licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
570
module SmoothInterpolation using DataInterpolations: DataInterpolations, LinearInterpolation, AbstractInterpolation, munge_data, _interpolate using FindFirstFunctions: searchsortedfirstcorrelated using PrettyTables include("cache.jl") include("smoothed_linear_interpolation.jl") include("integration_inverse.jl") include("integration.jl") include("derivatives.jl") include("utils.jl") export LinearInterpolationIntInv, SmoothedLinearInterpolation, SmoothedLinearInterpolationIntInv, LinearInterpolation, invert_integral end # SmoothInterpolation
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
2902
abstract type AbstractCache{T} end """ The cache object for LinearInterpolationIntInv computations. """ struct LinearInterpolationIntInvCache{uType, T} <: AbstractCache{T} u::uType slope::uType degenerate_slope::Vector{Bool} end function LinearInterpolationIntInvCache(u, t) Δu = diff(u) Δt = diff(t) slope = Δu ./ Δt degenerate_slope = collect(isapprox.(slope, 0, atol = 1e-5)) return LinearInterpolationIntInvCache{typeof(u), eltype(u)}(u, slope, degenerate_slope) end """ The cache object for SmoothedLinearInterpolation computations. """ struct SmoothedLinearInterpolationCache{uType, tType, λType <: Number, T} <: AbstractCache{T} u::uType t::tType Δu::uType Δt::tType ΔΔu::uType ΔΔt::tType u_tilde::uType t_tilde::tType linear_slope::uType # Whether ΔΔt is sufficiently close to 0 degenerate_ΔΔt::Vector{Bool} λ::λType end function SmoothedLinearInterpolationCache(u, t, λ)::SmoothedLinearInterpolationCache Δu = diff(u) Δt = diff(t) @assert !any(iszero.(Δt)) pushfirst!(Δt, Δt[1]) push!(Δt, Δt[end]) pushfirst!(Δu, Δu[1]) push!(Δu, Δu[end]) ΔΔu = diff(Δu) ΔΔt = diff(Δt) u_tilde = get_spline_ends(u, Δu, λ) t_tilde = get_spline_ends(t, Δt, λ) linear_slope = Δu ./ Δt # Whether ΔΔt is sufficiently close to 0 degenerate_ΔΔt = collect(isapprox.(ΔΔt, 0, atol = 1e-5)) return SmoothedLinearInterpolationCache{typeof(u), typeof(t), typeof(λ), eltype(u)}( u, t, Δu, Δt, ΔΔu, ΔΔt, u_tilde, t_tilde, linear_slope, degenerate_ΔΔt, λ, ) end """ The cache object for SmoothedLinearInterpolationIntInv computations. """ struct SmoothedLinearInterpolationIntInvCache{uType, T} <: AbstractCache{T} # The degree of the polynomial whose roots need to be found degree::Vector{Int} # Quartic polynomial coefficients c4::uType c3::uType c2::uType c1::uType # Coefficients of depressed quartic p::uType q::uType # Whether Δu is sufficiently close to 0 degenerate_Δu::Vector{Bool} end function SmoothedLinearInterpolationIntInvCache(A) coeffs = hcat([collect(get_quartic_coefficients(A, idx)) for idx in eachindex(A.cache.t)]...) c4, c3, c2, c1 = collect.(eachrow(coeffs)) # The degree is 5 minus the index of the first (≈) nonzero coefficient degree = 5 .- findfirst.(coef -> !isapprox(coef, 0; atol = 1e-5), eachcol(coeffs)) p = p_coeff.(c4, c3, c2) q = q_coeff.(c4, c3, c2, c1) # Whether Δu is sufficiently close to 0 degenerate_Δu = collect(isapprox.(A.cache.Δu, 0, atol = 1e-5)) return SmoothedLinearInterpolationIntInvCache{typeof(A.u), eltype(A.u)}( degree, c4, c3, c2, c1, p, q, degenerate_Δu, ) end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
799
function DataInterpolations._derivative( A::SmoothedLinearInterpolation{<:AbstractVector}, t::Number, iguess, ) (; u, t_tilde) = A.cache # idx of smallest idx such that A.t[idx] >= t idx = searchsortedfirstcorrelated(A.t, t, iguess) if idx == 1 || idx == length(u) + 1 # Linear extrapolation A.cache.linear_slope[idx] else # Interpolation if t < t_tilde[2 * idx - 2] U_deriv(A, t, idx - 1) elseif t > t_tilde[2 * idx - 1] U_deriv(A, t, idx) else # Linear interpolation A.cache.linear_slope[idx] end end end function DataInterpolations._derivative(A::AbstractInterpolationIntInv, V::Number, iguess) t = A(V, iguess) return 1 / forward_itp(A)(t) end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
2310
""" integrate_spline_section(A::SmoothedLinearinterpolation, idx::Number, t::Number) Integrate the idx-th spline section from its lower time bound up to t ## Arguments - `A`: SmoothedLinearInterpolation object - `idx`: Index of the spline section - `t`: upper integration bound """ function integrate_spline_section(A::SmoothedLinearInterpolation, idx::Number, t::Number) s = S(A, t, idx) c4, c3, c2, c1 = get_quartic_coefficients(A, idx) return c4 * s^4 + c3 * s^3 + c2 * s^2 + c1 * s end function DataInterpolations._integral( A::SmoothedLinearInterpolation, idx::Number, t::Number, ) (; u_tilde, t_tilde) = A.cache if t == A.t[idx] return zero(eltype(A.u)) end # idx of smallest idx such that A.t[idx] >= t idx = searchsortedfirstcorrelated(A.t, t, idx) i = 2 * idx u_tildeᵢ₋₃ = u_tilde[i - 3] u_tildeᵢ₋₂ = u_tilde[i - 2] t_tildeᵢ₋₃ = t_tilde[i - 3] t_tildeᵢ₋₂ = t_tilde[i - 2] # Integration of lower spline section if idx == 2 # Special case of the first (half) spline section # which is linear if t <= t_tildeᵢ₋₂ u_t = A(t) out = 0.5 * (t - t_tildeᵢ₋₃) * (u_t + u_tildeᵢ₋₃) return out else out = 0.5 * (t_tildeᵢ₋₂ - t_tildeᵢ₋₃) * (u_tildeᵢ₋₂ + u_tildeᵢ₋₃) end elseif idx == length(A.t) + 1 # Special case of upper extrapolation u_t = A(t) out = 0.5 * (t - A.t[end - 1]) * (u_t + A.u[end - 1]) return out else if t <= t_tildeᵢ₋₂ out = integrate_spline_section(A, idx - 1, t) out -= integrate_spline_section(A, idx - 1, A.t[idx - 1]) return out else out = integrate_spline_section(A, idx - 1, t_tildeᵢ₋₂) out -= integrate_spline_section(A, idx - 1, A.t[idx - 1]) end end u_tildeᵢ₋₁ = u_tilde[i - 1] t_tildeᵢ₋₁ = t_tilde[i - 1] # Integration of linear section if t <= t_tildeᵢ₋₁ u_t = A(t) out += 0.5 * (t - t_tildeᵢ₋₂) * (u_t + u_tildeᵢ₋₂) return out else out += 0.5 * (t_tildeᵢ₋₁ - t_tildeᵢ₋₂) * (u_tildeᵢ₋₁ + u_tildeᵢ₋₂) end # Integration of upper spline section out += integrate_spline_section(A, idx, t) return out end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
6098
abstract type AbstractInterpolationIntInv{T} <: AbstractInterpolation{T} end """ LinearInterpolationIntInv(A::SmoothedLinearInterpolation) Inverting the integral of a LinearInterpolation object if possible. The `A.u` must be non-negative. ## Arguments - A The LinearInterpolation object whose integral is inverted. """ struct LinearInterpolationIntInv{uType, tType, T} <: AbstractInterpolationIntInv{T} u::uType t::tType cache::LinearInterpolationIntInvCache{uType} extrapolate::Bool function LinearInterpolationIntInv(u, t, cache, extrapolate) return new{typeof(u), typeof(t), eltype(u)}(u, t, cache, extrapolate) end end """ Invert the integral of a LinearInterpolation object, which yields LinearInterpolationIntInv object. """ function invert_integral(A::LinearInterpolation)::LinearInterpolationIntInv @assert all(A.u .>= 0) "Inverting the integral is only supported for non-negative LinearInterpolation." t = DataInterpolations.integral.(Ref(A), A.t) cache = LinearInterpolationIntInvCache(A.u, A.t) return LinearInterpolationIntInv(A.t, t, cache, A.extrapolate) end function DataInterpolations._interpolate( A::LinearInterpolationIntInv{<:AbstractVector}, V::Number, iguess, ) (; cache) = A # idx of smallest idx such that A.t[idx] >= V # Note that A.t denotes integrated values idx = searchsortedfirstcorrelated(A.t, V, iguess) if idx == length(A.t) + 1 idx -= 1 end if idx == 1 @assert V >= 0 "Cannot invert integral for negative input." idx = 2 end Vdiff = (V - A.t[idx - 1]) @assert Vdiff >= 0 "Vdiff must be non_negative, got V = $V, Vdiff = $Vdiff, idx = $idx" t_prev = A.u[idx - 1] idx = min(idx, length(A.u)) i = idx - 1 if cache.degenerate_slope[i] # Special case when LinearInterpolation is (near) constant t_prev + Vdiff / cache.u[idx] else t_prev + (-cache.u[i] + sqrt(cache.u[i]^2 + 2 * cache.slope[i] * Vdiff)) / cache.slope[i] end end """ SmoothedLinearInterpolationIntInv(A::SmoothedLinearInterpolation) Inverting the integral of a SmoothedLinearInterpolation object if possible. The `A.u` must be non-negative. ## Arguments - A The SmoothedLinearInterpolation object whose integral is inverted. """ struct SmoothedLinearInterpolationIntInv{uType, tType, λType <: Real, T} <: AbstractInterpolationIntInv{T} u::uType t::tType cache::SmoothedLinearInterpolationCache{uType, tType, λType} cache_integration::SmoothedLinearInterpolationIntInvCache{uType} extrapolate::Bool function SmoothedLinearInterpolationIntInv(u, t, cache, cache_int, λ, extrapolate) return new{typeof(u), typeof(t), typeof(λ), eltype(u)}( u, t, cache, cache_int, extrapolate, ) end end """ Invert the integral of a SmoothedLinearInterpolation object, which yields SmoothedLinearInterpolationIntInv object. """ function invert_integral(A::SmoothedLinearInterpolation)::SmoothedLinearInterpolationIntInv @assert all(A.u .>= 0) "Inverting the integral is only supported for non-negative SmoothedLinearInterpolation." (; cache, extrapolate) = A t = DataInterpolations.integral.(Ref(A), cache.t_tilde) u = cache.t_tilde cache_int = SmoothedLinearInterpolationIntInvCache(A) return SmoothedLinearInterpolationIntInv(u, t, cache, cache_int, cache.λ, extrapolate) end function DataInterpolations._interpolate( A::SmoothedLinearInterpolationIntInv{<:AbstractVector}, V::Number, iguess, ) n_points = length(A.t) (; u, t, cache, cache_integration) = A (; degree, c4, c3, c2, c1, p, q, degenerate_Δu) = cache_integration # idx of smallest idx such that A.t[idx] >= V # Note that A.t denotes integrated values idx = searchsortedfirstcorrelated(A.t, V, iguess) if idx == 1 @assert V >= 0 "Cannot invert integral for negative input." idx = 2 end if idx == 2 # First half spline section # which is linear Vdiff = (V - t[1]) @assert Vdiff >= 0 if isapprox(cache.linear_slope[1], 0; atol = 1e-5) u[1] + Vdiff / cache.u[1] else u[1] + (-cache.u[1] + sqrt(cache.u[1]^2 + 2 * cache.linear_slope[1] * Vdiff)) / cache.linear_slope[1] end elseif idx == n_points + 1 # Extrapolation Vdiff = (V - t[end]) @assert Vdiff >= 0 if isapprox(cache.linear_slope[end], 0; atol = 1e-5) u[end] + Vdiff / cache.u[end] else u[end] + (-cache.u[end] + sqrt(cache.u[end]^2 + 2 * cache.linear_slope[end] * Vdiff)) / cache.linear_slope[end] end elseif idx % 2 == 0 Vdiff = (V - A.t[idx - 1]) @assert Vdiff >= 0 i = idx ÷ 2 c4ᵢ = c4[i] c3ᵢ = c3[i] c2ᵢ = c2[i] c1ᵢ = c1[i] c0 = -Vdiff pᵢ = p[i] qᵢ = q[i] degᵢ = degree[i] # Check the 4 possible roots for being valid; # real and in [0,1] root_iterator = iterate_roots(degᵢ, c4ᵢ, c3ᵢ, c2ᵢ, c1ᵢ, c0, pᵢ, qᵢ) for s in root_iterator if valid(s) return T_s(A, real(s), i) end end error("No valid root found, got $(collect(root_iterator)) for V = $V.") else # Linear section of SmoothedLinearInterpolation Vdiff = (V - A.t[idx - 1]) @assert Vdiff >= 0 i = (idx - 1) ÷ 2 if degenerate_Δu[i + 1] # Special case when SmoothedLinearInterpolation is (near) constant A.u[idx - 1] + Vdiff / cache.u[i] else Δuᵢ₊₁ = cache.Δu[i + 1] Δtᵢ₊₁ = cache.Δt[i + 1] u_frac = cache.u[i] / Δuᵢ₊₁ λ = cache.λ root = sqrt(u_frac^2 + λ * (u_frac + λ / 4) + 2 * Vdiff / (Δtᵢ₊₁ * Δuᵢ₊₁)) cache.t[i] + (-u_frac + sign(u_frac) * root) * Δtᵢ₊₁ end end end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
2254
""" SmoothedLinearInterpolation(u, t; λ = 0.25, extrapolate = false) The method of interpolating between the data points using a linear polynomial, with an anterval around the corner points being replaced by a smooth spline section. ## Arguments - `u`: data points. - `t`: time points. ## Keyword Arguments - `extrapolate`: boolean value to allow extrapolation. Defaults to `false`. - `λ`: The relative size of the spline interval. The interval extents a fraction `λ/2` towards the neighbouring time points. """ struct SmoothedLinearInterpolation{uType, tType, λType <: Real, T} <: AbstractInterpolation{T} u::uType t::tType cache::SmoothedLinearInterpolationCache{uType, tType, λType} linear_itp::LinearInterpolation{uType, tType, T} extrapolate::Bool function SmoothedLinearInterpolation(u, t, cache, λ, linear_itp, extrapolate) return new{typeof(u), typeof(t), typeof(λ), eltype(u)}( u, t, cache, linear_itp, extrapolate, ) end end function SmoothedLinearInterpolation( u, t; λ = 0.25, extrapolate::Bool = false, )::SmoothedLinearInterpolation u, t = munge_data(u, t) # Make sure the parameter λ is in the right range @assert 0 <= λ <= 1 "The parameter λ must be in the interval [0,1], got $λ." cache = SmoothedLinearInterpolationCache(u, t, λ) linear_itp = LinearInterpolation(u, t; extrapolate) return SmoothedLinearInterpolation(u, t, cache, λ, linear_itp, extrapolate) end function DataInterpolations._interpolate( A::SmoothedLinearInterpolation{<:AbstractVector}, t::Number, iguess, ) (; u, t_tilde) = A.cache # idx of smallest idx such that A.t[idx] >= t idx = searchsortedfirstcorrelated(A.t, t, iguess) if idx == 1 || idx == length(u) + 1 # Linear extrapolation DataInterpolations._interpolate(A.linear_itp, t, idx)[1] else # Interpolation if t < t_tilde[2 * idx - 2] U(A, t, idx - 1) elseif t > t_tilde[2 * idx - 1] U(A, t, idx) else # Linear interpolation DataInterpolations._interpolate(A.linear_itp, t, idx)[1] end end end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
10458
""" S(A, t, idx) Compute the spline parameter `s` from the time `t`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `t`: The time point - `idx`: The index indicating which spline section """ function S(A::SmoothedLinearInterpolation, t, idx) (; Δt, ΔΔt, degenerate_ΔΔt, t_tilde, λ) = A.cache Δtᵢ = Δt[idx] ΔΔtᵢ = ΔΔt[idx] tdiff = t - t_tilde[2 * idx - 1] @assert tdiff >= 0 if degenerate_ΔΔt[idx] # Degenerate case Δtᵢ₊₁ ≈ Δtᵢ s = 1 / λ * tdiff / Δtᵢ else s = (-Δtᵢ + sqrt(Δtᵢ^2 + 2 * ΔΔtᵢ * tdiff / λ)) / ΔΔtᵢ end ε = 1e-5 @assert -ε <= s <= 1 + ε "s should be in [0,1], got $s." return s end """ S_deriv(A, t, idx) Compute the derivative of the spline parameter `s` at the time `t`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `t`: The time point - `idx`: The index indicating which spline section """ function S_deriv(A::SmoothedLinearInterpolation, t, idx) (; Δt, ΔΔt, degenerate_ΔΔt, t_tilde, λ) = A.cache Δtᵢ = Δt[idx] ΔΔtᵢ = ΔΔt[idx] tdiff = t - t_tilde[2 * idx - 1] @assert tdiff >= 0 if degenerate_ΔΔt[idx] # Degenerate case Δtᵢ₊₁ ≈ Δtᵢ s_deriv = 1 / (λ * Δtᵢ) else s_deriv = 1 / (λ * sqrt(Δtᵢ^2 + 2 * ΔΔtᵢ * tdiff / λ)) end return s_deriv end """ U(A, t, idx) Compute the spline value `u` at the time `t`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `t`: The time point - `idx`: The index indicating which spline section """ function U(A::SmoothedLinearInterpolation, t, idx) s = S(A, t, idx) return U_s(A, s, idx) end function U_deriv(A::SmoothedLinearInterpolation, t, idx) s = S(A, t, idx) s_deriv = S_deriv(A, t, idx) return U_s_deriv(A, s, idx) * s_deriv end """ U_s(A, t, idx) Compute the spline value `u` from the spline parameter `s`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `s`: The spline parameter value - `idx`: The index indicating which spline section """ function U_s(A::AbstractInterpolation, s, idx) (; Δu, ΔΔu, u_tilde, λ) = A.cache Δuᵢ = Δu[idx] ΔΔuᵢ = ΔΔu[idx] return λ / 2 * ΔΔuᵢ * s^2 + λ * Δuᵢ * s + u_tilde[2 * idx - 1] end """ U_s_deriv(A, t, idx) Compute the derivative of the spline value `u` at the spline parameter value `s`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `s`: The spline parameter value - `idx`: The index indicating which spline section """ function U_s_deriv(A::AbstractInterpolation, s, idx) (; Δu, ΔΔu, λ) = A.cache Δuᵢ = Δu[idx] ΔΔuᵢ = ΔΔu[idx] return λ * ΔΔuᵢ * s + λ * Δuᵢ end """ Compute the coefficients for the quartic polynomial in s for the integration of a spline section Vdiff = c4 * s^4 + c3 * s^3 + c2 * s^2 + c1 * s + c0 """ function get_quartic_coefficients(A::SmoothedLinearInterpolation, idx::Number) (; Δu, Δt, ΔΔu, ΔΔt, u_tilde, λ) = A.cache i = 2 * idx Δtᵢ = Δt[idx] Δuᵢ = Δu[idx] ΔΔuᵢ = ΔΔu[idx] ΔΔtᵢ = ΔΔt[idx] f₁ = u_tilde[i - 1] / λ f₂ = λ^2 / 24 c4 = f₂ * (3 * ΔΔtᵢ * ΔΔuᵢ) c3 = f₂ * (4 * Δtᵢ * ΔΔuᵢ + 8 * ΔΔtᵢ * Δuᵢ) c2 = f₂ * (12 * ΔΔtᵢ * f₁ + 12 * Δtᵢ * Δuᵢ) c1 = f₂ * (24 * Δtᵢ * f₁) return c4, c3, c2, c1 end """ Determine whether a value s is valid, i.e. - Its imaginary part is close to 0; - Its real part is in the interval [0.1]. """ valid(s) = isapprox(imag(s), 0; atol = 1e-4) && (0 <= real(s) <= 1) """ T_s(A, t, idx) Compute the time `t` from the spline parameter `s`. ## Arguments - `A`: The `SmoothedLinearInterpolation` object - `s`: The spline parameter value - `idx`: The index indicating which spline section """ function T_s(A::SmoothedLinearInterpolationIntInv, s, idx) (; Δt, ΔΔt, t_tilde, λ) = A.cache Δtᵢ = Δt[idx] ΔΔtᵢ = ΔΔt[idx] return λ / 2 * ΔΔtᵢ * s^2 + λ * Δtᵢ * s + t_tilde[2 * idx - 1] end struct RootIterator{T1, T2, T3, T4, D} # T1: Real constants # T2: Real constants depending on c0 # T2: Complex constants depending on c0 degree::D ab_part::T4 c2::T1 c3::T1 Δ₀::T2 Δ₁::T2 Q::T3 S::T3 p::T1 q::T1 end """ iterate_roots(degree, c4, c3, c2, c1, c0, p, q) Generate an iterator object which iterates over the roots of the polynomial with the given coefficients of the given degree. Coefficients for terms higher than the degree are not used, and p, q are only used when degree = 4. """ function iterate_roots( degree, c4::T1, c3::T1, c2::T1, c1::T1, c0::T2, p::T1, q::T1, )::RootIterator where {T1, T2} Δ₀ = zero(c0) Δ₁ = zero(c0) Q = zero(Complex(c0)) S = zero(Complex(c0)) if degree == 1 ab_part = -c0 / c1 elseif degree == 2 Δ₀ = c1^2 - 4 * c2 * c0 ab_part = -c1 / (2 * c2) else Δ₀ = c2^2 - 3 * c3 * c1 + 12 * c4 * c0 Δ₁ = 2 * c2^3 - 9 * c3 * c2 * c1 + 27 * c3^2 * c0 + 27 * c4 * c1^2 - 72 * c4 * c2 * c0 Q = ∛((Δ₁ + sqrt(Complex(Δ₁^2 - 4 * Δ₀^3))) / 2) if degree == 3 ab_part = -c2 / (3 * c3) else ab_part = -c3 / (4 * c4) S = sqrt(-2 * p / 3 + (Q + Δ₀ / Q) / (3 * c4)) / 2 end end return RootIterator(degree, ab_part, c2, c3, Δ₀, Δ₁, Q, S, p, q) end function Base.cbrt(z::Complex) ϕ = angle(z) / 3 r = abs(z) return ∛(r) * Complex(cos(ϕ), sin(ϕ)) end """ Compute a root of a quartic polynomial """ function quartic_root(root_iterator::RootIterator{T1, T2, T3}, state)::T3 where {T1, T2, T3} (; ab_part, S, p, q) = root_iterator # Order the roots in order of likelihood of being the right one (empirically) sign_1 = state % 3 == 1 ? -1 : 1 sign_2 = state < 3 ? 1 : -1 root = sqrt(-4S^2 - 2p - sign_1 * q / S) out = ab_part + sign_1 * S + sign_2 * 0.5 * root return out end """ Compute a root of a cubic polynomial """ function cube_root(root_iterator::RootIterator{T1, T2, T3}, state)::T3 where {T1, T2, T3} (; c3, Q, Δ₀, ab_part) = root_iterator ξ = exp(2π * im / 3) C = Q * ξ^(state - 1) return ab_part - (C + Δ₀ / C) / (3 * c3) end """ Compute a root of a quadratic polynomial """ function square_root(root_iterator::RootIterator{T1, T2, T3}, state)::T3 where {T1, T2, T3} (; c2, ab_part, Δ₀) = root_iterator return ab_part + (-1)^state * sqrt(Δ₀) / (2 * c2) end """ Compute a root of a linear polynomial """ function linear_root(root_iterator::RootIterator{T1, T2, T3}, state)::T3 where {T1, T2, T3} return root_iterator.ab_part end function root(root_iterator::RootIterator{T1, T2, T3}, state)::T3 where {T1, T2, T3} (; degree) = root_iterator if degree == 4 quartic_root(root_iterator, state) elseif degree == 3 cube_root(root_iterator, state) elseif degree == 2 square_root(root_iterator, state) else linear_root(root_iterator, state) end end Base.length(root_iterator::RootIterator) = root_iterator.degree Base.iterate(root_iterator::RootIterator) = (root(root_iterator, 1), 2) Base.iterate(root_iterator::RootIterator, state) = state > root_iterator.degree ? nothing : (root(root_iterator, state), state + 1) function p_coeff(c4::T2, c3::T2, c2::T2)::T2 where {T2} return (8 * c4 * c2 - 3 * c3^2) / (8 * c4^2) end function q_coeff(c4::T2, c3::T2, c2::T2, c1::T2)::T2 where {T2} return (c3^3 - 4 * c4 * c3 * c2 + 8 * c4^2 * c1) / (8 * c4^3) end """ Compute u_tilde, the value of u at the boundary points between linear and spline sections of a SmootedLinearInterpolation curve. """ function get_spline_ends(u, Δu, λ) u_tilde = zeros(2 * length(u)) u_tilde[1] = u[1] u_tilde[2:2:(end - 1)] = u[1:(end - 1)] .+ (λ / 2) .* Δu[2:(end - 1)] u_tilde[3:2:end] = u[2:end] .- (λ / 2) .* Δu[2:(end - 1)] u_tilde[end] = u[end] return u_tilde end """ LinearInterpolation(A::SmoothedLinearInterpolation; n_samples = 10) Converting a SmoothedLinearInterpolation object into LinearInterpolation object by sampling the spline sections. The main usage of this is that a LinearInterpolation and especially its integration inverse are much cheaper to evaluate than the original smoothed equivalents. Arguments - `A`: The SmoothedLinearInterpolation object ## Keyword Arguments - `n_samples`: The number of samples per spline section """ function DataInterpolations.LinearInterpolation( A::SmoothedLinearInterpolation; n_samples = 10, )::LinearInterpolation t = zeros(2 + (length(A.t) - 2) * n_samples) for i in eachindex(A.t) if i == 1 t[1] = A.t[1] elseif i == length(A.t) t[end] = A.t[end] else t_tildeⱼ = A.cache.t_tilde[2 * i - 1] t_tildeⱼ₊₁ = A.cache.t_tilde[2 * i] t[(2 + (i - 2) * n_samples):(1 + (i - 1) * n_samples)] = range(t_tildeⱼ, t_tildeⱼ₊₁; length = n_samples) end end u = A.(t) return LinearInterpolation(u, t; A.extrapolate) end function Base.show(io::IO, cache::AbstractCache{uType}) where {uType} println(io, typeof(cache)) println( io, "Note: t, u stand for the inputs and outputs respectively of the original interpolation, not the inversion.", ) data = Dict{Int, Vector{AbstractVector}}() header = Dict{Int, Vector{Symbol}}() for propertyname in propertynames(cache) property = getfield(cache, propertyname) if property isa AbstractVector L = length(property) if L ∉ keys(data) data[L] = AbstractVector[] header[L] = Symbol[] end push!(header[L], propertyname) push!(data[L], property) end end for L in keys(data) data_L = hcat(data[L]...) header_L = header[L] pretty_table(io, data_L; header = header_L, vcrop_mode = :middle) end end function forward_itp(A::LinearInterpolationIntInv) return LinearInterpolation(A.cache.u, A.u; A.extrapolate) end function forward_itp(A::SmoothedLinearInterpolationIntInv) linear_itp = DataInterpolations.LinearInterpolation(A.cache.u, A.cache.t) return SmoothedLinearInterpolation( A.cache.u, A.cache.t, A.cache, A.cache.λ, linear_itp, A.extrapolate, ) end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
1512
using SmoothInterpolation using Random using ForwardDiff @testset "SmoothedLinearInterpolation degenerate" begin Random.seed!(1) ε = 1e-5 u = cumsum(rand(5)) t = [1.0, 2.0, 3.0, 4.0, 5.0] itp = SmoothedLinearInterpolation(u, t; extrapolate = true) u₋ = @. itp(itp.cache.t_tilde - ε) u₊ = @. itp(itp.cache.t_tilde + ε) @test u₋ ≈ u₊ atol = 1e-4 end @testset "SmoothedLinearInterpolation non-degenerate" begin Random.seed!(1) ε = 1e-5 u = cumsum(rand(5)) t = cumsum(rand(5) .+ (1:5)) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) u₋ = @. itp(itp.cache.t_tilde - ε) u₊ = @. itp(itp.cache.t_tilde + ε) @test u₋ ≈ u₊ atol = 1e-4 end @testset "SmoothedLinearInterpolation degenerate derivative" begin Random.seed!(1) ε = 1e-5 u = cumsum(rand(5)) t = [1.0, 2.0, 3.0, 4.0, 5.0] itp = SmoothedLinearInterpolation(u, t; extrapolate = true) du₋ = ForwardDiff.derivative.(Ref(itp), itp.cache.t_tilde .- ε) du₊ = ForwardDiff.derivative.(Ref(itp), itp.cache.t_tilde .+ ε) @test du₋ ≈ du₊ atol = 1e-4 end @testset "SmoothedLinearInterpolation non-degenerate derivative" begin Random.seed!(1) ε = 1e-5 u = cumsum(rand(5)) t = cumsum(rand(5) .+ (1:5)) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) du₋ = ForwardDiff.derivative.(Ref(itp), itp.cache.t_tilde .- ε) du₊ = ForwardDiff.derivative.(Ref(itp), itp.cache.t_tilde .+ ε) @test du₋ ≈ du₊ atol = 1e-4 end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
1423
using Random using DataInterpolations using SmoothInterpolation using ForwardDiff @testset "SmoothedLinearInterpolation" begin Random.seed!(10) t = cumsum(rand(10)) u = rand(10) t_eval = (t[1] - 1):0.01:(t[end] + 1) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) u_deriv_eval = DataInterpolations.derivative.(Ref(itp), t_eval) u_deriv_check = ForwardDiff.derivative.(Ref(itp), t_eval) @test u_deriv_eval ≈ u_deriv_check end @testset "LinearInterpolationIntInv" begin Random.seed!(10) t = cumsum(rand(10)) u = rand(10) itp = LinearInterpolation(u, t; extrapolate = true) itp_int_inv = invert_integral(itp) u_int_eval = itp_int_inv.t[1]:0.01:(itp_int_inv.t[end] + 1) t_deriv_eval = DataInterpolations.derivative.(Ref(itp_int_inv), u_int_eval) t_deriv_check = ForwardDiff.derivative.(Ref(itp_int_inv), u_int_eval) @test t_deriv_eval ≈ t_deriv_check end @testset "SmoothedLinearInterpolationIntInv" begin Random.seed!(10) t = cumsum(rand(10)) u = rand(10) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) itp_int_inv = invert_integral(itp) u_int_eval = itp_int_inv.t[1]:0.01:(itp_int_inv.t[end] + 1) t_deriv_eval = DataInterpolations.derivative.(Ref(itp_int_inv), u_int_eval) t_deriv_check = ForwardDiff.derivative.(Ref(itp_int_inv), u_int_eval) @test t_deriv_eval ≈ t_deriv_check end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
415
using SmoothInterpolation @testset "SmoothedLinearInterpolation" begin u = [1.0, 2.0, 3.0, 4.0] t = [1.0, 2.0, 3.0, 4.0] itp = SmoothedLinearInterpolation(u, t; extrapolate = true) @test itp(0.0) ≈ 0.0 @test itp(5.0) ≈ 5.0 u = zeros(5) t = [1.0, 2.0, 3.0, 4.0, 5.0] itp = SmoothedLinearInterpolation(u, t; extrapolate = true) @test itp(0.0) ≈ 0.0 @test itp(5.0) ≈ 0.0 end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
1157
using DataInterpolations using SmoothInterpolation using Random using ForwardDiff @testset "SmoothedLinearInterpolation integration outcome" begin Random.seed!(1) u = rand(5) t = cumsum(rand(5)) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) # With extrapolation t_eval = t[1]:0.1:(t[end] + 1) u_int = DataInterpolations.integral.(Ref(itp), t_eval) # Numerical integration u_eval = itp.(t_eval) u_int_num = 0.5 * 0.1 * (u_eval[2:end] + u_eval[1:(end - 1)]) u_int_num = cumsum(u_int_num) pushfirst!(u_int_num, 0.0) @test u_int ≈ u_int_num rtol = 1e-3 end @testset "SmoothedLinearInterpolation integration derivative" begin Random.seed!(1) t = cumsum(rand(5)) u = rand(5) t = [1.0, 2.0, 3.0, 4.0, 5.0] itp = SmoothedLinearInterpolation(u, t; extrapolate = true) # With extrapolation t_eval = t[1]:0.1:(t[end] + 1) u_eval = itp.(t_eval) integral = t -> DataInterpolations.integral(itp, t) u_eval_ = ForwardDiff.derivative.(Ref(integral), t_eval) # Automatic derivative at t = itp.t[1] fails (#25) @test u_eval[2:end] ≈ u_eval_[2:end] end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
2103
using DataInterpolations using SmoothInterpolation using Random @testset "SmoothedLinearInterpolation degenerate" begin Random.seed!(1) u = cumsum(rand(5)) t = [1.0, 2.0, 3.0, 4.0, 5.0] itp = SmoothedLinearInterpolation(u, t) @test all(itp.cache.ΔΔt .≈ 0) @test itp.(1.5:0.3:5.0) ≈ [ 0.24799, 0.35276, 0.49293, 0.70214, 0.91179, 1.11923, 1.30991, 1.49839, 1.68723, 1.93269, 2.20716, 2.48164, ] atol = 1e-4 @test_nowarn string(itp.cache) end @testset "SmoothedLinearInterpolation non-degenerate" begin Random.seed!(2) u = cumsum(rand(5)) t = cumsum(rand(5) .+ (1:5)) itp = SmoothedLinearInterpolation(u, t) @test !any(itp.cache.ΔΔt[2:(end - 1)] .≈ 0) @test itp.(t[1]:1.2:t[end]) ≈ [ 0.00225, 0.30983, 0.61718, 0.88465, 1.14094, 1.39383, 1.60492, 1.80825, 2.01157, 2.19797, 2.27307, 2.32361, 2.37415, 2.42469, ] atol = 1e-4 @test_nowarn string(itp) end @testset "LinearInterpolationIntInv" begin Random.seed!(9) u = rand(5) # Add degenerate case of constant u push!(u, u[end]) t = cumsum(rand(6)) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) itp = LinearInterpolation(itp) itp_int_inv = invert_integral(itp) t_eval = range(t[1], t[end]; length = 200) u_int_eval = DataInterpolations.integral.(Ref(itp), t_eval) @test t_eval ≈ itp_int_inv.(u_int_eval) @test_nowarn string(itp_int_inv.cache) end @testset "SmoothedLinearInterpolationIntInv" begin Random.seed!(9) u = rand(5) # Add degenerate case of constant u push!(u, u[end]) t = cumsum(rand(6)) itp = SmoothedLinearInterpolation(u, t) itp_int_inv = invert_integral(itp) t_eval = range(t[1], t[end]; length = 200) u_int_eval = DataInterpolations.integral.(Ref(itp), t_eval) @test t_eval ≈ itp_int_inv.(u_int_eval) @test_nowarn string(itp_int_inv.cache_integration) end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
361
using SafeTestsets @safetestset "Utils" include("utils_test.jl") @safetestset "Interpolation" include("interpolation_test.jl") @safetestset "Extrapolation" include("extrapolation_test.jl") @safetestset "Continuity" include("continuity_test.jl") @safetestset "Integration" include("integration_test.jl") @safetestset "Derivatives" include("derivatives_test.jl")
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
code
993
using SmoothInterpolation: iterate_roots, p_coeff, q_coeff @testset "Polynomial solving" begin p = 0.0 q = 0.0 # Degree 1 c4 = 0.0 c3 = 0.0 c2 = 0.0 c1 = 2.0 c0 = 4.0 roots = collect(iterate_roots(1, c4, c3, c2, c1, c0, p, q)) @test length(roots) == 1 @test only(roots) ≈ -2.0 # Degree 2 c4 = 0.0 c3 = 0.0 c2 = 1.0 c1 = -1.0 c0 = -1.0 roots = collect(iterate_roots(2, c4, c3, c2, c1, c0, p, q)) @test length(roots) == 2 ϕ = (sqrt(5) + 1) / 2 @test roots ≈ [1 - ϕ, ϕ] # Degree 3 c4 = 0.0 c3 = 3.0 c2 = -63.0 c1 = 429.0 c0 = -945.0 roots = collect(iterate_roots(3, c4, c3, c2, c1, c0, p, q)) @test roots ≈ Float64[5, 9, 7] # Degree 4 c4 = 1.0 c3 = -10.0 c2 = 35.0 c1 = -50.0 c0 = 24.0 p = p_coeff(c4, c3, c2) q = q_coeff(c4, c3, c2, c1) roots = collect(iterate_roots(4, c4, c3, c2, c1, c0, p, q)) @test roots ≈ Float64[2, 4, 3, 1] end
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
1963
[![codecov](https://codecov.io/gh/SouthEndMusic/SmoothInterpolation.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SouthEndmusic/SmoothInterpolation.jl) <img src="docs/src/assets/logo.svg" width="200"> # SmoothInterpolation.jl `SmoothInterpolation.jl` exports 3 interpolation types in the style of [DataInterpolations.jl](https://github.com/SciML/DataInterpolations.jl): - `SmoothedLinearInterpolation`, a type of linear interpolation with well-behaved smoothed corners; - `SmoothedLinearInterpolationIntInv`, the inverse of the antiderivative of a `SmoothedLinearInterpolation` if it exists; - `LinearInterpolationInvInv`, the inverse of the antiderivative of a `LinearInterpolation` if it exists. ## Installation Currently you can only install as below. ``` pkg> dev https://github.com/SouthEndMusic/SmoothInterpolation.jl ``` ## Supported features Not all features for interpolation objects from `DataInterpolations.jl` are currently supported. | | Evaluation | Derivative | Integration | | ----------------------------------- | ---------- | ------------- | ------------------------------------------ | | `SmoothedLinearInterpolation` | Supported | supported | Supported | | `SmoothedLinearInterpolationIntInv` | Supported | supported | Not supported | | `LinearInterpolationIntInv` | Supported | supported | Not supported | If you wish to use one of the currently unsupported features, please [write an issue](https://github.com/SouthEndMusic/SmoothInterpolation.jl/issues). Note that differentiation can also be achieved with many of the [automatic differentiation packages](https://juliadiff.org/#the_big_list) in the Julia ecosystem. ## Logo The logo is inspired by the [julia logo graphics](https://github.com/JuliaLang/julia-logo-graphics).
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
248
# API Documentation for `SmoothInterpolation.jl`'s public interface. ```@docs SmoothedLinearInterpolation LinearInterpolation(::SmoothedLinearInterpolation) invert_integral(::LinearInterpolation) invert_integral(::SmoothedLinearInterpolation) ```
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
874
# To Cache or not to Cache At the initialization of the interpolation objects exposed by this package, a lot of data is precomputed and cached, see for instance the example below. ```@example 1 import Random # hide Random.seed!(2) # hide using SmoothInterpolation u = rand(10) t = cumsum(rand(10)) itp = SmoothedLinearInterpolation(u, t) itp.cache ``` This means that evaluation of the interpolation is faster, at the cost of more memory allocation at initialization. This is in contrast to the interpolation in `DataInterpolations.jl`, where very little to no memory is allocated at the initialization of interpolation objects. What is better depends on the application. If you want to use the interpolation objects exposed by this package without pre-allocation, please let me know in [this issue](https://github.com/SouthEndMusic/SmoothInterpolation.jl/issues/45).
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
2477
# Examples ## Smoothed linear interpolation ```@example 1 import Random # hide Random.seed!(2) # hide using SmoothInterpolation u = rand(10) t = cumsum(rand(10)) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) ``` ```@example 1 using Plots scatter(itp.t, itp.u, label = "Input") plot!(itp, label = "Smoothed Linear Interpolation") ``` ## Inverting the integral ```@example 1 itp_int_inv = invert_integral(itp) V = 1.0 t_V = itp_int_inv(V) t_eval_V = range(t[1], t_V, length = 100) plot!(t_eval_V, itp.(t_eval_V), fill = (:blue, 0, 0.5), label = "area = $V") ``` !!! tip The integral inverse of `SmoothedLinearInterpolation` is expensive to compute as it involves solving a quartic equation. If performance is important to your application, consider converting your `SmoothedLinearInterpolation` object into a `LinearInterpolation` object using `LinearInterpolation(A::SmoothedLinearInterpolation; n_samples = 10)`, which samples the spline sections. The inverse of this is much cheaper. ## The effect of the parameter λ ```@example 1 using ColorSchemes t = [0, 1, 2, 2.5, 3, 3.5, 4] u = Float64[-1, 1, -1, 0, 1, 0, -1] pl = plot() scatter!(t, u, label = "Input", legend = :top) N = 101 Λ = range(0, 1, length = N) colors = cgrad(:jet, range(0, 1, length = N)) for (i, (λ, color)) in enumerate(zip(Λ, colors)) itp = SmoothedLinearInterpolation(u, t; λ) label = i % 10 == 1 ? "λ = $λ" : nothing plot!(itp; label, color) end pl ``` ## Derivatives Derivatives can be calculated using `DataInterpolations.derivative(itp, t)`. There is a quite simple relationship between the derivative of the inverse of the integral of a function and the function itself: ```math (F^{-1})'(V) = \frac{1}{f(F^{-1}(V))}. ``` See also the code example below. ```@example 1 using DataInterpolations using ForwardDiff Random.seed!(15) # hide t = cumsum(rand(10)) u = rand(10) itp = SmoothedLinearInterpolation(u, t; extrapolate = true) itp_int_inv = invert_integral(itp) u_int_eval = itp_int_inv.t[1]:0.01:(itp_int_inv.t[end] + 1) # Compute the hardcoded SmoothedLinearInterpolationIntInv derivative t_deriv_eval = DataInterpolations.derivative.(Ref(itp_int_inv), u_int_eval) # Compute the SmoothedLinearInterpolationIntInv derivative using ForwardDiff t_deriv_forward_diff = ForwardDiff.derivative.(Ref(itp_int_inv), u_int_eval) # Compare results @show t_deriv_eval ≈ 1 ./ itp.(itp_int_inv.(u_int_eval)) @show t_deriv_eval ≈ t_deriv_forward_diff ```
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
1748
# SmoothInterpolation.jl `SmoothInterpolation.jl` exports 2 interpolation types in the style of [DataInterpolations.jl](https://github.com/SciML/DataInterpolations.jl): - `SmoothedLinearInterpolation`, a type of linear interpolation with well-behaved smoothed corners; - `SmoothedLinearInterpolationIntInv`, the inverse of the antiderivative of a `SmoothedLinearInterpolation` if it exists; - `LinearInterpolationInvInv`, the inverse of the antiderivative of a `LinearInterpolation` if it exists. ## Installation Currently you can only install as below. ``` pkg> dev https://github.com/SouthEndMusic/SmoothInterpolation.jl ``` ## Supported features Not all features for interpolation objects from `DataInterpolations.jl` are currently supported. | | Evaluation | Derivative | Integration | | ----------------------------------- | ---------- | ------------- | ------------------------------------------ | | `SmoothedLinearInterpolation` | Supported | supported | Supported | | `SmoothedLinearInterpolationIntInv` | Supported | supported | Not supported | | `LinearInterpolationIntInv` | Supported | supported | Not supported | If you wish to use one of the currently unsupported features, please [write an issue](https://github.com/SouthEndMusic/SmoothInterpolation.jl/issues). Note that differentiation can also be achieved with many of the [automatic differentiation packages](https://juliadiff.org/#the_big_list) in the Julia ecosystem. ## Logo The logo is inspired by the [julia logo graphics](https://github.com/JuliaLang/julia-logo-graphics).
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
5782
# Construction of smoothed linear interpolation ## Linear interpolation Given is the set of points $(\mathbf{p}_i)_{i=1}^n$ in $\mathbb{R}^2$, where we write $t$ and $u$ for the respective coordinates. We assume that the $t_i$ are strictly increasing. Linear interpolation of these points is then simply given by ```math \begin{equation} u|_{[t_{i-1}, t_i]}(t) = \frac{u_i-u_{i-1}}{t_i-t_{i-1}}(t-t_{i-1}). \end{equation} ``` Note that there is a discontinuity in derivative of the function $u$ at each $t_i$ for $i = 2, \ldots, n-1$. ## Smoothed spline corners To get rid of the discontinuities mentioned in the previous section, we take out a section of the interpolation around each discontinuity and replace it with a spline curve. ### New points For the construction of the smoothing we consider the consecutive points ```math \mathbf{p}_{i-1}, \mathbf{p}_{i}, \mathbf{p}_{i+1}. ``` Now we disregard $\mathbf{p}_i$, and introduce 2 new points ```math \begin{equation} \begin{aligned} \mathbf{p}_{i-\frac{\lambda}{2}} =&\; \mathbf{p}_i - \frac{\lambda}{2}\Delta\mathbf{p}_i \\ \mathbf{p}_{i+\frac{\lambda}{2}} =&\; \mathbf{p}_i + \frac{\lambda}{2}\Delta\mathbf{p}_{i+1} \end{aligned} \end{equation} ``` where $\Delta\mathbf{p}_i = \mathbf{p}_i - \mathbf{p}_{i-1}$ and $\lambda \in [0,1]$. We will connect these points with a spline curve, and so $\lambda$ determines the size of the interval around $\mathbf{p}_i$ that is replaced by the spline curve. ### Deriving the spline curve We want to connect $\mathbf{p}_{i-\frac{\lambda}{2}}$ and $\mathbf{p}_{i+\frac{\lambda}{2}}$ with a smooth parametric curve ```math \begin{equation} \mathbf{C}_i : [0,1] \rightarrow \mathbb{R}^2 \end{equation} ``` such that: - The connection can be expressed as ```math \begin{equation} u_i : \left[t_{i - \frac{\lambda}{2}}, t_{i + \frac{\lambda}{2}}\right] \rightarrow \mathbb{R}, \end{equation} ``` i.e. the $t$ component of the curve must be invertible. - The connection is continuous, i.e. ```math \begin{equation} \mathbf{C}_i(0) = \mathbf{p}_{i-\frac{\lambda}{2}}, \quad \mathbf{C}_i(1) = \mathbf{p}_{i+\frac{\lambda}{2}}. \end{equation} ``` - The derivative of the connection is continuous, i.e. ```math \begin{equation} \mathbf{C}'_i(0) \propto \Delta\mathbf{p}_i, \quad \mathbf{C}'_i(1) \propto \Delta\mathbf{p}_{i+1}. \end{equation} ``` We can achieve this by repeated interpolation. The first interpolations are ```math \begin{equation} \begin{aligned} \mathbf{C}_{i-\frac{\lambda}{2}}(s) = (1-s)\mathbf{p}_{i-\frac{\lambda}{2}} + s\mathbf{p}_i \\ \mathbf{C}_{i+\frac{\lambda}{2}}(s) = (1-s)\mathbf{p}_i + s\mathbf{p}_{i+\frac{\lambda}{2}} \end{aligned} \end{equation} ``` and combining these yields ```math \begin{equation} \begin{aligned} \mathbf{C}_i(s) =&\; (1-s)\mathbf{C}_{i-\frac{\lambda}{2}}(s) + s\mathbf{C}_{i+\frac{\lambda}{2}}(s) \\ =&\; (1-s)^2\mathbf{p}_{i-\frac{\lambda}{2}} + 2s(1-s)\mathbf{p}_i + s^2\mathbf{p}_{i+\frac{\lambda}{2}} \\ =&\; \frac{\lambda}{2}(\Delta \mathbf{p}_{i+1} - \Delta \mathbf{p}_i)s^2 + \lambda \Delta \mathbf{p}_i s + \mathbf{p}_{i-\frac{\lambda}{2}} \end{aligned} \end{equation} ``` Note that the second formulation tells us that $C_i$ is a convex combination of $\mathbf{p}_{i-\frac{\lambda}{1}}, \mathbf{p}_i, \mathbf{p}_{i + \frac{\lambda}{2}}$ for all $s \in [0,1]$ and thus always is in the convex hull of these points. ### Writing spline curve as a function $u(t)$ To write the spline curve as a function $u(t)$, we first need to obtain $s$ from $t$: ```math \begin{equation} T_i(s) = \frac{1}{2}\lambda(\Delta t_{i+1} - \Delta t_i)s^2 + \lambda\Delta t_i s + t_{i-\frac{\lambda}{2}} = t. \end{equation} ``` This yields ```math \begin{equation} S_i(t) = \frac{ -\lambda \Delta t_i + \sqrt{\lambda^2\Delta t_i^2 + 2\lambda (\Delta t_{i+1} - \Delta t_i)\left(t - t_{i-\frac{\lambda}{2}}\right)} }{ \lambda (\Delta t_{i+1} - \Delta t_i) }, \end{equation} ``` or, in the degenerate case that $\Delta t_{i+1} - \Delta t_i = 0$ (i.e. the 3 points are equally spaced), ```math \begin{equation} S_i(t) = \frac{1}{\lambda}\frac{t - t_{i - \frac{\lambda}{2}}}{\Delta t_i}. \end{equation} ``` Note that $\Delta t_i \ne 0$ by the assumption that the $t_n$ are strictly increasing. We conclude: ```math \begin{equation} u_i(t) = \frac{\lambda}{2}(\Delta u_{i+1} - \Delta u_i)S_i(t)^2 + \lambda \Delta u_i S_i(t) + u_{i - \frac{\lambda}{2}}. \end{equation} ``` ## Extrapolation We define $\Delta \mathbf{p}_{1} = \Delta \mathbf{p}_{2}$ and $\Delta \mathbf{p}_{n+1} = \Delta \mathbf{p}_n$. This yields ```math \begin{equation} u_1(t) = \frac{\Delta u_2 }{\Delta t_2}(t - t_1) + u_1, \quad t \in \left[t_1, t_{1 + \frac{\lambda}{2}}\right] \end{equation} ``` and ```math \begin{equation} u_n(t) = \frac{\Delta u_n}{\Delta t_n}(t - t_n) + u_n, \quad t \in \left[t_{n - \frac{\lambda}{2}}, t_n\right]. \end{equation} ``` This means that the interpolation is linear towards its boundaries and thus can be smoothly extended linearly. ## Evaluation Once it is determined that the input $t$ is in the interval $[t_{i-1}, t_i]$, the interpolation is evalued as follows: ```math \begin{equation} \begin{aligned} u|_{[t_{i-1}, t_i]}(t) = \begin{cases} u_{i-1}(t) &\text{if }& t_{i-1} \leq t \leq t_{i - 1 + \frac{\lambda}{2}} \\ u_{i-1} + \frac{\Delta u_i}{\Delta t_i}(t - t_{i-1}) &\text{if }& t_{i - 1 + \frac{\lambda}{2}} \leq t \leq t_{i - \frac{\lambda}{2}} \\ u_i(t) &\text{if }& t_{i - \frac{\lambda}{2}} \leq t \leq t_i \end{cases} \end{aligned} \end{equation} ```
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
2978
# Integrating ## Complete intervals We are interested in integrating the smoothed interpolation from the start to some $t > t_1$. To compute this efficiently we need to know the integral of the interpolation over the various intervals. More precisely: - For the linear sections we obtain ```math \begin{equation} \int_{t_{i-1+\frac{\lambda}{2}}}^{t_{i-\frac{\lambda}{2}}} u_{i-1} + \frac{\Delta u_i}{\Delta t_i}(\tau - t_{i-1}) \text{d}\tau = (1 - \lambda)\Delta t_i \left[ u_{i-1} + \frac{1}{2}(1 - \lambda) \Delta u_i \right]. \end{equation} ``` - For the spline sections we obtain ```math \begin{equation} \begin{aligned} \int_{t_{i-\frac{\lambda}{2}}}^{t_{i + \frac{\lambda}{2}}} u_i(\tau)\text{d}\tau &=& \int_0^1 T'_i(s)u_i(T_i(s))\text{d}s \\ &=& \int_0^1 \left[\lambda(\Delta t_{i+1} - \Delta t_i)s + \lambda\Delta t_i\right] \left[\frac{\lambda}{2}(\Delta u_{i+1} - \Delta u_i)s^2 + \lambda \Delta u_i s + u_{i - \frac{\lambda}{2}}\right] \text{d}s \\ &=& \frac{\lambda^2}{24} \left[ \Delta t_i \left(-3\Delta u_i + \Delta u_{i+1}\right) + \Delta t_{i+1} \left(-\Delta u_i + 3 \Delta u_{i+1}\right) \right] + \frac{\lambda}{2}(\Delta t_i + \Delta t_{i+1})u_i. \end{aligned} \end{equation} ``` ## Incomplete intervals We now define the new set of points $(\tilde{\mathbf{p}}_j)_{j=1}^{2n}$ given by all the $\mathbf{p}_{i - \frac{\lambda}{2}}, \mathbf{p}_{i+ \frac{\lambda}{2}}$ and the original boundary points, sorted by $t$. Then for $t \in \left[\tilde{t}_{J-1}, \tilde{t}_J\right]$ we have ```math \begin{equation} \begin{aligned} U(t) = \int_{t_1}^t u(\tau)\text{d}\tau = \sum_{j = 2}^{J-1} \int_{\tilde{t}_{j-1}}^{\tilde{t}_j} u(\tau)\text{d}\tau + \int_{\tilde{t}_{J-1}}^t u(\tau)\text{d}\tau, \end{aligned} \end{equation} ``` Where the summed integrals are given by the values above. For the last integral: - If $J$ is odd then the last integral is of a linear section: ```math \begin{equation} \int_{\tilde{t}_{J-1}}^t u(\tau)\text{d}\tau = \left((t-t_I) - \frac{\lambda}{2}\Delta t_{I+1}\right)u_I + \frac{1}{2}\frac{\Delta u_{I+1}}{\Delta t_{I+1}}\left[(t-t_I)^2 - \frac{\lambda^2}{4}\Delta t_{I+1}^2\right] \end{equation} ``` where $I = \frac{J-1}{2}$. - If $J$ is even the last integral is of a spline section: ```math \begin{equation} \begin{aligned} \int_{\tilde{t}_{J-1}}^t u_I(\tau)\text{d}\tau &=& \int_0^{S_I(t)} T'_I(s)u_I\left(T_I(s)\right)\text{d}s \\ &=& \int_0^{S_I(t)} \left[\lambda(\Delta t_{I+1} - \Delta t_I)s + \lambda\Delta t_I\right] \left[\frac{\lambda}{2}(\Delta u_{I+1} - \Delta u_I)s^2 + \lambda \Delta u_I s + u_{I - \frac{\lambda}{2}}\right] \text{d}s \end{aligned} \end{equation} ``` where $I = \frac{J}{2}$.
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
1840
# Inverting the integral We are interested in inverting $U(t)$ as defined above. Note that $U(t)$ is invertible if $u(t)$ is positive for all $t > t_1$. If we define ```math \begin{equation} U_J = \int_{t_1}^{\tilde{t}_J}u(\tau)\text{d}\tau = \sum_{j = 2}^{J} \int_{\tilde{t}_{j-1}}^{\tilde{t}_j} u(\tau)\text{d}\tau, \end{equation} ``` then solving $U(t) = V$ for $t$ where $V \in [U_{J-1}, U_J]$ amounts to solving ```math \begin{equation} \int_{\tilde{t}_{J-1}}^t u(\tau)\text{d}\tau = V - U_{J-1}. \end{equation} ``` For linear sections this yields a quadratic equation in $t$ with solution ```math \begin{equation} t = t_I + \left[-\frac{u_I}{\Delta u_{I+1}} + \text{sign}\left(\frac{u_{I+1}}{\Delta u_{I+1}}\right)\sqrt{\left(\frac{u_I}{\Delta u_{I+1}}\right)^2 +\lambda\left(\frac{u_I}{\Delta u_{I+1}} + \frac{\lambda}{4}\right) +2\frac{V - U_{J-1}}{\Delta t_{I+1}\Delta u_{I+1}}}\right]\Delta t_{I+1}. \end{equation} ``` For spline sections this leads to a quartic equation in $s$: ```math \begin{equation} \begin{aligned} 3(\Delta t_{I+1} - \Delta t_I)(\Delta u_{I+1} - \Delta u_I)s^4 + \\ 4\Delta t_I (\Delta u_{I+1} - \Delta u_I) s^3 + \\ 12(\Delta t_{I+1} - \Delta t_I)\left(\Delta u_I + \frac{u_{I - \frac{\lambda}{2}}}{\lambda}\right)s^2 + \\ 24 \Delta t_I \left(\Delta u_I + \frac{u_{I - \frac{\lambda}{2}}}{\lambda}\right) s + \\ - \frac{24}{\lambda^2}(V - U_{J-1}) = 0 \end{aligned} \end{equation} ``` This quartic equation can be solved with the [quartic formula](https://en.wikipedia.org/wiki/Quartic_function#General_formula_for_roots). [Quartic equation at Wolfram Alpha](https://www.wolframalpha.com/input?i=integrate+%28lambda*%28t_2+-+t_1%29*s+%2B+lambda*t_1%29*%28lambda%2F2+*+%28u_2+-+u_1%29*s%5E2+%2B+lambda*u_1+%2B+u_3%29+ds+from+0+to+S)
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.1.0
2870c7c22941912749fa593881903a1cd18057fc
docs
898
# Motivation I didn't like the options available in `DataInterpolations.jl` for my application, so I came up with my own concept that mainly keeps the linear interpolation intact, but rounds of the corners between the linear sections. The main recipe is this, per corner: - Add 2 points on either side close to the corner, on their respectilve linear sections; - Remove the corner point; - Connect the 2 new points with a spline curve. The advantage of the spline curve over a polynomial one is that the connection can be $C^1$ smooth (i.e. the smoothed curve and its derivative are continuous) without the possibility of introducing large oscillations with the use of degree 3 polynomials. ## Application The original application for this package is [Ribasim](https://github.com/Deltares/Ribasim), where smooth interpolation can help with the convergence of solving the non-linear ODE problem.
SmoothInterpolation
https://github.com/SouthEndMusic/SmoothInterpolation.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
769
using TextEncodeBase using Documenter DocMeta.setdocmeta!(TextEncodeBase, :DocTestSetup, :(using TextEncodeBase); recursive=true) makedocs(; modules=[TextEncodeBase], authors="chengchingwen <[email protected]> and contributors", repo="https://github.com/chengchingwen/TextEncodeBase.jl/blob/{commit}{path}#{line}", sitename="TextEncodeBase.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://chengchingwen.github.io/TextEncodeBase.jl", assets=String[], ), pages=[ "Home" => [ "index.md", "design.md", "api.md", ], ], ) deploydocs(; repo="github.com/chengchingwen/TextEncodeBase.jl", devbranch="main", )
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
5427
using Transformers using Transformers.Pretrain using Transformers.BidirectionalEncoder: WordPiece, bert_cased_tokenizer using TextEncodeBase using TextEncodeBase: NestedTokenizer, BaseTokenization, Sentence, Word, SubWord, getvalue, Splittable struct BertCasedTokenization <: BaseTokenization wordpiece::WordPiece end # split sentence with `bert_cased_tokenizer` (define with WordTokenizers.jl's `TokenBuffer`) TextEncodeBase.splitting(::BertCasedTokenization, s::Sentence) = bert_cased_tokenizer(getvalue(s)) # word is splittable with WordPiece TextEncodeBase.splittability(::BertCasedTokenization, w::Word) = Splittable() # split word with `WordPiece` TextEncodeBase.splitting(t::BertCasedTokenization, w::Word) = t.wordpiece(getvalue(w)) tokenizer = pretrain"bert-cased_L-12_H-768_A-12:tokenizer" # this is just `bert_cased_tokenizer` wordpiece = pretrain"bert-cased_L-12_H-768_A-12:wordpiece" tkr = NestedTokenizer(BertCasedTokenization(wordpiece)) text1 = "Peter Piper picked a peck of pickled peppers" single_without_TEB = text1 |> tokenizer |> wordpiece single_with_TEB = tkr(Sentence(text1)) # `NestedTokenizer` return vector of vector @assert single_without_TEB == map(getvalue, single_with_TEB[]) #= julia> single_without_TEB 11-element Vector{String}: "Peter" "Piper" "picked" "a" "p" "##eck" "of" "pick" "##led" "pepper" "##s" julia> single_with_TEB 1-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] julia> single_without_TEB == map(getvalue, single_with_TEB[]) true =# # define stage for batch of data TextEncodeBase.@stage BatchSentence{A<:AbstractVector, M} TextEncodeBase.DocumentStage # struct BatchSentence{A<:AbstractVector, M} <: TextEncodeBase.DocumentStage # x::A # meta::M # end # BatchSentence(x) = BatchSentence(x, nothing) # TextEncodeBase.setmeta(x::BatchSentence, meta) = BatchSentence(x.x, meta) # TextEncodeBase.setvalue(x::BatchSentence, y) = BatchSentence(y, x.meta) # splittability and split behavior for `BatchSentence` TextEncodeBase.splittability(::BertCasedTokenization, ::BatchSentence) = Splittable() TextEncodeBase.splitting(::BertCasedTokenization, s::BatchSentence) = s.x text2 = "Fuzzy Wuzzy was a bear" texts = [text1, text2] batch_without_TEB = map(wordpiece∘tokenizer, texts) batch_with_TEB = tkr(BatchSentence(texts)) @assert batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) #= julia> batch_without_TEB 2-element Vector{Vector{String}}: ["Peter", "Piper", "picked", "a", "p", "##eck", "of", "pick", "##led", "pepper", "##s"] ["Fu", "##zzy", "Wu", "##zzy", "was", "a", "bear"] julia> batch_with_TEB 2-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] [Token("Fu"), Token("##zzy"), Token("Wu"), Token("##zzy"), Token("was"), Token("a"), Token("bear")] julia> batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) true =# using TextEncodeBase: IndexedTokenization itkr = NestedTokenizer(IndexedTokenization(BertCasedTokenization(wordpiece))) ibatch_with_TEB = itkr(BatchSentence(texts)) #= # subword from same word having the same `word_id` julia> ibatch_with_TEB[1] 11-element Vector{TextEncodeBase.TokenStage}: Token("Peter", (sentence_id = 1, word_id = 1, token_id = 1)) Token("Piper", (sentence_id = 1, word_id = 2, token_id = 2)) Token("picked", (sentence_id = 1, word_id = 3, token_id = 3)) Token("a", (sentence_id = 1, word_id = 4, token_id = 4)) Token("p", (sentence_id = 1, word_id = 5, token_id = 5)) Token("##eck", (sentence_id = 1, word_id = 5, token_id = 6)) Token("of", (sentence_id = 1, word_id = 6, token_id = 7)) Token("pick", (sentence_id = 1, word_id = 7, token_id = 8)) Token("##led", (sentence_id = 1, word_id = 7, token_id = 9)) Token("pepper", (sentence_id = 1, word_id = 8, token_id = 10)) Token("##s", (sentence_id = 1, word_id = 8, token_id = 11)) julia> ibatch_with_TEB[2] 7-element Vector{TextEncodeBase.TokenStage}: Token("Fu", (sentence_id = 2, word_id = 1, token_id = 1)) Token("##zzy", (sentence_id = 2, word_id = 1, token_id = 2)) Token("Wu", (sentence_id = 2, word_id = 2, token_id = 3)) Token("##zzy", (sentence_id = 2, word_id = 2, token_id = 4)) Token("was", (sentence_id = 2, word_id = 3, token_id = 5)) Token("a", (sentence_id = 2, word_id = 4, token_id = 6)) Token("bear", (sentence_id = 2, word_id = 5, token_id = 7)) =# using TextEncodeBase: nestedcall, with_head_tail, trunc_and_pad, nested2batch # construct `Vocab` with `WordPiece` vocab = Vocab(wordpiece.vocab, wordpiece.vocab[wordpiece.unk_idx]) # define encoder with `TextEncoder` enc = TextEncoder( itkr, vocab, nested2batch ∘ trunc_and_pad(nothing, vocab.unk) ∘ with_head_tail("[CLS]", "[SEP]") ∘ nestedcall(getvalue) ) #= julia> encode(enc, BatchSentence(texts)) 28996x13x2 OneHotArray{28996, 3, Matrix{OneHot{0x00007144}}}: [...] julia> decode(enc, ans) 13×2 Matrix{String}: "[CLS]" "[CLS]" "Peter" "Fu" "Piper" "##zzy" "picked" "Wu" "a" "##zzy" "p" "was" "##eck" "a" "of" "bear" "pick" "[SEP]" "##led" "[UNK]" "pepper" "[UNK]" "##s" "[UNK]" "[SEP]" "[UNK]" =#
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
790
module TextEncodeBase using PartialFunctions import WordTokenizers using PrimitiveOneHot using PrimitiveOneHot: OneHot # tokenize export AbstractTokenizer, AbstractTokenization include("./utils.jl") include("./base.jl") include("./indexed.jl") include("./match.jl") include("./split.jl") include("./tkrs.jl") include("./batch.jl") include("./macro.jl") include("./normalize.jl") include("./replace.jl") # vocab export AbstractVocabulary, Vocab, lookup, OneHot, OneHotArray include("./lookupvector.jl") include("./vocab.jl") # reexport pipeline using FuncPipelines export Pipeline, Pipelines, PipeGet # encode export AbstractTextEncoder, TextEncoder, encode, decode, encode_indices, decode_indices, onehot_encode, decode_text include("./encode.jl") # utils export matchsplits end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
13616
using DataStructures: MutableLinkedList # DataStructures.jl #883 # The current `append!` behavior for multiple iterable is `push!`, not `append!` # So we overwrite this for correct behavior function Base.append!(l::MutableLinkedList, elt) for v in elt push!(l, v) end return l end using WordTokenizers: rulebased_split_sentences, nltk_word_tokenize """ abstract type for tokenizers. Each tokenizer is link with a tokenization (by defining `tokenization(::Tokenizer) = Tokenization()`). The overall framework dispatch on both tokenizer and tokenization, but most of the time we only add methods for tokenization. This allow further composability and can interfere the tokenization process with given tokenizer. """ abstract type AbstractTokenizer end """ abstract type for tokenization. The tokenization procedure is separate into multiple `TokenStages` and recursive calls of `splitting`, `wrap`, and `tokenize`. `splitting` break string into substrings, `wrap` mark the substrings with new `TokenStages`, and `tokenize` is responsible for the tokenization. """ abstract type AbstractTokenization end """ abstract type for type that wrap input into specific stage for control tokenization. There are six builtin stages in TextEncodeBase (all abstract XStage <: TokenStages): 1. Document <: DocumentStage: the input string is a full document, and thus need to be splitted into multiple sentence. 2. Sentence <: SentenceStage: the input string is a full string, and thus need to be splitted into multiple part (SubSentence/Word/Token). 3. SubSentence <: SubSentenceStage: special wrapper for case where the tokenizer does not directly break sentence all into words/tokens and these pieces contain multiple words/tokens, but you need the information that they are not full sentence. 4. Word <: WordStage: the input string is a single word. 5. SubWord <: SubWordStage: similar to SubSentence, but for word. 6. Token <: TokenStage: the final piece of the tokenization process. Generally, it's used to specify the end of this piece and should never be splitted. Each wrapper have two field: `x` for the input, `meta` for extra information (`nothing` if not provided). """ abstract type TokenStages end abstract type DocumentStage <: TokenStages end abstract type SentenceStage <: TokenStages end abstract type SubSentenceStage <: TokenStages end abstract type WordStage <: TokenStages end abstract type SubWordStage <: TokenStages end abstract type TokenStage <: TokenStages end struct Document{T, M} <: DocumentStage ; x::T; meta::M; end struct Sentence{T, M} <: SentenceStage ; x::T; meta::M; end struct SubSentence{T, M} <: SubSentenceStage ; x::T; meta::M; end struct Word{T, M} <: WordStage ; x::T; meta::M; end struct SubWord{T, M} <: SubWordStage ; x::T; meta::M; end struct Token{T, M} <: TokenStage ; x::T; meta::M; end Document(x) = Document(x, nothing) Sentence(x) = Sentence(x, nothing) SubSentence(x) = SubSentence(x, nothing) Word(x) = Word(x, nothing) SubWord(x) = SubWord(x, nothing) Token(x) = Token(x, nothing) getvalue(x::TokenStages) = x.x getmeta(x::TokenStages) = x.meta hasmeta(x::TokenStages) = !isnothing(getmeta(x)) setmeta(x::Document, meta) = Document(x.x, meta) setmeta(x::Sentence, meta) = Sentence(x.x, meta) setmeta(x::SubSentence, meta) = SubSentence(x.x, meta) setmeta(x::Word, meta) = Word(x.x, meta) setmeta(x::SubWord, meta) = SubWord(x.x, meta) setmeta(x::Token, meta) = Token(x.x, meta) setvalue(x::Document, y) = Document(y, x.meta) setvalue(x::Sentence, y) = Sentence(y, x.meta) setvalue(x::SubSentence, y) = SubSentence(y, x.meta) setvalue(x::Word, y) = Word(y, x.meta) setvalue(x::SubWord, y) = SubWord(y, x.meta) setvalue(x::Token, y) = Token(y, x.meta) updatemeta(::Nothing, meta) = meta updatemeta(a::NamedTuple, meta::NamedTuple) = merge(a, meta) updatevalue(f, x::TokenStages) = setvalue(x, f(getvalue(x))) updatemeta(x::TokenStages, meta) = setmeta(x, updatemeta(getmeta(x), meta)) function Base.show(io::IO, t::TokenStages) print(io, typeof(t).name.name) vs = filter(!isnothing, ntuple(i->getfield(t, i), fieldcount(typeof(t)))) if length(vs) == 1 print(io, '(') show(io, vs[1]) print(io, ')') else print(io, vs) end end const ParentStages = Union{Nothing, TokenStages} """ splittability trait The splittability trait decide whether the given combination (tokenizer x tokenization x stage) is splittable or not (`Splittable` or `UnSplittable`). For example, `DefaultTokenization` and `SentenceStage` is splittable (i.e. `splittability(::DefaultTokenization, ::SentenceStage) = Splittable()`). The splittability change the behavior of `tokenize`: if it's splittable, `tokenize` will try to call `splitting` on the input, `wrap` each splitting result and recurse. Otherwise, it will directly call `wrap` and then recurse into `tokenize`. """ abstract type Splittability end struct Splittable <: Splittability end struct UnSplittable <: Splittability end """ splittability(args...) Return the splittability (`Splittable`/`UnSplittable`) of given argument combination. Overload to make a `TokenStages` splittable. """ function splittability end """ splittable(args...) Return `true` if the splittability of given argument combination is `Splittable()`. """ splittable(args...) = splittable(splittability(args...)) splittable(::Splittable) = true splittable(::UnSplittable) = false splitting(::typeof(splittability), args...) = splitting(splittability(args...), args...) splitting(::Splittable, args...) = splitting(args...) splitting(::UnSplittable, args...) = error("Argument is unsplittable: ", args) # dispatch: tokenizer -> parent stage -> tokenization -> token stage let ATR = AbstractTokenizer, AT = AbstractTokenization # splittability: overload to make specific combination splittable global @inline splittability(tkr::ATR, t::AT, x::TokenStages) = splittability(tkr, nothing, t, x) global @inline splittability(tkr::ATR, s::ParentStages, t::AT, x::TokenStages) = splittability(s, t, x) global @inline splittability(::ParentStages, t::AT, x::TokenStages) = splittability(t, x) global @inline splittability(t::AT, x::TokenStages) = UnSplittable() # after `Splittable`, define how to split it global @inline splitting(::ATR, p::ParentStages, t::AT, x::TokenStages) = splitting(p, t, x) global @inline splitting(p::ParentStages, t::AT, x::TokenStages) = splitting(t, x) # a callback for `splitting`, `x` is the result of `splitting(::ATR, ::ParentStages, ::TokenStages)` global @inline splitting(::ATR, p::ParentStages, t::AT, s::TokenStages, x) = splitting(p, t, s, x) global @inline splitting(p::ParentStages, t::AT, s::TokenStages, x) = splitting(t, s, x) global @inline splitting(::AT, ::TokenStages, x) = x # splittable (4-arg): wrap the splitting result into specific `TokenStages`, e.g. "word" => Word("word") global @inline wrap(::ATR, p::ParentStages, t::AT, s::TokenStages, x) = wrap(p, t, s, x) global @inline wrap(p::ParentStages, t::AT, s::TokenStages, x) = wrap(t, s, x) global @inline wrap(::AT, ::TokenStages, x::TokenStages) = x # already wrapped # unsplittable (3-arg): transform the input into next `TokenStages`, e.g. Word("word") => Token("word") global @inline wrap(::ATR, p::ParentStages, t::AT, x::TokenStages) = wrap(p, t, x) global @inline wrap(p::ParentStages, t::AT, s::TokenStages) = wrap(t, s) # the outer-most api, splitting input and recursively tokenize the result. ignore if input is empty global @inline tokenize(tkr::ATR, t::AT, x::TokenStages) = tokenize(tkr, nothing, t, x) global @inline tokenize(tkr::ATR, s::ParentStages, t::AT, x::TokenStages) = tokenize_procedure(tkr, s, t, x) global @inline tokenize(tkr::ATR, s::ParentStages, t::AT, x::TokenStage) = isempty(getvalue(x)) ? TokenStage[] : TokenStage[wrap(tkr, s, t, x)] end """ tokenization_procedure(tokenizer, tokenizaton, stage) The procedure of tokenization (`splitting` + `wrap` + `tokenize`). """ @inline tokenize_procedure(tkr, t, x) = tokenize_procedure(tkr, t, nothing, x) @inline tokenize_procedure(tkr, s, t, x) = collect(tokenize_procedure!(append!, splittability, MutableLinkedList{TokenStage}(), tkr, s, t, x)) @inline tokenize_procedure!(op, v, tkr, s, t, x) = tokenize_procedure!(op, splittability, v, tkr, s, t, x) @inline tokenize_procedure!(op, ::typeof(splittability), v, tkr, s, t, x) = tokenize_procedure!(op, splittability(tkr, s, t, x), v, tkr, s, t, x) function tokenize_procedure!(op, ::Splittable, v, tkr, s, t, x) isempty(getvalue(x)) && return v for sp in splitting(tkr, s, t, x, splitting(splittability, tkr, s, t, x)) v1 = tokenize(tkr, x, t, wrap(tkr, s, t, x, sp)) op(v, v1) end return v end function tokenize_procedure!(op, ::UnSplittable, v, tkr, s, t, x) isempty(getvalue(x)) && return v op(v, tokenize(tkr, x, t, wrap(tkr, s, t, x))) return v end """ splitting(t::AbstractTokenization, x::TokenStages) Split `x` given its tokenization stage. For example, the default behavior of a document stage is splitting into sentences (with `WordTokenizers.split_sentences`). Overload this method for custom tokenization. """ function splitting end """ wrap(t::AbstractTokenization, s::TokenStages, x) Mark the tokenization stage of `x`, which is part of the splitting result of `s`. For example, if we are doing simple whitespace tokenization and at the sentence stage, then `x` is just single word of `s` and thus return `Word(x)` (or `Token(x)`). Skip if `x` is already a `TokenStages`. (this method only apply to splittable stages) Overload this method to control the tokenization process. """ function wrap end @eval $((@macroexpand @doc """ wrap(t::AbstractTokenization, x::TokenStages) A handler for unsplittable stages (token/word/...). Overload this method for custom transform. """ function wrap(t::AbstractTokenization, x::TokenStages) end ).args[2]) # abstract type for convenience abstract type BaseTokenization <: AbstractTokenization end struct DefaultTokenization <: BaseTokenization end splittability(::BaseTokenization, x::Union{DocumentStage, SentenceStage, SubSentenceStage}) = Splittable() splittability(::BaseTokenization, x::Union{WordStage, SubWordStage}) = UnSplittable() splitting(::BaseTokenization, d::DocumentStage) = rulebased_split_sentences(getvalue(d)) splitting(::BaseTokenization, s::SentenceStage) = nltk_word_tokenize(getvalue(s)) splitting(::BaseTokenization, s::SubSentenceStage) = nltk_word_tokenize(getvalue(s)) wrap(::BaseTokenization, d::DocumentStage, x) = Sentence(x, getmeta(d)) wrap(::BaseTokenization, s::SentenceStage, x) = Word(x, getmeta(s)) wrap(::BaseTokenization, s::SubSentenceStage, x) = Word(x, getmeta(s)) wrap(::BaseTokenization, w::WordStage, x) = SubWord(x, getmeta(w)) wrap(::BaseTokenization, w::WordStage) = Token(getvalue(w), getmeta(w)) wrap(::BaseTokenization, w::SubWordStage) = Token(getvalue(w), getmeta(w)) wrap(::BaseTokenization, t::TokenStage) = t abstract type WrappedTokenization{T<:AbstractTokenization} <: AbstractTokenization end base(t::WrappedTokenization) = t.base splittability(p::ParentStages, t::WrappedTokenization, x::TokenStages) = splittability(p, base(t), x) splitting(p::ParentStages, t::WrappedTokenization, x::TokenStages) = splitting(p, base(t), x) splitting(p::ParentStages, t::WrappedTokenization, s::TokenStages, x) = splitting(p, base(t), s, x) wrap(p::ParentStages, t::WrappedTokenization, s::TokenStages, x) = wrap(p, base(t), s, x) wrap(p::ParentStages, t::WrappedTokenization, s::TokenStages) = wrap(p, base(t), s) # tokenizer api """ tokenization(::AbstractTokenizer) :: AbstractTokenization Return the tokenization object of given tokenizer. """ tokenization(::AbstractTokenizer) = DefaultTokenization() """ preprocess(tkr::AbstractTokenizer, x) Preprocess the input `x`. This is only called during `tkr(x)`. """ preprocess(t::AbstractTokenizer, x::TokenStages) = updatevalue(Base.Fix1(preprocess, t), x) preprocess(t::AbstractTokenizer, x) = x (t::AbstractTokenizer)(x::TS) where {TS <: TokenStages} = tokenize(t, nothing, tokenization(t), preprocess(t, x)) function Base.show(io::IO, t::AbstractTokenizer) T = typeof(t) n = fieldcount(T) print(io, nameof(T)) if n != 0 base = hasfield(T, :tokenization) basei = base ? findfirst(==(:tokenization), fieldnames(T)) : 0 print(io, '(') base && show(io, t.tokenization) for i = 1:n i == basei && continue (!base && i == 1) || print(io, ", ") print(io, fieldname(T, i)) print(io, " = ") show(IOContext(io, :limit=>true), getfield(t, i)) end print(io, ')') end end function Base.show(io::IO, t::AbstractTokenization) T = typeof(t) n = fieldcount(T) print(io, nameof(T)) if n != 0 base = hasfield(T, :base) basei = base ? findfirst(==(:base), fieldnames(T)) : 0 print(io, '(') base && show(io, t.base) for i = 1:n i == basei && continue (!base && i == 1) || print(io, ", ") print(io, fieldname(T, i)) print(io, " = ") show(IOContext(io, :limit=>true), getfield(t, i)) end print(io, ')') end end Base.show(io::IO, ::DefaultTokenization) = print(io, :default)
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
1544
using DataStructures: MutableLinkedList struct Batch{S, A<:AbstractVector, M} <: TokenStages x::A meta::M end Batch{S}(x, meta = nothing) where S = Batch{S, typeof(x), typeof(meta)}(x, meta) setmeta(x::Batch{S}, meta) where S = Batch{S}(x.x, meta) setvalue(x::Batch{S}, y) where S = Batch{S}(y, x.meta) function Base.show(io::IO, x::Batch{S}) where S print(io, "Batch{", S, "}(", x.x) isnothing(x.meta) || print(io, ", ", x.meta) print(io, ')') end splittability(::BaseTokenization, ::Batch) = Splittable() splitting(::BaseTokenization, s::Batch) = s.x wrap(::BaseTokenization, b::Batch{S}, x) where S = S(x, getmeta(b)) # nested tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::Batch{Document}) = collect(tokenize_procedure!(push!, MutableLinkedList{Vector{Vector{TokenStage}}}(), tkr, p, t, x)) tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::Batch{Sentence}) = collect(tokenize_procedure!(push!, MutableLinkedList{Vector{TokenStage}}(), tkr, p, t, x)) # indexed splitting(p::ParentStages, t::IndexedTokenization, b::Batch{Sentence}, x) = enumerate(splitting(p, t.base, b, x)) wrap(p::ParentStages, t::IndexedTokenization, b::Batch{Sentence}, (i, x)) = updatemeta(wrap(p, t.base, b, x), (sentence_id = i,)) splitting(p::ParentStages, t::IndexedTokenization, b::Batch{Document}, x) = enumerate(splitting(p, t.base, b, x)) wrap(p::ParentStages, t::IndexedTokenization, b::Batch{Document}, (i, x)) = updatemeta(wrap(p, t.base, b, x), (document_id = i,))
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
3452
_larger_type(a, b) = sizeof(a) >= sizeof(b) ? a : b function codesize(crs) T = UInt8 for cr in crs x = UInt32(last(cr)) xT = if x > UInt(typemax(UInt16)) UInt32 elseif x > UInt(typemax(UInt8)) UInt16 else UInt8 end T = _larger_type(T, xT) end return T end const CodeRangeT = Union{Integer, Char, UnitRange, StepRange} const CodeRangeMap = Union{Tuple{CodeRangeT, CodeRangeT}, Pair{<:CodeRangeT, <:CodeRangeT}} function _code_range(f, t) fr = _code_range(f) tr = _code_range(t) @assert length(fr) == length(tr) "codemap of two range with different length: $(length(fr)) != $(length(tr))" return (fr, tr) end _code_range(r::UnitRange) = Char(r.start):Char(r.stop) _code_range(r::StepRange) = StepRange(Char(r.start), Int(r.step), Char(r.stop)) _code_range(r::StepRange{Char}) = StepRange(r.start, Int(r.step), r.stop) _code_range(r::StepRange{Char, Int}) = r _code_range(c::Integer) = _code_range(Char(c)) _code_range(c::Char) = c:c code_range(arg::CodeRangeMap) = _code_range(arg[1], arg[2]) struct CodeMap{F, T} from::Vector{StepRange{Char, Int}} to::Vector{StepRange{Char, Int}} function CodeMap( from::Vector{StepRange{Char, Int}}, to::Vector{StepRange{Char, Int}}, ) From = codesize(from)::Type{<:Union{UInt8, UInt16, UInt32}} To = codesize(to)::Type{<:Union{UInt8, UInt16, UInt32}} @assert length(from) == length(to) "different number of code ranges: $(length(from)) != $(length(to))" return new{From, To}(from, to) end end (cm::CodeMap)(x) = codemap(cm, x) CodeMap(args::CodeRangeMap...) = CodeMap(args) function CodeMap(args::Union{Tuple, AbstractVector}) len = length(args) from = Vector{StepRange{Char, Int}}(undef, len) to = Vector{StepRange{Char, Int}}(undef, len) for (i, arg) in enumerate(args) from[i], to[i] = code_range(arg) end return CodeMap(from, to) end struct CodeUnMap{F, T} codemap::CodeMap{F, T} end (um::CodeUnMap)(x) = codeunmap(um.codemap, x) function find_code(rs, c) @inbounds for (i, r) in enumerate(rs) j = findfirst(==(c), r) isnothing(j) && continue return (i, j) end return nothing end function codemap(cm::CodeMap{F, T}, c::Char) where {F, T} I = find_code(cm.from, c) x = isnothing(I) ? c : cm.to[I[1]][I[2]] return T(x) end codemap(cm::CodeMap, x::Integer) = codemap(cm, Char(x)) codemap(cm::CodeMap{F}, x::AbstractString) where F = transcode(String, map(Base.Fix1(codemap, cm), transcode(F, codeunits(x)))) function codeunmap(cm::CodeMap{F, T}, c::Char) where {F, T} I = find_code(cm.to, c) x = isnothing(I) ? c : cm.from[I[1]][I[2]] return F(x) end codeunmap(cm::CodeMap, x::Integer) = codeunmap(cm, Char(x)) codeunmap(cm::CodeMap{F, T}, x::AbstractString) where {F, T} = transcode(String, map(Base.Fix1(codeunmap, cm), transcode(T, codeunits(x)))) Base.:(==)(a::CodeMap, b::CodeMap) = a.from == b.from && a.to == b.to Base.:(==)(a::CodeUnMap, b::CodeUnMap) = a.codemap == b.codemap function Base.show(io::IO, cm::CodeMap{F,T}) where {F, T} print(io, "CodeMap{", F, " => ", T, '}') print(io, '(', length(cm.to), " code-ranges)") end function Base.show(io::IO, um::CodeUnMap{F, T}) where {F, T} print(io, "CodeUnMap{", F, " <= ", T, '}') print(io, '(', length(um.codemap.to), " code-ranges)") end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
2880
using StructWalk abstract type AbstractTextEncoder end """ process(::AbstractTextEncoder) Get processing function of given encoder. """ process(e::AbstractTextEncoder) = e.process process(::Type{AbstractTextEncoder}) = nestedcall(getvalue) """ tokenize(e::AbstractTextEncoder, x) Use encoder's tokenizer to tokenize `x`. """ tokenize(e::AbstractTextEncoder, x) = e.tokenizer(x) """ process(e::AbstractTextEncoder, x) Use encoder's processing function to process `x`. """ process(e::AbstractTextEncoder, x) = process(e)(x) """ onehot_encode(e::AbstractTextEncoder, x) Lookup `x` in encoder's vocabulary. Return one-hot encoded vectors. """ onehot_encode(e::AbstractTextEncoder, x) = lookup(OneHot, e.vocab, x) """ lookup(e::AbstractTextEncoder, x) Lookup `x`. This is basically [`onehot_encode`](@ref) but can be overloaded for extra processing. """ lookup(e::AbstractTextEncoder, x) = onehot_encode(e, x) """ encode_indices(e::AbstractTextEncoder, x) Encode for indices. Encode `x` without calling `lookup` bound with `e`. """ encode_indices(e::AbstractTextEncoder, x) = process(e, tokenize(e, x)) """ encode(e::AbstractTextEncoder, x) Encode `x`. """ encode(e::AbstractTextEncoder, x) = lookup(e, encode_indices(e, x)) """ decode_indices(e::AbstractTextEncoder, x) Decode from indices. Decode `x` by reverse lookup `x` in `e.vocab`. """ decode_indices(e::AbstractTextEncoder, x) = lookup(eltype(e.vocab), e.vocab, x) """ decode(e::AbstractTextEncoder, x) Decode `x`. This is basically [`decode_indices`](@ref) but can be overloaded for post-processing. """ decode(e::AbstractTextEncoder, x) = decode_indices(e, x) """ decode_text(e::AbstractTextEncoder, x) Decode `x` into texts. This is basically [`join_text`](@ref) with [`decode`](@ref) but can be overloaded for post-processing. """ decode_text(e::AbstractTextEncoder, x) = join_text(decode(e, x)) """ TextEncoder(tokenizer, vocab, process = nestedcall(getvalue)) A simple encoder implementation. """ struct TextEncoder{T<:AbstractTokenizer, V<:AbstractVocabulary, P} <: AbstractTextEncoder tokenizer::T vocab::V process::P end TextEncoder(tkr::AbstractTokenizer, vocab::AbstractVocabulary) = TextEncoder(tkr, vocab, process(AbstractTextEncoder)) TextEncoder(builder, tkr::AbstractTokenizer, vocab::AbstractVocabulary) = TextEncoder(builder, TextEncoder(tkr, vocab)) """ TextEncoder(builder, e::TextEncoder) Given an encoder, return a new encoder that has the same tokenizer and vocabulary. `builder` is a function that take a encoder and return a new processing function. """ TextEncoder(builder, e::TextEncoder) = TextEncoder(e.tokenizer, e.vocab, builder(e)) StructWalk.children(::TokenizerStyle, x::AbstractTextEncoder) = StructWalk.children(WalkStyle, x) StructWalk.iscontainer(::TokenizerStyle, x::AbstractTextEncoder) = false
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
1912
using Base.Iterators: repeated mutable struct Offsets word::Int token::Int end struct IndexedTokenization{T<:AbstractTokenization} <: WrappedTokenization{T} base::T end IndexedTokenization() = IndexedTokenization(DefaultTokenization()) _offsets(s, w=0, t=0) = (meta = getmeta(s); hasmeta(s) && haskey(getmeta(s), :offsets) ? meta.offsets : Offsets(w,t)) @inline splitting(p::ParentStages, t::IndexedTokenization, s::TokenStages, x) = zip(repeated(_offsets(s)), Iterators.Flatten((true, Iterators.repeated(false))), splitting(p, t.base, s, x)) @inline splitting(p::ParentStages, t::IndexedTokenization, d::DocumentStage, x) = enumerate(splitting(p, t.base, d, x)) @inline wrap(p::ParentStages, t::IndexedTokenization, s::TokenStages, (i, f, x)) = updatemeta(wrap(p, t.base, s, x), (offsets = i, isfirst = f)) @inline wrap(p::ParentStages, t::IndexedTokenization, d::DocumentStage, (i, x)) = updatemeta(wrap(p, t.base, d, x), (sentence_id = i,)) @inline wrap(p::ParentStages, t::IndexedTokenization, s::TokenStages) = wrap(p, t.base, s) function wrap(p::ParentStages, t::IndexedTokenization, w::SubWordStage) meta = getmeta(w) if hasmeta(w) && haskey(meta, :offsets) offsets = meta.offsets word_id = meta.isfirst ? (offsets.word += 1) : offsets.word else word_id = 1 end return updatemeta(wrap(p, t.base, w), (word_id = word_id,)) end function wrap(p::ParentStages, t::IndexedTokenization, x::TokenStage) x = wrap(p, t.base, x) meta = getmeta(x) if hasmeta(x) && haskey(meta, :offsets) offsets = meta.offsets word_id = haskey(meta, :word_id) ? meta.word_id : (offsets.word += 1) token_id = offsets.token += 1 meta = Base.structdiff(meta, NamedTuple{(:offsets, :isfirst)}) else word_id = token_id = 1 end return setmeta(x, updatemeta(meta, (word_id = word_id, token_id = token_id))) end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
7257
import DoubleArrayTries using DoubleArrayTries: DoubleArrayTrie lookup(dat::DoubleArrayTrie, i::Integer) = DoubleArrayTries.decode(dat, i) lookup(dat::DoubleArrayTrie, k::Union{AbstractString, AbstractVector{UInt8}}) = DoubleArrayTries.lookup(dat, k) abstract type LookupDict{T} <: AbstractDict{T, Int} end LookupDict(list::AbstractVector) = LookupDict(keytype(list), list) LookupDict(::Type{<:AbstractString}, list) = DATLookupDict(list) LookupDict(::Type, list) = DictBackedLookupDict(list) struct DATLookupDict{V <: Union{AbstractVector{UInt64}, AbstractDict{Int, UInt64}}} <: LookupDict{String} trie::DoubleArrayTrie uid2idx::DoubleArrayTries.CVector idx2uid::V end function DATLookupDict(list::AbstractVector{<:AbstractString}) @assert allunique(list) "All element should be unique" sortedlist = sort(list) trie = DoubleArrayTrie(sortedlist) uid2idx = Vector{Int}(undef, length(list)) idx2uid = Vector{Int}(undef, length(list)) @inbounds for (i, str) in enumerate(list) uid = lookup(trie, str) uid2idx[uid] = i idx2uid[i] = uid end return DATLookupDict(trie, DoubleArrayTries.CVector(uid2idx), DoubleArrayTries.CVector(idx2uid)) end uid2idx(d::DATLookupDict, uid) = @inbounds Int(d.uid2idx[uid]) idx2uid(d::DATLookupDict, idx) = @inbounds Int(d.idx2uid[idx]) Base.length(d::DATLookupDict) = length(d.trie) function Base.get(d::DATLookupDict, k::Union{AbstractString, AbstractVector{UInt8}}, v) uid = lookup(d.trie, k) uid == 0 && return v return uid2idx(d, uid) end function Base.iterate(d::DATLookupDict, state = nothing) it = iterate(d.trie, state) isnothing(it) && return nothing (key, uid), nstate = it val = uid2idx(d, uid) return key => val, nstate end lookup_index(d::DATLookupDict, unki, word) = get(d, word, unki) function lookup_word(d::DATLookupDict, unk, index) if d.idx2uid isa AbstractVector checkbounds(Bool, d.idx2uid, index) || return unk uid = @inbounds d.idx2uid[index] else isempty(d.idx2uid) && return unk uid = get(d.idx2uid, index, zero(UInt64)) end return iszero(uid) ? unk : lookup(d.trie, uid) end struct DictBackedLookupDict{T, D <: AbstractDict{T, Int}, V <: Union{AbstractVector{T}, AbstractDict{Int, T}}} <: LookupDict{T} dict::D list::V end function DictBackedLookupDict(list::AbstractVector) @assert allunique(list) "All element should be unique" dict = Dict{eltype(list), Int}() @inbounds for (i, val) in enumerate(list) dict[val] = i end return DictBackedLookupDict(dict, list) end Base.length(d::DictBackedLookupDict) = length(d.dict) Base.get(d::DictBackedLookupDict, k, v) = get(d.dict, k, v) Base.iterate(d::DictBackedLookupDict, state...) = iterate(d.dict, state...) lookup_index(d::DictBackedLookupDict, unki, word) = isempty(d.dict) ? unki : get(d, word, unki) function lookup_word(d::DictBackedLookupDict, unk, index) if d.list isa AbstractVector checkbounds(Bool, d.list, index) || return unk return @inbounds(d.list[index]) else return isempty(d.list) ? unk : get(d.list, index, unk) end end abstract type LookupVector{T} <: AbstractVector{T} end LookupVector(list::AbstractVector) = LookupVector(eltype(list), list) LookupVector(::Type{<:AbstractString}, list) = DATLookupVector(list) LookupVector(::Type, list) = DictBackedLookupVector(list) struct DATLookupVector{D <: DATLookupDict} <: LookupVector{String} dict::D end basedict(v::DATLookupVector) = v.dict DATLookupVector(vector::AbstractVector) = DATLookupVector(DATLookupDict(vector)) struct DictBackedLookupVector{T, D <: LookupDict{T}} <: LookupVector{T} dict::D end basedict(v::DictBackedLookupVector) = v.dict DictBackedLookupVector(vector::AbstractVector) = DictBackedLookupVector(DictBackedLookupDict(vector)) Base.length(v::LookupVector) = length(basedict(v)) Base.size(v::LookupVector) = (length(v),) Base.checkbounds(::Type{Bool}, v::LookupVector, i) = !isnothing(lookup_word(v, nothing, i)) function Base.getindex(v::LookupVector, i::Integer) k = lookup_word(v, nothing, i) @boundscheck isnothing(k) && throw(BoundsError(v, i)) return k end lookup_index(v::LookupVector, unki, word) = lookup_index(basedict(v), unki, word) lookup_word(v::LookupVector, unk, index) = lookup_word(basedict(v), unk, index) struct OverwritableLookupVector{T, V <: LookupVector{T}, D <: DictBackedLookupDict{T}} <: LookupVector{T} vector::V dict::D end OverwritableLookupVector(vector::AbstractVector) = OverwritableLookupVector(LookupVector(vector)) function OverwritableLookupVector(vector::LookupVector) T = eltype(vector) dict = DictBackedLookupDict(Dict{T, Int}(), Dict{Int, T}()) return OverwritableLookupVector(vector, dict) end Base.length(v::OverwritableLookupVector) = length(v.vector) function lookup_index(v::OverwritableLookupVector, unki, word) i = lookup_index(v.dict, 0, word) iszero(i) || return i i = lookup_index(v.vector, 0, word) iszero(i) && return unki return isnothing(lookup_word(v.dict, nothing, i)) ? i : unki end function lookup_word(v::OverwritableLookupVector, unk, index) k = lookup_word(v.dict, nothing, index) return isnothing(k) ? lookup_word(v.vector, unk, index) : k end function Base.setindex!(v::OverwritableLookupVector, val, i::Integer) @boundscheck checkbounds(v, i) @assert iszero(lookup_index(v, 0, val)) "Element must be unique, value $(repr(val)) already in the lookup vector" k = lookup_word(v.dict, nothing, i) isnothing(k) || delete!(v.dict.dict, k) v.dict.dict[val] = i v.dict.list[i] = val return v end function Base.setindex!(v::OverwritableLookupVector, val, k) i = lookup_index(v, 0, k) iszero(i) && throw(KeyError(k)) return v[i] = val end struct PerforatedOverwritableLookupVector{T, V <: LookupVector{T}, D <: DictBackedLookupDict{T}} <: LookupVector{T} vector::V dict::D end Base.length(v::PerforatedOverwritableLookupVector) = max(length(v.vector), maximum(keys(v.dict.list))) function Base.getindex(v::PerforatedOverwritableLookupVector, i::Integer) k = lookup_word(v, nothing, i) isnothing(k) && throw(UndefRefError()) return k end function lookup_index(v::PerforatedOverwritableLookupVector, unki, word) i = lookup_index(v.dict, 0, word) iszero(i) || return i i = lookup_index(v.vector, 0, word) iszero(i) && return unki return isnothing(lookup_word(v.dict, nothing, i)) ? i : unki end function lookup_word(v::PerforatedOverwritableLookupVector, unk, index) k = lookup_word(v.dict, nothing, index) return isnothing(k) ? lookup_word(v.vector, unk, index) : k end function Base.setindex!(v::PerforatedOverwritableLookupVector, val, i::Integer) @assert iszero(lookup_index(v, 0, val)) "Element must be unique, value $(repr(val)) already in the lookup vector" k = lookup_word(v.dict, nothing, i) isnothing(k) || delete!(v.dict.dict, k) v.dict.dict[val] = i v.dict.list[i] = val return v end function Base.setindex!(v::PerforatedOverwritableLookupVector, val, k) i = lookup_index(v, 0, k) iszero(i) && throw(KeyError(k)) return v[i] = val end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
1887
using Base.Meta: isexpr function stagem(sig, abst) abst = esc(abst) if sig isa Symbol name = sig structdef = :( struct $name{T, M} <: $abst x::T meta::M end ) elseif sig isa Expr if isexpr(sig, :curly) length(sig.args) != 3 && error("invalid TokenStages definition") name, Tsig, Msig = sig.args T = isexpr(Tsig, :<:) ? Tsig.args[1] : Tsig M = isexpr(Msig, :<:) ? Msig.args[1] : Msig structdef = :( struct $sig <: $abst x::$T meta::$M end ) else error("invalid TokenStages definition") end else error("invalid TokenStages definition") end name = esc(name) setmeta = esc(:(TextEncodeBase.setmeta)) setvalue = esc(:(TextEncodeBase.setvalue)) return quote $structdef $name(x) = $name(x, nothing) $setmeta(x::$name, meta) = $name(x.x, meta) $setvalue(x::$name, y) = $name(y, x.meta) end end """ @stage StageName @stage StageName{A<:SomeType, B} @stage StageName AbstractStage @stage StageName{A<:SomeType, B} <: AbstractStage Define `TokenStages` with two field (`x` and `meta`), it's single arguement constructor, and add methods to `setmeta` and `setvalue`. Equivalent to: ```julia struct StageName{A<:SomeType, B} <: AbstractStage x::A meta::B end StageName(x) = StageName(x, nothing) TextEncodeBase.setmeta(x::StageName, meta) = StageName(x.x, meta) TextEncodeBase.setvalue(x::StageName, y) = StageName(y, x.meta) ``` """ macro stage(sig, abst=:TokenStages) if isexpr(sig, :<:) abst != :TokenStages && error("invalid TokenStages definition") sig, abst = sig.args end return stagem(sig, abst) end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
1972
struct MatchTokenization{T<:AbstractTokenization, P <: AbstractPattern} <: WrappedTokenization{T} base::T patterns::Vector{P} MatchTokenization(base::T, patterns::Vector{P}) where {T <: AbstractTokenization, P <: AbstractPattern} = MatchTokenization{T}(base, patterns) function MatchTokenization{T}(base::T, patterns::Vector{P}) where {T <: AbstractTokenization, P <: AbstractPattern} return new{T, P}(base, patterns) end end MatchTokenization(patterns) = MatchTokenization(DefaultTokenization(), patterns) MatchTokenization(base, patterns) = MatchTokenization(base, map(as_match, patterns)) Base.:(==)(a::MatchTokenization, b::MatchTokenization) = a.base == b.base && a.patterns == b.patterns @inline splitting(p::ParentStages, t::MatchTokenization, x::SubSentence) = splitting(p, t.base, Sentence(getvalue(x), getmeta(x))) @inline splitting(p::ParentStages, t::MatchTokenization, s::SentenceStage) = matchsplits(t.patterns, getvalue(s)) @inline function wrap(p::ParentStages, t::MatchTokenization, s::SentenceStage, (istoken, x)) meta = updatemeta(getmeta(s), (ismatch = istoken,)) return istoken ? Token(x, meta) : SubSentence(x, meta) end @inline wrap(p::ParentStages, t::MatchTokenization, s::TokenStages, x) = wrap(p, t.base, s, x) @inline wrap(p::ParentStages, t::MatchTokenization, x::TokenStages) = wrap(p, t.base, x) # calling directly on word should check if any match exists splittability(::Nothing, ::MatchTokenization, ::WordStage) = Splittable() @inline splitting(::Nothing, t::MatchTokenization, w::WordStage) = matchsplits(t.patterns, getvalue(w)) @inline function wrap(::Nothing, t::MatchTokenization, w::WordStage, (istoken, x)) meta = updatemeta(getmeta(w), (ismatch = istoken,)) return istoken ? Token(x, meta) : Word(x, meta) end # show function Base.show(io::IO, t::MatchTokenization) print(io, "MatchTokenization(") show(io, t.base) print(io, ", ", length(t.patterns), " patterns)") end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
4265
abstract type TextNormalizer{T<:AbstractTokenization} <: WrappedTokenization{T} end abstract type SentenceNormalizer{T<:AbstractTokenization} <: TextNormalizer{T} end abstract type WordNormalizer{T<:AbstractTokenization} <: TextNormalizer{T} end function normalizer end # perform normalization on sentence level. splitting(p::ParentStages, t::SentenceNormalizer, x::Union{SentenceStage, SubSentenceStage}) = splitting(p, base(t), updatevalue(normalizer(t), x)) # directly passing unsplittable should also be normalized, except token. wrap(::Nothing, t::SentenceNormalizer, s::TokenStages) = wrap(nothing, base(t), updatevalue(normalizer(t), s)) wrap(::Nothing, t::SentenceNormalizer, s::TokenStage) = wrap(nothing, base(t), s) # perform normalization on word level. wrap(p::TokenStages, t::WordNormalizer, s::WordStage) = wrap(p, base(t), updatevalue(normalizer(t), s)) # if word is splitable splitting(p::ParentStages, t::WordNormalizer, x::WordStage) = splitting(p, base(t), updatevalue(normalizer(t), x)) # directly passing unsplittable should also be normalized, except token. wrap(::Nothing, t::WordNormalizer, s::TokenStages) = wrap(nothing, base(t), updatevalue(normalizer(t), s)) wrap(::Nothing, t::WordNormalizer, s::TokenStage) = wrap(nothing, base(t), s) ### lower case struct LowercaseNormalizer{T<:AbstractTokenization} <: SentenceNormalizer{T} base::T end LowercaseNormalizer() = LowercaseNormalizer(DefaultTokenization()) normalizer(t::LowercaseNormalizer) = lowercase ### Unicode include("./unicode.jl") struct UnicodeNormalizer{T<:AbstractTokenization} <: SentenceNormalizer{T} base::T flags::Int end UnicodeNormalizer(base::AbstractTokenization, normalform::Symbol) = UnicodeNormalizer(base, _utf8proc_flags(normalform)) UnicodeNormalizer(base::AbstractTokenization; kw...) = UnicodeNormalizer(base, _utf8proc_flags(; kw...)) UnicodeNormalizer(normalform::Symbol) = UnicodeNormalizer(DefaultTokenization(), normalform) UnicodeNormalizer(; kw...) = UnicodeNormalizer(DefaultTokenization(); kw...) normalizer(t::UnicodeNormalizer) = Base.Fix2(utf8proc_map, t.flags) function Base.show(io::IO, t::UnicodeNormalizer) nfs = (:NFC, :NFD, :NFKC, :NFKD) idx = findfirst(==(t.flags), map(_utf8proc_flags, nfs)) if isnothing(idx) print(io, "UnicodeNormalizer(") show(io, base(t)) _show_utf8proc_flags(io, t.flags) print(io, ')') else name = nfs[idx] print(io, name, '(') show(io, base(t)) print(io, ')') end end ### replace struct SentenceReplaceNormalizer{T<:AbstractTokenization, P<:Pair} <: SentenceNormalizer{T} base::T pattern::P end SentenceReplaceNormalizer(pattern) = SentenceReplaceNormalizer(DefaultTokenization(), pattern) normalizer(t::SentenceReplaceNormalizer) = Base.Fix2(replace, t.pattern) struct WordReplaceNormalizer{T<:AbstractTokenization, P<:Pair} <: WordNormalizer{T} base::T pattern::P end WordReplaceNormalizer(pattern) = WordReplaceNormalizer(DefaultTokenization(), pattern) normalizer(t::WordReplaceNormalizer) = Base.Fix2(replace, t.pattern) const ReplaceNormalizer = SentenceReplaceNormalizer ### general function struct SentenceFuncNormalizer{T<:AbstractTokenization, F} <: SentenceNormalizer{T} base::T func::F end SentenceFuncNormalizer(func) = SentenceFuncNormalizer(DefaultTokenization(), func) normalizer(t::SentenceFuncNormalizer) = t.func struct WordFuncNormalizer{T<:AbstractTokenization, F} <: WordNormalizer{T} base::T func::F end WordFuncNormalizer(func) = WordFuncNormalizer(DefaultTokenization(), func) normalizer(t::WordFuncNormalizer) = t.func ### Codemap include("./codemap.jl") struct CodeNormalizer{T<:AbstractTokenization, C <: CodeMap} <: WordNormalizer{T} base::T codemap::C end CodeNormalizer(codemap::CodeMap) = CodeNormalizer(DefaultTokenization(), codemap) CodeNormalizer(base::AbstractTokenization, code_range, code_ranges...) = CodeNormalizer(base, CodeMap(code_range, code_ranges...)) CodeNormalizer(code_range, code_ranges...) = CodeNormalizer(CodeMap(code_range, code_ranges...)) TextEncodeBase.normalizer(t::CodeNormalizer) = t.codemap Base.:(==)(a::CodeNormalizer, b::CodeNormalizer) = a.base == b.base && a.codemap == b.codemap
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
493
using StructWalk using StructWalk: WalkStyle struct TokenizerStyle <: WalkStyle end StructWalk.children(::TokenizerStyle, x) = () StructWalk.iscontainer(::TokenizerStyle, x) = false StructWalk.children(::TokenizerStyle, x::AbstractTokenizer) = StructWalk.children(WalkStyle, x) StructWalk.children(::TokenizerStyle, x::AbstractTokenization) = StructWalk.children(WalkStyle, x) Base.replace(f::Function, x::Union{AbstractTokenizer, AbstractTokenization}) = postwalk(f, TokenizerStyle(), x)
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
1296
struct EachSplitTokenization{S} <: BaseTokenization splitter::S end @static if VERSION < v"1.8" splitting(t::EachSplitTokenization, s::SentenceStage) = split(getvalue(s), t.splitter; keepempty = false) else splitting(t::EachSplitTokenization, s::SentenceStage) = eachsplit(getvalue(s), t.splitter; keepempty = false) end struct EachMatchTokenization{P<:AbstractPattern} <: BaseTokenization pattern::P EachMatchTokenization(r::Regex) = new{Regex}(Base.compile(r)) EachMatchTokenization(r::AbstractPattern) = new{typeof(r)}(r) end EachMatchTokenization(r) = EachMatchTokenization(as_match(r)) splitting(t::EachMatchTokenization, s::SentenceStage) = FindAllIterator(t.pattern, getvalue(s)) struct MatchSplitsTokenization{P <: Union{AbstractPattern, Vector{<:AbstractPattern}}} <: BaseTokenization pattern::P MatchSplitsTokenization(r::Regex) = new{Regex}(Base.compile(r)) MatchSplitsTokenization(r::Union{AbstractPattern, Vector{<:AbstractPattern}}) = new{typeof(r)}(r) end MatchSplitsTokenization(r::AbstractString) = MatchSplitsTokenization(as_match(r)) MatchSplitsTokenization(r::AbstractVector) = MatchSplitsTokenization(map(as_match, r)) splitting(t::MatchSplitsTokenization, s::SentenceStage) = Iterators.map(last, matchsplits(t.pattern, getvalue(s)))
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
2477
using DataStructures: MutableLinkedList struct MixedTokenization{T <:Tuple{AbstractTokenization, Vararg{AbstractTokenization}}} <: AbstractTokenization ts::T end MixedTokenization(t, t2, ts...) = MixedTokenization((t, t2, ts...)) Base.getindex(t::MixedTokenization, i) = t.ts[i] Base.@kwdef struct WordTokenization{S, T} <: BaseTokenization split_sentences::S = WordTokenizers.split_sentences tokenize::T = WordTokenizers.tokenize end @inline splitting(t::WordTokenization, d::DocumentStage) = t.split_sentences(getvalue(d)) @inline splitting(t::WordTokenization, s::SentenceStage) = t.tokenize(getvalue(s)) @inline splitting(t::WordTokenization, s::SubSentenceStage) = t.tokenize(getvalue(s)) "tokenizer that return flat array instead of nested array of tokens" struct FlatTokenizer{T<:AbstractTokenization} <: AbstractTokenizer tokenization::T end FlatTokenizer() = FlatTokenizer(DefaultTokenization()) tokenization(tkr::FlatTokenizer) = tkr.tokenization @inline tokenize(tkr::FlatTokenizer, s::ParentStages, t::AbstractTokenization, x::TokenStages) = tokenize_procedure(tkr, s, t, x) @inline tokenize(tkr::FlatTokenizer, s::ParentStages, t::AbstractTokenization, x::TokenStage) = isempty(getvalue(x)) ? TokenStage[] : TokenStage[wrap(tkr, s, t, x)] "tokenizer that return nested array instead of flat array of tokens" struct NestedTokenizer{T<:AbstractTokenization} <: AbstractTokenizer tokenization::T end NestedTokenizer() = NestedTokenizer(DefaultTokenization()) tokenization(tkr::NestedTokenizer) = tkr.tokenization @inline tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::TokenStages) = collect(tokenize_procedure!(push!, MutableLinkedList{Vector{Vector}}(), tkr, p, t, x)) @inline tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::DocumentStage) = collect(tokenize_procedure!(push!, MutableLinkedList{Vector{TokenStage}}(), tkr, p, t, x)) @inline tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::Union{SentenceStage, SubSentenceStage, WordStage, SubWordStage}) = collect(tokenize_procedure!(append!, MutableLinkedList{TokenStage}(), tkr, p, t, x)) @inline tokenize(tkr::NestedTokenizer, ::Nothing, t::AbstractTokenization, x::SentenceStage) = [tokenize_procedure(tkr, nothing, t, x)] @inline tokenize(tkr::NestedTokenizer, p::ParentStages, t::AbstractTokenization, x::TokenStage) = isempty(getvalue(x)) ? TokenStage[] : TokenStage[wrap(tkr, p, t, x)]
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
3141
using Unicode: normalize using Base.Unicode: utf8proc_map, UTF8PROC_STABLE, UTF8PROC_COMPAT, UTF8PROC_COMPOSE, UTF8PROC_DECOMPOSE, UTF8PROC_IGNORE, UTF8PROC_REJECTNA, UTF8PROC_NLF2LS, UTF8PROC_NLF2PS, UTF8PROC_NLF2LF, UTF8PROC_STRIPCC, UTF8PROC_CASEFOLD, UTF8PROC_CHARBOUND, UTF8PROC_LUMP, UTF8PROC_STRIPMARK _utf8proc_flags(nf::Symbol) = if nf === :NFC return UTF8PROC_STABLE | UTF8PROC_COMPOSE elseif nf === :NFD return UTF8PROC_STABLE | UTF8PROC_DECOMPOSE elseif nf === :NFKC return UTF8PROC_STABLE | UTF8PROC_COMPOSE | UTF8PROC_COMPAT elseif nf === :NFKD return UTF8PROC_STABLE | UTF8PROC_DECOMPOSE | UTF8PROC_COMPAT else throw(ArgumentError(":$nf is not one of :NFC, :NFD, :NFKC, :NFKD")) end function _utf8proc_flags(; stable::Bool=false, compat::Bool=false, compose::Bool=true, decompose::Bool=false, stripignore::Bool=false, rejectna::Bool=false, newline2ls::Bool=false, newline2ps::Bool=false, newline2lf::Bool=false, stripcc::Bool=false, casefold::Bool=false, lump::Bool=false, stripmark::Bool=false, ) flags = 0 stable && (flags = flags | UTF8PROC_STABLE) compat && (flags = flags | UTF8PROC_COMPAT) if decompose flags = flags | UTF8PROC_DECOMPOSE elseif compose flags = flags | UTF8PROC_COMPOSE elseif compat || stripmark throw(ArgumentError("compat=true or stripmark=true require compose=true or decompose=true")) end stripignore && (flags = flags | UTF8PROC_IGNORE) rejectna && (flags = flags | UTF8PROC_REJECTNA) newline2ls + newline2ps + newline2lf > 1 && throw(ArgumentError("only one newline conversion may be specified")) newline2ls && (flags = flags | UTF8PROC_NLF2LS) newline2ps && (flags = flags | UTF8PROC_NLF2PS) newline2lf && (flags = flags | UTF8PROC_NLF2LF) stripcc && (flags = flags | UTF8PROC_STRIPCC) casefold && (flags = flags | UTF8PROC_CASEFOLD) lump && (flags = flags | UTF8PROC_LUMP) stripmark && (flags = flags | UTF8PROC_STRIPMARK) return flags end function _show_utf8proc_flags(io::IO, flags) (flags & UTF8PROC_STABLE > 0) && print(io, ", stable = true") (flags & UTF8PROC_COMPAT > 0) && print(io, ", compat = true") (flags & UTF8PROC_DECOMPOSE > 0) && print(io, ", decompose = true") (flags & UTF8PROC_COMPOSE > 0) && print(io, ", compose = true") (flags & UTF8PROC_IGNORE > 0) && print(io, ", stripignore = true") (flags & UTF8PROC_REJECTNA > 0) && print(io, ", rejectna = true") (flags & UTF8PROC_NLF2LS > 0) && print(io, ", newline2ls = true") (flags & UTF8PROC_NLF2PS > 0) && print(io, ", newline2ps = true") (flags & UTF8PROC_NLF2LF > 0) && print(io, ", newline2lf = true") (flags & UTF8PROC_STRIPCC > 0) && print(io, ", stripcc = true") (flags & UTF8PROC_CASEFOLD > 0) && print(io, ", casefold = true") (flags & UTF8PROC_LUMP > 0) && print(io, ", lump = true") (flags & UTF8PROC_STRIPMARK > 0) && print(io, ", stripmark = true") end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
41256
using DataStructures: MutableLinkedList using FuncPipelines: FixRest using RustRegex using Base.PCRE isnestedconcretetype(_) = true @generated function isnestedconcretetype(::Type{T}) where T return isconcretetype(T) && all(isnestedconcretetype, T.parameters) end # match utils literal_match_regex(s::Union{AbstractString, AbstractChar}, flags...) = Regex(Base.wrap_string(s, UInt32(0)), flags...) as_match(r::AbstractPattern) = r as_match(s::Union{AbstractString, AbstractChar}) = literal_match_regex(s) abstract type AbstractMatchSplitIterState{P <: AbstractPattern} end mutable struct MatchSplitIterRegexState <: AbstractMatchSplitIterState{Regex} i::Int matched::UnitRange{Int} data::Ptr{Nothing} function MatchSplitIterRegexState(regex::Regex, i = 1) Base.compile(regex) data = PCRE.create_match_data(regex.regex) state = new(i, 0:0, data) finalizer(state) do s s.data == C_NULL || PCRE.free_match_data(s.data) end return state end end function matchsplit_iterate!(regex::Regex, e, s, state::MatchSplitIterRegexState) i, matched, data = state.i, state.matched, state.data _regex = regex.regex opts = regex.match_options if !iszero(matched) str = @inbounds SubString(s, matched.start, matched.stop) state.matched = 0:0 return (true, str), state end if i > e return nothing end if !PCRE.exec(_regex, s, i-1, opts, data) str = @inbounds SubString(s, i, e) state.i = typemax(Int) return (false, str), state end p = PCRE.ovec_ptr(data) ri = Int(unsafe_load(p, 1)) + 1 re = prevind(s, Int(unsafe_load(p, 2)) + 1) matched = ri:re ni = nextind(s, re) if i != ri str = @inbounds SubString(s, i, prevind(s, ri)) state.i = ni state.matched = matched return (false, str), state end str = @inbounds SubString(s, ri, re) state.i = ni state.matched = 0:0 return (true, str), state end mutable struct MatchSplitIterRuRegexState <: AbstractMatchSplitIterState{RuRegex} i::Int matched::UnitRange{Int} itr::Ptr{Cvoid} function MatchSplitIterRuRegexState(regex::RuRegex, i = 1) obj = RustRegex.RuRE.rure_iter_new(regex) state = new(i, 0:0, obj) finalizer(state) do x x.itr == C_NULL || RustRegex.RuRE.rure_iter_free(x.itr) end return state end end function matchsplit_iterate!(regex::RuRegex, e, s, state::MatchSplitIterRuRegexState) i, matched, itr = state.i, state.matched, state.itr if !iszero(matched) str = @inbounds SubString(s, matched.start, matched.stop) state.matched = 0:0 return (true, str), state end if i > e return nothing end m = Ref{UnitRange{UInt}}(0:0) len = ncodeunits(s) if !RustRegex.RuRE.rure_iter_next(itr, s, len, m) str = @inbounds SubString(s, i, e) state.i = typemax(Int) return (false, str), state end _m = m[] ri = thisind(s, Int(_m.start) + 1) re = thisind(s, Int(_m.stop)) matched = ri:re ni = nextind(s, re) if i != ri str = @inbounds SubString(s, i, prevind(s, ri)) state.i = ni state.matched = matched return (false, str), state end str = @inbounds SubString(s, ri, re) state.i = ni state.matched = 0:0 return (true, str), state end struct MatchSplitIterPatternAndState{P <: AbstractPattern, S <: AbstractMatchSplitIterState{P}} pattern::P state::S end MatchSplitIterPatternAndState(pattern::AbstractPattern, str::SubString{String}) = MatchSplitIterPatternAndState(pattern, firstindex(str)) MatchSplitIterPatternAndState(regex::Regex, i::Int) = MatchSplitIterPatternAndState(regex, MatchSplitIterRegexState(regex, i)) MatchSplitIterPatternAndState(regex::RuRegex, i::Int) = MatchSplitIterPatternAndState(regex, MatchSplitIterRuRegexState(regex, i)) struct MatchSplitIterator{P<:MatchSplitIterPatternAndState} regex_and_state::P lastidx::Int str::SubString{String} function MatchSplitIterator(regex::AbstractPattern, str::SubString{String}) regex_and_state = MatchSplitIterPatternAndState(regex, str) return new{typeof(regex_and_state)}(regex_and_state, lastindex(str), str) end end MatchSplitIterator(regex::AbstractPattern, str::String) = MatchSplitIterator(regex, SubString(str)) MatchSplitIterator(regex, str) = MatchSplitIterator(literal_match_regex(regex), str) Base.eltype(::Type{<:MatchSplitIterator}) = Tuple{Bool, SubString{String}} Base.IteratorSize(::Type{<:MatchSplitIterator}) = Base.SizeUnknown() Base.show(io::IO, itr::MatchSplitIterator) = (print(io, "MatchSplitIterator("); show(io, itr.regex_and_state.pattern); print(io, ", "); show(io, itr.str); print(io, ')')) function Base.iterate(itr::MatchSplitIterator, _ = nothing) regex_and_state = itr.regex_and_state state = regex_and_state.state e = itr.lastidx v_state = matchsplit_iterate!(regex_and_state.pattern, e, itr.str, state) isnothing(v_state) && return nothing v = first(v_state) return v, nothing end struct MatchSplits{P <: AbstractPattern, I <: MatchSplitIterator} regexes::Vector{P} str::SubString{String} states::MutableLinkedList{I} function MatchSplits(regexes::Vector{P}, str::SubString{String}) where P <:AbstractPattern n = length(regexes) @assert n != 0 itr1 = MatchSplitIterator(@inbounds(regexes[1]), str) if P == AbstractPattern states = MutableLinkedList{MatchSplitIterator}(itr1) else states = MutableLinkedList{typeof(itr1)}(itr1) end return new{P, eltype(states)}(regexes, str, states) end end MatchSplits(regexes::Vector{<:AbstractPattern}, str::String) = MatchSplits(regexes, SubString(str)) MatchSplits(regexes, str) = MatchSplits(map(as_match, regexes), str) Base.eltype(::Type{<:MatchSplits}) = Tuple{Bool, SubString{String}} Base.IteratorSize(::Type{<:MatchSplits}) = Base.SizeUnknown() Base.show(io::IO, itr::MatchSplits) = (print(io, "MatchSplits("); show(io, itr.regexes); print(io, ", "); show(io, itr.str); print(io, ')')) function Base.iterate(itr::MatchSplits, _ = nothing) state = itr.states @label ms_itr_start level = length(state) iszero(level) && return nothing itr_i = @inbounds state[level] I = Base.iterate(itr_i) if isnothing(I) pop!(state) @goto ms_itr_start end v, _ = I ismatch = v[1] if ismatch return v, nothing else if level == length(itr.regexes) return v, nothing else regex_j = @inbounds itr.regexes[level+1] itr_j = MatchSplitIterator(regex_j, v[2]) push!(state, itr_j) @goto ms_itr_start end end end matchsplit(t, s) = MatchSplitIterator(t, s) matchsplits(t::AbstractPattern, s) = matchsplit(t, s) matchsplits(t::Vector{<:AbstractPattern}, s) = isone(length(t)) ? matchsplits(@inbounds(t[1]), s) : MatchSplits(t, s) """ matchsplits(pattern::AbstractPattern, str::String) Split `str` with the regular expression `pattern`. Return a lazy iterator where each element is a `Tuple{Bool, SubString}`. The `Bool` indicate whether the `SubString` is a match of `pattern`. # Example ```julia-repl julia> matchsplits(r"a|c", "abc"^3) MatchSplitIterator(r"a|c", "abcabcabc") julia> collect(matchsplits(r"a|c", "abc"^3)) 9-element Vector{Tuple{Bool, SubString{String}}}: (1, "a") (0, "b") (1, "c") (1, "a") (0, "b") (1, "c") (1, "a") (0, "b") (1, "c") ``` """ matchsplits(t::AbstractPattern, s) """ matchsplits(patterns::Vector{<:AbstractPattern}, str::String) Split `str` with the list of regular expression `patterns`. Return a lazy iterator where each element is a `Tuple{Bool, SubString}`. The `Bool` indicate whether the `SubString` is a match of `pattern`. The match order are specified by the list order. # Example ```julia-repl julia> matchsplits([r"a", r"c"], "abc"^3) MatchSplits(Regex[r"a", r"c"], "abcabcabc") julia> collect(matchsplits([r"a", r"c"], "abc"^3)) 9-element Vector{Tuple{Bool, SubString{String}}}: (1, "a") (0, "b") (1, "c") (1, "a") (0, "b") (1, "c") (1, "a") (0, "b") (1, "c") julia> collect(matchsplits([r"ab", r"bc"], "abc"^3)) 6-element Vector{Tuple{Bool, SubString{String}}}: (1, "ab") (0, "c") (1, "ab") (0, "c") (1, "ab") (0, "c") ``` """ matchsplits(t::Vector{<:AbstractPattern}, s) struct FindAllIterator{S, P} pattern::P str::S end Base.eltype(::Type{<:FindAllIterator{Union{String, SubString}}}) = SubString{String} Base.eltype(::Type{<:FindAllIterator{AbstractString}}) = String Base.IteratorSize(::Type{<:FindAllIterator}) = Base.SizeUnknown() function Base.iterate(itr::FindAllIterator, state = firstindex(itr.str)) str = itr.str found = findnext(itr.pattern, str, state) isnothing(found) && return nothing result = @inbounds eltype(itr) <: SubString ? @view(str[found]) : str[found] nstate = nextind(str, last(found)) return result, nstate end # misc nestedcall(f) = Base.Fix1(nestedcall, f) nestedcall(f, x::AbstractArray) = map(nestedcall(f), x) nestedcall(f, x) = f(x) function _nestedcall_f!(f, ys, xs) @inbounds for i in eachindex(xs, ys) ys[i] = nestedcall(f, xs[i]) end return ys end function _nestedcall_f_fallback!(f, ys, xs) S = Union{} @inbounds for i in eachindex(xs, ys) ys[i] = nestedcall(f, xs[i]) S = promote_type(S, typeof(ys[i])) end return S, ys end function nestedcall(f, xs::Array) R = Core.Compiler.return_type(nestedcall, Tuple{typeof(f), eltype(xs)}) if Base.isconcretetype(R) return _nestedcall_f!(f, similar(xs, R), xs) else S, ys = _nestedcall_f_fallback!(f, similar(xs, R), xs) if S != R zs = similar(xs, S) copyto!(zs, ys) return zs end return ys end end # encode utils const NotASample = -2 const UnknownSample = -1 const SampleElement = 0 const SingleSample = 1 const ArraySample = 2 const NestedSample = 3 _sequence_of(x) = x + (x >= 0) """ type_sequence_sample_type([T::Type,] t::Type) Get the depth of the nested array type. If return natural number, `t` is a type of nested array. Return `-1` if it cannot be known by type and return `-2` if `t` is not a nested array type. Specify `T` to check if `t` is a nested array type with element type `T`. If `T` is not specified, every type not subtype to `AbstractArray` is a count as element type. see also: [`sequence_sample_type`](@ref), [`peek_sequence_sample_type`](@ref) # Example ```julia-repl julia> type_sequence_sample_type(Vector{Vector{Integer}}) 2 julia> type_sequence_sample_type(Number, Array{Vector{Union{Float64, Int}}}) 2 julia> type_sequence_sample_type(Int, Array{Vector{Union{Float64, Int}}}) -2 ``` """ function type_sequence_sample_type(@nospecialize(T::Type), @nospecialize(t::Type)) t <: T && return SampleElement if t isa Union st_a = type_sequence_sample_type(T, t.a) st_b = type_sequence_sample_type(T, t.b) return st_a == st_b ? st_a : NotASample end t <: AbstractArray || return NotASample et = t >: AbstractArray ? Base.unwrap_unionall(t).parameters[1] : eltype(t) if et isa DataType || et isa UnionAll if et <: T return SingleSample elseif et <: AbstractArray st = type_sequence_sample_type(T, et) return _sequence_of(st) elseif et >: AbstractArray return UnknownSample else return NotASample end elseif et isa Union st = type_sequence_sample_type(T, et) return _sequence_of(st) end return UnknownSample end function type_sequence_sample_type(@nospecialize(t::Type)) if t isa Union st_a = type_sequence_sample_type(t.a) st_b = type_sequence_sample_type(t.b) return st_a == st_b ? st_a : NotASample end t <: AbstractArray || return SampleElement et = t >: AbstractArray ? Base.unwrap_unionall(t).parameters[1] : eltype(t) if et isa DataType || et isa UnionAll if et <: AbstractArray st = type_sequence_sample_type(et) return _sequence_of(st) elseif et >: AbstractArray return UnknownSample else return SingleSample end elseif et isa Union st = type_sequence_sample_type(et) return _sequence_of(st) end return UnknownSample end """ sequence_sample_type([T::Type,] x) Get the depth of the nested array. If return natural number, `x` is a nested array where each element has the same depth. Return `-2` if `x` is not a nested array or the depth of elements are different. Depth of empty array compute with the type and `sequence_sample_type(Any[])` is `1`. Specify `T` to check if `x` is a nested array with element type `T`. If `T` is not specified, every type not subtype to `AbstractArray` is a count as element type. see also: [`type_sequence_sample_type`](@ref), [`peek_sequence_sample_type`](@ref) # Example ```julia-repl julia> sequence_sample_type([[1,2,3]]) 2 julia> sequence_sample_type([[[2,3], [1]], Vector{Int}[]]) 3 julia> sequence_sample_type([[[2,3], [1]], Any[]]) -2 julia> sequence_sample_type(Int, [[1,2], 3]) -2 julia> sequence_sample_type(Int, Any[[1,2], Int[]]) 2 ``` """ function sequence_sample_type(x) S = typeof(x) stype = type_sequence_sample_type(S) if stype == UnknownSample itr = iterate(x) if !isnothing(itr) xi, state = itr elst = sequence_sample_type(xi) elst == NotASample && return NotASample itr = iterate(x, state) while !isnothing(itr) xi, state = itr elst2 = sequence_sample_type(xi) elst != elst2 && return NotASample itr = iterate(x, state) end return _sequence_of(elst) end ET = eltype(S) return ET <: AbstractArray || ET != Any ? ArraySample : SingleSample end return stype end function sequence_sample_type(T::Type, x) S = typeof(x) stype = type_sequence_sample_type(T, S) if stype == UnknownSample itr = iterate(x) if !isnothing(itr) xi, state = itr elst = sequence_sample_type(T, xi) elst == NotASample && return NotASample itr = iterate(x, state) while !isnothing(itr) xi, state = itr elst2 = sequence_sample_type(T, xi) elst != elst2 && return NotASample itr = iterate(x, state) end return _sequence_of(elst) end ET = eltype(S) return ET <: AbstractArray || ET != Any ? ArraySample : SingleSample end return stype end """ peek_sequence_sample_type([T::Type,] x) Non-recursive version of `sequence_sample_type`. Return `-1` if the `x` is an array of array with unknown elements, thus it's possible that `sequence_sample_type(x[i]) == -2`. Specify `T` to check if `x` is a nested array with element type `T`. If `T` is not specified, every type not subtype to `AbstractArray` is a count as element type. see also: [`type_sequence_sample_type`](@ref), [`sequence_sample_type`](@ref) # Example ```julia-repl julia> TextEncodeBase.peek_sequence_sample_type([1,2,3]) 1 julia> peek_sequence_sample_type(Int, Any[[[1,2,3]]]), sequence_sample_type(Int, Any[[[1,2,3]]]) (-1, 3) julia> peek_sequence_sample_type(Int, [[[1,2,3], "abc"]]), sequence_sample_type(Int, [[[1,2,3], "abc"]]) (-1, -2) ``` """ function peek_sequence_sample_type(x) S = typeof(x) stype = type_sequence_sample_type(S) if stype == UnknownSample itr = iterate(x) if !isnothing(itr) xi, state = itr elst = xi isa AbstractArray ? SingleSample : SampleElement itr = iterate(x, state) while !isnothing(itr) xi, state = itr elst2 = xi isa AbstractArray ? SingleSample : SampleElement elst != elst2 && return NotASample itr = iterate(x, state) end return elst == SampleElement ? SingleSample : UnknownSample end ET = eltype(S) return ET <: AbstractArray || ET != Any ? ArraySample : SingleSample end return stype end function peek_sequence_sample_type(T::Type, x) S = typeof(x) stype = type_sequence_sample_type(T, S) if stype == UnknownSample itr = iterate(x) if !isnothing(itr) xi, state = itr elst = xi isa AbstractArray ? SingleSample : xi isa T ? SampleElement : NotASample elst == NotASample && return NotASample itr = iterate(x, state) while !isnothing(itr) xi, state = itr elst2 = xi isa AbstractArray ? SingleSample : xi isa T ? SampleElement : NotASample elst != elst2 && return NotASample itr = iterate(x, state) end return elst == SampleElement ? SingleSample : UnknownSample end ET = eltype(S) return ET <: AbstractArray || ET != Any ? ArraySample : SingleSample end return stype end macro elementmap(sym::Symbol, ex::Expr) !Meta.isexpr(ex, :call) && error("not a function call: $ex") func = ex.args[1] has_x = false argtype = Expr(:curly, :Tuple) x_i = Symbol("#", sym, :_i) fcall = Expr(:call, func) for i = 2:length(ex.args) argi = ex.args[i] if argi == sym has_x = true push!(argtype.args, :(eltype($argi))) push!(fcall.args, x_i) else push!(argtype.args, :(typeof($argi))) push!(fcall.args, argi) end end !has_x && error("no $sym in function call") f = Expr(:->, x_i, Expr(:block, fcall)) ET = Expr(:call, :(Core.Compiler.return_type), func, argtype) RT = Expr(:curly, Array, ET, Expr(:call, :ndims, sym)) y = Expr(:call, RT, :undef, Expr(:call, :size, sym)) r = Expr(:call, :map!, f, y, sym) return esc(r) end allany(f, x) = mapfoldl(f, _allany, x; init=(true, false)) _allany(a, b) = a[1] & b, a[2] | b """ with_head_tail(x, head, tail) Return `[head; x; tail]`. Ignored if `head` or `tail` is `nothing`. `x` can be nested arrays. # Example ```julia julia> TextEncodeBase.with_head_tail(1:5, -1, -2) 7-element Vector{Int64}: -1 1 2 3 4 5 -2 julia> TextEncodeBase.with_head_tail([1:5, 2:3], -1, -2) 2-element Vector{Vector{Int64}}: [-1, 1, 2, 3, 4, 5, -2] [-1, 2, 3, -2] ``` """ function with_head_tail(x::AbstractArray, head, tail) stype = peek_sequence_sample_type(x) if stype == SingleSample T = eltype(x) if T == Any return _with_head_tail(mapreduce(typeof, promote_type, x), x, head, tail) else return _with_head_tail(x, head, tail) end elseif stype >= UnknownSample return @elementmap x with_head_tail(x, head, tail) # return map(FixRest(with_head_tail, head, tail), x) else error("Input array is mixing array and non-array elements") end end with_head_tail(head, tail) = FixRest(with_head_tail, head, tail) with_head_tail(x; head=nothing, tail=nothing) = with_head_tail(x, head, tail) with_head_tail(; head=nothing, tail=nothing) = with_head_tail(head, tail) @inline function _with_head_tail(::Type{T}, x, head, tail) where T S = T n = length(x) !isnothing(head) && ((n, S) = (n+1, promote_type(S, typeof(head)))) !isnothing(tail) && ((n, S) = (n+1, promote_type(S, typeof(tail)))) vec = Vector{S}(undef, n); empty!(vec) !isnothing(head) && push!(vec, head) append!(vec, x) !isnothing(tail) && push!(vec, tail) return vec end _with_head_tail(x, head, tail) = _with_head_tail(eltype(x), x, head, tail) """ trunc_or_pad(x, n, pad) Truncate `x` to length `n`, or add `pad` at the end of x until length equal `n`. `x` can be either nested or single array. if `n` is `nothing`, the largest length of the inner-most array will be used. trunc_or_pad(x, n, pad, trunc_end = :tail, pad_end = :tail) `trunc_end` and `pad_end` specified whether the truncation and padding happened at the begining of the sentences or the end of the sentence. The value is either `:tail` (means the end) or `:head` (means the begining). trunc_or_pad(n, pad, trunc_end = :tail, pad_end = :tail) Create a function that will return new array with truncated or padded value of the input. see also: [`trunc_and_pad`](@ref) # Example ```julia julia> TextEncodeBase.trunc_or_pad(1:5, 7, -1) 7-element Vector{Int64}: 1 2 3 4 5 -1 -1 julia> TextEncodeBase.trunc_or_pad([1:5, 2:7], 10, -1) 2-element Vector{Vector{Int64}}: [1, 2, 3, 4, 5, -1, -1, -1, -1, -1] [2, 3, 4, 5, 6, 7, -1, -1, -1, -1] julia> TextEncodeBase.trunc_or_pad([1:5, [2:7, [1:2]]], nothing, -1) 2-element Vector{Vector}: [1, 2, 3, 4, 5, -1] Vector[[2, 3, 4, 5, 6, 7], [[1, 2, -1, -1, -1, -1]]] ``` """ function trunc_or_pad(x::AbstractArray, n::Integer, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) stype = peek_sequence_sample_type(x) if stype == SingleSample return trunc_or_pad!(similar(x, n), x, n, pad, trunc_end, pad_end) elseif stype >= UnknownSample return @elementmap x trunc_or_pad(x, n, pad, trunc_end, pad_end) # return map(trunc_or_pad(n, pad, trunc_end, pad_end), x) else error("Input array is mixing array and non-array elements") end end trunc_or_pad(x, ::Nothing, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = trunc_or_pad(x, nestedmaxlength(x), pad, trunc_end, pad_end) trunc_or_pad(n, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = FixRest(trunc_or_pad, n, pad, trunc_end, pad_end) trunc_or_pad(x; n = nothing, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = trunc_or_pad(x, n, pad, trunc_end, pad_end) trunc_or_pad(; n = nothing, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = trunc_or_pad(n, pad, trunc_end, pad_end) function trunc_or_pad!(vec, x, n, pad, trunc_end, pad_end) len = length(x) if len <= n # pad if pad_end == :tail copyto!(vec, x) vec[len+1:n] .= pad elseif pad_end == :head pad_prefix_size = n - len copyto!(vec, pad_prefix_size + 1, x, 1, len) vec[1:pad_prefix_size] .= pad else error("`pad_end` is not :head or :tail but: $pad_end") end else # trunc if trunc_end == :tail copyto!(vec, 1, x, 1, n) elseif trunc_end == :head copyto!(vec, 1, x, len - n + 1, n) else error("`trunc_end` is not :head or :tail but: $trunc_end") end end return vec end """ trunc_and_pad(x, maxn, pad) Truncate `x` if length exceed `maxn`, and add `pad` at the end of x until all length are the same. `x` can be either nested or single array. If `maxn` is `nothing`, the largest length of the inner-most array will be used, then the behavior equals to `trunc_or_pad` with `nothing`. trunc_and_pad(x, maxn, pad, trunc_end = :tail, pad_end = :tail) `trunc_end` and `pad_end` specified whether the truncation and padding happened at the begining of the sentences or the end of the sentence. The value is either `:tail` (means the end) or `:head` (means the begining). trunc_and_pad(maxn, pad, trunc_end = :tail, pad_end = :tail) Create a function that truncate input to be length <= `maxn`, and add `pad` until all input has equal length. see also: [`trunc_or_pad`](@ref) # Example ```julia julia> TextEncodeBase.trunc_and_pad(1:5, 7, -1) 5-element Vector{Int64}: 1 2 3 4 5 julia> TextEncodeBase.trunc_and_pad([1:5, 2:7], 10, -1) 2-element Vector{Vector{Int64}}: [1, 2, 3, 4, 5, -1] [2, 3, 4, 5, 6, 7] julia> TextEncodeBase.trunc_and_pad([1:5, [2:7, [1:2]]], nothing, -1) 2-element Vector{Vector}: [1, 2, 3, 4, 5, -1] Vector[[2, 3, 4, 5, 6, 7], [[1, 2, -1, -1, -1, -1]]] ``` """ trunc_and_pad(x, maxn, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = (n = nestedmaxlength(x); _trunc_and_pad(x, n, isnothing(maxn) ? n : maxn, pad, trunc_end, pad_end)) trunc_and_pad(maxn, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = FixRest(trunc_and_pad, maxn, pad, trunc_end, pad_end) trunc_and_pad(x; maxn=nothing, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = trunc_and_pad(x, maxn, pad, trunc_end, pad_end) trunc_and_pad(; maxn=nothing, pad, trunc_end::Symbol = :tail, pad_end::Symbol = :tail) = trunc_and_pad(maxn, pad, trunc_end, pad_end) @inline _trunc_and_pad(x, n, maxn, pad, trunc_end, pad_end) = trunc_or_pad(x, min(n, maxn), pad, trunc_end, pad_end) function nestedmaxlength(x::AbstractArray) stype = peek_sequence_sample_type(x) if stype == SingleSample return length(x) elseif stype >= UnknownSample return mapfoldl(nestedmaxlength, max, x) else error("Input array is mixing array and non-array elements") end end _checkeqsize(x, y) = x == y ? x : throw(DimensionMismatch("nested size not the same: $x != $y")) function nestedsize(x::AbstractArray) stype = peek_sequence_sample_type(x) if stype == SingleSample return size(x) elseif stype >= UnknownSample s1 = nestedsize(first(x)) mapfoldl(nestedsize, _checkeqsize, @view(reshape(x, :)[2:end]); init = s1) return (s1..., size(x)...) else error("Input array is mixing array and non-array elements") end end function nestedtype(x::AbstractArray) stype = peek_sequence_sample_type(x) if stype == SingleSample return mapreduce(typeof, promote_type, x) elseif stype >= UnknownSample return mapreduce(nestedtype, promote_type, x) else error("Input array is mixing array and non-array elements") end end """ nested2batch(x) convert nested array into single array See also: [`batch2nested`](@ref) # Example ```julia julia> TextEncodeBase.nested2batch([[[1 2],[3 4]]]) 1×2×2×1 Array{Int64, 4}: [:, :, 1, 1] = 1 2 [:, :, 2, 1] = 3 4 ``` """ function nested2batch(x) ns = nestedsize(x) arr = Array{nestedtype(x), length(ns)}(undef, ns) _nested2batch!(arr, 1, x) return arr end _reduce_nested(dst_offset, xi) = dst_offset[1], _nested2batch!(dst_offset..., xi)[2] function _nested2batch!(arr, offset, x::AbstractArray) stype = peek_sequence_sample_type(x) if stype == SingleSample copyto!(arr, offset, x, 1, length(x)) return (arr, offset+length(x)) elseif stype >= UnknownSample return foldl(_reduce_nested, x; init=(arr, offset)) else error("Input array is mixing array and non-array elements") end end """ batch2nested(x) convert single array into nested array. See also: [`nested2batch`](@ref) # Example ```julia-repl julia> x = ["a" "d"; "b" "e"; "c" "f";;; "x" "u"; "y" "v"; "z" "w"; ] 3×2×2 Array{String, 3}: [:, :, 1] = "a" "d" "b" "e" "c" "f" [:, :, 2] = "x" "u" "y" "v" "z" "w" julia> TextEncodeBase.batch2nested(x) 2-element Vector{Vector{Vector{String}}}: [["a", "b", "c"], ["d", "e", "f"]] [["x", "y", "z"], ["u", "v", "w"]] ``` """ function batch2nested(x::AbstractArray) return _batch2nested(x, size(x)) end _batch2nested(x, ::Tuple{Int}) = collect(x) @static if VERSION < v"1.9" function _batch2nested(x, s::Tuple) dim = length(s) len = s[end] s = Base.front(s) X = eachslice(x; dims = dim) y = Vector{Core.Compiler.return_type(_batch2nested, Tuple{eltype(X), typeof(s)})}(undef, len) @inbounds for (i, xi) in enumerate(X) y[i] = _batch2nested(xi, s) end return y end else function _batch2nested(x, s::Tuple) dim = length(s) len = s[end] s = Base.front(s) X = eachslice(x; dims = dim) y = Vector{Core.Compiler.return_type(_batch2nested, Tuple{eltype(X), typeof(s)})}(undef, len) return map!(xi->_batch2nested(xi, s), y, X) end end """ join_text(x::AbstractArray [, delim [, last]]) `join` the inner most array and preserve the array structure. If the inner most array is multi-dimensional, `join` text along the first dimension. # Example ```julia-repl julia> TextEncodeBase.join_text([["a", "b", "c"], ['x', 'y', 'z']]) 2-element Vector{String}: "abc" "xyz" julia> TextEncodeBase.join_text([["a", "b", "c"], ['x', 'y', 'z']], " + ") 2-element Vector{String}: "a + b + c" "x + y + z" julia> TextEncodeBase.join_text([[["a", "b", "c"], ['x', 'y', 'z']]], " + ", " = ") 1-element Vector{Vector{String}}: ["a + b = c", "x + y = z"] julia> TextEncodeBase.join_text(["a" "d"; "b" "e"; "c" "f";;; "x" "u"; "y" "v"; "z" "w"; ], " + ", " = ") 2×2 Matrix{String}: "a + b = c" "x + y = z" "d + e = f" "u + v = w" ``` """ @static if VERSION < v"1.9" function join_text(x::AbstractArray, delim = "", last = delim) stype = peek_sequence_sample_type(x) if stype == SingleSample N = ndims(x) if N == 1 return join(x, delim, last) else return reshape(mapslices(FixRest(join, delim, last), x; dims = 1), Base.tail(size(x))) end elseif stype >= UnknownSample return @elementmap x join_text(x, delim, last) else error("Input array is mixing array and non-array elements") end end else function join_text(x::AbstractArray, delim = "", last = delim) stype = peek_sequence_sample_type(x) if stype == SingleSample N = ndims(x) if N == 1 return join(x, delim, last) else return map(FixRest(join, delim, last), eachslice(x, dims = ntuple(x->x+1, Val(N - 1)))) end elseif stype >= UnknownSample return @elementmap x join_text(x, delim, last) # return map(FixRest(join_text, delim, last), x) else error("Input array is mixing array and non-array elements") end end end # Sequence template """ abstract type TemplateTerm{T} end Abstract type for term used in [`SequenceTemplate`](@ref). """ abstract type TemplateTerm{T} end Base.eltype(::TemplateTerm{T}) where T = T """ InputTerm{T}(type_id = 1) A `TemplateTerm` that take out a sequence from the input. """ struct InputTerm{T} <: TemplateTerm{T} type_id::Int InputTerm{T}(type_id = 1) where T = new{T}(type_id) end """ IndexInputTerm{T}(idx::Int, type_id = 1) A `TemplateTerm` that take the `idx`-th sequence of the input. If the `IndexInputTerm` is also the `idx`-th input related term in a [`SequenceTemplate`](@ref), it behave the same as [`InputTerm`](@ref). """ struct IndexInputTerm{T} <: TemplateTerm{T} idx::Int type_id::Int IndexInputTerm{T}(idx, type_id = 1) where T = new{T}(idx, type_id) end """ ConstTerm(value::T, type_id = 1) A `TemplateTerm` that simply put `value` to the output sequence. """ struct ConstTerm{T} <: TemplateTerm{T} value::T type_id::Int end ConstTerm(value, type_id = 1) = ConstTerm{typeof(value)}(value, type_id) """ RepeatedTerm(terms::TemplateTerm...; dynamic_type_id = false) A special term that indicate the `terms` sequence can appear zero or multiple times. Cannot be nested. If `dynamic_type_id` is set, each repeat would add an offset value to the type id of those repeat `terms`. The offset value if the number of repetiton, starting form `0`, times `dynamic_type_id`. """ struct RepeatedTerm{T, Ts<:Tuple{Vararg{TemplateTerm{T}}}} <: TemplateTerm{T} terms::Ts dynamic_type_id::Int function RepeatedTerm(terms::Tuple{Vararg{TemplateTerm{T}}}, dynamic_type_id = false) where T @assert length(terms) >= 1 "No TemplateTerm provided." @assert !any(Base.Fix2(isa, RepeatedTerm), terms) "Cannot nest RepeatedTerm" return new{T, typeof(terms)}(terms, dynamic_type_id) end end RepeatedTerm(terms::TemplateTerm...; dynamic_type_id = false) = RepeatedTerm(terms, dynamic_type_id) """ SequenceTemplate(terms::TemplateTerm)(sequences...) Constructing a function by multiple `TemplateTerm` that indicate how to combine the input `sequences`. Return a tuple of the result sequence and a type id (a special number associated with the template term) sequence. # Example ```julia-repl julia> SequenceTemplate(ConstTerm(-1), InputTerm{Int}(), ConstTerm(-2))(1:5)[1] == TextEncodeBase.with_head_tail(1:5, -1, -2) true julia> SequenceTemplate(ConstTerm(-1), InputTerm{Int}(), ConstTerm(-2))(1:5) ([-1, 1, 2, 3, 4, 5, -2], [1, 1, 1, 1, 1, 1, 1]) julia> bert_template = SequenceTemplate( ConstTerm("[CLS]", 1), InputTerm{String}(1), ConstTerm("[SEP]", 1), RepeatedTerm(InputTerm{String}(2), ConstTerm("[SEP]", 2)) ) SequenceTemplate{String}([CLS]:<type=1> Input:<type=1> [SEP]:<type=1> (Input:<type=2> [SEP]:<type=2>)...) julia> bert_template(["hello", "world"]) (["[CLS]", "hello", "world", "[SEP]"], [1, 1, 1, 1]) julia> bert_template(["hello", "world"], ["today", "is", "a", "good", "day"]) (["[CLS]", "hello", "world", "[SEP]", "today", "is", "a", "good", "day", "[SEP]"], [1, 1, 1, 1, 2, 2, 2, 2, 2, 2]) ``` """ struct SequenceTemplate{T, Ts<:Tuple{Vararg{TemplateTerm{T}}}} <: Function terms::Ts function SequenceTemplate(terms::Tuple{Vararg{TemplateTerm{T}}}) where T @assert length(terms) >= 1 "No TemplateTerm provided." @assert count(Base.Fix2(isa, RepeatedTerm), terms) <= 1 "RepeatedTerm can only appear at most once." return new{T, typeof(terms)}(terms) end end SequenceTemplate(terms::TemplateTerm...) = SequenceTemplate(terms) Base.eltype(::SequenceTemplate{T}) where T = T function process_term!(term::InputTerm, output, type_ids, i, j, terms, xs) @assert j <= length(xs) "InputTerm indexing $j-th input but only get $(length(xs))" x = xs[j] isnothing(output) || append!(output, x) isnothing(type_ids) || append!(type_ids, Iterators.repeated(term.type_id, length(x))) return j + 1 end function process_term!(term::IndexInputTerm, output, type_ids, i, j, terms, xs) idx = term.idx @assert idx <= length(xs) "IndexInputTerm indexing $idx-th input but only get $(length(xs))" x = xs[idx] isnothing(output) || append!(output, x) isnothing(type_ids) || append!(type_ids, Iterators.repeated(term.type_id, length(x))) return idx == j ? j + 1 : j end function process_term!(term::ConstTerm, output, type_ids, i, j, terms, xs) isnothing(output) || push!(output, term.value) isnothing(type_ids) || push!(type_ids, term.type_id) return j end function process_term!(term::RepeatedTerm, output, type_ids, i, j, terms, xs) r_terms = term.terms dynamic_type_id = term.dynamic_type_id n = count(Base.Fix2(isa, InputTerm), terms[i+1:end]) J = length(xs) - n type_id_offset = 0 while j <= J if !isnothing(type_ids) type_id_start = length(type_ids) + 1 end _j = j for (t_i, term_i) in enumerate(r_terms) j = process_term!(term_i, output, type_ids, t_i, j, r_terms, xs) end _j == j && error("RepeatedTerm doesn't seem to terminate") if !isnothing(type_ids) type_id_end = length(type_ids) dynamic_type_id != 0 && (type_ids[type_id_start:type_id_end] .+= type_id_offset) type_id_offset += dynamic_type_id end end return j end function process_template!( st::SequenceTemplate{T}, output::Union{Vector{T}, Nothing}, type_ids::Union{Vector{Int}, Nothing}, xs ) where T terms = st.terms len = length(xs) n_input = count(Base.Fix2(isa, InputTerm), terms) @assert len >= n_input "SequenceTemplate require at least $n_input but only get $len" j = 1 for (i, term) in enumerate(terms) j = process_term!(term, output, type_ids, i, j, terms, xs) end @assert j > len "SequenceTemplate only take $(j-1) inputs but get $len" return output, type_ids end alloc_outputs(st::SequenceTemplate, ::Val{0}) = (Vector{eltype(st)}(), Vector{Int}()) alloc_outputs(st::SequenceTemplate, ::Val{1}) = (Vector{eltype(st)}(), nothing) alloc_outputs(st::SequenceTemplate, ::Val{2}) = (nothing, Vector{Int}()) alloc_outputs(st::SequenceTemplate, ::Val{-1}) = (nothing, nothing) apply_template(st::SequenceTemplate) = Base.Fix1(apply_template, st) apply_template(st::SequenceTemplate, val::Val) = xs -> apply_template(st, val, xs) apply_template(st::SequenceTemplate, xs) = apply_template(st, Val(0), xs) apply_template(st::SequenceTemplate, val::Val, xs) = apply_template!(st, alloc_outputs(st, val), xs) function apply_template!(st::SequenceTemplate, buffers::Tuple{A, B}, xs) where {A, B} output, type_ids = process_template!(st, buffers[1], buffers[2], xs) if !(isnothing(output) || isnothing(type_ids)) return output, type_ids elseif !isnothing(output) return output elseif !isnothing(type_ids) return type_ids else return nothing end end (st::SequenceTemplate)(val::Val) = Base.Fix1(st, val) (st::SequenceTemplate)(x::AbstractArray) = st(Val(0), x) (st::SequenceTemplate{T})(xs::AbstractVector{T}...) where T = st(xs) (st::SequenceTemplate{T})(xs::Tuple{Vararg{AbstractVector{T}}}) where T = st(Val(0), xs) ## static single sample (st::SequenceTemplate{T})(val::Val, x::AbstractVector{T}, xs::AbstractVector{T}...) where T = apply_template(st, val, (x, xs...)) (st::SequenceTemplate{T})(val::Val, xs::Tuple{Vararg{AbstractVector{T}}}) where T = apply_template(st, val, xs) (st::SequenceTemplate{T})(val::Val, xs::AbstractVector{<:AbstractVector{T}}) where T = apply_template(st, val, xs) ## static multiple sample function (st::SequenceTemplate{T})(val::Val, xs::AbstractArray{<:AbstractVector{<:AbstractVector{T}}}) where T if val == Val(0) outputs = map(apply_template(st, Val(1)), xs) type_ids = map(apply_template(st, Val(2)), xs) return outputs, type_ids elseif val == Val(-1) foreach(apply_template(st, Val(-1)), xs) return nothing else return map(apply_template(st, val), xs) end end ## deep nested or dynamic @inline function _st_call(st::SequenceTemplate, val::Val, xs::AbstractArray) return @elementmap xs st(val)(xs) end @inline function _st_nested(st::SequenceTemplate, val::Val, xs::AbstractArray) if val == Val(0) outputs = _st_call(st, Val(1), xs) type_ids = _st_call(st, Val(2), xs) return outputs, type_ids elseif val == Val(-1) foreach(st(Val(-1)), xs) return nothing else return _st_call(st, val, xs) end end function (st::SequenceTemplate{T})(val::Val, xs::AbstractArray) where T if isnestedconcretetype(typeof(xs)) return _st_nested(st, val, xs) end aoa, naov = allany(Base.Fix2(isa, AbstractArray), xs) aov = !naov if aoa if all(Base.Fix1(all, Base.Fix2(isa, T)), xs) # dynamic single sample # xs is an array of sequence return apply_template(st, val, xs) elseif all(Base.Fix1(all, Base.Fix2(isa, AbstractArray)), xs) # dynamic multiple sample # xs is an array of array of array # return map(st(val), xs) if val == Val(0) outputs = map(st(Val(1)), xs) type_ids = map(st(Val(2)), xs) return outputs, type_ids elseif val == Val(-1) foreach(st(Val(-1)), xs) return nothing else return map(st(val), xs) end # return _st_nested(st, val, xs) else throw(MethodError(st, xs)) end elseif aov # dynamic single sample # xs is a sequence !all(Base.Fix2(isa, T), xs) && throw(MethodError(st, xs)) # assert eltype of sequence == T return apply_template(st, val, (xs,)) else throw(MethodError(st, xs)) end end _show(io, t::InputTerm) = print(io, "Input:<type=$(t.type_id)>") _show(io, t::IndexInputTerm) = print(io, "Input[$(t.idx)]:<type=$(t.type_id)>") _show(io, t::ConstTerm) = print(io, "$(t.value):<type=$(t.type_id)>") function _show(io, t::RepeatedTerm) print(io, '(') _show(io, first(t.terms)) for term in Base.tail(t.terms) print(io, ' ') _show(io, term) end if iszero(t.dynamic_type_id) print(io, ")...") else print(io, ")<type+=$(t.dynamic_type_id)>...") end end Base.show(io::IO, ::MIME"text/plain", st::SequenceTemplate) = show(io, st) function Base.show(io::IO, st::SequenceTemplate{T}) where T print(io, "SequenceTemplate{", T, "}(") _show(io, first(st.terms)) for term in Base.tail(st.terms) print(io, ' ') _show(io, term) end print(io, ')') end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
8109
using StaticArrays abstract type AbstractVocabulary{T} end Base.eltype(::AbstractVocabulary{T}) where T = T struct Vocab{T, A<:AbstractVector{T}} <: AbstractVocabulary{T} list::A unk::T unki::Int end """ Vocab(data::Vector{<:AbstractString}, unk::AbstractString="[UNK]") Constructor for `Vocab`. `data` is the list of vocabulary word, can be nonunique. The actual list will be the unique version of `data` (i.e. `vocab.list = unique(data)`). `unk` is the indicator word for all unknown words. `unk` can be either in or not in `data`, depends on the use case. """ Vocab(data::AbstractVector, unk::AbstractString="[UNK]") = Vocab{String}(data, unk) """ Vocab{T}(data::AbstractVector, unk) where T construct Vocab with element type `T`. `unk` must be specified. """ function Vocab{T}(data::AbstractVector, unk) where T udata = Vector{T}(undef, length(data)) unk = T(unk) unique!(map!(T, udata, data)) list = SizedVector{length(udata)}(OverwritableLookupVector(udata)) i = findfirst(==(unk), list) unki = isnothing(i) ? 0 : i return Vocab(list, unk, unki) end Base.length(v::Vocab) = length(v.list) function Base.show(io::IO, v::Vocab) print(io, "Vocab{", eltype(v), ", ", nameof(typeof(v.list)), '}') print(io, "(size = ", length(v)) print(io, ", unk = ", v.unk) print(io, ", unki = ", v.unki, ')') end lookup_index(v::Vocab, word) = lookup_index(v.list, v.unki, word) lookup_index(list::SizedVector, unki, word) = lookup_index(list.data, unki, word) lookup_index(list, unki, word) = (i = findfirst(==(word), list); isnothing(i) ? unki : i) lookup_word(v::Vocab, index) = lookup_word(v.list, v.unk, index) lookup_word(list::SizedVector, unk, index) = lookup_word(list.data, unk, index) lookup_word(list, unk, index) = 0 < index <= length(list) ? @inbounds(list[index]) : unk lookup(v::Vocab) = Base.Fix1(lookup, v) lookup(::Type{T}, v::Vocab) where T = lookup $ T $ v lookup(::Type{I}, v::Vocab{T}, word::T) where {T, I<:Integer} = I(lookup_index(v, word)) lookup(::Type{I}, v::Vocab{<:Integer}, word::Integer) where I<:Integer = I(lookup_index(v, word)) lookup(::Type{I}, v::Vocab{<:AbstractString}, word::AbstractString) where I<:Integer = I(lookup_index(v, word)) lookup(::Type{T}, v::Vocab{T}, index::Integer) where T = lookup_word(v, index) lookup(::Type{<:Integer}, v::Vocab{T}, i::Integer) where T = throw(DomainError(i, "Cannot lookup the value $i in the vocabulary: value should have the same type as Vocab's element type ($(eltype(v)))")) lookup(v::Vocab{T}, word::T) where T = lookup(Int, v, word) lookup(v::Vocab{<:AbstractString}, word::AbstractString) = lookup(Int, v, word) lookup(v::Vocab{<:Integer}, index::Integer) = lookup_word(v, index) lookup(v::Vocab, index::Integer) = lookup(eltype(v), v, index) lookup(v::Vocab, i, j, k...) = (lookup(v, i), lookup(v, j), map(lookup(v), k)...) lookup(v::Vocab, is::Union{AbstractArray, Tuple, NamedTuple}) = map(lookup(v), is) lookup(::Type{T}, v::Vocab, i, j, k...) where T = lookup(T, v, (i, j, k...)) lookup(::Type{T}, v::Vocab, is::Union{AbstractArray, Tuple, NamedTuple}) where T = map(lookup(T, v), is) lookup(::Type{OneHot}, v::Vocab, i) = lookup_onehot(v, i) lookup(T::Type{OneHot}, v::Vocab, is::AbstractArray) = OneHotArray{length(v)}(lookup_onehot(v, is)) lookup(::Type{OneHot}, v::Vocab, is::Union{Tuple, NamedTuple}) = map(lookup(OneHot, v), is) lookup_onehot(v::Vocab, i) = OneHot(length(v))(lookup(UInt32, v, i)) lookup_onehot(v::Vocab, is::AbstractArray) = map(lookup_onehot $ v, is) function lookup(T::Type{OneHot}, v::Vocab, i, j, k...) c = 0 si = lookup(T, v, i) c += si isa OneHot ? 1 : length(parent(si)) sj = lookup(T, v, j) c += sj isa OneHot ? 1 : length(parent(sj)) sk = map(lookup(T, v), k) c += sum(k->k isa OneHot ? 1 : length(parent(k)), sk; init=0) arr = Vector{OneHot(length(v))}(undef, c); empty!(arr) si isa OneHot ? push!(arr, si) : append!(arr, parent(si)) sj isa OneHot ? push!(arr, sj) : append!(arr, parent(sj)) for k in sk k isa OneHot ? push!(arr, k) : append!(arr, parent(k)) end return OneHotArray(arr) end lookup(v::Vocab, i::OneHot) = lookup(v, Int(i)) lookup(v::Vocab, i::OneHotArray) = lookup(v, reinterpret(UInt32, i)) lookup(::Type{T}, v::Vocab{T}, i::OneHot) where T = lookup(v, i) lookup(::Type{T}, v::Vocab{T}, i::OneHotArray) where T = lookup(v, i) """ lookup(v::Vocab, x) Lookup `x` in `v`. `lookup` words depends on the type of `x`. If `x` is an integer, return the `x`-th word on the vocabulary list (i.e. `v.list[x]`) and return the unknown word if `x` is out-of-bound (`v.unk`). If `x` is a string, return the indice of `x` in the vocabulary list (i.e `findfirst(==(x), v.list`) and return the unknown indice if `x` not found in the list. If the unknown word `v.unk` is in the list, the unknown indice is its indice, otherwise 0. This function is bidirectional except for `Vocab{<:Integer}`. For integer vocabulary, this function only get the `x`-th word (`v.list[x]`). Use `lookup(Int, v, x)` for explicit indice lookup. # Example ```julia julia> vocab = Vocab(["a", "b", "c", "a", "b", "c"]) Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = [UNK], unki = 0) julia> vocab_unk = Vocab(["a", "b", "xxx"], "xxx") Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = xxx, unki = 3) julia> lookup(vocab, "b") 2 julia> lookup(vocab, "d") 0 julia> lookup(vocab_unk, "d") 3 julia> lookup(vocab, 1) "a" julia> lookup(vocab, 10000) "[UNK]" julia> lookup(vocab_unk, 10000) "xxx" ``` """ function lookup end @eval $((@macroexpand @doc """ lookup(Int, v::Vocab, x) The explicit version of `lookup(v, x)`. Lookup the indice of `x` in the vocabulary list. `x` should have the same type as Vocab's element type. # Example ```julia julia> vocab_unk = Vocab(["a", "b", "xxx"], "xxx") Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = xxx, unki = 3) julia> lookup(Int, vocab_unk, "b") 2 ``` """ function lookup(Int, v::Vocab, x) end ).args[2]) @eval $((@macroexpand @doc """ lookup(::Type{T}, v::Vocab{T}, i::Integer) where T The explicit version of `lookup(v, i)`. Lookup the word at index `i` on vocabulary list. `T` should be the same type as Vocab's element type. This method won't work on integer vocab, use `lookup(v, i)` directly. # Example ```julia julia> vocab_unk = Vocab(["a", "b", "xxx"], "xxx") Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = xxx, unki = 3) julia> lookup(String, vocab_unk, 1) "a" ``` """ lookup(::Type{T}, v::Vocab{T}, i::Integer) where T ).args[2]) @eval $((@macroexpand @doc """ lookup(v::Vocab, is::AbstractArray) recursively lookup value from `is` # Example ```julia julia> lookup(vocab, ["b", "c", "a", "A", "[UNK]"]) 5-element Vector{Int64}: 2 3 1 0 0 julia> lookup(vocab, [1, "a", 0, "A", "[UNK]"]) 5-element Vector{Any}: "a" 1 "[UNK]" 0 0 ``` """ function lookup(v::Vocab, is::AbstractArray) end ).args[2]) @eval $((@macroexpand @doc """ lookup(OneHot, v::Vocab, i) lookup `i` and convert into one-hot representation. # Example ```julia julia> lookup(OneHot, vocab, "a") 3-element OneHot{3}: 1 0 0 julia> lookup(OneHot, vocab, ["a" "b"; "c" "d"]) 3x2x2 OneHotArray{3, 3, Matrix{OneHot{0x00000003}}}: [:, :, 1] = 1 0 0 0 0 1 [:, :, 2] = 0 0 1 0 0 0 julia> lookup(OneHot, vocab, 3) ERROR: DomainError with c: cannot convert `lookup(::Vocab, 3)` = "c" into one-hot representation. Stacktrace: [...] ``` """ function lookup(::Type{OneHot}, v::Vocab, i) end ).args[2]) @eval $((@macroexpand @doc """ lookup(v::Vocab, i::OneHotArray) convert the one-hot representation back into words. # Example ```julia julia> lookup(OneHot, vocab, ["a" "b"; "c" "d"]) 3x2x2 OneHotArray{3, 3, Matrix{OneHot{0x00000003}}}: [:, :, 1] = 1 0 0 0 0 1 [:, :, 2] = 0 0 1 0 0 0 julia> lookup(vocab, ans) 2×2 Matrix{String}: "a" "b" "c" "[UNK]" ``` """ function lookup(v::Vocab, i::OneHotArray) end ).args[2])
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
code
48071
using TextEncodeBase using RustRegex using Test # quick and dirty macro for making @inferred as test case macro test_inferred(ex) esc(quote @test begin @inferred $ex true end end) end using TextEncodeBase: AbstractTokenizer, AbstractTokenization, BaseTokenization, NestedTokenizer, FlatTokenizer, WordTokenization, EachSplitTokenization, EachMatchTokenization, MatchSplitsTokenization, IndexedTokenization, MatchTokenization, UnicodeNormalizer, CodeNormalizer, CodeUnMap, SentenceFuncNormalizer, WordFuncNormalizer, SentenceReplaceNormalizer, WordReplaceNormalizer, TokenStages, Document, Sentence, Word, Token, Batch using TextEncodeBase: getvalue, getmeta, updatevalue, with_head_tail, trunc_and_pad, trunc_or_pad, nested2batch, batch2nested, nestedcall, join_text using TextEncodeBase: SequenceTemplate, InputTerm, IndexInputTerm, ConstTerm, RepeatedTerm using WordTokenizers const ATR = AbstractTokenizer const AT = AbstractTokenization const BT = BaseTokenization struct CharTk <: BT end TextEncodeBase.splitting(::CharTk, x::Word) = split(x.x, "") TextEncodeBase.splittability(::CharTk, x::Word) = TextEncodeBase.Splittable() function gpt2_tokenizer(text) pattern = r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" return map(x->x.match, eachmatch(pattern, text)) end @testset "TextEncodeBase.jl" begin @testset "Tokenize" begin document = Document("This is the first sentence. And the second one with some number 12345.") sentence = Sentence("A single sentence with 31 char.") word = Word("word") @testset "base tokenizer" begin tkr = FlatTokenizer() @test tkr(document) == map(Token, mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x))) @test tkr(sentence) == map(Token, nltk_word_tokenize(sentence.x)) @test tkr(word) == [Token(word.x)] end @testset "edge case" begin tkr = FlatTokenizer() @test tkr(Document("")) == [] @test tkr(Sentence("")) == [] @test tkr(Word("")) == [] @test tkr(Token("")) == [] end @testset "word tokenizer" begin tkr = FlatTokenizer(WordTokenization(tokenize=poormans_tokenize)) tkr2 = FlatTokenizer() @test tkr(document) == map(Token, mapfoldl(poormans_tokenize, append!, split_sentences(document.x))) @test tkr(sentence) == map(Token, poormans_tokenize(sentence.x)) @test tkr(word) == [Token(word.x)] @test tkr(document) != tkr2(document) @test tkr(sentence) != tkr2(sentence) end @testset "split tokenizer" begin tkr_s = FlatTokenizer(EachSplitTokenization([' ', ',', '.'])) tkr_m = FlatTokenizer(EachMatchTokenization(r"[^\. ]+|\.")) @test map(getvalue, tkr_s(document)) == filter(!=("."), mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x))) @test map(getvalue, tkr_s(sentence)) == filter(!=("."), nltk_word_tokenize(sentence.x)) @test tkr_s(word) == [Token(word.x)] @test map(getvalue, tkr_m(document)) == mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x)) @test map(getvalue, tkr_m(sentence)) == nltk_word_tokenize(sentence.x) @test tkr_m(word) == [Token(word.x)] @test map(getvalue, tkr_s(Sentence("a b"))) == ["a", "b"] @test map(getvalue, tkr_m(Sentence("a b"))) == ["a", "b"] end @testset "matchsplits tokenizer" begin tkr_a = FlatTokenizer(MatchSplitsTokenization(" ")) tkr_b = FlatTokenizer(MatchSplitsTokenization(",")) @test join(map(getvalue, tkr_a(sentence))) == sentence.x @test map(getvalue, tkr_b(Sentence("a, b, c,d"))) == ["a", ",", " b", ",", " c", ",", "d"] x = Sentence("a,, b, c,d") tkr_c = FlatTokenizer(MatchSplitsTokenization([rure",,", rure", "])) @test join(map(getvalue, tkr_c(x))) == x.x @test map(getvalue, tkr_c(x)) == ["a", ",,", " b", ", ", "c,d"] end @testset "index tokenizer" begin tkr = FlatTokenizer(IndexedTokenization()) @test tkr(document) == begin sentences = split_sentences(document.x) words = map(x->nltk_word_tokenize(x), sentences) tokens = Token[] for (i, s) in enumerate(words) for (j, w) in enumerate(s) push!(tokens, Token(w, (sentence_id = i, word_id = j, token_id = j))) end end tokens end @test tkr(sentence) == begin words = nltk_word_tokenize(sentence.x) tokens = Token[] for (i, w) in enumerate(words) push!(tokens, Token(w, (word_id = i, token_id = i))) end tokens end @test tkr(word) == [Token(word.x, (word_id = 1, token_id = 1))] end @testset "match tokenizer" begin for pats in ( [r"\d", r"en"], [rure"\d", rure"en"], [r"\d", rure"en"], [rure"\d", r"en"], ) tkr = FlatTokenizer(MatchTokenization(pats)) @test map(getvalue, tkr(document)) == [ "This", "is", "the", "first", "s", "en", "t", "en", "ce", ".", "And", "the", "second", "one", "with", "some", "number", "1", "2", "3", "4", "5", ".", ] @test map(getvalue, tkr(sentence)) == [ "A", "single", "s", "en", "t", "en", "ce", "with", "3", "1", "char", ".", ] @test map(getvalue, tkr(word)) == [word.x] @test map(getvalue, tkr(Word("123"))) == ["1", "2", "3"] end end @testset "unicode normalizer" begin tkr = FlatTokenizer(UnicodeNormalizer(; casefold = true)) @test tkr(updatevalue(uppercase, document)) == map(Token, mapfoldl(nltk_word_tokenize, append!, lowercase.(split_sentences(document.x)))) @test tkr(updatevalue(uppercase, sentence)) == map(Token, nltk_word_tokenize(lowercase(sentence.x))) @test tkr(updatevalue(uppercase, word)) == [Token(lowercase(word.x))] end @testset "replace normalizer" begin tkr = FlatTokenizer(TextEncodeBase.ReplaceNormalizer(r"\d+"=>"NUMBER")) @test map(getvalue, tkr(document)) == map(x->replace(x, r"\d+"=>"NUMBER"), mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x))) @test map(getvalue, tkr(sentence)) == map(x->replace(x, r"\d+"=>"NUMBER"), nltk_word_tokenize(sentence.x)) @test tkr(word) == [Token(word.x)] tkr1 = FlatTokenizer(SentenceReplaceNormalizer(r"(.+)"=>s"--\1")) @test map(getvalue, tkr1(document)) == mapfoldl(nltk_word_tokenize ∘ Base.Fix1(*, "--"), append!, split_sentences(document.x)) @test map(getvalue, tkr1(sentence)) == nltk_word_tokenize("--" * sentence.x) @test tkr1(word) == [Token("--" * word.x)] tkr2 = FlatTokenizer(WordReplaceNormalizer(r"(.+)"=>s"--\1")) @test map(getvalue, tkr2(document)) == map( Base.Fix1(*, "--"), mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x))) @test map(getvalue, tkr2(sentence)) == map(Base.Fix1(*, "--"), nltk_word_tokenize(sentence.x)) @test tkr2(word) == [Token("--" * word.x)] end @testset "func normalizer" begin tkr1 = FlatTokenizer(SentenceFuncNormalizer(Base.Fix2(replace, r"(.+)"=>s"--\1"))) @test map(getvalue, tkr1(document)) == mapfoldl(nltk_word_tokenize ∘ Base.Fix1(*, "--"), append!, split_sentences(document.x)) @test map(getvalue, tkr1(sentence)) == nltk_word_tokenize("--" * sentence.x) @test tkr1(word) == [Token("--" * word.x)] tkr2 = FlatTokenizer(WordFuncNormalizer(Base.Fix2(replace, r"(.+)"=>s"--\1"))) @test map(getvalue, tkr2(document)) == map( Base.Fix1(*, "--"), mapfoldl(nltk_word_tokenize, append!, split_sentences(document.x))) @test map(getvalue, tkr2(sentence)) == map(Base.Fix1(*, "--"), nltk_word_tokenize(sentence.x)) @test tkr2(word) == [Token("--" * word.x)] end @testset "code normalizer" begin tkr = FlatTokenizer(CodeNormalizer('a':'z'=>'A':'Z', 'A':'Z'=>'a':'z')) @test tkr(updatevalue(uppercase, document)) == map(Token, mapfoldl(nltk_word_tokenize, append!, lowercase.(split_sentences(document.x)))) @test tkr(updatevalue(uppercase, sentence)) == map(Token, nltk_word_tokenize(lowercase(sentence.x))) @test tkr(updatevalue(uppercase, word)) == [Token(lowercase(word.x))] @test tkr(updatevalue(lowercase, sentence)) == map(Token, nltk_word_tokenize(uppercase(sentence.x))) @test tkr(updatevalue(lowercase, word)) == [Token(uppercase(word.x))] tkr2 = FlatTokenizer(CodeNormalizer( WordTokenization(tokenize=gpt2_tokenizer), [(0:32, 256:288), (127:160, 289:322), 173=>323] )) @test map(getvalue, tkr2(Document("This is a 😺"))) == ["This", "Ġis", "Ġa", "ĠðŁĺº"] unmap = CodeUnMap(tkr2.tokenization.codemap) @test map(unmap, ["This", "Ġis", "Ġa", "ĠðŁĺº"]) == ["This", " is", " a", " 😺"] end @testset "match unicode normalized tokenizer" begin for pats in ( ["This", "A", "en", r"\d"], ["This", "A", "en", rure"\d"], ) tkr = FlatTokenizer(MatchTokenization(UnicodeNormalizer(; casefold = true), pats)) @test map(getvalue, tkr(document)) == [ "This", "is", "the", "first", "s", "en", "t", "en", "ce", ".", "A", "nd", "the", "second", "one", "with", "some", "number", "1", "2", "3", "4", "5", ".", ] @test map(getvalue, tkr(sentence)) == [ "A", "single", "s", "en", "t", "en", "ce", "with", "3", "1", "char", ".", ] @test map(getvalue, tkr(word)) == [word.x] @test map(getvalue, tkr(Word("123"))) == ["1", "2", "3"] end end @testset "match code normalized tokenizer" begin for pats in ( ["This", "A", "en", r"\d"], ["This", "A", "en", rure"\d"], ) tkr = FlatTokenizer(MatchTokenization(CodeNormalizer('a':'z'=>'A':'Z', 'A':'Z'=>'a':'z'), pats)) @test map(getvalue, tkr(document)) == [ "This", "IS", "THE", "FIRST", "S", "en", "T", "en", "CE", ".", "A", "ND", "THE", "SECOND", "ONE", "WITH", "SOME", "NUMBER", "1", "2", "3", "4", "5", ".", ] @test map(getvalue, tkr(sentence)) == [ "A", "SINGLE", "S", "en", "T", "en", "CE", "WITH", "3", "1", "CHAR", ".", ] @test map(getvalue, tkr(word)) == ["WORD"] @test map(getvalue, tkr(Word("123"))) == ["1", "2", "3"] end end @testset "indexed match tokenizer" begin for pats in ( [r"\d", r"en"], [rure"\d", r"en"], [rure"\d", rure"en"], ) tkr = FlatTokenizer(IndexedTokenization(MatchTokenization(pats))) @test map(getvalue, tkr(document)) == [ "This", "is", "the", "first", "s", "en", "t", "en", "ce", ".", "And", "the", "second", "one", "with", "some", "number", "1", "2", "3", "4", "5", ".", ] @test map(getmeta, tkr(document)) == begin m = [false, false, false, false, false, true, false, true, false, false, false, false, false, false, false, false, false, true, true, true, true, true, false] s = Iterators.flatten((Iterators.repeated(1, 10), Iterators.repeated(2, 13))) w = Iterators.flatten((1:10, 1:13)) map(NamedTuple{(:sentence_id, :ismatch, :word_id, :token_id)}, zip(s, m, w, w)) end @test map(getvalue, tkr(sentence)) == [ "A", "single", "s", "en", "t", "en", "ce", "with", "3", "1", "char", ".", ] sentence_match = [false, false, false, true, false, true, false, false, true, true, false, false] @test map(getmeta, tkr(sentence)) == map(NamedTuple{(:ismatch, :word_id, :token_id)}, zip(sentence_match, 1:12, 1:12)) @test map(getvalue, tkr(word)) == [word.x] @test map(getmeta, tkr(word)) == [(ismatch = false, word_id = 1, token_id = 1)] @test map(getvalue, tkr(Word("123"))) == ["1", "2", "3"] @test map(getmeta, tkr(Word("123"))) == map(NamedTuple{(:ismatch, :word_id, :token_id)}, zip([true, true, true], 1:3, 1:3)) end end @testset "nested output" begin tkr = NestedTokenizer(IndexedTokenization()) @test tkr(document) == begin sentences = split_sentences(document.x) words = map(x->nltk_word_tokenize(x), sentences) tokens = [] for (i, s) in enumerate(words) push!(tokens, map(enumerate(s)) do (j, w) Token(w, (sentence_id = i, word_id = j, token_id = j)) end) end tokens end @test tkr(sentence) == begin words = nltk_word_tokenize(sentence.x) tokens = [map(enumerate(words)) do (i, w) Token(w, (word_id = i, token_id = i)) end] tokens end @test tkr(word) == [Token(word.x, (word_id = 1, token_id = 1))] end @testset "indexed char" begin tkr = FlatTokenizer(IndexedTokenization(CharTk())) @test tkr(document) == begin sentences = split_sentences(document.x) words = map(x->nltk_word_tokenize(x), sentences) tokens = Token[] for (i, s) in enumerate(words) k = 1 for (j, w) in enumerate(s) for c in split(w, "") push!(tokens, Token(c, (sentence_id = i, word_id = j, token_id = k))) k += 1 end end end tokens end @test tkr(sentence) == begin words = nltk_word_tokenize(sentence.x) tokens = Token[] for (i, w) in enumerate(words) for c in split(w, "") push!(tokens, Token(c, (word_id = i, token_id = length(tokens)+1))) end end tokens end @test tkr(word) == begin chars = split(word.x, "") tokens = Token[] for (i, c) in enumerate(chars) push!(tokens, Token(c, (word_id = 1, token_id = i))) end tokens end end @testset "nested indexed match char" begin for pats in ( [r"\d", r"en"], [rure"\d", r"en"], [rure"\d", rure"en"], ) tkr = NestedTokenizer(IndexedTokenization(MatchTokenization(CharTk(), pats))) s(x) = split(x, "") r(x, n) = repeat(x:x, n) @test nestedcall(getvalue, tkr(document)) == [ [ s("This"); s("is"); s("the"); s("first"); "s"; "en"; "t"; "en"; s("ce"); "."; ], [ s("And"); s("the"); s("second"); s("one"); s("with"); s("some"); s("number"); "1"; "2"; "3"; "4"; "5"; "."; ] ] @test nestedcall(getmeta, tkr(document)) == begin ismatch = [ [r(false, 15); true; false; true; r(false, 3);], [r(false, 29); r(true, 5); false;], ] sentence_id = [r(1, 21), r(2, 35)] word_id = [[ r(1, 4); r(2, 2); r(3, 3); r(4, 5); 5; 6; 7; 8; r(9, 2); 10; ], [ r(1, 3); r(2, 3); r(3, 6); r(4, 3); r(5, 4); r(6, 4); r(7, 6); 8; 9; 10; 11; 12; 13; ]] token_id = [[1:21;], [1:35;]] map((s,m,w,t)->map(NamedTuple{(:sentence_id, :ismatch, :word_id, :token_id)}, zip(s,m,w,t)), sentence_id, ismatch, word_id, token_id) end @test nestedcall(getvalue, tkr(sentence)) == [ [ "A"; s("single"); "s"; "en"; "t"; "en"; s("ce"); s("with"); "3"; "1"; s("char"); "."; ] ] @test nestedcall(getmeta, tkr(sentence)) == begin ismatch = [r(false, 8); true; false; true; r(false, 6); r(true, 2); r(false, 5);] word_id = [ 1; r(2, 6); 3; 4; 5; 6; r(7, 2); r(8, 4); 9; 10; r(11, 4); 12; ] token_id = [1:24;] [map(NamedTuple{(:ismatch, :word_id, :token_id)}, zip(ismatch, word_id, token_id))] end @test nestedcall(getvalue, tkr(word)) == ["w", "o", "r", "d"] @test nestedcall(getmeta, tkr(word)) == map(NamedTuple{(:ismatch, :word_id, :token_id)}, zip(r(false, 4), r(1, 4), 1:4)) end end @testset "@stage" begin @test_throws Exception @macroexpand(TextEncodeBase.@stage SomeStage{A}) @test_throws Exception @macroexpand(TextEncodeBase.@stage SomeStage{A, B, C}) @test_throws Exception @macroexpand(TextEncodeBase.@stage SomeStage{A, B} <: C D) @test_throws Exception @macroexpand(TextEncodeBase.@stage 3) @test_throws Exception @macroexpand(TextEncodeBase.@stage SomeStage{A}()) @test_nowarn @macroexpand(TextEncodeBase.@stage SomeStage) @test_nowarn @macroexpand(TextEncodeBase.@stage SomeStage{A, B} <: TokenStages) end @testset "batch" begin tkr = NestedTokenizer(IndexedTokenization()) document = document.x sentence = sentence.x another_sentence = "This is another sentence" batch_sentence = [split_sentences(document); sentence; another_sentence] batch_document = [document, sentence, another_sentence] @test nestedcall(getvalue, tkr(Batch{Sentence}(batch_sentence))) == nltk_word_tokenize.(batch_sentence) @test nestedcall(getmeta, tkr(Batch{Sentence}(batch_sentence))) == map(enumerate(nltk_word_tokenize.(batch_sentence))) do (i, v) map(enumerate(v)) do (j, x) (sentence_id = i, word_id = j, token_id = j) end end @test nestedcall(getvalue, tkr(Batch{Document}(batch_document))) == map(batch_document) do doc nltk_word_tokenize.(split_sentences(doc)) end @test nestedcall(getmeta, tkr(Batch{Document}(batch_document))) == map(enumerate(split_sentences.(batch_document))) do (i, d) map(enumerate(nltk_word_tokenize.(d))) do (j, s) map(enumerate(s)) do (k, x) (document_id = i, sentence_id = j, word_id = k, token_id = k) end end end end @testset "show" begin @test sprint(show, FlatTokenizer()) == "FlatTokenizer(default)" @test sprint(show, FlatTokenizer(WordTokenization(tokenize=poormans_tokenize))) == "FlatTokenizer(WordTokenization(split_sentences = WordTokenizers.split_sentences, tokenize = WordTokenizers.poormans_tokenize))" @test sprint(show, FlatTokenizer(IndexedTokenization())) == "FlatTokenizer(IndexedTokenization(default))" @test sprint(show, FlatTokenizer(MatchTokenization([r"\d", r"en"]))) == "FlatTokenizer(MatchTokenization(default, 2 patterns))" @test sprint(show, FlatTokenizer(UnicodeNormalizer(; casefold = true))) == "FlatTokenizer(UnicodeNormalizer(default, compose = true, casefold = true))" @test sprint(show, FlatTokenizer(IndexedTokenization(MatchTokenization([r"\d", r"en"])))) == "FlatTokenizer(IndexedTokenization(MatchTokenization(default, 2 patterns)))" @test sprint(show, NestedTokenizer(IndexedTokenization())) == "NestedTokenizer(IndexedTokenization(default))" @test sprint(show, FlatTokenizer(IndexedTokenization(CharTk()))) == "FlatTokenizer(IndexedTokenization(CharTk))" @test sprint(show, NestedTokenizer(IndexedTokenization(MatchTokenization(CharTk(), [r"\d", r"en"])))) == "NestedTokenizer(IndexedTokenization(MatchTokenization(CharTk, 2 patterns)))" end @testset "replace" begin @test replace( x->x === poormans_tokenize ? nltk_word_tokenize : x, FlatTokenizer(WordTokenization(tokenize=poormans_tokenize)) ) == FlatTokenizer(WordTokenization(tokenize=nltk_word_tokenize)) @test replace( x->x isa IndexedTokenization ? x.base : x, IndexedTokenization(MatchTokenization([r"\d", r"en"])) ) == MatchTokenization([r"\d", r"en"]) @test replace( x->x isa UnicodeNormalizer ? UnicodeNormalizer(x.base, :NFC) : x, FlatTokenizer(UnicodeNormalizer(; casefold = true)) ) == FlatTokenizer(UnicodeNormalizer(:NFC)) end end @testset "Vocabulary" begin vocab = Vocab(["a", "b", "c", "a", "b", "c"]) vocab_unk = Vocab(["a", "b", "xxx"], "xxx") vocab_char = Vocab{Char}('a':'z', ' ') vocab_int = Vocab{Int}(11:20, 0) @test length(vocab) == 3 @test vocab.list == ["a", "b", "c"] @test vocab.unki == 0 @test length(vocab_unk) == 3 @test vocab_unk.list == ["a", "b", "xxx"] @test vocab_unk.unki == 3 @test vocab_int.list == collect(11:20) @test sprint(show, vocab_int) == "Vocab{$Int, SizedArray}(size = 10, unk = 0, unki = 0)" @testset "lookup" begin @test lookup(vocab, "a") == 1 @test lookup(vocab, "b") == 2 @test lookup(vocab, "c") == 3 @test lookup(vocab, "d") == 0 @test lookup(vocab_unk, "a") == 1 @test lookup(vocab_unk, "b") == 2 @test lookup(vocab_unk, "c") == 3 @test lookup(vocab_unk, "d") == 3 @test lookup(vocab, 1) == "a" @test lookup(vocab, 2) == "b" @test lookup(vocab, 3) == "c" @test lookup(vocab, 0) == "[UNK]" @test lookup(vocab, 1000000) == "[UNK]" @test lookup(vocab_unk, 1) == "a" @test lookup(vocab_unk, 2) == "b" @test lookup(vocab_unk, 3) == "xxx" @test lookup(vocab_unk, 100000) == "xxx" @test lookup(vocab, 1,2,3,4) == ("a", "b", "c", "[UNK]") @test lookup(vocab_unk, 1,2,3,4) == ("a", "b", "xxx", "xxx") @test lookup(vocab, [1, "a", 0, "A", "[UNK]"]) == ["a", 1, "[UNK]", 0, 0] @test lookup(vocab_unk, [1, "a", 0, "A", "[UNK]"]) == ["a", 1, "xxx", 3, 3] @test lookup(vocab, [(1, "a"), (a=0, b="A"), "[UNK]"]) == [("a", 1), (a="[UNK]", b=0), 0] @test lookup(vocab_char, ['a', (x='x',)], 26) == ([1, (x=24,)], 'z') end @testset "lookup int" begin @test lookup(vocab_int, 1,2,3) == (11,12,13) @test lookup(Int, vocab_int, 1,2,3) == (0,0,0) @test lookup(Int, vocab_int, 11,12,13) == (1,2,3) end @testset "onehot" begin @test lookup(OneHot, vocab, "a") == OneHot(3, 1) @test lookup(OneHot, vocab, "A") == OneHot(3, 0) @test lookup(OneHot, vocab, ("a", "A")) == (OneHot(3, 1), OneHot(3, 0)) @test lookup(OneHot, vocab, (x="a", y="A")) == (x=OneHot(3, 1), y=OneHot(3, 0)) @test lookup(OneHot, vocab, "a", "b", "c", "d") == OneHotArray(3, [1,2,3,0]) @test lookup(OneHot, vocab, ["a", "b", "c", "d"]) == OneHotArray(3, [1,2,3,0]) @test lookup(OneHot, vocab, ["a" "b"; "c" "d"]) == OneHotArray(3, [1 2; 3 0]) @test lookup(OneHot, vocab, ["a", "b"], ["c", "d"]) == OneHotArray(3, [1,2,3,0]) @test lookup(OneHot, vocab, ["a"], "b", ["c", "d"], "z") == OneHotArray(3, [1,2,3,0,0]) @test_throws DomainError lookup(OneHot, vocab, 1) @test_throws DomainError lookup(OneHot, vocab, [1,2,3]) @test_throws DomainError lookup(OneHot, vocab, "1",2,3) @test_throws DomainError lookup(OneHot, vocab, ["1",2,3]) @test lookup(vocab, OneHot(3, 1)) == "a" @test lookup(vocab, OneHot(5, 1)) == "a" @test lookup(vocab, OneHot(5, 4)) == "[UNK]" @test lookup(vocab, OneHotArray(3, [1,2,3,0])) == ["a", "b", "c", "[UNK]"] @test lookup(vocab, OneHotArray(3, [1 2 3; 3 0 1])) == ["a" "b" "c"; "c" "[UNK]" "a"] end @testset "overwrite" begin vocab_overwrite = Vocab(["a", "b", "c"]) @test_throws AssertionError vocab_overwrite.list.data["a"] = "c" @test_throws BoundsError vocab_overwrite.list.data[0] = "x" vocab_overwrite.list.data["b"] = "x" @test vocab_overwrite.list == ["a", "x", "c"] @test lookup(vocab_overwrite, 2) == "x" @test lookup(vocab_overwrite, "b") == 0 @test lookup(vocab_overwrite, "x") == 2 end end @testset "Utils" begin @test_inferred nestedcall(x->x+1, [[[[3],[5, 6]]]]) @testset "with_head_tail" begin x = collect(1:5) @test with_head_tail(x, 0, 6) == collect(0:6) @test with_head_tail(x, nothing, 6) == collect(1:6) @test with_head_tail(x, 0, nothing) == collect(0:5) @test with_head_tail(x, nothing, nothing) == x @test with_head_tail(0, 6)(x) == collect(0:6) @test with_head_tail(nothing, 6)(x) == collect(1:6) @test with_head_tail(0, nothing)(x) == collect(0:5) @test with_head_tail(nothing, nothing)(x) == x @test with_head_tail(x; head=0, tail=6) == collect(0:6) @test with_head_tail(x, tail=6) == collect(1:6) @test with_head_tail(x, head=0) == collect(0:5) @test with_head_tail(head=0, tail=6)(x) == collect(0:6) @test with_head_tail(tail=6)(x) == collect(1:6) @test with_head_tail(head=0)(x) == collect(0:5) @test with_head_tail(AbstractVector[[x], 1:5, 2:3], -1, -2) == [[[-1;x;-2]], [-1; 1:5; -2], [-1; 2:3; -2]] @test with_head_tail(Any[Any[x], 1:5, 2:3], -1, -2) == [[[-1;x;-2]], [-1; 1:5; -2], [-1; 2:3; -2]] @test with_head_tail(Any[Any[Any[0,1,2]]], 5, 5) == [[[5,0,1,2,5]]] end @testset "trunc_or_pad" begin @testset "trunc=tail pad=tail" begin x = collect(1:9) @test trunc_or_pad(x, 5, 0) == collect(1:5) @test trunc_or_pad(1:3, 5, 0) == [1:3; 0; 0] @test trunc_or_pad(x, nothing, 0) == collect(1:9) @test trunc_or_pad(1:3, nothing, 0) == collect(1:3) @test trunc_or_pad(5, 0)(x) == collect(1:5) @test trunc_or_pad(5, 0)(1:3) == [1:3; 0; 0] @test trunc_or_pad(nothing, 0)(x) == collect(1:9) @test trunc_or_pad(nothing, 0)(1:3) == collect(1:3) @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], 7, -1) == [[collect(1:7)], [1:5; -1; -1], [2:3; fill(-1, 5)]] @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1) == [[collect(1:9)], [1:5; fill(-1, 4)], [2:3; fill(-1, 7)]] @test trunc_or_pad(Any[Any[[0,0], 1:10], [1]], 7, -1) == [[[0; 0; fill(-1,5)], collect(1:7)], [1; fill(-1,6)]] @test trunc_or_pad(Any[Any[Any[0,1,2]]], 5, 0) == [[[0,1,2,0,0]]] end @testset "trunc=tail pad=head" begin x = collect(1:9) @test trunc_or_pad(x, 5, 0, :tail, :head) == collect(1:5) @test trunc_or_pad(1:3, 5, 0, :tail, :head) == [0; 0; 1:3] @test trunc_or_pad(x, nothing, 0, :tail, :head) == collect(1:9) @test trunc_or_pad(1:3, nothing, 0, :tail, :head) == collect(1:3) @test trunc_or_pad(5, 0, :tail, :head)(x) == collect(1:5) @test trunc_or_pad(5, 0, :tail, :head)(1:3) == [0; 0; 1:3] @test trunc_or_pad(nothing, 0, :tail, :head)(x) == collect(1:9) @test trunc_or_pad(nothing, 0, :tail, :head)(1:3) == collect(1:3) @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :tail, :head) == [[collect(1:7)], [-1; -1; 1:5], [fill(-1, 5); 2:3]] @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :tail, :head) == [[collect(1:9)], [fill(-1, 4); 1:5], [fill(-1, 7); 2:3]] @test trunc_or_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :tail, :head) == [[[fill(-1,5); 0; 0], collect(1:7)], [fill(-1,6); 1]] @test trunc_or_pad(Any[Any[Any[0,1,2]]], 5, 0, :tail, :head) == [[[0,0,0,1,2]]] end @testset "trunc=head pad=tail" begin x = collect(1:9) @test trunc_or_pad(x, 5, 0, :head, :tail) == collect(5:9) @test trunc_or_pad(1:3, 5, 0, :head, :tail) == [1:3; 0; 0] @test trunc_or_pad(x, nothing, 0, :head, :tail) == collect(1:9) @test trunc_or_pad(1:3, nothing, 0, :head, :tail) == collect(1:3) @test trunc_or_pad(5, 0, :head, :tail)(x) == collect(5:9) @test trunc_or_pad(5, 0, :head, :tail)(1:3) == [1:3; 0; 0] @test trunc_or_pad(nothing, 0, :head, :tail)(x) == collect(1:9) @test trunc_or_pad(nothing, 0, :head, :tail)(1:3) == collect(1:3) @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :head, :tail) == [[collect(3:9)], [1:5; -1; -1], [2:3; fill(-1, 5)]] @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :head, :tail) == [[collect(1:9)], [1:5; fill(-1, 4)], [2:3; fill(-1, 7)]] @test trunc_or_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :head, :tail) == [[[0; 0; fill(-1,5)], collect(4:10)], [1; fill(-1,6)]] @test trunc_or_pad(Any[Any[Any[0,1,2]]], 5, 0, :head, :tail) == [[[0,1,2,0,0]]] end @testset "trunc=head pad=head" begin x = collect(1:9) @test trunc_or_pad(x, 5, 0, :head, :head) == collect(5:9) @test trunc_or_pad(1:3, 5, 0, :head, :head) == [0; 0; 1:3] @test trunc_or_pad(x, nothing, 0, :head, :head) == collect(1:9) @test trunc_or_pad(1:3, nothing, 0, :head, :head) == collect(1:3) @test trunc_or_pad(5, 0, :head, :head)(x) == collect(5:9) @test trunc_or_pad(5, 0, :head, :head)(1:3) == [0; 0; 1:3] @test trunc_or_pad(nothing, 0, :head, :head)(x) == collect(1:9) @test trunc_or_pad(nothing, 0, :head, :head)(1:3) == collect(1:3) @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :head, :head) == [[collect(3:9)], [-1; -1; 1:5], [fill(-1, 5); 2:3]] @test trunc_or_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :head, :head) == [[collect(1:9)], [fill(-1, 4); 1:5], [fill(-1, 7); 2:3]] @test trunc_or_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :head, :head) == [[[fill(-1,5); 0; 0], collect(4:10)], [fill(-1,6); 1]] @test trunc_or_pad(Any[Any[Any[0,1,2]]], 5, 0, :head, :head) == [[[0,0,0,1,2]]] end end @testset "trunc_and_pad" begin @testset "trunc=tail pad=tail" begin x = collect(1:9) @test trunc_and_pad(x, 5, 0) == collect(1:5) @test trunc_and_pad(1:3, 5, 0) == [1:3;] @test trunc_and_pad(x, nothing, 0) == collect(1:9) @test trunc_and_pad(1:3, nothing, 0) == collect(1:3) @test trunc_and_pad(5, 0)(x) == collect(1:5) @test trunc_and_pad(5, 0)(1:3) == [1:3;] @test trunc_and_pad(nothing, 0)(x) == collect(1:9) @test trunc_and_pad(nothing, 0)(1:3) == collect(1:3) @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], 7, -1) == [[collect(1:7)], [1:5; -1; -1], [2:3; fill(-1, 5)]] @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1) == [[collect(1:9)], [1:5; fill(-1, 4)], [2:3; fill(-1, 7)]] @test trunc_and_pad(Any[Any[[0,0], 1:10], [1]], 7, -1) == [[[0; 0; fill(-1,5)], collect(1:7)], [1; fill(-1,6)]] @test trunc_and_pad(Any[Any[Any[0,1,2]]], 5, 0) == [[[0,1,2]]] end @testset "trunc=tail pad=head" begin x = collect(1:9) @test trunc_and_pad(x, 5, 0, :tail, :head) == collect(1:5) @test trunc_and_pad(1:3, 5, 0, :tail, :head) == [1:3;] @test trunc_and_pad(x, nothing, 0, :tail, :head) == collect(1:9) @test trunc_and_pad(1:3, nothing, 0, :tail, :head) == collect(1:3) @test trunc_and_pad(5, 0, :tail, :head)(x) == collect(1:5) @test trunc_and_pad(5, 0, :tail, :head)(1:3) == [1:3;] @test trunc_and_pad(nothing, 0, :tail, :head)(x) == collect(1:9) @test trunc_and_pad(nothing, 0, :tail, :head)(1:3) == collect(1:3) @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :tail, :head) == [[collect(1:7)], [-1; -1; 1:5], [fill(-1, 5); 2:3]] @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :tail, :head) == [[collect(1:9)], [fill(-1, 4); 1:5], [fill(-1, 7); 2:3]] @test trunc_and_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :tail, :head) == [[[fill(-1,5); 0; 0], collect(1:7)], [fill(-1,6); 1]] @test trunc_and_pad(Any[Any[Any[0,1,2]]], 5, 0, :tail, :head) == [[[0,1,2]]] end @testset "trunc=head pad=tail" begin x = collect(1:9) @test trunc_and_pad(x, 5, 0, :head, :tail) == collect(5:9) @test trunc_and_pad(1:3, 5, 0, :head, :tail) == [1:3;] @test trunc_and_pad(x, nothing, 0, :head, :tail) == collect(1:9) @test trunc_and_pad(1:3, nothing, 0, :head, :tail) == collect(1:3) @test trunc_and_pad(5, 0, :head, :tail)(x) == collect(5:9) @test trunc_and_pad(5, 0, :head, :tail)(1:3) == [1:3;] @test trunc_and_pad(nothing, 0, :head, :tail)(x) == collect(1:9) @test trunc_and_pad(nothing, 0, :head, :tail)(1:3) == collect(1:3) @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :head, :tail) == [[collect(3:9)], [1:5; -1; -1], [2:3; fill(-1, 5)]] @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :head, :tail) == [[collect(1:9)], [1:5; fill(-1, 4)], [2:3; fill(-1, 7)]] @test trunc_and_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :head, :tail) == [[[0; 0; fill(-1,5)], collect(4:10)], [1; fill(-1,6)]] @test trunc_and_pad(Any[Any[Any[0,1,2]]], 5, 0, :head, :tail) == [[[0,1,2]]] end @testset "trunc=head pad=head" begin x = collect(1:9) @test trunc_and_pad(x, 5, 0, :head, :head) == collect(5:9) @test trunc_and_pad(1:3, 5, 0, :head, :head) == [1:3;] @test trunc_and_pad(x, nothing, 0, :head, :head) == collect(1:9) @test trunc_and_pad(1:3, nothing, 0, :head, :head) == collect(1:3) @test trunc_and_pad(5, 0, :head, :head)(x) == collect(5:9) @test trunc_and_pad(5, 0, :head, :head)(1:3) == [1:3;] @test trunc_and_pad(nothing, 0, :head, :head)(x) == collect(1:9) @test trunc_and_pad(nothing, 0, :head, :head)(1:3) == collect(1:3) @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], 7, -1, :head, :head) == [[collect(3:9)], [-1; -1; 1:5], [fill(-1, 5); 2:3]] @test trunc_and_pad(AbstractVector[[x], 1:5, 2:3], nothing, -1, :head, :head) == [[collect(1:9)], [fill(-1, 4); 1:5], [fill(-1, 7); 2:3]] @test trunc_and_pad(Any[Any[[0,0], 1:10], [1]], 7, -1, :head, :head) == [[[fill(-1,5); 0; 0], collect(4:10)], [fill(-1,6); 1]] @test trunc_and_pad(Any[Any[Any[0,1,2]]], 5, 0, :head, :head) == [[[0,1,2]]] end end @testset "join_text" begin @test join_text(["a", "b", "c"]) == "abc" @test join_text([["a", "b", "c"]]) == ["abc"] @test join_text([[["a", "b", "c"]]]) == [["abc"]] @static if VERSION < v"1.8" x = cat(["a" "d"; "b" "e"; "c" "f"], ["x" "u"; "y" "v"; "z" "w"; ]; dims=3) else x = ["a" "d"; "b" "e"; "c" "f";;; "x" "u"; "y" "v"; "z" "w"; ] end @test join_text(x, " + ", " = ") == ["a + b = c" "x + y = z"; "d + e = f" "u + v = w"] @test join_text(x, " + ") == ["a + b + c" "x + y + z"; "d + e + f" "u + v + w"] @test join_text(x) == ["abc" "xyz"; "def" "uvw"] end @testset "nested2batch / batch2nested" begin x = randn(5,4,3,2) x_slices = [x[i:i+5-1] for i in 1:5:length(x)] y = [[[x_slices[1],x_slices[2],x_slices[3],x_slices[4]], [x_slices[5],x_slices[6],x_slices[7],x_slices[8]], [x_slices[9],x_slices[10],x_slices[11],x_slices[12]],], [[x_slices[13],x_slices[14],x_slices[15],x_slices[16]], [x_slices[17],x_slices[18],x_slices[19],x_slices[20]], [x_slices[21],x_slices[22],x_slices[23],x_slices[24]],]] y2 = [[cat(x_slices[1],x_slices[2],x_slices[3],x_slices[4], dims=2), cat(x_slices[5],x_slices[6],x_slices[7],x_slices[8], dims=2), cat(x_slices[9],x_slices[10],x_slices[11],x_slices[12], dims=2),], [cat(x_slices[13],x_slices[14],x_slices[15],x_slices[16], dims=2), cat(x_slices[17],x_slices[18],x_slices[19],x_slices[20], dims=2), cat(x_slices[21],x_slices[22],x_slices[23],x_slices[24], dims=2),]] y3 = [cat(cat(x_slices[1],x_slices[2],x_slices[3],x_slices[4], dims=2), cat(x_slices[5],x_slices[6],x_slices[7],x_slices[8], dims=2), cat(x_slices[9],x_slices[10],x_slices[11],x_slices[12], dims=2), dims=3), cat(cat(x_slices[13],x_slices[14],x_slices[15],x_slices[16], dims=2), cat(x_slices[17],x_slices[18],x_slices[19],x_slices[20], dims=2), cat(x_slices[21],x_slices[22],x_slices[23],x_slices[24], dims=2), dims=3)] y4 = Any[Any[Any[x_slices[1],x_slices[2],x_slices[3],x_slices[4]], Any[x_slices[5],x_slices[6],x_slices[7],x_slices[8]], Any[x_slices[9],x_slices[10],x_slices[11],x_slices[12]],], Any[Any[x_slices[13],x_slices[14],x_slices[15],x_slices[16]], Any[x_slices[17],x_slices[18],x_slices[19],x_slices[20]], Any[x_slices[21],x_slices[22],x_slices[23],x_slices[24]],]] x_slices_any = [Array{Any}(x[i:i+5-1]) for i in 1:5:length(x)] y5 = [[[x_slices_any[1],x_slices_any[2],x_slices_any[3],x_slices_any[4]], [x_slices_any[5],x_slices_any[6],x_slices_any[7],x_slices_any[8]], [x_slices_any[9],x_slices_any[10],x_slices_any[11],x_slices_any[12]],], [[x_slices_any[13],x_slices_any[14],x_slices_any[15],x_slices_any[16]], [x_slices_any[17],x_slices_any[18],x_slices_any[19],x_slices_any[20]], [x_slices_any[21],x_slices_any[22],x_slices_any[23],x_slices_any[24]],]] @test nested2batch(y) == x @test nested2batch(y2) == x @test nested2batch(y3) == x @test nested2batch(y4) == x @test nested2batch(y5) == x @test nested2batch(batch2nested(x)) == x @test_throws DimensionMismatch nested2batch([[1:5], 2:6]) end @testset "SequenceTemplate" begin x = collect(1:5) head_tail_template = SequenceTemplate(ConstTerm(-1), InputTerm{Int}(), ConstTerm(-2)) @test head_tail_template(x)[1] == with_head_tail(x, -1, -2) @test head_tail_template(AbstractVector[[x], [1:5], [2:3]])[1] == map(x->x[1], with_head_tail(AbstractVector[[x], [1:5], [2:3]], -1, -2)) @test head_tail_template(Any[Any[x], [1:5], [2:3]])[1] == map(x->x[1], with_head_tail(Any[Any[x], [1:5], [2:3]], -1, -2)) @test head_tail_template(Any[Any[Any[0,1,2]]])[1] == with_head_tail(Any[Any[Any[0,1,2]]], -1, -2)[1] @test_throws MethodError head_tail_template(Any[Any[x], 1:5, 2:3]) @test_throws Exception head_tail_template(Any[1:5, 2:3]) @test_throws Exception head_tail_template(Any[1:5, 2:3]) bert_template = SequenceTemplate( ConstTerm("[CLS]", 1), InputTerm{String}(1), ConstTerm("[SEP]", 1), RepeatedTerm(InputTerm{String}(2), ConstTerm("[SEP]", 2)) ) @test bert_template(["A"]) == (["[CLS]", "A", "[SEP]"], [1,1,1]) @test bert_template(["A"], ["B"]) == (["[CLS]", "A", "[SEP]", "B", "[SEP]"], [1,1,1,2,2]) @test bert_template(["A"], ["B"], ["C"]) == (["[CLS]", "A", "[SEP]", "B", "[SEP]", "C", "[SEP]"], [1,1,1,2,2,2,2]) @test bert_template([["A"], ["B"]]) == (["[CLS]", "A", "[SEP]", "B", "[SEP]"], [1,1,1,2,2]) @test bert_template(Val(1), ["A"], ["B"]) == ["[CLS]", "A", "[SEP]", "B", "[SEP]"] @test bert_template(Val(2), [["A"], ["B"]]) == [1,1,1,2,2] @test bert_template(Val(-1), Any["A"]) == nothing @test bert_template([[["A"], ["B"]]]) == ([["[CLS]", "A", "[SEP]", "B", "[SEP]"]], [[1,1,1,2,2]]) @test bert_template([[[["A"], ["B"]]]]) == ([[["[CLS]", "A", "[SEP]", "B", "[SEP]"]]], [[[1,1,1,2,2]]]) @test bert_template(Val(1), [[["A"], ["B"]]]) == [["[CLS]", "A", "[SEP]", "B", "[SEP]"]] @test bert_template(Val(2), [[["A"], ["B"]]]) == [[1,1,1,2,2]] @test bert_template(Val(-1), [[[["A"], ["B"]]]]) == nothing @test bert_template(Any[[["A"], ["B"]]]) == ([["[CLS]", "A", "[SEP]", "B", "[SEP]"]], [[1,1,1,2,2]]) @test bert_template([Any[["A"], ["B"]]]) == ([["[CLS]", "A", "[SEP]", "B", "[SEP]"]], [[1,1,1,2,2]]) @test bert_template([Any[Any["A"], Any["B"]]]) == ([["[CLS]", "A", "[SEP]", "B", "[SEP]"]], [[1,1,1,2,2]]) @test bert_template(Any[Any[Any["A"], Any["B"]]]) == ([["[CLS]", "A", "[SEP]", "B", "[SEP]"]], [[1,1,1,2,2]]) @test bert_template([Any[Any[Any["A"], Any["B"]]]]) == ([[["[CLS]", "A", "[SEP]", "B", "[SEP]"]]], [[[1,1,1,2,2]]]) @test bert_template(Val(-1), [Any[Any[Any["A"], Any["B"]]]]) == nothing bert_template2 = SequenceTemplate( ConstTerm("[CLS]", 1), InputTerm{String}(1), ConstTerm("[SEP]", 1), RepeatedTerm(InputTerm{String}(2), ConstTerm("[SEP]", 2); dynamic_type_id = true) ) @test bert_template2(["A"]) == (["[CLS]", "A", "[SEP]"], [1,1,1]) @test bert_template2(["A"], ["B"]) == (["[CLS]", "A", "[SEP]", "B", "[SEP]"], [1,1,1,2,2]) @test bert_template2(["A"], ["B"], ["C"]) == (["[CLS]", "A", "[SEP]", "B", "[SEP]", "C", "[SEP]"], [1,1,1,2,2,3,3]) trail_template = SequenceTemplate( IndexInputTerm{Int}(1, 1), RepeatedTerm(InputTerm{Int}(2)), IndexInputTerm{Int}(1, 1) ) @test trail_template([3,5]) == ([3,5,3,5], [1,1,1,1]) @test trail_template([3,5],[1,2,4]) == ([3,5,1,2,4,3,5], [1,1,2,2,2,1,1]) @test SequenceTemplate(RepeatedTerm(InputTerm{Int}(3); dynamic_type_id = 2))(1:1, 2:2) == ([1,2],[3,5]) multi_repeat_template = SequenceTemplate( ConstTerm(0,1), RepeatedTerm(InputTerm{Int}(3), ConstTerm(1, 5), InputTerm{Int}(7); dynamic_type_id = 2), ConstTerm(0,9) ) @test multi_repeat_template() == ([0,0],[1,9]) @test_throws AssertionError multi_repeat_template(1:2) @test multi_repeat_template(1:2, 3:4) == ([0,1,2,1,3,4,0], [1,3,3,5,7,7,9]) @test_throws AssertionError multi_repeat_template(1:2,3:4,5:6) @test multi_repeat_template(1:2, 3:4,5:6,7:8) == ([0,1,2,1,3,4,5,6,1,7,8,0], [1,3,3,5,7,7,5,5,7,9,9,9]) @test sprint(show, bert_template2) == "SequenceTemplate{String}([CLS]:<type=1> Input:<type=1> [SEP]:<type=1> (Input:<type=2> [SEP]:<type=2>)<type+=1>...)" @test sprint(show, trail_template) == "SequenceTemplate{Int64}(Input[1]:<type=1> (Input:<type=2>)... Input[1]:<type=1>)" end end @testset "Encoder" begin sentence = Sentence("A single sentence with 31 char.") tkr = NestedTokenizer(IndexedTokenization(CharTk())) vocab = Vocab(map(string, ['a':'z'; 'A':'Z'])) enc = TextEncoder(tkr, vocab, nested2batch∘nestedcall(getvalue)) s(x) = mapfoldl(y->split(y,""), append!, split(x); init=String[]) @test encode(enc, sentence) == reshape(lookup(OneHot, vocab, s(sentence.x)), Val(3)) @test decode(enc, encode(enc, sentence)) == lookup(vocab, reshape(lookup(OneHot, vocab, s(sentence.x)), Val(3))) enc2 = TextEncoder(tkr, vocab) do e nested2batch∘TextEncodeBase.process(e) end @test enc == enc2 end end
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
docs
10958
# TextEncodeBase [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://chengchingwen.github.io/TextEncodeBase.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://chengchingwen.github.io/TextEncodeBase.jl/dev) [![Build Status](https://github.com/chengchingwen/TextEncodeBase.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/chengchingwen/TextEncodeBase.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/chengchingwen/TextEncodeBase.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/chengchingwen/TextEncodeBase.jl) An api for encoding text, built on top of [WordTokenizers.jl](https://github.com/JuliaText/WordTokenizers.jl). Providing a framework to easily define custom methods to convert strings into indices. # Usages Here are some explanation and examples for using `TextEncodeBase.jl`, you can also find other information from the [docs](https://chengchingwen.github.io/TextEncodeBase.jl/dev) or [test](/test/runtests.jl) ## Vocabulary The vocabulary part contains only two api, the `Vocab` struct and the `lookup` function. The `lookup` function is bidirectional (convert string to indices and back). ```julia julia> vocab = Vocab(["a", "b", "c", "a", "b", "c"]) Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = [UNK], unki = 0) julia> vocab_unk = Vocab(["a", "b", "xxx"], "xxx") Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = xxx, unki = 3) julia> lookup(vocab, "b") 2 julia> lookup(vocab, "d") 0 julia> lookup(vocab_unk, "d") 3 julia> lookup(vocab, 1) "a" julia> lookup(vocab, 10000) "[UNK]" julia> lookup(vocab_unk, 10000) "xxx" julia> lookup(vocab, ["b", "c", "a", "A", "[UNK]"]) 5-element Vector{Int64}: 2 3 1 0 0 julia> lookup(OneHot, vocab, "a") 3-element OneHot{3}: 1 0 0 julia> lookup(OneHot, vocab, 3) ERROR: DomainError with c: cannot convert `lookup(::Vocab, 3)` = "c" into one-hot representation. Stacktrace: [...] julia> oha = lookup(OneHot, vocab, ["a" "b"; "c" "d"]) 3x2x2 OneHotArray{3, 3, Matrix{OneHot{0x00000003}}}: [:, :, 1] = 1 0 0 0 0 1 [:, :, 2] = 0 0 1 0 0 0 julia> lookup(vocab, oha) 2×2 Matrix{String}: "a" "b" "c" "[UNK]" ``` ## Pipelines *Reexport from [FuncPipelines.jl](https://github.com/chengchingwen/FuncPipelines.jl)* The Pipeline api help you define a series of functions that can easily be decomposed and then combined with other function to form a new pipeline. A function (`Pipeline`) is tagged with one (or multiple) `Symbol`s. The return values of that `Pipeline` will be bound to those symbols storing in a `NamedTuple`. Precisely, A `Pipeline` take two inputs, a regular input value (`source`) and a `NamedTuple` (`target`) that stores the results, applying the function to them, and then store the result with the name it carried with into `target`. We can then chaining multiple `Pipeline`s into a `Pipelines`. For example: ```julia julia> pipes = Pipeline{:x}(identity, 1) |> Pipeline{(:sinx, :cosx)}((x,y)->sincos(x)) julia> pipes(0.3) (x = 0.3, sinx = 0.29552020666133955, cosx = 0.955336489125606) # define a series of function julia> pipes = Pipeline{:θ}(Base.Fix1(*, 2), 1) |> Pipeline{(:sinθ, :cosθ)}(sincos, :θ) |> Pipeline{:tanθ}(2) do target target.sinθ / target.cosθ end Pipelines: target[θ] := *(2, source) target[(sinθ, cosθ)] := sincos(target.θ) target[tanθ] := #68(target) # get the wanted results julia> pipes2 = pipes |> PipeGet{(:tanθ, :θ)}() Pipelines: target[θ] := *(2, source) target[(sinθ, cosθ)] := sincos(target.θ) target[tanθ] := #68(target) target := (target.tanθ, target.θ) julia> pipes2(ℯ) (tanθ = -1.1306063769531505, θ = 5.43656365691809) # replace some functions in pipeline julia> pipes3 = pipes2[1] |> Pipeline{:tanθ}(tan, :θ) |> pipes2[end] Pipelines: target[θ] := *(2, source) target[tanθ] := tan(target.θ) target := (target.tanθ, target.θ) julia> pipes3(ℯ) (tanθ = -1.1306063769531507, θ = 5.43656365691809) # and the pipelines is type stable julia> using Test; @inferred pipes3(ℯ) (tanθ = -1.1306063769531507, θ = 5.43656365691809) ``` ## Tokenizer The tokenizer part is built ontop of `WordTokenizers.jl` and provide a high-level api to control/augment the tokenization. There're some differences between `WordTokenizers.jl`. `WordTokenizers.jl` provides a set of tokenizers and a low-level api (`TokenBuffer`) for define custom tokenizers. It's mainly focus on how to split a setnece into tokens. We, on the other hand, focus on how to combine different tokenizer or include other information during the tokenization. For example, sometimes you might want to prevent urls from being splited or add some extra tags to it, these can be done by defining a custom `AbstractTokenizer` and overload some methods. Besides, we force the user to explicit wrap the input as one of the stages (`Document`/`Sentence`/`Word`/...), so no confusion. ### Example of using the Tokenizer api Here is an example that wrapped the word tokenizer and wordpiece from `Transformers.jl` into our Tokenizer api. ```julia using Transformers using Transformers.Pretrain using Transformers.BidirectionalEncoder: WordPiece, bert_cased_tokenizer using TextEncodeBase using TextEncodeBase: NestedTokenizer, BaseTokenization, Sentence, Word, SubWord, getvalue, Splittable struct BertCasedTokenization <: BaseTokenization wordpiece::WordPiece end # split sentence with `bert_cased_tokenizer` (define with WordTokenizers.jl's `TokenBuffer`) TextEncodeBase.splitting(::BertCasedTokenization, s::Sentence) = bert_cased_tokenizer(getvalue(s)) # word is splittable with WordPiece TextEncodeBase.splittability(::BertCasedTokenization, w::Word) = Splittable() # split word with `WordPiece` TextEncodeBase.splitting(t::BertCasedTokenization, w::Word) = t.wordpiece(getvalue(w)) tokenizer = pretrain"bert-cased_L-12_H-768_A-12:tokenizer" # this is just `bert_cased_tokenizer` wordpiece = pretrain"bert-cased_L-12_H-768_A-12:wordpiece" tkr = NestedTokenizer(BertCasedTokenization(wordpiece)) text1 = "Peter Piper picked a peck of pickled peppers" single_without_TEB = text1 |> tokenizer |> wordpiece single_with_TEB = tkr(Sentence(text1)) # `NestedTokenizer` return vector of vector @assert single_without_TEB == map(getvalue, single_with_TEB[]) julia> single_without_TEB 11-element Vector{String}: "Peter" "Piper" "picked" "a" "p" "##eck" "of" "pick" "##led" "pepper" "##s" julia> single_with_TEB 1-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] julia> single_without_TEB == map(getvalue, single_with_TEB[]) true # define stage for batch of data # equivalent to TextEncodeBase.@stage BatchSentence{A<:AbstractVector, M} DocumentStage struct BatchSentence{A<:AbstractVector, M} <: TextEncodeBase.DocumentStage x::A meta::M end BatchSentence(x) = BatchSentence(x, nothing) TextEncodeBase.setmeta(x::BatchSentence, meta) = BatchSentence(x.x, meta) TextEncodeBase.setvalue(x::BatchSentence, y) = BatchSentence(y, x.meta) # splittability and split behavior for `BatchSentence` TextEncodeBase.splittability(::BertCasedTokenization, ::BatchSentence) = Splittable() TextEncodeBase.splitting(::BertCasedTokenization, s::BatchSentence) = s.x text2 = "Fuzzy Wuzzy was a bear" texts = [text1, text2] batch_without_TEB = map(wordpiece∘tokenizer, texts) batch_with_TEB = tkr(BatchSentence(texts)) @assert batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) julia> batch_without_TEB 2-element Vector{Vector{String}}: ["Peter", "Piper", "picked", "a", "p", "##eck", "of", "pick", "##led", "pepper", "##s"] ["Fu", "##zzy", "Wu", "##zzy", "was", "a", "bear"] julia> batch_with_TEB 2-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] [Token("Fu"), Token("##zzy"), Token("Wu"), Token("##zzy"), Token("was"), Token("a"), Token("bear")] julia> batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) true ``` Since the wordpiece break word into subword, we might want to know which word each subword belongs to: ```julia julia> itkr = NestedTokenizer(TextEncodeBase.IndexedTokenization(BertCasedTokenization(wordpiece))); julia> ibatch_with_TEB = itkr(BatchSentence(texts)); # subword from same word having the same `word_id` julia> ibatch_with_TEB[1] 11-element Vector{TextEncodeBase.TokenStage}: Token("Peter", (sentence_id = 1, word_id = 1, token_id = 1)) Token("Piper", (sentence_id = 1, word_id = 2, token_id = 2)) Token("picked", (sentence_id = 1, word_id = 3, token_id = 3)) Token("a", (sentence_id = 1, word_id = 4, token_id = 4)) Token("p", (sentence_id = 1, word_id = 5, token_id = 5)) Token("##eck", (sentence_id = 1, word_id = 5, token_id = 6)) Token("of", (sentence_id = 1, word_id = 6, token_id = 7)) Token("pick", (sentence_id = 1, word_id = 7, token_id = 8)) Token("##led", (sentence_id = 1, word_id = 7, token_id = 9)) Token("pepper", (sentence_id = 1, word_id = 8, token_id = 10)) Token("##s", (sentence_id = 1, word_id = 8, token_id = 11)) julia> ibatch_with_TEB[2] 7-element Vector{TextEncodeBase.TokenStage}: Token("Fu", (sentence_id = 2, word_id = 1, token_id = 1)) Token("##zzy", (sentence_id = 2, word_id = 1, token_id = 2)) Token("Wu", (sentence_id = 2, word_id = 2, token_id = 3)) Token("##zzy", (sentence_id = 2, word_id = 2, token_id = 4)) Token("was", (sentence_id = 2, word_id = 3, token_id = 5)) Token("a", (sentence_id = 2, word_id = 4, token_id = 6)) Token("bear", (sentence_id = 2, word_id = 5, token_id = 7)) ``` ## TextEncoder The text encoder is just a combination of vocabulary and tokenizer. We also provide some helper function like (`with_head_tail`/`nested2batch`/...) for transform the tokenizer result into `lookup`-able format. ### Example ```julia using TextEncodeBase: nestedcall, with_head_tail, trunc_and_pad, nested2batch # construct `Vocab` with `WordPiece` vocab = Vocab(wordpiece.vocab, wordpiece.vocab[wordpiece.unk_idx]) # define encoder with `TextEncoder` enc = TextEncoder( itkr, vocab, nested2batch ∘ trunc_and_pad(nothing, vocab.unk) ∘ with_head_tail("[CLS]", "[SEP]") ∘ nestedcall(getvalue) ) julia> encode(enc, BatchSentence(texts)) 28996x13x2 OneHotArray{28996, 3, Matrix{OneHot{0x00007144}}}: [...] julia> decode(enc, ans) 13×2 Matrix{String}: "[CLS]" "[CLS]" "Peter" "Fu" "Piper" "##zzy" "picked" "Wu" "a" "##zzy" "p" "was" "##eck" "a" "of" "bear" "pick" "[SEP]" "##led" "[UNK]" "pepper" "[UNK]" "##s" "[UNK]" "[SEP]" "[UNK]" ```
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
docs
76
# Api reference ```@index ``` ```@autodocs Modules = [TextEncodeBase] ```
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
docs
2732
# Design ## Tokenizer The overall tokenizer framework is built on top of Julia's multiple dispatch. The main idea of the design is to make hijacking the tokenization process easier. This is done by dispatching to all `AbstractTokenizer`, `AbstractTokenization`, and `TokenStages`, so that even if the tokenization and input are the same, we can still define a new tokenizer and change the behavior of some parts of that tokenization. ### TokenStages The `TokenStages` is an abstract type used to specify the input. For example, we have `Document <: TokenStages` and `Sentence <: TokenStages`, so the input is not just a `String`, which we probably cannot detect what is in. Every string should be wrap with a `TokenStages` type explicitly. With the stages in mind, we can convert the tokenization process into recursively splitting the string and wrapping the substring as another stage until the result is a `Token` type. ### Splittability Not every `TokenStages` can be splitted into substring, like most of tokenizer won't split word into subwords. Therefore, we defined the `Splittability` trait. The splittability is codetermined by `AbstractTokenizer`, `AbstractTokenization`, and `TokenStages`. It is either `Splittable` or `UnSplittable`. If the input is splittable, there should have a `splitting` method defined for that combination. On the other hand, if it's unsplittable, the tokenize function will directly call `wrap` to tranform the input into next stage. Actually, there is also another input with type (`ParentStages = Union{Nothing, TokenStages`) that can be used to find whether the tokenize function is called recursively. ## Vocabulary The `Vocab` type take two argument, the list of words and a special token for all unknown words. The default constructor of `Vocab` copy the list and remove all duplicate words. Besides, it also try to find the unknown token in the word list. If the unknown token is *NOT* in the word list, it will *NOT* add it into the word list. Instead, when `lookup` unknown word with that `Vocab` object, it will return 0 as the index for all unknown words. Therefore, make sure the unknown token is in the word list beforehand. ## Pipelines A `Pipelines` is a chain of `Pipeline` and `Pipeline` is a function that take two arguments: the input and a `NamedTuple`. Each `Pipeline` is attached with one or more symbols. It apply a transform function on its arguments, and then the result will be mark with those symbols and produce another `NamedTuple`. After that, the result `NamedTuple` will be merged into the input `NamedTuple`. So the `Pipelines` is a sequence of transform function, and each transform result is marked with given names.
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
0.8.3
66f827fa54c38cb7a7b174d3a580075b10793f5a
docs
10382
```@meta CurrentModule = TextEncodeBase ``` # TextEncodeBase Documentation for [TextEncodeBase](https://github.com/chengchingwen/TextEncodeBase.jl). An api for encoding text, built on top of [WordTokenizers.jl](https://github.com/JuliaText/WordTokenizers.jl). Providing a framework to easily define custom methods to convert strings into indices. # Usages Here are some explanation and examples for using `TextEncodeBase.jl`, you can also find other information from the [test](https://github.com/chengchingwen/TextEncodeBase.jl/blob/main/test/runtests.jl) ## Vocabulary The vocabulary part contains only two api, the `Vocab` struct and the `lookup` function. The `lookup` function is bidirectional (convert string to indices and back). ```julia julia> vocab = Vocab(["a", "b", "c", "a", "b", "c"]) Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = [UNK], unki = 0) julia> vocab_unk = Vocab(["a", "b", "xxx"], "xxx") Vocab{String, StaticArrays.SizedVector{3, String, Vector{String}}}(size = 3, unk = xxx, unki = 3) julia> lookup(vocab, "b") 2 julia> lookup(vocab, "d") 0 julia> lookup(vocab_unk, "d") 3 julia> lookup(vocab, 1) "a" julia> lookup(vocab, 10000) "[UNK]" julia> lookup(vocab_unk, 10000) "xxx" julia> lookup(vocab, ["b", "c", "a", "A", "[UNK]"]) 5-element Vector{Int64}: 2 3 1 0 0 julia> lookup(OneHot, vocab, "a") 3-element OneHot{3}: 1 0 0 julia> lookup(OneHot, vocab, 3) ERROR: DomainError with c: cannot convert `lookup(::Vocab, 3)` = "c" into one-hot representation. Stacktrace: [...] julia> oha = lookup(OneHot, vocab, ["a" "b"; "c" "d"]) 3x2x2 OneHotArray{3, 3, Matrix{OneHot{0x00000003}}}: [:, :, 1] = 1 0 0 0 0 1 [:, :, 2] = 0 0 1 0 0 0 julia> lookup(vocab, oha) 2×2 Matrix{String}: "a" "b" "c" "[UNK]" ``` ## Pipelines The Pipeline api help you define a series of functions that can easily be decomposed and then combined with other function to form a new pipeline. A function (`Pipeline`) is tagged with one (or multiple) `Symbol`s. The return values of that `Pipeline` will be bound to those symbols storing in a `NamedTuple`. Precisely, A `Pipeline` take two inputs, a regular input value (`source`) and a `NamedTuple` (`target`) that stores the results, applying the function to them, and then store the result with the name it carried with into `target`. We can then chaining multiple `Pipeline`s into a `Pipelines`. For example: ```julia julia> pipes = Pipeline{:x}(identity, 1) |> Pipeline{(:sinx, :cosx)}((x,y)->sincos(x)) julia> pipes(0.3) (x = 0.3, sinx = 0.29552020666133955, cosx = 0.955336489125606) # define a series of function julia> pipes = Pipeline{:θ}(Base.Fix1(*, 2), 1) |> Pipeline{(:sinθ, :cosθ)}(sincos, :θ) |> Pipeline{:tanθ}(2) do target target.sinθ / target.cosθ end Pipelines: target[θ] := *(2, source) target[(sinθ, cosθ)] := sincos(target.θ) target[tanθ] := #68(target) # get the wanted results julia> pipes2 = pipes |> PipeGet{(:tanθ, :θ)}() Pipelines: target[θ] := *(2, source) target[(sinθ, cosθ)] := sincos(target.θ) target[tanθ] := #68(target) target := (target.tanθ, target.θ) julia> pipes2(ℯ) (tanθ = -1.1306063769531505, θ = 5.43656365691809) # replace some functions in pipeline julia> pipes3 = pipes2[1] |> Pipeline{:tanθ}(tan, :θ) |> pipes2[end] Pipelines: target[θ] := *(2, source) target[tanθ] := tan(target.θ) target := (target.tanθ, target.θ) julia> pipes3(ℯ) (tanθ = -1.1306063769531507, θ = 5.43656365691809) # and the pipelines is type stable julia> using Test; @inferred pipes3(ℯ) (tanθ = -1.1306063769531507, θ = 5.43656365691809) ``` ## Tokenizer The tokenizer part is built ontop of `WordTokenizers.jl` and provide a high-level api to control/augment the tokenization. There're some differences between `WordTokenizers.jl`. `WordTokenizers.jl` provides a set of tokenizers and a low-level api (`TokenBuffer`) for define custom tokenizers. It's mainly focus on how to split a setnece into tokens. We, on the other hand, focus on how to combine different tokenizer or include other information during the tokenization. For example, sometimes you might want to prevent urls from being splited or add some extra tags to it, these can be done by defining a custom `AbstractTokenizer` and overload some methods. Besides, we force the user to explicit wrap the input as one of the stages (`Document`/`Sentence`/`Word`/...), so no confusion. ### Example of using the Tokenizer api Here is an example that wrapped the word tokenizer and wordpiece from `Transformers.jl` into our Tokenizer api. ```julia using Transformers using Transformers.Pretrain using Transformers.BidirectionalEncoder: WordPiece, bert_cased_tokenizer using TextEncodeBase using TextEncodeBase: NestedTokenizer, BaseTokenization, Sentence, Word, SubWord, getvalue, Splittable struct BertCasedTokenization <: BaseTokenization wordpiece::WordPiece end # split sentence with `bert_cased_tokenizer` (define with WordTokenizers.jl's `TokenBuffer`) TextEncodeBase.splitting(::BertCasedTokenization, s::Sentence) = bert_cased_tokenizer(getvalue(s)) # word is splittable with WordPiece TextEncodeBase.splittability(::BertCasedTokenization, w::Word) = Splittable() # split word with `WordPiece` TextEncodeBase.splitting(t::BertCasedTokenization, w::Word) = t.wordpiece(getvalue(w)) tokenizer = pretrain"bert-cased_L-12_H-768_A-12:tokenizer" # this is just `bert_cased_tokenizer` wordpiece = pretrain"bert-cased_L-12_H-768_A-12:wordpiece" tkr = NestedTokenizer(BertCasedTokenization(wordpiece)) text1 = "Peter Piper picked a peck of pickled peppers" single_without_TEB = text1 |> tokenizer |> wordpiece single_with_TEB = tkr(Sentence(text1)) # `NestedTokenizer` return vector of vector @assert single_without_TEB == map(getvalue, single_with_TEB[]) julia> single_without_TEB 11-element Vector{String}: "Peter" "Piper" "picked" "a" "p" "##eck" "of" "pick" "##led" "pepper" "##s" julia> single_with_TEB 1-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] julia> single_without_TEB == map(getvalue, single_with_TEB[]) true # define stage for batch of data struct BatchSentence{A<:AbstractVector, M} <: TextEncodeBase.DocumentStage x::A meta::M end BatchSentence(x) = BatchSentence(x, nothing) TextEncodeBase.setmeta(x::BatchSentence, meta) = BatchSentence(x.x, meta) TextEncodeBase.setvalue(x::BatchSentence, y) = BatchSentence(y, x.meta) # splittability and split behavior for `BatchSentence` TextEncodeBase.splittability(::BertCasedTokenization, ::BatchSentence) = Splittable() TextEncodeBase.splitting(::BertCasedTokenization, s::BatchSentence) = s.x text2 = "Fuzzy Wuzzy was a bear" texts = [text1, text2] batch_without_TEB = map(wordpiece∘tokenizer, texts) batch_with_TEB = tkr(BatchSentence(texts)) @assert batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) julia> batch_without_TEB 2-element Vector{Vector{String}}: ["Peter", "Piper", "picked", "a", "p", "##eck", "of", "pick", "##led", "pepper", "##s"] ["Fu", "##zzy", "Wu", "##zzy", "was", "a", "bear"] julia> batch_with_TEB 2-element Vector{Vector{TextEncodeBase.TokenStage}}: [Token("Peter"), Token("Piper"), Token("picked"), Token("a"), Token("p"), Token("##eck"), Token("of"), Token("pick"), Token("##led"), Token("pepper"), Token("##s")] [Token("Fu"), Token("##zzy"), Token("Wu"), Token("##zzy"), Token("was"), Token("a"), Token("bear")] julia> batch_without_TEB == TextEncodeBase.nestedcall(getvalue, batch_with_TEB) true ``` Since the wordpiece break word into subword, we might want to know which word each subword belongs to: ```julia julia> itkr = NestedTokenizer(TextEncodeBase.IndexedTokenization(BertCasedTokenization(wordpiece))); julia> ibatch_with_TEB = itkr(BatchSentence(texts)); # subword from same word having the same `word_id` julia> ibatch_with_TEB[1] 11-element Vector{TextEncodeBase.TokenStage}: Token("Peter", (sentence_id = 1, word_id = 1, token_id = 1)) Token("Piper", (sentence_id = 1, word_id = 2, token_id = 2)) Token("picked", (sentence_id = 1, word_id = 3, token_id = 3)) Token("a", (sentence_id = 1, word_id = 4, token_id = 4)) Token("p", (sentence_id = 1, word_id = 5, token_id = 5)) Token("##eck", (sentence_id = 1, word_id = 5, token_id = 6)) Token("of", (sentence_id = 1, word_id = 6, token_id = 7)) Token("pick", (sentence_id = 1, word_id = 7, token_id = 8)) Token("##led", (sentence_id = 1, word_id = 7, token_id = 9)) Token("pepper", (sentence_id = 1, word_id = 8, token_id = 10)) Token("##s", (sentence_id = 1, word_id = 8, token_id = 11)) julia> ibatch_with_TEB[2] 7-element Vector{TextEncodeBase.TokenStage}: Token("Fu", (sentence_id = 2, word_id = 1, token_id = 1)) Token("##zzy", (sentence_id = 2, word_id = 1, token_id = 2)) Token("Wu", (sentence_id = 2, word_id = 2, token_id = 3)) Token("##zzy", (sentence_id = 2, word_id = 2, token_id = 4)) Token("was", (sentence_id = 2, word_id = 3, token_id = 5)) Token("a", (sentence_id = 2, word_id = 4, token_id = 6)) Token("bear", (sentence_id = 2, word_id = 5, token_id = 7)) ``` ## TextEncoder The text encoder is just a combination of vocabulary and tokenizer. We also provide some helper function like (`with_head_tail`/`nested2batch`/...) for transform the tokenizer result into `lookup`-able format. ### Example ```julia using TextEncodeBase: nestedcall, with_head_tail, trunc_and_pad, nested2batch # construct `Vocab` with `WordPiece` vocab = Vocab(wordpiece.vocab, wordpiece.vocab[wordpiece.unk_idx]) # define encoder with `TextEncoder` encoder = TextEncoder( itkr, vocab, nested2batch ∘ trunc_and_pad(nothing, vocab.unk) ∘ with_head_tail("[CLS]", "[SEP]") ∘ nestedcall(getvalue) ) julia> encode(enc, BatchSentence(texts)) 28996x13x2 OneHotArray{28996, 3, Matrix{OneHot{0x00007144}}}: [...] julia> decode(enc, ans) 13×2 Matrix{String}: "[CLS]" "[CLS]" "Peter" "Fu" "Piper" "##zzy" "picked" "Wu" "a" "##zzy" "p" "was" "##eck" "a" "of" "bear" "pick" "[SEP]" "##led" "[UNK]" "pepper" "[UNK]" "##s" "[UNK]" "[SEP]" "[UNK]" ``` # Outline ```@contents Pages = [ "design.md", "api.md", ] ```
TextEncodeBase
https://github.com/chengchingwen/TextEncodeBase.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
code
427
using Documenter push!(LOAD_PATH, "../../src") using GenieFramework makedocs( sitename = "GenieFramework - Meta Package for Genie Ecosystem", format = Documenter.HTML(prettyurls = false), pages = [ "Home" => "index.md", "GenieFramework API" => [ "GenieFramework" => "API/genieframework.md", ] ], ) deploydocs( repo = "github.com/GenieFramework/GenieFramework.jl.git", )
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
code
3780
module GenieFramework using Revise using Reexport @reexport using Genie @reexport using Stipple @reexport using StippleUI @reexport using StipplePlotly @reexport using StippleTable @reexport using StippleTabs @reexport using Stipple.Pages @reexport using Stipple.ReactiveTools @reexport using StipplePlotly.Charts @reexport using StipplePlotly.Layouts @reexport using Genie.Renderer.Html @reexport using Genie.Server const DEFAULT_LAYOUT = Stipple.ReactiveTools.DEFAULT_LAYOUT export DEFAULT_LAYOUT export @genietools if Genie.Configuration.isdev() @reexport using GenieDevTools @reexport using GenieAutoReload @reexport using GarishPrint @reexport using GeniePackageManager end # Address conflicts - this is ugly but necessary # TODO: Refactor layout exports in next breaking release (v1) # Both Stipple and StippleUI export layout const q__layout = StippleUI.Layouts.layout export q__layout """ This macro configures static assets(js, icons, fonts etc) based on production or development mode. In production mode, it uses the CDN to load the assets. In development mode, it loads the assets from the local file system. It also register routes from GenieDevTools and GeniePackageManager per app basis which means making available routes from GenieDevTools and GeniePackageManager in your Genie/GenieBuilder app for development purposes. Some example routes are: - `/geniepackagemanager` - `/_devtools_/save` - `/_devtools_/up` - `/_devtools_/down` - `/_devtools_/log` - `/_devtools_/startrepl` etc. which can be accessed from `app_host:app_port/geniepackagemanager` etc. """ macro genietools() return quote function __genietools() Genie.config.log_to_file = true Genie.config.log_requests = false Genie.Logger.initialize_logging() if haskey(ENV, "BASEPATH") && ! isempty(ENV["BASEPATH"]) try Genie.Assets.assets_config!([Genie, Stipple, StippleUI, StipplePlotly, GenieAutoReload, StippleTable, StippleTabs], host = ENV["BASEPATH"]) Genie.config.websockets_base_path = ENV["BASEPATH"] Genie.config.websockets_exposed_port = nothing catch ex @error ex end end if Genie.Configuration.isprod() && Genie.config.cdn_enabled try Genie.Assets.assets_config!([Genie, Stipple, StippleUI, StipplePlotly], host = Genie.config.cdn_url) catch ex @error ex end end if Genie.Configuration.isdev() GenieDevTools.register_routes() GeniePackageManager.register_routes() Stipple.deps!(GenieAutoReload, GenieAutoReload.deps) @async autoreload(pwd()) |> errormonitor if ! haskey(ENV, "GENIE_PUSH_ERRORS") || ENV["GENIE_PUSH_ERRORS"] !== "false" @async begin GenieDevTools.tailapplog(Genie.config.path_log; env = lowercase(ENV["GENIE_ENV"])) do line msg = GenieDevTools.parselog(line) msg !== nothing || return try msg = """$(Genie.config.webchannels_eval_command) window.GENIEMODEL.\$q.notify({timeout: 0, message: `$(line)`, color: "red", closeBtn: true})""" Stipple.WEB_TRANSPORT[].broadcast(Genie.WebChannels.tagbase64encode(msg)) catch ex @error ex end end end |> errormonitor end end nothing end if ! isdefined($__module__, :GENIE_TOOLS_LOADED) const GENIE_TOOLS_LOADED = true @debug "Loading GenieTools" Genie.Loader.bootstrap(@__MODULE__; show_banner = false) Stipple.__init__() StippleUI.__init__() StipplePlotly.__init__() __genietools() else @warn "GenieTools already loaded, skipping" end end |> esc end end
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
code
101
using GenieFramework using Test @testset "GenieFramework.jl" begin # Write your tests here. end
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
docs
1196
# GenieFramework [![Docs](https://img.shields.io/badge/genieframework-docs-greenyellow)](https://www.genieframework.com/docs/) Meta package for Genie reactive apps. This packages exports `Genie`, `Stipple`, `StippleUI`, `StipplePlotly`, `Stipple.Pages`, `Stipple.ModelStorage.Sessions`, `Stipple.ReactiveTools`, `Genie.Renderer.Html`, `Genie.Server` and other packages from Genie Ecosystem as required in future ## Installation To install the most recent released version of package: ``` pkg> add GenieFramework ``` ## Usage ## Basic application Create a simple `app.jl` script ```julia module App using GenieFramework @genietools d₁ = PlotData(x=[1, 2, 3], y=[4, 1, 2], plot=StipplePlotly.Charts.PLOT_TYPE_BAR, name="Barcelona") d₂ = PlotData(x=[1, 2, 3], y=[2, 4, 5], plot=StipplePlotly.Charts.PLOT_TYPE_BAR, name="London") @app begin @out data = [d₁, d₂] @out layout = PlotLayout() end function ui() [ h1("GenieFramework 🧞 Data Vizualization 📊") plot(:data, layout=:layout) ] end @page("/", ui) end ``` ```shell julia> using GenieFramework; Genie.loadapp(); Server.isrunning() || up(async=false); ``` should start the app at `localhost:8000`
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
docs
50
# GenieFramework Meta package for Genie Ecosystem
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
2.4.0
b83470988b7e7a9dfeb79b19437d5e8299b52684
docs
88
```@meta CurrentModule = GenieFramework ``` ```@autodocs Modules = [GenieFramework] ```
GenieFramework
https://github.com/GenieFramework/GenieFramework.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
1229
using ElasticSurfaceEmbedding using Documenter using DemoCards # Create demo with DemoCards.jl gallery_demopage, gallery_cb, gallery_assets = makedemos(joinpath("gallery")) # Standard Documenter.jl process DocMeta.setdocmeta!(ElasticSurfaceEmbedding, :DocTestSetup, :(using ElasticSurfaceEmbedding); recursive = true) makedocs(; modules = [ElasticSurfaceEmbedding], authors = "hyrodium <[email protected]> and contributors", repo = "https://github.com/hyrodium/ElasticSurfaceEmbedding.jl/blob/{commit}{path}#{line}", sitename = "ElasticSurfaceEmbedding.jl", format = Documenter.HTML(; prettyurls = true, canonical = "https://hyrodium.github.io/ElasticSurfaceEmbedding.jl", assets = ["assets/custom.css", gallery_assets], repolink = "https://github.com/hyrodium/ElasticSurfaceEmbedding.jl" ), pages = [ "Home" => "index.md", "Craft" => "craft.md", "Numerical computation" => "run-julia.md", "Symbolic computation" => "run-wolfram.md", "Gallery" => gallery_demopage, "API" => "api.md", ], ) # Postprocess for demos gallery_cb() # Deploy docs deploydocs(; repo = "github.com/hyrodium/ElasticSurfaceEmbedding.jl")
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
2603
# --- # title: Helicatenoid # cover: ../assets/helicatenoid.jpg # description: Weaving a transformable curved surface from catenoid to helicoid. # --- # Weaving a transformable curved surface from catenoid to helicoid. # ```@raw html # <div class="videoWrapper"> # <!-- Copy & Pasted from YouTube --> # <iframe width="560" height="315" src="https://www.youtube.com/embed/Gp6XkPLCw7s" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> # </div> # ``` # ## Load packages using IntervalSets using BasicBSpline using StaticArrays using ElasticSurfaceEmbedding # ## Define the shape of the surface (non-periodic direction) ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(cos(u²)*cosh(u¹),sin(u²)*cosh(u¹),u¹) n = 9 Da(n) = (-π/2..π/2,-π/(4n)..π/(4n)) # ## Compute the shape of the embeddings show_strain(Da(n)) steptree = initial_state(Da(n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) # ## Export the shape in SVG format export_pinned_steps("helicatenoid-a", steptree, unitlength=(40,"mm"), mesh=(18,1)) # ![](helicatenoid-a/pinned/pinned-9.svg) # ## Define the shape of the surface (periodic direction) ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(cos(u¹)*cosh(u²),sin(u¹)*cosh(u²),u²) Db(i,n) = (-π..π,(i-1)*π/(2n)..(i)*π/(2n)) ## Check the maximum strain for i in 1:n show_strain(Db(i,n)) end ## Numerical computing steptree = StepTree() for i in 1:n initial_state!(steptree, Db(i,n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) end # ## Export the shapes in SVG format export_pinned_steps("helicatenoid-b", steptree, unitlength=(40,"mm"), mesh=(36,1)) # ![](helicatenoid-b/pinned/pinned-9.svg) ![](helicatenoid-b/pinned/pinned-18.svg) ![](helicatenoid-b/pinned/pinned-27.svg) # ![](helicatenoid-b/pinned/pinned-36.svg) ![](helicatenoid-b/pinned/pinned-45.svg) ![](helicatenoid-b/pinned/pinned-54.svg) # ![](helicatenoid-b/pinned/pinned-63.svg) ![](helicatenoid-b/pinned/pinned-72.svg) ![](helicatenoid-b/pinned/pinned-81.svg)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
3495
# --- # title: Helicatenoid2 # description: Weaving a transformable curved surface from catenoid to helicoid (2). # --- # Weaving a transformable curved surface from catenoid to helicoid. # ## Load packages using Luxor using IntervalSets using BasicBSpline using BasicBSplineFitting using StaticArrays using ElasticSurfaceEmbedding using LinearAlgebra # ## Define the shape of the surface const N = 8 const J = 1 f0(s) = max(-abs(s+1/2N-1)-(1/2N-1), 0) f1(s) = -1/2+f0(mod(s-J/N, 2)) f2(s) = 1/2-f0(mod(s-1-J/N, 2)) # 0≤u≤2π, -π/2≤v≤π/2 # 0≤s≤2, 0≤t≤1 u(s,t) = π*s v(s,t) = π*(f1(s)*(1-t) + t*f2(s)) catenoid(u,v) = SVector(cos(u)*cosh(v),sin(u)*cosh(v),v) ElasticSurfaceEmbedding.𝒑₍₀₎(s,t) = catenoid(u(s,t), v(s,t)) # ## Compute the shape of the embeddings splitat = [-1/N, -1/2N, 0, 1/2N, 1/N, 1, 1+1/2N, 1+1/N] steptree = StepTree() for shift in [0, -1/N, -2/N, -3/N] initial_state!(steptree, (0+shift..2+shift, 0..1), splitat) newton_onestep!(steptree, fixingmethod=:fix5points) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=ElasticSurfaceEmbedding.suggest_knotvector(steptree)) for _ in 1:5 newton_onestep!(steptree) end pin!(steptree) end # ## Helper functions to export svg images function create_bezierpath(C::BSplineManifold{1,(3,),Point}) P = bsplinespaces(C)[1] k = knotvector(P) k′ = 3*unique(k) + k[[1,end]] P′ = BSplineSpace{3}(k′) C′ = refinement(C,P′) a′ = controlpoints(C′) n′ = dim(P′) m = (n′-1) ÷ 3 bezierpath = BezierPath([BezierPathSegment(a′[3i-2], a′[3i-1], a′[3i], a′[3i+1]) for i in 1:m]) return bezierpath end function svector2point(M::BSplineManifold) P = bsplinespaces(M) a = controlpoints(M) a′ = [Point(p[1], -p[2])*100/π for p in a] M′ = BSplineManifold(a′, P) return M′ end # ## Settings for export xlims=(-2,2) ylims=(-2,2) unitlength = (100, "mm") width = (xlims[2] - xlims[1]) * unitlength[1] height = (ylims[2] - ylims[1]) * unitlength[1] # ## Export embeddings mkpath("helicatenoid2") for i in 1:(N+1)÷2 filepath = joinpath("helicatenoid2", "embedding-$(i).svg") M = svector2point(steptree.steps[10i].manifold) D¹ = domain(bsplinespaces(M)[1]) D² = domain(bsplinespaces(M)[2]) u²₋ = minimum(D²) u²₊ = maximum(D²) Drawing(width, height, filepath) origin() background("white") sethue("red") C = M(:,u²₋) path = create_bezierpath(C) drawbezierpath(path, :stroke) C = M(:,u²₊) path = create_bezierpath(C) drawbezierpath(path, :stroke) p1 = controlpoints(M)[begin,begin] p2 = controlpoints(M)[begin,end] p3 = controlpoints(M)[end,begin] p4 = controlpoints(M)[end,end] v12 = p1-p2 q1 = p1 - Point(v12[2],-v12[1])/norm(v12) * 6 q2 = p2 - Point(v12[2],-v12[1])/norm(v12) * 6 line(p1,q1) line(q2) line(p2) strokepath() v34 = p3-p4 q3 = p3 + Point(v34[2],-v34[1])/norm(v34) * 6 q4 = p4 + Point(v34[2],-v34[1])/norm(v34) * 6 line(p3,q3) line(q4) line(p4) strokepath() finish() preview() script = read(filepath, String) lines = split(script, "\n") lines[2] = replace(lines[2],"pt\""=>"mm\"") write(filepath, join(lines,"\n")) end # The output files will be saved as `embedding-$(i).svg`. # ![](helicatenoid2/embedding-1.svg) # ![](helicatenoid2/embedding-2.svg) # ![](helicatenoid2/embedding-3.svg) # ![](helicatenoid2/embedding-4.svg)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
1640
# --- # title: Hyperbolic paraboloid # cover: ../assets/hyperbolic_paraboloid.jpg # description: Weaving a simple curved surface with negative curvature. # --- # Weaving a simple curved surface with negative curvature. # ![](../assets/hyperbolic_paraboloid.jpg) # ## Load packages using IntervalSets using BasicBSpline using StaticArrays using ElasticSurfaceEmbedding # ## Define the shape of the surface ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(u¹, u², u¹^2-u²^2) n = 10 D(i,n) = (-1.0..1.0, (i-1)/n..i/n) # ## Compute the shape of the embeddings steptree = ElasticSurfaceEmbedding.StepTree() for i in 1:10 initial_state!(steptree, D(i,n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) end # ## Export the shapes in SVG format export_pinned_steps("hyperbolic_paraboloid", steptree, xlims=(-2,2), ylims=(-2,2), unitlength=(100,"mm"), mesh=(20,1)) # ![](hyperbolic_paraboloid/pinned/pinned-9.svg) # ![](hyperbolic_paraboloid/pinned/pinned-18.svg) # ![](hyperbolic_paraboloid/pinned/pinned-27.svg) # ![](hyperbolic_paraboloid/pinned/pinned-36.svg) # ![](hyperbolic_paraboloid/pinned/pinned-45.svg) # ![](hyperbolic_paraboloid/pinned/pinned-54.svg) # ![](hyperbolic_paraboloid/pinned/pinned-63.svg) # ![](hyperbolic_paraboloid/pinned/pinned-72.svg) # ![](hyperbolic_paraboloid/pinned/pinned-81.svg) # ![](hyperbolic_paraboloid/pinned/pinned-90.svg)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
1486
# --- # title: Paraboloid # cover: ../assets/paraboloid.jpg # description: Weaving a simple curved surface with positive curvature. # --- # Weaving a simple curved surface with positive curvature. # ![](../assets/paraboloid.jpg) # ## Load packages using IntervalSets using BasicBSpline using StaticArrays using ElasticSurfaceEmbedding # ## Define the shape of the surface ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(u¹, u², u¹^2+u²^2) n = 10 D(i,n) = (-1.0..1.0, (i-1)/n..i/n) # ## Compute the shape of the embeddings steptree = ElasticSurfaceEmbedding.StepTree() for i in 1:10 initial_state!(steptree, D(i,n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) end # ## Export the shapes in SVG format export_pinned_steps("paraboloid", steptree, xlims=(-2,2), ylims=(-2,2), unitlength=(100,"mm"), mesh=(20,1)) # ![](paraboloid/pinned/pinned-9.svg) # ![](paraboloid/pinned/pinned-18.svg) # ![](paraboloid/pinned/pinned-27.svg) # ![](paraboloid/pinned/pinned-36.svg) # ![](paraboloid/pinned/pinned-45.svg) # ![](paraboloid/pinned/pinned-54.svg) # ![](paraboloid/pinned/pinned-63.svg) # ![](paraboloid/pinned/pinned-72.svg) # ![](paraboloid/pinned/pinned-81.svg) # ![](paraboloid/pinned/pinned-90.svg)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
4014
# --- # title: Stereographic projection # cover: ../assets/stereographicprojection.jpg # description: A point light illuminates the grid points on the ground. # --- # A point light illuminates the grid points on the ground. # ![](../assets/stereographicprojection.jpg) # # Load packages using Luxor using IntervalSets using BasicBSpline using BasicBSplineFitting using StaticArrays using ElasticSurfaceEmbedding # # Compute the embedding shapes # ## Shape definition ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(2*u¹/(1+u¹^2+u²^2), 2*u²/(1+u¹^2+u²^2), (-1+u¹^2+u²^2)/(1+u¹^2+u²^2)) n = 10 D(i,n) = (-2.0..2.0, 2(i-1)/n..2i/n) # ## Strain estimation show_strain(D(1,n)) # ## Main computation steptree = StepTree() for i in 1:10 initial_state!(steptree, D(i,n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) end # ## Helper functions to export svg images function create_bezierpath(C::BSplineManifold{1,(3,),Point}) P = bsplinespaces(C)[1] k = knotvector(P) k′ = 3*unique(k) + k[[1,end]] P′ = BSplineSpace{3}(k′) C′ = refinement(C,P′) a′ = controlpoints(C′) n′ = dim(P′) m = (n′-1) ÷ 3 bezierpath = BezierPath([BezierPathSegment(a′[3i-2], a′[3i-1], a′[3i], a′[3i+1]) for i in 1:m]) return bezierpath end function svector2point(M::BSplineManifold, unitlength) P = bsplinespaces(M) a = controlpoints(M) a′ = [Point(p[1]*unitlength[1], -p[2]*unitlength[1]) for p in a] M′ = BSplineManifold(a′, P) return M′ end # ## Settings for export xlims=(-3,3) ylims=(-1,1) unitlength = (200, "mm") r = 0.025 # ## Export all embedded shapes with arcs mkpath("stereographicprojection") for i in 1:10 M = svector2point(steptree.steps[6i].manifold, unitlength) D¹ = domain(bsplinespaces(M)[1]) D² = domain(bsplinespaces(M)[2]) u¹s = range(extrema(D¹)...,21)[2:end-1] u²₋ = minimum(D²) u²₊ = maximum(D²) width = (xlims[2] - xlims[1]) * unitlength[1] height = (ylims[2] - ylims[1]) * unitlength[1] filepath = joinpath("stereographicprojection", "embedding-$(i).svg") Drawing(width, height, filepath) origin() background("white") sethue("red") C = M(:,u²₋) path = create_bezierpath(C) drawbezierpath(path, :stroke) C = M(:,u²₊) path = create_bezierpath(C) drawbezierpath(path, :stroke) C = M(2,:) path = create_bezierpath(C) drawbezierpath(path, :stroke) C = M(-2,:) path = create_bezierpath(C) drawbezierpath(path, :stroke) for u¹ in u¹s k = KnotVector([0,0,0,0,0.25,0.5,0.75,1,1,1,1]) P = BSplineSpace{3}(k) dim(P) a = fittingcontrolpoints(t -> M(u¹+r*cospi(t), u²₋+r*sinpi(t)), P) C = BSplineManifold(a,P) path = create_bezierpath(C) drawbezierpath(path, :stroke) a = fittingcontrolpoints(t -> M(u¹+r*cospi(t), u²₊-r*sinpi(t)), P) C = BSplineManifold(a,P) path = create_bezierpath(C) drawbezierpath(path, :stroke) end finish() preview() script = read(filepath, String) lines = split(script, "\n") lines[2] = replace(lines[2],"pt\""=>"mm\"") write(filepath, join(lines,"\n")) end # The output files will be saved as `embedding-$(i).svg`. # By modifying these files, we can place all of the shapes in yatsugiri-size (八ツ切, approximately 270×390 mm) paper like this: # ![](../assets/sgp4.svg) # Cutting and weaving these shape will result the sphere in the top image. # Please check the following references for more information. # # References # * [紙工作で立体射影をつくった話](https://note.com/hyrodium/n/n7b7cf03a7d91) # * [立体射影製作キット](https://hackmd.io/@hyrodium/HJsIPNKqo) # * [Stereographic projection weaving kit](https://hackmd.io/@hyrodium/H1epn1rRj) # * [Further adventures in stereographic projection](https://www.youtube.com/watch?v=lbUOScpu0ws)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
950
module ElasticSurfaceEmbedding using LinearAlgebra using Printf using Dates import Statistics.mean using ImageShow using IntervalSets using StaticArrays import FileIO.load import FileIO.save using OffsetArrays using ForwardDiff using FastGaussQuadrature using Colors using Luxor import ColorBlendModes using BasicBSpline using BasicBSplineFitting using BasicBSplineExporter # Tree structure export StepTree # Numerical computing export initial_state, initial_state! export newton_onestep! export refinement! # Pin export pin!, unpin! # Exports export export_all_steps, export_pinned_steps # utilities export show_strain, show_knotvector, suggest_knotvector # auto export auto_allsteps, auto_allsteps! include("_constants.jl") include("_graphics.jl") include("_bspline.jl") include("_geometry.jl") include("_elasticity.jl") include("_io.jl") include("_initialstates.jl") include("_newton.jl") include("_pin.jl") include("_auto.jl") end # module
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
770
function auto_allsteps(D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}) auto_allsteps!(StepTree(), D) end function auto_allsteps(Ds::Vector{<:Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}}) steptree = StepTree() for D in Ds auto_allsteps!(steptree, D) end return steptree end function auto_allsteps!(steptree::StepTree, D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}) _, D₂ = D steptree = initial_state!(steptree, D) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=suggest_knotvector(steptree)) newton_onestep!(steptree) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) return steptree end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
5411
function _arrayofvector2array(a::AbstractArray{SVector{2,Float64},2}) n1, n2 = size(a) a_2dim = [a[i1, i2][j] for i1 in 1:n1, i2 in 1:n2, j in 1:2] return a_2dim end function _array2arrayofvector(a::Array{<:Real,3}) n1, n2 = size(a) a_vec = [SVector{2}(a[i1, i2, :]) for i1 in 1:n1, i2 in 1:n2] return a_vec end """ Affine transform of control points. """ function _affine(𝒂::Matrix{<:SVector}, A::SMatrix{2,2}, b::SVector{2}) # x'=Ax+b n₁, n₂ = size(𝒂) return [(A * 𝒂[I₁, I₂] + b) for I₁ in 1:n₁, I₂ in 1:n₂] end function _rotate(𝒂::Matrix{<:SVector}) n₁, n₂ = size(𝒂) ind0 = [(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2] ind1 = ind0 - [0, 1] v = 𝒂[ind1...] - 𝒂[ind0...] R = -(@SMatrix [v[2] -v[1]; v[1] v[2]]) / norm(v) return _affine(𝒂, R, SVector(0.0, 0.0)) end function _center(𝒂::Matrix{<:SVector}) xs = [p[1] for p in 𝒂] ys = [p[2] for p in 𝒂] x_min = minimum(xs) x_max = maximum(xs) y_min = minimum(ys) y_max = maximum(ys) x = (x_min + x_max) / 2 y = (y_min + y_max) / 2 return _affine(𝒂, one(SMatrix{2,2}), -SVector(x, y)) end function _positioning(𝒂::Matrix{<:SVector}) return _center(_rotate(𝒂)) end function _positioning(M::BSplineManifold{2}) Ps = bsplinespaces(M) 𝒂 = controlpoints(M) 𝒂′ = _positioning(𝒂) return BSplineManifold(𝒂′, Ps) end """ refinement!(steptree; p₊::Tuple{Int,Int}=(0, 0), k₊::Tuple{AbstractKnotVector,AbstractKnotVector}=(EmptyKnotVector(),EmptyKnotVector()), parent::Int=0) Compute a refinement of the B-spline manifold """ function refinement!(steptree, parent::Int = 0; p₊ = (0, 0), k₊ = (EmptyKnotVector(), EmptyKnotVector())) parent = _validindex(steptree, parent) M = loadM(steptree, index = parent) P₁, P₂ = bsplinespaces(M) k₁, k₂ = knotvector(P₁), knotvector(P₂) p₊₁, p₊₂ = p₊ k₊₁, k₊₂ = k₊ if !iszero(k₊₁) && !(k₁[1] < k₊₁[1] && k₊₁[end] < k₁[end]) error("given additional knots for refinement are out of range") end if !iszero(k₊₂) && !(k₂[1] < k₊₂[1] && k₊₂[end] < k₂[end]) error("given additional knots for refinement are out of range") end comment = "Refinement - p₊:$((p₊₁, p₊₂)), k₊:$((BasicBSpline._vec(k₊₁), BasicBSpline._vec(k₊₂)))" comment = replace(comment, "Float64" => "") M = refinement_I(M, (Val(p₊₁), Val(p₊₂)), (k₊₁, k₊₂)) info = Dict(["type" => "refinement"]) step = Step(M, comment, info) addstep!(steptree, step, parent) end function suggest_knotvector(steptree; index=0) M = loadM(steptree, index = index) P = bsplinespaces(M) k₁, k₂ = knotvector.(P) k₁′ = unique(k₁) k₂′ = unique(k₂) k₁₊ = KnotVector([(k₁′[i] + k₁′[i+1]) / 2 for i in 1:(length(k₁′)-1)]) k₂₊ = KnotVector([(k₂′[i] + k₂′[i+1]) / 2 for i in 1:(length(k₂′)-1)]) return k₁₊, k₂₊ end """ show_knotvector(; index=0) Show current knotvector and suggestions for knot insertions (with given index). """ function show_knotvector(steptree; index = 0) M = loadM(steptree, index = index) P = bsplinespaces(M) k₁, k₂ = knotvector.(P) k₁₊, k₂₊ = suggest_knotvector(steptree, index=index) msg = """ Current knotvectors (k₁, k₂) and suggestions for knot insertions (k₁₊, k₂₊) k₁: , $(BasicBSpline._vec(k₁)) k₂: , $(BasicBSpline._vec(k₂)) k₁₊: , $(BasicBSpline._vec(k₁₊)) k₂₊: , $(BasicBSpline._vec(k₂₊)) """ @info msg return end function integrate(C::BSplineManifold{1}) a = controlpoints(C) P = bsplinespaces(C)[1] p = degree(P) k = knotvector(P) k′ = k + k[[begin, end]] p′ = p+1 P′ = BSplineSpace{p′}(k′) A = [ifelse(i≤j, 0.0, (k′[p′+j+1]-k′[j+1])/(p′)) for i in 1:dim(P′), j in 1:dim(P)] return BSplineManifold(A*a, P′) end function _interpolate2(ts::AbstractVector{<:Real}, fs::AbstractVector{T}, f′0::T) where T # Quadric open B-spline space p = 2 k = KnotVector(ts) + KnotVector([ts[1],ts[end]]) * p P = BSplineSpace{p}(k) # dimensions m = length(ts) n = dim(P) # The interpolant function has a f''=0 property at bounds. dP = BSplineDerivativeSpace{1}(P) d0 = [bsplinebasis(dP,j,ts[1]) for j in 1:n] # Compute the interpolant function (1-dim B-spline manifold) M = [bsplinebasis(P,j,ts[i]) for i in 1:m, j in 1:n] M = vcat(d0', M) y = vcat([f′0], fs) return BSplineManifold(inv(M)*y, P) end function _merge(manifolds::Vector{<:BSplineManifold{2, p}}) where p # Assume all B-spline manifolds have open knot vectors. p₁, p₂ = p k₁ = copy(knotvector(bsplinespaces(manifolds[1])[1])) k₂ = knotvector(bsplinespaces(manifolds[1])[2]) for i in 2:length(manifolds) pop!(k₁.vector) k₁ += knotvector(bsplinespaces(manifolds[i])[1])[p₁+2:end] end P₁ = BSplineSpace{p₁}(k₁) P₂ = BSplineSpace{p₂}(k₂) 𝒂 = controlpoints(manifolds[1]) for i in 2:length(manifolds) _𝒂 = controlpoints(manifolds[i]) v = 𝒂[end,:] _v = _𝒂[1,:] Δ = v[end] - v[1] _Δ = _v[end] - _v[1] a = dot(Δ, _Δ) b = cross(Δ, _Δ) r = (@SMatrix [a b;-b a]) / norm([a,b]) _w = [r*p for p in _v] c = sum(v)/length(v) _c = sum(_w)/length(_w) _𝒂 = [r*p-_c+c for p in _𝒂] 𝒂 = vcat(𝒂[1:end-1, :], (𝒂[end:end, :]+_𝒂[1:1, :])/2, _𝒂[2:end, :]) end return BSplineManifold(𝒂, P₁, P₂) end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
202
const d = 2 # Dimension of surface const 𝝂 = 0.25 # Poisson's Ratio const Y = 1.0 # Young Modulus const 𝝀 = 𝝂 * Y / ((1 + 𝝂) * (1 - (d - 1) * 𝝂)) # Lamé constant const 𝝁 = 1 / 2(1 + 𝝂) # Lamé constant
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
3101
# Strain related functions E(M, u¹, u²) = (g₍ₜ₎(M, u¹, u²) - g₍₀₎(u¹, u²)) / 2 E₁₁(M::BSplineManifold{2}, u¹, u²) = (g₍ₜ₎₁₁(M, u¹, u²) - g₍₀₎₁₁(u¹, u²)) / 2 E⁽⁰⁾₁₁(M::BSplineManifold{2}, u¹, u²) = E₁₁(M, u¹, u²) / g₍₀₎₁₁(u¹, u²) function Ẽ⁽⁰⁾₁₁(D₂::ClosedInterval, u¹, u²) # Breadth of the strip-like shape b = width(D₂) / 2 # Center coordinate of u² c = sum(extrema(D₂)) / 2 # Normalized coordinate of u² r = (u² - c) / b # Compute the predicted strain with the Strain Approximation Theorem return (1 / 2) * K₍₀₎(u¹, D₂) * B̃(u¹, D₂)^2 * (r^2 - 1 / 3) end function Ẽ⁽⁰⁾₁₁(M::BSplineManifold{2}, u¹, u²) _, P₂ = bsplinespaces(M) p₂ = degree(P₂) k₂ = knotvector(P₂) D₂ = k₂[1+p₂] .. k₂[end-p₂] return Ẽ⁽⁰⁾₁₁(D₂, u¹, u²) end function _compute_minmax_strain(M) P = bsplinespaces(M) D₁, D₂ = domain.(P) mesh = (500, 50) # TODO κ₁ = range(leftendpoint(D₁) + 1e-8, stop = rightendpoint(D₁) - 1e-8, length = mesh[1] + 1) κ₂ = range(leftendpoint(D₂) + 1e-8, stop = rightendpoint(D₂) - 1e-8, length = mesh[2] + 1) E = [E⁽⁰⁾₁₁(M, u₁, u₂) for u₁ in κ₁, u₂ in κ₂] return (minimum(E), maximum(E)) end function _predict_minmax_strain(D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}) D₁, D₂ = D mesh = (500, 50) # TODO κ₁ = range(leftendpoint(D₁), stop = rightendpoint(D₁), length = mesh[1] + 1) κ₂ = range(leftendpoint(D₂), stop = rightendpoint(D₂), length = mesh[2] + 1) E = [Ẽ⁽⁰⁾₁₁(D₂, u₁, u₂) for u₁ in κ₁, u₂ in κ₂] return (minimum(E), maximum(E)) end """ show_strain(D; index=0) Show the predicted maximum strain and, if possible, also the computed strain with the given index. """ function show_strain(D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}; index = 0) minE, maxE = _predict_minmax_strain(D) D₁, D₂ = D msg = "Strain - domain: " * repr([endpoints(D₁)...]) * "×" * repr([endpoints(D₂)...]) * "\n" msg *= "Predicted: (min: $(minE), max: $(maxE))\n" # if isTheShapeComputed() # M = loadM(index=index) # minE, maxE = _compute_minmax_strain(M) # msg *= "Computed: (min: $(minE), max: $(maxE))\n" # end @info msg return end """ show_strain(domains; index=0) Show the predicted maximum strain and, if possible, also the computed strain with the given index. """ function show_strain(domains::Vector{<:Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}}; index = 0) msg = "" for domain in domains minE, maxE = _predict_minmax_strain(domain) D₁, D₂ = domain msg *= "Strain - domain: " * repr([endpoints(D₁)...]) * "×" * repr([endpoints(D₂)...]) * "\n" msg *= " Predicted: (min: $(minE), max: $(maxE))\n" end # if isTheShapeComputed() # M = loadM(index=index) # minE, maxE = _compute_minmax_strain(M) # msg *= "Computed: (min: $(minE), max: $(maxE))\n" # end @info msg return end # Elastic Modulus function C(i, j, k, l, g⁻) 𝝀 * g⁻[i, j] * g⁻[k, l] + 𝝁 * (g⁻[i, k] * g⁻[j, l] + g⁻[i, l] * g⁻[j, k]) end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
3146
## Reference State # Parametric mapping of Reference state 𝒑₍₀₎(u¹, u²) = SVector(u¹, u², 0) # alias to avoid non-standard unicode characters const surface = 𝒑₍₀₎ # Tangent vector 𝒑₁₍₀₎(u¹, u²) = ForwardDiff.derivative(u¹ -> 𝒑₍₀₎(u¹, u²), u¹) 𝒑₂₍₀₎(u¹, u²) = ForwardDiff.derivative(u² -> 𝒑₍₀₎(u¹, u²), u²) 𝒑₁₁₍₀₎(u¹, u²) = ForwardDiff.derivative(u¹ -> 𝒑₁₍₀₎(u¹, u²), u¹) 𝒑₁₂₍₀₎(u¹, u²) = ForwardDiff.derivative(u² -> 𝒑₁₍₀₎(u¹, u²), u²) 𝒑₂₁₍₀₎(u¹, u²) = ForwardDiff.derivative(u¹ -> 𝒑₂₍₀₎(u¹, u²), u¹) 𝒑₂₂₍₀₎(u¹, u²) = ForwardDiff.derivative(u² -> 𝒑₂₍₀₎(u¹, u²), u²) # Normal vector 𝒆₍₀₎(u¹, u²) = normalize(cross(𝒑₁₍₀₎(u¹, u²), 𝒑₂₍₀₎(u¹, u²))) # Riemannian metrix g₍₀₎₁₁(u¹, u²) = dot(𝒑₁₍₀₎(u¹, u²), 𝒑₁₍₀₎(u¹, u²)) g₍₀₎₁₂(u¹, u²) = dot(𝒑₁₍₀₎(u¹, u²), 𝒑₂₍₀₎(u¹, u²)) g₍₀₎₂₁(u¹, u²) = dot(𝒑₂₍₀₎(u¹, u²), 𝒑₁₍₀₎(u¹, u²)) g₍₀₎₂₂(u¹, u²) = dot(𝒑₂₍₀₎(u¹, u²), 𝒑₂₍₀₎(u¹, u²)) g₍₀₎(u¹, u²) = @SMatrix [g₍₀₎₁₁(u¹, u²) g₍₀₎₁₂(u¹, u²); g₍₀₎₂₁(u¹, u²) g₍₀₎₂₂(u¹, u²)] h₍₀₎(u¹, u²) = @SMatrix [ (𝒆₍₀₎(u¹, u²)'*𝒑₁₁₍₀₎(u¹, u²)) (𝒆₍₀₎(u¹, u²)'*𝒑₁₂₍₀₎(u¹, u²)) (𝒆₍₀₎(u¹, u²)'*𝒑₂₁₍₀₎(u¹, u²)) (𝒆₍₀₎(u¹, u²)'*𝒑₂₂₍₀₎(u¹, u²)) ] # Gaussian curvature K₍₀₎(u¹, u²) = det(h₍₀₎(u¹, u²)) / det(g₍₀₎(u¹, u²)) # Volume form 𝝊₍₀₎(u¹, u²) = norm(cross(𝒑₁₍₀₎(u¹, u²), 𝒑₂₍₀₎(u¹, u²))) g⁻₍₀₎(u¹, u²) = inv(g₍₀₎(u¹, u²)) # 第1基本量の逆 g₁₍₀₎(u¹, u²) = ForwardDiff.derivative(u¹ -> g₍₀₎(u¹, u²), u¹) g₂₍₀₎(u¹, u²) = ForwardDiff.derivative(u² -> g₍₀₎(u¹, u²), u²) # Christoffel symbol 𝛤₍₀₎²₁₁(u¹, u²) = (g⁻₍₀₎(u¹, u²)[2, 1] * g₁₍₀₎(u¹, u²)[1, 1] + g⁻₍₀₎(u¹, u²)[2, 2] * (2g₁₍₀₎(u¹, u²)[2, 1] - g₂₍₀₎(u¹, u²)[1, 1])) / 2 e⁽⁰⁾₁(u¹, u²) = normalize(𝒑₁₍₀₎(u¹, u²)) e⁽⁰⁾₂(u¹, u²) = normalize(𝒑₂₍₀₎(u¹, u²) - (g₍₀₎₁₂(u¹, u²) / g₍₀₎₁₁(u¹, u²)) * 𝒑₁₍₀₎(u¹, u²)) c(D₂::ClosedInterval) = sum(extrema(D₂)) / 2 # Coordinate on the center curve s₍₀₎(t, D₂::ClosedInterval) = sqrt(g₍₀₎₁₁(t, c(D₂))) ṡ₍₀₎(t, D₂::ClosedInterval) = (1 / 2) * (g₁₍₀₎(t, c(D₂)))[1, 1] / sqrt(g₍₀₎₁₁(t, c(D₂))) 𝜅₍₀₎(t, D₂::ClosedInterval) = 𝛤₍₀₎²₁₁(t, c(D₂)) * 𝝊₍₀₎(t, c(D₂)) / s₍₀₎(t, D₂)^3 # Geodesic curvature K₍₀₎(t, D₂::ClosedInterval) = K₍₀₎(t, c(D₂)) # Gaussian curvature B̃(t, D₂::ClosedInterval) = dot(e⁽⁰⁾₂(t, c(D₂)), 𝒑₂₍₀₎(t, c(D₂))) * width(D₂) / 2 # Breadth of the piece of surface g₍₀₎₁₁(u¹, D₂::ClosedInterval) = g₍₀₎₁₁(u¹, c(D₂)) g₍₀₎₁₂(u¹, D₂::ClosedInterval) = g₍₀₎₁₂(u¹, c(D₂)) g₍₀₎₂₁(u¹, D₂::ClosedInterval) = g₍₀₎₂₁(u¹, c(D₂)) g₍₀₎₂₂(u¹, D₂::ClosedInterval) = g₍₀₎₂₂(u¹, c(D₂)) 𝝊₍₀₎(u¹, D₂::ClosedInterval) = 𝝊₍₀₎(u¹, c(D₂)) # Current State 𝒑₍ₜ₎(M, u¹, u²) = unbounded_mapping(M, u¹, u²) # This can be faster with BSplineDerivativeSpace, but we don't need speed here. 𝒑₁₍ₜ₎(M, u¹, u²) = ForwardDiff.derivative(u¹ -> 𝒑₍ₜ₎(M, u¹, u²), u¹) 𝒑₂₍ₜ₎(M, u¹, u²) = ForwardDiff.derivative(u² -> 𝒑₍ₜ₎(M, u¹, u²), u²) g₍ₜ₎₁₁(M, u¹, u²) = dot(𝒑₁₍ₜ₎(M, u¹, u²), 𝒑₁₍ₜ₎(M, u¹, u²)) # 第1基本量 g₍ₜ₎₁₂(M, u¹, u²) = dot(𝒑₁₍ₜ₎(M, u¹, u²), 𝒑₂₍ₜ₎(M, u¹, u²)) # 第1基本量 g₍ₜ₎₂₁(M, u¹, u²) = dot(𝒑₂₍ₜ₎(M, u¹, u²), 𝒑₁₍ₜ₎(M, u¹, u²)) # 第1基本量 g₍ₜ₎₂₂(M, u¹, u²) = dot(𝒑₂₍ₜ₎(M, u¹, u²), 𝒑₂₍ₜ₎(M, u¹, u²)) # 第1基本量 g₍ₜ₎(M, u¹, u²) = @SMatrix [g₍ₜ₎₁₁(M, u¹, u²) g₍ₜ₎₁₂(M, u¹, u²); g₍ₜ₎₂₁(M, u¹, u²) g₍ₜ₎₂₂(M, u¹, u²)]
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
1875
# Luxor related function _changeunit(path_svg, units::Pair{String,String}) old_unit, new_unit = units acceptable_units = ("px", "in", "pt", "pc", "cm", "mm") if !(new_unit in acceptable_units) error("The unit $(new_unit) is not supported in SVG format.") end script = read(path_svg, String) lines = split(script, "\n") lines[2] = replace(lines[2], "$(old_unit)\"" => "$(new_unit)\"") write(path_svg, join(lines, "\n")) end function _colorbar(; max = 1.000, filename = "ColorBar.png", width = 100) up = 4 down = -4 right = 4.6 right = 6.2 left = -2 Length = 3.5 FontSize = 0.85 unit = width / (right - left) Thickness = unit / 10 Drawing(round(width), round((up - down) * unit), filename) Luxor.origin(-left * unit, up * unit) setblend(Luxor.blend(Point(0, -Length * unit), Point(0, Length * unit), "red", "cyan")) box(BasicBSplineExporter._luxor_pt([-0.9, 0], unit), 1.8 * unit, 7 * unit, :fill) sethue("Black") fontface("JuliaMono") fontsize(unit * FontSize) setline(Thickness) setlinecap("round") text(" " * @sprintf("%.6f", max), BasicBSplineExporter._luxor_pt([1.4, Length - 0.28 * FontSize], unit)) text(" " * @sprintf("%.6f", 0), BasicBSplineExporter._luxor_pt([1.4, -0.28 * FontSize], unit)) text("-" * @sprintf("%.6f", max), BasicBSplineExporter._luxor_pt([1.4, -Length - 0.28 * FontSize], unit)) line(BasicBSplineExporter._luxor_pt([0.5, 0], unit), BasicBSplineExporter._luxor_pt([1.2, 0], unit), :stroke) line( BasicBSplineExporter._luxor_pt([0.5, -Length], unit), BasicBSplineExporter._luxor_pt([1.2, -Length], unit), :stroke, ) line( BasicBSplineExporter._luxor_pt([0.5, Length], unit), BasicBSplineExporter._luxor_pt([1.2, Length], unit), :stroke, ) finish() end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
5067
""" initial_state(D) Compute the initial state, by solving a ODE of center curve. """ function initial_state(D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}, splitat=Float64[]) D₁, D₂ = D M = _positioning(_initialize(D₁, D₂, splitat)) comment = "Initial state - domain: " * repr([endpoints(D₁)...]) * "×" * repr([endpoints(D₂)...]) info = Dict(["type" => "initial"]) step = Step(M, comment, info) steptree = StepTree() addstep!(steptree, step, 0) end """ initial_state!(steptree, D) Compute the initial state, by solving a ODE of center curve. """ function initial_state!(steptree, D::Tuple{ClosedInterval{<:Real}, ClosedInterval{<:Real}}, splitat=Float64[]) D₁, D₂ = D M = _positioning(_initialize(D₁, D₂, splitat)) comment = "Initial state - domain: " * repr([endpoints(D₁)...]) * "×" * repr([endpoints(D₂)...]) info = Dict(["type" => "initial"]) step = Step(M, comment, info) addstep!(steptree, step, 0) end # Coefficient matrix of the center-curve ODE A(t, D₂) = @SMatrix [ ṡ₍₀₎(t, D₂)/s₍₀₎(t, D₂) -𝜅₍₀₎(t, D₂)*s₍₀₎(t, D₂) 𝜅₍₀₎(t, D₂)*s₍₀₎(t, D₂) ṡ₍₀₎(t, D₂)/s₍₀₎(t, D₂) ] ω(t, D₂) = abs(s₍₀₎(t, D₂))/2B̃(t, D₂) function _divide_D₁(D₁::ClosedInterval{<:Real}, D₂::ClosedInterval{<:Real}) t₋ = minimum(D₁) t₊ = maximum(D₁) nodes, weights = gausslegendre(10) t2 = Float64(t₋) ts = [t2] Ls = Float64[] while true t1 = t2 t2 = t1+1/ω(t1, D₂) for _ in 1:10 nodes_shifted = t1 .+ (nodes .+ 1) ./ 2 .* (t2-t1) L12 = dot(ω.(nodes_shifted, Ref(D₂)), weights)*(t2-t1)/2 t2 += (1-L12)/ω(t2, D₂) end if t2 < t₊ push!(ts, t2) push!(Ls, L12) elseif iseven(length(ts)) t2 = t₊ nodes_shifted = t1 .+ (nodes .+ 1) ./ 2 .* (t2-t1) L12 = dot(ω.(nodes_shifted, Ref(D₂)), weights)*(t2-t1)/2 push!(ts, t2) push!(Ls, L12) break else t2 = (t2+t₊)/2 nodes_shifted = t1 .+ (nodes .+ 1) ./ 2 .* (t2-t1) L12 = dot(ω.(nodes_shifted, Ref(D₂)), weights)*(t2-t1)/2 push!(ts, t2) push!(Ls, L12) t2 = t₊ nodes_shifted = t1 .+ (nodes .+ 1) ./ 2 .* (t2-t1) L12 = dot(ω.(nodes_shifted, Ref(D₂)), weights)*(t2-t1)/2 push!(ts, t2) push!(Ls, L12) break end end l = length(ts) for _ in 1:10 L̄ = mean(Ls) for i in 2:l-1 ΔL = sum(Ls[1:i-1]) - L̄*(i-1) ts[i] -= ΔL / ω(ts[i], D₂) end for i in 1:l-1 t1 = ts[i] t2 = ts[i+1] nodes_shifted = t1 .+ (nodes .+ 1) ./ 2 .* (t2-t1) L12 = dot(ω.(nodes_shifted, Ref(D₂)), weights)*(t2-t1)/2 Ls[i] = L12 end end return ts end function _initialize(D₁, D₂) # Definitions for the center curve # 1e-14 is ad-hoc number to avoid non-smooth singularity on the boundary. t₋ = minimum(D₁) + 1e-14 t₊ = maximum(D₁) - 1e-14 # Number of divisions for ODE N = 100 # Initial condition for ODE 𝒄̇₀ = SVector(s₍₀₎(t₋, D₂), 0.0) # Solve ODE 𝒄̈₍ₛ₎(t) = A(t)𝒄̇₍ₛ₎(t) with Runge-Kutta method (and interpolation) Δt = (t₊ - t₋) / N ts = range(t₋, stop = t₊, length = N + 1) 𝒄̇₍ₛ₎s = zeros(SVector{2,Float64}, N + 1) 𝒄̇₍ₛ₎s[1] = 𝒄̇₀ for i in 1:N t = ts[i] 𝒄̇ = 𝒄̇₍ₛ₎s[i] k1 = A(t, D₂) * 𝒄̇ k2 = A(t + Δt / 2, D₂) * (𝒄̇ + k1 * Δt / 2) k3 = A(t + Δt / 2, D₂) * (𝒄̇ + k2 * Δt / 2) k4 = A(t + Δt, D₂) * (𝒄̇ + k3 * Δt) Δ𝒄̇₀ = Δt * (k1 + 2k2 + 2k3 + k4) / 6 𝒄̇₍ₛ₎s[i+1] = 𝒄̇ + Δ𝒄̇₀ end 𝒄̇₍ₛ₎ = _interpolate2(ts, 𝒄̇₍ₛ₎s, A(t₋, D₂)*𝒄̇₀) # Integrate 𝒄̇₍ₛ₎ and obtain the center-curve 𝒄₍ₛ₎ 𝒄₍ₛ₎(t) = unbounded_mapping(integrate(𝒄̇₍ₛ₎), t) # Construct initial state M₍ₛ₎ 𝒒₍ₛ₎₁(t) = unbounded_mapping(𝒄̇₍ₛ₎, t) 𝒒₍ₛ₎₂(t) = (@SMatrix [g₍₀₎₁₂(t, D₂) -𝝊₍₀₎(t, D₂); 𝝊₍₀₎(t, D₂) g₍₀₎₁₂(t, D₂)]) * 𝒒₍ₛ₎₁(t) / g₍₀₎₁₁(t, D₂) p₁ = 3 p₂ = 1 k₁ = KnotVector(_divide_D₁(D₁, D₂)) + p₁ * KnotVector([extrema(D₁)...]) k₂ = KnotVector(repeat(collect(extrema(D₂)), inner = 2)) P₁ = BSplineSpace{p₁}(k₁) P₂ = BSplineSpace{p₂}(k₂) # Approximate 𝒄 with B-spline curve 𝒓 = fittingcontrolpoints(𝒒₍ₛ₎₂, P₁) 𝒎 = fittingcontrolpoints(𝒄₍ₛ₎, P₁) b = width(D₂) / 2 𝒂 = hcat(𝒎 - b * 𝒓, 𝒎 + b * 𝒓) # c = (t₋+t₊)/2 # 𝒑₍ₛ₎(u¹, u²) = 𝒄₍ₛ₎(u¹) + (u²-c)*𝒒₍ₛ₎₂(u¹) # 𝒂 = fittingcontrolpoints(𝒑₍ₛ₎, P₁, P₂) M = BSplineManifold(𝒂, (P₁, P₂)) M′ = refinement(M, (Val(0), Val(1))) return M′ end function _initialize(D₁, D₂, splitat) _splitat = unique!(sort!(vcat([u¹ for u¹ in splitat if u¹ in OpenInterval(D₁)], extrema(D₁)...))) intervals = [_splitat[i].._splitat[i+1] for i in 1:length(_splitat)-1] manifolds = [_initialize(interval, D₂) for interval in intervals] M = _merge(manifolds) return M end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
8169
mutable struct Step{T<:BSplineManifold{2}} manifold::T comment::String info::Dict function Step(manifold::BSplineManifold{2}, comment, info) new{typeof(manifold)}(manifold, comment, info) end end struct StepTree steps::Vector{Step} parents::Vector{Int} pinned::Vector{Bool} function StepTree() new(Vector{Step}(), Vector{Int}(), Vector{Bool}()) end end function addstep!(steptree::StepTree, step::Step, parent::Int) push!(steptree.steps, step) push!(steptree.parents, parent) push!(steptree.pinned, false) return steptree end function parent_id(steptree, id) steptree.parents[id] end function nodeseries(steptree, i) series = [i] while i ≠ 0 i = parent_id(steptree, i) pushfirst!(series, i) end return series end function _tree_as_string(steptree::StepTree) n = length(steptree.steps) serieses = [nodeseries(steptree, i) for i in 1:n] sort!(serieses) lowstrings = String[] for i in 1:n l = length(serieses[i]) key = serieses[i][end] step = steptree.steps[key] pinned = steptree.pinned[key] comment = "📌 "^pinned * step.comment if l == 2 lowstring = "$(key): " * comment push!(lowstrings, lowstring) elseif l ≥ 3 lowstring = " "^(l - 3) * "└─$(key): " * comment push!(lowstrings, lowstring) for j in 1:(i-1) chars = collect(lowstrings[end-j]) if chars[2(l-3)+1] == ' ' lowstrings[end-j] = join(chars[1:2(l-3)]) * "│" * join(chars[2(l-3)+2:end]) elseif chars[2(l-3)+1] == '└' lowstrings[end-j] = join(chars[1:2(l-3)]) * "├" * join(chars[2(l-3)+2:end]) break else break end end end end outsting = "" for s in lowstrings outsting = outsting * s * "\n" end return outsting end function Base.show(io::IO, steptree::StepTree) print(io, _tree_as_string(steptree)) end function _validindex(steptree, index::Int) if index == 0 return length(steptree.steps) else return index end end function loadM(steptree; index = 0) if index == 0 index = length(steptree.steps) end M = steptree.steps[index].manifold return M end function export_all_steps( dir, steptree::StepTree; maximumstrain = 0, xlims = (-2, 2), ylims = (-2, 2), mesh = (20, 1), unitlength::Tuple{<:Real,<:AbstractString} = (50, "mm"), colorbarsize = 0.3, ) mkpath(dir) for i in eachindex(steptree.steps) M = steptree.steps[i].manifold export_one_step( dir, M, i, maximumstrain = maximumstrain, xlims = xlims, ylims = ylims, mesh = mesh, unitlength = unitlength, colorbarsize = colorbarsize, ) end export_pinned_steps(dir, steptree, xlims = xlims, ylims = ylims, mesh = mesh, unitlength = unitlength) write(joinpath(dir, "log.txt"), _tree_as_string(steptree)) end function export_one_step( dir, M::BSplineManifold{2}, index::Integer; maximumstrain = 0, xlims = nothing, ylims = nothing, mesh = (20, 1), unitlength::Tuple{<:Real,<:AbstractString} = (100, "mm"), colorbarsize = 0.3, ) if isnothing(xlims) xs = [p[1] for p in controlpoints(M)] xlims = floor(Int, minimum(xs))-1, ceil(Int, maximum(xs))+1 end if isnothing(ylims) ys = [p[1] for p in controlpoints(M)] ylims = floor(Int, minimum(ys))-1, ceil(Int, maximum(ys))+1 end if maximumstrain ≤ 0 MS = _compute_minmax_strain(M) maximumstrain = max(-MS[1], MS[2]) end aa = 5 # magnification parameter for antialias width = (xlims[2] - xlims[1]) * unitlength[1] normalized_strain(u¹, u²) = E⁽⁰⁾₁₁(M, u¹, u²) / maximumstrain # bounded in -1 to 1 mkpath(joinpath(dir, "bspline")) mkpath(joinpath(dir, "strain")) mkpath(joinpath(dir, "colorbar")) mkpath(joinpath(dir, "combined")) path_svg_bspline = joinpath(dir, "bspline", "bspline-$(index).svg") path_png_bspline = joinpath(dir, "bspline", "bspline-$(index).png") path_png_strain = joinpath(dir, "strain", "strain-$(index).png") path_png_colorbar = joinpath(dir, "colorbar", "colorbar-$(index).png") path_png_combined = joinpath(dir, "combined", "combined-$(index).png") colorfunc(u¹, u²) = normalized_strain(u¹, u²) * RGB(0.5, -0.5, -0.5) + RGB(0.5, 0.5, 0.5) # red to cyan save_svg(path_svg_bspline, M, xlims = xlims, ylims = ylims, mesh = mesh, unitlength = Int(unitlength[1])) save_png(path_png_bspline, M, xlims = xlims, ylims = ylims, mesh = mesh, unitlength = Int(unitlength[1])) save_png(path_png_strain, M, colorfunc, xlims = xlims, ylims = ylims, unitlength = Int(aa * unitlength[1])) _colorbar(max = maximumstrain, filename = path_png_colorbar, width = aa * colorbarsize * width) _changeunit(path_svg_bspline, "pt" => unitlength[2]) img_bspline = load(path_png_bspline) img_strain = load(path_png_strain) img_colorbar = load(path_png_colorbar) img_bspline = convert(Array{RGBA{Float64},2}, img_bspline) img_strain = convert(Array{RGBA{Float64},2}, img_strain) img_colorbar = convert(Array{RGBA{Float64},2}, img_colorbar) size_bspline = size(img_bspline) size_strain = size(img_strain) size_colorbar = size(img_colorbar) img_bspline_white_background = ColorBlendModes.blend.(RGB(1, 1, 1), img_bspline, op = ColorBlendModes.CompositeSourceOver) img_strain_white_background = ColorBlendModes.blend.(RGB(1, 1, 1), img_strain, op = ColorBlendModes.CompositeSourceOver) Δ = size_strain .- size_colorbar img_offset_colorbar = OffsetArray(img_colorbar, Δ...) img_strain_with_colorbar = copy(img_strain_white_background) img_strain_with_colorbar[axes(img_offset_colorbar)...] = ColorBlendModes.blend.( img_strain_with_colorbar[axes(img_offset_colorbar)...], img_offset_colorbar, op = ColorBlendModes.CompositeSourceOver, ) img_strain_with_colorbar = [RGB(mean(img_strain_with_colorbar[5i-4:5i, 5j-4:5j])) for i in 1:size_bspline[1], j in 1:size_bspline[2]] # img_strain_with_colorbar = imresize(img_strain_with_colorbar, (800,800)) # could be coded like this, but the previous one is better for anti-alias img_combined = hcat(img_bspline_white_background, img_strain_with_colorbar) save(path_png_combined, img_combined) end """ export_pinned_steps(; unitlength = (10, "mm"), cutout = (0.1, 5), mesh::Int = 60) Export all pinned steps for final output """ function export_pinned_steps( dir::AbstractString, steptree::StepTree; xlims = (-2, 2), ylims = (-2, 2), mesh = (20, 1), unitlength::Tuple{<:Real,<:AbstractString} = (50, "mm"), # cutout=(0.1, 5), ) dir_pinned = joinpath(dir, "pinned") # Delete current pinned directory rm(dir_pinned, recursive = true, force = true) # Make path to pinned directory mkpath(dir_pinned) pinned_steps = findall(steptree.pinned) paths_output = Vector{String}(undef, length(pinned_steps)) for (i, index) in enumerate(pinned_steps) M = loadM(steptree, index = index) path_svg = joinpath(dir_pinned, "pinned-$(index).svg") save_svg(path_svg, M, xlims = xlims, ylims = ylims, mesh = mesh, unitlength = unitlength[1], points = false) _changeunit(path_svg, "pt" => unitlength[2]) paths_output[i] = path_svg end return paths_output end function Base.show(io::IO, mime::MIME"image/png", steptree::StepTree) dir = mktempdir() index = length(steptree.steps) M = steptree.steps[index].manifold export_one_step(dir, M, index) img = RGB.(load(joinpath(dir, "combined", "combined-$(index).png"))) Base.show(io, mime, img) end Base.showable(::MIME"image/png", steptree::StepTree) = !iszero(length(steptree.steps))
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
11493
function _defaultorientation(n₁, n₂) return ([(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2, 1], [(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2, 2], [(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2 - 1, 1]) end function _fixthreepoints(n₁, n₂) return ( [1, (n₂ + 1) ÷ 2, 1], [1, (n₂ + 1) ÷ 2, 2], [(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2, 1], [(n₁ + 1) ÷ 2, (n₂ + 1) ÷ 2, 2], [n₁, (n₂ + 1) ÷ 2, 1], [n₁, (n₂ + 1) ÷ 2, 2], ) end function _fixfivepoints(n₁, n₂) mid1 = (n₁ + 1) ÷ 2 mid2 = (n₂ + 1) ÷ 2 Δ4 = (n₁ + 1) ÷ 4 return ( [1, mid2, 1], [1, mid2, 2], [mid1-Δ4, mid2, 1], [mid1-Δ4, mid2, 2], [mid1, mid2, 1], [mid1, mid2, 2], [mid1+Δ4, mid2, 1], [mid1+Δ4, mid2, 2], [n₁, mid2, 1], [n₁, mid2, 2], ) end _abbstr(t::Week) = string(t.value) * "w " _abbstr(t::Day) = string(t.value) * "d " _abbstr(t::Hour) = string(t.value) * "h " _abbstr(t::Minute) = string(t.value) * "m " _abbstr(t::Second) = string(t.value) * "s " _abbstr(t::Millisecond) = string(t.value) * "ms " _abbstr(t::Vector{Period}) = *(_abbstr.(t)...)[1:end-1] function _seconds2string(Δt::Float64) periods = Dates.canonicalize(Dates.CompoundPeriod(Dates.Millisecond(floor(1000Δt)))).periods if isempty(periods) return "0ms" else return _abbstr(periods) end end """ newton_onestep(steptree, parent::Int=0; fixingmethod=:default) Compute one step of Newton-Raphson method """ function newton_onestep!(steptree, parent::Int = 0; fixingmethod = :default) if fixingmethod == :default fixed = _defaultorientation elseif fixingmethod == :fix3points fixed = _fixthreepoints elseif fixingmethod == :fix5points fixed = _fixfivepoints else error("No method for $(fixingmethod). Use :default or :fix3points.") end parent = _validindex(steptree, parent) M = loadM(steptree, index = parent) n₁, n₂ = dim.(bsplinespaces(M)) iseven(n₁) && error("n₁ should be odd numbers") iseven(n₂) && error("n₂ should be odd numbers") M = _positioning(M) M, F, Ǧ, Δt = _newton(M, fixed) comment = "Newton onestep - residual norm: " * (@sprintf("%.4e", norm(F))) * ", Δa norm: " * (@sprintf("%.4e", norm(Ǧ))) * ", computation time: " * _seconds2string(Δt) info = Dict(["type" => "newton", "fixingmethod" => string(fixingmethod)]) step = Step(M, comment, info) addstep!(steptree, step, parent) end function _newton(M::BSplineManifold{2,p,<:SVector}, fix_method) where {p} 𝒂 = _arrayofvector2array(controlpoints(M)) P = bsplinespaces(M) n₁, n₂ = dim.(P) lineup(I₁, I₂, i) = (i - 1) * n₁ * n₂ + (I₂ - 1) * n₁ + (I₁ - 1) + 1 t₀ = time() H = _matrix_H(M) F = _vector_F(M) t₁ = time() N = 2n₁ * n₂ _fixed = sort(collect((i -> lineup(i...)).(fix_method(n₁, n₂)))) _unfixed = deleteat!(collect(1:N), _fixed) F = reshape(F, N) H = reshape(H, N, N) 𝒂 = 𝒂ₒ = reshape(𝒂, N) Ȟ = H[_unfixed, _unfixed] 𝒂̌ = 𝒂[_unfixed] F̌ = F[_unfixed] Ǧ = Ȟ \ F̌ 𝒂̌ = 𝒂̌ - Ǧ for i in _fixed insert!(𝒂̌, i, 𝒂ₒ[i]) end 𝒂 = reshape(𝒂̌, n₁, n₂, 2) M = BSplineManifold(_array2arrayofvector(𝒂), P) return M, F, Ǧ, t₁ - t₀ end function _matrix_H(M::BSplineManifold{2,p}) where {p} rrr = StaticArrays.SUnitRange{1,10}() 𝒂 = controlpoints(M) P₁, P₂ = P = bsplinespaces(M) p₁, p₂ = p k₁, k₂ = k = knotvector.(P) l₁, l₂ = length.(k) n₁, n₂ = dim.(P) H = zeros(n₁, n₂, 2, n₁, n₂, 2) _nodes, _weights = gausslegendre(10) nodes = SVector{10,Float64}(_nodes) weights = SVector{10,Float64}(_weights) nodes₁ = nodes nodes₂ = nodes weights₁ = weights weights₂ = weights for s₁ in 1:l₁-1, s₂ in 1:l₂-1 a₁ = k₁[s₁] b₁ = k₁[s₁+1] a₂ = k₂[s₂] b₂ = k₂[s₂+1] w₁ = b₁ - a₁ w₂ = b₂ - a₂ iszero(w₁) && continue iszero(w₂) && continue dnodes₁ = (w₁ * nodes₁ .+ (a₁ + b₁)) / 2 dnodes₂ = (w₂ * nodes₂ .+ (a₂ + b₂)) / 2 for ii1 in rrr, ii2 in rrr u¹, u² = dnodes₁[ii1], dnodes₂[ii2] g₁₁ = g₍₀₎₁₁(u¹, u²) g₁₂ = g₂₁ = g₍₀₎₁₂(u¹, u²) g₂₂ = g₍₀₎₂₂(u¹, u²) g = @SMatrix [g₁₁ g₁₂; g₂₁ g₂₂] g⁻ = inv(g) 𝝊 = sqrt(det(g)) B₁ = bsplinebasisall(P₁, s₁ - p₁, u¹) B₂ = bsplinebasisall(P₂, s₂ - p₂, u²) Ḃ₁ = bsplinebasisall(BSplineDerivativeSpace{1}(P₁), s₁ - p₁, u¹) Ḃ₂ = bsplinebasisall(BSplineDerivativeSpace{1}(P₂), s₂ - p₂, u²) Q₁ = sum(𝒂[J₁+(s₁-p₁)-1, J₂+(s₂-p₂)-1] * Ḃ₁[J₁] * B₂[J₂] for J₁ in 1:p₁+1, J₂ in 1:p₂+1) Q₂ = sum(𝒂[J₁+(s₁-p₁)-1, J₂+(s₂-p₂)-1] * B₁[J₁] * Ḃ₂[J₂] for J₁ in 1:p₁+1, J₂ in 1:p₂+1) Q = hcat(Q₁, Q₂) QQ = @SMatrix [Q[1, m] * Q[1, n] + Q[2, m] * Q[2, n] for m in 1:2, n in 1:2] weight1 = weights₁[ii1] weight2 = weights₂[ii2] C¹¹¹¹ = C(1, 1, 1, 1, g⁻) C¹¹¹² = C(1, 1, 1, 2, g⁻) C¹¹²² = C(1, 1, 2, 2, g⁻) C¹²¹² = C(1, 2, 1, 2, g⁻) C¹²²² = C(1, 2, 2, 2, g⁻) C²²²² = C(2, 2, 2, 2, g⁻) C¹¹²¹ = C¹²¹¹ = C²¹¹¹ = C¹¹¹² C²²¹¹ = C¹¹²² C¹²²¹ = C²¹¹² = C²¹²¹ = C¹²¹² C²¹²² = C²²¹² = C²²²¹ = C¹²²² for i₁ in 1:p₁+1, i₂ in 1:p₂+1, i in 1:2, r₁ in 1:p₁+1, r₂ in 1:p₂+1, r in 1:2 I₁ = i₁ + (s₁ - p₁) - 1 R₁ = r₁ + (s₁ - p₁) - 1 I₂ = i₂ + (s₂ - p₂) - 1 R₂ = r₂ + (s₂ - p₂) - 1 Ni₁ = Ḃ₁[i₁] * B₂[i₂] Ni₂ = B₁[i₁] * Ḃ₂[i₂] Nr₁ = Ḃ₁[r₁] * B₂[r₂] Nr₂ = B₁[r₁] * Ḃ₂[r₂] s = C¹¹¹¹ * Ni₁ * Nr₁ * Q₁[i] * Q₁[r] s += C¹¹¹² * Ni₁ * Nr₂ * Q₁[i] * Q₁[r] s += C¹¹²¹ * Ni₁ * Nr₁ * Q₁[i] * Q₂[r] s += C¹¹²² * Ni₁ * Nr₂ * Q₁[i] * Q₂[r] s += C¹²¹¹ * Ni₁ * Nr₁ * Q₂[i] * Q₁[r] s += C¹²¹² * Ni₁ * Nr₂ * Q₂[i] * Q₁[r] s += C¹²²¹ * Ni₁ * Nr₁ * Q₂[i] * Q₂[r] s += C¹²²² * Ni₁ * Nr₂ * Q₂[i] * Q₂[r] s += C²¹¹¹ * Ni₂ * Nr₁ * Q₁[i] * Q₁[r] s += C²¹¹² * Ni₂ * Nr₂ * Q₁[i] * Q₁[r] s += C²¹²¹ * Ni₂ * Nr₁ * Q₁[i] * Q₂[r] s += C²¹²² * Ni₂ * Nr₂ * Q₁[i] * Q₂[r] s += C²²¹¹ * Ni₂ * Nr₁ * Q₂[i] * Q₁[r] s += C²²¹² * Ni₂ * Nr₂ * Q₂[i] * Q₁[r] s += C²²²¹ * Ni₂ * Nr₁ * Q₂[i] * Q₂[r] s += C²²²² * Ni₂ * Nr₂ * Q₂[i] * Q₂[r] if i == r s += C¹¹¹¹ * Ni₁ * Nr₁ * (QQ[1, 1] - g₁₁) / 2 s += C¹¹¹² * Ni₁ * Nr₁ * (QQ[1, 2] - g₁₂) / 2 s += C¹¹²¹ * Ni₁ * Nr₁ * (QQ[2, 1] - g₂₁) / 2 s += C¹¹²² * Ni₁ * Nr₁ * (QQ[2, 2] - g₂₂) / 2 s += C¹²¹¹ * Ni₁ * Nr₂ * (QQ[1, 1] - g₁₁) / 2 s += C¹²¹² * Ni₁ * Nr₂ * (QQ[1, 2] - g₁₂) / 2 s += C¹²²¹ * Ni₁ * Nr₂ * (QQ[2, 1] - g₂₁) / 2 s += C¹²²² * Ni₁ * Nr₂ * (QQ[2, 2] - g₂₂) / 2 s += C²¹¹¹ * Ni₂ * Nr₁ * (QQ[1, 1] - g₁₁) / 2 s += C²¹¹² * Ni₂ * Nr₁ * (QQ[1, 2] - g₁₂) / 2 s += C²¹²¹ * Ni₂ * Nr₁ * (QQ[2, 1] - g₂₁) / 2 s += C²¹²² * Ni₂ * Nr₁ * (QQ[2, 2] - g₂₂) / 2 s += C²²¹¹ * Ni₂ * Nr₂ * (QQ[1, 1] - g₁₁) / 2 s += C²²¹² * Ni₂ * Nr₂ * (QQ[1, 2] - g₁₂) / 2 s += C²²²¹ * Ni₂ * Nr₂ * (QQ[2, 1] - g₂₁) / 2 s += C²²²² * Ni₂ * Nr₂ * (QQ[2, 2] - g₂₂) / 2 end s *= 𝝊 * weight1 * weight2 * w₁ * w₂ / 2 H[I₁, I₂, i, R₁, R₂, r] += s end end end return H end function _vector_F(M::BSplineManifold{2,p}) where {p} rrr = StaticArrays.SUnitRange{1,10}() 𝒂 = controlpoints(M) P₁, P₂ = P = bsplinespaces(M) p₁, p₂ = p k₁, k₂ = k = knotvector.(P) l₁, l₂ = length.(k) n₁, n₂ = dim.(P) F = zeros(n₁, n₂, 2) _nodes, _weights = gausslegendre(10) nodes = SVector{10,Float64}(_nodes) weights = SVector{10,Float64}(_weights) nodes₁ = nodes nodes₂ = nodes weights₁ = weights weights₂ = weights for s₁ in 1:l₁-1, s₂ in 1:l₂-1 a₁ = k₁[s₁] b₁ = k₁[s₁+1] a₂ = k₂[s₂] b₂ = k₂[s₂+1] w₁ = b₁ - a₁ w₂ = b₂ - a₂ iszero(w₁) && continue iszero(w₂) && continue dnodes₁ = (w₁ * nodes₁ .+ (a₁ + b₁)) / 2 dnodes₂ = (w₂ * nodes₂ .+ (a₂ + b₂)) / 2 for ii1 in rrr, ii2 in rrr u¹, u² = dnodes₁[ii1], dnodes₂[ii2] g₁₁ = g₍₀₎₁₁(u¹, u²) g₁₂ = g₂₁ = g₍₀₎₁₂(u¹, u²) g₂₂ = g₍₀₎₂₂(u¹, u²) g = @SMatrix [g₁₁ g₁₂; g₂₁ g₂₂] g⁻ = inv(g) 𝝊 = sqrt(det(g)) B₁ = bsplinebasisall(P₁, s₁ - p₁, u¹) B₂ = bsplinebasisall(P₂, s₂ - p₂, u²) Ḃ₁ = bsplinebasisall(BSplineDerivativeSpace{1}(P₁), s₁ - p₁, u¹) Ḃ₂ = bsplinebasisall(BSplineDerivativeSpace{1}(P₂), s₂ - p₂, u²) Q₁ = sum(𝒂[J₁+(s₁-p₁)-1, J₂+(s₂-p₂)-1] * Ḃ₁[J₁] * B₂[J₂] for J₁ in 1:p₁+1, J₂ in 1:p₂+1) Q₂ = sum(𝒂[J₁+(s₁-p₁)-1, J₂+(s₂-p₂)-1] * B₁[J₁] * Ḃ₂[J₂] for J₁ in 1:p₁+1, J₂ in 1:p₂+1) Q = hcat(Q₁, Q₂) QQ = @SMatrix [Q[1, m] * Q[1, n] + Q[2, m] * Q[2, n] for m in 1:2, n in 1:2] weight1 = weights₁[ii1] weight2 = weights₂[ii2] C¹¹¹¹ = C(1, 1, 1, 1, g⁻) C¹¹¹² = C(1, 1, 1, 2, g⁻) C¹¹²² = C(1, 1, 2, 2, g⁻) C¹²¹² = C(1, 2, 1, 2, g⁻) C¹²²² = C(1, 2, 2, 2, g⁻) C²²²² = C(2, 2, 2, 2, g⁻) C¹¹²¹ = C¹²¹¹ = C²¹¹¹ = C¹¹¹² C²²¹¹ = C¹¹²² C¹²²¹ = C²¹¹² = C²¹²¹ = C¹²¹² C²¹²² = C²²¹² = C²²²¹ = C¹²²² for i₁ in 1:p₁+1, i₂ in 1:p₂+1, i in 1:2 I₁ = i₁ + (s₁ - p₁) - 1 I₂ = i₂ + (s₂ - p₂) - 1 Ni₁ = Ḃ₁[i₁] * B₂[i₂] Ni₂ = B₁[i₁] * Ḃ₂[i₂] s = C¹¹¹¹ * Ni₁ * Q₁[i] * (QQ[1, 1] - g₁₁) / 2 s += C¹¹¹² * Ni₁ * Q₁[i] * (QQ[1, 2] - g₁₂) / 2 s += C¹¹²¹ * Ni₁ * Q₁[i] * (QQ[2, 1] - g₂₁) / 2 s += C¹¹²² * Ni₁ * Q₁[i] * (QQ[2, 2] - g₂₂) / 2 s += C¹²¹¹ * Ni₁ * Q₂[i] * (QQ[1, 1] - g₁₁) / 2 s += C¹²¹² * Ni₁ * Q₂[i] * (QQ[1, 2] - g₁₂) / 2 s += C¹²²¹ * Ni₁ * Q₂[i] * (QQ[2, 1] - g₂₁) / 2 s += C¹²²² * Ni₁ * Q₂[i] * (QQ[2, 2] - g₂₂) / 2 s += C²¹¹¹ * Ni₂ * Q₁[i] * (QQ[1, 1] - g₁₁) / 2 s += C²¹¹² * Ni₂ * Q₁[i] * (QQ[1, 2] - g₁₂) / 2 s += C²¹²¹ * Ni₂ * Q₁[i] * (QQ[2, 1] - g₂₁) / 2 s += C²¹²² * Ni₂ * Q₁[i] * (QQ[2, 2] - g₂₂) / 2 s += C²²¹¹ * Ni₂ * Q₂[i] * (QQ[1, 1] - g₁₁) / 2 s += C²²¹² * Ni₂ * Q₂[i] * (QQ[1, 2] - g₁₂) / 2 s += C²²²¹ * Ni₂ * Q₂[i] * (QQ[2, 1] - g₂₁) / 2 s += C²²²² * Ni₂ * Q₂[i] * (QQ[2, 2] - g₂₂) / 2 s *= 𝝊 * weight1 * weight2 * w₁ * w₂ / 2 F[I₁, I₂, i] += s end end end return F end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
441
""" pin(steptree, parent::Int = 0) Add a pin 📌 for the given index """ function pin!(steptree, index::Int = 0) index = _validindex(steptree, index) steptree.pinned[index] = true return steptree end """ unpin(steptree, index::Integer) Remeve the pin 📌 with the given index """ function unpin!(steptree, index::Int = 0) index = _validindex(steptree, index) steptree.pinned[index] = false return steptree end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
code
6962
using Test using IntervalSets using StaticArrays using Images using LinearAlgebra using BasicBSpline using ElasticSurfaceEmbedding using Aqua import ElasticSurfaceEmbedding.𝝂 import ElasticSurfaceEmbedding.𝒑₁₍ₜ₎ import ElasticSurfaceEmbedding.𝒑₂₍ₜ₎ Aqua.test_all(ElasticSurfaceEmbedding; ambiguities=false) function L²(f, B) n = 240 𝟙 = 0.99999 xs = range(-B * 𝟙, stop = B * 𝟙, length = n + 1) Δ = 2 * B * 𝟙 / n return sqrt(Δ * (2 * sum(f.(xs) .^ 2) - f(xs[begin])^2 - f(xs[end])^2) / 2) end function L²(f, g, B) return L²(x -> f(x) - g(x), B) end function delta(f, B) n = 10 𝟙 = 1 - 1e-8 xs = range(-B * 𝟙, stop = B * 𝟙, length = n + 1) return maximum(f.(xs)) - minimum(f.(xs)) end dir_result = joinpath(@__DIR__, "result") rm(dir_result, recursive = true, force = true) @testset "Rhomboid" begin ElasticSurfaceEmbedding.𝒑₍₀₎(u¹, u²) = SVector(u¹, u², u¹ + u²) D = (-1.0 .. 1.0, -1.0 .. 1.0) show_strain(D) @test_logs (:info, "Strain - domain: [-1.0, 1.0]×[-1.0, 1.0]\nPredicted: (min: -0.0, max: 0.0)\n") show_strain(D) result = initial_state(D) M = ElasticSurfaceEmbedding.loadM(result) 𝒂 = controlpoints(M) M, N = size(𝒂) m = M ÷ 2 + 1 n = N ÷ 2 + 1 @test 𝒂[1, 1] ≈ [-√(3 / 2), -3 / √(2)] @test 𝒂[1, n] ≈ [-√(3 / 2), -1 / √(2)] @test 𝒂[1, N] ≈ [-√(3 / 2), 1 / √(2)] @test 𝒂[m, 1] ≈ [0, -2 / √(2)] @test 𝒂[m, n] ≈ [0, 0] atol = 1e-14 @test 𝒂[m, N] ≈ [0, 2 / √(2)] @test 𝒂[M, 1] ≈ [√(3 / 2), -1 / √(2)] @test 𝒂[M, n] ≈ [√(3 / 2), 1 / √(2)] @test 𝒂[M, N] ≈ [√(3 / 2), 3 / √(2)] newton_onestep!(result) M = ElasticSurfaceEmbedding.loadM(result) 𝒂 = controlpoints(M) M, N = size(𝒂) m = M ÷ 2 + 1 n = N ÷ 2 + 1 @test 𝒂[1, 1] ≈ [-√(3 / 2), -3 / √(2)] @test 𝒂[1, n] ≈ [-√(3 / 2), -1 / √(2)] @test 𝒂[1, N] ≈ [-√(3 / 2), 1 / √(2)] @test 𝒂[m, 1] ≈ [0, -2 / √(2)] @test 𝒂[m, n] ≈ [0, 0] atol = 1e-14 @test 𝒂[m, N] ≈ [0, 2 / √(2)] @test 𝒂[M, 1] ≈ [√(3 / 2), -1 / √(2)] @test 𝒂[M, n] ≈ [√(3 / 2), 1 / √(2)] @test 𝒂[M, N] ≈ [√(3 / 2), 3 / √(2)] end @testset "Planar" begin ElasticSurfaceEmbedding.𝒑₍₀₎(u¹, u²) = SVector(sin(u¹) * u², u² + cos(u¹) - u¹^2 / 5, 0.0) # See https://www.desmos.com/calculator/4usvqpr0iu D = (-1.0 .. 2.0, 1.0 .. 1.2) show_strain(D) result = initial_state(D) M = ElasticSurfaceEmbedding.loadM(result) @test norm([ElasticSurfaceEmbedding.E(M, u¹, u²) for u¹ in -0.9:0.1:1.9, u² in 1.05:0.05:1.15], Inf) < 1e-4 newton_onestep!(result) refinement!(result, p₊=(0,1), k₊=suggest_knotvector(result)) newton_onestep!(result) M = ElasticSurfaceEmbedding.loadM(result) @test norm([ElasticSurfaceEmbedding.E(M, u¹, u²) for u¹ in -0.9:0.1:1.9, u² in 1.05:0.05:1.15], Inf) < 1e-5 @test result.pinned[2] == false pin!(result, 2) @test result.pinned[2] == true unpin!(result, 2) @test result.pinned[2] == false end @testset "Sphere-thin" begin # For deriving analytical solution, see https://hackmd.io/@hyrodium/r1sCtEsLX L = 20 B = 1 / 8 ElasticSurfaceEmbedding.𝒑₍₀₎(u¹, u²) = SVector(cos(u¹) * cos(u²), sin(u¹) * cos(u²), sin(u²)) D = (-L .. L, -B .. B) show_strain(D) result = initial_state(D) newton_onestep!(result) newton_onestep!(result) refinement!( result, p₊ = (0, 1), k₊ = (KnotVector([-L + B, -L + 2B, -L + 3B, L - 3B, L - 2B, L - B]), KnotVector([-B / 2, 0.0, B / 2])), ) newton_onestep!(result) newton_onestep!(result) M = ElasticSurfaceEmbedding.loadM(result) 𝒂 = controlpoints(M) # Analytical k = sqrt(4atanh(tan(B / 2)) / (sin(B) / cos(B)^2 + 2atanh(tan(B / 2)))) # Numerical computed k̃ = 𝒑₁₍ₜ₎(M, 0, 0)[1] # Approximated k̂ = 1 - B^2 / 6 # If the strip is thin, the analytical result k can be approximated with k̂. @test abs(log(k̃ / k)) < 1e-4 @test abs(log(k̂ / k)) < 1e-4 # Analytical h′(u²) = √(1 - 𝝂 * (k^2 / cos(u²)^2 - 1)) # Numerical computed h̃′(u²) = 𝒑₂₍ₜ₎(M, 0, u²)[2] # Approximated ĥ′(u²) = √(1 + 𝝂 * (1 - k̂^2)) - (𝝂 * k̂^2 * u²^2) / (2 * √(1 + 𝝂 * (1 - k̂^2))) # If the strip is thin, the analytical result h′ can be approximated with ĥ′. @test L²(h′, h̃′, B) / delta(h′, B) < 1e-2 @test L²(h′, ĥ′, B) / delta(h′, B) < 1e-2 end @testset "Sphere-thick" begin # For deriving analytical solution, see https://hackmd.io/@hyrodium/r1sCtEsLX L = 20 B = 2 / 3 ElasticSurfaceEmbedding.𝒑₍₀₎(u¹, u²) = SVector(cos(u¹) * cos(u²), sin(u¹) * cos(u²), sin(u²)) D = (-L .. L, -B .. B) show_strain(D) result = initial_state(D) newton_onestep!(result) newton_onestep!(result) refinement!( result, p₊ = (0, 1), k₊ = (KnotVector([-L + B, -L + 2B, -L + 3B, L - 3B, L - 2B, L - B]), KnotVector([-B / 2, 0.0, B / 2])), ) newton_onestep!(result) newton_onestep!(result) M = ElasticSurfaceEmbedding.loadM(result) 𝒂 = controlpoints(M) # Analytical k = sqrt(4atanh(tan(B / 2)) / (sin(B) / cos(B)^2 + 2atanh(tan(B / 2)))) # Numerical computed k̃ = 𝒑₁₍ₜ₎(M, 0, 0)[1] # Approximated k̂ = 1 - B^2 / 6 # If the strip is thick, the analytical result k cannot be approximated with k̂. @test abs(log(k̃ / k)) < 1e-4 @test abs(log(k̂ / k)) > 1e-4 # Analytical h′(u²) = √(1 - 𝝂 * (k^2 / cos(u²)^2 - 1)) # Numerical computed h̃′(u²) = 𝒑₂₍ₜ₎(M, 0, u²)[2] # Approximated ĥ′(u²) = √(1 + 𝝂 * (1 - k̂^2)) - (𝝂 * k̂^2 * u²^2) / (2 * √(1 + 𝝂 * (1 - k̂^2))) # If the strip is thick, the analytical result h′ cannot be approximated with ĥ′. @test L²(h′, h̃′, B) / delta(h′, B) < 1e-2 @test L²(h′, ĥ′, B) / delta(h′, B) > 1e-2 ## Note # Try the following script to check the difference between analytical solution and numerical solution. # using Plots # 𝟙 = 1 - 1e-8 # plot(h′,-B*𝟙,B*𝟙) # plot!(h̃′,-B*𝟙,B*𝟙) # plot!(ĥ′,-B*𝟙,B*𝟙) end @testset "Paraboloid" begin ElasticSurfaceEmbedding.𝒑₍₀₎(u¹, u²) = SVector(u¹, u², u¹^2 + u²^2) name = "Paraboloid" N = 10 result = StepTree() for i in 1:N D = (-1.0 .. 1.0, (i - 1) / N .. i / N) show_strain(D) result = initial_state!(result, D) newton_onestep!(result, fixingmethod = :fix3points) newton_onestep!(result) refinement!(result, p₊ = (0, 1), k₊ = (EmptyKnotVector(), KnotVector([(i - 1 / 2) / 10]))) newton_onestep!(result) newton_onestep!(result) pin!(result) end export_all_steps(joinpath(dir_result, "Paraboloid"), result) files_pinned = readdir(joinpath(dir_result, "Paraboloid", "pinned")) @test length(files_pinned) == N # img_b = load(joinpath(dir_result,"Paraboloid","append","Paraboloid-5_append.png")) # d = Euclidean() # @test d(RGB.(img_a), RGB.(img_b)) < 0.0001 end
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
5313
# Elastic Surface Embedding; Weaving Parer Strips [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://hyrodium.github.io/ElasticSurfaceEmbedding.jl/dev) [![Build Status](https://github.com/hyrodium/ElasticSurfaceEmbedding.jl/workflows/CI/badge.svg)](https://github.com/hyrodium/ElasticSurfaceEmbedding.jl/actions) [![Coverage](https://codecov.io/gh/hyrodium/ElasticSurfaceEmbedding.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/hyrodium/ElasticSurfaceEmbedding.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![arXiv](https://img.shields.io/badge/math.DG-arXiv%3A2211.06372-B31B1B.svg)](https://arxiv.org/abs/2211.06372) ## JuliaCon2023 Talk! 📣🕙 I gave a lightning talk about this repository at JuliaCon2023! [![JuliaCon2023 Talk](https://img.youtube.com/vi/0gRVPLfZl7w/0.jpg)](https://www.youtube.com/watch?v=0gRVPLfZl7w) * [Pretalx page](https://pretalx.com/juliacon2023/talk/RBHAER/) * [Slides](https://www.docswell.com/s/hyrodium/5JL8EQ-JuliaCon2023) ## TL;DR You can make a *holdable* smooth surface model with this repository. ![](docs/src/img/overview.png) The main part of this project is how to determine a planer shape from a strip on the target curved surface. In mathematics, this mapping is called "embedding". We determined the embedding by minimizing its elastic strain energy. This is the meaning of "Elastic Surface Embedding". ## Overview: How to make a surface model ### step 1: Define a shape of a surface (and split it into strips) The definition must consist of parametric mapping and its domain. For example, a paraboloid can be parametrized as below. $$ \begin{aligned} \boldsymbol{p}_{[0]}(u^1,u^2) &= \begin{pmatrix} u^1 \\ u^2 \\ (u^1)^2+(u^2)^2 \end{pmatrix} & (u^1, u^2) \in [-1,1] \times [-1,1] \end{aligned} $$ The domain will be split into $D^{(i)}$. $$ \begin{aligned} D^{(i)} = [-1,1] \times \left[\frac{i-1}{10}, \frac{i}{10}\right] \qquad (i = 1,...,10) \end{aligned} $$ ### step 2: Numerical analysis This is the main part. Split the surface into strips, and compute the embeddings. ```julia using ElasticSurfaceEmbedding using IntervalSets using StaticArrays # Overload the shape definition ElasticSurfaceEmbedding.surface(x,y) = SVector(x, y, x^2+y^2) # (1) split the surface into strips dom = [(-1..1, (i-1)/10..i/10) for i in 1:10] # (2) Embed the strips onto a plane res = auto_allsteps(dom) export_pinned_steps("paraboloid", res) ``` For more information, read [this document](https://hyrodium.github.io/ElasticSurfaceEmbedding.jl/dev/run-julia/). The image below is a result for the domain $D^{(1)}$. <img src="docs/src/img/bspline_strain.png" width="800"> ### step 3: Edit on your favorite vector graphics editor The output files are in SVG format. After editing the SVG files, you can print the graphics or cut papers with a laser cutting machine. <img src="docs/src/img/inkscape.png" width="800"> ### step 4: Craft a paper model This is the final step. Cut papers into strips, and weave them into the surface. <img src="docs/src/img/assembling.png" width="800"> ## Directions: If you like.. ### ..making crafts :scissors: | <img src="docs/src/img/craft.png" align="top" height="150" width="150"> | Print Appendix B from [my paper on arXiv](https://arxiv.org/abs/2211.06372), and <a href="https://hyrodium.github.io/ElasticSurfaceEmbedding.jl/dev/craft/">make your own surface model. <br> Laser cutting machine is useful, but it's not necessary. | | --- | :-- | ### ..computing :octocat: | <img src="docs/src/img/juliawolfram.png" align="top" height="150" width="150"> | Clone this repository, and run the [Julia code](https://hyrodium.github.io/ElasticSurfaceEmbedding.jl/dev/run-julia/) or [Wolfram code](https://github.com/hyrodium/ElasticSurfaceEmbedding-wolfram)! <br> Any issues and pull requests are welcomed. | | --- | :-- | ### ..mathematics or physics :globe_with_meridians: | <img src="docs/src/img/math.png" align="top" height="150" width="150"> | Read [our paper on arXiv](https://arxiv.org/abs/2211.06372). Here's our theoretical framework: <br> ・Mathematical model: [Nonlinear elasticity](https://www.sciencedirect.com/topics/engineering/geometric-nonlinearity) on [Riemannian manifold](https://en.m.wikipedia.org/wiki/Riemannian_manifold) <br> ・Geometric representation: [B-spline manifold](https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline) <br> ・Numerical analysis: [Galerkin method](https://en.wikipedia.org/wiki/Galerkin_method), [Newton-Raphson method](https://en.wikipedia.org/wiki/Newton%27s_method) | | --- | :-- | ### ..me! :bowtie: | <img src="docs/src/img/me.jpg" align="top" height="150" width="150"> | Follow [my twitter account](https://twitter.com/Hyrodium). <br> Visit [my website](https://hyrodium.github.io/). <br> Read [my paper on arXiv](https://arxiv.org/abs/2211.06372). | | --- | :-- | ## Gallery <img src="docs/src/img/Paraboloid1.png" width="160"> <img src="docs/src/img/Paraboloid2.png" width="160"> <img src="docs/src/img/Paraboloid3.png" width="160"> <img src="docs/src/img/Paraboloid4.jpg" width="160"> <img src="docs/src/img/Paraboloid5.png" width="160"> <img src="docs/src/img/CatenoidHelicoid.gif" width="400"> <img src="docs/src/img/stereographicprojection.png" width="800">
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
42
# [Gallery](@id gallery) {{{democards}}}
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
60
# API ```@autodocs Modules = [ElasticSurfaceEmbedding] ```
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
888
# [Craft](@id craft) ## Question: How can I make the model? You can: * Download a paraboloid example or a hyperbolic paraboloid example from [my paper on arXiv](https://arxiv.org/abs/2211.06372), and cut by scissors. * It would be hard, but [not impossible](https://hyrodium.tumblr.com/post/178719972384). * Download a paraboloid example or a hyperbolic paraboloid example from [my paper on arXiv](https://arxiv.org/abs/2211.06372), and cut by laser cutting machine. * I'm using [Beambox by FLUX.inc](https://flux3dp.com/beambox/). * [Compute the shape of paper strip](@ref numerical_computation), instead of downloading the paraboloid. * This needs setup for Julia environment. * Buy already cut pieces of paper at [Booth](https://hyrodium.booth.pm/) (In preparation). * Ships from Japan. ## Images during the making process ![](img/assembling.png) ![](img/craft.png)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
4267
# Elastic Surface Embedding ## TL;DR You can make a *holdable* smooth surface model with this repository. ![](img/overview.png) The main part of this project is how to determine a planer shape from a strip on curved surface. In mathematics, this mapping is called "embedding". We determined the embedding by minimizing its elastic strain energy. This is the meaning of "Elastic Surface Embedding". ## Overview: How to make a surface model ### step 1 : Define a shape of surface (and split into strips) The definition must consists of parametric mapping and its domain. For example, a paraboloid can be parametrized as below. ```math \begin{aligned} \bm{p}_{[0]}(u^1, u^2) &= \begin{pmatrix} u^1 \\ u^2 \\ (u^1)^2 + (u^2)^2 \end{pmatrix} \\ D &= [-1,1]\times[-1,1] \end{aligned} ``` The domain ``D`` will be split into ``D_i``. ```math \begin{aligned} D_i &= [-1,1]\times\left[\frac{i-1}{10},\frac{i}{10}\right] & (i=1,\dots,10) \end{aligned} ``` ### step 2 : Numerical analysis This is the main part. Split the surface into pieces, and compute the Eucledian embedding. For more information, read [numerical computation section](@ref numerical_computation). The image below is a result for the domain ``D_1``. ![](img/bspline_strain.png) ### step 3 : Edit on vector graphics editor The output files are SVG format. After editing the svg files, you can print the graphics or cut papers by laser cutting machine. ![](img/inkscape.png) ### step 4 : Craft a paper model This is the final step. Cut papers into strips, and weave them into surface. ![](img/assembling.png) ## Directions: If you like.. ### ..making crafts ✂️ ```@raw html <div style="display:table; width:100%;"> <div style="display:table-cell; width:160px;"> <img src="img/craft_thumbnail.png"> </div> <div style="display:table-cell; vertical-align:middle;"> Download and print a paraboloid example or a hyperbolic paraboloid example from <a href="https://arxiv.org/abs/2211.06372">my paper on arXiv</a>, and <a href="../craft">make your own surface model</a>. Laser cutting machine is useful, but it's not necessary. </div> </div> ``` ### ..computing 💻 ```@raw html <div style="display:table; width:100%;"> <div style="display:table-cell; width:160px;"> <img src="img/juliawolfram_thumbnail.png"> </div> <div style="display:table-cell; vertical-align:middle;"> Clone this repository, and run <a href="../run-julia">the Julia script</a> or <a href="../run-wolfram">the Wolfram script</a>! Any issues and pull requests are welcomed. </div> </div> ``` ### ..mathematics or physics 🌐 ```@raw html <div style="display:table; width:100%;"> <div style="display:table-cell; width:160px;"> <img src="img/math_thumbnail.png"> </div> <div style="display:table-cell; vertical-align:middle;"> Read <a href="https://arxiv.org/abs/2211.06372">my paper on arXiv</a>. Here's our theoretical framework: <ul> <li>Mathematical model: <a href="https://www.sciencedirect.com/topics/engineering/geometric-nonlinearity">Nonlinear elasticity</a> on <a href="https://en.m.wikipedia.org/wiki/Riemannian_manifold">Riemannian manifold</a></li> <li>Geometric representation: <a href="https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline">B-spline manifold</a></li> <li>Numerical analysis: <a href="https://en.wikipedia.org/wiki/Galerkin_method">Galerkin method</a>, <a href="https://en.wikipedia.org/wiki/Newton%27s_method">Newton-Raphson method</a></li> </ul> </div> </div> ``` ### ..me! 🐢 ```@raw html <div style="display:table; width:100%;"> <div style="display:table-cell; width:160px;"> <img src="img/me_thumbnail.jpg"> </div> <div style="display:table-cell; vertical-align:middle;"> <ul> <li>Follow <a href="https://twitter.com/Hyrodium">my twitter account</a>!</li> <li>Visit <a href="https://hyrodium.github.io/">my website</a>!</li> <li>Read <a href="https://arxiv.org/abs/2211.06372">my paper on arXiv</a>!</li> <li>Give star to <a href="https://github.com/hyrodium/ElasticSurfaceEmbedding.jl">this repository</a>!</li> </ul> </div> </div> ```
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
5048
# [Numerical computation](@id numerical_computation) ## Installation On Julia's package mode, run the following commands. ```julia-repl pkg> add IntervalSets pkg> add StaticArrays pkg> add BasicBSpline pkg> add https://github.com/hyrodium/BasicBSplineExporter.jl pkg> add https://github.com/hyrodium/ElasticSurfaceEmbedding.jl ``` ## Overview of our method Our theoretical framework is based on: * Mathematical model: Nonlinear elasticity on Riemannian manifold * Geometric representation: B-spline manifold * Numerical analysis: Galerkin method, Newton-Raphson method The computation process proceeds as shown in the following flowchart (from our paper): ![](img/flowchart.png) For more information, read [our paper](https://arxiv.org/abs/2211.06372) or contact [me](https://twitter.com/Hyrodium)! ## Example: Paraboloid Through this section, we treat a paraboloid ``z=x^2+y^2`` as an example. ![](img/Paraboloid1.png) ### Load packages, and optional configuration Load packages with the following script. ```@example paraboloid using IntervalSets using BasicBSpline using StaticArrays using ElasticSurfaceEmbedding ``` ### Define the shape of surface ```@example paraboloid ElasticSurfaceEmbedding.𝒑₍₀₎(u¹,u²) = SVector(u¹, u², u¹^2+u²^2) ``` ```math \begin{aligned} \bm{p}_{[0]}(u^1, u^2) &= \begin{pmatrix} u^1 \\ u^2 \\ (u^1)^2 + (u^2)^2 \end{pmatrix} \\ D &= [-1,1]\times[-1,1] \end{aligned} ``` !!! info "Direction of the surface" In the next step, we will split the surface into elongated strips. The domain of each strip should be rectangular, and the longer direction is `u¹`, and the shorter direction is `u²`. The paraboloid has four‐fold symmetry, so we don't have to take care of it. ### Split the surface into strips The domain ``D`` will be split into ``D_i``. ```math \begin{aligned} D_i &= [-1,1]\times\left[\frac{i-1}{10},\frac{i}{10}\right] & (i=1,\dots,10) \end{aligned} ``` ![](img/Paraboloid2.png) In julia script, just define a domain of the strip with function `D(i,n)`. ```@example paraboloid n = 10 D(i,n) = (-1.0..1.0, (i-1)/n..i/n) ``` ### Check the strain prediction Before computing the embedding numerically, we can predict the strain with *Strain Approximation Formula*: ```math \begin{aligned} E_{11}^{\langle 0\rangle}&\approx\frac{1}{2}K_{[0]}B^2\left(r^2-\frac{1}{3}\right) \end{aligned} ``` You can check this strain estimation using the [`show_strain`](@ref) function. ```@example paraboloid for i in 1:n show_strain(D(i,n)) end ``` !!! tip "Allowable strain" Positive number means tension, and negative number means compression. Empirically, it is better if the absolute value of strain is smaller than ``0.01 (=1\%)``. ### Initial state If you finished checking the strain prediction, the next step is determination of the initial state with [`initial_state`](@ref) (or [`initial_state!`](@ref) from the second time). From this section, the computing is done for each piece of the surface. First, let's calculate for ``i=1``. ```@example paraboloid i = 1 ``` As a first step, let's compute the initial state. ```@example paraboloid steptree = initial_state(D(i,n)) ``` ### Newton-Raphson method iteration [`newton_onestep!`](@ref) function calculates one step of Newton-Raphson method iteration. ```@example paraboloid newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) ``` You can choose the fixing method from below: * `:default` (default) * `:fix3points` ### Refinement of B-spline manifold ```@example paraboloid refinement!(steptree, p₊=(0,1), k₊=(EmptyKnotVector(),KnotVector([(i-1/2)/10]))) ``` The knotvector to be inserted in [`refinement!`](@ref) can be suggested by [`show_knotvector`](@ref) function. ### Pin the step If you finished computing for the strip, it's time to *pin* the step. This [`pin!`](@ref) function will be used for the the final export step. ```@example paraboloid pin!(steptree) ``` If you add a pin mistakenly, you can remove the pin with [`unpin!`](@ref) function. ```@example paraboloid unpin!(steptree, 4) ``` ### Compute more ```@example paraboloid newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) i = 2 initial_state!(steptree, D(i,n)) newton_onestep!(steptree, fixingmethod=:fix3points) newton_onestep!(steptree) refinement!(steptree, p₊=(0,1), k₊=(EmptyKnotVector(),KnotVector([(i-1/2)/10]))) newton_onestep!(steptree) newton_onestep!(steptree) pin!(steptree) ``` ### Export all pinned shapes This is the final step of the computational process with [`export_pinned_steps`](@ref). ```@example paraboloid export_pinned_steps(".", steptree, unitlength=(50, "mm"), mesh=(20,1), xlims=(-2,2), ylims=(-0.3,0.3)) ``` This will create SVG files in `./pinned`. `pinned/pinned-6.svg` ![](pinned/pinned-6.svg) `pinned/pinned-12.svg` ![](pinned/pinned-12.svg) The all outputs for `i in 1:10` will be like this: ![](img/Paraboloid3.png) You can edit these files, and craft them into curved surface shape. ## Other examples can be found in [gallery](@ref gallery)
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
0.1.0
5c9e72c191fadb9ac84137a4a02806a73e63d2c7
docs
2170
# [Symbolic computation](@id symbolic_computation) There are two `.ipynb` files in [ElasticSurfaceEmbedding-wolfram](https://github.com/hyrodium/ElasticSurfaceEmbedding-wolfram) repository. * `MainTheorem.ipynb` * `AnalyticSolution.ipynb` These files are used for some symbolic computation, so you can skip this part if you just want to make a surface model. The following contents describes the rule of these files. Please install the following software in your environment. * [Wolfram Engine](https://www.wolfram.com/engine/) * [Wolfram Language kernel for Jupyter notebooks](https://github.com/WolframResearch/WolframLanguageForJupyter) ## Main theorems There are two theorems in [our paper](https://arxiv.org/abs/2211.06372). !!! info "Theorem. Approximation of Strain" In the range of sufficiently small breadth ``B`` of the curved piece, the piece is in an approximately ``u^1``-directional uniaxial stress state at each point, and the principal strain can be approximated as ```math E^{\langle 0 \rangle}_{11} \approx \frac{1}{2}K_{[0]}B^2\left(r^2-\frac{1}{3}\right), \quad E^{\langle 0 \rangle}_{22} \approx -\nu E^{\langle 0 \rangle}_{11} ``` where ``K_{[0]}`` is the Gaussian curvature along the center curve ``C_{[0]}`` of the reference state ``M_{[0]}``, ``r`` is a normalized breadth-directional coordinate (``−1 \le r \le 1``). ![](img/approx_strain.png) !!! info "Theorem. Approximation of Embedding" Let ``C_{[0]}`` be the center curve of ``M_{[0]}``, ``\kappa_{[0]}`` be its geodesic curvature, ``B`` be the breadth from center curve of ``M_{[0]}``. Similarly, let ``C_{[t]}`` be the center curve of ``M_{[t]}`` , ``\kappa_{[t]}`` be its planer curvature. If the breadth ``B`` is sufficiently small, then the following approximation is satisfied. ```math g_{[t]}|_C \approx g_{[0]}|_C, \quad \kappa_{[t]} \approx \kappa_{[0]}. ``` ![](img/approx_embedding.png) The proof is too hard to calculate by hand, so we wrote code to solve this problem by Wolfram language. ## Analytic solutions There are analytic solutions for some specific problem. Please try `AnalyticSolution.ipynb` for more information.
ElasticSurfaceEmbedding
https://github.com/hyrodium/ElasticSurfaceEmbedding.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
code
236
module Stardates import Dates import Printf using TimeZones include("constants.jl") include("startofyear.jl") include("sd.jl") export Stardate, stardate, defaulttimezone, mediawiki, mstardate, nyse_closing_stardate end # module
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
code
243
const millisecond = 1.0 / 31556952000.0 const second = 1.0 / 31556952.0 const minute = 1.0 / 525949.2 const hour = 1.0 / 8765.82 const day = 1.0 / 365.2425 const week = 7.0 / 365.2425 const fortnight = 14.0 / 365.2425 const month = 1.0 / 12.0
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
code
2239
struct Stardate sd::Float64 canonical::String short::String originaltz::TimeZones.TimeZone end """ defaulttimezone() Returns a TimeZone object corresponding to the IPFS file `/t/env/TZ`. """ function defaulttimezone() tzstring = read(`ipfs files read /t/env/TZ`, String) TimeZones.TimeZone(tzstring) end function Stardate(x::Float64, tz1::TimeZone = tz"UTC") Stardate( x, Printf.@sprintf("%0.15f", x), Printf.@sprintf("%0.3f", x), tz1 ) end function Stardate(zdt::ZonedDateTime) tx = astimezone(zdt, tz"UTC") y0 = year(tx) t0 = Stardates.getstartofyear(y0).zoneddatetime t1 = Stardates.getstartofyear(y0 + 1).zoneddatetime Stardate(y0 + (tx - t0) / (t1 - t0), timezone(zdt)) end function Stardate(dt::Dates.DateTime) # Assume dt is in UTC y0 = Dates.year(dt) t0 = Stardates.getstartofyear(y0).unix t1 = Stardates.getstartofyear(y0 + 1).unix Stardate(y0 + (Dates.datetime2unix(dt) - t0) / (t1 - t0)) end function Stardate(d::Dates.Date, hr, mi, ss, tz) Stardate(ZonedDateTime( Dates.year(d), Dates.month(d), Dates.day(d), hr, mi, ss, tz, )) end function Stardate(; year, month, day, hour = 12, minute = 0, second = 0, tz = nothing, style = nothing, copy = false ) if tz == nothing tz1 = defaulttimezone() else tz1 = TimeZone(tz) end Stardate(ZonedDateTime(year, month, day, hour, minute, second, tz1)) end function stardate(args...) Stardate(args...).sd end "Return the stardate of the closing bell of the date" function nyse_closing_stardate(d::Dates.Date) stardate(d, 16, 0, 0, tz"America/New_York") end "Return the stardate of the closing bell of the date represented by iso8601" function nyse_closing_stardate(iso8601) nyse_closing_stardate(parse(Dates.Date, iso8601)) end function Stardate(st::Base.StatStruct) Stardate(Dates.unix2datetime(st.mtime)) end function mstardate(fn::AbstractString) Stardate(stat(fn)) end function Stardate(style::Symbol) @assert(style == :now) Stardate(now(defaulttimezone())) end function mediawiki(x::Stardate) "<stardate digits=\"3\" tz=\"" * TimeZones.name(x.originaltz) * "\">" * x.canonical * "</stardate>" end
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
code
291
startofyear = Dict{Int64,Any}() function getstartofyear(y) if haskey(startofyear, y) return startofyear[y] end dt = Dates.DateTime(y, 1, 1, 0, 0, 0) startofyear[y] = ( datetime = dt, unix = Dates.datetime2unix(dt), zoneddatetime = ZonedDateTime(dt, tz"UTC"), ) end
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
code
1829
using Stardates using Test using TimeZones @testset "Stardates.jl" begin @test Stardates.millisecond > 0.0 @test length(Stardate(:now).canonical) == 20 @test length(Stardate(:now).short) == 8 @test abs(Stardate(ZonedDateTime( 2019, 8, 26, 19, 33, 42, tz"America/Los_Angeles", )).sd - 2019.652347222222261) < 3.0 * Stardates.second @test abs(Stardate(ZonedDateTime(2012, 1, 2, 3, 4, 5, tz"UTC")).sd - 2012.0030815181644) < 3.0 * Stardates.second @test abs(Stardate(ZonedDateTime( 2014, 9, 30, 17, 17, 27, tz"America/Los_Angeles", )).sd - 2014.747978420491791) < 3.0 * Stardates.second @test abs(nyse_closing_stardate("2014-09-30") - 2014.747488584474922) < 3.0 * Stardates.second @test abs(Stardate(DateTime(2012, 1, 2, 3, 4, 5)).sd - 2012.0030815181644) < 3.0 * Stardates.second sd1 = Stardate(:now) sleep(1.0) f1 = tempname() write(f1, "Hello") sd2 = mstardate(f1) rm(f1) sleep(1.0) sd3 = Stardate(:now) @test sd1.sd <= sd2.sd @test sd2.sd <= sd3.sd # Test against Python implementation output @test stardate(ZonedDateTime( 2019, 10, 11, 11, 7, 0, tz"America/Los_Angeles", )) ≈ 2019.7774105783867 @test Stardate( year = 2063, month = 4, day = 5, tz = "UTC-6" ).sd ≈ 2063.2595890410958 end
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
2.0.0
a6a59e578963b25c977a4c59d7fca12ab905f546
docs
453
# Stardates ``` julia> using Stardates julia> Stardate() Stardate(2021.800063863648, "2021.800063863647893", "2021.800") julia> Stardate(year = 2010, month = 5, day = 6, hour = 14, minute = 45, tz = "America/New_York") Stardate(2010.3446061643835, "2010.344606164383549", "2010.345") julia> mstardate(".") Stardate(2021.800059999239, "2021.800059999239011", "2021.800") julia> nyse_closing_stardate("2010-05-06") 2010.3447488584475 ```
Stardates
https://github.com/chrisoei/Stardates.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
725
using Documenter, ImagePhaseCongruency using TestImages using DemoCards testimage("cameraman") # used to trigger artifact downloading # generate demopage, postprocess_cb, demo_assets = makedemos("examples") # this is the relative path to docs/ assets = [] isnothing(demo_assets) || (push!(assets, demo_assets)) format = Documenter.HTML(edit_link = "master", prettyurls = get(ENV, "CI", nothing) == "true", assets = assets) makedocs( format=format, sitename = "ImagePhaseCongruency", pages = [ "index.md", demopage, "functions.md" ] ) postprocess_cb() deploydocs( repo = "github.com/peterkovesi/ImagePhaseCongruency.jl.git", )
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1921
# --- # title: Fourier transform of Moisan periodic image component # id: demo_perfft2 # cover: assets/perfft2.png # author: Peter Kovesi # date: 2018-10-26 # --- # The function `perfft2()` implements Moisan's "Periodic plus Smooth Image # Decomposition" which decomposes an image into two components # # img = p + s # # where `s` is the 'smooth' component with mean 0 and `p` is the 'periodic' component # which has no sharp discontinuities when one moves cyclically across the image # boundaries. # # This decomposition is very useful when one wants to obtain an FFT of an image # with minimal artifacts introduced from the boundary discontinuities. The image # `p` gathers most of the image information but avoids periodization artifacts. # # Reference: # L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of # Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011. using Images using FFTW using ImagePhaseCongruency using ImageContrastAdjustment using TestImages img = Float64.(Gray.(testimage("lena"))) IMG = fft(img) # 'Standard' fft (P, S, p, s) = perfft2(img) # 'Periodic' fft mosaic( adjust_histogram(Gray.(p), LinearStretching()), adjust_histogram(s, LinearStretching()), ## Note the vertical and horizontal cross in ## the spectrum induced by the non-periodic edges. adjust_histogram(log.(abs.(fftshift(IMG)) .+ 1), LinearStretching()), ## Note the clean spectrum because p is periodic. adjust_histogram(log.(abs.(fftshift(P)) .+ 1), LinearStretching()); nrow=2, rowmajor=true ) # Top 1) left: periodic component 2) right: smooth component # # Bottom 3) left: spectrum of standard FFT 4) right: spectrum of periodic component # save cover image #src isdir("assets") || mkdir("assets") #src cover = Gray.(adjust_histogram(log.(abs.(fftshift(P)) .+ 1), LinearStretching())) #src save(joinpath("assets", "perfft2.png"), cover) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
876
# --- # title: Log-Gabor filters v3 # id: demo_phasecong3 # cover: assets/phasecong3.png # author: Peter Kovesi # date: 2018-10-26 # --- # Use of the function `phasecong3()` allows corner points to be detected as well. These # corner points are a subset of the edge image and, unlike other corner detectors, their # location is precise and stable over different scales. using TestImages using Images using ImagePhaseCongruency img = restrict(testimage("mandril_gray")) (edges, corners) = phasecong3(img) mosaic( img, adjust_histogram(Gray.(edges), LinearStretching()), adjust_histogram(corners, LinearStretching()), nrow=1 ) # Images from top to right: 1) original image 2) edges 3) corners # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "phasecong3.png"), adjust_histogram(Gray.(edges), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
967
# --- # title: Monogenic filters # id: demo_phasecongmono # cover: assets/phasecongmono.png # author: Peter Kovesi # date: 2018-10-26 # --- # Phase congruency marks all classes of features from steps to lines and is a dimensionless # quantity that ranges from 0 to 1. This allows fixed thresholds to be used over wide # classes of images. using TestImages using Images using ImagePhaseCongruency img = restrict(testimage("mandril_gray")) (pc, or, ft, T) = phasecongmono(img) nonmax = Images.thin_edges(pc, or) mosaic( img, adjust_histogram(pc, LinearStretching()), nonmax, hysthresh(nonmax, 0.1, 0.2); nrow=2, rowmajor=true ) # Images: 1) top left: original image 2) top right: phase congruency 3) bottom left: # non-maximal suppression 4) bottom right: Hystersis thresholded # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "phasecongmono.png"), adjust_histogram(Gray.(pc), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1095
# --- # title: Symmetric monogenic filters # id: demo_phasesymmono # cover: assets/phasesymmono.gif # author: Peter Kovesi # date: 2018-10-26 # --- # Phase symmetry responds well to line like features and circular objects. The number of # filter scales will affect the scale of features that are marked. Phase symmetry marks # features independently of contrast (a bright circle is not more symmetric than a grey # circle) and is a dimensionless quantity between 0 and 1. However this may not be what one # desires in which case the symmetry energy may be of greater interest. using TestImages using Images using ImagePhaseCongruency img = Gray.(testimage("blobs")) ## Detect regions of bright symmetry (polarity = 1) phase_bright, = phasesymmono(img; nscale=5, polarity=1) ## Detect regions of dark symmetry (polarity = -1) phase_dark, = phasesymmono(img; nscale=5, polarity=-1) mosaic(img, phase_bright, phase_dark; nrow=1) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "phasesymmono.gif"), Images.gif([phase_bright, phase_dark]); fps=1) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
875
# --- # title: Denoise # id: demo_ppdenoise # cover: assets/ppdenoise.png # author: Peter Kovesi # date: 2018-10-26 # --- using TestImages using Images using ImageContrastAdjustment using ImagePhaseCongruency using Random #hide Random.seed!(1234) #hide ## Values in the range 0 to 1 img = centered(Gray.(restrict(testimage("lighthouse"))))[-127:128, -127:128] ## Add noise with standard deviation of 0.25 img .+= 0.25 * randn(size(img)) cleanimg = ppdenoise(img; nscale=6, norient=6, mult=2.5, minwavelength=2, sigmaonf=0.55, dthetaonsigma=1.0, k=3, softness=1.0) mosaic( adjust_histogram(img, LinearStretching()), adjust_histogram(cleanimg, LinearStretching()); nrow=1 ) # save cover image #src isdir("assets") || mkdir("assets") #src cover = adjust_histogram(Gray.(cleanimg), LinearStretching()) #src save(joinpath("assets", "ppdenoise.png"), cover) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1480
# --- # title: Dynamic Range Compression # id: demo_ppdrc # cover: assets/ppdrc.png # author: Peter Kovesi # date: 2018-10-26 # --- # An example using the 16 bit M51 image. Phase preserving dynamic range compression allows # the scale of analysis to be controlled. Here we process the image at wavelengths up to 50 # pixels and up to 200 pixels. Longer wavelengths allow larger structures to be seen. Small # wavelengths allow fine structures to be seen. Note the image size is (510, 320). using TestImages using Images using ImageContrastAdjustment using ImagePhaseCongruency img = float64.(testimage("m51")) ## Histogram equalization for reference (with a very large number of bins!) img_histeq = histeq(img, 100_000) ## Phase presserving dynamic range compression at cutoff wavelengths of 50 and ## 200 pixels. Note we scale the image because its raw values are between 0 and ## 1, see the help information for ppdrc() for details. scale = 1e4 img_ppdrc1 = ppdrc(img*scale, 50) img_ppdrc2 = ppdrc(img*scale, 200) mosaic( adjust_histogram(img, LinearStretching()), adjust_histogram(img_histeq, LinearStretching()), adjust_histogram(img_ppdrc1, LinearStretching()), adjust_histogram(img_ppdrc2, LinearStretching()), nrow=1 ) # save cover image #src isdir("assets") || mkdir("assets") #src cropped_cover = adjust_histogram(centered(img_ppdrc1)[-128:127, -128:127], LinearStretching()) #src save(joinpath("assets", "ppdrc.png"), cropped_cover) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
801
# --- # title: Phase Quantization # id: demo_quantizephase # cover: assets/quantizephase.gif # author: Peter Kovesi # date: 2018-10-26 # --- # Phase values in an image are important. However, despite this, phase can be quantized # very heavily with little perceptual loss. It can be quantized to a few as four levels, or # even three. Quantizing to two levels still gives an image that can be interpreted. using TestImages using Images using ImagePhaseCongruency img = Float64.(restrict(testimage("mandril_gray"))) results = map((8, 4, 3, 2)) do nlevels out = quantizephase(img, nlevels) clamp01!(Gray.(out)) end mosaic(results; nrow=1) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "quantizephase.gif"), Images.gif([results...]); fps=1) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1303
# --- # title: Amplitude swapping # id: demo_swapphase # cover: assets/swapphase.gif # author: Peter Kovesi # date: 2018-10-26 # --- # A demonstration of the importance of phase information in images. Given two # images`swapphase()` takes their Fourier transforms and constructs two new, synthetic, # images formed from the swapped phase and amplitude imformation. In general it is the # phase information that dominates. However, for textures where the amplitude spectra can # be concentrated in a limited set of locations, the reverse can apply. # See [Oppenheim and Lim's paper "The importance of phase in signals". Proceedings of the # IEEE. Volume: 69 , Issue: 5 , May 1981](https://ieeexplore.ieee.org/document/1456290) using TestImages using Images using ImagePhaseCongruency img1 = centered(Float64.(Gray.(restrict(testimage("lighthouse")))))[-127:128, -127:128] img2 = restrict(Float64.(testimage("mandril_gray")))[1:256, 1:256] (newimg1, newimg2) = swapphase(img1, img2) mosaic(Gray.(img1), newimg1, img2, newimg2; nrow=2) # Bottom 1) left: phase of lighthouse, amplitude of Mandrill 2) right: amplitude of lighthouse, phase of Mandrill # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "swapphase.gif"), Images.gif([img1, newimg1]); fps=1) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
521
# --- # title: circsine # id: demo_circsine # cover: assets/circsine.png # author: Peter Kovesi # date: 2018-10-26 # --- using Images using ImagePhaseCongruency ## Circular features at a phase congruent angle of pi/4 and ## an amplitude decay exponent of 1.5 img = circsine(offset = pi/4, ampexponent = -1.5) adjust_histogram(Gray.(img), LinearStretching()) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "circsine.png"), adjust_histogram(Gray.(img), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
594
# --- # title: noiseonf # id: demo_noiseonf # cover: assets/noiseonf.png # author: Peter Kovesi # date: 2018-10-26 # --- using Images using ImageContrastAdjustment using ImagePhaseCongruency ## Noise images with amplitude decay exponents of 1.5 and 2.5 img1 = noiseonf(512, 1.5) img2 = noiseonf(512, 2.5) mosaic( adjust_histogram(Gray.(img1), LinearStretching()), adjust_histogram(img2, LinearStretching()); nrow=1 ) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "noiseonf.png"), adjust_histogram(Gray.(img1), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
517
# --- # title: starsine # id: demo_starsine # cover: assets/starsine.png # author: Peter Kovesi # date: 2018-10-26 # --- using Images using ImagePhaseCongruency ## Circular features at a phase congruent angle of pi/2 and ## an amplitude decay exponent of 2 img = starsine(offset = pi/4, ampexponent = -2) adjust_histogram(Gray.(img), LinearStretching()) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "starsine.png"), adjust_histogram(Gray.(img), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1739
# --- # title: step2line # id: demo_step2line # cover: assets/step2line.png # author: Peter Kovesi # date: 2018-10-26 # --- # The `step2line()` function generates a phase congruent test image where angle at which the # congruency occurs is interpolated from 0 at the top of the image to pi/2 at the bottom. # This produces an interpolation of feature type from step edge to line. The point being # that phase congruency at any angle produces a feature and the angle at which the # congruency occurs defines the feature type. Gradient based edge detectors will only # correctly mark the step-like feature towards the top of the image and incorrectly mark two # features towards the bottom of the image whereas phase congruency will correctly mark a # single feature from top to bottom. In general, natural images contain a roughly uniform # distribution of the full continuum of feature types from step to line. using Images using ImagePhaseCongruency img1 = step2line(ampexponent=-1) ## note the softer features img2 = step2line(ampexponent=-1.5) ## Compute phase congruency on the `step2line` image using default parameters (pc,) = phasecongmono(step2line(ampexponent = -1)) fimg = imfilter(step2line(ampexponent = -1), KernelFactors.gaussian((2, 2))) (gx, gy) = imgradients(fimg, KernelFactors.ando3) ∇img = sqrt.(gx.^2 + gy.^2) mosaicview( adjust_histogram(Gray.(img1), LinearStretching()), adjust_histogram(img2, LinearStretching()), adjust_histogram(pc, LinearStretching()), adjust_histogram(∇img, LinearStretching()), nrow=2, rowmajor=true ) # save cover image #src isdir("assets") || mkdir("assets") #src save(joinpath("assets", "step2line.png"), adjust_histogram(Gray.(img1), LinearStretching())) #src
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
404
using ImagePhaseCongruency, Images, PyPlot img = circsine(offset = pi/4, ampexponent = -1.5); imshow(img) fimg = imfilter(img, KernelFactors.gaussian((2, 2))) (grad_y, grad_x) = imgradients(fimg, KernelFactors.ando3) imshow(grad_y) orient = orientation(grad_x, grad_y) mag = magnitude(grad_x, grad_y) thinned, subpix = thin_edges_nonmaxsup(mag, orient, radius=1.35, theta=pi/180) imshow(thinned)
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
1738
#=---------------------------------------------------------------------------- Image Phase Congruency Phase based feature detection and image enhancement. Copyright (c) 2015-2018 Peter Kovesi peterkovesi.com MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. PK June 2015 Original porting from MATLAB to Julia November 2017 Julia 0.6 October 2018 Julia 0.7/1.0 ----------------------------------------------------------------------------=# """ **Image Phase Congruency** Phase based feature detection and image enhancement Peter Kovesi [peterkovesi.com](http://peterkovesi.com) """ module ImagePhaseCongruency include("phasecongruency.jl") include("frequencyfilt.jl") include("syntheticimages.jl") include("utilities.jl") end
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
26255
#=-------------------------------------------------------------------- frequencyfilt - Functions for constructing image filters in the frequency domain. Copyright (c) Peter Kovesi peterkovesi.com MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. PK August 2015 Original porting from MATLAB to Julia October 2017 Updates for 0.6 October 2018 Julia 0.7/1.0 ---------------------------------------------------------------------=# export filtergrid, filtergrids, gridangles export cosineangularfilter, gaussianangularfilter export lowpassfilter, highpassfilter, bandpassfilter, highboostfilter export loggabor, monogenicfilters, packedmonogenicfilters export perfft2 export geoseries # export homomorphic #-------------------------------------------------------------------- # filtergrids """ Generate grids for constructing frequency domain filters. ``` Usage: (f, fx, fy) = filtergrids(rows, cols) (f, fx, fy) = filtergrids((rows, cols)) Arguments: rows, cols - Size of image/filter Returns: f - Grid of size (rows, cols) containing frequency values from 0 to 0.5, where f = sqrt(fx^2 + fy^2). The grid is quadrant shifted so that 0 frequency is at f[1,1] fx, fy - Grids containing normalised frequency values ranging from -0.5 to 0.5 in x and y directions respectively. fx and fy are quadrant shifted. ``` See also: [`filtergrid`](@ref) where you are only needing radius """ function filtergrids(rows::Integer, cols::Integer) # Set up X and Y spatial frequency matrices, fx and fy, with ranges # normalised to +/- 0.5 The following code adjusts things appropriately for # odd and even values of rows and columns so that the 0 frequency point is # placed appropriately. if isodd(cols) fxrange = (-(cols-1)/2:(cols-1)/2)/cols else fxrange = (-cols/2:(cols/2-1))/cols end if isodd(rows) fyrange = (-(rows-1)/2:(rows-1)/2)/rows else fyrange = (-rows/2:(rows/2-1))/rows end fx = [c for r = fyrange, c = fxrange] fy = [r for r = fyrange, c = fxrange] # Quadrant shift so that filters are constructed with 0 frequency at # the corners fx = ifftshift(fx) fy = ifftshift(fy) # Construct spatial frequency values in terms of normalised radius from # centre. f = sqrt.(fx.^2 .+ fy.^2) return f, fx, fy end # Tuple version function filtergrids(sze::Tuple{Integer,Integer}) return filtergrids(sze[1], sze[2]) end #-------------------------------------------------------------------- # filtergrid """ Generate grid for constructing frequency domain filters. ``` Usage: f = filtergrid(rows, cols) f = filtergrid((rows, cols)) Arguments: rows, cols - Size of image/filter Returns: f - Grid of size (rows, cols) containing normalised frequency values from 0 to 0.5. Grid is quadrant shifted so that 0 frequency is at f[1,1] ``` Used by [`phasecongmono`](@ref), [`phasecong3`](@ref), etc etc See also: [`filtergrids`](@ref) if you also want normalized frequency grids in the x and y directions as well. """ function filtergrid(rows::Integer, cols::Integer) # Set up X and Y spatial frequency ranges normalised to +/- 0.5 # The following code adjusts things appropriately for odd and even # values of rows and columns so that the 0 frequency point is # placed appropriately. if isodd(cols) fxrange = (-(cols-1)/2:(cols-1)/2)/cols else fxrange = (-cols/2:(cols/2-1))/cols end if isodd(rows) fyrange = (-(rows-1)/2:(rows-1)/2)/rows else fyrange = (-rows/2:(rows/2-1))/rows end # Construct spatial frequency values in terms of normalised radius from # centre. f = [sqrt(fx^2 + fy^2) for fy in fyrange, fx in fxrange] return ifftshift(f) end # Tuple version function filtergrid(sze::Tuple{Integer,Integer}) return filtergrid(sze[1], sze[2]) end #-------------------------------------------------------------------- # monogenicfilters """ Generate monogenic filter grids. ``` Usage: (H1, H2, f) = monogenicfilters(rows, cols) (H1, H2, f) = monogenicfilters((rows, cols)) Arguments: rows,cols - Size of filters to generate Returns: H1, H2 - The two monogenic filters. f - Frequency grid corresponding to the filters. where: H1 = i*fx./f H2 = i*fy./f ``` Note that H1, H2, and f and quadrant shifted to that the 0 frequency value is at coordinate [1,1]. See also: [`packedmonogenicfilters`](@ref) """ function monogenicfilters(rows::Integer, cols::Integer) (f, fx, fy) = filtergrids(rows, cols) f[1,1] = 1 # Set DC value to 1 to avoid divide by zero H1 = im.*fx./f H2 = im.*fy./f H1[1,1] = 0 # Restore 0 DC value H2[1,1] = 0 f[1,1] = 0 return H1, H2, f end # Tuple version function monogenicfilters(sze::Tuple{Integer,Integer}) return monogenicfilters(sze[1], sze[2]) end #-------------------------------------------------------------------- # packedmonogenicfilters """ Monogenic filter where both filters are packed in the one Complex grid. ``` Usage: (H, f) = packedmonogenicfilters(rows, cols) (H, f) = packedmonogenicfilters((rows, cols)) Arguments: rows,cols - Size of filters to generate Returns: H - The two monogenic filters packed into the one Complex64 grid. f - Frequency grid corresponding to the filter. ``` The two monogenic filters are defined as ``` H1 = i*fx./f H2 = i*fy./f ``` However the two filters can be packed together as a complex valued matrix, one in the real part and one in the imaginary part. Do this by multiplying H2 by i and then adding it to H1. When the convolution is performed via the fft the real part of the result will correspond to the convolution with H1 and the imaginary part with H2. This allows the two convolutions to be done as one in the frequency domain, saving time and memory. Note that H and f and quadrant shifted to that the 0 frequency value is at coordinate [1,1]. See also: [`monogenicfilters`](@ref) """ function packedmonogenicfilters(rows::Integer, cols::Integer) (f, fx, fy) = filtergrids(rows, cols) f[1,1] = 1 # Set DC value to 1 to avoid divide by zero # Pack the two monogenic filters by multiplying H2 by i and then # adding it to H1 (note the subtraction because i*i = -1). H = (im.*fx .- fy)./f H[1,1] = 0 # Restore 0 DC value f[1,1] = 0 return H, f end # Tuple version function packedmonogenicfilters(sze::Tuple{Integer,Integer}) return packedmonogenicfilters(sze[1], sze[2]) end #-------------------------------------------------------------------- # lowpassfilter """ Construct a low-pass Butterworth filter. ``` Usage: f = lowpassfilter(sze, cutoff, n) where: sze is a two element tuple specifying the size of filter to construct (rows, cols). cutoff is the cutoff frequency of the filter 0 - 0.5 n is the order of the filter, the higher n is the sharper the transition is. (n must be an integer >= 1). Note that n is doubled so that it is always an even integer. 1 f = -------------------- 2n 1.0 + (w/cutoff) ``` The frequency origin of the returned filter is at the corners. See also: [`highpassfilter`](@ref), [`highboostfilter`](@ref), [`bandpassfilter`](@ref) """ function lowpassfilter(sze::Tuple{Integer, Integer}, cutoff::Real, n::Integer) if cutoff < 0 || cutoff > 0.5 error("cutoff frequency must be between 0 and 0.5") end f = filtergrid(sze) return 1.0 ./ (1.0 .+ (f ./ cutoff).^(2*n)) end # Compute the low pass filter value at a specified normalised frequency function lowpassfilter(f::Real, cutoff::Real, n::Integer) return 1.0 / (1.0 + (f / cutoff)^(2*n)) end #-------------------------------------------------------------------- # bandpassfilter """ Construct a band-pass Butterworth filter. ``` Usage: f = bandpassfilter(sze, cutin, cutoff, n) Arguments: sze - A 2 element tuple specifying the size of filter to construct (rows, cols). cutin, cutoff - The frequencies defining the band pass 0 - 0.5 n - The order of the filter, the higher n is the sharper the transition is. (n must be an integer >= 1). Returns: f - Frequency domain filter of size==sze, the frequency origin is at the corners. ``` See also: [`lowpassfilter`](@ref), [`highpassfilter`](@ref), [`highboostfilter`](@ref) """ function bandpassfilter(sze::Tuple{Integer, Integer}, cutin::Real, cutoff::Real, n::Integer) if cutin < 0 || cutin > 0.5 || cutoff < 0 || cutoff > 0.5 error("Frequencies must be between 0 and 0.5") end if n < 1 error("Order of filter must be greater than 1") end return lowpassfilter(sze, cutoff, n) - lowpassfilter(sze, cutin, n) end #-------------------------------------------------------------------- # highboostfilter """ Construct a high-boost Butterworth filter. ``` Usage: f = highboostfilter(sze, cutoff, n, boost) Arguments: sze - A 2 element tuple specifying the size of filter to construct (rows, cols). cutoff - The cutoff frequency of the filter 0 - 0.5 n - The order of the filter, the higher n is the sharper the transition is. (n must be an integer >= 1). boost - The ratio that high frequency values are boosted relative to the low frequency values. If boost is less than one then a 'lowboost' filter is generated Returns: f - Frequency domain filter of size==sze, the frequency origin is at the corners. ``` See also: [`lowpassfilter`](@ref), [`highpassfilter`](@ref), [`bandpassfilter`](@ref) """ function highboostfilter(sze::Tuple{Integer, Integer}, cutoff::Real, n::Integer, boost::Real) if cutoff < 0 || cutoff > 0.5 error("cutoff frequency must be between 0 and 0.5") end if boost >= 1 # high-boost filter f = (1.0 - 1.0/boost)*highpassfilter(sze, cutoff, n) .+ 1.0/boost else # low-boost filter f = (1.0 - boost)*lowpassfilter(sze, cutoff, n) .+ boost end return f end #-------------------------------------------------------------------- # highpassfilter """ Construct a high-pass Butterworth filter. ``` Usage: f = highpassfilter(sze, cutoff, n) sze - A 2 element tuple specifying the size of filter to construct (rows, cols). cutoff - The cutoff frequency of the filter 0 - 0.5 n - The order of the filter, the higher n is the sharper the transition is. (n must be an integer >= 1). Returns: f - Frequency domain filter of size==sze, the frequency origin is at the corners. ``` See also: [`lowpassfilter`](@ref), [`highboostfilter`](@ref), [`bandpassfilter`](@ref) """ function highpassfilter(sze::Tuple{Integer, Integer}, cutoff::Real, n::Integer) if cutoff < 0 || cutoff > 0.5 error("cutoff frequency must be between 0 and 0.5") end return 1.0 .- lowpassfilter(sze, cutoff, n) end #-------------------------------------------------------------------- # loggabor """ The logarithmic Gabor function in the frequency domain. ``` Usage: v = loggabor(f::Real, fo::Real, sigmaOnf::Real) Arguments: f - Frequency to evaluate the function at. fo - Centre frequency of filter. sigmaOnf - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. sigmaOnf = 0.75 gives a filter bandwidth of about 1 octave. sigmaOnf = 0.55 gives a filter bandwidth of about 2 octaves. ``` """ function loggabor(f::Real, fo::Real, sigmaOnf::Real) if f < eps() return 0.0 else return exp((-(log(f/fo))^2) / (2 * log(sigmaOnf)^2)) end end #------------------------------------------------------------- # gridangles """ Generate arrays of filter grid angles. ``` Usage: (sintheta, costheta) = gridangles(freq, fx, fy) Arguments: freq, fx, fy - The output of filtergrids() Returns: sintheta - The sine and cosine of the angles in the filtergrid costheta ``` See also [`filtergrids`](@ref) """ function gridangles(freq::AbstractArray{T1,2}, fx::AbstractArray{T2,2}, fy::AbstractArray{T3,2}) where {T1 <: Real, T2 <: Real, T3 <: Real} freq[1,1] = 1 # Avoid divide by 0 sintheta = fx./freq # sine and cosine of filter grid angles costheta = fy./freq freq[1,1] = 0 # Restore 0 DC return sintheta, costheta end #-------------------------------------------------------------------- # cosineangularfilter """ Orientation selective frequency domain filter with cosine windowing function. ``` Usage: filter = cosineangularfilter(angl, wavelen, sintheta, costheta) Arguments: angl - Orientation of the filter (radians) wavelen - Wavelength of the angular cosine window function. sintheta, costheta - Grids as returned by gridangles() ``` See also: [`gaussianangularfilter`](@ref), [`filtergrids`](@ref) """ function cosineangularfilter(angl::Real, wavelen::Real, sintheta::Array{T1,2}, costheta::Array{T2,2}) where {T1 <: Real, T2 <: Real} sinangl = sin(angl); cosangl = cos(angl) fltr = zeros(size(sintheta)) # For each point in the filter matrix calculate the angular # distance from the specified filter orientation. To overcome # the angular wrap-around problem sine difference and cosine # difference values are first computed and then the atan2 # function is used to determine angular distance. for n in eachindex(sintheta) ds = sintheta[n] * cosangl - costheta[n] * sinangl # Difference in sine. dc = costheta[n] * cosangl + sintheta[n] * sinangl # Difference in cosine. dtheta = abs(atan(ds, dc)) # Absolute angular distance. # Scale theta so that cosine spread function has the right # wavelength and clamp to pi. dtheta has a wavelength of # 2pi. If desired wavelength of cosine window function is # wavelen we need to multiply dtheta by 2*pi/wavelen. dtheta = min(dtheta*2*pi/wavelen, pi) # The spread function is cos(dtheta) between -pi and pi. We add 1, # and then divide by 2 so that the value ranges 0-1 fltr[n] = (cos(dtheta)+1)/2 end return fltr end #-------------------------------------------------------------------- # gaussianangularfilter """ Orientation selective frequency domain filter with Gaussian windowing function. ``` Usage: filter = gaussianangularfilter(angl, thetaSigma, sintheta, costheta) Arguments: angl - Orientation of the filter (radians) thetasigma - Standard deviation of angular Gaussian window function. sintheta, costheta - Grids as returned by gridangles() ``` See also: [`cosineangularfilter`](@ref), [`gridangles`](@ref), [`filtergrids`](@ref) """ function gaussianangularfilter(angl::Real, thetaSigma::Real, sintheta::Array{T1,2}, costheta::Array{T2,2}) where {T1 <: Real, T2 <: Real} sinangl = sin(angl); cosangl = cos(angl) fltr = zeros(size(sintheta)) # For each point in the filter matrix calculate the angular # distance from the specified filter orientation. To overcome # the angular wrap-around problem sine difference and cosine # difference values are first computed and then the atan2 # function is used to determine angular distance. for n in eachindex(sintheta) ds = sintheta[n] * cosangl - costheta[n] * sinangl # Difference in sine. dc = costheta[n] * cosangl + sintheta[n] * sinangl # Difference in cosine. dtheta = atan(ds, dc) # Angular distance. fltr[n] = exp((-dtheta.^2) / (2 * thetaSigma^2)) end return fltr end #-------------------------------------------------------------------- #= """ homomorphic - Performs homomorphic filtering on an image. Function performs homomorphic filtering on an image. This form of filtering sharpens features and flattens lighting variantions in an image. It usually is very effective on images which have large variations in lighting, for example when a subject appears against strong backlighting. ``` Usage: newim = homomorphic(inimage,boost,CutOff,order,lhistogram_cut,uhistogram_cut, hndl) homomorphic(inimage,boost,CutOff,order,lhistogram_cut,uhistogram_cut) homomorphic(inimage,boost,CutOff,order,hndl) homomorphic(inimage,boost,CutOff,order) Parameters: (suggested values are in brackets) boost - The ratio that high frequency values are boosted relative to the low frequency values (2). CutOff - Cutoff frequency of the filter (0 - 0.5) order - Order of the modified Butterworth style filter that is used, this must be an integer > 1 (2) lhistogram_cut - Percentage of the lower end of the filtered image's histogram to be truncated, this eliminates extreme values in the image from distorting the final result. (0) uhistogram_cut - Percentage of upper end of histogram to truncate. (5) hndl - Optional handle to text box for updating messages to be sent to a GUI interface. ``` If lhistogram_cut and uhistogram_cut are not specified no histogram truncation will be applied. Suggested values: newim = homomorphic(im, 2, .25, 2, 0, 5) """ # June 1999 # December 2001 cleaned up and modified to work with colour images function him = homomorphic(im, boost, CutOff, order, varargin) if ndims(im) == 2 # Greyscale image him = Ihomomorphic(im, boost, CutOff, order, varargin) else # Assume colour image in RGB format hsv = rgb2hsv(im) # Convert to HSV and apply homomorphic # filtering to just the intensity component. hsv(:,:,3) = Ihomomorphic(hsv(:,:,3), boost, CutOff, order, varargin) him = hsv2rgb(hsv) # Convert back to RGB end #------------------------------------------------------------------------ # Internal function that does the real work #------------------------------------------------------------------------ function him = Ihomomorphic(im, boost, CutOff, order, varargin) # The possible elements in varargin are: # {lhistogram_cut, uhistogram_cut, hndl} varargin = varargin{:} if nargin == 5 nopparams = length(varargin) end if (nopparams == 3) dispStatus = 1 truncate = 1 lhistogram_cut = varargin{1} uhistogram_cut = varargin{2} hndl = varargin{3} elseif (nopparams == 2) dispStatus = 0 truncate = 1 lhistogram_cut = varargin{1} uhistogram_cut = varargin{2} elseif (nopparams == 1) dispStatus = 1 truncate = 0 hndl = varargin{1} elseif (nopparams == 0) dispStatus = 0 truncate = 0 else disp('Usage: newim = homomorphic(inimage,LowGain,HighGain,CutOff,order,lhistogram_cut,uhistogram_cut)') error('or newim = homomorphic(inimage,LowGain,HighGain,CutOff,order)') end [rows,cols] = size(im) im = normalise(im) # Rescale values 0-1 (and cast # to `double' if needed). FFTlogIm = fft2(log(im+.01)) # Take FFT of log (with offset # to avoid log of 0). h = highboostfilter([rows cols], CutOff, order, boost) him = exp(real(ifft2(FFTlogIm.*h))) # Apply the filter, invert # fft, and invert the log. if truncate # Problem: # The extreme bright values in the image are exaggerated by the filtering. # These (now very) bright values have the overall effect of darkening the # whole image when we rescale values to 0-255. # # Solution: # Construct a histogram of the image. Find the level below which a high # percentage of the image lies (say 95#). Saturate the grey levels in # the image to this level. if dispStatus set(hndl,'String','Calculating histogram and truncating...') drawnow else disp('Calculating histogram and truncating...') end him = histtruncate(him, lhistogram_cut, uhistogram_cut) else him = normalise(him) # No truncation, but fix range 0-1 end end =# #-------------------------------------------------------------------- # perfft2 """ 2D Fourier transform of Moisan's periodic image component. ``` Usage: (P, S, p, s) = perfft2(img) Argument: img - Image to be transformed Returns: P - 2D fft of periodic image component S - 2D fft of smooth component p - Periodic component (spatial domain) s - Smooth component (spatial domain) ``` Moisan's "Periodic plus Smooth Image Decomposition" decomposes an image into two components img = p + s where s is the 'smooth' component with mean 0 and p is the 'periodic' component which has no sharp discontinuities when one moves cyclically across the image boundaries. This decomposition is very useful when one wants to obtain an FFT of an image with minimal artifacts introduced from the boundary discontinuities. The image p gathers most of the image information but avoids periodization artifacts. The typical use of this function is to obtain a 'periodic only' fft of an image P = perfft2(img) Displaying the amplitude spectrum of P will yield a clean spectrum without the typical vertical-horizontal 'cross' arising from the image boundaries that you would normally see. Note if you are using the function to perform filtering in the frequency domain you may want to retain s (the smooth component in the spatial domain) and add it back to the filtered result at the end. The computational cost of obtaining the 'periodic only' FFT involves taking an additional FFT. """ function perfft2(img::Array{T,2}) where T <: Real #= Reference: This code is adapted from Lionel Moisan's Scilab function 'perdecomp.sci' "Periodic plus Smooth Image Decomposition" 07/2012 available at http://www.mi.parisdescartes.fr/~moisan/p+s Paper: L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011. =# (rows,cols) = size(img) # Compute the boundary image which is equal to the image discontinuity # values across the boundaries at the edges and is 0 elsewhere s = zeros(rows, cols) s[1,:] = img[1,:] - img[end,:] s[end,:] = -s[1,:] s[:,1] = s[:,1] + img[:,1] - img[:,end] s[:,end] = s[:,end] - img[:,1] + img[:,end] # Generate grid upon which to compute the filter for the boundary image in # the frequency domain. Note that cos() is cyclic hence the grid values can # range from 0 .. 2*pi rather than 0 .. pi and then pi .. 0 # Generate FFT of smooth component cxrange = 2*pi*(0:cols-1)/cols cyrange = 2*pi*(0:rows-1)/rows denom = [2*(2 - cos(cx) - cos(cy)) for cy in cyrange, cx in cxrange] S = fft(s)./denom # The [1,1] element of the filter will be 0 so S[1,1] may be Inf or NaN S[1,1] = 0.0 # Enforce 0 mean P = fft(img) .- S # FFT of periodic component # ** ? Perhaps have a separate version or a flag to request the # ** spatial versions of p and s s = real(ifft(S)) p = img .- s return P, S, p, s end #---------------------------------------------------------------------- # geoseries """ Generate geometric series. Useful for generating geometrically scaled wavelengths for specifying filter banks. ``` Usage 1: s = geoseries(s1, mult, n) Arguments: s1 - The starting value in the series. mult - The scaling factor between succesive values. n - The desired number of elements in the series. Usage 2: s = geoseries((s1, sn), n) Arguments: (s1, sn) - Tuple specifying the 1st and last values in the the series. n - The desired number of elements in the series. ``` Example: ``` s = geoseries(0.5, 2, 4) s = [0.5000, 1.0000, 2.0000, 4.0000] ``` Alternatively obtain the same series using ``` s = geoseries((0.5, 4), 4) ``` """ function geoseries(s1::Real, mult::Real, n::Integer) @assert n > 0 "Number of elements must be a +ve integer" @assert s1 > 0 "Starting value must be > 0" return s = s1 * mult.^(0:(n-1)) end function geoseries(s1sn::Tuple{Real, Real}, n::Int) # Compute the multiplier from the desired number of elements. # max_val = s1*mult^(n-1) s1 = s1sn[1] sn = s1sn[2] @assert s1 > 0 "Starting value must be > 0" mult = exp(log(sn/s1)/(n-1)) return geoseries(s1, mult, n) end #----------------------------------------------------------------------
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git
[ "MIT" ]
0.2.2
6a18107b6fc89bb32eb5dcec609a7355b53e8b78
code
87039
#=-------------------------------------------------------------------- phasecongruency - Functions related to the phase congruency model of feature perception and phase based approaches to image processing. Copyright (c) 2015-2018 Peter Kovesi peterkovesi.com MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. August 2015 Original conversion from MATLAB to Julia November 2017 Julia 0.6 October 2018 Julia 0.7/1.0 ---------------------------------------------------------------------=# using FFTW, Statistics using ImageCore export phasecongmono, phasesymmono, ppdrc export highpassmonogenic, bandpassmonogenic export gaborconvolve, monofilt export phasecong3, phasesym, ppdenoise #-------------------------------------------------------------------- # ppdrc """ Phase Preserving Dynamic Range Compression Generates a series of dynamic range compressed images at different scales. This function is designed to reveal subtle features within high dynamic range images such as aeromagnetic and other potential field grids. Often this kind of data is presented using histogram equalisation in conjunction with a rainbow colourmap. A problem with histogram equalisation is that the contrast amplification of a feature depends on how commonly its data value occurs, rather than on the amplitude of the feature itself. Phase Preserving Dynamic Range Compression allows subtle features to be revealed without these distortions. Perceptually important phase information is preserved and the contrast amplification of anomalies in the signal is purely a function of their amplitude. It operates as follows: first a highpass filter is applied to the data, this controls the desired scale of analysis. The 2D analytic signal of the data is then computed to obtain local phase and amplitude at each point in the image. The amplitude is attenuated by adding 1 and then taking its logarithm, the signal is then reconstructed using the original phase values. ``` Usage: dimg = ppdrc(img, wavelength; clip, n) Arguments: img - Image to be processed. A 2D array of Real or Gray elements. wavelength - Scalar value, or Vector, of wavelengths, in pixels, of the cut-in frequencies to be used when forming the highpass versions of the image. Try a range of values starting with, say, a wavelength corresponding to half the size of the image and working down to something like 50 grid units. Keyword arguments: clip - Percentage of output image histogram to clip. Only a very small value should be used, say 0.01 or 0.02, but this can be beneficial. Defaults to 0.01% n - Order of the Butterworth high pass filter. Defaults to 2 Returns: dimg - Array of the dynamic range reduced images. If only one wavelength is specified the image is returned directly, and not as a one element array of image arrays. ``` Important: Scaling of the image affects the results. If your image has values of order 1 or less it is useful to scale the image up a few orders of magnitude. The reason is that when the frequency amplitudes are attenuated we add one before taking the log to avoid obtaining negative results for values less than one. Thus if `v` is small `log(1 + v)` will not be a good approximation to `log(v)`. However, if you scale the image by say, 1000 then `log(1 + 1000*v)` will be a reasonable approximation to `log(1000*v)`. When specifying the array `wavelength` it is suggested that you use wavelengths that increase in a geometric series. You can use the function `geoseries()` to conveniently do this Example using `geoseries()` to generate a set of wavelengths that increase geometrically in 10 steps from 50 to 800. ``` dimg = ppdrc(img, geoseries((50 800), 10)) ``` See also: [`highpassmonogenic`](@ref), [`geoseries`](@ref) """ function ppdrc(img::AbstractArray{T1,2}, wavelength::Vector{T2}; clip::Real=0.01, n::Integer=2) where {T1 <: Real, T2 <: Real} #= Reference: Peter Kovesi, "Phase Preserving Tone Mapping of Non-Photographic High Dynamic Range Images". Proceedings: Digital Image Computing: Techniques and Applications 2012 (DICTA 2012). Available via IEEE Xplore Preprint: http://www.peterkovesi.com/papers/DICTA2012-tonemapping.pdf =# nscale = length(wavelength) (ph, _, E) = highpassmonogenic(img, wavelength, n) # Construct each dynamic range reduced image dimg = Vector{Array{Float64,2}}(undef, nscale) if nscale == 1 # Single image, highpassmonogenic() will have returned single # images, hence this separate case dimg[1] = histtruncate(sin.(ph).*log1p.(E), clip, clip) else # ph and E will be arrays of 2D arrays range = zeros(nscale,1) for k = 1:nscale dimg[k] = histtruncate(sin.(ph[k]).*log1p.(E[k]), clip, clip) range[k] = maximum(abs.(dimg[k])) end maxrange = maximum(range) # Set the first two pixels of each image to +range and -range so that # when the sequence of images are displayed together, say using linimix(), # there are no unexpected overall brightness changes for k = 1:nscale dimg[k][1] = maxrange dimg[k][2] = -maxrange end end if nscale == 1 # Single image, return output matrix directly return dimg[1] else return dimg end end # Case when wavelength is a single value function ppdrc(img::AbstractArray{T1,2}, wavelength::Real; clip::Real=0.01, n::Integer=2) where T1 <: Real return ppdrc(img, [wavelength]; clip=clip, n=n) end # Case for an image of Gray values function ppdrc(img::AbstractArray{T1,2}, wavelength::Real; clip::Real=0.01, n::Integer=2) where T1 <: Gray fimg = Float64.(img) return ppdrc(fimg, wavelength; clip=clip, n=n) end #-------------------------------------------------------------------- # highpassmonogenic """ Compute phase and amplitude in highpass images via monogenic filters. ``` Usage: (phase, orient, E) = highpassmonogenic(img, maxwavelength, n) Arguments: img - Image to be processed. A 2D array of Real or Gray elements. maxwavelength - Wavelength(s) in pixels of the cut-in frequency(ies) of the Butterworth highpass filter. n - The order of the Butterworth filter. This is an integer >= 1. The higher the value the sharper the cutoff. Returns: phase - The local phase. Values are between -pi/2 and pi/2 orient - The local orientation. Values between -pi and pi. Note that where the local phase is close to +-pi/2 the orientation will be poorly defined. E - Local energy, or amplitude, of the signal. ``` Note that `maxwavelength` can be an array in which case the outputs will be an array of output images of length `nscales`, where `nscales = length(maxwavelength)`. See also: [`bandpassmonogenic`](@ref), [`ppdrc`](@ref), [`monofilt`](@ref) """ function highpassmonogenic(img::AbstractArray{T1,2}, maxwavelength::Vector{T2}, n::Integer) where {T1 <: Real, T2 <: Real} if minimum(maxwavelength) < 2 error("Minimum wavelength that can be specified is 2 pixels") end nscales = length(maxwavelength) IMG = fft(img) # Generate monogenic and filter grids (H1, H2, freq) = monogenicfilters(size(img)) phase = Vector{Array{Float64,2}}(undef, nscales) orient = Array{Array{Float64,2}}(undef, nscales) E = Vector{Array{Float64,2}}(undef, nscales) f = zeros(size(img)) h1f = zeros(size(img)) h2f = zeros(size(img)) H = zeros(size(img)) for s = 1:nscales # High pass Butterworth filter H .= 1.0 .- 1.0 ./ (1.0 .+ (freq .* maxwavelength[s]).^(2*n)) f .= real.(ifft(H.*IMG)) h1f .= real.(ifft(H.*H1.*IMG)) h2f .= real.(ifft(H.*H2.*IMG)) phase[s] = atan.(f./sqrt.(h1f.^2 .+ h2f.^2 .+ eps())) orient[s] = atan.(h2f, h1f) E[s] = sqrt.(f.^2 .+ h1f.^2 .+ h2f.^2) end # If a single scale specified return output matrices directly if nscales == 1 return phase[1], orient[1], E[1] else return phase, orient, E end end # Version when maxwavelength is a scalar function highpassmonogenic(img::AbstractArray{T,2}, maxwavelength::Real, n::Integer) where T <: Real return highpassmonogenic(img, [maxwavelength], n) end # Case for an image of Gray values function highpassmonogenic(img::AbstractArray{T,2}, maxwavelength, n::Integer) where T <: Gray fimg = Float64.(img) return highpassmonogenic(fimg, maxwavelength, n) end #-------------------------------------------------------------------- # bandpassmonogenic """ Compute phase and amplitude in bandpass images via monogenic filters. ``` Usage: (phase, orient, E) = bandpassmonogenic(img, minwavelength, maxwavelength, n) Arguments: img - Image to be processed. A 2D array of Real or Gray elements. minwavelength - } Wavelength(s) in pixels of the cut-in and cut-out frequency(ies) maxwavelength - } of the Butterworth bandpass filter(s). n - The order of the Butterworth filter. This is an integer >= 1. The higher the value the sharper the cutoff. Returns: phase - The local phase. Values are between -pi/2 and pi/2 orient - The local orientation. Values between -pi and pi. Note that where the local phase is close to +-pi/2 the orientation will be poorly defined. E - Local energy, or amplitude, of the signal. ``` Note that `minwavelength` and `maxwavelength` can be (equal length) arrays in which case the outputs will be an array of output images of length `nscales`, where `nscales = length(maxwavelength)`. See also: [`highpassmonogenic`](@ref), [`ppdrc`](@ref), [`monofilt`](@ref) """ function bandpassmonogenic(img::AbstractArray{T1,2}, minwavelength::Vector{T2}, maxwavelength::Vector{T3}, n::Integer) where {T1 <: Real, T2 <: Real, T3 <: Real} if minimum(minwavelength) < 2 || minimum(maxwavelength) < 2 error("Minimum wavelength that can be specified is 2 pixels") end if length(minwavelength) != length(maxwavelength) error("Arrays of min and max wavelengths must be of same length") end nscales = length(maxwavelength) IMG = fft(img) # Generate monogenic and filter grids (H1, H2, freq) = monogenicfilters(size(img)) phase = Vector{Array{Float64,2}}(undef, nscales) orient = Array{Array{Float64,2}}(undef, nscales) E = Vector{Array{Float64,2}}(undef, nscales) f = zeros(size(img)) h1f = zeros(size(img)) h2f = zeros(size(img)) H = zeros(size(img)) for s = 1:nscales # Band pass Butterworth filter H .= 1.0 ./ (1.0 .+ (freq .* minwavelength[s]).^(2*n)) .- 1.0 ./ (1.0 .+ (freq .* maxwavelength[s]).^(2*n)) f .= real.(ifft(H.*IMG)) h1f .= real.(ifft(H.*H1.*IMG)) h2f .= real.(ifft(H.*H2.*IMG)) phase[s] = atan.(f./sqrt.(h1f.^2 .+ h2f.^2 .+ eps())) orient[s] = atan.(h2f, h1f) E[s] = sqrt.(f.^2 .+ h1f.^2 .+ h2f.^2) end # If a single scale specified return output matrices directly if nscales == 1 return phase[1], orient[1], E[1] else return phase, orient, E end end # Version when min and maxwavelength is a scalar function bandpassmonogenic(img::AbstractArray{T,2}, minwavelength::Real, maxwavelength::Real, n::Integer) where T <: Real return bandpassmonogenic(img, [minwavelength], [maxwavelength], n) end # Case for an image of Gray values function bandpassmonogenic(img::AbstractArray{T,2}, minwavelength, maxwavelength, n::Integer) where T <: Gray fimg = Float64.(img) return bandpassmonogenic(fimg, minwavelength, maxwavelength, n) end #-------------------------------------------------------------------- # phasecongmono """ Phase congruency of an image using monogenic filters. This code is considerably faster than `phasecong3()` but you may prefer the output from `phasecong3()`'s oriented filters. There are potentially many arguments, here is the full usage: ``` (PC, or, ft, T) = phasecongmono(img; nscale, minwavelength, mult, sigmaonf, k, cutoff, g, deviationgain, noisemethod) However, apart from the image, all parameters have defaults and the usage can be as simple as: (PC,) = phasecongmono(img) # Use (PC,) so that PC is not a tuple of all # the returned values More typically you will pass the image followed by a series of keyword arguments that you wish to set, leaving the remaining parameters set to their defaults, for example: (PC,) = phasecongmono(img, nscale = 5, minwavelength = 3, k = 2.5) Keyword arguments: Default values Description nscale 4 - Number of wavelet scales, try values 3-6 A lower value will reveal more fine scale features. A larger value will highlight 'major' features. minwavelength 3 - Wavelength of smallest scale filter. mult 2.1 - Scaling factor between successive filters. sigmaonf 0.55 - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. k 3.0 - No of standard deviations of the noise energy beyond the mean at which we set the noise threshold point. You may want to vary this up to a value of 10 or 20 for noisy images cutoff 0.5 - The fractional measure of frequency spread below which phase congruency values get penalized. g 10 - Controls the sharpness of the transition in the sigmoid function used to weight phase congruency for frequency spread. deviationgain 1.5 - Amplification to apply to the calculated phase deviation result. Increasing this sharpens the edge responses, but can also attenuate their magnitude if the gain is too large. Sensible values to use lie in the range 1-2. noisemethod -1 - Parameter specifies method used to determine noise statistics. -1 use median of smallest scale filter responses -2 use mode of smallest scale filter responses 0+ use noiseMethod value as the fixed noise threshold A value of 0 will turn off all noise compensation. Returned values: PC - Phase congruency indicating edge significance or - Orientation image in radians -pi/2 to pi/2, +ve anticlockwise. 0 corresponds to a vertical edge, pi/2 is horizontal. ft - Local weighted mean phase angle at every point in the image. A value of pi/2 corresponds to a bright line, 0 corresponds to a step and -pi/2 is a dark line. T - Calculated noise threshold (can be useful for diagnosing noise characteristics of images). Once you know this you can then specify fixed thresholds and save some computation time. ``` The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. The values do not seem to be very critical and the defaults are usually fine. You may want to experiment with the values of `nscales` and `k`, the noise compensation factor. Typical sequence of operations to obtain an edge image: ``` > (PC, or) = phasecongmono(img) > nm = nonmaxsup(PC, or, 1.5) # nonmaxima suppression > bw = hysthresh(nm, 0.1, 0.3) # hysteresis thresholding 0.1 - 0.3 Notes on filter settings to obtain even coverage of the spectrum sigmaonf .85 mult 1.3 sigmaonf .75 mult 1.6 (filter bandwidth ~1 octave) sigmaonf .65 mult 2.1 sigmaonf .55 mult 3 (filter bandwidth ~2 octaves) ``` Note that better results are generally achieved using the large bandwidth filters. I typically use a `sigmaOnf` value of 0.55 or even smaller. See also: [`phasecong3`](@ref), [`phasesymmono`](@ref), [`gaborconvolve`](@ref), [`filtergrid`](@ref) """ function phasecongmono(img::AbstractArray{T1,2}; nscale::Integer = 4, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 3.0, noisemethod::Real = -1, cutoff::Real = 0.5, g::Real = 10.0, deviationgain::Real = 1.5) where T1 <: Real #= References: Peter Kovesi, "Image Features From Phase Congruency". Videre: A Journal of Computer Vision Research. MIT Press. Volume 1, Number 3, Summer 1999 http://www.cs.rochester.edu/u/brown/Videre/001/v13.html Michael Felsberg and Gerald Sommer, "A New Extension of Linear Signal Processing for Estimating Local Properties and Detecting Features". DAGM Symposium 2000, Kiel Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE Transactions on Signal Processing, 49(12):3136-3144, December 2001 Peter Kovesi, "Phase Congruency Detects Corners and Edges". Proceedings DICTA 2003, Sydney Dec 10-12. Available via IEEE Xplore Preprint: http://www.peterkovesi.com/papers/phasecorners.pdf =# epsilon = .0001 # Used to prevent division by zero. (rows,cols) = size(img) # (IMG,) = perfft2(img) # Periodic Fourier transform of image # (Just get the first returned value) IMG = fft(img) # Use fft rather than perfft2 sumAn = zeros(rows,cols) # Accumulators sumf = zeros(rows,cols) sumh1 = zeros(rows,cols) sumh2 = zeros(rows,cols) maxAn = zeros(rows,cols) # Need maxAn in main scope of function IMGF = zeros(ComplexF64, rows, cols) # Buffers h = zeros(ComplexF64, rows, cols) f = zeros(rows, cols) h1 = zeros(rows, cols) h2 = zeros(rows, cols) An = zeros(rows, cols) or = zeros(rows,cols) # Final output arrays ft = zeros(rows,cols) energy = zeros(rows,cols) PC = zeros(rows,cols) tau = 0.0 T = 0.0 # Generate filter grids in the frequency domain (H, freq) = packedmonogenicfilters(rows,cols) # The two monogenic filters H1 and H2 that are packed within H are # not selective in terms of the magnitudes of the frequencies. # The code below generates bandpass log-Gabor filters which are # point-wise multiplied by IMG to produce different bandpass # versions of the image before being convolved with H1 and H2. We # also apply a low-pass filter that is as large as possible, yet # falls away to zero at the boundaries. All filters are # multiplied by this to ensure no extra frequencies at the # 'corners' of the FFT are incorporated as this can upset the # normalisation process when calculating phase symmetry. The # low-pass filter has a cutoff frequency of 0.45 and a high order of 15. for s = 1:nscale wavelength = minwavelength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. # For each element in IMG construct and apply the log Gabor filter and low-pass filter # to produce IMGF, the bandpassed image in the frequency domain. for n in eachindex(freq) IMGF[n] = IMG[n]*loggabor(freq[n], fo, sigmaonf)*lowpassfilter(freq[n], 0.45, 15) end f .= real.(ifft(IMGF)) # Bandpassed image in spatial domain. h .= IMGF.*H # Apply monogenic filter. ifft!(h) # real part of h contains convolution result with h1, # imaginary part contains convolution result with h2. # h .= ifft(IMGF.*H) # (not as fast or memory efficient) @. h1 = real(h) @. h2 = imag(h) @. An = sqrt(f^2 + h1^2 + h2^2) # Amplitude of this scale component. @. sumAn += An # Sum of component amplitudes over scale. @. sumf += f @. sumh1 += h1 @. sumh2 += h2 # At the smallest scale estimate noise characteristics from the # distribution of the filter amplitude responses stored in sumAn. # tau is the Rayleigh parameter that is used to describe the # distribution. if s == 1 if abs(noisemethod + 1) < epsilon # Use median to estimate noise statistics tau = median(sumAn)/sqrt(log(4)) elseif abs(noisemethod + 2) < epsilon # Use mode to estimate noise statistics tau = rayleighmode(sumAn) end maxAn .= An else # Record maximum amplitude of components across scales. This is needed # to determine the frequency spread weighting. maxAn .= max.(maxAn, An) end end # For each scale # Form weighting that penalizes frequency distributions that are # particularly narrow. Calculate fractional 'width' of the frequencies # present by taking the sum of the filter response amplitudes and dividing # by the maximum component amplitude at each point on the image. If # there is only one non-zero component width takes on a value of 0, if # all components are equal width is 1. width = (sumAn./(maxAn .+ epsilon) .- 1) ./ (nscale-1) # Now calculate the sigmoidal weighting function. weight = 1.0 ./ (1 .+ exp.((cutoff .- width).*g)) # Automatically determine noise threshold # # Assuming the noise is Gaussian the response of the filters to noise will # form Rayleigh distribution. We use the filter responses at the smallest # scale as a guide to the underlying noise level because the smallest scale # filters spend most of their time responding to noise, and only # occasionally responding to features. Either the median, or the mode, of # the distribution of filter responses can be used as a robust statistic to # estimate the distribution mean and standard deviation as these are related # to the median or mode by fixed constants. The response of the larger # scale filters to noise can then be estimated from the smallest scale # filter response according to their relative bandwidths. # # This code assumes that the expected response to noise on the phase # congruency calculation is simply the sum of the expected noise responses # of each of the filters. This is a simplistic overestimate, however these # two quantities should be related by some constant that will depend on the # filter bank being used. Appropriate tuning of the parameter 'k' will # allow you to produce the desired output. (though the value of k seems to # be not at all critical) if noisemethod >= 0 # We are using a fixed noise threshold T = noisemethod # use supplied noiseMethod value as the threshold else # Estimate the effect of noise on the sum of the filter responses as # the sum of estimated individual responses (this is a simplistic # overestimate). As the estimated noise response at successive scales # is scaled inversely proportional to bandwidth we have a simple # geometric sum. totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult)) # Calculate mean and std dev from tau using fixed relationship # between these parameters and tau. See # http://mathworld.wolfram.com/RayleighDistribution.html EstNoiseEnergyMean = totalTau*sqrt(pi/2) # Expected mean and std EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2) # values of noise energy T = EstNoiseEnergyMean + k*EstNoiseEnergySigma # Noise threshold end #------ Final computation of key quantities ------- # Orientation - this varies +/- pi/2 @. or = atan(-sumh2/sumh1) # Feature type - a phase angle -pi/2 to pi/2. @. ft = atan(sumf, sqrt(sumh1^2 + sumh2^2)) # Overall energy @. energy = sqrt(sumf^2 + sumh1^2 + sumh2^2) # Compute phase congruency. The original measure, # PC = energy/sumAn # is proportional to the weighted cos(phasedeviation). This is not very # localised # A more localised measure to use is # PC = 1 - phasedeviation. # The expression below uses the fact that the weighted cosine of # the phase deviation is given by energy/sumAn. Note, in the # expression below that the noise threshold is not subtracted from # energy immediately as this would interfere with the phase # deviation computation. Instead it is applied as a weighting as # a fraction by which energy exceeds the noise threshold. This # weighting is applied in addition to the weighting for frequency # spread. Note also the phase deviation gain factor which acts to # sharpen up the edge response. A value of 1.5 seems to work well. # Sensible values are from 1 to about 2. @. PC = weight*max(1 - deviationgain*acos(energy/(sumAn + epsilon)),0) * max(energy-T,0)/(energy+epsilon) return PC, or, ft, T end # Case for an image of Gray values function phasecongmono(img::AbstractArray{T1,2}; nscale::Integer = 4, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 3.0, noisemethod::Real = -1, cutoff::Real = 0.5, g::Real = 10.0, deviationgain::Real = 1.5) where T1 <: Gray fimg = Float64.(img) return phasecongmono(fimg, nscale=nscale, minwavelength=minwavelength, mult=mult, sigmaonf=sigmaonf, k=k, noisemethod=noisemethod, cutoff=cutoff, g=g, deviationgain=deviationgain) end #------------------------------------------------------------------------- """ rayleighmode Computes mode of a vector/matrix of data that is assumed to come from a Rayleigh distribution. ``` Usage: rmode = rayleighmode(data, nbins) Arguments: data - data assumed to come from a Rayleigh distribution nbins - Optional number of bins to use when forming histogram of the data to determine the mode. ``` Mode is computed by forming a histogram of the data over 50 bins and then finding the maximum value in the histogram. Mean and standard deviation can then be calculated from the mode as they are related by fixed constants. ``` mean = mode * sqrt(pi/2) std dev = mode * sqrt((4-pi)/2) See http://mathworld.wolfram.com/RayleighDistribution.html http://en.wikipedia.org/wiki/Rayleigh_distribution ``` """ function rayleighmode(X, nbins::Integer= 50) edges, counts = build_histogram(X, nbins=nbins) ind = argmax(counts) return (edges[ind]+edges[ind+1])/2 end #------------------------------------------------------------------------- # phasesymmono """ Phase symmetry of an image using monogenic filters. This function calculates the phase symmetry of points in an image. This is a contrast invariant measure of symmetry. This function can be used as a line and blob detector. The greyscale polarity of the lines that you want to find can be specified. This code is considerably faster than `phasesym()` but you may prefer the output from `phasesym()`'s oriented filters. There are potentially many arguments, here is the full usage: ``` (phSym, symmetryEnergy, T) = phasesymmono(img; nscale, minwaveLength, mult, sigmaonf, k, polarity, noisemethod) ``` However, apart from the image, all parameters have defaults and the usage can be as simple as: ``` (phSym,) = phasesymmono(img) Keyword arguments: Default values Description nscale 5 - Number of wavelet scales, try values 3-6 minwaveLength 3 - Wavelength of smallest scale filter. mult 2.1 - Scaling factor between successive filters. sigmaonf 0.55 - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. k 2.0 - No of standard deviations of the noise energy beyond the mean at which we set the noise threshold point. You may want to vary this up to a value of 10 or 20 for noisy images polarity 0 - Controls 'polarity' of symmetry features to find. 1 - just return 'bright' points -1 - just return 'dark' points 0 - return bright and dark points. noisemethod -1 - Parameter specifies method used to determine noise statistics. -1 use median of smallest scale filter responses -2 use mode of smallest scale filter responses 0+ use noiseMethod value as the fixed noise threshold A value of 0 will turn off all noise compensation. Return values: phSym - Phase symmetry image (values between 0 and 1). symmetryEnergy - Un-normalised raw symmetry energy which may be more to your liking. T - Calculated noise threshold (can be useful for diagnosing noise characteristics of images) ``` The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. The values do not seem to be very critical and the defaults are usually fine. You may want to experiment with the values of `nscales` and `k`, the noise compensation factor. Notes on filter settings to obtain even coverage of the spectrum ``` sigmaonf .85 mult 1.3 sigmaonf .75 mult 1.6 (filter bandwidth ~1 octave) sigmaonf .65 mult 2.1 sigmaonf .55 mult 3 (filter bandwidth ~2 octaves) ``` See Also: [`phasesym`](@ref), [`phasecongmono`](@ref) """ function phasesymmono(img::AbstractArray{T1,2}; nscale::Integer = 5, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2.0, polarity::Integer = 0, noisemethod::Real = -1) where T1 <: Real #= References: Peter Kovesi, "Symmetry and Asymmetry From Local Phase" AI'97, Tenth Australian Joint Conference on Artificial Intelligence. 2 - 4 December 1997. http://www.peterkovesi.com/papers/ai97.pdf Peter Kovesi, "Image Features From Phase Congruency". Videre: A Journal of Computer Vision Research. MIT Press. Volume 1, Number 3, Summer 1999 http://www.cs.rochester.edu/u/brown/Videre/001/v13.html Michael Felsberg and Gerald Sommer, "A New Extension of Linear Signal Processing for Estimating Local Properties and Detecting Features". DAGM Symposium 2000, Kiel Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE Transactions on Signal Processing, 49(12):3136-3144, December 2001 =# epsilon = .0001 # Used to prevent division by zero. (rows,cols) = size(img) IMG = fft(img) # Fourier transform of image tau = 0.0 symmetryEnergy = zeros(rows,cols) # Matrix for accumulating weighted phase # symmetry values (energy). sumAn = zeros(rows,cols) # Matrix for accumulating filter response # amplitude values. IMGF = zeros(ComplexF64, rows, cols) h = zeros(ComplexF64, rows, cols) f = zeros(rows, cols) # Generate filter grids in the frequency domain (H, freq) = packedmonogenicfilters(rows,cols) # The two monogenic filters H1 and H2 that are packed within H are # not selective in terms of the magnitudes of the frequencies. # The code below generates bandpass log-Gabor filters which are # point-wise multiplied by IMG to produce different bandpass # versions of the image before being convolved with H1 and H2. We # also apply a low-pass filter that is as large as possible, yet # falls away to zero at the boundaries. All filters are # multiplied by this to ensure no extra frequencies at the # 'corners' of the FFT are incorporated as this can upset the # normalisation process when calculating phase symmetry for s = 1:nscale wavelength = minwavelength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. # For each element in IMG construct and apply the log Gabor filter and low-pass filter # to produce IMGF, the bandpassed image in the frequency domain for n in eachindex(freq) IMGF[n] = IMG[n]*loggabor(freq[n], fo, sigmaonf)*lowpassfilter(freq[n], 0.4, 10) end f .= real.(ifft(IMGF)) # Bandpassed image in spatial domain. h .= IMGF.*H # Apply monogenic filter. ifft!(h) # real part of h contains convolution result with h1, # imaginary part contains convolution result with h2. # h .= ifft(IMGF.*H) # (not as fast or memory efficient) # Now calculate the phase symmetry measure. for n in eachindex(h) hAmp2 = real(h[n])^2 + imag(h[n])^2 # Squared amplitude of h1 h2 filter results sumAn[n] += sqrt(f[n]^2 + hAmp2) # Magnitude of Energy. if polarity == 0 # look for 'white' and 'black' spots symmetryEnergy[n] += abs(f[n]) - sqrt(hAmp2) elseif polarity == 1 # Just look for 'white' spots symmetryEnergy[n] += f[n] - sqrt(hAmp2) elseif polarity == -1 # Just look for 'black' spots symmetryEnergy[n] += (-f[n] - sqrt(hAmp2)) end end # At the smallest scale estimate noise characteristics from the # distribution of the filter amplitude responses stored in sumAn. # tau is the Rayleigh parameter that is used to specify the # distribution. if s == 1 if abs(noisemethod + 1) < epsilon # Use median to estimate noise statistics tau = median(sumAn)/sqrt(log(4)) elseif abs(noisemethod + 2) < epsilon # Use mode to estimate noise statistics tau = rayleighmode(sumAn) end end end # For each scale # Compensate for noise # # Assuming the noise is Gaussian the response of the filters to noise will # form Rayleigh distribution. We use the filter responses at the smallest # scale as a guide to the underlying noise level because the smallest scale # filters spend most of their time responding to noise, and only # occasionally responding to features. Either the median, or the mode, of # the distribution of filter responses can be used as a robust statistic to # estimate the distribution mean and standard deviation as these are related # to the median or mode by fixed constants. The response of the larger # scale filters to noise can then be estimated from the smallest scale # filter response according to their relative bandwidths. # # This code assumes that the expected response to noise on the phase symmetry # calculation is simply the sum of the expected noise responses of each of # the filters. This is a simplistic overestimate, however these two # quantities should be related by some constant that will depend on the # filter bank being used. Appropriate tuning of the parameter 'k' will # allow you to produce the desired output. (though the value of k seems to # be not at all critical) if noisemethod >= 0 # We are using a fixed noise threshold T = noisemethod # use supplied noiseMethod value as the threshold else # Estimate the effect of noise on the sum of the filter responses as # the sum of estimated individual responses (this is a simplistic # overestimate). As the estimated noise response at successive scales # is scaled inversely proportional to bandwidth we have a simple # geometric sum. totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult)) # Calculate mean and std dev from tau using fixed relationship # between these parameters and tau. See # http://mathworld.wolfram.com/RayleighDistribution.html EstNoiseEnergyMean = totalTau*sqrt(pi/2) # Expected mean and std EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2) # values of noise energy # Noise threshold, make sure it is not less than epsilon T = max(EstNoiseEnergyMean + k*EstNoiseEnergySigma, epsilon) end # Apply noise threshold - effectively wavelet denoising soft thresholding # and normalize symmetryEnergy by the sumAn to obtain phase symmetry. # Note the max operation is not necessary if you are after speed, it is # just 'tidy' not having -ve symmetry values phSym = max.(symmetryEnergy .- T, 0) ./ (sumAn .+ epsilon) return phSym, symmetryEnergy, T end # Version for an array of Gray elements function phasesymmono(img::AbstractArray{T1,2}; nscale::Integer = 5, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2.0, polarity::Integer = 0, noisemethod::Real = -1) where T1 <: Gray fimg = Float64.(img) return phasesymmono(fimg; nscale=nscale, minwavelength= minwavelength, mult=mult, sigmaonf=sigmaonf, k=k, polarity=polarity, noisemethod=noisemethod) end #------------------------------------------------------------------ # monofilt """ Apply monogenic filters to an image to obtain 2D analytic signal. This is an implementation of Felsberg's monogenic filters ``` Usage: (f, h1f, h2f, A, theta, psi) = monofilt(img, nscale, minWaveLength, mult, sigmaOnf, orientWrap) 3 4 2 0.65 true/false Arguments: The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. Variable Suggested Description name value ---------------------------------------------------------- img Image to be convolved. An Array of Real or Gray. nscale = 3 Number of filter scales. minWaveLength = 4 Wavelength of smallest scale filter. mult = 2 Scaling factor between successive filters. sigmaonf = 0.65 Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. orientWrap false Optional Boolean flag to turn on/off 'wrapping' of orientation data from a range of -pi .. pi to the range 0 .. pi. This affects the interpretation of the phase angle - see note below. Defaults to false. Returns: f - vector of bandpass filter responses with respect to scale. h1f - vector of bandpass h1 filter responses wrt scale. h2f - vector of bandpass h2 filter responses. A - vector of monogenic energy responses. theta - vector of phase orientation responses. psi - vector of phase angle responses. ``` If `orientWrap` is true `theta` will be returned in the range `0 .. pi` Experimentation with `sigmaonf` can be useful depending on your application. I have found values as low as 0.2 (a filter with a *very* large bandwidth) to be useful on some occasions. See also: [`gaborconvolve`](@ref) """ function monofilt(img::AbstractArray{T1,2}, nscale::Integer, minWaveLength::Real, mult::Real, sigmaOnf::Real, orientWrap::Bool = false) where T1 <: Real #= References: Michael Felsberg and Gerald Sommer. "A New Extension of Linear Signal Processing for Estimating Local Properties and Detecting Features" DAGM Symposium 2000, Kiel Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE Transactions on Signal Processing, 49(12):3136-3144, December 2001 =# (rows,cols) = size(img) IMG = fft(img) # Generate filters (H1, H2, freq) = monogenicfilters(rows,cols) # The two monogenic filters H1 and H2 are oriented in frequency space # but are not selective in terms of the magnitudes of the # frequencies. The code below generates bandpass log-Gabor filters # which are point-wise multiplied by H1 and H2 to produce different # bandpass versions of H1 and H2 psi = Array{Array{Float64,2}}(undef, nscale) theta = Array{Array{Float64,2}}(undef, nscale) A = Array{Array{Float64,2}}(undef, nscale) f = Array{Array{Float64,2}}(undef, nscale) h1f = Array{Array{Float64,2}}(undef, nscale) h2f = Array{Array{Float64,2}}(undef, nscale) H1s = zeros(ComplexF64, rows, cols) H2s = zeros(ComplexF64, rows, cols) logGabor = zeros(rows, cols) for s = 1:nscale wavelength = minWaveLength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. @. logGabor = loggabor(freq, fo, sigmaOnf) # Generate bandpass versions of H1 and H2 at this scale H1s .= H1.*logGabor H2s .= H2.*logGabor # Apply filters to image in the frequency domain and get spatial # results f[s] = real.(ifft(IMG.*logGabor)) h1f[s] = real.(ifft(IMG.*H1s)) h2f[s] = real.(ifft(IMG.*H2s)) A[s] = sqrt.(f[s].^2 .+ h1f[s].^2 .+ h2f[s].^2) # Magnitude of Energy. theta[s] = atan.(h2f[s], h1f[s]) # Orientation. # Here phase is measured relative to the h1f-h2f plane as an # 'elevation' angle that ranges over +- pi/2 psi[s] = atan.(f[s], sqrt.(h1f[s].^2 .+ h2f[s].^2)) if orientWrap # Wrap orientation values back into the range 0-pi theta[s][theta[s] .< 0] += pi end end return f, h1f, h2f, A, theta, psi end # Version for an array of Gray elements function monofilt(img::AbstractArray{T1,2}, nscale::Integer, minWaveLength::Real, mult::Real, sigmaOnf::Real, orientWrap::Bool = false) where T1 <: Gray fimg = Float64.(img) return monofilt(fimg, nscale, minWaveLength, mult, sigmaOnf, orientWrap) end #------------------------------------------------------------------ # gaborconvolve """ Convolve an image with a bank of log-Gabor filters. ``` Usage: (EO, BP) = gaborconvolve(img, nscale, norient, minWaveLength, mult, sigmaOnf, dThetaOnSigma, Lnorm) Arguments: The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. Variable Suggested Description name value ---------------------------------------------------------- img Image to be convolved. nscale = 4 Number of wavelet scales. norient = 6 Number of filter orientations. minWaveLength = 3 Wavelength of smallest scale filter. mult = 1.7 Scaling factor between successive filters. sigmaOnf = 0.65 Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. dThetaOnSigma = 1.3 Ratio of angular interval between filter orientations and the standard deviation of the angular Gaussian function used to construct filters in the freq. plane. Lnorm 0 Optional integer indicating what norm the filters should be normalized to. A value of 1 will produce filters with the same L1 norm, 2 will produce filters with matching L2 norm. the default value of 0 results in no normalization (the filters have unit height Gaussian transfer functions on a log frequency scale) Returns: EO - 2D array of arrays of complex valued convolution results EO[s,o] = convolution result for scale s and orientation o. The real part is the result of convolving with the even symmetric filter, the imaginary part is the result from convolution with the odd symmetric filter. Hence: abs.(EO[s,o]) returns the magnitude of the convolution over the image at scale s and orientation o. angle.(EO[s,o]) returns the phase angles. BP - Array of bandpass images corresponding to each scale s. ``` Notes on filter settings to obtain even coverage of the spectrum energy ``` dThetaOnSigma 1.2 - 1.3 sigmaOnf .90 mult 1.15 sigmaOnf .85 mult 1.2 sigmaOnf .75 mult 1.4 (bandwidth ~1 octave) sigmaOnf .65 mult 1.7 sigmaOnf .55 mult 2.2 (bandwidth ~2 octaves) ``` The determination of `mult` given `sigmaOnf` is entirely empirical. What I do is plot out the sum of the squared filter amplitudes in the frequency domain and see how even the coverage of the spectrum is. If there are concentric 'gaps' in the spectrum one needs to reduce mult and/or reduce `sigmaOnf` (which increases filter bandwidth) If there are 'gaps' radiating outwards then one needs to reduce `dthetaOnSigma` (increasing angular bandwidth of the filters) """ function gaborconvolve(img::AbstractArray{T1,2}, nscale::Integer, norient::Integer, minWaveLength::Real, mult::Real, sigmaOnf::Real, dThetaOnSigma::Real, Lnorm::Integer = 0) where T1 <:Real #= For details of log-Gabor filters see: D. J. Field, "Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells", Journal of The Optical Society of America A, Vol 4, No. 12, December 1987. pp 2379-2394 =# if !in(Lnorm, [0, 1, 2]) error("Lnorm must be 0 1 or 2") end (rows, cols) = size(img) IMG = fft(img) EO = Array{Array{ComplexF64,2}}(undef, nscale, norient) BP = Array{Array{Float64,2}}(undef, nscale) logGabor = Array{Array{Float64,2}}(undef, nscale) filter = zeros(rows, cols) angfilter = zeros(rows, cols) # Generate grid data for constructing filters in the frequency domain (freq, fx, fy) = filtergrids(rows, cols) (sintheta, costheta) = gridangles(freq, fx, fy) # Calculate the standard deviation of the angular Gaussian # function used to construct filters in the freq. plane. thetaSigma = pi/norient/dThetaOnSigma # Filters are constructed in terms of two components. # 1) The radial component, which controls the frequency band that the filter # responds to # 2) The angular component, which controls the orientation that the filter # responds to. # The two components are multiplied together to construct the overall filter. # Construct the radial filter components. All log Gabor filters # are multiplied by a large, but sharp,low-pass filter to ensure # no extra frequencies at the 'corners' of the FFT are # incorporated. This keeps the overall norm of each filter not too # dissimilar. for s = 1:nscale wavelength = minWaveLength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. # Construct the log Gabor filter and apply the low-pass filter logGabor[s] = zeros(rows,cols) for n in eachindex(freq) logGabor[s][n] = loggabor(freq[n], fo, sigmaOnf)*lowpassfilter(freq[n], 0.45, 15) end # Compute bandpass image for each scale if Lnorm == 2 # Normalize filters to have same L2 norm L = sqrt.(sum(logGabor[s].^2)) elseif Lnorm == 1 # Normalize to have same L1 L = sum(abs.(real.(ifft(logGabor[s])))) elseif Lnorm == 0 # No normalization L = 1 end logGabor[s] ./= L BP[s] = real.(ifft(IMG .* logGabor[s])) end # The main loop... for o = 1:norient # For each orientation. # Construct the angular filter angl = (o-1)*pi/norient # Filter angle. angfilter .= gaussianangularfilter(angl, thetaSigma, sintheta, costheta) wavelength = minWaveLength # Initialize filter wavelength. for s = 1:nscale # For each scale. # Multiply by the angular filter to get the overall filter @. filter = logGabor[s] * angfilter if Lnorm == 2 # Normalize filters to have the same L2 norm (** Why sqrt(2)?) L = sqrt.(sum(real.(filter).^2 + imag.(filter).^2 ))/sqrt(2) elseif Lnorm == 1 # Normalize to have same L1 L = sum(abs.(real.(ifft(filter)))) elseif Lnorm == 0 # No normalization L = 1 end filter ./= L # Do the convolution, back transform, and save the result in EO EO[s,o] = ifft(IMG .* filter) wavelength = wavelength * mult # Wavelength of next filter end # ... and process the next scale end # For each orientation return EO, BP end # Version for an array of Gray elements function gaborconvolve(img::AbstractArray{T1,2}, nscale::Integer, norient::Integer, minWaveLength::Real, mult::Real, sigmaOnf::Real, dThetaOnSigma::Real, Lnorm::Integer = 0) where T1 <: Gray fimg = Float64.(img) return gaborconvolve(fimg, nscale, norient, minWaveLength, mult, sigmaOnf, dThetaOnSigma, Lnorm) end #------------------------------------------------------------------ # phasecong3 """ Computes edge and corner phase congruency in an image via log-Gabor filters. There are potentially many arguments, here is the full usage: ``` (M, m, or, ft, EO, T) = phasecong3(img; nscale, norient, minwavelength, mult, sigmaonf, k, cutoff, g, noisemethod) ``` However, apart from the image, all parameters have defaults and the usage can be as simple as: ``` (M,) = phasecong3(img) Keyword Arguments: Default values Description nscale 4 - Number of wavelet scales, try values 3-6 norient 6 - Number of filter orientations. minwavelength 3 - Wavelength of smallest scale filter. mult 2.1 - Scaling factor between successive filters. sigmaonf 0.55 - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. k 2.0 - No of standard deviations of the noise energy beyond the mean at which we set the noise threshold point. You may want to vary this up to a value of 10 or 20 for noisy images cutoff 0.5 - The fractional measure of frequency spread below which phase congruency values get penalized. g 10 - Controls the sharpness of the transition in the sigmoid function used to weight phase congruency for frequency spread. noisemethod -1 - Parameter specifies method used to determine noise statistics. -1 use median of smallest scale filter responses -2 use mode of smallest scale filter responses 0+ use noisemethod value as the fixed noise threshold Returned values: M - Maximum moment of phase congruency covariance. This is used as a indicator of edge strength. m - Minimum moment of phase congruency covariance. This is used as a indicator of corner strength. or - Orientation image in radians -pi/2 to pi/2, +ve anticlockwise. 0 corresponds to a vertical edge, pi/2 is horizontal. ft - Local weighted mean phase angle at every point in the image. A value of pi/2 corresponds to a bright line, 0 corresponds to a step and -pi/2 is a dark line. EO - A 2D array of complex valued convolution results for each scale and orientation T - Calculated noise threshold (can be useful for diagnosing noise characteristics of images). Once you know this you can then specify fixed thresholds and save some computation time. ``` `EO[s,o]` = convolution result for scale `s` and orientation `o`. The real part is the result of convolving with the even symmetric filter, the imaginary part is the result from convolution with the odd symmetric filter. Hence: `abs.(EO[s,o])` returns the magnitude of the convolution over the image at scale `s` and orientation `o`, `angle.(EO[s,o])` returns the phase angles. The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. The values do not seem to be very critical and the defaults are usually fine. You may want to experiment with the values of `nscales` and `k`, the noise compensation factor. Some filter parameters to obtain even coverage of the spectrum ``` sigmaonf .85 mult 1.3 sigmaonf .75 mult 1.6 (filter bandwidth ~1 octave) sigmaonf .65 mult 2.1 sigmaonf .55 mult 3 (filter bandwidth ~2 octaves) ``` See also: [`phasesym`](@ref), [`gaborconvolve`](@ref) """ function phasecong3(img::AbstractArray{T1,2}; nscale::Integer = 4, norient::Integer = 6, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2, cutoff::Real = 0.5, g::Real = 10, noisemethod::Real = -1) where T1 <: Real #= References: Peter Kovesi, "Image Features From Phase Congruency". Videre: A Journal of Computer Vision Research. MIT Press. Volume 1, Number 3, Summer 1999 http://www.cs.rochester.edu/u/brown/Videre/001/v13.html Peter Kovesi, "Phase Congruency Detects Corners and Edges". Proceedings DICTA 2003, Sydney Dec 10-12. IEEE Xplore Preprint: http://www.peterkovesi.com/papers/phasecorners.pdf =# # To Do: Extra sanity checks on arguments epsilon = 1e-5 # Used to prevent division by zero. (rows,cols) = size(img) IMG = fft(img) # A massive set of buffer matrices... logGabor = Array{Array{Float64,2}}(undef, nscale) filter = zeros(rows, cols) EO = Array{Array{ComplexF64,2}}(undef, nscale, norient) # Array of convolution results. EnergyV = zeros(rows,cols,3) # Total energy vector, used for # feature orientation and type # calculation covx2 = zeros(rows,cols) # Matrices for covariance data covy2 = zeros(rows,cols) covxy = zeros(rows,cols) # Various arrays for the computation of phase congruency at each orientation sumE_ThisOrient = zeros(rows,cols) sumO_ThisOrient = zeros(rows,cols) sumAn_ThisOrient = zeros(rows,cols) Energy = zeros(rows,cols) MeanE = zeros(rows,cols) MeanO = zeros(rows,cols) An = zeros(rows,cols) maxAn = zeros(rows,cols) M = zeros(rows,cols) # Output: max and min moments of covariance m = zeros(rows,cols) T = 0.0 # Needed in main scope tau = 0.0 # Generate grid data for constructing filters in the frequency domain (freq, fx, fy) = filtergrids(rows, cols) (sintheta, costheta) = gridangles(freq, fx, fy) # Filters are constructed in terms of two components. # 1) The radial component, which controls the frequency band that the filter # responds to # 2) The angular component, which controls the orientation that the filter # responds to. # The two components are multiplied together to construct the overall filter. # Construct the radial filter components. All log Gabor filters # are multiplied by a large, but sharp,low-pass filter to ensure # no extra frequencies at the 'corners' of the FFT are # incorporated. This ensures no extra frequencies at the # 'corners' of the FFT are incorporated as this seems to upset the # normalisation process when calculating phase congruency. for s = 1:nscale wavelength = minwavelength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. # Construct the log Gabor filter and apply the low-pass filter logGabor[s] = zeros(rows,cols) for n in eachindex(freq) logGabor[s][n] = loggabor(freq[n], fo, sigmaonf)*lowpassfilter(freq[n], 0.45, 15) end end ## The main loop... for o = 1:norient # For each orientation... # Construct the angular filter function angl = (o-1)*pi/norient # Filter angle. wavelen = 4*pi/norient # Desired wavelength of cosine window function angfilter = cosineangularfilter(angl, wavelen, sintheta, costheta) sumE_ThisOrient .= 0 # Initialize accumulator matrices. sumO_ThisOrient .= 0 sumAn_ThisOrient .= 0 Energy .= 0 for s = 1:nscale # For each scale... filter .= logGabor[s] .* angfilter # Multiply radial and angular # components to get the filter. # Convolve image with even and odd filters returning the result in EO EO[s,o] = ifft(IMG .* filter) An .= abs.(EO[s,o]) # Amplitude of even & odd filter response. sumAn_ThisOrient .+= An # Sum of amplitude responses. sumE_ThisOrient .+= real.(EO[s,o]) # Sum of even filter convolution results. sumO_ThisOrient .+= imag.(EO[s,o]) # Sum of odd filter convolution results. # At the smallest scale estimate noise characteristics from the # distribution of the filter amplitude responses stored in sumAn. # tau is the Rayleigh parameter that is used to describe the # distribution. if s == 1 if abs(noisemethod + 1) < epsilon # Use median to estimate noise statistics tau = median(sumAn_ThisOrient)/sqrt(log(4)) elseif abs(noisemethod + 2) < epsilon # Use mode to estimate noise statistics tau = rayleighmode(sumAn_ThisOrient) end maxAn .= An else # Record maximum amplitude of components across scales. This is needed # to determine the frequency spread weighting. maxAn .= max.(maxAn,An) end end # ... and process the next scale # Accumulate total 3D energy vector data, this will be used to # determine overall feature orientation and feature phase/type EnergyV[:,:,1] .+= sumE_ThisOrient EnergyV[:,:,2] .+= cos(angl)*sumO_ThisOrient EnergyV[:,:,3] .+= sin(angl)*sumO_ThisOrient # Get weighted mean filter response vector, this gives the weighted mean # phase angle. for n in eachindex(Energy) XEnergy = sqrt(sumE_ThisOrient[n]^2 + sumO_ThisOrient[n]^2) + epsilon MeanE[n] = sumE_ThisOrient[n] / XEnergy MeanO[n] = sumO_ThisOrient[n] / XEnergy end # Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by # using dot and cross products between the weighted mean filter response # vector and the individual filter response vectors at each scale. This # quantity is phase congruency multiplied by An, which we call energy. for s = 1:nscale for n in eachindex(Energy) E = real(EO[s,o][n]); # Extract even and odd O = imag(EO[s,o][n]) # convolution results. Energy[n] += (E*MeanE[n] + O*MeanO[n] - abs(E*MeanO[n] - O*MeanE[n])) end end ## Automatically determine noise threshold # # Assuming the noise is Gaussian the response of the filters to noise will # form Rayleigh distribution. We use the filter responses at the smallest # scale as a guide to the underlying noise level because the smallest scale # filters spend most of their time responding to noise, and only # occasionally responding to features. Either the median, or the mode, of # the distribution of filter responses can be used as a robust statistic to # estimate the distribution mean and standard deviation as these are related # to the median or mode by fixed constants. The response of the larger # scale filters to noise can then be estimated from the smallest scale # filter response according to their relative bandwidths. # # This code assumes that the expected response to noise on the phase congruency # calculation is simply the sum of the expected noise responses of each of # the filters. This is a simplistic overestimate, however these two # quantities should be related by some constant that will depend on the # filter bank being used. Appropriate tuning of the parameter 'k' will # allow you to produce the desired output. if noisemethod >= 0 # We are using a fixed noise threshold T = noisemethod # use supplied noiseMethod value as the threshold else # Estimate the effect of noise on the sum of the filter responses as # the sum of estimated individual responses (this is a simplistic # overestimate). As the estimated noise response at successive scales # is scaled inversely proportional to bandwidth we have a simple # geometric sum. totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult)) # Calculate mean and std dev from tau using fixed relationship # between these parameters and tau. See # http://mathworld.wolfram.com/RayleighDistribution.html EstNoiseEnergyMean = totalTau*sqrt(pi/2) # Expected mean and std EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2) # values of noise energy T = EstNoiseEnergyMean + k*EstNoiseEnergySigma # Noise threshold end # Apply noise threshold, this is effectively wavelet denoising via # soft thresholding. @. Energy = max(Energy - T, 0) for n in eachindex(Energy) # Form weighting that penalizes frequency distributions # that are particularly narrow. Calculate fractional # 'width' of the frequencies present by taking the sum of # the filter response amplitudes and dividing by the # maximum amplitude at each point on the image. If there # is only one non-zero component width takes on a value of # 0, if all components are equal width is 1. width = (sumAn_ThisOrient[n]/(maxAn[n] + epsilon) - 1) / (nscale-1) # The sigmoidal weighting function for this orientation given the 'width' weight = 1.0 / (1 + exp((cutoff - width)*g)) # Apply weighting to energy and then calculate phase congruency PCo = weight*Energy[n]/sumAn_ThisOrient[n] # Build up covariance data for every point covx = PCo*cos(angl) covy = PCo*sin(angl) covx2[n] += covx^2 covy2[n] += covy^2 covxy[n] += covx*covy end end # For each orientation ## Edge and Corner calculations # The following code calculates the principal vector of the phase # congruency covariance data and calculates the minimum and # maximum moments - these correspond to the singular values. for n in eachindex(Energy) # First normalise covariance values by the number of orientations/2 covx2[n] /= (norient/2) covy2[n] /= (norient/2) covxy[n] *= 4/norient # This gives us 2*covxy/(norient/2) denom = sqrt(covxy[n]^2 + (covx2[n]-covy2[n])^2)+epsilon M[n] = (covy2[n]+covx2[n] + denom)/2 # Maximum moment m[n] = (covy2[n]+covx2[n] - denom)/2 # ... and minimum moment end # Orientation and feature phase/type computation @views or = atan.(-EnergyV[:,:,3]./EnergyV[:,:,2]) OddV = sqrt.(EnergyV[:,:,2].^2 + EnergyV[:,:,3].^2) @views featType = atan.(EnergyV[:,:,1], OddV) # Feature phase pi/2 <-> white line, # 0 <-> step, -pi/2 <-> black line return M, m, or, featType, EO, T end # Version for an array of Gray elements function phasecong3(img::AbstractArray{T1,2}; nscale::Integer = 4, norient::Integer = 6, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2, cutoff::Real = 0.5, g::Real = 10, noisemethod::Real = -1) where T1 <: Gray fimg = Float64.(img) return phasecong3(fimg; nscale=nscale, norient=norient, minwavelength=minwavelength, mult=mult, sigmaonf=sigmaonf, k=k, cutoff=cutoff, g=g, noisemethod=noisemethod) end #------------------------------------------------------------------ # phasesym """ Compute phase symmetry on an image via log-Gabor filters. This function calculates the phase symmetry of points in an image. This is a contrast invariant measure of symmetry. This function can be used as a line and blob detector. The greyscale polarity of the lines that you want to find can be specified. ``` Usage: (phSym, orientation, totalEnergy, T) = phasesym(img; nscale = 5, norient = 6, minwavelength = 3, mult = 2.1, sigmaonf = 0.55, k = 2, polarity = 0, noisemethod = -1) However, apart from the image, all parameters have defaults and the usage can be as simple as: (phSym,) = phasesym(img) Argument: img - Image to be processed. 2D Array of Real or Gray Keyword Arguments: Default values Description nscale 5 - Number of wavelet scales, try values 3-6 norient 6 - Number of filter orientations. minwavelength 3 - Wavelength of smallest scale filter. mult 2.1 - Scaling factor between successive filters. sigmaonf 0.55 - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency. k 2.0 - No of standard deviations of the noise energy beyond the mean at which we set the noise threshold point. You may want to vary this up to a value of 10 or 20 for noisy images polarity 0 - Controls 'polarity' of symmetry features to find. 1 - just return 'bright' points -1 - just return 'dark' points 0 - return bright and dark points. noisemethod -1 - Parameter specifies method used to determine noise statistics. -1 use median of smallest scale filter responses -2 use mode of smallest scale filter responses 0+ use noiseMethod value as the fixed noise threshold. Return values: phSym - Phase symmetry image (values between 0 and 1). orientation - Orientation image. Orientation in which local symmetry energy is a maximum, in radians (-pi/2 - pi/2), angles positive anti-clockwise. Note the orientation info is quantized by the number of orientations totalEnergy - Un-normalised raw symmetry energy which may be more to your liking. T - Calculated noise threshold (can be useful for diagnosing noise characteristics of images). Once you know this you can then specify fixed thresholds and save some computation time. ``` The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. The values do not seem to be very critical and the defaults are usually fine. You may want to experiment with the values of `nscales` and `k`, the noise compensation factor. Notes on filter settings to obtain even coverage of the spectrum ``` sigmaonf .85 mult 1.3 sigmaonf .75 mult 1.6 (filter bandwidth ~1 octave) sigmaonf .65 mult 2.1 sigmaonf .55 mult 3 (filter bandwidth ~2 octaves) ``` See also: [`phasesymmono`](@ref), [`phasecong3`](@ref) """ function phasesym(img::AbstractArray{T1,2}; nscale::Integer = 5, norient::Integer = 6, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2.0, polarity::Integer = 0, noisemethod::Real = -1) where T1 <: Real #= References: Peter Kovesi, "Symmetry and Asymmetry From Local Phase" AI'97, Tenth Australian Joint Conference on Artificial Intelligence. 2 - 4 December 1997. http://www.peterkovesi.com/papers/ai97.pdf Peter Kovesi, "Image Features From Phase Congruency". Videre: A Journal of Computer Vision Research. MIT Press. Volume 1, Number 3, Summer 1999 http://www.cs.rochester.edu/u/brown/Videre/001/v13.html =# epsilon = 1e-4 # Used to prevent division by zero. (rows,cols) = size(img) IMG = fft(img) logGabor = Array{Array{Float64,2}}(undef, nscale) filter = zeros(rows,cols) totalEnergy = zeros(rows,cols) # Matrix for accumulating weighted phase # congruency values (energy). totalSumAn = zeros(rows,cols) # Matrix for accumulating filter response # amplitude values. orientation = zeros(rows,cols) # Matrix storing orientation with greatest # energy for each pixel. maxEnergy = zeros(rows,cols) sumAn_ThisOrient = zeros(rows,cols) Energy_ThisOrient = zeros(rows,cols) An = zeros(rows,cols) EO = zeros(ComplexF64, rows,cols) tau = 0.0 T = 0.0 # Need in main scope # Generate grid data for constructing filters in the frequency domain (freq, fx, fy) = filtergrids(rows, cols) (sintheta, costheta) = gridangles(freq, fx, fy) # Filters are constructed in terms of two components. # 1) The radial component, which controls the frequency band that the filter # responds to # 2) The angular component, which controls the orientation that the filter # responds to. # The two components are multiplied together to construct the overall filter. # Construct the radial filter components. All log Gabor filters # are multiplied by a large, but sharp,low-pass filter to ensure # no extra frequencies at the 'corners' of the FFT are # incorporated. This ensures no extra frequencies at the 'corners' # of the FFT are incorporated as this seems to upset the # normalisation process when calculating phase congruency. for s = 1:nscale wavelength = minwavelength*mult^(s-1) fo = 1.0/wavelength # Centre frequency of filter. # Construct the log Gabor filter and apply the low-pass filter logGabor[s] = zeros(rows,cols) for n in eachindex(freq) logGabor[s][n] = loggabor(freq[n], fo, sigmaonf)*lowpassfilter(freq[n], 0.45, 15) end end ## The main loop... for o = 1:norient # For each orientation.... # Construct the angular filter angl = (o-1)*pi/norient # Filter angle. wavelen = 4*pi/norient # Desired wavelength of cosine window function angfilter = cosineangularfilter(angl, wavelen, sintheta, costheta) sumAn_ThisOrient .= 0 Energy_ThisOrient .= 0 for s = 1:nscale # For each scale.... filter .= logGabor[s] .* angfilter # Multiply radial and angular # components to get filter. # Convolve image with even and odd filters returning the result in EO EO .= ifft(IMG .* filter) An .= abs.(EO) # Amplitude of even & odd filter response. sumAn_ThisOrient .+= An # Sum of amplitude responses. # At the smallest scale estimate noise characteristics from the # distribution of the filter amplitude responses stored in sumAn. # tau is the Rayleigh parameter that is used to describe the # distribution. if s == 1 if abs(noisemethod + 1) < epsilon # Use median to estimate noise statistics tau = median(sumAn_ThisOrient)/sqrt(log(4)) elseif abs(noisemethod + 2) < epsilon # Use mode to estimate noise statistics tau = rayleighmode(sumAn_ThisOrient) end end # Now calculate the phase symmetry measure. if polarity == 0 # look for 'white' and 'black' spots Energy_ThisOrient .+= (abs.(real.(EO)) - abs.(imag.(EO))) elseif polarity == 1 # Just look for 'white' spots Energy_ThisOrient .+= (real.(EO) - abs.(imag.(EO))) elseif polarity == -1 # Just look for 'black' spots Energy_ThisOrient .+= (-real.(EO) - abs.(imag.(EO))) end end # ... and process the next scale ## Automatically determine noise threshold # # Assuming the noise is Gaussian the response of the filters to noise will # form Rayleigh distribution. We use the filter responses at the smallest # scale as a guide to the underlying noise level because the smallest scale # filters spend most of their time responding to noise, and only # occasionally responding to features. Either the median, or the mode, of # the distribution of filter responses can be used as a robust statistic to # estimate the distribution mean and standard deviation as these are related # to the median or mode by fixed constants. The response of the larger # scale filters to noise can then be estimated from the smallest scale # filter response according to their relative bandwidths. # # This code assumes that the expected response to noise on the phase congruency # calculation is simply the sum of the expected noise responses of each of # the filters. This is a simplistic overestimate, however these two # quantities should be related by some constant that will depend on the # filter bank being used. Appropriate tuning of the parameter 'k' will # allow you to produce the desired output. if noisemethod >= 0 # We are using a fixed noise threshold T = noisemethod # use supplied noiseMethod value as the threshold else # Estimate the effect of noise on the sum of the filter responses as # the sum of estimated individual responses (this is a simplistic # overestimate). As the estimated noise response at successive scales # is scaled inversely proportional to bandwidth we have a simple # geometric sum. totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult)) # Calculate mean and std dev from tau using fixed relationship # between these parameters and tau. See # http://mathworld.wolfram.com/RayleighDistribution.html EstNoiseEnergyMean = totalTau*sqrt(pi/2) # Expected mean and std EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2) # values of noise energy # Noise threshold, make sure it is not less than epsilon. T = max(EstNoiseEnergyMean + k*EstNoiseEnergySigma, epsilon) end # Apply noise threshold, this is effectively wavelet denoising via # soft thresholding. Note 'Energy_ThisOrient' will have -ve values. # These will be floored out at the final normalization stage. Energy_ThisOrient .-= T # Update accumulator matrix for sumAn and totalEnergy totalSumAn .+= sumAn_ThisOrient totalEnergy .+= Energy_ThisOrient # Update orientation matrix by finding image points where the # energy in this orientation is greater than in any previous # orientation and then replacing these elements in the # orientation matrix with the current orientation number. if o == 1 maxEnergy .= Energy_ThisOrient else for n in eachindex(maxEnergy) if Energy_ThisOrient[n] > maxEnergy[n] orientation[n] = o - 1 maxEnergy[n] = Energy_ThisOrient[n] end end end end # For each orientation # Normalize totalEnergy by the totalSumAn to obtain phase symmetry # totalEnergy is floored at 0 to eliminate -ve values phSym = max.(totalEnergy, 0) ./ (totalSumAn .+ epsilon) # Convert orientation values to radians and offset to suit thin_edges_nonmaxsup() orientation .= orientation*pi/norient .- pi/2 return phSym, orientation, totalEnergy, T end # Version for an array of Gray elements function phasesym(img::AbstractArray{T1,2}; nscale::Integer = 5, norient::Integer = 6, minwavelength::Real = 3, mult::Real = 2.1, sigmaonf::Real = 0.55, k::Real = 2.0, polarity::Integer = 0, noisemethod::Real = -1) where T1 <: Gray fimg = Float64.(img) return phasesym(fimg; nscale=nscale, norient=norient, minwavelength=minwavelength, mult=mult, sigmaonf=sigmaonf, k=k, polarity=polarity, noisemethod=noisemethod) end #------------------------------------------------------------------ # ppdenoise """ Phase preserving wavelet image denoising. ``` Usage: cleanimage = ppdenoise(img, nscale = 5, norient = 6, mult = 2.5, minwavelength = 2, sigmaonf = 0.55, dthetaonsigma = 1.0, k = 3, softness = 1.0) Argument: img - Image to be processed (greyscale) Keyword arguments: nscale - No of filter scales to use (5-7) - the more scales used the more low frequencies are covered. norient - No of orientations to use (6) mult - Multiplying factor between successive scales (2.5-3) minwavelength - Wavelength of smallest scale filter (2) sigmaonf - Ratio of the standard deviation of the Gaussian describing the log Gabor filter's transfer function in the frequency domain to the filter center frequency (0.55) dthetaonsigma - Ratio of angular interval between filter orientations and the standard deviation of the angular Gaussian (1) function used to construct filters in the freq. plane. k - No of standard deviations of noise to reject 2-3 softness - Degree of soft thresholding (0-hard to 1-soft) ``` The convolutions are done via the FFT. Many of the parameters relate to the specification of the filters in the frequency plane. Most arguments do not need to be changed from the defaults and are mostly not that critical. The main parameter that you may wish to play with is `k`, the number of standard deviations of noise to reject. """ function ppdenoise(img::AbstractArray{T1,2}; nscale::Integer=5, norient::Integer=6, mult::Real=2.5, minwavelength::Real = 2, sigmaonf::Real = 0.55, dthetaonsigma::Real = 1.0, k::Real=3, softness::Real=1.0) where T1 <: Real #= Reference: Peter Kovesi, "Phase Preserving Denoising of Images". The Australian Pattern Recognition Society Conference: DICTA'99. December 1999. Perth WA. pp 212-217 http://www.peterkovesi.com/papers/denoise.pdf =# # ** Should try a version of this code using monogenic filters ** epsilon = 1e-5 # Used to prevent division by zero. thetaSigma = pi/norient/dthetaonsigma # Calculate the standard deviation of the # angular Gaussian function used to # construct filters in the freq. plane. (rows,cols) = size(img) IMG = fft(img) # Generate grid data for constructing filters in the frequency domain (freq, fx, fy) = filtergrids(rows,cols) (sintheta, costheta) = gridangles(freq, fx, fy) totalEnergy = zeros(ComplexF64,rows,cols) # response at each orientation. filter = zeros(rows,cols) angfilter = zeros(rows,cols) EO = zeros(ComplexF64, rows,cols) aEO = zeros(rows,cols) RayMean = 0.0; RayVar = 0.0; # make main scope for o = 1:norient # For each orientation. angl = (o-1)*pi/norient # Calculate filter angle. # Generate angular filter angfilter = gaussianangularfilter(angl, thetaSigma, sintheta, costheta) wavelength = minwavelength # Initialize filter wavelength. for s = 1:nscale # Construct the filter = logGabor filter * angular filter fo = 1.0/wavelength for n in eachindex(freq) filter[n] = loggabor(freq[n], fo, sigmaonf) * angfilter[n] end # Convolve image with even an odd filters returning the result in EO EO .= ifft(IMG .* filter) aEO .= abs.(EO) if s == 1 # Estimate the mean and variance in the amplitude # response of the smallest scale filter pair at this # orientation. If the noise is Gaussian the amplitude # response will have a Rayleigh distribution. We # calculate the median amplitude response as this is a # robust statistic. From this we estimate the mean # and variance of the Rayleigh distribution RayMean = median(aEO) * 0.5 * sqrt(-pi/log(0.5)) RayVar = (4-pi)*(RayMean.^2)/pi end # Compute soft threshold noting that the effect of noise # is inversely proportional to the filter bandwidth/centre # frequency. (If the noise has a uniform spectrum) T = (RayMean + k*sqrt(RayVar))/(mult^(s-1)) for n in eachindex(aEO) if aEO[n] > T # Complex noise vector to subtract = T * normalize(EO) # times degree of 'softness' V = softness*T*EO[n]/(aEO[n] + epsilon) EO[n] -= V # Subtract noise vector. totalEnergy[n] += EO[n] # else # aEO is less than T so this component makes no contribution to totalEnergy end end wavelength *= mult # Wavelength of next filter end # for each scale end # for each orientation return real.(totalEnergy) end # Version for an array of Gray elements function ppdenoise(img::AbstractArray{T1,2}; nscale::Integer=5, norient::Integer=6, mult::Real=2.5, minwavelength::Real = 2, sigmaonf::Real = 0.55, dthetaonsigma::Real = 1.0, k::Real=3, softness::Real=1.0) where T1 <: Gray fimg = Float64.(img) return ppdenoise(fimg; nscale=nscale, norient=norient, mult=mult, minwavelength=minwavelength, sigmaonf=sigmaonf, dthetaonsigma=dthetaonsigma, k=k, softness=softness) end
ImagePhaseCongruency
https://github.com/peterkovesi/ImagePhaseCongruency.jl.git