licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
cb40ca3d7a82c1b5e767e9f099b4a85083a73f69
code
595
using Indicomb using Documenter DocMeta.setdocmeta!(Indicomb, :DocTestSetup, :(using Indicomb); recursive=true) makedocs(; modules=[Indicomb], authors="Jerry Ling <[email protected]> and contributors", repo="https://github.com/Moelf/Indicomb.jl/blob/{commit}{path}#{line}", sitename="Indicomb.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://Moelf.github.io/Indicomb.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/Moelf/Indicomb.jl", )
Indicomb
https://github.com/Moelf/Indicomb.jl.git
[ "MIT" ]
0.1.0
cb40ca3d7a82c1b5e767e9f099b4a85083a73f69
code
3694
module Indicomb export get_events_catnum_name using JSON3, HTTP, Dates, SHA import DataStructures: OrderedDict import HTTP: escapeuri import Base.Threads: @threads _format_dt(dt) = Dates.format(dt, dateformat"y-m-d") """ get_events_catnum_name(baseurl, cat_num, evt_name; params...) Main API for basic users, given base url (Indico server domain), category number and event title filter, return a list of (`detail=subcontributions`) events JSON object. # Example ``` julia> get_events_catnum_name("https://indico.cern.ch", 1X3X, "XXXXX"; from="2021-06-10", to="2021-06-30", apikey=".....", secretkey="...."); JSON3.Object{Vector{UInt8}, SubArray{UInt64, 1, Vector{UInt64}, Tuple{UnitRange{Int64}}, true}} with 29 entries: :_type => "Conference" :id => "10521XX" :title => "XXXXX group meeting" :description => "" :startDate => {… :timezone => "Europe/Zurich" :endDate => {… :room => "" :location => "" :address => "" ... ``` """ function get_events_catnum_name( baseurl, cat_num, evt_name; params..., ) # get category JSON which has events in simplr form cat = get_indico_page(baseurl, "/export/categ/$cat_num.json"; params...) simple_evts = filter_events(evt_name, cat) res = Vector{JSON3.Object}(undef, length(simple_evts)) # add event specific headers to into original `params` to get full info detail_params = (pretty="yes", detail="subcontributions", params...) @threads for idx in eachindex(simple_evts) id = simple_evts[idx][:id] evt = get_indico_page(baseurl, "/export/event/$id.json"; detail_params...) # stupid Indico always return bloated/nested JSON, unpact here! res[idx] = only(evt[:results]) #`only` because we're quering a single event end return res end """ indico_request(path; params...) Build a `path?params` url object (without the base domain). The key feature is to construct `signature=` query based on the SHA1 HMAC algo. The construction of `signature` only cares about path, not base-site domain. """ function indico_request(path; params...) d = OrderedDict{Symbol,Any}(params) # don't care about performance if :secretkey ∈ keys(d) # key is `secret_key` and data is entire url except signature= _now = Dates.value(now(UTC)) - Dates.UNIXEPOCH d[:timestamp] = _now ÷ 1000# ms -> s sort!(d) temp_url = "$path?$(escapeuri(d))" sig = bytes2hex(sha1_hmac(d[:secretkey], temp_url)) d[:signature] = sig end return "$path?$(escapeuri(d))" end function get_indico_page(baseurl, path; params...) _u = "$baseurl$(indico_request(path; params...))" return JSON3.read(HTTP.get(_u).body) end function filter_events(f::Function, category) return filter(f, category[:results]) end function filter_events(title_name::Union{AbstractString,Regex}, category) return filter_events(x -> contains(x[:title], title_name), category) end # performe a one-time update and then return digest """ sha1_hmac(key, data) Return a 1-cycle daupted `digest` given key and data. # Example ``` julia> bytes2hex(Indicomb.sha1_hmac("123", "Julia")) "eca18118a715a32ab5f340f57d917c1e2eec96f5" ``` !!! note Indico uses *sorted*, query parameters as data. i.e.: Given: `"https://cern.ch/export/categ/1135.json?from=2020&apikey=8"`, `data` into this function will be `"apikey=8&from=2020"` (string from comes from `HTTP.escapeuri`). """ function sha1_hmac(key, data) h = HMAC_CTX(SHA1_CTX(), Vector{UInt8}(key)) update!(h, Vector{UInt8}(data)) return digest!(h) end end
Indicomb
https://github.com/Moelf/Indicomb.jl.git
[ "MIT" ]
0.1.0
cb40ca3d7a82c1b5e767e9f099b4a85083a73f69
code
833
using Indicomb using Test, JSON3 @testset "Indico main function" begin t = get_events_catnum_name("https://indico.cern.ch", 6725, r"."; from="2021-06-01", to="2021-06-15") @test length(t) == 14 t = get_events_catnum_name("https://indico.cern.ch", 6725, "Edition"; from="2021-06-01", to="2021-06-15") @test length(t) == 1 @test contains(t[1][:title], "Edition of the Large") end @testset "Indico utility functions" begin re = Indicomb.indico_request("cern.ch/"; p = 3) @test re == "cern.ch/?p=3" t = Indicomb.get_indico_page( "https://indico.cern.ch", "/export/categ/6725.json"; from="2021-06-01", to="2021-06-15", ) @test t[:count] == 14 @test t[:results][1][:_type] == "Conference" @test contains(t[:results][1][:title], "Edition of the Large") end
Indicomb
https://github.com/Moelf/Indicomb.jl.git
[ "MIT" ]
0.1.0
cb40ca3d7a82c1b5e767e9f099b4a85083a73f69
docs
2213
# Indicomb [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://Moelf.github.io/Indicomb.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://Moelf.github.io/Indicomb.jl/dev) [![Build Status](https://github.com/Moelf/Indicomb.jl/workflows/CI/badge.svg)](https://github.com/Moelf/Indicomb.jl/actions) # Quick Start At the most top level, this pkg export a single function `get_events_cat_name`, that can be used to get (detailed) Indico events within a category number, by events' `:title`: ``` julia> t = get_events_catnum_name("https://indico.cern.ch", 1X3X, "XXXXX"; from="2021-06-10", to="2021-06-30", apikey=".....", secretkey="...."); julia> t[1] JSON3.Object{Vector{UInt8}, SubArray{UInt64, 1, Vector{UInt64}, Tuple{UnitRange{Int64}}, true}} with 29 entries: :_type => "Conference" :id => "10521XX" :title => "XXXXX group meeting" :description => "" :startDate => {… :timezone => "Europe/Zurich" :endDate => {… :room => "" :location => "" :address => "" :type => "meeting" :references => Union{}[] :_fossil => "conferenceMetadataWithSubContribs" :categoryId => 1X3X :category => "Harvard University" :note => {… :roomFullname => "" :url => "https://indico.cern.ch/event/10521XX/" :creationDate => {… :creator => {… :hasAnyProtection => true :roomMapURL => nothing :folders => JSON3.Object[{… :chairs => Union{}[] :material => JSON3.Object[{… :keywords => Union{}[] :visibility => {… :allowed => {… :contributions => JSON3.Object[{… ``` There are lower level stuff (more like utility functons I guess) in case you want to hack around. Feel free to raise quality of life improvement feature request. ``` julia> Indicomb.get_indico_page("https://indico.cern.ch/", "/export/categ/1135.json";apikey=".....", secret_key="xxxxxx", from="2021-06-01", to="2030-06-01") HTTP.Messages.Response: """ HTTP/1.1 200 OK ``` # TODO - [ ] Ship a HTML page generation script and a CSS
Indicomb
https://github.com/Moelf/Indicomb.jl.git
[ "MIT" ]
0.1.0
cb40ca3d7a82c1b5e767e9f099b4a85083a73f69
docs
178
```@meta CurrentModule = Indicomb ``` # Indicomb Documentation for [Indicomb](https://github.com/Jerry Ling/Indicomb.jl). ```@index ``` ```@autodocs Modules = [Indicomb] ```
Indicomb
https://github.com/Moelf/Indicomb.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
854
module OutlierDetectionNeighbors using OutlierDetectionInterface using OutlierDetectionInterface:SCORE_UNSUPERVISED const OD = OutlierDetectionInterface import NearestNeighbors const NN = NearestNeighbors import Distances const DI = Distances include("utils.jl") include("models/abod.jl") include("models/cof.jl") include("models/dnn.jl") include("models/knn.jl") include("models/lof.jl") const UUID = "51249a0a-cb36-4849-8e04-30c7f8d311bb" const MODELS = [:ABODDetector, :COFDetector, :DNNDetector, :KNNDetector, :LOFDetector] for model in MODELS @eval begin OD.@default_frontend $model OD.@default_metadata $model $UUID export $model end end end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
4756
const K_PARAM = """ k::Integer Number of neighbors (must be greater than 0).""" const KNN_PARAMS = """ metric::Metric This is one of the Metric types defined in the Distances.jl package. It is possible to define your own metrics by creating new types that are subtypes of Metric. algorithm::Symbol One of `(:kdtree, :balltree)`. In a `kdtree`, points are recursively split into groups using hyper-planes. Therefore a KDTree only works with axis aligned metrics which are: Euclidean, Chebyshev, Minkowski and Cityblock. A *brutetree* linearly searches all points in a brute force fashion and works with any Metric. A *balltree* recursively splits points into groups bounded by hyper-spheres and works with any Metric. static::Union{Bool, Symbol} One of `(true, false, :auto)`. Whether the input data for fitting and transform should be statically or dynamically allocated. If `true`, the data is statically allocated. If `false`, the data is dynamically allocated. If `:auto`, the data is dynamically allocated if the product of all dimensions except the last is greater than 100. leafsize::Int Determines at what number of points to stop splitting the tree further. There is a trade-off between traversing the tree and having to evaluate the metric function for increasing number of points. reorder::Bool While building the tree this will put points close in distance close in memory since this helps with cache locality. In this case, a copy of the original data will be made so that the original data is left unmodified. This can have a significant impact on performance and is by default set to true. parallel::Bool Parallelize `score` and `predict` using all threads available. The number of threads can be set with the `JULIA_NUM_THREADS` environment variable. Note: `fit` is not parallel.""" # for some reason providing this as a function is massively slowing down compilation macro tree(detector, X) esc(quote if $detector.algorithm === :kdtree NN.KDTree($X, $detector.metric; $detector.leafsize, $detector.reorder) elseif $detector.algorithm === :balltree NN.BallTree($X, $detector.metric; $detector.leafsize, $detector.reorder) elseif $detector.algorithm === :brutetree # intentionally not propagating leafsize and reorder, because that may lead to problems NN.BruteTree($X, $detector.metric) end end) end function knn_parallel(tree::NN.NNTree, X::AbstractVector{<:AbstractVector}, k::Int, ignore_self = false, sort::Bool = false) # pre-allocate the result arrays (as in NearestNeighbors.jl) indices = eachindex(X) dists = [Vector{NN.get_T(eltype(X))}(undef, k) for _ in indices] idxs = [Vector{Int}(undef, k) for _ in indices] # get number of threads nThreads = Threads.nthreads() # partition the input array equally n_samples = length(X) divides_data = mod(n_samples, nThreads) == 0 partition_size = divides_data ? n_samples ÷ nThreads : n_samples ÷ nThreads + 1 partitions = Iterators.partition(indices, partition_size) # create the knn function depending on whether we need to ignore self knn_closure(tree, X, k, sort) = ignore_self ? _knn_others(tree, X, k) : NN.knn(tree, X, k, sort) # parallel computation over the equal array splits Threads.@threads for idx = collect(partitions) @inbounds idxs[idx], dists[idx] = knn_closure(tree, X[idx], k, sort) end idxs, dists end function knn_sequential(tree::NN.NNTree, X::AbstractVector{<:AbstractVector}, k::Int, ignore_self = false, sort::Bool = false) ignore_self ? _knn_others(tree, X, k) : NN.knn(tree, X, k, sort) end # Calculate the k-nearest neighbors with ignoring the own point in the tree. function _knn_others(tree::NN.NNTree, X::AbstractVector, k::Integer) idxs, dists = NN.knn(tree, X, k + 1, true) # we ignore the distance to the 'self' point, important to sort! ignore_self = vecvec -> map(vec -> vec[2:end], vecvec) ignore_self(idxs), ignore_self(dists) end # The NN package automatically converts matrices to a vector of points (static vectors) for improved performance # this results in very bad performance for high-dimensional matrices (e.g. d > 100). dynamic_view(X::Data) = [NN.SizedVector{length(v)}(v) for v in eachslice(X; dims = ndims(X))] static_view(X::Data) = [NN.SVector{length(v)}(v) for v in eachslice(X; dims = ndims(X))] auto_view(X::Data) = prod(size(X)[1:end-1]) > 100 ? dynamic_view(X) : static_view(X) function prepare_data(X::Data, static::Union{Bool,Symbol}) @assert ndims(X) == 2 "k-NN currently only supports matrices." return static === :auto ? auto_view(X) : static ? static_view(X) : dynamic_view(X) end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
5250
using Combinatorics: combinations using LinearAlgebra: dot, norm using Statistics: var """ ABODDetector(k = 5, metric = Euclidean(), algorithm = :kdtree, static = :auto, leafsize = 10, reorder = true, parallel = false, enhanced = false) Determine outliers based on the angles to its nearest neighbors. This implements the `FastABOD` variant described in the paper, that is, it uses the variance of angles to its nearest neighbors, not to the whole dataset, see [1]. *Notice:* The scores are inverted, to conform to our notion that higher scores describe higher outlierness. Parameters ---------- $K_PARAM $KNN_PARAMS enhanced::Bool When `enhanced=true`, it uses the enhanced ABOD (EABOD) adaptation proposed by [2]. Examples -------- $(SCORE_UNSUPERVISED("ABODDetector")) References ---------- [1] Kriegel, Hans-Peter; S hubert, Matthias; Zimek, Arthur (2008): Angle-based outlier detection in high-dimensional data. [2] Li, Xiaojie; Lv, Jian Cheng; Cheng, Dongdong (2015): Angle-Based Outlier Detection Algorithm with More Stable Relationships. """ OD.@detector mutable struct ABODDetector <: UnsupervisedDetector # Note: the minimum k is 3. The 2 nearest neighbors yields one angle, which implies zero variance everywhere. k::Integer = 5::(_ > 2) metric::DI.Metric = DI.Euclidean() algorithm::Symbol = :kdtree::(_ in (:kdtree, :balltree, :brutetree)) static::Union{Bool,Symbol} = :auto::(_ in (true, false, :auto)) leafsize::Integer = 10::(_ ≥ 0) reorder::Bool = true parallel::Bool = false enhanced::Bool = false end struct ABODModel <: DetectorModel # We have to store the tree to efficiently retrieve the indices to the nearest neighbors. Additionally, we have to # store the raw training data `X` for later angle calculations. X::AbstractArray tree::NN.NNTree end function OD.fit(detector::ABODDetector, X::Data; verbosity)::Fit Xprep = prepare_data(X, detector.static) # create the specified tree tree = @tree detector Xprep # use tree to calculate distances idxs, _ = detector.parallel ? knn_parallel(tree, Xprep, detector.k, true) : knn_sequential(tree, Xprep, detector.k, true) scores = detector.enhanced ? _eabod(X, X, idxs, detector.k) : _abod(X, X, idxs, detector.k) return ABODModel(X, tree), scores end function OD.transform(detector::ABODDetector, model::ABODModel, X::Data)::Scores Xprep = prepare_data(X, detector.static) idxs, _ = detector.parallel ? knn_parallel(model.tree, Xprep, detector.k) : knn_sequential(model.tree, Xprep, detector.k) return detector.enhanced ? _eabod(X, model.X, idxs, detector.k) : _abod(X, model.X, idxs, detector.k) end function _abod(X::AbstractArray, Xtrain::AbstractArray, idxs::AbstractVector, k::Int)::Scores # Calculate the ABOF for all instances in X. scores = Vector{Float64}(undef, length(idxs)) for i in eachindex(idxs) @inbounds scores[i] = _abof(X[:, i], idxs[i], Xtrain, k) end scores end function _abof(p::AbstractVector, idxs::AbstractVector, X::AbstractArray, k::Int)::Real # Calculate the angle-based outlier factor (ABOF). The ABOF is the variance over the angles between the difference # vectors of a point `p` to all pairs of points in its nearest neighbors weighted by the distance of the points. # all two-neighbor combinations combs = combinations(idxs, 2) # we know that there are binomial(k, 2) results for all two-neighbor combinations and can thus pre-allocate result = Vector{Float64}(undef, binomial(k, 2)) for (i, (idx1, idx2)) in enumerate(combs) neighbor1, neighbor2 = p .- X[:, idx1], p .- X[:, idx2] @inbounds result[i] = dot(neighbor1, neighbor2) / (norm(neighbor1)^2 * norm(neighbor2)^2) end # NaN means that at least one norm was zero, we use -1, because higher scores should describe outlierness -1 * var(Iterators.filter(!isnan, result)) end function _eabod(X::AbstractArray, Xtrain::AbstractArray, idxs::AbstractVector, k::Int)::Scores # Calculate the EABOF for all instances in X. scores = Vector{Float64}(undef, length(idxs)) for i in eachindex(idxs) @inbounds scores[i] = _eabof(X[:, i], idxs[i], Xtrain, k) end scores end function _eabof(p::AbstractVector, idxs::AbstractVector, X::AbstractArray, k::Int)::Real # Calculate the enhanced angle-based outlier factor (EABOF). # all two-neighbor combinations combs = combinations(idxs, 2) # we know that there are binomial(k, 2) results for all two-neighbor combinations and can thus pre-allocate result = Vector{Float64}(undef, binomial(k, 2)) for (i, (idx1, idx2)) in enumerate(combs) neighbor1, neighbor2 = p .- X[:, idx1], p .- X[:, idx2] norm1, norm2 = norm(neighbor1), norm(neighbor2) @inbounds result[i] = (1 / (norm1 + norm2)) * (dot(neighbor1, neighbor2) / (norm1^2 * norm2^2)) end # NaN means that at least one norm was zero, we use -1, because higher scores should describe outlierness -1 * var(Iterators.filter(!isnan, result)) end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
4347
""" COFDetector(k = 5, metric = Euclidean(), algorithm = :kdtree, leafsize = 10, reorder = true, parallel = false) Local outlier density based on chaining distance between graphs of neighbors, as described in [1]. Parameters ---------- $K_PARAM $KNN_PARAMS Examples -------- $(SCORE_UNSUPERVISED("COFDetector")) References ---------- [1] Tang, Jian; Chen, Zhixiang; Fu, Ada Wai-Chee; Cheung, David Wai-Lok (2002): Enhancing Effectiveness of Outlier Detections for Low Density Patterns. """ OD.@detector mutable struct COFDetector <: UnsupervisedDetector k::Integer = 5::(_ > 0) metric::DI.Metric = DI.Euclidean() algorithm::Symbol = :kdtree::(_ in (:kdtree, :balltree, :brutetree)) static::Union{Bool,Symbol} = :auto::(_ in (true, false, :auto)) leafsize::Integer = 10::(_ ≥ 0) reorder::Bool = true parallel::Bool = false end struct COFModel <: DetectorModel # An efficient COF prediction requires us to store the full pairwise distance matrix of the training examples in # addition to the learned tree as well as the ACDs of the training examples. tree::NN.NNTree pdists::AbstractArray acds::AbstractVector end function OD.fit(detector::COFDetector, X::Data; verbosity)::Fit # calculate pairwise distances in addition to building the tree; # TODO: we could remove this once NearestNeighbors.jl exports something like `allpairs` pdists = DI.pairwise(detector.metric, X, dims = 2) # Note: Fitting is different from pyOD, because we ignore the trivial nearest neighbor using knn_others as in # all other nearest-neighbor-based algorithms X = prepare_data(X, detector.static) # use tree to calculate distances tree = @tree detector X # we need k + 1 neighbors to calculate the chaining distance and have to make sure the indices are sorted idxs, _ = detector.parallel ? knn_parallel(tree, X, detector.k + 1, true) : knn_sequential(tree, X, detector.k + 1, true) acds = _acd(idxs, pdists, detector.k) scores = _cof(idxs, acds, detector.k) return COFModel(tree, pdists, acds), scores end function OD.transform(detector::COFDetector, model::COFModel, X::Data)::Scores X = prepare_data(X, detector.static) # Note: It's important to sort the neighbors, because _calc_acds depends on the order of the neighbors idxs, _ = detector.parallel ? knn_parallel(model.tree, X, detector.k + 1, false, true) : knn_sequential(model.tree, X, detector.k + 1, false, true) return _cof(idxs, model.pdists, model.acds, detector.k) end function _cof(idxs::AbstractVector{<:AbstractVector}, acds::AbstractVector, k::Int)::Scores # Calculate the connectivity-based outlier factor from given acds cof = Vector{Float64}(undef, length(idxs)) for (i, idx) in enumerate(idxs) @inbounds cof[i] = (acds[i] * k) / sum(acds[idx[2:end]]) end cof end function _cof(idxs::AbstractVector{<:AbstractVector}, pdists::AbstractMatrix, acds::AbstractVector, k::Int)::Scores # Calculate the connectivity-based outlier factor for test examples with given training distances and acds. cof = Vector{Float64}(undef, length(idxs)) acdsTest = _acd(idxs, pdists, k) for (i, idx) in enumerate(idxs) @inbounds cof[i] = (acdsTest[i] * k) / sum(acdsTest[idx[2:end]]) end cof end function _acd(idxs::AbstractVector{<:AbstractVector}, pdists::AbstractMatrix, k::Int)::Vector{Float64} # Initialize with zeros because we add to each entry acds = zeros(Float64, length(idxs)) kplus1 = k + 1 for (i, idx) in enumerate(idxs) for j in 1:k # calculate the minimum distance (from all reachable points). That is, we sort the distances of a specific # point (given by idx[j+1]) according to the order of the current idx, where idx[1] specifies the idx of the # nearest neighbors and idx[k] specifies the idx of the k-th neighbor. We then restrict this so-called # set-based nearest path (SBN) to the points that are reachable with [begin:j] cost = minimum(pdists[idx, idx[j+1]][begin:j]) @inbounds acds[i] += ((2.0 * (kplus1 - j)) / (k * kplus1)) * cost end end acds end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
3306
""" DNNDetector(d = 0, metric = Euclidean(), algorithm = :kdtree, leafsize = 10, reorder = true, parallel = false) Anomaly score based on the number of neighbors in a hypersphere of radius `d`. Knorr et al. [1] directly converted the resulting outlier scores to labels, thus this implementation does not fully reflect the approach from the paper. Parameters ---------- d::Real The hypersphere radius used to calculate the global density of an instance. $KNN_PARAMS Examples -------- $(SCORE_UNSUPERVISED("DNNDetector")) References ---------- [1] Knorr, Edwin M.; Ng, Raymond T. (1998): Algorithms for Mining Distance-Based Outliers in Large Datasets. """ OD.@detector mutable struct DNNDetector <: UnsupervisedDetector metric::DI.Metric = DI.Euclidean() algorithm::Symbol = :kdtree::(_ in (:kdtree, :balltree, :brutetree)) static::Union{Bool,Symbol} = :auto::(_ in (true, false, :auto)) leafsize::Integer = 10::(_ ≥ 0) reorder::Bool = true parallel::Bool = false d::Real = 0::(_ > 0) # warns if `d` is not set end struct DNNModel <: DetectorModel tree::NN.NNTree end function OD.fit(detector::DNNDetector, X::Data; verbosity)::Fit X = prepare_data(X, detector.static) # create the specified tree tree = @tree detector X # use tree to calculate distances scores = detector.parallel ? dnn_parallel(tree, X, detector.d, true) : dnn_sequential(tree, X, detector.d, true) return DNNModel(tree), scores end function OD.transform(detector::DNNDetector, model::DNNModel, X::Data)::Scores X = prepare_data(X, detector.static) return detector.parallel ? dnn_parallel(model.tree, X, detector.d) : dnn_sequential(model.tree, X, detector.d) end @inline function _dnn(idxs::AbstractVector{<:AbstractVector})::Scores # Helper function to reduce the instances to a global density score. 1 ./ (length.(idxs) .+ 0.1) # min score = 0, max_score = 10 end @inline function _dnn_others(idxs::AbstractVector{<:AbstractVector})::Scores # Remove the (self) point previously added when fitting the tree, otherwise during `fit`, that point would always # be included in the density estimation 1 ./ (length.(idxs) .- 0.9) # 1 - 0.1 end function dnn_sequential(tree::NN.NNTree, X::AbstractVector{<:AbstractVector}, d::Real, ignore_self::Bool = false) # returns a vector of vectors containing the nearest indices idxs = NN.inrange(tree, X, d, false) ignore_self ? _dnn_others(idxs) : _dnn(idxs) end function dnn_parallel(tree::NN.NNTree, X::AbstractVector{<:AbstractVector}, d::Real, ignore_self::Bool = false) # returns a vector of vectors containing the nearest indices samples = length(X) scores = Vector{Float64}(undef, samples) # get number of threads nThreads = Threads.nthreads() # partition the input array equally partition_size = samples ÷ nThreads + 1 partitions = Iterators.partition(eachindex(X), partition_size) dnn_closure(idxs) = ignore_self ? _dnn_others(idxs) : _dnn(idxs) Threads.@threads for idx = collect(partitions) @inbounds scores[idx] = dnn_closure(NN.inrange(tree, X[idx], d, false)) end return scores end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
2532
using Statistics: median """ KNNDetector(k=5, metric=Euclidean, algorithm=:kdtree, leafsize=10, reorder=true, reduction=:maximum) Calculate the anomaly score of an instance based on the distance to its k-nearest neighbors. Parameters ---------- $K_PARAM $KNN_PARAMS reduction::Symbol One of `(:maximum, :median, :mean)`. (`reduction=:maximum`) was proposed by [1]. Angiulli et al. [2] proposed sum to reduce the distances, but mean has been implemented for numerical stability. Examples -------- $(SCORE_UNSUPERVISED("KNNDetector")) References ---------- [1] Ramaswamy, Sridhar; Rastogi, Rajeev; Shim, Kyuseok (2000): Efficient Algorithms for Mining Outliers from Large Data Sets. [2] Angiulli, Fabrizio; Pizzuti, Clara (2002): Fast Outlier Detection in High Dimensional Spaces. """ OD.@detector mutable struct KNNDetector <: UnsupervisedDetector k::Integer = 5::(_ > 0) metric::DI.Metric = DI.Euclidean() algorithm::Symbol = :kdtree::(_ in (:kdtree, :balltree, :brutetree)) static::Union{Bool,Symbol} = :auto::(_ in (true, false, :auto)) leafsize::Integer = 10::(_ ≥ 0) reorder::Bool = true parallel::Bool = false reduction::Symbol = :maximum::(_ in (:maximum, :median, :mean)) end struct KNNModel <: DetectorModel tree::NN.NNTree end function OD.fit(detector::KNNDetector, X::Data; verbosity)::Fit X = prepare_data(X, detector.static) # create the specified tree tree = @tree detector X # use tree to calculate distances _, dists = detector.parallel ? knn_parallel(tree, X, detector.k, true) : knn_sequential(tree, X, detector.k, true) # reduce distances to outlier score scores = _knn(dists, detector.reduction) return KNNModel(tree), scores end function OD.transform(detector::KNNDetector, model::KNNModel, X::Data)::Scores X = prepare_data(X, detector.static) _, dists = detector.parallel ? knn_parallel(model.tree, X, detector.k) : knn_sequential(model.tree, X, detector.k) return _knn(dists, detector.reduction) end @inline function _knn(distances::AbstractVector{<:AbstractVector}, reduction::Symbol)::Scores # Helper function to reduce `k` distances to a single distance. if reduction == :maximum return maximum.(distances) elseif reduction == :median return median.(distances) elseif reduction == :mean return mean.(distances) end end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
3569
using Statistics: mean """ LOFDetector(k = 5, metric = Euclidean(), algorithm = :kdtree, leafsize = 10, reorder = true, parallel = false) Calculate an anomaly score based on the density of an instance in comparison to its neighbors. This algorithm introduced the notion of local outliers and was developed by Breunig et al., see [1]. Parameters ---------- $K_PARAM $KNN_PARAMS Examples -------- $(SCORE_UNSUPERVISED("LOFDetector")) References ---------- [1] Breunig, Markus M.; Kriegel, Hans-Peter; Ng, Raymond T.; Sander, Jörg (2000): LOF: Identifying Density-Based Local Outliers. """ OD.@detector mutable struct LOFDetector <: UnsupervisedDetector k::Integer = 5::(_ > 0) metric::DI.Metric = DI.Euclidean() algorithm::Symbol = :kdtree::(_ in (:kdtree, :balltree, :brutetree)) static::Union{Bool,Symbol} = :auto::(_ in (true, false, :auto)) leafsize::Integer = 10::(_ ≥ 0) reorder::Bool = true parallel::Bool = false end struct LOFModel <: DetectorModel # For efficient prediction, we need to store the learned tree, the distances of each training sample to its # k-nearest neighbors, as well as the training lrds. tree::NN.NNTree ndists::AbstractMatrix lrds::AbstractVector end function OD.fit(detector::LOFDetector, X::Data; verbosity)::Fit X = prepare_data(X, detector.static) # create the specified tree tree = @tree detector X # use tree to calculate distances idxs, dists = detector.parallel ? knn_parallel(tree, X, detector.k, true) : knn_sequential(tree, X, detector.k, true) # transform dists (vec of vec) to matrix to allow faster indexing later ndists = reduce(hcat, dists) # pre calculate lrds for later prediction use lrds = _calculate_lrd(idxs, dists, ndists, detector.k) # reduce distances to outlier score scores = _lof_from_lrd(idxs, lrds) return LOFModel(tree, ndists, lrds), scores end function OD.transform(detector::LOFDetector, model::LOFModel, X::Data)::Scores X = prepare_data(X, detector.static) idxs, dists = detector.parallel ? knn_parallel(model.tree, X, detector.k, false, true) : knn_sequential(model.tree, X, detector.k, false, true) return _lof(idxs, dists, model.ndists, model.lrds, detector.k) end function _lof(idxs::AbstractVector, dists::AbstractVector, model_dists::AbstractArray, model_lrds::AbstractVector, k::Int)::Scores lrds = _calculate_lrd(idxs, dists, model_dists, k) # calculate the local outlier factor from the lrds map((idx, lrd) -> mean(model_lrds[idx]) / lrd, idxs, lrds) end function _lof_from_lrd(idxs::AbstractVector, lrds::AbstractVector)::Scores # Directly calculate the local outlier factor from idxs with corresponding lrds. map((idx, lrd) -> mean(lrds[idx]) / lrd, idxs, lrds) end function _calculate_lrd(idxs::AbstractVector, dists::AbstractVector, ndists::AbstractArray, k::Int)::AbstractVector # The LRD of a sample is the inverse of the average reachability distance of its k-nearest neighbors. Epsilon is # added in case that there are more than k duplicates. map((is, ds) -> 1 / (mean(_max!(ndists[k, is], ds)) + 1e-10), idxs, dists) end function _max!(ar1::AbstractVector, ar2::AbstractVector)::AbstractVector # Calculate the element wise maximum between two vectors. for i in eachindex(ar1) @inbounds ar1[i] = ar1[i] > ar2[i] ? ar1[i] : ar2[i] end ar1 end
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
code
1034
using OutlierDetectionNeighbors using OutlierDetectionTest using Distances: Cityblock # Test the metadata of all exported detectors test_meta.(eval.(OutlierDetectionNeighbors.MODELS)) data = TestData() run_test(detector) = test_detector(detector, data) # ABOD run_test(ABODDetector()) run_test(ABODDetector(static=false)) run_test(ABODDetector(parallel=true, enhanced=true)) # COF run_test(COFDetector()) run_test(COFDetector(metric=Cityblock())) run_test(COFDetector(static=false)) run_test(COFDetector(parallel=true)) # DNN run_test(DNNDetector(d=1)) run_test(DNNDetector(d=1, static=false)) run_test(DNNDetector(d=1, parallel=true)) # KNN run_test(KNNDetector(reduction=:maximum)) run_test(KNNDetector(static=false)) run_test(KNNDetector(parallel=true, reduction=:mean, algorithm=:balltree)) run_test(KNNDetector(parallel=true, reduction=:median)) # LOF run_test(LOFDetector()) run_test(LOFDetector(static=false)) run_test(LOFDetector(parallel=true)) run_test(LOFDetector(static=false, parallel=true, algorithm=:brutetree))
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.1.5
45fefd4a5a6e80231e99f8dbb6bb1447dfd358b5
docs
679
# OutlierDetectionNeighbors [![Documentation (stable)](https://img.shields.io/badge/docs-stable-blue.svg)](https://OutlierDetectionJL.github.io/OutlierDetection.jl/stable) [![Documentation (dev)](https://img.shields.io/badge/docs-dev-blue.svg)](https://OutlierDetectionJL.github.io/OutlierDetection.jl/dev) [![Build Status](https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl/workflows/CI/badge.svg)](https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl/actions) [![Coverage](https://codecov.io/gh/OutlierDetectionJL/OutlierDetectionNeighbors.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/OutlierDetectionJL/OutlierDetectionNeighbors.jl)
OutlierDetectionNeighbors
https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
15846
### A Pluto.jl notebook ### # v0.19.40 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ dc663401-3356-4cd0-8e01-7619a0e7df42 begin using PlutoUI import PlutoUI:combine import PlutoUI:ExperimentalLayout end # ╔═╡ 0ff62a0d-53e6-48b9-8246-3f7b89499417 using TTVFaster,Test # ╔═╡ ebea622c-b4a2-4fdd-bb3e-2925695da863 using PyPlot, DelimitedFiles # ╔═╡ acc61da3-1bf6-4413-a3a9-3bacfd318def @bind reset_to_default_values Button("Reset Sliders") # ╔═╡ d08ce186-d8e5-4515-9b46-9bb62260936c begin function conditions(system::String,iplanet,values::Vector{T}) where (T<:Real) # Create sliders for given system, planet id (number or letter) # Here, masses must be given in log # this allows more precise selection of slider value # MSUN= 1.98892e33; MEARTH = 5.9742e27 #cgs names=["log_mu","per","trans0","ecosw","esinw"] min_vals=[log(1e-8),-2*values[2],-500,-1,-1] max_vals=[log(1e-2), 2*values[2], 1.05*values[3], 1, 1] return combine() do Child inputs=[[ md""" $(names[i]): $(Child(names[i], Slider(min_vals[i]:0.01:max_vals[i],default=values[i]))) """ for i=1:3 ];[md""" $(names[i]): $(Child(names[i], Slider(min_vals[i]:0.001:max_vals[i],default=values[i]))) """ for i=4:5]] md""" ###### $(system) $(iplanet) $(inputs) """ end return values end # Allow for input of planet_plane structure from TTVFaster function conditions(system_plname::String,p::Planet_plane_hk{T}) where (T<:Real) names=["mu","period","trans0","ecosw","esinw"] min_vals=[1, 1, -200, -1, -1] max_vals=[50, 500,5000, 1, 1] return combine() do Child inputs=[[ md""" $("mu"): $(Child("mu", Slider(min_vals[1]:0.01:max_vals[1],default=p.mass_ratio))) """];[md""" $("period"): $(Child("period", Slider(min_vals[2]:0.001:max_vals[2],default=p.period))) """];[md""" $("trans0"): $(Child("trans0", Slider(min_vals[3]:0.001:max_vals[3],default=p.trans0))) """];[md""" $("ecosw"): $(Child("ecosw", Slider(min_vals[4]:0.001:max_vals[4],default=p.ecosw))) """];[md""" $("esinw"): $(Child("esinw", Slider(min_vals[4]:0.001:max_vals[4],default=p.esinw))) """ ]] md""" ###### $(system_plname) $(inputs) """ end return values end md""" Create sliders based on orbital elements of a planet """ end # ╔═╡ 4702121d-b071-4dd3-a43b-00fdf9c33f70 begin data=readdlm("../examples/trappist1efg_planets.txt",',',Float64) # Define initial conditions (i.e. the default parameters) for sliders # Bind sliders to parameters that we want to model, add bonds as necessary system="Trappist-1" # For demonstration purposes only, # this does not include the effects from other planets in the system p1=@bind planet1 conditions(system,"e", [log(data[1]) ;data[2:5]]) p2=@bind planet2 conditions(system,"f", [log(data[6]) ;data[7:10]]) p3=@bind planet3 conditions(system,"g", [log(data[11]) ;data[12:15]]) # Bind reset button to sliders let reset_to_default_values p1 p2 p3 end # Create grid layout for multiple sliders, add bonds as necessary # Layout must be in matrix form (i.e. no empty elements) function create_grid(bonds) bond1,bond2,bond3=bonds[1:end] grid=PlutoUI.ExperimentalLayout.grid([ bond1 bond2 bond3 ]) return grid end md" Approximate values for $system planets e/f/g" end # ╔═╡ 3c6c85c7-299a-4d5f-8769-a236e31bfd14 create_grid([p1,p2,p3]) # ╔═╡ b16d8dd8-00c3-4bc0-8a93-bedd356dc577 param_sliders=[ planet1.log_mu planet1.per planet1.trans0 planet1.ecosw planet1.esinw planet2.log_mu planet2.per planet2.trans0 planet2.ecosw planet2.esinw planet3.log_mu planet3.per planet3.trans0 planet3.ecosw planet3.esinw ] # Binds parameter sliders that we want to plot # ╔═╡ 6ec3cebb-f763-431e-be22-2f7ce3072fc0 # View individual parameters for a planet planet1 # ╔═╡ 7cb10c9e-24eb-48b8-9b35-697fec3ec79c begin # from test_ttv.jl include("test_ttv.jl") hk1=TTVFaster.Planet_plane_hk(data[1], data[2], data[3], data[4], data[5]) hk2=TTVFaster.Planet_plane_hk(data[6], data[7], data[8], data[9], data[10]) function kepler62_test() data=readdlm("../examples/kepler62ef_planets.txt",',',Float64) @time ttv1,ttv2=test_ttv(5,40,20,data,WriteOutput=false,num_evals=100000); inner=readdlm("../examples/inner_ttv.txt") outer=readdlm("../examples/outer_ttv.txt") inner_ref=readdlm("inner_ttv.txt.ref") outer_ref=readdlm("outer_ttv.txt.ref") diffs=[maximum(abs.(inner_ref .- inner)) maximum(abs.(outer_ref .- outer))] max_diff=maximum(diffs) return round(max_diff) end @testset "TTVFaster.jl" begin @test kepler62_test() == (0.0) # @test trappist1_test() end end # ╔═╡ 525e9b6c-8255-42d7-a704-3924f0d27213 begin # Plot the provided system parameters, given transit counts # params must be an matrix with shape (nplanet, 5) function plot_TTVs(ntrans,params) # @assert(length(ntrans)==nplanet) @assert(size(params)[1]==length(ntrans)) nplanet=size(params)[1] # Reshape parameters into array with shape(1 x 5*nplanet) new_params=reshape(transpose(params),1,nplanet*5) # Get pair-wise TTVs function decompose_ttvs(nplanet,ntrans,params) jmax = 5 pair_ttvs = zeros(nplanet,nplanet,maximum(ntrans)) for i=1:nplanet-1,j=i+1:nplanet param = [exp(params[(i-1)*5+1]);params[(i-1)*5+2:i*5] ;exp(params[(j-1)*5+1]); params[(j-1)*5+2:j*5]] ttv = TTVFaster.ttv_nplanet(2,jmax,[ntrans[i];ntrans[j]],param) pair_ttvs[i,j,1:ntrans[i]] = ttv[1,1:ntrans[i]] #planet i wrt planet j pair_ttvs[j,i,1:ntrans[j]] = ttv[2,1:ntrans[j]] #planet j wrt planet i end return pair_ttvs end pair_ttvs=decompose_ttvs(nplanet,ntrans,new_params) .* (24 * 60) # Assuming that there's 2 transiting planets n1=ntrans[1];n2=ntrans[2] t1 = collect(new_params[3] .+ new_params[2] .* range(0,stop=n1-1,length=n1)) t2 = collect(new_params[7] .+ new_params[6] .* range(0,stop=n2-1,length=n2)) p1_ttvs=sum([pair_ttvs[1,iplanet,1:n1] for iplanet=1:nplanet],dims=1)[1] p2_ttvs=sum([pair_ttvs[2,iplanet,1:n2] for iplanet=1:nplanet],dims=1)[1] # Plot TTVs fig=plt.figure(figsize=(6,4)) ax=fig.add_subplot(221) ax3=fig.add_subplot(222,sharey=ax,sharex=ax) ax3.plot(t1,transpose(p1_ttvs),color="grey") ax3.set_title("Total TTVs") ax2=fig.add_subplot(223) ax4=fig.add_subplot(224,sharey=ax2,sharex=ax2) ax4.plot(t2,transpose(p2_ttvs),color="grey") for iplanet=1:nplanet ax2.plot(t2,pair_ttvs[2,iplanet,1:n2],label=string("planet ",iplanet)) ax.plot(t1,pair_ttvs[1,iplanet,1:n1])#,label=string("planet",iplanet)) end ax2.set_ylabel("TTVs [min]") ax.set_ylabel("TTVs [min]") ax2.set_xlabel(string("Time [JD ",L"$- t_{0,1}$","]")) ax4.set_xlabel(string("TIme [JD ",L"$- t_{0,1}$","]")) ax.minorticks_on() ; ax2.minorticks_on() ; plt.tight_layout() fig.legend(loc="upper left",title="Source of Perturbations",fontsize="small",ncol=nplanet) return fig end end # ╔═╡ 4db7da85-ae23-4a34-bb69-5aab907d7145 plot_TTVs([40,20,2],param_sliders) # ╔═╡ e00727ea-f5fb-49bc-83c2-21fb50dbe7e1 # using HypertextLiteral:@htl # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee" TTVFaster = "d84f081e-b698-44a3-a477-911041168508" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [compat] PlutoUI = "~0.7.59" PyPlot = "~2.11.5" TTVFaster = "~0.2.0" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.3.2" [[ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.5" [[Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.11" [[Conda]] deps = ["Downloads", "JSON", "VersionParsing"] git-tree-sha1 = "b19db3927f0db4151cb86d073689f2428e524576" uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d" version = "1.10.2" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[Hyperscript]] deps = ["Test"] git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.5" [[HypertextLiteral]] deps = ["Tricks"] git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.5" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "8b72179abc660bfab5e28472e019392b97d0985c" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.4" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.4" [[LaTeXStrings]] git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.1" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MIMEs]] git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb" uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" version = "0.1.4" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.13" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[Parsers]] deps = ["Dates", "PrecompileTools", "UUIDs"] git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.8.1" [[Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] git-tree-sha1 = "ab55ee1510ad2af0ff674dbcced5e94921f867a9" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.59" [[PrecompileTools]] deps = ["Preferences"] git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" version = "1.2.1" [[Preferences]] deps = ["TOML"] git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.4.3" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[PyCall]] deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"] git-tree-sha1 = "9816a3826b0ebf49ab4926e2b18842ad8b5c8f04" uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" version = "1.96.4" [[PyPlot]] deps = ["Colors", "LaTeXStrings", "PyCall", "Sockets", "Test", "VersionParsing"] git-tree-sha1 = "0371ca706e3f295481cbf94c8c36692b072285c2" uuid = "d330b81b-6aea-500a-939a-2ce795aea3ee" version = "2.11.5" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[TTVFaster]] deps = ["DelimitedFiles"] git-tree-sha1 = "7fea3b01e0d667fd77281ad215efeff82948bbf3" uuid = "d84f081e-b698-44a3-a477-911041168508" version = "0.2.0" [[Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[Tricks]] git-tree-sha1 = "eae1bb484cd63b36999ee58be2de6c178105112f" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" version = "0.1.8" [[URIs]] git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.5.1" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[VersionParsing]] git-tree-sha1 = "58d6e80b4ee071f5efd07fda82cb9fbe17200868" uuid = "81def892-9a0e-5fdd-b105-ffc91e053289" version = "1.3.0" [[Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" """ # ╔═╡ Cell order: # ╠═acc61da3-1bf6-4413-a3a9-3bacfd318def # ╠═3c6c85c7-299a-4d5f-8769-a236e31bfd14 # ╠═4db7da85-ae23-4a34-bb69-5aab907d7145 # ╠═b16d8dd8-00c3-4bc0-8a93-bedd356dc577 # ╠═4702121d-b071-4dd3-a43b-00fdf9c33f70 # ╠═6ec3cebb-f763-431e-be22-2f7ce3072fc0 # ╠═7cb10c9e-24eb-48b8-9b35-697fec3ec79c # ╠═d08ce186-d8e5-4515-9b46-9bb62260936c # ╠═525e9b6c-8255-42d7-a704-3924f0d27213 # ╠═dc663401-3356-4cd0-8e01-7619a0e7df42 # ╠═e00727ea-f5fb-49bc-83c2-21fb50dbe7e1 # ╠═0ff62a0d-53e6-48b9-8246-3f7b89499417 # ╠═ebea622c-b4a2-4fdd-bb3e-2925695da863 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
2019
# This code calls the first-order eccentric TTV code # compute_ttv.jl. Please cite Agol & Deck (2015) if # you make use of this in your research. # include("../src/TTVFaster.jl") # include("laplace_coefficients_initialize.jl") function test_ttv(jmax::Integer,n1::Integer,n2::Integer,data::Array{Float64}; WriteOutput::Bool = true, num_evals::Integer = 1, profile::Bool = false) @assert(jmax>=1) # Should there be a larger minimum? @assert(n1>2) @assert(n2>2) @assert(length(data)==10) # Performs a test of the compute_ttv.jl routine # Set up planets planar-planet types for the inner and outer planets: p1=TTVFaster.Planet_plane_hk(data[1],data[2],data[3],data[4],data[ 5]) p2=TTVFaster.Planet_plane_hk(data[6],data[7],data[8],data[9],data[10]) time1 = collect(p1.trans0 .+ range(0,stop=n1-1,length=n1) .* p1.period) time2 = collect(p2.trans0 .+ range(0,stop=n2-1,length=n2) .* p2.period) alpha0=(p1.period/p2.period)^(2//3) # Initialize the computation of the Laplace coefficients: # b0=TTVFaster.LaplaceCoefficients.initialize(jmax+1,alpha0) # Define arrays to hold the TTVs: #ttv1=Array(Float64,n1) #ttv2=Array(Float64,n2) ttv_el_type = eltype(data) == Float64 ? Float64 : Number ttv1=zeros(ttv_el_type,n1) ttv2=zeros(ttv_el_type,n2) # Define arrays to hold the TTV coefficients and Laplace coefficients: f1=zeros(Float64,jmax+2,5) f2=zeros(Float64,jmax+2,5) b=zeros(Float64,jmax+2,3) hashsum = 0 for i in 1:num_evals # Call the compute_ttv code which implements equation (33) TTVFaster.compute_ttv!(jmax,p1,p2,time1,time2,ttv1,ttv2)#,f1,f2,b,alpha0,b0) if profile hashsum += hash(ttv1)+hash(ttv2) end end if profile println("# Ignore this: ",hashsum) # This just makes sure optimizer doesn't optimize away important calculations. end if WriteOutput # Write the mean ephemeris and TTV results to two files: writedlm("inner_ttv.txt",[time1 ttv1]) writedlm("outer_ttv.txt",[time2 ttv2]) end return ttv1,ttv2 end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
446
""" TTVFaster Computes first order eccentricity transit timing variations (TTVs) with respect to the following initial properties: the planet-star mass ratio [μ], the initial transit time (of the averaged orbit) [t0], the mean orbital period [Per], the eccentricity [e], and the longitude of periastron [barred ω]. """ module TTVFaster include("ttv_wrapper.jl") export Planet_plane_hk, ttv_wrapper, compute_ttv! # export Planet_plane end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
5240
include("ttv_succinct.jl") """ Computes transit timing variations to linear order in eccentricity for non-resonant, plane-parallel planets. Please cite Agol & Deck (2015) if you make use of this in published research. """ struct Planet_plane # Deprecated, only exported to make the error message work mass_ratio :: Float64 period :: Float64 trans0 :: Float64 ecc :: Float64 omega :: Float64 end struct Planet_plane_hk{T<:Real} # Parameters of a planet in a plane-parallel system # Mass ratio of the planet to the star: mass_ratio :: T # Initial time of transit: period :: T trans0 :: T # e times cos or sin of longitude of periastron measured from line of sight, in radians: ecosw :: T esinw :: T end """ compute_ttv(jmax,p1,p2,time1,time2,ttv1,ttv2) Arguments: jmax: Maximum j over which to sum the TTV calculation for both planets p1: Planet type for inner planet p2: Planet type for outer planet time1: Transit times for inner planet time2: Transit times for outer planet ttv1: Container for TTVs of the inner planet ttv2: Container for TTVs of the outer planet Outputs: ttv1 ttv2 """ function compute_ttv!(jmax::Integer,p1::Planet_plane_hk{T},p2::Planet_plane_hk{T},time1::Vector{T},time2::Vector{T},ttv1::Vector{T},ttv2::Vector{T}) where T<:Real # Compute the semi-major axis ratio of the planets: # println(p1.period,p2.period) alpha = (p1.period/p2.period)^(2//3) #println(alpha, p1.period, p2.period) @assert(alpha < 1) @assert(alpha > 0) # Number of times: ntime1 = length(time1) ntime2 = length(time2) f1=zeros(T,jmax+2,5) f2=zeros(T,jmax+2,5) # Compute the coefficients: ttv_succinct!(jmax+1,alpha,f1,f2) # I need to compute coefficients one higher than jmax # Compute TTVs for inner planet (equation 33): # Compute since of \pomegas: e1 = sqrt(p1.esinw*p1.esinw + p1.ecosw*p1.ecosw) e2 = sqrt(p2.esinw*p2.esinw + p2.ecosw*p2.ecosw) sin1om=p1.esinw/e1 sin2om=p2.esinw/e2 cos1om=p1.ecosw/e1 cos2om=p2.ecosw/e2 # Compute mean motions: n1=2pi/p1.period n2=2pi/p2.period # Compute initial longitudes: lam10=-n1*p1.trans0 + 2*p1.esinw # 2*p1.eccen*sin1om lam20=-n2*p2.trans0 + 2*p2.esinw # 2*p2.eccen*sin2om @inbounds for i=1:ntime1 # Compute the longitudes of the planets at times of transit of planet 1 (equation 49): lam11 = n1*time1[i]+lam10 lam21 = n2*time1[i]+lam20 psi1 = lam11-lam21 # Compute difference in longitudes at times of transit of planet 1 sinpsi1=sin(psi1) cospsi1=cos(psi1) sinlam11 = sin(lam11) coslam11 = cos(lam11) sinlam1om1=sinlam11*cos1om - coslam11*sin1om coslam1om1=coslam11*cos1om + sinlam11*sin1om sinlam1om2=sinlam11*cos2om - coslam11*sin2om coslam1om2=coslam11*cos2om + sinlam11*sin2om ttv1[i]=zero(T) #0.0 sinjm1psi1=zero(T) #0.0 cosjm1psi1=one(T) #1.0 # Sum over j: for j=1:jmax sinjpsi1=sinjm1psi1*cospsi1 + cosjm1psi1*sinpsi1 cosjpsi1=cosjm1psi1*cospsi1 - sinjm1psi1*sinpsi1 ttv1[i] += f1[j+1,1]*sinjpsi1 ttv1[i] += f1[j+1,2]*e1*(sinjpsi1*coslam1om1 - cosjpsi1*sinlam1om1) ttv1[i] += f1[j+1,3]*e1*(sinjpsi1*coslam1om1 + cosjpsi1*sinlam1om1) ttv1[i] += f1[j ,4]*e2*(sinjpsi1*coslam1om2 - cosjpsi1*sinlam1om2) ttv1[i] += f1[j+2,5]*e2*(sinjpsi1*coslam1om2 + cosjpsi1*sinlam1om2) sinjm1psi1=sinjpsi1 cosjm1psi1=cosjpsi1 end # Multiply by period and mass ratio, and divide by 2*Pi: ttv1[i] = ttv1[i]*p1.period*p2.mass_ratio/(2pi) end # Compute TTVs for outer planet (equation 33): @inbounds for i=1:ntime2 # Compute the longitudes of the planets at times of transit of planet 2: lam12 = n1*time2[i]+lam10 lam22 = n2*time2[i]+lam20 sinlam22 = sin(lam22) coslam22 = cos(lam22) psi2 = lam12-lam22 # Compute difference in longitudes at times of transit of planet 2 sinpsi2=sin(psi2) cospsi2=cos(psi2) sinlam2om1=sinlam22*cos1om - coslam22*sin1om coslam2om1=coslam22*cos1om + sinlam22*sin1om sinlam2om2=sinlam22*cos2om - coslam22*sin2om coslam2om2=coslam22*cos2om + sinlam22*sin2om ttv2[i]=zero(p2.period) #0.0 sinjm1psi2=zero(p2.period) #0.0 cosjm1psi2=one(p2.period) #1.0 # Sum over j: for j=1:jmax sinjpsi2=sinjm1psi2*cospsi2 + cosjm1psi2*sinpsi2 cosjpsi2=cosjm1psi2*cospsi2 - sinjm1psi2*sinpsi2 ttv2[i] += f2[j+1,1]*sinjpsi2 ttv2[i] += f2[j+1,2]*e2*(sinjpsi2*coslam2om2 - cosjpsi2*sinlam2om2) ttv2[i] += f2[j+1,3]*e2*(sinjpsi2*coslam2om2 + cosjpsi2*sinlam2om2) ttv2[i] += f2[j+2,4]*e1*(sinjpsi2*coslam2om1 - cosjpsi2*sinlam2om1) ttv2[i] += f2[j ,5]*e1*(sinjpsi2*coslam2om1 + cosjpsi2*sinlam2om1) sinjm1psi2=sinjpsi2 cosjm1psi2=cosjpsi2 end # Multiply by period and mass ratio, and divide by 2*Pi: ttv2[i] = ttv2[i]*p2.period*p1.mass_ratio/(2pi) end # Finished! return end # compute_ttv! function compute_ttv!(jmax::Integer,p1::Planet_plane,p2::Planet_plane,time1::Vector,time2::Vector,ttv1::Vector,ttv2::Vector) # Error message to explain to anyone who tries to use the old version error("The Planet_plane data structure has been deprecated in favor of Planet_plane_hk") end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
527
module LaplaceCoefficients export laplace_coefficients_initialize export laplace_wisdom include("laplace_wisdom.jl") """ # This computes the Laplace coefficients via recursion. """ function initialize(jmax::Integer,alpha::Number) global nmax=7 b0=Array(eltype(alpha),nmax,jmax+1) # Array to hold the coefficients # Compute the highest two Laplace coefficients using Wisdom's series approach: for j=0:jmax for i=0:nmax-1 b0[i+1,j+1]=laplace_wisdom(1//2,j,i,alpha)/alpha^i end end return b0 end end # module
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
1502
""" # Compute Laplace coefficients and Leverrier derivative/ # j # j d i # a --- b (a) # j s # da # by series summation # Code due to Jack Wisdom """ function laplace_wisdom(s::Rational,i::Integer,j::Integer,a::T) where T<:Real # define LAPLACE_EPS 1.0e-12 LAPLACE_EPS = convert(T,1.0e-12) #if (i lt 0) then i = -i i=abs(i) if j <= i # compute first term in sum factor4 = one(T) for k=0:j-1 factor4 *= i - k end lap_coef_sum = factor4 q0 = 0 else q0 = fld(j + 1 - i,2) # largest integer less than or equal to x/y lap_coef_sum = zero(T) factor4 = one(T) end # Compute factors for terms in lap_coef_sum: factor1 = s factor2 = s + i factor3 = i + 1 for q=1:q0-1 # no contribution for q = 0 factor1 *= s + q factor2 *= s + i + q factor3 *= i + q + 1 end if q0 > 1 q=q0 else q=1 end #println(j+1-i,q0) term = a*a * factor1 * factor2 / (factor3 * q) # Sum series: while (term*factor4) > LAPLACE_EPS factor4 = one(T) for k=0:j-1 factor4 *= (2*q + i - k) end lap_coef_sum += term * factor4 factor1 += 1 factor2 += 1 factor3 += 1 q = q+1 term *= a*a * factor1 * factor2 / (factor3 * q) end # Fix coefficient: for k=0:i-1 lap_coef_sum *= (s+k)/(k+1) end apower = (q0 <= 0) ? i : 2*q0 + i - 2 lap_coef_sum *= 2 * a^apower # Return the Laplace Coefficient: return lap_coef_sum end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
2930
include("compute_ttv.jl") """ ttv_nplanet(nplanet,jmax,ntrans,params) Computes TTVs with TTVFaster for N planets with pairwise TTV calculation. Arguments: nplanet: Number of planets jmax: Maximum j over which to sum the TTV calculation ntrans: Number of transits for each planet params: Parameters of each planet Returns: ttvs: Computed transit timing variations for the transiting planets. """ function ttv_nplanet(nplanet::Int64,jmax::Int64,ntrans::Vector{Int64},params::Vector{T}) where T<:Real # Need at least two planets! @assert(nplanet>=2) # The ntrans vectors should have length nplanet: @assert(length(ntrans)==nplanet) # Define type of ttv array: ttv_el_type = eltype(params) == Float64 ? Float64 : Number # Need to create an array to store TTVs with maximum length equal to maximum number of transit times of any planet: ntransmax = maximum(ntrans) ttv = zeros(T,nplanet,ntransmax) # Each planet requires 5 elements in params (mass_ratio,period,trans0,ecosw,esinw): @assert(length(params)==5*nplanet) @assert(jmax>=1) for iplanet=1:nplanet # Each planet should have at least 2 transits: @assert(ntrans[iplanet]>=2) end for iplanet=1:nplanet-1 # The periods of the planets should be ordered from least to greatest: if (params[(iplanet-1)*5+2] >= params[iplanet*5+2]) return ttv end end # Set up planets planar-planet types for all of the planets: #planet = Array{Planet_plane_hk}(nplanet) #planet = Array{Any}(nplanet) # Loop over pairs of planets to compute pairwise TTVs # Loop over inner planets: #println("Looping over planets in ttv_nplanet:") for iplanet=1:nplanet-1 # Create a Planet_plane_hk type for the inner planet: p1=Planet_plane_hk(params[(iplanet-1)*5+1],params[(iplanet-1)*5+2],params[(iplanet-1)*5+3],params[(iplanet-1)*5+4],params[(iplanet-1)*5+5]) # Create an array of times for the inner planet: n1 = ntrans[iplanet] time1 = collect(p1.trans0 .+ range(0,stop=n1-1,length=n1) .* p1.period) # Loop over outer planets: for jplanet=iplanet+1:nplanet # Create a Planet_plane_hk type for the outer planet: p2=Planet_plane_hk(params[(jplanet-1)*5+1],params[(jplanet-1)*5+2],params[(jplanet-1)*5+3],params[(jplanet-1)*5+4],params[(jplanet-1)*5+5]) # Create an array of times for the outer planet: n2 = ntrans[jplanet] time2 = collect(p2.trans0 .+ range(0,stop=n2-1,length=n2) .* p2.period) # Define arrays to hold the TTVs: ttv1=zeros(T,n1) ttv2=zeros(T,n2) # Call the compute_ttv code which implements equation (33) from Agol & Deck (2016): # println("Calling compute_ttv") compute_ttv!(jmax,p1,p2,time1,time2,ttv1,ttv2) # println("Finished compute_ttv") for i=1:n1 ttv[iplanet,i] += ttv1[i] end for i=1:n2 ttv[jplanet,i] += ttv2[i] end end end return ttv end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
8481
# Computes TTV coefficients for first-order eccentricity # solution from Agol & Deck (2015). Please cite this paper # if you make use of this in your research. include("laplace_wisdom.jl") u(gamma::T,c1::T,c2::T) where {T<:Number}= ((3+gamma*gamma)*c1+2*gamma*c2)/(gamma*gamma*(1-gamma*gamma)) # m=+/-1 v(z::T,d1::T,d2::T,m::Integer) where {T<:Number}= ((m*(1-z*z)+6*z)*d1+(2+z*z)*d2)/(z*(1-z*z)*(z+m)*(z+2*m)) function ttv_succinct!(jmax::Integer,alpha::T,f1::Array{T,2},f2::Array{T,2}) where T<:Real # See simple_solution.pdf 7/16/2015 b=zeros(T,jmax+2,3) #println("Computing Laplace Coeffcients: ",alpha) for i=0:2 for j=0:jmax b[j+1,i+1]=laplace_wisdom(1//2,j,i,alpha)/alpha^i end end #println("Done with Laplace Coeffcients: ",alpha) sqrtalpha = sqrt(alpha) # Loop over j: @inbounds for j=0:jmax # \delta_{j1} (this is indirect coefficient which is only needed for j=1) dj1 = j==1 ? 1.0 : 0.0 # Compute dimensionless frequencies (equation 30): beta = j*(1-alpha*sqrtalpha) kappa = beta / (alpha*sqrtalpha) # Compute disturbing function coefficients (equation 31): A_j00 = b[j+1,1] A_j10 = alpha* b[j+1,2] A_j01 = -(A_j10 + A_j00) A_j20 = alpha*alpha * b[j+1,3] A_j11 = -(2*A_j10 + A_j20) A_j02 = 2*A_j00 + 4*A_j10 + A_j20 jd=convert(eltype(alpha),j) # Inner planet coefficients, in order k=0,-1,1,-2,2 (see Table 1): if j >=2 f1[j+1,1]=alpha*u(beta ,jd*( A_j00-alpha*dj1),A_j10-alpha*dj1) f1[j+1,2]=alpha*u(beta-1.0 ,jd*(-jd*A_j00-0.5*A_j10+1.5*alpha*dj1),-jd*A_j10-0.5*A_j20+alpha*dj1) f1[j+1,3]=alpha*u(beta+1.0 ,jd*( jd*A_j00-0.5*A_j10-0.5*alpha*dj1), jd*A_j10-0.5*A_j20-alpha*dj1) f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) f1[j+1,5]=alpha*u(beta+alpha*sqrtalpha,jd*(-jd*A_j00-0.5*A_j01),-jd*A_j10-0.5*A_j11) else if j==0 f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) else f1[j+1,1]=alpha*u(beta ,jd*( A_j00-alpha*dj1),A_j10-alpha*dj1) f1[j+1,2]=alpha*u(beta-1.0 ,jd*(-jd*A_j00-0.5*A_j10+1.5*alpha*dj1),-jd*A_j10-0.5*A_j20+alpha*dj1) f1[j+1,3]=alpha*u(beta+1.0 ,jd*( jd*A_j00-0.5*A_j10-0.5*alpha*dj1), jd*A_j10-0.5*A_j20-alpha*dj1) f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) end end # Add in the k=\pm 1 coefficients (note that d1 & d2 are the same as c1 & c2 for k=0): if j >= 1 f1[j+1,2]=f1[j+1,2]+alpha*v(beta,jd*(A_j00-alpha*dj1),A_j10-alpha*dj1,-1) f1[j+1,3]=f1[j+1,3]+alpha*v(beta,jd*(A_j00-alpha*dj1),A_j10-alpha*dj1, 1) end # Now for the outer planet: # Outer planet coefficients, in order k=0,-2,2,-1,1 (see Table 1): one_over_alpha_squared = 1/(alpha*alpha) if j >= 2 f2[j+1,1]=u(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared) f2[j+1,2]=u(kappa-1,-jd*(jd*A_j00-0.5*A_j01-0.5*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j02-dj1*one_over_alpha_squared) f2[j+1,3]=u(kappa+1,-jd*(-jd*A_j00-0.5*A_j01+1.5*dj1*one_over_alpha_squared),-jd*A_j01-0.5*A_j02+dj1*one_over_alpha_squared) f2[j+1,4]=u(kappa-1/(alpha*sqrtalpha),-jd*(-jd*A_j00-0.5*A_j10),-jd*A_j01-0.5*A_j11) else if j == 1 f2[j+1,1]=u(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared) f2[j+1,2]=u(kappa-1,-jd*(jd*A_j00-0.5*A_j01-0.5*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j02-dj1*one_over_alpha_squared) f2[j+1,3]=u(kappa+1,-jd*(-jd*A_j00-0.5*A_j01+1.5*dj1*one_over_alpha_squared),-jd*A_j01-0.5*A_j02+dj1*one_over_alpha_squared) end end f2[j+1,5]=u(kappa+1/(alpha*sqrtalpha),-jd*(jd*A_j00-0.5*A_j10-2.0*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j11-2.0*dj1*one_over_alpha_squared) # Add in the k=\pm 2 coefficients (note that d1 & d2 are the same as c1 & c2 for k=0): if j >= 1 f2[j+1,2]=f2[j+1,2]+v(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared,-1) f2[j+1,3]=f2[j+1,3]+v(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared, 1) end # That's it! end #end of loop return end # Computes Taylor series expansion for when period is fixed. code exists somewhere function ttv_succinct!(jmax::Integer,alpha::Number,f1::Array{Float64,2},f2::Array{Float64,2},b::Array{Float64,2},alpha0::Number,b0::Array{Float64,2}) # See simple_solution.pdf 7/16/2015 # Fourth-order Taylor expansion approximation of Laplace coefficients: dalpha = alpha-alpha0 for i=0:2 for j=0:jmax b[j+1,i+1]=b0[i+1,j+1]+dalpha*(b0[i+2,j+1]+0.5*dalpha*(b0[i+3,j+1]+dalpha/3.0*(b0[i+4,j+1]+dalpha*0.25*b0[i+5,j+1]))) end end sqrtalpha = sqrt(alpha) # Loop over j: @inbounds for j=0:jmax # \delta_{j1} (this is indirect coefficient which is only needed for j=1) dj1 = j==1 ? 1.0 : 0.0 # Compute dimensionless frequencies (equation 30): beta = j*(1-alpha*sqrtalpha) kappa = beta / (alpha*sqrtalpha) # Compute disturbing function coefficients (equation 31): A_j00 = b[j+1,1] A_j10 = alpha* b[j+1,2] A_j01 = -(A_j10 + A_j00) A_j20 = alpha*alpha * b[j+1,3] A_j11 = -(2*A_j10 + A_j20) A_j02 = 2*A_j00 + 4*A_j10 + A_j20 jd=convert(eltype(alpha),j) # Inner planet coefficients, in order k=0,-1,1,-2,2 (see Table 1): if j >=2 f1[j+1,1]=alpha*u(beta ,jd*( A_j00-alpha*dj1),A_j10-alpha*dj1) f1[j+1,2]=alpha*u(beta-1.0 ,jd*(-jd*A_j00-0.5*A_j10+1.5*alpha*dj1),-jd*A_j10-0.5*A_j20+alpha*dj1) f1[j+1,3]=alpha*u(beta+1.0 ,jd*( jd*A_j00-0.5*A_j10-0.5*alpha*dj1), jd*A_j10-0.5*A_j20-alpha*dj1) f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) f1[j+1,5]=alpha*u(beta+alpha*sqrtalpha,jd*(-jd*A_j00-0.5*A_j01),-jd*A_j10-0.5*A_j11) else if j==0 f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) else f1[j+1,1]=alpha*u(beta ,jd*( A_j00-alpha*dj1),A_j10-alpha*dj1) f1[j+1,2]=alpha*u(beta-1.0 ,jd*(-jd*A_j00-0.5*A_j10+1.5*alpha*dj1),-jd*A_j10-0.5*A_j20+alpha*dj1) f1[j+1,3]=alpha*u(beta+1.0 ,jd*( jd*A_j00-0.5*A_j10-0.5*alpha*dj1), jd*A_j10-0.5*A_j20-alpha*dj1) f1[j+1,4]=alpha*u(beta-alpha*sqrtalpha,jd*( jd*A_j00-0.5*A_j01-2.0*alpha*dj1), jd*A_j10-0.5*A_j11-2.0*alpha*dj1) end end # Add in the k=\pm 1 coefficients (note that d1 & d2 are the same as c1 & c2 for k=0): if j >= 1 f1[j+1,2]=f1[j+1,2]+alpha*v(beta,jd*(A_j00-alpha*dj1),A_j10-alpha*dj1,-1) f1[j+1,3]=f1[j+1,3]+alpha*v(beta,jd*(A_j00-alpha*dj1),A_j10-alpha*dj1, 1) end # Now for the outer planet: # Outer planet coefficients, in order k=0,-2,2,-1,1 (see Table 1): one_over_alpha_squared = 1/(alpha*alpha) if j >= 2 f2[j+1,1]=u(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared) f2[j+1,2]=u(kappa-1,-jd*(jd*A_j00-0.5*A_j01-0.5*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j02-dj1*one_over_alpha_squared) f2[j+1,3]=u(kappa+1,-jd*(-jd*A_j00-0.5*A_j01+1.5*dj1*one_over_alpha_squared),-jd*A_j01-0.5*A_j02+dj1*one_over_alpha_squared) f2[j+1,4]=u(kappa-1/(alpha*sqrtalpha),-jd*(-jd*A_j00-0.5*A_j10),-jd*A_j01-0.5*A_j11) else if j == 1 f2[j+1,1]=u(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared) f2[j+1,2]=u(kappa-1,-jd*(jd*A_j00-0.5*A_j01-0.5*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j02-dj1*one_over_alpha_squared) f2[j+1,3]=u(kappa+1,-jd*(-jd*A_j00-0.5*A_j01+1.5*dj1*one_over_alpha_squared),-jd*A_j01-0.5*A_j02+dj1*one_over_alpha_squared) end end f2[j+1,5]=u(kappa+1/(alpha*sqrtalpha),-jd*(jd*A_j00-0.5*A_j10-2.0*dj1*one_over_alpha_squared),jd*A_j01-0.5*A_j11-2.0*dj1*one_over_alpha_squared) # Add in the k=\pm 2 coefficients (note that d1 & d2 are the same as c1 & c2 for k=0): if j >= 1 f2[j+1,2]=f2[j+1,2]+v(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared,-1) f2[j+1,3]=f2[j+1,3]+v(kappa,-jd*(A_j00-dj1*one_over_alpha_squared),A_j01-dj1*one_over_alpha_squared, 1) end # That's it! end return end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
3056
include("ttv_nplanet.jl") """ ttv_wrapper(tt0) Adds mean linear ephemeris and pairwise TTVs from TTVFaster to yield transit times. Currently doesnt account for skipped transits? Arguments: tt0: Initial times of transit for planets nplanet: Number of planets to model ntrans: Number of transits for each planet in model params: Holds 5 elements of each planet: mass_ratio,period,trans0,ecosw,esinw jmax: Maximum j over which to sum the TTV calculation for both planets Returns: tts: The model transit times for the observed planets with model TTVs for the system. """ function ttv_wrapper(tt0::Vector{Float64},nplanet::Int64,ntrans::Vector{Int64},params::Vector{T},jmax::Integer) where T<:Real # Call ttv_nplanet: ttv = ttv_nplanet(nplanet,jmax,ntrans,params[1:5*nplanet]) # We measure transit times,not TTVs,so add back in the linear ephemeris: tts=Float64[] for iplanet in 1:nplanet t0=params[(iplanet-1)*5+3] per=params[(iplanet-1)*5+2] n=ntrans[iplanet] tt=collect(range(t0,stop=t0+per*(n-1),length=n)) # time1=collect(t0.+ range(0,stop=n-1,length=n) .*per) # println(time1[1], " VS ", tt[1]) # println("For planet ",iplanet,", T0=",t0," per=", per," ntrans=",n) tt.+=ttv[iplanet,1:n] append!(tts,tt) end return tts end """ If nplanet=2 and we want to model that planet 2 hosts a satellite in a circular orbit: Arguments (if different from above): params: Holds 5 elements of each planet, plus 3 for satellite treat_PMB_as_planet: Whether to treat the Planet-Moon Barycenter as an observed planet for p2 (i.e. for case where Earth has no Moon) Returns: tts: The model transit times for the observed planets with model TTVs for the system. """ function ttv_wrapper(tt0::Vector{Float64},nplanet::Int64,ntrans::Vector{Int64},params::Vector{T},jmax::Integer,treat_PMB_as_planet::Bool) where T<:Real # If transit times of additional planets were observable these would need to be added in. n1,n2 = ntrans[1:2] # println(n1, " ", n2) # Call ttv_nplanet: ttv = ttv_nplanet(nplanet,jmax,ntrans,params[1:5*nplanet]) # We measure transit times,not TTVs,so add back in the linear ephemeris: t01 = params[3] per1 = params[2] tt1 = collect(range(t01,stop = t01+per1*(n1-1),length = n1)) for i=1:n1 tt1[i]+= ttv[1,i] end t02 = params[8] per2 = params[7] tt2 = collect(range(t02,stop = t02+per2*(n2-1),length = n2)) # If modeling satellite in circular orbit about another planet, these lines need modification for different choices of parameters. for i=1:n2 if treat_PMB_as_planet tt2[i] += ttv[2,i] else # Compute the TTVs of planet 2, given satellite: # Satellite needs 3 elements in params: (tsinphi0,tcosphi0,deltaphi) , where t is maximum amplitude of TTVs on planet 2 tsinphi0 = params[end-2] tcosphi0 = params[end-1] deltaphi = params[end] tt2[i] += ttv[2,i] + tsinphi0*cos((i-1)*deltaphi) + tcosphi0*sin((i-1)*deltaphi) end end return [tt1;tt2] end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
code
622
using TTVFaster using Test using DelimitedFiles include("../examples/test_ttv.jl") function kepler62_test() data=readdlm("../examples/kepler62ef_planets.txt",',',Float64) @time ttv1,ttv2=test_ttv(5,40,20,data[1:10],false) inner=readdlm("../examples/inner_ttv.txt") outer=readdlm("../examples/outer_ttv.txt") inner_ref=readdlm("inner_ttv.txt.ref") outer_ref=readdlm("outer_ttv.txt.ref") diffs=[maximum(abs.(inner_ref .- inner)) maximum(abs.(outer_ref .- outer))] max_diff=maximum(diffs) return round(max_diff) end @testset "TTVFaster.jl" begin @test kepler62_test() == (0.0) end
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.2.1
c3964c133326d031d4da5f539355a77aae9fe6ce
docs
2903
# TTVFaster First order eccentricity transit timing variations (TTVs) computed in Agol &amp; Deck (2015) [![ADS](https://img.shields.io/badge/ADS-2016APJ...818...177A-blue)](https://ui.adsabs.harvard.edu/abs/2016ApJ...818..177A/abstract) [![arXiv](https://img.shields.io/badge/arXiv-1509.01623-brightgreen)](http://arxiv.org/abs/1509.01623) This implements equation (33) from that paper by computing the Laplace coefficients using a series solution due to Jack Wisdom, computing the $f_{1,j}^{(\pm k)}$ coefficients given in equation (34) using the functions $u$ and $v_{\pm}$ with coefficients given in Table 1. ## Installation You can install the registered TTVFaster repo as a Julia package with the `Pkg` manager. - the repo from the package registry has been tested on Julia v1.6.0 ```julia julia> using Pkg Pkg.add("TTVFaster.jl") ``` In its current state, the package computes the TTVs of a multi-transiting planetary system where at least 2 planets are observed to be transiting. If you intend to modify the source code for any reason, please create a GitHub fork to develop your own version. - make sure to replace `your-GitHub-username` with your actual GitHub username in the code below ```julia julia> Pkg.develop(PackageSpec(url="[email protected]:your-GitHub-username/TTVFaster.jl.git")) ``` ## Usage TTVFaster computes TTVs with respect to 5 properties for each planet: $\mu$, $T_0$ , $P$, $e \cos(\omega)$ , $e \sin(\omega)$; where $\mu$ is the mass ratio of the planet to the star ($m_p/M_{\star}$), $T_0$ is the initial transit time (of the averaged orbit), $P$ is the mean orbital period, $e$ is the eccentricity, and $\omega$ is the longitude of periastron. ### Examples #### Kepler-62e/f example The file kepler62ef_planets.txt in the examples/ directory contains a comma-separated set of 10 parameters that describe a system with two planets similar to Kepler-62e/f. ``` julia julia> using TTVFaster,DelimitedFiles julia> data=readdlm("kepler62ef_planets.txt",',',Float64) 1x10 Array{Float64,2}: 3.02306e-5 122.386 -16.5926 -0.00127324 0.0026446 1.67874e-5 267.307 155.466 -0.0025544 0.00117917 julia> include("test_ttv.jl") test_ttv (generic function with 4 methods) julia> @time ttv1,ttv2=test_ttv(5,40,20,data); # inputs are jmax,ntrans1,ntrans2,data 0.982326 seconds (2.04 M allocations: 98.466 MiB, 12.08% gc time) julia> @time ttv1,ttv2=test_ttv(5,40,20,data); 0.001171 seconds (331 allocations: 21.922 KiB) ``` This computes the TTVs and writes them to the files inner_ttv.txt and outer_ttv.txt in the examples/ directory. Note that the TTVs are stored in the variables ttv1 and ttv2, as well. The test_ttv.jl routine accepts jmax (the maximum $j$ to sum to, in this example 5), ntrans1 (number of transits of the inner planet), ntrans2 (the number of transits of the outer planet), and data which contains the parameters of both planets.
TTVFaster
https://github.com/bmlindor/TTVFaster.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
1008
using GuessworkQuantumSideInfo using Documenter DocMeta.setdocmeta!(GuessworkQuantumSideInfo, :DocTestSetup, :(using GuessworkQuantumSideInfo; using SparseArrays); recursive=true) previous_GKSwstype = get(ENV, "GKSwstype", "") ENV["GKSwstype"] = "100" makedocs(; modules=[GuessworkQuantumSideInfo], authors="Eric P. Hanson", repo="https://github.com/ericphanson/GuessworkQuantumSideInfo.jl/blob/{commit}{path}#L{line}", sitename="GuessworkQuantumSideInfo.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://ericphanson.github.io/GuessworkQuantumSideInfo.jl", assets=String[], ), pages=[ "Home" => "index.md", "Examples" => "examples.md", "High precision example" => "high-precision-example.md", "Mixed-integer SDP example" => "mixed-integer-SDP.md", ], ) deploydocs(; repo="github.com/ericphanson/GuessworkQuantumSideInfo.jl", ) ENV["GKSwstype"] = previous_GKSwstype;
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
4164
using GuessworkQuantumSideInfo: ket, dm, BB84_states, iid_copies, randdm, guesswork, guesswork_upper_bound, guesswork_MISDP using StableRNGs, UnPack using Mosek, Gurobi, Pajarito, Cbc, SCS if !@isdefined(GRB_ENV) const GRB_ENV = Gurobi.Env() end function Y_states(::Type{T}) where {T} return [begin θⱼ = T(j) * (T(2) * π) / T(3) dm(cos(θⱼ) * ket(T, 1, 2) + sin(θⱼ) * ket(T, 2, 2)) end for j in 1:3] end function two_random_qubits() rng = StableRNG(746) return [randdm(rng, Float64, 2) for _ in 1:2] end function three_random_qubits() rng = StableRNG(514) return [randdm(rng, Float64, 2) for _ in 1:3] end function two_random_qutrits() rng = StableRNG(948) return [randdm(rng, Float64, 3) for _ in 1:2] end function three_random_qutrits() rng = StableRNG(219) return [randdm(rng, Float64, 3) for _ in 1:3] end function iid_problem(states, n) J = length(states) p = ones(T, J^n) / J^n ρBs = iid_copies(states, n) (p=p, ρBs = ρBs) end T = Float64 problems = [] for n in 1:2 append!(problems, [ (iid_problem(two_random_qubits(), n)..., numeric_type=T, problem="2qubits($n)"), (iid_problem(three_random_qubits(), n)..., numeric_type=T, problem="3qubits($n)"), (iid_problem(Y_states(T), n)..., numeric_type=T, problem="Y($n)"), (iid_problem(BB84_states(T), n)..., numeric_type=T, problem="BB84($n)"), (iid_problem(two_random_qutrits(), n)..., numeric_type=T, problem="2qutrits($n)"), (iid_problem(three_random_qutrits(), n)..., numeric_type=T, problem="3qutrits($n)"), ]) end algos = [] for (misdp_solver, settings) in [(PajaritoSolver(cont_solver=MosekSolver(LOG=0), mip_solver=GurobiSolver(GRB_ENV, OutputFlag=0, IntFeasTol=1e-9, FeasibilityTol=1e-8, MIPGap=0), mip_solver_drives=false, rel_gap = 1e-5, log_level=0), "Pajarito(Mosek, Gurobi, MSD=false)"), (PajaritoSolver(cont_solver=MosekSolver(LOG=0), mip_solver=GurobiSolver(GRB_ENV, OutputFlag=0, IntFeasTol=1e-9, FeasibilityTol=1e-8, MIPGap=1e-5), mip_solver_drives=true, rel_gap = 1e-5, log_level=0), "Pajarito(Mosek, Gurobi, MSD=true)"), (PajaritoSolver(cont_solver=SCSSolver(verbose=false, eps=1e-6), mip_solver=CbcSolver(loglevel=0, integerT=1e-8), mip_solver_drives=false, rel_gap = 1e-5, log_level=0), "Pajarito(SCS, Cbc, MSD=false)")] push!(algos, (; f = (prob -> @timed guesswork_MISDP(prob.p, prob.ρBs, size(first(prob.ρBs),1); solver=misdp_solver, verbose=false).optval), algo = "MISDP_dB", settings)) push!(algos, (; f = (prob -> @timed guesswork_MISDP(prob.p, prob.ρBs, size(first(prob.ρBs), 1)^2; solver=misdp_solver, verbose=false).optval), algo = "MISDP", settings)) push!(algos, (; f = (prob -> @timed guesswork_MISDP(prob.p, prob.ρBs, size(first(prob.ρBs), 1); solver=misdp_solver, verbose=false).optval), algo = "MISDP (dB^2)", settings)) end for (sdp_solver, settings) in [((() -> MosekSolver(LOG=0)), "Mosek"), ((() -> SCSSolver(verbose=0, eps=1e-6)), "SCS")] push!(algos, (; f = (prob -> @timed guesswork(prob.p, prob.ρBs; solver=sdp_solver(), verbose=false).optval), algo = "SDP", settings)) push!(algos, (; f = (prob -> @timed guesswork(prob.p, prob.ρBs; dual=true, solver=sdp_solver(), verbose=false).optval), algo = "dual_SDP", settings)) for max_time in (20, 60, 60*4) push!(algos, (; f = (prob -> @timed guesswork_upper_bound(prob.p, prob.ρBs; make_solver=sdp_solver, verbose=false, max_time).optval), algo = "guesswork_upper_bound(max_time=$max_time)", settings)) end end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
466
# https://github.com/JuliaLang/julia/issues/28679 function rm_stdout(f::Function) nullfile = @static Sys.iswindows() ? "nul" : "/dev/null" open(nullfile, "w") do io redirect_stdout(f, io) end end rm_stdout() do include(joinpath(@__DIR__, "common.jl")) end algo_idx = parse(Int, ARGS[1]) problem_idx = parse(Int, ARGS[2]) algo = algos[algo_idx] prob = problems[problem_idx] optval, elapsed = algo.f(prob) println(optval) println(elapsed)
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
6365
using CSV, DataFrames, Statistics using Printf df = CSV.read(joinpath(@__DIR__, "results.csv")) ## This bit is a little annoying: # To check for OOMs, we need to manually look through the log (see `log.md`) # Which was numbered according to the algorithm and problem index. # However, later two more algorithms were added (`MISDP_dB` and `MISDP (dB^2)`) # which can mess up the numbering. So first we will filter out those to mimick # the state of the first run, and add flags for OOMs. include("common.jl") # need to load the list of algorithms (`algos`) algos_pre_dB = filter(algos) do a a.algo != "MISDP_dB" && a.algo != "MISDP (dB^2)" end # Looking through `log.md`, we find two issues: # out of memory (OOM) errors during 4 solves, and unknown errors in 2 solves. OOM = [(problem=10, algo=4), (problem=10, algo=5), (problem=10, algo=9), (problem=10, algo=10)] unknown_error = [(problem=12, algo=4), (problem=12, algo=9)] # Let us record the OOM errors in the dataframe. inds = falses(size(df, 1)) for (p_idx, a_idx) in OOM inds .= inds .| ((df.problem .== problems[p_idx].problem) .& (df.algo .== algos_pre_dB[a_idx].algo) .& (df.settings .== algos_pre_dB[a_idx].settings)) end df.OOM = inds ## End of problem-index specific content. # Now we will filter out the `MISDP` algorithm (which had `dB^2 + 1` entries, which # is 1 more than needed, and is replaced by the `MISDP (dB^2)` version. df = filter(df) do row row.algo != "MISDP" end df.timeout = isnan.(df.optval) .& (!).(df.errors) df.error_not_solved_not_timeout = df.errors .& isnan.(df.optval) .& (!).(df.timeout) # Now we will caculate discrepencies in `optval` # First we will filter to rows that claim to have a correct answer row_should_be_correct(row) = !startswith(row.algo, "guesswork_upper_bound") && !isnan(row.optval) && row.algo != "MISDP_dB" df_right = filter(row_should_be_correct, df) gdf_right = groupby(df_right, "problem") # Check for BB84(1) bb84_true_val = (big(1) / big(4)) * (10 - sqrt(big(10))) @assert all(gdf_right[4].problem .== Ref("BB84(1)")) # check we've got the right group @assert maximum((gdf_right[4].optval .- bb84_true_val ) ./ bb84_true_val) < 1e-7 # not too big of an error mean_solutions_df = combine(gdf_right, :optval => mean) mean_solutions = Dict(mean_solutions_df.problem .=> mean_solutions_df.optval_mean) # Now that we've calculated the mean solutions, we calculate the discrepencies df.discrepency_from_mean = [ isnan(row.optval) ? NaN : !haskey(mean_solutions, row.problem) ? missing : abs(row.optval - mean_solutions[row.problem]) for row in eachrow(df)] df.relative_discrepency_from_mean = [ isnan(row.optval) ? NaN : !haskey(mean_solutions, row.problem) ? missing : abs(row.optval - mean_solutions[row.problem])/mean_solutions[row.problem] for row in eachrow(df)] # Let us check the maximum discrepency is not too bad df_right = filter(row_should_be_correct, df) findmax(df_right.relative_discrepency_from_mean) # (1.7202621117336732e-6, 45) # Now let us generate the final table. ## Rows in table: algorithm with settings ## Columns in table: # solved, # timeout, # errored, avg relative_discrepency_from_mean, average time df.algo_settings = df.algo .* Ref(" ") .* df.settings function pretty_algo(row) if startswith(row.algo, "guesswork_upper_bound") return "Upper bound" end if row.algo == "MISDP_dB" return "MISDP (\$d_B\$)" elseif row.algo == "MISDP" return "MISDP (\$d_B^2 + 1\$)" elseif row.algo == "MISDP (dB^2)" return "MISDP (\$d_B^2\$)" elseif row.algo == "dual_SDP" return "SDP (dual)" end return row.algo end function pretty_settings(row) n = length("guesswork_upper_bound") if startswith(row.algo, "guesswork_upper_bound") j = findfirst(==('='), row.algo) max_time = row.algo[j+1:end-1] return row.settings * ", \$t_\\text{max}=$(max_time)\$" end if row.settings == "Pajarito(Mosek, Gurobi, MSD=true)" return "Pajarito (c1)" elseif row.settings == "Pajarito(Mosek, Gurobi, MSD=false)" return "Pajarito (c2)" elseif row.settings == "Pajarito(SCS, Cbc, MSD=false)" return "Pajarito (o)" end return row.settings end df.algo2 = [ pretty_algo(row) for row in eachrow(df) ] df.settings2 = [ pretty_settings(row) for row in eachrow(df) ] gdf = groupby(df, [:algo2, :settings2]) function mean_no_nan(collection) c = [x for x in collection if !ismissing(x) && !isnan(x)] isempty(c) ? missing : mean(c) end float_fmt(f) = @sprintf("%2.2f", f) pct_fmt(f) = float_fmt(f*100) * "\\,\\%" time_fmt(f) = float_fmt(f) * "\\,s" table1 = combine(gdf, :relative_discrepency_from_mean => pct_fmt ∘ mean_no_nan => "average relative error", :elapsed_seconds => time_fmt ∘ mean_no_nan => "average time", :optval => (x -> sum((!isnan).(x))) => "solved", :timeout => sum => "timeouts", :error_not_solved_not_timeout => sum => "errors") sort!(table1, [:algo2, :settings2]) table1 = rename(table1, :algo2 => :Algorithm, :settings2 => :Parameters) df.time_status = ifelse.(df.timeout, Ref(:timeout), ifelse.(df.error_not_solved_not_timeout, Ref(:error), df.elapsed_seconds)) df2 = copy(df) function tol_time(row) disc = ismissing(row.relative_discrepency_from_mean) ? "(?\\,\\%)" : isnan(row.relative_discrepency_from_mean) ? "" : "("* pct_fmt(row.relative_discrepency_from_mean)*")" time = row.time_status isa Symbol ? string(row.time_status) : time_fmt(row.elapsed_seconds) disc == "" ? time : "$time $disc" end df2.value = [tol_time(row) for row in eachrow(df2) ] df_times = unstack(df2, [:algo2, :settings2], :problem, :value) problem_stems = unique([ str[1:end-3] for str in df2.problem]) nms = names(df_times, Not(["algo2", "settings2"])) for stem in problem_stems df_times[:, stem] = ["$(row[1]), $(row[2])" for row in eachrow(df_times[:, nms[findall(startswith(stem), nms)]])] end table2 = df_times[:, ["algo2", "settings2", problem_stems...]] sort!(table2, [:algo2, :settings2]) table2 = rename(table2, :algo2 => :Algorithm, :settings2 => :Parameters) using Latexify latexify(table1, env=:table, latex=false) latexify(table2[:,["Algorithm", "Parameters", "2qubits", "2qutrits", "Y"] ], env=:table, latex=false) latexify(table2[:,["Algorithm", "Parameters", "3qubits", "3qutrits", "BB84"] ], env=:table, latex=false)
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
2857
using ProgressMeter, CSV function write_results(algo, prob, optval = NaN, elapsed_seconds = NaN; warnings = false, errors = false) row = (;algo.algo, algo.settings, prob.numeric_type, prob.problem, optval, elapsed_seconds, warnings, errors) CSV.write(joinpath(@__DIR__, "results.csv"), [row], append = isfile(joinpath(@__DIR__, "results.csv"))) end isfile(joinpath(@__DIR__, "results.csv")) && error("`results.csv` already exists") include("common.jl") # The idea is these can be run in parallel, and the thunks that write to the CSV returned, # then those could be executed serially. # It's probably more robust to have each process write a separate one-line CSV # and then collect them at the end, though. function run_problem(algo_idx, problem_idx; verbose = true) algo = algos[algo_idx] prob = problems[problem_idx] out = Pipe() err = Pipe() proc = run(pipeline(`julia --project=$(@__DIR__) do_problem.jl $(algo_idx) $(problem_idx)`, stdout=out, stderr=err), wait=false) time_elapsed = 0.0 if verbose meter = Progress(timeout*2, desc = "Problem $problem_idx/$n_problems, algorithm $algo_idx/$n_algos ") end while time_elapsed < timeout && Base.process_running(proc) sleep(0.5) verbose && next!(meter) time_elapsed += 0.5 end verbose && finish!(meter) if Base.process_running(proc) verbose && println("Timed out!") Base.kill(proc) f = () -> write_results(algo, prob) else verbose && println("Finished!") close(err.in) close(out.in) errors_text = String(read(err)) if !isempty(errors_text) && verbose @error errors_text end results = split(chomp(String(read(out))), '\n') warnings = false if length(results) > 2 verbose && @warn join(results[1:end-2], "\n") warnings = true end verbose && @info results if length(results) < 2 verbose && @error "Not enough returns, something went wrong" errors = true optval, elapsed = NaN, NaN else optval, elapsed = parse.(Float64, results[end-1:end]) end f = () -> write_results(algo, prob, optval, elapsed; errors = !isempty(errors_text), warnings) end return f end n_problems = length(problems) n_algos = length(algos) timeout = 60*5 for problem_idx in 1:n_problems, algo_idx in 1:n_algos # To run just a subset of the problems, a filter can be put such as # the following, which were used when I added algorithms after the first run. ## algos[algo_idx].algo == "MISDP_dB" || continue ## algos[algo_idx].algo == "MISDP (dB^2)" || continue f = run_problem(algo_idx, problem_idx; verbose = true) f() end df = CSV.read(joinpath(@__DIR__, "results.csv"))
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
894
module GuessworkQuantumSideInfo using LinearAlgebra, SparseArrays # standard libraries using Random: Random, randperm!, AbstractRNG # standard library using Convex # Julia SDP solvers / interfaces using Combinatorics: multiset_permutations, combinations # used for POVM outcomes using UnPack # helper # Basic functions for quantum states and examples export ket, bra, ⊗, I, dm, randdm, randprobvec, iid_copies, BB84_states include("quantum_states.jl") # The basic SDP routine export guesswork include("SDP_formulation.jl") export guesswork_lower_bound include("lower_bound.jl") # Re-run the SDP adding constraints one at a time export guesswork_upper_bound include("upper_bound.jl") # reformulate as a mixed-integer SDP export guesswork_MISDP include("MISDP_formulation.jl") # Utilities for analyzing the POVMs resulting from the SDPs export pmfN include("analyze_measurements.jl") end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
4804
""" guesswork_MISDP( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}, num_outcomes = size(ρBs[1], 1)^2; solver, c = T.(1:length(p)), verbose::Bool = true, ) where {T<:Number} -> NamedTuple Computes an approximation to the guesswork with `num_outcomes` possible guessing orders for the c-q state specified by a probability vector `p`, giving the distribution `X`, and `ρBs`, giving the associated quantum states. If ``num_outcomes ≥ d_B^2``, where `d_B` is the dimension of the Hilbert space on which the quantum states live, then this computes exactly the guesswork. Note that one may not supply a parameter `K` in this case; in the mixed-integer SDP formulation, the guesser is always allowed to make `length(p)` guesses. However, a custom cost vector `c` may be supplied to choose how to penalize each possible number of guesses required to get the correct answer. The size of the mixed-integer SDP solved by this function grows polynomially in `length(p)`, the dimension `d_B`, and `num_outcomes`, but mixed-integer SDPs are not known to be efficiently computable in general. The keyword argument `solver` must be supplied with a solver capable of solving mixed-integer SDPs. Currently, this means [Pajarito.jl](https://github.com/JuliaOpt/Pajarito.jl) which solves mixed-integer SDPs by solving an alternating sequence of mixed-integer linear programs and SDPs. See the documentation for an example. Note that the performance of Pajarito depends on the performance of the underlying mixed-integer linear solver and SDP solver it is given, and that commerical solvers often have academic licenses and can be much more performant. The keyword argument `verbose` prints the status, optimal value, optimal guessing orders, and POVMs, in addition to warnings from Convex.jl if the problem is not optimally solved. """ function guesswork_MISDP( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}, num_outcomes = size(ρBs[1], 1)^2; solver, c = T.(1:length(p)), verbose::Bool = true, ) where {T<:Number} length(p) == length(ρBs) || throw(ArgumentError("Length of prior and vector of side information must match J")) J = length(p) dB = size(ρBs[1], 1) all(ρB -> size(ρB) == (dB, dB), ρBs) || throw(ArgumentError("All side-information states must be square matrices of the same size")) constraints = Convex.Constraint[] Es = [Convex.ComplexVariable(dB, dB) for _ = 1:num_outcomes] for E in Es push!(constraints, E ⪰ 0) end πs = [reshape(Convex.Variable(J^2, :Bin), J, J) for _ = 1:num_outcomes] for j = 1:num_outcomes, i = 1:J push!(constraints, sum(πs[j][i, :]) == 1) push!(constraints, sum(πs[j][:, i]) == 1) end push!(constraints, sum(Es) == I(dB)) Λs = [] for k = 1:num_outcomes Λre = [Convex.Variable(J, J) for a = 1:dB, b = 1:dB] Λim = [Convex.Variable(J, J) for a = 1:dB, b = 1:dB] push!(Λs, Λre + im * Λim) π = πs[k] E = Es[k] E_U = dB / 2 E_L = -1 * dB / 2 for a = 1:dB, b = 1:dB Λab_re = Λre[a, b] Λab_im = Λim[a, b] push!(constraints, Λab_re >= π * E_L) push!(constraints, Λab_re <= π * E_U) push!(constraints, Λab_re >= real(E[a, b]) + π * E_U - E_U) push!(constraints, Λab_re <= real(E[a, b]) + π * E_L - E_L) push!(constraints, Λab_im >= π * E_L) push!(constraints, Λab_im <= π * E_U) push!(constraints, Λab_im >= imag(E[a, b]) + π * E_U - E_U) push!(constraints, Λab_im <= imag(E[a, b]) + π * E_L - E_L) end end ρBs_subnormalized = p .* ρBs vs = [ [ real(sum( ρBs_subnormalized[i][a, b] * Λ[b, a][j, i] for a = 1:dB for b = 1:dB for i = 1:J )) for j = 1:J ] for Λ in Λs ] objective = sum(v[j] * c[j] for j = 1:J for v in vs) for v in vs, j = 1:J-1 push!(constraints, v[j] >= v[j+1]) end prob = compatible_problem(Convex.minimize, objective, constraints, T) if verbose @info "Starting MISDP solve" end Convex.solve!(prob, solver; verbose = verbose) optval = prob.optval status = prob.status πs_perm = [Tuple(round.(Int, (evaluate(π) * collect(1:J)))) for π in πs] Es = evaluate.(Es) if verbose @info "MISDP solve" @show status @show optval @show πs_perm @show Es end data = (J = J, K = J, c = c, p = p, ρBs = ρBs, dB = dB) return ( optval = optval, Es = Es, povm_outcomes = πs_perm, num_outcomes = num_outcomes, data..., ) end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
6196
""" N(g, x) -> Int Given a sequence of guesses `g`, returns the number of guesses needed to correctly guess `x`. Returns `length(g)+1` if the correct answer is never guesses. """ function N(g, x) i = findfirst(==(x), g) if i === nothing return length(g) + 1 else return i end end """ cartesian_power(J, K) -> iterator Returns an interator over the set of tuples of length `K` with elements in `1:J`. # Example ```jldoctest julia> collect(GuessworkQuantumSideInfo.cartesian_power(3,2)) 9-element Array{Tuple{Int64,Int64},1}: (1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3) ``` """ function cartesian_power(J, K) sz = ntuple(i -> 1:J, K) inds = CartesianIndices(sz) return (Tuple(inds[y]) for y = 1:J^K) end """ make_povm_outcomes(J, K, remove_repetition) Returns an iterator over tuples or vectors each representing a POVM outcome. If `remove_repetition` is true, it returns ``J!/(J-K)!`` outcomes, vectors of length `K` with elements in ``[1,...,J]`` such that each vector has no repetition of elements. If `remove_repetition` is false, it returns all ``J^K`` elements of ``[1, ..., J]^K``. """ function make_povm_outcomes(J, K, remove_repetition::Bool) if remove_repetition return multiset_permutations(1:J, K) else return cartesian_power(J, K) end end """ compatible_problem(f, objective, constraints, numeric_type) -> Convex.Problem Returns a `Convex.Problem` object corresponding to `f`, which should be either `maximize` or `minimize`, the objective and constraints given as arguments, and the `numeric_type`. Since only Float64 numeric types are supported on Convex versions 0.12 and below, the argument `numeric_type` is only passed to `f` when it is different from `Float64`. """ function compatible_problem(f, objective, constraints, numeric_type) if numeric_type != Float64 f(objective, constraints; numeric_type = numeric_type) else f(objective, constraints) end end """ guesswork( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; solver, K::Integer = length(p), c = T[1:K..., 5_000], dual::Bool = false, remove_repetition::Bool = true, povm_outcomes = make_povm_outcomes(length(p), K, remove_repetition), verbose::Bool = true, ) Computes the guesswork for the c-q state specified by a probability vector `p`, giving the distribution `X`, and `ρBs`, giving the associated quantum states. The keyword arguments are as follows: * `solver` is the only required keyword argument; an SDP solver such as SCS or MOSEK must be passed. * `K` corresponds to the maximum number of allowed guesses. The number of variables in the primal SDP (and the number of constraints in the dual SDP) scales as `length(p)^K`. * `c` may be given a custom cost vector. If `K < length(p)`, then `c` should be of length `K+1`. The last entry, `c[K+1]`, corresponds to the cost of not guessing the correct answer within `K` guesses. * `dual` is a boolean variable indicating whether the primal or dual optimization problem should be solved. * `remove_repetition` is a boolean variable defaulting to true, indicating whether repeated guesses of the same value should be removed; as long as `c` is increasing, this decreases the size of the SDP without affecting the optimal value. * `povm_outcomes` should be an iterator (or vector) corresponding to the possible guessing orders. This defaults to all subsets of length `K` of `1:length(p)` without repetition. * `verbose` is a boolean which indicates if warnings should be printed when the problem is not solved optimally. """ function guesswork( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; solver, K::Integer = length(p), c = T[1:K..., 5_000], dual::Bool = false, remove_repetition::Bool = true, povm_outcomes = make_povm_outcomes(length(p), K, remove_repetition), verbose::Bool = true, debug::Bool = false, ) where {T<:Number} length(p) == length(ρBs) || throw(ArgumentError("Length of prior and vector of side information must match J")) J = length(p) dB = size(ρBs[1], 1) all(ρB -> size(ρB) == (dB, dB), ρBs) || throw(ArgumentError("All side-information states must be square matrices of the same size")) R(g) = sum(c[N(g, x)] * p[x] * ρBs[x] for x in eachindex(p, ρBs)) num_outcomes = length(povm_outcomes) if dual Y = ComplexVariable(dB, dB) constraints = Convex.Constraint[R(outcome) ⪰ Y for outcome in povm_outcomes] push!(constraints, Y' == Y) objective = real(tr(Y)) problem = compatible_problem(Convex.maximize, objective, constraints, T) solve!(problem, solver; verbose = verbose) # introduced for debugging a problem with SCS with MathOptInterface if debug @show length(constraints) for outcome in povm_outcomes @show outcome @show eigmin(Hermitian(R(outcome) - evaluate(Y))) end end Y = evaluate(Y) # SDP dual values not implemented in Convex.jl yet # Es = [Matrix{ComplexF64}(problem.constraints[y].dual) for y = eachindex(povm_outcomes)] Es = missing else Es = [ComplexVariable(dB, dB) for _ = 1:num_outcomes] objective = real(sum([tr(Es[y] * R(outcome)) for (y, outcome) in enumerate(povm_outcomes)])) constraints = Convex.Constraint[E ⪰ 0 for E in Es] push!(constraints, sum(Es) == I(dB)) problem = compatible_problem(Convex.minimize, objective, constraints, T) solve!(problem, solver; verbose = verbose) Es = evaluate.(Es) # SDP dual values not implemented in Convex.jl yet # Y = Matrix{ComplexF64}(problem.constraints[end].dual) Y = missing end input_data = (J = J, K = K, c = c, p = p, ρBs = ρBs, dB = dB) return ( optval = problem.optval, status = problem.status, Y = Y, Es = Es, povm_outcomes = povm_outcomes, input_data..., ) end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
1595
""" pmfN(data; tol = 1e-5) -> Vector Compute the probability mass function for the number of guesses `N`, given a strategy. The `n`th entry of the output vector gives the probability for guessing the correct answer on the `n`th try, for `n = 1 : K`. If the number of allowed guesses, `K`, is smaller than `length(p)`, then there is an additional last entry which gives the probability of never guessing the correct answer. * `data` should be a `NamedTuple` with entries for `p`, `ρBs`, `Es`, `K`, and `povm_outcomes` * `tol` provides a tolerance above which to warn about imaginary or negative probabilities. """ function pmfN(data; tol = 1e-5) @unpack p, K = data T = eltype(p) probs = [_prob(n, data, tol, T) for n = 1:K] if K < length(p) prob_no_guess = 1 - sum(probs) if prob_no_guess < 0 prob_no_guess < -tol && @warn "Probability negative " prob_no_guess prob_no_guess = zero(T) end push!(probs, prob_no_guess) end return probs end function _prob(n, data, tol, T) @unpack Es, p, ρBs, povm_outcomes = data prob = zero(T) for (y, outcome) in enumerate(povm_outcomes) for x in eachindex(p, ρBs) if findfirst(==(x), outcome) == n prob += p[x] * tr(Es[y] * ρBs[x]) end end end if !isreal(prob) abs(imag(prob)) > tol && @warn "Imaginary probability" n prob end prob = real(prob) if prob < 0 prob < -tol && @warn "Probability negative " n prob prob = zero(T) end return prob end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
1589
""" guesswork_lower_bound( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; solver, c = T[1:length(p)..., 10_000], verbose::Bool = false, ) See [`guesswork`](@ref) for the meaning of the arguments. Computes a lower bound to the optimal expected number of guesses by solving a relaxed version of the primal SDP. For `J` states, only needs `J^2` PSD variables subject to two linear constraints. """ function guesswork_lower_bound( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; solver, c = T[1:length(p)..., 10_000], verbose::Bool = false, ) where {T<:Number} length(p) == length(ρBs) || throw(ArgumentError("Length of prior and vector of side information must match J")) J = length(p) dB = size(ρBs[1], 1) all(ρB -> size(ρB) == (dB, dB), ρBs) || throw(ArgumentError("All side-information states must be square matrices of the same size")) ℰs = [ComplexVariable(dB, dB) for j = 1:J, k = 1:J] objective = real(sum(c[j] * tr(ℰs[j, k] * p[k] * ρBs[k]) for j = 1:J for k = 1:J)) constraints = Convex.Constraint[ℰ ⪰ 0 for ℰ in ℰs] |> vec for j = 1:J push!(constraints, sum(ℰs[j, :]) == I(dB)) push!(constraints, sum(ℰs[:, j]) == I(dB)) end problem = compatible_problem(Convex.minimize, objective, constraints, T) solve!(problem, solver; verbose = verbose) ℰs = evaluate.(ℰs) data = (J = J, K = J, c = c, p = p, ρBs = ρBs, dB = dB) return (optval = problem.optval, status = problem.status, ℰs = ℰs, data...) end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
4653
## Notation """ ket([T = Float64], i::Integer, d::Integer) -> SparseVector{Complex{T}} Create a vector representing the `i`th computational basis vector in dimension `d`. ## Example ```jldoctest julia> ket(1,2) 2-element SparseVector{Complex{Float64},Int64} with 1 stored entry: [1] = 1.0+0.0im julia> collect(ans) 2-element Array{Complex{Float64},1}: 1.0 + 0.0im 0.0 + 0.0im ``` """ ket(::Type{T}, i::Integer, d::Integer) where {T} = sparsevec([i], [one(complex(T))], d) """ bra([T = Float64], i::Integer, d::Integer) -> SparseVector{Complex{T}}' Create a dual vector representing the bra associated to `i`th computational basis vector in dimension `d`. ## Example ```jldoctest julia> bra(1,2) 1×2 LinearAlgebra.Adjoint{Complex{Float64},SparseVector{Complex{Float64},Int64}}: 1.0-0.0im 0.0-0.0im julia> collect(ans) 1×2 Array{Complex{Float64},2}: 1.0-0.0im 0.0-0.0im ``` """ bra(::Type{T}, i::Integer, d::Integer) where {T} = ket(T, i, d)' ket(i::Integer, d::Integer) = ket(Float64, i, d) bra(i::Integer, d::Integer) = bra(Float64, i, d) """ dm(ψ::AbstractVector) Creates the density matrix version of a pure state `ψ` via the outer product. """ dm(ψ::AbstractVector) = ψ' ⊗ ψ if VERSION < v"1.2-pre" (I::UniformScaling)(n::Integer) = Diagonal(fill(I.λ, n)) end const ⊗ = kron """ BB84_states([T::Type = Float64]) Generates the BB84 states `|0⟩`, `|1⟩`, `|-⟩`, and `|+⟩`, for use in [`guesswork`](@ref) or other functions. The numeric type can be optionally specified by the argument. """ function BB84_states end BB84_states() = BB84_states(Float64) function BB84_states(::Type{T}) where {T<:Number} ketplus = (ket(T, 1, 2) + ket(T, 2, 2)) / sqrt(T(2)) ketminus = (ket(T, 1, 2) - ket(T, 2, 2)) / sqrt(T(2)) ketzero = ket(T, 1, 2) ketone = ket(T, 2, 2) return dm.([ketzero, ketone, ketminus, ketplus]) end """ iid_copies(ρBs::AbstractVector{<:AbstractMatrix}, n::Integer) -> Vector{Matrix} Create a vector of all states of the form ``ρ_1 \\otimes \\dotsm \\otimes ρ_n`` where the ``ρ_i`` range over the set `ρBs`. """ function iid_copies(ρBs::AbstractVector{<:AbstractMatrix}, n::Integer) inds = cartesian_power(length(ρBs), n) [foldl(⊗, ρBs[collect(I)]) for I in inds] end ## Random states """ simplexpt(unif) Takes a vector of length `d-1` of numbers between `0.0` and `1.0` and converts it a point on the standard `d` dimensional simplex. """ function simplexpt(unif) d = length(unif) + 1 T = eltype(unif) w = zeros(T, d + 1) w[2:d] .= sort(unif) w[d+1] = one(T) diff(w) end """ randprobvec([rng, T=Float64], d) Generates points of type `T`, uniformly at random on the standard `d-1` dimensional simplex using an algorithm by [Smith and Tromble](http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf). ## Example ```julia julia> randprobvec(3) 3-element Array{Float64,1}: 0.24815974900033688 0.17199716455672287 0.5798430864429402 ``` """ randprobvec(rng::AbstractRNG, ::Type{T}, d::Integer) where T = simplexpt(rand(rng, T, d - 1)) randprobvec(::Type{T}, d::Integer) where T = randprobvec(Random.GLOBAL_RNG, T, d) randprobvec(d::Integer) = randprobvec(Float64, d) """ randunitary([rng, T=Float64], d) Generates a unitary matrix of dimension `d` at random according to the Haar measure, using an algorithm described by Maris Ozols in ["How to generate a random unitary matrix"](http://home.lu.lv/~sd20008/papers/essays/Random%20unitary%20%5Bpaper%5D.pdf). """ function randunitary(rng::AbstractRNG, ::Type{T}, d::Integer) where T # `randn` for `BigFloat`'s isn't supported yet # (https://github.com/JuliaLang/julia/issues/17629) # so we convert afterwards instead (losing some randomness). rg1 = T.(randn(rng, d, d)) rg2 = T.(randn(rng, d, d)) RG = rg1 + im * rg2 Q, R = qr(RG) r = diag(R) L = diagm(0 => r ./ abs.(r)) return Q * L end randunitary(::Type{T}, d::Integer) where {T} = randunitary(Random.GLOBAL_RNG, T, d) randunitary(d::Integer) = randunitary(Float64, d) """ randdm([rng, T = Float64], d) Generates a density matrix with numeric type `Complex{T}`, of dimension `d` at random. ## Example ```julia julia> randdm(2) 2×2 Array{Complex{Float64},2}: 0.477118+0.0im 0.119848-0.0371569im 0.119848+0.0371569im 0.522882+0.0im ``` """ function randdm(rng::AbstractRNG, ::Type{T}, d::Integer) where T eigs = diagm(0 => randprobvec(rng, T, d)) U = randunitary(rng, T, d) ρ = U * eigs * (U') return Matrix((ρ + ρ') / 2) end randdm(::Type{T}, d::Integer) where T = randdm(Random.GLOBAL_RNG, T, d) randdm(d) = randdm(Float64, d)
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
11905
""" guesswork_upper_bound( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; make_solver, c::AbstractVector = T.(1:length(p)), max_retries = 50, max_time = Inf, num_constraints = Inf, verbose::Bool = false, num_steps_per_SA_run::Integer = length(p)^2 * 500, ) where {T<:Number} -> NamedTuple Computes an upper bound to the guesswork problem associated to the c-q state specified by `p` and `ρBs`, as in [`guesswork`](@ref). A custom cost vector `c` may be optionally passed. If the keyword argument `verbose` is set to true, information is printed about each iteration of the algorithm. The keyword argument `make_solver` is required, and must pass a *function that creates a solver instances*. For example, instead of passing `SCSSolver()`, pass `() -> SCSSolver()`. This is needed because the algorithm used in `guesswork_upper_bound` solves a sequence of SDPs, not just one. The algorithm has three termination criteria which are controlled by keyword arguments. The algorithm stops when any of the following occur: * `max_retries` simulated annealing attempts fail to find a violated constraint. * `num_constraints` constraints have been added to the dual SDP * The total runtime of the algorithm is projected to exceed `max_time` on the next iteration. By default, `max_retries` is set to 50, while `num_constraints` and `max_time` are set to infinity. Lastly, the keyword argument `num_steps_per_SA_run` controls the runtime of the simulated annealing algorithm. Increase `num_steps_per_SA_run` to search longer for a violated constraint within a given simulated annealing run. """ function guesswork_upper_bound( p::AbstractVector{T}, ρBs::AbstractVector{<:AbstractMatrix}; make_solver, c::AbstractVector = T.(1:length(p)), max_retries = 50, max_time = Inf, num_constraints = Inf, verbose::Bool = false, num_steps_per_SA_run::Integer = length(p)^2 * 500, mutate! = rand_rev!, debug = false, ) where {T<:Number} length(p) == length(ρBs) || throw(ArgumentError("Length of prior and vector of side information must match J")) J = length(p) dB = size(ρBs[1], 1) all(ρB -> size(ρB) == (dB, dB), ρBs) || throw(ArgumentError("All side-information states must be square matrices of the same size")) if max_retries == Inf && max_time == Inf && num_constraints == Inf throw(ArgumentError("All three termination criteria (`max_retries`, `max_time`, and `num_constraints`) are infinite; algorithm would never terminate.")) end if (length(c) < length(p)) throw(ArgumentError("Need `length(c) >= length(p)`.")) end constraints::Vector{Vector{Int}} = [] convex_problem, convex_Y, convex_R = make_problem(p, ρBs, c, dB, constraints, T) solve_time::Float64 = 0.0 convex_Y.value = Matrix{Complex{T}}(maximum(c)*I, dB, dB) upper_bound::T = 0.0 # We optimize over the inverse of the permutations we are interested in # that way we don't need to take the inverse until the end. Rg_inv! = let ρBs_subnormalized = [p[x] * ρBs[x] for x = 1:J], c = c (R, g_inv) -> begin for x = 1:J R .+= ρBs_subnormalized[x] .* c[g_inv[x]] end R end end # Initialize some variables π = collect(1:J) scratch_π = copy(π) R_scratch::Matrix{Complex{T}} = zeros(Complex{T}, dB, dB) total_time_so_far::Float64 = 0.0 # run the main loop # verbose is passed as a "value type" so logging statements can be compiled out when it is set to false. upper_bound = _loop( upper_bound, R_scratch, constraints, π, scratch_π, convex_R, convex_problem, convex_Y, Rg_inv!, num_steps_per_SA_run, total_time_so_far, max_retries, max_time, num_constraints, mutate!, make_solver, T, Val(verbose), ) input_data = (J = J, K = J, c = c, p = p, ρBs = ρBs, dB = dB) return ( optval = upper_bound, status = convex_problem.status, Y = evaluate(convex_Y), povm_outcomes = invperm.(constraints), input_data..., ) end # We put the inner loop behind a function barrier function _loop( upper_bound::T, R_scratch, constraints, π, scratch_π, convex_R, convex_problem, convex_Y, Rg_inv!, num_steps_per_SA_run, total_time_so_far, max_retries, max_time, num_constraints, mutate!, make_solver, ::Type{T}, ::Val{verbose}, ) where {T,verbose} while length(constraints) < num_constraints f = let Y::Matrix{Complex{T}} = evaluate(convex_Y) π -> begin R_scratch .= -1 .* Y eigmin(Hermitian(Rg_inv!(R_scratch, π)))::T end end # Choose `fval` as something `> 0` to enter the loop. fval::T = 1.0 n_tries::Int = 0 SA_time = @elapsed while fval > 0 && n_tries < max_retries n_tries += 1 # initialize `π` to hold a random permutation, then use the simulated annealing algorithm to try to minimize `f`, starting from this permutation. Repeat until we find a violated constraint, or we've tried enough times. randperm!(π) fval = SA!(π, scratch_π, f, mutate!, num_steps_per_SA_run) end total_time_so_far += SA_time if fval < 0 # add the permutation to the list of constraints and resolve the problem. new_constraint = copy(π) push!(constraints, new_constraint) update_problem!(convex_problem, convex_Y, new_constraint, convex_R) solve_time = @elapsed solve!(convex_problem, make_solver(); verbose = verbose) upper_bound::T = convex_problem.optval if verbose _log( length(constraints), fval, upper_bound, SA_time, solve_time, total_time_so_far, ) end else # We've reached `max_retries` attempts to find a violated constraint. verbose && _log_retries(max_retries) break end # if we do another loop, it will take a round of SA plus a solve, so let's stop if # that will exceed the max time. projected_time = total_time_so_far + 1.1*(SA_time + solve_time) if projected_time > max_time if verbose _log_time(total_time_so_far, projected_time, max_time) end break end end return upper_bound end @noinline function _log( lconstraints, violation, upper_bound, SA_time, solve_time, total_time_so_far, ) @info "Adding constraint $(lconstraints) " violation upper_bound SA_time solve_time total_time_so_far end @noinline function _log_retries(max_retries) @info "Unable to find violated constraint after repeating ($max_retries) simulated annealing runs. Change `max_retries` to adjust this behavior." end @noinline function _log_time(total_time_so_far, projected_time, max_time) if total_time_so_far < max_time @info "Next iteration is projected to exceed maximum time $(max_time); terminating here. Change `max_time` to adjust this behavior." total_time_so_far projected_time else @info "Reached maximum time $(max_time); terminating here. Change `max_time` to adjust this behavior." total_time_so_far end end function make_problem(p, ρBs, c, dB, constraints, ::Type{T}) where {T} R = g -> sum(c[N(invperm(g), x)] * p[x] * ρBs[x] for x in eachindex(p, ρBs)) Y = ComplexVariable(dB, dB) povm_outcomes = constraints Y = ComplexVariable(dB, dB) constraints = Convex.Constraint[R(outcome) ⪰ Y for outcome in povm_outcomes] push!(constraints, Y' == Y) objective = real(tr(Y)) return compatible_problem(Convex.maximize, objective, constraints, T), Y, R end function update_problem!(problem, Y, new_constraint, R) push!(problem.constraints, R(new_constraint) ⪰ Y) end function get_dual_and_val( problem, Y, make_solver, ::Val{dB}, ::Val{verbose}, ::Type{T}, ) where {dB,T,verbose} solve!(problem, make_solver(); verbose = verbose) return problem.optval::T, SMatrix{dB,dB,Complex{T}}(evaluate(Y)) end """ SA!(π, scratch_π, f, mutate! = rand_rev!) Try to minimize `f` over permutations of 1:`length(π)` via a simulated annealing algorithm, returning the value of `f` on the final choice of `π`. Modifies `π` to hold the optimal permutation at the end of the search, and uses `scratch_π` to hold proposal permutations. The optional argument `mutate!` should be a function mutate!(π_to_mutate, scratch_π, f, J) -> nothing which modifies `π_to_mutate` in place, can use `scratch_π` to hold temporary permutations, and has access to `f` and `J`, the length of `π_to_mutate`. By default, `rand_rev!` is chosen, which is very fast and requires no evaluations of `f`. Other choices of `mutate!` include `swap_all!` and `two_opt!` (uses ~ `n^2` evaluations of `f`), or a random choice at each step, via e.g. mutate! = (π_to_mutate, scratch_π, f, J) -> begin if rand() < .01 two_opt!(π_to_mutate, scratch_π, f, J) else rand_rev!(π_to_mutate, scratch_π, f, J) end end """ function SA!(π, scratch_π, f, mutate!, num_steps) J = length(π) init_temp = exp(8) final_temp = exp(-6.5) cool_rate = (final_temp / init_temp)^(1 / (num_steps - 1)) # divide by cool_rate so when we first multiply we get init_temp temp = init_temp / cool_rate proposed_π = scratch_π current_cost = f(π) for _ = 1:num_steps temp *= cool_rate mutate!(proposed_π, π, f, J) proposed_cost = f(proposed_π) @fastmath accept = proposed_cost < current_cost ? true : rand() < exp((current_cost - proposed_cost) / temp) if accept current_cost = proposed_cost π .= proposed_π else proposed_π .= π end end # try all possible swaps at the end just to try to really have a optimal value. fval = two_opt!(π, scratch_π, f, J) return fval end """ rand_rev!(π, scratch_π = nothing, f = nothing, n = length(π)) Modifies `π` by randomly reversing a section of the permutation. Has the arguments `scratch_π` and `f` so it can be used in `SA!`. """ @inline function rand_rev!(π, scratch_π = nothing, f = nothing, n = length(π)) i, j = rand(1:n), rand(1:n) if i > j i, j = j, i end reverse!(π, i, j) end """ swap_all!(π, scratch_π, f, n = length(π)) Modifies `π` in place to find a lower value of `f` by swapping each of the `n*(n-1)/2` pairs of entries and choosing the optimal one. """ function swap_all!(π, scratch_π, f, n = length(π)) @inline swap!(π, i, j) = π[i], π[j] = π[j], π[i] _mutate_two!(π, scratch_π, f, swap!, n) end """ two_opt!(π, scratch_π, f, n = length(π)) Modifies `π` in place to find a lower value of `f` by reversing each possible ordered section of `π` by trying all `n*(n-1)/2` possible pairs of endpoints and choosing the optimal one. """ function two_opt!(π, scratch_π, f, n = length(π)) _mutate_two!(π, scratch_π, f, reverse!, n) end @inline function _mutate_two!(π, scratch_π, f, mut!, n) best_fval_so_far = Inf best_π_so_far = scratch_π for (i, j) in combinations(1:n, 2) mut!(π, i, j) fval = f(π) if fval < best_fval_so_far best_fval_so_far = fval best_π_so_far .= π end mut!(π, i, j) end π .= best_π_so_far return best_fval_so_far end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
579
using Test, GuessworkQuantumSideInfo, LinearAlgebra, Statistics, Random, UnPack, StableRNGs using GenericLinearAlgebra using SCS TEST_MATLAB = false # requires MATLAB and MATLAB.jl installed TEST_MISDP = false # requires Pajarito or another MISDP solver TEST_BB84_MISDP = false # takes ~100 seconds; requires TEST_MISDP TEST_MOI = true # incompatible with the current version of Pajarito default_sdp_solver() = TEST_MOI ? SCS.Optimizer(verbose = 0, eps = 1e-6) : SCSSolver(verbose = 0, eps = 1e-6) if TEST_MATLAB include("test_matlab.jl") end include("test_problems.jl")
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
3482
# Earlier versions of this code were tested, but I haven't been able to test the # latest version due to licensing issues. using MATLAB # Monkeypatch the MATLAB versions into the `GuessworkQuantumSideInfo` module @eval GuessworkQuantumSideInfo begin @doc raw""" makeR(data) Compute a three-dimensional array `R`, such that the third index ranges from `y=1:J^k`, and `R[:,:,y]` is described by `` \sum_{x=1}^J p(x) \sum_{n\in L} c_n μ(n,x,\vec y) ρ_B^x `` """ function makeR(data; do_transpose::Bool) @unpack J, K, p, ρBs, c, dB, povm_outcomes = data d_out = length(povm_outcomes) R_function(g) = sum(c[N(g, x)] * p[x] * ρBs[x] for x in eachindex(p, ρBs)) R = Array{ComplexF64}(undef, (dB, dB, d_out)) if do_transpose for (y, outcome) in enumerate(povm_outcomes) R[:, :, y] .= transpose(R_function(outcome)) end else for (y, outcome) in enumerate(povm_outcomes) R[:, :, y] .= R_function(outcome) end end R end function guesswork_MATLAB( p, ρBs; K = length(p), c = [1:K..., 10_000], dual::Bool = false, remove_repetition::Bool = true, povm_outcomes = make_povm_outcomes(length(p), K, remove_repetition), ) length(p) == length(ρBs) || throw(ArgumentError("Length of prior and vector of side information must match J")) J = length(p) dB = size(ρBs[1], 1) all(ρB -> size(ρB) == (dB, dB), ρBs) || throw(ArgumentError("All side-information states must be square matrices of the same size")) d_out = length(povm_outcomes) data = ( J = J, K = K, c = c, p = p, ρBs = ρBs, dB = dB, d_out = d_out, povm_outcomes = povm_outcomes, ) if dual R = makeR(data; do_transpose = false) mat""" dB = double($(dB)); d_out = double($(d_out)); R = $(R); cvx_begin sdp quiet variable Y(dB, dB) hermitian dual variable E maximize(trace(Y)) subject to E : R >= repmat(Y, [1, 1, d_out]) cvx_end $(Y) = Y; $(E) = E; $(cvx_optval) = cvx_optval; $(cvx_status) = cvx_status; """ else R = makeR(data; do_transpose = true) mat""" dB = double($(dB)); d_out = double($(d_out)); R = $(R); cvx_begin sdp quiet variable E(dB, dB, d_out) hermitian semidefinite dual variable Y minimize(real( sum( E(:) .* R(:) ))) subject to Y : sum(E, 3) == eye(dB) cvx_end $(E) = E; $(Y) = Y; $(cvx_optval) = cvx_optval; $(cvx_status) = cvx_status; """ end status = Symbol(cvx_status) if status != :Solved @error "CVX did not successfully solve the problem" status end Es = [E[:, :, j] for j = 1:d_out] return ( optval = cvx_optval, status = status, Y = Y, Es = Es, povm_outcomes = Tuple.(povm_outcomes), data..., ) end end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
9096
# bad solve error on 1.0 and nightly observed on CI (though not locally) # possibly reflects problems with SCS, but not with this package, # so we'll just use a relaxed tolerance here. TOL = 1e-2 @info "Beginning tests with" TEST_MATLAB TEST_MISDP TEST_BB84_MISDP TEST_MOI TOL include("test_utilities.jl") dB = 2 ketplus = (ket(1, dB) + ket(2, dB)) / sqrt(2) ketminus = (ket(1, dB) - ket(2, dB)) / sqrt(2) ketzero = ket(1, dB) ketone = ket(2, dB) Random.seed!(5) @testset "GuessworkQuantumSideInfo.jl" begin @testset "Uninformative side information" begin ρBs = dm.([ketzero, ketzero]) p = [0.5, 0.5] output = test_optimize(p, ρBs, 1.5) pmf = pmfN(output) @test pmf ≈ [0.5, 0.5] rtol = TOL lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Orthogonal side information" begin ρBs = dm.([ketzero, ketone]) p = [0.5, 0.5] output = test_optimize(p, ρBs, 1.0) pmf = pmfN(output) @test pmf ≈ [1.0, 0.0] rtol = TOL lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Plus zero" begin ρBs = dm.([ketplus, ketzero]) p = [0.5, 0.5] output = test_optimize(p, ρBs, cos(π / 8)^2 + 2 * sin(π / 8)^2) @test pmfN(output) ≈ [cos(π / 8)^2, sin(π / 8)^2] rtol = TOL lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Three random qubits" begin ρBs = [randdm(2) for _ = 1:3] p = ones(3) / 3 @testset "Basic tests" begin output = test_optimize(p, ρBs; test_MISDP = false) lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Custom cost vector" begin c = cumsum(10*rand(3)) # increasing vector output_c = test_optimize(p, ρBs; test_MISDP = false, c = c) lb_c = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver(), c = c).optval @test lb_c <= output_c.optval + TOL ub_c = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver, c = c).optval @test output_c.optval <= ub_c + TOL end end @testset "Three random qutrits" begin ρBs = [randdm(3) for _ = 1:3] p = ones(3) / 3 output = test_optimize(p, ρBs; test_MISDP = false) lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 3^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Four random qubits" begin ρBs = [randdm(2) for _ = 1:4] p = [0.25, 0.25, 0.25, 0.25] @testset "Basic tests" begin output = test_optimize(p, ρBs; test_MISDP = false) lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "K=2 guesses" begin output_K = test_optimize(p, ρBs; test_MISDP = false, K = 2) pmf = pmfN(output_K) @test length(pmf) == 3 @test sum(pmf) ≈ 1.0 atol = TOL @test all(x -> x >= -TOL, pmf) end end @testset "BB84" begin ρBs = BB84_states() p = ones(4) / 4 output = guesswork(p, ρBs; solver = default_sdp_solver()) testPOVM(output.Es) if TEST_BB84_MISDP && TEST_MISDP @info "Starting BB84 MISDP" output_MISDP, t, _ = @timed guesswork_MISDP(p, ρBs, 2; solver = misdp_solver()) @info "Finished BB84 MISDP in $(round(t;digits=3)) seconds." testPOVM(output_MISDP.Es) @test output_MISDP.optval ≈ output.optval rtol = TOL end relaxed_output = guesswork_upper_bound(p, ρBs; num_constraints = 4, make_solver = default_sdp_solver) @test output.optval ≈ relaxed_output.optval rtol = TOL lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL end @testset "BB84 variant" begin ρBs = dm.([ ketzero, ketone, (ketzero + im * ketone) / sqrt(2), (ketzero - im * ketone) / sqrt(2), ]) J = length(ρBs) p = ones(J) / J output = test_optimize(p, ρBs; test_MISDP = false) lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver()).optval @test lb <= output.optval + TOL ub = guesswork_upper_bound(p, ρBs; num_constraints = 2^2 + 1, make_solver = default_sdp_solver).optval @test output.optval <= ub + TOL end @testset "Errors and logging" begin ρBs = BB84_states() J = length(ρBs) p = ones(J) / J @test_throws ArgumentError guesswork_upper_bound(p, ρBs; num_constraints = Inf, max_time=Inf, max_retries = Inf, make_solver = default_sdp_solver) @test_logs (:info, r"Adding constraint") match_mode=:any guesswork_upper_bound(p, ρBs; verbose=true, make_solver = default_sdp_solver, max_time = 2) two_states = [randdm(2) for _ = 1:2] p_3 = randprobvec(3) if TEST_MISDP @test_logs (:info, r"MISDP solve") match_mode=:any guesswork_MISDP(randprobvec(2), [randdm(2) for _ = 1:2], 5; verbose=true, solver = misdp_solver()) @test_throws ArgumentError guesswork_MISDP(p_3, two_states, 5; solver = misdp_solver()) end @test_throws ArgumentError guesswork(p_3, two_states; solver = default_sdp_solver()) @test_throws ArgumentError guesswork_lower_bound(p_3, two_states; solver = default_sdp_solver()) @test_throws ArgumentError guesswork_upper_bound(p_3, two_states; make_solver = default_sdp_solver) end @testset "Concavity of the guesswork" begin J = 3 dB = 2 p_1 = randprobvec(J) ρBs_1 = [randdm(dB) for _ = 1:J] p_2 = randprobvec(J) ρBs_2 = [randdm(dB) for _ = 1:J] λ = rand() p = λ .* p_1 + (1-λ) .* p_2 ρBs = λ .* ρBs_1 + (1-λ) .* ρBs_2 g_avg = guesswork(p, ρBs; solver = default_sdp_solver()).optval g_1 = guesswork(p_1, ρBs_1; solver = default_sdp_solver()).optval g_2 = guesswork(p_2, ρBs_2; solver = default_sdp_solver()).optval @test TOL + g_avg >= λ*g_1 + (1-λ)*g_2 end @testset "Quantum states" begin for rng in (tuple(), tuple(StableRNG(123))) # test with custom RNG for T in (BigFloat, Float64) for d in (2,3) ρ = randdm(rng..., T, d) @test eltype(ρ) == Complex{T} @test tr(ρ) ≈ one(T) rtol=1e-8 @test all( x-> x >= -1e-8, eigvals(ρ)) U = GuessworkQuantumSideInfo.randunitary(rng..., T, d) @test eltype(U) == Complex{T} @test U' * U ≈ I(d) atol=1e-6 @test U * U' ≈ I(d) atol=1e-6 k = ket(T, 1, d) @test k' ≈ bra(T, 1, d) rtol=1e-8 p = randprobvec(rng..., T, d) @test eltype(p) == T @test sum(p) ≈ one(T) rtol=1e-8 @test all( x-> x >= -1e-8, p) end ρBs = BB84_states(T) @test length(ρBs) == 4 @test Set(iid_copies(ρBs, 2)) == Set([ ρ ⊗ σ for ρ in ρBs for σ in ρBs]) end end # Defaults @test BB84_states() ≈ BB84_states(Float64) @test BB84_states() ≈ dm.([ketzero, ketone, ketminus, ketplus]) atol=1e-6 @test ket(1,2) ≈ ket(Float64, 1, 2) @test bra(1, 2) ≈ bra(Float64, 1, 2) @test eltype(randdm(2)) == Complex{Float64} @test eltype(GuessworkQuantumSideInfo.randunitary(2)) == Complex{Float64} @test eltype(randprobvec(2)) == Float64 end end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
3889
Base.isapprox(x) = Base.Fix2(isapprox, x) function testPOVM(Es; tol = TOL) dB = size(first(Es), 1) @test sum(Es) ≈ complex(1.0) * I(dB) atol = tol for E in Es @test E ≈ E' atol = tol end @test all(isposdef, Hermitian(E) + tol * I(dB) for E in Es) end function test_misdp_objective_value(data) @unpack povm_outcomes, ρBs, p, Es = data c = collect(1:length(povm_outcomes[1])) tot_cost = 0.0 ρBs_tilde = p .* ρBs for y in eachindex(Es) E = Es[y] v = [tr(ρBs_tilde[x] * E) for x in eachindex(ρBs_tilde)] perm = povm_outcomes[y] |> collect cost = dot(c[invperm(perm)], v) tot_cost += cost end @test tot_cost ≈ data.optval rtol = TOL end get_SCS_solver() = TEST_MOI ? SCS.Optimizer(verbose = 0, eps = 1e-6) : SCSSolver(verbose = 0, eps = 1e-6) function test_optimize( p, ρBs, true_opt_val = nothing; test_repetition = false, test_MISDP = true, kwargs... ) optvals = [] test_data = [] local current_output for dual in (true, false) for remove_repetition in (test_repetition ? (false, true) : (true,)) for (solver, solver_name) in ((get_SCS_solver(), :SCS),) current_output = guesswork(p, ρBs; solver = solver, dual = dual, remove_repetition = remove_repetition, kwargs...) push!(optvals, current_output.optval) push!( test_data, ( opval = current_output.optval, solver = solver_name, params = (dual = dual, remove_repetition = remove_repetition, kwargs...), ), ) end if TEST_MATLAB # `GuessworkQuantumSideInfo.guesswork_MATLAB` only exists if `include("test_matlab.jl")` is called. current_output = GuessworkQuantumSideInfo.guesswork_MATLAB(p, ρBs; dual = dual, remove_repetition = remove_repetition, kwargs...) push!(optvals, current_output.optval) push!( test_data, ( opval = current_output.optval, solver = :MATLAB, params = (dual = dual, remove_repetition = remove_repetition, kwargs...), ), ) end end end if test_MISDP && TEST_MISDP dB = size(ρBs[1], 1) num_outcomes = min(factorial(length(p)), dB^2 + 1) if :c in keys(kwargs) current_output = guesswork_MISDP( p, ρBs, num_outcomes; c = kwargs.c, solver = misdp_solver(), verbose = false, ) else current_output = guesswork_MISDP( p, ρBs, num_outcomes; solver = misdp_solver(), verbose = false, ) end test_misdp_objective_value(current_output) # test_primal(current_output) push!(optvals, current_output.optval) push!( test_data, ( opval = current_output.optval, solver = :MISDP, params = (num_outcomes = num_outcomes,), ), ) end if true_opt_val === nothing true_opt_val = mean(optvals) end all_close_to_optimal = all(x -> isapprox(x, true_opt_val; rtol = TOL), optvals) # some helpful information in case of test failure if !all_close_to_optimal @error "`test_optimize` failure" true_opt_val for (i, test) in enumerate(test_data) @error "Solve $i results:" test end end @test all_close_to_optimal return current_output end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
1160
using GuessworkQuantumSideInfo using SDPAFamily using Test using LinearAlgebra, GenericLinearAlgebra # Fix a compatibility problem LinearAlgebra.eigmin(A::Hermitian{Complex{BigFloat},Array{Complex{BigFloat},2}}) = minimum(real.(eigvals(A))) function testPOVM(Es; tol = 1e-25) dB = size(first(Es), 1) @test sum(Es) ≈ complex(1.0) * I(dB) atol = tol for E in Es @test E ≈ E' atol = tol end @test all(isposdef, Hermitian(E) + tol * I(dB) for E in Es) end T = BigFloat default_sdp_solver(T) = SDPAFamily.Optimizer{T}(presolve = true) @testset "BB84" begin ρBs = GuessworkQuantumSideInfo.BB84_states(T) p = ones(T, 4) / 4 output = guesswork(p, ρBs; solver = default_sdp_solver(T)) testPOVM(output.Es) relaxed_output = guesswork_upper_bound(p, ρBs; num_constraints = 4, make_solver = () -> default_sdp_solver(T)) true_val = (big(1) / big(4)) * (10 - sqrt(big(10))) @test output.optval ≈ true_val rtol = 1e-25 @test output.optval ≈ relaxed_output.optval rtol = 1e-4 lb = guesswork_lower_bound(p, ρBs; solver = default_sdp_solver(T)).optval @test lb <= output.optval + 1e-4 end
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
code
851
using Test, GuessworkQuantumSideInfo, LinearAlgebra, Statistics, Random, UnPack using GenericLinearAlgebra using SCS, StableRNGs using Pajarito, Cbc TEST_MATLAB = false # requires MATLAB and MATLAB.jl installed TEST_MISDP = true # requires Pajarito or another MISDP solver TEST_BB84_MISDP = false # takes ~100 seconds; requires TEST_MISDP TEST_MOI = false # incompatible with the current version of Pajarito default_sdp_solver() = SCSSolver(verbose = 0, eps = 1e-6) function misdp_solver(; verbose = false) sdp_solver = default_sdp_solver() mip_solver = CbcSolver(loglevel = 0) PajaritoSolver( cont_solver = sdp_solver, mip_solver = mip_solver, mip_solver_drives = false, use_mip_starts = true, solve_relax = false, log_level = verbose ? 3 : 0, ) end include("../test_problems.jl")
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
2685
# GuessworkQuantumSideInfo [![Build Status](https://github.com/ericphanson/GuessworkQuantumSideInfo.jl/workflows/CI/badge.svg)](https://github.com/ericphanson/GuessworkQuantumSideInfo.jl/actions) [![Coverage](https://codecov.io/gh/ericphanson/GuessworkQuantumSideInfo.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/ericphanson/GuessworkQuantumSideInfo.jl) [![Stable documentation](https://img.shields.io/badge/documentation-stable-blue.svg)](https://ericphanson.github.io/GuessworkQuantumSideInfo.jl/stable) [![Dev documentation](https://img.shields.io/badge/documentation-dev-blue.svg)](https://ericphanson.github.io/GuessworkQuantumSideInfo.jl/dev) [![arXiv article](https://img.shields.io/badge/article-arXiv%3A2001.03598-B31B1B)](https://arxiv.org/abs/2001.03598) [![DOI](https://zenodo.org/badge/236524092.svg)](https://zenodo.org/badge/latestdoi/236524092) This is a package accompanying the preprint [*Guesswork with Quantum Side Information*](https://arxiv.org/abs/2001.03598). ## Quick example Consider one party Alice who draws a random number in the set `[1,2,3,4]` uniformly at random. If she draws `1` she sends another party, Bob, the quantum state `|0⟩`; if she draws `2`, she sends `|1⟩`, if she draws `3` she sends `|-⟩`, and finally if she draws `4`, she sends `|+⟩`. Bob, knowing this general procedure but not which number Alice drew, aims to guess the value Alice drew by performing experiments on the quantum state he was given. The average number of guesses Bob needs in order to get the right answer, minimized over all quantum strategies, is the so-called *guesswork with quantum side information*. This package provides a means to compute this. ```julia julia> using GuessworkQuantumSideInfo, SCS julia> p = [0.25, 0.25, 0.25, 0.25]; julia> ketzero = ket(1, 2); julia> ketone = ket(2, 2); julia> ketminus = (ket(1, 2) - ket(2,2))/sqrt(2); julia> ketplus = (ket(1, 2) + ket(2,2))/sqrt(2); julia> ρBs = dm.([ ketzero, ketone, ketminus, ketplus ]) 4-element Array{Array{Complex{Float64},2},1}: [1.0 + 0.0im 0.0 + 0.0im; 0.0 + 0.0im 0.0 + 0.0im] [0.0 + 0.0im 0.0 + 0.0im; 0.0 + 0.0im 1.0 + 0.0im] [0.4999999999999999 + 0.0im -0.4999999999999999 - 0.0im; -0.4999999999999999 + 0.0im 0.4999999999999999 + 0.0im] [0.4999999999999999 + 0.0im 0.4999999999999999 + 0.0im; 0.4999999999999999 + 0.0im 0.4999999999999999 + 0.0im] julia> output = guesswork(p, ρBs; solver = SCSSolver(verbose=false)); julia> output.optval 1.709431078700102 ``` It turns out it takes `(1/4)*(10 - sqrt(10)) ≈ 1.71` guesses on average.
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
3957
# Examples Let's load the package, an SDP solver, and define a simple plotting routine. ```@example ex using GuessworkQuantumSideInfo using SCS, Plots get_sdp_solver() = SCSSolver(verbose=false) plot_pmfN(data) = bar(pmfN(data); xlabel="Guess number", ylabel="Probability of guessing correctly", legend = false) ``` Next, we define some basic qubit states. ```@example ex dB = 2 ketplus = (ket(1, dB) + ket(2,dB))/sqrt(2) ketminus = (ket(1, dB) - ket(2,dB))/sqrt(2) ketzero = ket(1, dB) ketone = ket(2, dB) ``` ## Example 1: A warmup with trivial examples Let's consider the case with $J=2$ and both states are the same. The side information is therefore completely uninformative, and the guesswork is ```math G(X|B) = \frac{1}{2}\cdot 1 + \frac{1}{2} \cdot 2 = 1.5. ``` We can check this: ```@repl ex p = [0.5, 0.5] ρBs = dm.([ ketzero, ketzero ]) output = guesswork(p, ρBs; solver = get_sdp_solver()); output.optval ``` We see the result agrees with `1.5`, as we expected. Likewise, if we choose the two states as $ |0\rangle, |1\rangle$, we can get it in one guess every time, of course, since they are orthogonal: ```@repl ex p = [0.5, 0.5] ρBs = dm.([ ketzero, ketone ]) output = guesswork(p, ρBs; solver = get_sdp_solver()); output.optval ``` We can inspect the POVMs: ```@repl ex output.Es ``` As we would expect, we (approximately) obtain the projection onto $|0 \rangle$ and the projection onto $|1 \rangle$. ## Example 2: the BB84 states Let's consider the four states $|+ \rangle, |-\rangle, |0\rangle, |1\rangle$. ```@repl ex p = [0.25, 0.25, 0.25, 0.25] ρBs = dm.([ ketplus, ketminus, ketzero, ketone ]) output = guesswork(p, ρBs; solver = get_sdp_solver()); output.optval ``` ```@example ex plot_pmfN(output) ``` Let's try the same example, but imposing a steep cost for the fourth guess. ```@repl ex c = [1.0, 2.0, 3.0, 5000.0] output = guesswork(p, ρBs; c = c, solver = get_sdp_solver()); output.optval ``` We see that the average number of guesses to get a correct answer has gone up. However, inspecting the probability mass function for the number of guesses under the optimal strategy ```@example ex plot_pmfN(output) ``` we see that the probability that the probability of guessing correctly on the fourth guess goes to almost zero. ## Example 3: two copies of the BB84 states Let us consider two tensor copies of the BB84 states: ```@repl ex p = ones(16)/16 ρBs = iid_copies(BB84_states(), 2) ``` In this case, there are $16! = 20922789888000$ possible guessing orders, and hence $16!$ variables in the primal formulation of the SDP, or $16!+1$ constraints in the dual form of the SDP. In either case, we can't even fit them all into our computer's memory. Instead, we resort to bounds: ```@repl ex lb_output = guesswork_lower_bound(p, ρBs, solver = get_sdp_solver()); lb_output.optval ub_output = guesswork_upper_bound(p, ρBs; max_time = 30, make_solver = get_sdp_solver); ub_output.optval ``` ## A closer look at `guesswork_upper_bound` We can understand [`guesswork_upper_bound`](@ref) better by setting `verbose=true`. The algorithm computes a sequence of upper bounds by relaxing the dual problem. First, it removes all constraints, and chooses the dual variable $Y$ as the identity matrix. Then it uses a simulated annealing algorithm to heuristically minimize $\lambda_\text{min}(R_{\vec g} - Y)$ over the possible guessing orders $\vec g$ (which are permutations), to find a constraint that is "maximally" violated by this choice of $Y$. Then we add the corresponding constraint $Y \leq R_{\vec g}$ to the dual problem and solve it again. This is repeated until either a fixed number of constraints is added, some number of simulated annealing runs fails to find another violated constraint, or a time limit is reached. In the following, we set a time limit of 30 seconds. ```@repl ex ub_output = guesswork_upper_bound(p, ρBs; verbose=true, max_time = 30, make_solver = get_sdp_solver); ```
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
3020
# Computing the guesswork to high precision In order to solve the SDP describing the guesswork in high-precision, we need to start a new Julia session. That's because Pajarito, the library used for mixed-integer SDPs, and SDPAFamily, the one for high-precision SDPs, each require different versions of Convex.jl, the optimization problem modeling library. The following example was run locally and the output copied to the documentation. First, add the packages `Convex#master` (or just `Convex` once version 0.13 of that package is released) and `SDPAFamily`, and then the following code. ```julia julia> setprecision(2000) # set Julia's global BigFloat precision to 2000 2000 julia> using SDPAFamily julia> opt = () -> SDPAFamily.Optimizer{BigFloat}( presolve = true, params = ( epsilonStar = 1e-200, # constraint tolerance epsilonDash = 1e-200, # normalized duality gap tolerance precision = 2000 # arithmetric precision used in sdpa_gmp )) #186 (generic function with 1 method) julia> using GuessworkQuantumSideInfo julia> T = BigFloat BigFloat julia> ρBs = BB84_states(T); julia> p = ones(T, 4) / 4; julia> @time output = guesswork(p, ρBs; solver = opt()); 54.613852 seconds (274.09 M allocations: 45.610 GiB, 11.66% gc time) julia> output.optval 1.709430584957905167000276613891820366570111215168695793285623786801851390340190444663937972905174926203163178961789986212862785992386529996327370100824961524163769585705185014835212461631471665128968986016501876699676856588609960582022565322653047114497843315997252226645378373262132182609166891615169945992530274280324399117232937277795982220635506452810752194823768763057910726875757516626180726385923719763995534231714003266054518160879579903803264241437877679215965923661443029759736849138449576021864074135403089512757915961340265964663906514782565168514016103734338487088415453174248635495108648696 julia> true_val = (big(1) / big(4)) * (10 - sqrt(big(10))) 1.709430584957905167000276613891820366570111215168695793285623786801851390340190444663937972905174926203163178961789986212862785992386529996327370100824961524163769585705185014835212461631471665128968978670767605727382105884738907685530234490547847514542907072112898417861750220350793858949168259598827171415967762552027433367614096830955304662484652953430354884079216261880492214057666332006545121703580399192189551149445422988531788846349936605605074292838992743898005525991364002709162694336846983051837080992237890825551560768461069874907526272632644537498160412788839029317222677722739412986441086645 julia> abs(output.optval - true_val) <= 10.0^(-200) true ``` Note that the output of the optimization solver matches `true_val` up to an error of at most $10^{-200}$. See also <https://github.com/ericphanson/GuessworkQuantumSideInfo.jl/tree/master/test/high_precision_tests> for a folder with a reproducible environment for running this kind of high-precision code.
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
2060
```@meta CurrentModule = GuessworkQuantumSideInfo ``` # GuessworkQuantumSideInfo This is a package accompanying the preprint [*Guesswork with Quantum Side Information*](http://arxiv.org/abs/2001.03598). See the [Examples](@ref) for some examples (or just below for a quick example), [Computing the guesswork to high precision](@ref) for an example solving a problem with a high-precision SDP solver, [Using a mixed-integer SDP to find extremal strategies](@ref) for an example using a mixed-integer SDP, or below for the documentation of the functions provided by this package. ## Quick example Consider one party Alice who draws a random number in the set `[1,2,3,4]` uniformly at random. If she draws `1` she sends another party, Bob, the quantum state `|0⟩`; if she draws `2`, she sends `|1⟩`, if she draws `3` she sends `|-⟩`, and finally if she draws `4`, she sends `|+⟩`. Bob, knowing this general procedure but not which number Alice drew, aims to guess the value Alice drew by performing experiments on the quantum state he was given. The average number of guesses Bob needs in order to get the right answer, minimized over all quantum strategies, is the so-called *guesswork with quantum side information*. This package provides a means to compute this. ```@repl using GuessworkQuantumSideInfo, SCS p = [0.25, 0.25, 0.25, 0.25]; ketzero = ket(1, 2); ketone = ket(2, 2); ketminus = (ket(1, 2) - ket(2,2))/sqrt(2); ketplus = (ket(1, 2) + ket(2,2))/sqrt(2); ρBs = dm.([ ketzero, ketone, ketminus, ketplus ]) output = guesswork(p, ρBs; solver = SCSSolver(verbose=false)); output.optval ``` ## Guesswork functions ```@docs GuessworkQuantumSideInfo.guesswork GuessworkQuantumSideInfo.guesswork_lower_bound GuessworkQuantumSideInfo.guesswork_upper_bound ``` ## Quantum states ```@docs GuessworkQuantumSideInfo.ket GuessworkQuantumSideInfo.bra GuessworkQuantumSideInfo.BB84_states GuessworkQuantumSideInfo.iid_copies GuessworkQuantumSideInfo.randdm GuessworkQuantumSideInfo.randprobvec ``` ## Utilities ```@docs GuessworkQuantumSideInfo.pmfN ```
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
2203
# Using a mixed-integer SDP to find extremal strategies Let us revisit [Example 2: the BB84 states](@ref) using a mixed-integer SDP. This allows us to specify the number of non-zero POVM elements in the measurement-- or, equivalently, the number of possible guessing orders the final strategy chooses among. We will use the [Pajarito.jl](https://github.com/JuliaOpt/Pajarito.jl) solver, which solves mixed-integer SDPs by solving an alternating sequence of mixed-integer linear programs and SDPs; see the [Pajarito paper](https://arxiv.org/abs/1808.05290) for information on how Pajarito works. Pajarito requires both an SDP solver and a mixed-integer linear solver; we will use the open source solvers SCS and Cbc, respectively. ```@repl misdp using GuessworkQuantumSideInfo using Pajarito, Cbc, SCS # solvers function misdp_solver(; verbose = false) sdp_solver = SCSSolver(verbose=0) mip_solver = CbcSolver(loglevel = 0) PajaritoSolver( cont_solver = sdp_solver, mip_solver = mip_solver, mip_solver_drives = false, use_mip_starts = true, solve_relax = false, log_level = verbose ? 3 : 0, ) end p = ones(4)/4 ρBs = BB84_states() output = guesswork_MISDP(p, ρBs, 2; verbose=false, solver = misdp_solver()); output.optval output.Es ``` We see that with only two measurement outcomes we recover the same optimal value as the case without a constraint on the number of measurement outcomes (in [Example 2: the BB84 states](@ref)). We've thus found an extremal strategy (in that the POVM associated to this strategy cannot be written as the convex combination of two other POVMs). Often, the solutions returned by [`guesswork`](@ref) do not return extremal POVMs, although the details depend on the SDP solver used. We can see what the associated guessing orders are: ```@repl misdp output.povm_outcomes ``` To summarize, one optimal strategy for the case of `p` uniform, and `ρBs` given by the four BB84 states, is to perform a projective measurement whose operators are given by `output.Es` above, and then make guesses in one of the two orders given by `output.povm_outcomes` (depending on which measurement outcome was obtained).
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
18162
*The following is taken from my PhD thesis (translated from LaTeX to Markdown mostly by Pandoc 2.10).* - Eric Hanson # Numeric experiments Some of the algorithms provided by GuessworkQuantumSideInfo.jl were compared on a set of 12 test problems. Each problem has *p* ≡ *u*, the uniform distribution, for simplicity. The states are chosen as 1. Two random qubit density matrices 2. Two random qutrit density matrices 3. Three pure qubits chosen equidistant within one plane of the Bloch sphere (the “Y-states”), i.e. cos(j 2pi/3) |0> + sin(j 2pi/3)|1>, j = 1,2,3 4. Three random qubit density matrices 5. Three random qutrit density matrices 6. The four BB84 states, |0>, |1>, and |±> = (|0> ± |1>) / sqrt{2} as well as the “tensor-2” case of {*ρ* ⊗ *σ* : *ρ*, *σ* ∈ *S*} for each of the six sets *S* listed above, corresponding to the guesswork problem with quantum side information associated to *ρ*<sub>*XB*</sub><sup> ⊗ 2</sup>, where *ρ*<sub>*XB*</sub> is the state associated to the original guesswork problem with quantum side information. The random states were chosen uniformly at random (i.e. according to the Haar measure). The exponentially-large SDP formulation (and its dual), the mixed-integer SDP algorithm, and the active set method were compared, with several choices of parameters and underlying solvers. The mixed-integer SDP formulation was evaluated with *M* = *d*<sub>*B*</sub> (yielding an upper bound), *M* = *d*<sub>*B*</sub><sup>2</sup> (yielding the optimal value), with the Pajarito mixed-integer SDP solver [2], using Convex.jl (version 0.12.7) [6] to formulate the problem. Pajarito proceeds by solving mixed-integer linear problems (MILP) and SDPs as subproblems, and thus uses both a MILP solver and an SDP solver as subcomponents. Pajarito provides two algorithms: an iterative algorithm, which alternates between solving MILP and SDP subproblems, and solving a single branch-and-cut problem in which SDP subproblems are solved via so-called lazy callbacks to add cuts to the mixed-integer problem. The latter is called “mixed-solver drives” (MSD) in the Pajarito documentation. We tested three configurations of Pajarito (version 0.7.0): * (c1) Gurobi (version 9.0.3) as the MILP solver and MOSEK (version 8.1.0.82) as the SDP solver, with Pajarito’s MSD algorithm * (c2) Gurobi as the MILP solver and MOSEK as the SDP solver, with Pajarito’s iterative algorithm, with a relative optimality gap tolerance of 0, * \(o\) Cbc (version 2.10.3) [4] as the MILP solver, and SCS (version 2.1.1) [5] as the SDP solver, with Pajarito’s iterative algorithm Here, ‘c’ stands for commercial, and ‘o’ for open-source. In the configuration (c1), Gurobi was set to have with a relative optimality gap tolerance of 10<sup> − 5</sup> and in (c2), a relative optimality gap tolerance of 0. In both configurations, Gurobi was given an absolute linear-constraint-wise feasibility tolerance of 10<sup> − 8</sup>, and an integrality tolerance of 10<sup> − 9</sup>. These choices of parameters match those made in [2]. Cbc was given an integrality tolerance of 10<sup> − 8</sup>, and SCS’s (normalized) primal, dual residual and relative gap were set to 10<sup> − 6</sup> for each problem. The default parameters were used otherwise. Note the MSD option was not used with Cbc, since the solver does not support lazy callbacks. For the (exponentially large) SDP primal and dual formulations, the problems were solved with both MOSEK and SCS, and likewise with the active-set upper bound. The active set method uses simulated annealing to iteratively add violated constraints to the problem to find an upper bound, as described in , and uses a maximum-time parameter *t*<sub>max</sub> to stop iterating when the estimated time of finding another constraint to add would cause the running time of to exceed the maximum-time[1]. This provides a way to compare the improvement (or lack thereof) of running the algorithm for more iterations. The algorithm also terminates when a violated constraint cannot be found after 50 runs of simulated annealing (started each time with different random initial conditions). Here, the problems were solved with three choices of *t*<sub>max</sub>, 20 s, 60 s, and 240 s. The exact answer was not known analytically for most of these problems, so the average relative error was calculated by comparing to the mean of the solutions (excluding the active-set method and the MISDP with *M* = *d*<sub>*B*</sub>, which only give an upper bound in general). In the BB84 case, in which the solution is known exactly (see [3]), the solutions obtained here match the analytic value to a relative tolerance of at least 10<sup> − 7</sup>. The problems were run sequentially on a 4-core desktop computer (Intel i7-6700K 4.00GHz CPU, with 16 GB of RAM, on Ubuntu-20.04 via Windows Subsystem for Linux, version 2), via the programming language Julia (version 1.5.1), with a 5 minute time limit. One can see that the MISDP problems were harder solve than the corresponding SDPs for these relatively small problem instances. The MISDPs have the advantage of finding extremal solutions, however, in the case *M* = *d*<sub>*B*</sub>, and may scale better to large instances. Additionally, the active-set upper bound performed fairly well, finding feasible points within 20 % of the optimum in all cases, with only *t*<sub>max</sub> = 20 s, and often finding near-optimal solutions. It was also the only method able to scale to the largest instances tested, such as two copies of the BB84 states (which involves 16 quantum states in dimension 4, and which the SDP formulation has 16! variables.). In general, the commercial solvers performed better than the open source solvers, with the notable exception of the active-set upper bound with MOSEK, in which 2 more problems timed out than with SCS. This could be due to SCS being a first-order solver which can therefore possibly scale to larger problem instances than MOSEK, which is a second-order solver. | Algorithm | Parameters | average rel. error | average time | number solved | number timed out | number errored out | |:--------------------------------------|:--------------------------|:-------------------|:-------------|:--------------|:-----------------|:-------------------| | MISDP (*d*<sub>*B*</sub>) | Pajarito (c1) | 0 % | 23.74 s | 6 | 6 | 0 | | | Pajarito (c2) | 0 % | 24.03 s | 6 | 6 | 0 | | | Pajarito (o) | 0 % | 45.05 s | 6 | 6 | 0 | | MISDP (*d*<sub>*B*</sub><sup>2</sup>) | Pajarito (c1) | 0 % | 35.27 s | 5 | 7 | 0 | | | Pajarito (c2) | 0 % | 27.97 s | 4 | 8 | 0 | | | Pajarito (o) | 0 % | 131.35 s | 4 | 8 | 0 | | SDP | MOSEK | 0 % | 8.99 s | 8 | 3 | 1 | | | SCS | 0 % | 9.08 s | 8 | 3 | 1 | | SDP (dual) | MOSEK | 0 % | 8.74 s | 8 | 3 | 1 | | | SCS | 0 % | 8.59 s | 8 | 3 | 1 | | Active set upper bound (MOSEK) | *t*<sub>max</sub> = 20 s | 6.80 % | 16.08 s | 10 | 2 | 0 | | | *t*<sub>max</sub> = 60 s | 6.79 % | 19.03 s | 10 | 2 | 0 | | | *t*<sub>max</sub> = 240 s | 6.80 % | 26.17 s | 10 | 2 | 0 | | Active set upper bound (SCS) | *t*<sub>max</sub> = 20 s | 6.09 % | 33.24 s | 12 | 0 | 0 | | | *t*<sub>max</sub> = 60 s | 6.09 % | 35.78 s | 12 | 0 | 0 | | | *t*<sub>max</sub> = 240 s | 6.09 % | 34.30 s | 11 | 1 | 0 | Caption: Comparison of average relative error and average solve time for the 12 problems discussed above. A problem is considered “timed out” if an answer is not obtained in 5 minutes, and “errored out” if the solution was not obtained due to errors (such as running out of RAM). The average relative error, which was rounded to two decimal digits, and the time taken are calculated only over the problems which were solved by the given algorithm and choice of parameters. “MISDP (*d*<sub>*B*</sub>)” refers to the choice *M* = *d*<sub>*B*</sub>, and likewise “MISDP (*d*<sub>*B*</sub><sup>2</sup>)” refers to the choice *M* = *d*<sub>*B*</sub><sup>2</sup>. | Algorithm | Parameters | Two random qubits | Two random qutrits | Y-states | |:--------------------------------------|:--------------------------|:----------------------------------|:----------------------------------|:----------------------------| | MISDP (*d*<sub>*B*</sub>) | Pajarito (c1) | 23.63 s, timeout | 23.60 s, timeout | 23.56 s, timeout | | | Pajarito (c2) | 22.99 s, timeout | 23.31 s, timeout | 23.21 s, timeout | | | Pajarito (o) | 23.47 s, timeout | 24.77 s, timeout | 26.15 s, timeout | | MISDP (*d*<sub>*B*</sub><sup>2</sup>) | Pajarito (c1) | 24.49 s (0.00 %), timeout | 31.40 s (0.00 %), timeout | 26.27 s (0.00 %), timeout | | | Pajarito (c2) | 25.02 s (0.00 %), timeout | 31.39 s (0.00 %), timeout | 29.08 s (0.00 %), timeout | | | Pajarito (o) | 26.54 s (0.00 %), timeout | 212.79 s (0.00 %), timeout | 141.14 s (0.00 %), timeout | | SDP | MOSEK | 8.69 s, 8.84 s | 8.78 s, 9.23 s | 9.33 s, timeout | | | SCS | 9.00 s, 8.90 s | 8.44 s, 11.22 s | 8.98 s, timeout | | SDP (dual) | MOSEK | 8.46 s, 8.63 s | 8.54 s, 8.83 s | 9.11 s, timeout | | | SCS | 8.76 s, 8.32 s | 8.33 s, 9.20 s | 8.74 s, timeout | | Active set upper bound (MOSEK) | *t*<sub>max</sub> = 20 s | 8.76 s (19.5 %), 10.41 s (1.5 %) | 8.89 s (19.5 %), timeout | 9.72 s (0 %), 34.25 s (? %) | | | *t*<sub>max</sub> = 60 s | 10.91 s (19.5 %), 10.41 s (1.9 %) | 8.87 s (19.5 %), timeout | 9.66 s (0 %), 31.00 s (? %) | | | *t*<sub>max</sub> = 240 s | 9.47 s (19.5 %), 10.40 s (1.5 %) | 8.90 s (19.5 %), timeout | 9.81 s (0 %), 30.26 s (? %) | | Active set upper bound (SCS) | *t*<sub>max</sub> = 20 s | 9.04 s (19.5 %), 10.92 s (1.5 %) | 8.70 s (19.5 %), 101.06 s (1.1 %) | 9.23 s (0 %), 82.84 s (? %) | | | *t*<sub>max</sub> = 60 s | 9.07 s (19.5 %), 10.22 s (1.9 %) | 8.66 s (19.5 %), 32.94 s (1.2 %) | 9.18 s (0 %), 50.79 s (? %) | | | *t*<sub>max</sub> = 240 s | 9.04 s (19.5 %), 10.02 s (1.9 %) | 8.79 s (19.5 %), 22.69 s (1.2 %) | 9.31 s (0 %), 37.36 s (? %) | Caption: The individual timings for each algorithm and choice of settings on problems (1)–(3), and the corresponding “tensor-2” problems discussed at <a href="#eq:tensor-2" data-reference-type="eqref" data-reference="eq:tensor-2">[eq:tensor-2]</a>. For each algorithm, the running time of the original problem is given followed by the running time on the “tensor-2” problem, e.g. the SDP formulation with MOSEK on the two random qubits problem was solved in 8.69 seconds, and in 8.84 seconds for the corresponding tensor-2 problem. “timeout” is written whenever the problem was not solved within 5 minutes. For the active set algorithms, the relative error is also given for each problem in parenthesis. Note that the MISDP formulation with *M* = *d*<sub>*B*</sub> is also only known to be an upper bound, but a relative error of less than 10<sup> − 5</sup> in each instance, so the relative errors are omitted. Lastly, the relative error is written as ? % in the case that only an upper bound was obtained. | Algorithm | Parameters | Three random qubits | Three random qutrits | BB84 states | |:--------------------------------------|:--------------------------|:------------------------------|:-------------------------------|:-----------------------------| | MISDP (*d*<sub>*B*</sub>) | Pajarito (c1) | 23.63 s, timeout | 24.49 s, timeout | 23.51 s, timeout | | | Pajarito (c2) | 23.17 s, timeout | 26.50 s, timeout | 25.01 s, timeout | | | Pajarito (o) | 27.11 s, timeout | 95.01 s, timeout | 73.80 s, timeout | | MISDP (*d*<sub>*B*</sub><sup>2</sup>) | Pajarito (c1) | 25.82 s (0.00 %), timeout | timeout, timeout | 68.35 s (0.00 %), timeout | | | Pajarito (c2) | 26.38 s (0.00 %), timeout | timeout, timeout | timeout, timeout | | | Pajarito (o) | 144.93 s (0.00 %), timeout | timeout, timeout | timeout, timeout | | SDP | MOSEK | 9.35 s, timeout | 8.82 s, timeout | 8.87 s, error | | | SCS | 9.09 s, timeout | 8.46 s, timeout | 8.54 s, error | | SDP (dual) | MOSEK | 9.14 s, timeout | 8.55 s, timeout | 8.62 s, error | | | SCS | 8.86 s, timeout | 8.25 s, timeout | 8.23 s, error | | Active set upper bound (MOSEK) | *t*<sub>max</sub> = 20 s | 9.73 s (1.3 %), 32.29 s (? %) | 9.50 s (5.8 %), timeout | 9.51 s (0 %), 27.72 s (? %) | | | *t*<sub>max</sub> = 60 s | 9.69 s (1.3 %), 24.12 s (? %) | 9.45 s (5.8 %), timeout | 9.77 s (0 %), 66.47 s (? %) | | | *t*<sub>max</sub> = 240 s | 9.69 s (1.3 %), 30.42 s (? %) | 9.45 s (5.8 %), timeout | 9.49 s (0 %), 133.81 s (? %) | | Active set upper bound (SCS) | *t*<sub>max</sub> = 20 s | 9.44 s (1.3 %), 35.66 s (? %) | 9.67 s (5.8 %), 84.43 s (? %) | 9.09 s (0 %), 28.76 s (? %) | | | *t*<sub>max</sub> = 60 s | 9.44 s (1.3 %), 54.60 s (? %) | 9.11 s (5.8 %), 155.51 s (? %) | 9.29 s (0 %), 70.57 s (? %) | | | *t*<sub>max</sub> = 240 s | 8.89 s (1.3 %), 75.43 s (? %) | 9.01 s (5.8 %), timeout | 9.15 s (0 %), 177.64 s (? %) | Caption: The individual timings for each algorithm and choice of settings on problems (4)–(6). See the previous caption for a description of the quantities shown. Here, “error” means the solution was not obtained due to an error (such as running out of memory). [1] The maximum time can still be exceeded, since at least one iteration must be performed and the estimate can be wrong. # References * [2] Coey, Chris, Miles Lubin, and Juan Pablo Vielma. 2018. “Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems.” ArXiv:1808.05290 [Math], August. http://arxiv.org/abs/1808.05290. * [3] Hanson, Eric P., Vishal Katariya, Nilanjana Datta, and Mark M. Wilde. 2020. “Guesswork with Quantum Side Information.” ArXiv:2001.03598 [Quant-Ph], February. http://arxiv.org/abs/2001.03598. * [4] johnjforrest, Stefan Vigerske, Ted Ralphs, Haroldo Gambini Santos, Lou Hafer, Bjarni Kristjansson, jpfasano, et al. 2019. Coin-or/Cbc: Version 2.10.3. Zenodo. https://doi.org/10.5281/zenodo.3246628. * [5] O’Donoghue, B., E. Chu, N. Parikh, and S. Boyd. 2016. “Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding.” Journal of Optimization Theory and Applications 169 (3): 1042–68. * [6] Udell, Madeleine, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond, and Stephen Boyd. 2014. “Convex Optimization in Julia.” In Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages, 18–28.
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
77886
# A log of the output from the numeric experiments ```julia GuessworkQuantumSideInfo.jl/numeric_experiments on  numeric_experiments [$?] 15:47:39 ❯ julia --project=. _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.5.1 (2020-08-25) _/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release |__/ | julia> versioninfo() Julia Version 1.5.1 Commit 697e782ab8 (2020-08-25 20:08 UTC) Platform Info: OS: Linux (x86_64-pc-linux-gnu) CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-9.0.1 (ORCJIT, skylake) Environment: JULIA_REVISE_POLL = 1 julia> GuessworkQuantumSideInfo.jl/numeric_experiments on  numeric_experiments [$?] took 1m44s 15:49:29 ❯ julia --project=. --startup-file=no _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.5.1 (2020-08-25) _/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release |__/ | julia> include("run_problems.jl") Academic license - for non-commercial use only Problem 1/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:45 Finished! [ Info: SubString{String}["1.254935008191061", "22.8479812"] Problem 1/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:45 Finished! [ Info: SubString{String}["1.254934996180558", "23.3493885"] Problem 1/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:47 Finished! [ Info: SubString{String}["1.2549349930201852", "24.7053996"] Problem 1/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.254935008096305", "8.6902007"] Problem 1/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.254934989188837", "8.458288"] Problem 1/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4999999999980487", "8.7578906"] Problem 1/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:32 Finished! [ Info: SubString{String}["1.4999999999980487", "10.9102688"] Problem 1/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4999999999980487", "9.4719107"] Problem 1/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.254934948577658", "9.0020535"] Problem 1/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.2549349952019324", "8.7551425"] Problem 1/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.499999999879668", "9.0447568"] Problem 1/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.499999999879668", "9.0737937"] Problem 1/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.499999999879668", "9.0386222"] Problem 2/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:56 Finished! [ Info: SubString{String}["1.5315835908607798", "33.7600876"] Problem 2/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.5315835696345121", "27.0816645"] Problem 2/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 2/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5315835982285744", "9.3482174"] Problem 2/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5315835639649773", "9.1440335"] Problem 2/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.55143345179782", "9.7268027"] Problem 2/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.55143345179782", "9.6872898"] Problem 2/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.55143345179782", "9.6855354"] Problem 2/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5315836482762242", "9.0878709"] Problem 2/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.5315835761159902", "8.8595117"] Problem 2/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5514335194601956", "9.4359064"] Problem 2/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5514335194601956", "9.4387474"] Problem 2/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5514335194601956", "8.8855632"] Problem 3/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:57 Finished! ┌ Warning: MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1529) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1530) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1531) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1532) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1533) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1534) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1535) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1536) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1537) of matrix 'A'. │ MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1559) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1560) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1561) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1562) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1563) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1564) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1565) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1566) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1567) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1529) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1530) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1531) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1532) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1533) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1534) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1535) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1536) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1537) of matrix 'A'.", "MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1559) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1560) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1561) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1562) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1563) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1564) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1565) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1566) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1567) of matrix 'A'.", "1.422649790197531", "32.9258842"] Problem 3/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! ┌ Warning: MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1529) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1530) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1531) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1532) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1533) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1534) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1535) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1536) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1537) of matrix 'A'. │ MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1559) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1560) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1561) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1562) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1563) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1564) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1565) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1566) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1567) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1529) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1530) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1531) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1532) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1533) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1534) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1535) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1536) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1537) of matrix 'A'.", "MOSEK warning 705: #45 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1559) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1560) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1561) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1562) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1563) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1564) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1565) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1566) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1567) of matrix 'A'.", "1.4226497382896444", "27.6751057"] Problem 3/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 3/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.422649741094202", "9.326394"] Problem 3/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.4226497338611328", "9.1115323"] Problem 3/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.422649730078765", "9.7188591"] Problem 3/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4226497077704807", "9.6625051"] Problem 3/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4226497301069139", "9.8102977"] Problem 3/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.4226494912208716", "8.976787"] Problem 3/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.422649730963161", "8.741583"] Problem 3/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4226497307011863", "9.2282523"] Problem 3/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4226497307011854", "9.1781923"] Problem 3/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4226497307011863", "9.3057953"] Problem 4/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 4/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 4/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 4/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.709430585203046", "8.8681798"] Problem 4/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.70943058402584", "8.6237742"] Problem 4/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7094305753904342", "9.5134354"] Problem 4/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7094305810180206", "9.7677162"] Problem 4/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:32 Finished! [ Info: SubString{String}["1.7094305248798227", "9.4909807"] Problem 4/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7094306214229236", "8.5401641"] Problem 4/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.7094305848837652", "8.2306411"] Problem 4/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.7094305682408302", "9.0949739"] Problem 4/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.7094305843004052", "9.2856356"] Problem 4/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:28 Finished! [ Info: SubString{String}["1.7094305682408737", "9.1506415"] Problem 5/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:52 Finished! [ Info: SubString{String}["1.255145077130398", "30.3665841"] Problem 5/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:56 Finished! [ Info: SubString{String}["1.255145070937713", "33.8677304"] Problem 5/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 5/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.2551449846482652", "8.7806062"] Problem 5/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.255144970810816", "8.5387358"] Problem 5/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.4999999995692301", "8.8869137"] Problem 5/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.4999999995692301", "8.8707072"] Problem 5/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.4999999995692301", "8.9047032"] Problem 5/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.2551450482354998", "8.4399617"] Problem 5/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.2551449788825657", "8.3335215"] Problem 5/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.499999997301028", "8.699171"] Problem 5/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.499999997301028", "8.6579571"] Problem 5/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.499999997301028", "8.7902263"] Problem 6/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 6/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 6/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 6/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.471036475781681", "8.8248976"] Problem 6/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:28 Finished! [ Info: SubString{String}["1.4710363761428709", "8.5505169"] Problem 6/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5562851836654978", "9.5011555"] Problem 6/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.5562851836654978", "9.4520119"] Problem 6/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.5562851836654978", "9.4534974"] Problem 6/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:28 Finished! [ Info: SubString{String}["1.4710366265761445", "8.4558049"] Problem 6/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:28 Finished! [ Info: SubString{String}["1.4710362238910173", "8.2458754"] Problem 6/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5562846392846454", "9.6662718"] Problem 6/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.5562846392846454", "9.107038"] Problem 6/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.5562846392846454", "9.0146762"] Problem 7/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:32 Finished! [ Info: SubString{String}["1.7503204060173534", "8.8412297"] Problem 7/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.750320341208066", "8.6292731"] Problem 7/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.7763899365151006", "10.4054094"] Problem 7/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7745147449590317", "10.4099024"] Problem 7/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7763899365182758", "10.4019568"] Problem 7/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7503204685792013", "8.8986134"] Problem 7/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.7503217558950943", "8.3211818"] Problem 7/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:32 Finished! [ Info: SubString{String}["1.7763899165999122", "10.916788"] Problem 7/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.7745140186833968", "10.2178801"] Problem 7/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:31 Finished! [ Info: SubString{String}["1.7744435625346329", "10.0230561"] Problem 8/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:07 Timed out! Problem 8/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:57 Finished! [ Info: SubString{String}["2.7672182086517387", "32.2916971"] Problem 8/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:45 Finished! [ Info: SubString{String}["2.7676240967276766", "24.1154537"] Problem 8/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:51 Finished! [ Info: SubString{String}["2.7676240668569907", "30.4157592"] Problem 8/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 8/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 8/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:58 Finished! [ Info: SubString{String}["2.7672184622684357", "35.6556466"] Problem 8/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:01:18 Finished! [ Info: SubString{String}["2.7672181040034545", "54.6013249"] Problem 8/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:01:37 Finished! [ Info: SubString{String}["2.7672047842754983", "75.4263761"] Problem 9/12, algorithm 1/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 2/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 3/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 4/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 5/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:09 Timed out! Problem 9/12, algorithm 6/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:59 Finished! [ Info: SubString{String}["2.320856634278685", "34.2465309"] Problem 9/12, algorithm 7/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:53 Finished! [ Info: SubString{String}["2.320856772167582", "30.996122"] Problem 9/12, algorithm 8/13 100%|██████████████████████████████████████████████████████████████| Time: 0:00:51 Finished! [ Info: SubString{String}["2.3208567801177336", "30.2602784"] Problem 9/12, algorithm 9/13 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 10/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 9/12, algorithm 11/13 100%|█████████████████████████████████████████████████████████████| Time: 0:01:45 Finished! [ Info: SubString{String}["2.320856591038295", "82.8359903"] Problem 9/12, algorithm 12/13 100%|█████████████████████████████████████████████████████████████| Time: 0:01:13 Finished! [ Info: SubString{String}["2.320856747573597", "50.7868997"] Problem 9/12, algorithm 13/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:59 Finished! [ Info: SubString{String}["2.3208566985412618", "37.362088"] Problem 10/12, algorithm 1/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 10/12, algorithm 2/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 3/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 4/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:25 Finished! ┌ Error: ERROR: LoadError: OutOfMemoryError() │ Stacktrace: │ [1] Array at ./boot.jl:406 [inlined] │ [2] Array at ./boot.jl:415 [inlined] │ [3] similar at ./abstractarray.jl:675 [inlined] │ [4] similar at ./abstractarray.jl:674 [inlined] │ [5] _array_for at ./array.jl:678 [inlined] │ [6] collect(::Base.Generator{UnitRange{Int64},GuessworkQuantumSideInfo.var"#10#15"{Int64}}) at ./array.jl:691 │ [7] guesswork(::Array{Float64,1}, ::Array{Array{Complex{Float64},2},1}; solver::MosekSolver, K::Int64, c::Array{Float64,1}, dual::Bool, remove_repetition::Bool, povm_outcomes::Combinatorics.MultiSetPermutations{Array{Int64,1}}, verbose::Bool, debug::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/src/SDP_formulation.jl:168 │ [8] macro expansion at ./timing.jl:310 [inlined] │ [9] (::var"#23#28"{var"#21#26"})(::NamedTuple{(:p, :ρBs, :numeric_type, :problem),Tuple{Array{Float64,1},Array{Array{Complex{Float64},2},1},DataType,String}}) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/common.jl:79 │ [10] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 │ [11] include(::Function, ::Module, ::String) at ./Base.jl:380 │ [12] include(::Module, ::String) at ./Base.jl:368 │ [13] exec_options(::Base.JLOptions) at ./client.jl:296 │ [14] _start() at ./client.jl:506 │ in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}[""] ERROR: LoadError: BoundsError: attempt to access 1-element Array{SubString{String},1} at index [0:1] Stacktrace: [1] throw_boundserror(::Array{SubString{String},1}, ::Tuple{UnitRange{Int64}}) at ./abstractarray.jl:541 [2] checkbounds at ./abstractarray.jl:506 [inlined] [3] getindex at ./array.jl:815 [inlined] [4] run_problem(::Int64, ::Int64; verbose::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:51 [5] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:61 [6] include(::String) at ./client.jl:457 [7] top-level scope at REPL[1]:1 in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:60 ``` Added error handling and continued... ``` julia> include("run_problems.jl") Problem 10/12, algorithm 1/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 2/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 3/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 4/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:25 Finished! ┌ Error: ERROR: LoadError: OutOfMemoryError() │ Stacktrace: │ [1] Array at ./boot.jl:406 [inlined] │ [2] Array at ./boot.jl:415 [inlined] │ [3] similar at ./abstractarray.jl:675 [inlined] │ [4] similar at ./abstractarray.jl:674 [inlined] │ [5] _array_for at ./array.jl:678 [inlined] │ [6] collect(::Base.Generator{UnitRange{Int64},GuessworkQuantumSideInfo.var"#10#15"{Int64}}) at ./array.jl:691 │ [7] guesswork(::Array{Float64,1}, ::Array{Array{Complex{Float64},2},1}; solver::MosekSolver, K::Int64, c::Array{Float64,1}, dual::Bool, remove_repetition::Bool, povm_outcomes::Combinatorics.MultiSetPermutations{Array{Int64,1}}, verbose::Bool, debug::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/src/SDP_formulation.jl:168 │ [8] macro expansion at ./timing.jl:310 [inlined] │ [9] (::var"#23#28"{var"#21#26"})(::NamedTuple{(:p, :ρBs, :numeric_type, :problem),Tuple{Array{Float64,1},Array{Array{Complex{Float64},2},1},DataType,String}}) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/common.jl:79 │ [10] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 │ [11] include(::Function, ::Module, ::String) at ./Base.jl:380 │ [12] include(::Module, ::String) at ./Base.jl:368 │ [13] exec_options(::Base.JLOptions) at ./client.jl:296 │ [14] _start() at ./client.jl:506 │ in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 10/12, algorithm 5/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:24 Finished! ┌ Error: ERROR: LoadError: OutOfMemoryError() │ Stacktrace: │ [1] Array at ./boot.jl:406 [inlined] │ [2] _array_for at ./array.jl:677 [inlined] │ [3] guesswork(::Array{Float64,1}, ::Array{Array{Complex{Float64},2},1}; solver::MosekSolver, K::Int64, c::Array{Float64,1}, dual::Bool, remove_repetition::Bool, povm_outcomes::Combinatorics.MultiSetPermutations{Array{Int64,1}}, verbose::Bool, debug::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/src/SDP_formulation.jl:143 │ [4] macro expansion at ./timing.jl:310 [inlined] │ [5] (::var"#24#29"{var"#21#26"})(::NamedTuple{(:p, :ρBs, :numeric_type, :problem),Tuple{Array{Float64,1},Array{Array{Complex{Float64},2},1},DataType,String}}) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/common.jl:82 │ [6] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 │ [7] include(::Function, ::Module, ::String) at ./Base.jl:380 │ [8] include(::Module, ::String) at ./Base.jl:368 │ [9] exec_options(::Base.JLOptions) at ./client.jl:296 │ [10] _start() at ./client.jl:506 │ in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 10/12, algorithm 6/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:47 Finished! [ Info: SubString{String}["3.7811860979433263", "27.7171467"] Problem 10/12, algorithm 7/13 100%|█████████████████████████████████████████████████████████████| Time: 0:01:29 Finished! [ Info: SubString{String}["3.771192992150866", "66.469113"] Problem 10/12, algorithm 8/13 100%|█████████████████████████████████████████████████████████████| Time: 0:02:35 Finished! [ Info: SubString{String}["3.7682775167884057", "133.8114008"] Problem 10/12, algorithm 9/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:24 Finished! ┌ Error: ERROR: LoadError: OutOfMemoryError() │ Stacktrace: │ [1] Array at ./boot.jl:406 [inlined] │ [2] Array at ./boot.jl:415 [inlined] │ [3] similar at ./abstractarray.jl:675 [inlined] │ [4] similar at ./abstractarray.jl:674 [inlined] │ [5] _array_for at ./array.jl:678 [inlined] │ [6] collect(::Base.Generator{UnitRange{Int64},GuessworkQuantumSideInfo.var"#10#15"{Int64}}) at ./array.jl:691 │ [7] guesswork(::Array{Float64,1}, ::Array{Array{Complex{Float64},2},1}; solver::SCSSolver, K::Int64, c::Array{Float64,1}, dual::Bool, remove_repetition::Bool, povm_outcomes::Combinatorics.MultiSetPermutations{Array{Int64,1}}, verbose::Bool, debug::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/src/SDP_formulation.jl:168 │ [8] macro expansion at ./timing.jl:310 [inlined] │ [9] (::var"#23#28"{var"#22#27"})(::NamedTuple{(:p, :ρBs, :numeric_type, :problem),Tuple{Array{Float64,1},Array{Array{Complex{Float64},2},1},DataType,String}}) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/common.jl:79 │ [10] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 │ [11] include(::Function, ::Module, ::String) at ./Base.jl:380 │ [12] include(::Module, ::String) at ./Base.jl:368 │ [13] exec_options(::Base.JLOptions) at ./client.jl:296 │ [14] _start() at ./client.jl:506 │ in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 10/12, algorithm 10/13 100%|████████████████████████████████████████████████████████████| Time: 0:00:24 Finished! ┌ Error: ERROR: LoadError: OutOfMemoryError() │ Stacktrace: │ [1] Array at ./boot.jl:406 [inlined] │ [2] _array_for at ./array.jl:677 [inlined] │ [3] guesswork(::Array{Float64,1}, ::Array{Array{Complex{Float64},2},1}; solver::SCSSolver, K::Int64, c::Array{Float64,1}, dual::Bool, remove_repetition::Bool, povm_outcomes::Combinatorics.MultiSetPermutations{Array{Int64,1}}, verbose::Bool, debug::Bool) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/src/SDP_formulation.jl:143 │ [4] macro expansion at ./timing.jl:310 [inlined] │ [5] (::var"#24#29"{var"#22#27"})(::NamedTuple{(:p, :ρBs, :numeric_type, :problem),Tuple{Array{Float64,1},Array{Array{Complex{Float64},2},1},DataType,String}}) at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/common.jl:82 │ [6] top-level scope at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 │ [7] include(::Function, ::Module, ::String) at ./Base.jl:380 │ [8] include(::Module, ::String) at ./Base.jl:368 │ [9] exec_options(::Base.JLOptions) at ./client.jl:296 │ [10] _start() at ./client.jl:506 │ in expression starting at /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/do_problem.jl:20 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 10/12, algorithm 11/13 100%|████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["3.779617362857275", "28.760714"] Problem 10/12, algorithm 12/13 100%|████████████████████████████████████████████████████████████| Time: 0:01:32 Finished! [ Info: SubString{String}["3.7715124469415007", "70.5699564"] Problem 10/12, algorithm 13/13 100%|████████████████████████████████████████████████████████████| Time: 0:03:22 Finished! [ Info: SubString{String}["3.768213428570261", "177.6444008"] Problem 11/12, algorithm 1/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 2/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 3/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 4/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7368579207940624", "9.2295285"] Problem 11/12, algorithm 5/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:29 Finished! [ Info: SubString{String}["1.7368579132221822", "8.8348357"] Problem 11/12, algorithm 6/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 7/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 8/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 9/13 100%|█████████████████████████████████████████████████████████████| Time: 0:00:32 Finished! [ Info: SubString{String}["1.7368580657916646", "11.2161223"] Problem 11/12, algorithm 10/13 100%|████████████████████████████████████████████████████████████| Time: 0:00:30 Finished! [ Info: SubString{String}["1.7368575755119444", "9.1961901"] Problem 11/12, algorithm 11/13 100%|████████████████████████████████████████████████████████████| Time: 0:02:02 Finished! [ Info: SubString{String}["1.7554742953569498", "101.0598171"] Problem 11/12, algorithm 12/13 100%|████████████████████████████████████████████████████████████| Time: 0:00:53 Finished! [ Info: SubString{String}["1.7578147992900353", "32.9359894"] Problem 11/12, algorithm 13/13 100%|████████████████████████████████████████████████████████████| Time: 0:00:44 Finished! [ Info: SubString{String}["1.7583289930168684", "22.6860797"] Problem 12/12, algorithm 1/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 2/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 3/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 4/13 100%|█████████████████████████████████████████████████████████████| Time: 0:04:09 Finished! [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 12/12, algorithm 5/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 12/12, algorithm 6/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 12/12, algorithm 7/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 12/12, algorithm 8/13 100%|█████████████████████████████████████████████████████████████| Time: 0:05:02 Timed out! Problem 12/12, algorithm 9/13 100%|█████████████████████████████████████████████████████████████| Time: 0:03:33 Finished! [ Info: SubString{String}[""] ┌ Error: Not enough returns, something went wrong └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:52 Problem 12/12, algorithm 10/13 100%|████████████████████████████████████████████████████████████| Time: 0:05:03 Timed out! Problem 12/12, algorithm 11/13 100%|████████████████████████████████████████████████████████████| Time: 0:01:47 Finished! [ Info: SubString{String}["2.6455718400755233", "84.4330259"] Problem 12/12, algorithm 12/13 100%|████████████████████████████████████████████████████████████| Time: 0:02:56 Finished! [ Info: SubString{String}["2.639131319680283", "155.5140639"] Problem 12/12, algorithm 13/13 100%|████████████████████████████████████████████████████████████| Time: 0:05:03 Timed out! 39×8 DataFrame. Omitted printing of 4 columns │ Row │ algo │ settings │ numeric_type │ problem │ │ │ String │ String │ String │ String │ ├─────┼─────────────────────────────────────┼────────────────────────────────────┼──────────────┼─────────────┤ │ 1 │ MISDP │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ BB84(2) │ │ 2 │ MISDP │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ BB84(2) │ │ 3 │ MISDP │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ BB84(2) │ │ 4 │ SDP │ Mosek │ Float64 │ BB84(2) │ │ 5 │ dual_SDP │ Mosek │ Float64 │ BB84(2) │ │ 6 │ guesswork_upper_bound(max_time=20) │ Mosek │ Float64 │ BB84(2) │ │ 7 │ guesswork_upper_bound(max_time=60) │ Mosek │ Float64 │ BB84(2) │ │ 8 │ guesswork_upper_bound(max_time=240) │ Mosek │ Float64 │ BB84(2) │ │ 9 │ SDP │ SCS │ Float64 │ BB84(2) │ │ 10 │ dual_SDP │ SCS │ Float64 │ BB84(2) │ ⋮ │ 29 │ MISDP │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 3qutrits(2) │ │ 30 │ SDP │ Mosek │ Float64 │ 3qutrits(2) │ │ 31 │ dual_SDP │ Mosek │ Float64 │ 3qutrits(2) │ │ 32 │ guesswork_upper_bound(max_time=20) │ Mosek │ Float64 │ 3qutrits(2) │ │ 33 │ guesswork_upper_bound(max_time=60) │ Mosek │ Float64 │ 3qutrits(2) │ │ 34 │ guesswork_upper_bound(max_time=240) │ Mosek │ Float64 │ 3qutrits(2) │ │ 35 │ SDP │ SCS │ Float64 │ 3qutrits(2) │ │ 36 │ dual_SDP │ SCS │ Float64 │ 3qutrits(2) │ │ 37 │ guesswork_upper_bound(max_time=20) │ SCS │ Float64 │ 3qutrits(2) │ │ 38 │ guesswork_upper_bound(max_time=60) │ SCS │ Float64 │ 3qutrits(2) │ │ 39 │ guesswork_upper_bound(max_time=240) │ SCS │ Float64 │ 3qutrits(2) │ ``` Added `MISDP_dB` setting and ran the problems with those options: ``` julia> include("run_problems.jl") Problem 1/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:48 Finished! [ Info: SubString{String}["1.2549350503546497", "22.9851179"] Problem 1/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["1.2549350503546497", "23.6271632"] Problem 1/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:48 Finished! [ Info: SubString{String}["1.2549359025427322", "23.4738548"] Problem 2/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:46 Finished! [ Info: SubString{String}["1.531583578752242", "23.1706345"] Problem 2/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:48 Finished! [ Info: SubString{String}["1.5315835787522418", "23.630824"] Problem 2/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:52 Finished! [ Info: SubString{String}["1.5315876003496776", "27.1068016"] Problem 3/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:48 Finished! ┌ Warning: MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(617) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(618) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(619) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(620) of matrix 'A'. │ MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(629) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(630) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(631) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(632) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(617) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(618) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(619) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(620) of matrix 'A'.", "MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(629) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(630) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(631) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(632) of matrix 'A'.", "1.4226497495723145", "23.2142919"] Problem 3/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! ┌ Warning: MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(617) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(618) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(619) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(620) of matrix 'A'. │ MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(629) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(630) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(631) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(632) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(617) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(618) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(619) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(620) of matrix 'A'.", "MOSEK warning 705: #18 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(629) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(630) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(631) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(632) of matrix 'A'.", "1.4226497297957217", "23.5631458"] Problem 3/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! ┌ Error: ┌ Warning: Repeated integer solution without converging │ └ @ Pajarito ~/.julia/packages/Pajarito/TFExZ/src/conic_algorithm.jl:1687 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}["1.422648765315336", "26.1466155"] Problem 4/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["1.7094305955725198", "25.0106493"] Problem 4/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:47 Finished! [ Info: SubString{String}["1.7094305955725198", "23.5142924"] Problem 4/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:01:39 Finished! [ Info: SubString{String}["1.7094293534710712", "73.8001398"] Problem 5/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.255145017108577", "23.3100727"] Problem 5/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.255145017108577", "23.596305"] Problem 5/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["1.2551468576010365", "24.7745932"] Problem 6/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["1.4710364763587662", "26.4991661"] Problem 6/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:48 Finished! [ Info: SubString{String}["1.4710364763587662", "24.4914356"] Problem 6/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:01:57 Finished! ┌ Error: ┌ Warning: Repeated integer solution without converging │ └ @ Pajarito ~/.julia/packages/Pajarito/TFExZ/src/conic_algorithm.jl:1687 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}["1.4710321441071241", "95.0050658"] Problem 7/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 1/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 3/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 5/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 1/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 3/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 5/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 1/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 3/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 5/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 1/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 3/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 5/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! 36×8 DataFrame. Omitted printing of 2 columns │ Row │ algo │ settings │ numeric_type │ problem │ optval │ elapsed_seconds │ │ │ String │ String │ String │ String │ Float64 │ Float64 │ ├─────┼──────────┼────────────────────────────────────┼──────────────┼─────────────┼─────────┼─────────────────┤ │ 1 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 2qubits(1) │ 1.25494 │ 22.9851 │ │ 2 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 2qubits(1) │ 1.25494 │ 23.6272 │ │ 3 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 2qubits(1) │ 1.25494 │ 23.4739 │ │ 4 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 3qubits(1) │ 1.53158 │ 23.1706 │ │ 5 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 3qubits(1) │ 1.53158 │ 23.6308 │ │ 6 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 3qubits(1) │ 1.53159 │ 27.1068 │ │ 7 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ Y(1) │ 1.42265 │ 23.2143 │ │ 8 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ Y(1) │ 1.42265 │ 23.5631 │ │ 9 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ Y(1) │ 1.42265 │ 26.1466 │ │ 10 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ BB84(1) │ 1.70943 │ 25.0106 │ ⋮ │ 26 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ Y(2) │ NaN │ NaN │ │ 27 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ Y(2) │ NaN │ NaN │ │ 28 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 29 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 30 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 31 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 32 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 33 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 34 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ │ 35 │ MISDP_dB │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ │ 36 │ MISDP_dB │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ ``` Reran the MISDP problems with M=dB^2 (instead of dB^2 + 1, which is not necessary). Annoyingly, the algorithm indices are off in the following log, because I had removed the `MISDP` version from `algos`. It doesn't matter though, since there were no OOMs to get from the logs. ```julia GuessworkQuantumSideInfo.jl/numeric_experiments on  numeric_experiments [$»!] 13:27:14 ❯ julia --project=. --startup-file=no _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.5.1 (2020-08-25) _/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release |__/ | julia> include("run_problems.jl") [ Info: Precompiling CSV [336ed68f-0bac-5ca0-87d4-7b16caf5d00b] [ Info: Precompiling GuessworkQuantumSideInfo [43bf2e5e-2e2b-4a4c-a80a-78ff5d909e07] [ Info: Precompiling Pajarito [2f354839-79df-5901-9f0a-cdb2aac6fe30] Academic license - for non-commercial use only Problem 1/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! [ Info: SubString{String}["1.2549350272184832", "25.0180601"] Problem 1/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:47 Finished! [ Info: SubString{String}["1.2549349960643177", "24.4915273"] Problem 1/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.2549344493592418", "26.5418423"] Problem 2/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.5315837236968899", "26.384784"] Problem 2/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:50 Finished! [ Info: SubString{String}["1.531583569528324", "25.8218552"] Problem 2/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:02:49 Finished! ┌ Error: ┌ Warning: Repeated integer solution without converging │ └ @ Pajarito ~/.julia/packages/Pajarito/TFExZ/src/conic_algorithm.jl:1687 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}["1.5315809630022876", "144.9346841"] Problem 3/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:52 Finished! ┌ Warning: MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1225) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1226) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1227) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1228) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1229) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1230) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1231) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1232) of matrix 'A'. │ MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1249) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1250) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1251) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1252) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1253) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1254) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1255) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1256) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1225) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1226) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1227) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1228) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1229) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1230) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1231) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1232) of matrix 'A'.", "MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1249) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1250) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1251) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1252) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1253) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1254) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1255) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1256) of matrix 'A'.", "1.4226497385782253", "29.0800987"] Problem 3/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:49 Finished! ┌ Warning: MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1225) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1226) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1227) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1228) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1229) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1230) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1231) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1232) of matrix 'A'. │ MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1249) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1250) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1251) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1252) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1253) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1254) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1255) of matrix 'A'. │ MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1256) of matrix 'A'. └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:47 [ Info: SubString{String}["MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1225) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1226) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1227) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1228) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1229) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1230) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1231) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1232) of matrix 'A'.", "MOSEK warning 705: #36 (nearly) zero elements are specified in sparse row ''(0) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1249) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1250) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1251) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1252) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1253) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1254) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1255) of matrix 'A'.", "MOSEK warning 705: #6 (nearly) zero elements are specified in sparse row ''(1256) of matrix 'A'.", "1.4226497372005802", "26.2719686"] Problem 3/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:02:44 Finished! ┌ Error: ┌ Warning: Repeated integer solution without converging │ └ @ Pajarito ~/.julia/packages/Pajarito/TFExZ/src/conic_algorithm.jl:1687 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}["1.4226490196466606", "141.1404839"] Problem 4/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 4/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:01:33 Finished! [ Info: SubString{String}["1.7094305493549533", "68.3456832"] Problem 4/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 5/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:54 Finished! [ Info: SubString{String}["1.2551450448490824", "31.3867835"] Problem 5/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:00:57 Finished! [ Info: SubString{String}["1.255145044849353", "31.3980755"] Problem 5/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:03:59 Finished! ┌ Error: ┌ Warning: Repeated integer solution without converging │ └ @ Pajarito ~/.julia/packages/Pajarito/TFExZ/src/conic_algorithm.jl:1687 └ @ Main /mnt/c/Users/eric/Code/GuessworkQuantumSideInfo.jl/numeric_experiments/run_problems.jl:42 [ Info: SubString{String}["1.2551424930051753", "212.7907068"] Problem 6/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 6/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 6/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 7/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 8/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 2/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 4/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 9/12, algorithm 6/16 100%|██████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 2/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 4/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 10/12, algorithm 6/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 2/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 4/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 11/12, algorithm 6/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 2/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 4/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! Problem 12/12, algorithm 6/16 100%|█████████████████████████████████████████████████████████████| Time: 0:05:01 Timed out! 36×8 DataFrame. Omitted printing of 2 columns │ Row │ algo │ settings │ numeric_type │ problem │ optval │ elapsed_seconds │ │ │ String │ String │ String │ String │ Float64 │ Float64 │ ├─────┼──────────────┼────────────────────────────────────┼──────────────┼─────────────┼─────────┼─────────────────┤ │ 1 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 2qubits(1) │ 1.25494 │ 25.0181 │ │ 2 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 2qubits(1) │ 1.25493 │ 24.4915 │ │ 3 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 2qubits(1) │ 1.25493 │ 26.5418 │ │ 4 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 3qubits(1) │ 1.53158 │ 26.3848 │ │ 5 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 3qubits(1) │ 1.53158 │ 25.8219 │ │ 6 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 3qubits(1) │ 1.53158 │ 144.935 │ │ 7 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ Y(1) │ 1.42265 │ 29.0801 │ │ 8 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ Y(1) │ 1.42265 │ 26.272 │ │ 9 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ Y(1) │ 1.42265 │ 141.14 │ │ 10 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ BB84(1) │ NaN │ NaN │ ⋮ │ 26 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ Y(2) │ NaN │ NaN │ │ 27 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ Y(2) │ NaN │ NaN │ │ 28 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 29 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 30 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ BB84(2) │ NaN │ NaN │ │ 31 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 32 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 33 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 2qutrits(2) │ NaN │ NaN │ │ 34 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=false) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ │ 35 │ MISDP (dB^2) │ Pajarito(Mosek, Gurobi, MSD=true) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ │ 36 │ MISDP (dB^2) │ Pajarito(SCS, Cbc, MSD=false) │ Float64 │ 3qutrits(2) │ NaN │ NaN │ ```
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
2f8f4dba5a8bf0aff3b7af5f2181d9aac0014529
docs
753
# High precision tests These tests use the high-precision SDP solver SDPA-GMP, via [SDPAFamily.jl](https://github.com/ericphanson/SDPAFamily.jl). This currently uses Convex.jl version 0.13 which is incompatible with the Pajarito solver used for mixed-integer SDPs (until that solver is updated to use MathOptInterface). To run the high-precision tests, call ``` julia --project=. -e 'include("tests.jl")' ``` from the command line, with the working directory set to this folder, or enter a Julia session with ``` juila --project=. ``` and then include the tests file via `include("tests.jl")`. The `Manifest.toml` file is included in this folder so that a set of compatible versions of the necessary packages can be reproduced here, using Julia 1.4.
GuessworkQuantumSideInfo
https://github.com/ericphanson/GuessworkQuantumSideInfo.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
343
using Documenter, GraphicalLasso makedocs( sitename="GraphicalLasso.jl", format=Documenter.HTML( prettyurls=get(ENV, "CI", nothing) == "true" ), pages=[ "Home" => [ "index.md" ], ], modules=[GraphicalLasso] ) deploydocs( repo="github.com/ivanuricardo/GraphicalLasso.jl.git", )
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
291
module GraphicalLasso using Statistics using LinearAlgebra using Random using Distributions include("./glasso.jl") export softthresh, cdlasso, glasso include("./utils.jl") export offdiag, randsparsecov, iscov include("./infocrit.jl") export critfunc, countedges, ebic, tuningselect end
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
3363
softthresh(x, λ) = sign.(x) .* max.(abs.(x) .- λ, 0) """ cdlasso(W11::Matrix{T}, s12::Vector{T}, λ::Real; max_iter::Int=100, tol::T=1e-5) where {T<:Real} Solves the coordinate descent Lasso problem. # Arguments - `W11::Matrix{T}`: A square matrix used in the coordinate descent update. - `s12::Vector{T}`: A vector used in the coordinate descent update. - `λ::Real`: Regularization parameter. - `max_iter::Int=100`: Maximum number of iterations. (optional) - `tol::T=1e-5`: Tolerance for the convergence criteria. (optional) # Returns - `Vector{T}`: Solution vector `β`. """ function cdlasso( W11::AbstractMatrix{T}, s12::AbstractVector{T}, λ::Real; max_iter::Int=100, tol::T=1e-5) where {T<:Real} p = length(s12) β = zeros(p) for _ in 1:max_iter β_old = copy(β) for j in 1:p idx = setdiff(1:p, j) r_j = s12[j] - W11[idx, j]' * β[idx] β[j] = softthresh(r_j, λ) / W11[j, j] end if norm(β - β_old) < tol break end end return β end """ glasso(s::Matrix{Float64}, obs::Int, λ::Real; penalizediag::Bool=true, γ::Real=0.0, tol::Float64=1e-05, verbose::Bool=true, maxiter::Int=100, winit::Matrix{Float64}=zeros(size(s))) Applies the graphical lasso (glasso) algorithm to estimate a sparse inverse covariance matrix. # Arguments - `s::Matrix{Float64}`: Empirical covariance matrix. - `obs::Int`: Number of observations. - `λ::Real`: Regularization parameter for the lasso penalty. - `penalizediag::Bool=true`: Whether to penalize the diagonal entries. (optional) - `γ::Real=0.0`: EBIC tuning parameter. (optional) - `tol::Float64=1e-05`: Tolerance for the convergence criteria. (optional) - `verbose::Bool=true`: If true, prints convergence information. (optional) - `maxiter::Int=100`: Maximum number of iterations. (optional) - `winit::Matrix{Float64}=zeros(size(s))`: Initial value of the precision matrix. (optional) # Returns - `NamedTuple`: A named tuple with fields: - `W::Matrix{Float64}`: Estimated precision matrix. - `θ::Matrix{Float64}`: Estimated inverse covariance matrix. - `ll::Float64`: Log-likelihood of the estimate. - `bicval::Float64`: EBIC value of the estimate. """ function glasso( s::AbstractMatrix{Float64}, obs::Int, λ::Real; penalizediag::Bool=true, γ::Real=0.0, tol::Float64=1e-05, verbose::Bool=true, maxiter::Int=100, winit::AbstractMatrix{Float64}=zeros(size(s)), ) p = size(s, 1) if winit == zeros(size(s)) W = Matrix(copy(s) + (penalizediag ? λ * I : zero(s))) else W = Matrix(copy(winit)) + (penalizediag ? λ * I : zero(s)) end niter = 0 for _ in 1:maxiter niter += 1 W_old = copy(W) for j in 1:p idx = setdiff(1:p, j) W11 = W[idx, idx] s12 = s[idx, j] βhat = cdlasso(W11, s12, λ; max_iter=maxiter, tol=tol) W[idx, j] = W11 * βhat W[j, idx] = W[idx, j]' end if norm(W - W_old, 1) < tol if verbose @info "glasso converged with $niter iterations." end break end end θ = inv(W) ll = -(obs / 2) * critfunc(s, θ, W; penalizediag) bicval = ebic(θ, ll, obs, 1e-06, γ) return (; W, θ, ll, bicval) end
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
2802
countedges(x, thr) = sum(abs.(x) .> thr) """ ebic(θ, ll, obs, thr, γ) Calculates the Extended Bayesian Information Criterion (EBIC) for a given precision matrix `θ`. From the paper by Foygel and Drton (2010), the EBIC is defined as: ``\\text{EBIC} = -2 \\times \\text{Log-likelihood} + \\log(n) \\times \\mathbf{E} + 4 \\times \\gamma \\times \\mathbf{E} \\times \\log(p)`` where: - n is the number of observations. - p is the number of variables. - gamma is a tuning parameter. - The number of edges is calculated as the count of entries in theta that exceed a given threshold. # Arguments - `θ::AbstractMatrix`: Precision matrix. - `ll::Real`: Log-likelihood. - `obs::Int`: Number of observations. - `thr::Real`: Threshold value for counting edges. - `γ::Real`: EBIC tuning parameter. # Returns - `Real`: EBIC value. """ function ebic(θ, ll, obs, thr, γ) edgecount = countedges(θ, thr) ebicpen = 4 * γ * edgecount * log(size(θ, 1)) return -2 * ll + (log(obs) * edgecount) + ebicpen end """ critfunc(s, θ, rho; penalizediag=true) Calculates the objective function value for the graphical lasso. # Arguments - `s::AbstractMatrix`: Empirical covariance matrix. - `θ::AbstractMatrix`: Precision matrix. - `rho::Real`: Regularization parameter. - `penalizediag::Bool=true`: Whether to penalize the diagonal entries. (optional) # Returns - `Real`: Value of the objective function. """ function critfunc(s, θ, rho; penalizediag=true) ψ = copy(θ) if !penalizediag ψ[diagind(ψ)] .= 0 end crit = -logdet(θ) + tr(s * θ) + sum(abs.(rho * ψ)) return crit end """ tuningselect(s::Matrix{Float64}, obs::Int, λ::AbstractVector{T}; γ::Real=0.0) where {T} Selects the optimal regularization parameter `λ` for the graphical lasso using EBIC. # Arguments - `s::Matrix{Float64}`: Empirical covariance matrix. - `obs::Int`: Number of observations. - `λ::AbstractVector{T}`: Vector of regularization parameters to be tested. - `γ::Real=0.0`: EBIC tuning parameter. (optional) # Returns - `T`: The optimal regularization parameter from the input vector `λ`. """ function tuningselect( s::AbstractMatrix{Float64}, obs::Int, λ::AbstractVector{T}; γ::Real=0.0, kwargs... ) where {T} sortedλ = sort(λ) p, _ = size(s) numλ = length(sortedλ) covarray = zeros(Float64, p, p, numλ) bicvec = Vector{Float64}(undef, numλ) W, _, _, bicval = glasso(s, obs, sortedλ[1]; γ, kwargs...) bicvec[1] = bicval covarray[:, :, 1] = W for i in 2:numλ nextW = covarray[:, :, i-1] glassoresult = glasso(s, obs, sortedλ[i]; γ, winit=nextW, kwargs...) covarray[:, :, i] = glassoresult.W bicvec[i] = glassoresult.bicval end lowestidx = argmin(bicvec) return sortedλ[lowestidx] end
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
1421
offdiag(x) = x[findall(!iszero, ones(size(x)) - I)] """ randsparsecov(p, thr) Generates a random sparse covariance matrix of size `p x p` with a specified threshold for sparsity. # Arguments - `p::Int`: The dimension of the covariance matrix. - `thr::Real`: Threshold value for sparsity. Values below this threshold will be set to zero. # Returns - `Hermitian{Float64}`: A sparse covariance matrix. """ function randsparsecov(p, thr) s = randn(p, p) denseΣ = (s + s') / 2 valsΣ = eigvals(denseΣ) vecsΣ = eigvecs(denseΣ) unthreshΣ = vecsΣ' * Diagonal(abs.(valsΣ)) * vecsΣ Σ = softthresh.(unthreshΣ, thr) + I return Hermitian(Σ) end """ iscov(x::AbstractMatrix{T}) where {T<:Real} Checks if a given matrix is a valid covariance matrix. A valid covariance matrix must be square, symmetric, and positive semi-definite. # Arguments - `x::AbstractMatrix{T}`: Input matrix to check. # Returns - `Bool`: `true` if the matrix is a valid covariance matrix, `false` otherwise. """ function iscov(x::AbstractMatrix{T}) where {T<:Real} n, m = size(x) if n != m @info "result is not square." return false end if !issymmetric(x) @info "result is not symmetric." return false end xxevals = eigvals(x) if any(xxevals .< 0) @info "result is not positive semi-definite." return false end return true end
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
103
using GraphicalLasso using Test, Statistics, LinearAlgebra, Distributions include("./test-glasso.jl")
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
code
2125
@testset "softthresh" begin @test softthresh(1.0, 0.5) ≈ 0.5 @test softthresh(1.0, 1.0) ≈ 0.0 v = [1.0, 2.0, -3.0] sv = softthresh(v, 1.5) @test sv[1] ≈ 0.0 @test sv[2] ≈ 0.5 @test sv[3] ≈ -1.5 end @testset "off diagonal average" begin a = [2 1 1; 1 2 1; 1 1 2] @test mean(offdiag(a)) ≈ 1.0 end @testset "counting edges" begin a = [1 2 3; 4 5 6; 7 8 9] a[diagind(a)] .= 0 @test countedges(a, 1e-10) ≈ 6 end @testset "Glasso returns covariance result" begin using Random Random.seed!(1234) nobs = 200 df = randn(nobs, 5) s = cov(df) gs = glasso(s, nobs, 0.1) @test iscov(gs.W) end @testset "Random sparse matrix returns covariance" begin using Random Random.seed!(1234) s1 = randsparsecov(10, 0.5) s2 = randsparsecov(20, 0.2) s3 = randsparsecov(50, 0.5) s4 = randsparsecov(100, 0.5) @test iscov(s1) @test iscov(s2) @test iscov(s3) @test iscov(s4) end @testset "large tuning parameter" begin using Random Random.seed!(1234) nobs = 200 df = randn(nobs, 10) s = cov(df) λ = 8e10 gs = glasso(s, nobs, λ) od = offdiag(gs.θ) @test od ≈ zeros(90) end @testset "CD Lasso yields least squares solution" begin using Random Random.seed!(1234) nobs = 500 X = randn(nobs, 10) trueβ = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] y = X * trueβ + 0.1 * randn(nobs) unmeanX = X .- mean(X, dims=1) stdX = unmeanX ./ std(X, dims=1) lsβ = inv(stdX' * stdX) * stdX' * y λ = 0.0 cdlassoβ = cdlasso(stdX' * stdX, stdX' * y, λ; tol=1e-5) @test cdlassoβ ≈ lsβ end @testset "CD Lasso yields correct number of zeros" begin using Random Random.seed!(1234) nobs = 20 X = randn(nobs, 10) trueβ = [0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0] y = X * trueβ + 0.1 * randn(nobs) unmeanX = X .- mean(X, dims=1) stdX = unmeanX ./ std(X, dims=1) λ = 1.3 cdlassoβ = cdlasso(stdX' * stdX, stdX' * y, λ; tol=1e-5) numedges = countedges(cdlassoβ, 1e-10) @test numedges ≈ 5 end
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
docs
4775
# GraphicalLasso.jl [![Build Status](https://github.com/ivanuricardo/GraphicalLasso.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/ivanuricardo/GraphicalLasso.jl/actions/workflows/CI.yml?query=branch%3Amain) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://ivanuricardo.github.io/GraphicalLasso.jl/stable) [![codecov](https://codecov.io/gh/ivanuricardo/GraphicalLasso.jl/graph/badge.svg?token=f7OfqnmtEC)](https://codecov.io/gh/ivanuricardo/GraphicalLasso.jl) This package provides efficient tools for generating sparse covariance matrices, estimating sparse precision matrices using the graphical lasso (glasso) algorithm, and selecting optimal regularization parameters. ## Key Features: - **Sparse Covariance Matrix Generation**: Generate random sparse covariance matrices with customizable sparsity thresholds. - **Graphical Lasso (glasso) Implementation**: Apply the glasso algorithm to estimate sparse precision matrices from empirical covariance matrices. - **Extended Bayesian Information Criterion (EBIC)**: Calculate EBIC for model selection, supporting edge counting with thresholding. - **Tuning Parameter Selection**: Automatically select optimal regularization parameters for the glasso algorithm using EBIC. - **Covariance Matrix Validation**: Functions to check if a matrix is a valid covariance matrix (square, symmetric, positive semi-definite). ## Installation To install this package, first enter into Pkg mode by pressing `]` in the Julia REPL, then run the following command: ```julia pkg> add GraphicalLasso ``` There is also the option to install the development version of this package directly from the GitHub repository: ```julia pkg> add https://github.com/ivanuricardo/GraphicalLasso.jl ``` ## Functions Included: - `softthresh(x, λ)`: Applies soft thresholding to an array. - `cdlasso(W11, s12, λ; max_iter=100, tol=1e-5)`: Solves the coordinate descent Lasso problem. - `glasso(s, obs, λ; penalizediag=true, γ=0.0, tol=1e-05, verbose=true, maxiter=100, winit=zeros(size(s)))`: Estimates a sparse inverse covariance matrix using the glasso algorithm. - `countedges(x, thr)`: Counts the number of edges in an array exceeding a threshold. - `ebic(θ, ll, obs, thr, γ)`: Calculates the EBIC for a given precision matrix. - `critfunc(s, θ, rho; penalizediag=true)`: Computes the objective function for the graphical lasso. - `tuningselect(s, obs, λ; γ=0.0)`: Selects the optimal regularization parameter using EBIC. - `randsparsecov(p, thr)`: Generates a random sparse covariance matrix. - `iscov(x)`: Checks if a matrix is a valid covariance matrix. ## Example Here is an example of how to use this package to generate a sparse covariance matrix, apply the graphical lasso algorithm, and select the optimal tuning parameter: ```julia using LinearAlgebra, GraphicalLasso, Random, Distributions Random.seed!(123456) # Generate true sparse covariance matrix p = 20 thr = 0.5 Σ = randsparsecov(p, thr) # Check if this is a valid covariance matrix iscov(Σ) # Generate data from the true covariance matrix, create sample covariance matrix obs = 100 μ = zeros(p) unstddf = rand(MvNormal(zeros(p), Σ), obs) df = (unstddf .- mean(unstddf, dims=2)) ./ std(unstddf, dims=2) s = df * df' / obs # Select the optimal tuning parameter from a range λvalues = 0.0:0.01:2.0 optimalλ = tuningselect(s, obs, λvalues, verbose=false) println("Optimal λ: ", optimalλ) # Apply the graphical lasso algorithm result = glasso(s, obs, optimalλ) # Extract results W = result.W θ = result.θ ll = result.ll bicval = result.bicval println("Estimated Precision Matrix: ", θ) println("Log-Likelihood: ", ll) println("EBIC Value: ", bicval) # Validate if the result is a valid covariance matrix is_valid_cov = iscov(W) println("Is the estimated matrix a valid covariance matrix? ", is_valid_cov) ``` Moreover, although not the main focus of this package, we also provide a method to compute the lasso solution via coordinate descent. We demonstrate this method below with a generated data set and a sparse response vector. ```julia using LinearAlgebra, GraphicalLasso, Random, Plots Random.seed!(123456) N = 100 k = 100 kzeros = 90 X = randn(N, k) beta = ones(k) beta[1:kzeros] .= 0 betahat = zeros(k) y = X * beta + randn(N) λ = 10.0 cdlassobeta = cdlasso(X'X, X'y, λ) # We expect the last column to be dense. heatmap(reshape(cdlassobeta, 10, 10), yflip = true) ``` ## Contribution We welcome contributions to improve the package. If you encounter any issues or have suggestions for new features, feel free to open an issue or submit a pull request. ## License This project is licensed under the MIT License - see the [LICENSE](https://github.com/ivanuricardo/GraphicalLasso.jl/blob/main/LICENSE) file for details.
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.2
c385995decd042d8ccb797c42b9603ed1e459869
docs
548
# GraphicalLasso.jl A package for fitting the graphical lasso and some diagnostics for tuning parameter selection. This package follows the work of Friedman et al. (2008) and the extended BIC criterion of Foygel and Drton (2010). We gain inspiration from the `glasso` package in R, and aim to provide a similar user experience in Julia. ## Graphical Lasso Main Functions ```@docs glasso cdlasso ``` ## Information Criteria ```@docs ebic critfunc tuningselect ``` ## Utility Functions ```@docs randsparsecov iscov ``` ## Index ```@index ```
GraphicalLasso
https://github.com/ivanuricardo/GraphicalLasso.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
7162
module JitterTime using LinearAlgebra include("types.jl") # Containing all datastructures necessary for JitterTime include("util.jl") # Containing auxiliary functions include("execution.jl") # Containing all code for Executing the JitterTimeSystem include("printing.jl") # Containing all Pretty Printing code export calcDynamics!, reset! """ calcDynamics!(N::JTSystem) Calculate the total system dynamics for the JitterTime system `N`. Assuming the state of the total system (including all subsystems) to be x. The continuous time evolution follows the equation ``` dx(t) = N.Ac x(t)dt + dvc(t) ``` where `vc` is continuous white noise with intensity `N.Rc`. The discrete-event evolution (when executing system `S`) follows the equation ``` x+(t_k) = S.Ad x(t_k) + vd(t_k) ```` where vd is white Gaussian noise with variance `S.Rd`. """ function calcDynamics!(N::JTSystem{T}) where {T} # Step 1: Count states and inputs and build a system-to-state index mapping indices = Vector{UnitRange{Int64}}(undef, length(N.systems)) totstates::Int64 = 0 n::Int64 = 0 empty!(N.idtoindex) merge!(N.idtoindex, Dict(N.systems[x].id => x for x in eachindex(N.systems))) length(N.idtoindex) == length(N.systems) || error("Duplicate System ID's") for i in eachindex(N.systems) # TODO: Add "stateindex"? Used for stateDisturbance n = N.systems[i].n indices[i] = UnitRange(totstates+1, totstates+n) totstates += n end # for # Step 2: Check that the number of outputs and inputs match for all system connections (including reset dynamics) # TODO Add reset dynamics # TODO Add continuous systems # FIXME Bug in original Matlab code? Can't use an arbitrary ID if !_connections_correct(N) error("Wrong number of inputs") end # if # Initialice Ac, Rc, Qc Ac = zero(N.P) Rc = zero(N.P) Qc = zero(N.P) # Step 3: Formulate the total continuous-time dynamics, continuous noise, discrete-time dynamics (all versions), discrete noise and continuous cost # TODO Add reset dynamics? for (k, s) in enumerate(N.systems) xtou = zeros(T, s.n, totstates) xtou[:, indices[k]] = Matrix{T}(I, s.n, s.n) # = I _formulate_dynamics!(s, N, Ac, Rc, Qc, xtou, indices, totstates, k) end # for # Step 4: Create reduced system to improve performance N.reduced = ReducedSystem(Ac, Rc, Qc) return nothing end """ reset!(N::JTSystem) Reset the dynamics of the JitterTime system. """ function reset!(N::JTSystem) # Revert passTime!, execSys! N.J = 0.0 N.dJdt = 0.0 fill!(N.m, 0.0) fill!(N.P, 0.0) N.Tsim = 0.0 return nothing end function reset!(N::PeriodicJitterTimeSystem{T}) where {T} N.periodicAnalysis = false N.Atot = Matrix{T}(I, size(N.P)...) fill!(N.Rtot, 0.0) fill!(N.dtot, 0.0) fill!(N.Pper, 0.0) fill!(N.mper, 0.0) reset!(N.jtsys) end ########################### ### Auxiliary functions ### ########################### #= Check that the number of outputs and inputs match for all system connections =# function _connections_correct(N::JTSystem) for s in N.systems if !_connections_correct(s, N) return false end # if end # for return true end # function function _connections_correct(s::VersionedSystem, N::JTSystem) for v in s.versions if sum(N.systems[N.idtoindex[x]].p for x in v.inputid) != v.r return false end # if end # for return true end # function function _connections_correct(s::LinearSystem, N::JTSystem) return sum(N.systems[N.idtoindex[x]].p for x in s.inputid) == s.r end # function #= Formulate dynamics depending on LinearSystem type =# function _formulate_dynamics!(s::ContinuousSystem, N::JTSystem{T}, Ac::Matrix{T}, Rc::Matrix{T}, Qc::Matrix{T}, xtou::Matrix, indices::Vector{UnitRange{S}}, totstates::S, k::S) where {T, S <: Integer} # Construct Ac matrix Ac[indices[k], indices[k]] = s.A bix::Int64 = 1 for inputindex in map(x -> N.idtoindex[x], s.inputid) input = N.systems[inputindex] # Construct Ac matrix Ac[indices[k], indices[inputindex]] = s.B[:, bix:bix+input.p-1]*input.C bix += input.p xtoy = zeros(T, input.p, totstates) xtoy[:, indices[inputindex]] = input.C xtou = vcat(xtou, xtoy) end # for # Construct Rc matrix Rc[indices[k], indices[k]] = s.Rc # Construct Qc matrix Qc .+= xtou'*s.Qc*xtou # Combined cost of state, outputs and inputs end # function function _formulate_dynamics!(s::DiscreteSystem, N::JTSystem{T}, Ac::Matrix{T}, Rc::Matrix{T}, Qc::Matrix{T}, xtou::Matrix, indices::Vector{UnitRange{S}}, totstates::S, k::S) where {T, S <: Integer} sidx::Int64 = N.idtoindex[s.id] push!(N.Ad[sidx], Matrix{T}(I, totstates, totstates)) N.Ad[sidx][1][indices[k], indices[k]] = s.A push!(N.Rd[sidx], zeros(T, totstates, totstates)) N.Rd[sidx][1][indices[k], indices[k]] = s.R bix::Int64 = 1 for inputindex in map(x -> N.idtoindex[x], s.inputid) input = N.systems[inputindex] N.Ad[sidx][1][indices[k], indices[inputindex]] = s.B[:, bix:bix+input.p-1]*input.C bix += input.p end # for # Construct Qc matrix Qc .+= xtou'*s.Qc*xtou # Combined cost of state, outputs and inputs end # function function _formulate_dynamics!(s::VersionedSystem, N::JTSystem{T}, Ac::Matrix{T}, Rc::Matrix{T}, Qc::Matrix{T}, xtou::Matrix, indices::Vector{UnitRange{S}}, totstates::S, k::S) where {T, S <: Integer} for (v, sver) in enumerate(s.versions) sidx::Int64 = N.idtoindex[s.id] push!(N.Ad[sidx], Matrix{T}(I, totstates, totstates)) # = I N.Ad[sidx][v][indices[k], indices[k]] = sver.A push!(N.Rd[sidx], zeros(T, totstates, totstates)) N.Rd[sidx][v][indices[k], indices[k]] = sver.R bix::Int64 = 1 for inputindex in map(x -> N.idtoindex[x], sver.inputid) input = N.systems[inputindex] N.Ad[sidx][v][indices[k], indices[inputindex]] = sver.B[:, bix:bix+input.p-1]*input.C bix += input.p end # for end # for # Construct Qc matrix Qc .+= xtou'*s.Qc*xtou # Combined cost of state, outputs and inputs end # function end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
4553
export execSys!, passTime!, passTimeUntil!, beginPeriodicAnalysis!, endPeriodicAnalysis! """ execSys!(N::JTSystem, sysid::Integer [, ver::Integer]) Execute the discrete-time system with the id 'sysid'. If the executed system is a `VersionedSystem` a version can be specifed. ## Arguments: * `N`: The JitterTime system. * `sysid`: ID of the discrete-time system to be updated. * `ver`: (OPTIONAL) What version to execute (default = 1) """ function execSys!(N::JTSystem, sysid::Integer, ver::Integer = 1) sidx = N.idtoindex[sysid] N.systems[sidx] isa Union{DiscreteSystem, VersionedSystem} || error("Can only execute (versioned) discrete-time systems.") Ad = N.Ad[sidx][ver] Rd = N.Rd[sidx][ver] N.m .= Ad * N.m # N.P = Ad * N.P * Ad' .+ Rd _mat_mul_add!(Ad, N.P, Ad', Rd, N.bufl) if N isa PeriodicJitterTimeSystem && N.periodicAnalysis # N.Atot = Ad * N.Atot mul!(N.bufl, Ad, N.Atot) N.Atot .= N.bufl # N.Rtot = Ad * N.Rtot * Ad' + Rd _mat_mul_add!(Ad, N.Rtot, Ad', Rd, N.bufl) end return nothing end """ passTime!(N::JTSystem, T::Real) Let time pass by `T` units, running all continuous-time systems and accumulating cost. ## Arguments: * `N`: The JitterTime system. * `T`: The time interval to pass """ function passTime!(N::JTSystem, time::Real) time >= 0 || error("Time must be positive!") time == 0 && return nothing # Special case when no time passed (Ad, Rd, Qd, Qconst) = calcC2D(N.reduced, time) #costm = N.m' * Qd * N.m costm = dot(N.m, Qd, N.m) #costP = tr(Qd * N.P) .+ Qconst mul!(N.bufl, Qd, N.P) costP = tr(N.bufl) .+ Qconst N.J += costm + costP N.dJdt = (costm + costP) / time N.m .= Ad * N.m # N.P = Ad * N.P * Ad' .+ Rd _mat_mul_add!(Ad, N.P, Ad', Rd, N.bufl) N.Tsim += time if N isa PeriodicJitterTimeSystem && N.periodicAnalysis # N.Atot = Ad * N.Atot mul!(N.bufl, Ad, N.Atot) N.Atot .= N.bufl # N.Rtot = Ad * N.Rtot * Ad' + Rd _mat_mul_add!(Ad, N.Rtot, Ad', Rd, N.bufl) N.dtot .= Ad * N.dtot end return nothing end """ passTime!(N::JTSystem) Let time pass, running all continuous-time systems and accumulating cost, in a system with a fixed time interval length. ## Arguments: * `N`: The JitterTime system. """ function passTime!(N::JTSystem) try N.h catch; error("JTSystem does not contain a FixedIntervalJitterTimeSystem!") end #costm = N.m' * Qd * N.m costm = dot(N.m, N.FIQd, N.m) #costP = tr(Qd * N.P) .+ Qconst mul!(N.bufl, N.FIQd, N.P) costP = tr(N.bufl) .+ N.FIQconst N.J += costm + costP N.dJdt = (costm + costP) / N.h N.m .= N.FIAd * N.m # N.P = Ad * N.P * Ad' .+ Rd _mat_mul_add!(N.FIAd, N.P, N.FIAd', N.FIRd, N.bufl) N.Tsim += N.h if N isa PeriodicJitterTimeSystem && N.periodicAnalysis # N.Atot = Ad * N.Atot mul!(N.bufl, N.FIAd, N.Atot) N.Atot .= N.bufl # N.Rtot = Ad * N.Rtot * Ad' + Rd _mat_mul_add!(N.FIAd, N.Rtot, N.FIAd', N.FIRd, N.bufl) N.dtot .= N.FIAd * N.dtot end return nothing end """ passTimeUntil!(N::JTSystem, T::Real) Let time pass until `N.Tsim = T`, running all continuous-time systems and accumulating cost. ## Arguments: * `N`: The JitterTime system. * `T`: The target time. Must be greater than or equal to N.Tsim. """ passTimeUntil!(N::JTSystem, endTime::Real) = passTime!(N, endTime - N.Tsim) """ beginPeriodicAnalysis!(N::PeriodicJitterTimeSystem) Start a periodic covariance analysis for the PeriodicJitterTimeSystem `N`. Must be called after [`calcDynamics!`](@ref). ## Arguments: * `N`: The JitterTime system. """ function beginPeriodicAnalysis!(N::PeriodicJitterTimeSystem) N.periodicAnalysis = true return nothing end # function """ endPeriodicAnalysis!(N::PeriodicJitterTimeSystem) End a periodic covariance analysis for the PeriodicJitterTimeSystem `N`. Must be called after [`beginPeriodicAnalysis!`](@ref) """ function endPeriodicAnalysis!(N::PeriodicJitterTimeSystem) N.periodicAnalysis || error("Periodic analysis not started") N.Atot |> eigvalsCheck |> (x)->abs.(x) |> maximum < 1 || error("Periodic analysis failed due to unstable system mode(s)") N.Pper = dlyap(N.Atot, N.Rtot) N.mper = (I - N.Atot) \ N.dtot N.periodicAnalysis = false return nothing end # function
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
2105
# Structs function Base.show(io::IO, sys::DiscreteSystem{T}) where {T} n = sys.n - sys.p # Number of states in phi println(io, "$(n == 0 ? "Static " : "")DiscreteSystem{$T} (ID = $(sys.id))\n{") if n != 0 println(io, "\tA: $(sys.A[1:n, 1:n])") # TODO Which matrices should be printed? println(io, "\tB: $(sys.B[1:n, :])") println(io, "\tC: $(sys.A[n+1:end, 1:n])") println(io, "\tD: $(sys.B[n+1:end, :])") else println(io, "\tD: $(sys.B[n+1:end, :])") end println(io, "\tR: $(sys.R)") println(io, "\tQc: $(sys.Qc)") print(io, "} Input from LinearSystem$((length(sys.inputid) == 1) ? ": $(sys.inputid[1])" : "s $(sys.inputid)")") end # function function Base.show(io::IO, sys::ContinuousSystem{T}) where {T} println(io, "ContinuousSystem{$T} (ID = $(sys.id))\n{") println(io, "\tA: $(sys.A)") println(io, "\tB: $(sys.B)") println(io, "\tC: $(sys.C)") println(io, "\tRc: $(sys.Rc)") println(io, "\tQc: $(sys.Qc)") print(io, "} Input from LinearSystem$((length(sys.inputid) == 1) ? ": $(sys.inputid[1])" : "s: $(sys.inputid)")") end # function function Base.show(io::IO, sys::VersionedSystem{T}) where {T} println(io, "VersionedSystem{$T} (ID = $(sys.id)) containing $(length(sys.versions)) DiscreteSystems") end # function function Base.show(io::IO, sys::JitterTimeSystem{T}) where {T} print(io, "JitterTimeSystem{$T} containing LinearSystem$((length(sys.systems) == 1) ? ": $(sys.systems[1].id)" : "s: $(map(x -> x.id, sys.systems))")") end # function function Base.show(io::IO, sys::PeriodicJitterTimeSystem{T}) where {T} print(io, "PeriodicJitterTimeSystem{$T} containing LinearSystem$((length(sys.systems) == 1) ? ": $(sys.systems[1].id)" : "s: $(map(x -> x.id, sys.systems))")") end # function function Base.show(io::IO, sys::FixedIntervalJitterTimeSystem{T}) where {T} print(io, "FixedIntervalJitterTimeSystem{$T} (interval = $(sys.h)) containing LinearSystem$((length(sys.systems) == 1) ? ": $(sys.systems[1].id)" : "s: $(map(x -> x.id, sys.systems))")") end # function
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
17724
export LinearSystem, DiscreteSystem, ContinuousSystem, VersionedSystem, JTSystem, JitterTimeSystem, PeriodicJitterTimeSystem, FixedIntervalJitterTimeSystem # Abstract types """ LinearSystem{T} Abstract supertype for all linear systems with elements of type `T`. """ abstract type LinearSystem{T} end """ JTSystem{T} Abstract supertype for all JitterTime systems with elements of type `T`. """ abstract type JTSystem{T} end # Extracts the parametric type of an abstract type _parametric_type(::LinearSystem{T}) where {T} = T _parametric_type(::JTSystem{T}) where {T} = T # Converts input to matrix form (and promotes it to type T) _to_matrix(T, A::AbstractVector) = Matrix{T}(reshape(A, length(A), 1)) _to_matrix(T, A::AbstractMatrix) = (Ahat = similar(A, T); Ahat .= A) # Fallback _to_matrix(T, A::Number) = fill(T(A), 1, 1) _to_matrix(T, A::Adjoint{AT, AM}) where {AT <: Number, AM <: AbstractMatrix} = _to_matrix(T, AM(A)) # Initial validation that the LinearSystem is feasible function _init_validation(A, B, C, D, id, inputid) nx = size(A, 1) nu = size(B, 2) ny = size(C, 1) if size(A, 2) != nx && nx != 0 # FIXME size([],1)==0; size([],2)==1 error("A must be square") elseif size(B, 1) != nx error("The number of rows of A ($(size(A,1))) and B ($(size(B,1))) are not equal") elseif size(C, 2) != nx # FIXME add nx != 0 check? This is wrong error("The number of columns of A ($(size(A,2))) and C ($(size(C,2))) are not equal") elseif nu != size(D, 2) error("The number of columns of B ($(size(B,2))) and D ($(size(D,2))) are not equal") elseif ny != size(D, 1) error("The number of rows of C ($(size(C,1))) and D ($(size(D,1))) are not equal") elseif id <= 0 error("ID must be positive") elseif id in inputid error("System ($id) can't be connected to itself") end return nx, nu, ny end # function ############### ### Structs ### ############### """ ContinuousSystem(sysid, A, B, C, D, inputid [, Rc, Qc]) Create a continuous-time linear system ``` u(t) --> sys --> y(t) x(t) ``` The state initially has mean value `E(x) = 0` and covariance `V(x) = 0`. ## Arguments: * `sysid`: A unique positive `Integer` identifier for this system (pick any). Used when referred to from other systems. * `[A, B, C, D]`: A strictly proper, delay-free continuous-time LTI system in state-space form. * `inputid`: A vector of input system identifiers. The outputs of the corresponding systems will be used as inputs to this system. The number of inputs in this system must equal the total number of outputs in the input systems. An empty vector (or zero) indicates that the system inputs are unconnected. * `Rc`: (OPTIONAL) The continuous state or input noise intensity matrix. The noise vector is assumed to have the same size as x (for state-space systems). Default assumed zero. * `Qc`: (OPTIONAL) The continuous cost function is `E(Integral [x(t); u(t)]' * Qc * [x(t); u(t)] dt)` (for state-space systems). Default assumed zero. """ struct ContinuousSystem{T} <: LinearSystem{T} A::Matrix{T} B::Matrix{T} C::Matrix{T} Rc::Matrix{T} # Noise intensity matrix (continuous) Qc::Matrix{T} # Weight matrix (continuous) inputid::Vector{Integer} n::Integer # Number of states r::Integer # Number of inputs p::Integer # Number of outputs id::Integer resetDynamics::Bool end # Constructors function ContinuousSystem(id::S, A, B, C, D, inputid::Vector{S}, Rc = zeros(size(A, 2), size(A, 2)), Qc = zeros(size(A, 2)+size(B, 2), size(A, 2)+size(B, 2))) where {S <: Integer} n, r, p = _init_validation(A, B, C, D, id, inputid) (size(Rc,1),size(Rc,2)) == (n,n) || error("Rc ($(size(Rc,1))*$(size(Rc,2))) should be a n*n matrix; n = #states (= $n)") (size(Qc,1),size(Qc,2)) == (n+r,n+r) || error("Qc ($(size(Qc,1))*$(size(Qc,2))) should be an (n+r)*(n+r) matrix; n = #states (= $n), r = #inputs (= $r)") T = promote_type(eltype(A), eltype(B), eltype(C), eltype(D), eltype(Rc), eltype(Qc)) return ContinuousSystem{T}(_to_matrix(T, A), _to_matrix(T, B), _to_matrix(T, C), _to_matrix(T, Rc), _to_matrix(T, Qc), inputid, n, r, p, id, false) end ContinuousSystem(id::S, A, B, C, D, inputid::S, Rc = zeros(size(A, 2), size(A, 2)), Qc = zeros(size(A, 2)+size(B, 2), size(A, 2)+size(B, 2))) where {S <: Integer} = ContinuousSystem(id, A, B, C, D, S[inputid], Rc, Qc) """ DiscreteSystem(sysid, Phi, Gam, C, D, inputid [, Rd, Qc]) Create a discrete-time linear system ``` u(k) --> sys --> y(k) x(k) ``` The state/output initially has mean value `E([x; y]) = 0` and covariance `V([x; y]) = 0`. ## Arguments: * `sysid`: A unique positive `Integer` identifier for this system (pick any). Used when referred to from other systems. * `[Phi, Gam, C, D]`: A discrete-time LTI system in state-space form (if `Phi`, `Gam`, and `C` are missing, interpreted as a static gain). * `inputid`: A vector of input system identifiers. The outputs of the corresponding systems will be used as inputs to this system. The number of inputs in this system must equal the total number of outputs in the input systems. An empty vector (or zero) indicates that the system inputs are unconnected. * `Rd`: (OPTIONAL) The discrete state/output/input noise covariance matrix. The noise vector is assumed to have the same size as `[x; y]` (for state-space systems). Noise is added each time the system is executed. Default assumed zero. * `Qc`: (OPTIONAL) The continuous cost function is `E(Integral [x(t); u(t)]' * Qc * [x(t); u(t)] dt)` (for state-space systems). _Note_ that both `x(t)` and `y(t)` are held constant between system executions. Default assumed zero. """ struct DiscreteSystem{T} <: LinearSystem{T} A::Matrix{T} B::Matrix{T} C::Matrix{T} R::Matrix{T} # Noise Qc::Matrix{T} # Cost inputid::Vector{Integer} n::Integer # Number of states r::Integer # Number of inputs p::Integer # Number of outputs id::Integer end # Constructor function DiscreteSystem(id::S, Phi, Gam, C, D, inputid::Vector{S}, R = zeros(size(Phi, 2)+size(C, 1), size(Phi, 2)+size(C, 1)), Qc = zeros(size(Phi, 2)+size(C, 1), size(Phi, 2)+size(C, 1))) where {S <: Integer} n, r, p = _init_validation(Phi, Gam, C, D, id, inputid) (size(R,1),size(R,2)) == (n+p,n+p) || error("R ($(size(R,1))*$(size(R,2))) should be a (n+p)*(n+p) matrix; n = #states (= $n), p = #outputs (= $p).") (size(Qc,1),size(Qc,2)) == (n+p,n+p) || error("Qc ($(size(Qc,1))*$(size(Qc,2))) should be a (n+p)*(n+p) matrix; n = #states (= $n), p = #outputs (= $p).") Aarray = [Phi zeros(n, p); C zeros(p, p)] Barray = [Gam; D] T = promote_type(eltype(Phi), eltype(Gam), eltype(C), eltype(D), eltype(R), eltype(Qc)) return DiscreteSystem{T}(_to_matrix(T, Aarray), _to_matrix(T, Barray), _to_matrix(T, [zeros(p, n) I]), _to_matrix(T, R), _to_matrix(T, Qc), inputid, n+p, r, p, id) end DiscreteSystem(id::S, Phi, Gam, C, D, inputid::S, R = zeros(size(Phi, 2)+size(C, 1), size(Phi, 2)+size(C, 1)), Qc = zeros(size(Phi, 2)+size(C, 1), size(Phi, 2)+size(C, 1))) where {S <: Integer} = DiscreteSystem(id, Phi, Gam, C, D, S[inputid], R, Qc) function DiscreteSystem(id::S, D, inputid::Vector{S}, R = zeros(size(D, 1), size(D, 1)), Qc = zeros(size(D, 1), size(D, 1))) where {S <: Integer} n, r, p = 0, size(D, 2), size(D, 1) (size(R,1),size(R,2)) == (p,p) || error("R ($(size(R,1))*$(size(R,2))) should be a (n+p)*(n+p) matrix; n = #states (= $n), p = #outputs (= $p).") (size(Qc,1),size(Qc,2)) == (p,p) || error("Qc ($(size(Qc,1))*$(size(Qc,2))) should be a (n+p)*(n+p) matrix; n = #states (= $n), p = #outputs (= $p).") Aarray = zeros(p, p) Barray = D T = promote_type(eltype(D), eltype(R), eltype(Qc)) return DiscreteSystem{T}(_to_matrix(T, Aarray), _to_matrix(T, Barray), Matrix{T}(I, p, p), _to_matrix(T, R), _to_matrix(T, Qc), inputid, n+p, r, p, id) end DiscreteSystem(id::S, D, inputid::S, R = zeros(size(D, 1), size(D, 1)), Qc = zeros(size(D, 1), size(D, 1))) where {S <: Integer} = DiscreteSystem(id, D, S[inputid], R, Qc) """ VersionedSystem(versions::Vector{DiscreteSystem}) Create a versioned discrete-time linear system; the version identifier is given by its index in the input vector. """ struct VersionedSystem{T} <: LinearSystem{T} versions::Vector{DiscreteSystem} # Constructor function VersionedSystem(vers::Vector{DiscreteSystem{T}}) where {T} S = promote_type(_parametric_type.(vers)...) length(vers) > 1 || error("More than one DiscreteSystem necessary to use VersionedSystem") all(x -> x.id == vers[1].id, vers) || error("Versions do not share ID") all(x -> x.n == vers[1].n, vers) || error("Versions do not share state-space dimensions") all(x -> x.r == vers[1].r, vers) || error("Versions do not share input dimensions") all(x -> x.p == vers[1].p, vers) || error("Versions do not share output dimensions") all(x -> _to_matrix(S, x.Qc) == _to_matrix(S, vers[1].Qc), vers) || error("Qc is defined in continuous time and cannot have multiple versions") new{S}(vers) end end #= Override get function for structs of type VersionedSystem =# function Base.getproperty(v::VersionedSystem{T}, s::Symbol) where {T} if s === :C || s === :Qc return _to_matrix(T, getproperty(v.versions[1], s)) elseif s === :n || s === :r || s === :p || s === :id return getproperty(v.versions[1], s) end # if return getfield(v, s) end # function #= Internal ReducedSystem struct =# mutable struct ReducedSystem{T} n::Integer Ac::Matrix{T} Rc::Matrix{T} Qc::Matrix{T} indices::Vector{Integer} # Submatrices used in calcC2D M112::Vector{Matrix{T}} M122::Vector{Matrix{T}} M213::Vector{Matrix{T}} M223::Vector{Matrix{T}} # Sanity checks maxAbsEig::Real Mnorm::T # Matrix buffers to reduce allocation time bufAd::Matrix{T} bufRd::Matrix{T} bufQd::Matrix{T} bufl::Matrix{T} # Large buffer # Commonly used matrices Id::Matrix{T} # Large identity matrix Zl::Matrix{T} # Large zero matrix function ReducedSystem(Ac::Matrix{T}, Rc::Matrix{T}, Qc::Matrix{T}) where {T} n = size(Ac, 1) # Find all closed-loop states which are continuous mask = iszero.(Ac) .& iszero.(Rc) .& iszero.(Qc) indices = filter(!iszero, (vec(any(!, mask, dims=1)) .| vec(any(!, mask, dims=2))) .* (1:n)) # Reduce the continuous matrices reducedAc = Ac[indices,indices] reducedRc = Rc[indices,indices] reducedQc = Qc[indices,indices] # Create buffers for reduced discretised continuous system bufAd = Matrix{T}(undef, n, n) bufRd = Matrix{T}(undef, n, n) bufQd = Matrix{T}(undef, n, n) M122 = [reducedAc^k for k in 0:1] M112 = [zero(reducedQc), reducedQc] M223 = [zero(reducedRc), reducedRc'] M213 = [zero(reducedRc), zero(reducedRc)] for k in 2:18 c = 1.0/k push!(M213, c*(-reducedAc * last(M213) + last(M223))) # + zero matrix push!(M223, c*(-reducedAc * last(M223) + reducedRc'* last(M122)')) push!(M112, c*(-reducedAc'* last(M112) + reducedQc * last(M122))) push!(M122, c*( reducedAc * last(M122))) end # Norm used for scaling and squaring Meig = maximum(abs.(eigvalsCheck(reducedAc))) # TODO Remove eigvalsCheck and handle some other way... l = size(reducedAc, 1) M = zeros(T, 2 .* size(reducedAc)) M[1:l, 1:l] = -reducedAc' M[1:l, l+1:2*l] = reducedQc M[l+1:2*l, l+1:2*l] = reducedAc M1norm = norm(M, 1) Id = Matrix{T}(I, size(reducedAc)) M = zeros(T, 3 .* size(reducedAc)) M[1:l, 1:l] = M[l+1:2*l, l+1:2*l] = -reducedAc M[2*l+1:3*l, 2*l+1:3*l] = reducedAc' M[1:l, l+1:2*l] = Id M[l+1:2*l, 2*l+1:3*l] = reducedRc' M2norm = norm(M, 1) return new{T}(n, reducedAc, reducedRc, reducedQc, indices, M112, M122, M213, M223, Meig, max(M1norm, M2norm), bufAd, bufRd, bufQd, zeros(T, n, n), Matrix{T}(I, n, n), zeros(T, n, n)) end end """ JitterTimeSystem(systems::Vector{LinearSystem}) Initialize a new JitterTime system. """ mutable struct JitterTimeSystem{T} <: JTSystem{T} systems::Vector{LinearSystem} idtoindex::Dict{Integer, Integer} J::T dJdt::T Tsim::T Ad::Vector{Vector{Matrix{T}}} # TODO: Change this complex structure to individual structs instead Rd::Vector{Vector{Matrix{T}}} # TODO: Change this complex structure to individual structs instead m::Vector{T} P::Matrix{T} reduced::ReducedSystem{T} # Implicit Constructor function JitterTimeSystem(T, systems::Vector{S}) where {S <: LinearSystem} totstates::Int64 = sum(sys.n for sys in systems) Ad::Vector{Vector{Matrix{T}}} = [Matrix{T}[] for _ in systems] Rd::Vector{Vector{Matrix{T}}} = [Matrix{T}[] for _ in systems] P = zeros(T, totstates, totstates) m = zeros(T, totstates) return new{T}(systems, Dict{Integer, Integer}(), T(0), T(0), T(0), Ad, Rd, m, P) end # Constructor end JitterTimeSystem(systems::Vector{S}) where {S <: LinearSystem} = JitterTimeSystem(promote_type(_parametric_type.(systems)...), systems) #= Override get function for structs of type JitterTimeSystem =# function Base.getproperty(sys::JitterTimeSystem, s::Symbol) if hasproperty(sys, s) return getfield(sys, s) end # if return getproperty(sys.reduced, s) end # function #= Override set function for structs of type JitterTimeSystem =# function Base.setproperty!(sys::JitterTimeSystem, s::Symbol, x) if hasproperty(sys, s) return setfield!(sys, s, x) end # if return setproperty!(sys.reduced, s, x) end # function """ PeriodicJitterTimeSystem(N::JTSystem) Initialize a new Periodic JitterTime system. """ mutable struct PeriodicJitterTimeSystem{T} <: JTSystem{T} jtsys::JTSystem{T} periodicAnalysis::Bool Atot::Matrix{T} Rtot::Matrix{T} dtot::Matrix{T} # TODO: What is this? Pper::Matrix{T} mper::Matrix{T} # TODO: What is this? # Implicit Constructor function PeriodicJitterTimeSystem(jtsys::S) where {S <: JTSystem} !(jtsys isa PeriodicJitterTimeSystem) || error("Unecessary wrapping of PeriodicJitterTimeSystem") T = _parametric_type(jtsys) Atot = Matrix{T}(I, size(jtsys.P)) Rtot = zeros(T, size(jtsys.P)) dtot = zeros(T, size(jtsys.P, 1), 1) Pper = zero(Rtot) mper = zero(dtot) new{T}(jtsys, false, Atot, Rtot, dtot, Pper, mper) end end #= Override get function for structs of type PeriodicJitterTimeSystem =# function Base.getproperty(sys::PeriodicJitterTimeSystem, s::Symbol) if hasproperty(sys, s) return getfield(sys, s) end # if return getproperty(sys.jtsys, s) end # function #= Override set function for structs of type PeriodicJitterTimeSystem =# function Base.setproperty!(sys::PeriodicJitterTimeSystem, s::Symbol, x) if hasproperty(sys, s) return setfield!(sys, s, x) end # if return setproperty!(sys.jtsys, s, x) end # function """ FixedIntervalJitterTimeSystem(N::JTSystem, h::Real) Initialize a new JitterTime system with fixed activation interval h. """ mutable struct FixedIntervalJitterTimeSystem{T} <: JTSystem{T} jtsys::JTSystem{T} # TODO: Should this be of type JTSystem{T}? h::Real FIAd::Matrix{T} FIRd::Matrix{T} FIQd::Matrix{T} FIQconst::T function FixedIntervalJitterTimeSystem(jtsys::S, h::Real) where {S <: JTSystem} h > 0 || error("h must be positive!") T = _parametric_type(jtsys) tmp_sys = deepcopy(jtsys) # create deepcopy to calculate dynamic on calcDynamics!(tmp_sys) (Ad, Rd, Qd, Qconst) = calcC2D(tmp_sys.reduced, h) # TODO: This is bad practice... We assume the jtsys has had its dynamics calculated before hand (even though we never do it elsewhere) new{T}(jtsys, h, Ad, Rd, Qd, Qconst) end end #= Override get function for structs of type FixedIntervalJitterTimeSystem =# function Base.getproperty(sys::FixedIntervalJitterTimeSystem, s::Symbol) if hasproperty(sys, s) return getfield(sys, s) end # if return getproperty(sys.jtsys, s) end # function #= Override set function for structs of type FixedIntervalJitterTimeSystem =# function Base.setproperty!(sys::FixedIntervalJitterTimeSystem, s::Symbol, x) if hasproperty(sys, s) return setfield!(sys, s, x) end # if return setproperty!(sys.jtsys, s, x) end # function
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
4283
""" calcC2D(N::ReducedSystem, h)` Calculate the discrete-time (ZOH) version of the continuous system ``` xdot = a*x + w ``` where the incremental variance of `w` is `r`. The cost of the system is ``` J = integral_0^h (x'*q*x) dt. ``` The resulting discrete-time system is ``` x(n+1) = Phi*x(n) + e(n) ``` where the variance of `e(n)` is `R`, and the cost is ``` J = x'*Q*x + Qconst. ``` """ function calcC2D(N::ReducedSystem, dt::Real) copy!(N.bufAd, N.Id) copy!(N.bufRd, N.Zl) copy!(N.bufQd, N.Zl) (N.bufAd[N.indices, N.indices], N.bufRd[N.indices, N.indices], N.bufQd[N.indices, N.indices], Qconst) = _calcC2D(N, dt) return (N.bufAd, N.bufRd, N.bufQd, Qconst) end function _calcC2D(N::ReducedSystem, dt::Real) if N.Mnorm * dt > 1.0 || N.maxAbsEig * dt > 4.0 (Phi, R, Q, Qconst) = _calcC2D(N, dt/2) Qconst = 2*Qconst + tr(Q * R) Q .+= Phi' * Q * Phi R .+= Phi * R * Phi' Phi .= Phi*Phi return Phi, R, Q, Qconst end phi12 = jitterExp(N.M112, dt) phi22 = jitterExp(N.M122, dt) phi13 = jitterExp(N.M213, dt) phi23 = jitterExp(N.M223, dt) # Q = (Q+Q')*0.5 Q = phi22' * phi12 lmul!(0.5, Q) Q .+= Q' # R = (R+R')*0.5 R = phi22 * phi23 #phi33'*phi23 lmul!(0.5, R) R .+= R' Qconst = tr(phi22 * phi13 * N.Qc) return (phi22, R, Q, Qconst) end # Theta from: Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation function jitterExp(M::Vector{Matrix{T}}, dt::Real) where {T} return jitterTaylor(M, dt, 18) end function jitterTaylor(M::Vector{Matrix{T}}, dt::Real, m::Int64) where {T} h = one(dt) p = zero(M[1]) for k in 1:m+1 #p .+= h .* M[k] axpy!(h, M[k], p) h *= dt end return p end ###################### ### TRACE OVERLOAD ### ###################### """ tr(A::Matrix{T}) Return the trace of an arbitrary matrix `A`. The trace sums all the elements on the diagonal of `A`. """ function tr(A::Matrix{T}) where {T} return sum((A)[idx, idx] for idx in 1:size(A, 1)) end # function ###################### ## EIGVALS OVERLOAD ## ###################### """ Temporary eigenvalue check for matrix types who don't support LinearAlgebra.eigvals """ function eigvalsCheck(A::Matrix{T}) where {T} if isdefined(first(A), :value) return eigvals(getproperty.(A, :value)) else return eigvals(A) end end # function ###################### #### FREXP CHECK ##### ###################### """ Temporary function for matrix types who don't support frexp """ function frexpCheck(A) if isdefined(first(A), :value) return frexp(getproperty.(A, :value)) else return frexp(A) end end # function ###################### # DISCRETE LYAPUNOV ## ###################### """ dlyap(A::Matrix{T}, Q) Compute the solution `X` to the discrete Lyapunov equation ``` AXA' - X + Q = 0. ``` """ function dlyap(A::Matrix{T}, Q) where {T} lhs = kron(A, conj(A)) lhs = I - lhs x = lhs\reshape(Q, prod(size(Q)), 1) return reshape(x, size(Q)) end ###################### ### AUX MATRIX MUL ### ###################### """ _mat_mul!(A, B, C, Z) Compute the solution to A*B*C and store it in B """ function _mat_mul!(A::Matrix{T}, B::Matrix{T}, C::Matrix{T}, Z::Matrix{T}) where {T} mul!(Z, B, C) mul!(B, A, Z) end function _mat_mul!(A::Adjoint{T, Matrix{T}}, B::Matrix{T}, C::Matrix{T}, Z::Matrix{T}) where {T} mul!(Z, B, C) mul!(B, A, Z) end function _mat_mul!(A::Matrix{T}, B::Matrix{T}, C::Adjoint{T, Matrix{T}}, Z::Matrix{T}) where {T} mul!(Z, B, C) mul!(B, A, Z) end """ _mat_mul_add!(A, B, C, D, Z) Compute the solution to A*B*C + D and store it in B """ function _mat_mul_add!(A::Matrix{T}, B::Matrix{T}, C::Matrix{T}, D::Matrix{T}, Z::Matrix{T}) where {T} _mat_mul!(A, B, C, Z) axpy!(1, D, B) end function _mat_mul_add!(A::Adjoint{T, Matrix{T}}, B::Matrix{T}, C::Matrix{T}, D::Matrix{T}, Z::Matrix{T}) where {T} _mat_mul!(A, B, C, Z) axpy!(1, D, B) end function _mat_mul_add!(A::Matrix{T}, B::Matrix{T}, C::Adjoint{T, Matrix{T}}, D::Matrix{T}, Z::Matrix{T}) where {T} _mat_mul!(A, B, C, Z) axpy!(1, D, B) end
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
854
module ContinuousTests using Test using JitterTime @testset "Continuous Tests" begin A1 = [-1 1; 0 -1] B1 = [0; 1] C1 = [1. 0] D1 = 0 A2 = 0. B2 = 1 C2 = -1 D2 = 0 R1 = B1*B1' R2 = 1. Q1 = C1'*C1 Q2 = 1. Q2 = zeros(Float64, 2, 2) plant = ContinuousSystem(1, A1, B1, C1, D1, 2, R1, [1. 0 0; 0 1 0; 0 0 1]) controller = ContinuousSystem(2, A2, B2, C2, D2, 1, R2, Q2) N = JitterTimeSystem([plant, controller]) calcDynamics!(N) passTime!(N, 1000) @test isapprox(N.dJdt, 7.47) @test isapprox(N.J, 7470.) @test all(isapprox.(N.Rc, [0 0 0; 0 1 0; 0 0 1])) @test all(isapprox.(N.Ac, [-1 1 0; 0 -1 -1; 1 0 0])) @test all(isapprox.(N.Qc, [1 0 0; 0 1 0; 0 0 1])) @test all(isapprox.(N.P, [1.5 1.5 -0.5; 1.5 2.5 -2.0; -0.5 -2 3.5])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
955
module DiscreteTests using Test using JitterTime @testset "Discrete Tests" begin A1 = [-1 1; 0 -1] B1 = [0; 1] C1 = [1 0] D1 = 0 A2 = 0 B2 = 1 C2 = -1 D2 = 0 R1 = [0 0 0; 0 1 0; 0 0 1] R2 = [0 0; 0 0.1] Q1 = [1 0 0; 0 2 3; 0 3 0] # (n+p)=⍴Qd Q2 = [0 0; 0 1] plant = DiscreteSystem(1,A1,B1,C1,D1,2,R1,Q1) controller = DiscreteSystem(2,A2,B2,C2,D2,1,R2,Q2) N = JitterTimeSystem([plant, controller]) calcDynamics!(N) execSys!(N,1) execSys!(N,2) execSys!(N,2) execSys!(N,1) execSys!(N,2) @test isapprox(N.dJdt, 0.0) @test isapprox(N.J, 0.0) @test all(isapprox.(N.Rc, zeros(eltype(N.Rc),size(N.Rc)))) @test all(isapprox.(N.Ac, zeros(eltype(N.Ac),size(N.Ac)))) @test all(isapprox.(N.Qc, [1. 0 0 0; 0 2 3 0; 0 3 0 0; 0 0 0 1])) @test all(isapprox.(N.P, [1 -1 0 0 0; -1 3.1 0 0 1; 0 0 1 1 0; 0 0 1 1 0; 0 1 0 0 1.1])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
4544
module Example1Tests using Test using JitterTime @testset "Example 1" begin h = 1 A1 = 0 B1 = 1 C1 = 1 D1 = 0 R1 = 1 Q1 = [1 0; 0 0] #Punish only the state K = -(3+sqrt(3))/(2+sqrt(3))/h pvec = [0, .100000000000000, 0.200000000000000, 0.300000000000000, 0.400000000000000, 0.500000000000000, 0.600000000000000, 0.700000000000000, 0.800000000000000, 0.900000000000000, 1.000000000000000, 1.000000000000000, 1.100000000000000, 1.200000000000000, 1.300000000000000, 1.400000000000000, 1.500000000000000, 1.600000000000000, 1.700000000000000, 1.800000000000000, 1.900000000000001, 2.000000000000000, 2.000000000000000, 2.100000000000001, 2.200000000000001, 2.300000000000001, 2.400000000000001, 2.500000000000001, 2.600000000000001, 2.700000000000001, 2.800000000000001, 2.900000000000001, 3.000000000000001, 3.000000000000001, 2.387461339178930, 1.871384387633062, 1.451769145362399, 1.128615612366940, 0.901923788646685, 0.771693674201634, 0.737925269031787, 0.800618573137145, 0.959773586517707, 1.215390309173473, 1.215390309173473, 1.026719448082348, 0.877128129211021, 0.766616352559490, 0.695184118127758, 0.662831425915822, 0.669558275923684, 0.715364668151343, 0.800250602598800, 0.924216079266054, 1.087261098153105, 1.087261098153105, 0.929022575872818, 0.805743741577959, 0.717424595268528, 0.664065136944525, 0.645665366605950, 0.662225284252803, 0.713744889885084, 0.800224183502793, 0.921663165105930, 1.078061834694495] Jvec = [0, 0.005000000000000, 0.020000000000000, 0.045000000000000, 0.080000000000000, 0.125000000000000, 0.180000000000000, 0.245000000000000, 0.320000000000000, 0.405000000000000, 0.500000000000000, 0.500000000000000, 0.605000000000000, 0.720000000000000, 0.845000000000000, 0.980000000000000, 1.125000000000000, 1.280000000000000, 1.445000000000000, 1.620000000000000, 1.805000000000000, 2.000000000000000, 2.000000000000000, 2.205000000000000, 2.420000000000000, 2.645000000000000, 2.880000000000000, 3.125000000000000, 3.380000000000000, 3.645000000000000, 3.920000000000000, 4.205000000000000, 4.500000000000000, 4.500000000000000, 4.768569219381654, 4.980707658144960, 5.146061487217439, 5.274276877526613, 5.375000000000001, 5.457877025565123, 5.532554125149501, 5.608677469680654, 5.695893230086103, 5.803847577293369, 5.803847577293369, 5.915627402304328, 6.010494118317165, 6.092355679553859, 6.165120040236389, 6.232695154586737, 6.298988976826880, 6.367909461178800, 6.443364561864476, 6.529262233105887, 6.629510429125013, 6.629510429125013, 6.730033282093097, 6.816480267232424, 6.892347353341536, 6.961130509218977, 7.026325703663288, 7.091428905473014, 7.159936083446697, 7.235343206382879, 7.321146243080103, 7.420841162336913] pvecjl = Float64[] Jvecjl = Float64[] plant = ContinuousSystem(10,A1,B1,C1,D1,30,R1,Q1) sampler = DiscreteSystem(20,1,10) controller = DiscreteSystem(30,K,20) N = JitterTimeSystem([plant, sampler, controller]) calcDynamics!(N) Nsteps = 6 dt = h/10.0 for k = 1:Nsteps for j = 1:10 push!(pvecjl, N.P[1, 1]) push!(Jvecjl, N.J) passTime!(N,dt) end push!(pvecjl, N.P[1, 1]) push!(Jvecjl, N.J) if k >= 3 execSys!(N,20) execSys!(N,30) end end @test isapprox(N.dJdt, 0.996949192568094) @test isapprox(N.J, 7.420841162336913) #@test all(isapprox.(N.Rc, [1. 0 0; 0 0 0; 0 0 0])) #@test all(isapprox.(N.Ac, [0. 0 1; 0 0 0; 0 0 0])) #@test all(isapprox.(N.Qc, [1. 0 0; 0 0 0; 0 0 0])) @test all(isapprox.(N.P, [1.078061834694495 1.078061834694495 -1.366927632691700; 1.078061834694495 1.078061834694495 -1.366927632691700; -1.366927632691700 -1.366927632691700 1.733194787983227])) @test all(isapprox.(pvecjl, pvec)) @test all(isapprox.(Jvecjl, Jvec)) reset!(N) for k = 1:Nsteps for j = 1:10 passTime!(N,dt) end if k >= 3 execSys!(N,20) execSys!(N,30) end end @test isapprox(N.dJdt, 0.996949192568094) @test isapprox(N.J, 7.420841162336913) #@test all(isapprox.(N.Rc, [1. 0 0; 0 0 0; 0 0 0])) #@test all(isapprox.(N.Ac, [0. 0 1; 0 0 0; 0 0 0])) #@test all(isapprox.(N.Qc, [1. 0 0; 0 0 0; 0 0 0])) @test all(isapprox.(N.P, [1.078061834694495 1.078061834694495 -1.366927632691700; 1.078061834694495 1.078061834694495 -1.366927632691700; -1.366927632691700 -1.366927632691700 1.733194787983227])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
4123
module Example2Tests using Test using JitterTime @testset "Example 2" begin #Instead of an aperiodic sampler, the extra sampler will be executed every 0.5 timeunit A1 = [0 1; 1 0] B1 = [0; 1] C1 = [1 0; 0 1] D1 = [0; 0] Qc = [1 0 0; 0 .1 0; 0 0 .1] R1c = B1*B1' plant = ContinuousSystem(1,A1,B1,C1,D1,5,R1c,Qc) S1 = [1 0] R21 = 0.1 sampler1 = DiscreteSystem(2,S1,1,R21) R22 = 0.01 S2 = [0 1] sampler2 = DiscreteSystem(3,S2,1,R22) AO1 = [.5309 .079 0; -.8673 .8597 0; 0 0 0]; BO1 = [.0059 .4750 0; .1392 1.0065 0; 1 0 0]; CO1 = [.5309 .079 0; -.8673 .8597 0; 0 0 0]; DO1 = [.0059 .4750 0; .1392 1.0065 0; 1 0 0]; obs1 = DiscreteSystem(4,AO1,BO1,CO1,DO1,[5, 2, 3]) AO2 = [ 1 -.3906 0; 0 .0163 0; 0 0 1]; BO2 = [0 0 .3906; 0 0 .9837; 0 0 0]; CO2 = [ 1 -.3906 0; 0 .0163 0; 0 0 1]; DO2 = [0 0 .3906; 0 0 .9837; 0 0 0]; obs2 = DiscreteSystem(4,AO2,BO2,CO2,DO2,[5, 2, 3]) obs = VersionedSystem([obs1,obs2]) L = [3.633 2.7434 0] feedback = DiscreteSystem(5,-L,4) N = JitterTimeSystem([plant, sampler1, sampler2, obs, feedback]) calcDynamics!(N) dt = 0.05 for t = 1:240 for k = 1:10 passTime!(N,dt/10) end if 0 == mod(t,10) execSys!(N,3) execSys!(N,4,2) end if 0 == mod(t,3) execSys!(N,2) execSys!(N,4,1) execSys!(N,5) end end @test isapprox(N.dJdt, 0.860680772466343) @test isapprox(N.J, 12.574852494566098) R = zeros(3,3) R[2,2] = 1 @test all(isapprox.(N.Rc, R)) A = zeros(3,3) A[1,2]=A[2,1]=A[2,3] = 1 @test all(isapprox.(N.Ac, A)) Q = zeros(3,3) Q[1,1] = 1 Q[2,2] = Q[3,3] = 0.1 @test all(isapprox.(N.Qc, Q)) P = [ 0.334482211088805 0.013682570982143 0.334482211088805 0.013682570982143 0.346026331881820 -0.067470502293183 -0.736229907436902 0.346026331881820 -0.067470502293183 -0.736229907436902 -1.072015087735536; 0.013682570982143 0.736398452636592 0.013682570982143 0.736398452636592 0.089642717236325 0.618518501967293 0.144408255208566 0.089642717236325 0.618518501967293 0.144408255208566 -2.022515650016641; 0.334482211088805 0.013682570982143 0.434482211088805 0.013682570982143 0.393526331881820 0.033179497706817 -0.736229907436902 0.393526331881820 0.033179497706817 -0.736229907436902 -1.520705797735536; 0.013682570982143 0.736398452636592 0.013682570982143 0.746398452636592 0.092493535636325 0.623587697067293 0.144408255208566 0.092493535636325 0.623587697067293 0.144408255208566 -2.046779503101181; 0.346026331881821 0.089642717236325 0.393526331881821 0.092493535636325 0.404746382499118 0.031761867747475 -0.643351469563386 0.404746382499118 0.031761867747475 -0.643351469563386 -1.557579115597717; -0.067470502293183 0.618518501967293 0.033179497706817 0.623587697067293 0.031761867747475 0.697213051450218 0.545336264308738 0.031761867747475 0.697213051450218 0.545336264308738 -2.028125150875103; -0.736229907436903 0.144408255208566 -0.736229907436903 0.144408255208566 -0.643351469563386 0.545336264308737 4.529499627421395 -0.643351469563386 0.545336264308737 4.529499627421395 0.841220381419191; 0.346026331881821 0.089642717236325 0.393526331881821 0.092493535636325 0.404746382499118 0.031761867747475 -0.643351469563386 0.404746382499118 0.031761867747475 -0.643351469563386 -1.557579115597717; -0.067470502293183 0.618518501967294 0.033179497706817 0.623587697067293 0.031761867747475 0.697213051450218 0.545336264308738 0.031761867747475 0.697213051450218 0.545336264308738 -2.028125150875104; -0.736229907436903 0.144408255208566 -0.736229907436903 0.144408255208566 -0.643351469563386 0.545336264308737 4.529499627421395 -0.643351469563386 0.545336264308737 4.529499627421395 0.841220381419191; -1.072015087735536 -2.022515650016641 -1.520705797735536 -2.046779503101181 -1.557579115597717 -2.028125150875103 0.841220381419190 -1.557579115597717 -2.028125150875103 0.841220381419190 11.222643465877262] @test all(isapprox.(N.P, P)) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
252
module RunTests println("Running tests...") include("continuous_test.jl") include("discrete_test.jl") include("example_1_test.jl") include("example_2_test.jl") include("test_id.jl") include("test_version.jl") include("test_periodic.jl") end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
4633
module TestID using Test using JitterTime function aux_cont(ids::Vector) A1 = [-1 1; 0 -1] B1 = [0; 1] C1 = [1. 0] D1 = 0 A2 = 0. B2 = 1 C2 = -1 D2 = 0 R1 = B1*B1' R2 = 1. Q1 = C1'*C1 Q2 = 1. Q2 = zeros(2, 2) plant = ContinuousSystem(ids[1], A1, B1, C1, D1, ids[2], R1, [1. 0 0; 0 1 0; 0 0 1]) controller = ContinuousSystem(ids[2], A2, B2, C2, D2, ids[1], R2, Q2) N = JitterTimeSystem([plant, controller]) calcDynamics!(N) passTime!(N, 1000.) M = JitterTimeSystem([controller, plant]) calcDynamics!(M) passTime!(M, 1000.) Nindices = Vector{UnitRange}(undef, length(N.systems)) Mindices = Vector{UnitRange}(undef, length(M.systems)) Ntotstates = 0 Mtotstates = 0 for i in 1:length(N.systems) # TODO: Add "stateindex"? Nn = N.systems[i].n Mn = M.systems[i].n Nindices[i] = UnitRange(Ntotstates+1, Ntotstates+Nn) Mindices[i] = UnitRange(Mtotstates+1, Mtotstates+Mn) Ntotstates += Nn Mtotstates += Mn end return N, Nindices, M, Mindices end # function function aux_disc(ids::Vector) A1 = [-1 1; 0 -1] B1 = [0; 1] C1 = [1 0] D1 = 0 A2 = 0 B2 = 1 C2 = -1 D2 = 0 R1 = [0 0 0; 0 1 0; 0 0 1] R2 = [0 0; 0 0.1] Q1 = [1 0 0; 0 2 3; 0 3 0] # (n+p)=⍴Qd Q2 = [0 0; 0 1] plant = DiscreteSystem(ids[1],A1,B1,C1,D1,ids[2],R1,Q1) controller = DiscreteSystem(ids[2],A2,B2,C2,D2,ids[1],R2,Q2) N = JitterTimeSystem([plant, controller]) calcDynamics!(N) execSys!(N,ids[1]) execSys!(N,ids[2]) execSys!(N,ids[2]) execSys!(N,ids[1]) execSys!(N,ids[2]) M = JitterTimeSystem([controller, plant]) calcDynamics!(M) execSys!(M,ids[1]) execSys!(M,ids[2]) execSys!(M,ids[2]) execSys!(M,ids[1]) execSys!(M,ids[2]) Nindices = Vector{UnitRange}(undef, length(N.systems)) Mindices = Vector{UnitRange}(undef, length(M.systems)) Ntotstates = 0 Mtotstates = 0 for i in 1:length(N.systems) # TODO: Add "stateindex"? Nn = N.systems[i].n Mn = M.systems[i].n Nindices[i] = UnitRange(Ntotstates+1, Ntotstates+Nn) Mindices[i] = UnitRange(Mtotstates+1, Mtotstates+Mn) Ntotstates += Nn Mtotstates += Mn end return N, Nindices, M, Mindices end # function @testset "ID test - Pure Continuous (Simple IDs)" begin N, Nindices, M, Mindices = aux_cont([1, 2]) @test isapprox(N.dJdt, M.dJdt) @test isapprox(N.J, M.J) @test all(isapprox.(N.Ac[Nindices[1], Nindices[1]], M.Ac[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Rc[Nindices[1], Nindices[1]], M.Rc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Qc[Nindices[1], Nindices[1]], M.Qc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.P[Nindices[1], Nindices[1]], M.P[Mindices[2], Mindices[2]])) end # testset @testset "ID test - Pure Continuous (Complex IDs)" begin N, Nindices, M, Mindices = aux_cont([49_463, 12_289]) @test isapprox(N.dJdt, M.dJdt) @test isapprox(N.J, M.J) @test all(isapprox.(N.Ac[Nindices[1], Nindices[1]], M.Ac[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Rc[Nindices[1], Nindices[1]], M.Rc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Qc[Nindices[1], Nindices[1]], M.Qc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.P[Nindices[1], Nindices[1]], M.P[Mindices[2], Mindices[2]])) end # testset @testset "ID test - Pure Discrete (Simple IDs)" begin N, Nindices, M, Mindices = aux_cont([1, 2]) @test isapprox(N.dJdt, M.dJdt) @test isapprox(N.J, M.J) @test all(isapprox.(N.Ac[Nindices[1], Nindices[1]], M.Ac[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Rc[Nindices[1], Nindices[1]], M.Rc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Qc[Nindices[1], Nindices[1]], M.Qc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.P[Nindices[1], Nindices[1]], M.P[Mindices[2], Mindices[2]])) end # testset @testset "ID test - Pure Discrete (Complex IDs)" begin N, Nindices, M, Mindices = aux_cont([26_561, 64_591]) @test isapprox(N.dJdt, M.dJdt) @test isapprox(N.J, M.J) @test all(isapprox.(N.Ac[Nindices[1], Nindices[1]], M.Ac[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Rc[Nindices[1], Nindices[1]], M.Rc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.Qc[Nindices[1], Nindices[1]], M.Qc[Mindices[2], Mindices[2]])) @test all(isapprox.(N.P[Nindices[1], Nindices[1]], M.P[Mindices[2], Mindices[2]])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
2284
module TestPeriodic using JitterTime using Test @testset "Periodic Tests" begin p_id = 10 s_id = 20 c_id = 30 h = 1 plant = ContinuousSystem(p_id, 0, 1, 1, 0, c_id, 1, [1 0; 0 0]) sampler = DiscreteSystem(s_id, 1, p_id) ctrler = DiscreteSystem(c_id, -(3+sqrt(3))/(2+sqrt(3))/h, s_id) N = JitterTimeSystem([plant, sampler, ctrler]) Np = PeriodicJitterTimeSystem(N) @test_throws ErrorException PeriodicJitterTimeSystem(Np) calcDynamics!(Np) beginPeriodicAnalysis!(Np) for _ in 1:10 passTime!(Np, 0.1) end # for execSys!(Np, s_id) execSys!(Np, c_id) endPeriodicAnalysis!(Np) @test isapprox(Np.J, 0.5) @test isapprox(Np.dJdt, 0.95) @test all(isapprox.(Np.Ac, [0 1; 0 0])) @test all(isapprox.(Np.Rc, [1 0; 0 0])) @test all(isapprox.(Np.Pper, [1.077350269189626 1.077350269189626 -1.366025403784438; 1.077350269189626 1.077350269189626 -1.366025403784438; -1.366025403784438 -1.366025403784438 1.732050807568876])) @test all(isapprox.(Np.mper, [0; 0; 0])) @test all(isapprox.(Np.Atot, [1.0 0 1.0; 1.0 0 1.0; -1.267949192431123 0 -1.267949192431122])) @test all(isapprox.(Np.Rtot, [1.0 1.0 -1.267949192431122; 1.0 1.0 -1.267949192431122; -1.267949192431122 -1.267949192431122 1.607695154586736])) @test all(isapprox.(Np.dtot, [0; 0; 0])) reset!(Np) beginPeriodicAnalysis!(Np) for _ in 1:10 passTime!(Np, 0.1) end # for execSys!(Np, s_id) execSys!(Np, c_id) endPeriodicAnalysis!(Np) @test isapprox(Np.J, 0.5) @test isapprox(Np.dJdt, 0.95) @test all(isapprox.(Np.Ac, [0 1; 0 0])) @test all(isapprox.(Np.Rc, [1 0; 0 0])) @test all(isapprox.(Np.Pper, [1.077350269189626 1.077350269189626 -1.366025403784438; 1.077350269189626 1.077350269189626 -1.366025403784438; -1.366025403784438 -1.366025403784438 1.732050807568876])) @test all(isapprox.(Np.mper, [0; 0; 0])) @test all(isapprox.(Np.Atot, [1.0 0 1.0; 1.0 0 1.0; -1.267949192431123 0 -1.267949192431122])) @test all(isapprox.(Np.Rtot, [1.0 1.0 -1.267949192431122; 1.0 1.0 -1.267949192431122; -1.267949192431122 -1.267949192431122 1.607695154586736])) @test all(isapprox.(Np.dtot, [0; 0; 0])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
code
1278
module TestVersion using JitterTime using Test @testset "Test Versions" begin h = 1.0 A1 = 0 B1 = 1 C1 = 1 D1 = 0 R1 = 1 Q1 = [1 0; 0 1] D3 = -(3+sqrt(3))/(2+sqrt(3))/h plant = ContinuousSystem(10,A1,B1,C1,D1,30,R1,Q1) sampler = DiscreteSystem(20,1,10) sampler2 = DiscreteSystem(20,0,10) samplerver = VersionedSystem([sampler, sampler2]) controller = DiscreteSystem(30,D3,20) N = JitterTimeSystem([plant, samplerver, controller]) calcDynamics!(N) dt = h/10.0 for k = 1:6 for j = 1:10 passTime!(N,dt) end if k == 3 execSys!(N,20,1) execSys!(N,30) elseif k > 3 execSys!(N,20,2) execSys!(N,30) end end @test all(isapprox.(N.J, 15.057713659400530)) @test all(isapprox.(N.dJdt, 3.165390309173476)) @test all(isapprox.(N.Ac, [0 1; 0 0])) @test all(isapprox.(N.P, [3.215390309173475 0 0; 0 0 0; 0 0 0])) @test all(isapprox.(N.Qc, [1 0; 0 1])) @test all(isapprox.(N.Rc, [1 0; 0 0])) samp_idx = N.idtoindex[20] @test all(isapprox.(N.Ad[samp_idx][1], [1 0 0; 1 0 0; 0 0 1])) @test all(isapprox.(N.Ad[samp_idx][2], [1 0 0; 0 0 0; 0 0 1])) end # testset end # module
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.1.1
cd42819cf623bf7b4a3a251c85f27ed74bd1e1d8
docs
300
# JitterTime.jl [![Build Status](https://github.com/X-N-C/JitterTime.jl/workflows/CI/badge.svg)](https://github.com/X-N-C/JitterTime.jl/actions) [![Coverage](https://codecov.io/gh/X-N-C/JitterTime.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/X-N-C/JitterTime.jl) __TO BE WRITTEN SHORTLY__
JitterTime
https://github.com/X-N-C/JitterTime.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
1960
using Dagger, DaggerWebDash, TimespanLogging function start_viz() ctx = Dagger.Sch.eager_context() ml = TimespanLogging.MultiEventLog() ## Add some logging events of interest ml[:core] = TimespanLogging.Events.CoreMetrics() ml[:id] = TimespanLogging.Events.IDMetrics() ml[:timeline] = TimespanLogging.Events.TimelineMetrics() # ... # (Optional) Enable profile flamegraph generation with ProfileSVG ml[:profile] = DaggerWebDash.ProfileMetrics() ctx.profile = true # Create a LogWindow; necessary for real-time event updates lw = TimespanLogging.Events.LogWindow(20*10^9, :core) ml.aggregators[:logwindow] = lw # Create the D3Renderer server on port 8080 d3r = DaggerWebDash.D3Renderer(8080) ## Add some plots! Rendered top-down in order # Show an overview of all generated events as a Gantt chart push!(d3r, DaggerWebDash.GanttPlot(:core, :id, :esat, :psat; title="Overview")) # Show various numerical events as line plots over time push!(d3r, DaggerWebDash.LinePlot(:core, :wsat, "Worker Saturation", "Running Tasks")) push!(d3r, DaggerWebDash.LinePlot(:core, :loadavg, "CPU Load Average", "Average Running Threads")) push!(d3r, DaggerWebDash.LinePlot(:core, :bytes, "Allocated Bytes", "Bytes")) push!(d3r, DaggerWebDash.LinePlot(:core, :mem, "Available Memory", "% Free")) # Show a graph rendering of compute tasks and data movement between them # Note: Profile events are ignored if absent from the log push!(d3r, DaggerWebDash.GraphPlot(:core, :id, :timeline, :profile, "DAG")) # TODO: Not yet functional #push!(d3r, DaggerWebDash.ProfileViewer(:core, :profile, "Profile Viewer")) # Add the D3Renderer as a consumer of special events generated by LogWindow push!(lw.creation_handlers, d3r) push!(lw.deletion_handlers, d3r) # D3Renderer is also an aggregator ml.aggregators[:d3r] = d3r ctx.log_sink = ml end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
7242
# This is the internal Job structure # TODO save the file and line number for the job definition so we can give clear debugging information abstract type AbstractJob end mutable struct ScheduledJob{T<:AbstractTarget} job_id::UInt64 target::T data function ScheduledJob(job_id, target, data) returned_value_type = typeof(data) expected_type = return_type(target) if !(returned_value_type <: expected_type) throw(ArgumentError("Type of data must be a subtype of the target return type")) end return new{typeof(target)}(job_id, target,data) end end # This is what an executed Job will return return_type(sj::ScheduledJob) = return_type(sj.target) Base.convert(::Type{ScheduledJob}, ::Nothing) = ScheduledJob(zero(UInt64), NoTarget(), nothing) # This is the interface for a Job. They dispatch on job type get_dependencies(job) = nothing get_target(job) = nothing run_process(job, dependencies, target) = nothing # Similar interface for ScheduledJob get_dependencies(r::ScheduledJob) = r.dependencies get_target(r::ScheduledJob) = r.target get_result(t::Dagger.EagerThunk) = get_result(fetch(t)) get_result(j::ScheduledJob{T}) where {T} = j.data::return_type(T) # This are the accepted versions of containers of jobs that the user can define for depenencies const AcceptableDependencyContainers = Union{ Vector{<:AbstractJob}, AbstractDict{Symbol, <:AbstractJob}, } """ @Job(job_description) Constructs a new job based on a description. ## Description Format ```juila MyNewJob = @Job begin # Paramters are the input values for the job parameters = (param1::String, param2::Int, param) # Dependencies list jobs that should be inputs to this job (Optional) # They can be created programmatically using parameters, and must return an # <:AbstractJob, AbstractArray{<:AbstractJob}, or AbstractDict{Symbol, <:AbstractJob} dependencies = [[SomeJob(i) for i in 1:param2]; AnotherJob("input")] # Target is an output location to cache the result. If the target exists, the job will # be skipped and the cached result will be returned (Optional). target = FileTarget(joinpath(snf_path, "raw_tables", "\$month.csv")) # The process function will be executed when the job is called. # All parameters, `dependencies`, and `target` are defined in this scope. process = begin dep1_data = dependencies[1] x = do_logic(dep1_data, param1) write(target, x) return x end end ``` """ macro Job(job_description) # This returns a Dict of job parameters and their values job_features = extract_job_features(job_description) job_name = job_features[:name] if job_name == Expr(:block, :nothing) return :(throw(ArgumentError("Job definitions require a `name` field but none was provided."))) end # Cleaning the parameters passed in raw_parameters = job_features[:parameters] # This is the list of parameters including type annotations if applicable parameter_list = raw_parameters isa Symbol ? (raw_parameters,) : raw_parameters.args # This is just the names parameter_names = [arg isa Symbol ? arg : arg.args[1] for arg in parameter_list] # get_dependencies need to return an `AcceptableDependencyContainers` and target needs to return an <:AbstractTarget # these functions append some protections and raise errors if the function returns an upexpected type dependency_func = add_get_dep_return_type_protection(job_features[:dependencies]) target_func = add_get_target_return_type_protection(job_features[:target]) dependency_ex = unpack_input_function(:get_dependencies, job_name, parameter_names, dependency_func) target_ex = unpack_input_function(:get_target, job_name, parameter_names, target_func) process_ex = unpack_input_function(:run_process, job_name, parameter_names, job_features[:process], (:dependencies, :target)) struct_def = :(struct $job_name <: Waluigi.AbstractJob end) push!(struct_def.args[3].args, parameter_list...) # TODO: check if there is already a struct defined that is a complete match (name, fields, types) # if there is, then just emit the functions so since the user is probably just trying to # edit the implementation of a funciton return quote $(esc(struct_def)) $(esc(dependency_ex)) $(esc(target_ex)) $(esc(process_ex)) end end function extract_job_features(job_description) job_features = Dict{Symbol,Any}() for element in job_description.args if element isa LineNumberNode continue end feature_name = element.args[1] if !(feature_name in (:name, :dependencies, :target, :process, :parameters)) error("Got feature name $feature_name. Expected one of :name, :dependencies, :target, :process, :parameters.") end job_features[feature_name] = element.args[2] end for feature in (:name, :dependencies, :target, :process) if !(feature in keys(job_features)) job_features[feature] = Expr(:block, :nothing) end end if !(:parameters in keys(job_features)) || job_features[:parameters] == :nothing job_features[:parameters] = :(()) end return job_features end function unpack_input_function(function_name, job_name, parameter_names, function_body, additional_inputs=()) return quote function Waluigi.$function_name(job::$job_name, $(additional_inputs...)) let $((:($name = job.$name) for name in parameter_names)...) $function_body end end end end function add_get_dep_return_type_protection(func_block) return quote t = begin $func_block end corrected_deps = if t isa Nothing Waluigi.AbstractJob[] elseif t isa Waluigi.AbstractJob typeof(t)[t] elseif t isa Waluigi.AcceptableDependencyContainers t elseif t isa Type && t <: Waluigi.AbstractJob throw(ArgumentError("""The dependencies definition in $(typeof(job)) returned a AbstractJob type,\ but dependencies must be an instance of a job. Try calling the job like `$(t)(args...)`""")) else throw(ArgumentError("""The dependencies definition in $(typeof(job)) returned a $(t) \ which is not one of the accepted return types. It must return one of the following: \ <: AbstractJob, AbstractArray{<:AbstractJob}, Dict{Symbol, <:AbstractJob}""")) end return corrected_deps end end function add_get_target_return_type_protection(func_block) return quote t = begin $func_block end corrected_target = if t isa Nothing # TODO need to find a way to parameterize when no target is specified Waluigi.NoTarget{Any}() elseif t isa Waluigi.AbstractTarget t else throw(ArgumentError("""The target definition definition in $(typeof(job)) returned a $(typeof(t)), \ but target must return `nothing` or `<:AbstractTarget`""")) end return corrected_target end end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
7079
""" run_pipeline(head_job) Given an instantiated Job, satisfied all dependencies recursively and return the result of the final job. """ function run_pipeline(head_job, ignore_target=false; visualizer=false) if visualizer @info "Creating visualizer at http://localhost:8080/" start_viz() end # Jobs is a dict id => AbstractJob # dep_rel is a set{Tuple{job id, dep id, satisfied} # job status is a dict id => bool, true means ready to run @info "Initiating the pipeline" (jobs, dependency_relations, initial_ready_jobs) = get_dependency_details(head_job) @info "Collected $(length(jobs)) jobs to complete. " results = Dict{UInt64, Union{Nothing, Dagger.EagerThunk}}( id => nothing for id in initial_ready_jobs ) job_id = first(initial_ready_jobs) completed_all_jobs = false while !completed_all_jobs job_deps = [ results[dep_pair[2]] for dep_pair in dependency_relations if dep_pair[1] == job_id ] @debug "Spawning $(jobs[job_id])" results[job_id] = Dagger.@spawn (jobs[job_id])(job_id, ignore_target, job_deps...) # Find upstream jobs and check if completing this job makes them ready for execution upstream_jobs = dependency_relations |> # get jobs that depend on the completed job ((dr) -> Iterators.filter((p) -> p[2] == job_id, dr)) .|> # Set "satisfied" field to true ((p) -> (delete!(dependency_relations, p); p)) .|> ((p) -> (push!(dependency_relations, (p[1], p[2], true)); p[1])) for upstream in upstream_jobs is_unsatsifed_match_flag = Iterators.map( (rel) -> rel[1] == upstream && !rel[3], dependency_relations ) upstream_ready = !any(is_unsatsifed_match_flag) if upstream_ready results[upstream] = nothing end end job_id = findfirst(p -> p[2] === nothing, (p for p in pairs(results))) if job_id === nothing completed_all_jobs = true end end results[hash(head_job)] end function get_dependency_details(head_job) # The look up for the actual job objects jobs = Dict{UInt64, AbstractJob}() # Tracking if a job is ready to run ready_jobs = Set{UInt64}() dep_relations = Dict{Tuple{UInt64,UInt64,Bool}, Int}() traverse_dependencies!(head_job, jobs, dep_relations, ready_jobs) dep_relations = Set(keys(dep_relations)) return (jobs = jobs, dependency_relations = dep_relations, ready_jobs = ready_jobs) end function traverse_dependencies!(job, jobs, dep_relations, ready_jobs, depth = 1) @debug "Maximum debug depth is 100. Currently at depth $depth" job_id = hash(job) if depth > 100 error("Reached maximum depth. It's possible that there is a cycle in the dependencies but the parameters are different each time.") end # We need to get the dependencies as a vector (get values of dicts) dep_container = get_dependencies(job) dep_list = get_dependencies_list(dep_container) # Jobs with no dependencies are ready to run if isempty(dep_list) push!(ready_jobs, job_id) end jobs[job_id] = job # Go get grandchild dependency information for dep in dep_list dep_id = hash(dep) dependency = (job_id, dep_id, false) relation_occurances = get(dep_relations, dependency, 0) + 1 if relation_occurances > 25 check_for_circular_dependencies(jobs, keys(dep_relations)) end dep_relations[(job_id, dep_id, false)] = relation_occurances traverse_dependencies!(dep, jobs, dep_relations, ready_jobs, depth + 1) end return nothing end get_dependencies_list(deps::AbstractDict{Symbol, AbstractJob}) = collect(values(deps)) get_dependencies_list(::Nothing) = AbstractJob[] get_dependencies_list(deps) = deps function check_for_circular_dependencies(jobs, dependency_relations) # SimpleDiGraph only uses OneTo Ints as IDs so we need a map back to job ids job_id_to_idx = Dict( job_id => i for (i, job_id) in enumerate(keys(jobs)) ) g = SimpleDiGraph(length(keys(jobs))) for (job_id, dep_id, _) in dependency_relations job_idx = job_id_to_idx[job_id] dep_idx = job_id_to_idx[dep_id] add_edge!(g, job_idx, dep_idx) end cycles = Graphs.simplecycles_iter(g) # Build a clean looking printout for the dependency cycle error if length(cycles) >= 1 cycle_explanation = Vector{String}(undef, length(cycles) + sum(length.(cycles))) explain_idx = 1 for (i, cycle) in enumerate(cycles) cycle_explanation[explain_idx] = "Cycle Number $i\n" explain_idx += 1 for ci in eachindex(cycle) job_idx = cycle[ci] dep_idx = cycle[(ci)%length(cycle) + 1] job_id = findfirst(p -> p[2]==job_idx, (p for p in pairs(job_id_to_idx)))[1] dep_id = findfirst(p -> p[2]==dep_idx, (p for p in pairs(job_id_to_idx)))[1] job = jobs[job_id] dep = jobs[dep_id] cycle_explanation[explain_idx] = "\tDependency Pair$ci\n\t\t$job\n\t\t$dep\n" explain_idx += 1 end end throw(InvalidStateException("The dependency tree contains cycles. Please resolve.\n" * foldl(*, cycle_explanation), :CyclicalDependency)) end end id_to_name(hash_id) = Symbol("__$hash_id") function (job::AbstractJob)(job_id::UInt64, ignore_target, dependency_results...) @debug "Running spawned execution for job ID $job_id. Details: $job" target = get_target(job) if iscomplete(target) && !ignore_target @debug "$job_id was already complete. Retrieving the target" data = retrieve(target) return ScheduledJob(job_id, target, data) end original_deps = get_dependencies(job) dependencies = replace_dep_job_with_result(original_deps, dependency_results) actual_result = run_process(job, dependencies, target) @debug "Ran dep, target, and process funcs against $job_id. Return type is $(typeof(actual_result))" data = if target isa NoTarget actual_result else @debug "Storing result for $job_id" store(target, actual_result) retrieve(target) end @debug "$job_id is complete." return ScheduledJob(job_id, target, data) end function replace_dep_job_with_result(dep_jobs::AbstractArray, dep_results) return ScheduledJob[ dep_results[findfirst(res -> res.job_id == hash(job), dep_results) ] for job in dep_jobs] end function replace_dep_job_with_result(dep_jobs::AbstractDict, dep_results) return Dict{Symbol,ScheduledJob}( k => dep_results[findfirst(res -> res.job_id == hash(job), dep_results) ] for (k,job) in pairs(dep_jobs)) end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
1377
using Serialization """ A target is a result side effect of a process; the things we're trying to make the a pipeline. The interface for a target has the following functions: is_complete(::Target) Returns a bool for if the target has been created complete(::Target) Called to clean up the target (i.e. move from tmp_dir to final) open(::Target) Called to access the target. Usually, this means returning the tmp field until the process is completed. """ abstract type AbstractTarget{T} end return_type(::AbstractTarget{T}) where {T} = T return_type(::Type{<:AbstractTarget{T}}) where {T} = T struct NoTarget{T} <: AbstractTarget{T} end NoTarget() = NoTarget{Any}() Base.convert(::Type{AbstractTarget}, ::Nothing) = NoTarget{Any}() iscomplete(::NoTarget) = false """BinFileTarget(path) A target that serializes the result of a Job and stores it in a .bin file at the designated path. """ struct BinFileTarget{T} <: AbstractTarget{T} path::String function BinFileTarget{T}(path) where {T} path = endswith(path, ".bin") ? path : path * ".bin" return new{T}(path) end end iscomplete(t::BinFileTarget) = isfile(t.path) function store(t::BinFileTarget, data) open(t.path, "w") do io serialize(io, data) end end function retrieve(t::BinFileTarget{T}) where {T} open(t.path, "r") do io deserialize(io)::T end end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
228
module Waluigi using Dagger using Graphs export @Job, get_dependencies, get_target, get_result, execute, run_process include("Target.jl") include("Job.jl") include("DaggerViz.jl") include("Pipeline.jl") end # module Waluigi
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
1066
using Parquet2 using Tables struct ParquetDirTarget <: Waluigi.AbstractTarget{Parquet2.Dataset} path::String write_kwargs read_kwargs end ParquetDirTarget(path; write_kwargs=(), read_kwargs=()) = ParquetDirTarget(path, write_kwargs, read_kwargs) Waluigi.iscomplete(t::ParquetDirTarget) = isdir(t.path) function Waluigi.store(t::ParquetDirTarget, data) isdir(t.path) && rm(t.path; force=true, recursive=true) mkdir(t.path) if Tables.istable(data) store_one(data, joinpath(t.path, "1.parq"), t.write_kwargs...) else store_many(data, t.path, t.kwargs...) end return nothing end function store_one(data, path, kwargs...) Parquet2.writefile( path, data; kwargs... ) end function store_many(chunks, path, kwargs...) for (i, chunk) in enumerate(chunks) Parquet2.writefile( joinpath(path, "$i.parq"), chunk; kwargs... ) end end function Waluigi.retrieve(t::ParquetDirTarget) return Parquet2.Dataset(t.path; t.read_kwargs...) end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
3865
global_logger(ConsoleLogger(stderr, Logging.Error)) using Scratch function __init__() global test_files = get_scratch!(@__MODULE__, "test_files") end __init__() using Test using DataFrames using Dagger using Waluigi # Putting all the structs for tester jobs in a module makes it easier to iterate include("./custom_target.jl") include("./test_jobs.jl") # My hacky version of checking if struct results are the same field_equal(v1, v2) = (v1==v2) isa Bool ? v1==v2 : false field_equal(::Nothing, ::Nothing) = true field_equal(::Missing, ::Missing) = true field_equal(a1::AbstractArray, a2::AbstractArray) = length(a1) == length(a2) && field_equal.(a1,a2) |> all function fields_equal(o1, o2) for name in fieldnames(typeof(o1)) prop1 = getproperty(o1, name) prop2 = getproperty(o2, name) if !field_equal(prop1, prop2) println("Didn't match on $name. Got $prop1 and $prop2") return false end end return true end @testset "All nothing jobs description" begin for job in (TestJobs.NothingJob(), TestJobs.OopsAllOmited()) @test get_dependencies(job) == [] @test get_target(job) isa Waluigi.NoTarget @test run_process(job, [nothing], nothing) isa Nothing @test fields_equal( get_result(Waluigi.run_pipeline(job)), Waluigi.ScheduledJob(zero(UInt64), Waluigi.NoTarget(), nothing)) end end @testset "Basic dependencies" begin @test begin result = Waluigi.run_pipeline(TestJobs.MainJob()) Waluigi.get_result(result) == 7 end end @testset "Malformed Jobs" begin @test_throws ArgumentError get_result(Waluigi.run_pipeline(TestJobs.BadDeps())) @test_throws Dagger.ThunkFailedException get_result(Waluigi.run_pipeline(TestJobs.BadTarget())) @test_throws ArgumentError @Job begin parameters = nothing; process = 5 end @test_throws InvalidStateException Waluigi.run_pipeline(TestJobs.CycleDepA()) end @testset "Checkpointing" begin checkpoint_fp = joinpath(test_files, "checkpoint_tester.bin") # CheckPointTester just caches the value it's given and returns it. first_checkpoint_tester = TestJobs.CheckPointTester(1) first_checkpoint_res = get_result(Waluigi.run_pipeline(first_checkpoint_tester)) @test isfile(checkpoint_fp) @test first_checkpoint_res == 1 # But since the path to the target is the same for all instances, this new version of CheckPointTester will # still return `1` since it's just going to grab the cached result regardless of the input second_checkpoint_res = TestJobs.CheckPointTester(2) @test 1 == second_checkpoint_res |> Waluigi.run_pipeline |> get_result @test 2 == Waluigi.run_pipeline(second_checkpoint_res, true) |> get_result rm(checkpoint_fp) # Checkpoint with custom target, same strategy as above test_parq_dir = joinpath(test_files, "test_parq_dir") parq_file = joinpath(test_parq_dir, "1.parq") rm(test_parq_dir; force=true, recursive=true) @test !isdir(test_parq_dir) df_1 = DataFrame(a=[1,2,3], b=["a","b","c"]) use_custom_1 = TestJobs.UsingCustomTarget(df_1, test_parq_dir) @test df_1 == (Waluigi.run_pipeline(use_custom_1) |> get_result |> DataFrame) @test isfile(parq_file) df_2 = DataFrame(e=[1,1,1]) use_custom_2 = TestJobs.UsingCustomTarget(df_2, test_parq_dir) @test df_1 == (Waluigi.run_pipeline(use_custom_2) |> get_result |> DataFrame) rm(test_parq_dir; force=true, recursive=true) end @testset "Typing Parameters" begin @test TestJobs.TypedParams(1,"a").a == 1 @test_throws MethodError TestJobs.TypedParams(1,5) end @testset "Use a custom type in a function" begin @test begin i_use_tester_type = TestJobs.IUseTesterType(TestJobs.TesterType()) Waluigi.run_pipeline(i_use_tester_type) |> get_result end end
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
code
2137
module TestJobs import ..Waluigi Waluigi.@Job begin name = NothingJob parameters = nothing dependencies = nothing target = nothing process = nothing end Waluigi.@Job begin name = OopsAllOmited end Waluigi.@Job begin name = DepJob parameters = (a,b) dependencies = nothing target = nothing process = begin return a + b end end Waluigi.@Job begin name = MainJob parameters = nothing dependencies = [DepJob(2,4)] target = nothing process = begin sum_dep = Waluigi.get_result(dependencies[1]) return sum_dep + 1 end end Waluigi.@Job begin name = BadDeps parameters = nothing dependencies = (a = DepJob(2,4),) target = nothing process = nothing end Waluigi.@Job begin name = BadTarget parameters = nothing dependencies = nothing target = 42 process = nothing end Waluigi.@Job begin name = CheckPointTester parameters = (a,) dependencies = nothing target = Waluigi.BinFileTarget{typeof(a)}(joinpath(Main.test_files, "checkpoint_tester.bin")) process = a end Waluigi.@Job begin name = UsingCustomTarget parameters = (tbl, parq_dir) dependencies = nothing target = Main.ParquetDirTarget(parq_dir; read_kwargs = (use_mmap=false,)) process = tbl end Waluigi.@Job begin name = TypedParams parameters = (a::Int, b::String) dependencies = nothing target = nothing process = nothing end Waluigi.@Job begin name = UsingTypedParams parameters = (a::Int, b::String) dependencies = nothing target = Waluigi.BinFileTarget{Int}(joinpath(Main.test_files, "typed_checkpoint.bin")) process = begin s = a + 100 return s end end Waluigi.@Job begin name = CycleDepA dependencies = CycleDepB() end Waluigi.@Job begin name = CycleDepB dependencies = CycleDepA() end Waluigi.@Job begin name = ReturnDepTypeNotInstance dependencies = DepJob end struct TesterType end Waluigi.@Job begin name = IUseTesterType parameters = (a::TesterType,) process = true end end # TestJobs Module
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
docs
3504
# Waluigi.jl Waluigi is a pure-Julia implementation of Luigi. It aims to provide a simple interface for defining `Job`s in a data pipeline and linking dependencies together. # Getting Started You can get started with this quick example: ```julia using Waluigi module JobDefinitions @Job begin name = GetGreeting process = begin return "Hello" end end @Job begin name = GetAddressee parameters = (name::String,) process = name end @Job begin name = SayHelloWorld dependencies = Dict( :Greeting => GetGreeting(), :Addressee => GetAddressee("World") ) process = begin addressee = get_result(dependencies[:Addressee]) greeting = get_result(dependencies[:Greeting]) println("$greeting, $(addressee)!") end end end # end module JobDefinitions.SayHelloWorld() |> Waluigi.run_pipeline |> get_result ``` We'll look at this piece by piece. The module `JobDefinitions` is not necessary for creating jobs, but it is convenient for debugging and iterating because it allows you to redefine the Job structs without restarting your Julia session. `GetGreeting` and `GetAddressee` are both depencies of `SayHelloWorld`. Looking at `GetAddressee` we can see that it has a parameter of type `String` which it returns without change in the `process` function. Also, notice that `name` is immediately available to all fields below it. `SayHelloWorld` is the "end of the pipeline". It tells `Waluigi` to run its dependencies. Each dependency returns a 'ScheduledJob' which provides information about the run of the job. Here, all we need is the result, so we call `get_result`. Of course, Hello world is the cannonical trivial example, but with these building blocks, you can define complex dependencies and parameterize abstracted processes to reduce code reuse. # Storing Results in a Target Any step in the pipeline can be saved to a `Target`. A target can be a file on disk, a SQL table, or anything else that can store and return data. Just like 'Job's, targets can be defined by a user by implementing a small set of interface functions. The required interface for an AbstractTarget is: ```julia # Use T if you want to parameterize your target's return type. Otherwise, replace # T with a specific type. This helps with type inference between Jobs, so you should use a # type whenever possible struct MyTarget{T} <: Waluigi.AbstracTarget{T} # add fields here end # iscompleted returns a boolean indicating whether the process should be skipped because the # target is completed. function Waluigi.iscomplete(t::MyTarget) true end # store accepts the target of a job and the data returend by `process` and stores it in the target function Waluigi.store(t::MyTarget, data) # logic end # Given a completed target, returns the retrieved data function Waluigi.retrieve(t::MyTarget) # get data return data end ``` The current implementation of the pipeline always stores the results of the job and the runs retrieve and only passes on the retrieved data. This prevents a situation where the store and retrieve functions are not perfect inverses of each other. This does result in cases where unnecessary computation is required. In the future, there may be a new AbstractTarget type that will tell the pipeline to only store and then return the actual result of process if the user is taking responsibility for ensuring that the retrieved data is consistent with the the result data.
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.2.0
71bc1e3ee8d345220ddaf300641340c24e3bf5d1
docs
1626
# Vision Waliugi should provide a seemless interface for constructing data pipelines. Users just need to define an job that has three parts: * a list of jobs on which the current job depends * a target which holds the resulting data. Can be a local file, a database table, etc * process function that providest the steps for creating the data The workflow should be Defining a list of jobs, calling `run()` on the final job, and then Waliuigi will spawn all the dependent jobs required. If a job is already done, then it will read the target and return that data. `run()` will return a Result object which contains references to the results of the depenencies, the target, and the data created by the job. We will lean on Dagger.jl for the backend infrastructure which schedules jobs, mantains the graph of dependencies, and provides visualizations of the processes. # TODO * Investigate using Dagger Checkpoints x = Dagger.delayed(sum; options=Dagger.Sch.ThunkOptions(; checkpoint=(thunk,result)->begin open("checkpoint.bin", "w") do io serialize(io, collect(result)) end end, restore=(thunk)->begin dump(thunk) open("checkpoint.bin", "r") do io Dagger.tochunk(deserialize(io)) end end) )([5,6]) * Consider using get_dependencies to improve type inference on NoTarget{Any} * Docs for custom targets
Waluigi
https://github.com/mrufsvold/Waluigi.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
2784
using SpecialFunctions, BesselK, ForwardDiff, StaticArrays import ForwardDiff: derivative # Convenience tool that will remove allocs: @inline pv(scale, range, v) = @SVector [scale, range, v] # Raw Bessel functions. Note also that there is the `adbesselkxv` method in # BesselK.jl that gives you (x^v)*besselk(v,x) directly, sometimes with at least # a slight gain to accuracy and speed. That isn't bound here, but obviously you # could just slightly tweak this version. R_besselk(v, x) = BesselK.adbesselk(v, x) R_besselk_dx(v, x) = derivative(_x->R_besselk(v, _x), x) R_besselk_dv(v, x) = derivative(_v->R_besselk(_v, x), v) R_besselk_dx_dx(v, x) = derivative(_x->R_besselk_dx(v, _x), x) R_besselk_dx_dv(v, x) = derivative(_x->R_besselk_dv(v, _x), x) R_besselk_dv_dv(v, x) = derivative(_v->R_besselk_dv(_v, x), v) # Unlike the Julia-native version, this takes a pre-computed distance instead of # two coordinates x and y, because if we have to take them as straight # Vector{Float64} items then that will make allocations in the kernel calls and # totally kill performance. In Julia this is avoided by using StaticArrays, but # I don't think I can ask R users to deal with that interface. If you care # enough about performance and need the additional flexibility that that # provides, you could extend this code...or just switch to Julia more fully. # # Note here that the parameter order is: # (sigma (scale), rho (range), nu (smoothness)) # # You can off course change all of this up, but then be careful to also update # the book-keeping stuff in the derivative functions. # # TODO (cg 2022/01/02 17:54): what is the most common signature for Julia stuff # here? As it stands, the parameters can be passed in as a tuple, but should the # R version take all parameters as scalars to again avoid using straight # Vector{Float64}? function matern(dist, params) (sg, rho, nu) = params iszero(dist) && return sg*sg arg = sqrt(2*nu)*dist/rho (sg*sg*(2^(1-nu))/gamma(nu))*BesselK.adbesselkxv(nu, arg) end # First derivatives: matern_d1(dist, p) = matern(dist, (sqrt(2*p[1]), p[2], p[3])) matern_d2(dist, p) = derivative(_p->matern(dist,pv(p[1], _p, p[3])), p[2]) matern_d3(dist, p) = derivative(_p->matern(dist,pv(p[1], p[2], _p)), p[3]) # Second derivatives: matern_d1_d1(dist, p) = derivative(_p->matern_d1(dist, pv(_p, p[2], p[3])), p[1]) matern_d1_d2(dist, p) = derivative(_p->matern_d1(dist, pv(p[1], _p, p[3])), p[2]) matern_d1_d3(dist, p) = derivative(_p->matern_d1(dist, pv(p[1], p[2], _p)), p[3]) matern_d2_d2(dist, p) = derivative(_p->matern_d2(dist, pv(p[1], _p, p[3])), p[2]) matern_d2_d3(dist, p) = derivative(_p->matern_d2(dist, pv(p[1], p[2], _p)), p[3]) matern_d3_d3(dist, p) = derivative(_p->matern_d3(dist, pv(p[1], p[2], _p)), p[3])
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
300
using StaticArrays, BesselK, ForwardDiff # As simple as this: const x_point = @SVector rand(2) const y_point = @SVector rand(2) const params = [1.0, 1.0, 1.0] # scale, range, smoothness. # All derivatives, including the smoothness! ForwardDiff.gradient(p->matern(x_point, y_point, p), params)
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
545
# Conclusion: for e-fish, pretty similar. function efish_replicates(dfns, parms, pts, lendatav) fish = zeros(3,3) _S = Symmetric([matern(x, y, parms) for x in pts, y in pts]) S = cholesky!(_S) for j in 1:3 dfj = dfns[j] Sj = Symmetric([dfj(x, y, parms) for x in pts, y in pts]) fish[j,j] = tr(S\(Sj*(S\Sj)))/2 for k in (j+1):3 dfk = dfns[k] Sk = Symmetric([dfk(x, y, parms) for x in pts, y in pts]) fish[j,k] = tr(S\(Sj*(S\Sk)))/2 fish[k,j] = fish[j,k] end end fish*lendatav end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
2260
# As is discussed in the paper, you can see that the FD derivatives here are so # inaccurate that Ipopt can't even converge. The FD Hessians are worse than # garbage and completely unusable without very high-order and adaptive methods, # which are so brutal to performance that they aren't even worth considering. using Ipopt, Serialization include("shared.jl") include("gradient.jl") include("ipopt_helpers.jl") function fitter(objects_initval) ((case, gradfun, hesfun, maxiter), ini) = objects_initval is_bfgs = in(case, (:FD_BFGS, :AD_BFGS)) println("Case: $case") cache = Vector{Float64}[] box_l = is_bfgs ? [1e-2, 1e-2, 0.25] : [0.0, 0.0, 0.25] prob = createProblem(3, box_l, fill(1e22, (3,)), 0, Float64[], Float64[], 0, div(3*4, 2), _p->caching_nll(_p, cache), (args...)->nothing, gradfun, (args...)->nothing, (x,m,r,c,o,l,v)->ipopt_hessian(x,m,r,c,o,l,v, hesfun,Function[],0)) addOption(prob, "tol", 1e-5) addOption(prob, "max_iter", maxiter) if is_bfgs addOption(prob, "hessian_approximation", "limited-memory") addOption(prob, "nlp_scaling_method", "none") end prob.x = deepcopy(ini) # for safety to avoid weird persistent pointer games. try @time status = solveProblem(prob) _h = is_bfgs ? fil(NaN, 3, 3) : hesfun(prob.x) return (prob, status, case, deepcopy(prob.x), _nll(prob.x), _h, cache, ini) catch er println("\n\nOptimization failed with error $er\n\n") return (prob, :FAIL_OPT_ERR, case, deepcopy(prob.x), NaN, fill(NaN, 3, 3), cache, ini) end end const cases = ((:FD_FISH, grad_fd!, fishfd, 100), (:AD_FISH, grad_ad!, fishad, 100), (:FD_HESS, grad_fd!, hessfd, 100), (:AD_HESS, grad_ad!, _nllh, 100), (:FD_BFGS, grad_fd!, no_hessian, 100), (:AD_BFGS, grad_ad!, no_hessian, 100)) const inits = (ones(3), [1.0, 0.1, 2.0]) const test_settings = vec(collect(Iterators.product(cases, inits))) if !isinteractive() const res = map(fitter, test_settings) serialize("fit_results.serialized", res) end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
504
function gradient_replicates!(gstore, dfns, parms, pts, datav) fill!(gstore, zero(eltype(gstore))) @assert length(gstore) == length(dfns) "Length of gstore and number of derivative functions don't match." _S = Symmetric([matern(x, y, parms) for x in pts, y in pts]) S = cholesky(_S) for j in eachindex(gstore) dfj = dfns[j] Sj = Symmetric([dfj(x, y, parms) for x in pts, y in pts]) gstore[j] = (tr(S\Sj)*length(datav) - sum(z->dot(z, S\(Sj*(S\z))), datav))/2 end gstore end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
992
function hessian_replicates(dfns, d2fns, parms, pts, datav) hess = zeros(3,3) _S = Symmetric([matern(x, y, parms) for x in pts, y in pts]) S = cholesky(_S) for j in 1:3 dfj = dfns[j] Sj = Symmetric([dfj(x, y, parms) for x in pts, y in pts]) for k in j:3 # first derivative matrix: dfk = dfns[k] Sk = Symmetric([dfk(x, y, parms) for x in pts, y in pts]) # second derivative matrix: dfjk = d2fns[j][k-j+1] Sjk = Symmetric([dfjk(x, y, parms) for x in pts, y in pts]) # Compute the complicated derivative of the qform (not efficient or # thoughtful, so don't use this code for real somewhere): dqf = -(S\(Sk*(S\(Sj*inv(_S)))) ) dqf += S\(Sjk*inv(_S)) dqf -= S\(Sj*(S\(Sk*inv(_S)))) # compute the term: term = (tr(S\Sjk) - tr(S\(Sj*(S\Sk))))*length(datav)/2 term -= sum(z->dot(z, dqf, z), datav)/2 hess[j,k] = term hess[k,j] = term end end hess end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1129
hes_reshape(h, len) = [h[i,j] for i=1:len for j=1:i] function hes_structure!(rows, cols, len) idx = 1 for row in 1:len for col in 1:row rows[idx] = row cols[idx] = col idx += 1 end end nothing end function ipopt_hessian(xarg, mode, rows, cols, obj_factor, lams, values, hessfn, constr_hessv, nconstr) (mode == :Structure) && return hes_structure!(rows, cols, length(xarg)) @assert length(lams) == nconstr "Disagreement in lengths of lambdas and constraint functions." h = hessfn(xarg) values .= hes_reshape(h, length(xarg)).*obj_factor for (lj, hesconstrj) in zip(lams, constr_hessv) constrj_hes = hesconstrj(xarg) values .+= lj*hes_reshape(constrj_hes, length(xarg)) end end function jac_structure!(rows, cols, len, nconstr) for (j, ix) in enumerate(Iterators.partition(1:(len*nconstr), len)) rows[ix].=j cols[ix].=collect(1:len) end nothing end function ipopt_constr_jac(xarg, mode, rows, cols, values, g_jac, nconstr) (mode == :Structure) && return jac_structure!(rows, cols, length(xarg), nconstr) values .= g_jac(xarg) end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
3358
# Setting: imagine that we have a bunch of iid replicates of very correlated # smooth data. Let's fit it and look at the resulting CIs. using LinearAlgebra, StableRNGs include("../../examples/matern.jl") include("gradient.jl") include("efish.jl") include("hessian.jl") # A likelihood function, slightly specialized for speed: function nll_replicates(parms, pts, datav) K = Symmetric([matern(x, y, parms) for x in pts, y in pts]) Kf = cholesky!(K) # in-place out = logdet(Kf)*length(datav)/2 # only compute logdet once. out += sum(z->sum(abs2, Kf.L\z), datav)/2 # all the solve terms. out end # For plotting a likelihood surface. This uses the "profile likelihood", which # takes advantage of the fact that, given all other parameters, the # likelihood-miniziming variance can be expressed as # # sig_implied = dot(datav, K(sigma=1, other_parms...)\datav)/length(datav[1]). # # Since the full likelihood can be written with sigma pulled out of the matrix, # you can actually just plug this right back in to the normal Gaussian # likelihood and optimize all parameters at once still, but now you have a k-1 # dimensional problem instead of a k-dimensional problem. # # See, for example, the definition at the top of the second column in page 5 in # the Geoga et al JCGS citation, although that's of course not the first time # the idea has been used here and it dates back to at least the 90s. function profile_nll_replicates(parms, pts, datav) n = length(first(datav)) _p = @SVector [one(eltype(parms)), parms[1], parms[2]] K = Symmetric([matern(x, y, _p) for x in pts, y in pts]) Kf = cholesky!(K) # in-place out = logdet(Kf)*length(datav)/2 # only compute logdet once. out += n*sum(z->log(sum(abs2, Kf.L\z)), datav)/2 # all the solve terms. out end # simulate some data, using the "let" syntax to avoid keeping global K after # we're done: const TRU_P = @SVector [1.5, 2.5, 1.3] const SEED = StableRNG(12345) const N_REP = 10 const N_DAT = 512 const PTS = [SVector{2,Float64}(rand(SEED, 2)...) for _ in 1:N_DAT] const SIMS = let K = Symmetric([matern(x, y, TRU_P) for x in PTS, y in PTS]) Kf = cholesky(K) [Kf.L*randn(SEED, size(Kf, 2)) for _ in 1:N_REP] end # A second simulation of a single draw at more points for the likelihood # surface: const N_DAT_SURF = 1600 const TRU_P_SURF = @SVector [1.5, 0.5, 1.3] const PTS_SURF = [SVector{2,Float64}(rand(SEED, 2)...) for _ in 1:N_DAT_SURF] const SIM_SURF = let K = Symmetric([matern(x, y, TRU_P_SURF) for x in PTS_SURF, y in PTS_SURF]) Kf = cholesky(K) Kf.L*randn(SEED, size(Kf, 2)) end _nll(p) = nll_replicates(p, PTS, SIMS) _nllh(p) = ForwardDiff.hessian(_nll, p) function caching_nll(p, cache=nothing) if !isnothing(cache) push!(cache, deepcopy(p)) end _nll(p) end const HIGHFD = central_fdm(10,1) function high_fd_hessian(p) gfun = _p -> FiniteDifferences.grad(HIGHFD, _nll, _p) FiniteDifferences.jacobian(HIGHFD, gfun, p)[1] end no_hessian(x) = throw(error("This function should not have been called!")) grad_fd!(p, store) = gradient_replicates!(store, FD_DFNS, p, PTS, SIMS) grad_ad!(p, store) = ForwardDiff.gradient!(store, _nll, p) hessfd(p) = hessian_replicates(FD_DFNS, FD_D2FNS, p, PTS, SIMS) fishfd(p) = efish_replicates(FD_DFNS, p, PTS, length(SIMS)) fishad(p) = efish_replicates(AD_DFNS, p, PTS, length(SIMS))
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1811
# Bring a few packages into scope: using BesselK, ForwardDiff, StaticArrays import BesselK: gamma, adbesselkxv # Matern covariance function, using the rescaled (x^v)*besselk(v, x): function matern(x, y, params) (sg, rho, nu) = params dist = norm(x-y) iszero(dist) && return sg*sg arg = sqrt(2*nu)*dist/rho (sg*sg*(2^(1-nu))/gamma(nu))*adbesselkxv(nu, arg) end # Slightly fancy matrix assembly and factorization: function assemble_matrix(points, params) buf = Matrix{eltype(params)}(undef, length(points), length(points)) Threads.@threads for k in eachindex(points) # nice multi-threading ptk = points[k] buf[k,k] = matern(ptk, ptk, params) @inbounds for j in 1:(k-1) # turns off array bounds checking buf[j,k] = matern(points[j], ptk, params) end end cholesky!(Symmetric(buf)) # in-place Cholesky factorization to avoid heap allocs. end # Negative log-likelihood, with a slight trick for the quadratic form to just # have to solve with the triangular factor once: function nll(points, data, params) Sigma = assemble_matrix(points, params) (logdet(Sigma) + sum(abs2, Sigma.U'\data))/2 end # Sample locations and data, using stack-allocated arrays via StaticArrays.jl to # make sure that the autodiff derivatives don't make any heap allocations. # This is just a random example to demonstrate how to create the single-arg # closure that you can pass to ForwardDiff. const LOCS = [@SVector rand(2) for _ in 1:1000] const DAT = randn(length(LOCS)) # create single-argument closure for the log-likelihood: objective(p) = nll(LOCS, DAT, p) # AD-generated gradient and hessian. It's that easy! Plug in to your favorite # optimizer and you're good to go. objective_grad(p) = ForwardDiff.gradient(objective, p) objective_hess(p) = ForwardDiff.hessian(objective, p)
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
785
include("shared.jl") include("../plotting/gnuplot_utils.jl") BLAS.set_num_threads(1) # Small neighborhood of the MLE. const RANGE_GRID = range(0.25, 5.0, length=80) const SMOOTH_GRID = range(1.2, 1.5, length=70) function gensurf() out = zeros(length(RANGE_GRID), length(SMOOTH_GRID)) Threads.@threads for j in eachindex(RANGE_GRID) @inbounds for k in eachindex(SMOOTH_GRID) out[j,k] = profile_nll_replicates((RANGE_GRID[j], SMOOTH_GRID[k]), PTS_SURF, (SIM_SURF,)) end end out .- minimum(out) end # Will need to figure out the right color scale here. if !isinteractive() const surf = gensurf() gnuplot_save_matrix!("../plotdata/profile_surface.csv", surf, RANGE_GRID, SMOOTH_GRID) end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1285
using Ipopt, Printf, Serialization # You need to run fit.jl before running this script. include("shared.jl") const res = deserialize("fit_results.serialized") function printf_sym_matrix(M::Matrix{Float64}) (s1, s2) = size(M) for j in 1:(s1-1) for k in 1:(s2-1) if k >= j @printf "%1.2f & " M[j,k] else @printf "\\cdot & " end end @printf "%1.2f\\\\ \n" M[j,end] end for k in 1:(s2-1) @printf "\\cdot & " end @printf "%1.2f" M[end,end] end function write_matrix_to_file(fname, M, prefix="../../../../manuscript/tables/") open(prefix*fname, "w") do io redirect_stdout(io) do printf_sym_matrix(M) end end end #= # look at hess vs e-fish at initializer: write_matrix_to_file("fdefish_at_ones.tex", fishfd(ones(3))) write_matrix_to_file("fdhess_at_ones.tex", hessfd(ones(3))) write_matrix_to_file("adhess_at_ones.tex", _nllh(ones(3))) write_matrix_to_file("refhess_at_ones.tex", high_fd_hessian(ones(3))) # look at hess vs e-fish at MLE: write_matrix_to_file("fdefish_at_mle.tex", fishfd(res[3][4])) write_matrix_to_file("fdhess_at_mle.tex", hessfd(res[3][4])) write_matrix_to_file("adhess_at_mle.tex", _nllh(res[3][4])) write_matrix_to_file("refhess_at_mle.tex", high_fd_hessian(res[3][4])) =#
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
927
function tablesave!(name, M::Matrix; rlabels=nothing, clabels=nothing, siunits=false) out = siunits ? map(x->"\\num{"*string(x)*"}", M) : string.(M) if !isnothing(rlabels) out = hcat(string.(rlabels), out) end if !isnothing(clabels) is_row_nothing = isnothing(rlabels) rw1 = string.(clabels) if !is_row_nothing pushfirst!(rw1, "") end rw1[end] = rw1[end] * "\\\\" writedlm("header_"*name, reshape(rw1, 1, length(rw1)), '&') end out[:,end] .= out[:,end] .* repeat(["\\\\"], size(out,1)) writedlm(name, out, '&') end function gnuplot_save_matrix!(name, M::Matrix{Float64}, row_pts, col_pts, delim=',') out = Array{Any}(undef, size(M,1)+1, size(M,2)+1) out[1,1] = "" out[1,2:end] .= col_pts out[2:end,1] .= row_pts out[2:end, 2:end] .= M writedlm(name, out, delim) end function gnuplot_save_vector!(name, M, pts, delim=',') writedlm(name, hcat(pts, M), delim) end
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1539
using BesselK, SpecialFunctions, ArbNumerics include("shared.jl") function wbesselk(v,x) try return BesselK._besselk(v,x) catch return NaN end end rbesselk(v,x) = Float64(ArbNumerics.besselk(ArbFloat(v), ArbFloat(x))) abesselk(v,x) = SpecialFunctions.besselk(v, x) const BASELINE = [rbesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const AMOS = [abesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const OURSOL = [wbesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const TOLS_A = atolfun.(zip(BASELINE, AMOS)) const TOLS_U = atolfun.(zip(BASELINE, OURSOL)) const TOLS_AU = rtolfun.(zip(AMOS, OURSOL)) const RTOLS_A = rtolfun.(zip(BASELINE, AMOS)) const RTOLS_U = rtolfun.(zip(BASELINE, OURSOL)) @assert iszero(length(findall(isnan, OURSOL))) "There were NaNs in our attempts!" # quick simple test to find the worst atol when B(x) < 1: let ix = findall(x->x<=one(x), BASELINE) res = findmax(abs, TOLS_U[ix]) _ix = res[2] println("Worst atol when true besselk(v,x) <= 1: $(res[1])") println("True value: $(BASELINE[ix][_ix])") end gnuplot_save_matrix!("../plotdata/atols_amos.csv", TOLS_A, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/atols_ours.csv", TOLS_U, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/rtols_amos.csv", RTOLS_A, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/rtols_ours.csv", RTOLS_U, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/rtols_amos_ours.csv", TOLS_AU, VGRID, XGRID)
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1100
using SpecialFunctions, ForwardDiff, FiniteDifferences include("shared.jl") const BIG_FD = central_fdm(10,1) dwbesselk(v,x) = ForwardDiff.derivative(_v->BesselK._besselk(_v,x,100,1e-12,false), v) dbesselk(v, x) = BIG_FD(_v->besselk(_v,x), v) const _h = 1e-6 fastfdbesselk(v, x) = (besselk(v+_h, x) - besselk(v, x))/_h const BASELINE = [dbesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const OURSOL = [dwbesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const FASTFD = [fastfdbesselk(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const TOLS = atolfun.(zip(BASELINE, OURSOL)) const FDTOLS = atolfun.(zip(BASELINE, FASTFD)) const DIFTOLS = log10.(TOLS) .- log10.(FDTOLS) let res = findmax(DIFTOLS) println("Worst case derivative difference: $(res[1])") println("Value of dfun: $(BASELINE[res[2]])") end gnuplot_save_matrix!("../plotdata/atols_deriv_fd.csv", FDTOLS, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/atols_deriv_ad.csv", TOLS, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/atols_deriv_fdad.csv", DIFTOLS, VGRID, XGRID)
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1283
using SpecialFunctions, ForwardDiff, FiniteDifferences include("shared.jl") const BIG_FD = central_fdm(10,1) const BIG_FD_O2 = central_fdm(10,2) besselkdv(v,x) = ForwardDiff.derivative(_v->BesselK._besselk(_v,x,100,1e-12,false), v) besselkdv2(v,x) = ForwardDiff.derivative(_v->besselkdv(_v,x), v) dbesselkdv(v, x) = BIG_FD(_v->besselk(_v,x), v) dbesselkdv2(v, x) = BIG_FD_O2(_v->besselk(_v,x), v) fastdbesselkdv2(v, x) = (besselk(v+2e-6, x) - 2*besselk(v+1e-6, x) + besselk(v, x))/1e-12 const BASELINE = [dbesselkdv2(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const OURSOL = [besselkdv2(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const FASTFD = [fastdbesselkdv2(z[1], z[2]) for z in Iterators.product(VGRID, XGRID)] const TOLS = atolfun.(zip(BASELINE, OURSOL)) const FDTOLS = atolfun.(zip(BASELINE, FASTFD)) const DIFTOLS = log10.(TOLS) .- log10.(FDTOLS) let res = findmax(DIFTOLS) println("Worst case derivative difference: $(res[1])") println("Value of dfun: $(BASELINE[res[2]])") end gnuplot_save_matrix!("../plotdata/atols_deriv2_fd.csv", FDTOLS, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/atols_deriv2_ad.csv", TOLS, VGRID, XGRID) gnuplot_save_matrix!("../plotdata/atols_deriv2_fdad.csv", DIFTOLS, VGRID, XGRID)
BesselK
https://github.com/cgeoga/BesselK.jl.git
[ "MIT" ]
0.5.6
0a2aba1fa92200ac4ecd1c49b9a73100e4b34816
code
1097
include("../../examples/matern.jl") include("../plotting/gnuplot_utils.jl") const VGRID = range(0.25, 10.0, length=101) # to hit "near-integer" v, which is the hardest. const XGRID = range(0.0, 30.0, length=201)[2:end] # First and second derivatives with FD: fdbesselkdv(v, x) = (besselk(v+1e-6, x) - besselk(v+1e-6, x))/1e-6 fdbesselkdvdv(v, x) = (besselk(v+2e-6, x) - 2*besselk(v+1e-6, x) + besselk(v, x))/1e-12 # First and second derivatives with AD: adbesselkdv(v, x) = ForwardDiff.derivative(_v->BesselK._besselk(_v, x), v) adbesselkdvdv(v, x) = ForwardDiff.derivative(_v->adbesselkdv(_v, x), v) function assemble_matrix(fn, pts, p) out = Array{Float64}(undef, length(pts), length(pts)) Threads.@threads for k in 1:length(pts) out[k,k] = p[1] @inbounds for j in 1:(k-1) out[j,k] = fn(pts[j], pts[k], p) end end Symmetric(out) end atolfun(tru, est) = isnan(est) ? NaN : (isinf(tru) ? 0.0 : abs(tru-est)) atolfun(tru_est) = atolfun(tru_est[1], tru_est[2]) rtolfun(tru, est) = atolfun(tru, est)/abs(tru) rtolfun(tru_est) = rtolfun(tru_est[1], tru_est[2])
BesselK
https://github.com/cgeoga/BesselK.jl.git