if hit_ === true hit = true mtl = geometry.mtl[eidx] scatter, ray, r = shaders[mtl](In.x, In.y, In.z, -ray.dx, -ray.dy, -ray.dz, nrml.x, nrml.y, nrml.z) radiance .*= r if scatter === false continue_iterating = false end else radiance .*= 0.0 continue_iterating = false end end return hit, radiance end function trace_back(geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, skymap::B, ray::Ray{T}, nBands::S, maxNumberOfCycles::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} # traces ray/photon for rendering count_while_loop = 0 continue_iterating::Bool = true radiance::Vector{T} = ones(nBands) .* GREAT_NUM mtl::Int = 0 hit::Bool = false while continue_iterating count_while_loop += 1 if count_while_loop >= maxNumberOfCycles continue_iterating = false continue end hit_, In, eidx, nrml, rmin = intersect(mesh, ray) if hit_mesh === true hit = true mtl = geometry.mtl[eidx] scatter, ray, r = shaders[mtl](In.x, In.y, In.z, -ray.dx, -ray.dy, -ray.dz, nrml.x, nrml.y, nrml.z) radiance .*= r if scatter === false continue_iterating = false end else radiance .*= sample_skymap(skymap, ray.dx, ray.dy, ray.dz) continue_iterating = false end end return hit, radiance end function trace_back(geometry::Geometry{T,S,A,E}, geometry_bvh::Bvh{T,S,A,E}, shaders::Vector{Function}, skymap::B, ray::Ray{T}, nBands::S, maxNumberOfCycles::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} # traces ray/photon for rendering count_while_loop = 0 continue_iterating::Bool = true radiance::Vector{T} = ones(nBands) .* GREAT_NUM mtl::Int = 0 hit::Bool = false while continue_iterating count_while_loop += 1 if count_while_loop >= maxNumberOfCycles continue_iterating = false continue end hit_, In, eidx, nrml, rmin = intersect(geometry, geometry_bvh, ray) if hit_ === true hit = true mtl = geometry.mtl[eidx] scatter, ray, r = shaders[mtl](In.x, In.y, In.z, -ray.dx, -ray.dy, -ray.dz, nrml.x, nrml.y, nrml.z) radiance .*= r if scatter === false continue_iterating = false end else radiance .*= sample_skymap(skymap, ray.dx, ray.dy, ray.dz) continue_iterating = false end end return hit, radiance end function trace_back(assets::AbstractArray{Asset{T,S},1}, geometries::AbstractArray{Geometry{T,S,A,E},1}, palettes::AbstractArray{Vector{Function},1}, geometry_bvhs::AbstractArray{Bvh{T,S,A,E},1}, scene_bvh::Bvh{T,S,A,E}, ray::Ray{T}, skymap::B, nBands::S, maxNumberOfCycles::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} # traces ray/photon for rendering count_while_loop::S = 0 continue_iterating::Bool = true radiance::Vector{T} = ones(nBands) hit::Bool = false while continue_iterating count_while_loop += 1 if count_while_loop >= maxNumberOfCycles continue_iterating = false continue end hit_scene, I_scene, tray, nrml, range_scene, aidx, oidx, eidx = intersect_scene(assets, geometries, geometry_bvhs, scene_bvh, ray) if hit_scene === true hit = true mtl = geometries[oidx].mtl[eidx] pidx = assets[aidx].pidx shader = palettes[pidx][mtl] scatter, ray, r = shader(I_scene.x, I_scene.y, I_scene.z, -tray.dx, -tray.dy, -tray.dz, nrml.x, nrml.y, nrml.z) radiance .*= r if scatter === false continue_iterating = false end else radiance = radiance .* sample_skymap(skymap, ray.dx, ray.dy, ray.dz) continue_iterating = false end end return radiance end function render_pixel(coord::Coord{S}, geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} # check possible speed-ups by preallocating temporary arrays... xr::T = 0.0 xrxIV::Vector{T} = [0.0, 0.0, 0.0] yr::T = 0.0 yryIV::Vector{T} = [0.0, 0.0, 0.0] radiance::Vector{T} = zeros(camera.nBands) for i = 1:camera.nRaysPerPixel xr = coord.x + rand() xrxIV = xr .* camera.xIncVector yr = coord.y + rand() yryIV = yr .* camera.yIncVector viewPlanePoint = camera.viewPlaneBottomLeftPoint .+ xrxIV .+ yryIV dx, dy, dz = viewPlanePoint .- camera.eyePoint ray = Ray(camera.eyePoint[1], camera.eyePoint[2], camera.eyePoint[3], dx, dy, dz) hit, r = trace_back(geometry, shaders, ray, camera.nBands, camera.maxNumberOfCycles) radiance = radiance .+ r end n::T = camera.nRaysPerPixel radiance = radiance ./ n return radiance end function render_pixel(coord::Coord{S}, geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, skymap::B, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} # check possible speed-ups by preallocating temporary arrays... xr::T = 0.0 xrxIV::Vector{T} = [0.0, 0.0, 0.0] yr::T = 0.0 yryIV::Vector{T} = [0.0, 0.0, 0.0] radiance::Vector{T} = zeros(camera.nBands) for i = 1:camera.nRaysPerPixel xr = coord.x + rand() xrxIV = xr .* camera.xIncVector yr = coord.y + rand() yryIV = yr .* camera.yIncVector viewPlanePoint = camera.viewPlaneBottomLeftPoint .+ xrxIV .+ yryIV dx, dy, dz = viewPlanePoint .- camera.eyePoint ray = Ray(camera.eyePoint[1], camera.eyePoint[2], camera.eyePoint[3], dx, dy, dz) hit, r = trace_back(geometry, shaders, skymap, ray, camera.nBands, camera.maxNumberOfCycles) radiance = radiance .+ r end n::T = camera.nRaysPerPixel radiance = radiance ./ n return radiance end function render_pixel(coord::Coord{S}, geometry::Geometry{T,S,A,E}, geometry_bvh::Bvh{T,S,A,E}, shaders::Vector{Function}, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} # check possible speed-ups by preallocating temporary arrays... xr::T = 0.0 xrxIV::Vector{T} = [0.0, 0.0, 0.0] yr::T = 0.0 yryIV::Vector{T} = [0.0, 0.0, 0.0] radiance::Vector{T} = zeros(camera.nBands) for i = 1:camera.nRaysPerPixel xr = coord.x + rand() xrxIV = xr .* camera.xIncVector yr = coord.y + rand() yryIV = yr .* camera.yIncVector viewPlanePoint = camera.viewPlaneBottomLeftPoint .+ xrxIV .+ yryIV dx, dy, dz = viewPlanePoint .- camera.eyePoint ray = Ray(camera.eyePoint[1], camera.eyePoint[2], camera.eyePoint[3], dx, dy, dz) hit, r = trace_back(geometry, geometry_bvh, shaders, ray, camera.nBands, camera.maxNumberOfCycles) radiance = radiance .+ r end n::T = camera.nRaysPerPixel radiance = radiance ./ n return radiance end function render_pixel(coord::Coord{S}, assets::AbstractArray{Asset{T,S},1}, geometries::AbstractArray{Geometry{T,S,A,E},1}, palettes::AbstractArray{Vector{Function},1}, geometry_bvhs::AbstractArray{Bvh{T,S,A,E},1}, scene_bvh::Bvh{T,S,A,E}, skymap::B, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} # check possible speed-ups by preallocating temporary arrays... radiance::Vector{T} = zeros(camera.nBands) for i = 1:camera.nRaysPerPixel xr = coord.x + rand() xrxIVx = xr * camera.xIncVector[1] xrxIVy = xr * camera.xIncVector[2] xrxIVz = xr * camera.xIncVector[3] yr = coord.y + rand() yryIVx = yr * camera.yIncVector[1] yryIVy = yr * camera.yIncVector[2] yryIVz = yr * camera.yIncVector[3] viewPlanePointx = camera.viewPlaneBottomLeftPoint[1] + xrxIVx + yryIVx viewPlanePointy = camera.viewPlaneBottomLeftPoint[2] + xrxIVy + yryIVy viewPlanePointz = camera.viewPlaneBottomLeftPoint[3] + xrxIVz + yryIVz dx = viewPlanePointx - camera.eyePoint[1] dy = viewPlanePointy - camera.eyePoint[2] dz = viewPlanePointz - camera.eyePoint[3] ray = Ray(camera.eyePoint[1], camera.eyePoint[2], camera.eyePoint[3], dx, dy, dz) radiance .+= trace_back(assets, geometries, palettes, geometry_bvhs, scene_bvh, ray, skymap, camera.nBands, camera.maxNumberOfCycles) end n::T = camera.nRaysPerPixel radiance = radiance ./ n return radiance end # although these render_image functions can be used fine to produce the right results, pmap # is not that quick in this case... It is better to use @sync @distributed in combination with # SharedArrays, like shown in the testRenderingWytham jupyter notebook... function render_image(geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} coords = create_coords(camera) img = @showprogress pmap(coord -> render_pixel(coord, geometry, shaders, camera), coords) return img end function render_image(geometry::Geometry{T,S,A,E}, shaders::Vector{Function}, skymap::B, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} coords = create_coords(camera) img = @showprogress pmap(coord -> render_pixel(coord, geometry, shaders, skymap, camera), coords) return img end function render_image(geometry::Geometry{T,S,A,E}, geometry_bvh::Bvh{T,S,A,E}, shaders::Vector{Function}, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} coords = create_coords(camera) img = @showprogress pmap(coord -> render_pixel(coord, geometry, geometry_bvh, shaders, camera), coords) return img end function render_image(assets::AbstractArray{Asset{T,S},1}, geometries::AbstractArray{Geometry{T,S,A,E},1}, palette::AbstractArray{Vector{Function},1}, geometry_bvhs::AbstractArray{Bvh{T,S,A,E},1}, scene_bvh::Bvh{T,S,A,E}, skymap::B, camera::Camera{T,S,A}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, B<:AbstractArray{T,2}, E<:AbstractArray{S,1}} coords = create_coords(camera) img = @showprogress pmap(coord -> render_pixel(coord, assets, geometries, palette, geometry_bvhs, scene_bvh, skymap, camera), coords) return img end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
3606
function load_scene_data(scene_full_path::AbstractString) labels = Int[] X = Float64[] Y = Float64[] Z = Float64[] B = Float64[] G = Float64[] L = Int[] asset_names = String[] skymap_name = "nothing" assets_fn = "nothing" optic_name = "nothing" println( string("Opening scene file: ", scene_full_path, " ...")) open(scene_full_path) do f for line in eachline(f) if length(line) > 1 if occursin("//", line) continue elseif occursin("#", line) label, asset_name = split(line, ",") labels = push!(labels, parse(Int, label[2:end]) ) asset_names = push!(asset_names, asset_name) elseif occursin("@", line) assets_fn = split(line, ",")[2] elseif occursin("*", line) skymap_name = split(line, ",")[2] elseif occursin("&", line) optic_name = split(line, ",")[2] else x_, y_, z_, beta_, gamma_, label_ = split(line, ",") x, y, z = parse(Float64, x_), parse(Float64, y_), parse(Float64, z_) beta, gamma = parse(Float64, beta_), parse(Float64, gamma_) l = round(Int, parse(Float64, label_)) X = push!(X, x) Y = push!(Y, y) Z = push!(Z, z) B = push!(B, beta) G = push!(G, gamma) L = push!(L, l) end end end end return skymap_name, optic_name, assets_fn, labels, asset_names, L, X, Y, Z, B, G end function read_scene(scene_name::AbstractString) scene_full_path = string(scenefolder, scene_name, ".jay") skymap_name, optic_name, assets_fn, asset_labels, asset_names, asset_idx, x, y, z, beta, gamma = load_scene_data(scene_full_path) # load assets... xml_path = string(assetfolder, assets_fn, ".xml") xdoc = parse_file(xml_path) xroot = LightXML.root(xdoc) unique_mesh_names, mesh_idx, unique_palette_names, palette_idx = get_assets(xroot, asset_names) asset2mesh_idx = mesh_idx[asset_idx] asset2palette_idx = palette_idx[asset_idx] n = length(x) assets = Asset{Float64, Int}[] for i=1:n push!(assets, Asset(x[i], y[i], z[i], beta[i], gamma[i], asset2mesh_idx[i], asset2palette_idx[i])) end # load mesh data... meshes::Array{Mesh{Float64, Int, Array{Float64,1}, Array{Int64,1}},1} = [] mesh_bvhs::Array{Bvh{Float64, Int, Array{Float64,1}, Array{Int64,1}},1} = [] for mesh_name in unique_mesh_names mesh = read_mesh(mesh_name) bvh = read_bvh(mesh_name) meshes = push!(meshes, mesh) mesh_bvhs = push!(mesh_bvhs, bvh) end # load scene bvh (or make it if necessary)... if !isfile( string(bvhfolder, scene_name, ".bvh") ) make_bvh(assets, meshes, mesh_bvhs) end scene_bvh::Bvh{Float64, Int, Array{Float64,1}, Array{Int,1}} = read_bvh(scene_name) # load the camera... camera = read_camera(optic_name) # read the skymap (optional, only if specified in scene description file)... skymap_path = string(skyfolder, skymap_name, ".csv") skymap = readdlm(skymap_path, ',', Float64) # load materials/shaders... palettes = Vector{Function}[] for palette_name in unique_palette_names xmlfn = string(palettefolder, palette_name, ".xml") shaders = load_shaders(xmlfn ; assert_nBands=camera.nBands) # shaders, or palette, is of type: Vector{Function} palettes = push!(palettes, shaders) end return assets, meshes, palettes, mesh_bvhs, scene_bvh, skymap, camera end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
5546
######################################################################################################### # # The following shader functions have inputs that are all in the form (vx, vy, vz, nx, ny, nz, args...) # ######################################################################################################### ####################################################### # # Photon shaders... (i.e. single waveband) # ####################################################### function lambertian_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::T) where {T<:AbstractFloat} # note that vx, vy, and vz are not used but only exist so that input arguments are of the same pattern as in other shader functions... t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2normal(fx, fy, fz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, rho end function bilambertian_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::T, tau::T) where {T<:AbstractFloat} # note that vx, vy, and vz are not used but only exist so that input arguments are of the same pattern as in other shader functions... l = rho + tau r::Float64 if rand() > (rho/l) nx, ny, nz = -1.0*nx, -1.0*ny, -1.0*nz r = tau else r = rho end t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2normal(fx, fy, fz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, r end function pure_reflection_shader(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::T) where {T<:AbstractFloat} sx, sy, sz = pure_reflection(vx, vy, vz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, rho end function rpv_shader(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho_zero::T, rho_c::T, captheta::T, k::T) where {T<:AbstractFloat} t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2world(fx, fy, fz, nx, ny, nz) phi = relazi(vn, vy, vz, nx, ny, nz, sx, sy, sz) theta = acos(vx*nx + vy*ny + vz*nz) theta_zero = acos(sx*nx + sy*ny + sz*nz) rho_sfc = rpv(theta_zero, theta, phi, rho_zero, rho_c, captheta, k) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, rho_sfc end ############################################################### # # Path shaders... (i.e. acting on spectra) # ############################################################### function lambertian_path_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::Array{T}) where {T<:AbstractFloat} # note that vx, vy, and vz are not used but only exist so that input arguments are of the same pattern as in other shader functions... t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2normal(fx, fy, fz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) r = rho * cos(t) return true, newray, r end function bilambertian_path_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::Array{T}, tau::Array{T}) where {T<:AbstractFloat} # note that vx, vy, and vz are not used but only exist so that input arguments are of the same pattern as in other shader functions... # note also that the whole spectrum undergoes one treatment: either reflect or transmit (obviously.) l = rho + tau r = 0.0 if rand() > (sum(rho)/sum(l)) nx, ny, nz = -1.0*nx, -1.0*ny, -1.0*nz r = tau else r = rho end t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2normal(fx, fy, fz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) r = r * cos(t) return true, newray, r end function rpv_path_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho_zero::Array{T}, rho_c::Array{T}, captheta::Array{T}, k::Array{T}) where {T<:AbstractFloat} t, p = sample_f() # could be replaced with a function RPVSampler if we knew how to implement importance sampling for RPV... fx, fy, fz = spherical2carthesian(t, p) sx, sy, sz = project2normal(fx, fy, fz, nx, ny, nz) phi = relazi(vx, vy, vz, nx, ny, nz, sx, sy, sz) theta = acos(vx*nx + vy*ny + vz*nz) theta_zero = acos(sx*nx + sy*ny + sz*nz) rho_sfc = rpv(theta_zero, theta, phi, rho_zero, rho_c, captheta, k) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, rho_sfc end function pure_reflection_path_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; rho::Array{T}) where {T<:AbstractFloat} sx, sy, sz = pure_reflection(vx, vy, vz, nx, ny, nz) newray = propagate(Ix, Iy, Iz, sx, sy, sz) return true, newray, rho end function lightsource_path_shader(Ix::T, Iy::T, Iz::T, vx::T, vy::T, vz::T, nx::T, ny::T, nz::T ; emission::Array{T}) where {T<:AbstractFloat} return false, Ray(Ix, Iy, Iz, vx, vy, vz), emission end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
12978
import LinearAlgebra:normalize function normalize(x::T, y::T, z::T) where {T<:Real} l::T = sqrt( *(x, x) + *(y, y) + *(z, z) ) xn::T = x / l yn::T = y / l zn::T = z / l return xn, yn, zn end struct Asset{T<:AbstractFloat, S<:Integer} xoff::T yoff::T zoff::T beta::T gamma::T oidx::S pidx::S end struct Bvh{T<:AbstractFloat, S<:Integer, A<:AbstractArray, E<:AbstractArray} xmin::A ymin::A zmin::A xmax::A ymax::A zmax::A bvh2bb::E left_child::E right_child::E Bvh{T,S,A,E}(a::AbstractArray{T,1}, b::AbstractArray{T,1}, c::AbstractArray{T,1}, d::AbstractArray{T,1}, e::AbstractArray{T,1}, f::AbstractArray{T,1}, p::AbstractArray{S}, q::AbstractArray{S}, r::AbstractArray{S}) where {T,S,A,E} = new(a,b,c,d,e,f,p,q,r) end Bvh(a::AbstractArray, b::AbstractArray, c::AbstractArray, d::AbstractArray, e::AbstractArray, f::AbstractArray, p::AbstractArray, q::AbstractArray, r::AbstractArray) = Bvh{eltype(a), eltype(p), typeof(a), typeof(p)}(a,b,c,d,e,f,p,q,r) struct Camera{T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}} eyePoint::A lookAtPoint::A fov::T xResolution::S yResolution::S nBands::S nRaysPerPixel::S maxNumberOfCycles::S # derived attributes viewDirection::A u::A w::A aspectRatio::T viewPlaneHalfHeight::T viewPlaneHalfWidth::T viewPlaneBottomLeftPoint::A xIncVector::A yIncVector::A function Camera{T,S,A}(eyePoint::A, lookAtPoint::A, fov::T, xResolution::S, yResolution::S, nBands::S, nRaysPerPixel::S, maxNumberOfCycles::S) where {T,S,A} viewDirection = LinearAlgebra.normalize(lookAtPoint .- eyePoint) u = LinearAlgebra.normalize(cross(LinearAlgebra.normalize([0.000000, 0.000001, 1.0]), viewDirection)) w = LinearAlgebra.normalize(cross(u, viewDirection)) viewPlaneHalfWidth = tan(fov/2.0) aspectRatio = float(yResolution) / float(xResolution) viewPlaneHalfHeight = aspectRatio .* viewPlaneHalfWidth viewPlaneBottomLeftPoint = (eyePoint .+ viewDirection) .- (w .* viewPlaneHalfHeight) .- (u .* viewPlaneHalfWidth) xIncVector = (u .* 2.0 .* viewPlaneHalfWidth) ./ float(xResolution) yIncVector = (w .* 2.0 .* viewPlaneHalfHeight) ./ float(yResolution) new(eyePoint, lookAtPoint, fov, xResolution, yResolution, nBands, nRaysPerPixel, maxNumberOfCycles, viewDirection, u, w, aspectRatio, viewPlaneHalfHeight, viewPlaneHalfWidth, viewPlaneBottomLeftPoint, xIncVector, yIncVector) end end Camera(v::A, w::A, p::T, q::S, r::S, s::S, t::S, u::S) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray} = Camera{T,S,A}(v,w,p,q,r,s,t,u) struct Coord{S<:Integer} x::S y::S end abstract type Geometry{T<:AbstractFloat, S<:Integer, A<:AbstractArray, E<:AbstractArray} end struct Ball{T,S,A,E} <: Geometry{T,S,A,E} p1x::A p1y::A p1z::A r::A rsq::A mtl::E function Ball{T,S,A,E}(p::AbstractArray{T,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T,S,A,E} n_balls = size(p, 1) p1x::Array{T, 1} = p[:,1] p1y::Array{T, 1} = p[:,2] p1z::Array{T, 1} = p[:,3] r::Array{T, 1} = radius rsq::Array{T, 1} = radius.^2 mtl::Array{S, 1} = mtl new(p1x, p1y, p1z, r, rsq, mtl) end end Ball(p::AbstractArray{T,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T<:AbstractFloat, S<:Integer} = Ball{eltype(p), eltype(mtl), Array{T,1}, Array{S,1}}(p,radius,mtl) struct Disk{T,S,A,E} <: Geometry{T,S,A,E} p1x::A p1y::A p1z::A nx::A ny::A nz::A r::A rsq::A mtl::E function Disk{T,S,A,E}(p::AbstractArray{T,2}, n::AbstractArray{T,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T,S,A,E} n_disks = size(p, 1) p1x::Array{T, 1} = p[:,1] p1y::Array{T, 1} = p[:,2] p1z::Array{T, 1} = p[:,3] nx::Array{T, 1} = n[:,1] ny::Array{T, 1} = n[:,2] nz::Array{T, 1} = n[:,3] r::Array{T, 1} = radius rsq::Array{T, 1} = radius.^2 mtl::Array{S, 1} = mtl new(p1x, p1y, p1z, nx, ny, nz, r, rsq, mtl) end end Disk(p::AbstractArray{T,2}, n::AbstractArray{T,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T<:AbstractFloat, S<:Integer} = Disk{eltype(p), eltype(mtl), Array{T,1}, Array{S,1}}(p,n,radius,mtl) struct Cylinder{T,S,A,E} <: Geometry{T,S,A,E} m1x::A m1y::A m1z::A m2x::A m2y::A m2z::A radius::A u::A v::A w::A length::A beta::A gamma::A rsq::A mtl::E function Cylinder{T,S,A,E}(m::AbstractArray{T,2}, l::AbstractArray{S,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T,S,A,E} n_cylinders = size(l, 1) m1x::Array{T, 1} = zeros(n_cylinders) m1y::Array{T, 1} = zeros(n_cylinders) m1z::Array{T, 1} = zeros(n_cylinders) m2x::Array{T, 1} = zeros(n_cylinders) m2y::Array{T, 1} = zeros(n_cylinders) m2z::Array{T, 1} = zeros(n_cylinders) radius::Array{T, 1} = radius u::Array{T, 1} = zeros(n_cylinders) v::Array{T, 1} = zeros(n_cylinders) w::Array{T, 1} = zeros(n_cylinders) length::Array{T, 1} = zeros(n_cylinders) beta::Array{T, 1} = zeros(n_cylinders) gamma::Array{T, 1} = zeros(n_cylinders) rsq::Array{T, 1} = zeros(n_cylinders) mtl::Array{S, 1} = mtl for i = 1:n_cylinders idx1 = l[i,1]; idx2 = l[i,2] m1x[i] = m[idx1,1]; m1y[i] = m[idx1,2]; m1z[i] = m[idx1,3] m2x[i] = m[idx2,1]; m2y[i] = m[idx2,2]; m2z[i] = m[idx2,3] dx = m[idx2,1] - m[idx1,1] dy = m[idx2,2] - m[idx1,2] dz = m[idx2,3] - m[idx1,3] length_ = sqrt(dx^2 + dy^2 + dz^2) length[i] = length_ beta[i] = acos(dz / length_) gamma[i] = atan(dy, dx) # formerly atan2 rsq[i] = radius[i]^2 # compute a 'normal' vector that is pointing up q = [dx, dy, dz] nv = normalize(cross([0.0034, 0.0071, 1.0], q)) vq = cross(nv, q) u[i] = vq[1] v[i] = vq[2] w[i] = vq[3] end new(m1x, m1y, m1z, m2x, m2y, m2z, radius, u, v, w, length, beta, gamma, rsq, mtl) end end Cylinder(m::AbstractArray{T,2}, l::AbstractArray{S,2}, radius::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T<:AbstractFloat, S<:Integer} = Cylinder{eltype(m), eltype(l), Array{T,1}, Array{S,1}}(m,l,radius,mtl) struct Cone{T,S,A,E} <: Geometry{T,S,A,E} m1x::A m1y::A m1z::A m2x::A m2y::A m2z::A radius_base::A radius_tip::A u::A v::A w::A beta::A gamma::A length::A a::A aa::A r1a::A r1sq::A mtl::E function Cone{T,S,A,E}(m::AbstractArray{T,2}, l::AbstractArray{S,2}, radius_base::AbstractArray{T,1}, radius_tip::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T,S,A,E} n_cones = size(l, 1) m1x::Array{T, 1} = zeros(n_cones) m1y::Array{T, 1} = zeros(n_cones) m1z::Array{T, 1} = zeros(n_cones) m2x::Array{T, 1} = zeros(n_cones) m2y::Array{T, 1} = zeros(n_cones) m2z::Array{T, 1} = zeros(n_cones) radius_base::Array{T, 1} = radius_base radius_tip::Array{T, 1} = radius_tip u::Array{T, 1} = zeros(n_cones) v::Array{T, 1} = zeros(n_cones) w::Array{T, 1} = zeros(n_cones) beta::Array{T, 1} = zeros(n_cones) gamma::Array{T, 1} = zeros(n_cones) length::Array{T, 1} = zeros(n_cones) a::Array{T, 1} = zeros(n_cones) aa::Array{T, 1} = zeros(n_cones) r1a::Array{T, 1} = zeros(n_cones) r1sq::Array{T, 1} = zeros(n_cones) mtl::Array{S, 1} = mtl for i = 1:n_cones idx1 = l[i,1]; idx2 = l[i,2] m1x[i] = m[idx1,1]; m1y[i] = m[idx1,2]; m1z[i] = m[idx1,3] m2x[i] = m[idx2,1]; m2y[i] = m[idx2,2]; m2z[i] = m[idx2,3] dx = m[idx2,1] - m[idx1,1] dy = m[idx2,2] - m[idx1,2] dz = m[idx2,3] - m[idx1,3] length_ = sqrt(dx^2 + dy^2 + dz^2) length[i] = length_ beta[i] = acos(dz / length_) gamma[i] = atan(dy, dx) # formerly atan2 a_ = (radius_tip[i] - radius_base[i]) / length_ # taper of the stem a[i] = a_ aa[i] = a_^2 r1a[i] = radius_base[i]*a_ r1sq[i] = radius_base[i]^2 # compute a 'normal' vector that is pointing up q = [dx, dy, dz] nv = normalize(cross([0.0034, 0.0071, 1.0], q)) vq = cross(nv, q) u[i] = vq[1] v[i] = vq[2] w[i] = vq[3] end new(m1x, m1y, m1z, m2x, m2y, m2z, radius_base, radius_tip, u, v, w, beta, gamma, length, a, aa, r1a, r1sq, mtl) end end Cone(m::AbstractArray{T,2}, l::AbstractArray{S,2}, radius_base::AbstractArray{T,1}, radius_tip::AbstractArray{T,1}, mtl::AbstractArray{S,1}) where {T<:AbstractFloat, S<:Integer} = Cone{eltype(m), eltype(l), Array{T,1}, Array{S,1}}(m,l,radius_base,radius_tip,mtl) struct Mesh{T,S,A,E} <: Geometry{T,S,A,E} v1x::A v1y::A v1z::A v2x::A v2y::A v2z::A v3x::A v3y::A v3z::A mtl::E ux::A uy::A uz::A wx::A wy::A wz::A nx::A ny::A nz::A uu::A uw::A ww::A D::A function Mesh{T,S,A,E}(v::AbstractArray{T, 2}, t::AbstractArray{S, 2}, m::AbstractArray{S, 1}) where {T,S,A,E} n_triangles = size(t, 1) v1x::Array{T, 1} = zeros(n_triangles) v1y::Array{T, 1} = zeros(n_triangles) v1z::Array{T, 1} = zeros(n_triangles) v2x::Array{T, 1} = zeros(n_triangles) v2y::Array{T, 1} = zeros(n_triangles) v2z::Array{T, 1} = zeros(n_triangles) v3x::Array{T, 1} = zeros(n_triangles) v3y::Array{T, 1} = zeros(n_triangles) v3z::Array{T, 1} = zeros(n_triangles) mtl::Array{S, 1} = m ux::Array{T, 1} = zeros(n_triangles) uy::Array{T, 1} = zeros(n_triangles) uz::Array{T, 1} = zeros(n_triangles) wx::Array{T, 1} = zeros(n_triangles) wy::Array{T, 1} = zeros(n_triangles) wz::Array{T, 1} = zeros(n_triangles) nx::Array{T, 1} = zeros(n_triangles) ny::Array{T, 1} = zeros(n_triangles) nz::Array{T, 1} = zeros(n_triangles) uu::Array{T, 1} = zeros(n_triangles) uw::Array{T, 1} = zeros(n_triangles) ww::Array{T, 1} = zeros(n_triangles) D::Array{T, 1} = zeros(n_triangles) for i = 1:n_triangles idx1 = t[i,1]; idx2 = t[i,2]; idx3 = t[i,3] v1x[i] = v[idx1,1]; v1y[i] = v[idx1,2]; v1z[i] = v[idx1,3] v2x[i] = v[idx2,1]; v2y[i] = v[idx2,2]; v2z[i] = v[idx2,3] v3x[i] = v[idx3,1]; v3y[i] = v[idx3,2]; v3z[i] = v[idx3,3] # precompute some variables... ux_ = v2x[i] - v1x[i] uy_ = v2y[i] - v1y[i] uz_ = v2z[i] - v1z[i] wx_ = v3x[i] - v1x[i] wy_ = v3y[i] - v1y[i] wz_ = v3z[i] - v1z[i] u_ = [ux_, uy_, uz_] w_ = [wx_, wy_, wz_] n_ = cross(u_, w_) n2_ = n_.^2 sm_ = sum(n2_) l_ = sqrt(sm_) n_ = n_./l_ uu_ = dot(u_, u_) uw_ = dot(u_, w_) ww_ = dot(w_, w_) uw2_ = (uw_ * uw_) uuww_ = (uu_ * ww_) D_ = uw2_ - uuww_ ux[i] = ux_ uy[i] = uy_ uz[i] = uz_ wx[i] = wx_ wy[i] = wy_ wz[i] = wz_ nx[i] = n_[1] ny[i] = n_[2] nz[i] = n_[3] uu[i] = uu_ uw[i] = uw_ ww[i] = ww_ D[i] = D_ end new(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, mtl, ux, uy, uz, wx, wy, wz, nx, ny, nz, uu, uw, ww, D) end end Mesh(v::AbstractArray{T,2}, t::AbstractArray{S,2}, m::AbstractArray{S,1}) where {T<:AbstractFloat, S<:Integer} = Mesh{eltype(v), eltype(t), Array{T,1}, Array{S,1}}(v,t,m) struct Point{T<:AbstractFloat} x::T y::T z::T end struct Ray{T<:AbstractFloat} x::T y::T z::T dx::T dy::T dz::T end struct Hook{T<:AbstractFloat, S<:Integer} xoff::T yoff::T zoff::T beta::T gamma::T idx::S Hook{T,S}(x::T, y::T, z::T, beta::T, gamma::T, idx::S) where {T,S} = new(x,y,z,beta,gamma,idx) end Hook(x::AbstractFloat, y::AbstractFloat, z::AbstractFloat, beta::AbstractFloat, gamma::AbstractFloat, idx::Integer) = Hook{typeof(x), typeof(idx)}(x,y,z,beta,gamma,idx)
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
6384
function translate_ray(ray::Ray{T}, xoff::T, yoff::T, zoff::T) where {T<:AbstractFloat} x = ray.x + xoff y = ray.y + yoff z = ray.z + zoff tray = Ray(x, y, z, ray.dx, ray.dy, ray.dz) return tray end function transform_tzy(ray::Ray{T}, xoff::T, yoff::T, zoff::T, beta::T, gamma::T) where {T<:AbstractFloat} # to transform from world space into object space # (values for xoff, yoff, ..., gamma, should be of opposite sign to how they are defined in the scene specification file) # the translation x = ray.x + xoff y = ray.y + yoff z = ray.z + zoff # rotate about z-axis x_ = x * cos(gamma) + y * -sin(gamma) y = x * sin(gamma) + y * cos(gamma) dx_ = ray.dx * cos(gamma) + ray.dy * -sin(gamma) dy = ray.dx * sin(gamma) + ray.dy * cos(gamma) # rotate about y-axis x = x_ * cos(beta) + z * sin(beta) z = x_ * -sin(beta) + z * cos(beta) dx = dx_ * cos(beta) + ray.dz * sin(beta) dz = dx_ * -sin(beta) + ray.dz * cos(beta) tray = Ray(x, y, z, dx, dy, dz) return tray end function carthesian2spherical(x::T, y::T, z::T) where {T<:AbstractFloat} theta = atan(sqrt(x*x + y*y), z) phi = atan(x, y) if phi < 0.0 phi += 2.0*pi end return theta, phi end function spherical2carthesian(theta::T, phi::T) where {T<:AbstractFloat} x = sin(theta) * sin(phi) y = sin(theta) * cos(phi) z = cos(theta) return x, y, z end function relazi(vx::T, vy::T, vz::T, nx::T, ny::T, nz::T, sx::T, sy::T, sz::T) where {T<:AbstractFloat} # v=viewVector; n=normalVector; h=halfVector... ux, uy, uz = cross_scalars(nx, ny, nz, sx, sy, sz) vx, vy, vz = cross_scalars(nx, ny, nz, vx, vy, vz) nsx, nsy, nsz = normalize_scalars(ux, uy, uz) nvx, nvy, nvz = normalize_scalars(vx, vy, vz) a = acos( nsx*nvx + nsy*nvy + nsz*nvz ) return a end function get_extremes(x::Vector{T}, y::Vector{T}, z::Vector{T}) where {T<:AbstractFloat} minx, maxx = minimum(x), maximum(x) miny, maxy = minimum(y), maximum(y) minz, maxz = minimum(z), maximum(z) p::Vector{T} = [minx, minx, minx, minx, maxx, maxx, maxx, maxx] q::Vector{T} = [miny, miny, maxy, maxy, miny, miny, maxx, maxx] r::Vector{T} = [minz, maxz, minz, maxz, minz, maxz, minz, maxz] return p, q, r end function get_extremes(geometry::Geometry{T,S,Array{T,1},Array{S,1}}) where {T<:AbstractFloat, S<:Integer} x = vcat(geometry.v1x, geometry.v2x, geometry.v3x) y = vcat(geometry.v1y, geometry.v2y, geometry.v3y) z = vcat(geometry.v1z, geometry.v2z, geometry.v3z) p, q, r = get_extremes(x, y, z) return p, q, r end function get_extremes(geometry::Geometry{T,S,A,E}, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer, A<:AbstractArray{T,1}, E<:AbstractArray{S,1}} x, y, z = get_extremes(geometry) x, y, z = transform_forward(x, y, z, hook) x, y, z = get_extremes(x, y, z) return x, y, z end function transform(x::T, y::T, z::T, xoff::T, yoff::T, zoff::T, beta::T, gamma::T) where {T<:AbstractFloat} # to transform x,y,z from object space into worldspace # rotate about y-axis t = x * cos(beta) + z * sin(beta) c = x * -sin(beta) + z * cos(beta) # rotate about z-axis a = t * cos(gamma) + y * -sin(gamma) b = t * sin(gamma) + y * cos(gamma) # and the translation a = a + xoff b = b + yoff c = c + zoff return a, b, c end function translate_forward(x::T, y::T, z::T, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x = x + hook.xoff y = y + hook.yoff z = z + hook.zoff return x, y, z end function translate_inverse(x::T, y::T, z::T, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x = x - hook.xoff y = y - hook.yoff z = z - hook.zoff return x, y, z end function translate_forward(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x = x .+ hook.xoff y = y .+ hook.yoff z = z .+ hook.zoff return x, y, z end function translate_inverse(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x = x .- hook.xoff y = y .- hook.yoff z = z .- hook.zoff return x, y, z end function rotate_forward(x::T, y::T, z::T, hook::Hook{T,S}) where {T <: AbstractFloat, S<:Integer} # rotate about y-axis nx_ = x * cos(hook.beta) + z * sin(hook.beta) nz = x * -1.0 * sin(hook.beta) + z * cos(hook.beta) # rotate about z-axis nx = nx_ * cos(hook.gamma) + y * -1.0 * sin(hook.gamma) ny = nx_ * sin(hook.gamma) + y * cos(hook.gamma) return nx, ny, nz end function rotate_forward(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, hook::Hook{T,S}) where {T <: AbstractFloat, S<:Integer} # rotate about y-axis nx_ = x .* cos(hook.beta) .+ z .* sin(hook.beta) nz = x .* -1.0 .* sin(hook.beta) .+ z .* cos(hook.beta) # rotate about z-axis nx = nx_ .* cos(hook.gamma) .+ y .* -1.0 .* sin(hook.gamma) ny = nx_ .* sin(hook.gamma) .+ y .* cos(hook.gamma) return nx, ny, nz end function rotate_inverse(x::T, y::T, z::T, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} inv_beta = -1.0 * hook.beta inv_gamma = -1.0 * hook.gamma # rotate about z-axis (to get segment tip on y=0 plane) nx_1 = x * cos(inv_gamma) + y * -1.0 * sin(inv_gamma) ny = x * sin(inv_gamma) + y * cos(inv_gamma) # rotate about y-axis (to get segment tip on z=0 plane) nx = nx_1 * cos(inv_beta) + z * sin(inv_beta) nz = nx_1 * -1.0 * sin(inv_beta) + z * cos(inv_beta) return nx, ny, nz end function transform_forward(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x, y, z = rotate_forward(x, y, z, hook) x, y, z = translate_forward(x, y, z, hook) return x, y, z end function transform_inverse(ray::Ray{T}, hook::Hook{T,S}) where {T<:AbstractFloat, S<:Integer} x, y, z = translate_inverse(ray.x, ray.y, ray.z, hook) x, y, z = rotate_inverse(x, y, z, hook) dx, dy, dz = rotate_inverse(ray.dx, ray.dy, ray.dz, hook) transRay::Ray = Ray(x, y, z, dx, dy, dz) return transRay end function weibull(x, a, b) y = (a/b) .* (x./b).^(a-1) .* exp.(.-(x./b).^a) ys = y ./ maximum(y) return y, ys end
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
code
493
using Test using RenderJay this_fn = @__FILE__ this_folder, _ = splitdir(this_fn) scene_fn = joinpath(this_folder, "testplot_little_cornellboxes.xml") println("Reading data...") assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera = read_scene(scene_fn) coords = create_coords(camera) println("Testing the render_pixel() function...") radiance = render_pixel(coords[1], assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera) @test all(radiance .> 0.0)
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
0.1.0
364a3d192933d5d9b1c70c69d103181002b2dee1
docs
3652
# RenderJay.jl a Julia-based path tracer RenderJay is a Julia-based path tracer that was intended for operation on large compute clusters, with applications in ecology and remote sensing where scenes are characterized by very high polygon counts and lots of detail, but not so much for applications in computer graphics. For example, RenderJay uses no bump maps or textures; everything is down to geometry and bidirectional reflectance (transmittance) distribution functions (BRDFs, BTDFs). Being written in Julia it can profit from Julia's distributed computing capabilities, enabling processing of large workloads across multiple servers. RenderJay can be installed as follows from the Julia REPL: ``` using Pkg Pkg.add("RenderJay") ``` # Usage The following is an example code for rendering. It will produce a top-down view of four Cornell boxes in different colours, floating above a gray flat surface. Produced renderings can be found in img/ The surface geometry, downwelling irradiance, as well as the scene specification (XML) file with the shaders can all be found under test/ The Wytham Woods image is an example rendering that was derived from data that was provided through the RAdiative transfer Model Intercomparison (RAMI) phase-V, that can be found here: https://rami-benchmark.jrc.ec.europa.eu/_www/phase_descr.php?strPhase=RAMI5 (feel free to contact author for conversion scripts to Jay format) If you are on a laptop or you have few logical cores, please mind the addprocs() line below and set the number to something comfortable, e.g., the number of logical cores that are available. ![image Wytham Woods](https://github.com/martinvanleeuwen/RenderJay.jl/blob/main/img/wytham.png) # Performance indication Rendering a 512x512px image of the below Cornell boxes scene took 00:34:04 (HH:MM:SS) on the Dell T7910 (DUAL E5-2630V3) using 30 workers and it took 3:39:20 (HH:MM:SS) on a Lenovo Edge 15 laptop (i7-4510U) with only 3 workers... # Example code Below is an example that renders a set of four Cornell boxes with different colours floating just above a flat surface. ``` using Distributed addprocs(3) @everywhere using RenderJay using CSV, LightXML, DataFrames, DelimitedFiles, LinearAlgebra, ProgressMeter, SharedArrays, ImageMagick, Images pth = pathof(RenderJay) src_folder, _ = splitdir(pth) root_folder = src_folder[1:end-3] scene_fn = joinpath(root_folder, "test/testplot_little_cornellboxes.xml") assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera = read_scene(scene_fn); coords = create_coords(camera); img = SharedArray{Float64, 3}(camera.nBands, camera.xResolution, camera.yResolution); @time @sync @distributed for coord in coords[1:nprocs()] img[:, coord.x, coord.y] = render_pixel(coord, assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera) end npixels = length(coords) blocksize = camera.xResolution @showprogress for i=1:blocksize:npixels e = min(i+blocksize, npixels) @sync @distributed for coord in coords[i:e] img[:, coord.x, coord.y] = render_pixel(coord, assets, geometries, palettes, geometry_bvhs, scene_bvh, skymap, camera) end end ``` You can save the rendering to disk as follows: ``` using ImageMagick, Images img3 = reshape(hcat(img...), camera.nBands, camera.xResolution, camera.yResolution) mn, mx = minimum(img3), maximum(img3) imscl = img3 ./ (mx/1.0) imscl .*= 10.0 msk = imscl .> 1.0 imscl[msk] .= 1.0 im = colorview(RGB, imscl) save("/tmp/test_little_cornell_boxes.tif", im') a = 1.5 b = 10.0 _, imwb = weibull(imscl, a, b) im2 = colorview(RGB, imwb) save("/tmp/test_little_cornell_boxes_wb.tif", im2') ```
RenderJay
https://github.com/martinvanleeuwen/RenderJay.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
1121
module DeepDiffs export deepdiff, added, removed, changed, before, after export SimpleDiff, VectorDiff, StringDiff, DictDiff # Helper function for comparing two instances of a type for equality by field function fieldequal(x::T, y::T) where T for f in fieldnames(T) getfield(x, f) == getfield(y, f) || return false end true end hascolor(io::IO) = get(IOContext(io), :color, false) """ diff = deepdiff(obj1, obj2) deepdiff computes the structural difference between two objects and returns a diff representing "edits" needed to transform obj1 into obj2. This diff supports the `added`, `removed`, and `modified` functions that return `Set`s of dictionary keys or array indices. """ function deepdiff end abstract type DeepDiff end # fallback diff that just stores two values struct SimpleDiff{T1, T2} <: DeepDiff before::T1 after::T2 end Base.:(==)(lhs::SimpleDiff, rhs::SimpleDiff) = fieldequal(lhs, rhs) before(d::SimpleDiff) = d.before after(d::SimpleDiff) = d.after deepdiff(x, y) = SimpleDiff(x, y) include("arrays.jl") include("dicts.jl") include("strings.jl") end # module
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
3728
struct VectorDiff{T1, T2} <: DeepDiff before::T1 after::T2 removed::Vector{Int} added::Vector{Int} end before(diff::VectorDiff) = diff.before after(diff::VectorDiff) = diff.after removed(diff::VectorDiff) = diff.removed added(diff::VectorDiff) = diff.added changed(diff::VectorDiff) = Int[] Base.:(==)(d1::VectorDiff, d2::VectorDiff) = fieldequal(d1, d2) # diffing an array is an application of the Longest Common Subsequence problem: # https://en.wikipedia.org/wiki/Longest_common_subsequence_problem function deepdiff(X::Vector, Y::Vector) # we're going to solve with dynamic programming, so let's first pre-allocate # our result array, which will store possible lengths of the common # substrings. lengths = zeros(Int, length(X)+1, length(Y)+1) for (j, v2) in enumerate(Y) for (i, v1) in enumerate(X) if v1 == v2 lengths[i+1, j+1] = lengths[i, j] + 1 else lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1]) end end end removed = Int[] added = Int[] backtrack(lengths, removed, added, X, Y, length(X), length(Y)) VectorDiff(X, Y, removed, added) end # recursively trace back the longest common subsequence, adding items # to the added and removed lists as we go function backtrack(lengths, removed, added, X, Y, i, j) if i > 0 && j > 0 && X[i] == Y[j] backtrack(lengths, removed, added, X, Y, i-1, j-1) elseif j > 0 && (i == 0 || lengths[i+1, j] ≥ lengths[i, j+1]) backtrack(lengths, removed, added, X, Y, i, j-1) push!(added, j) elseif i > 0 && (j == 0 || lengths[i+1, j] < lengths[i, j+1]) backtrack(lengths, removed, added, X, Y, i-1, j) push!(removed, i) end end # takes a function to be called for each item. The arguments given to the function # are the items index, the state of the item (:removed, :added, :same) and a boolean # for whether it's the last item. Indices are given for the `before` array when # the state is :removed or :same, and for the `after` array when it's :added. function visitall(f::Function, diff::VectorDiff) from = before(diff) to = after(diff) rem = removed(diff) add = added(diff) ifrom = 1 ito = 1 iremoved = 1 iadded = 1 while ifrom <= length(from) || ito <= length(to) if iremoved <= length(rem) && ifrom == rem[iremoved] ifrom += 1 iremoved += 1 f(ifrom-1, :removed, ifrom > length(from) && ito > length(to)) elseif iadded <= length(add) && ito == add[iadded] ito += 1 iadded += 1 f(ito-1, :added, ifrom > length(from) && ito > length(to)) else # not removed or added, must be in both ifrom += 1 ito += 1 f(ifrom-1, :same, ifrom > length(from) && ito > length(to)) end end end function Base.show(io::IO, diff::VectorDiff) from = before(diff) to = after(diff) rem = removed(diff) add = added(diff) print(io, "[") visitall(diff) do idx, state, last if state == :removed printitem(io, from[idx], :red, "(-)") last || printstyled(io, ", ", color=:red) elseif state == :added printitem(io, to[idx], :green, "(+)") last || printstyled(io, ", ", color=:green) else printitem(io, from[idx]) last || print(io, ", ") end end print(io, "]") end # prefix is printed if we're not using color function printitem(io, v, color=:normal, prefix="") if hascolor(io) printstyled(io, v, color=color) else print(io, prefix, v) end end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
3582
struct DictDiff{T1, KT1, T2, KT2} <: DeepDiff before::T1 after::T2 removed::Set{KT1} added::Set{KT2} changed::Dict{KT1, DeepDiff} unchanged::Set{KT1} end before(diff::DictDiff) = diff.before after(diff::DictDiff) = diff.after removed(diff::DictDiff) = diff.removed added(diff::DictDiff) = diff.added changed(diff::DictDiff) = diff.changed Base.:(==)(lhs::DictDiff, rhs::DictDiff) = fieldequal(lhs, rhs) function deepdiff(X::AbstractDict, Y::AbstractDict) xkeys = Set(keys(X)) ykeys = Set(keys(Y)) bothkeys = intersect(xkeys, ykeys) removed = setdiff(xkeys, ykeys) added = setdiff(ykeys, xkeys) unchanged = Set{eltype(bothkeys)}() changed = Dict{eltype(bothkeys), DeepDiff}() for key in bothkeys if X[key] != Y[key] changed[key] = deepdiff(X[key], Y[key]) else push!(unchanged, key) end end DictDiff(X, Y, removed, added, changed, unchanged) end Base.show(io::IO, diff::DictDiff) = diffprint(io, diff, 0) # indentation space const inspace = " " function diffprint(io, d::DictDiff, indent=0) bef = before(d) aft = after(d) println(io, "Dict(") for k in d.unchanged # extra space to account for added linemarker print(io, " ", inspace ^ (indent+1)) prettyprint(io, Pair(k, bef[k]), " ", indent+1) println(io, ",") end Base.with_output_color(:red, io) do io for k in removed(d) print(io, "-", inspace ^ (indent+1)) prettyprint(io, Pair(k, bef[k]), "-", indent+1) println(io, ",") end end for (k, v) in changed(d) if isa(v, SimpleDiff) # if we have a key pointing to a SimpleDiff, then we don't know how to # deconstruct the value, so instead we print it like a removed and added key Base.with_output_color(:red, io) do io print(io, "-", inspace ^ (indent+1)) prettyprint(io, Pair(k, before(v)), "-", indent+1) println(io, ",") end Base.with_output_color(:green, io) do io print(io, "+", inspace ^ (indent+1)) prettyprint(io, Pair(k, after(v)), "+", indent+1) println(io, ",") end else # extra space to account for added linemarker print(io, " ", inspace ^ (indent+1)) prettyprint(io, Pair(k, v), " ", indent+1) println(io, ",") end end Base.with_output_color(:green, io) do io for k in added(d) print(io, "+", inspace ^ (indent+1)) prettyprint(io, Pair(k, aft[k]), "+", indent+1) println(io, ",") end end # don't print the leading space if we're at the top-level print(io, indent == 0 ? "" : " ") print(io, inspace ^ indent, ")") end function prettyprint(io, d::AbstractDict, linemarker, indent) println(io, "Dict(") for p in d print(io, linemarker, inspace ^ (indent+1)) prettyprint(io, p, linemarker, indent+1) println(io, ",") end print(io, linemarker, inspace ^ indent, ")") end function prettyprint(io, p::Pair, linemarker, indent) prettyprint(io, p[1], linemarker, indent) print(io, " => ") prettyprint(io, p[2], linemarker, indent) end function prettyprint(io, p::Pair{<:Any, <:DictDiff}, linemarker, indent) prettyprint(io, p[1], linemarker, indent) print(io, " => ") diffprint(io, p[2], indent) end prettyprint(io, x, linemarker, indent) = show(io, x)
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
2851
# used for single-line strings struct StringDiff{T1, T2} <: DeepDiff before::T1 after::T2 diff::VectorDiff end # used for multi-line strings struct StringLineDiff{T1, T2} <: DeepDiff before::T1 after::T2 diff::VectorDiff end function deepdiff(X::AbstractString, Y::AbstractString) if occursin("\n", X) || occursin("\n", Y) # we'll compare hashes of each line rather than the text itself, because # these comparisons are done many times xhashes = map(hash, split(X, '\n')) yhashes = map(hash, split(Y, '\n')) StringLineDiff(X, Y, deepdiff(xhashes, yhashes)) else StringDiff(X, Y, deepdiff(collect(X), collect(Y))) end end const AllStringDiffs = Union{StringDiff, StringLineDiff} before(diff::AllStringDiffs) = diff.before after(diff::AllStringDiffs) = diff.after added(diff::AllStringDiffs) = added(diff.diff) removed(diff::AllStringDiffs) = removed(diff.diff) changed(diff::AllStringDiffs) = [] Base.:(==)(d1::T, d2::T) where {T<:AllStringDiffs} = fieldequal(d1, d2) function Base.show(io::IO, diff::StringLineDiff) xlines = split(diff.before, '\n') ylines = split(diff.after, '\n') println(io, "\"\"\"") visitall(diff.diff) do idx, state, last if state == :removed printstyled(io, "- ", escape_string(xlines[idx]), color=:red) elseif state == :added printstyled(io, "+ ", escape_string(ylines[idx]), color=:green) else print(io, " ", escape_string(xlines[idx])) end if last print(io, "\"\"\"") else println(io) end end end function Base.show(io::IO, diff::StringDiff) xchars = before(diff.diff) ychars = after(diff.diff) laststate = :init print(io, "\"") visitall(diff.diff) do idx, state, last if !hascolor(io) # check to see if we need to close a block if laststate == :removed && state != :removed print(io, "-}") elseif laststate == :added && state != :added print(io, "+}") end # check to see if we need to open a block if laststate != :removed && state == :removed print(io, "{-") elseif laststate != :added && state == :added print(io, "{+") end end if state == :removed printstyled(io, string(xchars[idx]), color=:red) elseif state == :added printstyled(io, string(ychars[idx]), color=:green) else print(io, xchars[idx]) end laststate = state end if !hascolor(io) if laststate == :removed print(io, "-}") elseif laststate == :added print(io, "+}") end end print(io, "\"") end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
1056
@testset "arrays can be diffed" begin a1 = [1, 2, 3, 4] # one number changed a2 = [1, 7, 3, 4] d = deepdiff(a1, a2) @test added(d) == [2] @test removed(d) == [2] @test changed(d) == [] @test before(d) == a1 @test after(d) == a2 # removed from middle d = deepdiff(a1, [1, 3, 4]) @test removed(d) == [2] @test added(d) == [] # removed from beginning d = deepdiff(a1, [2, 3, 4]) @test removed(d) == [1] @test added(d) == [] # removed from end d = deepdiff(a1, [1, 2, 3]) @test removed(d) == [4] @test added(d) == [] # added to end d = deepdiff(a1, [1, 2, 3, 4, 5]) @test removed(d) == [] @test added(d) == [5] # added to beginning d = deepdiff(a1, [0, 1, 2, 3, 4]) @test removed(d) == [] @test added(d) == [1] # two additions d = deepdiff(a1, [1, 4, 2, 5, 3, 4]) @test removed(d) == [] @test added(d) == [2, 4] # two removals d = deepdiff(a1, [2, 4]) @test removed(d) == [1, 3] @test added(d) == [] end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
2297
@testset "Dicts can be diffed" begin d1 = Dict( :foo => "foo", :bar => "bar", :baz => Dict( :fizz => "fizz", :buzz => "buzz" ) ) @testset "One Changed" begin d = deepdiff(d1, Dict( :foo => "foo", :bar => "biz", :baz => Dict( :fizz => "fizz", :buzz => "buzz" ) )) @test added(d) == Set() @test removed(d) == Set() @test changed(d) == Dict{Symbol, DeepDiffs.DeepDiff}(:bar => deepdiff("bar", "biz")) end @testset "One Removed" begin d = deepdiff(d1, Dict( :foo => "foo", :baz => Dict( :fizz => "fizz", :buzz => "buzz" ) )) @test added(d) == Set() @test removed(d) == Set([:bar]) @test changed(d) == Dict() end @testset "One Added" begin d = deepdiff(d1, Dict( :foo => "foo", :bar => "bar", :biz => "biz", :baz => Dict( :fizz => "fizz", :buzz => "buzz" ) )) @test added(d) == Set([:biz]) @test removed(d) == Set() @test changed(d) == Dict() end @testset "Inner Dict Modified" begin d = deepdiff(d1, Dict( :foo => "foo", :bar => "bar", :baz => Dict( :fizz => "fizz", :buzz => "bizzle" ) )) @test added(d) == Set() @test removed(d) == Set() @test changed(d) == Dict{Symbol, DeepDiffs.DeepDiff}(:baz => deepdiff( Dict( :fizz => "fizz", :buzz => "buzz" ), Dict( :fizz => "fizz", :buzz => "bizzle" ) )) end @testset "Totally Removed" begin d = deepdiff(d1, Dict()) @test added(d) == Set() @test removed(d) == Set([:foo, :bar, :baz]) @test changed(d) == Dict() end @testset "Totally added" begin d = deepdiff(Dict(), d1) @test added(d) == Set([:foo, :bar, :baz]) @test removed(d) == Set() @test changed(d) == Dict() end end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
5974
@testset "Display tests" begin # Return a stream with color set as specified. On 0.6 this requires setting # a global flag, and the :color property in the IOContext has no effect. function setcolor(yn::Bool) IOContext(IOBuffer(), :color=>yn) end function resetcolor() global orig_color nothing end # check dictionary print output. This is a little complicated because # the ordering isn't specified. To work around this we just split # up both into lines and make sure they have the same lines in some ordering. # This means we could possibly miss some errors, but it seems like a # reasonable compomise # expected should be a list of display lines within that dict function checkdictprint(output, expected) outlines = sort(split(output, "\n")) explines = sort(split(expected, "\n")) @test outlines == explines end @testset "Array diffs print correctly" begin d1 = deepdiff([1, 2, 7, 3], [2, 3, 4, 1, 2, 3, 5]) d2 = deepdiff([1], [2]) buf = setcolor(true) expected1 = """ [2, 3, 4, 1, 2, 7, 3, 5]""" expected2 = """[1, 2]""" @testset "Color Diffs" begin display(TextDisplay(buf), d1) @test String(take!(buf.io)) == expected1 display(TextDisplay(buf), d2) @test String(take!(buf.io)) == expected2 end buf = setcolor(false) @testset "No-Color Diffs" begin display(TextDisplay(buf), d1) @test String(take!(buf.io)) == """ [(+)2, (+)3, (+)4, 1, 2, (-)7, 3, (+)5]""" display(TextDisplay(buf), d2) @test String(take!(buf.io)) == """ [(-)1, (+)2]""" end resetcolor() end @testset "Dict diffs print correctly" begin d = deepdiff( Dict( :a => "a", :b => "b", :c => "c", :list => [1, 2, 3], :dict1 => Dict( :a => 1, :b => 2, :c => 3 ), :dict2 => Dict( :a => 1, :b => 2, :c => 3 ) ), Dict( :a => "a", :b => "d", :e => "e", :list => [1, 4, 3], :dict1 => Dict( :a => 1, :b => 2, :c => 3 ), :dict2 => Dict( :a => 1, :c => 4 ) ), ) @testset "Color Diffs" begin buf = setcolor(true) display(TextDisplay(buf), d) expected = """ Dict( :a => "a", :dict1 => Dict( :c => 3, :a => 1, :b => 2, ), - :c => "c",  :list => [1, 2, 4, 3], :b => "bd", :dict2 => Dict( :a => 1, - :b => 2, - :c => 3, + :c => 4,  ), + :e => "e", )""" # This test is broken because the specifics of how the ANSI color # codes are printed change based on the order, which changes with # different julia versions. @test_skip String(take!(buf.io)) == expected end @testset "No-Color Diffs" begin buf = setcolor(false) display(TextDisplay(buf), d) expected = """ Dict( :a => "a", :dict1 => Dict( :c => 3, :a => 1, :b => 2, ), - :c => "c", :list => [1, (-)2, (+)4, 3], :b => "{-b-}{+d+}", :dict2 => Dict( :a => 1, - :b => 2, - :c => 3, + :c => 4, ), + :e => "e", )""" checkdictprint(String(take!(buf.io)), expected) end resetcolor() end @testset "single-line strings display correctly" begin # this test is just to handle some cases that don't get exercised elsewhere diff = deepdiff("abc", "adb") buf = setcolor(false) display(TextDisplay(buf), diff) @test String(take!(buf.io)) == "\"a{+d+}b{-c-}\"" resetcolor() end @testset "Multi-line strings display correctly" begin s1 = """ differences can be hard to find in multiline output""" s2 = """ differences can be hurd to find multiline output""" diff = deepdiff(s1, s2) @testset "Color Display" begin buf = setcolor(true) expected = """ \"\"\" differences can - be hard to find - in + be hurd to find multiline output\"\"\"""" display(TextDisplay(buf), diff) @test String(take!(buf.io)) == expected end @testset "No-Color Display" begin buf = setcolor(false) display(TextDisplay(buf), diff) @test String(take!(buf.io)) == """ \"\"\" differences can - be hard to find - in + be hurd to find multiline output\"\"\"""" end resetcolor() end end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
316
using DeepDiffs using Test if isdefined(Base, :have_color) # Capture the original state of the global flag orig_color = Base.have_color end @testset "DeepDiff Tests" begin include("arrays.jl") include("dicts.jl") include("display.jl") include("simplediff.jl") include("strings.jl") end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
81
@testset "SimpleDiff tests" begin @test deepdiff(1, 2) == deepdiff(1, 2) end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
code
861
@testset "Single-line Strings can be diffed" begin @testset "bπiz -> bπaz" begin s1 = "bπiz" s2 = "bπaz" diff = deepdiff(s1, s2) @test before(diff) == s1 @test after(diff) == s2 # the indices are assuming a Vector of chars, like you'd get from `collect` @test removed(diff) == [3] @test added(diff) == [3] @test changed(diff) == [] end end @testset "Multi-line Strings can be diffed" begin s1 = """differences can be hard to find in multiline output""" s2 = """differences can be hurd to find multiline output""" diff = deepdiff(s1, s2) @test before(diff) == s1 @test after(diff) == s2 @test removed(diff) == [2, 3] @test added(diff) == [2] @test changed(diff) == [] end
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
1.2.0
9824894295b62a6a4ab6adf1c7bf337b3a9ca34c
docs
3053
# DeepDiffs [![Travis Status](https://travis-ci.org/ssfrr/DeepDiffs.jl.svg?branch=master)](https://travis-ci.org/ssfrr/DeepDiffs.jl) [![Appveyor status](https://ci.appveyor.com/api/projects/status/jim9hndbolm8p9p4/branch/master?svg=true)](https://ci.appveyor.com/project/ssfrr/deepdiffs-jl/branch/master) [![codecov.io](http://codecov.io/github/ssfrr/DeepDiffs.jl/coverage.svg?branch=master)](http://codecov.io/github/ssfrr/DeepDiffs.jl?branch=master) DeepDiffs.jl provides the `deepdiff` function, which finds and displays differences (diffs) between Julia data structures. It supports `Vector`s, `Dict`s, and `String`s. When diffing dictionaries where values associated with a particular key may change, `deepdiff` will recurse into value to provide a more detailed diff. Many users will likely only use the `deepdiff` function to interactively visualize diffs. For more advanced usage, the return value from `deepdiff` will be some subtype of the `DeepDiff` abstract type which can be further manipulated. These subtypes support the following functions: * `before(diff)`: returns the first original (left-hand-side) value that was diffed * `after(diff)`: returns the modified (right-hand-side) value that was diffed * `added(diff)`: returns a list of indices or dictionary keys that were new items. These indices correspond to the "after" value. * `removed(diff)`: returns a list of indices or dictionary keys that were removed. These indices correspond to the "before" value. * `changed(diff)`: returns a dictionary whose keys are indices or dictionary keys and whose values are themselves `DeepDiff`s that describe the modified value. Currently this is only meaningful when diffing dictionaries because the keys can be matched up between the original and modified values. ## Diffing `Vector`s `Vector`s are diffed using a longest-subsequence algorithm that tries to minmize the number of additions and removals necessary to transform one `Vector` to another. ![Dict diff output](http://ssfrr.github.io/DeepDiffs.jl/images/vectordiff.png) ## Diffing `Dict`s `Dict`s are diffed by matching up the keys between the original and modified values, so it can recognize removed, added, or modified values. ![Dict diff output](http://ssfrr.github.io/DeepDiffs.jl/images/dictdiff.png) If color is disabled then the additions and removals are displayed a little differently: ![Dict diff output](http://ssfrr.github.io/DeepDiffs.jl/images/dictdiff_nocolor.png) ## Diffing `String`s ### Single-line strings Single-line strings are diffed character-by-character. The indices returned by `added` and `removed` correspond to indices in the `Vector` of characters returned by `collect(str::String)`. ![Dict diff output](http://ssfrr.github.io/DeepDiffs.jl/images/singlestringdiff.png) ### Multi-line strings Multi-line strings (strings with at least one newline) are diffed line-by-line. The indices returned by `added` and `removed` correspond to line numbers. ![Dict diff output](http://ssfrr.github.io/DeepDiffs.jl/images/multistringdiff.png)
DeepDiffs
https://github.com/ssfrr/DeepDiffs.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
528
using Quantics using Documenter DocMeta.setdocmeta!(Quantics, :DocTestSetup, :(using Quantics); recursive=true) makedocs(; modules=[Quantics], authors="Hiroshi Shinaoka <[email protected]> and contributors", sitename="Quantics.jl", format=Documenter.HTML(; canonical="https://github.com/tensor4all/Quantics.jl", edit_link="main", assets=String[]), pages=[ "Home" => "index.md" ]) deploydocs(; repo="github.com/tensor4all/Quantics.jl.git", devbranch="main" )
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
567
#__precompile__(false) module Quantics #@everywhere begin #using Pkg #Pkg.activate(".") #Pkg.instantiate() #end using ITensors import ITensors import ITensors.NDTensors: Tensor, BlockSparseTensor, blockview import SparseIR: Fermionic, Bosonic, Statistics import LinearAlgebra: I using StaticArrays import FastMPOContractions using EllipsisNotation function __init__() end include("util.jl") include("tag.jl") include("binaryop.jl") include("mul.jl") include("mps.jl") include("fouriertransform.jl") include("imaginarytime.jl") include("transformer.jl") end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
16807
@doc raw""" ``a x + b y``, where ``a = 0, \pm 1`` and ``b = 0, \pm 1`` (``a + b \neq -2``). ``` out | -------- cin --| T |-- cout -------- | | x y ``` ``T_{x, y, \mathrm{out}, \mathrm{cin}, \mathrm{cout}} = 1`` if ``a x + b y + \mathrm{cin} = \mathrm{cout}``, ``=0`` otherwise (`out` is the output bit). """ function _binaryop_tensor(a::Int, b::Int, site_x::Index{T}, site_y::Index{T}, site_out::Index{T}, cin_on::Bool, cout_on::Bool, bc::Int) where {T} abs(a) <= 1 || error("a must be either 0, 1, -1") abs(b) <= 1 || error("b must be either 0, 1, -1") abs(bc) == 1 || error("bc must be either 1, -1") a + b != -2 || error("a = -1 and b = -1 not supported") cins = cin_on ? [-1, 0, 1] : [0] cinsize = length(cins) coutsize = cout_on ? 3 : 1 tensor = zeros(Float64, (cinsize, coutsize, 2, 2, 2)) for (idx_cin, cin) in enumerate(cins), y in 0:1, x in 0:1 res = a * x + b * y + cin if res >= 0 cout = _getbit(abs(res), 1) else cout = -1 end if cout_on tensor[idx_cin, cout + 2, x + 1, y + 1, (abs(res) & 1) + 1] = 1 else tensor[idx_cin, 1, x + 1, y + 1, (abs(res) & 1) + 1] = (cout == 0 ? 1 : bc) end end link_in = Index(cinsize, "link_in") link_out = Index(coutsize, "link_out") return ITensor(tensor, [link_in, link_out, site_x, site_y, site_out]), link_in, link_out end """ Create a tensor acting on a vector of sites. """ function binaryop_tensor_multisite(sites::Vector{Index{T}}, coeffs::Vector{Tuple{Int,Int}}, pos_sites_in::Vector{Tuple{Int,Int}}, cin_on::Bool, cout_on::Bool, bc::Vector{Int}) where {T<:Number} # Check sites = noprime.(sites) nsites = length(sites) length(coeffs) == nsites || error("Length of coeffs does not match that of coeffs") length(pos_sites_in) == nsites || error("Length of pos_sites_in does not match that of coeffs") sites_in = [Index(2, "site_dummy,n=$n") for n in eachindex(sites)] links_in = Index{T}[] links_out = Index{T}[] # First, we need to know the number of dummny indices for each site. ndumnyinds = zeros(Int, nsites) for n in 1:nsites for s in pos_sites_in[n] ndumnyinds[s] += 1 end end res = ITensor(1) for n in 1:nsites res *= dense(delta(sites[n], [setprime(sites_in[n], plev) for plev in 1:ndumnyinds[n]])) end currentdummyinds = ones(Int, nsites) for n in 1:nsites sites_ab = setprime(sites_in[pos_sites_in[n][1]], currentdummyinds[pos_sites_in[n][1]]), setprime(sites_in[pos_sites_in[n][2]], currentdummyinds[pos_sites_in[n][2]]) for i in 1:2 currentdummyinds[pos_sites_in[n][i]] += 1 end t, lin, lout = _binaryop_tensor(coeffs[n]..., sites_ab..., sites[n]', cin_on, cout_on, bc[n]) push!(links_in, lin) push!(links_out, lout) res *= t end linkin = Index(prod(dim.(links_in)), "linkin") linkout = Index(prod(dim.(links_out)), "linkout") res = permute(res, [links_in..., links_out..., prime.(sites)..., sites...]) # Here, we swap sites and prime(sites)! res = ITensor(ITensors.data(res), [linkin, linkout, sites..., prime.(sites)...]) return res end """ Construct an MPO representing a selector associated with binary operations. We describe the functionality for length(coeffs) = 2 (nsites_bop). In this case, site indices are split into a list of chuncks of nsites_bop sites. Binary operations are applied to each chunck and the direction of carry is forward (rev_carrydirec=true) or backward (rev_carrydirec=false). Assumed rev_carrydirec = true, we consider a two-variable g(x, y), which is quantized as x = (x_1 ... x_R)_2, y = (y_1 ... y_R)_2. We now define a new function by binary operations as f(x, y) = g(a * x + b * y + s1, c * x + d * y + s2), where a, b, c, d = +/- 1, 0, and s1, s1 are arbitrary integers. `bc` is a vector of boundary conditions for each arguments of `g` (not of `f`). """ function affinetransform(M::MPS, tags::AbstractVector{String}, coeffs_dic::AbstractVector{Dict{String,Int}}, shift::AbstractVector{Int}, bc::AbstractVector{Int}; kwargs...) transformer = affinetransformmpo(siteinds(M), tags, coeffs_dic, shift, bc) return apply(transformer, M; kwargs...) end function affinetransformmpo(sites::AbstractVector{Index{T}}, tags::AbstractVector{String}, coeffs_dic::AbstractVector{Dict{String,Int}}, shift::AbstractVector{Int}, bc::AbstractVector{Int})::MPO where {T} # f(x, y) = g(a * x + b * y + s1, c * x + d * y + s2) # = h(a * x + b * y, c * x + d * y), # where h(x, y) = g(x + s1, y + s2). # The transformation is executed in this order: g -> h -> f. mpos = MPO[] # Number of variables involved in transformation ntransvars = length(tags) 2 <= ntransvars || error("Number of variables for transformation must be greater than or equal to 2.") sites_for_tag = [] for tag in tags push!(sites_for_tag, findallsites_by_tag(sites; tag=tag)) if length(sites_for_tag[end]) == 0 error("Tag $tag is not found.") end end length(unique(map(length, sites_for_tag))) == 1 || error("Number of sites for each tag must be equal.") length(shift) == ntransvars || error("Length of shift must be equal to that of tags.") # If shift is required if !all(shift .== 0) for i in 1:ntransvars push!(mpos, shiftaxismpo(sites, shift[i]; tag=tags[i], bc=bc[i])) end end # Followed by a rotation push!(mpos, affinetransformmpo(sites, tags, coeffs_dic, bc)) # Contract MPOs res = mpos[1] for n in 2:length(mpos) res = apply(mpos[n], res; cutoff=1e-25, maxdim=typemax(Int)) end return res end """ Affine transform of a MPS with no shift Significant bits are assumed to be aligned from left to right for all tags. """ function affinetransform(M::MPS, tags::AbstractVector{String}, coeffs_dic::AbstractVector{Dict{String,Int}}, bc::AbstractVector{Int}; kwargs...) transformer = affinetransformmpo(siteinds(M), tags, coeffs_dic, bc) return apply(transformer, M; kwargs...) end """ Generate an MPO representing an affine transform of a MPS with no shift Significant bits are assumed to be aligned from left to right for all tags. """ function affinetransformmpo(sites::AbstractVector{Index{T}}, tags::AbstractVector{String}, coeffs_dic::AbstractVector{Dict{String,Int}}, bc::AbstractVector{Int})::MPO where {T} mpos = MPO[] # f(x, y) = g(a * x + b * y + s1, c * x + d * y + s2) # = h(a * x + b * y, c * x + d * y), # where h(x, y) = g(x + s1, y + s2). # The transformation is taken place in this order: g -> h -> f. # Number of variables involved in transformation ntransvars = length(tags) 2 <= ntransvars || error("Number of variables for transformation must be greater than or equal to 2.") sites_for_tag = [] for tag in tags push!(sites_for_tag, findallsites_by_tag(sites; tag=tag)) if length(sites_for_tag[end]) == 0 error("Tag $tag is not found.") end end length(unique(map(length, sites_for_tag))) == 1 || error("Number of sites for each tag must be equal.") tags_to_pos = Dict(tag => i for (i, tag) in enumerate(tags)) all([length(c) == 2 for c in coeffs_dic]) || error("Length of each element in coeffs_dic must be 2") coeffs = Tuple{Int,Int}[] pos_sites_in = Tuple{Int,Int}[] for inewval in 1:ntransvars length(coeffs_dic[inewval]) == 2 || error("Length of each element in coeffs_dic must be 2: $(coeffs_dic[inewval])") pos_sites_in_ = [tags_to_pos[t] for (t, c) in coeffs_dic[inewval]] length(unique(pos_sites_in_)) == 2 || error("Each element of pos_sites_in must contain two different values: $(pos_sites_in_)") all(pos_sites_in_ .>= 0) || error("Invalid tag: $(coeffs_dic[inewval])") push!(pos_sites_in, Tuple(pos_sites_in_)) push!(coeffs, Tuple([c for (t, c) in coeffs_dic[inewval]])) end length(tags) == ntransvars || error("Length of tags does not match that of coeffs") length(pos_sites_in) == ntransvars || error("Length of pos_sites_in does not match that of coeffs") # Check if the order of significant bits is consistent among all tags rev_carrydirecs = Bool[] pos_for_tags = [] sites_for_tags = [] for i in 1:ntransvars push!(sites_for_tags, findallsiteinds_by_tag(sites; tag=tags[i])) pos_for_tag = findallsites_by_tag(sites; tag=tags[i]) push!(rev_carrydirecs, isascendingorder(pos_for_tag)) push!(pos_for_tags, pos_for_tag) end valid_rev_carrydirecs = all(rev_carrydirecs .== true) || all(rev_carrydirecs .== false) valid_rev_carrydirecs || error("The order of significant bits must be consistent among all tags!") #all(rev_carrydirecs .== true) || #error("Significant bits are aligned from left to right for all tags!") length(unique([length(s) for s in sites_for_tags])) == 1 || error("The number of sites for each tag must be the same! $([length(s) for s in sites_for_tags])") rev_carrydirec = all(rev_carrydirecs .== true) # If true, significant bits are at the left end. if !rev_carrydirec transformer_ = affinetransformmpo( reverse(sites), reverse(tags), reverse(coeffs_dic), reverse(bc)) return MPO([transformer_[n] for n in reverse(1:length(transformer_))]) end # First check transformations with -1 and -1; e.g., (a, b) = (-1, -1) # These transformations are not supported in the backend. # To support this case, we need to flip the sign of coeffs as follows: # f(x, y) = h(x + y, c * x + d * y) = g(- x -y, c * x + d * y), # where h(x, y) = g(-x, y). # The transformation is taken place in this order: g -> h -> f. sign_flips = [coeffs[n][1] == -1 && coeffs[n][2] == -1 for n in eachindex(coeffs)] for v in 1:ntransvars if sign_flips[v] push!(mpos, bc[v] * reverseaxismpo(sites; tag=tags[v], bc=bc[v])) end end # Apply binary operations (nomore (-1, -1) coefficients) coeffs_positive = [(sign_flips[n] ? abs.(coeffs[n]) : coeffs[n]) for n in eachindex(coeffs)] sites_mpo = collect(Iterators.flatten(Iterators.zip(sites_for_tags...))) transformer = _binaryop_mpo(sites_mpo, coeffs_positive, pos_sites_in; rev_carrydirec=true, bc=bc) transformer = matchsiteinds(transformer, sites) push!(mpos, transformer) # Contract MPOs res = mpos[1] for n in 2:length(mpos) res = apply(mpos[n], res; cutoff=1e-25, maxdim=typemax(Int)) end return res end """ Construct an MPO representing a selector associated with binary operations. We describe the functionality for length(coeffs) = 2 (nsites_bop). In this case, site indices are split into a list of chuncks of nsites_bop sites. Binary operations are applied to each chunck and the direction of carry is forward (rev_carrydirec=true) or backward (rev_carrydirec=false). Assumed rev_carrydirec = true, we consider a two-variable g(x, y), which is quantized as x = (x_1 ... x_R)_2, y = (y_1 ... y_R)_2. We now define a new function by binary operations as f(x, y) = g(a * x + b * y, c * x + d * y), where a, b, c, d = +/- 1, 0, and s1, s1 are arbitrary integers. The transform from `g` to `f` can be represented as an MPO: f(x_1, y_1, ..., x_R, y_R) = M(x_1, y_1, ...; x'_1, y'_1, ...) f(x'_1, y'_1, ..., x'_R, y'_R). The MPO `M` acts a selector: The MPO selects values from `f` to form `g`. For rev_carrydirec = false, the returned MPO represents f(x_R, y_R, ..., x_1, y_1) = M(x_R, y_R, ...; x'_R, y'_R, ...) f(x'_R, y'_R, ..., x'_1, y'_1). `bc` is a vector of boundary conditions for each arguments of `g` (not of `f`). """ function _binaryop_mpo(sites::Vector{Index{T}}, coeffs::Vector{Tuple{Int,Int}}, pos_sites_in::Vector{Tuple{Int,Int}}; rev_carrydirec=false, bc::Union{Nothing,Vector{Int}}=nothing) where {T<:Number} # Number of variables involved in transformation nsites_bop = length(coeffs) if bc === nothing bc = ones(Int64, nsites_bop) # Default: periodic boundary condition end # First check transformations with -1 and -1; e.g., (a, b) = (-1, -1) # These transformations are not supported in _binaryop_mpo_backend. # To support this case, we need to flip the sign of coeffs as follows: # f(x, y) = h(x + y, c * x + d * y) = g(-x-y, c * x + d * y), # where h(x, y) = g(-x, y). # The transformation is taken place in this order: g -> h -> f. sign_flips = [coeffs[n][1] == -1 && coeffs[n][2] == -1 for n in 1:length(coeffs)] coeffs_ = [(sign_flips[i] ? abs.(coeffs[i]) : coeffs[i]) for i in eachindex(coeffs)] # For g->h M = _binaryop_mpo_backend(sites, coeffs_, pos_sites_in; rev_carrydirec=rev_carrydirec, bc=bc) # For h->f for i in 1:nsites_bop if !sign_flips[i] continue end M_ = bc[i] * flipop(sites[i:nsites_bop:end]; rev_carrydirec=rev_carrydirec, bc=bc[i]) M = apply(M, matchsiteinds(M_, sites); cutoff=1e-25) end return M end # Limitation: a = -1 and b = -1 not supported. The same applies to (c, d). function _binaryop_mpo_backend(sites::Vector{Index{T}}, coeffs::Vector{Tuple{Int,Int}}, pos_sites_in::Vector{Tuple{Int,Int}}; rev_carrydirec=false, bc::Union{Nothing,Vector{Int}}=nothing) where {T<:Number} nsites = length(sites) nsites_bop = length(coeffs) ncsites = nsites ÷ nsites_bop length(pos_sites_in) == nsites_bop || error("Length mismatch between coeffs and pos_sites_in") if bc === nothing bc = ones(Int64, nsites_bop) # Default: periodic boundary condition end links = [Index(3^nsites_bop, "link=$n") for n in 0:ncsites] links[1] = Index(1, "link=0") links[end] = Index(1, "link=$ncsites") tensors = ITensor[] sites2d = reshape(sites, nsites_bop, ncsites) for n in 1:ncsites sites_ = sites2d[:, n] cin_on = rev_carrydirec ? (n != ncsites) : (n != 1) cout_on = rev_carrydirec ? (n != 1) : (n != ncsites) tensor = binaryop_tensor_multisite(sites_, coeffs, pos_sites_in, cin_on, cout_on, bc) lleft, lright = links[n], links[n + 1] if rev_carrydirec replaceind!(tensor, firstind(tensor, "linkout") => lleft) replaceind!(tensor, firstind(tensor, "linkin") => lright) else replaceind!(tensor, firstind(tensor, "linkin") => lleft) replaceind!(tensor, firstind(tensor, "linkout") => lright) end inds_list = [[lleft, sites_[1]', sites_[1]]] for m in 2:(nsites_bop - 1) push!(inds_list, [sites_[m]', sites_[m]]) end push!(inds_list, [lright, sites_[nsites_bop]', sites_[nsites_bop]]) tensors = vcat(tensors, split_tensor(tensor, inds_list)) end _removeedges!(tensors, sites) M = truncate(MPO(tensors); cutoff=1e-25) cleanup_linkinds!(M) return M end """ For given function `g(x)` and shift `s`, construct an MPO representing `f(x) = g(x + s)`. x: 0, ..., 2^R - 1 0 <= s <= 2^R - 1 We assume that left site indices correspond to significant digits """ function _shift_mpo(sites::Vector{Index{T}}, shift::Int; bc::Int=1) where {T<:Number} R = length(sites) 0 <= shift <= 2^R - 1 || error("Invalid shift") ys = Quantics.tobin(shift, R) links = Index{T}[] tensors = ITensor[] for n in 1:R cin_on = n != R cout_on = n != 1 sitey = Index(2, "Qubit, y") t, link_in, link_out = Quantics._binaryop_tensor(1, 1, sites[n]', sitey, sites[n], cin_on, cout_on, bc) t *= onehot(sitey => ys[n] + 1) if n < R push!(links, Index(dim(link_in), "link=$n")) replaceind!(t, link_in => links[end]) end if n > 1 replaceind!(t, link_out => links[n - 1]) end if n == 1 t *= onehot(link_out => 1) elseif n == R t *= onehot(link_in => 1) end push!(tensors, t) end MPO(tensors) end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
7162
@doc raw""" Create a MPO for Fourier transform We define two integers using the binary format: ``x = (x_1 x_2 ...., x_N)_2``, ``y = (y_1 y_2 ...., y_N)_2``, where the right most digits are the least significant digits. Our definition of the Fourier transform is ```math Y(y) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} X(x) e^{s i \frac{2\pi y x}{N}} = \sum_{x=0}^{N-1} T(y, x) X(x), ``` where we define the transformation matrix ``T`` and ``s = \pm 1``. The created MPO can transform an input MPS as follows. We denote the input and output MPS's by ``X`` and ``Y``, respectively. * ``X(x_1, ..., x_N) = X_1(x_1) ... X_N (x_N)``, * ``Y(y_N, ..., y_1) = Y_1(y_N) ... Y_N (y_1)``. """ function _qft(sites; cutoff::Float64=1e-14, sign::Int=1) if any([!hastags(inds(s), "Qubit") for s in sites]) error("All siteinds for qft must has Qubit tag") end M = _qft_wo_norm(sites; cutoff=cutoff, sign=sign) M *= 2.0^(-0.5 * length(sites)) # Quick hack: In the Markus's note, # the digits are ordered oppositely from the present convention. M = MPO([M[n] for n in length(M):-1:1]) _replace_mpo_siteinds!(M, reverse(sites), sites) return M end function _assign!(M::MPO, n::Int, arr; autoreshape=false) if autoreshape arr = reshape(arr, map(dim, inds(M[n]))...) end M[n] = ITensor(arr, inds(M[n])...) return nothing end """ For length(sites) == 1 The resultant MPO is NOT renormalized. """ function _qft_nsite1_wo_norm(sites; sign::Int=1) length(sites) == 1 || error("num sites > 1") _exp(x, k) = exp(sign * im * π * (x - 1) * (k - 1)) arr = zeros(ComplexF64, 2, 2) for out in 1:2, in in 1:2 arr[out, in] = _exp(out, in) end M = Quantics._zero_mpo(sites) _assign!(M, 1, arr) return M end function _qft_wo_norm(sites; cutoff::Float64=1e-14, sign::Int=1) N = length(sites) if N == 1 return _qft_nsite1_wo_norm(sites; sign=sign) end M_prev = _qft_wo_norm(sites[2:end]; cutoff=cutoff, sign=sign) M_top = _qft_toplayer(sites; sign=sign) M = _contract(M_top, M_prev) ITensors.truncate!(M; cutoff=cutoff) return M end function _qft_toplayer(sites; sign::Int=1) N = length(sites) N > 1 || error("N must be greater than 1") tensors = [] # site = 1 arr = zeros(ComplexF64, 2, 2, 2) for x in 1:2, k in 1:2 # arr: (out, in, link) arr[x, k, k] = exp(sign * im * π * (x - 1) * (k - 1)) end push!(tensors, arr) for n in 2:N ϕ = π * 0.5^(n - 1) _exp(x, k) = exp(sign * im * ϕ * (x - 1) * (k - 1)) # Right most tensor if n == N # arr: (link, out, in) arr = zeros(ComplexF64, 2, 2, 2) for x in 1:2, k in 1:2 arr[k, x, x] = _exp(x, k) end push!(tensors, arr) else # arr: (link_left, out, in, link_right) arr = zeros(ComplexF64, 2, 2, 2, 2) for x in 1:2, k in 1:2 arr[k, x, x, k] = _exp(x, k) end push!(tensors, arr) end end M = Quantics._zero_mpo(sites; linkdims=fill(2, N - 1)) for n in 1:N _assign!(M, n, tensors[n]) end return M end function _contract(M_top, M_prev) length(M_top) == length(M_prev) + 1 || error("Length mismatch") N = length(M_top) M_top = ITensors.replaceprime(M_top, 1 => 2; tags="Qubit") M_top = ITensors.replaceprime(M_top, 0 => 1; tags="Qubit") M_top_ = ITensors.data(M_top) M_prev_ = ITensors.data(M_prev) M_data = [M_top_[1]] for n in 1:(N - 1) push!(M_data, M_top_[n + 1] * M_prev_[n]) end M = MPO(M_data) M = ITensors.replaceprime(M, 1 => 0; tags="Qubit") M = ITensors.replaceprime(M, 2 => 1; tags="Qubit") return M end abstract type AbstractFT end struct FTCore forward::MPO function FTCore(sites; kwargs...) new(_qft(sites; kwargs...)) end end nbit(ft::AbstractFT) = length(ft.ftcore.forward) @doc raw""" sites[1] corresponds to the most significant digit. sign = 1 ```math Y(y) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} X(x) e^{s i \frac{2\pi (y + y0) (x + x0)}{N}}, ``` """ function forwardmpo(ftcore::FTCore, sites) M = copy(ftcore.forward) _replace_mpo_siteinds!(M, _extractsites(M), sites) return M end function backwardmpo(ftcore::FTCore, sites) M = conj(MPO(reverse([x for x in ftcore.forward]))) _replace_mpo_siteinds!(M, _extractsites(M), sites) return M end function _apply_qft(M::MPO, gsrc::MPS, target_sites, sitepos, sitesdst; kwargs...) _replace_mpo_siteinds!(M, _extractsites(M), target_sites) M = matchsiteinds(M, siteinds(gsrc)) gdst = ITensors.apply(M, gsrc; kwargs...) N = length(target_sites) for n in eachindex(target_sites) replaceind!(gdst[sitepos[n]], target_sites[n], sitesdst[N - n + 1]) end return gdst end @doc raw""" Perform Fourier transform for a subset of qubit indices. We define two integers using the binary format: ``x = (x_1 x_2 ...., x_R)_2``, ``y = (y_1 y_2 ...., y_R)_2``, where the right most digits are the least significant digits. The variable `x` is denoted as `src` (source), and the variable `y` is denoted as `dst` (destination). Our definition of the Fourier transform is ```math Y(y) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} X(x) e^{s i \frac{2\pi (y + y_0) (x + x_0)}{N}} ``` where ``s = \pm 1``, ``x_0`` and ``y_0`` are constants, ``N=2^R``. `sitessrc[1]` / `sitessrc[end]` corresponds to the most/least significant digit of the input. `sitesdst[1]` / `sitesdst[end]` corresponds to the most/least significant digit of the output. `siteinds(M)` must contain `sitessrc` in ascending or descending order. Instead of specifying `sitessrc`, one can specify the source sites by setting `tag`. If `tag` = `x`, all sites with tags `x=1`, `x=2`, ... are used as `sitessrc`. """ function fouriertransform(M::MPS; sign::Int=1, tag::String="", sitessrc=nothing, sitesdst=nothing, originsrc::Float64=0.0, origindst::Float64=0.0, cutoff_MPO=1e-25, kwargs...) sites = siteinds(M) sitepos, target_sites = _find_target_sites(M; sitessrc=sitessrc, tag=tag) if sitesdst === nothing sitesdst = target_sites end if length(target_sites) <= 1 error("Invalid target_sites") end # Prepare MPO for QFT MQ_ = _qft(target_sites; sign=sign, cutoff=cutoff_MPO) MQ = matchsiteinds(MQ_, sites) # Phase shift from origindst M_result = phase_rotation(M, sign * 2π * origindst / (2.0^length(sitepos)); targetsites=target_sites) # Apply QFT M_result = apply(MQ, M_result; kwargs...) N = length(target_sites) for n in eachindex(target_sites) replaceind!(M_result[sitepos[n]], target_sites[n], sitesdst[N - n + 1]) end # Phase shift from originsrc M_result = phase_rotation(M_result, sign * 2π * originsrc / (2.0^length(sitepos)); targetsites=sitesdst) M_result *= exp(sign * im * 2π * originsrc * origindst / 2.0^length(sitepos)) return M_result end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
3147
@doc """ For imaginary-time/-frequency domains """ struct ImaginaryTimeFT <: AbstractFT ftcore::FTCore function ImaginaryTimeFT(ftcore::FTCore) new(ftcore) end end _stat_shift(::Fermionic) = 1 _stat_shift(::Bosonic) = 0 _stat_sign(::Fermionic) = -1 _stat_sign(::Bosonic) = 1 function to_wn(stat::Statistics, gtau::MPS, beta::Float64; sitessrc=nothing, tag="", sitesdst=nothing, kwargs...)::MPS sitepos, _ = _find_target_sites(gtau; sitessrc=sitessrc, tag=tag) nqbit_t = length(sitepos) originwn = 0.5 * (-2.0^nqbit_t + _stat_shift(stat)) giv = fouriertransform(gtau; tag=tag, sitessrc=sitessrc, sitesdst=sitesdst, origindst=originwn, kwargs...) giv *= (beta * 2^(-nqbit_t / 2)) return giv end function to_tau(stat::Statistics, giv::MPS, beta::Float64; sitessrc=nothing, tag="", sitesdst=nothing, kwargs...)::MPS sitepos, _ = _find_target_sites(giv; sitessrc=sitessrc, tag=tag) nqbit_t = length(sitepos) originwn = 0.5 * (-2.0^nqbit_t + _stat_shift(stat)) gtau = fouriertransform(giv; sign=-1, tag=tag, sitessrc=sitessrc, sitesdst=sitesdst, originsrc=originwn, kwargs...) gtau *= ((2^(nqbit_t / 2)) / beta) return gtau end function decompose_gtau(gtau_smpl::Vector{ComplexF64}, sites; kwargs...) nbit = length(sites) length(gtau_smpl) == 2^nbit || error("Length mismatch") # (g_1, g_2, ...) gtau_smpl = reshape(gtau_smpl, repeat([2], nbit)...) gtau_smpl = permutedims(gtau_smpl, reverse(collect(1:nbit))) return MPS(gtau_smpl, sites; kwargs...) end """ w = (w_1 w_2, ..., w_R)_2 In the resultant MPS, the site indices are w_R, w_{R-1}, ..., w_1 from the left to the right. sites: indices for w_1, ..., w_R in this order. """ function decompose_giv(giv_smpl::Vector{ComplexF64}, sites; kwargs...) nbit = length(sites) length(giv_smpl) == 2^nbit || error("Length mismatch") tensor = ITensor(giv_smpl, reverse(sites)) return MPS(tensor, reverse(sites); kwargs...) end """ Construct an MPS representing G(τ) generated by a pole """ function poletomps(stat::Statistics, sites, β, ω) nqubits = length(sites) links = [Index(1, "Link,l=$l") for l in 0:nqubits] tensors = ITensor[] for n in 1:nqubits push!(tensors, ITensor([1.0, exp(-(0.5^n) * β * ω)], links[n], links[n + 1], sites[n])) end tensors[1] *= -1 / (1 - _stat_sign(stat) * exp(-β * ω)) tensors[1] *= onehot(links[1] => 1) tensors[end] *= onehot(links[end] => 1) return MPS(tensors) end """ Construct an MPS representing fermionic G(τ) generated by a pole """ function poletomps(::Fermionic, sites, β, ω) if β * ω < -100.0 R = length(sites) sites_ = [Index(2, "Qubit,τ=$n") for n in 1:R] tmp = reverseaxis(Quantics.expqtt(sites_, β * ω); tag="τ", bc=1) res = shiftaxis(tmp, +1; tag="τ", bc=1) * (-exp(β * ω / 2^R)) for n in 1:R replaceind!(res[n], sites_[n] => sites[n]) end return res end return expqtt(sites, -β * ω) / (-1 - exp(-β * ω)) end poletomps(sites, β, ω) = poletomps(Fermionic(), sites, β, ω)
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
922
""" Create a MPS filled with one """ function onemps(::Type{T}, sites) where {T<:Number} M = MPS(T, sites; linkdims=1) l = linkinds(M) for n in eachindex(M) if n == 1 M[n] = ITensor(T, sites[n], l[n]) elseif n == length(M) M[n] = ITensor(T, l[n - 1], sites[n]) else M[n] = ITensor(T, l[n - 1], sites[n], l[n]) end M[n] .= one(T) end return M end """ Create an MPS representing exp(a*x) on [0, 1) in QTT exp(-a*x) = prod_{n=1}^R exp(a * 2^(-n) * x_n) """ function expqtt(sites, a::Float64) R = length(sites) links = [Index(1, "Link,l=$l") for l in 0:R] tensors = ITensor[] for n in 1:R push!(tensors, ITensor([1.0, exp(a * (0.5^n))], links[n], links[n + 1], sites[n])) end tensors[1] *= onehot(links[1] => 1) tensors[end] *= onehot(links[end] => 1) return MPS(tensors) end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
5147
abstract type AbstractMultiplier end #=== Matrix multiplication ===# struct MatrixMultiplier{T} <: AbstractMultiplier where {T} sites_row::Vector{Index{T}} sites_shared::Vector{Index{T}} sites_col::Vector{Index{T}} function MatrixMultiplier(sites_row::Vector{Index{T}}, sites_shared::Vector{Index{T}}, sites_col::Vector{Index{T}}) where {T} new{T}(sites_row, sites_shared, sites_col) end end function MatrixMultiplier(site_row::Index{T}, site_shared::Index{T}, site_col::Index{T}) where {T} return MatrixMultiplier([site_row], [site_shared], [site_col]) end function preprocess(mul::MatrixMultiplier{T}, M1::MPO, M2::MPO) where {T} for (site_row, site_shared, site_col) in zip(mul.sites_row, mul.sites_shared, mul.sites_col) M1, M2 = combinesites(M1, site_row, site_shared), combinesites(M2, site_col, site_shared) end return M1, M2 end function postprocess(mul::MatrixMultiplier{T}, M::MPO)::MPO where {T} tensors = ITensors.data(M) for (site_row, site_col) in zip(mul.sites_row, mul.sites_col) p = findfirst(hasind(site_row), tensors) hasind(tensors[p], site_col) || error("$site_row and $site_col are not on the same site") indsl = [site_row] if p > 1 push!(indsl, linkind(M, p - 1)) end indsr = [site_col] if p < length(M) push!(indsr, linkind(M, p)) end Ml, Mr = split_tensor(tensors[p], [indsl, indsr]) deleteat!(tensors, p) insert!(tensors, p, Ml) insert!(tensors, p + 1, Mr) end return MPO(tensors) end #=== Elementwise multiplication ===# struct ElementwiseMultiplier{T} <: AbstractMultiplier where {T} sites::Vector{Index{T}} function ElementwiseMultiplier(sites::Vector{Index{T}}) where {T} new{T}(sites) end end """ Convert an MPS tensor to an MPO tensor with a diagonal structure """ function _asdiagonal(t, site::Index{T})::ITensor where {T<:Number} hasinds(t, site') && error("Found $(site')") links = uniqueinds(inds(t), site) rawdata = Array(t, links..., site) tensor = zeros(eltype(t), size(rawdata)..., dim(site)) for i in 1:dim(site) tensor[.., i, i] = rawdata[.., i] end return ITensor(tensor, links..., site', site) end function _todense(t, site::Index{T}) where {T<:Number} links = uniqueinds(inds(t), site, site'') newdata = zeros(eltype(t), dim.(links)..., dim(site)) if length(links) == 2 olddata = Array(t, links..., site, site'') for i in 1:dim(site) newdata[:, :, i] = olddata[:, :, i, i] end elseif length(links) == 1 olddata = Array(t, links..., site, site'') for i in 1:dim(site) newdata[:, i] = olddata[:, i, i] end else error("Too many links found: $links") end return ITensor(newdata, links..., site) end function preprocess(mul::ElementwiseMultiplier{T}, M1::MPO, M2::MPO) where {T} tensors1 = ITensors.data(M1) tensors2 = ITensors.data(M2) for s in mul.sites p = findfirst(hasind(s), tensors1) hasinds(tensors2[p], s) || error("ITensor of M2 at $p does not have $s") #tensors1[p] = replaceprime(_asdiagonal(tensors1[p], s), 0 => 1, 1 => 2) tensors1[p] = _asdiagonal(tensors1[p], s) replaceind!(tensors1[p], s' => s'') replaceind!(tensors1[p], s => s') tensors2[p] = _asdiagonal(tensors2[p], s) end return MPO(tensors1), MPO(tensors2) end function postprocess(mul::ElementwiseMultiplier{T}, M::MPO)::MPO where {T} tensors = ITensors.data(M) for s in mul.sites p = findfirst(hasind(s), tensors) tensors[p] = _todense(tensors[p], s) end return MPO(tensors) end """ By default, elementwise multiplication will be performed. """ function automul(M1::MPS, M2::MPS; tag_row::String="", tag_shared::String="", tag_col::String="", alg="naive", kwargs...) if in(:maxbonddim, keys(kwargs)) error("Illegal keyward parameter: maxbonddim. Use maxdim instead!") end sites_row = findallsiteinds_by_tag(siteinds(M1); tag=tag_row) sites_shared = findallsiteinds_by_tag(siteinds(M1); tag=tag_shared) sites_col = findallsiteinds_by_tag(siteinds(M2); tag=tag_col) sites_matmul = Set(Iterators.flatten([sites_row, sites_shared, sites_col])) if sites_shared != findallsiteinds_by_tag(siteinds(M2); tag=tag_shared) error("Invalid shared sites for MatrixMultiplier") end matmul = MatrixMultiplier(sites_row, sites_shared, sites_col) ewmul = ElementwiseMultiplier([s for s in siteinds(M1) if s ∉ sites_matmul]) M1_ = Quantics.asMPO(M1) M2_ = Quantics.asMPO(M2) M1_, M2_ = preprocess(matmul, M1_, M2_) M1_, M2_ = preprocess(ewmul, M1_, M2_) M = FastMPOContractions.contract_mpo_mpo(M1_, M2_; alg=alg, kwargs...) M = Quantics.postprocess(matmul, M) M = Quantics.postprocess(ewmul, M) if in(:maxdim, keys(kwargs)) truncate!(M; maxdim=kwargs[:maxdim]) end return asMPS(M) end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
2047
# A valid tag should not contain "=". _valid_tag(tag::String)::Bool = !occursin("=", tag) """ Find sites with the given tag For tag = `x`, if `sites` contains an Index object with `x`, the function returns a vector containing only its positon. If not, the function seach for all Index objects with tags `x=1`, `x=2`, ..., and return their positions. If no Index object is found, an empty vector will be returned. """ function findallsites_by_tag(sites::Vector{Index{T}}; tag::String="x", maxnsites::Int=1000)::Vector{Int} where {T} _valid_tag(tag) || error("Invalid tag: $tag") result = Int[] for n in 1:maxnsites tag_ = tag * "=$n" idx = findall(hastags(tag_), sites) if length(idx) == 0 break elseif length(idx) > 1 error("Found more than one site indices with $(tag_)!") end push!(result, idx[1]) end return result end function findallsiteinds_by_tag( sites::AbstractVector{Index{T}}; tag::String="x", maxnsites::Int=1000) where {T} _valid_tag(tag) || error("Invalid tag: $tag") positions = findallsites_by_tag(sites; tag=tag, maxnsites=maxnsites) return [sites[p] for p in positions] end function findallsites_by_tag(sites::Vector{Vector{Index{T}}}; tag::String="x", maxnsites::Int=1000)::Vector{NTuple{2,Int}} where {T} _valid_tag(tag) || error("Invalid tag: $tag") sites_dict = Dict{Index{T},NTuple{2,Int}}() for i in 1:length(sites) for j in 1:length(sites[i]) sites_dict[sites[i][j]] = (i, j) end end result = NTuple{2,Int}[] sitesflatten = collect(Iterators.flatten(sites)) for n in 1:maxnsites tag_ = tag * "=$n" idx = findall(i -> hastags(i, tag_) && hasplev(i, 0), sitesflatten) if length(idx) == 0 break elseif length(idx) > 1 error("Found more than one site indices with $(tag_)!") end push!(result, sites_dict[sitesflatten[only(idx)]]) end return result end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
7909
function _single_tensor_flip() cval = [-1, 0] # (cin, cout, s', s) single_tensor = zeros(Float64, 2, 2, 2, 2) for icin in 1:2 for a in 1:2 out = -(a - 1) + cval[icin] icout = out < 0 ? 1 : 2 b = mod(out, 2) + 1 single_tensor[icin, icout, a, b] = 1 end end return single_tensor end """ This function returns an MPO, M, representing the transformation f(x) = g(-x) where f(x) = M * g(x) for x = 0, 1, ..., 2^R-1. """ function flipop_to_negativedomain(sites::Vector{Index{T}}; rev_carrydirec=false, bc::Int=1)::MPO where {T} return flipop(sites; rev_carrydirec=rev_carrydirec, bc=bc) * bc end """ This function returns an MPO, M, representing the transformation f(x) = g(2^R-x) where f(x) = M * g(x) for x = 0, 1, ..., 2^R-1. `sites`: the sites of the output MPS """ function flipop(sites::Vector{Index{T}}; rev_carrydirec=false, bc::Int=1)::MPO where {T} if rev_carrydirec M = flipop(reverse(sites); rev_carrydirec=false, bc=bc) return MPO([M[n] for n in reverse(1:length(M))]) end N = length(sites) abs(bc) == 1 || error("bc must be either 1, -1") N > 1 || error("MPO with one tensor is not supported") t = _single_tensor_flip() M = MPO(N) links = [Index(2, "Link,l=$l") for l in 1:(N + 1)] for n in 1:N M[n] = ITensor(t, (links[n], links[n + 1], sites[n]', sites[n])) end M[1] *= onehot(links[1] => 2) bc_tensor = ITensor([1.0, bc], links[end]) M[N] = M[N] * bc_tensor cleanup_linkinds!(M) return M end @doc """ f(x) = g(N - x) = M * g(x) for x = 0, 1, ..., N-1, where x = 0, 1, ..., N-1 and N = 2^R. Note that x = 0, 1, 2, ..., N-1 are mapped to x = 0, N-1, N-2, ..., 1 mod N. """ function reverseaxis(M::MPS; tag="x", bc::Int=1, kwargs...) bc ∈ [1, -1] || error("bc must be either 1 or -1") return apply(reverseaxismpo(siteinds(M); tag=tag, bc=bc), M; kwargs...) end function reverseaxismpo(sites::AbstractVector{Index{T}}; tag="x", bc::Int=1)::MPO where {T} bc ∈ [1, -1] || error("bc must be either 1 or -1") targetsites = findallsiteinds_by_tag(sites; tag=tag) pos = findallsites_by_tag(sites; tag=tag) !isascendingordescending(pos) && error("siteinds for tag $(tag) must be sorted.") rev_carrydirec = isascendingorder(pos) siteinds_MPO = rev_carrydirec ? targetsites : reverse(targetsites) transformer_tag = flipop(siteinds_MPO; rev_carrydirec=rev_carrydirec, bc=bc) return matchsiteinds(transformer_tag, sites) end """ f(x) = g(x + shift) for x = 0, 1, ..., 2^R-1 and 0 <= shift < 2^R. """ function shiftaxis(M::MPS, shift::Int; tag="x", bc::Int=1, kwargs...) bc ∈ [1, -1] || error("bc must be either 1 or -1") return apply(shiftaxismpo(siteinds(M), shift; tag=tag, bc=bc), M; kwargs...) end """ f(x) = g(x + shift) for x = 0, 1, ..., 2^R-1 and 0 <= shift < 2^R. """ function shiftaxismpo(sites::AbstractVector{Index{T}}, shift::Int; tag="x", bc::Int=1)::MPO where {T} bc ∈ [1, -1] || error("bc must be either 1 or -1") targetsites = findallsiteinds_by_tag(sites; tag=tag) # From left to right: x=1, 2, ... pos = findallsites_by_tag(sites; tag=tag) !isascendingordescending(pos) && error("siteinds for tag $(tag) must be sorted.") rev_carrydirec = isascendingorder(pos) R = length(targetsites) nbc, shift_mod = divrem(shift, 2^R, RoundDown) if rev_carrydirec transformer = _shift_mpo(targetsites, shift_mod; bc=bc) else transformer = _shift_mpo(targetsites, shift_mod; bc=bc) transformer = MPO([transformer[n] for n in reverse(1:length(transformer))]) end transformer = matchsiteinds(transformer, sites) transformer *= bc^nbc return transformer end """ Multiply by exp(i θ x), where x = (x_1, ..., x_R)_2. """ function phase_rotation(M::MPS, θ::Float64; targetsites=nothing, tag="")::MPS transformer = phase_rotation_mpo(siteinds(M), θ; targetsites=targetsites, tag=tag) apply(transformer, M) end """ Create an MPO for multiplication by `exp(i θ x)`, where `x = (x_1, ..., x_R)_2`. `sites`: site indices for `x_1`, `x_2`, ..., `x_R`. """ function phase_rotation_mpo(sites::AbstractVector{Index{T}}, θ::Float64; targetsites=nothing, tag="")::MPO where {T} _, target_sites = _find_target_sites(sites; sitessrc=targetsites, tag=tag) transformer = _phase_rotation_mpo(target_sites, θ) return matchsiteinds(transformer, sites) end function _phase_rotation_mpo(sites::AbstractVector{Index{T}}, θ::Float64)::MPO where {T} R = length(sites) tensors = [ITensor(true) for _ in 1:R] for n in 1:R tensors[n] = op("Phase", sites[n]; ϕ=θ * 2^(R - n)) end links = [Index(1, "Link,l=$l") for l in 1:(R-1)] tensors[1] = ITensor(Array(tensors[1], sites[1]', sites[1]), sites[1], sites[1]', links[1]) for l in 2:(R-1) tensors[l] = ITensor(Array(tensors[l], sites[l]', sites[l]), links[l-1], sites[l], sites[l]', links[l]) end tensors[end] = ITensor(Array(tensors[end], sites[end]', sites[end]), links[end], sites[end], sites[end]') return MPO(tensors) end function _upper_lower_triangle(upper_or_lower::Symbol)::Array{Float64,4} upper_or_lower ∈ [:upper, :lower] || error("Invalid upper_or_lower $(upper_or_lower)") T = Float64 t = zeros(T, 2, 2, 2, 2) # left link, right link, site', site t[1, 1, 1, 1] = one(T) t[1, 1, 2, 2] = one(T) if upper_or_lower == :upper t[1, 2, 1, 2] = one(T) t[1, 2, 2, 1] = zero(T) else t[1, 2, 1, 2] = zero(T) t[1, 2, 2, 1] = one(T) end # If a comparison is made at a higher bit, we respect it. t[2, 2, :, :] .= one(T) return t end """ Create QTT for a upper/lower triangle matrix filled with one except the diagonal line """ function upper_lower_triangle_matrix(sites::Vector{Index{T}}, value::S; upper_or_lower::Symbol=:upper)::MPO where {T,S} upper_or_lower ∈ [:upper, :lower] || error("Invalid upper_or_lower $(upper_or_lower)") N = length(sites) t = _upper_lower_triangle(upper_or_lower) M = MPO(N) links = [Index(2, "Link,l=$l") for l in 1:(N + 1)] for n in 1:N M[n] = ITensor(t, (links[n], links[n + 1], sites[n]', sites[n])) end M[1] *= onehot(links[1] => 1) M[N] *= ITensor(S[0, value], links[N + 1]) return M end """ Create MPO for cumulative sum in QTT includeown = False y_i = sum_{j=1}^{i-1} x_j """ function cumsum(sites::Vector{Index}; includeown::Bool=false) includeown == False || error("includeown = True has not been implmented yet") return upper_triangle_matrix(sites, 1.0) end """ Add new site indices to an MPS """ #== function asdiagonal(M::MPS, newsites; which_new="right", targetsites=nothing, tag="") which_new ∈ ["left", "right"] || error("Invalid which_new: left or right") sitepos, target_sites = Quantics._find_target_sites(M; sitessrc=targetsites, tag=tag) length(sitepos) == length(newsites) || error("Length mismatch: $(newsites) vs $(target_sites)") M_ = Quantics._addedges(M) links = linkinds(M_) tensors = ITensor[] for p in 1:length(M) if !(p ∈ sitepos) push!(tensors, copy(M_[p])) continue end i = findfirst(x -> x == p, sitepos) s = target_sites[i] s1 = sim(s) ll, lr = links[p], links[p + 1] t = replaceind(M_[p], s => s1) if which_new == "right" tl, tr = factorize(delta(s1, s, newsites[i]) * t, ll, s) else tl, tr = factorize(delta(s1, s, newsites[i]) * t, ll, newsites[i]) end push!(tensors, tl) push!(tensors, tr) end tensors[1] *= onehot(links[1] => 1) tensors[end] *= onehot(links[end] => 1) M_result = MPS(tensors) Quantics.cleanup_linkinds!(M_result) return M_result end ==#
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
16006
function _extractsite(x::Union{MPS,MPO}, n::Int) if n == 1 return noprime(copy(uniqueind(x[n], x[n + 1]))) elseif n == length(x) return noprime(copy(uniqueind(x[n], x[n - 1]))) else return noprime(copy(uniqueind(x[n], x[n + 1], x[n - 1]))) end end _extractsites(x::Union{MPS,MPO}) = [_extractsite(x, n) for n in eachindex(x)] function _replace_mpo_siteinds!(M::MPO, sites_src, sites_dst) sites_src = noprime(sites_src) sites_dst = noprime(sites_dst) for j in eachindex(M) replaceind!(M[j], sites_src[j], sites_dst[j]) replaceind!(M[j], sites_src[j]', sites_dst[j]') end return M end """ Reverse the order of the MPS/MPO tensors The order of the siteinds are reversed in the returned object. """ function _reverse(M::MPO) sites = _extractsites(M) N = length(M) M_ = MPO([M[n] for n in reverse(1:length(M))]) for n in 1:N replaceind!(M_[n], sites[N - n + 1], sites[n]) replaceind!(M_[n], sites[N - n + 1]', sites[n]') end return M_ end """ Create a MPO with ITensor objects of ElType ComplexF64 filled with zero """ function _zero_mpo(sites; linkdims=ones(Int, length(sites) - 1)) length(linkdims) == length(sites) - 1 || error("Length mismatch $(length(linkdims)) != $(length(sites)) - 1") M = MPO(sites) N = length(M) links = [Index(1, "n=0,Link")] for n in 1:(N - 1) push!(links, Index(linkdims[n], "n=$(n),Link")) end push!(links, Index(1, "n=$N,Link")) for n in 1:N inds_ = (links[n], sites[n]', sites[n], links[n + 1]) elm_ = zeros(ComplexF64, map(ITensors.dim, inds_)...) M[n] = ITensor(elm_, inds_...) end M[1] *= ITensors.delta(links[1]) M[N] *= ITensors.delta(links[N + 1]) return M end # Compute linkdims for a maximally entangled state function maxlinkdims(inds) N = length(inds) for i in 1:N @assert !ITensors.hastags(inds, "Link") end physdims = dim.(inds) maxdim = ones(Float64, N - 1) maxdiml = 1.0 for i in 1:(N - 1) maxdiml *= physdims[i] maxdim[i] = maxdiml end maxdimr = 1.0 for i in 1:(N - 1) maxdimr *= physdims[N + 1 - i] maxdim[N - i] = min(maxdimr, maxdim[N - i]) end return maxdim end """ Un-fuse the site indices of an MPS at the given sites M: Input MPS where each tensor has only one site index target_sites: Vector of siteinds to be split new_sites: Vector of vectors of new siteinds When splitting MPS tensors, the column major is assumed. """ function unfuse_siteinds(M::MPS, targetsites::Vector{Index{T}}, newsites::AbstractVector{Vector{Index{T}}})::MPS where {T} length(targetsites) == length(newsites) || error("Length mismatch") links = linkinds(M) L = length(M) tensors = Union{ITensor,Vector{ITensor}}[deepcopy(M[n]) for n in eachindex(M)] for n in 1:length(targetsites) pos = findsite(M, targetsites[n]) !isnothing(pos) || error("Target site not found: $(targetsites[n])") newinds = [[s] for s in newsites[n]] links_ = Index{T}[] if pos > 1 push!(links_, links[pos - 1]) push!(newinds[1], links[pos - 1]) end if pos < L push!(links_, links[pos]) push!(newinds[end], links[pos]) end tensor_data = ITensors.data(permute(copy(M[pos]), targetsites[n], links_...)) tensors[pos] = split_tensor(ITensor(tensor_data, newsites[n]..., links_...), newinds) end tensors_ = ITensor[] for t in tensors if t isa ITensor push!(tensors_, t) elseif t isa Vector{ITensor} for t_ in t push!(tensors_, t_) end end end M_ = MPS(tensors_) cleanup_linkinds!(M_) return M_ end function _removeedges!(x::MPS, sites) length(inds(x[1])) == 3 || error("Dim of the first tensor must be 3") length(inds(x[end])) == 3 || error("Dim of the last tensor must be 3") elt = eltype(x[1]) x[1] *= onehot(elt, uniqueind(x[1], x[2], sites) => 1) x[end] *= onehot(elt, uniqueind(x[end], x[end - 1], sites) => 1) return nothing end function _removeedges!(x::MPO, sites) length(inds(x[1])) == 4 || error("Dim of the first tensor must be 4") length(inds(x[end])) == 4 || error("Dim of the last tensor must be 4") elt = eltype(x[1]) x[1] *= onehot(elt, uniqueind(x[1], x[2], sites, prime.(sites)) => 1) x[end] *= onehot(elt, uniqueind(x[end], x[end - 1], sites, prime.(sites)) => 1) return nothing end function _removeedges!(tensors::Vector{ITensor}, sites) tensors[1] *= onehot(Float64, uniqueind(tensors[1], tensors[2], sites, prime.(sites)) => 1) tensors[end] *= onehot(Float64, uniqueind(tensors[end], tensors[end - 1], sites, prime.(sites)) => 1) end function _addedges!(x::MPS) length(inds(x[1])) == 2 || error("Dim of the first tensor must be 2") length(inds(x[end])) == 2 || error("Dim of the last tensor must be 2") linkl = Index(1, "Link,l=0") linkr = Index(1, "Link,l=$(length(x))") x[1] = ITensor(ITensors.data(x[1]), [linkl, inds(x[1])...]) x[end] = ITensor(ITensors.data(x[end]), [inds(x[end])..., linkr]) return nothing end function _addedges!(x::MPO) length(inds(x[1])) == 3 || error("Dim of the first tensor must be 3") length(inds(x[end])) == 3 || error("Dim of the last tensor must be 3") linkl = Index(1, "Link,l=0") linkr = Index(1, "Link,l=$(length(x))") x[1] = ITensor(ITensors.data(x[1]), [linkl, inds(x[1])...]) x[end] = ITensor(ITensors.data(x[end]), [inds(x[end])..., linkr]) return nothing end """ Decompose the given tensor into as the product of tensors by QR The externel indices of the results tensors are specified by `inds_list`. """ function split_tensor(tensor::ITensor, inds_list::Vector{Vector{Index{T}}}) where {T} inds_list = deepcopy(inds_list) result = ITensor[] for (i, inds) in enumerate(inds_list) if i == length(inds_list) push!(result, tensor) else Q, R, _ = qr(tensor, inds) push!(result, Q) if i < length(inds_list) push!(inds_list[i + 1], commonind(Q, R)) end tensor = R end end return result end function cleanup_linkinds!(M) links_new = [Index(dim(l), "Link,l=$idx") for (idx, l) in enumerate(linkinds(M))] links_old = linkinds(M) for n in 1:length(M) if n < length(M) replaceind!(M[n], links_old[n], links_new[n]) end if n > 1 replaceind!(M[n], links_old[n - 1], links_new[n - 1]) end end M end """ To bits """ function tobin!(x::Int, xbin::Vector{Int}) nbit = length(xbin) mask = 1 << (nbit - 1) for i in 1:nbit xbin[i] = (mask & x) >> (nbit - i) mask = mask >> 1 end end function tobin(x::Int, R::Int) bin = zeros(Int, R) tobin!(x, bin) return bin end # Get bit at pos (>=0). pos=0 is the least significant digit. _getbit(i, pos) = ((i & (1 << pos)) >> pos) isascendingorder(x) = issorted(x; lt=isless) isdecendingorder(x) = issorted(x; lt=Base.isgreater) isascendingordescending(x) = isascendingorder(x) || isdecendingorder(x) function kronecker_deltas(sitesin; sitesout=prime.(noprime.(sitesin))) N = length(sitesout) links = [Index(1, "Link,l=$l") for l in 0:N] M = MPO([delta(links[n], links[n + 1], sitesout[n], sitesin[n]) for n in 1:N]) M[1] *= onehot(links[1] => 1) M[end] *= onehot(links[end] => 1) return M end """ Match MPS/MPO to the given site indices MPS: The resultant MPS do not depends on the missing site indices. MPO: For missing site indices, identity operators are inserted. """ function matchsiteinds(M::Union{MPS,MPO}, sites) N = length(sites) sites = noprime.(sites) positions = Int[findfirst(sites, s) for s in siteinds(M)] if length(M) > 1 && issorted(positions; lt=Base.isgreater) return matchsiteinds(MPO([M[n] for n in reverse(1:length(M))]), sites) end Quantics.isascendingorder(positions) || error("siteinds are not in ascending order!") # Add edges M_ = deepcopy(M) linkl = Index(1, "Link,l=0") linkr = Index(1, "Link,l=$N") M_[1] = ITensor(ITensors.data(M_[1]), [linkl, inds(M_[1])...]) M_[end] = ITensor(ITensors.data(M_[end]), [inds(M_[end])..., linkr]) linkdims_org = [1, dim.(linkinds(M))..., 1] linkdims_new = [1, zeros(Int, N - 1)..., 1] for n in eachindex(positions) p = positions[n] linkdims_new[p] = linkdims_org[n] linkdims_new[p + 1] = linkdims_org[n + 1] end # Fill gaps while any(linkdims_new .== 0) for n in eachindex(linkdims_new) if linkdims_new[n] == 0 if n >= 2 && linkdims_new[n - 1] != 0 linkdims_new[n] = linkdims_new[n - 1] elseif n < length(linkdims_new) && linkdims_new[n + 1] != 0 linkdims_new[n] = linkdims_new[n + 1, 1] end end end end links = [Index(linkdims_new[l], "Link,l=$(l-1)") for l in eachindex(linkdims_new)] if M isa MPO tensors = [delta(links[n], links[n + 1]) * delta(sites[n], sites[n]') for n in eachindex(sites)] elseif M isa MPS tensors = [delta(links[n], links[n + 1]) * ITensor(1, sites[n]) for n in eachindex(sites)] end links_old = [linkl, linkinds(M)..., linkr] for n in eachindex(positions) p = positions[n] tensor = copy(M_[n]) replaceind!(tensor, links_old[n], links[p]) replaceind!(tensor, links_old[n + 1], links[p + 1]) if M isa MPO tensors[p] = permute(tensor, [links[p], links[p + 1], sites[p], sites[p]']) elseif M isa MPS tensors[p] = permute(tensor, [links[p], links[p + 1], sites[p]]) end end tensors[1] *= onehot(links[1] => 1) tensors[end] *= onehot(links[end] => 1) return typeof(M)(tensors) end asMPO(M::MPO) = M function asMPO(tensors::Vector{ITensor}) N = length(tensors) M = MPO(N) for n in 1:N M[n] = tensors[n] end return M end function asMPO(M::MPS) return asMPO(ITensors.data(M)) end function asMPS(M::MPO) return MPS([t for t in M]) end """ Contract two adjacent tensors in MPO """ function combinesites(M::MPO, site1::Index, site2::Index) p1 = findsite(M, site1) p2 = findsite(M, site2) p1 === nothing && error("Not found $site1") p2 === nothing && error("Not found $site2") abs(p1 - p2) == 1 || error("$site1 and $site2 are found at indices $p1 and $p2. They must be on two adjacent sites.") tensors = ITensors.data(M) idx = min(p1, p2) tensor = tensors[idx] * tensors[idx + 1] deleteat!(tensors, idx:(idx + 1)) insert!(tensors, idx, tensor) return MPO(tensors) end function directprod(::Type{T}, sites, indices) where {T} length(sites) == length(indices) || error("Length mismatch between sites and indices") any(0 .== indices) && error("indices must be 1-based") R = length(sites) links = [Index(1, "Link,l=$l") for l in 0:R] tensors = ITensor[] for n in 1:R push!(tensors, onehot(links[n] => 1, links[n + 1] => 1, sites[n] => indices[n])) end tensors[1] *= onehot(links[1] => 1) tensors[end] *= onehot(links[end] => 1) return MPS(tensors) end function _find_target_sites(M::MPS; sitessrc=nothing, tag="") _find_target_sites(siteinds(M); sitessrc, tag) end function _find_target_sites(sites::AbstractVector{Index{T}}; sitessrc=nothing, tag="") where {T} if tag == "" && sitessrc === nothing error("tag or sitesrc must be specified") elseif tag != "" && sitessrc !== nothing error("tag and sitesrc are exclusive") end # Set input site indices if tag != "" sitepos = findallsites_by_tag(sites; tag=tag) target_sites = [sites[p] for p in sitepos] elseif sitessrc !== nothing target_sites = sitessrc sitepos = Int[findfirst(x->x==s, sites) for s in sitessrc] end return sitepos, target_sites end function replace_siteinds_part!(M::MPS, sitesold, sitesnew) length(sitesold) == length(sitesnew) || error("Length mismatch between sitesold and sitesnew") for i in eachindex(sitesold) p = findsite(M, sitesold[i]) if p === nothing error("Not found $(sitesold[i])") end replaceinds!(M[p], sitesold[i] => sitesnew[i]) end return nothing end """ Connect two MPS's ITensor objects are deepcopied. """ function _directprod(M1::MPS, Mx::MPS...)::MPS M2 = Mx[1] l = Index(1, "Link") tensors1 = [deepcopy(x) for x in M1] tensors2 = [deepcopy(x) for x in M2] tensors1[end] = ITensor(ITensors.data(last(tensors1)), [inds(last(tensors1))..., l]) tensors2[1] = ITensor(ITensors.data(first(tensors2)), [l, inds(first(tensors2))...]) M12 = MPS([tensors1..., tensors2...]) if length(Mx) == 1 return M12 else return _directprod(M12, Mx[2:end]...) end end function rearrange_siteinds(M::AbstractMPS, sites::Vector{Vector{Index{T}}})::MPS where {T} sitesold = siteinds(MPO(collect(M))) Set(Iterators.flatten(sites)) == Set(Iterators.flatten(sitesold)) || error("siteinds do not match $(sites) != $(sitesold)") t = ITensor(1) tensors = Vector{ITensor}(undef, length(sites)) tensors_old = collect(M) for (i, site) in enumerate(sites) for ind in site if ind ∈ inds(t) continue end contract_until = findfirst(x -> ind ∈ Set(collect(x)), inds.(tensors_old)) contract_until !== nothing || error("ind $ind not found") for j in 1:contract_until t *= tensors_old[j] end for _ in 1:contract_until popfirst!(tensors_old) end end linds = if i > 1 vcat(only(commoninds(t, tensors[i - 1])), sites[i]) else sites[i] end tensors[i], t, _ = qr(t, linds) end tensors[end] *= t cleanup_linkinds!(MPS(tensors)) end """ Makes an MPS/MPO diagonal for a specified a site index `s`. On return, the data will be deep copied and the target core tensor will be diagonalized with an additional site index `s'`. """ function makesitediagonal(M::AbstractMPS, site::Index{T})::MPS where {T} M_ = deepcopy(MPO(collect(M))) target_site::Int = only(findsites(M_, site)) M_[target_site] = _asdiagonal(M_[target_site], site) return MPS(collect(M_)) end function makesitediagonal(M::AbstractMPS, tag::String)::MPS M_ = deepcopy(MPO(collect(M))) sites = siteinds(M_) target_positions = findallsites_by_tag(siteinds(M_); tag=tag) for t in eachindex(target_positions) i, j = target_positions[t] M_[i] = _asdiagonal(M_[i], sites[i][j]) end return MPS(collect(M_)) end """ Extract diagonal components """ function extractdiagonal(M::AbstractMPS, tag::String)::MPS M_ = deepcopy(MPO(collect(M))) sites = siteinds(M_) target_positions = findallsites_by_tag(siteinds(M_); tag=tag) for t in eachindex(target_positions) i, j = target_positions[t] M_[i] = _extract_diagonal(M_[i], sites[i][j], sites[i][j]') end return MPS(collect(M_)) end function _extract_diagonal(t, site::Index{T}, site2::Index{T}) where {T<:Number} dim(site) == dim(site2) || error("Dimension mismatch") restinds = uniqueinds(inds(t), site, site2) newdata = zeros(eltype(t), dim.(restinds)..., dim(site)) olddata = Array(t, restinds..., site, site2) for i in 1:dim(site) newdata[.., i] = olddata[.., i, i] end return ITensor(newdata, restinds..., site) end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
10094
@testitem "binaryop_tests.jl/_binaryop" begin using Test using ITensors ITensors.disable_warn_order() using Quantics import Random @testset "_binaryop" for rev_carrydirec in [true], nbit in 2:3 Random.seed!(1) # For a = +/- 1, b = +/- 1, c = +/- 1, d = +/- 1, # x' = a * x + b * y # y' = c * x + d * y # f(x, y) = g(x', y') # excluding a + b == -2 || c + d == -2 if rev_carrydirec # x1, y1, x2, y2, ... sites = [Index(2, "Qubit, $name=$n") for n in 1:nbit for name in ["x", "y"]] else # xR, yR, xR-1, yR-1, ... sites = [Index(2, "Qubit, $name=$n") for n in reverse(1:nbit) for name in ["x", "y"]] end # x1, x2, ... sitesx = [sites[findfirst(x -> hastags(x, "x=$n"), sites)] for n in 1:nbit] # y1, y2, ... sitesy = [sites[findfirst(x -> hastags(x, "y=$n"), sites)] for n in 1:nbit] rsites = reverse(sites) for a in -1:1, b in -1:1, c in -1:1, d in -1:1, bc_x in [1, -1], bc_y in [1, -1] g = randomMPS(sites) M = Quantics._binaryop_mpo(sites, [(a, b), (c, d)], [(1, 2), (1, 2)]; rev_carrydirec=rev_carrydirec, bc=[bc_x, bc_y]) f = apply(M, g) # f[x_R, ..., x_1, y_R, ..., y_1] and f[x, y] f_arr = Array(reduce(*, f), vcat(reverse(sitesx), reverse(sitesy))) f_vec = reshape(f_arr, 2^nbit, 2^nbit) # g[x_R, ..., x_1, y_R, ..., y_1] and g[x, y] g_arr = Array(reduce(*, g), vcat(reverse(sitesx), reverse(sitesy))) g_vec = reshape(g_arr, 2^nbit, 2^nbit) function prime_xy(x, y) 0 <= x < 2^nbit || error("something went wrong") 0 <= y < 2^nbit || error("something went wrong") xp_ = a * x + b * y yp_ = c * x + d * y nmodx, xp = divrem(xp_, 2^nbit, RoundDown) nmody, yp = divrem(yp_, 2^nbit, RoundDown) return xp, yp, bc_x^nmodx, bc_y^nmody end f_vec_ref = similar(f_vec) for x in 0:(2^nbit - 1), y in 0:(2^nbit - 1) xp, yp, sign_x, sign_y = prime_xy(x, y) f_vec_ref[x + 1, y + 1] = g_vec[xp + 1, yp + 1] * sign_x * sign_y end @test f_vec_ref ≈ f_vec end end end @testitem "binaryop_tests.jl/affinetransform" begin using Test using ITensors ITensors.disable_warn_order() using Quantics import Random @testset "affinetransform" for rev_carrydirec in [true, false], nbit in 2:3 Random.seed!(1) # For a, b, c, d = +1, -1, 0, # x' = a * x + b * y + s1 # y' = c * x + d * y + s2 # f(x, y) = g(x', y') if rev_carrydirec # x1, y1, x2, y2, ... sites = [Index(2, "Qubit, $name=$n") for n in 1:nbit for name in ["x", "y"]] else # xR, yR, xR-1, yR-1, ... sites = [Index(2, "Qubit, $name=$n") for n in reverse(1:nbit) for name in ["x", "y"]] end # x1, x2, ... sitesx = [sites[findfirst(x -> hastags(x, "x=$n"), sites)] for n in 1:nbit] # y1, y2, ... sitesy = [sites[findfirst(x -> hastags(x, "y=$n"), sites)] for n in 1:nbit] shift = rand((-2 * 2^nbit):(2 * 2^nbit), 2) for a in -1:1, b in -1:1, c in -1:1, d in -1:1, bc_x in [1, -1], bc_y in [1, -1] g = randomMPS(sites) f = Quantics.affinetransform(g, ["x", "y"], [Dict("x" => a, "y" => b), Dict("x" => c, "y" => d)], shift, [bc_x, bc_y]; cutoff=1e-25) # f[x_R, ..., x_1, y_R, ..., y_1] and f[x, y] f_arr = Array(reduce(*, f), vcat(reverse(sitesx), reverse(sitesy))) f_vec = reshape(f_arr, 2^nbit, 2^nbit) # g[x_R, ..., x_1, y_R, ..., y_1] and g[x, y] g_arr = Array(reduce(*, g), vcat(reverse(sitesx), reverse(sitesy))) g_vec = reshape(g_arr, 2^nbit, 2^nbit) function prime_xy(x, y) 0 <= x < 2^nbit || error("something went wrong") 0 <= y < 2^nbit || error("something went wrong") xp_ = a * x + b * y + shift[1] yp_ = c * x + d * y + shift[2] nmodx, xp = divrem(xp_, 2^nbit, RoundDown) nmody, yp = divrem(yp_, 2^nbit, RoundDown) return xp, yp, bc_x^nmodx, bc_y^nmody end f_vec_ref = similar(f_vec) for x in 0:(2^nbit - 1), y in 0:(2^nbit - 1) xp, yp, sign_x, sign_y = prime_xy(x, y) f_vec_ref[x + 1, y + 1] = g_vec[xp + 1, yp + 1] * sign_x * sign_y end @test f_vec_ref ≈ f_vec end end end @testitem "binaryop_tests.jl/affinetransform_three_vars" begin using Test using ITensors ITensors.disable_warn_order() using Quantics import Random affinetransform_testsets = [] # x' = x + y # y' = y + z # z' = x + z push!(affinetransform_testsets, [1 1 0; 0 1 1; 1 0 1]) # x' = -x - y # y' = y + z # z' = x + z push!(affinetransform_testsets, [-1 -1 0; 0 1 1; 1 0 1]) # x' = -x + z # y' = y + z # z' = x + z push!(affinetransform_testsets, [-1 0 1; 0 1 1; 1 0 1]) # x' = y + z # y' = y + z # z' = x + z push!(affinetransform_testsets, [0 1 1; 0 1 1; 1 0 1]) # x' = y - z # y' = y # z' = x push!(affinetransform_testsets, [0 1 -1; 0 1 0; 1 0 0]) @testset "affinetransform_three_vars" for rev_carrydirec in [true, false], bc_x in [1, -1], bc_y in [1, -1], bc_z in [1, -1], nbit in 2:3, affmat in affinetransform_testsets #@testset "affinetransform_three_var" for rev_carrydirec in [true], bc_x in [1], bc_y in [1], bc_z in [1], nbit in [2], affmat in affinetransform_testsets Random.seed!(1234) varnames = ["x", "y", "z", "K"] # "K" is not involved in transform # Read coefficient matrix coeffs_dic = Dict{String,Int}[] for newvar in 1:3 @test all(abs.(affmat[newvar, :]) .<= 1) @test sum(abs.(affmat[newvar, :])) <= 2 @test sum(abs.(affmat[newvar, :])) > 0 coeffs = Dict{String,Int}() for oldvar in 1:3 if affmat[newvar, oldvar] != 0 coeffs[varnames[oldvar]] = affmat[newvar, oldvar] end end if length(coeffs) == 1 for oldvar in 1:3 if !(varnames[oldvar] ∈ keys(coeffs)) coeffs[varnames[oldvar]] = 0 break end end end @test length(coeffs) == 2 push!(coeffs_dic, coeffs) end if rev_carrydirec # x1, y1, z1, x2, y2, z2, ... sites = [Index(2, "Qubit, $name=$n") for n in 1:nbit for name in varnames] else # xR, yR, zR, xR-1, yR-1, zR-1... sites = [Index(2, "Qubit, $name=$n") for n in reverse(1:nbit) for name in varnames] end # x1, x2, ... sitesx = [sites[findfirst(x -> hastags(x, "x=$n"), sites)] for n in 1:nbit] # y1, y2, ... sitesy = [sites[findfirst(x -> hastags(x, "y=$n"), sites)] for n in 1:nbit] # z1, z2, ... sitesz = [sites[findfirst(x -> hastags(x, "z=$n"), sites)] for n in 1:nbit] # K1, K2, ... sitesK = [sites[findfirst(x -> hastags(x, "K=$n"), sites)] for n in 1:nbit] shift = rand((-2 * 2^nbit):(2 * 2^nbit), 3) g = randomMPS(sites) f = Quantics.affinetransform(g, ["x", "y", "z"], coeffs_dic, shift, [bc_x, bc_y, bc_z]; cutoff=1e-25) # f[x_R, ..., x_1, y_R, ..., y_1, z_R, ..., z_1] and f[x, y, z] f_arr = Array(reduce(*, f), vcat(reverse(sitesx), reverse(sitesy), reverse(sitesz), reverse(sitesK))) f_vec = reshape(f_arr, 2^nbit, 2^nbit, 2^nbit, 2^nbit) # g[x'_R, ..., x'_1, y'_R, ..., y'_1, z'_R, ..., z'_1] and g[x', y', z'] g_arr = Array(reduce(*, g), vcat(reverse(sitesx), reverse(sitesy), reverse(sitesz), reverse(sitesK))) g_vec = reshape(g_arr, 2^nbit, 2^nbit, 2^nbit, 2^nbit) function prime_xy(x, y, z) xp_, yp_, zp_ = affmat * [x, y, z] .+ shift nmodx, xp = divrem(xp_, 2^nbit, RoundDown) nmody, yp = divrem(yp_, 2^nbit, RoundDown) nmodz, zp = divrem(zp_, 2^nbit, RoundDown) return xp, yp, zp, bc_x^nmodx, bc_y^nmody, bc_z^nmodz end f_vec_ref = similar(f_vec) for x in 0:(2^nbit - 1), y in 0:(2^nbit - 1), z in 0:(2^nbit - 1) xp, yp, zp, sign_x, sign_y, sign_z = prime_xy(x, y, z) f_vec_ref[x + 1, y + 1, z + 1, :] .= g_vec[xp + 1, yp + 1, zp + 1, :] * sign_x * sign_y * sign_z end @test f_vec_ref ≈ f_vec end end @testitem "binaryop_tests.jl/shiftop" begin using Test using ITensors ITensors.disable_warn_order() using Quantics import Random @testset "shiftop" for R in [3], bc in [1, -1] sites = [Index(2, "Qubit, x=$n") for n in 1:R] g = randomMPS(sites) for shift in [0, 1, 2, 2^R - 1] M = Quantics._shift_mpo(sites, shift; bc=bc) f = apply(M, g) f_vec = vec(Array(reduce(*, f), reverse(sites))) g_vec = vec(Array(reduce(*, g), reverse(sites))) f_vec_ref = similar(f_vec) for i in 1:(2^R) ishifted = mod1(i + shift, 2^R) sign = ishifted == i + shift ? 1 : bc f_vec_ref[i] = g_vec[ishifted] * sign end @test f_vec_ref ≈ f_vec end end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
3645
@testitem "fouriertransform_tests.jl/qft_mpo" begin using Test using Quantics using ITensors # A brute-force implementation of _qft (only for tests) function _qft_ref(sites; cutoff::Float64=1e-14, sign::Int=1) abs(sign) == 1 || error("sign must either 1 or -1") nbit = length(sites) N = 2^nbit sites = noprime(sites) tmat = zeros(ComplexF64, N, N) for t in 0:(N - 1), x in 0:(N - 1) tmat[t + 1, x + 1] = exp(sign * im * 2π * t * x / N) end # `tmat`: (y_1, ..., y_N, x_1, ..., x_N) tmat ./= sqrt(N) tmat = reshape(tmat, ntuple(x -> 2, 2 * nbit)) trans_t = ITensor(tmat, reverse(sites)..., prime(sites)...) M = MPO(trans_t, sites; cutoff=cutoff) return M end @testset "qft_mpo" for sign in [1, -1], nbit in [1, 2, 3] N = 2^nbit sites = siteinds("Qubit", nbit) M = Quantics._qft(sites; sign=sign) M_ref = _qft_ref(sites; sign=sign) @test Array(reduce(*, M), vcat(sites, sites')) ≈ Array(reduce(*, M_ref), vcat(sites, sites')) end end @testitem "fouriertransform_tests.jl/fouriertransform" begin using Test using Quantics using ITensors function _ft_1d_ref(X, sign, originx, origink) N = length(X) Y = zeros(ComplexF64, N) for k in 1:N for x in 1:N Y[k] += exp(sign * im * 2π * (k + origink - 1) * (x + originx - 1) / N) * X[x] end end Y ./= sqrt(N) return Y end @testset "fouriertransform_1d" for sign in [1, -1], nbit in [2, 3, 4], originx in [0.1], originy in [-0.2] N = 2^nbit sitesx = [Index(2, "Qubit,x=$x") for x in 1:nbit] sitesk = [Index(2, "Qubit,k=$k") for k in 1:nbit] # X(x) X = randomMPS(sitesx) X_vec = Array(reduce(*, X), reverse(sitesx)) # Y(k) Y = Quantics.fouriertransform(X; sign=sign, tag="x", sitesdst=sitesk, originsrc=originx, origindst=originy) Y_vec_ref = _ft_1d_ref(X_vec, sign, originx, originy) Y_vec = vec(Array(reduce(*, Y), reverse(sitesk))) @test Y_vec ≈ Y_vec_ref end function _ft_2d_ref(F::Matrix, sign) N = size(F, 1) G = zeros(ComplexF64, N, N) for ky in 1:N, kx in 1:N for y in 1:N, x in 1:N G[kx, ky] += exp(sign * im * 2π * (kx - 1) * (x - 1) / N) * exp(sign * im * 2π * (ky - 1) * (y - 1) / N) * F[x, y] end end G ./= N return G end @testset "fouriertransform_2d" for sign in [1, -1], nbit in [2, 3] N = 2^nbit sitesx = [Index(2, "Qubit,x=$x") for x in 1:nbit] sitesy = [Index(2, "Qubit,y=$y") for y in 1:nbit] siteskx = [Index(2, "Qubit,kx=$kx") for kx in 1:nbit] sitesky = [Index(2, "Qubit,ky=$ky") for ky in 1:nbit] sitesin = collect(Iterators.flatten(zip(sitesx, sitesy))) # F(x, y) # F(x_1, y_1, ..., x_R, y_R) F = randomMPS(sitesin) F_mat = reshape(Array(reduce(*, F), vcat(reverse(sitesx), reverse(sitesy))), N, N) # G(kx, ky) # G(kx_R, ky_R, ..., kx_1, ky_1) G_ = Quantics.fouriertransform(F; sign=sign, tag="x", sitesdst=siteskx) G = Quantics.fouriertransform(G_; sign=sign, tag="y", sitesdst=sitesky) G_mat_ref = _ft_2d_ref(F_mat, sign) G_mat = reshape(Array(reduce(*, G), vcat(reverse(siteskx), reverse(sitesky))), N, N) @test G_mat ≈ G_mat_ref end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
3603
@testitem "imaginarytime_tests.jl/imaginarytime" begin using Test using Quantics import ITensors: siteinds, Index import ITensors import SparseIR: Fermionic, Bosonic, FermionicFreq, valueim function _test_data_imaginarytime(nbit, β) ω = 0.5 N = 2^nbit halfN = 2^(nbit - 1) # Tau gtau(τ) = -exp(-ω * τ) / (1 + exp(-ω * β)) @assert gtau(0.0) + gtau(β) ≈ -1 τs = collect(LinRange(0.0, β, N + 1))[1:(end - 1)] gtau_smpl = Vector{ComplexF64}(gtau.(τs)) # Matsubra giv(v::FermionicFreq) = 1 / (valueim(v, β) - ω) vs = FermionicFreq.(2 .* collect((-halfN):(halfN - 1)) .+ 1) giv_smpl = giv.(vs) return gtau_smpl, giv_smpl end @testset "decompose" begin β = 2.0 nbit = 10 nτ = 2^nbit gtau_smpl, giv_smpl = _test_data_imaginarytime(nbit, β) sites = siteinds("Qubit", nbit) gtau_mps = Quantics.decompose_gtau(gtau_smpl, sites; cutoff=1e-20) gtau_smpl_reconst = vec(Array(reduce(*, gtau_mps), reverse(sites)...)) @test gtau_smpl_reconst ≈ gtau_smpl end @testset "ImaginaryTimeFT.to_wn" begin ITensors.set_warn_order(100) β = 1.5 nbit = 6 nτ = 2^nbit gtau_smpl, giv_smpl = _test_data_imaginarytime(nbit, β) sitesτ = [Index(2, "Qubit,τ=$n") for n in 1:nbit] sitesiω = [Index(2, "Qubit,iω=$n") for n in 1:nbit] gtau_mps = Quantics.decompose_gtau(gtau_smpl, sitesτ; cutoff=1e-20) giv_mps = Quantics.to_wn(Fermionic(), gtau_mps, β; cutoff=1e-20, tag="τ", sitesdst=sitesiω) giv = vec(Array(reduce(*, giv_mps), reverse(sitesiω)...)) @test maximum(abs, giv - giv_smpl) < 2e-2 end @testset "ImaginaryTimeFT.to_tau" begin ITensors.set_warn_order(100) β = 1.5 nbit = 8 nτ = 2^nbit gtau_smpl, giv_smpl = _test_data_imaginarytime(nbit, β) sitesτ = [Index(2, "Qubit,τ=$n") for n in 1:nbit] sitesiω = [Index(2, "Qubit,iω=$n") for n in 1:nbit] giv_mps = Quantics.decompose_giv(giv_smpl, sitesiω; cutoff=1e-20) gtau_mps = Quantics.to_tau(Fermionic(), giv_mps, β; cutoff=1e-20, tag="iω", sitesdst=sitesτ) gtau = vec(Array(reduce(*, gtau_mps), reverse(sitesτ)...)) # There is ocillation around tau = 0, beta. @test maximum(abs, (gtau - gtau_smpl)[trunc(Int, 0.2 * nτ):trunc(Int, 0.8 * nτ)]) < 1e-2 end end @testitem "imaginarytime_tests.jl/poletomps" begin using Test using Quantics import ITensors: siteinds, Index import ITensors import SparseIR: Fermionic, Bosonic, FermionicFreq, valueim @testset "poletomps" begin nqubit = 10 sites = siteinds("Qubit", nqubit) β = 10.0 ω = 1.2 gtau = Quantics.poletomps(sites, β, ω) gtauvec = vec(Array(reduce(*, gtau), reverse(sites))) gtauf(τ) = -exp(-τ * ω) / (1 + exp(-β * ω)) gtauref = gtauf.(LinRange(0, β, 2^nqubit + 1)[1:(end - 1)]) @test maximum(abs, gtauref .- gtauvec) < 1e-14 end @testset "poletomps_negative_pole" begin nqubit = 16 sites = siteinds("Qubit", nqubit) β = 1000.0 ω = -10.0 gtau = Quantics.poletomps(Fermionic(), sites, β, ω) gtauvec = vec(Array(reduce(*, gtau), reverse(sites))) gtauf(τ) = -exp((β - τ) * ω) gtauref = gtauf.(LinRange(0, β, 2^nqubit + 1)[1:(end - 1)]) @test maximum(abs, gtauref .- gtauvec) < 1e-14 end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
722
@testitem "mps_tests.jl/onemps" begin using Test import Quantics using ITensors @testset "onemps" begin nbit = 3 sites = siteinds("Qubit", nbit) M = Quantics.onemps(Float64, sites) @test vec(Array(reduce(*, M), sites)) ≈ ones(2^nbit) end end @testitem "mps_tests.jl/expqtt" begin using Test import Quantics using ITensors @testset "expqtt" begin R = 10 sites = siteinds("Qubit", 10) f = Quantics.expqtt(sites, -1.0) f_values = vec(Array(reduce(*, f), reverse(sites))) xs = collect(LinRange(0, 1, 2^R + 1)[1:(end - 1)]) f_values_ref = (x -> exp(-x)).(xs) @test f_values ≈ f_values_ref end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
5026
@testitem "test_mul.jl/preprocess_matmul" begin using Test import Quantics using ITensors @testset "_preprocess_matmul" begin N = 2 sitesx = [Index(2, "x=$n") for n in 1:N] sitesy = [Index(2, "y=$n") for n in 1:N] sitesz = [Index(2, "z=$n") for n in 1:N] sites1 = collect(Iterators.flatten(zip(sitesx, sitesy))) sites2 = collect(Iterators.flatten(zip(sitesy, sitesz))) M1 = Quantics.asMPO(randomMPS(sites1)) M2 = Quantics.asMPO(randomMPS(sites2)) mul = Quantics.MatrixMultiplier(sitesx, sitesy, sitesz) M1, M2 = Quantics.preprocess(mul, M1, M2) flag = true for n in 1:N flag = flag && hasinds(M1[n], sitesx[n], sitesy[n]) flag = flag && hasinds(M2[n], sitesy[n], sitesz[n]) end @test flag end @testset "postprocess_matmul" begin N = 2 sitesx = [Index(2, "x=$n") for n in 1:N] sitesy = [Index(2, "y=$n") for n in 1:N] sitesz = [Index(2, "z=$n") for n in 1:N] mul = Quantics.MatrixMultiplier(sitesx, sitesy, sitesz) links = [Index(1, "Link,l=$l") for l in 0:N] M = MPO(N) for n in 1:N M[n] = randomITensor(links[n], links[n + 1], sitesx[n], sitesz[n]) end M = Quantics.postprocess(mul, M) flag = true for n in 1:N flag = flag && hasind(M[2 * n - 1], sitesx[n]) flag = flag && hasind(M[2 * n], sitesz[n]) end @test flag end end @testitem "mul_tests.jl/matmul" begin using Test import Quantics using ITensors @testset "matmul" for T in [Float64, ComplexF64] N = 3 sitesx = [Index(2, "x=$n") for n in 1:N] sitesy = [Index(2, "y=$n") for n in 1:N] sitesz = [Index(2, "z=$n") for n in 1:N] mul = Quantics.MatrixMultiplier(sitesx, sitesy, sitesz) sites1 = collect(Iterators.flatten(zip(sitesx, sitesy))) sites2 = collect(Iterators.flatten(zip(sitesy, sitesz))) M1 = Quantics.asMPO(randomMPS(T, sites1)) M2 = Quantics.asMPO(randomMPS(T, sites2)) # preprocess M1, M2 = Quantics.preprocess(mul, M1, M2) # MPO-MPO contraction M = Quantics.asMPO(contract(M1, M2; alg="naive")) # postprocess M = Quantics.postprocess(mul, M) M_mat_reconst = reshape(Array(reduce(*, M), [reverse(sitesx)..., reverse(sitesz)]), 2^N, 2^N) # Reference data M1_mat = reshape(Array(reduce(*, M1), [reverse(sitesx)..., reverse(sitesy)]), 2^N, 2^N) M2_mat = reshape(Array(reduce(*, M2), [reverse(sitesy)..., reverse(sitesz)]), 2^N, 2^N) M_mat_ref = M1_mat * M2_mat @test M_mat_ref ≈ M_mat_reconst end @testset "elementwisemul" for T in [Float64, ComplexF64] N = 5 sites = [Index(2, "n=$n") for n in 1:N] mul = Quantics.ElementwiseMultiplier(sites) M1_ = randomMPS(T, sites) M2_ = randomMPS(T, sites) M1 = Quantics.asMPO(M1_) M2 = Quantics.asMPO(M2_) # preprocess M1, M2 = Quantics.preprocess(mul, M1, M2) # MPO-MPO contraction M = Quantics.asMPO(contract(M1, M2; alg="naive")) # postprocess M = Quantics.postprocess(mul, M) # Comparison with reference data M_reconst = Array(reduce(*, M), sites) M1_reconst = Array(reduce(*, M1_), sites) M2_reconst = Array(reduce(*, M2_), sites) @test M_reconst ≈ M1_reconst .* M2_reconst end end @testitem "mul_tests.jl/batchedmatmul" begin using Test import Quantics using ITensors """ Reconstruct 3D matrix """ function _tomat3(a) sites = siteinds(a) N = length(sites) Nreduced = N ÷ 3 sites_ = [sites[1:3:N]..., sites[2:3:N]..., sites[3:3:N]...] return reshape(Array(reduce(*, a), sites_), 2^Nreduced, 2^Nreduced, 2^Nreduced) end @testset "batchedmatmul" for T in [Float64, ComplexF64] """ C(x, z, k) = sum_y A(x, y, k) * B(y, z, k) """ nbit = 2 D = 2 sx = [Index(2, "Qubit,x=$n") for n in 1:nbit] sy = [Index(2, "Qubit,y=$n") for n in 1:nbit] sz = [Index(2, "Qubit,z=$n") for n in 1:nbit] sk = [Index(2, "Qubit,k=$n") for n in 1:nbit] sites_a = collect(Iterators.flatten(zip(sx, sy, sk))) sites_b = collect(Iterators.flatten(zip(sy, sz, sk))) a = randomMPS(T, sites_a; linkdims=D) b = randomMPS(T, sites_b; linkdims=D) # Reference data a_arr = _tomat3(a) b_arr = _tomat3(b) ab_arr = zeros(T, 2^nbit, 2^nbit, 2^nbit) for k in 1:(2^nbit) ab_arr[:, :, k] .= a_arr[:, :, k] * b_arr[:, :, k] end ab = Quantics.automul(a, b; tag_row="x", tag_shared="y", tag_col="z", alg="fit") ab_arr_reconst = _tomat3(ab) @test ab_arr ≈ ab_arr_reconst end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
84
using ReTestItems: runtests, @testitem using Quantics: Quantics runtests(Quantics)
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
1566
@testitem "tag_tests.jl/tag" begin using Test import Quantics using ITensors @testset "findallsites_by_tag" for tag in ["x", "y"] nbit = 4 sites = [Index(2, "Qubit,$(tag)=$x") for x in 1:nbit] @test Quantics.findallsites_by_tag(sites; tag=tag) == [1, 2, 3, 4] @test isempty(Quantics.findallsites_by_tag(sites; tag="notfound")) invalid_tag = "$(tag)=" @test_throws "Invalid tag: $(tag)=" Quantics.findallsites_by_tag(sites, tag=invalid_tag) invalid_sites = [Index(2, "Qubit,$(tag)=1"), Index(2, "Qubit,$(tag)=1")] @test_throws "with $(tag)=1!" Quantics.findallsites_by_tag(invalid_sites, tag=tag) @test_throws "Invalid tag: $(tag)=" Quantics.findallsites_by_tag(invalid_sites, tag="$(tag)=") end @testset "findallsiteinds_by_tag" for tag in ["x", "y"] nbit = 4 sites = [Index(2, "Qubit,$(tag)=$x") for x in 1:nbit] @test Quantics.findallsiteinds_by_tag(sites; tag=tag) == sites @test isempty(Quantics.findallsiteinds_by_tag(sites; tag="notfound")) invalid_tag = "$(tag)=" @test_throws "Invalid tag: $(tag)=" Quantics.findallsiteinds_by_tag(sites, tag=invalid_tag) invalid_sites = [Index(2, "Qubit,$(tag)=1"), Index(2, "Qubit,$(tag)=1")] @test_throws "with $(tag)=1!" Quantics.findallsiteinds_by_tag(invalid_sites, tag=tag) @test_throws "Invalid tag: $(tag)=" Quantics.findallsiteinds_by_tag(invalid_sites, tag="$(tag)=") end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
129
@testitem begin using Aqua import Quantics @testset "Aqua" begin Aqua.test_stale_deps(Quantics) end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
8808
@testitem "transformer_tests.jl/functions" begin using Test import Quantics using ITensors using LinearAlgebra @testset "upper_lower_triangle" for upper_or_lower in [:upper, :lower] R = 3 sites = siteinds("Qubit", R) trimat = Quantics.upper_lower_triangle_matrix(sites, 1.0; upper_or_lower=upper_or_lower) trimatdata = Array(reduce(*, trimat), [reverse(sites')..., reverse(sites)...]) trimatdata = reshape(trimatdata, 2^R, 2^R) ref = upper_or_lower == :lower ? [Float64(i > j) for i in 1:(2^R), j in 1:(2^R)] : [Float64(i < j) for i in 1:(2^R), j in 1:(2^R)] @test trimatdata ≈ ref end @testset "cusum" begin R = 3 sites = siteinds("Qubit", R) UT = Quantics.upper_lower_triangle_matrix(sites, 1.0; upper_or_lower=:lower) f = Quantics.expqtt(sites, -1.0) f_values = vec(Array(reduce(*, f), reverse(sites))) xs = collect(LinRange(0, 1, 2^R + 1)[1:(end - 1)]) g = apply(UT, f) g_values = vec(Array(reduce(*, g), reverse(sites))) g_values_ref = cumsum(f_values) .- f_values # Second term remove the own values @test g_values ≈ g_values_ref end @testset "flipop" for nbit in 2:3, rev_carrydirec in [true, false], bc in [1, -1] sites = siteinds("Qubit", nbit) g = randomMPS(rev_carrydirec ? sites : reverse(sites)) op = Quantics.flipop(siteinds(g); rev_carrydirec=rev_carrydirec, bc=bc) f = apply(op, g; alg="naive") g_reconst = vec(Array(reduce(*, g), reverse(sites))) f_reconst = vec(Array(reduce(*, f), reverse(sites))) f_ref = similar(f_reconst) for i in 0:(2^nbit - 1) nmod, i_ = divrem(2^nbit - i, 2^nbit, RoundDown) f_ref[i + 1] = g_reconst[i_ + 1] * (bc^nmod) end @test f_reconst ≈ f_ref end end @testitem "transformer_tests.jl/reverseaxis" begin using Test import Quantics using ITensors using LinearAlgebra @testset "reverseaxis" for bc in [1], nbit in 2:2, rev_carrydirec in [true, false] sitesx = [Index(2, "x=$x") for x in 1:nbit] sites = rev_carrydirec ? sitesx : reverse(sitesx) g = randomMPS(sites) f = Quantics.reverseaxis(g; tag="x", alg="naive", bc=bc) g_reconst = vec(Array(reduce(*, g), reverse(sitesx))) f_reconst = vec(Array(reduce(*, f), reverse(sitesx))) f_ref = similar(f_reconst) for i in 1:(2^nbit) f_ref[i] = g_reconst[mod(2^nbit - (i - 1), 2^nbit) + 1] end f_ref[1] *= bc @test f_reconst ≈ f_ref end @testset "reverseaxis2" for nbit in 2:3, rev_carrydirec in [true, false] N = 2^nbit sitesx = [Index(2, "x=$x") for x in 1:nbit] sitesy = [Index(2, "y=$y") for y in 1:nbit] if rev_carrydirec sites = collect(Iterators.flatten(zip(sitesx, sitesy))) else sites = collect(Iterators.flatten(zip(reverse(sitesx), reverse(sitesy)))) end g = randomMPS(sites) function _reconst(M) arr = Array(reduce(*, M), [reverse(sitesx)..., reverse(sitesy)...]) return reshape(arr, N, N) end g_reconst = _reconst(g) fx = Quantics.reverseaxis(g; tag="x", alg="naive") fx_reconst = _reconst(fx) fy = Quantics.reverseaxis(g; tag="y", alg="naive") fy_reconst = _reconst(fy) fx_ref = similar(fx_reconst) fy_ref = similar(fy_reconst) for j in 0:(N - 1), i in 0:(N - 1) fx_ref[i + 1, j + 1] = g_reconst[mod(N - i, N) + 1, j + 1] fy_ref[i + 1, j + 1] = g_reconst[i + 1, mod(N - j, N) + 1] end @test fx_reconst ≈ fx_ref @test fy_reconst ≈ fy_ref end #@testset "reverseaxis3" for nbit in 2:3, rev_carrydirec in [true, false] @testset "reverseaxis3" for nbit in [2], rev_carrydirec in [true] N = 2^nbit sitesx = [Index(2, "x=$x") for x in 1:nbit] sitesy = [Index(2, "y=$y") for y in 1:nbit] sitesz = [Index(2, "z=$z") for z in 1:nbit] if rev_carrydirec sites = collect(Iterators.flatten(zip(sitesx, sitesy, sitesz))) else sites = collect(Iterators.flatten(zip(reverse(sitesx), reverse(sitesy), reverse(sitesz)))) end g = randomMPS(sites) function _reconst(M) arr = Array(reduce(*, M), [reverse(sitesx)..., reverse(sitesy)..., reverse(sitesz)...]) return reshape(arr, N, N, N) end g_reconst = _reconst(g) fx = Quantics.reverseaxis(g; tag="x", alg="naive") fx_reconst = _reconst(fx) fy = Quantics.reverseaxis(g; tag="y", alg="naive") fy_reconst = _reconst(fy) fz = Quantics.reverseaxis(g; tag="z", alg="naive") fz_reconst = _reconst(fz) fx_ref = similar(fx_reconst) fy_ref = similar(fy_reconst) fz_ref = similar(fz_reconst) for k in 0:(N - 1), j in 0:(N - 1), i in 0:(N - 1) fx_ref[i + 1, j + 1, k + 1] = g_reconst[mod(N - i, N) + 1, j + 1, k + 1] fy_ref[i + 1, j + 1, k + 1] = g_reconst[i + 1, mod(N - j, N) + 1, k + 1] fz_ref[i + 1, j + 1, k + 1] = g_reconst[i + 1, j + 1, mod(N - k, N) + 1] end @test fx_reconst ≈ fx_ref @test fy_reconst ≈ fy_ref @test fz_reconst ≈ fz_ref end #== @testset "asdiagonal" begin R = 2 sites = siteinds("Qubit", R) sites′ = [Index(2, "Qubit,n′=$n") for n in 1:R] M = randomMPS(sites) for which_new in ["left", "right"] Mnew = Quantics.asdiagonal(M, sites′; tag="n", which_new=which_new) M_reconst = reshape(Array(reduce(*, M), reverse(sites)), 2^R) Mnew_reconst = reshape(Array(reduce(*, Mnew), vcat(reverse(sites), reverse(sites′))), 2^R, 2^R) @assert diag(Mnew_reconst) ≈ M_reconst @assert LinearAlgebra.diagm(M_reconst) ≈ Mnew_reconst end end ==# end @testitem "transformer_tests.jl/phase_rotation" begin using Test import Quantics using ITensors using LinearAlgebra @testset "phase_rotation" begin nqbit = 3 xvec = collect(0:(2^nqbit - 1)) θ = 0.1 sites = [Index(2, "Qubit,x=$x") for x in 1:nqbit] _reconst(x) = vec(Array(reduce(*, x), reverse(sites))) f = randomMPS(sites) f_vec = _reconst(f) ref = exp.(im * θ * xvec) .* f_vec @test ref ≈ _reconst(Quantics.phase_rotation(f, θ; tag="x")) @test ref ≈ _reconst(Quantics.phase_rotation(f, θ; targetsites=sites)) end end @testitem "transformer_tests.jl/shiftaxis" begin using Test import Quantics using ITensors using LinearAlgebra @testset "shiftaxis" for R in [3], bc in [1, -1], rev_carrydirec in [true, false] sitesx = [Index(2, "Qubit, x=$n") for n in 1:R] sites = rev_carrydirec ? sitesx : reverse(sitesx) g = randomMPS(sites) for shift in [0, 1, 2, 2^R - 1] f = Quantics.shiftaxis(g, shift; bc=bc, tag="x") f_vec = vec(Array(reduce(*, f), reverse(sitesx))) g_vec = vec(Array(reduce(*, g), reverse(sitesx))) f_vec_ref = similar(f_vec) for i in 1:(2^R) ishifted = mod1(i + shift, 2^R) sign = ishifted == i + shift ? 1 : bc f_vec_ref[i] = g_vec[ishifted] * sign end @test f_vec_ref ≈ f_vec end end @testset "shiftaxis2d" for R in [3], bc in [1, -1], rev_carrydirec in [true, false] sitesx = [Index(2, "Qubit, x=$n") for n in 1:R] sitesy = [Index(2, "Qubit, y=$n") for n in 1:R] if rev_carrydirec sites = collect(Iterators.flatten(zip(sitesx, sitesy))) else sites = collect(Iterators.flatten(zip(reverse(sitesx), reverse(sitesy)))) end g = randomMPS(sites) for shift in [-4^R + 1, -1, 0, 1, 2^R - 1, 2^R, 2^R + 1, 4^R + 1] f = Quantics.shiftaxis(g, shift; tag="x", bc=bc) f_mat = reshape(Array(reduce(*, f), vcat(reverse(sitesx), reverse(sitesy))), 2^R, 2^R) g_mat = reshape(Array(reduce(*, g), vcat(reverse(sitesx), reverse(sitesy))), 2^R, 2^R) f_mat_ref = similar(f_mat) for i in 1:(2^R) nbc, ishifted = divrem(i + shift - 1, 2^R, RoundDown) ishifted += 1 f_mat_ref[i, :] = g_mat[ishifted, :] * (bc^nbc) end @test f_mat_ref ≈ f_mat end end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
code
7763
@testitem "util.jl" begin using Test import Quantics using ITensors @testset "_replace_mpo_siteinds!" begin nbit = 3 sites = siteinds("Qubit", nbit) M = MPO(ComplexF64, sites, ["Y" for n in 1:nbit]) sites2 = [Index(2, "n=$n") for n in 1:nbit] Quantics._replace_mpo_siteinds!(M, sites, sites2) @test all([!hasind(M[n], sites[n]) for n in 1:nbit]) @test all([!hasind(M[n], sites[n]') for n in 1:nbit]) @test all([hasind(M[n], sites2[n]) for n in 1:nbit]) @test all([hasind(M[n], sites2[n]') for n in 1:nbit]) end #== @testset "combinesiteinds" begin # [s1, (s2,s3), (s4,s5), s6] nbit = 6 sites = siteinds("Qubit", nbit) csites = [Index(4, "csite=$s") for s in 1:2] M = randomMPS(sites; linkdims=2) Mc = Quantics.combinesiteinds(M, csites; targetsites=sites[2:5]) @test length(Mc) == 4 @test all(dim.(siteinds(Mc)) .== [2, 4, 4, 2]) end @testset "splitsiteind (deprecated)" for nbit in [4, 6] sites = siteinds("Qubit", nbit) csites = [Index(4, "csite=$s") for s in 1:(nbit ÷ 2)] D = 3 mps = randomMPS(csites; linkdims=D) mps_split = Quantics.splitsiteind(mps, sites) @test vec(Array(reduce(*, mps_split), sites)) ≈ vec(Array(reduce(*, mps), csites)) mps_reconst = Quantics.combinesiteinds(mps_split, csites) @test vec(Array(reduce(*, mps_reconst), csites)) ≈ vec(Array(reduce(*, mps), csites)) end ==# @testset "unfuse_siteinds" for nsites in [2, 4], R in [2, 3] sites = [Index(2^R, "csite=$s") for s in 1:nsites] bonddim = 3 mps = randomMPS(sites; linkdims=bonddim) newsites = [[Index(2, "n=$n,m=$m") for m in 1:R] for n in 1:nsites] mps_split = Quantics.unfuse_siteinds(mps, sites, newsites) newsites_flatten = collect(Iterators.flatten(newsites)) @test newsites_flatten == siteinds(mps_split) @test vec(Array(reduce(*, mps_split), newsites_flatten)) ≈ vec(Array(reduce(*, mps), sites)) end @testset "split_tensor" begin nsite = 6 sites = [Index(2, "Qubit, site=$n") for n in 1:nsite] tensor = randomITensor(sites) tensors = Quantics.split_tensor(tensor, [sites[1:2], sites[3:4], sites[5:6]]) @test tensor ≈ reduce(*, tensors) end @testset "split_tensor2" begin nsite = 8 sites = [Index(2, "Qubit, site=$n") for n in 1:nsite] tensor = randomITensor(sites) tensors = Quantics.split_tensor(tensor, [sites[1:3], sites[4:5], sites[6:8]]) @test length(inds(tensors[1])) == 4 @test length(inds(tensors[2])) == 4 @test length(inds(tensors[3])) == 4 @test tensor ≈ reduce(*, tensors) end @testset "matchsiteinds_mps" begin N = 2 physdim = 2 sites = [Index(physdim, "n=$n") for n in 1:(2N)] sites_sub = sites[1:2:end] M = randomMPS(sites_sub) + randomMPS(sites_sub) M_ext = Quantics.matchsiteinds(M, sites) tensor = Array(reduce(*, M), sites_sub) tensor_reconst = zeros(Float64, fill(physdim, 2N)...) tensor_reconst .= reshape(tensor, size(tensor)..., fill(1, N)...) tensor2 = Array(reduce(*, M_ext), sites_sub, sites[2:2:end]) @test tensor2 ≈ tensor_reconst end @testset "matchsiteinds_mpo" begin N = 2 physdim = 2 sites = [Index(physdim, "n=$n") for n in 1:(2N)] sites_A = sites[1:2:end] sites_B = sites[2:2:end] M = randomMPO(sites_A) + randomMPO(sites_A) M_ext = Quantics.matchsiteinds(M, sites) tensor_ref = reduce(*, M) * reduce(*, [delta(s, s') for s in sites_B]) tensor_reconst = reduce(*, M_ext) @test tensor_ref ≈ tensor_reconst end @testset "matchsiteinds_mpo2" begin N = 2 physdim = 2 sites = [Index(physdim, "n=$n") for n in 1:(3N)] sites_A = sites[1:3:end] sites_B = sites[2:3:end] sites_C = sites[3:3:end] sites_BC = vcat(sites_B, sites_C) M = randomMPO(sites_A) + randomMPO(sites_A) M_ext = Quantics.matchsiteinds(M, sites) tensor_ref = reduce(*, M) * reduce(*, [delta(s, s') for s in sites_BC]) tensor_reconst = reduce(*, M_ext) @test tensor_ref ≈ tensor_reconst end @testset "combinsite" begin nrepeat = 3 N = 3 * nrepeat sites = siteinds("Qubit", N) M = MPO(randomMPS(sites)) sites1 = sites[1:3:end] sites2 = sites[2:3:end] sites3 = sites[3:3:end] for n in 1:nrepeat M = Quantics.combinesites(M, sites1[n], sites2[n]) end flag = true for n in 1:nrepeat flag = flag && hasinds(M[2 * n - 1], sites1[n], sites2[n]) flag = flag && hasind(M[2 * n], sites3[n]) end @test flag end @testset "_directprod" begin sites1 = siteinds("Qubit", 2) sites2 = siteinds("Qubit", 2) M1 = randomMPS(sites1) M2 = randomMPS(sites2) M12 = Quantics._directprod(M1, M2) M1_reconst = Array(reduce(*, M1), sites1) M2_reconst = Array(reduce(*, M2), sites2) M12_reconst = Array(reduce(*, M12), vcat(sites1, sites2)) M12_ref = reshape(reshape(M1_reconst, 2^2, 1) * reshape(M2_reconst, 1, 2^2), 2, 2, 2, 2) @test M12_reconst ≈ M12_ref end @testset "rearrange_siteinds (xy)" begin L = 5 sitesx = [Index(2, "x=$n") for n in 1:L] sitesy = [Index(2, "y=$n") for n in 1:L] sitesxy = collect(Iterators.flatten(zip(sitesx, sitesy))) Ψ = random_mps(sitesxy) sitesxy_fused = [[x, y] for (x, y) in zip(sitesx, sitesy)] Ψ_fused = Quantics.rearrange_siteinds(Ψ, sitesxy_fused) @test prod(Ψ) ≈ prod(Ψ_fused) # We reconstruct a full tensor, do not use it for large L sitesxy_fused_ = siteinds(MPO(collect(Ψ_fused))) for (x, y) in zip(sitesxy_fused, sitesxy_fused_) @test Set(x) == Set(y) end Ψ_reconst = Quantics.rearrange_siteinds(Ψ_fused, [[x] for x in sitesxy]) @test Ψ ≈ Ψ_reconst end @testset "rearrange_siteinds (xyz)" begin L = 4 sitesx = [Index(2, "x=$n") for n in 1:L] sitesy = [Index(2, "y=$n") for n in 1:L] sitesz = [Index(2, "z=$n") for n in 1:L] sitesxyz = collect(Iterators.flatten(zip(sitesx, sitesy, sitesz))) Ψ = random_mps(sitesxyz) sitesxyz_fused = Vector{Index{Int}}[] for i in 1:L push!(sitesxyz_fused, [sitesx[i], sitesy[i]]) push!(sitesxyz_fused, [sitesz[i]]) end Ψ_fused = Quantics.rearrange_siteinds(Ψ, sitesxyz_fused) @test prod(Ψ) ≈ prod(Ψ_fused) sitesxyz_fused_ = siteinds(MPO(collect(Ψ_fused))) for (x, y) in zip(sitesxyz_fused, sitesxyz_fused_) @test Set(x) == Set(y) end Ψ_reconst = Quantics.rearrange_siteinds(Ψ_fused, [[x] for x in sitesxyz]) @test Ψ ≈ Ψ_reconst end @testset "makesitediagonal" begin L = 2 sitesx = [Index(2, "x=$n") for n in 1:L] Ψ = random_mps(sitesx) M = Quantics.makesitediagonal(Ψ, "x") Ψ_recost = Array(prod(Ψ), sitesx...) M_recost = Array(prod(M), prime.(sitesx)..., sitesx...) for i in 1:2, i2 in 1:2, j in 1:2, j2 in 1:2 if i != i2 || j != j2 @test M_recost[i, j, i2, j2] ≈ 0.0 else @test M_recost[i, j, i2, j2] ≈ Ψ_recost[i, j] end end end end
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
docs
702
# Quantics [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://tensor4all.github.io/Quantics.jl/dev) [![CI](https://github.com/tensor4all/Quantics.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/tensor4all/Quantics.jl/actions/workflows/CI.yml) This library provides a high-level interface to manipulate quantics tensor train (QTT) format in Julia such as Fourier transform, convolution, and matrix-vector multiplication. This library is based on `ITensors.jl`. ## Installation The following will install `Quantics.jl`: ```julia julia> using Pkg; Pkg.add("Quantics.jl") ``` ## Usage Please refer to the [documentation](https://tensor4all.github.io/Quantics.jl/) for usage.
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.3.8
b4e7717ed2a5e14f77f45afa972553079fcefc6b
docs
182
```@meta CurrentModule = Quantics ``` # Quantics Documentation for [Quantics](https://gitlab.com/tensors4fields/Quantics.jl). ```@index ``` ```@autodocs Modules = [Quantics] ```
Quantics
https://github.com/tensor4all/Quantics.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
3650
# Inspired by the Mods.jl package module Modulos import Base: ==, +, -, *, inv, /, ^, hash, show, unsigned, Bool import Base.Checked: mul_with_overflow export Modulo """ `Modulo{p,T}(n)` creates a modular number in mod `p` with value `n%p` represented by the integer type `T`. """ struct Modulo{p,T<:Integer} <: Real value::T function Modulo{p,T}(n::Integer) where {p,T} @assert p > 0 # This check is elided at runtime since p is a compile-time constant return new{p,T}(mod(n, p)) end end (::Type{T})(x::Modulo) where {T<:Integer} = T(x.value) Bool(x::Modulo) = Bool(x.value) # disambiguation function hash(x::Modulo{p}, h::UInt64=UInt64(0)) where p hash(Integer(x), hash(p, h)) end ==(x::Modulo{p}, y::Modulo{p}) where {p} = Integer(x) == Integer(y) @inline function large_widen(::Modulo{p,T1}, ::Modulo{p,T2}) where {p,T1,T2} T = promote_type(T1,T2) if T1 != T2 tmin = typemin(T) tmax = typemax(T) if !(tmin <= typemin(T1) && tmin <= typemin(T2) && tmax >= typemax(T1) && tmax >= typemax(T2)) T = widen(T) end end return T end function +(x::Modulo{p,T1}, y::Modulo{p,T2}) where {p,T1,T2} T = large_widen(x, y) # Next are some fast-paths if p is small enough. # Note that the checks are elided at runtime since p and T are compile-time constants if p < typemax(T) ÷ 2 Modulo{p,T}((Integer(x) % T) + (Integer(y) % T)) elseif p < typemax(unsigned(T)) ÷ 2 U = unsigned(T) Modulo{p,T}((Integer(x) % U) + (Integer(y) % U)) else V = widen(T) Modulo{p,T}((Integer(x) % V) + (Integer(y) % V)) end end function -(x::Modulo{p,T}) where {p,T<:Signed} Modulo{p,T}(-Integer(x)) end function -(x::Modulo{p,T}) where {p,T<:Unsigned} U = signed(T) y = Integer(x) y > (typemax(U) % T) ? Modulo{p,T}(-(y % widen(U))) : Modulo{p,T}(-signed(y)) end -(x::Modulo, y::Modulo) = x + (-y) function *(x::Modulo{p,T1}, y::Modulo{p,T2}) where {p,T1,T2} T = large_widen(x, y) r, flag = mul_with_overflow((Integer(x) % T), (Integer(y) % T)) flag ? Modulo{p,T}(widemul(Integer(x), Integer(y))) : Modulo{p,T}(r) end @noinline __throw_notinvertible(x) = error(x, " is not invertible") inv(x::Modulo{1}) = __throw_notinvertible(x) function inv(x::Modulo{p,T}) where {p,T} g, v = gcdx(Integer(x), p) # disregard the third value, corresponding to the Bézout coefficient for p g == 1 || __throw_notinvertible(x) return Modulo{p,T}(v) end function /(x::Modulo{p}, y::Modulo{p}) where {p} return x * inv(y) end function ^(x::Modulo{p,T}, k::Integer) where {p,T} if k>0 return Modulo{p,T}(powermod(Integer(x), k, p)) end if k==0 return one(Modulo{p}) end Modulo{p,T}(powermod(Integer(inv(x)), -k, p)) end +(x::Modulo{p,T}, k::Integer) where {p,T} = x + Modulo{p,T}(k) +(k::Integer, x::Modulo) = x + k -(x::Modulo, k::Integer) = x + (-k) -(k::Integer, x::Modulo) = (-x) + k *(x::Modulo{p,T}, k::Integer) where {p,T} = x * Modulo{p,T}(k) *(k::Integer, x::Modulo) = x * k /(x::Modulo{p,T}, k::Integer) where {p,T} = x / Modulo{p,T}(k) /(k::Integer, x::Modulo{p,T}) where {p,T} = Modulo{p,T}(k) / x function ==(x::Modulo{p,T1}, k::T2) where {p,T1,T2<:Integer} T = promote_type(T1,T2) T(x) == T(mod(k, p)) end ==(k::Integer, x::Modulo) = x == k function show(io::IO, x::Modulo{p,T}) where {p,T} verbose = get(io, :typeinfo, Any) != Modulo{p,T} if verbose print(io, Modulo{p,T}, '(') end print(io, x.value) if verbose print(io, ')') end end end # end of module Modulos
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
225
module PeriodicGraphEquilibriumPlacement export equilibrium, dixon_solve, rational_solve using PeriodicGraphs, SparseArrays include("Modulos.jl") include("solver.jl") include("embedding.jl") include("precompile.jl") end
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
1328
# Main functions using PeriodicGraphs, Graphs using StaticArrays: SizedVector using LinearAlgebra: Adjoint _catzeros(::Val{N}, Z::Adjoint{T}) where {T,N} = hcat(zeros(T, N), Z) """ equilibrium(g::PeriodicGraph) Return an equilibrium placement for the vertices of the graph, defined as a list of positions such that each vertex is at the barycentre of its neighbors. The returned equilibrium placement is such that the first vertex of the graph is at the origin of the space. """ function equilibrium(g::PeriodicGraph{N}) where N n = nv(g) iszero(n) && return Matrix{Rational{Int64}}(undef, N, 0) isone(n) && return zeros(Rational{Int64}, N, 1) Y = Matrix{Int}(undef, n, N) A = spzeros(Int, n, n) neigh = Vector{Int}(undef, n) offset = SizedVector{N,Int}(undef) for i in 1:n neigh .= 0 offset .= 0 count = 0 for k in neighbors(g, i) k.v == i && continue count += 1 neigh[k.v] += 1 offset .-= k.ofs end Y[i,:] .= offset A[i,:] .= neigh A[i,i] = -count end Z = dixon_solve(Val(N), A[2:end,2:end], Y[2:end,:]) isempty(Z) && error("Singular exception while equilibrating. Is the graph connected and of the given dimensionality?") return _catzeros(Val(N), Z') end
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
1686
using PeriodicGraphEquilibriumPlacement, PeriodicGraphs, LinearAlgebra, SparseArrays using PrecompileTools @setup_workload begin pcu = PeriodicGraph("3 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0"); afy = PeriodicGraph("3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 1 5 0 0 0 2 6 0 0 0 2 7 0 0 0 2 8 0 0 0 3 7 0 0 0 3 9 0 0 0 3 10 0 0 0 4 8 0 0 0 4 9 0 0 0 4 11 0 0 0 5 7 0 1 0 5 8 0 1 0 5 9 0 1 0 6 12 0 0 0 6 13 0 0 0 6 14 0 0 0 7 14 0 0 0 8 15 0 0 0 9 12 -1 0 1 10 12 -1 0 1 10 13 -1 0 1 10 15 0 0 1 11 13 -1 0 0 11 14 -1 0 0 11 15 0 0 0 12 16 0 0 0 13 16 0 1 0 14 16 0 0 0 15 16 -1 0 0") A = sparse([208 72 887 687 946 263 905 943 131 183 256 606 613 854 914; 582 279 104 638 1 272 130 214 910 813 376 376 202 362 384; 786 526 26 700 84 417 430 253 894 41 895 207 620 918 163; 753 98 421 556 839 665 861 678 614 245 548 186 831 774 642; 834 257 952 786 485 529 66 833 619 258 886 901 488 55 87; 917 536 333 316 295 528 645 777 236 4 247 641 411 101 262; 394 87 654 584 354 858 361 570 990 326 279 348 984 623 251; 774 33 215 61 577 492 634 769 755 577 176 989 964 379 104; 176 21 886 253 198 886 545 136 958 175 311 646 954 730 927; 654 216 757 545 975 391 56 480 258 861 639 126 53 295 739; 29 619 956 175 693 567 734 415 645 704 818 291 678 557 973; 964 112 555 991 366 297 105 482 26 848 221 687 50 53 119; 155 938 591 60 807 704 157 929 289 128 846 971 31 658 530; 736 711 941 890 816 473 171 60 299 167 434 819 582 913 856; 668 14 20 336 336 823 651 164 468 737 181 828 192 93 58]) Y = [15*j + i for i in 1:15, j in -1:1] v = Val(3) @compile_workload begin equilibrium(pcu) equilibrium(afy) dixon_solve(v, A, Y) rational_solve(v, A, Y) end end
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
17971
## Specialized solver for sparse symmetric integer linear systems with exact rational solution using .Modulos import Base.GMP: MPZ using Base: OneTo using LinearAlgebra: BlasInt, checknonsingular, LU, tril!, triu!, issuccess, norm using SparseArrays using SparseArrays: getcolptr # using BigRationals function compat_checknonsingular(i) @static if VERSION < v"1.7-" checknonsingular(i, Val(false)) else checknonsingular(i, NoPivot()) end end function compat_lu(::Type{Tf}, B, maxvec, info) where Tf @static if VERSION < v"1.8-" LU{Tf,SparseMatrixCSC{Tf,Int}}(dropzeros!(B), Vector{BlasInt}(1:maxvec), convert(BlasInt, info)) else LU{Tf,SparseMatrixCSC{Tf,Int},OneTo{Int}}(Tf.(B), 1:maxvec, info) end end function compat_lu_convert(::Type{Tf}, B, maxvec, info) where Tf @static if VERSION < v"1.8-" LU{Tf,SparseMatrixCSC{Tf,Int}}(Tf.(dropzeros!(B)), Vector{BlasInt}(1:maxvec), convert(BlasInt, info)) else LU{Tf,SparseMatrixCSC{Tf,Int},OneTo{Int}}(Tf.(B), 1:maxvec, info) end end function rational_lu!(B::SparseMatrixCSC, col_offset::Vector{Int}, check=true) Tf = eltype(B) m, n = size(B) minmn = min(m, n) info = 0 @inbounds begin for k in 1:minmn ipiv = getcolptr(B)[k] + col_offset[k] piv = nonzeros(B)[ipiv] if iszero(piv) check && compat_checknonsingular(k-1) # TODO update with Pivot return compat_lu(Tf, B, minmn, k-1) end Bkkinv = inv(piv) nzB = nonzeros(B) @simd ivdep for i in ipiv+1:getcolptr(B)[k+1]-1 nzB[i] *= Bkkinv end for j in k+1:n r1 = getcolptr(B)[j] r2 = getcolptr(B)[j+1]-1 r = searchsortedfirst(rowvals(B), k, r1, r2, Base.Forward) ((r > r2) || (rowvals(B)[r] != k)) && continue Bkj = nonzeros(B)[r] for i in ipiv+1:getcolptr(B)[k+1]-1 Bik = nonzeros(B)[i] l = i - ipiv while rowvals(B)[l+r] < rowvals(B)[i] r += 1 end nonzeros(B)[l+r] -= Bik * Bkj end end end end check && compat_checknonsingular(info) return compat_lu(Tf, B, minmn, info) end @static if VERSION < v"1.10-" const libgmp = Sys.iswindows() ? "libgmp-10.dll" : Sys.isapple() ? "@rpath/libgmp.10.dylib" : "libgmp.so.10" else const libgmp = Base.GMP.libgmp end @static if VERSION < v"1.9-" # Base.GMP.MPQ.mul!, div! and sub! introduced in v1.9 const MPQ = Base.GMP.MPQ function set_si!(z::Rational{BigInt}, a, b) zq = MPQ._MPQ(z) ccall((:__gmpq_set_si, libgmp), Cvoid, (MPQ.mpq_t, Clong, Culong), zq, a, b) return MPQ.sync_rational!(zq) end function mpq_sub!(x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) || iszero(y.den) if iszero(x.den) && iszero(y.den) && isneg(x.num) == isneg(y.num) throw(DivideError()) end iszero(x.den) && return x return set_si!(x, flipsign(-1, y.num), 0) end xq = MPQ._MPQ(x) ccall((:__gmpq_sub, libgmp), Cvoid, (MPQ.mpq_t,MPQ.mpq_t,MPQ.mpq_t), xq, xq, MPQ._MPQ(y)) return MPQ.sync_rational!(xq) end function mpq_mul!(z::Rational{BigInt}, x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) || iszero(y.den) if iszero(x.num) || iszero(y.num) throw(DivideError()) end return set_si!(z, ifelse(xor(isneg(x.num), isneg(y.num)), -1, 1), 0) end zq = MPQ._MPQ(z) ccall((:__gmpq_mul, libgmp), Cvoid, (MPQ.mpq_t,MPQ.mpq_t,MPQ.mpq_t), zq, MPQ._MPQ(x), MPQ._MPQ(y)) return MPQ.sync_rational!(zq) end function mpq_div!(x::Rational{BigInt}, y::Rational{BigInt}) if iszero(x.den) if iszero(y.den) throw(DivideError()) end isneg(y.num) || return x return set_si!(x, flipsign(-1, x.num), 0) elseif iszero(y.den) return set_si!(x, 0, 1) elseif iszero(y.num) if iszero(x.num) throw(DivideError()) end return set_si!(x, flipsign(1, x.num), 0) end xq = Base.GMP.MPQ._MPQ(x) ccall((:__gmpq_div, libgmp), Cvoid, (Base.GMP.MPQ.mpq_t,Base.GMP.MPQ.mpq_t,Base.GMP.MPQ.mpq_t), xq, xq, Base.GMP.MPQ._MPQ(y)) return Base.GMP.MPQ.sync_rational!(xq) end else const mpq_div! = Base.GMP.MPQ.div! const mpq_mul! = Base.GMP.MPQ.mul! const mpq_sub! = Base.GMP.MPQ.sub! end # function lu!(B::SparseMatrixCSC{<:Rational}, ::Val{Pivot} = Val(false); # col_offset, check::Bool = true) where Pivot function rational_lu!(B::SparseMatrixCSC{Rational{BigInt}}, col_offset::Vector{Int}, check::Bool=true) Tf = Rational{BigInt} m, n = size(B) minmn = min(m, n) tmp = Rational{BigInt}(0) @inbounds begin for k in 1:minmn ipiv = getcolptr(B)[k] + col_offset[k] piv = nonzeros(B)[ipiv] if iszero(piv) check && compat_checknonsingular(k-1) # TODO update with Pivot return compat_lu_convert(Tf, B, minmn, k-1) end for i in ipiv+1:getcolptr(B)[k+1]-1 mpq_div!(nonzeros(B)[i], piv) # BigRationals.MPQ.div!(nonzeros(B)[i], piv) end for j in k+1:n r1 = getcolptr(B)[j] r2 = getcolptr(B)[j+1]-1 r = searchsortedfirst(rowvals(B), k, r1, r2, Base.Forward) ((r > r2) || (rowvals(B)[r] != k)) && continue Bkj = nonzeros(B)[r] for i in ipiv+1:getcolptr(B)[k+1]-1 Bik = nonzeros(B)[i] l = i - ipiv while rowvals(B)[l+r] < rowvals(B)[i] r += 1 end mpq_mul!(tmp, Bik, Bkj) mpq_sub!(nonzeros(B)[l+r], tmp) # BigRationals.MPQ.mul!(tmp, Bik, Bkj) # BigRationals.MPQ.sub!(nonzeros(B)[l+r], tmp) end end end end info = something(findfirst(i -> iszero(B[i,i]), Base.OneTo(minmn)), 0) check && compat_checknonsingular(info) return compat_lu_convert(Tf, B, minmn, info) end # function lu(A::SparseMatrixCSC{<:Rational}, pivot::Union{Val{false}, Val{true}} = Val(false); check::Bool = true) function rational_lu(A::SparseMatrixCSC, check::Bool=true, ::Type{Ti}=Rational{BigInt}) where {Ti} Tf = Ti # Tf = Ti == BigRational ? Rational{BigInt} : Ti Base.require_one_based_indexing(A) _I, _J, _V = findnz(A) I, J, V = issorted(_J) ? (_I, _J, _V) : begin _indices = sortperm(_J) @inbounds (_I[_indices], _J[_indices], _V[_indices]) end # @inbounds if !issorted(_J) # indices = sortperm(J) # I = I[indices]; J = J[indices]; V = V[indices] # end isempty(J) && return compat_lu_convert(Tf, A, 0, 0) m, n = size(A) minmn = min(m, n) if J[1] != 1 || I[1] != 1 check && compat_checknonsingular(1) # TODO update with Pivot # return LU{eltype(A), typeof(A)}(A, collect(1:minmn), convert(BlasInt, 1)) return compat_lu_convert(Tf, A, minmn, 1) end col_offset = zeros(Int, minmn) # for each col, index of the pivot element idx_cols = [[I[i] for i in getcolptr(A)[col+1]-1:-1:getcolptr(A)[col]] for col in 1:minmn] # For each column, indices of the non-zeros elements in_idx_colscol = falses(n) for col in 2:minmn sort!(idx_cols[col-1]; rev=true) # All idx_cols[x] are sorted by decreasing order for x < col # @show idx_cols[col] idx_colscol = idx_cols[col] in_idx_colscol[idx_colscol] .= true for row_j in idx_colscol row_j >= col && continue col_offset[col] += 1 # @show idx_cols[row_j] idx_colsj = idx_cols[row_j] sizcol = length(idx_colscol) for row_i in idx_colsj if row_i ≤ row_j break # Because the row_i are sorted in decreasing order end if !in_idx_colscol[row_i] push!(idx_colscol, row_i) in_idx_colscol[row_i] = true end end countadd = length(idx_colscol) - sizcol if countadd > 0 siz = length(I) resize!(I, siz + countadd) resize!(J, siz + countadd) resize!(V, siz + countadd) for i in 1:countadd row_i = idx_colscol[sizcol+i] _idx = siz + i J[_idx] = col I[_idx] = row_i V[_idx] = 0 end end end in_idx_colscol[idx_colscol] .= false end B = sparse(I, J, Ti.(V)) # TODO update with Pivot rational_lu!(B, col_offset, check) end function forward_substitution!(L::SparseMatrixCSC, b) _, n = size(L) _, m = size(b) @inbounds for col in 1:n k = getcolptr(L)[col] if rowvals(L)[k] != col && col != 0 return false end invnzLk = inv(nonzeros(L)[k]) x = invnzLk .* b[col,:] b[col,:] .= x for i in (k+1):getcolptr(L)[col+1]-1 nzLi = nonzeros(L)[i] rvLi = rowvals(L)[i] @simd ivdep for j in 1:m b[rvLi,j] -= nzLi*x[j] end end end true end function backward_substitution!(U::SparseMatrixCSC, b) _, n = size(U) _, m = size(b) @inbounds for col in n:-1:1 k = getcolptr(U)[col+1]-1 if rowvals(U)[k] != col && col != 0 return false end invnzUk = inv(nonzeros(U)[k]) x = invnzUk .* b[col,:] b[col,:] .= x for i in getcolptr(U)[col]:(k-1) nzUi = nonzeros(U)[i] rvUi = rowvals(U)[i] @simd ivdep for j in 1:m b[rvUi,j] -= nzUi*x[j] end end end true end function linsolve!(F::LU, B::Matrix) TFB = typeof(oneunit(eltype(B)) / oneunit(eltype(F))) BB = similar(B, TFB, size(B)) copyto!(BB, B) m, n = size(F) minmn = min(m,n) L = tril!(getfield(F, :factors)[1:m, 1:minmn]) for i = 1:minmn; L[i,i] = 1; end forward_substitution!(L, BB) || return BB, false x = triu!(getfield(F, :factors)[1:minmn, 1:n]) backward_substitution!(x, BB) || return BB, false return BB, true end """ rational_solve(::Val{N}, A::SparseMatrixCSC{Int,Int}, Y::Matrix{Int}) where N Fallback solver for [`dixon_solve`](@ref) which performs an LU decomposition followed by forward and backward substitutions. Return an empty matrix if `A` is not invertible. In general, it is slower than [`dixon_solve`](@ref). !!! warning `A` must be square and `N` must be equal to `size(Y)[2]` or the function may fail, error, or cause a silent corruption without notice. """ function rational_solve(::Val{N}, A::SparseMatrixCSC{Int,Int}, Y::Matrix{Int}) where N B = rational_lu(A, false) issuccess(B) || return Matrix{Rational{Int128}}(undef, 0, 0) Z, check = linsolve!(B, Rational{BigInt}.(Y)) check || error("Singular exception on substitution. Please report this error by opening an issue.") for x in Z if numerator(x) > typemax(Int128) || numerator(x) < typemin(Int128) || denominator(x) > typemax(Int128) || denominator(x) < typemin(Int128) return Z end end return Rational{Int128}.(Z) # Rational{Int64} is not enough for tep for instance. end function copyuntil(j, oldZ, ::Type{T}) where T Z = similar(oldZ, T) for i in eachindex(Z) i == j && return Z Z[i] = oldZ[i] end error("Invalid failure of _inner_dixon_p!. Please report this error by opening an issue.") return Z # Does not matter but just in case for type stability end function _inner_dixon_p!(indices::Vector{Int}, Z::Matrix{Rational{T}}, h::BigInt, x̄::Matrix{BigInt}, sqh::BigInt, tmp::BigInt) where T while !isempty(indices) j = pop!(indices) ua = MPZ.set(h) ub = deepcopy(@inbounds x̄[j]) va = Int128(0) vb = Int128(1) k = 0 while ub >= sqh k += 1 # cpua = deepcopy(ua) # cpub = deepcopy(ub) MPZ.tdiv_qr!(tmp, ua, ua, ub) ua, ub = ub, ua # @assert tmp == cpua ÷ cpub # @assert ua == cpub # @assert ub == cpua - tmp * cpub # cpuc = deepcopy(va) if typemin(Clong) < vb < typemax(Clong) MPZ.mul_si!(tmp, vb % Clong) else tmp *= vb end flag = signbit(va) va = abs(va) if va < typemax(Culong) if flag MPZ.sub_ui!(tmp, va) else MPZ.add_ui!(tmp, va) end va, vb = vb, Int128(tmp) else va, vb = vb, va + tmp end #= or replace all of the above since if typemin(Clong) < ... by MPZ.mul!(tmp, vb) MPZ.add!(tmp, va) va, vb, tmp = vb, tmp, va =# # @assert vb == cpuc + tmp * va end uv::Tuple{T,T} = if T === BigInt Base.divgcd(ub, vb) else ud, vd = Base.divgcd(ub, vb) m = typemin(T) M = typemax(T) if !(m < ud < M && m < vd < M) push!(indices, j) return false end (ud % T, vd % T) end @inbounds Z[j] = (-2*isodd(k)+1) * Base.checked_den(uv[1], uv[2]) # @assert mod((-1)^isodd(k) * ub, h) == mod(vb * x̄[j], h) end return true end function dixon_p(::Val{N}, A::SparseMatrixCSC{Int,Int}, C::LU{Modulo{p,Int32}}, Y::Matrix{Int}) where {N,p} λs = [norm(x) for x in eachcol(A)] append!(λs, norm(x) for x in eachcol(Y)) partialsort!(λs, N) for _ in 1:N popfirst!(λs) end δ::BigFloat = prod(BigFloat, λs; init=one(BigFloat)) m = ceil(Int, 2*log(δ / (MathConstants.φ - 1))/log(p)) # @assert m ≥ 1 B = copy(Y) Z::Union{Matrix{Rational{Int64}},Matrix{Rational{Int128}},Matrix{Rational{BigInt}}} = similar(Y, Rational{Int64}) BB, check = linsolve!(C, B) check || return Z, false x̄ = BigInt.(BB) X = copy(x̄) # @assert A * Modulo{p,Int32}.(X) == B h = one(BigInt) # = p^i tmp = BigInt() for _ in 1:m-1 MPZ.mul_si!(h, p) B .= (B .- A*Integer.(X)) .÷ p BB2, check2 = linsolve!(C, B) check2 || return Z, false X .= Integer.(BB2) # @assert A * Modulo{p,Int32}.(X) == B @inbounds for j in eachindex(x̄) MPZ.mul!(tmp, X[j], h) MPZ.add!(x̄[j], tmp) end end MPZ.mul_si!(h, p) # h = p^m # @assert mod.(A * x̄, h) == mod.(Y, h) sqh = MPZ.sqrt(h) # h = p^{m/2} indices = collect(reverse(eachindex(Z))) success = _inner_dixon_p!(indices, Z, h, x̄, sqh, tmp) if !success Z = copyuntil(first(indices), Z, Rational{Int128}) success = _inner_dixon_p!(indices, Z, h, x̄, sqh, tmp) if !success Z = copyuntil(first(indices), Z, Rational{BigInt}) success = _inner_dixon_p!(indices, Z, h, x̄, sqh, tmp) # @assert success end end # @assert eltype(Y).(A * big.(Z)) == Y return Z, true end @static if VERSION < v"1.8-" const typeofB = Union{ LU{Modulo{2147483647,Int32},SparseMatrixCSC{Modulo{2147483647,Int32},Int}}, LU{Modulo{2147483629,Int32},SparseMatrixCSC{Modulo{2147483629,Int32},Int}}, LU{Modulo{2147483587,Int32},SparseMatrixCSC{Modulo{2147483587,Int32},Int}} } else const typeofB = Union{ LU{Modulo{2147483647,Int32},SparseMatrixCSC{Modulo{2147483647,Int32},Int},OneTo{Int}}, LU{Modulo{2147483629,Int32},SparseMatrixCSC{Modulo{2147483629,Int32},Int},OneTo{Int}}, LU{Modulo{2147483587,Int32},SparseMatrixCSC{Modulo{2147483587,Int32},Int},OneTo{Int}} } end function try_modulo(::Val{N}, A, Y, ::Type{Modulo{p,T}}) where {N,p,T} B::typeofB = rational_lu(A, false, Modulo{p,Int32}) issuccess(B) || Matrix{Rational{Int64}}(undef, 0, 0), false return dixon_p(Val(N), A, B, Y) end """ dixon_solve(::Val{N}, A::SparseMatrixCSC{Int,Int}, Y::Matrix{Int}) where N Specialized solver for the linear system `A*X = Y` where `A` is a sparse integer `n×n` matrix and `Y` is a dense integer `n×N` matrix, using Dixon's method. Return `X` as either a `Matrix{Rational{Int64}}`, a `Matrix{Rational{Int128}}` or a `Matrix{Rational{BigInt}}`, whichever smallest type can hold all its values. Return an empty matrix if `A` is not invertible. !!! warning `A` must be square and `N` must be equal to `size(Y)[2]` or the function may fail, error, or cause a silent corruption without notice. """ function dixon_solve(::Val{N}, A::SparseMatrixCSC{Int,Int}, Y::Matrix{Int}) where N # @show time_ns() Z, success = try_modulo(Val(N), A, Y, Modulo{2147483647,Int32}) success && return Z Z, success = try_modulo(Val(N), A, Y, Modulo{2147483629,Int32}) success && return Z Z, success = try_modulo(Val(N), A, Y, Modulo{2147483587,Int32}) success && return Z # The probability of this being required is *extremely* low return rational_solve(Val(N), A, Y) end
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
code
3457
using PeriodicGraphEquilibriumPlacement using Graphs, PeriodicGraphs, SparseArrays using Test, Random, LinearAlgebra function is_at_mean_position(g::PeriodicGraph{D}, poss, i) where D neighs = neighbors(g, i) (@view poss[:,i]) == sum((@view poss[:,v]) .+ o for (v, o) in neighs) .// length(neighs) end function all_at_mean_position(g, poss=equilibrium(g)) all(x -> is_at_mean_position(g, poss, x), 1:nv(g)) end @testset "equilibrium" begin pcu = PeriodicGraph("3 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0"); @test equilibrium(pcu) == reshape(Rational{Int64}[0//1; 0//1; 0//1], 3, 1) @test all_at_mean_position(pcu) dia = PeriodicGraph("3 1 2 0 0 0 1 2 0 0 1 1 2 0 1 0 1 2 1 0 0"); @test all_at_mean_position(dia) srs = PeriodicGraph("3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 2 3 1 0 0 2 4 0 -1 0 3 4 0 0 -1"); @test all_at_mean_position(srs) afy = PeriodicGraph("3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 1 5 0 0 0 2 6 0 0 0 2 7 0 0 0 2 8 0 0 0 3 7 0 0 0 3 9 0 0 0 3 10 0 0 0 4 8 0 0 0 4 9 0 0 0 4 11 0 0 0 5 7 0 1 0 5 8 0 1 0 5 9 0 1 0 6 12 0 0 0 6 13 0 0 0 6 14 0 0 0 7 14 0 0 0 8 15 0 0 0 9 12 -1 0 1 10 12 -1 0 1 10 13 -1 0 1 10 15 0 0 1 11 13 -1 0 0 11 14 -1 0 0 11 15 0 0 0 12 16 0 0 0 13 16 0 1 0 14 16 0 0 0 15 16 -1 0 0") @test all_at_mean_position(afy) wrong = PeriodicGraph2D(PeriodicGraph("1 1 2 0 1 3 0 5 2 0 5 3 0 2 3 1")) @test_throws ErrorException equilibrium(wrong) end @testset "dixon_solve and rational_solve" begin for N in 1:5 for n in 1:5 _A = Int.(rand(Int8, n, n)) A = sparse(Int.(_A) .+ 300*LinearAlgebra.I(n)) # ensure the system is invertible Y = Int.(rand(Int8, n, N)) result = dixon_solve(Val(N), A, Y) @test A*result == Y @test result == rational_solve(Val(N), A, Y) end end A = sparse([208 72 887 687 946 263 905 943 131 183 256 606 613 854 914; 582 279 104 638 1 272 130 214 910 813 376 376 202 362 384; 786 526 26 700 84 417 430 253 894 41 895 207 620 918 163; 753 98 421 556 839 665 861 678 614 245 548 186 831 774 642; 834 257 952 786 485 529 66 833 619 258 886 901 488 55 87; 917 536 333 316 295 528 645 777 236 4 247 641 411 101 262; 394 87 654 584 354 858 361 570 990 326 279 348 984 623 251; 774 33 215 61 577 492 634 769 755 577 176 989 964 379 104; 176 21 886 253 198 886 545 136 958 175 311 646 954 730 927; 654 216 757 545 975 391 56 480 258 861 639 126 53 295 739; 29 619 956 175 693 567 734 415 645 704 818 291 678 557 973; 964 112 555 991 366 297 105 482 26 848 221 687 50 53 119; 155 938 591 60 807 704 157 929 289 128 846 971 31 658 530; 736 711 941 890 816 473 171 60 299 167 434 819 582 913 856; 668 14 20 336 336 823 651 164 468 737 181 828 192 93 58]) Y = [15*j + i for i in 1:15, j in -1:1] result = dixon_solve(Val(3), A, Y) @test A*result == Y @test result == rational_solve(Val(3), A, Y) end @testset "dixon_solve edge cases" begin A = Int.(rand(Int8, 7, 7)) Y = Int.(rand(Int8, 7, 3)) for (i,p) in ((5, 2147483647), (7, 2147483629), (4, 2147483587)) v = zeros(Int, 7) v[i] = p A[:,i] = A[i,:] = v @test A*(dixon_solve(Val(3), sparse(A), Y)) == Y end A2 = sparse([1, 2, 4, 1, 2, 4, 1, 2, 4], [1, 1, 1, 2, 2, 2, 4, 4, 4], [-3, 1, 1, 1, -3, 1, 1, 1, -2], 4, 4) Y2 = [1 1; 0 2; 1 -1; 0 0]; @test isempty(rational_solve(Val(2), A2, Y2)) @test isempty(dixon_solve(Val(2), A2, Y2)) end
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.2.2
b38a2d112a969af2c6fe4c3fb3e9314705931a8f
docs
3163
# PeriodicGraphEquilibriumPlacement [![Build Status](https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/Liozou/PeriodicGraphEquilibriumPlacement.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/Liozou/PeriodicGraphEquilibriumPlacement.jl) A Julia package for computing the *equilibrium*, or *barycentric*, placement of vertices of a periodic graph, as defined by [Olaf Delgado-Friedrichs and Michael O'Keeffe](https://doi.org/10.1107/S0108767303012017). It is accessible through the `equilibrium` exported function, which returns a matrix of rational coordinates that can be fed to the [`PeriodicGraphEmbedding`](https://liozou.github.io/PeriodicGraphEmbeddings.jl/dev/types/#PeriodicGraphEmbeddings.PeriodicGraphEmbedding-Union{Tuple{T},%20Tuple{D},%20Tuple{PeriodicGraph{D},%20AbstractMatrix{T},%20Cell}}%20where%20{D,%20T}) or [`SortedPeriodicGraphEmbedding`](https://liozou.github.io/PeriodicGraphEmbeddings.jl/dev/types/#PeriodicGraphEmbeddings.SortedPeriodicGraphEmbedding-Union{Tuple{T},%20Tuple{D},%20Tuple{PeriodicGraph{D},%20AbstractMatrix{T}%20where%20T,%20Cell}}%20where%20{D,%20T}) methods from [PeriodicGraphEmbeddings.jl](https://github.com/Liozou/PeriodicGraphEmbeddings.jl): ```julia julia> tbo = PeriodicGraph3D("3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 2 5 0 0 0 2 6 0 0 0 2 7 0 0 0 3 6 0 0 1 3 8 0 0 0 3 9 0 0 0 4 6 1 0 0 4 10 0 0 0 4 11 0 0 0 5 12 0 0 0 5 13 0 0 0 7 12 1 1 -1 7 13 0 1 0 8 12 0 0 0 8 14 0 0 0 9 12 1 1 0 9 14 0 1 0 10 13 0 0 0 10 14 0 0 0 11 13 1 1 0 11 14 1 1 -1"); julia> equilibrium(tbo) 3×14 Matrix{Rational{Int64}}: 0//1 -1//6 -1//6 1//3 -1//3 -1//3 0//1 -1//3 0//1 0//1 2//3 -2//3 -1//6 -1//6 0//1 0//1 0//1 0//1 -1//3 0//1 1//3 -1//3 1//3 -1//3 1//3 -1//2 -1//2 -1//2 0//1 -1//6 1//3 -1//6 0//1 -1//3 -1//3 1//3 1//3 0//1 -1//3 1//3 -1//6 1//3 ``` The implementation is optimized through a custom solver specialized for the exact resolution of sparse integer linear system through [Dixon's algorithm](https://doi.org/10.1007/bf01459082). The solver is directly accessible through the `dixon_solve` function: ```julia julia> A = sparse([-3 0 2 0; 0 -5 2 3; 2 2 -2 0; 0 3 0 -3]); julia> Y = [1 1; 0 2; 1 -1; 0 0]; julia> A * dixon_solve(Val(2), A, Y) == Y true ``` The first argument of `dixon_solve` must be `Val(size(Y)[2])` and the second must be square. The package also exposes a `rational_solve` function which solves the same systems through a simpler LU decomposition approach. It serves as fallback to `dixon_solve` when Dixon's algorithm fails, but can also be used as-is with the same API. Its performance is in general lower than `dixon_solve`, often significantly so. See also: - [PeriodicGraphs.jl](https://github.com/Liozou/PeriodicGraphs.jl) for the underlying library and the API of the `PeriodicGraph` type. - [CrystalNets.jl](https://github.com/coudertlab/CrystalNets.jl) for a dependent package specialized on crystal nets.
PeriodicGraphEquilibriumPlacement
https://github.com/Liozou/PeriodicGraphEquilibriumPlacement.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
965
using SmoothInterpolation using Luxor height = 500 wide = false Drawing(wide ? 2 * height : height, height, normpath(@__DIR__, "src/assets/logo.svg")) origin() # Distance of dots from the origin R = 0.4 * height # Radius of dots r = 0.05 * height # Dot coordinates phi = [(i + 1) * 2π / 3 - π / 2 for i in 1:3] x_dots = R * cos.(phi) y_dots = R * sin.(phi) # Interpolation curves N = 100 setline(10) for λ in 0.5:0.25:1.0 itp = SmoothedLinearInterpolation(y_dots, x_dots; λ, extrapolate = true) x_curve = range(x_dots[1], x_dots[end]; length = N) y_curve = itp.(x_curve) points = Point.(x_curve, y_curve) setcolor(λ .* Luxor.julia_blue) for i in 1:(N - 1) line(points[i + 1], points[i], :stroke) end end # The julia colored dots colors = [Luxor.julia_purple, Luxor.julia_red, Luxor.julia_green] for (x, y, c) in zip(x_dots, y_dots, colors) setcolor(c) circle(Point(x, y), r; action = :fill) end finish() preview()
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
882
using Documenter, SmoothInterpolation makedocs(; sitename = "SmoothInterpolation.jl", pages = [ "Home" => "index.md", "Mathematical Construction" => [ "Motivation " => "construction/motivation.md", "Construction of smoothed linear interpolation" => "construction/construction_smoothed_linear_interpolation.md", "Integrating" => "construction/integrating.md", "Inverting the integral" => "construction/inverting_the_integral.md", ], "Examples" => "examples.md", "To Cache or not to Cache" => "cache.md", "API" => "api.md", ], format = Documenter.HTML(; mathengine = Documenter.MathJax( Dict(:TeX => Dict(:equationNumbers => Dict(:autoNumber => "AMS"))), ), ), ) deploydocs(; repo = "github.com/SouthEndMusic/SmoothInterpolation.jl.git")
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git