licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3996
# DDESystem # Construction of DDESystem A `DDESystem` is represented by the following state equation ```math \dot{x} = f(x, h, u, t) \quad t \geq t_0 ``` where ``t`` is the time, ``x`` is the value of the `state`, ``u`` is the value of the `input`. ``h`` is the history function for which ```math x(t) = h(t) \quad t \leq t_0 ``` and by the output equation ```math y = g(x, u, t) ``` where ``y`` is the value of the `output`. As an example, consider a system with the state equation ```math \begin{array}{l} \dot{x} = -x(t - \tau) \quad t \geq 0 \\ x(t) = 1. -\tau \leq t \leq 0 \\ \end{array} ``` First, we define the history function `histfunc`, ```@repl dde_system_ex using Jusdl # hide const out = zeros(1) histfunc(out, u, t) = (out .= 1.); ``` Note that `histfunc` mutates a vector `out`. This mutation is for [`performance reasons`](https://docs.juliadiffeq.org/latest/tutorials/dde_example/#Speeding-Up-Interpolations-with-Idxs-1). Next the state function can be defined ```@repl dde_system_ex function statefunc(dx, x, h, u, t) h(out, u, t - tau) # Update out vector dx[1] = out[1] + x[1] end ``` and let us take all the state variables as outputs. Thus, the output function is ```@repl dde_system_ex outputfunc(x, u, t) = x ``` Next, we need to define the `history` for the system. History is defined by specifying a history function, and the type of the lags. There may be two different lag: constant lags which are independent of the state variable ``x`` and the dependent lags which are mainly the functions of the state variable ``x``. Note that for this example, the have constant lags. Thus, ```@repl dde_system_ex tau = 1 conslags = [tau] ``` At this point, we are ready to construct the system. ```@repl dde_system_ex ds = DDESystem(righthandside=statefunc, history=histfunc, readout=outputfunc, state=[1.], input=nothing, output=Outport(), constlags=conslags, depslags=nothing) ``` ## Basic Operation of DDESystem The basis operaiton of `DDESystem` is the same as those of other dynamical systems. When triggered from its `trigger` link, the `DDESystem` reads its time from its `trigger` link, reads input, solves its differential equation, computes its output and writes the computed output to its `output` bus. To drive `DDESystem`, we must first launch it, ```@repl dde_system_ex iport, trg, hnd = Inport(), Outpin(), Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) task = launch(ds) task2 = @async while true all(take!(iport) .=== NaN) && break end ``` When launched, `ds` is drivable. To drive `ds`, we can use the syntax `drive(ds, t)` or `put!(ds.trigger, t)` where `t` is the time until which `ds` is to be driven. ```@repl dde_system_ex put!(trg, 1.) ``` When driven, `ds` reads the time `t` from its `trigger` link, (since its input is `nothing`, `ds` does nothing during its input reading stage), solves its differential equation, computes output and writes the value of its output to its `output` bus. To signify, the step was taken with success, `ds` writes `true` to its `handshake` which must be read to further drive `ds`. For this, we can use the syntax `approve!(ds)` or `take!(ds.handshake)`. ```@repl dde_system_ex take!(hnd) ``` We can continue to drive `ds`. ```@repl dde_system_ex for t in 2. : 10. put!(trg, t) take!(hnd) end ``` When launched, we constructed a `task` whose state is `running` which implies that `ds` can be driven. ```@repl dde_system_ex task task2 ``` As long as the state of the `task` is `running`, `ds` can be driven. To terminate `task` safely, we need to terminate the `ds`. ```@repl dde_system_ex put!(trg, NaN) ``` Note that the state of `task` is `done` which implies that `ds` is not drivable any more. Note that the output values of `ds` is written to its `output` bus. ```@repl dde_system_ex iport[1].link.buffer ``` ## Full API ```@docs @def_dde_system DDESystem DelayFeedbackSystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3480
# DiscreteSystem ## Construction of DiscreteSystem `DiscreteSystem`s evolve by the following discrete time difference equation. ```math x_{k + 1} = f(x_k, u_k, k) \\ y_k = g(x_k, u_k, k) ``` where ``x_k`` is the state, ``y_k`` is the value of `output` and ``u_k`` is the value of `input` at discrete time `t`. ``f`` is the state function and ``g`` is the output function of the system. See the main constructor. ## Basic Construction of DiscreteSystem When a `DiscreteSystem` is triggered from its `trigger` link, it reads current time from its `trigger` link, reads its `input`, solves its difference equation, computes its output and writes its output value to its `output` bus. Let us continue with an example. We first define state function `sfunc` and output function `ofunc` of the system, ```@repl discrete_system_ex using Jusdl # hide sfunc(dx, x, u, t) = (dx .= -0.5x) ofunc(x, u, t) = x ``` From `sfunc`, it is seen that the system does not have any input, and from `ofunc` the system has one output. Thus, the `input` and `output` of the system is ```@repl discrete_system_ex input = nothing output = Outport(1) ``` We also need to specify the initial condition and time of the system ```@repl discrete_system_ex x0 = [1.] t = 0. ``` We are now ready to construct the system `ds`. ```@repl discrete_system_ex ds = DiscreteSystem(righthandside=sfunc, readout=ofunc, state=x0, input=input, output=output) ``` To drive `ds`, we need to `launch` it. ```@repl discrete_system_ex iport, trg, hnd = Inport(1), Outpin(), Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) task = launch(ds) task2 = @async while true all(take!(iport) .=== NaN) && break end ``` At this point, `ds` is ready to be driven. To drive `ds`, we can either use `drive(ds, t)` or `put!(ds.trigger, t)`. ```@repl discrete_system_ex put!(trg, 1.) ``` When the above code is executed, `ds` evolves until its time is `ds.t` is 1., During this evolution, `ds` reads time `t` from its `trigger` link, reads its `input` (in this example, `ds` has no input, so it does nothing when reading its input), solves its difference equation, computes its output and writes its output value to its `output`. To signal that the evolution is succeeded, `ds` writes `true` its `handshake` link which needs to be taken to further drive `ds`. ```@repl discrete_system_ex hnd.link # `handshake` link is readable take!(hnd) ``` We continue to drive `ds`, ```@repl discrete_system_ex for i in 2. : 10. put!(trg, i) take!(hnd) end ``` Note that all the output values of `ds` is written to its `output` bus. ```@repl discrete_system_ex iport[1].link.buffer ``` When we launched `ds`, we constructed a `task` which is still running. ```@repl discrete_system_ex task task2 ``` As long nothing goes wrong, i.e. no exception is thrown, during the evolution of `ds`, it is possible to drive `ds`. To safely terminate the `task`, we need to terminate the `ds`. ```@repl discrete_system_ex put!(trg, NaN) put!(ds.output, [NaN]) ``` We can confirm that the `task` is not running and its state is `done`. ```@repl discrete_system_ex task task2 ``` Since the `task` is not running any more, `ds` cannot be drivable any more. However to drive `ds` again, we need launch `ds` again. ## Full API ```@docs @def_discrete_system DiscreteSystem DiscreteLinearSystem HenonSystem LoziSystem BogdanovSystem GingerbreadmanSystem LogisticSystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3851
# ODESystem ## Basic Operation of ODESystem When an `ODESystem` is triggered, it reads its current time from its `trigger` link, reads its `input`, solves its differential equation and computes its output. Let us observe the basic operation of `ODESystem`s with a simple example. We first construct an `ODESystem`. Since an `ODESystem` is represented by its state equation and output equation, we need to define those equations. ```@repl ode_ex using Jusdl # hide sfunc(dx,x,u,t) = (dx .= -0.5x) ofunc(x, u, t) = x ``` Let us construct the system ```@repl ode_ex ds = ODESystem(righthandside=sfunc, readout=ofunc, state=[1.], input=Inport(1), output=Outport(1)) ``` Note that `ds` is a single input single output `ODESystem` with an initial state of `[1.]` and initial time `0.`. To drive, i.e. trigger `ds`, we need to launch it. ```@repl ode_ex oport, iport, trg, hnd = Outport(1), Inport(1), Outpin(), Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) task = launch(ds) task2 = @async while true all(take!(iport) .=== NaN) && break end ``` When launched, `ds` is ready to driven. `ds` is driven from its `trigger` link. Note that the `trigger` link of `ds` is writable. ```@repl ode_ex ds.trigger.link ``` Let us drive `ds` to the time of `t` of `1` second. ```@repl ode_ex put!(trg, 1.) ``` When driven, `ds` reads current time of `t` from its `trigger` link, reads its input value from its `input`, solves its differential equation and computes its output values and writes its `output`. So, for the step to be continued, an input values must be written. Note that the `input` of `ds` is writable, ```@repl ode_ex ds.input[1].link ``` Let us write some value. ```@repl ode_ex put!(oport, [5.]) ``` At this point, `ds` completed its step and put `true` to its `handshake` link to signal that its step is succeeded. ```@repl ode_ex hnd.link ``` To complete the step and be ready for another step, we need to approve the step by reading its `handshake`. ```@repl ode_ex take!(hnd) ``` At this point, `ds` can be driven further. ```@repl ode_ex for t in 2. : 10. put!(trg, t) put!(oport, [t * 10]) take!(hnd) end ``` Note that all the output value of `ds` is written to its `output`bus, ```@repl ode_ex iport[1].link.buffer ``` When we launched `ds`, we constructed a `task` and the `task` is still running. ```@repl ode_ex task task2 ``` To terminate the `task` safely, we need to `terminate` `ds` safely. ```@repl ode_ex put!(trg, NaN) put!(ds.output, [NaN]) ``` Now, the state of the `task` is done. ```@repl ode_ex task task2 ``` So, it is not possible to drive `ds`. ## Mutation in State Function in ODESystem Consider a system with the following ODE ```math \begin{array}{l} \dot{x} = f(x, u, t) \\ y = g(x, u, t) \\ \end{array} ``` where ``x \in R^d, y \in R^m, u \in R^p``. To construct and `ODESystem`, The signature of the state function `statefunc` must be of the form ```julia function statefunc(dx, x, u, t) dx .= ... # Update dx end ``` Note that `statefunc` *does not construct* `dx` but *updates* `dx` and does not return anything. This is for [performance reasons](https://docs.juliadiffeq.org/latest/basics/faq/#faq_performance-1). On the contrary, the signature of the output function `outputfunc` must be of the form, ```julia function outputfunc(x, u, t) y = ... # Compute y return y end ``` Note the output value `y` is *computed* and *returned* from `outputfunc`. `y` is *not updated* but *generated* in the `outputfunc`. ## Full API ```@docs @def_ode_system ODESystem ContinuousLinearSystem LorenzSystem ForcedLorenzSystem ChenSystem ForcedChenSystem ChuaSystem ForcedChuaSystem RosslerSystem ForcedRosslerSystem VanderpolSystem ForcedVanderpolSystem Integrator ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
4158
# RODESystem ## Construction of RODESystem A `RODESystem` is represented by the state function ```math \begin{array}{l} dx = f(x, u, t, W) \end{array} ``` and the output function ```math y = g(x, u, t) ``` where ``t`` is the time, ``x \in R^n`` is the state, ``u \in R^p`` and ``y \in R^m`` is output of the system. Therefore to construct a `RODESystem`, we need to define `statefunc` and `outputfunc` with the corresponding syntax, ```julia function statefunc(dx, x, u, t) dx .= ... # Update dx end ``` and ```julia function outputfunc(x, u, t) y = ... # Compute y return y end ``` As an example, consider the system with the state function ```math \begin{array}{l} dx_1 = 2 x_1 sin(W_1 - W_2) \\ dx_2 = -2 x_2 cos(W_1 + W_2) \end{array} ``` and with the output function ```math y = x ``` That is, all the state variable are taken as output. The `statefunc` and the `outputfunc` is defined as, ```@repl rode_system_ex using Jusdl # hide function statefunc(dx, x, u, t, W) dx[1] = 2x[1]*sin(W[1] - W[2]) dx[2] = -2x[2]*cos(W[1] + W[2]) end outputfunc(x, u, t) = x ``` To construct the `RODESystem`, we need to specify the initial condition and time. ```@repl rode_system_ex x0 = [1., 1.] t = 0. ``` Note from `statefunc`, the system has not any input, i.e. input is nothing, and has an output with a dimension of 1. ```@repl rode_system_ex input = nothing output = Outport(2) ``` We are ready to construct the system ```@repl rode_system_ex ds = RODESystem(righthandside=statefunc, readout=outputfunc, state=x0, input=input, output=output, solverkwargs=(dt=0.01,)) ``` Note that `ds` has a solver to solve its state function `statefunc` which is random differential equation. To solve its `statefunc`, the step size of the solver must be specified. See [`Random Differential Equtions`](https://docs.juliadiffeq.org/latest/tutorials/rode_example/) of [`DifferentialEquations `](https://docs.juliadiffeq.org/latest/) package. ## Basic Operation of RODESystem When a `RODESystem` is triggered from its `trigger` link, it read the current time from its `trigger` link, reads its input (if available, i.e. its input is not nothing), solves its state function, computes its output value and writes its output value its `output` bus (again, if available, i.e., its output bus is not nothing). To drive a `RODESystem`, it must be `launched`. Let us continue with `ds` constructed in the previous section. ```@repl rode_system_ex iport, trg, hnd = Inport(2), Outpin(), Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) task = launch(ds) task2 = @async while true all(take!(iport) .=== NaN) && break end ``` When launched, `ds` is ready to be driven. We can drive `ds` by `drive(ds, t)` or `put!(ds.trigger, t)` where `t` is the time until which we will drive `ds`. ```@repl rode_system_ex put!(trg, 1.) ``` When triggered, `ds` read the time `t` from its `trigger` link, solved its differential equation, computed its value and writes its output value to its `output` bus. To signal that, the evolution is succeeded, `ds` writes `true` to its `handshake` link which must be taken to further drive `ds`. (`approve!(ds)`) can also be used. ```@repl rode_system_ex take!(hnd) ``` We can continue to drive `ds`. ```@repl rode_system_ex for t in 2. : 10. put!(trg, t) take!(hnd) end ``` After each evolution, `ds` writes its current output value to its `output` bus. ```@repl rode_system_ex [outbuf(pin.link.buffer) for pin in iport] ``` When launched, a `task` was constructed which still running. As long as no exception is thrown during the evolution of `ds`, the state of `task` is running which implies `ds` can be driven. ```@repl rode_system_ex task task2 ``` To terminate the `task` safely, `ds` should be terminated safely. ```@repl rode_system_ex put!(trg, NaN) put!(ds.output, [NaN, NaN]) ``` Note that the state of `task` is `done` which implies the `task` has been terminated safely. ```@repl rode_system_ex task task2 ``` ## Full API ```@docs @def_rode_system RODESystem MultiplicativeNoiseLinearSystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
4210
# SDESystem ## Construction of SDESystems A `SDESystem` is represented by the state function ```math dx = f(x, u, t) dt + h(x, u, t)dW ``` where ``t`` is the time, ``x \in R^n`` is the value of state, ``u \in R^p`` is the value of the input. ``W`` is the Wiener process of the system. The output function is defined by ```math y = g(x, u, t) ``` where ``y`` is the value of output at time ``t``. As an example consider a system with the following stochastic differential equation ```math \begin{array}{l} dx = -x dt - x dW \end{array} ``` and the following output equation ```math y = x ``` The state function `statefunc` and the output function `outputfunc` is defined as follows. ```@repl sde_system_ex using Jusdl # hide f(dx, x, u, t) = (dx[1] = -x[1]) h(dx, x, u, t) = (dx[1] = -x[1]) ``` The state function `statefunc` is the tuple of drift and diffusion functions ```@repl sde_system_ex statefunc = (f, h) ``` The output function `outputfunc` is defined as, ```@repl sde_system_ex g(x, u, t) = x ``` Note that the in drift function `f` and diffusion function `g`, the vector `dx` is *mutated* while in the output function `g` no mutation is done, but the output value is generated instead. From the definition of drift function `f` and the diffusion function `g`, it is seen that the system does not have any input, that is, the input of the system is `nothing`. Since all the state variables are taken as outputs, the system needs an output bus of length 1. Thus, ```@repl sde_system_ex input = nothing output = Outport(1) ``` At this point, we are ready to construct the system `ds`. ```@repl sde_system_ex ds = SDESystem(righthandside=statefunc, readout=g, state=[1.], input=input, output=output) ``` ## Basic Operation of SDESystems The basic operation of a `SDESystem` is the same as those of other dynamical systems. When triggered from its `trigger` link, a `SDESystem` reads its time `t` from its `trigger` link, reads its input value from its `input`, solves its state equation, which is a stochastic differential equation, computes its output and writes its computed output to its `output` bus. In this section, we continue with the system `ds` constructed in the previous section. To make `ds` drivable, we need to `launch` it. ```@repl sde_system_ex iport, trg, hnd = Inport(1), Outpin(), Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) task = launch(ds) task2 = @async while true all(take!(iport) .=== NaN) && break end ``` When launched, `ds` can be driven. For this, either of the syntax `put!(ds.trigger, t)` or `drive(ds, t)` can be used. ```@repl sde_system_ex put!(trg, 1.) ``` After this command, `ds` reads its time `t` from its `trigger` link, solves its state function and computes its output. The calculated output value is written to the buffer of `output`. To signal that, the step is takes with success, `ds` writes `true` to its `handshake` link. To further drive `ds`, this `handshake` link must be read. For this either of the syntax, `take!(ds.handshake)` or `approve!(ds)` can be used ```@repl sde_system_ex hnd.link take!(hnd) ``` At this point, we can further drive `ds`. ```@repl sde_system_ex for t in 2. : 10. put!(trg, t) take!(hnd) end ``` Note that during the evolution, the output of `ds` is written into the buffers of `output` bus. ```@repl sde_system_ex iport[1].link.buffer ``` !!! warning The values of the output is written into buffers if the `output` of the systems is not `nothing`. When we launched `ds`, we constructed a `task` whose state is `running` which implies that the `ds` can be drivable. As long as this `task` is running, `ds` can be drivable. !!! warning The state of the `task` is different from `running` in case an exception is thrown. To terminate the `task` securely, we need to terminate `ds` securely. To do that, can use `terminate!(ds)`. ```@repl sde_system_ex put!(trg, NaN) put!(ds.output, [NaN]) ``` Note that the `task` is terminated without a hassle. ```@repl sde_system_ex task task2 ``` ## Full API ```@docs @def_sde_system SDESystem NoisyLorenzSystem ForcedNoisyLorenzSystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
4435
# StaticSystems ## Basic Operation of StaticSystems A static system is a system whose output `y` at time `t` depends on the current time `t` and the value of its input `u`. The input-output relation of a static systems is represented by its output function `outputfunc` which is of the form ```math y = g(u, t) ``` where `g` is the output function `outputfunc`. Note that `outputfunc` is expected to have two inputs, the value `u` of the `input` and the current time `t`. The simulation in `Jusdl` is a clocked-simulation, that is the data flowing through the input and output connections of components is actually sampled at time `t`. Therefore, for example, the system modeled by ```math y(t) = g(u(t),t) ``` is actually sampled at clock ticks `t` which is generated by a [`Clock`](@ref). Therefore the sampled system corresponds to ```math y[k] = g(u_k, t_k) ``` where ``k`` is ``k_i T_s`` where ``k_i`` is an integer number, ``T_s`` is the sampling interval. ``T_s`` corresponds to sampling time `dt` of [`Clock`](@ref). Thus, the system given above is coded like ```julia function g(u, t) # Define the relation `y = g(u, t)` end ``` For further clarity, let us continue with a case study. Consider the following static system, ```math y(t) = g(u(t), t) = \left[ \begin{array}{l} t u_1(t) \\ sin(u_1(t)) \\ cos(u_2(t)) \end{array} \right] ``` Note that the number of inputs is 2 and the number of outputs of is 3. To define such a system, the output function is written as ```@repl static_system_ex using Jusdl # hide g(u, t) = [t * u[1], sin(u[1]), cos(u[2])] ``` Note that the function `g` is defined in such a way that the input value `u` is sampled, which implies `u` is not a vector of function but is a vector of real. Having defined output function `outputfunc`, the system can be constructed. ```@repl static_system_ex ss = StaticSystem(readout=g, input=Inport(2), output=Outport(3)) ``` Note the construction of input bus `Inport(2)` and output bus `Outport(3)` by recalling that the number of input is 2 and the number of output is 3. A [`StaticSystem`](@ref) evolves by being triggered through its `trigger` pin. When triggered from its `trigger` pin, a `StaticSystem` reads the current time `t` from its `trigger` pin and computes its output `y` according to its output function `outputfunc` and writes its output `y(t)` to its `output` port (if `output` port exists since `output` port may be nothing depending on the relation defined by `outputfunc`). When constructed, a `StaticSystem` is not ready to be triggered since its `trigger` pin is not writeable. To make `ss` drivable, we need to construct the ports and pins for input-output and signaling. ```@repl static_system_ex oport, iport, trg, hnd = Outport(length(ss.input)), Inport(length(ss.output)), Outpin(), Inpin{Bool}() connect!(oport, ss.input) connect!(ss.output, iport) connect!(trg, ss.trigger) connect!(ss.handshake, hnd) task = launch(ss) taskout = @async while true all(take!(iport) .=== NaN) && break end ``` Now, `ss` is drivable from its `trg` pin. ```@repl static_system_ex ss.trigger.link ``` Now let us drive `ss`. ```@repl static_system_ex put!(trg, 1.) ``` As this point `ss` wait for its to be written. Let us write some data to `oport`. ```@repl static_system_ex put!(oport, [10., 10.]) ``` `ss` read the value `u` of its `input`(since `ss.input` is connected to `oport`), read the current time `t`, and computed its output value `y` and wrote it its `output` port. To signal that it succeeded to be take the step, it put a `true` to its handshake which needs to be taken. ```@repl static_system_ex hnd.link take!(hnd) ``` We can see the current data in the `output` of `ss` through `iport` (since `iport` is connected to `ss.output`) ```@repl static_system_ex iport[1].link.buffer ``` Let us further drive `ss`. ```@repl static_system_ex for t in 2. : 10. put!(trg, t) put!(oport, [10 * t, 20 * t]) take!(hnd) end ``` The data written to the `output` of `ss` is also written to the internal buffers of `output`. ```@repl static_system_ex iport[1].link.buffer ``` In addition to the generic [`StaticSystem`](@ref), `Jusdl` provides some well-known static systems given in the next section. ## Full API ```@docs @def_static_system StaticSystem Adder Multiplier Gain Terminator Memory Coupler Differentiator ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2057
# Subsystem ## Construction of SubSystems A SubSystem consists of connected components. Thus, to construct a `SubSystem`, we first construct components, connect them and specify the input and output of `SubSystem`. ## Basic Operation of SubSystems The operation of a `SubSystem` is very similar to that of a [`StaticSystem`](@ref). The only difference is that when a `SubSystem` is triggered through its `trigger` pin, it distributes the trigger to the trigger pins of its components. Then, each of the components of the `SubSystem` takes steps individually. Let us construct a subsystem consisting of a generator and an adder. ```@repl subsystem_ex using Jusdl # hide gen = ConstantGenerator() adder = Adder((+,+)) ``` Connect the generator and adder. ```@repl subsystem_ex connect!(gen.output, adder.input[1]) ``` We are ready to construct a `SubSystem`. ```@repl subsystem_ex sub = SubSystem([gen, adder], [adder.input[2]], adder.output) ``` To trigger the `sub`, we need to launch it. For that purpose, we construct ports and pins for input-output and signaling. ```@repl subsystem_ex oport, iport, trg, hnd = Outport(length(sub.input)), Inport(length(sub.output)), Outpin(), Inpin{Bool}() connect!(oport, sub.input) connect!(sub.output, iport) connect!(trg, sub.trigger) connect!(sub.handshake, hnd) t = launch(sub) t2 = @async while true all(take!(iport) .=== NaN) && break end ``` `sub` is ready to be triggered, ```@repl subsystem_ex put!(trg, 1.) ``` Put some data to the input of `sub` via `oport` (since `oport` is connected to `sub.input`) ```@repl subsystem_ex put!(oport, [1.]) ``` The step needs to be approved. ```@repl subsystem_ex take!(hnd) ``` Now print the data written to the outputs of the components of `sub`. ```@repl subsystem_ex sub.components[1].output[1].links[1].buffer[1] sub.components[2].output[1].links[1].buffer[1] ``` Note that when `sub` is triggered, `sub` transfer the trigger to all its internal components. ```@autodocs Modules = [Jusdl] Pages = ["subsystem.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3517
# Links [`Link`](@ref)s are built on top of [`Channel`s](https://docs.julialang.org/en/v1/manual/parallel-computing/#Channels-1) of Julia. They are used as communication primitives for [`Task`s](https://docs.julialang.org/en/v1/manual/control-flow/#man-tasks-1) of Julia. A [`Link`](@ref) basically includes a `Channel` and a `Buffer`. The mode of the buffer is `Cyclic`.(see [Buffer Modes](@ref) for information on buffer modes). Every item sent through a [`Link`](@ref) is sent through the channel of the [`Link`](@ref) and written to the [`Buffer`](@ref) so that all the data flowing through a [`Link`](@ref) is recorded. ## Construction of Links The construction of a `Link` is very simple: just specify its buffer length and element type. ```@repl using Jusdl # hide Link{Bool}(5) Link{Int}(10) Link(5) Link() ``` ## Data Flow through Links The data can be read from and written into [`Link`](@ref)s if active tasks are bound to them. [`Link`](@ref)s can be thought of like a pipe. In order to write data to a [`Link`](@ref) from one of its ends, a task that reads written data from the other end must be bounded to the [`Link`](@ref). Similarly, in order to read data from one of the [`Link`](@ref) from one of its end, a task that writes the read data must be bound to the [`Link`](@ref). Reading from and writing to [`Link`](@ref) is carried out with [`take!`](@ref) and [`put!`](@ref) functions. For more clarity, let us see some examples. Let us first construct a `Link`, ```@repl link_writing_ex_1 using Jusdl # hide l = Link(5) ``` `l` is a `Link` with a buffer length of `5` and element type of `Float64`. Not that the `l` is open, but it is not ready for data reading or writing. To write data, we must bound a task that reads the written data. ```@repl link_writing_ex_1 function reader(link::Link) # Define job. while true val = take!(link) val === NaN && break # Poison-pill the tasks to terminate safely. end end t = @async reader(l) ``` The `reader` is defined such that the data written from one end of `l` is read until the data is `NaN`. Now, we have runnable a task `t`. This means the `l` is ready for data writing. ```@repl link_writing_ex_1 put!(l, 1.) put!(l, 2.) ``` Note that the data flown through the `l` is written to its `buffer`. ```@repl link_writing_ex_1 l.buffer ``` To terminate the task, we must write `NaN` to `l`. ```@repl link_writing_ex_1 put!(l, NaN) # Terminate the task t # Show that the `t` is terminated. ``` Whenever the bound task to the `l` is runnable, the data can be written to `l`. That is, the data length that can be written to `l` is not limited by the buffer length of `l`. But, beware that the `buffer` of `Link`s is `Cyclic`. That means, when the `buffer` is full, its data is overwritten. ```@repl link_writing_ex_1 l = Link(5) t = @async reader(l) for item in 1. : 10. put!(l, item) @show outbuf(l.buffer) end ``` The case is very similar to read data from `l`. Again, a runnable task is bound the `l` ```@repl link_reading_ex_1 using Jusdl # hide l = Link(5) function writer(link::Link, vals) for val in vals put!(link, val) end end t = @async writer(l, 1.:5.) bind(l, t) take!(l) take!(l) ``` It is possible to read data from `l` until `t` is active. To read all the data at once, `collect` can be used. ```@repl link_reading_ex_1 t collect(l) t # Show that `t` is terminated. ``` ## Full API ```@autodocs Modules = [Jusdl] Pages = ["link.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2937
# Pins `Pin`s are building blocks of [Ports](@ref). Pins can be thought of *gates* of components as they are the most primitive type for data transfer inside and outside the components. There are two types of pins: [`Outpin`](@ref) and [`Inpin`](@ref). The data flows from inside of the components to its outside through `Outpin` while data flow from outside of the components to its inside through `Inpin`. ## Connection and Disconnection of Pins In Jusdl, signal flow modelling approach is adopted(see [Modeling](@ref) and [Simulation](@ref section) for more information on modelling approach in Jusdl). In this approach, the components drive each other and data flow is unidirectional. The unidirectional data movement is carried out though the [`Link`](@ref)s. A `Link` connects `Outpin`s to `Inpin`s, and the data flow is from `Outpin` to `Inpin`. !!! note As the data movement is from `Outpin` to `Inpin`, connection of an `Inpin` to an `Outpin` gives a `MethodError`. For example, let us construct and `Outpin` and `Inpin`s and connect the together. ```@repl pin_example_1 using Jusdl # hide op = Outpin() ip = Inpin() link = connect!(op, ip) ``` Note `connect!(op, ip)` connects `op` and `ip` through a `Link` can return the constructed link. The connection of pins can be monitored. ```@repl pin_example_1 isconnected(op, ip) ``` The constructed `link` can be accessed though the pins. ```@repl pin_example_1 op.links[1] === link ip.link === link ``` !!! note It is possible for an [`Outpin`](@ref) to have multiple [`Link`](@ref)s bound to itself. On contract, an [`Inpin`](@ref) can have just one [`Link`](@ref). The connected links `Outpin` and `Inpin` can be disconnected using [`disconnect!`](@ref) function. When disconnected, the data transfer from the `Outpin` to `Inpin` is not possible. ## Data Flow Through Pins The data flow from an `Outpin` to an `Inpin`. However for data flow through a pin, a running task must be bound the channel of the link of the pin. See the example below. ```@repl pin_example_1 t = @async while true take!(ip) === NaN && break end ``` As the task `t` is bound the channel of the `link` data can flow through `op` and `ip`. ```@repl pin_example_1 put!(op, 1.) put!(op, 2.) put!(op, 3.) ``` Note that `t` is a taker job. As the taker job `t` takes data from `op`, we were able to put values into `op`. The converse is also possible. ```@repl pin_example_1 op2, ip2 = Outpin(), Inpin() link2 = connect!(op2, ip2) t2 = @async for item in 1 : 5 put!(op2, item) end take!(ip2) take!(ip2) ``` Note that in both of the cases given above the data flow is always from an `Outpin` to an `Inpin`. !!! warning It is not possible to take data from an `Outpin` and put into `Inpin`. Thus, `take!(pin::Outpoin)` and `put!(pin::Inpin)` throws a method error. ## Full API ```@autodocs Modules = [Jusdl] Pages = ["pin.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3166
# Ports A `Port` is actually is a bunch of pins (See [Pins](@ref) for mor information on pins.). As such, the connection, disconnection and data transfer are very similar to those of pins. Basically, there are two type of port: [`Outport`](@ref) and [`Inport`](@ref). The data flows from outside of a component to its inside through an `Inport` while data flows from inside of the component to its outside through an `Outport`. ## Construction of Ports A port (both `Inport` and `Outport`) is constructed by specifying its element type `T`, the number of pins `npins` and the buffer length of its pins. ```@repl port_example_1 using Jusdl # hide Outport{Bool}(5) Outport{Int}(2) Outport(3) Outport() Inport{Bool}(5) Inport{Int}(2) Inport(3) Inport() ``` ## Connection and Disconnection of Ports The ports can be connected to and disconnected from each other. See the following example. Let us construct and `Outport` and an `Inport` and connect them together. ```@repl port_example_1 op1 = Outport(2) ip1 = Inport(2) ls = connect!(op1, ip1) ``` Note that we connected all pins of `op` to `ip`. We cannot connect the ports partially. ```@repl port_example_1 op2, ip21, ip22 = Outport(5), Inport(2), Inport(3) ls1 = connect!(op2[1:2], ip21) ls2 = connect!(op2[3:5], ip22) ``` The connectedness of ports can be checked. ```@repl port_example_1 isconnected(op2[1], ip21[1]) isconnected(op2[1], ip21[2]) isconnected(op2[1:2], ip21) isconnected(op2[3:5], ip22) isconnected(op2[5], ip22[3]) ``` Connected ports can be disconnected. ```@repl port_example_1 disconnect!(op2[1], ip21[1]) disconnect!(op2[2], ip21[2]) disconnect!(op2[3:5], ip22) ``` Now check again the connectedness, ```@repl port_example_1 isconnected(op2[1], ip21[1]) isconnected(op2[1], ip21[2]) isconnected(op2[1:2], ip21) isconnected(op2[3:5], ip22) isconnected(op2[5], ip22[3]) ``` ## Data Flow Through Ports Data flow through the ports is very similar to the case in pins(see [Data Flow Through Pins](@ref) for information about data flow through pins). Running tasks must be bound to the links of pins of the ports for data flow through the ports. Let us construct an `Outport` and an `Inport`, connect them together with links and perform data transfer from the `Outport` to the `Inport` through the links. ```@repl port_example_1 op3, ip3 = Outport(2), Inport(2) ls = connect!(op3, ip3) t = @async while true val = take!(ip3) all(val .=== NaN) && break println("Took " * string(val)) end put!(op3, 1.); ip3[1].link.buffer ``` Note that the data flowing through the links are also written into the buffers of links. ## Indexing and Iteration of Ports Ports can be indexed similarly to the arrays in Julia. When indexed, the corresponding pin of the port is returned. ```@repl port_example_1 op4 = Outport(3) op4[1] op4[end] op4[:] op4[1] = Outpin() op4[1:2] = [Outpin(), Outpin()] ``` The iteration of `Port`s in a loop is also possible. When iterated, the pins of the `Port` is returned. ```@repl port_example_1 ip5 = Inport(3) for pin in ip5 @show pin end ``` ## Full API ```@autodocs Modules = [Jusdl] Pages = ["port.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
5107
# Model ## Signal-Flow Approach in Modelling Jusdl adopts *signal-flow* approach in systems modelling. In signal-flow approach, a [`Model`](@ref) consists of connected components. The components are data processing units and the behavior, i.e, the mathematical model, of the component determines how the data is processed. Connections connects the components each other and the data is transferred between components by means of connections. The data flow through the connections is unidirectional, i.e., a component is driven by other components that write data to its input bus. ## Construction of Models A `Model` consists of connected components. The components of are defined first and the `Model` consisting of these components can be constructed. Or, an empty model can be constructed. Let us continue with some examples. We will construct very simple `Model` consisting of a [`SinewaveGenerator`](@ref) and a [`Writer`](@ref). We construct an empty `Model` first, then we add nodes and branches as desired. ```@repl model_construction_ex using Jusdl # hide model = Model() addnode!(model, SinewaveGenerator(), label=:gen) addnode!(model, Writer(Inport()), label=:writer) addbranch!(model, :gen => :writer, 1 => 1) ``` ## Simulation of Models A `Model` to to be simulated consists of components connected to each other an a time reference. ```@repl model_construction_ex model.nodes # Model components model.branches # Model components model.clock # Model time reference ``` The time reference is used to sample the continuous time signals flowing through the busses of the model and to rigger the components. The simulation is performed by triggering the components with the pulses generated by the time reference at simulation sampling time intervals. Having been triggered, the components evolve themselves, compute their outputs and writes them to their outputs. ## Simulation Stages ### Inspection The inspection stage is the first stage of the simulation process. In this stag,e the model is first inspected in terms of whether it is ready for simulation. This inspection is carried out to see whether the model has some inconsistencies such as unterminated busses or presence of algebraic loops. If the model has unterminated busses, the data that is supposed to flow those unterminated busses cannot flow through those busses and the simulation gets stuck. An algebraic is the subset of model components whose output depends directly on their inputs. In such a case, none of the components can produce outputs to break the loop which leads again the obstruction of simulation. Thus, to continue the simulation, the model must not contain any of those inconsistencies. The model inspection is done with [`inspect!`](@ref) function. ### Initialization If the inspection stage results positive, the initialization stage comes next. In this stage, the tasks required for the busses of the model to be both readable and writable are activated and bound the busses. To this end, a reader and writer task are activated and bound to both sides of each bus. To initialize the model, [`initialize!`](@ref) function is used. When the model is initialized, the pairs of components and component tasks are recorded into the task manager of the model. During the rest of the simulation, task manager keeps track of the tasks. Any exception or error that is thrown during the run stage of the simulation can be observed by means of the task manager of the model. ### Run The run stage follows the initialization stage. The tasks activated in the initialization stage wait for the components to be triggered by the model time reference. During the run stage, time reference, that is the model clock, triggers the components by writing pulses that are generated in the intervals of the sampling period of the simulation to their trigger links. The job defined in a task is to read input dat a from the its input bus, to calculate its next state, if any, and output, and write its calculated output to its output bus. The run stage, starts at the initial time of the time reference and continues until the end time of the time reference. [`run!`](@ref) function is used to run the models, ### Termination After the run stage, the tasks opened in the initialization stage are closed and the simulation is terminated. [`terminate!`](@ref) function is used to terminate the model `Model`s are constructed to [`simulate!`](@ref) them. During the simulation, components of the `Model` process data and the data is transferred between the components via connection. Thus, to simulate the `Model`s, the components **must be connected**. In our model, the `writer` is used to record the output of `gen`. Thus, the flows from `gen` to `writer`. Thus, we connect `gen` output to `writer` input. !!! note During the `Model` construction, **the order of addition of nodes to the model is not important**. The nodes can be given in any order. ## Full API ```@autodocs Modules = [Jusdl] Pages = ["model.jl"] Order = [:type, :function] ``` ```@docs @defmodel ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
945
# Simulation During the simulation of a `model`, a [`Simulation`](@ref) object is constructed. The field names of the `Simulation` object is * `model::Model`: The model for which the `Simulation` is constructed. * `path::String`: The path of the directory into which all simulation-related files (log, data files etc.) are saved. * `logger::AbstractLogger`: The logger of the simulation constructed to log each stage of the `Simulation` . * `state::Symbol`: The state of the `Simulation`. The `state` may be `:running` if the simulation is running, `:halted` is the simulation is terminated without being completed, `:done` if it is terminated. * `retcode::Symbol`: The return code of the simulation. The `retcode` may be `:success` if the simulation is completed without errors, `:failed` if the an error occurs during the simulation. ## Full API ```@autodocs Modules = [Jusdl] Pages = ["simulation.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
1431
# Task Manager A [`TaskManager`](@ref) is actually the pairs of components and the tasks constructed corresponding to those components. In `Jusdl`, models are simulated by individually evolving the components. This individual evolution of components is performed by defining components individually and constructing tasks for each components. The jobs that are defined in these tasks are defined to make the components evolve by reading its time, input, compute its output. During this evolution, the tasks may fail because any inconsistency. Right after the failure of a task, its not possible for the component corresponding to the task to evolve any more. As the data flows through the components that connects the components, model simulation gets stuck. To keep track of the task launched for each component, a `TaskManager` is used. Before starting to simulate a model, a `TaskManager` is constructed for the model components. During the initialization of simulation, tasks corresponding to the components of the model is launched and the pair of component and component task is recorded in the `TaskManager` of the model. During the run stage of the simulation, `TaskManager` keeps track of the component tasks. In case any failure in components tasks, the cause of the failure can be investigated with `TaskManager`. ## Full API ```@autodocs Modules = [Jusdl] Pages = ["taskmanager.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2233
# Plugins Plugins are extensions that are used to process online the data flowing through the connections of the model during the simulation. These tools are specialized tools that are used for specialized data processing. In addition to the plugins that are provided by `Jusdl`, it is also possible to write new plugins that focus on different specialized data processing. The fundamental importance of `Plugin`s is that they make the online simulation data processing possible. The `Plugin`s are mostly used with [Sinks](@ref). In `Jusdl`, the `Sink`s are used to *sink* simulation data flowing through the connections of the model. When a `Sink` is equipped with a proper `Plugin` according to the data processing desired, then the data flowing into the `Sink` is processed. For example, consider that a `Writer` is equipped with a `Lyapunov` plugin. During the simulation, data flowing into the `Writer` is processed to compute the maximum Lyapunov exponent, and these computed maximum Lyapunov exponents are recorded in the file of the `Writer`. Similarly, if a `Printer` is equipped with an `Fft` plugin, then Fast Fourier transform of the data flowing into the `Printer` is printed on the console. ## Data processing via Plugins Each `Plugin` must have a `process` function which does the data processing. The first argument of the `process` function is the `Plugin` and the second argument is the data to be processed. Here are some of the methods of `process` function ## Defining New Plugins New plugins can be defined in `Jusdl` and having they are defined properly they can work just expected. To define a new plugin, we must first define the plugin type ```@repl plugin_ex using Jusdl # hide struct NewPlugin <: AbstractPlugin # Parameters of NewPlugin end ``` !!! warning Note that to the `NewPlugin` is defined to be a subtype of `AbstractPlugin`. This is important for the `NewPlugin` to work as expected. Since each plugin must have implement a `process` method, and for that `Jusdl.process` function must be imported. ```@repl plugin_ex import Jusdl.process function process(plg::NewPlugin, x) # Define the process according to plg end ``` At this point, `NewPlugin` is ready to be used.
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2529
# Buffer A [`Buffer`](@ref) is a used to *buffer* the data flowing the connections of a model. Data can be read from and written into a buffer. The mode of the buffer determines the way to read from and write into the buffers. ## Buffer Modes [`BufferMode`](@ref) determines the way the data is read from and written into a [`Buffer`](@ref). Basically, there are four buffer modes: [`Normal`](@ref), [`Cyclic`](@ref), [`Fifo`](@ref) and [`Lifo`](@ref). `Normal`, `Fifo` and `Lifo` are subtypes of [`LinearMode`](@ref) and `Cyclic` is a subtype of [`CyclicMode`](@ref). ## Buffer Constructors The [`Buffer`](@ref) construction is very similar to the construction of arrays in Julia. Just specify the mode, element type and length of the buffer. Here are some examples: ```@repl using Jusdl # hide Buffer{Fifo}(2, 5) Buffer{Cyclic}(2, 10) Buffer{Lifo}(Bool, 2, 5) Buffer(5) ``` ## Writing Data into Buffers Writing data into a [`Buffer`](@ref) is done with [`write!`](@ref) function. Recall that when the buffer is full, no more data can be written into the buffer if the buffer mode is of type `LinearMode`. ```@repl using Jusdl # hide normalbuf = Buffer{Normal}(3) foreach(item -> write!(normalbuf, item), 1:3) normalbuf write!(normalbuf, 4.) ``` This situation is the same for `Lifo` and `Fifo` buffers, but not the case for `Cyclic` buffer. ```@repl using Jusdl # hide cyclicbuf = Buffer{Cyclic}(3) foreach(item -> write!(cyclicbuf, item), 1:3) cyclicbuf write!(cyclicbuf, 3.) write!(cyclicbuf, 4.) ``` ## Reading Data from Buffers Reading data from a `Buffer` is done with [`read`](@ref) function. ```@repl using Jusdl # hide nbuf, cbuf, fbuf, lbuf = Buffer{Normal}(5), Buffer{Cyclic}(5), Buffer{Lifo}(5), Buffer{Fifo}(5) foreach(buf -> foreach(item -> write!(buf, item), 1 : 5), [nbuf, cbuf, fbuf, lbuf]) for buf in [nbuf, cbuf, fbuf, lbuf] @show buf for i in 1 : 5 @show read(buf) end end ``` ## AbstractArray Interface of Buffers A `Buffer` can be indexed using the similar syntax of arrays in Julia. That is, `getindex` and `setindex!` methods can be used with known Julia syntax. i.e. `getindex(buf, idx)` is equal to `buf[idx]` and `setindex(buf, val, idx)` is equal to `buf[idx] = val`. ```@repl using Jusdl # hide buf = Buffer(5) size(buf) length(buf) for val in 1 : 5 write!(buf, 2val) end buf[1] buf[3:4] buf[[3, 5]] buf[end] buf[1] = 5 buf[3:5] = [7, 8, 9] ``` ## Full API ```@autodocs Modules = [Jusdl] Pages = ["buffer.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2160
# Callback `Callback`s are used to monitor the existence of a specific event and if that specific event occurs, some other special jobs are invoked. `Callback`s are intended to provide additional monitoring capability to any user-defined composite types. As such, `Callback`s are *generally* fields of user defined composite types. When a `Callback` is called, if the `Callback` is enabled and its `condition` function returns true, then its `action` function is invoked. ## A Simple Example Let's define a test object first that has a field named `x` of type `Int` and named `callback` of type `Callback`. ```julia julia> mutable struct TestObject x::Int callback::Callback end ``` To construct an instance of `TestObject`, we need to construct a `Callback`. For that purpose, the `condition` and `action` function must be defined. For this example, `condition` checks whether the `x` field is positive, and `action` prints a simple message saying that the `x` field is positive. ```julia julia> condition(testobject) = testobject.x > 0 condition (generic function with 1 method) julia> action(testobject) = println("testobject.x is greater than zero") action (generic function with 1 method) ``` Now a test object can be constructed ```julia julia> testobject = TestObject(-1, Callback(condition, action)) TestObject(-1, Callback{typeof(condition),typeof(action)}(condition, action, true, "dac6f9eb-6daa-4622-a8fa-623f0f88780c")) ``` If the callback is called, no action is performed since the `condition` function returns false. Note the argument sent to the callback. The instance of the `TestObject` to which the callback is bound. ```julia julia> testobject.callback(testobject) ``` Now mutate the test object so that `condition` returns true. ```julia julia> testobject.x = 3 3 ``` Now, if the callback is called, since the `condition` returns true and the callback is `enabled`, the `action` is invoked. ```julia julia> testobject.callback(testobject) testobject.x is greater than zero ``` ## Full API ```@docs Callback ``` ```@autodocs Modules = [Jusdl] Pages = ["callback.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
8677
# Modeling Jusdl adopts signal-flow approach in modeling systems. Briefly, in the signal-flow approach a model consists of components and connections. The simulation of the model is performed in a clocked simulation environment. That is, the model is not simulated in one shot by solving a huge mathematical equation, but instead is simulated by evolving the components individually and in parallel in different sampling intervals. The components interact with each other through the connections that are bound to their port. The components are data processing units, and it is the behavior of the component that determines how the data is processed. The component behavior is defined by the mathematical equations obtained as a result of the physical laws that the physical quantities used in the modeling of the component must comply. Depending upon the nature of the system and the modeling, these equations may change, i.e. they may or may not contain derivative terms, or they may contain the continuous time or discrete time variable, etc. The data-flow through the connections is unidirectional, i.e., a component is driven by other components that write data to its input port. Model simulation is performed by evolving the components individually. To make the components have a common time base, a common clock is used. The clock generates pulses at simulation sampling intervals. These pulses are used to trigger the components during the run stage of the simulation. Each component that is triggered reads its input data from its input port, calculates its output, and writes its output to its output port. ```@raw html <center> <img src="../../assets/Model/model.svg" alt="model" width="50%"/> </center> ``` ## Components The component types in Jusdl are shown in the figure below together with output and state equations. The components can be grouped as sources, sinks, and systems. The sources are components that generate signals as functions of time. Having been triggered, a source computes its output according to its output function and writes it to its output port. The sources do not have input ports as their outputs depend only on time. The sinks are data processing units. Their primary objective is to process the data flowing through the connections of the model online. Having been triggered, a sink reads its input data and processes them, i.e. data can be visualized by being plotted on a graphical user interface, can be observed by being printed on the console, can be stored on data files. The data processing capability of the sinks can be enriched by integrating new plugins that can be developed using the standard Julia library or various available Julia packages. For example, invariants, spectral properties, or statistical information can be derived from the data, parameter estimation can be performed or various signal processing techniques can be applied to the data. Jusdl has been designed to be flexible enough to allow one to enlarge the scope of its available plugins by integrating newly-defined ones. ```@raw html <center> <img src="../../assets/Components/components.svg" alt="model" width="85%"/> </center> ``` As the output of a static system depends on input and time, a static system is defined by an output equation. Having been triggered, a static system reads its input data, calculates its output, and writes it to its output port. In dynamical systems, however, system behavior is characterized by states and output of a dynamical system depends on input, previous state and time. Therefore, a dynamical system is defined by a state equation and an output equation. When triggered, a dynamical system reads its input, updates its state according to its state equation, calculates its output according to its output equation, and writes its output to its output port. Jusdl is capable of simulating the dynamical systems with state equations in the form of the ordinary differential equation(ODE), differential-algebraic equation(DAE), random ordinary differential equation(RODE), stochastic differential equation(SDE), delay differential equation(DDE) or discrete difference equation. Most of the available simulation environments allow the simulation of systems represented by ordinary differential equations or differential-algebraic equations. Therefore, analyzes such as noise analysis, delay analysis or random change of system parameters cannot be performed in these simulation environments. On the contrary, Jusdl makes it possible for all these analyses to be performed owing to its ability to solve such a wide range of state equations. ## Ports and Connections A port is actually a bunch of pins to which the connections are bound. There are two types of pins: an output pin that transfers data from the inside of the component to its outside, and an input pin that transfers data from the outside of component to its inside. Hence, there are two types of ports: an output port that consists of output pins and input port that consists of input pins. The data transferred to a port is transferred to its connection(or connections as an output port may drive multiple connections). The data transfer through the connections is performed over the links of the connections. The links are built on top Julia channels.The data written to(read from) a link is written to(read from) the its channel. Active Julia tasks that are bound to channels must exist for data to flow over these channels. Julia tasks are control flow features that allow calculations to be flexibly suspended and maintained without directly communicating the task scheduler of the operating system. Communication and data exchange between the tasks are carried out through Julia channels to which they are bound. ```@raw html <head> <style> * { box-sizing: border-box; } .column { float: left; width: 33.33%; padding: 5px; } /* Clearfix (clear floats) */ .row::after { content: ""; clear: both; display: table; } /* Responsive layout - makes the three columns stack on top of each other instead of next to each other */ @media screen and (max-width: 500px) { .column { width: 100%; } } </style> </head> <body> <div class="row"> <div class="column"> <img src="../../assets/Tasks/reader_task.svg" alt="reader_task" style="width:45%"> </div> <div class="column"> <img src="../../assets/Tasks/writer_task.svg" alt="writer_task" style="width:45%"> </div> <div class="column"> <img src="../../assets/Tasks/reader_writer_task.svg" alt="reader_writer_task" style="width:75%"> </div> </div> </body> ``` In the figure above is shown symbolically the tasks that must be bound to the channel to make a channel readable, writable and both readable and writable. The putter and the taker task is the task that writes data to and reads data from the channel, respectively. To be able to read data from one side of the channel, an active putter task must be bound to the channel at the other side of the channel, and the channel is called a readable channel. Similarly, to be able to write data to one side of the channel, an active taker task must be bound to the channel on the other side, and the channel is called a writable channel. If both active putter and taker tasks are bound to either side of the channel, then the data can both be read from and written to the channel, and the channel is called both readable and writable channel. The data-flow through the channel is only achieved if the channel is both readable and writable channels. The data read from a readable channel is the data written to the channel by the putter task of the channel. If data has not been written yet to the channel by the putter task of the channel during a reading process, then reading does not occur and the putter task is waited to put data to the channel. Similarly, if the data on the channel has not been read yet from the channel by the taker task during a writing process, then the taker task is waited to take data from the channel. In the modeling approach adopted, the components reading data from a connection are driven by other components writing data to the connection. Therefore, all of the connections of the model must be both readable and writable connections so that data can flow the connections. This means that all the connections of the model must be connected to a component from both ends. Otherwise, the simulation gets stuck and does not end during a reading process from a channel that is not connected to a component.
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
5663
# [Simulation](@id section) A model to be simulated consists of components connected to each other and a time reference. The time reference is used to sample the continuous-time signals flowing through the connections of the model and to trigger the components. The simulation is performed by triggering the components with pulses generated by the time reference at simulation sampling time intervals. Having been triggered, the components evolve themselves, compute their outputs, and writes them to their output ports. ```@raw html <center> <img src="../../assets/FlowChart/flowchart.svg" alt="model" width="60%"/> </center> ``` The simulation stages are shown in the flow chart in the figure above. Performing, inspecting, and reporting of all the stages of the simulation is carried out automatically without requiring any user intervention. In the first stage, the model is inspected to see if there are connections having any unconnected terminals. If a connection having an unconnected terminal is detected, the simulation is terminated at this stage. Another case where the model is not suitable for simulation is when algebraic loops exist. For example, almost every feedback system model includes algebraic loops. An algebraic loop is a closed-loop consisting of one or more components whose outputs are directly dependent on their inputs. The simulation does not continue because none of the components in the loop can generate output to break the loop. Such a problem can be broken by rearranging the model without algebraic loops, solving the feed-forward algebraic equation of the loop, or inserting a memory component with a certain initial condition anywhere in the loop. Jusdl provides all these loop-breaking solutions. During the inspection stage, in case they are detected, all the loops are broken. Otherwise, a report is printed to notify the user to insert memory components to break the loops. In case the inspection phase results positive, the putter and taker tasks are launched in order to ensure the data flow through the model connections. At this point, a putter and a taker task are bound to each connection. For example, in the figure below(on the left) is given an example model section consisting of components B1, B and the connections L1, L2, L3. When triggered, the B1 reads data from L1 calculates its output and writes to L2. Similarly, when triggered B2 reads data from the L2, calculates its output, and writes to the L3. The tasks that are bounded to L1, L2, and L3 corresponding to B1 and B2 are shown in the figure below(on the right). Since B1 reads the data from L1 and writes data to L2, a taker task is bounded to L1 and a putter task is bounded L2. Similarly, since B2 reads the data from L2 and writes data to L3, a taker task is bounded to L2 and a putter task is bounded L3. Since both a putter and a taker task are bound to the L2, data can flow from B1 to B2 through L2. A task manager is constructed to check whether the tasks launched during the initialization stage are active or not throughout the simulation and to report the error in case an error occurs. ```@raw html <head> <style> * { box-sizing: border-box; } .column { float: left; width: 50%; padding: 5px; } /* Clearfix (clear floats) */ .row::after { content: ""; clear: both; display: table; } /* Responsive layout - makes the three columns stack on top of each other instead of next to each other */ @media screen and (max-width: 500px) { .column { width: 100%; } } </style> </head> <body> <div class="row"> <div class="column"> <img src="../../assets/TaskForComponents/components.svg" alt="components" style="width:70%"> </div> <div class="column"> <img src="../../assets/TaskForComponents/tasks.svg" alt="tasks" style="width:100%"> </div> </div> </body> ``` The initialization stage is followed by the run the stage. The tasks that are launched corresponding to the components during the initialization stage expect the components to be triggered through their trigger pins. These triggers are generated in the sampling intervals of the simulation by the model clock during the run stage. It is possible to sample the signals of flowing through the connections at equal or independent time intervals. The generated triggers are put into the trigger pins of the components. The task corresponding to a triggered component is defined as reading data from the input of the component, calculating the output of the component, and writing to the output port. When the run stage is completed, the tasks launched at the initialization stage are closed and the simulation is ended. !!! note In some simulation environments, a unified mathematical equation representing the model as a whole is obtained and solved in just a single shot for the entire simulation duration, even if the model is thought to consist of components]. In Jusdl, a model is, again, thought to consist of components, but is not represented by a unified mathematical equation. Instead, the model is evolved by evolving the components individually by solving their own mathematical equations. The components do not evolve in one shot, but instead, they evolve in parallel during the time intervals between subsequent sampling instants. Here, it worths noting that the type of the mathematical equations of the components of a model does not have to be the same. Thus, Jusdl allows the simulation of the models consisting of components represented by different types of mathematical equations.
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
6302
# Breaking Algebraic Loops It this tutorial, we will simulate model consisting a closed loop feedback system. The model has an algebraic loop. ## Algebraic Loops An algebraic loop is a closed-loop consisting of one or more components whose outputs are directly dependent on their inputs. If algebraic loops exist in a model, the simulation gets stuck because none of the components in the loop can generate output to break the loop. Such a problem can be broken by rearranging the model without algebraic loops, solving the feed-forward algebraic equation of the loop, or inserting a memory component with a certain initial condition anywhere in the loop. Jusdl provides all these loop-breaking solutions. During the inspection stage, in case they are detected, all the loops are broken. Otherwise, a report is printed to notify the user to insert memory components to break the loops. ## Breaking Algebraic Loops Automatically Before initializing and running the simulation, Jusdl inspects the model first. See [Simulation Stages](@ref) for more information of simulation stages. In case the they exist in the model, all the algebraic loops are tried to be broken automatically without requiring a user intervention. Consider the following model ```@raw html <center> <img src="../../assets/AlgebraicLoop/algebraicloop.svg" alt="model" width="65%"/> </center> ``` where ```math \begin{array}{l} r(t) = t \\[0.25cm] u(t) = r(t) - y(t) \\[0.25cm] y(t) = u(t) \end{array} ``` Note that there exist an algebraic loop consisting of `adder` and `gain`. Solving this algebraic loop, we have ```math y(t) = u(t) = r(t) - y(t) \quad \Rightarrow \quad y(t) = \dfrac{r(t)}{2} = \dfrac{t}{2} ``` The following script constructs and simulates the model. ```@example breaking_algebraic_loops_ex using Jusdl # Describe the model @defmodel model begin @nodes begin gen = RampGenerator() adder = Adder(signs=(+,-)) gain = Gain() writerout = Writer() writerin = Writer() end @branches begin gen[1] => adder[1] adder[1] => gain[1] gain[1] => adder[2] gen[1] => writerin[1] gain[1] => writerout[1] end end # Simulate the model ti, dt, tf = 0., 1. / 64., 1. sim = simulate!(model, ti, dt, tf, withbar=false) # Read the simulation data and plot using Plots t, y = read(getnode(model, :writerout).component) t, r = read(getnode(model, :writerin).component) plot(t, r, label="r(t)", marker=(:circle, 3)) plot!(t, y, label="y(t)", marker=(:circle, 3)) savefig("breaking_algebraic_loops_plot1.svg"); nothing # hide ``` ![](breaking_algebraic_loops_plot1.svg) ## Breaking Algebraic Loops With a Memory It is also possible to break algebraic loops by inserting a [`Memory`](@ref) component at some point the loop. For example, consider the model consider following the model which is the model in which a memory component is inserted in the feedback path. ```@raw html <center> <img src="../../assets/AlgebraicLoopWithMemory/algebraicloopwithmemory.svg" alt="model" width="80%"/> </center> ``` Note that the input to `adder` is not ``y(t)``, but instead is ``\hat{y}(t)`` which is one sample delayed form of ``y(t)``. That is, we have, ``\hat{y}(t) = y(t - dt)`` where ``dt`` is the step size of the simulation. If ``dt`` is small enough, ``\hat{y}(t) \approx y(t)``. The script given below simulates this case. ```@example breaking_algebraic_loops_with_memory using Jusdl # Simulation time settings. ti, dt, tf = 0., 1. / 64., 1. # Describe the model @defmodel model begin @nodes begin gen = RampGenerator() adder = Adder(signs=(+,-)) gain = Gain() writerout = Writer() writerin = Writer() mem = Memory(delay=dt, initial=zeros(1)) end @branches begin gen[1] => adder[1] adder[1] => gain[1] gain[1] => mem[1] mem[1] => adder[2] gen[1] => writerin[1] gain[1] => writerout[1] end end # Simulate the model sim = simulate!(model, ti, dt, tf, withbar=false) # Plot the simulation data using Plots t, r = read(getnode(model, :writerin).component) t, y = read(getnode(model, :writerout).component) plot(t, r, label="r(t)", marker=(:circle, 3)) plot!(t, y, label="y(t)", marker=(:circle, 3)) savefig("breaking_algebraic_loops_with_memory_plot1.svg"); nothing # hide ``` ![](breaking_algebraic_loops_with_memory_plot1.svg) The fluctuation in ``y(t)`` because of one-sample-time delay introduced by the `mem` component is apparent. The smaller the step size is, the smaller the amplitude of the fluctuation introduced by the `mem` component. One other important issue with using the memory component is that the initial value of `mem` directly affects the accuracy of the simulation. By solving the loop equation, we know that ```math y(t) = \dfrac{r(t)}{2} = \dfrac{t}{2} \quad \Rightarrow \quad y(0) = 0 ``` That is the memory should be initialized with an initial value of zero, which is the case in the script above. To observe that how incorrect initialization of a memory to break an algebraic loop, consider the following example in which memory is initialized randomly. ```@example breaking_algebraic_loops_with_memory_incorrect_initialization using Jusdl using Plots # Simulation time settings. ti, dt, tf = 0., 1. / 64., 1. # Describe the model @defmodel model begin @nodes begin gen = RampGenerator() adder = Adder(signs=(+,-)) gain = Gain() writerout = Writer() writerin = Writer() mem = Memory(delay=dt, initial=rand(1)) end @branches begin gen[1] => adder[1] adder[1] => gain[1] gain[1] => mem[1] mem[1] => adder[2] gen[1] => writerin[1] gain[1] => writerout[1] end end # Simulate the model sim = simulate!(model, ti, dt, tf, withbar=false) # Plot the results using Plots t, r = read(getnode(model, :writerin).component) t, y = read(getnode(model, :writerout).component) plot(t, r, label="r(t)", marker=(:circle, 3)) plot!(t, y, label="y(t)", marker=(:circle, 3)) savefig("breaking_algebraic_loops_with_memory_incorrect_plot1.svg"); nothing # hide ``` ![](breaking_algebraic_loops_with_memory_incorrect_plot1.svg)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3765
# Coupled Systems Consider two coupled [`LorenzSystem`](@ref)s. The first system evolves by ```math \begin{array}{l} \dot{x}_{1,1} = \sigma (x_{1,2} - x_{1,1}) + \epsilon (x_{2,1} - x_{1,1}) \\[0.25cm] \dot{x}_{1,2} = x_{1,1} (\rho - x_{1,3}) - x_{1,2} \\[0.25cm] \dot{x}_{1,3} = x_{1,1} x_{1,2} - \beta x_{1,3} \end{array} ``` and the second one evolves by ```math \begin{array}{l} \dot{x}_{2,1} = \sigma (x_{2,2} - x_{2,1}) + \epsilon (x_{1,1} - x_{2,1}) \\[0.25cm] \dot{x}_{2,2} = x_{2,1} (\rho - x_{2,3}) - x_{2,2} \\[0.25cm] \dot{x}_{2,3} = x_{2,1} x_{2,2} - \beta x_{2,3} \end{array} ``` where ``x_1 = [x_{1,1}, x_{1,2}, x_{1,3}]``, ``x_2 = [x_{2,1}, x_{2,2}, x_{2,3}]`` are the state vectors of the first and second system, respectively. The coupled system can be written more compactly as, ```math \begin{array}{l} \dot{X} = F(X) + \epsilon (A ⊗ P) X \end{array} ``` where ``X = [x_{1}, x_{2}]``, ``F(X) = [f(x_{1}), f(x_{2})]``, ```math A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ \end{bmatrix} ``` ```math P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} ``` and ``f`` is the Lorenz dynamics given by ```math \begin{array}{l} \dot{x}_1 = \sigma (x_2 - x_1) \\[0.25cm] \dot{x}_2 = x_1 (\rho - x_3) - x_2 \\[0.25cm] \dot{x}_3 = x_1 x_2 - \beta x_3 \end{array} ``` The script below constructs and simulates the model ```@example coupled_system using Jusdl # Describe the model ε = 10. @defmodel model begin @nodes begin ds1 = ForcedLorenzSystem() ds2 = ForcedLorenzSystem() coupler = Coupler(conmat=ε*[-1 1; 1 -1], cplmat=[1 0 0; 0 0 0; 0 0 0]) writer = Writer(input=Inport(6)) end @branches begin ds1[1:3] => coupler[1:3] ds2[1:3] => coupler[4:6] coupler[1:3] => ds1[1:3] coupler[4:6] => ds2[1:3] ds1[1:3] => writer[1:3] ds2[1:3] => writer[4:6] end end nothing # hide ``` To construct the model, we added `ds1` and `ds2` each of which has input ports of length 3 and output port of length 3. To couple them together, we constructed a `coupler` which has input port of length 6 and output port of length 6. The output port of `ds1` is connected to the first 3 pins of `coupler` input port, and the output of `ds2` is connected to last 3 pins of `coupler` input port. Then, the first 3 pins of `coupler` output is connected to the input port of `ds1` and last 3 pins of `coupler` output is connected to the input port of `ds2`. The block diagram of the model is given below. ```@raw html <center> <img src="../../assets/CoupledSystem/coupledsystem.svg" alt="model" width="60%"/> </center> ``` The the signal-flow graph of the model has 4 directed branches and each of these branches has 3 links. It also worths pointing out that the model has two algebraic loops. The first loop consists of `ds1` and `coupler`, and the second loop consists of `ds2` and `coupler`. During the simulation these loops are broken automatically without requiring any user intervention. The model is ready for simulation. The code block below simulates the model and plots the simulation data. ```@example coupled_system using Plots # Simulation settings. ti, dt, tf = 0, 0.01, 100. # Simulate the model simulate!(model, ti, dt, tf, withbar=false) # Read simulation data t, x = read(getnode(model, :writer).component) # Compute errors err = x[:, 1] - x[:, 4] # Plot the results. p1 = plot(x[:, 1], x[:, 2], label="ds1") p2 = plot(x[:, 4], x[:, 5], label="ds2") p3 = plot(t, err, label="err") plot(p1, p2, p3, layout=(3, 1)) savefig("coupled_systems_plot.svg"); nothing # hide ``` ![](coupled_systems_plot.svg)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
12341
# Defining New Component Types Jusdl provides a library that includes some well-known components that are ready to be used. For example, * [`FunctionGenerator`](@ref), [`SinewaveGenerator`](@ref), [`SquarewaveGenerator`](@ref), [`RampGenerator`](@ref), etc. as sources * [`StaticSystem`](@ref), [`Adder`](@ref), [`Multiplier`](@ref), [`Gain`](@ref), etc. as static systems * [`DiscreteSystem`](@ref), [`DiscreteLinearSystem`](@ref), [`HenonSystem`](@ref), [`LogisticSystem`](@ref), etc. as dynamical systems represented by discrete difference equations. * [`ODESystem`](@ref), [`LorenzSystem`](@ref), [`ChenSystem`](@ref), [`ChuaSystem`](@ref), etc. as dynamical systems represented by ODEs. * [`DAESystem`](@ref), [`RobertsonSystem`](@ref), etc. as dynamical systems represented by dynamical systems represented by DAEs. * [`RODESystem`](@ref), [`MultiplicativeNoiseLinearSystem`](@ref), etc. as dynamical systems represented by dynamical systems represented by RODEs. * [`SDESystem`](@ref), [`NoisyLorenzSystem`](@ref), [`ForcedNoisyLorenzSystem`](@ref), etc. as dynamical systems represented by dynamical systems represented by SDEs. * [`DDESystem`](@ref), [`DelayFeedbackSystem`](@ref), etc. as dynamical systems represented by dynamical systems represented by DDEs. * [`Writer`](@ref), [`Printer`](@ref), [`Scope`](@ref), etc. as sinks. It is very natural that this library may lack some of the components that are wanted to be used by the user. In such a case, Jusdl provides the users with the flexibility to enrich this library. The users can define their new component types, including source, static system, dynamical system, sink and use them with ease. ### Defining A New Source New source types are defines using [`@def_source`](@ref) macro. Before embarking on defining new source, let us get the necessary information on how to use `@def_source`. This can be can be obtained through its docstrings. ```@repl defining_new_components_ex using Jusdl # hide @doc @def_source ``` From the docstring, its clear that new types of source can be defined as if we define a new Julia type. The difference is that the `struct` keyword is preceded by `@def_source` macro and the new component must be a subtype of [`AbstractSource`](@ref). Also from the docstring is that the new type has some optional and mandatory fields. !!! warning To define a new source, mandatory fields must be defined. The optional fields are the parameters of the source. For example let us define a new source that generates waveforms of the form. ```math y(t) = \begin{bmatrix} \alpha sin(t) \\ \beta cos(t) \end{bmatrix} ``` Here ``\alpha`` and ``beta`` is the system parameters. That is, while defining the new source component, ``\alpha`` and ``\beta`` are optional fields. `readout` and ``output`` are the mandatory field while defining a source. Note from above equation that the output of the new source has two pins. Thus, this new source component type, say `MySource` is defined as follows. ```@repl defining_new_components_ex @def_source struct MySource{RO, OP} <: AbstractSource α::Float64 = 1. β::Float64 = 2. readout::RO = (t, α=α, β=β) -> [α*sin(t), β*cos(t)] output::OP = Outport(2) end ``` Note that the syntax is very similar to the case in which we define a normal Julia type. We start with `struct` keyword preceded with `@def_source` macro. In order for the `MySource` to work flawlessly, i.e. to be used a model component, it must a subtype of `AbstractSource`. The `readout` function of `MySource` is a function of `t` and the remaining parameters, i.e., ``\alpha`` and ``\beta``, are passed into as optional arguments to avoid global variables. One other important point to note is that the `MySource` has additional fields that are required for it to work as a regular model component. Let us print all the field names of `MySource`, ```@repl defining_new_components_ex fieldnames(MySource) ``` We know that we defined the fields `α, β, readout, output`, but, the fields `trigger, callback, handshake, callbacks, name, id` are defined automatically by `@def_source` macro. Since the type `MySource` has been defined, any instance of it can be constructed. Let us see the constructors first. ```@repl defining_new_components_ex methods(MySource) ``` The constructor with the keyword arguments is very much easy to uses. ```@repl defining_new_components_ex gen1 = MySource() gen2 = MySource(α=4.) gen3 = MySource(α=4., β=5.) gen3 = MySource(α=4., β=5., name=:mygen) gen3.trigger gen3.id gen3.α gen3.β gen3.output ``` An instance works flawlessly as a model component, that is, it can be driven from its `trigger` pin and signalling cane be carried out from its `handshake` pin. To see this, let us construct required pins and ports to drive a `MySource` instance. ```@repl defining_new_components_ex gen = MySource() # `MySource` instance trg = Outpin() # To trigger `gen` hnd = Inpin{Bool}() # To signalling with `gen` iport = Inport(2) # To take values out of `gen` connect!(trg, gen.trigger); connect!(gen.handshake, hnd); connect!(gen.output, iport); launch(gen) # Launch `gen, ``` Now `gen` can be driven through `trg` pin. ```@repl defining_new_components_ex put!(trg, 1.) # Drive `gen` for `t=1`. take!(iport) # Read output of `gen` from `iport` take!(hnd) # Approve `gen` has taken a step. ``` Thus, by using `@def_source` macro, it is possible for the users to define any type of sources under `AbstractSource` type and user them without a hassle. The procedure is again the same for any other component types. The table below lists the macros that are used to define new component types. | Macro | Component Type | Supertype | Mandatory Field Names | | ----------- | ----------- | ----------------------------- | -------------------- | | [`@def_source`](@ref) | Source |[`AbstractSource`](@ref) | `readout`, `output` | | [`@def_static_system`](@ref) | StaticSystem |[`AbstractStaticSystem`](@ref) |`readout`, `output`, `input` | | [`@def_discrete_system`](@ref) | Discrete Dynamic System |[`AbstractDiscreteSystem`](@ref) |`righthandside`, `readout`, `state`, `input`, `output` | | [`@def_ode_system`](@ref) | ODE Dynamic System |[`AbstractODESystem`](@ref) | `righthandside`, `readout`, `state`, `input`, `output` | | [`@def_dae_system`](@ref) | DAE Dynamic System |[`AbstractDAESystem`](@ref) | `righthandside`, `readout`, `state`, `stateder`, `diffvars`, `input`, `output` | | [`@def_rode_system`](@ref) | RODE Dynamic System |[`AbstractRODESystem`](@ref) | `righthandside`, `readout`, `state`, `input`, `output` | | [`@def_sde_system`](@ref) | SDE Dynamic System |[`AbstractSDESystem`](@ref) | `drift`, `diffusion`, `readout`, `state`, `input`, `output` | | [`@def_dde_system`](@ref) | DDE Dynamic System |[`AbstractDDESystem`](@ref) | `constlags`, `depslags`, `righthandside`, `history`, `readout`, `state`, `input`, `output` | | [`@def_sink`](@ref) | Sink |[`AbstractSink`](@ref) | `action` | The steps followed in the previous section are the same to define other component types: start with suitable macro given above, make the newly-defined type a subtype of the corresponding supertype, define the optional fields (if exist) ands define the mandatory fields of the new type (with the default values if necessary). ### Defining New StaticSystem Consider the following readout function of the static system to be defined ```math y = u_1 t + a cos(u_2) ``` where ``u = [u_1, u_2]`` is the input, ``y`` is the output of the system and ``t`` is time. The system has two inputs and one output. This system can be defined as follows. ```@repl defining_new_components_ex @def_static_system struct MyStaticSystem{RO, IP, OP} <: AbstractStaticSystem a::Float64 = 1. readout::RO = (t, a = a) -> u[1] * t + a * cos(u[2]) input::IP = Inport(2) output::OP = Outport(1) end ``` ### Defining New Discrete Dynamical System The discrete dynamical system given by ```math \begin{array}{l} x_{k + 1} = α x_k + u_k \\[0.25cm] y_k = x_k \end{array} ``` can be defined as, ```@repl defining_new_components_ex @def_discrete_system struct MyDiscreteSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem α::Float64 = 1. β::Float64 = 2. righthandside::RH = (dx, x, u, t, α=α) -> (dx[1] = α * x[1] + u[1](t)) readout::RO = (x, u, t) -> x input::IP = Inport(1) output::OP = Outport(1) end ``` ### Defining New ODE Dynamical System The ODE dynamical system given by ```math \begin{array}{l} \dot{x} = α x + u \\[0.25cm] y = x \end{array} ``` can be defined as, ```@repl defining_new_components_ex @def_ode_system struct MyODESystem{RH, RO, IP, OP} <: AbstractDiscreteSystem α::Float64 = 1. β::Float64 = 2. righthandside::RH = (dx, x, u, t, α=α) -> (dx[1] = α * x[1] + u[1](t)) readout::RO = (x, u, t) -> x input::IP = Inport(1) output::OP = Outport(1) end ``` ### Defining New DAE Dynamical System The DAE dynamical system given by ```math \begin{array} dx = x + 1 \\[0.25cm] 0 = 2(x + 1) + 2 \end{array} ``` can be defined as, ```@repl defining_new_components_ex @def_dae_system mutable struct MyDAESystem{RH, RO, ST, IP, OP} <: AbstractDAESystem righthandside::RH = function sfuncdae(out, dx, x, u, t) out[1] = x[1] + 1 - dx[1] out[2] = (x[1] + 1) * x[2] + 2 end readout::RO = (x,u,t) -> x state::ST = [1., -1] stateder::ST = [2., 0] diffvars::Vector{Bool} = [true, false] input::IP = nothing output::OP = Outport(1) end ``` ### Defining RODE Dynamical System The RODE dynamical system given by ```math \begin{array}{l} \dot{x} = A x W \\[0.25cm] y = x \end{array} ``` where ```math A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} ``` can be defined as, ```@repl defining_new_components_ex @def_rode_system struct MyRODESystem{RH, RO, IP, OP} <: AbstractRODESystem A::Matrix{Float64} = [2. 0.; 0 -2] righthandside::RH = (dx, x, u, t, W) -> (dx .= A * x * W) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end ``` ### Defining SDE Dynamical System The RODE dynamical system given by ```math \begin{array}{l} dx = -x dt + dW \\[0.25cm] y = x \end{array} ``` can be defined as, ```@repl defining_new_components_ex @def_sde_system mutable struct MySDESystem{DR, DF, RO, ST, IP, OP} <: AbstractSDESystem drift::DR = (dx, x, u, t) -> (dx .= -x) diffusion::DF = (dx, x, u, t) -> (dx .= 1) readout::RO = (x, u, t) -> x state::ST = [1.] input::IP = nothing output::OP = Outport(1) end ``` ### Defining DDE Dynamical System The DDE dynamical system given by ```math \begin{array}{l} \dot{x} = -x(t - \tau) \quad t \geq 0 \\ x(t) = 1. -\tau \leq t \leq 0 \\ \end{array} ``` can be defined as, ```@repl defining_new_components_ex _delay_feedback_system_cache = zeros(1) _delay_feedback_system_tau = 1. _delay_feedback_system_constlags = [1.] _delay_feedback_system_history(cache, u, t) = (cache .= 1.) function _delay_feedback_system_rhs(dx, x, h, u, t, cache=_delay_feedback_system_cache, τ=_delay_feedback_system_tau) h(cache, u, t - τ) # Update cache dx[1] = cache[1] + x[1] end @def_dde_system mutable struct DelayFeedbackSystem{RH, HST, RO, IP, OP} <: AbstractDDESystem constlags::Vector{Float64} = _delay_feedback_system_constlags depslags::Nothing = nothing righthandside::RH = _delay_feedback_system_rhs history::HST = _delay_feedback_system_history readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(1) input::IP = nothing output::OP = Outport(1) end ``` ### Defining Sinks Say we want a sink type that takes the data flowing through the connections of the model and prints it. This new sink type cane be defined as follows. ```@repl defining_new_components_ex @def_sink struct MySink{A} <: AbstractSink action::A = actionfunc end actionfunc(sink::MySink, t, u) = println(t, u) ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
7789
# [Model Construction](@id page_header) This tutorial illustrates model construction and the relation between models and graphs. A model consists of components and connections. These components and connections can be associated with a signal-flow graph signifying the topology of the model. In the realm of graph theory, components and connections of a model are associated with nodes and branches of the signal-flow graph. As the model is modified by adding or deleting components or connections, the signal-flow graph of the model is modified accordingly to keep track of topological modifications. By associating a signal-flow graph to a model, any graph-theoretical analysis can be performed. An example to such an analysis is the determination and braking of algebraic loops. In Jusdl, a model can be constructed either by describing it in one-shot or by gradually modifying it by adding new nodes and branches. To show the relation between models and graphs, we start with the latter. ## [Modifying Models](@id section_header) In this tutorial, we construct the model with the following block diagram ```@raw html <center> <img src="../../assets/SimpleModel/simplemodel.svg" alt="model" width="60%"/> </center> ``` and with the following signal-flow graph ```@raw html <center> <img src="../../assets/SignalFlow/signalflow.svg" alt="model" width="50%"/> </center> ``` Let's start with an empty [`Model`](@ref). ```@repl model_graph_example using Jusdl # hide model = Model() ``` We constructed an empty model, i.e., the model has no components and connections. To modify the model, we need to add components and connections to the model. As the model is grown by adding components and connections, the components and connections are added into the model as nodes and branches (see [`Node`](@ref), [`Branch`](@ref)). Let's add our first component, a [`SinewaveGenerator`](@ref) to the `model`. ```@repl model_graph_example addnode!(model, SinewaveGenerator(), label=:gen) ``` To add components to the `model`, we use [`addnode!`](@ref) function. As seen, our node consists of a component, an index, and a label. ```@repl model_graph_example node1 = model.nodes[1] node1.component node1.idx node1.label ``` Let us add another component, a [`Adder`](@ref), to the model, ```@repl model_graph_example addnode!(model, Adder(signs=(+,-)), label=:adder) ``` and investigate our new node. ```@repl model_graph_example node2 = model.nodes[2] node2.component node2.idx node2.label ``` Note that as new nodes are added to the `model`, they are given an index `idx` and a label `label`. The label is not mandatory, if not specified explicitly, `nothing` is assigned as label. The reason to add components as nodes is to access them through their node index `idx` or `labels`. For instance, we can access our first node by using its node index `idx` or node label `label`. ```@repl model_graph_example getnode(model, :gen) # Access by label getnode(model, 1) # Access by index ``` At this point, we have two nodes in our model. Let's add two more nodes, a [`Gain`](@ref) and a [`Writer`](@ref) ```@repl model_graph_example addnode!(model, Gain(), label=:gain) addnode!(model, Writer(), label=:writer) ``` As the nodes are added to the `model`, its graph is modified accordingly. ```@repl model_graph_example model.graph ``` `model` has no connections. Let's add our first connection by connecting the first pin of the output port of the node 1 (which is labelled as `:gen`) to the first input pin of input port of node 2 (which is labelled as `:adder`). ```@repl model_graph_example addbranch!(model, :gen => :adder, 1 => 1) ``` The node labelled with `:gen` has an output port having one pin, and the node labelled with `:adder` has an input port of two pins. In our first connection, we connected the first(and the only) pin of the output port of the node labelled with `:gen` to the first pin of the input port of the node labelled with `:adder`. The connections are added to model as branches, ```@repl model_graph_example model.branches ``` A branch between any pair of nodes can be accessed through the indexes or labels of nodes. ```@repl model_graph_example br = getbranch(model, :gen => :adder) br.nodepair br.indexpair br.links ``` Note the branch `br` has one link(see [`Link`](@ref)). This is because we connected one pin to another pin. The branch that connects ``n`` pins to each other has `n` links. Let us complete the construction of the model by adding other connections. ```@repl model_graph_example addbranch!(model, :adder => :gain, 1 => 1) addbranch!(model, :gain => :adder, 1 => 2) addbranch!(model, :gain => :writer, 1 => 1) ``` ## Describing Models The second approach is to describe the whole model. In this approach the model is constructed in single-shot. The syntax here is ```julia @defmodel modelname begin @nodes begin label1 = Component1(args...; kwargs...) # Node 1 label2 = Component2(args...; kwargs...) # Node 2 ⋮ ⋮ labelN = ComponentN(args...; kwargs...) # Node N end @branches begin src_label1[src_index1] = dst_label1[dst_index1] # Branch 1 src_label2[src_index2] = dst_label1[dst_index2] # Branch 2 ⋮ ⋮ src_labelM[src_indexM] = dst_labelM[dst_indexM] # Branch M end end ``` Note that `modelname` is the name of the model to be compiled. The nodes of the model is defined in `@nodes begin ... end` block and the branches of the model is defined in `@branches begin ... end`. The syntax `src_label1[src_index1] = dst_label1[dst_index1]` means that there is a branch between the node labelled with `src_label1` and the node labelled with `dst_label1`.And, this branch connects the pins indexed by `src_index1` of the output port of `src_label1` to the pins indexed by `dst_index1` of the input port of `dst_label1`. The indexing of the pins here is just like any one dimensional array indexing. That is `src_index1`( or `dst_index1`) may be integer, vector of integers, vector of booleans, range, etc. For example, the model given above can also be constructed as follows ```@repl model_graph_example_def_model_macro using Jusdl # hide @defmodel model begin @nodes begin gen = SinewaveGenerator() adder = Adder(signs=(+,-)) gain = Gain() writer = Writer() end @branches begin gen[1] => adder[1] adder[1] => gain[1] gain[1] => adder[2] gain[1] => writer[1] end end ``` This macro is expanded to construct the `model`. ## Usage of Signal-Flow Graph The signal-flow graph constructed alongside of the construction of the model can be used to perform any topological analysis. An example to such an analysis is the detection of algebraic loops. For instance, our model in this tutorial has an algebraic loop consisting of the nodes labelled with `:gen` and `gain`. This loop can be detected using the signal-flow graph of the node ```@repl model_graph_example loops = getloops(model) ``` We have one loop consisting the nodes with indexes 2 and 3. For further analysis on model graph, we use [`LightGraphs`](https://juliagraphs.org/LightGraphs.jl/stable/) package. ```@repl model_graph_example using LightGraphs graph = model.graph ``` For example, the adjacency matrix of model graph can be obtained. ```@repl model_graph_example adjacency_matrix(model.graph) ``` or inneighbors or outneighbors of a node can be obtained. ```@repl model_graph_example inneighbors(model.graph, getnode(model, :adder).idx) outneighbors(model.graph, getnode(model, :adder).idx) ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
3953
# Construction and Simulation of a Simple Model In this tutorial, we will simulate a very simple model consisting of a generator and a writer as shown in the block diagram shown below. ```@raw html <center> <img src="../../assets/GeneratorWriter/generatorwriter.svg" alt="model" width="35%"/> </center> ``` ## Model Simulation Let us construct the model first. See [Model Construction](@ref page_header) for more detailed information about model construction. ```@example simple_model_ex using Jusdl # Describe the model @defmodel model begin @nodes begin gen = SinewaveGenerator() writer = Writer() end @branches begin gen => writer end end nothing # hide ``` In this simple `model`, we have a single output sinusoidal wave generator `gen` and a `writer`. In the script above, we constructed the components, connected them together and constructed the model. We can specify simulation settings such as whether a simulation log file is be to constructed, model components are to be saved in a file, etc. ```@example simple_model_ex simdir = "/tmp" logtofile = true reportsim = true nothing # hide ``` At this point, the model is ready for simulation. ```@example simple_model_ex t0 = 0. # Start time dt = 0.01 # Sampling interval tf = 10. # Final time sim = simulate!(model, t0, dt, tf, simdir=simdir, logtofile=logtofile, reportsim=reportsim) ``` ## Investigation of Simulation First, let us observe `Simulation` instance `sim`. We start with the directory in which all simulation files are saved. ```@example simple_model_ex foreach(println, readlines(`ls -al $(sim.path)`)) ``` The simulation directory includes a log file `simlog.log` which helps the user monitor simulation steps. ```@example simple_model_ex # Print the contents of log file open(joinpath(sim.path, "simlog.log"), "r") do file for line in readlines(file) println(line) end end ``` `report.jld2` file, which includes the information about the simulation and model components, can be read back after the simulation. ```@repl simple_model_ex using FileIO, JLD2 filecontent = load(joinpath(sim.path, "report.jld2")) clock = filecontent["model/clock"] ``` ## Analysis of Simulation Data After the simulation, the data saved in simulation data files, i.e. in the files of writers, can be read back any offline data analysis can be performed. ```@example simple_model_ex # Read the simulation data t, x = read(getnode(model, :writer).component) # Plot the data using Plots plot(t, x, xlabel="t", ylabel="x", label="") savefig("simple_model_plot.svg"); nothing # hide ``` ![](simple_model_plot.svg) ## A Larger Model Simulation Consider a larger model whose block diagram is given below ```@raw html <center> <img src="../../assets/ModelGraph/modelgraph.svg" alt="model" width="90%"/> </center> ``` The script below illustrates the construction and simulation of this model ```@example large_model using Jusdl using Plots # Construct the model @defmodel model begin @nodes begin gen1 = SinewaveGenerator(frequency=2.) gain1 = Gain() adder1 = Adder(signs=(+,+)) gen2 = SinewaveGenerator(frequency=3.) adder2 = Adder(signs=(+,+,-)) gain2 = Gain() writer = Writer() gain3 = Gain() end @branches begin gen1[1] => gain1[1] gain1[1] => adder1[1] adder1[1] => adder2[1] gen2[1] => adder1[2] gen2[1] => adder2[2] adder2[1] => gain2[1] gain2[1] => writer[1] gain2[1] => gain3[1] gain3[1] => adder2[3] end end # Simulation of the model simulate!(model, withbar=false) # Reading and plotting the simulation data t, x = read(getnode(model, :writer).component) plot(t, x) savefig("larger_model_plot.svg"); nothing # hide ``` ![](larger_model_plot.svg)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
7024
#========================================================================================== Constructors ==========================================================================================# function DiaSymSemiseparableCholesky(U::AbstractArray, W::AbstractArray, ds::AbstractArray) return DiaSymSemiseparableCholesky(size(U,1),size(U,2),U,W,ds) end function DiaSymSemiseparableCholesky(U::AbstractArray, V::AbstractArray, σn, σf) n, p = size(U) W, dbar = dss_create_wdbar(σf*U, σf*V, ones(n)*σn^2) return DiaSymSemiseparableCholesky(n, p, σf*U, W, dbar) end function DiaSymSemiseparableCholesky(L::DiaSymSemiseparableMatrix) W, dbar = dss_create_wdbar(L.Ut, L.Vt, L.d) return DiaSymSemiseparableCholesky(L.n, L.p, L.Ut, W, dbar) end #========================================================================================== Defining Matrix Properties ==========================================================================================# Matrix(K::DiaSymSemiseparableCholesky) = getproperty(K,:L) size(K::DiaSymSemiseparableCholesky) = (K.n, K.n) size(K::DiaSymSemiseparableCholesky,d::Int) = (1 <= d && d <=2) ? size(K)[d] : throw(ArgumentError("Invalid dimension $d")) function getindex(K::DiaSymSemiseparableCholesky, i::Int, j::Int) i > j && return dot(K.Ut[:,i], K.Wt[:,j]) i == j && return K.d[i] return 0 end function getproperty(K::DiaSymSemiseparableCholesky, d::Symbol) if d === :U return UpperTriangular(triu(K.Wt'*K.Ut,1) + Diagonal(K.d)) elseif d === :L return LowerTriangular(tril(K.Ut'*K.Wt,-1) + Diagonal(K.d)) else return getfield(K, d) end end Base.propertynames(F::DiaSymSemiseparableCholesky, private::Bool=false) = (:U, :L, (private ? fieldnames(typeof(F)) : ())...) function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, K::DiaSymSemiseparableCholesky{<:Any,<:AbstractArray,<:AbstractArray,<:AbstractArray}) summary(io, K); println(io) show(io, mime, K.L) end #========================================================================================== Defining multiplication and inverse ==========================================================================================# function mul!(y::AbstractArray, L::DiaSymSemiseparableCholesky, b::AbstractArray) dss_tri_mul!(y, L.Ut, L.Wt, L.d, b) return y end function mul!(y::AbstractArray, L::Adjoint{<:Any,<:DiaSymSemiseparableCholesky}, b::AbstractArray) dssa_tri_mul!(y, L.parent.Ut, L.parent.Wt, L.parent.d, b) return y end function inv!(y::AbstractArray, L::DiaSymSemiseparableCholesky, b::AbstractArray) dss_forward!(y, L.Ut, L.Wt, L.d, b) return y end function inv!(y::AbstractArray, L::Adjoint{<:Any,<:DiaSymSemiseparableCholesky}, b::AbstractArray) dssa_backward!(y, L.parent.Ut, L.parent.Wt, L.parent.d, b) return y end #### Inverse of a EGRQSCholesky using the Cholesky factorization #### function inv(L::DiaSymSemiseparableCholesky) return L'\(L\Diagonal(ones(L.n))) end function inv(L::DiaSymSemiseparableCholesky, b::AbstractArray) return L'\(L\b) end #========================================================================================== Relevant Linear Algebra Routines ==========================================================================================# function fro_norm_L(L::DiaSymSemiseparableCholesky) return sum(squared_norm_cols(L.Ut, L.Wt, L.d)) end function trinv(L::DiaSymSemiseparableCholesky) dbar = L.d Y, Z = dss_create_yz(L.Ut, L.Wt, dbar) return sum(squared_norm_cols(Y,Z, dbar.^(-1))) end function tr(L::DiaSymSemiseparableCholesky) return sum(L.d) end function tr(Ky::DiaSymSemiseparableCholesky, K::SymSemiseparableMatrix) p = Ky.p c = Ky.d U = K.Ut V = K.Vt Y, Z = dss_create_yz(Ky.Ut, Ky.Wt, Ky.d) b = 0.0 P = zeros(p,p) R = zeros(p,p) @inbounds for k = 1:Ky.n yk = @view Y[:,k] zk = @view Z[:,k] uk = @view U[:,k] vk = @view V[:,k] cki = c[k]^(-1) b += yk'*P*yk + 2*yk'*R*uk*cki + uk'*vk*(cki^2) P += ((uk'*vk)*zk)*zk' + zk*(R*uk)' + (R*uk)*zk' R += zk*vk'; end return b end #=========================================================================================== Choleskyesky factorization of Higher-order quasiseparable matrices ===========================================================================================# """ dss_create_wdbar(U, V, d) Computes `W` and `dbar` such that, `L = tril(UW',-1) + diag(ds)`. """ function dss_create_wdbar(U, V, d) m, n = size(U) P = zeros(m, m) W = zeros(m, n) dbar = zeros(n) for i = 1:n tmpU = @view U[:,i] tmpW = V[:,i] - P*tmpU tmpds = sqrt(tmpU'*tmpW + d[i]) tmpW = tmpW/tmpds W[:,i] = tmpW dbar[i] = tmpds P += tmpW*tmpW' end return W, dbar end #### Multiplying with Ld #### function dss_tri_mul!(Y,U,W,ds,X) m, n = size(U) mx = size(X, 2) Wbar = zeros(m, mx) @inbounds for i = 1:n tmpW = @view W[:,i] tmpU = @view U[:,i] tmpX = @view X[i:i,:] Y[i,:] = tmpU'*Wbar + ds[i]*tmpX Wbar += tmpW*tmpX end end #### Adjoint of Ld #### function dssa_tri_mul!(Y,U,W,ds,X) m, n = size(U) mx = size(X, 2) Ubar = zeros(m,mx) @inbounds for i = n:-1:1 tmpW = @view W[:,i] tmpU = @view U[:,i] tmpX = @view X[i:i,:] Y[i,:] = tmpW'*Ubar + ds[i]*tmpX; Ubar = Ubar + tmpU*tmpX; end end #### Forward substitution #### function dss_forward!(X,U,W,ds,B) m, n = size(U) mx = size(B,2) Wbar = zeros(m,mx) @inbounds for i = 1:n tmpU = @view U[:,i] tmpW = @view W[:,i] X[i:i,:] = (B[i:i,:] - tmpU'*Wbar)/ds[i] Wbar += tmpW .* X[i:i,:] end end #### Backward substitution #### function dssa_backward!(X,U,W,ds,B) m, n = size(U) mx = size(B,2) Ubar = zeros(m,mx) @inbounds for i = n:-1:1 tmpU = @view U[:,i] tmpW = @view W[:,i] X[i:i,:] = (B[i:i,:] - tmpW'*Ubar)/ds[i] Ubar += tmpU .* X[i:i,:] end end #### Squared norm of columns of L = tril(UW',-1) + diag(dbar) #### function squared_norm_cols(U,W,dbar) m, n = size(U) P = zeros(m, m) c = zeros(n) @inbounds for i = n:-1:1 tmpW = @view W[:,i] tmpU = @view U[:,i] c[i] = dbar[i]^2 + tmpW'*P*tmpW P += tmpU*tmpU' end return c end #### Implicit inverse of L = tril(UW',-1) + diag(dbar) #### function dss_create_yz(U, W,dbar) m, n = size(U) Y = zeros(n,m) Z = zeros(n,m) dss_forward!(Y, U, W, dbar, U') dssa_backward!(Z, U, W, dbar, W') # Probably best not to use inv return copy(Y'), copy((Z*inv(U*Z - Diagonal(ones(m))))') end #### Log-determinant #### dss_logdet(d) = sum(log,d) newlogdet(L::DiaSymSemiseparableCholesky) = dss_logdet(L.d) newlogdet(L::Adjoint{<:Any,<:DiaSymSemiseparableCholesky}) = dss_logdet(L.parent.d)
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
3711
#========================================================================================== Constructors ==========================================================================================# function DiaSymSemiseparableMatrix(U::AbstractArray, V::AbstractArray, d::AbstractArray) if size(U,1) == size(V,1) && size(U,2) == size(V,2) && length(d) == size(U,2) return DiaSymSemiseparableMatrix(size(U,2),size(U,1),U,V,d); else error("Dimension mismatch between the generators U, V and d") end end function DiaSymSemiseparableMatrix(L::SymSemiseparableMatrix, d::AbstractArray) return DiaSymSemiseparableMatrix(L.n, L.p, L.Ut, L.Vt, d) end function DiaSymSemiseparableMatrix(L::DiaSymSemiseparableCholesky) V, d = dss_create_vd(L.Ut, L.Wt, L.ds); return DiaSymSemiseparableMatrix(L.n, L.p, L.Ut, V, d) end #========================================================================================== Defining Matrix Properties ==========================================================================================# Matrix(K::DiaSymSemiseparableMatrix) = tril(K.Ut'*K.Vt) + triu(K.Vt'*K.Ut,1) + Diagonal(K.d) size(K::DiaSymSemiseparableMatrix) = (K.n,K.n) LinearAlgebra.cholesky(K::DiaSymSemiseparableMatrix) = DiaSymSemiseparableCholesky(K) function getindex(K::DiaSymSemiseparableMatrix{T}, i::Int, j::Int) where T i > j && return dot(K.Ut[:,i],K.Vt[:,j]) j == i && return dot(K.Vt[:,i],K.Ut[:,j]) + K.d[i] return dot(K.Vt[:,i],K.Ut[:,j]) end Base.propertynames(F::DiaSymSemiseparableMatrix, private::Bool=false) = (private ? fieldnames(typeof(F)) : ()) #========================================================================================== Defining multiplication and inverse ==========================================================================================# function mul!(y::AbstractArray, L::DiaSymSemiseparableMatrix, b::AbstractArray) dss_mul_mat!(y, L.Ut, L.Vt, L.d, b) return y end function mul!(y::AbstractArray, L::Adjoint{<:Any,<:DiaSymSemiseparableMatrix}, b::AbstractArray) dss_mul_mat!(y, L.parent.Ut, L.parent.Vt, L.parent.d, b) return y end function inv!(y, K::DiaSymSemiseparableMatrix, b::AbstractArray) L = DiaSymSemiseparableCholesky(K) y[:,:] = L'\(L\b) end function inv!(y, K::Adjoint{<:Any,<:DiaSymSemiseparableMatrix}, b::AbstractArray) L = DiaSymSemiseparableCholesky(K.parent) y[:,:] = L'\(L\b) end #=========================================================================================== Cholesky factoriaztion of: Higher-order quasiseparable matrices ===========================================================================================# """ dss_mul_mat!(Y, U, V, d, X) Computes the matrix-matrix product `Y = (tril(U*V') + triu(V*U',1) + diag(d))*X`. """ function dss_mul_mat!(Y, U, V, d, X) p, n = size(U) mx = size(X,2) Vbar = zeros(p,mx) Ubar = U*X @inbounds for i = 1:n tmpV = @view V[:,i] tmpU = @view U[:,i] tmpX = @view X[i:i,:] Ubar -= tmpU .* tmpX; Vbar += tmpV .* tmpX; Y[i,:] = tmpU'*Vbar + tmpV'*Ubar + d[i]*tmpX end return Y end """ dss_create_vd(U, W, dbar) Using `L = tril(U*W',-1) + Diagonal(dbar)`, compute `V` and `d` such that `LL = tril(UV') + triu(V'*U,1) + Diagonal(d)`. """ function dss_create_vd(U, W, dbar) m, n = size(U) d = zeros(n) V = zeros(n,m) P = zeros(m,m) @inbounds for i = 1:n tmpU = @view U[:,:] tmpW = @view W[:,:] d[i] = dbar[i]^2 - tmpU'*tmpW V[:,i] = P*tmpU P += tmpW*tmpW' end return V, d end
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
5555
#========================================================================================== Constructors ==========================================================================================# function SymSemiseparableCholesky(U::AbstractArray, W::AbstractArray) if size(U,1) == size(W,1) && size(U,2) == size(W,2) return SymSemiseparableCholesky(size(U,2),size(U,1),U,W) else error("Dimension mismatch between the generators U and W") end end function SymSemiseparableCholesky(K::SymSemiseparableMatrix) return SymSemiseparableCholesky(K.n, K.p, K.Ut, ss_create_w(K.Ut, K.Vt)) end #========================================================================================== Defining Matrix Properties ==========================================================================================# Matrix(K::SymSemiseparableCholesky) = getproperty(K,:L) size(K::SymSemiseparableCholesky) = (K.n, K.n) size(K::SymSemiseparableCholesky, d::Int) = (1 <= d && d <=2) ? size(K)[d] : throw(ArgumentError("Invalid dimension $d")) function getindex(K::SymSemiseparableCholesky, i::Int, j::Int) i >= j && return dot(K.Ut[:,i], K.Wt[:,j]) return 0 end function getproperty(K::SymSemiseparableCholesky, d::Symbol) if d === :U return UpperTriangular(K.Wt'*K.Ut) elseif d === :L return LowerTriangular(K.Ut'*K.Wt) else return getfield(K, d) end end # Base.propertynames(F::SymSemiseparableCholesky, private::Bool=false) = # (:U, :L, (private ? fieldnames(typeof(F)) : ())...) # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, # K::SymSemiseparableCholesky{<:Any,<:AbstractMatrix,<:AbstractMatrix}) # summary(io, K); println(io) # show(io, mime, K.L) # end #========================================================================================== Defining multiplication and inverse ==========================================================================================# function mul!(y::AbstractArray, L::SymSemiseparableCholesky, b::AbstractArray) ss_tri_mul!(y, L.Ut, L.Wt, b) return y end function mul!(y::AbstractArray, L::Adjoint{<:Any,<:SymSemiseparableCholesky}, b::AbstractArray) ssa_tri_mul!(y, L.parent.Ut, L.parent.Wt, b) return y end function (\)(F::SymSemiseparableCholesky, B::AbstractVecOrMat) X = similar(B) ss_forward!(X,F.Ut,F.Wt,B) return X end function (\)(F::Adjoint{<:Any,<:SymSemiseparableCholesky}, B::AbstractVecOrMat) Y = similar(B) ssa_backward!(Y,F.parent.Ut,F.parent.Wt,B) return Y end newlogdet(L::SymSemiseparableCholesky) = ss_logdet(L.Ut, L.Wt) newlogdet(L::Adjoint{<:Any,<:SymSemiseparableCholesky}) = ss_logdet(L.parent.Ut, L.parent.Wt) function det(L::SymSemiseparableCholesky) dd = one(eltype(L)) @inbounds for i in 1:L.n dd *= dot(L.Ut[:,i],L.Wt[:,i]) end return dd end function logdet(L::SymSemiseparableCholesky) dd = zero(eltype(L)) @inbounds for i in 1:L.n dd += log(dot(L.Ut[:,i],L.Wt[:,i])) end return dd end #### Inverse of a SymSemiseparableCholesky using #### function inv(L::SymSemiseparableCholesky, b::AbstractArray) return L'\(L\b) end #========================================================================================== Defining the computations ==========================================================================================# """ ss_create_w(U,V) Creates matrix `W` such that the Cholesky factorization of the SymSemiseparable(U,V) matrix is `L = tril(U*W')` in linear complexity. """ function ss_create_w(U,V) p,n = size(U) wTw = zeros(p,p) W = zeros(p,n) @inbounds for j = 1:n tmpu = @view U[:,j] tmp = V[:,j] - wTw*tmpu w = tmp/sqrt(abs(tmpu'*tmp)) W[:,j] = w wTw = wTw + w*w' end return W end """ ss_tri_mul!(Y,U,W,X) Computes the multiplization `tril(U*W')*X = Y` in linear complexity. """ function ss_tri_mul!(Y,U,W,X) m, n = size(U) mx = size(X,2) Wbar = zeros(m,mx) @inbounds for i = 1:n tmpW = @view W[:,i] tmpU = @view U[:,i] tmpX = @view X[i:i,:] Wbar += tmpW .* tmpX Y[i,:] = Wbar'*tmpU end end """ ssa_tri_mul!(Y,U,W,X) Computes the multiplization `triu(W*U')*X = Y` in linear complexity. """ function ssa_tri_mul!(Y,U,W,X) m, n = size(U) mx = size(X,2) Ubar = zeros(m,mx) Ubar = Ubar + U*X @inbounds for i = 1:n tmpW = @view W[:,i] tmpU = @view U[:,i] tmpX = @view X[i:i,:] Y[i,:] = Ubar'*tmpW Ubar -= tmpU .* tmpX end end """ ss_forward! Solves the linear system `tril(U*W')*X = B`. """ function ss_forward!(X,U,W, B) m, n = size(U) mx = size(B,2) Wbar = zeros(m, mx) @inbounds for i = 1:n tmpU = @view U[:,i] tmpW = @view W[:,i] X[i,:] = (B[i:i,:] - tmpU'*Wbar)./(tmpU'*tmpW) Wbar += tmpW .* X[i:i,:] end end """ ssa_backward!(X, U, W, B) Solves the linear system `triu(W*U')*X = Y`. """ function ssa_backward!(X, U, W, B) m,n = size(U) mx = size(B,2) Ubar = zeros(m,mx) @inbounds for i = n:-1:1 tmpU = @view U[:,i] tmpW = @view W[:,i] X[i,:] = (B[i:i,:] - tmpW'*Ubar)/(tmpU'*tmpW) Ubar += tmpU .* X[i:i,:] end end #### Logarithm of determinant #### function ss_logdet(U, W) a = 0.0 @inbounds for i = 1:size(U, 1) a += log(dot(U[i,:],W[i,:])) end return a end
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
1487
module SymSemiseparableMatrices # Importing Relevant Packages using LinearAlgebra # Must be imported here, as it is relevant before "syntax.jl" import LinearAlgebra: inv!, tr, mul!, logdet, ldiv!, cholesky, det import Base: inv, size, eltype, adjoint, *, \, size, eltype, Matrix, getindex, getproperty # Creating Types struct SymSemiseparableMatrix{T,UU<:AbstractMatrix{T},VV<:AbstractMatrix{T}} <: AbstractMatrix{T} n::Int64 p::Int64 Ut::UU Vt::VV end struct SymSemiseparableCholesky{T,UU<:AbstractMatrix{T},WW<:AbstractMatrix{T}} <: AbstractMatrix{T} n::Int64 p::Int64 Ut::UU Wt::WW end struct DiaSymSemiseparableMatrix{T,UU<:AbstractMatrix{T},VV<:AbstractMatrix{T},dd<:AbstractVector{T}} <: AbstractMatrix{T} n::Int64 p::Int64 Ut::UU Vt::VV d::dd end struct DiaSymSemiseparableCholesky{T,UU<:AbstractMatrix{T},WW<:AbstractMatrix{T},dd<:AbstractVector{T}} <: AbstractMatrix{T} n::Int64 p::Int64 Ut::UU Wt::WW d::dd end # Properties # include("adjointoperator.jl") # Matrices include("SymSemiseparableMatrix.jl") include("SymSemiseparableCholesky.jl") include("DiaSymSemiseparableMatrix.jl") include("DiaSymSemiseparableCholesky.jl") # Operator overloadings # include("operator_overloading.jl") # Spline Kernel include("spline_kernel.jl") # Exporting Relevant export SymSemiseparableMatrix, SymSemiseparableCholesky export DiaSymSemiseparableMatrix, DiaSymSemiseparableCholesky export trinv end # module
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
3462
#========================================================================================== Constructors ==========================================================================================# function SymSemiseparableMatrix(U::AbstractArray, V::AbstractArray) if size(U,1) == size(V,1) && size(U,2) == size(V,2) return SymSemiseparableMatrix(size(U,2),size(U,1),U,V) else error("Dimension mismatch between generators U and V") end end function SymSemiseparableMatrix(L::SymSemiseparableCholesky) return SymSemiseparableMatrix(L.n, L.p, L.Ut, ss_create_v(L.Ut, L.Wt)) end #========================================================================================== Defining Matrix Properties ==========================================================================================# Matrix(K::SymSemiseparableMatrix) = tril(K.Ut'*K.Vt) + triu(K.Vt'*K.Ut,1) size(K::SymSemiseparableMatrix) = (K.n,K.n) LinearAlgebra.cholesky(K::SymSemiseparableMatrix) = SymSemiseparableCholesky(K) function LinearAlgebra.cholesky(K::SymSemiseparableMatrix, sigma) Wt, dbar = dss_create_wdbar(K.Ut,K.Vt,ones(K.n)*sigma) return DiaSymSemiseparableCholesky(K.n,K.p,K.Ut,Wt,dbar,) end function getindex(K::SymSemiseparableMatrix{T}, i::Int, j::Int) where T i > j && return dot(K.Ut[:,i],K.Vt[:,j]) return dot(K.Ut[:,j],K.Vt[:,i]) end Base.propertynames(F::SymSemiseparableMatrix, private::Bool=false) = (private ? fieldnames(typeof(F)) : ()) logdet(K::SymSemiseparableMatrix) = 2.0*logdet(cholesky(K)) det(K::SymSemiseparableMatrix) = det(cholesky(K))^2 #========================================================================================== Defining multiplication and inverse ==========================================================================================# function mul!(y::AbstractArray, L::SymSemiseparableMatrix, x::AbstractArray) ss_mul_mat!(y, L.Ut, L.Vt, x) return y end function mul!(y::AbstractArray, L::Adjoint{<:Any,<:SymSemiseparableMatrix}, x::AbstractArray) ss_mul_mat!(y, L.parent.Ut, L.parent.Vt, x) return y end function (\)(K::SymSemiseparableMatrix, x::AbstractVecOrMat) L = cholesky(K) return L'\(L\x) end function (\)(K::Adjoint{<:Any,<:SymSemiseparableMatrix}, x::AbstractVecOrMat) L = cholesky(K.parent) return L'\(L\x) end #========================================================================================== Defining the Linear Algebra ==========================================================================================# """ ss_mul_mat!(Y, U, V, X) Computes the matrix-matrix product `Y = (tril(U'*V) + triu(V'*U,1))*X` in linear complexity. """ function ss_mul_mat!(Y, U, V, X) m, n = size(U) mx = size(X,2) Vbar = zeros(m,mx) Ubar = U*X @inbounds for i = 1:n tmpV = @view V[:,i] tmpU = @view U[:,i] Ubar -= tmpU .* X[i:i,:] Vbar += tmpV .* X[i:i,:] Y[i,:] = Vbar'*tmpU + Ubar'*tmpV end end """ ss_create_v(U, W) Using `L = tril(U*W')`, compute `V` such that `LL = tril(UV') + triu(V'*U,1)`. """ function ss_create_v(U, W) m,n = size(U) V = zeros(n,m) P = zeros(m,m) @inbounds for i = 1:n tmpW = @view W[:,i] tmpU = @view U[:,i] tmpV = tmpW*(tmpU'*tmpW) V[i,:] = tmpV + P*tmpU P += tmpW*tmpW' end return V end
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
2958
""" alpha(p::Int) Returns coefficients for the spline kernel of order `p`. """ function alpha(p::Int) if p < 1 throw(DomainError("Spline order has to be strictly positive")) end a = zeros(p) for i = 0:p-1 for j = 0:i for k = i:p-1 a[i+1] = a[i+1] + (-1.0)^(k-j)/((k+j+1)* factorial(j)* factorial(p-1)* factorial(p-1-k)* factorial(i-j)* factorial(k-i)) end end end return a end """ spline_kernel(t, p) Returns generators `U` and `V` for the spline kernel of order `p` given a list of knots `t`. """ function spline_kernel(t::AbstractArray, p::Int) fp = factorial.(p-1:-1:0) a = alpha(p).*fp Ut = (repeat(t,p,1).^Vector(p-1:-1:0))./fp Vt = (repeat(t,p,1).^Vector(p:2*p-1)).*a return Ut,Vt end """ spline_kernel_matrix(U, V) Returns the dense spline kernel matrix with generators `U` and `V`. """ function spline_kernel_matrix(U, V) return tril(U*V') + triu(V*U',1) end """ spline_kernel_matrix(U, V, d) Returns the dense spline kernel matrix with generators `U` and `V` plus `Diagonal(d)`. """ function spline_kernel_matrix(U, V, d ) return spline_kernel_matrix(U, V) + Diagonal(d) end """ logp(Σ, T, y, σf, σn) Generalized Log-likelihood evalation for the spline kernel. """ function logp(Σ, T, y, σf, σn) m = rank(T) n = length(y) Ki = cholesky(σf^2*Σ + σn^2*I) if LinearAlgebra.issuccess(Ki) == false throw(DomainError("Cholesky Factorization failed")) end A = T'*(Ki\T) C = (Ki\T)*(A\(T'*inv(Ki))) lp = -0.5*y'*(Ki\y) + 0.5*y'*(C*y) + -0.5*logdet(Ki) + -0.5*logdet(A) + -(n-m)*0.5*log(2*π) return lp end """ dlogp(Σ, T, y, σf, σn) Derivatives of the generalized Log-likelihood for the spline kernel. """ function dlogp(Σ, T, y, σf, σn) Ki = cholesky(σf^2*Σ + σn^2*I) if LinearAlgebra.issuccess(Ki) == false throw(DomainError("Cholesky Factorization failed")) end A = T'*(Ki\T) # TO_DO: Solving for the identity? dKf = 2.0*σf*Σ dAf = -T'*(Ki\dKf)*(Ki\T) dKn = 2.0*σn*I dAn = -T'*(inv(Ki)*dKn)*(Ki\T) Pf = Ki\dKf*inv(Ki) Pn = Ki\(dKn*inv(Ki)) G = T*(A\(T'*(Ki\y))) dlpf = 0.5*y'*(Pf*y) + 0.5*(-2*(y'*Pf)*G + G'*Pf*G) + -0.5*tr(Ki\dKf) + -0.5*tr(A\dAf) dlpn = 0.5*y'*(Pn*y) + 0.5*(-2*(y'*Pn)*G + G'*Pn*G) + -0.5*tr(inv(Ki)*dKn) + -0.5*tr(A\dAn) return [dlpf; dlpn] end """ create_T(t, m) Creates `m`-order Taylor-polynomial basis from the knots in `t`. """ function create_T(t, m) T = ones(length(t), m) for ν = 2:m T[:, ν] = t.^(ν-1)/factorial(ν - 1) end return T end
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
467
using SymSemiseparableMatrices using LinearAlgebra import SymSemiseparableMatrices: spline_kernel_matrix, spline_kernel U, V = spline_kernel(Vector(0.1:0.01:1), 2); # Creating Input Generators resulting in a PSD K K = SymSemiseparable(U,V); # Generator symmetric semiseparable matrix x = ones(K.n); # Test vector K*x K'*x K*(K\x) L = SymSemiseparableChol(K); # Creating Cholesky factorization L*x L'*x L\x L'\x Kdiag = DiaSymSemiseparable(U,V,rand(size(U,1)))
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
315
using SymSemiseparableMatrices using Test using LinearAlgebra import SymSemiseparableMatrices: spline_kernel, spline_kernel_matrix @testset "SymSemiseparableMatrices.jl" begin include("test_symsep.jl") include("test_symsepchol.jl") include("test_diasymsep.jl") include("test_diasymsepchol.jl") end
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
1677
using SymSemiseparableMatrices, LinearAlgebra, Test import SymSemiseparableMatrices: spline_kernel, spline_kernel_matrix # Removing t = 0, such that Σ is invertible n = 500.0; t = Vector(0.1:1/n:1) # Creating a test matrix Σ = tril(UV') + triu(VU',1) that is PSD p = 2 Ut, Vt = spline_kernel(t', p) K = DiaSymSemiseparableMatrix(Ut,Vt,ones(size(Ut,2))) Σ = Matrix(K) chol = cholesky(Σ) L = cholesky(K) x = randn(size(K,1)) # Testing inverses (Using Cholesky factorizations) B = randn(length(t),10) @test L\B ≈ chol.L\B @test L'\B ≈ chol.U\B @test L*B ≈ chol.L*B @test L'*B ≈ chol.U*B # Testing logdet @test logdet(L) ≈ logdet(chol.L) @test det(L) ≈ det(chol.L) # Testing traces and norm M = SymSemiseparableMatrix(Ut,Vt) Ky = L K = M U = K.Ut V = K.Vt c = Ky.d Y, Z = SymSemiseparableMatrices.dss_create_yz(Ky.Ut, Ky.Wt, Ky.d) b = 0.0 P = zeros(p,p) R = zeros(p,p) @test isapprox(tr(L,M), tr(chol\Matrix(M)), atol=1e-6) # @test trinv(L) ≈ tr(chol\Diagonal(ones(size(L,1)))) # @test SymEGRSSMatrices.fro_norm_L(L) ≈ norm(chol.L[:])^2 # Testing show @test L.L ≈ tril(Ut'*L.Wt,-1) + Diagonal(L.d) @test L.U ≈ triu(L.Wt'*Ut,1) + Diagonal(L.d) @test Matrix(L) ≈ tril(L.Ut'*L.Wt,-1) + Diagonal(L.d) @test L[3,1] ≈ chol.L[3,1] @test L[2,2] ≈ chol.L[2,2] @test L[1,3] ≈ chol.L[1,3] # # Testing explicit-implicit-inverse U = L.Ut W = L.Wt dbar = L.d Yt, Zt = SymSemiseparableMatrices.dss_create_yz(L.Ut,L.Wt,L.d) @test tril(Yt'*Zt,-1) + Diagonal(L.d.^(-1)) ≈ inv(chol.L) @test L*(tril(Yt'*Zt,-1) + Diagonal(L.d.^(-1))) ≈ I @test L'*(triu(Zt'*Yt,1) + Diagonal(L.d.^(-1))) ≈ I @test SymSemiseparableMatrices.squared_norm_cols(Yt,Zt,L.d.^(-1)) ≈ sum(inv(chol.L).^2,dims=1)'
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
633
# Removing t = 0, such that Σ is invertible t = Vector(0.1:0.1:100) p = 2 # Creating generators U,V that result in a positive-definite matrix Σ Ut, Vt = spline_kernel(t', p) K = DiaSymSemiseparableMatrix(Ut,Vt,ones(size(Ut,2))) x = randn(size(K,1)) Kfull = Matrix(K) # Testing multiplication @test K*x ≈ Kfull*x @test K'*x ≈ Kfull'*x # Testing linear solve @test K\x ≈ Kfull\x # Testing (log)determinant @test logdet(K) ≈ logdet(Kfull) @test det(K) ≈ det(Kfull) # Testing show @test Matrix(K) ≈ tril(K.Ut'*K.Vt) + triu(K.Vt'*K.Ut,1) + Diagonal(K.d) @test Kfull[3,1] ≈ K[3,1] @test Kfull[2,2] ≈ K[2,2] @test Kfull[1,3] ≈ K[1,3]
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
1384
# Removing t = 0, such that Σ is invertible n = 500.0; t = Vector(0.1:1/n:1) # Creating a test matrix Σ = tril(UV') + triu(VU',1) that is PSD p = 2 Ut, Vt = spline_kernel(t', p) K = DiaSymSemiseparableMatrix(Ut,Vt,ones(size(Ut,2))) Σ = Matrix(K) chol = cholesky(Σ) L = cholesky(K) x = randn(size(K,1)) # Testing inverses (Using Cholesky factorizations) B = randn(length(t),10) @test L\B ≈ chol.L\B @test L'\B ≈ chol.U\B @test L*B ≈ chol.L*B @test L'*B ≈ chol.U*B # Testing logdet @test logdet(L) ≈ logdet(chol.L) @test det(L) ≈ det(chol.L) # Testing traces and norm M = SymSemiseparableMatrix(Ut,Vt) @test isapprox(tr(L,M), tr(chol\Matrix(M)), atol=1e-6) @test trinv(L) ≈ tr(chol\Diagonal(ones(size(L,1)))) @test SymSemiseparableMatrices.fro_norm_L(L) ≈ norm(chol.L[:])^2 # Testing show @test L.L ≈ tril(Ut'*L.Wt,-1) + Diagonal(L.d) @test L.U ≈ triu(L.Wt'*Ut,1) + Diagonal(L.d) @test Matrix(L) ≈ tril(L.Ut'*L.Wt,-1) + Diagonal(L.d) @test L[3,1] ≈ chol.L[3,1] @test L[2,2] ≈ chol.L[2,2] @test L[1,3] ≈ chol.L[1,3] # # Testing explicit-implicit-inverse Yt, Zt = SymSemiseparableMatrices.dss_create_yz(L.Ut,L.Wt,L.d) @test tril(Yt'*Zt,-1) + Diagonal(L.d.^(-1)) ≈ inv(chol.L) @test L*(tril(Yt'*Zt,-1) + Diagonal(L.d.^(-1))) ≈ I @test L'*(triu(Zt'*Yt,1) + Diagonal(L.d.^(-1))) ≈ I @test SymSemiseparableMatrices.squared_norm_cols(Yt,Zt,L.d.^(-1)) ≈ sum(inv(chol.L).^2,dims=1)'
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
490
t = Vector(0.1:0.1:10) n = length(t); p = 2; Ut, Vt = spline_kernel(t', p) K = SymSemiseparableMatrix(Ut,Vt) x = randn(size(K,1)) Kfull = Matrix(K) # Testing multiplication @test K*x ≈ Kfull*x @test K'*x ≈ Kfull'*x # Testing linear solves @test K\x ≈ Kfull\x # Testing (log)determinant @test logdet(K) ≈ logdet(Kfull) @test det(K) ≈ det(Kfull) # Testing show @test Matrix(K) ≈ tril(Ut'*Vt) + triu(Vt'*Ut,1) @test Kfull[3,1] ≈ K[3,1] @test Kfull[2,2] ≈ K[2,2] @test Kfull[1,3] ≈ K[1,3]
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
code
923
# Removing t = 0, such that Σ is invertible t = Vector(0.1:0.1:10) p = 2 # Creating generators U,V that result in a positive-definite matrix Σ Ut, Vt = spline_kernel(t', p) K = SymSemiseparableMatrix(Ut,Vt) Σ = Matrix(K) chol = cholesky(Σ) # Creating a symmetric extended generator representable semiseperable matrix # Calculating its Cholesky factorization L = cholesky(K) # Creating a test vector xt = ones(size(K,1),10) # Testing size @test size(L,1) == length(t) @test size(L,2) == length(t) # Testing inverses (Using Cholesky factorizations) @test chol.L\xt ≈ L\xt @test chol.U\xt ≈ L'\xt @test chol.L*xt ≈ L*xt @test chol.L'*xt ≈ L'*xt # Testing logdet and det @test logdet(L) ≈ logdet(chol.L) @test det(L) ≈ det(chol.L) # Testing show @test L.L ≈ tril(Ut'*L.Wt) @test L.U ≈ triu(L.Wt'*Ut) @test Matrix(L) ≈ tril(Ut'*L.Wt) @test L[3,1] ≈ chol.L[3,1] @test L[2,2] ≈ chol.L[2,2] @test L[1,3] ≈ chol.L[1,3]
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
0.1.1
cc58d0644d2945f0220ce5eac16e15ad2269434a
docs
4432
# SymSemiseparableMatrices.jl [![CI](https://github.com/mipals/SymSemiseparableMatrices.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/mipals/SymSemiseparableMatrices.jl/actions/workflows/CI.yml) [![Codecov](https://codecov.io/gh/mipals/SymSemiseparableMatrices.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/mipals/SymSemiseparableMatrices.jl) ## Description A package for efficiently computing with symmetric extended generator representable semiseparable matrices (EGRSS Matrices) and a varient with added diagonal terms. In short this means matrices of the form ```julia K = tril(U*V^T) + triu(V*U^T,1) ``` as well as ```julia K = tril(U*V^T) + triu(V*U^T,1) + diag(d) ``` All implemented algorithms (multiplication, Cholesky factorization, forward/backward substitution as well as various traces and determinants) run linear in time and memory w.r.t. to the number of data points ```n```. A more in-depth descriptions of the algorithms can be found in [1] or [here](https://github.com/mipals/SmoothingSplines.jl/blob/master/mt_mikkel_paltorp.pdf). ## Usage Adding the package can be done through ``` (@v1.7) pkg> add SymSemiseparableMatrices ``` First we need to create generators U and V that represent the symmetric matrix, ```K = tril(UV') + triu(VU',1)``` as well a test vector ```x```. ```julia julia> using SymSemiseparableMatrices julia> import SymSemiseparableMatrices: spline_kernel julia> U, V = spline_kernel(Vector(0.1:0.01:1), 2); # Creating input such that K is PD julia> K = SymSemiseparable(U,V); # Symmetric generator representable semiseparable matrix julia> x = ones(size(K)); # Test vector ``` We can now compute products with ```K``` and ```K'```. The result are the same as ```K``` is symmetric. ```julia julia> K*x 91×1 Array{Float64,2}: 0.23508333333333334 0.28261583333333334 0.3341535 0.3896073333333333 0.44888933333333336 0.5119124999999999 ⋮ 11.977057499999997 12.146079333333331 12.31510733333333 12.484138499999995 12.65317083333333 julia> K'*x 91×1 Array{Float64,2}: 0.23508333333333334 0.28261583333333334 0.3341535 0.3896073333333333 0.44888933333333336 0.5119124999999999 ⋮ 11.977057499999997 12.146079333333331 12.31510733333333 12.484138499999995 12.65317083333333 ``` Furthermore from the ```SymSemiseparableMatrix``` structure we can efficiently compute the Cholesky factorization as ```julia julia> L = cholesky(K); # Computing the Cholesky factorization of K julia> K*(L'\(L\x)) 91×1 Array{Float64,2}: 1.0000000000000036 0.9999999999999982 0.9999999999999956 0.9999999999999944 0.9999999999999951 0.999999999999995 ⋮ 0.9999999999996279 0.9999999999996153 0.9999999999996028 0.9999999999995898 0.9999999999995764 ``` Now ```L``` represents a Cholesky factorization with of form ```L = tril(UW')```, requiring only ```O(np)``` storage. A struct for the dealing with symmetric matrices of the form, ```K = tril(UV') + triu(VU',1) + diag(d)``` called ```DiaSymSemiseparableMatrix``` is also implemented. The usage is similar to that of ```DiaSymSemiseparableMatrix``` and can be created as follows ```julia julia> U, V = spline_kernel(Vector(0.1:0.01:1)', 2); # Creating input such that K is PD julia> K = DiaSymSemiseparableMatrix(U,V,rand(size(U,2)); # Symmetric EGRSS matrix + diagonal ``` The Cholesky factorization of this matrix can be computed using ```cholesky```. Note however here that ```L``` represents a matrix of the form ```L = tril(UW',-1) + diag(c)``` ## Benchmarks ### Computing Cholesky factorization of ```K = tril(UV') + triu(VU',1)``` ![Scaling of the Cholesky factorization of an SymSemiseparableMatrix matrix](https://i.imgur.com/NFqfreO.png) ### Computing Cholesky factorization of ```K = tril(UV') + triu(VU',1) + diag(d)``` ![Scaling of the Cholesky factorization of an DiaSymSemiseparableMatrix matrix](https://i.imgur.com/IuupJSP.png) ### Solving linear systems using a Cholesky factorization with the form ```L = tril(UW')``` ![Solving a system using the implicit Cholesky factorization](https://i.imgur.com/mYBNTSr.png) ## References [1] M. S. Andersen and T. Chen, “Smoothing Splines and Rank Structured Matrices: Revisiting the Spline Kernel,” SIAM Journal on Matrix Analysis and Applications, 2020. [2] J. Keiner. "Fast Polynomial Transforms." Logos Verlag Berlin, 2011.
SymSemiseparableMatrices
https://github.com/mipals/SymSemiseparableMatrices.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
931
using StableLinearAlgebra using Documenter using DocumenterCitations using LinearAlgebra DocMeta.setdocmeta!(StableLinearAlgebra, :DocTestSetup, :(using StableLinearAlgebra); recursive=true) bib = CitationBibliography(joinpath(@__DIR__, "references.bib"), sorting = :nyt) makedocs( bib, modules=[StableLinearAlgebra], authors="Benjamin Cohen-Stead <[email protected]>", repo="https://github.com/cohensbw/StableLinearAlgebra.jl/blob/{commit}{path}#{line}", sitename="StableLinearAlgebra.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://cohensbw.github.io/StableLinearAlgebra.jl", assets=String[], ), pages=[ "Home" => "index.md", "Public API" => "public_api.md", "Developer API" => "developer_api.md" ], ) deploydocs(; repo="github.com/cohensbw/StableLinearAlgebra.jl", devbranch="master", )
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
7569
@doc raw""" LDR{T<:Number, E<:Real} <: Factorization{T} Represents the matrix factorization ``A = L D R`` for a square matrix ``A``, where ``L`` is a unitary matrix, ``D`` is a diagonal matrix of strictly positive real numbers, and ``R`` is defined such that ``|\det R| = 1``. This factorization is based on a column-pivoted QR decomposition ``A P = Q R',`` such that ```math \begin{align*} L &:= Q \\ D &:= \vert \textrm{diag}(R') \vert \\ R &:= \vert \textrm{diag}(R') \vert^{-1} R' P^T\\ \end{align*} ``` # Fields - `L::Matrix{T}`: The left unitary matrix ``L`` in a [`LDR`](@ref) factorization. - `d::Vector{E}`: A vector representing the diagonal matrix ``D`` in a [`LDR`](@ref) facotorization. - `R::Matrix{T}`: The right matrix ``R`` in a [`LDR`](@ref) factorization. """ struct LDR{T<:Number, E<:AbstractFloat} <: Factorization{T} "The left unitary matrix ``L``." L::Matrix{T} "Vector representing diagonal matrix ``D``." d::Vector{E} "The right upper triangular matrix ``R``." R::Matrix{T} end @doc raw""" LDRWorkspace{T<:Number} A workspace to avoid dyanmic memory allocations when performing computations with a [`LDR`](@ref) factorization. # Fields - `qr_ws::QRWorkspace{T,E}`: [`QRWorkspace`](@ref) for calculating column pivoted QR factorization without dynamic memory allocations. - `lu_ws::LUWorkspace{T}`: [`LUWorkspace`](@ref) for calculating LU factorization without dynamic memory allocations. - `M::Matrix{T}`: Temporary storage matrix for avoiding dynamic memory allocations. This matrix is used/modified when a [`LDR`](@ref) factorization is calculated. - `M′::Matrix{T}`: Temporary storage matrix for avoiding dynamic memory allocations. - `M″::Matrix{T}`: Temporary storage matrix for avoiding dynamic memory allocations. - `v::Vector{T}`: Temporary storage vector for avoiding dynamic memory allocations. """ struct LDRWorkspace{T<:Number, E<:AbstractFloat} "Workspace for calculating column pivoted QR factorization without allocations." qr_ws::QRWorkspace{T,E} "Workspace for calculating LU factorization without allocations." lu_ws::LUWorkspace{T} "Temporary storage matrix. This matrix is used/modified when a [`LDR`](@ref) factorization are calculated." M::Matrix{T} "Temporary storage matrix." M′::Matrix{T} "Temporary storage matrix." M″::Matrix{T} "Temporary storage vector." v::Vector{E} end @doc raw""" ldr(A::AbstractMatrix{T}) where {T} Allocate an [`LDR`](@ref) factorization based on `A`, but does not calculate its [`LDR`](@ref) factorization, instead initializing the factorization to the identity matrix. """ function ldr(A::AbstractMatrix{T}) where {T} n = checksquare(A) E = real(T) L = zeros(T,n,n) d = zeros(E,n) R = zeros(T,n,n) F = LDR{T,E}(L,d,R) ldr!(F, I) return F end @doc raw""" ldr(A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} Return the [`LDR`](@ref) factorization of the matrix `A`. """ function ldr(A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} F = ldr(A) ldr!(F, A, ws) return F end @doc raw""" ldr(F::LDR{T}, ignore...) where {T} Return a copy of the [`LDR`](@ref) factorization `F`. """ function ldr(F::LDR{T}, ignore...) where {T} L = copy(F.L) d = copy(F.d) R = copy(F.R) return LDR(L,d,R) end @doc raw""" ldr!(F::LDR{T}, A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} Calculate the [`LDR`](@ref) factorization `F` for the matrix `A`. """ function ldr!(F::LDR{T}, A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} copyto!(F.L, A) return ldr!(F, ws) end @doc raw""" ldr!(F::LDR{T}, I::UniformScaling, ignore...) where {T} Set the [`LDR`](@ref) factorization equal to the identity matrix. """ function ldr!(F::LDR{T}, I::UniformScaling, ignore...) where {T} (; L, d, R) = F copyto!(L, I) fill!(d, 1) copyto!(R, I) return nothing end @doc raw""" ldr!(Fout::LDR{T}, Fin::LDR{T}, ignore...) where {T} Copy the [`LDR`](@ref) factorization `Fin` to `Fout`. """ function ldr!(Fout::LDR{T}, Fin::LDR{T}, ignore...) where {T} copyto!(Fout.L, Fin.L) copyto!(Fout.d, Fin.d) copyto!(Fout.R, Fin.R) return nothing end @doc raw""" ldr!(F::LDR, ws::LDRWorkspace{T}) where {T} Calculate the [`LDR`](@ref) factorization for the matrix `F.L`. """ function ldr!(F::LDR, ws::LDRWorkspace{T}) where{T} (; qr_ws, M) = ws (; L, d, R) = F # calclate QR decomposition LAPACK.geqp3!(L, qr_ws) # extract upper triangular matrix R copyto!(M, L) triu!(M) # set D = Diag(R), represented by vector d @fastmath @inbounds for i in 1:size(L,1) d[i] = abs(M[i,i]) end # calculate R = D⁻¹⋅R ldiv_D!(d, M) # calculate R⋅Pᵀ mul_P!(R, M, qr_ws.jpvt) # construct L (same as Q) matrix LAPACK.orgqr!(L, qr_ws) return nothing end @doc raw""" ldrs(A::AbstractMatrix{T}, N::Int) where {T} Return a vector of [`LDR`](@ref) factorizations of length `N`, where each one represents the identity matrix of the same size as ``A``. """ function ldrs(A::AbstractMatrix{T}, N::Int) where {T} Fs = LDR{T,real(T)}[] for i in 1:N push!(Fs, ldr(A)) end return Fs end @doc raw""" ldrs(A::AbstractMatrix{T}, N::Int, ws::LDRWorkspace{T,E}) where {T,E} Return a vector of [`LDR`](@ref) factorizations of length `N`, where each one represents the matrix `A`. """ function ldrs(A::AbstractMatrix{T}, N::Int, ws::LDRWorkspace{T,E}) where {T,E} Fs = LDR{T,E}[] F = ldr(A, ws) push!(Fs, F) for i in 2:N push!(Fs, ldr(F)) end return Fs end @doc raw""" ldrs(A::AbstractArray{T,3}, ws::LDRWorkspace{T,E}) where {T,E} Return a vector of [`LDR`](@ref) factorizations of length `size(A, 3)`, where there is an [`LDR`](@ref) factorization for each matrix `A[:,:,i]`. """ function ldrs(A::AbstractArray{T,3}, ws::LDRWorkspace{T,E}) where {T,E} Fs = LDR{T,E}[] for i in axes(A,3) Aᵢ = @view A[:,:,i] push!(Fs, ldr(Aᵢ, ws)) end return Fs end @doc raw""" ldrs!(Fs::AbstractVector{LDR{T,E}}, A::AbstractArray{T,3}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the [`LDR`](@ref) factorization `Fs[i]` for the matrix `A[:,:,i]`. """ function ldrs!(Fs::AbstractVector{LDR{T,E}}, A::AbstractArray{T,3}, ws::LDRWorkspace{T,E}) where {T,E} for i in eachindex(Fs) Aᵢ = @view A[:,:,i] ldr!(Fs[i], Aᵢ, ws) end return nothing end @doc raw""" ldr_workspace(A::AbstractMatrix) ldr_workspace(F::LDR) Return a [`LDRWorkspace`](@ref) that can be used to avoid dynamic memory allocations. """ function ldr_workspace(A::AbstractMatrix{T}) where {T} E = real(T) n = checksquare(A) M = zeros(T, n, n) M′ = zeros(T, n, n) M″ = zeros(T, n, n) v = zeros(E, n) copyto!(M, I) qr_ws = QRWorkspace(M) lu_ws = LUWorkspace(M) return LDRWorkspace(qr_ws, lu_ws, M, M′, M″, v) end ldr_workspace(F::LDR) = ldr_workspace(F.L) @doc raw""" copyto!(ldrws_out::LDRWorkspace{T,E}, ldrws_in::LDRWorkspace{T,E}) where {T,E} Copy the contents of `ldrws_in` into `ldrws_out`. """ function copyto!(ldrws_out::LDRWorkspace{T,E}, ldrws_in::LDRWorkspace{T,E}) where {T,E} copyto!(ldrws_out.qr_ws, ldrws_in.qr_ws) copyto!(ldrws_out.lu_ws, ldrws_in.lu_ws) copyto!(ldrws_out.M, ldrws_in.M) copyto!(ldrws_out.M′, ldrws_in.M′) copyto!(ldrws_out.M″, ldrws_in.M″) copyto!(ldrws_out.v, ldrws_in.v) return nothing end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
1122
module StableLinearAlgebra using LinearAlgebra import LinearAlgebra: adjoint!, lmul!, rmul!, mul!, ldiv!, rdiv!, logabsdet import Base: eltype, size, copyto! # define developer functions/methods include("developer_functions.jl") # imports for wrapping LAPACK functions to avoid dynamic memory allocations using Base: require_one_based_indexing using LinearAlgebra: checksquare using LinearAlgebra: BlasInt, BlasFloat using LinearAlgebra.BLAS: @blasfunc using LinearAlgebra.LAPACK: chklapackerror, chkstride1, chktrans using LinearAlgebra.LAPACK const liblapack = LinearAlgebra.LAPACK.liblapack include("qr.jl") # wrap LAPACK column-pivoted QR factorization export QRWorkspace include("lu.jl") # wrap LAPACK LU factorization (for determinants and matrix inversion) export LUWorkspace, inv_lu!, det_lu!, ldiv_lu! # define LDR factorization include("LDR.jl") export LDR, LDRWorkspace, ldr, ldr!, ldrs, ldrs!, ldr_workspace # define overloaded functions/methods include("overloaded_functions.jl") # define exported functions/methods include("exported_functions.jl") export inv_IpA!, inv_IpUV!, inv_UpV!, inv_invUpV! end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
5110
@doc raw""" det_D(d::AbstractVector{T}) where {T} Given a diagonal matrix ``D`` represented by the vector `d`, return ``\textrm{sign}(\det D)`` and ``\log(|\det A|).`` """ function det_D(d::AbstractVector{T}) where {T} logdetD = zero(real(T)) sgndetD = oneunit(T) for i in eachindex(d) logdetD += log(abs(d[i])) sgndetD *= sign(d[i]) end return logdetD, sgndetD end @doc raw""" mul_D!(A, d, B) Calculate the matrix product ``A = D \cdot B,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function mul_D!(A::AbstractMatrix, d::AbstractVector, B::AbstractMatrix) @inbounds @fastmath for c in axes(B,2) for r in eachindex(d) A[r,c] = d[r] * B[r,c] end end return nothing end @doc raw""" mul_D!(A, B, d) Calculate the matrix product ``A = B \cdot D,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function mul_D!(A::AbstractMatrix, B::AbstractMatrix, d::AbstractVector) @inbounds @fastmath for c in eachindex(d) for r in axes(A,1) A[r,c] = B[r,c] * d[c] end end return nothing end @doc raw""" div_D!(A, d, B) Calculate the matrix product ``A = D^{-1} \cdot B,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function div_D!(A::AbstractMatrix, d::AbstractVector, B::AbstractMatrix) @inbounds @fastmath for c in axes(B,2) for r in eachindex(d) A[r,c] = B[r,c] / d[r] end end return nothing end @doc raw""" div_D!(A, B, d) Calculate the matrix product ``A = B \cdot D^{-1},`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function div_D!(A::AbstractMatrix, B::AbstractMatrix, d::AbstractVector) @inbounds @fastmath for c in eachindex(d) for r in axes(B,1) A[r,c] = B[r,c] / d[c] end end return nothing end @doc raw""" lmul_D!(d, M) In-place calculation of the matrix product ``M = D \cdot M,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function lmul_D!(d::AbstractVector, M::AbstractMatrix) @inbounds @fastmath for c in axes(M,2) for r in eachindex(d) M[r,c] *= d[r] end end return nothing end @doc raw""" rmul_D!(M, d) In-place calculation of the matrix product ``M = M \cdot D,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function rmul_D!(M::AbstractMatrix, d::AbstractVector) @inbounds @fastmath for c in eachindex(d) for r in axes(M,1) M[r,c] *= d[c] end end return nothing end @doc raw""" ldiv_D!(d, M) In-place calculation of the matrix product ``M = D^{-1} \cdot M,`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function ldiv_D!(d::AbstractVector, M::AbstractMatrix) @inbounds @fastmath for c in axes(M,2) for r in eachindex(d) M[r,c] /= d[r] end end return nothing end @doc raw""" rdiv_D!(M, d) In-place calculation of the matrix product ``M = M \cdot D^{-1},`` where ``D`` is a diagonal matrix represented by the vector `d`. """ function rdiv_D!(M::AbstractMatrix, d::AbstractVector) @inbounds @fastmath for c in eachindex(d) for r in axes(M,1) M[r,c] /= d[c] end end return nothing end @doc raw""" mul_P!(A, p, B) Evaluate the matrix product ``A = P \cdot B,`` where ``P`` is a permutation matrix represented by the vector of integers `p`. """ function mul_P!(A::AbstractMatrix, p::AbstractVector{Int}, B::AbstractMatrix) @views @. A = B[p,:] return nothing end @doc raw""" mul_P!(A, B, p) Evaluate the matrix product ``A = B \cdot P,`` where ``P`` is a permutation matrix represented by the vector of integers `p`. """ function mul_P!(A::AbstractMatrix, B::AbstractMatrix, p::AbstractVector{Int}) A′ = @view A[:,p] @. A′ = B return nothing end @doc raw""" inv_P!(p⁻¹, p) Calculate the inverse/transpose ``P^{-1}=P^T`` of a permuation ``P`` represented by the vector `p`, writing the result to `p⁻¹`. """ function inv_P!(p⁻¹::Vector{Int}, p::Vector{Int}) sortperm!(p⁻¹, p) return nothing end @doc raw""" perm_sign(p::AbstractVector{Int}) Calculate the sign/parity of the permutation `p`, ``\textrm{sgn}(p) = \pm 1.`` """ function perm_sign(p::AbstractVector{Int}) N = length(p) sgn = 0 # iterate over elements in permuation @fastmath @inbounds for i in eachindex(p) # if element has not been assigned to a cycle if p[i] <= N k = 1 j = i # calculate cycle containing current element while p[j] != i tmp = j j = p[j] p[tmp] += N # mark element as assigned to cycle k += 1 end p[j] += N # mark element as assigned to cycle sgn += (k-1)%2 end end # set sgn = ±1 sgn = 1 - 2*(sgn%2) # restore permutation @. p = p - N return sgn end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
13490
# @doc raw""" # adjoint_inv_ldr!(A⁻ᵀ::LDR{T}, A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} # Given a matrix ``A,`` calculate the [`LDR`](@ref) factorization ``(A^{-1})^{\dagger},`` # storing the result in `A⁻ᵀ`. # # Algorithm # By calculating the pivoted QR factorization of `A`, we can calculate the [`LDR`](@ref) # facorization `(A^{-1})^{\dagger} = L_0 D_0 R_0` using the procedure # ```math # \begin{align*} # (A^{-1})^{\dagger}:= & ([QRP^{T}]^{-1})^{\dagger}\\ # = & ([Q\,\textrm{|diag}(R)|\,|\textrm{diag}(R)|^{-1}\,RP^{T}]^{-1})^{\dagger}\\ # = & [\overset{R_{0}^{\dagger}}{\overbrace{PR^{-1}|\textrm{diag}(R)}|}\,\overset{D_{0}}{\overbrace{|\textrm{diag}(R)|^{-1}}}\,\overset{L_{0}^{\dagger}}{\overbrace{Q^{\dagger}}}]^{\dagger}\\ # = & [R_{0}^{\dagger}D_{0}L_{0}^{\dagger}]^{\dagger}\\ # = & L_{0}D_{0}R_{0}. # \end{align*} # ``` # """ # function adjoint_inv_ldr!(A⁻ᵀ::LDR{T}, A::AbstractMatrix{T}, ws::LDRWorkspace{T}) where {T} # # calculate A = Q⋅R⋅Pᵀ # copyto!(A⁻ᵀ.L, A) # LAPACK.geqp3!(A⁻ᵀ.L, ws.qr_ws) # copyto!(A⁻ᵀ.R, A⁻ᵀ.L) # triu!(A⁻ᵀ.R) # R (set lower triangular to 0) # pᵀ = ws.qr_ws.jpvt # p = ws.lu_ws.ipiv # inv_P!(p, pᵀ) # P # LAPACK.orgqr!(Aᵀ.L, ws.qr_ws) # L₀ = Q # @fastmath @inbounds for i in eachindex(A⁻ᵀ.d) # A⁻ᵀ.d[i] = inv(abs(A⁻ᵀ.R[i,i])) # D₀ = |diag(R)|⁻¹ # end # R′ = A⁻ᵀ.R # lmul_D!(A⁻ᵀ.d, R′) # R′ := |diag(R)|⁻¹⋅R # R″ = R′ # LinearAlgebra.inv!(UpperTriangular(R″)) # R″ = (R′)⁻¹ = R⁻¹⋅|diag(R)| # R₀ᵀ = ws.M # mul_P!(R₀ᵀ, p, R″) # R₀ᵀ = P⋅R″ = P⋅R⁻¹⋅diag(R) # adjoint(A⁻ᵀ.R, R₀ᵀ) # R₀ = [P⋅R⁻¹⋅diag(R)]ᵀ # return nothing # end @doc raw""" inv_IpA!(G::AbstractMatrix{T}, A::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Calculate the numerically stable inverse ``G := [I + A]^{-1},`` where ``G`` is a matrix, and ``A`` is represented by a [`LDR`](@ref) factorization. This method also returns ``\log( \vert \det G\vert )`` and ``\textrm{sign}(\det G).`` # Algorithm The numerically stable inverse ``G := [I + A]^{-1}`` is calculated using the procedure ```math \begin{align*} G:= & [I+A]^{-1}\\ = & [I+L_{a}D_{a}R_{a}]^{-1}\\ = & [I+L_{a}D_{a,\min}D_{a,\max}R_{a}]^{-1}\\ = & [(R_{a}^{-1}D_{a,\max}^{-1}+L_{a}D_{a,\min})D_{a,\max}R_{a}]^{-1}\\ = & R_{a}^{-1}D_{a,\max}^{-1}[\overset{M}{\overbrace{R_{a}^{-1}D_{a,\max}^{-1}+L_{a}D_{a,\min}}}]^{-1}\\ = & R_{a}^{-1}D_{a,\max}^{-1}M^{-1}, \end{align*} ``` where ``D_{a,\min} = \min(D_a, 1)`` and ``D_{a,\max} = \max(D_a, 1).`` Intermediate matrix inversions and relevant determinant calculations are performed via LU factorizations with partial pivoting. """ function inv_IpA!(G::AbstractMatrix{T}, A::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Lₐ = A.L dₐ = A.d Rₐ = A.R # calculate Rₐ⁻¹ Rₐ⁻¹ = ws.M′ copyto!(Rₐ⁻¹, Rₐ) logdetRₐ⁻¹, sgndetRₐ⁻¹ = inv_lu!(Rₐ⁻¹, ws.lu_ws) # calculate D₋ = min(Dₐ, 1) d₋ = ws.v @. d₋ = min(dₐ, 1) # calculate Lₐ⋅D₋ mul_D!(ws.M, Lₐ, d₋) # calculate D₊ = max(Dₐ, 1) d₊ = ws.v @. d₊ = max(dₐ, 1) # calculate sign(det(D₊)) and log(|det(D₊)|) logdetD₊, sgndetD₊ = det_D(d₊) # calculate Rₐ⁻¹⋅D₊⁻¹ Rₐ⁻¹D₊ = Rₐ⁻¹ rdiv_D!(Rₐ⁻¹D₊, d₊) # calculate M = Rₐ⁻¹⋅D₊⁻¹ + Lₐ⋅D₋ axpy!(1.0, Rₐ⁻¹D₊, ws.M) # calculate M⁻¹ = [Rₐ⁻¹⋅D₊⁻¹ + Lₐ⋅D₋]⁻¹ M⁻¹ = ws.M logdetM⁻¹, sgndetM⁻¹ = inv_lu!(M⁻¹, ws.lu_ws) # calculate G = Rₐ⁻¹⋅D₊⁻¹⋅M⁻¹ mul!(G, Rₐ⁻¹D₊, M⁻¹) # calculate sign(det(G)) and log(|det(G)|) sgndetG = sgndetRₐ⁻¹ * conj(sgndetD₊) * sgndetM⁻¹ logdetG = -logdetD₊ + logdetM⁻¹ return real(logdetG), sgndetG end @doc raw""" inv_IpUV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Calculate the numerically stable inverse ``G := [I + UV]^{-1},`` where ``G`` is a matrix and ``U`` and ``V`` are represented by [`LDR`](@ref) factorizations. This method also returns ``\log( \vert \det G\vert )`` and ``\textrm{sign}(\det G).`` # Algorithm The numerically stable inverse ``G := [I + UV]^{-1}`` is calculated using the procedure ```math \begin{align*} G:= & [I+UV]^{-1}\\ = & [I+L_{u}D_{u}R_{u}L_{v}D_{v}R_{v}]^{-1}\\ = & [I+L_{u}D_{u,\max}D_{u,\min}R_{u}L_{v}D_{v,\min}D_{v,\max}R_{v}]^{-1}\\ = & [L_{u}D_{u,\max}(D_{u,\max}^{-1}L_{u}^{\dagger}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\min}R_{u}L_{v}D_{v,\min})D_{v,\max}R_{v}]^{-1}\\ = & R_{v}^{-1}D_{v,\max}^{-1}[\overset{M}{\overbrace{D_{u,\max}^{-1}L_{u}^{\dagger}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\min}R_{u}L_{v}D_{v,\min}}}]^{-1}D_{u,\max}^{-1}L_{u}^{\dagger}\\ = & R_{v}^{-1}D_{v,\max}^{-1}M^{-1}D_{u,\max}^{-1}L_{u}^{\dagger} \end{align*} ``` Intermediate matrix inversions and relevant determinant calculations are performed via LU factorizations with partial pivoting. """ function inv_IpUV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Lᵤ = U.L dᵤ = U.d Rᵤ = U.R Lᵥ = V.L dᵥ = V.d Rᵥ = V.R # calculate sign(det(Lᵤ)) and log(|det(Lᵤ)|) copyto!(ws.M, Lᵤ) logdetLᵤ, sgndetLᵤ = det_lu!(ws.M, ws.lu_ws) # calculate Rᵥ⁻¹, sign(det(Rᵥ⁻¹)) and log(|det(Rᵥ⁻¹)|) Rᵥ⁻¹ = ws.M′ copyto!(Rᵥ⁻¹, Rᵥ) logdetRᵥ⁻¹, sgndetRᵥ⁻¹ = inv_lu!(Rᵥ⁻¹, ws.lu_ws) # calcuate Dᵥ₊ = max(Dᵥ, 1) dᵥ₊ = ws.v @. dᵥ₊ = max(dᵥ, 1) # calculate sign(det(Dᵥ₊)) and log(|det(Dᵥ₊)|) logdetDᵥ₊, sgndetDᵥ₊ = det_D(dᵥ₊) # calculate Rᵥ⁻¹⋅Dᵥ₊⁻¹ rdiv_D!(Rᵥ⁻¹, dᵥ₊) Rᵥ⁻¹Dᵥ₊⁻¹ = Rᵥ⁻¹ # calcuate Dᵤ₊ = max(Dᵤ, 1) dᵤ₊ = ws.v @. dᵤ₊ = max(dᵤ, 1) # calculate sign(det(Dᵥ₊)) and log(|det(Dᵥ₊)|) logdetDᵤ₊, sgndetDᵤ₊ = det_D(dᵤ₊) # calcualte Dᵤ₊⁻¹⋅Lᵤᵀ adjoint!(ws.M, Lᵤ) ldiv_D!(dᵤ₊, ws.M) Dᵤ₊⁻¹Lᵤᵀ = ws.M # calculate Dᵤ₋ = min(Dᵤ, 1) dᵤ₋ = ws.v @. dᵤ₋ = min(dᵤ, 1) # calculate Dᵤ₋⋅Rᵤ⋅Lᵥ mul!(G, Rᵤ, Lᵥ) # Rᵤ⋅Lᵥ lmul_D!(dᵤ₋, G) # Dᵤ₋⋅Rᵤ⋅Lᵥ # calculate Dᵥ₋ = min(Dᵥ, 1) dᵥ₋ = ws.v @. dᵥ₋ = min(dᵥ, 1) # caluclate Dᵤ₋⋅Rᵤ⋅Lᵥ⋅Dᵥ₋ rmul_D!(G, dᵥ₋) # caluclate Dᵤ₊⁻¹⋅Lᵤᵀ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ mul!(ws.M″, Dᵤ₊⁻¹Lᵤᵀ, Rᵥ⁻¹Dᵥ₊⁻¹) # calculate M = Dᵤ₊⁻¹⋅Lᵤᵀ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ + Dᵤ₋⋅Rᵤ⋅Lᵥ⋅Dᵥ₋ M = G axpy!(1.0, ws.M″, M) # calculate M⁻¹, sign(det(M)) and log(|det(M)|) M⁻¹ = G logdetM⁻¹, sgndetM⁻¹ = inv_lu!(M⁻¹, ws.lu_ws) # calculate G = Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅M⁻¹⋅Dᵤ₊⁻¹⋅Lᵤᵀ mul!(ws.M″, M⁻¹, Dᵤ₊⁻¹Lᵤᵀ) # M⁻¹⋅Dᵤ₊⁻¹⋅Lᵤᵀ mul!(G, Rᵥ⁻¹Dᵥ₊⁻¹, ws.M″) # G = Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅M⁻¹⋅Dᵤ₊⁻¹⋅Lᵤᵀ # calculate sign(det(G)) and log(|det(G)|) sgndetG = sgndetRᵥ⁻¹ * conj(sgndetDᵥ₊) * sgndetM⁻¹ * conj(sgndetDᵤ₊) * conj(sgndetLᵤ) logdetG = -logdetDᵥ₊ + logdetM⁻¹ - logdetDᵤ₊ return real(logdetG), sgndetG end @doc raw""" inv_UpV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Calculate the numerically stable inverse ``G := [U+V]^{-1},`` where ``G`` is a matrix and ``U`` and ``V`` are represented by [`LDR`](@ref) factorizations. This method also returns ``\log( \vert \det G\vert )`` and ``\textrm{sign}(\det G).`` # Algorithm The numerically stable inverse ``G := [U+V]^{-1}`` is calculated using the procedure ```math \begin{align*} G:= & [U+V]^{-1}\\ = & [\overset{D_{u,\max}D_{u,\min}}{L_{u}\overbrace{D_{u}}R_{u}}+\overset{D_{v,\min}D_{v,\max}}{L_{v}\overbrace{D_{v}}R_{v}}]^{-1}\\ = & [L_{u}D_{u,\max}D_{u,\min}R_{u}+L_{v}D_{v,\min}D_{v,\max}R_{v}]^{-1}\\ = & [L_{u}D_{u,\max}(D_{u,\min}R_{u}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\max}^{-1}L_{u}^{\dagger}L_{v}D_{v,\min})D_{v,\max}R_{v}]^{-1}\\ = & R_{v}^{-1}D_{v,\max}^{-1}[\overset{M}{\overbrace{D_{u,\min}R_{u}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\max}^{-1}L_{u}^{\dagger}L_{v}D_{v,\min}}}]^{-1}D_{u,\max}^{-1}L_{u}^{\dagger}\\ = & R_{v}^{-1}D_{v,\max}^{-1}M^{-1}D_{u,\max}^{-1}L_{u}^{\dagger}, \end{align*} ``` where ```math \begin{align*} D_{u,\min} = & \min(D_u,1)\\ D_{u,\max} = & \max(D_u,1)\\ D_{v,\min} = & \min(D_v,1)\\ D_{v,\max} = & \max(D_v,1), \end{align*} ``` and all intermediate matrix inversions and determinant calculations are performed via LU factorizations with partial pivoting. """ function inv_UpV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Lᵤ = U.L dᵤ = U.d Rᵤ = U.R Lᵥ = V.L dᵥ = V.d Rᵥ = V.R # calculate sign(det(Lᵤ)) and log(|det(Lᵤ)|) copyto!(ws.M, Lᵤ) logdetLᵤ, sgndetLᵤ = det_lu!(ws.M, ws.lu_ws) # calculate Rᵥ⁻¹, sign(det(Rᵥ⁻¹)) and log(|det(Rᵥ⁻¹)|) Rᵥ⁻¹ = ws.M′ copyto!(Rᵥ⁻¹, Rᵥ) logdetRᵥ⁻¹, sgndetRᵥ⁻¹ = inv_lu!(Rᵥ⁻¹, ws.lu_ws) # calcuate Dᵥ₊ = max(Dᵥ, 1) dᵥ₊ = ws.v @. dᵥ₊ = max(dᵥ, 1) # calculate sign(det(Dᵥ₊)) and log(|det(Dᵥ₊)|) logdetDᵥ₊, sgndetDᵥ₊ = det_D(dᵥ₊) # calculate Rᵥ⁻¹⋅Dᵥ₊⁻¹ rdiv_D!(Rᵥ⁻¹, dᵥ₊) Rᵥ⁻¹Dᵥ₊⁻¹ = Rᵥ⁻¹ # calcuate Dᵤ₊ = max(Dᵤ, 1) dᵤ₊ = ws.v @. dᵤ₊ = max(dᵤ, 1) # calculate sign(det(Dᵥ₊)) and log(|det(Dᵥ₊)|) logdetDᵤ₊, sgndetDᵤ₊ = det_D(dᵤ₊) # calcualte Dᵤ₊⁻¹⋅Lᵤᵀ adjoint!(ws.M, Lᵤ) ldiv_D!(dᵤ₊, ws.M) Dᵤ₊⁻¹Lᵤᵀ = ws.M # calculate Dᵤ₋ = min(Dᵤ, 1) dᵤ₋ = ws.v @. dᵤ₋ = min(dᵤ, 1) # calculate Dᵤ₋⋅Rᵤ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ mul!(G, Rᵤ, Rᵥ⁻¹Dᵥ₊⁻¹) # Rᵤ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ lmul_D!(dᵤ₋, G) # Dᵤ₋⋅[Rᵤ⋅Rᵥ⁻¹⋅Dᵥ₊] # calculate Dᵥ₋ = min(Dᵥ, 1) dᵥ₋ = ws.v @. dᵥ₋ = min(dᵥ, 1) # calculate Dᵤ₊⁻¹⋅Lᵤᵀ⋅Lᵥ⋅Dᵥ₋ mul!(ws.M″, Dᵤ₊⁻¹Lᵤᵀ, Lᵥ) rmul_D!(ws.M″, dᵥ₋) # calculate M = Dᵤ₋⋅Rᵤ⋅Rᵥ⁻¹⋅Dᵥ₊ + Dᵤ₊⁻¹⋅Lᵤᵀ⋅Lᵥ⋅Dᵥ₋ M = G axpy!(1.0, ws.M″, M) # calculate M⁻¹, sign(det(M)) and log(|det(M)|) M⁻¹ = G logdetM⁻¹, sgndetM⁻¹ = inv_lu!(M⁻¹, ws.lu_ws) # calculate G = Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅M⁻¹⋅Dᵤ₊⁻¹⋅Lᵤᵀ mul!(ws.M″, Rᵥ⁻¹Dᵥ₊⁻¹, M⁻¹) # [Rᵥ⁻¹⋅Dᵥ₊⁻¹]⋅M⁻¹ mul!(G, ws.M″, Dᵤ₊⁻¹Lᵤᵀ) # G = [Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅M⁻¹]⋅Dᵤ₊⁻¹⋅Lᵤᵀ # calculate sign(det(G)) and log(|det(G)|) sgndetG = sgndetRᵥ⁻¹ * conj(sgndetDᵥ₊) * sgndetM⁻¹ * conj(sgndetDᵤ₊) * conj(sgndetLᵤ) logdetG = -logdetDᵥ₊ + logdetM⁻¹ - logdetDᵤ₊ return real(logdetG), sgndetG end @doc raw""" inv_invUpV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Calculate the numerically stable inverse ``G := [U^{-1}+V]^{-1},`` where ``G`` is a matrix and ``U`` and ``V`` are represented by [`LDR`](@ref) factorizations. This method also returns ``\log( \vert \det G\vert )`` and ``\textrm{sign}(\det G).`` # Algorithm The numerically stable inverse ``G := [U^{-1}+V]^{-1}`` is calculated using the procedure ```math \begin{align*} G:= & [U^{-1}+V]^{-1}\\ = & [\overset{D_{u,\max}D_{u,\min}}{(L_{u}\overbrace{D_{u}}R_{u})^{-1}}+\overset{D_{v,\min}D_{v,\max}}{L_{v}\overbrace{D_{v}}R_{v}}]^{-1}\\ = & [(L_{u}D_{u,\max}D_{u,\min}R_{u})^{-1}+L_{v}D_{v,\min}D_{v,\max}R_{v}]^{-1}\\ = & [R_{u}^{-1}D_{u,\min}^{-1}D_{u,\max}^{-1}L_{u}^{\dagger}+L_{v}D_{v,\min}D_{v,\max}R_{v}]^{-1}\\ = & [R_{u}^{-1}D_{u,\min}^{-1}(D_{u,\max}^{-1}L_{u}^{\dagger}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\min}R_{u}L_{v}D_{v,\min})D_{v,\max}R_{v}]^{-1}\\ = & R_{v}^{-1}D_{v,\max}^{-1}[\overset{M}{\overbrace{D_{u,\max}^{-1}L_{u}^{\dagger}R_{v}^{-1}D_{v,\max}^{-1}+D_{u,\min}R_{u}L_{v}D_{v,\min}}}]^{-1}D_{u,\min}R_{u}\\ = & R_{v}^{-1}D_{v,\max}^{-1}M^{-1}D_{u,\min}R_{u} \end{align*} ``` where ```math \begin{align*} D_{u,\min} = & \min(D_u,1)\\ D_{u,\max} = & \max(D_u,1)\\ D_{v,\min} = & \min(D_v,1)\\ D_{v,\max} = & \max(D_v,1), \end{align*} ``` and all intermediate matrix inversions and determinant calculations are performed via LU factorizations with partial pivoting. """ function inv_invUpV!(G::AbstractMatrix{T}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E})::Tuple{E,T} where {T,E} Lᵤ = U.L dᵤ = U.d Rᵤ = U.R Lᵥ = V.L dᵥ = V.d Rᵥ = V.R # calcualte sign(det(Rᵤ)) and log(|det(Rᵤ)|) copyto!(ws.M′, Rᵤ) logdetRᵤ, sgndetRᵤ = det_lu!(ws.M′, ws.lu_ws) # calculate Dᵤ₋ = min(Dᵤ, 1) dᵤ₋ = ws.v @. dᵤ₋ = min(dᵤ, 1) # calculate sign(det(Dᵤ₋)) and log(|det(Dᵤ₋)|) logdetDᵤ₋, sgndetDᵤ₋ = det_D(dᵤ₋) # calculate Dᵤ₋⋅Rᵤ Dᵤ₋Rᵤ = ws.M′ copyto!(Dᵤ₋Rᵤ, Rᵤ) lmul_D!(dᵤ₋, Dᵤ₋Rᵤ) # calculate Rᵥ⁻¹, sign(det(Rᵥ⁻¹)) and log(|det(Rᵥ⁻¹)|) Rᵥ⁻¹ = ws.M″ copyto!(Rᵥ⁻¹, Rᵥ) logdetRᵥ⁻¹, sgndetRᵥ⁻¹ = inv_lu!(Rᵥ⁻¹, ws.lu_ws) # calculate Dᵥ₊ = max(Dᵥ, 1) dᵥ₊ = ws.v @. dᵥ₊ = max(dᵥ, 1) # calculate sign(det(Dᵥ₊)) and log(|det(Dᵥ₊)|) logdetDᵥ₊, sgndetDᵥ₊ = det_D(dᵥ₊) # calculate Rᵥ⁻¹⋅Dᵥ₊⁻¹ Rᵥ⁻¹Dᵥ₊⁻¹ = Rᵥ⁻¹ rdiv_D!(Rᵥ⁻¹Dᵥ₊⁻¹, dᵥ₊) # calculate Dᵥ₋ = min(Dᵥ, 1) dᵥ₋ = ws.v @. dᵥ₋ = min(dᵥ, 1) # calculate Dᵤ₋⋅Rᵤ⋅Lᵥ⋅Dᵥ₋ mul!(G, Dᵤ₋Rᵤ, Lᵥ) # Dᵤ₋⋅Rᵤ⋅Lᵥ rmul_D!(G, dᵥ₋) # [Dᵤ₋⋅Rᵤ⋅Lᵥ]⋅Dᵥ₋ # calculate Dᵤ₊ = max(Dᵤ, 1) dᵤ₊ = ws.v @. dᵤ₊ = max(dᵤ, 1) # calculate Dᵤ₊⁻¹⋅Lᵤᵀ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ Lᵤᵀ = adjoint(Lᵤ) mul!(ws.M, Lᵤᵀ, Rᵥ⁻¹Dᵥ₊⁻¹) # Lᵤᵀ⋅[Rᵥ⁻¹⋅Dᵥ₊⁻¹] ldiv_D!(dᵤ₊, ws.M) # Dᵤ₊⁻¹⋅[Lᵤᵀ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹] # calculate Dᵤ₊⁻¹⋅Lᵤᵀ⋅Rᵥ⁻¹⋅Dᵥ₊⁻¹ + Dᵤ₋⋅Rᵤ⋅Lᵥ⋅Dᵥ₋ axpy!(1.0, ws.M, G) # calculate M⁻¹, sign(det(M⁻¹)) and log(|det(M⁻¹)|) M⁻¹ = G logdetM⁻¹, sgndetM⁻¹ = inv_lu!(M⁻¹, ws.lu_ws) # calculate G := Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅M⁻¹⋅Dᵤ₋⋅Rᵤ mul!(ws.M, M⁻¹, Dᵤ₋Rᵤ) # M⁻¹⋅Dᵤ₋⋅Rᵤ mul!(G, Rᵥ⁻¹Dᵥ₊⁻¹, ws.M) # G := Rᵥ⁻¹⋅Dᵥ₊⁻¹⋅[M⁻¹⋅Dᵤ₋⋅Rᵤ] # calcualte sign(det(G)) and log(|det(G)|) sgndetG = sgndetRᵥ⁻¹ * conj(sgndetDᵥ₊) * sgndetM⁻¹ * sgndetDᵤ₋ * sgndetRᵤ logdetG = -logdetDᵥ₊ + logdetM⁻¹ + logdetDᵤ₋ return real(logdetG), sgndetG end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
6328
import LinearAlgebra.LAPACK: getrf!, getri!, getrs! @doc raw""" LUWorkspace{T<:Number, E<:Real} Allocated space for calcuating the pivoted QR factorization using the LAPACK routine `getrf!`. Also interfaces with the `getri!` and `getrs!` routines for inverting matrices and solving linear systems respectively. """ struct LUWorkspace{T<:Number} work::Vector{T} ipiv::Vector{Int} end # copy the state of one LUWorkspace into another function copyto!(luws_out::LUWorkspace{T}, luws_in::LUWorkspace{T}) where {T} copyto!(luws_out.work, luws_in.work) copyto!(luws_out.ipiv, luws_in.ipiv) return nothing end # wrap geqp3 and orgqr LAPACK methods for (getrf, getri, getrs, elty, relty) in ((:dgetrf_, :dgetri_, :dgetrs_, :Float64, :Float64), (:sgetrf_, :sgetri_, :sgetrs_, :Float32, :Float32), (:zgetrf_, :zgetri_, :zgetrs_, :ComplexF64, :Float64), (:cgetrf_, :cgetri_, :cgetrs_, :ComplexF32, :Float32)) @eval begin # returns LUWorkspace function LUWorkspace(A::StridedMatrix{$elty}) # calculate LU factorization n = checksquare(A) require_one_based_indexing(A) chkstride1(A) A′ = copy(A) lda = max(1, stride(A′, 2)) info = Ref{BlasInt}() ipiv = zeros(Int, n) ccall((@blasfunc($getrf), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), n, n, A′, lda, ipiv, info) chklapackerror(info[]) # perform matrix inversion method once to resize workspace lwork = BlasInt(-1) work = Vector{$elty}(undef, 1) ccall((@blasfunc($getri), liblapack), Cvoid, (Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}), n, A, lda, ipiv, work, lwork, info) chklapackerror(info[]) lwork = BlasInt(real(work[1])) resize!(work, lwork) return LUWorkspace(work, ipiv) end # calculates LU factorization function getrf!(A::AbstractMatrix{$elty}, ws::LUWorkspace{$elty}) require_one_based_indexing(A) chkstride1(A) n = checksquare(A) lda = max(1, stride(A, 2)) info = Ref{BlasInt}() fill!(ws.ipiv, 0) ccall((@blasfunc($getrf), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), n, n, A, lda, ws.ipiv, info) chklapackerror(info[]) return nothing end # calculate matrix inverse of LU factorization function getri!(A::AbstractMatrix{$elty}, ws::LUWorkspace{$elty}) require_one_based_indexing(A, ws.ipiv) chkstride1(A, ws.ipiv) n = checksquare(A) lda = max(1,stride(A, 2)) info = Ref{BlasInt}() ccall((@blasfunc($getri), liblapack), Cvoid, (Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}), n, A, lda, ws.ipiv, ws.work, length(ws.work), info) chklapackerror(info[]) return nothing end # solve the linear system A⋅X = B, where A is represented by LU factorization and B is overwritten in-place function getrs!(A::AbstractMatrix{$elty}, B::AbstractVecOrMat{$elty}, ws::LUWorkspace{$elty}, trans::AbstractChar='N') require_one_based_indexing(A, B) chktrans(trans) chkstride1(A, B) n = checksquare(A) @assert n == length(ws.ipiv) WorkspaceSizeError(length(ws.ipiv), n) if n != size(B, 1) throw(DimensionMismatch("B has leading dimension $(size(B,1)), but needs $n")) end info = Ref{BlasInt}() ccall((@blasfunc($getrs), liblapack), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Clong), trans, n, size(B,2), A, max(1,stride(A,2)), ws.ipiv, B, max(1,stride(B,2)), info, 1) chklapackerror(info[]) return nothing end end end @doc raw""" det_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} Return ``\log(|\det A|)`` and ``\textrm{sign}(\det A).`` Note that ``A`` is left modified by this function. """ function det_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} # calculate LU factorization LAPACK.getrf!(A, ws) # calculate det(A) logdetA = zero(real(T)) # logdetA = 0 sgndetA = oneunit(T) # sgndetA = 1 @fastmath @inbounds for i in axes(A,1) logdetA += log(abs(A[i,i])) sgndetA *= sign(A[i,i]) if i != ws.ipiv[i] sgndetA = -sgndetA end end return real(logdetA), sgndetA end @doc raw""" inv_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} Calculate the inverse of the matrix `A`, overwriting `A` in-place. Also return ``\log(|\det A^{-1}|)`` and ``\textrm{sign}(\det A^{-1}).`` """ function inv_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} # calculate LU factorization of A and determinant at the same time logdetA, sgndetA = det_lu!(A, ws) # calculate matrix inverse LAPACK.getri!(A, ws) return real(-logdetA), conj(sgndetA) end @doc raw""" ldiv_lu!(A::AbstractMatrix{T}, B::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} Calculate ``B:= A^{-1} B,`` modifying ``B`` in-place. The matrix ``A`` is over-written as well. Also return ``\log(|\det A^{-1}|)`` and ``\textrm{sign}(\det A^{-1}).`` """ function ldiv_lu!(A::AbstractMatrix{T}, B::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T} # calculate LU factorization of A and determinant at the same time logdetA, sgndetA = det_lu!(A, ws) # calculate the matrix product A⁻¹⋅B LAPACK.getrs!(A, B, ws) return real(-logdetA), conj(sgndetA) end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
20545
############################### ## OVERLOADING Base.eltype() ## ############################### @doc raw""" eltype(LDR{T}) where {T} Return the matrix element type `T` of the [`LDR`](@ref) factorization `F`. """ eltype(F::LDR{T}) where {T} = T ############################# ## OVERLOADING Base.size() ## ############################# @doc raw""" size(F::LDR, dim...) Return the size of the [`LDR`](@ref) factorization `F`. """ size(F::LDR, dim...) = size(F.L, dim...) ################################ ## OVERLOADING Base.copyto!() ## ################################ @doc raw""" copyto!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Copy the matrix represented by the [`LDR`](@ref) factorization `V` into the matrix `U`. """ function copyto!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} (; L, d, R) = V (; M) = ws copyto!(M, R) # R lmul_D!(d, M) # D⋅R mul!(U, L, M) # U = L⋅D⋅R return nothing end @doc raw""" copyto!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} = ldr!(U,V,ws) copyto!(U::LDR, I::UniformScaling, ignore...) = ldr!(U,I) Copy the matrix `V` to the [`LDR`](@ref) factorization `U`, calculating the [`LDR`](@ref) factorization to represent `V`. """ copyto!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} = ldr!(U,V,ws) copyto!(U::LDR, I::UniformScaling, ignore...) = ldr!(U,I) @doc raw""" copyto!(U::LDR{T,E}, V::LDR{T,E}, ignore...) where {T,E} Copy the ['LDR'](@ref) factorization `V` to `U`. """ copyto!(U::LDR{T,E}, V::LDR{T,E}, ignore...) where {T,E} = ldr!(U, V) ########################################## ## OVERLOADING LinearAlgebra.adjoint!() ## ########################################## @doc raw""" adjoint!(Aᵀ::AbstractMatrix{T}, A::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Given an [`LDR`](@ref) factorization ``A``, construct the matrix representing its adjoint ``A^{\dagger}.`` """ function adjoint!(Aᵀ::AbstractMatrix{T}, A::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} (; L, d, R) = A Rᵀ = ws.M′ adjoint!(Rᵀ, R) adjoint!(ws.M, L) # Lᵀ lmul_D!(d, ws.M) # D⋅Lᵀ mul!(Aᵀ, Rᵀ, ws.M) # Rᵀ⋅D⋅Lᵀ return nothing end ####################################### ## OVERLOADING LinearAlgebra.lmul!() ## ####################################### @doc raw""" lmul!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate ``V := U V`` where ``U`` is a [`LDR`](@ref) factorization and ``V`` is a matrix. """ function lmul!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} # calculate V := Lᵤ⋅Dᵤ⋅Rᵤ⋅V mul!(ws.M, U.R, V) # Rᵤ⋅V lmul_D!(U.d, ws.M) # Dᵤ⋅Rᵤ⋅V mul!(V, U.L, ws.M) # V := Lᵤ⋅Dᵤ⋅Rᵤ⋅V return nothing end @doc raw""" lmul!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``V := U V,`` where ``U`` is a matrix and ``V`` is an [`LDR`](@ref) factorization. # Algorithm Calculate ``V := U V`` using the procedure ```math \begin{align*} V:= & UV\\ = & \overset{L_{0}D_{0}R_{0}}{\overbrace{U[L_{v}D_{v}}}R_{v}]\\ = & \overset{L_{1}}{\overbrace{L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}R_{v}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function lmul!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # record original Rᵥ matrix Rᵥ = ws.M′ copyto!(Rᵥ, V.R) # calculate product U⋅Lᵥ⋅Dᵥ mul!(ws.M, U, V.L) # U⋅Lᵥ mul_D!(V.L, ws.M, V.d) # U⋅Lᵥ⋅Dᵥ # calcualte [L₀⋅D₀⋅R₀] = U⋅Lᵥ⋅Dᵥ ldr!(V, ws) # calcualte R₁ = R₀⋅Rᵥ mul!(ws.M, V.R, Rᵥ) copyto!(V.R, ws.M) return nothing end @doc raw""" lmul!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``V := U V,`` where ``U`` and ``V`` are both [`LDR`](@ref) factorizations. # Algorithm Calculate ``V := U V`` using the procedure ```math \begin{align*} V:= & UV\\ = & [L_{u}D_{u}\overset{M}{\overbrace{R_{u}][L_{v}}}D_{v}R_{v}]\\ = & L_{u}\overset{L_{0}D_{0}R_{0}}{\overbrace{D_{u}MD_{v}}}R_{v}\\ = & \overset{L_{1}}{\overbrace{L_{u}L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}R_{v}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function lmul!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # record original Rᵥ Rᵥ = ws.M′ copyto!(Rᵥ, V.R) # calculate M = Rᵤ⋅Lᵥ mul!(ws.M, U.R, V.L) # calculate Dᵤ⋅M⋅Dᵥ rmul_D!(ws.M, V.d) # M⋅Dᵥ mul_D!(V.L, U.d, ws.M) # Dᵤ⋅M⋅Dᵥ # calculate [L₀⋅D₀⋅R₀] = Dᵤ⋅M⋅Dᵥ ldr!(V, ws) # calculate L₁ = Lᵤ⋅L₀ mul!(ws.M, U.L, V.L) copyto!(V.L, ws.M) # calculate R₁ = R₀⋅Rᵥ mul!(ws.M, V.R, Rᵥ) copyto!(V.R, ws.M) return nothing end ####################################### ## OVERLOADING LinearAlgebra.rmul!() ## ####################################### @doc raw""" rmul!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate ``U := U V`` where ``U`` is a matrix and ``V`` is a [`LDR`](@ref) factorization. """ function rmul!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # calculate U := U⋅Lᵥ⋅Dᵥ⋅Rᵥ mul!(ws.M, U, V.L) # U⋅Lᵥ rmul_D!(ws.M, V.d) # U⋅Lᵥ⋅Dᵥ mul!(U, ws.M, V.R) # U := U⋅Lᵥ⋅Dᵥ⋅Rᵥ return nothing end @doc raw""" rmul!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``U := U V,`` where ``U`` is a [`LDR`](@ref) factorization and ``V`` is a matrix. # Algorithm Calculate ``U := U V`` using the procedure ```math \begin{align*} U:= & UV\\ = & [L_{u}\overset{L_{0}D_{0}R_{0}}{\overbrace{D_{u}R_{u}]V}}\\ = & \overset{L_{1}}{\overbrace{L_{u}L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function rmul!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} # record intial Lₐ Lᵤ = ws.M′ copyto!(Lᵤ, U.L) # calculate Dᵤ⋅Rᵤ⋅V mul!(U.L, U.R, V) lmul_D!(U.d, U.L) # calculate [L₀⋅D₀⋅R₀] = Dᵤ⋅Rᵤ⋅V ldr!(U, ws) # calculate L₁ = Lᵤ⋅L₀ mul!(ws.M, Lᵤ, U.L) copyto!(U.L, ws.M) return nothing end @doc raw""" rmul!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``U := U V,`` where both ``U`` and ``V`` are [`LDR`](@ref) factorizations. # Algorithm Calculate ``U := U V`` using the procedure ```math \begin{align*} U:= & UV\\ = & [L_{u}D_{u}\overset{M}{\overbrace{R_{u}][L_{v}}}D_{v}R_{v}]\\ = & L_{u}\overset{L_{0}D_{0}R_{0}}{\overbrace{D_{u}MD_{v}}}R_{v}\\ = & \overset{L_{1}}{\overbrace{L_{u}L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}R_{v}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function rmul!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # record initial Lᵤ Lᵤ = ws.M′ copyto!(Lᵤ, U.L) # calculate M = Rᵤ⋅Lᵥ mul!(ws.M, U.R, V.L) # calculate Dᵤ⋅Rᵤ⋅Lᵥ⋅Dᵥ rmul_D!(ws.M, V.d) mul_D!(U.L, U.d, ws.M) # calculate [L₀⋅D₀⋅R₀] = Dᵤ⋅Rᵤ⋅Lᵥ⋅Dᵥ ldr!(U, ws) # L₁ = Lᵤ⋅L₀ mul!(ws.M, Lᵤ, U.L) copyto!(U.L, ws.M) # R₁ = R₀⋅Rᵥ mul!(ws.M, U.R, V.R) copyto!(U.R, ws.M) return nothing end ###################################### ## OVERLOADING LinearAlgebra.mul!() ## ###################################### @doc raw""" mul!(H::AbstractMatrix{T}, U::LDR{T,E}, V::AbstractMatrix{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the matrix product ``H := U V``, where ``H`` and ``V`` are matrices and ``U`` is a [`LDR`](@ref) factorization. """ function mul!(H::AbstractMatrix{T}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, V) lmul!(U, H, ws) return nothing end @doc raw""" mul!(H::AbstractMatrix{T}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the matrix product ``H := U V``, where ``H`` and ``U`` are matrices and ``V`` is a [`LDR`](@ref) factorization. """ function mul!(H::AbstractMatrix{T}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, U) rmul!(H, V, ws) return nothing end @doc raw""" mul!(H::LDR{T,E}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U V``, where ``U`` is matrix, and ``H`` and ``V`` are both [`LDR`](@ref) factorization. For the algorithm refer to documentation for [`lmul!`](@ref). """ function mul!(H::LDR{T,E}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, V) lmul!(U, H, ws) return nothing end @doc raw""" mul!(H::LDR{T,E}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U V``, where ``V`` is matrix, and ``H`` and ``U`` are both [`LDR`](@ref) factorizations. For the algorithm refer to the documentation for [`rmul!`](@ref). """ function mul!(H::LDR{T,E}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, U) rmul!(H, V, ws) return nothing end @doc raw""" mul!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable matrix product ``H := U V,`` where ``H,`` ``U`` and ``V`` are all [`LDR`](@ref) factorizations. For the algorithm refer to the documentation for [`lmul!`](@ref). """ function mul!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, V) lmul!(U, H, ws) return nothing end ####################################### ## OVERLOADING LinearAlgebra.ldiv!() ## ####################################### @doc raw""" ldiv!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate ``V := U^{-1} V,`` where ``V`` is a matrix, and ``U`` is an [`LDR`](@ref) factorization. """ function ldiv!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} # calculate V := U⁻¹⋅V = [Lᵤ⋅Dᵤ⋅Rᵤ]⁻¹⋅V = Rᵤ⁻¹⋅Dᵤ⁻¹⋅Lᵤ⁻¹⋅V Lᵤ = ws.M copyto!(Lᵤ, U.L) ldiv_lu!(Lᵤ, V, ws.lu_ws) # Lᵤ⁻¹⋅V ldiv_D!(U.d, V) # Dᵤ⁻¹⋅Lᵤ⁻¹⋅V Rᵤ = ws.M copyto!(Rᵤ, U.R) ldiv_lu!(Rᵤ, V, ws.lu_ws) # V := Rᵤ⁻¹⋅Dᵤ⁻¹⋅Lᵤ⁻¹⋅V return nothing end @doc raw""" ldiv!(H::AbstractMatrix{T}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate ``H := U^{-1} V,`` where ``H`` and ``V`` are matrices, and ``U`` is an [`LDR`](@ref) factorization. """ function ldiv!(H::AbstractMatrix{T}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, V) ldiv!(U, H, ws) return nothing end @doc raw""" ldiv!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``V := U^{-1}V`` where both ``U`` and ``V`` are [`LDR`](@ref) factorizations. Note that an intermediate LU factorization is required to calucate the matrix inverse ``R_u^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. # Algorithm Calculate ``V := U^{-1}V`` using the procedure ```math \begin{align*} V:= & U^{-1}V\\ = & [L_{u}D_{u}R_{u}]^{-1}[L_{v}D_{v}R_{v}]\\ = & R_{u}^{-1}D_{u}^{-1}\overset{M}{\overbrace{L_{u}^{\dagger}L_{v}}}D_{v}R_{v}\\ = & \overset{L_{0}D_{0}R_{0}}{\overbrace{R_{u}^{-1}D_{u}^{-1}MD_{v}}}R_{v}\\ = & \overset{L_{1}}{\overbrace{L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}^{\phantom{1}}}}\,\overset{R_{1}}{\overbrace{R_{0}R_{v}^{\phantom{1}}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function ldiv!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # calculate Lᵤᵀ⋅Lᵥ Lᵤᵀ = adjoint(U.L) mul!(ws.M, Lᵤᵀ, V.L) copyto!(V.L, ws.M) # record initial Rᵥ Rᵥ = ws.M′ copyto!(Rᵥ, V.R) # calculate Rᵤ⁻¹⋅Dᵤ⁻¹⋅Lᵤᵀ⋅Lᵥ⋅Dᵥ rmul_D!(V.L, V.d) # [Lᵤᵀ⋅Lᵥ]⋅Dᵥ ldiv_D!(U.d, V.L) # Dᵤ⁻¹⋅[Lᵤᵀ⋅Lᵥ⋅Dᵥ] Rᵤ = ws.M copyto!(Rᵤ, U.R) ldiv_lu!(Rᵤ, V.L, ws.lu_ws) # Rᵤ⁻¹⋅[Dᵤ⁻¹⋅Lᵤᵀ⋅Lᵥ⋅Dᵥ] # calculate [L₀⋅D₀⋅R₀] = Rᵤ⁻¹⋅Dᵤ⁻¹⋅Lᵤᵀ⋅Lᵥ⋅Dᵥ ldr!(V, ws) # calculate R₁ = R₀⋅Rᵥ mul!(ws.M, V.R, Rᵥ) copyto!(V.R, ws.M) return nothing end @doc raw""" ldiv!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U^{-1} V,`` where ``H,`` ``U`` and ``V`` are all [`LDR`](@ref) factorizations. Note that an intermediate LU factorization is required to calucate the matrix inverse ``R_u^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. """ function ldiv!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, V) ldiv!(U, H, ws) return nothing end @doc raw""" ldiv!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``V := U^{-1} V,`` where ``U`` is a matrix and ``V`` is a [`LDR`](@ref) factorization. Note that an intermediate LU factorization is required as well to calucate the matrix inverse ``U^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. # Algorithm The numerically stable procdure used to evaluate ``V := U^{-1} V`` is ```math \begin{align*} V:= & U^{-1}V\\ = & \overset{L_{0}D_{0}R_{0}}{\overbrace{U^{-1}[L_{v}D_{v}}}R_{v}]\\ = & \overset{L_{1}}{\overbrace{L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}R_{v}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function ldiv!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # store Rᵥ for later Rᵥ = ws.M′ copyto!(Rᵥ, V.R) # calculate U⁻¹⋅Lᵥ⋅Dᵥ rmul_D!(V.L, V.d) # Lᵥ⋅Dᵥ copyto!(ws.M, U) ldiv_lu!(ws.M, V.L, ws.lu_ws) # U⁻¹⋅Lᵥ⋅Dᵥ # calculate [L₀⋅D₀⋅R₀] = U⁻¹⋅Lᵥ⋅Dᵥ ldr!(V, ws) # R₁ = R₀⋅Rᵥ mul!(ws.M, V.R, Rᵥ) copyto!(V.R, ws.M) return nothing end @doc raw""" ldiv!(H::LDR{T,E}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U^{-1} V,`` where ``H`` and ``V`` are [`LDR`](@ref) factorizations and ``U`` is a matrix. Note that an intermediate LU factorization is required to calculate ``U^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. """ function ldiv!(H::LDR{T,E}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T}) where {T,E} copyto!(H, V) ldiv!(U, H, ws) return nothing end ####################################### ## OVERLOADING LinearAlgebra.rdiv!() ## ####################################### @doc raw""" rdiv!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the matrix product ``U := U V^{-1},`` where ``V`` is an [`LDR`](@ref) factorization and ``U`` is a matrix. Note that this requires two intermediate LU factorizations to calculate ``L_v^{-1}`` and ``R_v^{-1}``. """ function rdiv!(U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # U := U⋅Rᵥ⁻¹⋅Dᵥ⁻¹⋅Lᵥ⁻¹ copyto!(ws.M, I) Lᵥ = ws.M′ copyto!(Lᵥ, V.L) ldiv_lu!(Lᵥ, ws.M, ws.lu_ws) # Lᵥ⁻¹ ldiv_D!(V.d, ws.M) # Dᵥ⁻¹⋅Lᵥ⁻¹ Rᵥ = ws.M′ copyto!(Rᵥ, V.R) ldiv_lu!(Rᵥ, ws.M, ws.lu_ws) # Rᵥ⁻¹⋅Dᵥ⁻¹⋅Lᵥ⁻¹ mul!(ws.M′, U, ws.M) # U⋅Rᵥ⁻¹⋅Dᵥ⁻¹⋅Lᵥ⁻¹ copyto!(U, ws.M′) # U := U⋅Rᵥ⁻¹⋅Dᵥ⁻¹⋅Lᵥ⁻¹ return nothing end @doc raw""" rdiv!(H::AbstractMatrix{T}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the matrix product ``H := U V^{-1},`` where ``H`` and ``U`` are matrices and ``V`` is a [`LDR`](@ref) factorization. Note that this requires two intermediate LU factorizations to calculate ``L_v^{-1}`` and ``R_v^{-1}``. """ function rdiv!(H::AbstractMatrix{T}, U::AbstractMatrix{T}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, U) rdiv!(H, V, ws) return nothing end @doc raw""" rdiv!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``U := U V^{-1}`` where both ``U`` and ``V`` are [`LDR`](@ref) factorizations. Note that an intermediate LU factorization is required to calucate the matrix inverse ``L_v^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. # Algorithm Calculate ``U := UV^{-1}`` using the procedure ```math \begin{align*} U:= & UV^{-1}\\ = & [L_{u}D_{u}R_{u}][L_{v}D_{v}R_{v}]^{-1}\\ = & L_{u}D_{u}\overset{M}{\overbrace{R_{u}R_{v}^{-1}}}D_{v}^{-1}L_{v}^{\dagger}\\ = & L_{u}\overset{L_{0}D_{0}R_{0}}{\overbrace{D_{u}MD_{v}^{-1}}}L_{v}^{\dagger}\\ = & \overset{L_{1}}{\overbrace{L_{u}L_{0}^{\phantom{1}}}}\,\overset{D_{1}}{\overbrace{D_{0}^{\phantom{1}}}}\,\overset{R_{1}}{\overbrace{R_{0}L_{v}^{\dagger}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function rdiv!(U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} # calculate Rᵥ⁻¹ Rᵥ⁻¹ = ws.M′ copyto!(Rᵥ⁻¹, V.R) inv_lu!(Rᵥ⁻¹, ws.lu_ws) # calculate M = Rᵤ⋅Rᵥ⁻¹ mul!(ws.M, U.R, Rᵥ⁻¹) # record original Lᵤ matrix Lᵤ = ws.M′ copyto!(Lᵤ, U.L) # calculate Dᵤ⋅M⋅Dᵥ⁻¹ div_D!(U.L, ws.M, V.d) lmul_D!(U.d, U.L) # calculate [L₀⋅D₀⋅R₀] = Dᵤ⋅M⋅Dᵥ⁻¹ ldr!(U, ws) # L₁ = Lᵤ⋅L₀ mul!(ws.M, Lᵤ, U.L) copyto!(U.L, ws.M) # calculate Rᵥ = R₀⋅Lᵥᵀ Lᵥᵀ = adjoint(V.L) mul!(ws.M, U.R, Lᵥᵀ) copyto!(U.R, ws.M) return nothing end @doc raw""" rdiv!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U V^{-1}`` where ``H,`` ``U`` and ``V`` are all [`LDR`](@ref) factorizations. Note that an intermediate LU factorization is required to calucate the matrix inverse ``L_v^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. """ function rdiv!(H::LDR{T,E}, U::LDR{T,E}, V::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, U) rdiv!(H, V, ws) return nothing end @doc raw""" rdiv!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``U := U V^{-1},`` where ``V`` is a matrix and ``U`` is an [`LDR`](@ref) factorization. Note that an intermediate LU factorization is required as well to calucate the matrix inverse ``V^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. # Algorithm The numerically stable procdure used to evaluate ``U := U V^{-1}`` is ```math \begin{align*} U:= & UV^{-1}\\ = & [L_{u}\overset{L_{0}D_{0}R_{0}}{\overbrace{D_{u}R_{u}]V^{-1}}}\\ = & \overset{L_{1}}{\overbrace{L_{u}L_{0}}}\,\overset{D_{1}}{\overbrace{D_{0}}}\,\overset{R_{1}}{\overbrace{R_{0}}}\\ = & L_{1}D_{1}R_{1}. \end{align*} ``` """ function rdiv!(U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} # record intial Lᵤ Lᵤ = ws.M′ copyto!(Lᵤ, U.L) # calculate Dᵤ⋅Rᵤ⋅V⁻¹ copyto!(ws.M, V) inv_lu!(ws.M, ws.lu_ws) # V⁻¹ mul!(U.L, U.R, ws.M) # Rᵤ⋅V⁻¹ lmul_D!(U.d, U.L) # Dᵤ⋅Rᵤ⋅V⁻¹ # calcualte [L₀⋅D₀⋅R₀] = Dᵤ⋅Rᵤ⋅V⁻¹ ldr!(U, ws) # calculate L₁ = Lᵤ⋅L₀ mul!(ws.M, Lᵤ, U.L) copyto!(U.L, ws.M) return nothing end @doc raw""" rdiv!(H::LDR{T,E}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} Calculate the numerically stable product ``H := U V^{-1},`` where ``V`` is a matrix and ``H`` and ``U`` is an [`LDR`](@ref) factorization. Note that an intermediate LU factorization is required as well to calucate the matrix inverse ``V^{-1},`` in addition to the intermediate [`LDR`](@ref) factorization that needs to occur. """ function rdiv!(H::LDR{T,E}, U::LDR{T,E}, V::AbstractMatrix{T}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(H, U) rdiv!(H, V, ws) return nothing end ########################################### ## OVERLOADING LinearAlgebra.logabsdet() ## ########################################### @doc raw""" logabsdet(A::LDR{T}, ws::LDRWorkspace{T}) where {T} Calculate ``\log(\vert \det A \vert)`` and ``\textrm{sign}(\det A)`` for the [`LDR`](@ref) factorization ``A.`` """ function logabsdet(A::LDR{T,E}, ws::LDRWorkspace{T,E}) where {T,E} copyto!(ws.M, A.L) logdetL, sgndetL = det_lu!(ws.M, ws.lu_ws) logdetD, sgndetD = det_D(A.d) copyto!(ws.M, A.R) logdetR, sgndetR = det_lu!(ws.M, ws.lu_ws) logdetA = logdetL + logdetD + logdetR sgndetA = sgndetL * sgndetD * sgndetR return logdetA, sgndetA end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
4366
import LinearAlgebra.LAPACK: geqp3!, orgqr! @doc raw""" QRWorkspace{T<:Number, E<:Real} Allocated space for calcuating the pivoted QR factorization using the LAPACK routines `geqp3!` and `orgqr!` while avoiding dynamic memory allocations. """ struct QRWorkspace{T<:Number, E<:Real} work::Vector{T} rwork::Vector{E} τ::Vector{T} jpvt::Vector{Int} end # copy the state of one QRWorkspace into another function copyto!(qrws_out::QRWorkspace{T,E}, qrws_in::QRWorkspace{T,E}) where {T,E} copyto!(qrws_out.work, qrws_in.work) copyto!(qrws_out.rwork, qrws_in.rwork) copyto!(qrws_out.τ, qrws_in.τ) copyto!(qrws_out.jpvt, qrws_in.jpvt) return nothing end # wrap geqp3 and orgqr LAPACK methods for (geqp3, orgqr, elty, relty) in ((:dgeqp3_, :dorgqr_, :Float64, :Float64), (:sgeqp3_, :sorgqr_, :Float32, :Float32), (:zgeqp3_, :zungqr_, :ComplexF64, :Float64), (:cgeqp3_, :cungqr_, :ComplexF32, :Float32)) @eval begin # method returns QRWorkspace for given matrix A function QRWorkspace(A::StridedMatrix{$elty}) # allocate for geqp3/QR decomposition calculation n = checksquare(A) require_one_based_indexing(A) chkstride1(A) A′ = copy(A) Rlda = max(1, stride(A′, 2)) jpvt = zeros(BlasInt, n) τ = zeros($elty, n) work = Vector{$elty}(undef, 1) lwork = BlasInt(-1) info = Ref{BlasInt}() if $elty <: Complex rwork = Vector{$relty}(undef, 2n) ccall((@blasfunc($geqp3), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}), n, n, A′, Rlda, jpvt, τ, work, lwork, rwork, info) else rwork = Vector{$relty}(undef, 0) ccall((@blasfunc($geqp3), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty}, Ref{BlasInt}, Ref{BlasInt}), n, n, A′, Rlda, jpvt, τ, work, lwork, info) end chklapackerror(info[]) lwork = BlasInt(real(work[1])) resize!(work, lwork) return QRWorkspace(work, rwork, τ, jpvt) end # method for calculating QR decomposition function geqp3!(A::AbstractMatrix{$elty}, ws::QRWorkspace{$elty}) require_one_based_indexing(A) chkstride1(A) n = checksquare(A) lda = stride(A, 2) info = Ref{BlasInt}() fill!(ws.jpvt, 0) # not sure why I need to do this, but I do if $elty <: Complex ccall((@blasfunc($geqp3), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}), n, n, A, lda, ws.jpvt, ws.τ, ws.work, length(ws.work), ws.rwork, info) else ccall((@blasfunc($geqp3), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty}, Ref{BlasInt}, Ref{BlasInt}), n, n, A, lda, ws.jpvt, ws.τ, ws.work, length(ws.work), info) end chklapackerror(info[]) return nothing end # method for constructing Q matrix function orgqr!(A::AbstractMatrix{$elty}, ws::QRWorkspace{$elty}) require_one_based_indexing(A, ws.τ) chkstride1(A, ws.τ) n = checksquare(A) k = length(ws.τ) info = Ref{BlasInt}() ccall((@blasfunc($orgqr), liblapack), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{$elty}, Ref{BlasInt}, Ptr{$elty}, Ptr{$elty}, Ref{BlasInt}, Ptr{BlasInt}), n, n, k, A, max(1,stride(A,2)), ws.τ, ws.work, length(ws.work), info) chklapackerror(info[]) return nothing end end end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
code
6592
using StableLinearAlgebra using LinearAlgebra using Test using LatticeUtilities # construct and diagonalize hamiltonian matrix for square lattice tight binding model function hamiltonian(L, t, μ) unit_cell = UnitCell(lattice_vecs = [[1.,0.],[0.,1.]], basis_vecs = [[0.,0.]]) lattice = Lattice(L = [L,L], periodic = [true,true]) bond_x = Bond(orbitals = (1,1), displacement = [1,0]) bond_y = Bond(orbitals = (1,1), displacement = [0,1]) neighbor_table = build_neighbor_table([bond_x, bond_y], unit_cell, lattice) Nsites = nsites(unit_cell, lattice) Nbonds = size(neighbor_table, 2) H = zeros(typeof(t),Nsites,Nsites) for n in 1:Nbonds i = neighbor_table[1,n] j = neighbor_table[2,n] H[j,i] = -t H[i,j] = conj(-t) end for i in 1:Nsites H[i,i] = -μ end ϵ, U = eigen(H) return ϵ, U, H end # calculate the greens function given the eigenenergies and eigenstates function greens(τ,β,ϵ,U) gτ = similar(ϵ) @. gτ = exp(-τ*ϵ)/(1+exp(-β*ϵ)) Gτ = U * Diagonal(gτ) * adjoint(U) logdetGτ, sgndetGτ = logabsdet(Diagonal(gτ)) return Gτ, sgndetGτ, logdetGτ end # calculate propagator matrix B(τ) given eigenenergies and eigenstates function propagator(τ,ϵ,U) bτ = similar(ϵ) @. bτ = exp(-τ*ϵ) Bτ = U * Diagonal(bτ) * adjoint(U) logdetBτ, sgndetBτ = logabsdet(Diagonal(bτ)) logdetBτ = -τ * sum(ϵ) return Bτ, logdetBτ, sgndetBτ end @testset "StableLinearAlgebra.jl" begin # system parameters L = 4 # linear system size t = 1.0 # nearest neighbor hopping μ = 0.0 # chemical potential β = 40.0 # inverse temperature Δτ = 0.1 # discretization in imaginary time Lτ = round(Int,β/Δτ) # length of imaginary time axis nₛ = 10 # stabalization frequency Nₛ = Lτ ÷ nₛ # number of reduced propagator matrices # hamitlonian eigenenergies and eigenstates ϵ, U, H = hamiltonian(L, t, μ) # number of sites in lattice N = size(H,1) # propagator matrix B, logdetB, sgndetB = propagator(Δτ, ϵ, U) # inverse propagator matrix B⁻¹, logdetB⁻¹, sgndetB⁻¹ = propagator(-Δτ, ϵ, U) # long propagators B_β = propagator(β, ϵ, U) # greens functions G_0, sgndetG_0, logdetG_0 = greens(0, β, ϵ, U) # G(τ=0) G_βo2, sgndetG_βo2, logdetG_βo2 = greens(β/2, β, ϵ, U) # G(τ=β/2) # temporary storage matrices A = similar(B) G = similar(B) # partial propagator matrix product B̄ = Matrix{eltype(B)}(I,N,N) B̄⁻¹ = Matrix{eltype(B)}(I,N,N) for i in 1:nₛ mul!(A, B, B̄) copyto!(B̄, A) mul!(A, B̄⁻¹, B⁻¹) copyto!(B̄⁻¹, A) end # initialize LDR workspace ws = ldr_workspace(B̄) # testing ldr and logabsdet A = rand(N,N) A = I + 0.1*A F = ldr(A, ws) logdetF, sgndetF = logabsdet(F, ws) logdetA, sgndetA = logabsdet(A) logdetF ≈ logdetA sgndetF ≈ sgndetA # testing ldr and copyto! F = ldr(B̄) copyto!(A, F, ws) @test A ≈ I # testing ldr and copyto! F = ldr(B̄, ws) copyto!(A, F, ws) @test A ≈ B̄ # testing ldr! ldr!(F, B̄, ws) copyto!(A, F, ws) @test A ≈ B̄ # testing ldrs n = 3 Fs = ldrs(B̄, n) @testset for i in 1:n copyto!(A, Fs[i], ws) @test A ≈ I end # testing ldrs n = 3 Fs = ldrs(B̄, n, ws) @testset for i in 1:n copyto!(A, Fs[i], ws) @test A ≈ B̄ end # testing adjoint! A = randn(N,N) ldr!(F, A, ws) adjoint!(G, F, ws) @test G ≈ adjoint(A) # testing lmul! and inv_IpA! fill!(G, 0) copyto!(F, I, ws) for i in 1:Nₛ lmul!(B̄, F, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing lmul! and inv_IpA! copyto!(F, I, ws) F_B̄ = ldr(B̄, ws) for i in 1:Nₛ lmul!(F_B̄, F, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing rmul! and inv_IpA! copyto!(F, I, ws) for i in 1:Nₛ rmul!(F, B̄, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing rmul! and inv_IpA! copyto!(F, I, ws) F_B̄ = ldr(B̄, ws) for i in 1:Nₛ rmul!(F, F_B̄, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing ldiv! and inv_IpA! copyto!(F, I, ws) F_B̄⁻¹ = ldr(B̄⁻¹, ws) for i in 1:Nₛ ldiv!(F_B̄⁻¹, F, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing ldiv! and inv_IpA! copyto!(F, I, ws) for i in 1:Nₛ ldiv!(B̄⁻¹, F, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing ldiv! F_B̄ = ldr(B̄, ws) copyto!(A, B̄) ldiv!(F_B̄, A, ws) @test A ≈ I # testing rdiv! and inv_IpA! copyto!(F, I, ws) F_B̄⁻¹ = ldr(B̄⁻¹, ws) for i in 1:Nₛ rdiv!(F, F_B̄⁻¹, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing rdiv! and inv_IpA! copyto!(F, I, ws) for i in 1:Nₛ rdiv!(F, B̄⁻¹, ws) end logdetG, sgndetG = inv_IpA!(G, F, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing rdiv! F_B̄ = ldr(B̄, ws) copyto!(A, B̄) rdiv!(A, F_B̄, ws) @test A ≈ I # testing inv_IpUV! F′ = ldr(F) copyto!(F, I, ws) copyto!(F′, I, ws) for i in 1:Nₛ÷2 rmul!(F, B̄, ws) end for i in Nₛ÷2+1:Nₛ rmul!(F′, B̄, ws) end logdetG, sgndetG = inv_IpUV!(G, F, F′, ws) @test G ≈ G_0 @test sgndetG ≈ sgndetG_0 @test logdetG ≈ logdetG_0 # testing inv_UpV! F′ = ldr(B̄⁻¹) copyto!(F, I, ws) for i in 1:Nₛ÷2 lmul!(B̄, F, ws) rmul!(F′, B̄⁻¹, ws) end logdetG, sgndetG = inv_UpV!(G, F′, F, ws) @test G ≈ G_βo2 @test sgndetG ≈ sgndetG_βo2 @test logdetG ≈ logdetG_βo2 # testing inv_invUpV! copyto!(F, I, ws) for i in 1:Nₛ÷2 lmul!(B̄, F, ws) end logdetG, sgndetG = inv_invUpV!(G, F, F, ws) @test G ≈ G_βo2 @test sgndetG ≈ sgndetG_βo2 @test logdetG ≈ logdetG_βo2 end
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
docs
1434
# StableLinearAlgebra.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://cohensbw.github.io/StableLinearAlgebra.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://cohensbw.github.io/StableLinearAlgebra.jl/dev) [![Build Status](https://github.com/cohensbw/StableLinearAlgebra.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/cohensbw/StableLinearAlgebra.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/cohensbw/StableLinearAlgebra.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/cohensbw/StableLinearAlgebra.jl) Documentation for [StableLinearAlgebra.jl](https://github.com/cohensbw/StableLinearAlgebra.jl). This package exports an LDR matrix factorization type for square matrices, along with a corresponding collection of functions for calculating numerically stable matrix products and matrix inverses. The methods exported by the package are essential for implementing a determinant quantum Monte Carlo (DQMC) code for simulating interacting itinerant electrons on a lattice. A very similar Julia package implementing and exporting many of the same algorithms is [`StableDQMC.jl`](https://github.com/carstenbauer/StableDQMC.jl). ## Installation To install [`StableLinearAlgebra.jl`](https://github.com/cohensbw/StableLinearAlgebra.jl) run following in the Julia REPL: ```julia ] add StableLinearAlgebra ```
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
docs
493
# Developer API ```@docs StableLinearAlgebra.det_D StableLinearAlgebra.mul_D! StableLinearAlgebra.div_D! StableLinearAlgebra.lmul_D! StableLinearAlgebra.rmul_D! StableLinearAlgebra.ldiv_D! StableLinearAlgebra.rdiv_D! StableLinearAlgebra.mul_P! StableLinearAlgebra.inv_P! StableLinearAlgebra.perm_sign ``` ## LAPACK LinearAlgebra ```@docs StableLinearAlgebra.QRWorkspace StableLinearAlgebra.LUWorkspace StableLinearAlgebra.inv_lu! StableLinearAlgebra.ldiv_lu! StableLinearAlgebra.det_lu! ```
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
docs
926
```@meta CurrentModule = StableLinearAlgebra ``` # StableLinearAlgebra.jl Documentation for [StableLinearAlgebra.jl](https://github.com/cohensbw/StableLinearAlgebra.jl). This package exports an [`LDR`](@ref) matrix factorization type for square matrices, along with a corresponding collection of functions for calculating numerically stable matrix products and matrix inverses. The methods exported by the package are essential for implementing a determinant quantum Monte Carlo (DQMC) code for simulating interacting itinerant electrons on a lattice. A very similar Julia package implementing and exporting many of the same algorithms is [`StableDQMC.jl`](https://github.com/carstenbauer/StableDQMC.jl). ## Installation To install [`StableLinearAlgebra.jl`](https://github.com/cohensbw/StableLinearAlgebra.jl) run following in the Julia REPL: ```julia ] add StableLinearAlgebra ``` ## References ```@bibliography ```
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
1.4.2
f2b168c9595913b2dcc2dee6910392edc4504da4
docs
809
# Public API ## LDR Factorization - [`LDR`](@ref) - [`LDRWorkspace`](@ref) - [`ldr`](@ref) - [`ldr!`](@ref) - [`ldrs`](@ref) - [`ldrs!`](@ref) - [`ldr_workspace`](@ref) ```@docs LDR LDRWorkspace ldr ldr! ldrs ldrs! ldr_workspace ``` ## Overloaded Functions - [`eltype`](@ref) - [`size`](@ref) - [`copyto!`](@ref) - [`adjoint!`](@ref) - [`lmul!`](@ref) - [`rmul!`](@ref) - [`mul!`](@ref) - [`ldiv!`](@ref) - [`rdiv!`](@ref) - [`logabsdet`](@ref) ```@docs Base.eltype Base.size Base.copyto! LinearAlgebra.adjoint! LinearAlgebra.lmul! LinearAlgebra.rmul! LinearAlgebra.mul! LinearAlgebra.ldiv! LinearAlgebra.rdiv! LinearAlgebra.logabsdet ``` ## Exported Function - [`inv_IpA!`](@ref) - [`inv_IpUV!`](@ref) - [`inv_UpV!`](@ref) - [`inv_invUpV!`](@ref) ```@docs inv_IpA! inv_IpUV! inv_UpV! inv_invUpV! ```
StableLinearAlgebra
https://github.com/SmoQySuite/StableLinearAlgebra.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
1208
using Documenter, BioSequences DocMeta.setdocmeta!(BioSequences, :DocTestSetup, :(using BioSequences); recursive=true) makedocs( format = Documenter.HTML(), sitename = "BioSequences.jl", pages = [ "Home" => "index.md", "Biological Symbols" => "symbols.md", "BioSequences Types" => "types.md", "Constructing sequences" => "construction.md", "Indexing & modifying sequences" => "transforms.md", "Predicates" => "predicates.md", "Random sequences" => "random.md", "Pattern matching and searching" => "sequence_search.md", "Iteration" => "iteration.md", "Counting" => "counting.md", "I/O" => "io.md", "Implementing custom types" => "interfaces.md" ], authors = "Sabrina Jaye Ward, Jakob Nissen, D.C.Jones, Kenta Sato, The BioJulia Organisation and other contributors.", checkdocs = :all, ) deploydocs( repo = "github.com/BioJulia/BioSequences.jl.git", push_preview = true, deps = nothing, make = nothing )
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5912
### BioSequences.jl ### ### A julia package for the representation and manipulation of biological sequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE module BioSequences export ### ### Symbols ### # Types & aliases NucleicAcid, DNA, RNA, DNA_A, DNA_C, DNA_G, DNA_T, DNA_M, DNA_R, DNA_W, DNA_S, DNA_Y, DNA_K, DNA_V, DNA_H, DNA_D, DNA_B, DNA_N, DNA_Gap, ACGT, ACGTN, RNA_A, RNA_C, RNA_G, RNA_U, RNA_M, RNA_R, RNA_W, RNA_S, RNA_Y, RNA_K, RNA_V, RNA_H, RNA_D, RNA_B, RNA_N, RNA_Gap, ACGU, ACGUN, AminoAcid, AA_A, AA_R, AA_N, AA_D, AA_C, AA_Q, AA_E, AA_G, AA_H, AA_I, AA_L, AA_K, AA_M, AA_F, AA_P, AA_S, AA_T, AA_W, AA_Y, AA_V, AA_O, AA_U, AA_B, AA_J, AA_Z, AA_X, AA_Term, AA_Gap, # Predicates isGC, iscompatible, isambiguous, iscertain, isgap, ispurine, ispyrimidine, ### ### Alphabets ### # Types & aliases Alphabet, NucleicAcidAlphabet, DNAAlphabet, RNAAlphabet, AminoAcidAlphabet, ### ### BioSequences ### join!, # Type & aliases BioSequence, NucSeq, AASeq, # Predicates ispalindromic, hasambiguity, isrepetitive, iscanonical, # Transformations canonical, canonical!, complement, complement!, reverse_complement, reverse_complement!, ungap, ungap!, join!, ### ### LongSequence ### # Type & aliases LongSequence, LongNuc, LongDNA, LongRNA, LongAA, LongSubSeq, # Random SamplerUniform, SamplerWeighted, randseq, randdnaseq, randrnaseq, randaaseq, ### ### Sequence literals ### @dna_str, @rna_str, @aa_str, @biore_str, @prosite_str, BioRegex, BioRegexMatch, matched, captured, alphabet, # TODO: Resolve the use of alphabet - it's from BioSymbols.jl symbols, gap, mismatches, matches, n_ambiguous, n_gaps, n_certain, gc_content, translate!, translate, ncbi_trans_table, # Search ExactSearchQuery, ApproximateSearchQuery, PFM, PWM, PWMSearchQuery, maxscore, scoreat, seqmatrix, majorityvote using BioSymbols import Twiddle: enumerate_nibbles, count_0000_nibbles, count_1111_nibbles, count_nonzero_nibbles, count_00_bitpairs, count_01_bitpairs, count_10_bitpairs, count_11_bitpairs, count_nonzero_bitpairs, repeatpattern using Random include("alphabet.jl") # Load the bit-twiddling internals that optimised BioSequences methods depend on. include("bit-manipulation/bit-manipulation.jl") # The generic, abstract BioSequence type include("biosequence/biosequence.jl") # The definition of the LongSequence concrete type, and its method overloads... include("longsequences/longsequence.jl") include("longsequences/hash.jl") include("longsequences/randseq.jl") include("geneticcode.jl") # Pattern searching in sequences... include("search/ExactSearchQuery.jl") include("search/ApproxSearchQuery.jl") include("search/re.jl") include("search/pwm.jl") struct Search{Q,I} query::Q itr::I overlap::Bool end const DEFAULT_OVERLAP = true search(query, itr; overlap = DEFAULT_OVERLAP) = Search(query, itr, overlap) function Base.iterate(itr::Search, state=firstindex(itr.itr)) val = findnext(itr.query, itr.itr, state) val === nothing && return nothing state = itr.overlap ? first(val) + 1 : last(val) + 1 return val, state end const HasRangeEltype = Union{<:ExactSearchQuery, <:ApproximateSearchQuery, <:Regex} Base.eltype(::Type{<:Search{Q}}) where {Q<:HasRangeEltype} = UnitRange{Int} Base.eltype(::Type{<:Search}) = Int Base.IteratorSize(::Type{<:Search}) = Base.SizeUnknown() """ findall(pattern, sequence::BioSequence[,rng::UnitRange{Int}]; overlap::Bool=true)::Vector Find all occurrences of `pattern` in `sequence`. The return value is a vector of ranges of indices where the matching sequences were found. If there are no matching sequences, the return value is an empty vector. The search is restricted to the specified range when `rng` is set. With the keyword argument `overlap` set as `true`, the start index for the next search gets set to the start of the current match plus one; if set to `false`, the start index for the next search gets set to the end of the current match plus one. The default value for the keyword argument `overlap` is `true`. The `pattern` can be a `Biosymbol` or a search query. See also [`ExactSearchQuery`](@ref), [`ApproximateSearchQuery`](@ref), [`PWMSearchQuery`](@ref). # Examples ```jldoctest julia> seq = dna"ACACACAC"; julia> findall(DNA_A, seq) 4-element Vector{Int64}: 1 3 5 7 julia> findall(ExactSearchQuery(dna"ACAC"), seq) 3-element Vector{UnitRange{Int64}}: 1:4 3:6 5:8 julia> findall(ExactSearchQuery(dna"ACAC"), seq; overlap=false) 2-element Vector{UnitRange{Int64}}: 1:4 5:8 julia> findall(ExactSearchQuery(dna"ACAC"), seq, 2:7; overlap=false) 1-element Vector{UnitRange{Int64}}: 3:6 ``` """ function Base.findall(pat, seq::BioSequence; overlap::Bool = DEFAULT_OVERLAP) return collect(search(pat, seq; overlap)) end # Fix ambiguity with Base's findall Base.findall(f::Function, seq::BioSequence) = collect(search(f, seq; overlap=DEFAULT_OVERLAP)) function Base.findall(pat, seq::BioSequence, rng::UnitRange{Int}; overlap::Bool = DEFAULT_OVERLAP) v = view(seq, rng) itr = search(pat, v; overlap) return map(x->parentindices(v)[1][x], itr) end include("workload.jl") end # module BioSequences
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
9657
### ### Alphabet ### ### ### Alphabets of biological symbols. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md """ Alphabet `Alphabet` is the most important type trait for `BioSequence`. An `Alphabet` represents a set of biological symbols encoded by a sequence, e.g. A, C, G and T for a DNA Alphabet that requires only 2 bits to represent each symbol. # Extended help * Subtypes of Alphabet are singleton structs that may or may not be parameterized. * Alphabets span over a *finite* set of biological symbols. * The alphabet controls the encoding from some internal "encoded data" to a BioSymbol of the alphabet's element type, as well as the decoding, the inverse process. * An `Alphabet`'s `encode` method must not produce invalid data. Every subtype `A` of `Alphabet` must implement: * `Base.eltype(::Type{A})::Type{S}` for some eltype `S`, which must be a `BioSymbol`. * `symbols(::A)::Tuple{Vararg{S}}`. This gives tuples of all symbols in the set of `A`. * `encode(::A, ::S)::E` encodes a symbol to an internal data eltype `E`. * `decode(::A, ::E)::S` decodes an internal data eltype `E` to a symbol `S`. * Except for `eltype` which must follow Base conventions, all functions operating on `Alphabet` should operate on instances of the alphabet, not the type. If you want interoperation with existing subtypes of `BioSequence`, the encoded representation `E` must be of type `UInt`, and you must also implement: * `BitsPerSymbol(::A)::BitsPerSymbol{N}`, where the `N` must be zero or a power of two in [1, 2, 4, 8, 16, 32, [64 for 64-bit systems]]. For increased performance, see [`BioSequences.AsciiAlphabet`](@ref) """ abstract type Alphabet end """ function has_interface(::Type{Alphabet}, A::Alphabet) Returns whether `A` conforms to the `Alphabet` interface. """ function has_interface(::Type{Alphabet}, A::Alphabet) try eltype(typeof(A)) <: BioSymbol || return false syms = symbols(A) (syms isa Tuple{Vararg{eltype(typeof(A))}} && length(syms) > 0) || return false codes = map(i -> encode(A, i), syms) codes isa (NTuple{N, T} where {N, T <: Union{UInt8, UInt16, UInt32, UInt64}}) || return false recodes = map(i -> decode(A, i), codes) syms == recodes || return false bps = BitsPerSymbol(A) bps isa BitsPerSymbol || return false in(BioSequences.bits_per_symbol(A), (0, 1, 2, 4, 8, 16, 32, 64)) || return false catch error error isa MethodError && return false rethrow(error) end return true end """ The number of bits required to represent a packed symbol encoding in a vector of bits. """ bits_per_symbol(A::Alphabet) = bits_per_symbol(BitsPerSymbol(A)) Base.length(A::Alphabet) = length(symbols(A)) ## Bits per symbol struct BitsPerSymbol{N} end bits_per_symbol(::BitsPerSymbol{N}) where N = N "Compute whether all bitpatterns represent valid symbols for an alphabet" iscomplete(A::Alphabet) = Val(length(symbols(A)) === 1 << bits_per_symbol(A)) ## Encoders & Decoders """ encode(::Alphabet, x::S) Encode BioSymbol `S` to an internal representation using an `Alphabet`. This decoding is checked to enforce valid data element. """ function encode end struct EncodeError{A<:Alphabet,T} <: Exception val::T end EncodeError(::A, val::T) where {A,T} = EncodeError{A,T}(val) function Base.showerror(io::IO, err::EncodeError{A}) where {A} print(io, "cannot encode ", err.val, " in ", A) end """ decode(::Alphabet, x::E) Decode internal representation `E` to a `BioSymbol` using an `Alphabet`. """ function decode end function Base.iterate(a::Alphabet, state = 1) state > length(a) && return nothing @inbounds sym = symbols(a)[state] return sym, state + 1 end ## Nucleic acid alphabets """ Alphabet of nucleic acids. Parameterized by the number of bits per symbol, by default only `2` or `4`-bit variants exists. """ abstract type NucleicAcidAlphabet{N} <: Alphabet end """ DNA nucleotide alphabet. `DNAAlphabet` has a parameter `N` which is a number that determines the `BitsPerSymbol` trait. Currently supported values of `N` are 2 and 4. """ struct DNAAlphabet{N} <: NucleicAcidAlphabet{N} end Base.eltype(::Type{<:DNAAlphabet}) = DNA """ RNA nucleotide alphabet. `RNAAlphabet` has a parameter `N` which is a number that determines the `BitsPerSymbol` trait. Currently supported values of `N` are 2 and 4. """ struct RNAAlphabet{N} <: NucleicAcidAlphabet{N} end Base.eltype(::Type{<:RNAAlphabet}) = RNA symbols(::DNAAlphabet{2}) = (DNA_A, DNA_C, DNA_G, DNA_T) symbols(::RNAAlphabet{2}) = (RNA_A, RNA_C, RNA_G, RNA_U) function symbols(::DNAAlphabet{4}) (DNA_Gap, DNA_A, DNA_C, DNA_M, DNA_G, DNA_R, DNA_S, DNA_V, DNA_T, DNA_W, DNA_Y, DNA_H, DNA_K, DNA_D, DNA_B, DNA_N) end function symbols(::RNAAlphabet{4}) (RNA_Gap, RNA_A, RNA_C, RNA_M, RNA_G, RNA_R, RNA_S, RNA_V, RNA_U, RNA_W, RNA_Y, RNA_H, RNA_K, RNA_D, RNA_B, RNA_N) end BitsPerSymbol(::A) where A <: NucleicAcidAlphabet{2} = BitsPerSymbol{2}() BitsPerSymbol(::A) where A <: NucleicAcidAlphabet{4} = BitsPerSymbol{4}() ## Encoding and decoding DNA and RNA alphabet symbols # A nucleotide with bitvalue B has kmer-bitvalue kmerbits[B+1]. # ambiguous nucleotides have no kmervalue, here set to 0xff const twobitnucs = (0xff, 0x00, 0x01, 0xff, 0x02, 0xff, 0xff, 0xff, 0x03, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff) for A in (DNAAlphabet, RNAAlphabet) T = eltype(A) @eval begin # 2-bit encoding @inline function encode(::$(A){2}, nt::$(T)) if count_ones(nt) != 1 || !isvalid(nt) throw(EncodeError($(A){2}(), nt)) end return convert(UInt, @inbounds twobitnucs[reinterpret(UInt8, nt) + 0x01]) end @inline function decode(::$(A){2}, x::UInt) return reinterpret($(T), 0x01 << (x & 0x03)) end @inline decode(::$(A){2}, x::Unsigned) = decode($(A){2}(), UInt(x)) # 4-bit encoding @inline function encode(::$(A){4}, nt::$(T)) if !isvalid(nt) throw(EncodeError($(A){4}(), nt)) end return convert(UInt, reinterpret(UInt8, nt)) end @inline function decode(::$(A){4}, x::UInt) return reinterpret($(T), x % UInt8) end @inline decode(::$(A){4}, x::Unsigned) = decode($(A){4}(), UInt(x)) end end ### Promotion of nucletid acid alphabets for alph in (DNAAlphabet, RNAAlphabet) @eval function Base.promote_rule(::Type{A}, ::Type{B}) where {A<:$alph,B<:$alph} # TODO: Resolve this use of bits_per_symbol. return $alph{max(bits_per_symbol(A()),bits_per_symbol(B()))} end end ## Amino acid alphabet """ Amino acid alphabet. """ struct AminoAcidAlphabet <: Alphabet end BitsPerSymbol(::AminoAcidAlphabet) = BitsPerSymbol{8}() Base.eltype(::Type{AminoAcidAlphabet}) = AminoAcid function symbols(::AminoAcidAlphabet) (AA_A, AA_R, AA_N, AA_D, AA_C, AA_Q, AA_E, AA_G, AA_H, AA_I, AA_L, AA_K, AA_M, AA_F, AA_P, AA_S, AA_T, AA_W, AA_Y, AA_V, AA_O, AA_U, AA_B, AA_J, AA_Z, AA_X, AA_Term, AA_Gap) end @inline function encode(::AminoAcidAlphabet, aa::AminoAcid) if reinterpret(UInt8, aa) > reinterpret(UInt8, AA_Gap) throw(EncodeError(AminoAcidAlphabet(), aa)) end return convert(UInt, reinterpret(UInt8, aa)) end @inline function decode(::AminoAcidAlphabet, x::UInt) return reinterpret(AminoAcid, x % UInt8) end @inline function decode(::AminoAcidAlphabet, x::Unsigned) return decode(AminoAcidAlphabet(), UInt(x)) end # AsciiAlphabet trait - add to user defined type to use speedups. # Must define methods codetype, BioSymbols.stringbyte, ascii_encode "Abstract trait for ASCII/Unicode dispatch. See `AsciiAlphabet`" abstract type AlphabetCode end """ AsciiAlphabet Trait for alphabet using ASCII characters as String representation. Define `codetype(A) = AsciiAlphabet()` for a user-defined `Alphabet` A to gain speed. Methods needed: `BioSymbols.stringbyte(::eltype(A))` and `ascii_encode(A, ::UInt8)`. """ struct AsciiAlphabet <: AlphabetCode end "Trait for alphabet using Unicode. See `AsciiAlphabet`" struct UnicodeAlphabet <: AlphabetCode end function codetype(::A) where {A <: Union{DNAAlphabet{2}, DNAAlphabet{4}, RNAAlphabet{2}, RNAAlphabet{4}, AminoAcidAlphabet}} return AsciiAlphabet() end codetype(::Alphabet) = UnicodeAlphabet() """ ascii_encode(::Alphabet, b::UInt8)::UInt8 Encode the ASCII character represented by `b` to the internal alphabet encoding. For example, the input byte `UInt8('C')` is encoded to `0x01` and `0x02` for 2- and 4-bit DNA alphabets, reprectively. This method is only needed if the `Alphabet` is an `AsciiAlphabet`. See also: [`BioSequences.AsciiAlphabet`](@ref) """ function ascii_encode end for (anum, atype) in enumerate((DNAAlphabet{4}, DNAAlphabet{2}, RNAAlphabet{4}, RNAAlphabet{2}, AminoAcidAlphabet)) tablename = Symbol("BYTE_TO_ALPHABET_CHAR" * string(anum)) @eval begin alph = $(atype)() syms = symbols(alph) const $(tablename) = let bytes = fill(0x80, 256) for symbol in syms bytes[UInt8(Char(symbol)) + 1] = encode(alph, symbol) bytes[UInt8(lowercase(Char(symbol))) + 1] = encode(alph, symbol) end Tuple(bytes) end ascii_encode(::$(atype), x::UInt8) = @inbounds $(tablename)[x + 1] end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
16069
### ### Genetic Code ### ### ### Genetic code table and translator from RNA to amino acid sequence. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md const XNA = Union{DNA, RNA} function unambiguous_codon(a::XNA, b::XNA, c::XNA) @inbounds begin bits = twobitnucs[reinterpret(UInt8, a) + 0x01] << 4 | twobitnucs[reinterpret(UInt8, b) + 0x01] << 2 | twobitnucs[reinterpret(UInt8, c) + 0x01] end #reinterpret(RNACodon, bits % UInt64) return bits % UInt64 end # A genetic code is a table mapping RNA 3-mers (i.e. RNAKmer{3}) to AminoAcids. "Type representing a Genetic Code" struct GeneticCode <: AbstractDict{UInt64, AminoAcid} name::String tbl::NTuple{64, AminoAcid} end ### ### Basic Functions ### function Base.getindex(code::GeneticCode, codon::UInt64) return @inbounds code.tbl[codon + one(UInt64)] end Base.copy(code::GeneticCode) = code Base.length(code::GeneticCode) = 64 Base.show(io::IO, code::GeneticCode) = print(io, code.name) function Base.show(io::IO, ::MIME"text/plain", code::GeneticCode) print(io, code.name) rna = rna"ACGU" for x in rna, y in rna println(io) print(io, " ") for z in rna codon = unambiguous_codon(x, y, z) aa = code[codon] print(io, x, y, z, ": ", aa) if z != RNA_U print(io, " ") end end end end ### ### Iterating through genetic code ### function Base.iterate(code::GeneticCode, x = UInt64(0)) if x > UInt64(0b111111) return nothing else return (x, @inbounds code[x]), x + 1 end end ### ### Default genetic codes ### struct TransTables tables::Dict{Int,GeneticCode} bindings::Dict{Int,Symbol} function TransTables() return new(Dict(), Dict()) end end Base.getindex(trans::TransTables, key::Integer) = trans.tables[Int(key)] function Base.show(io::IO, trans::TransTables) print(io, "Translation Tables:") ids = sort(collect(keys(trans.tables))) for id in ids println(io) print(io, lpad(id, 3), ". ") show(io, trans.tables[id]) if haskey(trans.bindings, id) print(io, " (", trans.bindings[id], ")") end end end """ Genetic code list of NCBI. The standard genetic code is `ncbi_trans_table[1]` and others can be shown by `show(ncbi_trans_table)`. For more details, consult the next link: http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=cgencodes. """ const ncbi_trans_table = TransTables() macro register_ncbi_gencode(id, bind, tbl) quote gencode = parse_gencode($tbl) const $(esc(bind)) = gencode ncbi_trans_table.tables[$id] = gencode ncbi_trans_table.bindings[$id] = Symbol($(string(bind))) end end function parse_gencode(s) name, _, aas, _, base1, base2, base3 = split(chomp(s), '\n') name = split(name, ' ', limit = 2)[2] # drop number codearr = fill(AA_X, 4^3) @assert length(aas) == 73 for i in 10:73 aa = AminoAcid(aas[i]) b1 = DNA(base1[i]) b2 = DNA(base2[i]) b3 = DNA(base3[i]) codon = unambiguous_codon(b1, b2, b3) codearr[codon + one(UInt64)] = aa end return GeneticCode(name, NTuple{64, AminoAcid}(codearr)) end # Genetic codes translation tables are taken from the NCBI taxonomy database. @register_ncbi_gencode 1 standard_genetic_code """ 1. The Standard Code AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M---------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 2 vertebrate_mitochondrial_genetic_code """ 2. The Vertebrate Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG Starts = --------------------------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 3 yeast_mitochondrial_genetic_code """ 3. The Yeast Mitochondrial Code AAs = FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ----------------------------------MM---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 4 mold_mitochondrial_genetic_code """ 4. The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = --MM---------------M------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 5 invertebrate_mitochondrial_genetic_code """ 5. The Invertebrate Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG Starts = ---M----------------------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 6 ciliate_nuclear_genetic_code """ 6. The Ciliate, Dasycladacean and Hexamita Nuclear Code AAs = FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 9 echinoderm_mitochondrial_genetic_code """ 9. The Echinoderm and Flatworm Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 10 euplotid_nuclear_genetic_code """ 10. The Euplotid Nuclear Code AAs = FFLLSSSSYY**CCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 11 bacterial_plastid_genetic_code """ 11. The Bacterial, Archaeal and Plant Plastid Code AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 12 alternative_yeast_nuclear_genetic_code """ 12. The Alternative Yeast Nuclear Code AAs = FFLLSSSSYY**CC*WLLLSPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -------------------M---------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 13 ascidian_mitochondrial_genetic_code """ 13. The Ascidian Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSGGVVVVAAAADDEEGGGG Starts = ---M------------------------------MM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 14 alternative_flatworm_mitochondrial_genetic_code """ 14. The Alternative Flatworm Mitochondrial Code AAs = FFLLSSSSYYY*CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 16 chlorophycean_mitochondrial_genetic_code """ 16. Chlorophycean Mitochondrial Code AAs = FFLLSSSSYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 21 trematode_mitochondrial_genetic_code """ 21. Trematode Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 22 scenedesmus_obliquus_mitochondrial_genetic_code """ 22. Scenedesmus obliquus Mitochondrial Code AAs = FFLLSS*SYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 23 thraustochytrium_mitochondrial_genetic_code """ 23. Thraustochytrium Mitochondrial Code AAs = FF*LSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = --------------------------------M--M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 24 pterobrachia_mitochondrial_genetic_code """ 24. Pterobranchia Mitochondrial Code AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSSKVVVVAAAADDEEGGGG Starts = ---M---------------M---------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ @register_ncbi_gencode 25 candidate_division_sr1_genetic_code """ 25. Candidate Division SR1 and Gracilibacteria Code AAs = FFLLSSSSYY**CCGWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M-------------------------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG """ ### ### Translation ### """ translate(seq, code=standard_genetic_code, allow_ambiguous_codons=true, alternative_start=false) Translate an `LongRNA` or a `LongDNA` to an `LongAA`. Translation uses genetic code `code` to map codons to amino acids. See `ncbi_trans_table` for available genetic codes. If codons in the given sequence cannot determine a unique amino acid, they will be translated to `AA_X` if `allow_ambiguous_codons` is `true` and otherwise result in an error. For organisms that utilize alternative start codons, one can set `alternative_start=true`, in which case the first codon will always be converted to a methionine. """ function translate(ntseq::SeqOrView; code::GeneticCode = standard_genetic_code, allow_ambiguous_codons::Bool = true, alternative_start::Bool = false ) len = div((length(ntseq) % UInt) * 11, 32) translate!(LongAA(undef, len), ntseq; code = code, allow_ambiguous_codons = allow_ambiguous_codons, alternative_start = alternative_start) end function translate!(aaseq::LongAA, ntseq::SeqOrView{<:NucleicAcidAlphabet{2}}; code::GeneticCode = standard_genetic_code, allow_ambiguous_codons::Bool = true, alternative_start::Bool = false ) n_aa, remainder = divrem(length(ntseq) % UInt, 3) iszero(remainder) || error("LongRNA length is not divisible by three. Cannot translate.") resize!(aaseq, n_aa) @inbounds for i in 1:n_aa a = ntseq[3i-2] b = ntseq[3i-1] c = ntseq[3i] codon = unambiguous_codon(a, b, c) aaseq[i] = code[codon] end alternative_start && !isempty(aaseq) && (@inbounds aaseq[1] = AA_M) aaseq end function translate!(aaseq::LongAA, ntseq::SeqOrView{<:NucleicAcidAlphabet{4}}; code::GeneticCode = standard_genetic_code, allow_ambiguous_codons::Bool = true, alternative_start::Bool = false ) n_aa, remainder = divrem(length(ntseq) % UInt, 3) iszero(remainder) || error("LongRNA length is not divisible by three. Cannot translate.") resize!(aaseq, n_aa) @inbounds for i in 1:n_aa a = reinterpret(RNA, ntseq[3i-2]) b = reinterpret(RNA, ntseq[3i-1]) c = reinterpret(RNA, ntseq[3i]) if isgap(a) | isgap(b) | isgap(c) error("Cannot translate nucleotide sequences with gaps.") elseif iscertain(a) & iscertain(b) & iscertain(c) aaseq[i] = code[unambiguous_codon(a, b, c)] else aaseq[i] = try_translate_ambiguous_codon(code, a, b, c, allow_ambiguous_codons) end end alternative_start && !isempty(aaseq) && (@inbounds aaseq[1] = AA_M) aaseq end function try_translate_ambiguous_codon( code::GeneticCode, x::RNA, y::RNA, z::RNA, allow_ambiguous::Bool )::AminoAcid ((a, b, c), unambigs) = Iterators.peel( Iterators.product(map(UnambiguousRNAs, (x, y, z))...) ) aa = @inbounds code[unambiguous_codon(a, b, c)] @inbounds for (a, b, c) in unambigs aa_new = code[unambiguous_codon(a, b, c)] aa_new == aa && continue allow_ambiguous || error("codon ", a, b, c, " cannot be unambiguously translated") aa = if aa_new in (AA_N, AA_D) && aa in (AA_N, AA_D, AA_B) AA_B elseif aa_new in (AA_I, AA_L) && aa in (AA_I, AA_L, AA_J) AA_J elseif aa_new in (AA_Q, AA_E) && aa in (AA_Q, AA_E, AA_Z) AA_Z else AA_X end aa == AA_X && break end return aa end struct UnambiguousRNAs x::RNA end Base.eltype(::Type{UnambiguousRNAs}) = RNA Base.length(x::UnambiguousRNAs) = count_ones(reinterpret(UInt8, x.x)) function Base.iterate(x::UnambiguousRNAs, state=reinterpret(UInt8, x.x)) iszero(state) && return nothing rna = reinterpret(RNA, 0x01 << (trailing_zeros(state) & 7)) (rna, state & (state - 0x01)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
1786
using BioSequences using PrecompileTools # BioSequences define a whole bunch of types and methods, most of which is never used in any workload. # This workload here uses what I consider to be the most common operations, # on the most common types. # This is intended to strike a balance between precompilign that which the user probably needs, while # not wasting time loading code the user will never use. # The code not cached here will have to be precompiled in downstream packages @compile_workload begin seqs = [ aa"TAGCW" dna"ATCGA" ] for seq in [seqs; map(i -> view(i, 1:5), seqs)] # printing String(seq) print(IOBuffer(), seq) hash(seq) # indexing seq[1] seq[2:3] seq[2] = seq[3] seq[2:3] = seq[3:4] # join join([seq, seq]) join((first(seq), last(seq))) # pred hasambiguity(seq) # transformations reverse(seq) ungap(seq) q1 = ExactSearchQuery(seq[1:2]) findfirst(q1, seq) findlast(q1, seq) findall(q1, seq) occursin(q1, seq) q2 = ApproximateSearchQuery(seq[2:4]) findfirst(q2, 1, seq) findlast(q2, 1, seq) occursin(q2, 1, seq) end for seq in seqs seq[[true, false, true, true, false]] seq[collect(2:3)] ungap!(seq) end # Nucleotide for seq in seqs[2:2] ispalindromic(seq) iscanonical(seq) canonical(seq) reverse_complement!(seq) reverse_complement(seq) complement(seq) translate(seq[1:3]) gc_content(seq) end # Random randdnaseq(5) randrnaseq(5) randaaseq(5) randseq(DNAAlphabet{2}(), 10) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7526
### ### An abstract biological sequence type. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md """ BioSequence{A <: Alphabet} `BioSequence` is the main abstract type of `BioSequences`. It abstracts over the internal representation of different biological sequences, and is parameterized by an `Alphabet`, which controls the element type. # Extended help Its subtypes are characterized by: * Being a linear container type with random access and indices `Base.OneTo(length(x))`. * Containing zero or more internal data elements of type `encoded_data_eltype(typeof(x))`. * Being associated with an `Alphabet`, `A` by being a subtype of `BioSequence{A}`. A `BioSequence{A}` is indexed by an integer. The biosequence subtype, the index and the alphabet `A` determine how to extract the internal encoded data. The alphabet decides how to decode the data to the element type of the biosequence. Hence, the element type and container type of a `BioSequence` are separated. Subtypes `T` of `BioSequence` must implement the following, with `E` begin an encoded data type: * `Base.length(::T)::Int` * `encoded_data_eltype(::Type{T})::Type{E}` * `extract_encoded_element(::T, ::Integer)::E` * `copy(::T)` * T must be able to be constructed from any iterable with `length` defined and with a known, compatible element type. Furthermore, mutable sequences should implement * `encoded_setindex!(::T, ::E, ::Integer)` * `T(undef, ::Int)` * `resize!(::T, ::Int)` For compatibility with existing `Alphabet`s, the encoded data eltype must be `UInt`. """ abstract type BioSequence{A<:Alphabet} end """ has_interface(::Type{BioSequence}, ::T, syms::Vector, mutable::Bool, compat::Bool=true) Check if type `T` conforms to the `BioSequence` interface. A `T` is constructed from the vector of element types `syms` which must not be empty. If the `mutable` flag is set, also check the mutable interface. If the `compat` flag is set, check for compatibility with existing alphabets. """ function has_interface( ::Type{BioSequence}, ::Type{T}, syms::Vector, mutable::Bool, compat::Bool=true ) where {T <: BioSequence} try isempty(syms) && error("Vector syms must not be empty") first(syms) isa eltype(T) || error("Vector is of wrong element type") seq = T((i for i in syms)) length(seq) > 0 || return false eachindex(seq) === Base.OneTo(length(seq)) || return false E = encoded_data_eltype(T) e = extract_encoded_element(seq, 1) e isa E || return false (!compat || E == UInt) || return false copy(seq) isa typeof(seq) || return false if mutable encoded_setindex!(seq, e, 1) T(undef, 5) isa T || return false isempty(resize!(seq, 0)) || return false end catch error error isa MethodError && return false rethrow(error) end return true end Base.eachindex(x::BioSequence) = Base.OneTo(length(x)) Base.firstindex(::BioSequence) = 1 Base.lastindex(x::BioSequence) = length(x) Base.keys(seq::BioSequence) = eachindex(seq) Base.nextind(::BioSequence, i::Integer) = Int(i) + 1 Base.prevind(::BioSequence, i::Integer) = Int(i) - 1 Base.size(x::BioSequence) = (length(x),) Base.eltype(::Type{<:BioSequence{A}}) where {A <: Alphabet} = eltype(A) Base.eltype(x::BioSequence) = eltype(typeof(x)) Alphabet(::Type{<:BioSequence{A}}) where {A <: Alphabet} = A() Alphabet(x::BioSequence) = Alphabet(typeof(x)) Base.isempty(x::BioSequence) = iszero(length(x)) Base.empty(::Type{T}) where {T <: BioSequence} = T(eltype(T)[]) Base.empty(x::BioSequence) = empty(typeof(x)) BitsPerSymbol(x::BioSequence) = BitsPerSymbol(Alphabet(typeof(x))) Base.hash(s::BioSequence, x::UInt) = foldl((a, b) -> hash(b, a), s, init=x) function Base.similar(seq::BioSequence, len::Integer=length(seq)) return typeof(seq)(undef, len) end # Fast path for iterables we know are stateless function join!(seq::BioSequence, it::Union{Vector, Tuple, Set}) _join!(resize!(seq, reduce((a, b) -> a + joinlen(b), it, init=0)), it, Val(true)) end """ join!(seq::BioSequence, iter) Concatenate all biosequences/biosymbols in `iter` into `seq`, resizing it to fit. # Examples ``` julia> join(LongDNA(), [dna"TAG", dna"AAC"]) 6nt DNA Sequence: TAGAAC ``` see also [`join`](@ref) """ join!(seq::BioSequence, it) = _join!(seq, it, Val(false)) # B is whether the size of the destination seq is already # known to be the final size function _join!(seq::BioSequence, it, ::Val{B}) where B len = 0 oldlen = length(seq) for i in it pluslen = joinlen(i) if !B && oldlen < (len + pluslen) resize!(seq, len + pluslen) end if i isa BioSymbol seq[len + 1] = i else copyto!(seq, len + 1, i, 1, length(i)) end len += pluslen end seq end """ join(::Type{T <: BioSequence}, seqs) Concatenate all the biosequences/biosymbols in `seqs` to a biosequence of type `T`. # Examples ``` julia> join(LongDNA, [dna"TAG", dna"AAC"]) 6nt DNA Sequence: TAGAAC ``` see also [`join!`](@ref) """ function Base.join(::Type{T}, it::Union{Vector, Tuple, Set}) where {T <: BioSequence} _join!(T(undef, reduce((a, b) -> a + joinlen(b), it, init=0)), it, Val(true)) end # length is intentionally not implemented for BioSymbol joinlen(x::Union{BioSequence, BioSymbol}) = x isa BioSymbol ? 1 : length(x) function Base.join(::Type{T}, it) where {T <: BioSequence} _join!(empty(T), it, Val(false)) end Base.repeat(chunk::BioSequence, n::Integer) = join(typeof(chunk), (chunk for i in 1:n)) Base.:^(x::BioSequence, n::Integer) = repeat(x, n) # Concatenation and Base.repeat operators function Base.:*(fst::BioSequence, rest::BioSequence...) T = typeof(fst) join(T, (fst, rest...)) end """ encoded_data_eltype(::Type{<:BioSequence}) Returns the element type of the encoded data of the `BioSequence`. This is the return type of `extract_encoded_element`, i.e. the data type that stores the biological symbols in the biosequence. See also: [`BioSequence`](@ref) """ function encoded_data_eltype end """ extract_encoded_element(::BioSequence{A}, i::Integer) Returns the encoded element at position `i`. This data can be decoded using `decode(A(), data)` to yield the element type of the biosequence. See also: [`BioSequence`](@ref) """ function extract_encoded_element end """ encoded_setindex!(seq::BioSequence, x::E, i::Integer) Given encoded data `x` of type `encoded_data_eltype(typeof(seq))`, sets the internal sequence data at the given index. See also: [`BioSequence`](@ref) """ function encoded_setindex! end # Specific biosequences """ An alias for `BioSequence{<:NucleicAcidAlphabet}` """ const NucleotideSeq = BioSequence{<:NucleicAcidAlphabet} "An alias for `BioSequence{<:NucleicAcidAlphabet}`" const NucSeq{N} = BioSequence{<:NucleicAcidAlphabet{N}} "An alias for `BioSequence{DNAAlphabet{N}}`" const DNASeq{N} = BioSequence{DNAAlphabet{N}} "An alias for `BioSequence{RNAAlphabet{N}}`" const RNASeq{N} = BioSequence{RNAAlphabet{N}} """ An alias for `BioSequence{AminoAcidAlphabet}` """ const AASeq = BioSequence{AminoAcidAlphabet} # The generic functions for any BioSequence... include("indexing.jl") include("conversion.jl") include("predicates.jl") include("find.jl") include("printing.jl") include("transformations.jl") include("counting.jl") include("copying.jl")
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
675
### ### Conversion & Promotion ### ### ### Conversion methods for biological sequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md function (::Type{S})(seq::BioSequence) where {S <: AbstractString} _string(S, seq, codetype(Alphabet(seq))) end @static if VERSION >= v"1.8" Base.LazyString(seq::BioSequence) = LazyString(string(seq)) end function _string(::Type{S}, seq::BioSequence, ::AlphabetCode) where {S<:AbstractString} return S([Char(x) for x in seq]) end function _string(::Type{String}, seq::BioSequence, ::AsciiAlphabet) String([stringbyte(s) for s in seq]) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
1181
function Base.copy!(dst::BioSequence, src::BioSequence) resize!(dst, length(src)) copyto!(dst, src) end """ copyto!(dst::LongSequence, src::BioSequence) Equivalent to `copyto!(dst, 1, src, 1, length(src))` """ function Base.copyto!(dst::BioSequence, src::BioSequence) copyto!(dst, 1, src, 1, length(src)) end """ copyto!(dst::BioSequence, soff, src::BioSequence, doff, N) In-place copy `N` elements from `src` starting at `soff` to `dst`, starting at `doff`. The length of `dst` must be greater than or equal to `N + doff - 1`. The first N elements of `dst` are overwritten, the other elements are left untouched. The alphabets of `src` and `dst` must be compatible. # Examples ``` julia> seq = copyto!(dna"AACGTM", 1, dna"TAG", 1, 3) 6nt DNA Sequence: TAGGTM julia> copyto!(seq, 2, rna"UUUU", 1, 4) 6nt DNA Sequence: TTTTTM ``` """ function Base.copyto!(dst::BioSequence{A}, doff::Integer, src::BioSequence, soff::Integer, N::Integer) where {A <: Alphabet} @boundscheck checkbounds(dst, doff:doff+N-1) @boundscheck checkbounds(src, soff:soff+N-1) for i in 0:N-1 dst[doff + i] = src[soff + i] end return dst end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2606
### ### Counting ### ### Counting operations on biological sequence types. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md ### ### Naive counting ### function count_naive(pred, seq::BioSequence) n = 0 @inbounds for i in eachindex(seq) n += pred(seq[i])::Bool end return n end function count_naive(pred, seqa::BioSequence, seqb::BioSequence) n = 0 @inbounds for i in 1:min(length(seqa), length(seqb)) n += pred(seqa[i], seqb[i])::Bool end return n end """ Count how many positions in a sequence satisfy a condition (i.e. f(seq[i]) -> true). The first argument should be a function which accepts an element of the sequence as its first parameter, additional arguments may be passed with `args...`. """ Base.count(pred, seq::BioSequence) = count_naive(pred, seq) Base.count(pred, seqa::BioSequence, seqb::BioSequence) = count_naive(pred, seqa, seqb) # These functions are BioSequences-specific because they take two arguments isambiguous_or(x::T, y::T) where {T<:NucleicAcid} = isambiguous(x) | isambiguous(y) isgap_or(x::T, y::T) where {T<:NucleicAcid} = isgap(x) | isgap(y) iscertain_and(x::T, y::T) where {T<:NucleicAcid} = iscertain(x) & iscertain(y) #BioSymbols.isambiguous(x::T, y::T) where {T<:NucleicAcid} = isambiguous(x) | isambiguous(y) #BioSymbols.isgap(x::T, y::T) where {T<:NucleicAcid} = isgap(x) | isgap(y) #BioSymbols.iscertain(x::T, y::T) where {T<:NucleicAcid} = iscertain(x) & iscertain(y) Base.count(::typeof(isambiguous), seqa::S, seqb::S) where {S<:BioSequence{<:NucleicAcidAlphabet{2}}} = 0 Base.count(::typeof(isgap), seqa::S, seqb::S) where {S<:BioSequence{<:NucleicAcidAlphabet{2}}} = 0 Base.count(::typeof(iscertain), seqa::S, seqb::S) where {S<:BioSequence{<:NucleicAcidAlphabet{2}}} = min(length(seqa), length(seqb)) ### ### Aliases for various uses of `count`. ### """ gc_content(seq::BioSequence) Calculate GC content of `seq`. """ gc_content(seq::NucleotideSeq) = isempty(seq) ? 0.0 : count(isGC, seq) / length(seq) n_ambiguous(seq) = count(isambiguous, seq) n_ambiguous(seqa::BioSequence, seqb::BioSequence) = count(isambiguous_or, seqa, seqb) n_certain(seq) = count(iscertain, seq) n_certain(seqa::BioSequence, seqb::BioSequence) = count(iscertain_and, seqa, seqb) n_gaps(seq::BioSequence) = count(isgap, seq) n_gaps(seqa::BioSequence, seqb::BioSequence) = count(isgap_or, seqa, seqb) mismatches(seqa::BioSequence, seqb::BioSequence) = count(!=, seqa, seqb) matches(seqa::BioSequence, seqb::BioSequence) = count(==, seqa, seqb)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2391
### ### Finders ### ### ### Finding positions meeting predicates in biological sequence types. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md function Base.findnext(f::Function, seq::BioSequence, start::Integer) start > lastindex(seq) && return nothing checkbounds(seq, start) @inbounds for i in start:lastindex(seq) if f(seq[i]) return i end end return nothing end # No ambiguous sites can exist in a nucleic acid sequence using the two-bit alphabet. Base.findnext(::typeof(isambiguous), seq::BioSequence{<:NucleicAcidAlphabet{2}}, from::Integer) = nothing function Base.findprev(f::Function, seq::BioSequence, start::Integer) start < firstindex(seq) && return nothing checkbounds(seq, start) for i in start:-1:firstindex(seq) if f(seq[i]) return i end end return nothing end Base.findfirst(f::Function, seq::BioSequence) = findnext(f, seq, firstindex(seq)) Base.findlast(f::Function, seq::BioSequence) = findprev(f, seq, lastindex(seq)) # Finding specific symbols Base.findnext(x::DNA, seq::BioSequence{<:DNAAlphabet}, start::Integer) = Base.findnext(isequal(x), seq, start) Base.findnext(x::RNA, seq::BioSequence{<:RNAAlphabet}, start::Integer) = Base.findnext(isequal(x), seq, start) Base.findnext(x::AminoAcid, seq::BioSequence{AminoAcidAlphabet}, start::Integer) = Base.findnext(isequal(x), seq, start) Base.findprev(x::DNA, seq::BioSequence{<:DNAAlphabet}, start::Integer) = Base.findprev(isequal(x), seq, start) Base.findprev(x::RNA, seq::BioSequence{<:RNAAlphabet}, start::Integer) = Base.findprev(isequal(x), seq, start) Base.findprev(x::AminoAcid, seq::BioSequence{AminoAcidAlphabet}, start::Integer) = Base.findprev(isequal(x), seq, start) Base.findfirst(x::DNA, seq::BioSequence{<:DNAAlphabet}) = Base.findfirst(isequal(x), seq) Base.findfirst(x::RNA, seq::BioSequence{<:RNAAlphabet}) = Base.findfirst(isequal(x), seq) Base.findfirst(x::AminoAcid, seq::BioSequence{AminoAcidAlphabet}) = Base.findfirst(isequal(x), seq) Base.findlast(x::DNA, seq::BioSequence{<:DNAAlphabet}) = Base.findlast(isequal(x), seq) Base.findlast(x::RNA, seq::BioSequence{<:RNAAlphabet}) = Base.findlast(isequal(x), seq) Base.findlast(x::AminoAcid, seq::BioSequence{AminoAcidAlphabet}) = Base.findlast(isequal(x), seq)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3103
### ### Indexing ### ### ### Indexing methods for mutable biological sequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md @inline function Base.iterate(seq::BioSequence, i::Int = firstindex(seq)) (i % UInt) - 1 < (lastindex(seq) % UInt) ? (@inbounds seq[i], i + 1) : nothing end ## Bounds checking function Base.checkbounds(x::BioSequence, i::Integer) firstindex(x) ≤ i ≤ lastindex(x) || throw(BoundsError(x, i)) end function Base.checkbounds(x::BioSequence, locs::AbstractVector{Bool}) length(x) == length(locs) || throw(BoundsError(x, lastindex(locs))) end @inline function Base.checkbounds(seq::BioSequence, locs::AbstractVector) for i in locs checkbounds(seq, i) end return true end @inline function Base.checkbounds(seq::BioSequence, range::UnitRange) if !isempty(range) && (first(range) < 1 || last(range) > length(seq)) throw(BoundsError(seq, range)) end end ## Getindex Base.@propagate_inbounds function Base.getindex(x::BioSequence, i::Integer) @boundscheck checkbounds(x, i) data = extract_encoded_element(x, i) return decode(Alphabet(x), data) end Base.@propagate_inbounds function Base.getindex(x::BioSequence, bools::AbstractVector{Bool}) @boundscheck checkbounds(x, bools) res = typeof(x)(undef, count(bools)) ind = 0 @inbounds for i in eachindex(bools) if bools[i] ind += 1 res[ind] = x[i] end end res end Base.@propagate_inbounds function Base.getindex(x::BioSequence, i::AbstractVector{<:Integer}) @boundscheck checkbounds(x, i) isempty(i) && return empty(x) res = typeof(x)(undef, length(i)) @inbounds for ind in eachindex(res) res[ind] = x[i[ind]] end return res end Base.getindex(x::BioSequence, ::Colon) = copy(x) ## Setindex Base.@propagate_inbounds function Base.setindex!(x::BioSequence, v, i::Integer) @boundscheck checkbounds(x, i) vT = convert(eltype(typeof(x)), v) data = encode(Alphabet(x), vT) encoded_setindex!(x, data, i) end Base.@propagate_inbounds function Base.setindex!(seq::BioSequence, x, locs::AbstractVector{<:Integer}) @boundscheck checkbounds(seq, locs) @boundscheck if length(x) != length(locs) throw(DimensionMismatch("Attempt to assign $(length(x)) values to $(length(locs)) destinations")) end for (i, xi) in zip(locs, x) @boundscheck checkbounds(seq, i) seq[i] = xi end return seq end Base.@propagate_inbounds function Base.setindex!(seq::BioSequence, x, locs::AbstractVector{Bool}) @boundscheck checkbounds(seq, locs) n = count(locs) @boundscheck if length(x) != n throw(DimensionMismatch("Attempt to assign $(length(x)) values to $n destinations")) end j = 0 @inbounds for i in eachindex(locs) if locs[i] j += 1 seq[i] = x[j] end end return seq end function Base.setindex!(seq::BioSequence, x, ::Colon) return setindex!(seq, x, 1:lastindex(seq)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2889
### ### Predicates & comparisons ### ### Generalised operations on biological sequence types. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md function Base.:(==)(seq1::BioSequence, seq2::BioSequence) seq1 === seq2 && return true length(seq1) == length(seq2) || return false @inbounds for i in eachindex(seq1) seq1[i] == seq2[i] || return false end return true end function Base.isless(seq1::BioSequence, seq2::BioSequence) @inbounds for i in Base.OneTo(min(length(seq1), length(seq2))) i1, i2 = seq1[i], seq2[i] isless(i1, i2) && return true isless(i2, i1) && return false end return isless(length(seq1), length(seq2)) end """ isrepetitive(seq::BioSequence, n::Integer = length(seq)) Return `true` if and only if `seq` contains a repetitive subsequence of length `≥ n`. """ function isrepetitive(seq::BioSequence, n::Integer = length(seq)) if n < 0 error("repetition must be non-negative") elseif isempty(seq) return n == 0 end rep = 1 if rep ≥ n return true end last = first(seq) for i in 2:lastindex(seq) x = seq[i] if x == last rep += 1 if rep ≥ n return true end else rep = 1 end last = x end return false end """ ispalindromic(seq::BioSequence) Return `true` if `seq` is a palindromic sequence; otherwise return `false`. """ function ispalindromic(seq::BioSequence{<:NucleicAcidAlphabet}) for i in 1:cld(length(seq), 2) if seq[i] != complement(seq[end - i + 1]) return false end end return true end """ hasambiguity(seq::BioSequence) Returns `true` if `seq` has an ambiguous symbol; otherwise return `false`. """ function hasambiguity(seq::BioSequence) for x in seq if isambiguous(x) return true end end return false end # 2 Bit specialization: @inline hasambiguity(seq::BioSequence{<:NucleicAcidAlphabet{2}}) = false """ iscanonical(seq::NucleotideSeq) Returns `true` if `seq` is canonical. For any sequence, there is a reverse complement, which is the same sequence, but on the complimentary strand of DNA: ``` -------> ATCGATCG CGATCGAT <------- ``` !!! note Using the [`reverse_complement`](@ref) of a DNA sequence will give give this reverse complement. Of the two sequences, the *canonical* of the two sequences is the lesser of the two i.e. `canonical_seq < other_seq`. """ function iscanonical(seq::NucleotideSeq) i = 1 j = lastindex(seq) @inbounds while i <= j f = seq[i] r = complement(seq[j]) f < r && return true r < f && return false i += 1 j -= 1 end return true end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3998
# Printing, show and parse # ------------------------ Base.summary(seq::BioSequence{<:DNAAlphabet}) = string(length(seq), "nt ", "DNA Sequence") Base.summary(seq::BioSequence{<:RNAAlphabet}) = string(length(seq), "nt ", "RNA Sequence") Base.summary(seq::BioSequence{<:AminoAcidAlphabet}) = string(length(seq), "aa ", "Amino Acid Sequence") # Buffer type. Not exposed to user, so code should be kept simple and performant. # B is true if it is buffered and false if it is not mutable struct SimpleBuffer{B, T} <: IO len::UInt arr::Vector{UInt8} io::T end SimpleBuffer(io::IO) = SimpleBuffer{true, typeof(io)}(0, Vector{UInt8}(undef, 1024), io) SimpleBuffer(io::IO, len) = SimpleBuffer{false, typeof(io)}(0, Vector{UInt8}(undef, len), io) function Base.write(sb::SimpleBuffer{true}, byte::UInt8) sb.len ≥ 1024 && flush(sb) sb.len += 1 @inbounds sb.arr[sb.len] = byte end function Base.write(sb::SimpleBuffer{false}, byte::UInt8) len = sb.len + 1 sb.len = len @inbounds sb.arr[len] = byte end # Flush entire buffer to its io @noinline function Base.flush(sb::SimpleBuffer{true}) arr = sb.arr GC.@preserve arr unsafe_write(sb.io, pointer(arr), UInt(1024)) sb.len = 0 end # Flush all unflushed bytes to its io. Does not close source or make buffer unwritable function Base.close(sb::SimpleBuffer) iszero(sb.len) && return 0 arr = sb.arr GC.@preserve arr unsafe_write(sb.io, pointer(arr), sb.len) sb.len = 0 end function padded_length(len::Integer, width::Integer) den = ifelse(width < 1, typemax(Int), width) return len + div(len-1, den) end function Base.print(io::IO, seq::BioSequence{A}; width::Integer = 0) where {A<:Alphabet} return _print(io, seq, width, codetype(A())) end # Generic method. The different name allows subtypes of BioSequence to # selectively call the generic print despite being more specific type function _print(io::IO, seq::BioSequence, width::Integer, ::UnicodeAlphabet) col = 0 for x in seq col += 1 if (width > 0) & (col > width) write(io, '\n') col = 1 end print(io, x) end return nothing end # Specialized method for ASCII alphabet function _print(io::IO, seq::BioSequence, width::Integer, ::AsciiAlphabet) # If seq is large, always buffer for memory efficiency if length(seq) ≥ 4096 return _print(SimpleBuffer(io), seq, width, AsciiAlphabet()) end if (width < 1) | (length(seq) ≤ width) # Fastest option return print(io, String(seq)) else # Second fastest option buffer = SimpleBuffer(io, padded_length(length(seq), width)) return _print(buffer, seq, width, AsciiAlphabet()) end end function _print(buffer::SimpleBuffer, seq::BioSequence, width::Integer, ::AsciiAlphabet) col = 0 @inbounds for i in eachindex(seq) col += 1 if (width > 0) & (col > width) write(buffer, UInt8('\n')) col = 1 end write(buffer, stringbyte(seq[i])) end close(buffer) return nothing end Base.show(io::IO, seq::BioSequence) = showcompact(io, seq) function Base.show(io::IO, ::MIME"text/plain", seq::BioSequence) println(io, summary(seq), ':') showcompact(io, seq) end function showcompact(io::IO, seq::BioSequence) # don't show more than this many characters # to avoid filling the screen with junk if isempty(seq) print(io, "< EMPTY SEQUENCE >") else width = displaysize()[2] if length(seq) > width half = div(width, 2) for i in 1:half-1 print(io, seq[i]) end print(io, '…') for i in lastindex(seq)-half+2:lastindex(seq) print(io, seq[i]) end else print(io, seq) end end end function string_compact(seq::BioSequence) buf = IOBuffer() showcompact(buf, seq) return String(take!(buf)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5969
# Transformations # =============== # # Methods that manipulate and change a biological sequence. # # This file is a part of BioJulia. # License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md """ empty!(seq::BioSequence) Completely empty a biological sequence `seq` of nucleotides. """ Base.empty!(seq::BioSequence) = resize!(seq, 0) """ push!(seq::BioSequence, x) Append a biological symbol `x` to a biological sequence `seq`. """ function Base.push!(seq::BioSequence, x) x_ = convert(eltype(seq), x) resize!(seq, length(seq) + 1) @inbounds seq[end] = x_ return seq end """ pop!(seq::BioSequence) Remove the symbol from the end of a biological sequence `seq` and return it. Returns a variable of `eltype(seq)`. """ function Base.pop!(seq::BioSequence) if isempty(seq) throw(ArgumentError("sequence must be non-empty")) end @inbounds x = seq[end] deleteat!(seq, lastindex(seq)) return x end """ insert!(seq::BioSequence, i, x) Insert a biological symbol `x` into a biological sequence `seq`, at the given index `i`. """ function Base.insert!(seq::BioSequence, i::Integer, x) checkbounds(seq, i) resize!(seq, length(seq) + 1) copyto!(seq, i + 1, seq, i, lastindex(seq) - i) @inbounds seq[i] = x return seq end """ deleteat!(seq::BioSequence, range::UnitRange{<:Integer}) Deletes a defined `range` from a biological sequence `seq`. Modifies the input sequence. """ function Base.deleteat!(seq::BioSequence, range::UnitRange{<:Integer}) checkbounds(seq, range) copyto!(seq, range.start, seq, range.stop + 1, length(seq) - range.stop) resize!(seq, length(seq) - length(range)) return seq end """ deleteat!(seq::BioSequence, i::Integer) Delete a biological symbol at a single position `i` in a biological sequence `seq`. Modifies the input sequence. """ function Base.deleteat!(seq::BioSequence, i::Integer) checkbounds(seq, i) copyto!(seq, i, seq, i + 1, length(seq) - i) resize!(seq, length(seq) - 1) return seq end """ append!(seq, other) Add a biological sequence `other` onto the end of biological sequence `seq`. Modifies and returns `seq`. """ function Base.append!(seq::BioSequence, other::BioSequence) resize!(seq, length(seq) + length(other)) copyto!(seq, lastindex(seq) - length(other) + 1, other, 1, length(other)) return seq end """ popfirst!(seq) Remove the symbol from the beginning of a biological sequence `seq` and return it. Returns a variable of `eltype(seq)`. """ function Base.popfirst!(seq::BioSequence) if isempty(seq) throw(ArgumentError("sequence must be non-empty")) end @inbounds x = seq[1] deleteat!(seq, 1) return x end """ pushfirst!(seq, x) Insert a biological symbol `x` at the beginning of a biological sequence `seq`. """ function Base.pushfirst!(seq::BioSequence, x) resize!(seq, length(seq) + 1) copyto!(seq, 2, seq, 1, length(seq) - 1) @inbounds seq[firstindex(seq)] = x return seq end Base.filter(f, seq::BioSequence) = filter!(f, copy(seq)) function Base.filter!(f, seq::BioSequence) ind = 0 @inbounds for i in eachindex(seq) if f(seq[i]) ind += 1 else break end end @inbounds for i in ind+1:lastindex(seq) v = seq[i] if f(v) ind += 1 seq[ind] = v end end return resize!(seq, ind) end Base.map(f, seq::BioSequence) = map!(f, copy(seq)) function Base.map!(f, seq::BioSequence) @inbounds for i in eachindex(seq) seq[i] = f(seq[i]) end seq end """ reverse(seq::BioSequence) Create reversed copy of a biological sequence. """ Base.reverse(seq::BioSequence) = reverse!(copy(seq)) function Base.reverse!(s::BioSequence) i, j = 1, lastindex(s) @inbounds while i < j s[i], s[j] = s[j], s[i] i, j = i + 1, j - 1 end return s end """ complement(seq) Make a complement sequence of `seq`. """ function BioSymbols.complement(seq::NucleotideSeq) return complement!(copy(seq)) end complement!(seq::NucleotideSeq) = map!(complement, seq) """ reverse_complement!(seq) Make a reversed complement sequence of `seq` in place. """ function reverse_complement!(seq::NucleotideSeq) return complement!(reverse!(seq)) end """ reverse_complement(seq) Make a reversed complement sequence of `seq`. """ function reverse_complement(seq::NucleotideSeq) return complement!(reverse(seq)) end """ canonical!(seq::NucleotideSeq) Transforms the `seq` into its canonical form, if it is not already canonical. Modifies the input sequence inplace. For any sequence, there is a reverse complement, which is the same sequence, but on the complimentary strand of DNA: ``` -------> ATCGATCG CGATCGAT <------- ``` !!! note Using the [`reverse_complement`](@ref) of a DNA sequence will give give this reverse complement. Of the two sequences, the *canonical* of the two sequences is the lesser of the two i.e. `canonical_seq < other_seq`. Using this function on a `seq` will ensure it is the canonical version. """ function canonical!(seq::NucleotideSeq) if !iscanonical(seq) reverse_complement!(seq) end return seq end """ canonical(seq::NucleotideSeq) Create the canonical sequence of `seq`. """ canonical(seq::NucleotideSeq) = iscanonical(seq) ? copy(seq) : reverse_complement(seq) "Create a copy of a sequence with gap characters removed." ungap(seq::BioSequence) = filter(!isgap, seq) "Remove gap characters from an input sequence." ungap!(seq::BioSequence) = filter!(!isgap, seq) ### ### Shuffle ### function Random.shuffle!(seq::BioSequence) # Fisher-Yates shuffle @inbounds for i in 1:lastindex(seq) - 1 j = rand(i:lastindex(seq)) seq[i], seq[j] = seq[j], seq[i] end return seq end function Random.shuffle(seq::BioSequence) return shuffle!(copy(seq)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3527
include("bitindex.jl") include("bitpar-compiler.jl") @inline function reversebits(x::T, ::BitsPerSymbol{2}) where T <: Base.BitUnsigned mask = 0x33333333333333333333333333333333 % T x = ((x >> 2) & mask) | ((x & mask) << 2) return reversebits(x, BitsPerSymbol{4}()) end @inline function reversebits(x::T, ::BitsPerSymbol{4}) where T <: Base.BitUnsigned mask = 0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F % T x = ((x >> 4) & mask) | ((x & mask) << 4) return bswap(x) end reversebits(x::T, ::BitsPerSymbol{8}) where T <: Base.BitUnsigned = bswap(x) @inline function complement_bitpar(x::Unsigned, ::T) where {T<:NucleicAcidAlphabet{2}} return ~x end @inline function complement_bitpar(x::Unsigned, ::T) where {T<:NucleicAcidAlphabet{4}} return ( ((x & repeatpattern(typeof(x), 0x11)) << 3) | ((x & repeatpattern(typeof(x), 0x88)) >> 3) | ((x & repeatpattern(typeof(x), 0x22)) << 1) | ((x & repeatpattern(typeof(x), 0x44)) >> 1) ) end @inline function gc_bitcount(x::Unsigned, ::NucleicAcidAlphabet{2}) msk = repeatpattern(typeof(x), 0x55) c = x & msk g = (x >> 1) & msk return count_ones(c ⊻ g) end @inline function gc_bitcount(x::Unsigned, ::NucleicAcidAlphabet{4}) a = x & repeatpattern(typeof(x), 0x11) c = (x & repeatpattern(typeof(x), 0x22)) >> 1 g = (x & repeatpattern(typeof(x), 0x44)) >> 2 t = (x & repeatpattern(typeof(x), 0x88)) >> 3 return count_ones((c | g) & ~(a | t)) end @inline a_bitcount(x::Unsigned, ::NucleicAcidAlphabet{2}) = count_00_bitpairs(x) @inline c_bitcount(x::Unsigned, ::NucleicAcidAlphabet{2}) = count_01_bitpairs(x) @inline g_bitcount(x::Unsigned, ::NucleicAcidAlphabet{2}) = count_10_bitpairs(x) @inline t_bitcount(x::Unsigned, ::NucleicAcidAlphabet{2}) = count_11_bitpairs(x) @inline function mismatch_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} return count_nonzero_nibbles(a ⊻ b) end @inline function mismatch_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{2}} return count_nonzero_bitpairs(a ⊻ b) end @inline function match_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} return count_0000_nibbles(a ⊻ b) end @inline function match_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{2}} return count_00_bitpairs(a ⊻ b) end @inline function ambiguous_bitcount(x::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} return count_nonzero_nibbles(enumerate_nibbles(x) & 0xEEEEEEEEEEEEEEEE) end @inline function ambiguous_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} return count_nonzero_nibbles((enumerate_nibbles(a) | enumerate_nibbles(b)) & 0xEEEEEEEEEEEEEEEE) end @inline function gap_bitcount(x::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} return count_0000_nibbles(x) end @inline function gap_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} # Count the gaps in a, count the gaps in b, subtract the number of shared gaps. return count_0000_nibbles(a) + count_0000_nibbles(b) - count_0000_nibbles(a | b) end @inline function certain_bitcount(x::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} x = enumerate_nibbles(x) x = x ⊻ 0x1111111111111111 return count_0000_nibbles(x) end @inline function certain_bitcount(a::UInt64, b::UInt64, ::T) where {T<:NucleicAcidAlphabet{4}} x = enumerate_nibbles(a) ⊻ 0x1111111111111111 y = enumerate_nibbles(b) ⊻ 0x1111111111111111 return count_0000_nibbles(x | y) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3027
# BitIndex # -------- # # Utils for indexing bits in a vector of unsigned integers (internal use only). # # This file is a part of BioJulia. # License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # # index(i)-1 index(i) index(i)+1 # ....|................|..X.............|................|.... # |<-offset(i)-| # |<--- 64 bits -->| """ BitIndex `BitIndex` is an internal type used in BioSequences.It contains a bit offset. For biosequences with an internal array of coding units, it can be used to obtain the array index and element bit offset. Useful methods: * bitindex(::BioSequence, ::Int) * index(::BitIndex) * offset(::BitIndex) * nextposition / prevposition(::BitIndex) * extract_encoded_element(::BitIndex, ::Union{Array, Tuple}) """ struct BitIndex{N, W} val::UInt64 end BitsPerSymbol(::BitIndex{N, W}) where {N,W} = BitsPerSymbol{N}() bits_per_symbol(::BitIndex{N, W}) where {N,W} = N @inline function bitindex(::BitsPerSymbol{N}, ::Type{W}, i) where {N,W} return BitIndex{N, W}((i - 1) << trailing_zeros(N)) end bitwidth(::Type{W}) where W = 8*sizeof(W) @inline index_shift(::BitIndex{N,W}) where {N,W} = trailing_zeros(bitwidth(W)) @inline offset_mask(::BitIndex{N,W}) where {N,W} = UInt8(bitwidth(W)) - 0x01 @inline index(i::BitIndex) = (i.val >> index_shift(i)) + 1 @inline offset(i::BitIndex) = i.val & offset_mask(i) Base.:+(i::BitIndex{N,W}, n::Integer) where {N,W} = BitIndex{N,W}(i.val + n) Base.:-(i::BitIndex{N,W}, n::Integer) where {N,W} = BitIndex{N,W}(i.val - n) Base.:-(i1::BitIndex, i2::BitIndex) = i1.val - i2.val Base.:(==)(i1::BitIndex, i2::BitIndex) = i1.val == i2.val Base.isless(i1::BitIndex, i2::BitIndex) = isless(i1.val, i2.val) @inline function nextposition(i::BitIndex{N,W}) where {N,W} return i + N end @inline function prevposition(i::BitIndex{N,W}) where {N,W} return i - N end function Base.iterate(i::BitIndex, s = 1) if s == 1 return (index(i), 2) elseif s == 2 return (offset(i), 3) else return nothing end end Base.show(io::IO, i::BitIndex) = print(io, '(', index(i), ", ", offset(i), ')') "Extract the element stored in a packed bitarray referred to by bidx." @inline function extract_encoded_element(bidx::BitIndex{N,W}, data::Union{AbstractArray{W}, Tuple{Vararg{W}}}) where {N,W} chunk = (@inbounds data[index(bidx)]) >> offset(bidx) return chunk & bitmask(bidx) end # Create a bit mask that fills least significant `n` bits (`n` must be a # non-negative integer). "Create a bit mask covering the least significant `n` bits." function bitmask(::Type{T}, n::Integer) where {T} topshift = 8 * sizeof(T) - 1 return ifelse(n > topshift, typemax(T), one(T) << (n & topshift) - one(T)) end # Create a bit mask filling least significant N bits. # This is used in the extract_encoded_element function. bitmask(::BitIndex{N,W}) where {N, W} = bitmask(W, N) bitmask(n::Integer) = bitmask(UInt64, n)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
8735
### ### Bitparallel ### """ A generator for efficient bitwise sequence operations. """ function compile_bitpar(funcname::Symbol; arguments::Tuple = (), init_code::Expr = :(), head_code::Expr = :(), body_code::Expr = :(), tail_code::Expr = :(), return_code::Expr = :()) functioncode = :(function $(funcname)() end) for arg in arguments push!(functioncode.args[1].args, arg) end functioncode.args[2] = quote $(init_code) ind = bitindex(seq, 1) stop = bitindex(seq, lastindex(seq) + 1) data = seq.data @inbounds begin if !iszero(offset(ind)) & (ind < stop) # align the bit index to the beginning of a block boundary o = offset(ind) mask = bitmask(stop - ind) n_bits_masked = ifelse(index(stop) == index(ind), count_zeros(mask), o) chunk = (data[index(ind)] >> o) & mask $(head_code) ind += 64 - o end lastind = index(stop - bits_per_symbol(Alphabet(seq))) lastind -= !iszero(offset(stop)) for i in index(ind):lastind chunk = data[i] $(body_code) ind += 64 end if ind < stop n_bits_masked = 64 - offset(stop) chunk = data[index(ind)] & bitmask(64 - n_bits_masked) $(tail_code) end end $(return_code) end return functioncode end function get_arg_name(arg) if typeof(arg) === Expr if arg.head === :(::) return first(arg.args) end end return arg end function check_arguments(args::Tuple) # Check all arguments are symbols or expressions for arg in args if !(isa(arg, Symbol) || isa(arg, Expr)) error("Argument ", arg, " is not an expression or symbol") end end a1 = first(args) if isa(a1, Symbol) @assert a1 == :seqa elseif isa(a1, Expr) @assert a1.head === :(::) @assert first(a1.args) === :seqa end a2 = args[2] if isa(a2, Symbol) @assert a2 == :seqb elseif isa(a2, Expr) @assert a2.head === :(::) @assert first(a2.args) === :seqb end end function add_arguments!(exp, args) check_arguments(args) @assert exp.head === :function if exp.args[1].head === :call for arg in args push!(exp.args[1].args, arg) end elseif exp.args[1].head === :where @assert exp.args[1].args[1].head === :call for arg in args push!(exp.args[1].args[1].args, arg) end else error("Expression in function is not a :call or :where!") end end function compile_2seq_bitpar(funcname::Symbol; arguments::Tuple = (), parameters::Tuple = (), init_code::Expr = :(), head_code::Expr = :(), body_code::Expr = :(), tail_code::Expr = :(), return_code::Expr = :()) # TODO: Check the parameters provided. if isempty(parameters) functioncode = :(function $(funcname)() end) else functioncode = :(function $(funcname)() where {$(parameters...)} end) end add_arguments!(functioncode, arguments) argument_names = map(get_arg_name, arguments) argument_names = tuple(argument_names[2], argument_names[1], argument_names[3:end]...) functioncode.args[2] = quote if length(seqa) > length(seqb) return $funcname($(argument_names...)) end @assert length(seqa) ≤ length(seqb) nexta = bitindex(seqa, 1) stopa = bitindex(seqa, lastindex(seqa) + 1) nextb = bitindex(seqb, 1) stopb = bitindex(seqb, lastindex(seqb) + 1) adata = seqa.data bdata = seqb.data $(init_code) # The first thing we need to sort out is to correctly align the head of # sequence / subsequence `a`s data is aligned such that the offset of # `nexta` is essentially reduced to 0. # With sequence / subsequence `a` aligned, from there, we only need to # worry about the alignment of sequence / subsequence `b` with respect # to `a`. if nexta < stopa && offset(nexta) != 0 # Here we shift the first data chunks to the right so as the first # nucleotide of the seq/subseq is the first nibble / pair of bits. x = adata[index(nexta)] >> offset(nexta) y = bdata[index(nextb)] >> offset(nextb) # Here it was assumed that there is something to go and get from # the next chunk of `b`, yet that may not be true. # We know that if this is not true of `b`, then it is certainly not # true of `a`. # We check if the end of the sequence is not contained in the same # integer like so: `64 - offset(nextb) < stopb - nextb`. # # This edge case was found and accounted for by Ben J. Ward @BenJWard. # Ask this maintainer for more information. if offset(nextb) > offset(nexta) && 64 - offset(nextb) < stopb - nextb y |= bdata[index(nextb) + 1] << (64 - offset(nextb)) end # Here we need to check something, we need to check if the # integer of `a` we are currently aligning contains the end of # seq/subseq `a`. Because if so it's something we need to take into # account of when we mask x and y. # # In other words if `64 - offset(nexta) > stopa - nexta, we know # seq or subseq a's data ends before the end of this data chunk, # and so the mask used needs to be defined to account for this: # `mask(stopa - nexta)`, otherwise the mask simply needs to be # `mask(64 - offset(nexta))`. # # This edge case was found and accounted for by Ben Ward @Ward9250. # Ask this maintainer for more information. offs = ifelse(64 - offset(nexta) > stopa - nexta, stopa - nexta, 64 - offset(nexta)) m = bitmask(offs) x &= m y &= m $(head_code) # Here we move our current position markers by k, meaning they move # to either, A). The next integer, or B). The end of the sequence if # it is in the current integer. nexta += offs nextb += offs end if offset(nextb) == 0 # data are aligned with each other while stopa - nexta ≥ 64 # Iterate through body of data x = adata[index(nexta)] y = bdata[index(nextb)] $(body_code) nexta += 64 nextb += 64 end if nexta < stopa x = adata[index(nexta)] y = bdata[index(nextb)] offs = stopa - nexta m = bitmask(offs) x &= m y &= m $(tail_code) end elseif nexta < stopa # Data are unaligned y = bdata[index(nextb)] nextb += 64 # Note that here, updating `nextb` by 64, increases the chunk index, # but the `offset(nextb)` will remain the same. while stopa - nexta ≥ 64 # processing body of data x = adata[index(nexta)] z = bdata[index(nextb)] y = y >> offset(nextb) | z << (64 - offset(nextb)) $(body_code) y = z nexta += 64 nextb += 64 end if nexta < stopa # processing tail of data x = adata[index(nexta)] y = y >> offset(nextb) if 64 - offset(nextb) < stopa - nexta y |= bdata[index(nextb)] << (64 - offset(nextb)) end offs = stopa - nexta m = bitmask(offs) x &= m y &= m $(tail_code) end end $(return_code) end return functioncode end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2973
### ### Constructors ### ### ### Constructor methods for LongSequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md @inline seq_data_len(s::LongSequence{A}) where A = seq_data_len(A, length(s)) @inline function seq_data_len(::Type{A}, len::Integer) where A <: Alphabet iszero(bits_per_symbol(A())) && return 0 return cld(len, div(64, bits_per_symbol(A()))) end function LongSequence{A}(::UndefInitializer, len::Integer) where {A<:Alphabet} if len < 0 throw(ArgumentError("len must be non-negative")) end return LongSequence{A}(Vector{UInt64}(undef, seq_data_len(A, len)), UInt(len)) end # Generic constructor function LongSequence{A}(it) where {A <: Alphabet} len = length(it) data = Vector{UInt64}(undef, seq_data_len(A, len)) bits = zero(UInt) bitind = bitindex(BitsPerSymbol(A()), encoded_data_eltype(LongSequence{A}), 1) @inbounds for x in it xT = convert(eltype(A), x) enc = encode(A(), xT) bits |= enc << offset(bitind) if iszero(offset(nextposition(bitind))) data[index(bitind)] = bits bits = zero(UInt64) end bitind = nextposition(bitind) end iszero(offset(bitind)) || (data[index(bitind)] = bits) LongSequence{A}(data, len % UInt) end Base.empty(::Type{T}) where {T <: LongSequence} = T(UInt[], UInt(0)) (::Type{T})() where {T <: LongSequence} = empty(T) # Constructors from other sequences # TODO: Remove this method, since the user can just slice LongSequence(s::LongSequence, xs::AbstractUnitRange{<:Integer}) = s[xs] function LongSequence(seq::BioSequence{A}) where {A <: Alphabet} return LongSequence{A}(seq) end LongSequence{A}(seq::LongSequence{A}) where {A <: Alphabet} = copy(seq) function (::Type{T})(seq::LongSequence{<:NucleicAcidAlphabet{N}}) where {N, T<:LongSequence{<:NucleicAcidAlphabet{N}}} return T(copy(seq.data), seq.len) end # Constructors from strings function LongSequence{A}(s::Union{String, SubString{String}}) where {A<:Alphabet} return LongSequence{A}(s, codetype(A())) end # Generic method for String/Substring. function LongSequence{A}(s::Union{String, SubString{String}}, ::AlphabetCode) where {A<:Alphabet} len = length(s) seq = LongSequence{A}(undef, len) return copyto!(seq, 1, s, 1, len) end function LongSequence{A}(s::Union{String, SubString{String}}, ::AsciiAlphabet) where {A<:Alphabet} seq = LongSequence{A}(undef, ncodeunits(s)) return encode_chunks!(seq, 1, codeunits(s), 1, ncodeunits(s)) end function LongSequence{A}( src::Union{AbstractString,AbstractVector{UInt8}}, part::AbstractUnitRange{<:Integer}=1:length(src) ) where {A<:Alphabet} len = length(part) seq = LongSequence{A}(undef, len) return copyto!(seq, 1, src, first(part), len) end Base.parse(::Type{LongSequence{A}}, seq::AbstractString) where A = LongSequence{A}(seq)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
773
### ### Conversion & Promotion ### ### ### Conversion methods for LongSequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md ### ### Promotion ### for alph in (DNAAlphabet, RNAAlphabet) @eval function Base.promote_rule(::Type{LongSequence{A}}, ::Type{LongSequence{B}}) where {A<:$alph,B<:$alph} return LongSequence{promote_rule(A, B)} end end ### ### Conversion ### Base.convert(::Type{T}, seq::T) where {T <: LongSequence} = seq Base.convert(::Type{T}, seq::T) where {T <: LongSequence{<:NucleicAcidAlphabet}} = seq function Base.convert(::Type{T}, seq::LongSequence{<:NucleicAcidAlphabet}) where {T<:LongSequence{<:NucleicAcidAlphabet}} return T(seq) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
9902
### ### Copying ### ### ### Copying methods for biological sequences. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md """ copy!(dst::LongSequence, src::BioSequence) In-place copy content of `src` to `dst`, resizing `dst` to fit. The alphabets of `src` and `dst` must be compatible. # Examples ``` julia> seq = copy!(dna"TAG", dna"AACGTM") 6nt DNA Sequence: AACGTM julia> copy!(seq, rna"UUAG") 4nt DNA Sequence: TTAG ``` """ function Base.copy!(dst::SeqOrView{A}, src::SeqOrView{A}) where {A <: Alphabet} return _copy!(dst, src) end function Base.copy!(dst::SeqOrView{<:NucleicAcidAlphabet{N}}, src::SeqOrView{<:NucleicAcidAlphabet{N}}) where N return _copy!(dst, src) end function _copy!(dst::LongSequence, src::LongSequence) resize!(dst.data, length(src.data)) copyto!(dst.data, src.data) dst.len = src.len return dst end # This is specific to views because it might overwrite itself function _copy!(dst::SeqOrView{A}, src::SeqOrView) where {A <: Alphabet} # This intentionally throws an error for LongSubSeq if length(dst) != length(src) resize!(dst, length(src)) end if dst.data === src.data longseq = LongSequence{A}(src) src_ = LongSubSeq{A}(longseq.data, 1:length(longseq)) else src_ = src end return copyto!(dst, 1, src_, 1, length(src)) end function Base.copyto!(dst::SeqOrView{A}, doff::Integer, src::SeqOrView{A}, soff::Integer, N::Integer) where {A <: Alphabet} return _copyto!(dst, doff, src, soff, N) end function Base.copyto!(dst::SeqOrView{<:NucleicAcidAlphabet{B}}, doff::Integer, src::SeqOrView{<:NucleicAcidAlphabet{B}}, soff::Integer, N::Integer) where B return _copyto!(dst, doff, src, soff, N) end function _copyto!(dst::SeqOrView{A}, doff::Integer, src::SeqOrView, soff::Integer, N::Integer) where {A <: Alphabet} @boundscheck checkbounds(dst, doff:doff+N-1) @boundscheck checkbounds(src, soff:soff+N-1) # This prevents a sequence from destructively overwriting its own data if (dst === src) & (doff > soff) return _copyto!(dst, doff, src[soff:soff+N-1], 1, N) end id = bitindex(dst, doff) is = bitindex(src, soff) rest = N * bits_per_symbol(A()) dstdata = dst.data srcdata = src.data @inbounds while rest > 0 # move `k` bits from `src` to `dst` x = dstdata[index(id)] y = srcdata[index(is)] if offset(id) < offset(is) y >>= (offset(is) - offset(id)) & 63 k = min(64 - offset(is), rest) else y <<= (offset(id) - offset(is)) & 63 k = min(64 - offset(id), rest) end m = bitmask(k) << offset(id) dstdata[index(id)] = y & m | x & ~m id += k is += k rest -= k end return dst end ######### const SeqLike = Union{AbstractVector, AbstractString} const ASCIILike = Union{String, SubString{String}} """ copy!(dst::LongSequence, src) In-place copy content of sequence-like object `src` to `dst`, resizing `dst` to fit. The content of `src` must be able to be encoded to the alphabet of `dst`. # Examples ``` julia> seq = copy!(dna"TAG", "AACGTM") 6nt DNA Sequence: AACGTM julia> copy!(seq, [0x61, 0x43, 0x54]) 3nt DNA Sequence: ACT ``` """ function Base.copy!(dst::SeqOrView{A}, src::SeqLike) where {A <: Alphabet} return copy!(dst, src, codetype(A())) end function Base.copy!(dst::SeqOrView{<:Alphabet}, src::ASCIILike, C::AsciiAlphabet) return copy!(dst, codeunits(src), C) end function Base.copy!(dst::SeqOrView{<:Alphabet}, src::AbstractVector{UInt8}, ::AsciiAlphabet) resize!(dst, length(src)) return encode_chunks!(dst, 1, src, 1, length(src)) end function Base.copy!(dst::SeqOrView{<:Alphabet}, src::SeqLike, ::AlphabetCode) len = length(src) # calculate only once resize!(dst, len) return copyto!(dst, 1, src, 1, len) end ######## # This is used to effectively scan an array of UInt8 for invalid bytes, when one is detected @noinline function throw_encode_error(A::Alphabet, src::AbstractArray{UInt8}, soff::Integer) for i in 1:div(64, bits_per_symbol(A)) index = soff + i - 1 sym = src[index] if ascii_encode(A, sym) & 0x80 == 0x80 # If byte is a printable char, also display it repr_char = if sym in UInt8('\a'):UInt8('\r') || sym in UInt8(' '):UInt8('~') " (char '$(Char(sym))')" else "" end error("Cannot encode byte $(repr(sym))$(repr_char) at index $(index) to $A") end end @assert false "Expected error in encoding" end @inline function encode_chunk(A::Alphabet, src::AbstractArray{UInt8}, soff::Integer, N::Integer) chunk = zero(UInt64) check = 0x00 @inbounds for i in 1:N enc = ascii_encode(A, src[soff+i-1]) check |= enc chunk |= UInt64(enc) << (bits_per_symbol(A) * (i-1)) end check & 0x80 == 0x00 || throw_encode_error(A, src, soff) return chunk end # Use this for AsiiAlphabet alphabets only, internal use only, no boundschecks. # This is preferential to `copyto!` if none of the sequence's original content # needs to be kept, since this is faster. function encode_chunks!(dst::SeqOrView{A}, startindex::Integer, src::AbstractVector{UInt8}, soff::Integer, N::Integer) where {A <: Alphabet} chunks, rest = divrem(N, symbols_per_data_element(dst)) @inbounds for i in startindex:startindex+chunks-1 dst.data[i] = encode_chunk(A(), src, soff, symbols_per_data_element(dst)) soff += symbols_per_data_element(dst) end @inbounds if !iszero(rest) dst.data[startindex+chunks] = encode_chunk(A(), src, soff, rest) end return dst end ######### # Two-argument method """ copyto!(dst::LongSequence, src) Equivalent to `copyto!(dst, 1, src, 1, length(src))`. """ function Base.copyto!(dst::SeqOrView{A}, src::SeqLike) where {A <: Alphabet} return copyto!(dst, src, codetype(A())) end # Specialized method to avoid O(N) length call for string-like src function Base.copyto!(dst::SeqOrView{<:Alphabet}, src::ASCIILike, ::AsciiAlphabet) len = ncodeunits(src) @boundscheck checkbounds(dst, 1:len) encode_chunks!(dst, 1, codeunits(src), 1, len) return dst end function Base.copyto!(dst::SeqOrView{<:Alphabet}, src::SeqLike, C::AlphabetCode) return copyto!(dst, 1, src, 1, length(src), C) end """ copyto!(dst::LongSequence, soff, src, doff, N) In-place encode `N` elements from `src` starting at `soff` to `dst`, starting at `doff`. The length of `dst` must be greater than or equal to `N + doff - 1`. The first N elements of `dst` are overwritten, the other elements are left untouched. The content of `src` must be able to be encoded to the alphabet of `dst`. # Examples ``` julia> seq = copyto!(dna"AACGTM", 1, "TAG", 1, 3) 6nt DNA Sequence: TAGGTM julia> copyto!(seq, 2, rna"UUUU", 1, 4) 6nt DNA Sequence: TTTTTM ``` """ # Dispatch to codetype function Base.copyto!(dst::SeqOrView{A}, doff::Integer, src::SeqLike, soff::Integer, N::Integer) where {A <: Alphabet} return copyto!(dst, doff, src, soff, N, codetype(A())) end # For ASCII seq and src, convert to byte vector and dispatch using that function Base.copyto!(dst::SeqOrView{A}, doff::Integer, src::ASCIILike, soff::Integer, N::Integer, C::AsciiAlphabet) where {A <: Alphabet} return Base.copyto!(dst, doff, codeunits(src), soff, N, C) end @noinline function throw_enc_indexerr(N::Integer, len::Integer, soff::Integer) throw(ArgumentError("source of length $len does not contain $N elements from $soff")) end # Generic method for copyto!, i.e. NOT ASCII input function Base.copyto!(dst::SeqOrView{A}, doff::Integer, src::SeqLike, soff::Integer, len::Integer, ::AlphabetCode) where {A <: Alphabet} if soff != 1 && isa(src, AbstractString) && !isascii(src) throw(ArgumentError("source offset ≠ 1 is not supported for non-ASCII string")) end checkbounds(dst, doff:doff+len-1) length(src) < soff + len - 1 && throw_enc_indexerr(len, length(src), soff) n = 0 i = soff @inbounds while n < len n += 1 dst[doff + n - 1] = src[i] i = nextind(src, i) end return dst end # Special method possible for ASCII alphabet and UInt8 array function Base.copyto!(dst::SeqOrView{A}, doff::Integer, src::AbstractVector{UInt8}, soff::Integer, N::Integer, ::AsciiAlphabet) where {A<:Alphabet} checkbounds(dst, doff:doff+N-1) length(src) < soff + N - 1 && throw_enc_indexerr(N, length(src), soff) bitind = bitindex(dst, doff) remaining = N # Fill in first chunk. Since it may be only partially filled from both ends, # bit-tricks are harder and we do it the old-fashined way. # Maybe this can be optimized but eeehhh... @inbounds while (!iszero(offset(bitind)) & !iszero(remaining)) dst[doff] = eltype(dst)(reinterpret(Char, (src[soff] % UInt32) << 24)) doff += 1 soff += 1 remaining -= 1 bitind += bits_per_symbol(A()) end # Fill in middle n = remaining - rem(remaining, symbols_per_data_element(dst)) encode_chunks!(dst, index(bitind), src, soff, n) remaining -= n soff += n bitind += n * bits_per_symbol(A()) # Fill in last chunk @inbounds if !iszero(remaining) chunk = encode_chunk(A(), src, soff, remaining) before = dst.data[index(bitind)] & (typemax(UInt) << (remaining * bits_per_symbol(A()))) dst.data[index(bitind)] = chunk | before end return dst end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
6756
### ### LongSequence specific specializations of src/biosequence/counting.jl ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # Counting GC positions let counter = :(n += gc_bitcount(chunk, Alphabet(seq))) compile_bitpar( :count_gc_bitpar, arguments = (:(seq::SeqOrView{<:NucleicAcidAlphabet}),), init_code = :(n = 0), head_code = counter, body_code = counter, tail_code = counter, return_code = :(return n % Int) ) |> eval end Base.count(::typeof(isGC), seq::SeqOrView{<:NucleicAcidAlphabet}) = count_gc_bitpar(seq) # Counting mismatches let counter = :(count += mismatch_bitcount(x, y, A())) compile_2seq_bitpar( :count_mismatches_bitpar, arguments = (:(seqa::SeqOrView{A}), :(seqb::SeqOrView{A})), parameters = (:(A<:NucleicAcidAlphabet),), init_code = :(count = 0), head_code = counter, body_code = counter, tail_code = counter, return_code = :(return count % Int) ) |> eval end Base.count(::typeof(!=), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet} = count_mismatches_bitpar(seqa, seqb) Base.count(::typeof(!=), seqa::NucleicSeqOrView, seqb::NucleicSeqOrView) = count(!=, promote(seqa, seqb)...) # Counting matches let counter = :(count += match_bitcount(x, y, A())) count_empty = quote count += match_bitcount(x, y, A()) nempty = div(64, bits_per_symbol(A())) - div(Int(offs), bits_per_symbol(A())) count -= nempty end compile_2seq_bitpar( :count_matches_bitpar, arguments = (:(seqa::SeqOrView{A}), :(seqb::SeqOrView{A})), parameters = (:(A<:NucleicAcidAlphabet),), init_code = :(count = 0), head_code = count_empty, body_code = counter, tail_code = count_empty, return_code = :(return count % Int) ) |> eval end Base.count(::typeof(==), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet} = count_matches_bitpar(seqa, seqb) Base.count(::typeof(==), seqa::NucleicSeqOrView, seqb::NucleicSeqOrView) = count(==, promote(seqa, seqb)...) # Counting ambiguous sites # ------------------------ let counter = :(count += ambiguous_bitcount(chunk, Alphabet(seq))) compile_bitpar( :count_ambiguous_bitpar, arguments = (:(seq::SeqOrView{<:NucleicAcidAlphabet}),), init_code = :(count = 0), head_code = counter, body_code = counter, tail_code = counter, return_code = :(return count % Int) ) |> eval counter = :(count += ambiguous_bitcount(x, y, A())) compile_2seq_bitpar( :count_ambiguous_bitpar, arguments = (:(seqa::SeqOrView{A}), :(seqb::SeqOrView{A})), parameters = (:(A<:NucleicAcidAlphabet),), init_code = :(count = 0), head_code = counter, body_code = counter, tail_code = counter, return_code = :(return count % Int) ) |> eval end ## For a single sequence. # You can never have ambiguous bases in a 2-bit encoded nucleotide sequence. Base.count(::typeof(isambiguous), seq::SeqOrView{<:NucleicAcidAlphabet{2}}) = 0 Base.count(::typeof(isambiguous), seq::SeqOrView{<:NucleicAcidAlphabet{4}}) = count_ambiguous_bitpar(seq) ## For a pair of sequences. # A pair of 2-bit encoded sequences will never have ambiguous bases. Base.count(::typeof(isambiguous), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet{2}} = 0 Base.count(::typeof(isambiguous), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet{4}} = count_ambiguous_bitpar(seqa, seqb) Base.count(::typeof(isambiguous), seqa::SeqOrView{<:NucleicAcidAlphabet{4}}, seqb::SeqOrView{<:NucleicAcidAlphabet{2}}) = count(isambiguous_or, promote(seqa, seqb)...) Base.count(::typeof(isambiguous), seqa::SeqOrView{<:NucleicAcidAlphabet{2}}, seqb::SeqOrView{<:NucleicAcidAlphabet{4}}) = count(isambiguous_or, promote(seqa, seqb)...) # Counting certain sites let counter = :(count += certain_bitcount(x, y, A())) compile_2seq_bitpar( :count_certain_bitpar, arguments = (:(seqa::SeqOrView{A}), :(seqb::SeqOrView{A})), parameters = (:(A<:NucleicAcidAlphabet),), init_code = :(count = 0), head_code = counter, body_code = counter, tail_code = counter, return_code = :(return count % Int) ) |> eval end Base.count(::typeof(iscertain), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet{4}} = count_certain_bitpar(seqa, seqb) Base.count(::typeof(iscertain), seqa::SeqOrView{<:NucleicAcidAlphabet{4}}, seqb::SeqOrView{<:NucleicAcidAlphabet{2}}) = count(iscertain_and, promote(seqa, seqb)...) Base.count(::typeof(iscertain), seqa::SeqOrView{<:NucleicAcidAlphabet{2}}, seqb::SeqOrView{<:NucleicAcidAlphabet{4}}) = count(iscertain_and, promote(seqa, seqb)...) # Counting gap sites let count_empty = quote Alph = Alphabet(seq) count += gap_bitcount(chunk, Alph) count -= div(n_bits_masked, bits_per_symbol(Alph)) end counter = :(count += gap_bitcount(chunk, Alphabet(seq))) compile_bitpar( :count_gap_bitpar, arguments = (:(seq::SeqOrView{<:NucleicAcidAlphabet{4}}),), init_code = :(count = 0), head_code = count_empty, body_code = counter, tail_code = count_empty, return_code = :(return count % Int) ) |> eval count_empty = quote Alph = Alphabet(seqa) count += gap_bitcount(x, y, Alph) nempty = div(64, bits_per_symbol(Alph)) - div(offs, bits_per_symbol(Alph)) count -= nempty end counter = :(count += gap_bitcount(x, y, A())) compile_2seq_bitpar( :count_gap_bitpar, arguments = (:(seqa::SeqOrView{A}), :(seqb::SeqOrView{A})), parameters = (:(A<:NucleicAcidAlphabet),), init_code = :(count = 0), head_code = count_empty, body_code = counter, tail_code = count_empty, return_code = :(return count % Int) ) |> eval end Base.count(::typeof(isgap), seqa::SeqOrView{A}, seqb::SeqOrView{A}) where {A<:NucleicAcidAlphabet{4}} = count_gap_bitpar(seqa, seqb) Base.count(::typeof(isgap), seqa::SeqOrView{A}) where {A<:NucleicAcidAlphabet{4}} = count_gap_bitpar(seqa) Base.count(::typeof(isgap), seqa::SeqOrView{<:NucleicAcidAlphabet{4}}, seqb::SeqOrView{<:NucleicAcidAlphabet{2}}) = count(isgap_or, promote(seqa, seqb)...) Base.count(::typeof(isgap), seqa::SeqOrView{<:NucleicAcidAlphabet{2}}, seqb::SeqOrView{<:NucleicAcidAlphabet{4}}) = count(isgap_or, promote(seqa, seqb)...)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
4577
### ### Hash ### ### ### MurmurHash3 function of BioSequence. ### ### The hash function defined here cares about the starting position of a ### character sequence in the underlying data. That means, even if the starting ### positions of two sequences (`s1` and `s2`) are different in their `data` ### field, their hash values are identical if `s1 == s1` is true. The ### implementation is based on the 128bit MurmurHash3 function, which was written ### by Austin Appleby, and the source code is distributed under the public domain: ### https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # NB NOTE: This entire file is commented out until issue #243 is resolved #= const c1 = 0x87c37b91114253d5 const c2 = 0x4cf5ad432745937f @inline function fmix64(k::UInt64) k = k ⊻ k >> 33 k *= 0xff51afd7ed558ccd k = k ⊻ k >> 33 k *= 0xc4ceb9fe1a85ec53 k = k ⊻ k >> 33 return k end @inline function murmur1(h1, k1) k1 *= c1 k1 = bitrotate(k1, 31) k1 *= c2 h1 = h1 ⊻ k1 return (h1, k1) end @inline function murmur2(h2, k2) k2 *= c2 k2 = bitrotate(k2, 33) k2 *= c1 h2 = h2 ⊻ k2 return (h2, k2) end @inline function murmur(h1, h2, k1, k2) h1, k1 = murmur1(h1, k1) h1 = bitrotate(h1, 27) h1 += h2 h1 = h1 * 5 + 0x52dce729 h2, k2 = murmur2(h2, k2) h2 = bitrotate(h2, 31) h2 += h1 h2 = h2 * 5 + 0x38495ab5 return (h1, h2, k1, k2) end function finalize(h1, h2, len) h1 = h1 ⊻ len h2 = h2 ⊻ len h1 += h2 h2 += h1 h1 = fmix64(h1) h2 = fmix64(h2) h1 += h2 h2 += h1 # Ref. implementation returns (h1, h2) for 128 bits, but we truncate to 64. # last needless modification of h2 is optimised away by the compiler return h1 end function tail(::Type{<:LongSequence}, data, next, stop, h1, h2) k1 = k2 = zero(UInt64) # Use this to mask any noncoding bits in last chunk mask = bitmask(offset(stop - bits_per_symbol(stop)) + bits_per_symbol(stop)) @inbounds if next < stop k1 = data[index(next)] next += 64 end @inbounds if next < stop k2 = data[index(next)] & mask else k1 &= mask end h1, k1 = murmur1(h1, k1) h2, k2 = murmur2(h2, k2) return (h1, h2) end @inline function body(::Type{<:LongSequence}, next, stop, data, h1, h2) @inbounds while stop - next ≥ 128 j = index(next) k1 = data[j] k2 = data[j+1] h1, h2, k1, k2 = murmur(h1, h2, k1, k2) next += 128 end return (h1, h2, next) end # This version of the body loop code must take a nonzero offset into account function body(::Type{<:LongSubSeq}, next, stop, data, h1, h2) off = offset(next) next < stop || return (h1, h2, next) # No offset, we can use the LongSequence one (more efficient) iszero(off) && return body(LongSequence, next, stop, data, h1, h2) @inbounds while stop - next ≥ 128 k1 = data[index(next)] k2 = data[index(next) + 1] k3 = data[index(next) + 2] k1 = (k1 >>> off) | (k2 << ((64 - off) & 63)) k2 = (k2 >>> off) | (k3 << ((64 - off) & 63)) h1, h2, k1, k2 = murmur(h1, h2, k1, k2) next += 128 end return h1, h2, next end function tail(::Type{<:LongSubSeq}, data, next, stop, h1, h2) next < stop || return (h1, h2) # Load in first up to 3 data elements where the last 128 bits may be stored firstindex = next k1 = data[index(next)] k2 = k3 = zero(UInt64) off = offset(next) next += 64 - off if next < stop k2 = @inbounds data[index(next)] next += 64 end if next < stop k3 = @inbounds data[index(next)] end # Bitshift them to offset zero, only use k1 and k2 if !iszero(off) k1 = (k1 >>> off) | (k2 << ((64 - off) & 63)) k2 = (k2 >>> off) | (k3 << ((64 - off) & 63)) end # Mask any noncoding bits mask = bitmask((stop-firstindex) & 63) if stop - firstindex > 64 k2 &= mask else k1 &= mask end h1, k1 = murmur1(h1, k1) h2, k2 = murmur2(h2, k2) return (h1, h2) end function Base.hash(seq::SeqOrView, seed::UInt64) h1, h2 = UInt64(0), seed next = bitindex(seq, 1) stop = bitindex(seq, (lastindex(seq) + 1) % UInt) data = seq.data h1, h2, next = body(typeof(seq), next, stop, data, h1, h2) h1, h2 = tail(typeof(seq), data, next, stop, h1, h2) h1 = finalize(h1, h2, length(seq)) return h1 end =#
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2010
### ### LongSequence specific specializations of src/biosequence/indexing.jl ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # Basic get/setindex methods @inline function bitindex(x::LongSequence, i::Integer) N = BitsPerSymbol(Alphabet(typeof(x))) bitindex(N, encoded_data_eltype(typeof(x)), i) end firstbitindex(s::SeqOrView) = bitindex(s, firstindex(s)) lastbitindex(s::SeqOrView) = bitindex(s, lastindex(s)) @inline function extract_encoded_element(x::SeqOrView, i::Integer) bi = bitindex(x, i % UInt) extract_encoded_element(bi, x.data) end @inline function encoded_setindex!(s::SeqOrView, v::UInt64, i::BitIndex) vi, off = i data = s.data bits = @inbounds data[vi] @inbounds data[vi] = (UInt(v) << off) | (bits & ~(bitmask(i) << off)) return s end # More efficient due to copyto! function Base.getindex(seq::LongSequence, part::AbstractUnitRange{<:Integer}) @boundscheck checkbounds(seq, part) newseq = typeof(seq)(undef, length(part)) return copyto!(newseq, 1, seq, first(part), length(part)) end # More efficient due to copyto! function Base.setindex!( seq::SeqOrView{A}, other::SeqOrView{A}, locs::AbstractUnitRange{<:Integer} ) where {A <: Alphabet} @boundscheck checkbounds(seq, locs) @boundscheck if length(other) != length(locs) throw(DimensionMismatch("Attempt to assign $(length(locs)) values to $(length(seq)) destinations")) end return copyto!(seq, locs.start, other, 1, length(locs)) end @inline function encoded_setindex!( seq::SeqOrView{A}, bin::Unsigned, i::Integer ) where {A <: Alphabet} return encoded_setindex!(seq, bin, bitindex(seq, i)) end @inline function encoded_setindex!(s::SeqOrView, v::Unsigned, i::BitIndex) vi, off = i data = s.data bits = @inbounds data[vi] v_ = v % encoded_data_eltype(typeof(s)) @inbounds data[vi] = (v_ << off) | (bits & ~(bitmask(i) << off)) return s end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
4849
### ### LongSequence ### ### ### A general purpose biological sequence representation. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # About Internals # --------------- # # The `data` field of a `LongSequence{A}` object contains binary representation # of a biological character sequence. Each character is encoded with an encoder # corresponding to the alphabet `A` and compactly packed into `data`. To extract # a character from a sequence, you should decode this binary sequence with a # decoder that is a pair of the encoder. The length of encoded binary bits is # fixed, and hence a character at arbitrary position can be extracted in a # constant time. To know the exact location of a character at a position, you # can use the `bitindex(seq, i)` function, which returns a pair of element's index # containing binary bits and bits' offset. As a whole, character extraction # `seq[i]` can be written as: # # j = bitindex(seq, i) # decode(A, (seq.data[index(j)] >> offset(j)) & mask(A)) # # index : index(j) - 1 index(j) index(j) + 1 # data : |xxxxxxxxxxxxxxxx|xxXxxxxxxxxxxxxx|............xxxx|.... # offset : |<-offset(j)-| # width : |<---- 64 ---->| |<---- 64 ---->| |<---- 64 ---->| # # * '.' : unused (4 bits/char) # * 'x' : used # * 'X' : used and pointed by index `i` """ LongSequence{A <: Alphabet} General-purpose `BioSequence`. This type is mutable and variable-length, and should be preferred for most use cases. # Extended help `LongSequence{A<:Alphabet} <: BioSequence{A}` is parameterized by a concrete `Alphabet` type `A` that defines the domain (or set) of biological symbols permitted. As the [`BioSequence`](@ref) interface definition implies, `LongSequence`s store the biological symbol elements that they contain in a succinct encoded form that permits many operations to be done in an efficient bit-parallel manner. As per the interface of [`BioSequence`](@ref), the [`Alphabet`](@ref) determines how an element is encoded or decoded when it is inserted or extracted from the sequence. For example, [`AminoAcidAlphabet`](@ref) is associated with `AminoAcid` and hence an object of the `LongSequence{AminoAcidAlphabet}` type represents a sequence of amino acids. Symbols from multiple alphabets can't be intermixed in one sequence type. The following table summarizes common LongSequence types that have been given aliases for convenience. | Type | Symbol type | Type alias | | :---------------------------------- | :---------- | :----------- | | `LongSequence{DNAAlphabet{N}}` | `DNA` | `LongDNA{N}` | | `LongSequence{RNAAlphabet{N}}` | `RNA` | `LongRNA{N}` | | `LongSequence{AminoAcidAlphabet}` | `AminoAcid` | `LongAA` | The `LongDNA` and `LongRNA` aliases use a DNAAlphabet{4}. `DNAAlphabet{4}` permits ambiguous nucleotides, and a sequence must use at least 4 bits to internally store each element (and indeed `LongSequence` does). If you are sure that you are working with sequences with no ambiguous nucleotides, you can use `LongSequences` parameterised with `DNAAlphabet{2}` instead. `DNAAlphabet{2}` is an alphabet that uses two bits per base and limits to only unambiguous nucleotide symbols (A,C,G,T). Changing this single parameter, is all you need to do in order to benefit from memory savings. Some computations that use bitwise operations will also be dramatically faster. The same applies with `LongSequence{RNAAlphabet{4}}`, simply replace the alphabet parameter with `RNAAlphabet{2}` in order to benefit. """ mutable struct LongSequence{A <: Alphabet} <: BioSequence{A} data::Vector{UInt64} # encoded character sequence data len::UInt function LongSequence{A}(data::Vector{UInt64}, len::UInt) where {A <: Alphabet} new{A}(data, len) end end "An alias for LongSequence{<:NucleicAcidAlpabet{N}}" const LongNuc{N} = LongSequence{<:NucleicAcidAlphabet{N}} "An alias for LongSequence{DNAAlphabet{N}}" const LongDNA{N} = LongSequence{DNAAlphabet{N}} "An alias for LongSequence{RNAAlphabet{N}}" const LongRNA{N} = LongSequence{RNAAlphabet{N}} "An alias for LongSequence{AminoAcidAlphabet}" const LongAA = LongSequence{AminoAcidAlphabet} # Basic attributes Base.length(seq::LongSequence) = seq.len % Int encoded_data_eltype(::Type{<:LongSequence}) = UInt64 Base.copy(x::LongSequence) = typeof(x)(copy(x.data), x.len) # Derived basic attributes symbols_per_data_element(x::LongSequence) = div(64, bits_per_symbol(Alphabet(x))) include("seqview.jl") include("indexing.jl") include("constructors.jl") include("conversion.jl") include("copying.jl") include("stringliterals.jl") include("transformations.jl") include("operators.jl") include("counting.jl")
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7313
# Sequences to Matrix # ------------------- """ seqmatrix(vseq::AbstractVector{BioSequence{A}}, major::Symbol) where {A<:Alphabet} Construct a matrix of nucleotides or amino acids from a vector of `BioSequence`s. If parameter `major` is set to `:site`, the matrix is created such that one nucleotide from each sequence is placed in each column i.e. the matrix is laid out in site-major order. This means that iteration over one position of many sequences is efficient, as julia arrays are laid out in column major order. If the parameter `major` is set to `:seq`, the matrix is created such that each sequence is placed in one column i.e. the matrix is laid out in sequence-major order. This means that iteration across each sequence in turn is efficient, as julia arrays are laid out in column major order. # Examples ```julia julia> seqs = [dna"AAA", dna"TTT", dna"CCC", dna"GGG"] 4-element Array{BioSequences.BioSequence{BioSequences.DNAAlphabet{4}},1}: 3nt DNA Sequence: AAA 3nt DNA Sequence: TTT 3nt DNA Sequence: CCC 3nt DNA Sequence: GGG julia> seqmatrix(seqs, :site) 4x3 Array{BioSequences.DNA,2}: DNA_A DNA_A DNA_A DNA_T DNA_T DNA_T DNA_C DNA_C DNA_C DNA_G DNA_G DNA_G julia> seqmatrix(seqs, :seq) 3x4 Array{BioSequences.DNA,2}: DNA_A DNA_T DNA_C DNA_G DNA_A DNA_T DNA_C DNA_G DNA_A DNA_T DNA_C DNA_G ``` """ function seqmatrix(vseq::AbstractVector{LongSequence{A}}, major::Symbol) where {A<:Alphabet} nseqs = length(vseq) @assert nseqs > 0 throw(ArgumentError("Vector of BioSequence{$A} is empty.")) nsites = length(vseq[1]) @inbounds for i in 2:nseqs length(vseq[i]) == nsites || throw(ArgumentError("Sequences in vseq must be of same length")) end if major == :site mat = Matrix{eltype(A)}(undef, (nseqs, nsites)) @inbounds for seq in 1:nseqs, site in 1:nsites mat[seq, site] = vseq[seq][site] end return mat elseif major == :seq mat = Matrix{eltype(A)}(undef, (nsites, nseqs)) @inbounds for seq in 1:nseqs, site in 1:nsites mat[site, seq] = vseq[seq][site] end return mat else throw(ArgumentError("major must be :site or :seq")) end end """ seqmatrix(::Type{T}, vseq::AbstractVector{BioSequence{A}}, major::Symbol) where {T,A<:Alphabet} Construct a matrix of `T` from a vector of `BioSequence`s. If parameter `major` is set to `:site`, the matrix is created such that one nucleotide from each sequence is placed in each column i.e. the matrix is laid out in site-major order. This means that iteration over one position of many sequences is efficient, as julia arrays are laid out in column major order. If the parameter `major` is set to `:seq`, the matrix is created such that each sequence is placed in one column i.e. the matrix is laid out in sequence-major order. This means that iteration across each sequence in turn is efficient, as julia arrays are laid out in column major order. # Examples ```julia julia> seqs = [dna"AAA", dna"TTT", dna"CCC", dna"GGG"] 4-element Array{BioSequences.BioSequence{BioSequences.DNAAlphabet{4}},1}: 3nt DNA Sequence: AAA 3nt DNA Sequence: TTT 3nt DNA Sequence: CCC 3nt DNA Sequence: GGG julia> seqmatrix(seqs, :site, UInt8) 4×3 Array{UInt8,2}: 0x01 0x01 0x01 0x08 0x08 0x08 0x02 0x02 0x02 0x04 0x04 0x04 julia> seqmatrix(seqs, :seq, UInt8) 3×4 Array{UInt8,2}: 0x01 0x08 0x02 0x04 0x01 0x08 0x02 0x04 0x01 0x08 0x02 0x04 ``` """ function seqmatrix(::Type{T}, vseq::AbstractVector{LongSequence{A}}, major::Symbol) where {T,A<:Alphabet} nseqs = length(vseq) @assert nseqs > 0 throw(ArgumentError("Vector of BioSequence{$A} is empty.")) nsites = length(vseq[1]) @inbounds for i in 2:nseqs length(vseq[i]) == nsites || throw(ArgumentError("Sequences in vseq must be of same length.")) end if major == :site mat = Matrix{T}(undef, (nseqs, nsites)) @inbounds for seq in 1:nseqs, site in 1:nsites mat[seq, site] = convert(T, reinterpret(UInt8, vseq[seq][site])) end return mat elseif major == :seq mat = Matrix{T}(undef, (nsites, nseqs)) @inbounds for seq in 1:nseqs, site in 1:nsites mat[site, seq] = convert(T, reinterpret(UInt8, vseq[seq][site])) end return mat else throw(ArgumentError("major must be :site or :seq")) end end # Consensus # --------- """ majorityvote(seqs::AbstractVector{LongSequence{A}}) where {A<:NucleicAcidAlphabet} Construct a sequence that is a consensus of a vector of sequences. The consensus is established by a simple majority vote rule, where ambiguous nucleotides cast an equal vote for each of their possible states. For each site a winner(s) out of A, T(U), C, or G is determined, in the cases of ties the ambiguity symbol that unifies all the winners is returned. E.g if A and T tie, then W is inserted in the consensus. If all A, T, C, and G tie at a site, then N is inserted in the consensus. Note this means that if a nucletide e.g. 'C' and a gap '-' draw, the nucleotide will always win over the gap, even though they tied. # Examples ```julia julia> seqs = [dna"CTCGATCGATCC", dna"CTCGAAAAATCA", dna"ATCGAAAAATCG", dna"ATCGGGGGATCG"] 4-element Array{BioSequences.BioSequence{BioSequences.DNAAlphabet{4}},1}: CTCGATCGATCC CTCGAAAAATCA ATCGAAAAATCG ATCGGGGGATCG julia> majorityvote(seqs) 12nt DNA Sequence: MTCGAAARATCG ``` """ function majorityvote(seqs::AbstractVector{LongSequence{A}}) where {A<:NucleicAcidAlphabet} mat = seqmatrix(UInt8, seqs, :site) nsites = size(mat, 2) nseqs = size(mat, 1) result = BioSequence{A}(nsites) votes = Array{Int}(undef, 16) @inbounds for site in 1:nsites fill!(votes, 0) for seq in 1:nseqs nuc = mat[seq, site] votes[1] += nuc == 0x00 votes[2] += (nuc & 0x01) != 0x00 votes[3] += (nuc & 0x02) != 0x00 votes[5] += (nuc & 0x04) != 0x00 votes[9] += (nuc & 0x08) != 0x00 end m = maximum(votes) merged = 0x00 for i in 0x01:0x10 merged |= ifelse(votes[i] == m, i - 0x01, 0x00) end result[site] = reinterpret(eltype(A), merged) end return result end ### Comparisons function Base.:(==)(seq1::SeqOrView{A}, seq2::SeqOrView{A}) where {A <: Alphabet} length(seq1) == length(seq2) || false # If they share the same data if seq1.data === seq2.data && firstbitindex(seq1) == firstbitindex(seq2) return true end # Fallback for (i, j) in zip(seq1, seq2) i == j || return false end return true end function Base.:(==)(seq1::LongSequence{A}, seq2::LongSequence{A}) where {A <: Alphabet} length(seq1) == length(seq2) || return false isempty(seq1) && return true # Check all filled UInts nextind = nextposition(lastbitindex(seq1)) @inbounds for i in 1:index(nextind) - 1 seq1.data[i] == seq2.data[i] || return false end # Check last coding UInt, if any @inbounds if !iszero(offset(nextind)) mask = bitmask(offset(nextind)) i = index(nextind) (seq1.data[i] & mask) == (seq2.data[i] & mask) || return false end return true end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7437
### ### Random Sequence Generator ### ### ### Random LongSequence generator. ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md import Random: Sampler, rand!, default_rng """ SamplerUniform{T} Uniform sampler of type T. Instantiate with a collection of eltype T containing the elements to sample. # Examples ``` julia> sp = SamplerUniform(rna"ACGU"); ``` """ struct SamplerUniform{T} <: Sampler{T} elems::Vector{T} function SamplerUniform{T}(elems) where {T} elemsvector = convert(Vector{T}, vec(collect(elems))) if length(elemsvector) < 1 throw(ArgumentError("elements collection must be non-empty")) end return new(elemsvector) end end SamplerUniform(elems) = SamplerUniform{eltype(elems)}(elems) Base.eltype(::Type{SamplerUniform{T}}) where {T} = T Base.rand(rng::AbstractRNG, sp::SamplerUniform) = rand(rng, sp.elems) Base.rand(sp::SamplerUniform) = rand(default_rng(), sp.elems) const DefaultAASampler = SamplerUniform(aa"ACDEFGHIKLMNPQRSTVWY") """ SamplerWeighted{T} Weighted sampler of type T. Instantiate with a collection of eltype T containing the elements to sample, and an orderen collection of probabilities to sample each element except the last. The last probability is the remaining probability up to 1. # Examples ``` julia> sp = SamplerWeighted(rna"ACGUN", fill(0.2475, 4)); ``` """ struct SamplerWeighted{T} <: Sampler{T} elems::Vector{T} probs::Vector{Float64} function SamplerWeighted{T}(elems, probs) where {T} elemsvector = convert(Vector{T}, vec(collect(elems))) probsvector = convert(Vector{Float64}, vec(collect(probs))) if !isempty(probsvector) probsum = sum(probsvector) if probsum > 1.0 throw(ArgumentError("sum of probabilties cannot exceed 1.0")) elseif minimum(probsvector) < 0.0 throw(ArgumentError("probabilities must be non-negative")) end else probsum = 0.0 end if length(elemsvector) != length(probsvector) + 1 throw(ArgumentError("length of elems must be length of probs + 1")) end # Even with float weirdness, we can guarantee x + (1.0 - x) == 1.0, # when 0 ≤ x ≤ 1, as there's no exponent, and it works like int addition return new(elemsvector, push!(probsvector, 1.0 - probsum)) end end SamplerWeighted(elems, probs) = SamplerWeighted{eltype(elems)}(elems, probs) Base.eltype(::Type{SamplerWeighted{T}}) where {T} = T function Base.rand(rng::AbstractRNG, sp::SamplerWeighted) r = rand(rng) j = 1 probs = sp.probs @inbounds cumulative_prob = probs[j] while cumulative_prob < r j += 1 @inbounds cumulative_prob += probs[j] end return @inbounds sp.elems[j] end Base.rand(sp::SamplerWeighted) = rand(default_rng(), sp) ###################### Generic longsequence methods ############################ # If no RNG is passed, use the global one Random.rand!(seq::LongSequence) = rand!(default_rng(), seq) Random.rand!(seq::LongSequence, sp::Sampler) = rand!(default_rng(), seq, sp) randseq(A::Alphabet, len::Integer) = randseq(default_rng(), A, len) randseq(A::Alphabet, sp::Sampler, len::Integer) = randseq(default_rng(), A, sp, len) randdnaseq(len::Integer) = randdnaseq(default_rng(), len) randrnaseq(len::Integer) = randrnaseq(default_rng(), len) randaaseq(len::Integer) = randaaseq(default_rng(), len) """ randseq([rng::AbstractRNG], A::Alphabet, len::Integer) Generate a LongSequence{A} of length `len` from the specified alphabet, drawn from the default distribution. User-defined alphabets should implement this method to implement random LongSequence generation. For RNA and DNA alphabets, the default distribution is uniform across A, C, G, and T/U. For AminoAcidAlphabet, it is uniform across the 20 standard amino acids. For a user-defined alphabet A, default is uniform across all elements of `symbols(A)`. # Example: ``` julia> seq = randseq(AminoAcidAlphabet(), 50) 50aa Amino Acid Sequence: VFMHSIRMIRLMVHRSWKMHSARHVNFIRCQDKKWKSADGIYTDICKYSM ``` """ function randseq(rng::AbstractRNG, A::Alphabet, len::Integer) rand!(rng, LongSequence{typeof(A)}(undef, len)) end """ randseq([rng::AbstractRNG], A::Alphabet, sp::Sampler, len::Integer) Generate a LongSequence{A} of length `len` with elements drawn from the given sampler. # Example: ``` # Generate 1000-length RNA with 4% chance of N, 24% for A, C, G, or U julia> sp = SamplerWeighted(rna"ACGUN", fill(0.24, 4)) julia> seq = randseq(RNAAlphabet{4}(), sp, 50) 50nt RNA Sequence: CUNGGGCCCGGGNAAACGUGGUACACCCUGUUAAUAUCAACNNGCGCUNU ``` """ function randseq(rng::AbstractRNG, A::Alphabet, sp::Sampler, len::Integer) rand!(rng, LongSequence{typeof(A)}(undef, len), sp) end # The generic method dispatches to `iscomplete`, since then we don't need # to instantiate a sampler, and can use random bitpatterns Random.rand!(rng::AbstractRNG, seq::LongSequence{A}) where A = rand!(rng, iscomplete(A()), seq) ####################### Implementations ####################################### # If given a sampler explicitly, just draw from that function Random.rand!(rng::AbstractRNG, seq::LongSequence, sp::Sampler) @inbounds for i in eachindex(seq) letter = rand(rng, sp) seq[i] = letter end return seq end # 4-bit nucleotides's default distribution are equal among # the non-ambiguous ones function Random.rand!(rng::AbstractRNG, seq::LongSequence{<:NucleicAcidAlphabet{4}}) data = seq.data rand!(rng, data) @inbounds for i in eachindex(data) nuc = 0x1111111111111111 mask = data[i] nuc = ((nuc & mask) << 1) | (nuc & ~mask) mask >>>= 1 nuc = ((nuc & mask) << 2) | (nuc & ~mask) data[i] = nuc end return seq end # Special AA implementation: Do not create the AA sampler, use the one # that's already included. Random.rand!(rng::AbstractRNG, seq::LongAA) = rand!(rng, seq, DefaultAASampler) # All bitpatterns are valid - we use built-in RNG on the data vector. function Random.rand!(rng::AbstractRNG, ::Val{true}, seq::LongSequence) rand!(rng, seq.data) seq end # Not all bitpatterns are valid - default to using a SamplerUniform function Random.rand!(rng::AbstractRNG, ::Val{false}, seq::LongSequence) A = Alphabet(seq) letters = symbols(A) sampler = SamplerUniform{eltype(A)}(letters) rand!(rng, seq, sampler) end ############################ Aliases for convenience ######################## """ randdnaseq([rng::AbstractRNG], len::Integer) Generate a random LongSequence{DNAAlphabet{4}} sequence of length `len`, with bases sampled uniformly from [A, C, G, T] """ randdnaseq(rng::AbstractRNG, len::Integer) = randseq(rng, DNAAlphabet{4}(), len) """ randrnaseq([rng::AbstractRNG], len::Integer) Generate a random LongSequence{RNAAlphabet{4}} sequence of length `len`, with bases sampled uniformly from [A, C, G, U] """ randrnaseq(rng::AbstractRNG, len::Integer) = randseq(rng, RNAAlphabet{4}(), len) """ randaaseq([rng::AbstractRNG], len::Integer) Generate a random LongSequence{AminoAcidAlphabet} sequence of length `len`, with amino acids sampled uniformly from the 20 standard amino acids. """ randaaseq(rng::AbstractRNG, len::Integer) = randseq(rng, AminoAcidAlphabet(), len)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3527
################################### Construction etc # Mention in docs no boundscheck is performed on instantiation """ LongSubSeq{A <: Alphabet} A view into a `LongSequence`. This shares data buffer with the underlying sequence, and is therefore much faster to instantiate than a `LongSequence`. Modifying the view changes the sequence and vice versa. # Examples ```jldoctest julia> LongSubSeq(dna"TAGA", 2:3) 2nt DNA Sequence: AG julia> view(dna"TAGA", 2:3) 2nt DNA Sequence: AG ``` """ struct LongSubSeq{A<:Alphabet} <: BioSequence{A} data::Vector{UInt64} part::UnitRange{Int} # Added to reduce method ambiguities LongSubSeq{A}(data::Vector{UInt64}, part::UnitRange{Int}) where A = new{A}(data, part) end # These unions are significant because LongSubSeq and LongSequence have the same # encoding underneath, so many methods can be shared. const SeqOrView{A} = Union{LongSequence{A}, LongSubSeq{A}} const NucleicSeqOrView = SeqOrView{<:NucleicAcidAlphabet} Base.length(v::LongSubSeq) = last(v.part) - first(v.part) + 1 Base.copy(v::LongSubSeq{A}) where A = LongSequence{A}(v) encoded_data_eltype(::Type{<:LongSubSeq}) = encoded_data_eltype(LongSequence) symbols_per_data_element(x::LongSubSeq) = div(64, bits_per_symbol(Alphabet(x))) @inline function bitindex(x::LongSubSeq, i::Integer) N = BitsPerSymbol(Alphabet(typeof(x))) bitindex(N, encoded_data_eltype(typeof(x)), i % UInt + first(x.part) - 1) end # Constructors function LongSubSeq{A}(seq::LongSequence{A}) where A return LongSubSeq{A}(seq.data, 1:length(seq)) end function LongSubSeq{A}(seq::LongSubSeq{A}) where A return LongSubSeq{A}(seq.data, seq.part) end function LongSubSeq{A}(seq::LongSequence{A}, part::AbstractUnitRange{<:Integer}) where A @boundscheck checkbounds(seq, part) return LongSubSeq{A}(seq.data, UnitRange{Int}(part)) end function LongSubSeq{A}(seq::LongSubSeq{A}, part::AbstractUnitRange{<:Integer}) where A @boundscheck checkbounds(seq, part) newpart = first(part) + first(seq.part) - 1 : last(part) + first(seq.part) - 1 return LongSubSeq{A}(seq.data, newpart) end function LongSubSeq(seq::SeqOrView{A}, i) where A return LongSubSeq{A}(seq, i) end LongSubSeq(seq::SeqOrView, ::Colon) = LongSubSeq(seq, 1:lastindex(seq)) LongSubSeq(seq::BioSequence{A}) where A = LongSubSeq{A}(seq) Base.view(seq::SeqOrView, part::AbstractUnitRange) = LongSubSeq(seq, part) # Conversion function LongSequence(s::LongSubSeq{A}) where A _copy_seqview(LongSequence{A}, s) end function LongSequence{A}(seq::LongSubSeq{A}) where {A<:NucleicAcidAlphabet} _copy_seqview(LongSequence{A}, seq) end function _copy_seqview(T, s::LongSubSeq) first = firstbitindex(s) v = s.data[index(first):index(lastbitindex(s))] res = T(v, length(s) % UInt) return zero_offset!(res, offset(first) % UInt) end function (::Type{T})(seq::LongSequence{<:NucleicAcidAlphabet{N}}) where {N, T<:LongSubSeq{<:NucleicAcidAlphabet{N}}} T(seq.data, 1:length(seq)) end function (::Type{T})(seq::LongSequence{<:NucleicAcidAlphabet{N}}, part::AbstractUnitRange{<:Integer}) where {N, T<:LongSubSeq{<:NucleicAcidAlphabet{N}}} @boundscheck checkbounds(seq, part) T(seq.data, UnitRange{Int}(part)) end function Base.convert(::Type{T1}, seq::T2) where {T1 <: Union{LongSequence, LongSubSeq}, T2 <: Union{LongSequence, LongSubSeq}} return T1(seq) end # Indexing function Base.getindex(seq::LongSubSeq, part::AbstractUnitRange{<:Integer}) return LongSubSeq(seq, part) end Base.parentindices(seq::LongSubSeq) = (seq.part,)
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
1196
### ### String Decorators ### ### ### String literals for LongSequences ### ### This file is a part of BioJulia. ### License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md remove_newlines(s) = replace(s, r"\r|\n" => "") macro dna_str(seq, flag) if flag == "s" return LongDNA{4}(remove_newlines(seq)) elseif flag == "d" return quote LongDNA{4}($(remove_newlines(seq))) end end error("Invalid DNA flag: '$(flag)'") end macro dna_str(seq) return LongDNA{4}(remove_newlines(seq)) end macro rna_str(seq, flag) if flag == "s" return LongRNA{4}(remove_newlines(seq)) elseif flag == "d" return quote LongRNA{4}($(remove_newlines(seq))) end end error("Invalid RNA flag: '$(flag)'") end macro rna_str(seq) return LongRNA{4}(remove_newlines(seq)) end macro aa_str(seq, flag) if flag == "s" return LongAA(remove_newlines(seq)) elseif flag == "d" return quote LongAA($(remove_newlines(seq))) end end error("Invalid Amino Acid flag: '$(flag)'") end macro aa_str(seq) return LongAA(remove_newlines(seq)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5479
### ### LongSequence specific specializations of src/biosequence/transformations.jl ### """ resize!(seq, size, [force::Bool]) Resize a biological sequence `seq`, to a given `size`. Does not resize the underlying data array unless the new size does not fit. If `force`, always resize underlying data array. """ function Base.resize!(seq::LongSequence{A}, size::Integer, force::Bool=false) where {A} if size < 0 throw(ArgumentError("size must be non-negative")) else if force | (seq_data_len(A, size) > seq_data_len(A, length(seq))) resize!(seq.data, seq_data_len(A, size)) end seq.len = size return seq end end """ reverse!(seq::LongSequence) Reverse a biological sequence `seq` in place. """ Base.reverse!(seq::LongSequence{<:Alphabet}) = _reverse!(seq, BitsPerSymbol(seq)) """ reverse(seq::LongSequence) Create reversed copy of a biological sequence. """ Base.reverse(seq::LongSequence{<:Alphabet}) = _reverse(seq, BitsPerSymbol(seq)) # Fast path for non-inplace reversion @inline function _reverse(seq::LongSequence{A}, B::BT) where {A <: Alphabet, BT <: Union{BitsPerSymbol{2}, BitsPerSymbol{4}, BitsPerSymbol{8}}} cp = LongSequence{A}(undef, unsigned(length(seq))) reverse_data_copy!(identity, cp.data, seq.data, seq_data_len(seq) % UInt, B) return zero_offset!(cp) end _reverse(seq::LongSequence{<:Alphabet}, ::BitsPerSymbol) = reverse!(copy(seq)) # Generic fallback function _reverse!(seq::LongSequence{<:Alphabet}, ::BitsPerSymbol) i, j = 1, lastindex(seq) @inbounds while i < j seq[i], seq[j] = seq[j], seq[i] i += 1 j -= 1 end return seq end @inline function _reverse!(seq::LongSequence{<:Alphabet}, B::BT) where { BT <: Union{BitsPerSymbol{2}, BitsPerSymbol{4}, BitsPerSymbol{8}}} # We need to account for the fact that the seq may not use all its stored data reverse_data!(identity, seq.data, seq_data_len(seq) % UInt, B) return zero_offset!(seq) end # Reversion of chunk bits may have left-shifted data in chunks, this function right shifts # all chunks by up to 63 bits. # This is written so it SIMD parallelizes - careful with changes @inline function zero_offset!(seq::LongSequence{A}) where A <: Alphabet isempty(seq) && return seq offs = (64 - offset(bitindex(seq, length(seq)) + bits_per_symbol(A()))) % UInt zero_offset!(seq, offs) end @inline function zero_offset!(seq::LongSequence{A}, offs::UInt) where A <: Alphabet isempty(seq) && return seq iszero(offs) && return seq rshift = offs lshift = 64 - rshift len = length(seq.data) @inbounds if !iszero(lshift) this = seq.data[1] for i in 1:len-1 next = seq.data[i+1] seq.data[i] = (this >>> (unsigned(rshift) & 63)) | (next << (unsigned(lshift) & 63)) this = next end seq.data[len] >>>= (unsigned(rshift) & 63) end return seq end # Reverse chunks in data vector and each symbol within a chunk. Chunks may have nonzero # offset after use, so use zero_offset! @inline function reverse_data!(pred, data::Vector{UInt64}, len::UInt, B::BT) where { BT <: Union{BitsPerSymbol{2}, BitsPerSymbol{4}, BitsPerSymbol{8}}} @inbounds @simd ivdep for i in 1:len >>> 1 data[i], data[len-i+1] = pred(reversebits(data[len-i+1], B)), pred(reversebits(data[i], B)) end @inbounds if isodd(len) data[len >>> 1 + 1] = pred(reversebits(data[len >>> 1 + 1], B)) end end @inline function reverse_data_copy!(pred, dst::Vector{UInt64}, src::Vector{UInt64}, len::UInt, B::BT) where {BT <: Union{BitsPerSymbol{2}, BitsPerSymbol{4}, BitsPerSymbol{8}}} @inbounds @simd for i in eachindex(dst) dst[i] = pred(reversebits(src[len - i + 1], B)) end end """ complement!(seq) Make a complement sequence of `seq` in place. """ function complement!(seq::LongSequence{A}) where {A<:NucleicAcidAlphabet} seqdata = seq.data @inbounds for i in eachindex(seqdata) seqdata[i] = complement_bitpar(seqdata[i], Alphabet(seq)) end return seq end function complement!(s::LongSubSeq{A}) where {A <: NucleicAcidAlphabet} bps = bits_per_symbol(A()) bi = firstbitindex(s) i = 1 stop = lastbitindex(s) + bps @inbounds while (!iszero(offset(bi)) & (bi < stop)) s[i] = complement(s[i]) bi += bps i += 1 end @inbounds for j in index(bi):index(stop)-1 s.data[j] = complement_bitpar(s.data[j], Alphabet(s)) bi += 64 i += symbols_per_data_element(s) end @inbounds while bi < stop s[i] = complement(s[i]) bi += bps i += 1 end return s end function reverse_complement!(seq::LongSequence{<:NucleicAcidAlphabet}) pred = x -> complement_bitpar(x, Alphabet(seq)) reverse_data!(pred, seq.data, seq_data_len(seq) % UInt, BitsPerSymbol(seq)) return zero_offset!(seq) end function reverse_complement(seq::LongSequence{<:NucleicAcidAlphabet}) cp = typeof(seq)(undef, unsigned(length(seq))) pred = x -> complement_bitpar(x, Alphabet(seq)) reverse_data_copy!(pred, cp.data, seq.data, seq_data_len(seq) % UInt, BitsPerSymbol(seq)) return zero_offset!(cp) end function Random.shuffle!(seq::LongSequence) # Fisher-Yates shuffle @inbounds for i in 1:lastindex(seq) - 1 j = rand(i:lastindex(seq)) seq[i], seq[j] = seq[j], seq[i] end return seq end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7998
# Approxiamte Search # ================== # # Approximate sequence search tools. # # This file is a part of BioJulia. # License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md """ ApproximateSearchQuery{F<:Function,S<:BioSequence} Query type for approximate sequence search. These queries are used as a predicate for the `Base.findnext`, `Base.findprev`, `Base.occursin`, `Base.findfirst`, and `Base.findlast` functions. Using these functions with these queries allows you to search a given sequence for a sub-sequence, whilst allowing a specific number of errors. In other words they find a subsequence of the target sequence within a specific [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) of the query sequence. # Examples ```jldoctest julia> seq = dna"ACAGCGTAGCT"; julia> query = ApproximateSearchQuery(dna"AGGG"); julia> findfirst(query, 0, seq) == nothing # nothing matches with no errors true julia> findfirst(query, 1, seq) # seq[3:6] matches with one error 3:6 julia> findfirst(query, 2, seq) # seq[1:4] matches with two errors 1:4 ``` You can pass a comparator function such as `isequal` or `iscompatible` to its constructor to modify the search behaviour. The default is `isequal`, however, in biology, sometimes we want a more flexible comparison to find subsequences of _compatible_ symbols. ```jldoctest julia> query = ApproximateSearchQuery(dna"AGGG", iscompatible); julia> occursin(query, 1, dna"AAGNGG") # 1 mismatch permitted (A vs G) & matched N true julia> findnext(query, 1, dna"AAGNGG", 1) # 1 mismatch permitted (A vs G) & matched N 1:4 ``` !!! note This method of searching for motifs was implemented with smaller query motifs in mind. If you are looking to search for imperfect matches of longer sequences in this manner, you are likely better off using some kind of local-alignment algorithm or one of the BLAST variants. """ struct ApproximateSearchQuery{F<:Function,S<:BioSequence} comparator::F # comparator function seq::S # query sequence fPcom::Vector{UInt64} # compatibility vector for forward search bPcom::Vector{UInt64} # compatibility vector for backward search H::Vector{Int} # distance vector for alignback function end """ ApproximateSearchQuery(pat::S, comparator::F = isequal) where {F<:Function,S<:BioSequence} Construct an [`ApproximateSearchQuery`](@ref) predicate for use with Base find functions. # Arguments - `pat`: A concrete BioSequence that is the sub-sequence you want to search for. - `comparator`: A function used to compare the symbols between sequences. `isequal` by default. """ function ApproximateSearchQuery(pat::S, comparator::F = isequal) where {F<:Function,S<:BioSequence} m = length(pat) if m > 64 throw(ArgumentError("query pattern sequence must have length of 64 or less")) end Σ = alphabet(eltype(pat)) fw = zeros(UInt64, length(Σ)) for i in 1:m y = pat[i] for x in Σ if comparator(x, y) fw[encoded_data(x) + 0x01] |= UInt(1) << (i - 1) end end end shift = 64 - m bw = [bitreverse(i) >>> (shift & 63) for i in fw] H = Vector{Int}(undef, length(pat) + 1) return ApproximateSearchQuery{F,S}(comparator, copy(pat), fw, bw, H) end """ findnext(query, k, seq, start) Return the range of the first occurrence of `pat` in `seq[start:stop]` allowing up to `k` errors. Symbol comparison is done using the predicate supplied to the query. By default, `ApproximateSearchQuery`'s predicate is `isequal`. """ function Base.findnext(query::ApproximateSearchQuery, k::Integer, seq::BioSequence, start::Integer) return _approxsearch(query, k, seq, start, lastindex(seq), true) end """ findprev(query, k, seq, start) Return the range of the last occurrence of `query` in `seq[stop:start]` allowing up to `k` errors. Symbol comparison is done using the predicate supplied to the query. By default, `ApproximateSearchQuery`'s predicate is `isequal`. """ function Base.findprev(query::ApproximateSearchQuery, k::Integer, seq::BioSequence, start::Integer) return _approxsearch(query, k, seq, start, firstindex(seq), false) end Base.findfirst(query::ApproximateSearchQuery, k::Integer, seq::BioSequence) = findnext(query, k, seq, firstindex(seq)) Base.findlast(query::ApproximateSearchQuery, k::Integer, seq::BioSequence) = findprev(query, k, seq, lastindex(seq)) Base.occursin(query::ApproximateSearchQuery, k::Integer, seq::BioSequence) = !isnothing(_approxsearch(query, k, seq, 1, lastindex(seq), true)) function _approxsearch(query::ApproximateSearchQuery, k::Integer, seq::BioSequence, start::Integer, stop::Integer, forward::Bool) checkeltype(query.seq, seq) if k ≥ length(query.seq) return start:start-1 end # search the approximate suffix matchstop, dist = search_approx_suffix( forward ? query.fPcom : query.bPcom, query.seq, seq, k, start, stop, forward) if matchstop == 0 # No match #return 0:-1 return nothing end # locate the starting position of the match matchstart = alignback!(query, seq, dist, start, matchstop, forward) if forward return matchstart:matchstop else return matchstop:matchstart end end # This returns the end index of a suffix sequence with up to `k` errors. # More formally, when `forward = true`, it returns the minimum `j ∈ start:stop` # such that `min_{g ∈ 1:j} δ(pat, seq[g:j]) ≤ k` where `δ(s, t)` is the edit # distance between `s` and `t` sequences. See Myers' paper for details: # Myers, Gene. "A fast bit-vector algorithm for approximate string matching # based on dynamic programming." Journal of the ACM (JACM) 46.3 (1999): 395-415. # NOTE: `Pcom` corresponds to `Peq` in the paper. function search_approx_suffix(Pcom::Vector{UInt64}, pat::BioSequence, seq::BioSequence, k::Integer, start::Integer, stop::Integer, forward::Bool) if k < 0 throw(ArgumentError("the number of errors must be non-negative")) end m = length(pat) n = length(seq) Pv::UInt64 = (one(UInt64) << m) - one(UInt64) Mv::UInt64 = zero(UInt64) dist = m j = forward ? max(start, 1) : min(start, n) if dist ≤ k return j, dist end while (forward && j ≤ min(stop, n)) || (!forward && j ≥ max(stop, 1)) Eq = Pcom[reinterpret(UInt8, seq[j]) + 0x01] Xv = Eq | Mv Xh = (((Eq & Pv) + Pv) ⊻ Pv) | Eq Ph = Mv | ~(Xh | Pv) Mh = Pv & Xh if (Ph >> (m - 1)) & 1 != 0 dist += 1 elseif (Mh >> (m - 1)) & 1 != 0 dist -= 1 end if dist ≤ k return j, dist # found end Ph <<= 1 Mh <<= 1 Pv = Mh | ~(Xv | Ph) Mv = Ph & Xv j += ifelse(forward, +1, -1) end return 0, -1 # not found end # run dynamic programming to get the starting position of the alignment function alignback!(query::ApproximateSearchQuery{<:Function,<:BioSequence}, seq::BioSequence, dist::Int, start::Integer, matchstop::Integer, forward::Bool) comparator = query.comparator H = query.H pat = query.seq m = length(pat) n = length(seq) # initialize the cost column for i in 0:m H[i + 1] = i end j = ret = matchstop found = false while (forward && j ≥ max(start, 1)) || (!forward && j ≤ min(start, n)) y = seq[j] h_diag = H[1] for i in 1:m x = forward ? pat[end - i + 1] : pat[i] h = min( H[i] + 1, H[i + 1] + 1, h_diag + ifelse(comparator(x, y), 0, 1)) h_diag = H[i + 1] H[i + 1] = h end if H[m + 1] == dist ret = j found = true end j += ifelse(forward, -1, +1) end @assert found return ret end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7201
""" ExactSearchQuery{F<:Function,S<:BioSequence} Query type for exact sequence search. An exact search, is one where are you are looking in some given sequence, for exact instances of some given substring. These queries are used as a predicate for the `Base.findnext`, `Base.findprev`, `Base.occursin`, `Base.findfirst`, and `Base.findlast` functions. # Examples ```jldoctest julia> seq = dna"ACAGCGTAGCT"; julia> query = ExactSearchQuery(dna"AGC"); julia> findfirst(query, seq) 3:5 julia> findlast(query, seq) 8:10 julia> findnext(query, seq, 6) 8:10 julia> findprev(query, seq, 7) 3:5 julia> findall(query, seq) 2-element Vector{UnitRange{Int64}}: 3:5 8:10 julia> occursin(query, seq) true ``` You can pass a comparator function such as `isequal` or `iscompatible` to its constructor to modify the search behaviour. The default is `isequal`, however, in biology, sometimes we want a more flexible comparison to find subsequences of _compatible_ symbols. ```jldoctest julia> query = ExactSearchQuery(dna"CGT", iscompatible); julia> findfirst(query, dna"ACNT") # 'N' matches 'G' 2:4 julia> findfirst(query, dna"ACGT") # 'G' matches 'N' 2:4 julia> occursin(ExactSearchQuery(dna"CNT", iscompatible), dna"ACNT") true ``` """ struct ExactSearchQuery{F<:Function,S<:BioSequence} comparator::F # comparator function seq::S # query sequence bloom_mask::UInt64 # compatibility bits / bloom mask fshift::Int # shift length for forward search bshift::Int # shift length for backward search end """ ExactSearchQuery(pat::BioSequence, comparator::Function = isequal) Construct an [`ExactSearchQuery`](@ref) predicate for use with Base find functions. # Arguments - `pat`: A concrete BioSequence that is the sub-sequence you want to search for. - `comparator`: A function used to compare the symbols between sequences. `isequal` by default. """ function ExactSearchQuery(pat::BioSequence, comparator::Function = isequal) T = ExactSearchQuery{typeof(comparator),typeof(pat)} m = length(pat) if m == 0 return T(comparator, pat, UInt64(0), 0, 0) end first = pat[1] last = pat[end] bloom_mask = zero(UInt64) fshift = bshift = m for i in 1:lastindex(pat) x = pat[i] bloom_mask |= _bloom_bits(typeof(comparator), x) if comparator(x, last) && i < m fshift = m - i end end for i in lastindex(pat):-1:1 x = pat[i] if comparator(x, first) && i > 1 bshift = i - 1 end end return T(comparator, pat, bloom_mask, fshift, bshift) end @inline _check_ambiguous(q::ExactSearchQuery{typeof(isequal),<:BioSequence}) = false @inline _check_ambiguous(q::ExactSearchQuery{typeof(iscompatible),<:BioSequence}) = true @inline function _bloom_bits(::Type{typeof(isequal)}, x::BioSymbol) return (UInt64(1) << (encoded_data(x) & 63)) end @inline function _bloom_bits(::Type{typeof(iscompatible)}, x::BioSymbol) return compatbits(x) end @inline function checkeltype(seq1::BioSequence, seq2::BioSequence) if eltype(seq1) != eltype(seq2) throw(ArgumentError("the element type of two sequences must match")) end end function quicksearch(query::ExactSearchQuery, seq::BioSequence, start::Integer, stop::Integer) pat = query.seq comparator = query.comparator bloom_mask = query.bloom_mask ambig_check = _check_ambiguous(query) checkeltype(seq, pat) m = length(pat) n = length(seq) stop′ = min(stop, n) - m s::Int = max(start - 1, 0) if m == 0 # empty query if s ≤ stop′ return s + 1 # found else return 0 # not found end end while s ≤ stop′ if comparator(pat[m], seq[s + m]) i = m - 1 while i > 0 if !comparator(pat[i], seq[s + i]) break end i -= 1 end if i == 0 return s + 1 # found elseif s < stop′ && (bloom_mask & _bloom_bits(typeof(comparator), seq[s + m + 1]) == 0) s += m + 1 elseif ambig_check && isambiguous(seq[s + m]) s += 1 else s += query.fshift end elseif s < stop′ && (bloom_mask & _bloom_bits(typeof(comparator), seq[s + m + 1]) == 0) s += m + 1 else s += 1 end end return 0 # not found end function quickrsearch(query::ExactSearchQuery, seq::BioSequence, start::Integer, stop::Integer) pat = query.seq comparator = query.comparator bloom_mask = query.bloom_mask ambig_check = _check_ambiguous(query) checkeltype(seq, pat) m = length(pat) n = length(seq) stop′ = max(stop - 1, 0) s::Int = min(start, n) - m if m == 0 # empty query if s ≥ stop′ return s + 1 # found else return 0 # not found end end while s ≥ stop′ if comparator(pat[1], seq[s + 1]) i = 2 while i < m + 1 if !comparator(pat[i], seq[s + i]) break end i += 1 end if i == m + 1 return s + 1 # found elseif s > stop′ && (bloom_mask & _bloom_bits(typeof(comparator), seq[s]) == 0) s -= m + 1 elseif ambig_check && isambiguous(seq[s + 1]) s -= 1 else s -= query.bshift end elseif s > stop′ && (bloom_mask & _bloom_bits(typeof(comparator), seq[s]) == 0) s -= m + 1 else s -= 1 end end return 0 # not found end """ findnext(query::ExactSearchQuery, seq::BioSequence, start::Integer) Return the index of the first occurrence of `query` in `seq`. Symbol comparison is done using the predicate supplied to the query. By default, `ExactSearchQuery`'s predicate is `isequal`. """ function Base.findnext(query::ExactSearchQuery, seq::BioSequence, start::Integer) i = quicksearch(query, seq, start, lastindex(seq)) if i == 0 return nothing else return i:i+length(query.seq)-1 end end Base.findfirst(pat::ExactSearchQuery, seq::BioSequence) = findnext(pat, seq, firstindex(seq)) """ findprev(query::ExactSearchQuery, seq::BioSequence, start::Integer) Return the index of the last occurrence of `query` in `seq`. Symbol comparison is done using the predicate supplied to the query. By default, `ExactSearchQuery`'s predicate is `isequal`. """ function Base.findprev(query::ExactSearchQuery, seq::BioSequence, start::Integer) i = quickrsearch(query, seq, start, 1) if i == 0 return nothing else return i:i+length(query.seq)-1 end end Base.findlast(query::ExactSearchQuery, seq::BioSequence) = findprev(query, seq, lastindex(seq)) """ occursin(x::ExactSearchQuery, y::BioSequence) Return Bool indicating presence of exact match of x in y. """ Base.occursin(x::ExactSearchQuery, y::BioSequence) = quicksearch(x, y, 1, lastindex(y)) != 0
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
11578
# Motif Search based on Position Weight Matrix # ============================================ # # This file defines two types of matrices: PFM and PWM. PFM is a thin wrapper # of Matrix and stores non-negative frequency values for each symbol and # position. PWM is a position weighted matrix and stores score values like PFM. # PFMs are mutable like usual matrices but PWMs cache partial scores to each # position and hence must be immutable so that updating operations won't cause # inconsistency. PFM is created from a raw frequency matrix or a set of # sequences. PWM is created from a raw score matrix or a PFM. # # The motif search algorithm implemented here uses PWM. It tries to find the # nearest position from which the total score exceeds a specified threshold. The # algorithm stops searching immediately when it finds that the total score will # not exceeds the threshold even if the maximum partial score is achieved from # that position. This uses the partial score cache stored in a PWM object. """ Position frequency matrix. """ struct PFM{S,T<:Real} <: AbstractMatrix{T} # row: symbol, column: position data::Matrix{T} function PFM{S,T}(m::AbstractMatrix{T}) where {S<:Union{DNA,RNA},T} if size(m, 1) != 4 throw(ArgumentError("PFM must have four rows")) end return new{S,T}(m) end end function PFM{S}(m::AbstractMatrix{T}) where {S, T} return PFM{S,T}(m) end Base.convert(::Type{PFM{S}}, m::AbstractMatrix{T}) where {S, T} = PFM{S}(m) function Base.convert(::Type{Matrix{T}}, m::PFM) where T return convert(Matrix{T}, m.data) end PFM(set) = PFM(collect(set)) function PFM(set::Vector) if isempty(set) throw(ArgumentError("sequence set must be non-empty")) end S = eltype(eltype(set)) if S ∉ (DNA, RNA) throw(ArgumentError("sequence element must be DNA or RNA")) end len = length(set[1]) freq = zeros(Int, (4, len)) for i in 1:lastindex(set) seq = set[i] if eltype(seq) != S throw(ArgumentError("sequence element must be $(S)")) elseif length(seq) != len throw(ArgumentError("all sequences must be of the same length")) end for j in 1:len s = seq[j] if iscertain(s) # ignore uncertain symbols freq[index_nuc(s, j)] += 1 end end end return PFM{S}(freq) end # Broadcasting struct PFMBroadcastStyle{S} <: Broadcast.BroadcastStyle end Base.BroadcastStyle(::Type{PFM{S,T}}) where {S,T} = PFMBroadcastStyle{S}() Base.BroadcastStyle(s1::PFMBroadcastStyle, s2::Base.BroadcastStyle) = s1 function Base.similar(bc::Broadcast.Broadcasted{PFMBroadcastStyle{S}}, elt::Type{T}) where {S, T} return PFM{S, T}(similar(Array{T}, axes(bc))) end function Base.IndexStyle(::Type{<:PFM}) return IndexLinear() end function Base.size(m::PFM) return size(m.data) end function Base.getindex(m::PFM, i::Integer) return m.data[i] end function Base.getindex(m::PFM{S}, s::S, j::Integer) where S<:Union{DNA,RNA} return m.data[index_nuc(s, j)] end function Base.setindex!(m::PFM, val, i::Integer) return setindex!(m.data, val, i) end function Base.setindex!(m::PFM, val, i::Integer, j::Integer) return setindex!(m.data, val, i, j) end function Base.setindex!(m::PFM, val, s::S, j::Integer) where S<:Union{DNA,RNA} return setindex!(m.data, val, index_nuc(s, j)) end function Base.show(io::IO, m::PFM{<:Union{DNA,RNA}}) show_nuc_matrix(io, m) end function Base.show(io::IO, ::MIME"text/plain", m::PFM{<:Union{DNA,RNA}}) show_nuc_matrix(io, m) end """ Position weight matrix. """ struct PWM{S,T<:Real} <: AbstractMatrix{T} # symbol type symtype::Type{S} # score matrix (row: symbols, column: position) data::Matrix{T} # maxscore[i] == sum(maximum(data, 1)[i:end]) maxscore::Vector{T} function PWM{S,T}(pwm::AbstractMatrix) where {S<:Union{DNA,RNA},T} if size(pwm, 1) != 4 throw(ArgumentError("PWM must have four rows")) end # make a copy for safety return new{S,T}(S, copy(pwm), make_maxscore(pwm)) end end """ PWM(pfm::PFM{<:Union{DNA,RNA}}; prior=fill(1/4,4)) Create a position weight matrix from a position frequency matrix `pfm`. The positive weight matrix will be `log2.((pfm ./ sum(pfm, 1)) ./ prior)`. """ function PWM(pfm::PFM{S}; prior = fill(1/4, 4)) where S <: Union{DNA,RNA} if !all(x -> x > 0, prior) throw(ArgumentError("prior must be positive")) elseif sum(prior) ≉ 1 throw(ArgumentError("prior must be sum to 1")) end prob = pfm ./ sum(pfm, dims = 1) return PWM{S,Float64}(log2.(prob ./ prior)) end """ PWM{T}(pwm::AbstractMatrix) Create a PWM from a raw matrix `pwm` (rows are symbols and columns are positions). Examples -------- ```julia-repl julia> pwm = [ 0.065 -0.007 0.042 0.016 0.003 # A 0.025 -0.007 0.016 0.058 0.082 # C 0.066 0.085 0.070 0.054 0.010 # G 0.016 0.025 0.051 0.058 0.038 # T ] 4×5 Array{Float64,2}: 0.065 -0.007 0.042 0.016 0.003 0.025 -0.007 0.016 0.058 0.082 0.066 0.085 0.07 0.054 0.01 0.016 0.025 0.051 0.058 0.038 julia> PWM{DNA}(pwm) BioSequences.PWM{BioSymbols.DNA,Float64}: A 0.065 -0.007 0.042 0.016 0.003 C 0.025 -0.007 0.016 0.058 0.082 G 0.066 0.085 0.07 0.054 0.01 T 0.016 0.025 0.051 0.058 0.038 ``` """ function PWM{T}(pwm::AbstractMatrix) where T <: Union{DNA,RNA} return PWM{T,eltype(pwm)}(pwm) end function Base.IndexStyle(::Type{<:PWM}) return IndexLinear() end function Base.size(pwm::PWM) return size(pwm.data) end function Base.getindex(pwm::PWM, i::Integer) return getindex(pwm.data, i) end function Base.getindex(m::PWM{S}, s::S, j::Integer) where S<:Union{DNA,RNA} return m.data[index_nuc(s, j)] end function Base.show(io::IO, pwm::PWM{<:Union{DNA,RNA}}) show_nuc_matrix(io, pwm) end function Base.show(io::IO, ::MIME"text/plain", m::PWM{<:Union{DNA,RNA}}) show_nuc_matrix(io, m) end """ maxscore(pwm::PWM) Return the maximum achievable score of `pwm`. """ function maxscore(pwm::PWM) if size(pwm, 2) == 0 return zero(eltype(pwm)) else return pwm.maxscore[1] end end # Make an accumulated maximum score vector. function make_maxscore(pwm) len = size(pwm, 2) maxscore = Vector{eltype(pwm)}(undef, len) for j in len:-1:1 s = pwm[1,j] for i in 2:size(pwm, 1) s = max(s, pwm[i,j]) end if j == len maxscore[j] = s else maxscore[j] = s + maxscore[j+1] end end return maxscore end """ scoreat(seq::BioSequence, pwm::PWM, start::Integer) Calculate the PWM score starting from `seq[start]`. """ function scoreat(seq::BioSequence, pwm::PWM, start::Integer) check_pwm(seq, pwm) pwmlen = size(pwm, 2) checkbounds(seq, start:start+pwmlen-1) score = zero(eltype(pwm)) @inbounds for j in 0:pwmlen-1 x = seq[start + j] score += iscertain(x) ? pwm[j << 2 + trailing_zeros(x) + 1] : zero(score) end return score end function check_pwm(seq, pwm::PWM{S}) where S <: Union{DNA,RNA} if size(pwm, 1) != 4 throw(ArgumentError("matrix must have four rows")) elseif eltype(seq) != S throw(ArgumentError("sequence and PWM must have the same element type")) end end # TODO: Have one version of search_nuc that searches backwards as well as forwards? function search_nuc(seq::BioSequence, first::Int, last::Int, pwm::PWM{<:Union{DNA,RNA},S}, threshold::S) where S<:Real check_pwm(seq, pwm) checkbounds(seq, first:last) pwmlen = size(pwm, 2) for p in first:last-pwmlen+1 score = zero(eltype(pwm)) @inbounds for j in 0:pwmlen-1 if score + pwm.maxscore[j + 1] < threshold break end x = seq[p + j] score += iscertain(x) ? pwm[j << 2 + trailing_zeros(x) + 1] : zero(score) end if score ≥ threshold return p end end return nothing end function rsearch_nuc(seq::BioSequence, first::Int, last::Int, pwm::PWM{<:Union{DNA,RNA},S}, threshold::S) where S<:Real check_pwm(seq, pwm) checkbounds(seq, last:first) pwmlen = size(pwm, 2) for p in first-pwmlen+1:-1:last score = zero(eltype(pwm)) @inbounds for j in 0:pwmlen-1 if score + pwm.maxscore[j + 1] < threshold break end x = seq[p + j] score += iscertain(x) ? pwm[j << 2 + trailing_zeros(x) + 1] : zero(score) end if score ≥ threshold return p end end return nothing end #= TODO: Replace forward and back function with this one? function search_nuc2(seq::BioSequence, first::Integer, last::Integer, pwm::PWM{<:Union{DNA,RNA},S}, threshold::S) where S<:Real check_pwm(seq, pwm) rev = first > last checkbounds(seq, ifelse(rev, last:first, first:last) pwmlen = size(pwm, 2) interval′ = range( ifelse(rev, first - pwmlen + 1, first), step = ifelse(rev, -1, 1), ifelse(rev, last, last - pwmlen + 1) ) for p in interval′ score = zero(eltype(pwm)) @inbounds for j in 0:pwmlen-1 if score + pwm.maxscore[j + 1] < threshold break end x = seq[p + j] score += iscertain(x) ? pwm[j << 2 + trailing_zeros(x) + 1] : zero(score) end if score ≥ threshold return p end end return nothing end =# function index_nuc(s::Union{DNA,RNA}, j::Integer) if !iscertain(s) throw(ArgumentError(string("index symbol must be A, C, G or ", typeof(s) == DNA ? "T" : "U"))) end return (j-1) << 2 + (trailing_zeros(s)) + 1 end function show_nuc_matrix(io::IO, m::Union{PFM{S},PWM{S}}) where S<:Union{DNA,RNA} compact(x) = string(x ≥ 0 ? " " : "", sprint(show, x, context=:compact=>true)) cells = hcat(['A', 'C', 'G', S == DNA ? 'T' : 'U'], compact.(m.data)) width = maximum(length.(cells), dims=1) print(io, summary(m), ':') for i in 1:size(cells, 1) print(io, "\n ", rpad(cells[i,1], width[1]+1)) for j in 2:size(cells, 2) print(io, rpad(cells[i,j], width[j]+1)) end end end struct PWMSearchQuery{S,T,R<:Real} pwm::PWM{S,T} threshold::R end function PWMSearchQuery(sequences, threshold::Real, prior = fill(1 / 4, 4)) pfm = PFM(sequences) pwm = PWM(pfm .+ 0.01, prior = prior) return PWMSearchQuery(pwm, threshold) end function Base.findnext(query::PWMSearchQuery, seq::BioSequence, start) if eltype(seq) == DNA || eltype(seq) == RNA return search_nuc(seq, start, lastindex(seq), query.pwm, convert(eltype(query.pwm), query.threshold)) else throw(ArgumentError("no search algorithm for '$(typeof(seq))'")) end end function Base.findfirst(query::PWMSearchQuery, seq::BioSequence) return findnext(query, seq, firstindex(seq)) end function Base.findprev(query::PWMSearchQuery, seq::BioSequence, start) if eltype(seq) == DNA || eltype(seq) == RNA return rsearch_nuc(seq, start, firstindex(seq), query.pwm, convert(eltype(query.pwm), query.threshold)) else throw(ArgumentError("no search algorithm for '$(typeof(seq))'")) end end function Base.findlast(query::PWMSearchQuery, seq::BioSequence) return findprev(query, seq, lastindex(seq)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
24732
# Regular Expression # ================== # # Regular expression sequence search tools. # # This file is a part of BioJulia. # License is MIT: https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE.md # String Decorators # ----------------- """ biore"PAT"sym Construct a PCRE `BioRegex` from pattern `PAT`. `sym` can be any of `d`/`dna`, `r`/`rna`, or `a`/`aa`. BioRegex can also be constructed directly using e.g. `BioRegex{DNA}("[TA]G")`. """ macro biore_str(pat, opt...) if isempty(opt) error("symbol option is required: d(na), r(na), or a(a)") end @assert length(opt) == 1 opt = opt[1] if opt ∈ ("d", "dna") :($(RE.Regex{DNA}(pat, :pcre))) elseif opt ∈ ("r", "rna") :($(RE.Regex{RNA}(pat, :pcre))) elseif opt ∈ ("a", "aa") :($(RE.Regex{AminoAcid}(pat, :pcre))) else error("invalid symbol option: $(opt)") end end """ prosite"PAT" Equivalent to `BioRegex{AminoAcid}("PAT", syntax=:prosite)`, but evaluated at parse-time. """ macro prosite_str(pat) :($(RE.Regex{AminoAcid}(pat, :prosite))) end module RE import BioSequences # Syntax tree # ----------- mutable struct SyntaxTree head::Symbol args::Vector{Any} function SyntaxTree(head, args) @assert head ∈ ( :|, :*, :+, Symbol("?"), :range, Symbol("*?"), Symbol("+?"), Symbol("??"), Symbol("range?"), :set, :compset, :sym, :bits, :capture, :nocapture, :concat, :head, :last) return new(head, args) end end expr(head, args) = SyntaxTree(head, args) function charset(s) set = Set{Char}() union!(set, s) union!(set, lowercase(s)) return set end # list of symbols available for each symbol type const symbols = IdDict{Any, Set{Char}}( BioSequences.DNA => charset("ACGTMRWSYKVHDBN"), BioSequences.RNA => charset("ACGUMRWSYKVHDBN"), BioSequences.AminoAcid => charset("ARNDCQEGHILKMFPSTWYVOUBJZX")) macro check(ex, err) esc(quote if !$ex throw($err) end end) end function parse(::Type{T}, pat::AbstractString) where {T} parens = Char[] # stack of parens ex, _ = parserec(T, pat, iterate(pat), parens) @check isempty(parens) ArgumentError("'(' is not closed") return ex end function parserec(::Type{T}, pat, s, parens) where {T} args = [] while s !== nothing c, state = s s = iterate(pat, state) if c == '*' @check !isempty(args) ArgumentError("unexpected '*'") arg = pop!(args) push!(args, expr(:*, [arg])) elseif c == '+' @check !isempty(args) ArgumentError("unexpected '+'") arg = pop!(args) push!(args, expr(:+, [arg])) elseif c == '?' @check !isempty(args) ArgumentError("unexpected '?'") arg = pop!(args) if arg.head ∈ (:*, :+, Symbol("?"), :range) # lazy quantifier push!(args, expr(Symbol(arg.head, '?'), arg.args)) else # zero-or-one quantifier push!(args, expr(Symbol("?"), [arg])) end elseif c == '{' @check !isempty(args) ArgumentError("unexpected '{'") rng, s = parserange(pat , s) arg = pop!(args) push!(args, expr(:range, [rng, arg])) elseif c == '|' arg1 = expr(:concat, args) arg2, s = parserec(T, pat, s, parens) args = [] push!(args, expr(:|, [arg1, arg2])) elseif c == '[' setexpr, s = parseset(T, pat, s) push!(args, setexpr) elseif c == '(' push!(parens, '(') head = :capture if peek(pat, s) == '?' _, state = s s = iterate(pat, state) if peek(pat, s) == ':' head = :nocapture _, state = s s = iterate(pat, state) end end arg, s = parserec(T, pat, s, parens) push!(args, expr(head, [arg])) elseif c == ')' @check !isempty(parens) && parens[end] == '(' ArgumentError("unexpected ')'") pop!(parens) return expr(:concat, args), s elseif c == '^' push!(args, expr(:head, [])) elseif c == '$' push!(args, expr(:last, [])) elseif isspace(c) # skip elseif c ∈ symbols[T] push!(args, expr(:sym, [convert(T, c)])) else throw(ArgumentError("unexpected input: '$c'")) end end return expr(:concat, args), s end function parserange(pat, s) lo = hi = -1 comma = false while s !== nothing c, state = s s = iterate(pat, state) if isdigit(c) d = c - '0' if comma if hi < 0 hi = 0 end hi = 10hi + d else if lo < 0 lo = 0 end lo = 10lo + d end elseif c == ',' comma = true elseif c == '}' break else throw(ArgumentError("unexpected input: '$c'")) end end if comma if lo < 0 && hi < 0 throw(ArgumentError("invalid range")) elseif lo ≥ 0 && hi < 0 return (lo,), s elseif lo < 0 && hi ≥ 0 return (0, hi), s else # lo ≥ 0 && hi ≥ 0 if lo > hi throw(ArgumentError("invalid range")) end return (lo, hi), s end else return lo, s end end function peek(pat, s) if s === nothing throw(ArgumentError("unexpected end of pattern")) end return s[1] end function parseset(::Type{T}, pat, s) where {T} if peek(pat, s) == '^' head = :compset _, state = s s = iterate(pat, state) else head = :set end set = T[] while s !== nothing c, state = s s = iterate(pat, state) if c ∈ symbols[T] push!(set, convert(T, c)) elseif c == ']' break else throw(ArgumentError("unexpected input: '$c'")) end end return expr(head, set), s end function parse_prosite(pat) s = iterate(pat) args = [] while s !== nothing c, state = s s = iterate(pat, state) if c == '[' set, s = parseset_prosite(pat, s, ']') push!(args, set) elseif c == '{' set, s = parseset_prosite(pat, s, '}') push!(args, set) elseif c == '(' @check !isempty(args) ArgumentError("unexpected '('") rng, s = parserange_prosite(pat, s) arg = pop!(args) push!(args, expr(:range, [rng, arg])) elseif c == '-' # concat continue elseif c == 'x' push!(args, expr(:sym, [BioSequences.AA_X])) elseif c == '<' push!(args, expr(:head, [])) elseif c == '>' push!(args, expr(:last, [])) elseif c ∈ symbols[BioSequences.AminoAcid] push!(args, expr(:sym, [convert(BioSequences.AminoAcid, c)])) else throw(ArgumentError("unexpected input: '$c'")) end end return expr(:concat, args) end function parserange_prosite(pat, s) lo = hi = -1 comma = false while s !== nothing c, state = s s = iterate(pat, state) if isdigit(c) d = c - '0' if comma if hi < 0 hi = 0 end hi = 10hi + d else if lo < 0 lo = 0 end lo = 10lo + d end elseif c == ',' comma = true elseif c == ')' break else throw(ArgumentError("unexpected input: '$c'")) end end if comma if lo < 0 || hi < 0 throw(ArgumentError("invalid range")) end return (lo, hi), s else if lo < 0 throw(ArgumentError("invalid range")) end return lo, s end end function parseset_prosite(pat, s, close) set = BioSequences.AminoAcid[] while s !== nothing c, state = s s = iterate(pat, state) if c ∈ symbols[BioSequences.AminoAcid] push!(set, convert(BioSequences.AminoAcid, c)) elseif c == close if close == ']' return expr(:set, set), s elseif close == '}' return expr(:compset, set), s end @assert false else throw(ArgumentError("unexpected input: '$c'")) end end end function bits2sym(::Type{T}, bits::UInt32) where {T} for x in BioSequences.alphabet(T) if BioSequences.compatbits(x) == bits return x end end error("bits are not found") end mask(::Type{T}) where {T<:BioSequences.NucleicAcid} = (UInt32(1) << 4) - one(UInt32) @assert Int(reinterpret(UInt8, BioSequences.AA_U)) + 1 == 22 # check there are 22 unambiguous amino acids mask(::Type{BioSequences.AminoAcid}) = (UInt32(1) << 22) - one(UInt32) function desugar(::Type{T}, tree::SyntaxTree) where {T} head = tree.head args = tree.args if head == :+ # e+ => ee* head = :concat args = [args[1], expr(:*, [args[1]])] elseif head == Symbol("+?") # e+? => ee*? head = :concat args = [args[1], expr(Symbol("*?"), [args[1]])] elseif head == Symbol("?") # e? => e| head = :| args = [args[1], expr(:concat, [])] elseif head == Symbol("??") # e?? => |e head = :| args = [expr(:concat, []), args[1]] elseif head == :sym head = :bits args = [BioSequences.compatbits(args[1])] elseif head == :set bits = UInt32(0) for arg in args bits |= BioSequences.compatbits(arg) end head = :bits args = [bits] elseif head == :compset bits = UInt32(0) for arg in args bits |= BioSequences.compatbits(arg) end head = :bits args = [~bits & mask(T)] elseif head == :nocapture head = :concat elseif head == :range || head == Symbol("range?") rng = args[1] pat = args[2] greedy = head == :range if isa(rng, Int) # e{m} => eee...e # |<-m->| head = :concat args = fill(pat, rng) elseif isa(rng, Tuple{Int}) # e{m,} => eee...ee* (greedy) # |<-m->| # e{m,} => eee...ee*? (lazy) # |<-m->| head = :concat args = fill(pat, rng[1]) if greedy push!(args, expr(:*, [pat])) else push!(args, expr(Symbol("*?"), [pat])) end elseif isa(rng, Tuple{Int,Int}) # e{m,n} => eee...eee|eee...ee|...|eee...e (greedy) # |<- n ->| |<-m->| # e{m,n} => eee...e|eee...ee|...|eee...eee (lazy) # |<-m->| |<- n ->| m, n = rng @assert m ≤ n if m == n head = :concat args = fill(pat, m) else head = :| f = (k, t) -> expr(:|, [expr(:concat, fill(pat, k)), t]) if greedy args = foldr(f, n:-1:m+1, init=expr(:concat, fill(pat, m))).args else args = foldr(f, m:1:n-1, init=expr(:concat, fill(pat, n))).args end end else @assert false "invalid AST" end end i = 1 for i in 1:lastindex(args) args[i] = desugar(T, args[i]) end return expr(head, args) end function desugar(::Type{T}, atom) where {T} return atom end # Compiler # -------- # tag | operation | meaning # ------|-----------|---------------------------- # 0b000 | match | the pattern matches # 0b001 | bits b | matches b in bit-wise way # 0b010 | jump l | jump to l # 0b011 | push l | push l and go to next # 0b100 | save i | save string state to i # 0b101 | head | matches the head of string # 0b110 | last | matches the last of string # 0b111 | fork l | push next and go to l primitive type Op 32 end const MatchTag = UInt32(0b000) << 29 const BitsTag = UInt32(0b001) << 29 const JumpTag = UInt32(0b010) << 29 const PushTag = UInt32(0b011) << 29 const SaveTag = UInt32(0b100) << 29 const HeadTag = UInt32(0b101) << 29 const LastTag = UInt32(0b110) << 29 const ForkTag = UInt32(0b111) << 29 # constructors match() = reinterpret(Op, MatchTag) bits(b::UInt32) = reinterpret(Op, BitsTag | b) jump(l::Int) = reinterpret(Op, JumpTag | UInt32(l)) push(l::Int) = reinterpret(Op, PushTag | UInt32(l)) save(l::Int) = reinterpret(Op, SaveTag | UInt32(l)) head() = reinterpret(Op, HeadTag) last() = reinterpret(Op, LastTag) fork(l::Int) = reinterpret(Op, ForkTag | UInt32(l)) const operand_mask = (UInt32(1) << 29) - one(UInt32) function tag(op::Op) return reinterpret(UInt32, op) & ~operand_mask end function operand(op::Op) return reinterpret(UInt32, op) & operand_mask end function Base.show(io::IO, op::Op) t = tag(op) x = operand(op) if t == MatchTag print(io, "match") elseif t == BitsTag print(io, "bits ", repr(x)) elseif t == JumpTag print(io, "jump ", x) elseif t == PushTag print(io, "push ", x) elseif t == SaveTag print(io, "save ", x) elseif t == HeadTag print(io, "head") elseif t == LastTag print(io, "last") elseif t == ForkTag print(io, "fork ", x) else @assert false end end function print_program(prog::Vector{Op}) L = lastindex(prog) for l in 1:L print(lpad(l, ndigits(L)), ": ", prog[l]) if l != lastindex(prog) println() end end end function compile(tree::SyntaxTree) code = Op[] push!(code, save(1)) compilerec!(code, tree, 2) push!(code, save(2)) push!(code, match()) return code end function compilerec!(code, tree::SyntaxTree, k) h = tree.head args = tree.args if h == :bits push!(code, bits(UInt32(args[1]))) elseif h == :concat for arg in args k = compilerec!(code, arg, k) end elseif h == :* push!(code, push(0)) # placeholder l = length(code) k = compilerec!(code, args[1], k) push!(code, jump(l)) code[l] = push(length(code) + 1) elseif h == Symbol("*?") push!(code, fork(0)) # placeholder l = length(code) k = compilerec!(code, args[1], k) push!(code, jump(l)) code[l] = fork(length(code) + 1) elseif h == :| push!(code, push(0)) # placeholder l = length(code) k = compilerec!(code, args[1], k) push!(code, jump(0)) # placeholder code[l] = push(length(code) + 1) l = length(code) k = compilerec!(code, args[2], k) code[l] = jump(length(code) + 1) elseif h == :capture k′ = k push!(code, save(2k′-1)) k = compilerec!(code, args[1], k + 1) push!(code, save(2k′)) elseif h == :head push!(code, head()) elseif h == :last push!(code, last()) else @assert false "invalid tree" end return k end # Virtual machine # --------------- """ Regex{T}(pattern::AbstractString, syntax=:pcre) Biological regular expression to seatch for `pattern` in sequences of type `T`, where `T` can be `DNA`, `RNA`, and `AminoAcid`. `syntax` can be `:pcre` or `:prosite` for AminoAcid acids. """ struct Regex{T <: Union{BioSequences.DNA, BioSequences.RNA, BioSequences.AminoAcid}} pat::String # regular expression pattern (for printing) code::Vector{Op} # compiled code nsaves::Int # the number of `save` operations in `code` function Regex{T}(pat::AbstractString, syntax=:pcre) where T if syntax == :pcre ast = desugar(T, parse(T, pat)) elseif syntax == :prosite if T != BioSequences.AminoAcid throw(ArgumentError("alphabet must be AminoAcid for PROSITE syntax")) end ast = desugar(BioSequences.AminoAcid, parse_prosite(pat)) else throw(ArgumentError("invalid syntax: $syntax")) end code = compile(ast) nsaves = 0 for op in code nsaves += tag(op) == SaveTag end @assert iseven(nsaves) return new{T}(pat, code, nsaves) end end function Base.show(io::IO, re::Regex{T}) where {T} if T == BioSequences.DNA opt = "dna" elseif T == BioSequences.RNA opt = "rna" else T == BioSequences.AminoAcid opt = "aa" end print(io, "biore\"", re.pat, "\"", opt) end # This is useful when testing function Base.:(==)(x::Regex, y::Regex) typeof(x) == typeof(y) && x.pat == y.pat && x.code == y.code && x.nsaves == y.nsaves end """ RegexMatch Result of matching by `Regex`. julia> match(biore"A(C[TG])+N(CA)"d, dna"ACGACA") RegexMatch("ACGACA", 1="CG", 2="", 3="CA") """ struct RegexMatch{S} seq::S captured::Vector{Int} end function Base.show(io::IO, m::RegexMatch) print(io, "RegexMatch(") for k in 1:div(length(m.captured), 2) if k > 1 print(io, ", ", k - 1, '=') end print(io, '"', m.seq[m.captured[2k-1]:m.captured[2k]-1], '"') end print(io, ')') end """ matched(match::BioRegexMatch) Return the matched pattern as a `BioSequence`. """ function matched(m::RegexMatch{S}) where {S} return m.seq[m.captured[1]:m.captured[2]-1] end """ captured(match::BioRegexMatch) Return a vector of the captured patterns, where a pattern not captured is `nothing`. # Examples: ``` julia> captured(biore"A(C[TG])+N"d, dna"ACGAA"") 2-element Vector{Union{Nothing, LongDNA{4}, LongNuc{4, DNAAlphabet{4}}}}: CG nothing ``` """ function captured(m::RegexMatch{S}) where {S} return [m.captured[2k-1] != 0 && m.captured[2k] != 0 ? m.seq[m.captured[2k-1]:m.captured[2k]-1] : nothing for k in 2:div(length(m.captured), 2)] end function checkeltype(re::Regex{T}, seq::BioSequences.BioSequence) where {T} if eltype(seq) != T throw(ArgumentError("element type of sequence doesn't match with regex")) end end function Base.match(re::Regex{T}, seq::BioSequences.BioSequence, start::Integer=1) where {T} checkeltype(re, seq) # use the first unambiguous symbol in the regular expression to find the # next starting position of pattern matching; this improves the performance if length(re.code) ≥ 2 && tag(re.code[2]) == BitsTag && count_ones(operand(re.code[2])) == 1 firstsym = bits2sym(T, operand(re.code[2])) else firstsym = BioSequences.gap(T) end # a thread is `(<program counter>, <sequence's iterator state>)` threads = Stack{Tuple{Int,Int}}() captured = Vector{Int}(undef, re.nsaves) s = start while true if firstsym != BioSequences.gap(T) s = findnext(isequal(firstsym), seq, s) if s === nothing break end end empty!(threads) push!(threads, (1, s)) fill!(captured, 0) if runmatch!(threads, captured, re, seq) return RegexMatch(seq, captured) end s += 1 if s > lastindex(seq) break end end return nothing end function Base.findfirst(re::Regex{T}, seq::BioSequences.BioSequence, start::Integer=1) where {T} checkeltype(re, seq) m = Base.match(re, seq, start) if m === nothing return nothing else return m.captured[1]:m.captured[2]-1 end end struct RegexMatchIterator{T,S} re::Regex{T} seq::S overlap::Bool function RegexMatchIterator{T,S}(re::Regex{T}, seq::S, overlap::Bool) where {T,S} checkeltype(re, seq) return new{T,S}(re, seq, overlap) end end function Base.IteratorSize(::Type{RegexMatchIterator{T,S}}) where {T,S} return Base.SizeUnknown() end function Base.eltype(::Type{RegexMatchIterator{T,S}}) where {T,S} return RegexMatch{S} end function Base.iterate(iter::RegexMatchIterator) threads = Stack{Tuple{Int,Int}}() captured = Vector{Int}(undef, iter.re.nsaves) s = 1 push!(threads, (1, s)) fill!(captured, 0) state = advance!(threads, captured, s, iter.re, iter.seq, iter.overlap) return iterate(iter, state) end function Base.iterate(iter::RegexMatchIterator, state) item, threads, captured, s = state if item === nothing return nothing else item, advance!(threads, captured, s, iter.re, iter.seq, iter.overlap) end end function advance!(threads, captured, s, re, seq, overlap) while true if runmatch!(threads, captured, re, seq) if !overlap empty!(threads) s = captured[2] if s <= lastindex(seq) push!(threads, (1, s)) end end return RegexMatch(seq, copy(captured)), threads, captured, s end if !isempty(seq) s += 1 end if s > lastindex(seq) break end push!(threads, (1, s)) fill!(captured, 0) end return nothing, threads, captured, s end function Base.eachmatch(re::Regex{T}, seq::BioSequences.BioSequence, overlap::Bool = true) where {T} checkeltype(re, seq) return RegexMatchIterator{T,typeof(seq)}(re, seq, overlap) end function Base.occursin(re::Regex{T}, seq::BioSequences.BioSequence) where {T} return Base.match(re, seq) !== nothing end # simple stack mutable struct Stack{T} top::Int data::Vector{T} function Stack{T}(sz::Int=0) where T return new{T}(0, Vector{T}(undef, sz)) end end function Base.isempty(stack::Stack) return stack.top == 0 end @inline function Base.push!(stack::Stack{T}, x::T) where {T} if stack.top + 1 > length(stack.data) push!(stack.data, x) else stack.data[stack.top+1] = x end stack.top += 1 return stack end @inline function Base.pop!(stack::Stack) item = stack.data[stack.top] stack.top -= 1 return item end @inline function Base.empty!(stack::Stack) stack.top = 0 return stack end # run pattern maching using the current `threads` stack. Captured positions are # stored in the preallocated `captured`. If match is found, this returns `true` # immediately; otherwise returns `false`. function runmatch!(threads::Stack{Tuple{Int,Int}}, captured::Vector{Int}, re::Regex, seq::BioSequences.BioSequence) while !isempty(threads) pc::Int, s = pop!(threads) while true op = re.code[pc] t = tag(op) if t == BitsTag if s > lastindex(seq) break end sym = seq[s] s += 1 if BioSequences.compatbits(sym) & operand(op) != 0 pc += 1 else break end elseif t == JumpTag pc = operand(op) elseif t == PushTag push!(threads, (convert(Int, operand(op)), s)) pc += 1 elseif t == ForkTag push!(threads, (pc + 1, s)) pc = operand(op) elseif t == SaveTag captured[operand(op)] = s pc += 1 elseif t == HeadTag if s == 1 pc += 1 else break end elseif t == LastTag if s == lastindex(seq) + 1 pc += 1 else break end elseif t == MatchTag return true end end end return false end end # module RE # exported from BioSequences const matched = RE.matched const captured = RE.captured const BioRegex = RE.Regex const BioRegexMatch = RE.RegexMatch
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
6726
# NOTE: Most tests related to biological symbols are located in BioSymbols.jl. @testset "Symbols" begin @testset "DNA" begin @test DNA_A === BioSymbols.DNA_A @test ACGT === BioSymbols.ACGT @test ACGTN === BioSymbols.ACGTN @test typeof(DNA_A) === BioSymbols.DNA end @testset "RNA" begin @test RNA_A === BioSymbols.RNA_A @test ACGU === BioSymbols.ACGU @test ACGUN === BioSymbols.ACGUN @test typeof(RNA_A) === BioSymbols.RNA end @testset "AminoAcid" begin @test AA_A === BioSymbols.AA_A @test typeof(AA_A) === BioSymbols.AminoAcid end @testset "Predicate functions" begin @test iscompatible(DNA_A, DNA_N) @test isambiguous(DNA_N) @test iscertain(DNA_A) @test isgap(DNA_Gap) @test ispurine(DNA_A) @test ispyrimidine(DNA_C) @test isGC(DNA_G) end @testset "Misc. functions" begin @test length(BioSymbols.alphabet(DNA)) == 16 @test BioSymbols.gap(DNA) === DNA_Gap @test BioSymbols.complement(DNA_A) === DNA_T end end @testset "Basic" begin @test length(DNAAlphabet{4}()) == 16 @test length(RNAAlphabet{2}()) == 4 @test length(AminoAcidAlphabet()) == 28 @test BioSequences.symbols(RNAAlphabet{2}()) == (RNA_A, RNA_C, RNA_G, RNA_U) end encode = BioSequences.encode EncodeError = BioSequences.EncodeError decode = BioSequences.decode # NOTE: See the docs for the interface of Alphabet struct ReducedAAAlphabet <: Alphabet end Base.eltype(::Type{ReducedAAAlphabet}) = AminoAcid BioSequences.BitsPerSymbol(::ReducedAAAlphabet) = BioSequences.BitsPerSymbol{4}() function BioSequences.symbols(::ReducedAAAlphabet) (AA_L, AA_C, AA_A, AA_G, AA_S, AA_T, AA_P, AA_F, AA_W, AA_E, AA_D, AA_N, AA_Q, AA_K, AA_H, AA_M) end (ENC_LUT, DEC_LUT) = let enc_lut = fill(0xff, length(alphabet(AminoAcid))) dec_lut = fill(AA_A, length(symbols(ReducedAAAlphabet()))) for (i, aa) in enumerate(symbols(ReducedAAAlphabet())) enc_lut[reinterpret(UInt8, aa) + 0x01] = i - 1 dec_lut[i] = aa end (Tuple(enc_lut), Tuple(dec_lut)) end function BioSequences.encode(::ReducedAAAlphabet, aa::AminoAcid) i = reinterpret(UInt8, aa) (i ≥ length(ENC_LUT) || ENC_LUT[i + 0x01] === 0xff) && throw(EncodeError(ReducedAAAlphabet(), aa)) ENC_LUT[i + 0x01] % UInt end function BioSequences.decode(::ReducedAAAlphabet, x::UInt) DEC_LUT[x + UInt(1)] end @testset "Custom Alphabet" begin @test BioSequences.has_interface(Alphabet, ReducedAAAlphabet()) @test length(symbols(ReducedAAAlphabet())) == 16 @test all(i isa AminoAcid for i in symbols(ReducedAAAlphabet())) @test length(Set(symbols(ReducedAAAlphabet()))) == 16 for aa in [AA_P, AA_L, AA_H, AA_M] data = UInt(findfirst(isequal(aa), symbols(ReducedAAAlphabet())) - 1) @test encode(ReducedAAAlphabet(), aa) === data @test decode(ReducedAAAlphabet(), data) === aa end str = "NSTPHML" @test String(LongSequence{ReducedAAAlphabet}(str)) == str @test_throws EncodeError encode(ReducedAAAlphabet(), AA_V) @test_throws EncodeError encode(ReducedAAAlphabet(), AA_I) @test_throws EncodeError encode(ReducedAAAlphabet(), AA_R) @test_throws EncodeError encode(ReducedAAAlphabet(), AA_Gap) @test_throws EncodeError encode(ReducedAAAlphabet(), reinterpret(AminoAcid, 0xff)) end @testset "Encoding DNA/RNA/AminoAcid" begin @testset "DNA" begin # 2 bits @test encode(DNAAlphabet{2}(), DNA_A) === UInt(0x00) @test encode(DNAAlphabet{2}(), DNA_C) === UInt(0x01) @test encode(DNAAlphabet{2}(), DNA_G) === UInt(0x02) @test encode(DNAAlphabet{2}(), DNA_T) === UInt(0x03) @test_throws EncodeError encode(DNAAlphabet{2}(), DNA_M) @test_throws EncodeError encode(DNAAlphabet{2}(), DNA_N) @test_throws EncodeError encode(DNAAlphabet{2}(), DNA_Gap) # 4 bits for nt in BioSymbols.alphabet(DNA) @test encode(DNAAlphabet{4}(), nt) === UInt(reinterpret(UInt8, nt)) end @test_throws EncodeError encode(DNAAlphabet{4}(), reinterpret(DNA, 0b10000)) end @testset "RNA" begin # 2 bits @test encode(RNAAlphabet{2}(), RNA_A) === UInt(0x00) @test encode(RNAAlphabet{2}(), RNA_C) === UInt(0x01) @test encode(RNAAlphabet{2}(), RNA_G) === UInt(0x02) @test encode(RNAAlphabet{2}(), RNA_U) === UInt(0x03) @test_throws EncodeError encode(RNAAlphabet{2}(), RNA_M) @test_throws EncodeError encode(RNAAlphabet{2}(), RNA_N) @test_throws EncodeError encode(RNAAlphabet{2}(), RNA_Gap) # 4 bits for nt in BioSymbols.alphabet(RNA) @test encode(RNAAlphabet{4}(), nt) === UInt(reinterpret(UInt8, nt)) end @test_throws EncodeError encode(RNAAlphabet{4}(), reinterpret(RNA, 0b10000)) end @testset "AminoAcid" begin @test encode(AminoAcidAlphabet(), AA_A) === UInt(0x00) for aa in BioSymbols.alphabet(AminoAcid) @test encode(AminoAcidAlphabet(), aa) === convert(UInt, reinterpret(UInt8, aa)) end @test_throws BioSequences.EncodeError encode(AminoAcidAlphabet(), BioSymbols.AA_INVALID) end end @testset "Decoding DNA/RNA/AminoAcid" begin @testset "DNA" begin # 2 bits @test decode(DNAAlphabet{2}(), 0x00) === DNA_A @test decode(DNAAlphabet{2}(), 0x01) === DNA_C @test decode(DNAAlphabet{2}(), 0x02) === DNA_G @test decode(DNAAlphabet{2}(), 0x03) === DNA_T # 4 bits for x in 0b0000:0b1111 @test decode(DNAAlphabet{4}(), x) === reinterpret(DNA, x) end end @testset "RNA" begin # 2 bits @test decode(RNAAlphabet{2}(), 0x00) === RNA_A @test decode(RNAAlphabet{2}(), 0x01) === RNA_C @test decode(RNAAlphabet{2}(), 0x02) === RNA_G @test decode(RNAAlphabet{2}(), 0x03) === RNA_U # 4 bits for x in 0b0000:0b1111 @test decode(RNAAlphabet{4}(), x) === reinterpret(RNA, x) end end @testset "AminoAcid" begin @test decode(AminoAcidAlphabet(), 0x00) === AA_A for x in 0x00:0x1b @test decode(AminoAcidAlphabet(), x) === reinterpret(AminoAcid, x) end end end @testset "Interface" begin @test BioSequences.has_interface(Alphabet, DNAAlphabet{2}()) @test BioSequences.has_interface(Alphabet, DNAAlphabet{4}()) @test BioSequences.has_interface(Alphabet, RNAAlphabet{2}()) @test BioSequences.has_interface(Alphabet, RNAAlphabet{4}()) @test BioSequences.has_interface(Alphabet, AminoAcidAlphabet()) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5566
@testset "Counting" begin @testset "GC content" begin @test gc_content(dna"") === 0.0 @test gc_content(dna"AATA") === 0.0 @test gc_content(dna"ACGT") === 0.5 @test gc_content(dna"CGGC") === 1.0 @test gc_content(dna"ACATTGTGTATAACAAAAGG") === 6 / 20 @test gc_content(dna"GAGGCGTTTATCATC"[2:end]) === 6 / 14 @test gc_content(rna"") === 0.0 @test gc_content(rna"AAUA") === 0.0 @test gc_content(rna"ACGU") === 0.5 @test gc_content(rna"CGGC") === 1.0 @test gc_content(rna"ACAUUGUGUAUAACAAAAGG") === 6 / 20 @test gc_content(rna"GAGGCGUUUAUCAUC"[2:end]) === 6 / 14 @test_throws Exception gc_content(aa"ARN") Random.seed!(1234) for _ in 1:200 s = randdnaseq(rand(1:100)) @test gc_content(s) === count(isGC, s) / length(s) @test gc_content(LongSequence{DNAAlphabet{2}}(s)) === count(isGC, s) / length(s) i = rand(1:lastindex(s)) j = rand(i-1:lastindex(s)) @test gc_content(s[i:j]) === (j < i ? 0.0 : count(isGC, s[i:j]) / (j - i + 1)) end end function testcounter( pred::Function, alias::Function, seqa::BioSequence, seqb::BioSequence, singlearg::Bool, multi_alias::Function ) # Test that order does not matter. @test count(pred, seqa, seqb) == count(pred, seqb, seqa) @test BioSequences.count_naive(multi_alias, seqa, seqb) == BioSequences.count_naive(multi_alias, seqb, seqa) @test alias(seqa, seqb) == alias(seqb, seqa) # Test that result is the same as counting naively. @test count(pred, seqa, seqb) == BioSequences.count_naive(multi_alias, seqa, seqb) @test count(pred, seqb, seqa) == BioSequences.count_naive(multi_alias, seqb, seqa) # Test that the alias function works. @test count(pred, seqa, seqb) == alias(seqa, seqb) @test count(pred, seqb, seqa) == alias(seqb, seqa) if singlearg @test count(pred, seqa) == count(pred, (i for i in seqa)) @test BioSequences.count_naive(pred, seqa) == BioSequences.count(pred, seqa) end end function counter_random_tests( pred::Function, alias::Function, alphx::Type{<:Alphabet}, alphy::Type{<:Alphabet}, subset::Bool, singlearg::Bool, multi_alias::Function ) for _ in 1:10 seqA = random_seq(alphx, rand(10:100)) seqB = random_seq(alphy, rand(10:100)) sa = seqA sb = seqB if subset intA = random_interval(1, length(seqA)) intB = random_interval(1, length(seqB)) subA = view(seqA, intA) subB = view(seqB, intB) sa = subA sb = subB end testcounter(pred, alias, sa, sb, singlearg, multi_alias) end end @testset "Mismatches" begin for a in (DNAAlphabet, RNAAlphabet) # Can't promote views for sub in (true, false) for n in (4, 2) counter_random_tests(!=, mismatches, a{n}, a{n}, sub, false, !=) end end counter_random_tests(!=, mismatches, a{4}, a{2}, false, false, !=) counter_random_tests(!=, mismatches, a{2}, a{4}, false, false, !=) end end @testset "Matches" begin for a in (DNAAlphabet, RNAAlphabet) for sub in (true, false) for n in (4, 2) counter_random_tests(==, matches, a{n}, a{n}, sub, false, ==) end end counter_random_tests(==, matches, a{4}, a{2}, false, false, ==) counter_random_tests(==, matches, a{2}, a{4}, false, false, ==) end end @testset "Ambiguous" begin for a in (DNAAlphabet, RNAAlphabet) # Can't promote views for n in (4, 2) for sub in (true, false) counter_random_tests(isambiguous, n_ambiguous, a{n}, a{n}, sub, false, BioSequences.isambiguous_or) end end counter_random_tests(isambiguous, n_ambiguous, a{4}, a{2}, false, true, BioSequences.isambiguous_or) counter_random_tests(isambiguous, n_ambiguous, a{2}, a{4}, false, true, BioSequences.isambiguous_or) end end @testset "Certain" begin for a in (DNAAlphabet, RNAAlphabet) for n in (4, 2) for sub in (true, false) counter_random_tests(iscertain, n_certain, a{n}, a{n}, sub, true, BioSequences.iscertain_and) end end counter_random_tests(iscertain, n_certain, a{4}, a{2}, false, true, BioSequences.iscertain_and) counter_random_tests(iscertain, n_certain, a{2}, a{4}, false, true, BioSequences.iscertain_and) end end @testset "Gap" begin for a in (DNAAlphabet, RNAAlphabet) for n in (4, 2) for sub in (true, false) counter_random_tests(isgap, n_gaps, a{n}, a{n}, sub, true, BioSequences.isgap_or) end end counter_random_tests(isgap, n_gaps, a{4}, a{2}, false, true, BioSequences.isgap_or) counter_random_tests(isgap, n_gaps, a{2}, a{4}, false, true, BioSequences.isgap_or) end end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
1501
module TestBioSequences using Test using Documenter using Random using StableRNGs using LinearAlgebra: normalize import BioSymbols using BioSequences using StatsBase using YAML # Test for the absence of ubound type parameters in the package @test length(Test.detect_unbound_args(BioSequences, recursive=true)) == 0 # Test utils not dependent on BioSymbols include("utils.jl") @testset "Alphabet" begin include("alphabet.jl") end @testset "BioSequences" begin include("biosequences/biosequence.jl") include("biosequences/indexing.jl") include("biosequences/misc.jl") end @testset "LongSequences" begin include("longsequences/basics.jl") include("longsequences/conversion.jl") include("longsequences/seqview.jl") include("longsequences/hashing.jl") include("longsequences/iteration.jl") include("longsequences/mutability.jl") include("longsequences/print.jl") include("longsequences/transformations.jl") include("longsequences/predicates.jl") include("longsequences/find.jl") include("longsequences/randseq.jl") include("longsequences/shuffle.jl") end include("translation.jl") include("counting.jl") @testset "Search" begin include("search/ExactSearchQuery.jl") include("search/ApproximateSearchQuery.jl") include("search/regex.jl") include("search/pwm.jl") end # Include doctests. DocMeta.setdocmeta!(BioSequences, :DocTestSetup, :(using BioSequences); recursive=true) doctest(BioSequences; manual = false) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5427
@testset "Translation" begin # crummy string translation to test against standard_genetic_code_dict = let d_ = Dict{String,Char}( "AAA" => 'K', "AAC" => 'N', "AAG" => 'K', "AAU" => 'N', "ACA" => 'T', "ACC" => 'T', "ACG" => 'T', "ACU" => 'T', "AGA" => 'R', "AGC" => 'S', "AGG" => 'R', "AGU" => 'S', "AUA" => 'I', "AUC" => 'I', "AUG" => 'M', "AUU" => 'I', "CAA" => 'Q', "CAC" => 'H', "CAG" => 'Q', "CAU" => 'H', "CCA" => 'P', "CCC" => 'P', "CCG" => 'P', "CCU" => 'P', "CGA" => 'R', "CGC" => 'R', "CGG" => 'R', "CGU" => 'R', "CUA" => 'L', "CUC" => 'L', "CUG" => 'L', "CUU" => 'L', "GAA" => 'E', "GAC" => 'D', "GAG" => 'E', "GAU" => 'D', "GCA" => 'A', "GCC" => 'A', "GCG" => 'A', "GCU" => 'A', "GGA" => 'G', "GGC" => 'G', "GGG" => 'G', "GGU" => 'G', "GUA" => 'V', "GUC" => 'V', "GUG" => 'V', "GUU" => 'V', "UAA" => '*', "UAC" => 'Y', "UAG" => '*', "UAU" => 'Y', "UCA" => 'S', "UCC" => 'S', "UCG" => 'S', "UCU" => 'S', "UGA" => '*', "UGC" => 'C', "UGG" => 'W', "UGU" => 'C', "UUA" => 'L', "UUC" => 'F', "UUG" => 'L', "UUU" => 'F', ) d = Dict{NTuple{3, RNA}, Char}(map(RNA, Tuple(k)) => v for (k, v) in d_) for (a, b, c) in Iterators.product(ntuple(i -> alphabet(RNA), Val{3}())...) (a == RNA_Gap || b == RNA_Gap || c == RNA_Gap) && continue (a, b, c) ∈ keys(d) && continue possible = ' ' for (x, y, z) in Iterators.product(map(BioSequences.UnambiguousRNAs, (a, b, c))...) new_possible = d[(x, y, z)] if possible == ' ' possible = new_possible elseif possible == new_possible nothing elseif possible ∈ ('J', 'I', 'L') && new_possible ∈ ('I', 'L') possible = 'J' elseif possible ∈ ('B', 'D', 'N') && new_possible ∈ ('D', 'N') possible = 'B' elseif possible ∈ ('Z', 'Q', 'E') && new_possible ∈ ('Q', 'E') possible = 'Z' else possible = 'X' break end end d[(a, b, c)] = possible end result = Dict(join(k) => v for (k, v) in d) for (k, v) in result if 'U' in k result[replace(k, 'U'=>'T')] = v end end result end function string_translate(seq::AbstractString) @assert length(seq) % 3 == 0 aaseq = Vector{Char}(undef, div(length(seq), 3)) for i in 1:3:length(seq) - 3 + 1 aaseq[div(i, 3) + 1] = standard_genetic_code_dict[seq[i:i+2]] end return String(aaseq) end # Basics @test length(BioSequences.standard_genetic_code) == 64 buf = IOBuffer() show(buf, BioSequences.standard_genetic_code) @test !iszero(length(take!(buf))) # just test it doesn't error # TransTables @test BioSequences.TransTables() isa BioSequences.TransTables @test BioSequences.ncbi_trans_table[1] === BioSequences.standard_genetic_code buf = IOBuffer() show(buf, BioSequences.ncbi_trans_table) @test !iszero(length(take!(buf))) # Test translation values sampler = SamplerWeighted(rna"ACGUMRSVWYHKDBN", [fill(0.2, 4); fill(0.018181818, 10)]) for len in [3, 9, 54, 102] for A in [DNAAlphabet{4}(), RNAAlphabet{4}()] for attempt in 1:25 seq = randseq(A, sampler, len) @test string(translate(seq)) == string_translate(string(seq)) for window in [1:3, 5:13, 11:67] checkbounds(Bool, eachindex(seq), window) || continue v = view(seq, window) @test string(translate(v)) == string_translate(string(v)) end end end for A in [DNAAlphabet{2}(), RNAAlphabet{2}()] seq = randseq(A, len) @test string(translate(seq)) == string_translate(string(seq)) end end # ambiguous codons @test translate(rna"YUGMGG") == aa"LR" @test translate(rna"GAYGARGAM") == aa"DEX" @test translate(rna"MUCGGG") == aa"JG" @test translate(rna"AAASAAUUU") == aa"KZF" # BioSequences{RNAAlphabet{2}} @test translate(LongSequence{RNAAlphabet{2}}("AAAUUUGGGCCC")) == translate(rna"AAAUUUGGGCCC") @test translate(LongSequence{DNAAlphabet{2}}("AAATTTGGGCCC")) == translate(dna"AAATTTGGGCCC") # LongDNA{4} @test translate(dna"ATGTAA") == aa"M*" # Alternative start codons @test translate(rna"GUGUAA", alternative_start = true) == aa"M*" @test_throws Exception translate(rna"ACGUACGU") # can't translate non-multiples of three # can't translate N @test_throws Exception translate(rna"ACGUACGNU", allow_ambiguous_codons=false) # Can't translate gaps @test_throws Exception translate(dna"A-G") @test_throws Exception translate(dna"---") @test_throws Exception translate(dna"AACGAT-A-") # issue #133 @test translate(rna"GAN") == aa"X" # Test views seq = dna"TAGTGCNTAGDACGGGWAAABCCGTAC" @test translate(view(seq, 1:0)) == aa"" @test translate(LongSubSeq{RNAAlphabet{4}}(seq, 2:length(seq)-2)) == translate(seq[2:end-2]) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3814
# This file contains only utility functions that do NOT # depend on BioSequences const codons = [ "AAA", "AAC", "AAG", "AAU", "ACA", "ACC", "ACG", "ACU", "AGA", "AGC", "AGG", "AGU", "AUA", "AUC", "AUG", "AUU", "CAA", "CAC", "CAG", "CAU", "CCA", "CCC", "CCG", "CCU", "CGA", "CGC", "CGG", "CGU", "CUA", "CUC", "CUG", "CUU", "GAA", "GAC", "GAG", "GAU", "GCA", "GCC", "GCG", "GCU", "GGA", "GGC", "GGG", "GGU", "GUA", "GUC", "GUG", "GUU", "UAA", "UAC", "UAG", "UAU", "UCA", "UCC", "UCG", "UCU", "UGA", "UGC", "UGG", "UGU", "UUA", "UUC", "UUG", "UUU", # translatable ambiguities in the standard code "CUN", "CCN", "CGN", "ACN", "GUN", "GCN", "GGN", "UCN" ] function random_translatable_rna(n) probs = fill(1.0 / length(codons), length(codons)) cumprobs = cumsum(probs) r = rand() x = Vector{String}(undef, n) for i in 1:n x[i] = codons[searchsorted(cumprobs, rand()).start] end return string(x...) end function get_bio_fmt_specimens() path = joinpath(dirname(@__FILE__), "BioFmtSpecimens") if !isdir(path) run(`git clone --depth 1 https://github.com/BioJulia/BioFmtSpecimens.git $(path)`) end end # The generation of random test cases... function random_array(n::Integer, elements, probs) cumprobs = cumsum(probs) x = Vector{eltype(elements)}(undef, n) for i in 1:n x[i] = elements[searchsorted(cumprobs, rand()).start] end return x end # Return a random DNA/RNA sequence of the given length. function random_seq(n::Integer, nts, probs) cumprobs = cumsum(probs) x = Vector{Char}(undef, n) for i in 1:n x[i] = nts[searchsorted(cumprobs, rand()).start] end return String(x) end function random_seq(::Type{A}, n::Integer) where {A<:Alphabet} # TODO: Resolve the use of symbols(A()). nts = symbols(A()) probs = Vector{Float64}(undef, length(nts)) fill!(probs, 1 / length(nts)) return LongSequence{A}(random_seq(n, nts, probs)) end function random_dna(n, probs=[0.24, 0.24, 0.24, 0.24, 0.04]) return random_seq(n, ['A', 'C', 'G', 'T', 'N'], probs) end function random_rna(n, probs=[0.24, 0.24, 0.24, 0.24, 0.04]) return random_seq(n, ['A', 'C', 'G', 'U', 'N'], probs) end function random_aa(len) return random_seq(len, ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', 'X' ], push!(fill(0.049, 20), 0.02)) end function intempdir(fn::Function, parent=tempdir()) dirname = mktempdir(parent) try cd(fn, dirname) finally rm(dirname, recursive=true) end end function random_dna_kmer(len) return random_dna(len, [0.25, 0.25, 0.25, 0.25]) end function random_rna_kmer(len) return random_rna(len, [0.25, 0.25, 0.25, 0.25]) end function random_dna_kmer_nucleotides(len) return random_array(len, [DNA_A, DNA_C, DNA_G, DNA_T], [0.25, 0.25, 0.25, 0.25]) end function random_rna_kmer_nucleotides(len) return random_array(len, [RNA_A, RNA_C, RNA_G, RNA_U], [0.25, 0.25, 0.25, 0.25]) end function dna_complement(seq::AbstractString) seqc = Vector{Char}(undef, length(seq)) complementer = Dict(zip("-ACGTSWYRKMDVHBN", "-TGCASWRYMKHBDVN")) for (i, c) in enumerate(seq) seqc[i] = complementer[c] end return String(seqc) end function rna_complement(seq::AbstractString) seqc = Vector{Char}(undef, length(seq)) complementer = Dict(zip("-ACGUSWYRKMDVHBN", "-UGCASWRYMKHBDVN")) for (i, c) in enumerate(seq) seqc[i] = complementer[c] end return String(seqc) end function random_interval(minstart, maxstop) start = rand(minstart:maxstop) return start:rand(start:maxstop) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2774
struct Unsafe end # Create new biosequence for testing struct SimpleSeq <: BioSequence{RNAAlphabet{2}} x::Vector{UInt} SimpleSeq(::Unsafe, x::Vector{UInt}) = new(x) end function SimpleSeq(it) SimpleSeq(Unsafe(), [BioSequences.encode(Alphabet(SimpleSeq), convert(RNA, i)) for i in it]) end Base.copy(x::SimpleSeq) = SimpleSeq(Unsafe(), copy(x.x)) Base.length(x::SimpleSeq) = length(x.x) BioSequences.encoded_data_eltype(::Type{SimpleSeq}) = UInt BioSequences.extract_encoded_element(x::SimpleSeq, i::Integer) = x.x[i] BioSequences.encoded_setindex!(x::SimpleSeq, e::UInt, i::Integer) = x.x[i] = e SimpleSeq(::UndefInitializer, x::Integer) = SimpleSeq(Unsafe(), zeros(UInt, x)) Base.resize!(x::SimpleSeq, len::Int) = (resize!(x.x, len); x) # Not part of the API, just used for testing purposes random_simple(len::Integer) = SimpleSeq(rand([RNA_A, RNA_C, RNA_G, RNA_U], len)) @testset "Basics" begin @test BioSequences.has_interface(BioSequence, SimpleSeq, [RNA_C], true) seq = SimpleSeq([RNA_C, RNA_G, RNA_U]) @test seq isa BioSequence{RNAAlphabet{2}} @test Alphabet(seq) === RNAAlphabet{2}() @test empty(seq) isa BioSequence @test eltype(typeof(seq)) == RNA @test eltype(seq) == RNA @test copy(seq) == seq @test copy(seq) !== seq @test length(seq) == 3 @test size(seq) == (3,) @test length(empty(seq)) == 0 @test isempty(empty(seq)) @test isempty(empty(seq)) @test firstindex(seq) == 1 @test lastindex(seq) == 3 @test collect(eachindex(seq)) == [1, 2, 3] @test collect(keys(seq)) == [1, 2, 3] @test nextind(seq, firstindex(seq)) == 2 @test prevind(seq, lastindex(seq)) == 2 @test prevind(seq, 2) == 1 seq2 = SimpleSeq([RNA_U, RNA_C, RNA_U]) gen = (i for i in [seq, seq2]) newseq = SimpleSeq([]) join!(newseq, [seq, seq2]) @test newseq == SimpleSeq([RNA(i) for i in "CGUUCU"]) join!(newseq, gen) @test newseq == SimpleSeq([RNA(i) for i in "CGUUCU"]) join!(newseq, [RNA_U, RNA_C, SimpleSeq([RNA_G, RNA_C])]) @test newseq == SimpleSeq([RNA(i) for i in "UCGC"]) @test join(SimpleSeq, [seq, seq2]) == join!(SimpleSeq([]), [seq, seq2]) @test join(SimpleSeq, gen) == join!(SimpleSeq([]), gen) @test join(SimpleSeq, [RNA_U, RNA_G, seq, RNA_U]) == SimpleSeq([RNA(i) for i in "UGCGUU"]) @test copy!(SimpleSeq([]), seq) == seq seq3 = copy(seq2) @test copyto!(seq3, seq) == seq seq3 = copy(seq2) @test copyto!(seq3, 2, seq, 3, 1) == SimpleSeq([RNA(i) for i in "UUU"]) @test_throws EncodeError SimpleSeq([RNA_C, RNA_G, RNA_M]) @test_throws EncodeError SimpleSeq([RNA_Gap]) @test_throws MethodError SimpleSeq(1:3) @test_throws MethodError SimpleSeq([DNA_C, "foo", DNA_C]) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5817
@testset "Getindex" begin @testset "Scalar getindex" begin seq = SimpleSeq([RNA_C, RNA_G, RNA_C, RNA_A]) @test_throws BoundsError seq[0] @test_throws BoundsError seq[5] @test first(seq) == RNA_C @test last(seq) == RNA_A @test seq[2] == RNA_G @test seq[3] == RNA_C end @testset "Getindex w. bool array" begin char_arr = map(RNA, collect("ACGUAGCUAUUAUACCC")) seq = SimpleSeq(char_arr) # len = 17 @test_throws BoundsError seq[fill(true, length(char_arr) - 1)] @test_throws BoundsError seq[fill(true, length(char_arr) + 1)] for i in 1:3 arr = rand(Bool, length(seq)) seq2 = seq[arr] @test length(seq2) == count(arr) @test seq2 == SimpleSeq(char_arr[arr]) end end @testset "Getindex w. unit range" begin char_arr = map(RNA, collect("ACGUAGAUUAUUUCUCCAA")) # len = 19 seq = SimpleSeq(char_arr) @test seq[1:0] == empty(seq) @test seq[5:4] == empty(seq) @test_throws BoundsError seq[-1:2] @test_throws BoundsError seq[5:22] @test_throws BoundsError seq[0:19] @test seq[2:5] == SimpleSeq(map(RNA, collect("CGUA"))) @test seq[1:9] == SimpleSeq(map(RNA, collect("ACGUAGAUU"))) @test seq[1:18] == SimpleSeq(map(RNA, collect("ACGUAGAUUAUUUCUCCA"))) @test seq[1:19] == seq end @testset "Getindex w. colon" begin char_arr = map(RNA, collect("ACGUAGAUUAUUUCUCCAA")) # len = 19 seq = SimpleSeq(char_arr) seq[:] == seq seq[:] !== seq seq = SimpleSeq([RNA_A, RNA_C]) seq[:] == SimpleSeq([RNA_A, RNA_C]) seq[:] !== seq seq = empty(seq) seq[:] == empty(seq) seq[:] !== empty(seq) end @testset "Getindex w. integer array" begin char_arr = map(RNA, collect("AGCGUAUAGCGA")) # len = 12 seq = SimpleSeq(char_arr) seq[Int[]] == empty(seq) @test_throws BoundsError seq[[-1, 2, 4]] @test_throws BoundsError seq[[3, 7, 9, 0]] @test_throws BoundsError seq[[5, 3, 13]] seq[[5, 2, 1]] == SimpleSeq([RNA_U, RNA_C, RNA_A]) seq[1:2:11] == SimpleSeq(collect(seq)[1:2:11]) end end @testset "Setindex!" begin @testset "Scalar setindex!" begin seq = SimpleSeq([RNA_U, RNA_U, RNA_A]) @test_throws BoundsError seq[0] = RNA_A @test_throws BoundsError seq[-3] = RNA_A @test_throws BoundsError seq[4] = RNA_U @test_throws MethodError seq[1] = AA_A @test_throws MethodError seq[1] = UInt8(1) seq[2] = RNA_U @test seq == SimpleSeq([RNA_U, RNA_U, RNA_A]) seq[1] = RNA_G @test seq == SimpleSeq([RNA_G, RNA_U, RNA_A]) # RNA/DNA can be converted freely seq[3] = DNA_T @test seq == SimpleSeq([RNA_G, RNA_U, RNA_U]) end @testset "Setindex w. bool array" begin function test_bool_arr(s::SimpleSeq, mask::AbstractArray{Bool}) n = count(mask) seq2 = random_simple(n) cp = copy(s) @test s[mask] == SimpleSeq(collect(cp)[mask]) end random_simple(len::Integer) = SimpleSeq(rand([RNA_A, RNA_C, RNA_G, RNA_U], len)) seq = random_simple(19) @test_throws DimensionMismatch seq[trues(19)] = random_simple(18) @test_throws BoundsError seq[trues(18)] = random_simple(19) mask = vcat(falses(2), trues(5), falses(12)) @test_throws DimensionMismatch seq[mask] = random_simple(4) @test_throws DimensionMismatch seq[mask] = random_simple(6) test_bool_arr(seq, mask) for i in 1:5 seq = random_simple(20) mask = rand(Bool, 20) test_bool_arr(seq, mask) end end @testset "Setindex with colon" begin seq1 = SimpleSeq(map(RNA, collect("AGAUGCUCUUAGAC"))) seq2 = SimpleSeq(map(RNA, collect("AGUCGUAUAUAGGC"))) seq3 = copy(seq1) seq3[:] = seq2 @test seq3 == seq2 seq3 = copy(seq2) seq3[:] = seq1 @test seq3 == seq1 seq3 = copy(seq2) seq3[:] = collect("AGAUGCUCUUAGAC") @test seq3 == seq1 seq3 = empty(seq1)[:] seq3[:] = RNA[] @test isempty(seq3) end @testset "Setindex with unit range" begin seq = SimpleSeq(map(RNA, collect("AUGCUGUAUUCGGAAA"))) # 16 bp @test_throws BoundsError seq[15:17] = [RNA_A, RNA_C, RNA_U] @test_throws BoundsError seq[5:25] = "" @test_throws DimensionMismatch seq[5:7] = "AUCG" seq2 = copy(seq) seq2[5:4] = "" @test seq2 == seq seq[4:6] = "CAU" @test seq == SimpleSeq(map(RNA, collect("AUGCAUUAUUCGGAAA"))) end @testset "Setindex with integer array" begin seq = SimpleSeq(map(RNA, collect("AUGCUGCGUAUGUUCUU"))) # 17 bp @test_throws BoundsError seq[[0, 1, 2]] = "UUU" @test_throws BoundsError seq[[6, 1, 18]] = "UUU" @test_throws DimensionMismatch seq[[4,5,6]] = "UU" @test_throws DimensionMismatch seq[[4,5,6]] = "ACGU" seq[[2,6,8]] = "ACU" @test seq == SimpleSeq(map(RNA, collect("AAGCUCCUUAUGUUCUU"))) seq[1:2:17] = "ACG"^3 @test seq == SimpleSeq(map(RNA, collect("AACCGCAUCAGGAUCUG"))) end end @testset "BitIndex" begin ind = BioSequences.BitIndex{4, UInt64}(16) @test BioSequences.BitsPerSymbol(ind) == BioSequences.BitsPerSymbol{4}() @test BioSequences.bitwidth(UInt64) == 64 @test BioSequences.bitwidth(UInt16) == 16 @test BioSequences.prevposition(ind) == BioSequences.BitIndex{4, UInt64}(12) @test BioSequences.nextposition(ind) == BioSequences.BitIndex{4, UInt64}(20) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
6507
@testset "Convert to String or Vector" begin seq = SimpleSeq("ACGUAAUUUCA") @test String(seq) == "ACGUAAUUUCA" seq = SimpleSeq(RNA[]) @test isempty(seq) end @testset "Counting" begin for i in 1:3 seq = random_simple(100) str = String(seq) @test count(isequal(RNA_A), seq) == count(isequal('A'), str) @test count(isambiguous, seq) == 0 @test count(iscertain, seq) == length(seq) @test count(x -> x in (RNA_A, RNA_C), seq) == count(x -> x in "AC", str) @test isapprox(gc_content(seq), count(x -> x in "GC", str) / length(seq)) @test n_ambiguous(seq) == 0 @test n_certain(seq) == length(seq) @test n_gaps(seq) == 0 end end @testset "Matches/mismatches" begin seq1 = random_simple(1000) seq2 = random_simple(1000) n_matches = sum(i == j for (i, j) in zip(seq1, seq2)) @test mismatches(seq1, seq2) == length(seq1) - n_matches @test matches(seq1, seq2) == n_matches end @testset "Finding" begin @testset "Findfirst" begin seq = SimpleSeq("AUGCUGAUGAC") seq2 = SimpleSeq("AUGAUGAUGAUGUACA") @test findfirst(isequal(RNA_U), seq) == 2 @test findfirst(isequal(missing), seq) === nothing @test findfirst(x -> true, empty(seq)) === nothing @test findfirst(x -> x == RNA_C, seq2) == 15 end @testset "Findlast" begin seq = SimpleSeq("AUGCUGAUGAC") seq2 = SimpleSeq("AUGAUGAUGAUGUACA") @test findlast(isequal(RNA_U), seq) == 8 @test findlast(isequal(missing), seq) === nothing @test findlast(x -> true, empty(seq)) === nothing @test findlast(x -> x == RNA_C, seq2) == 15 end @testset "Findnext / prev" begin seq = SimpleSeq("AUGAUGAUGAUGUACA") # 16 nt @test findnext(x -> true, seq, 17) === nothing @test findprev(x -> true, seq, 0) === nothing @test_throws BoundsError findnext(x -> true, seq, 0) @test_throws BoundsError findprev(x -> true, seq, 17) @test findnext(isequal(RNA_U), seq, 6) == 8 @test findprev(isequal(RNA_U), seq, 6) == 5 end end @testset "Equality" begin @test SimpleSeq("AUGC") == SimpleSeq("AUGC") @test SimpleSeq("AUGC") != SimpleSeq("AUG") @test SimpleSeq("AUGC") != SimpleSeq("AUGCA") @test SimpleSeq("A") != SimpleSeq("U") @test !isless(SimpleSeq("GAC"), SimpleSeq("CAC")) @test isless(SimpleSeq("UG"), SimpleSeq("UGA")) @test isless(SimpleSeq("AGCUUA"), SimpleSeq("AGCUUU")) # This is particular for the RNA alphabet of SimpleSeq, not generic for i in 1:5 seq1, seq2 = random_simple(20), random_simple(20) @test isless(seq1, seq2) == isless(String(seq1), String(seq2)) end end @testset "Repetitive" begin @test isrepetitive(SimpleSeq("CCCCCCCCC")) @test !isrepetitive(SimpleSeq("CCCCCCCCA")) @test isrepetitive(SimpleSeq(RNA[])) @test isrepetitive(SimpleSeq("GAUGUCGAAAC"), 3) @test !isrepetitive(SimpleSeq("GAUGUCGAAAC"), 4) @test isrepetitive(SimpleSeq("")) @test !isrepetitive(SimpleSeq(""), 1) @test isrepetitive(SimpleSeq("A")) @test isrepetitive(SimpleSeq("A"), 1) @test isrepetitive(SimpleSeq("AAA")) @test !isrepetitive(SimpleSeq("ACGU"), 2) @test isrepetitive(SimpleSeq("AAGU"), 2) @test isrepetitive(SimpleSeq("ACCG"), 2) @test isrepetitive(SimpleSeq("ACGG"), 2) @test !isrepetitive(SimpleSeq("ACGUCCGU"), 3) @test isrepetitive(SimpleSeq("ACGCCCGU"), 3) @test isrepetitive(SimpleSeq("")) @test !isrepetitive(SimpleSeq(""), 1) @test isrepetitive(SimpleSeq("A")) @test isrepetitive(SimpleSeq("A"), 1) @test isrepetitive(SimpleSeq("AAA")) @test !isrepetitive(SimpleSeq("ACGU"), 2) @test isrepetitive(SimpleSeq("AAGU"), 2) @test isrepetitive(SimpleSeq("ACCG"), 2) @test isrepetitive(SimpleSeq("ACGG"), 2) @test !isrepetitive(SimpleSeq("ACGUCCGU"), 3) @test isrepetitive(SimpleSeq("ACGCCCGU"), 3) end @testset "Canonical" begin @test iscanonical(SimpleSeq("ACCG")) @test iscanonical(SimpleSeq("GCAC")) @test iscanonical(SimpleSeq("AAUU")) @test !iscanonical(SimpleSeq("UGGA")) @test !iscanonical(SimpleSeq("CGAU")) @test canonical(SimpleSeq("UGGA")) == SimpleSeq("UCCA") @test canonical(SimpleSeq("GCAC")) == SimpleSeq("GCAC") seq = SimpleSeq("CGAU") canonical!(seq) @test seq == SimpleSeq("AUCG") @test iscanonical(SimpleSeq("UCA")) @test !iscanonical(SimpleSeq("UGA")) end @testset "Ispalindromic" begin @test ispalindromic(SimpleSeq("")) @test !ispalindromic(SimpleSeq("A")) @test !ispalindromic(SimpleSeq("C")) @test ispalindromic(SimpleSeq("AU")) @test ispalindromic(SimpleSeq("CG")) @test !ispalindromic(SimpleSeq("AC")) @test !ispalindromic(SimpleSeq("UU")) @test ispalindromic(SimpleSeq("ACGU")) @test ispalindromic(SimpleSeq("")) @test !ispalindromic(SimpleSeq("A")) @test !ispalindromic(SimpleSeq("C")) @test ispalindromic(SimpleSeq("AU")) @test ispalindromic(SimpleSeq("CG")) @test !ispalindromic(SimpleSeq("AC")) @test !ispalindromic(SimpleSeq("UU")) @test ispalindromic(SimpleSeq("ACGU")) end @testset "Has ambiguity" begin @test !hasambiguity(SimpleSeq("UAGUCGUGAG")) @test !hasambiguity(SimpleSeq("")) @test !hasambiguity(SimpleSeq("A")) @test !hasambiguity(SimpleSeq("ACGU")) @test !hasambiguity(SimpleSeq("")) @test !hasambiguity(SimpleSeq("A")) @test !hasambiguity(SimpleSeq("ACGU")) end @testset "Shuffle" begin function test_same(a, b) @test all(symbols(Alphabet(a))) do i count(isequal(i), a) == count(isequal(i), b) end end seq = SimpleSeq([RNA(i) for i in "AGCGUUAUGCUGAUUAGGAC"]) seq2 = Random.shuffle(seq) test_same(seq, seq2) Random.shuffle!(seq) test_same(seq, seq2) end @testset "Reverse-complement" begin seq = SimpleSeq([RNA(i) for i in "UAGUUC"]) @test reverse(seq) == SimpleSeq([RNA(i) for i in "CUUGAU"]) @test complement(seq) == SimpleSeq([RNA(i) for i in "AUCAAG"]) @test reverse_complement(seq) == reverse(complement(seq)) reverse!(seq) @test seq == SimpleSeq([RNA(i) for i in "CUUGAU"]) complement!(seq) @test seq == SimpleSeq([RNA(i) for i in "GAACUA"]) end @testset "Ungap" begin seq = SimpleSeq([RNA(i) for i in "UAGUUC"]) @test ungap(seq) == seq cp = copy(seq) @test ungap!(seq) == cp end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
13286
@testset "Basics" begin @test BioSequences.has_interface(BioSequence, LongDNA{2}, [DNA_G], true) @test BioSequences.has_interface(BioSequence, LongDNA{4}, [DNA_G], true) @test BioSequences.has_interface(BioSequence, LongRNA{2}, [RNA_G], true) @test BioSequences.has_interface(BioSequence, LongRNA{4}, [RNA_G], true) @test BioSequences.has_interface(BioSequence, LongAA, [AA_G], true) seq = LongSequence{DNAAlphabet{2}}() @test isempty(seq) @test similar(seq) == seq seq = LongSequence{DNAAlphabet{2}}([DNA(i) for i in "TAGCA"]) @test seq isa LongSequence @test seq isa LongSequence{DNAAlphabet{2}} sim = similar(seq) @test typeof(sim) == typeof(seq) @test length(sim) == length(seq) # Construct from other sequences seq = LongAA("AGCTVMN") @test LongSequence(seq) == LongAA("AGCTVMN") @test LongSequence(seq, 2:5) == LongAA("GCTV") @test LongSequence(SimpleSeq("AUCGU")) isa LongRNA{2} @test LongSequence(SimpleSeq("AUCGU")) == LongRNA{2}("AUCGU") LongDNA{4}(LongRNA{4}("AUCGUA")) == LongDNA{4}("ATCGTA") # Displays a nice error when constructed from strings substrings # and bytearrays on encoding error @static if VERSION >= v"1.8" malformed = "ACWpNS" @test_throws "Cannot encode byte $(repr(UInt8('p'))) (char 'p') at index 4 to BioSequences.DNAAlphabet{4}" LongDNA{4}(malformed) malformed = "AGCUGUAGUCGGUAUAUAGGCGCGCUCGAUGAUGAUGCGUGCUGCUATDNANCUG" @test_throws "Cannot encode byte $(repr(UInt8('T'))) (char 'T') at index $(length(malformed) - 7) to BioSequences.RNAAlphabet{2}" LongRNA{2}(malformed) end end @testset "Copy sequence" begin # Test copy from sequence to sequence function test_copy(A, str) seq = LongSequence{A}(str) str2 = String(copy(seq)) @test (str == str2 == String(seq)) end for len in [0, 1, 15, 33] test_copy(DNAAlphabet{4}, random_dna(len)) test_copy(RNAAlphabet{2}, random_rna(len, [0.25, 0.25, 0.25, 0.25])) test_copy(AminoAcidAlphabet, random_aa(len)) end end # testset @testset "Copy! sequence" begin function test_copy!(A, srctxt) src = LongSequence{A}(srctxt) dst = LongSequence{A}(undef, 0) for len in [max(0, length(src) - 3), length(src), length(src) + 4] resize!(dst, len) copy!(dst, src) @test String(dst) == String(src) end end test_copy!(DNAAlphabet{4}, random_dna(14)) test_copy!(RNAAlphabet{2}, random_rna(55, [0.25, 0.25, 0.25, 0.25])) test_copy!(AminoAcidAlphabet, random_aa(18)) # Also works across nucleotide types! for N in (2,4) src = LongDNA{N}(random_dna(33, [0.25, 0.25, 0.25, 0.25])) dst = LongRNA{N}(random_rna(31, [0.25, 0.25, 0.25, 0.25])) copy!(dst, src) @test String(typeof(dst)(src)) == String(dst) resize!(dst, 16) copy!(src, dst) @test String(typeof(dst)(src)) == String(dst) end # Doesn't work for wrong types @test_throws Exception copy!(LongDNA{4}("TAG"), LongAA("WGM")) @test_throws Exception copy!(LongDNA{2}("TAG"), LongRNA{4}("UGM")) end @testset "Copyto! sequence" begin function test_copyto!1(A1, dst, A2, src) dst_ = LongSequence{A1}(dst) src_ = LongSequence{A2}(src) copyto!(dst_, src_) @test String(src_) == String(dst_[1:length(src_)]) end test_copyto!1(DNAAlphabet{4}, random_dna(19), DNAAlphabet{4}, random_dna(17)) test_copyto!1(RNAAlphabet{2}, random_rna(31, [0.25, 0.25, 0.25, 0.25]), RNAAlphabet{2}, random_rna(11, [0.25, 0.25, 0.25, 0.25])) test_copyto!1(AminoAcidAlphabet, random_aa(61), AminoAcidAlphabet, random_aa(61)) function test_copyto2!(A, F) for len in [10, 17, 51] start = rand(1:3) N = len - rand(1:4) - start src = LongSequence{A}(F(len)) dst = LongSequence{A}(F(len)) copyto!(dst, start, src, start + 1, N) @test String(dst[start:start+N-1]) == String(src[start+1:start+N]) end end test_copyto2!(DNAAlphabet{2}, len -> random_dna(len, [0.25, 0.25, 0.25, 0.25])) test_copyto2!(RNAAlphabet{4}, random_rna) test_copyto2!(AminoAcidAlphabet, random_aa) # Test bug when copying to self src = LongDNA{4}("A"^16 * "C"^16 * "A"^16) copyto!(src, 17, src, 1, 32) @test String(src) == "A"^32 * "C"^16 # Can't copy over edge dst = LongDNA{4}("TAGCA") @test_throws Exception copyto!(dst, 1, fill(0x61, 2), 2, 3) end @testset "Copy! data" begin function test_copy!(seq, src) @test String(src) == String(copy!(seq, src)) end # Needed because conversion to String truncates vector. function test_copy!(seq, src::Vector) @test String(copy(src)) == String(copy!(copy(seq), src)) end probs = [0.25, 0.25, 0.25, 0.25, 0.00] dna2 = LongDNA{2}(undef, 6) dna4 = LongDNA{4}(undef, 6) rna2 = LongRNA{2}(undef, 6) rna4 = LongRNA{4}(undef, 6) aa = LongAA(undef, 6) for dtype in [Vector{UInt8}, Vector{Char}, String, Test.GenericString] for len in [0, 1, 5, 16, 32, 100] test_copy!(dna2, dtype(random_dna(len, probs))) test_copy!(dna4, dtype(random_dna(len))) test_copy!(rna2, dtype(random_rna(len, probs))) test_copy!(rna4, dtype(random_rna(len))) test_copy!(aa, dtype(random_aa(len))) end end end @testset "Copyto! data" begin function test_twoarg_copyto!(seq, src) copyto!(seq, src) @test String(src[1:length(src)]) == String(src) end # Needed because conversion to String truncates vector. function test_twoarg_copyto!(seq, src::Vector) copyto!(seq, src) @test String(src[1:length(src)]) == String(copy(src)) end probs = [0.25, 0.25, 0.25, 0.25, 0.00] dna2 = LongDNA{2}(undef, 50) dna4 = LongDNA{4}(undef, 50) rna2 = LongRNA{2}(undef, 50) rna4 = LongRNA{4}(undef, 50) aa = LongAA(undef, 50) for dtype in [Vector{UInt8}, Vector{Char}, String, Test.GenericString] for len in [0, 1, 10, 16, 32, 5] test_twoarg_copyto!(dna2, dtype(random_dna(len, probs))) test_twoarg_copyto!(dna4, dtype(random_dna(len))) test_twoarg_copyto!(rna2, dtype(random_rna(len, probs))) test_twoarg_copyto!(rna4, dtype(random_rna(len))) test_twoarg_copyto!(aa, dtype(random_aa(len))) end end # Five-arg copyto! function test_fivearg_copyto!(seq, src) for soff in (1, 3) for doff in (1, 5) for N in (0, 5, 18, 30) copyto!(seq, doff, src, soff, N) @test String(seq[doff:doff+N-1]) == String(src[soff:soff+N-1]) end end end end for dtype in [Vector{UInt8}, Vector{Char}, String, Test.GenericString] test_fivearg_copyto!(dna2, dtype(random_dna(60, probs))) test_fivearg_copyto!(dna4, dtype(random_dna(60))) test_fivearg_copyto!(rna2, dtype(random_rna(60, probs))) test_fivearg_copyto!(rna4, dtype(random_rna(60))) test_fivearg_copyto!(aa, dtype(random_aa(60))) end end ################ @testset "Concatenation" begin function test_concatenation(A, chunks) parts = UnitRange{Int}[] for i in 1:lastindex(chunks) start = rand(1:length(chunks[i])) stop = rand(start:length(chunks[i])) push!(parts, start:stop) end str = string([chunk[parts[i]] for (i, chunk) in enumerate(chunks)]...) seq = *([LongSequence{A}(chunk)[parts[i]] for (i, chunk) in enumerate(chunks)]...) @test String(seq) == uppercase(str) end for _ in [1, 2, 5, 10, 18, 32, 55, 64, 70] n = rand(1:10) chunks = [random_dna(rand(1:100)) for _ in 1:n] test_concatenation(DNAAlphabet{4}, chunks) chunks = [random_rna(rand(1:100)) for _ in 1:n] test_concatenation(RNAAlphabet{4}, chunks) chunks = [random_aa(rand(1:100)) for _ in 1:n] test_concatenation(AminoAcidAlphabet, chunks) probs = [0.25, 0.25, 0.25, 0.25, 0.00] chunks = [random_dna(rand(1:100), probs) for _ in 1:n] test_concatenation(DNAAlphabet{2}, chunks) chunks = [random_rna(rand(1:100), probs) for _ in 1:n] test_concatenation(RNAAlphabet{2}, chunks) end end @testset "Repetition" begin function test_repetition(A, chunk) start = rand(1:length(chunk)) stop = rand(start:length(chunk)) n = rand(1:10) str = chunk[start:stop] ^ n seq = LongSequence{A}(chunk)[start:stop] ^ n @test String(seq) == uppercase(str) end for _ in 1:10 chunk = random_dna(rand(1:100)) test_repetition(DNAAlphabet{4}, chunk) chunk = random_rna(rand(1:100)) test_repetition(RNAAlphabet{4}, chunk) chunk = random_aa(rand(1:100)) test_repetition(AminoAcidAlphabet, chunk) probs = [0.25, 0.25, 0.25, 0.25, 0.00] chunk = random_dna(rand(1:100), probs) test_repetition(DNAAlphabet{2}, chunk) chunk = random_rna(rand(1:100), probs) test_repetition(RNAAlphabet{2}, chunk) end end @testset "Join" begin function test_join(::Type{T}, seqs, result) where T @test join(T, seqs) == result @test join!(T(), seqs) == result long_seq = T(undef, 1000) @test join!(long_seq, seqs) == result end base_seq = dna"TGATGCTAVWMMKACGAS" # used for seqviews in testing test_join(LongDNA{4}, [dna"TACG", dna"ACCTGT", @view(base_seq[16:18])], dna"TACGACCTGTGAS") test_join(LongRNA{4}, Set([]), LongRNA{4}()) base_aa_seq = aa"KMAEEHPAIYWLMN" test_join(LongAA, (aa"KMVLE", aa"", (@view base_aa_seq[3:6])), aa"KMVLEAEEH") # Joining seqs and symbols test_join(LongAA, [AA_G, AA_P, AA_L, aa"MNVWEED", AA_K], aa"GPLMNVWEEDK") test_join(LongRNA{4}, [RNA_M, RNA_U, RNA_S, rna"AGCGSK"], rna"MUSAGCGSK") test_join(LongDNA{2}, [dna"ATGCTTA", DNA_G, DNA_G, DNA_A, DNA_A, DNA_A], dna"ATGCTTAGGAAA") end @testset "Length" begin for len in [0, 1, 2, 10, 16, 32, 1000] seq = LongDNA{4}(random_dna(len)) @test length(seq) === lastindex(seq) === len seq = LongRNA{4}(random_rna(len)) @test length(seq) === lastindex(seq) === len seq = LongAA(random_aa(len)) @test length(seq) === lastindex(seq) === len end end @testset "Access" begin dna_seq = dna"ACTG" @test dna_seq[1] === DNA_A @test dna_seq[2] === DNA_C @test dna_seq[3] === DNA_T @test dna_seq[4] === DNA_G # Access indexes out of bounds @test_throws BoundsError dna_seq[-1] @test_throws BoundsError dna_seq[0] @test_throws BoundsError dna_seq[5] @test dna"ACTGNACTGN"[1:5] == dna"ACTGN" @test dna"ACTGNACTGN"[5:1] == dna"" rna_seq = rna"ACUG" @test rna_seq[1] === RNA_A @test rna_seq[2] === RNA_C @test rna_seq[3] === RNA_U @test rna_seq[4] === RNA_G # Access indexes out of bounds @test_throws BoundsError rna_seq[-1] @test_throws BoundsError rna_seq[0] @test_throws BoundsError rna_seq[5] @test rna"ACUGNACUGN"[1:5] == rna"ACUGN" @test rna"ACUGNACUGN"[5:1] == rna"" @test aa"KSAAV"[3] == AA_A end @testset "Equality" begin @testset "DNA" begin a = dna"ACTGN" b = dna"ACTGN" @test a == b @test dna"ACTGN" == dna"ACTGN" @test dna"ACTGN" != dna"ACTGA" @test dna"ACTGN" != dna"ACTG" @test dna"ACTG" != dna"ACTGN" a = dna"ACGTNACGTN" b = dna""" ACGTN ACGTN """ @test a == b end @testset "RNA" begin a = rna"ACUGN" b = rna"ACUGN" @test a == b @test rna"ACUGN" == rna"ACUGN" @test rna"ACUGN" != rna"ACUGA" @test rna"ACUGN" != rna"ACUG" @test rna"ACUG" != rna"ACUGN" a = rna"ACUGNACUGN" b = rna""" ACUGN ACUGN """ @test a == b end @testset "AminoAcid" begin a = aa"ARNDCQEGHILKMFPSTWYVX" b = aa"ARNDCQEGHILKMFPSTWYVX" @test a == b @test a != aa"ARNDCQEGHILKMFPSTWYXV" @test a != aa"ARNDCQEGHLKMFPSTWYVX" b = aa""" ARNDCQEGHI LKMFPSTWYV X """ @test a == b end end @testset "Custom ASCII alphabet" begin @test string(LongSequence{ReducedAAAlphabet}("FSPMKH")) == "FSPMKH" buf = IOBuffer() print(buf, LongSequence{ReducedAAAlphabet}("AGTDNWLE")) @test String(take!(buf)) == "AGTDNWLE" #### Now add AsciiAlphabet capacity BioSequences.codetype(::ReducedAAAlphabet) = BioSequences.AsciiAlphabet() function BioSequences.ascii_encode(::ReducedAAAlphabet, x::UInt8) for sym in symbols(ReducedAAAlphabet()) if UInt8(Char(sym)) == x return UInt8(encode(ReducedAAAlphabet(), sym)) end end end @test string(LongSequence{ReducedAAAlphabet}("FSPMKH")) == "FSPMKH" buf = IOBuffer() print(buf, LongSequence{ReducedAAAlphabet}("AGTDNWLE")) @test String(take!(buf)) == "AGTDNWLE" end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
11194
@testset "Constructing empty sequences" begin @test isempty(LongDNA{4}()) @test isempty(LongRNA{4}()) @test isempty(LongAA()) end @testset "Constructing uninitialized sequences" begin @test isa(LongSequence{DNAAlphabet{2}}(undef, 0), LongSequence) @test isa(LongSequence{DNAAlphabet{4}}(undef, 10), LongSequence) @test isa(LongSequence{RNAAlphabet{2}}(undef, 0), LongSequence) @test isa(LongSequence{RNAAlphabet{4}}(undef, 10), LongSequence) @test isa(LongSequence{AminoAcidAlphabet}(undef, 10), LongSequence) @test_throws ArgumentError LongSequence{DNAAlphabet{2}}(undef, -1) @test_throws ArgumentError LongSequence{DNAAlphabet{4}}(undef, -1) @test_throws ArgumentError LongSequence{RNAAlphabet{2}}(undef, -1) @test_throws ArgumentError LongSequence{RNAAlphabet{4}}(undef, -1) @test_throws ArgumentError LongSequence{AminoAcidAlphabet}(undef, -1) end @testset "Conversion from/to strings" begin # Check that sequences in strings survive round trip conversion: # String → LongSequence → String function test_string_construction(A::Type, seq::AbstractString) @test String(LongSequence{A}(seq)) == uppercase(seq) end function test_string_parse(A::Type, seq::AbstractString) @test parse(LongSequence{A}, seq) == LongSequence{A}(seq) end for len in [0, 1, 3, 10, 32, 100] test_string_construction(DNAAlphabet{4}, random_dna(len)) test_string_construction(DNAAlphabet{4}, SubString(random_dna(len), 1:len)) test_string_construction(DNAAlphabet{4}, lowercase(random_dna(len))) test_string_construction(RNAAlphabet{4}, lowercase(random_rna(len))) test_string_construction(RNAAlphabet{4}, random_rna(len)) test_string_construction(AminoAcidAlphabet, random_aa(len)) test_string_construction(AminoAcidAlphabet, lowercase(random_aa(len))) test_string_parse(DNAAlphabet{4}, random_dna(len)) test_string_parse(DNAAlphabet{4}, SubString(random_dna(len), 1:len)) test_string_parse(DNAAlphabet{4}, lowercase(random_dna(len))) test_string_parse(RNAAlphabet{4}, lowercase(random_rna(len))) test_string_parse(RNAAlphabet{4}, random_rna(len)) test_string_parse(AminoAcidAlphabet, random_aa(len)) test_string_parse(AminoAcidAlphabet, lowercase(random_aa(len))) probs = [0.25, 0.25, 0.25, 0.25, 0.00] test_string_construction(DNAAlphabet{2}, random_dna(len, probs)) test_string_construction(DNAAlphabet{2}, lowercase(random_dna(len, probs))) test_string_construction(RNAAlphabet{2}, random_rna(len, probs)) test_string_construction(RNAAlphabet{2}, lowercase(random_rna(len, probs))) test_string_parse(DNAAlphabet{2}, random_dna(len, probs)) test_string_parse(DNAAlphabet{2}, lowercase(random_dna(len, probs))) test_string_parse(RNAAlphabet{2}, random_rna(len, probs)) test_string_parse(RNAAlphabet{2}, lowercase(random_rna(len, probs))) end # non-standard string literal @test isa(dna"ACGTMRWSYKVHDBN-", LongDNA{4}) @test isa(rna"ACGUMRWSYKVHDBN-", LongRNA{4}) @test isa(aa"ARNDCQEGHILKMFPSTWYVBJZXOU*-", LongAA) # Non-nucleotide characters should throw @test_throws Exception LongDNA{4}("ACCNNCATTTTTTAGATXATAG") @test_throws Exception LongRNA{4}("ACCNNCATTTTTTAGATXATAG") @test_throws Exception LongAA("ATGHLMY@ZACAGNM") # LazyString from BioSequence @static if VERSION >= v"1.8" @test string(LazyString(aa"MQLLCP")) == "MQLLCP" end end @testset "Construction from vectors" begin function test_vector_construction(A, seq::AbstractString) T = eltype(A) xs = T[convert(T, c) for c in seq] @test LongSequence{A}(xs) == LongSequence{A}(seq) end # Construct from abstract vector LongDNA{4}(0x61:0x64) == LongDNA{4}("ABCD") LongDNA{4}(0x61:0x64, 3:4) == LongDNA{4}("CD") LongRNA{2}(0x61:0x61) == LongRNA{2}("A") LongDNA{4}(Test.GenericString("AGCTMYWK")) == LongDNA{4}("AGCTMYWK") LongAA(Test.GenericString("KMSPIYT")) == LongAA("KMSPIYT") for len in [0, 1, 10, 32, 1000] test_vector_construction(DNAAlphabet{4}, random_dna(len)) test_vector_construction(RNAAlphabet{4}, random_rna(len)) test_vector_construction(AminoAcidAlphabet, random_aa(len)) probs = [0.25, 0.25, 0.25, 0.25, 0.00] test_vector_construction(DNAAlphabet{2}, random_dna(len, probs)) test_vector_construction(RNAAlphabet{2}, random_rna(len, probs)) end end @testset "Encode_copy!" begin # Note: Other packages use this function, so we need to test it # Even though this is NOT exported or part of the API in a normal sense function test_copyto!(dst::LongSequence, doff, src, soff, N) BioSequences.copyto!(dst, doff, src, soff, N) @test String(dst[doff:doff+N-1]) == String(src[soff:soff+N-1]) end probs = [0.25, 0.25, 0.25, 0.25] for len in [0, 1, 10, 100] for f in [identity, Vector{Char}, Vector{UInt8}] test_copyto!(LongSequence{DNAAlphabet{2}}(undef, len), 1, f(random_dna(len, probs)), 1, len) test_copyto!(LongSequence{RNAAlphabet{2}}(undef, len), 1, f(random_rna(len, probs)), 1, len) test_copyto!(LongSequence{DNAAlphabet{4}}(undef, len), 1, f(random_dna(len)), 1, len) test_copyto!(LongSequence{RNAAlphabet{4}}(undef, len), 1, f(random_rna(len)), 1, len) test_copyto!(LongSequence{AminoAcidAlphabet}(undef, len), 1, f(random_aa(len)), 1, len) end end for len in [10, 32, 100] for f in [identity, Vector{Char}, Vector{UInt8}] test_copyto!(LongSequence{DNAAlphabet{2}}(undef, len+7), 5, f(random_dna(len+11, probs)), 3, len) test_copyto!(LongSequence{RNAAlphabet{2}}(undef, len+7), 5, f(random_rna(len+11, probs)), 3, len) test_copyto!(LongSequence{DNAAlphabet{4}}(undef, len+7), 5, f(random_dna(len+11)), 3, len) test_copyto!(LongSequence{RNAAlphabet{4}}(undef, len+7), 5, f(random_rna(len+11)), 3, len) test_copyto!(LongSequence{AminoAcidAlphabet}(undef, len+7), 5, f(random_aa(len+11)), 3, len) end end end @testset "Convert to same type" begin function test_same_conversion(seq) @test convert(typeof(seq), seq) === seq end test_same_conversion(random_dna(20)) test_same_conversion(random_rna(20)) test_same_conversion(random_aa(20)) end @testset "Conversion between 2-bit and 4-bit encodings" begin function test_conversion(A1, A2, seq) @test convert(LongSequence{A1}, LongSequence{A2}(seq)) == LongSequence{A1}(seq) end test_conversion(DNAAlphabet{2}, DNAAlphabet{4}, "") test_conversion(DNAAlphabet{4}, DNAAlphabet{2}, "") test_conversion(RNAAlphabet{4}, RNAAlphabet{2}, "") test_conversion(RNAAlphabet{2}, RNAAlphabet{4}, "") test_conversion(DNAAlphabet{2}, DNAAlphabet{4}, "ACGT") test_conversion(DNAAlphabet{4}, DNAAlphabet{2}, "ACGT") test_conversion(RNAAlphabet{4}, RNAAlphabet{2}, "ACGU") test_conversion(RNAAlphabet{2}, RNAAlphabet{4}, "ACGU") test_conversion(DNAAlphabet{2}, DNAAlphabet{4}, "ACGT"^100) test_conversion(DNAAlphabet{4}, DNAAlphabet{2}, "ACGT"^100) test_conversion(RNAAlphabet{4}, RNAAlphabet{2}, "ACGU"^100) test_conversion(RNAAlphabet{2}, RNAAlphabet{4}, "ACGU"^100) # ambiguous nucleotides cannot be stored in 2-bit encoding EncodeError = BioSequences.EncodeError @test_throws EncodeError convert(LongSequence{DNAAlphabet{2}}, dna"AN") @test_throws EncodeError convert(LongSequence{RNAAlphabet{2}}, rna"AN") # test promotion a = LongSequence{DNAAlphabet{2}}("ATCG") b = LongSequence{DNAAlphabet{4}}("ATCG") c = LongSequence{RNAAlphabet{2}}("AUCG") d = LongSequence{RNAAlphabet{4}}("AUCG") @test typeof(promote(a, b)) == Tuple{LongSequence{DNAAlphabet{4}},LongSequence{DNAAlphabet{4}}} @test typeof(promote(c, d)) == Tuple{LongSequence{RNAAlphabet{4}},LongSequence{RNAAlphabet{4}}} @test_throws ErrorException typeof(promote(a, d)) @test_throws ErrorException typeof(promote(a, b, d)) end @testset "Conversion between RNA and DNA" begin @test convert(LongRNA{4}, LongDNA{4}("ACGTN")) == rna"ACGUN" @test convert(LongDNA{4}, LongRNA{4}("ACGUN")) == dna"ACGTN" end @testset "Conversion to Matrices" begin dna = [dna"AAA", dna"TTT", dna"CCC", dna"GGG"] dnathrow = [dna"AAA", dna"TTTAAA", dna"CCC", dna"GGG"] rna = [rna"AAA", rna"UUU", rna"CCC", rna"GGG"] rnathrow = [rna"AAA", rna"UUU", rna"CCCUUU", rna"GGG"] prot = [aa"AMG", aa"AMG", aa"AMG", aa"AMG"] sitemajdna = [ DNA_A DNA_A DNA_A DNA_T DNA_T DNA_T DNA_C DNA_C DNA_C DNA_G DNA_G DNA_G ] seqmajdna = [ DNA_A DNA_T DNA_C DNA_G DNA_A DNA_T DNA_C DNA_G DNA_A DNA_T DNA_C DNA_G ] sitemajrna = [ RNA_A RNA_A RNA_A RNA_U RNA_U RNA_U RNA_C RNA_C RNA_C RNA_G RNA_G RNA_G ] seqmajrna = [ RNA_A RNA_U RNA_C RNA_G RNA_A RNA_U RNA_C RNA_G RNA_A RNA_U RNA_C RNA_G ] sitemajnucint = [ 0x01 0x01 0x01 0x08 0x08 0x08 0x02 0x02 0x02 0x04 0x04 0x04 ] seqmajnucint = [ 0x01 0x08 0x02 0x04 0x01 0x08 0x02 0x04 0x01 0x08 0x02 0x04 ] sitemajaa = [ AA_A AA_M AA_G AA_A AA_M AA_G AA_A AA_M AA_G AA_A AA_M AA_G ] seqmajaa = [ AA_A AA_A AA_A AA_A AA_M AA_M AA_M AA_M AA_G AA_G AA_G AA_G ] @test seqmatrix(dna, :site) == sitemajdna @test seqmatrix(rna, :site) == sitemajrna @test seqmatrix(prot, :site) == sitemajaa @test seqmatrix(UInt8, dna, :site) == sitemajnucint @test seqmatrix(UInt8, rna, :site) == sitemajnucint @test seqmatrix(dna, :seq) == seqmajdna @test seqmatrix(rna, :seq) == seqmajrna @test seqmatrix(prot, :seq) == seqmajaa @test seqmatrix(UInt8, dna, :seq) == seqmajnucint @test seqmatrix(UInt8, rna, :seq) == seqmajnucint @test seqmatrix([dna"", dna"", dna""], :site) == Matrix{DNA}(undef, (3, 0)) @test seqmatrix([dna"", dna"", dna""], :seq) == Matrix{DNA}(undef, (0, 3)) @test seqmatrix([rna"", rna"", rna""], :site) == Matrix{RNA}(undef, (3, 0)) @test seqmatrix([rna"", rna"", rna""], :seq) == Matrix{RNA}(undef, (0, 3)) @test seqmatrix(UInt8, [dna"", dna"", dna""], :site) == Matrix{UInt8}(undef, (3, 0)) @test seqmatrix(UInt8, [dna"", dna"", dna""], :seq) == Matrix{UInt8}(undef, (0, 3)) @test seqmatrix(UInt8, [rna"", rna"", rna""], :site) == Matrix{UInt8}(undef, (3, 0)) @test seqmatrix(UInt8, [rna"", rna"", rna""], :seq) == Matrix{UInt8}(undef, (0, 3)) @test_throws ArgumentError seqmatrix(dnathrow, :site) @test_throws ArgumentError seqmatrix(rnathrow, :seq) @test_throws ArgumentError seqmatrix(dna, :lol) @test_throws MethodError seqmatrix(AminoAcid, dna, :site) @test_throws ArgumentError seqmatrix(LongDNA{4}[], :site) @test_throws ArgumentError seqmatrix(LongDNA{4}[], :seq) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2208
@testset "Find" begin seq = dna"ACGNA" @test findnext(isequal(DNA_A), seq, 1) == 1 @test findnext(isequal(DNA_C), seq, 1) == 2 @test findnext(isequal(DNA_G), seq, 1) == 3 @test findnext(isequal(DNA_N), seq, 1) == 4 @test findnext(isequal(DNA_T), seq, 1) === nothing @test findnext(isequal(DNA_A), seq, 2) == 5 @test_throws BoundsError findnext(isequal(DNA_A), seq, 0) @test findnext(isequal(DNA_A), seq, 6) === nothing @test findprev(isequal(DNA_A), seq, 4) == 1 @test findprev(isequal(DNA_C), seq, 4) == 2 @test findprev(isequal(DNA_G), seq, 4) == 3 @test findprev(isequal(DNA_N), seq, 4) == 4 @test findprev(isequal(DNA_T), seq, 4) === nothing @test findprev(isequal(DNA_G), seq, 2) === nothing @test findprev(isequal(DNA_A), seq, 0) === nothing @test_throws BoundsError findprev(isequal(DNA_A), seq, 6) seq = dna"ACGNAN" @test findfirst(isequal(DNA_A), seq) == 1 @test findfirst(isequal(DNA_N), seq) == 4 @test findfirst(isequal(DNA_T), seq) === nothing @test findlast(isequal(DNA_A), seq) == 5 @test findlast(isequal(DNA_N), seq) == 6 @test findlast(isequal(DNA_T), seq) === nothing # 0000000001111 # 1234567890123 seq = dna"NNNNNGATCGATC" # Check default search. @test findall(DNA_A, seq) == [7, 11] @test findall(ExactSearchQuery(dna"A"), seq) == [7:7, 11:11] # Check overlap key argument. @test findall(ExactSearchQuery(dna"GATC", iscompatible), seq; overlap = false) == [1:4, 6:9, 10:13] @test findall(ExactSearchQuery(dna"GATC", iscompatible), seq; overlap = true) == [1:4, 2:5, 6:9, 10:13] # Check mapping of indices. @test findall(DNA_A, seq, 7:11) == [7, 11] @test findall(ExactSearchQuery(dna"A"), seq, 7:11) == [7:7, 11:11] # Check empty return type. @test findall(DNA_A, dna"GGGG") |> typeof == Vector{Int} @test findall(ExactSearchQuery(dna"A"), dna"GGGG") |> typeof == Vector{UnitRange{Int}} @test findall(isequal(DNA_A), dna"ACGTAC") == [1, 5] @test findall(i -> true, aa"ACGTA") == collect(1:5) @test findall(i -> true, aa"") == Int[] @test findall(i -> i == AA_A, rna"AGCA") == Int[] end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2124
@testset "Hash" begin s = dna"ACGTACGT" v = view(s, 1:lastindex(s)) for seq in [s, v] @test isa(hash(seq), UInt64) @test hash(seq) === hash(dna"ACGTACGT") @test hash(seq) !== hash(seq[1:6]) @test hash(seq) !== hash(seq[1:7]) @test hash(seq) === hash(seq[1:8]) @test hash(seq[1:4]) === hash(dna"ACGT") @test hash(seq[2:4]) === hash(dna"CGT") @test hash(seq[3:4]) === hash(dna"GT") @test hash(seq[4:4]) === hash(dna"T") @test hash(seq[5:8]) === hash(dna"ACGT") end @test hash(s) == hash(v) @test hash(s[2:4]) == hash(v[2:4]) for i in 1:4 s1 = LongDNA{4}("A"^(i-1)) s2 = LongDNA{4}("A"^i) @test hash(s1) != hash(s2) v1 = view(s2, 1:lastindex(s2) - 1) v2 = view(s2, 1:lastindex(s2)) @test hash(v1) != hash(v2) end for n in [1, 2, 3, 6, 8, 9, 11, 15, 16, 20], seq in [dna"A", dna"AC", dna"ACG", dna"ACGT", dna"ACGTN"] @test hash(seq^n) === hash((dna"" * seq^n)[1:end]) @test hash(seq^n) === hash((dna"T" * seq^n)[2:end]) @test hash(seq^n) === hash((dna"TT" * seq^n)[3:end]) @test hash(seq^n) === hash((dna"TTT" * seq^n)[4:end]) @test hash(seq^n) === hash((dna"TTTT" * seq^n)[5:end]) @test hash(seq^n) === hash((seq^n * dna"" )[1:end ]) @test hash(seq^n) === hash((seq^n * dna"T" )[1:end-1]) @test hash(seq^n) === hash((seq^n * dna"TT" )[1:end-2]) @test hash(seq^n) === hash((seq^n * dna"TTT" )[1:end-3]) @test hash(seq^n) === hash((seq^n * dna"TTTT")[1:end-4]) end @test hash(rna"AAUU") === hash(rna"AAUU") @test hash(rna"AAUUAA"[3:5]) === hash(rna"UUA") @test hash(aa"MTTQAPMFTQPLQ") === hash(aa"MTTQAPMFTQPLQ") @test hash(aa"MTTQAPMFTQPLQ"[5:10]) === hash(aa"APMFTQ") # Test hash of longer view to engange some inner loops seq = randdnaseq(250) @test hash(seq[33:201]) == hash(view(seq, 33:201)) @test hash(seq[23:201]) == hash(view(seq, 23:201)) @test hash(seq[37:249]) == hash(view(seq, 37:249)) @test hash(seq[50:250]) == hash(view(seq, 50:250)) @test hash(seq[10:232]) == hash(view(seq, 10:232)) end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
768
@testset "Iteration" begin dna_seq = dna"ACTG" dna_vec = [DNA_A, DNA_C, DNA_T, DNA_G] @test all([nt === dna_vec[i] for (i, nt) in enumerate(dna_seq)]) rna_seq = rna"ACUG" rna_vec = [RNA_A, RNA_C, RNA_U, RNA_G] @test all([nt === rna_vec[i] for (i, nt) in enumerate(rna_seq)]) aa_seq = aa"ARNPS" aa_vec = [AA_A, AA_R, AA_N, AA_P, AA_S] @test all([aa == aa_vec[i] for (i, aa) in enumerate(aa_seq)]) @test iterate(dna_seq) == iterate(dna_seq, 1) == (DNA_A, 2) @test iterate(dna_seq, 2) == (DNA_C, 3) @test iterate(dna_seq, 3) == (DNA_T, 4) @test iterate(dna_seq, 4) == (DNA_G, 5) @test iterate(dna_seq, -1) == nothing @test iterate(dna_seq, 0) == nothing @test iterate(dna_seq, 5) == nothing end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
4724
@testset "Mutability" begin @testset "setindex!" begin s = dna"ACGT" s[1] = DNA_A @test s == dna"ACGT" s[1] = DNA_C @test s == dna"CCGT" s[2] = DNA_T @test s == dna"CTGT" s[4] = DNA_A @test s == dna"CTGA" @test_throws BoundsError s[0] @test_throws BoundsError s[5] s = dna"ACGTACGT" s[3:5] = dna"AAA" @test s == dna"ACAAACGT" s[3:5] = dna"TTT" @test s == dna"ACTTTCGT" s[1:8] = dna"CCCCCCCC" @test s == dna"CCCCCCCC" s[:] = repeat([DNA_G], length(s)) @test s == dna"GGGGGGGG" @test_throws BoundsError s[0:3] @test_throws BoundsError s[5:10] s = dna"ACGTACGT" s[[1,2,3]] = dna"TTT" @test s == dna"TTTTACGT" s[[1,5,8]] = dna"CCC" @test s == dna"CTTTCCGC" @test_throws BoundsError s[[3,9]] = DNA_A s = dna"ACGT" s[[true, false, false, true]] = [DNA_G, DNA_G] @test s == dna"GCGG" s[trues(4)] = repeat([DNA_A], 4) @test s == dna"AAAA" @test_throws BoundsError s[[true, false, false]] = dna"G" @test_throws BoundsError s[[true, false, false, false, true]] = dna"GG" s = dna"ACGTACGT" s[2:3] = dna"AA" @test s == dna"AAATACGT" s[7:8] = dna"CC" @test s == dna"AAATACCC" s[:] = dna"AACCGGTT" @test s == dna"AACCGGTT" @test_throws BoundsError s[0:1] = dna"AA" @test_throws DimensionMismatch s[3:4] = dna"A" s = dna"ACGTACGT" s[[1,4]] = dna"TA" @test s == dna"TCGAACGT" s[[2,3,5]] = dna"CAT" @test s == dna"TCAATCGT" @test_throws BoundsError s[[1,2,9]] = dna"AAA" @test_throws DimensionMismatch s[[1,2,8]] = dna"AA" s = dna"ACGT" s[[true,false,true,false]] = dna"TT" @test s == dna"TCTT" s[trues(4)] = dna"AAAA" @test s == dna"AAAA" @test_throws BoundsError s[[true,false,true]] = dna"TT" @test_throws DimensionMismatch s[[true,false,true,true]] = dna"TT" end @testset "resize!" begin seq = dna"" resize!(seq, 100) @test length(seq) == 100 resize!(seq, 200) @test length(seq) == 200 seq1 = seq[3:198] resize!(seq1, 55) @test length(seq1) == 55 resize!(seq, 10) @test length(seq) == 10 @test_throws ArgumentError resize!(seq, -1) end @testset "empty!" begin seq = dna"ACG" @test empty!(seq) == dna"" @test length(seq) == 0 end @testset "push!" begin seq = dna"" @test push!(seq, DNA_A) == dna"A" @test push!(seq, DNA_C) == dna"AC" @test seq == dna"AC" end @testset "pushfirst!" begin seq = dna"" @test pushfirst!(seq, DNA_A) == dna"A" @test pushfirst!(seq, DNA_C) == dna"CA" @test seq == dna"CA" end @testset "pop!" begin seq = dna"ACGT" @test pop!(seq) === DNA_T @test seq == dna"ACG" @test pop!(seq) === DNA_G @test seq == dna"AC" @test_throws ArgumentError pop!(dna"") end @testset "popfirst!" begin seq = dna"ACGT" @test popfirst!(seq) === DNA_A @test seq == dna"CGT" @test popfirst!(seq) === DNA_C @test seq == dna"GT" @test_throws ArgumentError popfirst!(dna"") end @testset "insert!" begin seq = dna"ACGT" @test insert!(seq, 2, DNA_G) == dna"AGCGT" @test insert!(seq, 5, DNA_A) == dna"AGCGAT" @test_throws BoundsError insert!(seq, 10, DNA_T) end @testset "deleteat!" begin seq = dna"ACGT" @test deleteat!(seq, 1) == dna"CGT" @test deleteat!(seq, 2) == dna"CT" @test_throws BoundsError deleteat!(seq, 10) seq = dna"ACGTACGT" @test deleteat!(seq, 3:5) == dna"ACCGT" @test_throws BoundsError deleteat!(seq, 10:12) end @testset "append!" begin seq = dna"" @test append!(seq, dna"A") == dna"A" @test append!(seq, dna"ACG") == dna"AACG" end @testset "copyto!" begin seq = dna"GGG" @test copyto!(seq, dna"ACG") == dna"ACG" @test copyto!(seq, dna"TTA") == dna"TTA" seq = dna"TCCC" @test copyto!(seq, 2, dna"TT", 1, 2) == dna"TTTC" seq = dna"TCCC" @test copyto!(seq, 2, dna"TT", 1, 1) == dna"TTCC" seq = dna"ACGT" @test copyto!(seq, seq) == dna"ACGT" @test copyto!(seq, 1, seq, 3, 2) == dna"GTGT" seq = dna"ACGT" @test copyto!(seq, 3, seq, 1, 2) == dna"ACAC" end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
2481
@testset "Predicates" begin # ispalindromic @test ispalindromic(dna"") @test !ispalindromic(dna"A") @test !ispalindromic(dna"C") @test ispalindromic(dna"AT") @test ispalindromic(dna"CG") @test !ispalindromic(dna"AC") @test !ispalindromic(dna"TT") @test ispalindromic(dna"ANT") @test ispalindromic(dna"ACGT") @test !ispalindromic(dna"ACNT") @test ispalindromic(rna"") @test !ispalindromic(rna"A") @test !ispalindromic(rna"C") @test ispalindromic(rna"AU") @test ispalindromic(rna"CG") @test !ispalindromic(rna"AC") @test !ispalindromic(rna"UU") @test ispalindromic(rna"ANU") @test ispalindromic(rna"ACGU") @test !ispalindromic(rna"ACNU") @test_throws Exception ispalindromic(aa"PQ") # hasambiguity @test !hasambiguity(dna"") @test !hasambiguity(dna"A") @test hasambiguity(dna"N") @test !hasambiguity(dna"ACGT") @test hasambiguity(dna"ANGT") @test !hasambiguity(rna"") @test !hasambiguity(rna"A") @test hasambiguity(rna"N") @test !hasambiguity(rna"ACGU") @test hasambiguity(rna"ANGU") @test !hasambiguity(aa"") @test !hasambiguity(aa"A") @test !hasambiguity(aa"P") @test hasambiguity(aa"B") @test hasambiguity(aa"X") @test !hasambiguity(aa"ARNDCQEGHILKMFPSTWYVOU") @test hasambiguity(aa"ARXDCQEGHILKMFPSTWYVOU") # isrepetitive @test isrepetitive(dna"") @test !isrepetitive(dna"", 1) @test isrepetitive(dna"A") @test isrepetitive(dna"A", 1) @test isrepetitive(dna"AAA") @test !isrepetitive(dna"ACGT", 2) @test isrepetitive(dna"AAGT", 2) @test isrepetitive(dna"ACCG", 2) @test isrepetitive(dna"ACGG", 2) @test !isrepetitive(dna"ACGTCCGT", 3) @test isrepetitive(dna"ACGCCCGT", 3) @test isrepetitive(rna"") @test !isrepetitive(rna"", 1) @test isrepetitive(rna"A") @test isrepetitive(rna"A", 1) @test isrepetitive(rna"AAA") @test !isrepetitive(rna"ACGU", 2) @test isrepetitive(rna"AAGU", 2) @test isrepetitive(rna"ACCG", 2) @test isrepetitive(rna"ACGG", 2) @test !isrepetitive(rna"ACGUCCGU", 3) @test isrepetitive(rna"ACGCCCGU", 3) @test isrepetitive(aa"") @test !isrepetitive(aa"PGQQ") @test isrepetitive(aa"PGQQ", 2) @test !isrepetitive(aa"PPQQ", 3) @test isrepetitive(aa"PPPQQ", 3) # iscanonical @test iscanonical(dna"TCA") @test !iscanonical(dna"TGA") end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
956
@testset "Print" begin buf = IOBuffer() print(buf, dna"") @test String(take!(buf)) == "" print(buf, dna"ACGTN") @test String(take!(buf)) == "ACGTN" print(buf, rna"ACGUN") @test String(take!(buf)) == "ACGUN" print(buf, dna"A"^100) @test String(take!(buf)) == "A"^100 print(buf, dna"G"^60, width=0) @test String(take!(buf)) == "G"^60 print(buf, dna"A"^60, width=-5) @test String(take!(buf)) == "A"^60 print(buf, dna"A"^100, width=70) @test String(take!(buf)) == string("A"^70, '\n', "A"^30) print(buf, dna"A"^100, width=50) @test String(take!(buf)) == string("A"^50, '\n', "A"^50) print(buf, dna"A"^4100, width=100) @test String(take!(buf)) == repeat("A"^100 * '\n', 40) * "A"^100 end @testset "Show" begin buf = IOBuffer() show(buf, dna"") @test String(take!(buf)) == "< EMPTY SEQUENCE >" show(buf, dna"ATCG") @test String(take!(buf)) == "ATCG" end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
8756
# Note: This test suite has many hard coded values in it. # While that is normally a bad idea, we need to guarantee reproducible results # when using the same seed. global SEED = 0 # Do not change this struct MyAlphabet <: Alphabet end @testset "Random LongSequences" begin function test_sampler(sampler, seed, elements, firstten, T) rng = StableRNG(seed) sampled1 = [rand(rng, sampler) for i in 1:1000] sampled2 = rand(StableRNG(seed), sampler, 1000) @test sampled1 == sampled2 @test Set(sampled1) == Set(T[convert(T, i) for i in elements]) @test eltype(sampler) == T @test eltype(firstten) == T @test rand(StableRNG(seed), sampler, 10) == firstten end function test_isseq(seq, alphabettype, len) @test seq isa LongSequence{alphabettype} @test length(seq) == len end @testset "SamplerUniform" begin # Cannot instantiate with empty collection @test_throws ArgumentError sampler = SamplerUniform{DNA}(DNA[]) # DNA sampler with DNA array sampler = SamplerUniform{DNA}([DNA_A, DNA_C, DNA_G, DNA_W]) firstten = DNA[DNA_C, DNA_W, DNA_G, DNA_C, DNA_C, DNA_C, DNA_C, DNA_A, DNA_A, DNA_A] test_sampler(sampler, SEED, sampler.elems, firstten, DNA) # Now RNA sampler from DNA array sampler = SamplerUniform{RNA}([DNA_A, DNA_C, DNA_G, DNA_W]) firstten = RNA[RNA_C, RNA_W, RNA_G, RNA_C, RNA_C, RNA_C, RNA_C, RNA_A, RNA_A, RNA_A] test_sampler(sampler, SEED, sampler.elems, firstten, RNA) # Cannot make AA sampler from DNA @test_throws MethodError s = SamplerUniform{AminoAcid}([DNA_A, DNA_C, DNA_G, DNA_W]) # Automatically infer eltype sampler1 = SamplerUniform{DNA}([DNA_A, DNA_C]) sampler2 = SamplerUniform([DNA_A, DNA_C]) @test typeof(sampler2) == SamplerUniform{DNA} @test eltype(sampler1) == eltype(sampler2) # Can also infer abstract eltype sampler3 = SamplerUniform([DNA_A, RNA_A]) @test eltype(sampler3) == typejoin(DNA, RNA) sampler = SamplerUniform{RNA}([DNA_A, DNA_C, DNA_G, DNA_W]) @test typeof(rand(sampler)) == RNA end # SamplerUniform @testset "SamplerWeighted" begin # Must have one less weight than elements @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A], [0.5]) @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A, DNA_C], [0.5, 0.5]) @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A], [0.5, 0.5]) # Weights cannot exceed one @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A, DNA_C], [1.1]) @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A, DNA_C, DNA_G], [1.00001, 0.0]) # Weights cannot be negative @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A, DNA_C, DNA_G], [0.5, -0.001]) @test_throws ArgumentError SamplerWeighted{DNA}([DNA_A, DNA_C, DNA_A], [1.1, -0.2]) # Weights always sum to one after instantiation s = SamplerWeighted{DNA}([DNA_A, DNA_C, DNA_G, DNA_W], [0.03, 0.2, 0.7]) @test sum(s.probs) == 1.0 s = SamplerWeighted{DNA}([DNA_A], []) @test sum(s.probs) == 1.0 s = SamplerWeighted{DNA}([DNA_A, DNA_C], [1.0]) @test sum(s.probs) == 1.0 s = SamplerWeighted{DNA}([DNA_A, DNA_C, DNA_G], [0.03, 0.20000001]) @test sum(s.probs) == 1.0 sampler = SamplerWeighted{DNA}([DNA_N, DNA_C, DNA_W, DNA_T], [0.1, 0.2, 0.3]) firstten = DNA[DNA_C, DNA_N, DNA_T, DNA_T, DNA_T, DNA_N, DNA_W, DNA_C, DNA_W, DNA_N] test_sampler(sampler, 0, sampler.elems, firstten, DNA) sampler = SamplerWeighted{RNA}([DNA_N, DNA_C, DNA_W, DNA_T], [0.15, 0.5, 0.2]) firstten = RNA[RNA_C, RNA_N, RNA_U, RNA_W, RNA_U, RNA_N, RNA_C, RNA_C, RNA_C, RNA_N] test_sampler(sampler, 0, sampler.elems, firstten, RNA) @test_throws MethodError s = SamplerWeighted{AminoAcid}([DNA_A, DNA_C], [0.1]) # Casual test to see that it can use the global RNG automatically sampler = SamplerWeighted{RNA}([DNA_N, DNA_C, DNA_W, DNA_T], [0.15, 0.5, 0.2]) @test typeof(rand(sampler)) == RNA end # SamplerWeighted @testset "randseq Sampler" begin # Cannot instantiate < 0-length seq @test_throws ArgumentError randseq(DNAAlphabet{2}(), SamplerUniform(dna"ACG"), -1) @test_throws ArgumentError randseq(AminoAcidAlphabet(), SamplerUniform(aa"VTW"), -1) @test_throws ArgumentError randseq(RNAAlphabet{4}(), SamplerWeighted(dna"ACG", ones(2)/3), -1) # CAN make empty sequence with mismatching alphabets # Or with matching alphabets @test randseq(DNAAlphabet{2}(), SamplerUniform(aa"AV"), 0) == LongSequence{DNAAlphabet{2}}() @test randseq(DNAAlphabet{2}(), SamplerUniform(rna"U"), 2) == LongSequence{DNAAlphabet{2}}(dna"TT") # Cannot make nonzero sequence with mismatching alphabets @test_throws MethodError randseq(RNAAlphabet{4}(), SamplerUniform(aa"AV", 1)) @test_throws MethodError randseq(AminoAcidAlphabet(), SamplerUniform(dna"ACG", 10)) # A few samplings sampler = SamplerUniform(aa"TVVWYAEDK") @test randseq(StableRNG(SEED), AminoAcidAlphabet(), sampler, 10) == aa"VEVTKTTADY" sampler = SamplerUniform(dna"TGAWYKN") @test randseq(StableRNG(SEED), DNAAlphabet{4}(), sampler, 10) == dna"GWNGGGKTTT" sampler = SamplerWeighted(rna"UGCMKYN", [0.1, 0.05, 0.2, 0.15, 0.15, 0.2]) @test randseq(StableRNG(SEED), DNAAlphabet{4}(), sampler, 10) == dna"CTNYNTKCMT" # Casual tests to see that it can use the global RNG automatically sampler = SamplerUniform(aa"TVVWYAEDK") seq = randseq(AminoAcidAlphabet(), sampler, 25) test_isseq(seq, AminoAcidAlphabet, 25) sampler = SamplerWeighted(rna"UGCMKYN", [0.1, 0.05, 0.2, 0.15, 0.15, 0.2]) seq = randseq(RNAAlphabet{4}(), sampler, 25) test_isseq(seq, RNAAlphabet{4}, 25) sampler = SamplerUniform(dna"AGC") seq = randseq(DNAAlphabet{2}(), sampler, 25) test_isseq(seq, DNAAlphabet{2}, 25) # Test that rand! correctly works seq = LongDNA{4}("ATGCTAMWKSSWKHHNNNATVVCGATADGCTTWWSYKMMNKATCGACTAYSWTACCCGATC") Random.rand!(seq) @test Set(seq) == Set(symbols(DNAAlphabet{2}())) Random.rand!(seq, sampler) @test Set(seq) == Set([DNA_A, DNA_G, DNA_C]) end # randseq Sampler @testset "randseq" begin sampler = SamplerUniform(aa"ACDEFGHIKLMNPQRSTVWY") automatic = randseq(StableRNG(SEED), AminoAcidAlphabet(), 1000) manual = randseq(StableRNG(SEED), AminoAcidAlphabet(), sampler, 1000) @test automatic == manual @test Set(automatic) == Set(aa"ACDEFGHIKLMNPQRSTVWY") @test randseq(StableRNG(SEED), DNAAlphabet{4}(), 20) == dna"CTCTTCGTATGCCGTACCGT" @test randseq(StableRNG(SEED), DNAAlphabet{2}(), 20) == dna"CATCCGCTCCTAGGCCATTT" @test randseq(StableRNG(SEED), RNAAlphabet{4}(), 20) == rna"CUCUUCGUAUGCCGUACCGU" @test randseq(StableRNG(SEED), RNAAlphabet{2}(), 20) == rna"CAUCCGCUCCUAGGCCAUUU" # Casual tests to see that it can use the global RNG automatically seq = randseq(DNAAlphabet{2}(), 100) test_isseq(seq, DNAAlphabet{2}, 100) seq = randseq(RNAAlphabet{4}(), 100) test_isseq(seq, RNAAlphabet{4}, 100) seq = randseq(AminoAcidAlphabet(), 100) test_isseq(seq, AminoAcidAlphabet, 100) end # randseq @testset "Simple constructors" begin manual = randseq(StableRNG(SEED), AminoAcidAlphabet(), 100) automatic = randaaseq(StableRNG(SEED), 100) @test automatic == manual manual = randseq(StableRNG(SEED), DNAAlphabet{4}(), 100) automatic = randdnaseq(StableRNG(SEED), 100) @test automatic == manual manual = randseq(StableRNG(SEED), RNAAlphabet{4}(), 100) automatic = randrnaseq(StableRNG(SEED), 100) @test automatic == manual # Casual tests to see that it can use the global RNG automatically seq = randdnaseq(10) test_isseq(seq, DNAAlphabet{4}, 10) seq = randrnaseq(10) test_isseq(seq, RNAAlphabet{4}, 10) seq = randaaseq(10) test_isseq(seq, AminoAcidAlphabet, 10) end # simple constructors @testset "Custom alphabet" begin Base.length(A::MyAlphabet) = 6 BioSequences.symbols(A::MyAlphabet) = (DNA_A, DNA_C, DNA_G, DNA_T, RNA_U, DNA_N) BioSequences.BitsPerSymbol(A::MyAlphabet) = BioSequences.BitsPerSymbol{8}() BioSequences.encode(A::MyAlphabet, x::DNA) = reinterpret(UInt8, x) BioSequences.encode(A::MyAlphabet, x::RNA) = reinterpret(UInt8, x) | 0x10 Base.eltype(A::MyAlphabet) = NucleicAcid function BioSequences.decode(A::MyAlphabet, x::UInt64) uint = UInt8(x) if uint & 0x10 == 0x10 return reinterpret(RNA, uint & 0x0f) else return reinterpret(DNA, uint) end end seq = randseq(MyAlphabet(), 1000) @test typeof(seq) == LongSequence{MyAlphabet} @test length(seq) == 1000 @test Set(seq) == Set(symbols(MyAlphabet())) end # Custom Alphabet end # Entire Random LongSequences testset
BioSequences
https://github.com/BioJulia/BioSequences.jl.git