licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MPL-2.0" ]
0.5.6
576c5936c2017dc614ae8001efd872d50909e041
code
4152
# run this script to update the database # please open a pull request at # https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/pulls using DataFrames using Dates using JLD2 using MAT const colnames = Dict( "Group" => "group", "nnzdiag" => "nnzdiag", "nrows" => "nrows", "numerical_symmetry" => "numerical_symmetry", "amd_vnz" => "amd_vnz", "isBinary" => "binary", "sprank" => "structural_rank", "isND" => "is_nd", "isGraph" => "is_graph", "RBtype" => "RB_type", "lowerbandwidth" => "lower_bandwidth", "nzero" => "explicit_zeros", "amd_flops" => "amd_flops", "xmin" => "xmin", "posdef" => "positive_definite", "ncc" => "connected_components", "Name" => "name", "amd_rnz" => "amd_rnz", "nentries" => "pattern_entries", "ncols" => "ncols", "rcm_lowerbandwidth" => "rcm_lower_bandwidth", "amd_lnz" => "amd_lnz", "nnz" => "nnz", "pattern_symmetry" => "pattern_symmetry", "rcm_upperbandwidth" => "rcm_upper_bandwidth", "upperbandwidth" => "upper_bandwidth", "cholcand" => "cholesky_candidate", "xmax" => "xmax", "isReal" => "real", "nblocks" => "nblocks", ) const coltypes = Dict( "group" => String, "nnzdiag" => Int, "nrows" => Int, "numerical_symmetry" => Float64, "amd_vnz" => Int, "binary" => Bool, "structural_rank" => Int, "is_nd" => Bool, "is_graph" => Bool, "RB_type" => String, "lower_bandwidth" => Int, "explicit_zeros" => Int, "amd_flops" => Float64, "xmin" => Complex{Float64}, "positive_definite" => Bool, "connected_components" => Int, "name" => String, "amd_rnz" => Int, "pattern_entries" => Int, "ncols" => Int, "rcm_lower_bandwidth" => Int, "amd_lnz" => Int, "nnz" => Int, "pattern_symmetry" => Float64, "rcm_upper_bandwidth" => Int, "upper_bandwidth" => Int, "cholesky_candidate" => Bool, "xmax" => Complex{Float64}, "real" => Bool, "nblocks" => Int, ) const ssmc_url = "https://sparse.tamu.edu" const ssmc_mat = "ss_index.mat" const ssmc_db = joinpath(@__DIR__, ssmc_mat) const mat_url = "http://sparse.tamu.edu/files/$ssmc_mat" try @info "attempting to download updated SuiteSparse database" download(mat_url, ssmc_db) catch e @error e error("unable to download SuiteSparse database") end matdata = matread(ssmc_db) ss_index = matdata["ss_index"] download_time = ss_index["DownloadTimeStamp"] last_rev_date = ss_index["LastRevisionDate"] ssmc_jld2 = joinpath(@__DIR__, "..", "src", "ssmc.jld2") update = false const dfmt = DateFormat("dd-uuu-yyyy HH:MM:SS") last_rev = DateTime(last_rev_date, dfmt) if isfile(ssmc_jld2) file = jldopen(ssmc_jld2, "r") last_rev_date_on_file = file["last_rev_date"] close(file) last_rev_on_file = DateTime(last_rev_date_on_file, dfmt) update = last_rev > last_rev_on_file else update = true end function to_vec(x, T) nd = ndims(x) nd > 2 && error("too many dims!") nd == 1 && (return x) y = T[] for val ∈ x push!(y, val) end return y end if update @info "updating database to revision of" last_rev df = DataFrame() for (k, v) ∈ ss_index k ∈ ("DownloadTimeStamp", "LastRevisionDate") && continue colname = colnames[k] setproperty!(df, colname, to_vec(v, coltypes[colname])) end df = df[ !, [ :group, :name, :nrows, :ncols, :nnz, :structural_rank, :numerical_symmetry, :positive_definite, :pattern_symmetry, :binary, :real, :nnzdiag, :xmin, :xmax, :lower_bandwidth, :upper_bandwidth, :rcm_lower_bandwidth, :rcm_upper_bandwidth, :amd_vnz, :amd_lnz, :amd_rnz, :explicit_zeros, :pattern_entries, :cholesky_candidate, :connected_components, :nblocks, :amd_flops, :RB_type, :is_graph, :is_nd, ], ] jldopen(ssmc_jld2, "w") do file file["df"] = df file["last_rev_date"] = last_rev_date file["download_time"] = download_time end @info "please open a pull request at https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/pulls" else @info "database is already up to date" end
SuiteSparseMatrixCollection
https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl.git
[ "MPL-2.0" ]
0.5.6
576c5936c2017dc614ae8001efd872d50909e041
docs
6655
# SuiteSparseMatrixCollection.jl | **Documentation** | **Linux/macOS/Windows/FreeBSD** | **Coverage** | **DOI** | |:-----------------:|:-------------------------------:|:------------:|:-------:| | [![docs-stable][docs-stable-img]][docs-stable-url] [![docs-dev][docs-dev-img]][docs-dev-url] | [![build-gh][build-gh-img]][build-gh-url] [![build-cirrus][build-cirrus-img]][build-cirrus-url] | [![codecov][codecov-img]][codecov-url] | [![doi][doi-img]][doi-url] | [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://JuliaSmoothOptimizers.github.io/SuiteSparseMatrixCollection.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-purple.svg [docs-dev-url]: https://JuliaSmoothOptimizers.github.io/SuiteSparseMatrixCollection.jl/dev [build-gh-img]: https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/workflows/CI/badge.svg?branch=main [build-gh-url]: https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/actions [build-cirrus-img]: https://img.shields.io/cirrus/github/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl?logo=Cirrus%20CI [build-cirrus-url]: https://cirrus-ci.com/github/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl [codecov-img]: https://codecov.io/gh/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/branch/main/graph/badge.svg [codecov-url]: https://app.codecov.io/gh/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl [doi-img]: https://img.shields.io/badge/DOI-10.5281%2Fzenodo.4324340-blue.svg [doi-url]: https://doi.org/10.5281/zenodo.4324340 A straightforward interface to the [SuiteSparse Matrix Collection](https://sparse.tamu.edu/). ## References > Davis, Timothy A. and Hu, Yifan (2011). > The University of Florida sparse matrix collection. > ACM Transactions on Mathematical Software, 38(1), 1--25. > [10.1145/2049662.2049663](https://doi.org/10.1145/2049662.2049663) ## How to Cite If you use SuiteSparseMatrixCollection.jl in your work, please cite using the format given in [CITATION.bib](https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl/blob/main/CITATION.bib). ## How to install ```julia pkg> add SuiteSparseMatrixCollection pkg> test SuiteSparseMatrixCollection ``` ## Updating the database Clone this repository, activate the `utils` environment and run `gen_db.jl` to check if the database needs to be updated. ## Updating `Artifacts.toml` Clone this repository, activate the `utils` environment and run `gen_artifacts.jl` to check if `Artifacts.toml` needs to be updated. ## Examples ```julia julia> using SuiteSparseMatrixCollection julia> # name-based selection can be done with `ssmc_matrices()` julia> ssmc = ssmc_db() julia> ssmc_matrices(ssmc, "HB", "bcsstk") # all matrices whose group contains "HB" and name contains "bcsstk" julia> ssmc_matrices(ssmc, "", "bcsstk") # all matrices whose name contains "bcsstk" julia> ssmc_matrices(ssmc, "HB", "") # all matrices whose group contains "HB" julia> # select symmetric positive definite matrices with ≀ 100 rows and columns julia> tiny = ssmc[(ssmc.numerical_symmetry .== 1) .& (ssmc.positive_definite.== true) .& (ssmc.real .== true) .& (ssmc.nrows .≀ 100), :] julia> # fetch the matrices selects in MatrixMarket format julia> paths = fetch_ssmc(tiny, format="MM") # matrices are downloaded in paths julia> downloaded_matrices = installed_ssmc() # name of all downloaded matrices julia> delete_ssmc("HB", "bcsstk02") # delete the matrix "bcsstk02" of group "HB" julia> delete_all_ssmc() # delete all matrices from the SuiteSparseMatrixCollection ``` Matrices are available in formats: * `"RB"`: the [Rutherford-Boeing format](https://www.cise.ufl.edu/research/sparse/matrices/DOC/rb.pdf); * `"MM"`: the [MatrixMarket format](http://math.nist.gov/MatrixMarket/formats.html#MMformat). Use `DataFrames` syntax to further examine a list of selected matrices: ```julia julia> tiny[!, [:name, :nrows, :ncols, :positive_definite, :lower_bandwidth]] 12Γ—5 DataFrame β”‚ Row β”‚ name β”‚ nrows β”‚ ncols β”‚ positive_definite β”‚ lower_bandwidth β”‚ β”‚ β”‚ String β”‚ Int64 β”‚ Int64 β”‚ Bool β”‚ Int64 β”‚ β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 1 β”‚ bcsstk01 β”‚ 48 β”‚ 48 β”‚ 1 β”‚ 35 β”‚ β”‚ 2 β”‚ bcsstk02 β”‚ 66 β”‚ 66 β”‚ 1 β”‚ 65 β”‚ β”‚ 3 β”‚ bcsstm02 β”‚ 66 β”‚ 66 β”‚ 1 β”‚ 0 β”‚ β”‚ 4 β”‚ nos4 β”‚ 100 β”‚ 100 β”‚ 1 β”‚ 13 β”‚ β”‚ 5 β”‚ ex5 β”‚ 27 β”‚ 27 β”‚ 1 β”‚ 20 β”‚ β”‚ 6 β”‚ mesh1e1 β”‚ 48 β”‚ 48 β”‚ 1 β”‚ 47 β”‚ β”‚ 7 β”‚ mesh1em1 β”‚ 48 β”‚ 48 β”‚ 1 β”‚ 47 β”‚ β”‚ 8 β”‚ mesh1em6 β”‚ 48 β”‚ 48 β”‚ 1 β”‚ 47 β”‚ β”‚ 9 β”‚ LF10 β”‚ 18 β”‚ 18 β”‚ 1 β”‚ 3 β”‚ β”‚ 10 β”‚ LFAT5 β”‚ 14 β”‚ 14 β”‚ 1 β”‚ 5 β”‚ β”‚ 11 β”‚ Trefethen_20b β”‚ 19 β”‚ 19 β”‚ 1 β”‚ 16 β”‚ β”‚ 12 β”‚ Trefethen_20 β”‚ 20 β”‚ 20 β”‚ 1 β”‚ 16 β”‚ ``` Matrices in Rutherford-Boeing format can be opened with [`HarwellRutherfordBoeing.jl`](https://github.com/JuliaSparse/HarwellRutherfordBoeing.jl): ```julia pkg> add HarwellRutherfordBoeing julia> using HarwellRutherfordBoeing julia> matrix = ssmc[ssmc.name .== "bcsstk01", :] 1Γ—30 DataFrame. Omitted printing of 17 columns β”‚ Row β”‚ group β”‚ nnzdiag β”‚ nrows β”‚ numerical_symmetry β”‚ amd_vnz β”‚ binary β”‚ structural_rank β”‚ is_nd β”‚ is_graph β”‚ RB_type β”‚ lower_bandwidth β”‚ explicit_zeros β”‚ amd_flops β”‚ β”‚ β”‚ String β”‚ Int64 β”‚ Int64 β”‚ Float64 β”‚ Int64 β”‚ Bool β”‚ Int64 β”‚ Bool β”‚ Bool β”‚ String β”‚ Int64 β”‚ Int64 β”‚ Float64 β”‚ β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 1 β”‚ HB β”‚ 48 β”‚ 48 β”‚ 1.0 β”‚ 651 β”‚ 0 β”‚ 48 β”‚ 1 β”‚ 0 β”‚ rsa β”‚ 35 β”‚ 0 β”‚ 6009.0 β”‚ julia> path = fetch_ssmc(matrix, format="RB") 1-element Array{String,1}: "/Users/dpo/dev/JSO/SuiteSparseMatrixCollection.jl/src/../data/RB/HB/bcsstk01" julia> A = RutherfordBoeingData(joinpath(path[1], "$(matrix.name[1]).rb")) Rutherford-Boeing data 23 of type rsa 48 rows, 48 cols, 224 nonzeros ``` Matrices in MM format can be opened with [`MatrixMarket.jl`](https://github.com/JuliaSparse/MatrixMarket.jl).
SuiteSparseMatrixCollection
https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl.git
[ "MPL-2.0" ]
0.5.6
576c5936c2017dc614ae8001efd872d50909e041
docs
1414
# [SuiteSparseMatrixCollection.jl documentation](@id Home) A straightforward interface to the [SuiteSparse Matrix Collection](https://sparse.tamu.edu/). ## How to install ```julia pkg> add SuiteSparseMatrixCollection pkg> test SuiteSparseMatrixCollection ``` ## Examples ```julia julia> using SuiteSparseMatrixCollection julia> # name-based selection can be done with `ssmc_matrices()` julia> ssmc = ssmc_db() # the database is named ssmc julia> ssmc_matrices(ssmc, "HB", "bcsstk") # all matrices whose group contains "HB" and name contains "bcsstk" julia> ssmc_matrices(ssmc, "", "bcsstk") # all matrices whose name contains "bcsstk" julia> ssmc_matrices(ssmc, "HB", "") # all matrices whose group contains "HB" julia> # select symmetric positive definite matrices with ≀ 100 rows and columns julia> tiny = ssmc[(ssmc.numerical_symmetry .== 1) .& (ssmc.positive_definite.== true) .& (ssmc.real .== true) .& (ssmc.nrows .≀ 100), :] julia> # fetch the matrices selects in MatrixMarket format julia> paths = fetch_ssmc(tiny, format="MM") # matrices are downloaded in paths julia> downloaded_matrices = installed_ssmc() # name of all downloaded matrices julia> delete_ssmc("HB", "bcsstk02") # delete the matrix "bcsstk02" of group "HB" julia> delete_all_ssmc() # delete all matrices from the SuiteSparseMatrixCollection ```
SuiteSparseMatrixCollection
https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl.git
[ "MPL-2.0" ]
0.5.6
576c5936c2017dc614ae8001efd872d50909e041
docs
176
# Reference ## Contents ```@contents Pages = ["reference.md"] ``` ## Index ```@index Pages = ["reference.md"] ``` ```@autodocs Modules = [SuiteSparseMatrixCollection] ```
SuiteSparseMatrixCollection
https://github.com/JuliaSmoothOptimizers/SuiteSparseMatrixCollection.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
2433
module GraphIODOTExt using Graphs import Graphs: loadgraph, loadgraphs, savegraph @static if isdefined(Base, :get_extension) using GraphIO using ParserCombinator import GraphIO.DOT.DOTFormat else # not required for julia >= v1.9 using ..GraphIO using ..ParserCombinator import ..GraphIO.DOT.DOTFormat end function savedot(io::IO, g::AbstractGraph, gname::String="") isdir = is_directed(g) println(io, (isdir ? "digraph " : "graph ") * gname * " {") for i in vertices(g) println(io, "\t" * string(i)) end if isdir for u in vertices(g) out_nbrs = outneighbors(g, u) length(out_nbrs) == 0 && continue println(io, "\t" * string(u) * " -> {" * join(out_nbrs, ',') * "}") end else for e in edges(g) source = string(src(e)) dest = string(dst(e)) println(io, "\t" * source * " -- " * dest) end end println(io, "}") return 1 end function savedot_mult(io::IO, graphs::Dict) ng = 0 for (gname, g) in graphs ng += savedot(io, g, gname) end return ng end function _dot_read_one_graph(pg::Parsers.DOT.Graph) isdir = pg.directed nvg = length(Parsers.DOT.nodes(pg)) nodedict = Dict(zip(collect(Parsers.DOT.nodes(pg)), 1:nvg)) if isdir g = DiGraph(nvg) else g = Graph(nvg) end for es in Parsers.DOT.edges(pg) s = nodedict[es[1]] d = nodedict[es[2]] add_edge!(g, s, d) end return g end function _name(pg::Parsers.DOT.Graph) return if pg.id !== nothing pg.id.id else Parsers.DOT.StringID(pg.directed ? "digraph" : "graph") end end function loaddot(io::IO, gname::String) p = Parsers.DOT.parse_dot(read(io, String)) for pg in p _name(pg) == gname && return _dot_read_one_graph(pg) end return error("Graph $gname not found") end function loaddot_mult(io::IO) p = Parsers.DOT.parse_dot(read(io, String)) graphs = Dict{String,AbstractGraph}() for pg in p graphs[_name(pg)] = _dot_read_one_graph(pg) end return graphs end loadgraph(io::IO, gname::String, ::DOTFormat) = loaddot(io, gname) loadgraphs(io::IO, ::DOTFormat) = loaddot_mult(io) savegraph(io::IO, g::AbstractGraph, gname::String, ::DOTFormat) = savedot(io, g, gname) savegraph(io::IO, d::Dict, ::DOTFormat) = savedot_mult(io, d) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1585
module GraphIOGEXFExt using Graphs import Graphs: loadgraph, loadgraphs, savegraph, AbstractGraph @static if isdefined(Base, :get_extension) using GraphIO using EzXML import GraphIO.GEXF.GEXFFormat else # not required for julia >= v1.9 using ..GraphIO using ..EzXML import ..GraphIO.GEXF.GEXFFormat end """ savegexf(f, g, gname) Write a graph `g` with name `gname` to an IO stream `io` in the [Gexf](http://gexf.net/format/) format. Return 1 (number of graphs written). """ function savegexf(io::IO, g::AbstractGraph, gname::String) xdoc = XMLDocument() xroot = setroot!(xdoc, ElementNode("gexf")) xroot["xmlns"] = "http://www.gexf.net/1.2draft" xroot["version"] = "1.2" xroot["xmlns:xsi"] = "http://www.w3.org/2001/XMLSchema-instance" xroot["xsi:schemaLocation"] = "http://www.gexf.net/1.2draft/gexf.xsd" xmeta = addelement!(xroot, "meta") addelement!(xmeta, "description", gname) xg = addelement!(xroot, "graph") strdir = is_directed(g) ? "directed" : "undirected" xg["defaultedgetype"] = strdir xnodes = addelement!(xg, "nodes") for i in 1:nv(g) xv = addelement!(xnodes, "node") xv["id"] = "$(i-1)" end xedges = addelement!(xg, "edges") m = 0 for e in edges(g) xe = addelement!(xedges, "edge") xe["id"] = "$m" xe["source"] = "$(src(e)-1)" xe["target"] = "$(dst(e)-1)" m += 1 end prettyprint(io, xdoc) return 1 end savegraph(io::IO, g::AbstractGraph, gname::String, ::GEXFFormat) = savegexf(io, g, gname) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
2785
module GraphIOGMLExt using Graphs import Graphs: loadgraph, loadgraphs, savegraph @static if isdefined(Base, :get_extension) using GraphIO using ParserCombinator import GraphIO.GML.GMLFormat else # not required for julia >= v1.9 using ..GraphIO using ..ParserCombinator import ..GraphIO.GML.GMLFormat end function _gml_read_one_graph(gs, dir) nodes = [x[:id] for x in gs[:node]] if dir g = DiGraph(length(nodes)) else g = Graph(length(nodes)) end mapping = Dict{Int,Int}() for (i, n) in enumerate(nodes) mapping[n] = i end sds = [(Int(x[:source]), Int(x[:target])) for x in gs[:edge]] for (s, d) in (sds) add_edge!(g, mapping[s], mapping[d]) end return g end function loadgml(io::IO, gname::String) p = Parsers.GML.parse_dict(read(io, String)) for gs in p[:graph] dir = Bool(get(gs, :directed, 0)) graphname = get(gs, :label, dir ? "digraph" : "graph") (gname == graphname) && return _gml_read_one_graph(gs, dir) end return error("Graph $gname not found") end function loadgml_mult(io::IO) p = Parsers.GML.parse_dict(read(io, String)) graphs = Dict{String,AbstractGraph}() for gs in p[:graph] dir = Bool(get(gs, :directed, 0)) graphname = get(gs, :label, dir ? "digraph" : "graph") graphs[graphname] = _gml_read_one_graph(gs, dir) end return graphs end """ savegml(f, g, gname="graph") Write a graph `g` with name `gname` to an IO stream `io` in the [GML](https://en.wikipedia.org/wiki/Graph_Modelling_Language) format. Return 1. """ function savegml(io::IO, g::AbstractGraph, gname::String="") println(io, "graph") println(io, "[") length(gname) > 0 && println(io, "label \"$gname\"") is_directed(g) && println(io, "directed 1") for i in 1:nv(g) println(io, "\tnode") println(io, "\t[") println(io, "\t\tid $i") println(io, "\t]") end for e in edges(g) s, t = Tuple(e) println(io, "\tedge") println(io, "\t[") println(io, "\t\tsource $s") println(io, "\t\ttarget $t") println(io, "\t]") end println(io, "]") return 1 end """ savegml_mult(io, graphs) Write a dictionary of (name=>graph) to an IO stream `io` Return number of graphs written. """ function savegml_mult(io::IO, graphs::Dict) ng = 0 for (gname, g) in graphs ng += savegml(io, g, gname) end return ng end loadgraph(io::IO, gname::String, ::GMLFormat) = loadgml(io, gname) loadgraphs(io::IO, ::GMLFormat) = loadgml_mult(io) savegraph(io::IO, g::AbstractGraph, gname::String, ::GMLFormat) = savegml(io, g, gname) savegraph(io::IO, d::Dict, ::GMLFormat) = savegml_mult(io, d) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
4919
module GraphIOGraphMLExt using Graphs import Graphs: loadgraph, loadgraphs, savegraph @static if isdefined(Base, :get_extension) using GraphIO using EzXML import GraphIO.GraphML.GraphMLFormat else # not required for julia >= v1.9 using ..GraphIO using ..EzXML import ..GraphIO.GraphML.GraphMLFormat end function _graphml_read_one_graph(reader::EzXML.StreamReader, isdirected::Bool) nodes = Dict{String,Int}() xedges = Vector{Edge}() nodeid = 1 for typ in reader if typ == EzXML.READER_ELEMENT elname = EzXML.nodename(reader) if elname == "node" nodes[reader["id"]] = nodeid nodeid += 1 elseif elname == "edge" src = reader["source"] tar = reader["target"] push!(xedges, Edge(nodes[src], nodes[tar])) else @warn "Skipping unknown node '$(elname)' - further warnings will be suppressed" maxlog = 1 _id = :unknode end end end g = (isdirected ? DiGraph : Graph)(length(nodes)) for edge in xedges add_edge!(g, edge) end return g end function loadgraphml(io::IO, gname::String) reader = EzXML.StreamReader(io) for typ in reader if typ == EzXML.READER_ELEMENT elname = EzXML.nodename(reader) if elname == "graphml" # ok elseif elname == "graph" edgedefault = reader["edgedefault"] directed = if edgedefault == "directed" true elseif edgedefault == "undirected" false else error("Unknown value of edgedefault: $edgedefault") end if haskey(reader, "id") graphname = reader["id"] else graphname = directed ? "digraph" : "graph" end if gname == graphname return _graphml_read_one_graph(reader, directed) end elseif elname == "node" || elname == "edge" # ok else @warn "Skipping unknown XML element '$(elname)' - further warnings will be suppressed" maxlog = 1 _id = :unkel end end end return error("Graph $gname not found") end function loadgraphml_mult(io::IO) reader = EzXML.StreamReader(io) graphs = Dict{String,AbstractGraph}() for typ in reader if typ == EzXML.READER_ELEMENT elname = EzXML.nodename(reader) if elname == "graphml" # ok elseif elname == "graph" edgedefault = reader["edgedefault"] directed = if edgedefault == "directed" true elseif edgedefault == "undirected" false else error("Unknown value of edgedefault: $edgedefault") end if haskey(reader, "id") graphname = reader["id"] else graphname = directed ? "digraph" : "graph" end graphs[graphname] = _graphml_read_one_graph(reader, directed) else @warn "Skipping unknown XML element '$(elname)' - further warnings will be suppressed" maxlog = 1 _id = :unkelmult end end end return graphs end function savegraphml_mult(io::IO, graphs::Dict) xdoc = XMLDocument() xroot = setroot!(xdoc, ElementNode("graphml")) xroot["xmlns"] = "http://graphml.graphdrawing.org/xmlns" xroot["xmlns:xsi"] = "http://www.w3.org/2001/XMLSchema-instance" xroot["xsi:schemaLocation"] = "http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd" for (gname, g) in graphs xg = addelement!(xroot, "graph") xg["id"] = gname xg["edgedefault"] = is_directed(g) ? "directed" : "undirected" for i in 1:nv(g) xv = addelement!(xg, "node") xv["id"] = "n$(i-1)" end m = 0 for e in edges(g) xe = addelement!(xg, "edge") xe["id"] = "e$m" xe["source"] = "n$(src(e)-1)" xe["target"] = "n$(dst(e)-1)" m += 1 end end prettyprint(io, xdoc) return length(graphs) end function savegraphml(io::IO, g::AbstractGraph, gname::String) return savegraphml_mult(io, Dict(gname => g)) end loadgraph(io::IO, gname::String, ::GraphMLFormat) = loadgraphml(io, gname) loadgraphs(io::IO, ::GraphMLFormat) = loadgraphml_mult(io) function savegraph(io::IO, g::AbstractGraph, gname::String, ::GraphMLFormat) return savegraphml(io, g, gname) end savegraph(io::IO, d::Dict, ::GraphMLFormat) = savegraphml_mult(io, d) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1578
module GraphIOLGCompressedExt using Graphs import Graphs: loadgraph, loadgraphs, savegraph, LGFormat @static if isdefined(Base, :get_extension) using GraphIO using CodecZlib import GraphIO.LGCompressed.LGCompressedFormat else # not required for julia >= v1.9 using ..GraphIO using ..CodecZlib import ..GraphIO.LGCompressed.LGCompressedFormat end function savegraph( fn::AbstractString, g::AbstractGraph, gname::AbstractString, format::LGCompressedFormat ) io = open(fn, "w") try io = GzipCompressorStream(io) return savegraph(io, g, gname, LGFormat()) catch rethrow() finally close(io) end end function savegraph(fn::AbstractString, g::AbstractGraph, format::LGCompressedFormat) return savegraph(fn, g, "graph", format) end function savegraph( fn::AbstractString, d::Dict{T,U}, format::LGCompressedFormat ) where {T<:AbstractString} where {U<:AbstractGraph} io = open(fn, "w") try io = GzipCompressorStream(io) return savegraph(io, d, LGFormat()) catch rethrow() finally close(io) end end # savegraph(fn::AbstractString, d::Dict; compress) = savegraph(fn, d, LGCompressedFormat()) function loadgraph(fn::AbstractString, gname::AbstractString, format::LGCompressedFormat) return loadgraph(fn, gname, LGFormat()) end function loadgraph(fn::AbstractString, format::LGCompressedFormat) return loadgraph(fn, "graph", LGFormat()) end loadgraphs(fn::AbstractString, format::LGCompressedFormat) = loadgraphs(fn, LGFormat()) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
922
module GraphIO @static if !isdefined(Base, :get_extension) using Requires end @static if !isdefined(Base, :get_extension) function __init__() @require CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193" begin include("../ext/GraphIOLGCompressedExt.jl") end @require EzXML = "8f5d6c58-4d21-5cfd-889c-e3ad7ee6a615" begin include("../ext/GraphIOGEXFExt.jl") include("../ext/GraphIOGraphMLExt.jl") end @require ParserCombinator = "fae87a5f-d1ad-5cf0-8f61-c941e1580b46" begin include("../ext/GraphIODOTExt.jl") include("../ext/GraphIOGMLExt.jl") end end end include("CDF/Cdf.jl") include("DOT/Dot.jl") include("Edgelist/Edgelist.jl") include("GEXF/Gexf.jl") include("GML/Gml.jl") include("GraphML/GraphML.jl") include("Graph6/Graph6.jl") include("LGCompressed/LGCompressed.jl") include("NET/Net.jl") end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1673
module CDF # loads a graph from a IEEE CDF file. # http://www2.ee.washington.edu/research/pstca/formats/cdf.txt # http://www2.ee.washington.edu/research/pstca/pf30/ieee30cdf.txt using Graphs using Graphs: AbstractGraphFormat import Graphs: loadgraph, loadgraphs, savegraph export CDFFormat struct CDFFormat <: AbstractGraphFormat end function _loadcdf(io::IO) srcs = Vector{Int}() dsts = Vector{Int}() vertices = Vector{Int}() inbusdata = false inbranchdata = false while !eof(io) line = strip(chomp(readline(io))) if inbusdata if occursin("-999", line) inbusdata = false else v = parse(Int, split(line)[1]) push!(vertices, v) end elseif inbranchdata if occursin("-999", line) inbranchdata = false else (src_s, dst_s) = split(line)[1:2] src = something(findfirst(isequal(parse(Int, src_s)), vertices), 0) dst = something(findfirst(isequal(parse(Int, dst_s)), vertices), 0) push!(srcs, src) push!(dsts, dst) end else inbusdata = startswith(line, "BUS DATA FOLLOWS") inbranchdata = startswith(line, "BRANCH DATA FOLLOWS") end end n_v = length(vertices) g = Graphs.Graph(n_v) for p in zip(srcs, dsts) add_edge!(g, p) end return g end loadcdf(io::IO, gname::String) = _loadcdf(io) loadgraph(io::IO, gname::String, ::CDFFormat) = loadcdf(io, gname) loadgraphs(io::IO, ::CDFFormat) = Dict("graph" => loadcdf(io, "graph")) end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
123
module DOT import Graphs: AbstractGraphFormat export DOTFormat struct DOTFormat <: AbstractGraphFormat end end #module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1665
module EdgeList # loads a graph from an edge list format (list of srcs and dsts separated # by commas or whitespace. Will only read the first two elements on # each line. Will return a directed graph. using DelimitedFiles: writedlm using Graphs using Graphs: AbstractGraphFormat import Graphs: loadgraph, loadgraphs, savegraph export EdgeListFormat struct EdgeListFormat <: AbstractGraphFormat end function loadedgelist(io::IO, gname::String) srcs = Vector{String}() dsts = Vector{String}() while !eof(io) line = strip(chomp(readline(io))) if !startswith(line, "#") && (line != "") # println("linelength = $(length(line)), line = $line") r = r"(\w+)[\s,]+(\w+)" src_s, dst_s = match(r, line).captures # println("src_s = $src_s, dst_s = $dst_s") push!(srcs, src_s) push!(dsts, dst_s) end end vxset = unique(vcat(srcs, dsts)) vxdict = Dict{String,Int}() for (v, k) in enumerate(vxset) vxdict[k] = v end n_v = length(vxset) g = Graphs.DiGraph(n_v) for (u, v) in zip(srcs, dsts) add_edge!(g, vxdict[u], vxdict[v]) end return g end function saveedgelist(io::IO, g::Graphs.AbstractGraph, gname::String) writedlm(io, ([src(e), dst(e)] for e in Graphs.edges(g)), ',') return 1 end loadgraph(io::IO, gname::String, ::EdgeListFormat) = loadedgelist(io, gname) loadgraphs(io::IO, ::EdgeListFormat) = Dict("graph" => loadedgelist(io, "graph")) function savegraph(io::IO, g::AbstractGraph, gname::String, ::EdgeListFormat) return saveedgelist(io, g, gname) end include("IntEdgeList.jl") end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1523
export IntEdgeListFormat struct IntEdgeListFormat <: AbstractGraphFormat offset::Int64 end IntEdgeListFormat(; offset=0) = IntEdgeListFormat(offset) function loadintedgelist(io::IO, gname::String, offset::Int64) elist = Vector{Tuple{Int64,Int64}}() nvg = 0 neg = 0 fadjlist = Vector{Vector{Int64}}() for x in eachline(io) i = 1 while x[i] != ' ' && x[i] != ',' i += 1 end s = parse(Int64, x[1:(i - 1)]) while x[i] == ' ' || x[i] == ',' i += 1 end ii = i while i <= length(x) && x[i] != ' ' i += 1 end d = parse(Int64, x[ii:(i - 1)]) s = s - offset d = d - offset if nvg < max(s, d) nvg = max(s, d) append!(fadjlist, [Vector{Int64}() for _ in 1:(nvg - length(fadjlist))]) end push!(fadjlist[s], d) neg += 1 end sort!.(fadjlist) badjlist = [Vector{Int64}() for _ in 1:nvg] for u in 1:nvg for v in fadjlist[u] push!(badjlist[v], u) end end return Graphs.DiGraph(neg, fadjlist, badjlist) end function loadgraph(io::IO, gname::String, fmt::IntEdgeListFormat) return loadintedgelist(io, gname, fmt.offset) end function loadgraphs(io::IO, fmt::IntEdgeListFormat) return Dict("graph" => loadintedgelist(io, "graph", fmt.offset)) end function savegraph(io::IO, g::AbstractGraph, gname::String, ::IntEdgeListFormat) return saveedgelist(io, g, gname) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
153
module GEXF import Graphs: AbstractGraphFormat export GEXFFormat # TODO: implement readgexf struct GEXFFormat <: AbstractGraphFormat end end #module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
124
module GML import Graphs: AbstractGraphFormat export GMLFormat struct GMLFormat <: AbstractGraphFormat end end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
4191
module Graph6 using SimpleTraits using Graphs using Graphs: AbstractGraphFormat import Graphs: loadgraph, loadgraphs, savegraph export Graph6Format struct Graph6Format <: AbstractGraphFormat end function _bv2int(x::BitVector) @assert(length(x) <= 8 * sizeof(Int)) acc = 0 for i in 1:length(x) acc = acc << 1 + x[i] end return acc end function _int2bv(n::Int, k::Int) bitstr = lstrip(bitstring(n), '0') l = length(bitstr) padding = k - l bv = falses(k) for i in 1:l bv[padding + i] = (bitstr[i] == '1') end return bv end function _g6_R(_x::BitVector)::Vector{UInt8} k = length(_x) padding = cld(k, 6) * 6 - k x = vcat(_x, falses(padding)) nbytes = div(length(x), 6) bytevec = Vector{UInt8}(undef, nbytes) # uninitialized data! for i in 1:nbytes xslice = x[((i - 1) * 6 + 1):(i * 6)] intslice = 0 for bit in xslice intslice = (intslice << 1) + bit end intslice += 63 bytevec[i] = intslice end return UInt8.(bytevec) end _g6_R(n::Int, k::Int) = _g6_R(_int2bv(n, k)) function _g6_Rp(bytevec::Vector{UInt8}) nbytes = length(bytevec) x = BitVector() for byte in bytevec bits = _int2bv(byte - 63, 6) x = vcat(x, bits) end return x end function _g6_N(x::Integer)::Vector{UInt8} if (x < 0) || (x > 68719476735) error("x must satisfy 0 <= x <= 68719476735") elseif (x <= 62) nvec = [x + 63] elseif (x <= 258047) nvec = vcat([0x7e], _g6_R(x, 18)) else nvec = vcat([0x7e; 0x7e], _g6_R(x, 36)) end return UInt8.(nvec) end function _g6_Np(N::Vector{UInt8}) if N[1] < 0x7e return (Int(N[1] - 63), N[2:end]) elseif N[2] < 0x7e return (_bv2int(_g6_Rp(N[2:4])), N[5:end]) else return (_bv2int(_g6_Rp(N[3:8])), N[9:end]) end end """ _graphToG6String(g) Given a graph `g`, create the corresponding Graph6 string. """ function _graphToG6String(g::Graphs.Graph) A = adjacency_matrix(g, Bool) n = nv(g) nbits = div(n * (n - 1), 2) x = BitVector(undef, nbits) ind = 0 for col in 2:n, row in 1:(col - 1) ind += 1 x[ind] = A[row, col] end return join([">>graph6<<", String(_g6_N(n)), String(_g6_R(x))]) end function _g6StringToGraph(s::AbstractString) if startswith(s, ">>graph6<<") s = s[11:end] end V = Vector{UInt8}(s) (nv, rest) = _g6_Np(V) bitvec = _g6_Rp(rest) g = Graphs.Graph(nv) n = 0 for i in 2:nv, j in 1:(i - 1) n += 1 if bitvec[n] add_edge!(g, j, i) end end return g end function loadgraph6_mult(io::IO) n = 0 graphdict = Dict{String,Graphs.Graph}() while !eof(io) n += 1 line = strip(chomp(readline(io))) gname = "graph$n" if length(line) > 0 g = _g6StringToGraph(line) graphdict[gname] = g end end return graphdict end """ loadgraph6(io, gname="graph") Read a graph from IO stream `io` in the [Graph6](http://users.cecs.anu.edu.au/%7Ebdm/data/formats.txt) format. Return the graph. """ loadgraph6(io::IO, gname::String="graph") = loadgraph6_mult(io)[gname] """ savegraph6(io, g, gname="graph") Write a graph `g` to IO stream `io` in the [Graph6](http://users.cecs.anu.edu.au/%7Ebdm/data/formats.txt) format. Return 1 (number of graphs written). """ function savegraph6 end @traitfn function savegraph6(io::IO, g::::(!Graphs.IsDirected), gname::String="graph") str = _graphToG6String(g) println(io, str) return 1 end function savegraph6_mult(io::IO, graphs::Dict) ng = 0 sortkeys = sort(collect(keys(graphs))) for gname in sortkeys ng += savegraph6(io, graphs[gname], gname) end return ng end loadgraph(io::IO, gname::String, ::Graph6Format) = loadgraph6(io, gname) loadgraphs(io::IO, ::Graph6Format) = loadgraph6_mult(io) function savegraph(io::IO, g::AbstractGraph, gname::String, ::Graph6Format) return savegraph6(io, g, gname) end savegraph(io::IO, d::Dict, ::Graph6Format) = savegraph6_mult(io, d) end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
136
module GraphML import Graphs: AbstractGraphFormat export GraphMLFormat struct GraphMLFormat <: AbstractGraphFormat end end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
151
module LGCompressed import Graphs: AbstractGraphFormat export LGCompressedFormat struct LGCompressedFormat <: AbstractGraphFormat end end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
2324
module NET using Graphs: Graphs using Graphs using Graphs: AbstractGraphFormat import Graphs: loadgraph, loadgraphs, savegraph export NETFormat struct NETFormat <: AbstractGraphFormat end """ savenet(io, g, gname="g") Write a graph `g` to an IO stream `io` in the [Pajek NET](http://gephi.github.io/users/supported-graph-formats/pajek-net-format/) format. Return 1 (number of graphs written). """ function savenet(io::IO, g::Graphs.AbstractGraph, gname::String="g") println(io, "*Vertices $(nv(g))") # write edges if is_directed(g) println(io, "*Arcs") else println(io, "*Edges") end for e in Graphs.edges(g) println(io, "$(src(e)) $(dst(e))") end return 1 end """ loadnet(io::IO, gname="graph") Read a graph from IO stream `io` in the [Pajek NET](http://gephi.github.io/users/supported-graph-formats/pajek-net-format/) format. Return the graph. """ function loadnet(io::IO, gname::String="graph") line = readline(io) # skip comments while startswith(line, "%") line = readline(io) end n = parse(Int, match(r"\d+", line).match) for ioline in eachline(io) line = ioline (occursin(r"^\*Arcs", line) || occursin(r"^\*Edges", line)) && break end if occursin(r"^\*Arcs", line) g = Graphs.DiGraph(n) else g = Graphs.Graph(n) end while occursin(r"^\*Arcs", line) for ioline in eachline(io) line = ioline ms = collect(m.match for m in eachmatch(r"\d+", line; overlap=false)) length(ms) < 2 && break add_edge!(g, parse(Int, ms[1]), parse(Int, ms[2])) end end while occursin(r"^\*Edges", line) # add edges in both directions for ioline in eachline(io) line = ioline ms = collect(m.match for m in eachmatch(r"\d+", line; overlap=false)) length(ms) < 2 && break i1, i2 = parse(Int, ms[1]), parse(Int, ms[2]) add_edge!(g, i1, i2) add_edge!(g, i2, i1) end end return g end loadgraph(io::IO, gname::String, ::NETFormat) = loadnet(io, gname) loadgraphs(io::IO, ::NETFormat) = Dict("graph" => loadnet(io, "graph")) savegraph(io::IO, g::AbstractGraph, gname::String, ::NETFormat) = savenet(io, g, gname) end # module
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
2407
# This file contains helper functions for testing the various # GraphIO formats using Graphs graphs = Dict{String,Graph}( "graph1" => complete_graph(5), "graph2" => path_graph(6), "graph3" => wheel_graph(4) ) digraphs = Dict{String,DiGraph}( "digraph1" => complete_digraph(5), "digraph2" => path_digraph(6), "digraph3" => wheel_digraph(4), ) allgraphs = merge(graphs, digraphs) function gettempname() (f, fio) = mktemp() close(fio) return f end function read_test( format::Graphs.AbstractGraphFormat, g::Graphs.AbstractGraph, gname::String="g", fname::AbstractString=""; testfail=false, ) @test loadgraph(fname, gname, format) == g if testfail @test_throws Union{ArgumentError,ErrorException} loadgraph( fname, "badgraphXXX", format ) end @test loadgraphs(fname, format)[gname] == g end function read_test_mult( format::Graphs.AbstractGraphFormat, d::Dict{String,G}, fname::AbstractString="" ) where {G<:AbstractGraph} rd = loadgraphs(fname, format) @test rd == d end function write_test( format::Graphs.AbstractGraphFormat, g::Graphs.AbstractGraph, gname::String="g", fname::AbstractString=gettempname(); remove=true, silent=false, ) @test savegraph(fname, g, gname, format) == 1 if remove rm(fname) elseif !silent info("graphio/write_test: Left temporary file at: $fname") end end function write_test( format::Graphs.AbstractGraphFormat, d::Dict{String,G}, fname::AbstractString=gettempname(); remove=true, silent=false, ) where {G<:Graphs.AbstractGraph} @test savegraph(fname, d, format) == length(d) if remove rm(fname) elseif !silent info("graphio/write_test: Left temporary file at: $fname") end end function readback_test( format::Graphs.AbstractGraphFormat, g::Graphs.AbstractGraph, gname="graph", fname=gettempname(); remove=true, testfail=false, ) @test savegraph(fname, g, format) == 1 @test loadgraphs(fname, format)[gname] == g @test loadgraph(fname, gname, format) == g if testfail @test_throws Union{ArgumentError,ErrorException} loadgraph( fname, "badgraphXXX", format ) end if remove rm(fname) else info("graphio/readback_test: Left temporary file at: $fname") end end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
805
using Aqua using GraphIO using Graphs using JuliaFormatter using Test testdir = dirname(@__FILE__) modules = [ "CDF", "Edgelist", "GML", "NET", "DOT", "GEXF", "Graph6", "GraphML", "LGCompressed" ] include("graphio.jl") # write your own tests here @testset verbose = true "GraphIO" begin @testset "Code quality" begin Aqua.test_all(GraphIO; stale_deps=false, project_toml_formatting=false) Aqua.test_stale_deps(GraphIO; ignore=[:Requires]) if VERSION >= v"1.9" Aqua.test_project_toml_formatting(GraphIO) end end @testset "Code formatting" begin @test JuliaFormatter.format(GraphIO; verbose=false, overwrite=false) end for name in modules path = joinpath(testdir, name, "runtests.jl") include(path) end end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
200
using Test using GraphIO.CDF @testset "CDF" begin g = loadgraph(joinpath(testdir, "testdata", "30bus.jlg")) read_test(CDFFormat(), g, "graph", joinpath(testdir, "testdata", "30bus.cdf")) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
1643
using Test using ParserCombinator using GraphIO.DOT using Graphs.Experimental @testset "DOT" begin g = complete_graph(6) dg = DiGraph(4) for e in [Edge(1, 2), Edge(1, 3), Edge(2, 2), Edge(2, 3), Edge(4, 1), Edge(4, 3)] add_edge!(dg, e) end fname = joinpath(testdir, "testdata", "twographs.dot") read_test(DOTFormat(), g, "g1", fname; testfail=true) read_test(DOTFormat(), dg, "g2", fname) read_test_mult(DOTFormat(), Dict{String,AbstractGraph}("g1" => g, "g2" => dg), fname) #tests for multiple graphs fname = joinpath(testdir, "testdata", "saved3graphs.dot") #connected graph g1 = SimpleGraph(5, 10) #disconnected graph g2 = SimpleGraph(5, 2) #directed graph dg = SimpleDiGraph(5, 8) GraphDict = Dict("g1" => g1, "g2" => g2, "dg" => dg) write_test(DOTFormat(), GraphDict, fname; remove=false, silent=true) #adding this test because currently the Parser returns unordered vertices @test has_isomorph(loadgraph(fname, "g1", DOTFormat()), g1) @test has_isomorph(loadgraph(fname, "g2", DOTFormat()), g2) @test has_isomorph(loadgraph(fname, "dg", DOTFormat()), dg) rm(fname) #tests for single graph fname1 = joinpath(testdir, "testdata", "saved1graph.dot") write_test(DOTFormat(), g1, "g1", fname1; remove=false, silent=true) @test has_isomorph(loadgraph(fname1, "g1", DOTFormat()), g1) fname2 = joinpath(testdir, "testdata", "saved1digraph.dot") write_test(DOTFormat(), dg, "dg", fname2; remove=false, silent=true) @test has_isomorph(loadgraph(fname2, "dg", DOTFormat()), dg) rm(fname1) rm(fname2) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
234
using Test using GraphIO.EdgeList using GraphIO.EdgeList: IntEdgeListFormat @testset "EdgeList" begin for g in values(digraphs) readback_test(EdgeListFormat(), g) readback_test(IntEdgeListFormat(), g) end end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
144
using Test using EzXML using GraphIO.GEXF @testset "GEXF" begin for g in values(allgraphs) write_test(GEXFFormat(), g) end end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
209
using Test using ParserCombinator using GraphIO.GML @testset "GML" begin for g in values(allgraphs) readback_test(GMLFormat(), g; testfail=true) end write_test(GMLFormat(), allgraphs) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
567
using Test using GraphIO.Graph6 @testset "Graph6" begin n1 = (30, UInt8.([93])) n2 = (12345, UInt8.([126; 66; 63; 120])) n3 = (460175067, UInt8.([126; 126; 63; 90; 90; 90; 90; 90])) ns = [n1; n2; n3] for n in ns @test Graph6._g6_N(n[1]) == n[2] @test Graph6._g6_Np(n[2])[1] == n[1] end for g in values(graphs) readback_test(Graph6Format(), g, "graph1") end f = gettempname() write_test(Graph6Format(), graphs, f; remove=false, silent=true) read_test_mult(Graph6Format(), graphs, f) rm(f) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
668
using Test using EzXML using GraphIO.GraphML @testset "GraphML" begin for g in values(allgraphs) readback_test(GraphMLFormat(), g; testfail=true) end fname = joinpath(testdir, "testdata", "warngraph.graphml") @test_logs ( :warn, "Skipping unknown node 'warnnode' - further warnings will be suppressed" ) match_mode = :any loadgraphs(fname, GraphMLFormat()) @test_logs ( :warn, "Skipping unknown XML element 'warnelement' - further warnings will be suppressed", ) match_mode = :any loadgraph(fname, "graph", GraphMLFormat()) d = loadgraphs(fname, GraphMLFormat()) write_test(GraphMLFormat(), d) end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
190
using Test using CodecZlib using GraphIO.LGCompressed @testset "LGCompressed" begin for g in values(allgraphs) readback_test(LGCompressedFormat(), g; testfail=true) end end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
code
249
using Test using GraphIO.NET @testset "Pajek NET" begin for g in values(allgraphs) readback_test(NETFormat(), g) end fname = joinpath(testdir, "testdata", "kinship.net") @test length(loadgraphs(fname, NETFormat())) == 1 end
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.7.0
bc5b7609e9f4583f303a0ab2a7016ea318464da0
docs
4152
# GraphIO [![Build Status](https://github.com/JuliaGraphs/GraphIO.jl/workflows/CI/badge.svg)](https://github.com/JuliaGraphs/GraphIO.jl/actions?query=workflow%3ACI+branch%3Amaster) [![codecov.io](http://codecov.io/github/JuliaGraphs/GraphIO.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaGraphs/GraphIO.jl?branch=master) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) GraphIO provides support to [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl) for reading/writing graphs in various formats. Currently, the following functionality is provided: | Format | Read | Write | Multiple Graphs | Format Name | Comment | | ----------- | ---- | ----- | --------------- | -------------- | ------------------------------------------------------------------------------------------- | | EdgeList | βœ“ | βœ“ | | EdgeListFormat | a simple list of sources and dests separated by whitespace and/or comma, one pair per line. | | [GML] | βœ“ | βœ“ | βœ“ | GMLFormat | | | [Graph6] | βœ“ | βœ“ | βœ“ | Graph6Format | | | [GraphML] | βœ“ | βœ“ | βœ“ | GraphMLFormat | | | [Pajek NET] | βœ“ | βœ“ | | NETFormat | | | [GEXF] | | βœ“ | | GEXFFormat | | | [DOT] | βœ“ | | βœ“ | DOTFormat | | | [CDF] | βœ“ | | | CDFFormat | | Graphs are read using either the `loadgraph` function or, for formats that support multiple graphs in a single file, the `loadgraphs` functions. `loadgraph` returns a Graph object, while `loadgraphs` returns a dictionary of Graph objects. For example, an edgelist file could be loaded as: ```julia graph = loadgraph("path_to_graph/my_edgelist.txt", "graph_key", EdgeListFormat()) ``` ## Reading different graph types All `*Format` types are readily accessible. However, in order to use some of them with `loadgraph`, additional packages are required. You may thus need to install and load the following dependencies before using parts of GraphIO.jl: - Reading [DOT] or [GML] files: do `using ParserCombinator` - Reading [GEXF] or [GraphML] files: do `using EzXML` - Reading [GML] files: do `using CodecZlib` The current design avoids populating your environment with unnecessary dependencies. > **_IMPLEMENTATION NOTE:_** > The current design uses package extensions, introduced in Julia v1.9. > At the moment, package extensions cannot conditionally load types, that is one of the main reasons why all `*Format` types are readily accessible. > However, the functionality of `loadgraph` is extended for the various types only when the appropriate dependencies are available. > We are searching for more intuitive ways to design this interface. [CDF]: http://www2.ee.washington.edu/research/pstca/formats/cdf.txt [GML]: https://en.wikipedia.org/wiki/Graph_Modelling_Language [Graph6]: https://users.cecs.anu.edu.au/~bdm/data/formats.html [GraphML]: https://en.wikipedia.org/wiki/GraphML [Pajek NET]: https://gephi.org/users/supported-graph-formats/pajek-net-format/ [GEXF]: https://gephi.org/gexf/format/ [DOT]: https://en.wikipedia.org/wiki/DOT_(graph_description_language)
GraphIO
https://github.com/JuliaGraphs/GraphIO.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
code
590
using PulsarSearch using Documenter makedocs(; modules=[PulsarSearch], authors="Matteo Bachetti <[email protected]> and contributors", repo="https://github.com/JuliaAstro/PulsarSearch.jl/blob/{commit}{path}#L{line}", sitename="PulsarSearch.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://juliaastro.github.io/PulsarSearch.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/JuliaAstro/PulsarSearch.jl", devbranch = "main" )
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
code
4856
module PulsarSearch using StatsBase include("stats.jl") """ `z_n_binned(profile, n) --> zsq` ``Z^2_n`` statistic for pulse profiles from binned events See Bachetti+2021, arXiv:2012.11397 Parameters ---------- `profile` : array of floats The folded pulse profile (containing the number of photons falling in each pulse bin) `n` : int Number of harmonics, including the fundamental Returns ------- `zsq` : float The value of the statistic # Examples ```jldoctest julia> using PulsarSearch julia> z_n_binned(zeros(10), 2) 0.0 julia> z_n_binned(ones(10), 2) < 1e-30 true julia> z_n_binned([10., 0., 0., 0., 0.], 2) 40.0 ``` """ function z_n_binned(profile::AbstractVector{}, n::Integer)::Float64 total = sum(profile) N = length(profile) phase = range(0, stop = N - 1) * (2pi/ N) if iszero(total) return 0.0 end z = zero(Float64) for k in range(1, stop = n) s = 0.0 c = 0.0 for i in eachindex(profile) sk, ck = sincos(k * phase[i]) s += profile[i] * sk c += profile[i] * ck end s = s^2 c = c^2 z += c + s end return z * 2 / total end """ `z_n(phases, n) --> zsq` ``Z^2_n`` statistics, Γ  la Buccheri+83, A&A, 128, 245, eq. 2. Parameters ---------- `phase` : array of floats The phases of the events `n` : int, default 2 Number of harmonics, including the fundamental Returns ------- `zsq` : float The ``Z^2_n`` statistic # Examples ```jldoctest julia> using PulsarSearch julia> z_n([10., 0., 0., 0., 0.], 2) 20.0 julia> z_n(ones(10), 2) 40.0 julia> z_n(Array([0.5]), 2) 0.0 ``` """ function z_n(phases::AbstractVector{T}, n::Integer)::T where {T<:AbstractFloat} N = length(phases) if N < 2 return zero(T) end z = zero(T) twopiphase = 2 * pi * phases for k in range(1, stop = n) s = zero(T) c = zero(T) for ph in twopiphase sk, ck = sincos(k * ph) s += sk c += ck end s = s^2 c = c^2 z += c + s end return z * 2 / N end """ `z_n_search(times, n, fmin, fmax [,oversample]) --> freqs, zsq_stat` Calculate the ``Z^2_n`` statistics at trial frequencies in photon data. Parameters ---------- `times` : array-like the event arrival times `n` : int the number of harmonics in ``Z^2_n`` Other Parameters ---------------- `fmin` : float minimum pulse frequency to search `fmax` : float maximum pulse frequency to search `oversample` : float Oversampling factor with respect to the usual 1/T/n rule Returns ------- `fgrid` : array-like frequency grid of the epoch folding periodogram `zsq_stat` : array-like the Z^2_n statistics corresponding to each frequency bin. """ function z_n_search( times::AbstractVector{T}, n::Integer, fmin::Number, fmax::Number; oversample::Number = 2, ) where {T <: AbstractFloat} t0 = first(times) t1 = last(times) df = 1 / (t1 - t0) / oversample freqs = fmin:df:fmax N = length(freqs) stats = Vector{T}(undef, N) for i in eachindex(freqs) phases = times * freqs[i] phases .-= floor.(phases) stats[i] = z_n(phases, n) end return freqs, stats end """ `z_n_search_hist(times, n, fmin, fmax [,oversample]) --> freqs, zsq_stat` Calculate the ``Z^2_n`` statistics at trial frequencies in photon data. Pre-bins the data using a histogram. At the moment, it is _not_ faster. It will be after I add the 2-d hist + shift-and-add. But it allowed to test that `z_n_binned works` with binned data. Parameters ---------- `times` : array-like the event arrival times `n` : int the number of harmonics in ``Z^2_n`` Other Parameters ---------------- `fmin` : float minimum pulse frequency to search `fmax` : float maximum pulse frequency to search `oversample` : float Oversampling factor with respect to the usual 1/T/n rule Returns ------- `fgrid` : array-like frequency grid of the epoch folding periodogram `zsq_stat` : array-like the Z^2_n statistics corresponding to each frequency bin. """ function z_n_search_hist( times::AbstractVector{T}, n::Integer, fmin::Number, fmax::Number; oversample::Number = 2, nbin::Integer = 16 ) where {T <: AbstractFloat} t0 = first(times) t1 = last(times) df = 1 / (t1 - t0) / oversample freqs = fmin:df:fmax N = length(freqs) stats = Vector{T}(undef, N) for i in eachindex(freqs) phases = times * freqs[i] phases .-= floor.(phases) hist = fit(Histogram, phases, 0.0:(1/nbin):1.0) stats[i] = z_n_binned(hist.weights, n) end return freqs, stats end export z_n export z_n_binned export z_n_search export z_n_search_hist # Write your package code here. end
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
code
11675
using Distributions """Equivalent gaussian sigma for small log-probability. Return the equivalent gaussian sigma corresponding to the natural log of the cumulative gaussian probability logp. In other words, return x, such that Q(x) = p, where Q(x) is the cumulative normal distribution. This version uses the rational approximation from Abramowitz and Stegun, eqn 26.2.23, that claims to be precise to ~1e-4. Using the log(P) as input gives a much extended range. The parameters here are the result of a best-fit, with no physical meaning. Translated from Scott Ransom's PRESTO """ function extended_equiv_gaussian_Nsigma(logp::Number) t = sqrt(-2.0 * logp) num = 2.515517 + t * (0.802853 + t * 0.010328) denom = 1.0 + t * (1.432788 + t * (0.189269 + t * 0.001308)) return t - num / denom end """Number of Gaussian sigmas corresponding to tail log-probability. This function computes the value of the characteristic function of a standard Gaussian distribution for the tail probability equivalent to the provided p-value, and turns this value into units of standard deviations away from the Gaussian mean. This allows the user to make a statement about the signal such as β€œI detected this pulsation at 4.1 sigma The example values below are obtained by brute-force integrating the Gaussian probability density function using the mpmath library between Nsigma and +inf. # Examples ```jldoctest julia> using PulsarSearch julia> pvalues = Array([0.15865525393145707, 0.0013498980316301035, 9.865877e-10, 6.22096e-16, 3.0567e-138]); julia> log_pvalues = log.(pvalues); julia> sigmas = Array([1, 3, 6, 8, 25]); julia> all(isapprox(equivalent_gaussian_Nsigma_from_logp.(log_pvalues), sigmas; atol=0.1)) true ``` """ function equivalent_gaussian_Nsigma_from_logp(logp) if logp < -300 # print("Extended") return extended_equiv_gaussian_Nsigma(logp) end d = Normal() return cquantile(d, exp(logp)) end export equivalent_gaussian_Nsigma_from_logp """Number of Gaussian sigmas corresponding to tail probability. This function computes the value of the characteristic function of a standard Gaussian distribution for the tail probability equivalent to the provided p-value, and turns this value into units of standard deviations away from the Gaussian mean. This allows the user to make a statement about the signal such as β€œI detected this pulsation at 4.1 sigma """ function equivalent_gaussian_Nsigma(p) return equivalent_gaussian_Nsigma_from_logp(log(p)) end export equivalent_gaussian_Nsigma """Asymptotic natural log of incomplete gamma function. Return the natural log of the incomplete gamma function in its asymptotic limit as z->infty. This is from Abramowitz and Stegun eqn 6.5.32. Translated from Scott Ransom's PRESTO # Examples ```jldoctest julia> using PulsarSearch julia> pvalues = Array([0.15865525393145707, 0.0013498980316301035]); julia> sigmas = Array([1, 3]); julia> all(isapprox(equivalent_gaussian_Nsigma.(pvalues), sigmas; atol=0.1)) true ``` """ function log_asymptotic_incomplete_gamma(a, z) x = 1.0 newxpart = 1.0 term = 1.0 ii = 1 while (abs(newxpart) > 1e-15) term *= (a - ii) newxpart = term / z^ii x += newxpart ii += 1 end return (a - 1.0) * log(z) - z + log(x) end export log_asymptotic_incomplete_gamma """Natural log of the Gamma function in its asymptotic limit. Return the natural log of the gamma function in its asymptotic limit as z->infty. This is from Abramowitz and Stegun eqn 6.1.41. Translated from Scott Ransom's PRESTO """ function log_asymptotic_gamma(z) half_log_twopi = 0.91893853320467267 # (1/2)*log(2*pi) one_twelfth = 8.3333333333333333333333e-2 one_degree = 2.7777777777777777777778e-3 # 1 / 360 one_over_1680 = 5.9523809523809529e-4 one_over_1260 = 7.9365079365079365079365e-4 x = (z - 0.5) * log(z) - z + half_log_twopi y = 1.0 / (z * z) x += ( ((-one_over_1680 * y + one_over_1260) * y - one_degree) * y + one_twelfth ) / z return x end """Log survival function of the chi-squared distribution. # Examples ```jldoctest chi2_logp julia> using PulsarSearch; julia> using Distributions; julia> chi2 = 31; julia> d = Chisq(2); julia> isapprox(chi2_logp(chi2, 2), logccdf(d, chi2), atol=0.1) true julia> chi2 = Array([5, 32]); julia> all(isapprox.(chi2_logp.(chi2, 2), logccdf.(d, chi2), atol=0.1)) true ``` """ function chi2_logp(chi2, dof) # If very large reduced chi squared, use approximation. This is an # eyeballed limit parameter space where the difference between the # approximation and the scipy version is tiny, but above which the scipy # version starts failing. if (chi2 / dof > 15.0) || ((dof > 150) && (chi2 / dof > 6.0)) return log_asymptotic_incomplete_gamma(0.5 * dof, 0.5 * chi2) - log_asymptotic_gamma(0.5 * dof) end d = Chisq(dof) return logccdf(d, chi2) end export chi2_logp """Calculate a multi-trial p-value from the log of a single-trial one. This allows to work around Numba's limitation on longdoubles, a way to vectorize the computation when we need longdouble precision. Parameters ---------- logp1 : float The natural logarithm of the significance at which we reject the null hypothesis on each single trial. n : int The number of trials Returns ------- logpn : float The log of the significance at which we reject the null hypothesis after multiple trials """ function logp_multitrial_from_single_logp(logp1, n) # If the the probability is very small (p1 * n) < 1e-6, use Bonferroni # approximation. logn = log(n) if logp1 + logn < -7 return logp1 + logn end return log(1 - (1 - exp(logp1))^n) end export logp_multitrial_from_single_logp raw"""Calculate a multi-trial p-value from a single-trial one. Calling *p* the probability of a single success, the Binomial distributions says that the probability *at least* one outcome in n trials is ``P(k\geq 1) = \sum_{k\geq 1} \binom{n}{k} p^k (1-p)^{(n-k)}`` or more simply, using P(k β‰₯ 0) = 1 P(k\geq 1) = 1 - \binom{n}{0} (1-p)^n = 1 - (1-p)^n`` Parameters ---------- p1 : float The significance at which we reject the null hypothesis on each single trial. n : int The number of trials Returns ------- pn : float The significance at which we reject the null hypothesis after multiple trials """ function p_multitrial_from_single_trial(p1, n) logpn = logp_multitrial_from_single_logp(log(p1), n) return exp(logpn) end export p_multitrial_from_single_trial """Calculate a multi-trial p-value from the log of a single-trial one. This allows to work around Numba's limitation on longdoubles, a way to vectorize the computation when we need longdouble precision. Parameters ---------- logpn : float The natural logarithm of the significance at which we want to reject the null hypothesis after multiple trials n : int The number of trials Returns ------- logp1 : float The log of the significance at which we reject the null hypothesis on each single trial. """ function logp_single_trial_from_logp_multitrial(logpn, n) logn = log(n) # If the the probability is very small, use Bonferroni approximation. if logpn < -7 return logpn - logn end # Numerical errors arise when pn is very close to 1. p1 = 1 - (1 - exp(logpn))^(1 / n) return log(p1) end export logp_single_trial_from_logp_multitrial raw"""Calculate the single-trial p-value from a total p-value Let us say that we want to reject a null hypothesis at the ``pn`` level, after executing ``n`` different measurements. This might be the case because, e.g., we want to have a 1% probability of detecting a signal in an entire power spectrum, and we need to correct the detection level accordingly. The typical procedure is dividing the initial probability (often called _epsilon_) by the number of trials. This is called the Bonferroni correction and it is often a good approximation, when ``pn`` is low: ``p1 = pn / n``. However, if ``pn`` is close to 1, this approximation gives incorrect results. Here we calculate this probability by inverting the Binomial problem. Given that (see ``p_multitrial_from_single_trial``) the probability of getting more than one hit in n trials, given the single-trial probability *p*, is ``P (k \geq 1) = 1 - (1 - p)^n`` we get the single trial probability from the multi-trial one from ``p = 1 - (1 - P)^{(1/n)}`` This is also known as Ε idΓ‘k correction. Parameters ---------- pn : float The significance at which we want to reject the null hypothesis after multiple trials n : int The number of trials Returns ------- p1 : float The significance at which we reject the null hypothesis on each single trial. """ function p_single_trial_from_p_multitrial(pn, n) logp = logp_single_trial_from_logp_multitrial(log(pn), n) return exp(logp) end export p_single_trial_from_p_multitrial """Calculate the probability of a certain folded profile, due to noise. Parameters ---------- z2 : float A ``Z^2_n`` statistics value n : int, default 2 The ``n`` in ``Z^2_n`` (number of harmonics, including the fundamental) Other Parameters ---------------- ntrial : int The number of trials executed to find this profile n_summed_spectra : int Number of ``Z_2^n`` periodograms that were averaged to obtain z2 Returns ------- p : float The probability that the ``Z^2_n`` value has been produced by noise """ function z2_n_probability(z2, n; ntrial = 1, n_summed_spectra = 1) d = Chisq(2 * n * n_summed_spectra) epsilon_1 = ccdf(d, z2 * n_summed_spectra) epsilon = p_multitrial_from_single_trial(epsilon_1, ntrial) return epsilon end export z2_n_probability """Calculate the probability of a certain folded profile, due to noise. Parameters ---------- z2 : float A ``Z^2_n`` statistics value n : int, default 2 The ``n`` in ``Z^2_n`` (number of harmonics, including the fundamental) Other Parameters ---------------- ntrial : int The number of trials executed to find this profile n_summed_spectra : int Number of ``Z_2^n`` periodograms that were averaged to obtain z2 Returns ------- p : float The probability that the ``Z^2_n`` value has been produced by noise """ function z2_n_logprobability(z2, n; ntrial = 1, n_summed_spectra = 1) epsilon_1 = chi2_logp(z2 * n_summed_spectra, 2 * n * n_summed_spectra) epsilon = logp_multitrial_from_single_logp(epsilon_1, ntrial) return epsilon end export z2_n_logprobability """Return the detection level for the ``Z^2_n`` statistics. See Buccheri et al. (1983), Bendat and Piersol (1971). Parameters ---------- n : int, default 2 The ``n`` in ``Z^2_n`` (number of harmonics, including the fundamental) epsilon : float, default 0.01 The fractional probability that the signal has been produced by noise Other Parameters ---------------- ntrial : int The number of trials executed to find this profile n_summed_spectra : int Number of Z_2^n periodograms that are being averaged Returns ------- detlev : float The epoch folding statistics corresponding to a probability epsilon * 100 % that the signal has been produced by noise """ function z2_n_detection_level( n = 2, epsilon = 0.01; ntrial = 1, n_summed_spectra = 1, ) epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) d = Chisq(2 * n_summed_spectra * n) retlev = cquantile(d, epsilon) / (n_summed_spectra) return retlev end export z2_n_detection_level
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
code
2597
using PulsarSearch using Test using Distributions using Documenter doctest(PulsarSearch) @testset "PulsarSearch.jl" begin @testset "Basic" begin flatarr = Array([0.5]) @test z_n(flatarr, 2) == 0 flatarr = Array(range(1, stop = 10) / 10) @test z_n(flatarr, 2) < 1e-10 @test z_n(ones(10), 2) == 40 end @testset "Binned" begin flatarr = zeros(10) @test z_n_binned(flatarr, 2) == 0 flatarr = ones(10) @test z_n_binned(flatarr, 2) < 1e-10 arr = zeros(10) arr[1] = 10 @test z_n(arr, 2) == 40 end @testset "Search" begin phases = rand(Normal(0.5, 0.1), 10000) pulse_no = rand(Uniform(0, 1000), 10000) pulse_no = floor.(pulse_no) f = 1.123 times = sort((phases + pulse_no) / f) freqs, stats = z_n_search(times, 2, 1.0, 1.5, oversample = 4.0) freqs_bin, stats_bin = z_n_search_hist(times, 2, 1.0, 1.5, oversample = 4.0, nbin=256) maxind = argmax(stats) @test abs(freqs[maxind] - f) < 1e-3 maxind = argmax(stats_bin) @test abs(freqs_bin[maxind] - f) < 1e-3 @test isapprox(stats_bin[maxind], stats[maxind], rtol=0.1) end end @testset "Stat" begin @testset "single_from_multi $ntrial" for ntrial in [1, 10, 100, 1000, 10000, 100000] epsilon_1 = 0.00000001 epsilon_n = p_multitrial_from_single_trial(epsilon_1, ntrial) epsilon_1_corr = p_single_trial_from_p_multitrial(epsilon_n, ntrial) @test isapprox(epsilon_1_corr, epsilon_1; rtol = 1e-2) end @testset "Zn Det Lev" begin @test isapprox(z2_n_detection_level(2), 13.276704135987625) epsilon_corr = p_single_trial_from_p_multitrial(0.01, 2) @test isapprox( z2_n_detection_level(4, 0.01, ntrial = 2), z2_n_detection_level(4, epsilon_corr), ) end @testset "Zn Probability ntrial $ntrial" for ntrial in [1, 10, 100, 1000, 100000] detlev = z2_n_detection_level(2, 0.1, ntrial = ntrial) @test isapprox(z2_n_probability(detlev, 2, ntrial = ntrial), 0.1) @test isapprox(z2_n_logprobability(detlev, 2, ntrial = ntrial), -2.3025850929940455) end @testset "Chisq logp" begin chi2 = 31 d = Chisq(2) @test isapprox(chi2_logp(chi2, 2), logccdf(d, chi2), atol = 0.1) chi2 = Array([5, 32]) @test all(isapprox.(chi2_logp.(chi2, 2), logccdf.(d, chi2), atol = 0.1)) end end
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
docs
739
# PulsarSearch [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaastro.github.io/PulsarSearch.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliaastro.github.io/PulsarSearch.jl/dev) [![Build Status](https://github.com/juliaastro/PulsarSearch.jl/workflows/CI/badge.svg)](https://github.com/juliaastro/PulsarSearch.jl/actions) [![Coverage](https://codecov.io/gh/juliaastro/PulsarSearch.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliaastro/PulsarSearch.jl) This is a draft Julia package for pulsar searches. At the moment it only contains the basic functions for the $Z_2^2$ search, in the single-photon (Buccheri et al. 2003) and binned (Bachetti et al. 2021) versions.
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
9f838cff04c1e516826d9e77d8058bec64a42010
docs
231
```@meta CurrentModule = PulsarSearch ``` # PulsarSearch `PulsarSearch` is a set of tools for (X-ray) pulsar searches. VERY EARLY DRAFT. Mostly for educational purposes ```@index ``` ```@autodocs Modules = [PulsarSearch] ```
PulsarSearch
https://github.com/JuliaAstro/PulsarSearch.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
240
using Documenter, SAMtools makedocs( modules = [SAMtools], format = :html, checkdocs = :exports, sitename = "SAMtools.jl", pages = Any["index.md"] ) deploydocs( repo = "github.com/aramirezreyes/SAMtools.jl.git", )
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
3049
VERSION < v"0.1" """ Data filters: `filter_array`, `filter_array_2`, `filter_array_time`, `getsmoothdata`, `getsmoothdata_nospace` Data structures: `ape_budget`, `cat_ape_budget`, `cutborders!`, `surf_quantities`, `cyclone_comp_timemean`, `Composite_Cyclone`, `Composite_Cyclone_v2`, `Composite_Cyclone_v3` Methods: `cyclonecompositer`, `shifter`, `smoothfilter`, `cyclonecompositer_v2`, `cyclonecompositer_v3`, `timemean_nofalseframe`, `removefalseframes`, `getapebudget`, `buoyancybudget` """ module AvailablePotentialEnergyFramework using DataStructures: OrderedDict using ImageFiltering: imfilter, imfilter!, centered, kernelfactors, mapwindow, mapwindow!, Kernel, Inner using Images: findlocalminima, findlocalmaxima using ImageSegmentation: SegmentedImage, segment_labels, region_adjacency_graph, seeded_region_growing, labels_map using Interpolations: LinearInterpolation, interpolate, Gridded, Linear using NCDatasets: Dataset, variable, defVar using OffsetArrays: OffsetArray using SparseArrays: SparseMatrixCSC using Statistics: mean, median!, mean! using Unitful: @u_str, unit, ustrip, Quantity using LoopVectorization: @turbo, @tturbo using Tullio: @tullio include("apehelperfunctions.jl") include("compositehelperfunctions.jl") include("apebudgets.jl") include("physicalconstants.jl") include("physicsfunctions.jl") include("useful_diagnostics.jl") #include("ape_computation_from_julia_output.jl") #testing purposes include("arrayfiltering.jl") include("datamanagement.jl") export # Filters filter_array!, filter_array_2!, filter_array_time, filter_array, getsmoothdata!, getsmoothdata_nospace, #Data structures cat_ape_budget, cutborders!, #Methods # findlocalmaxima, cyclonecompositer, shifter, shifter!, smooth_and_mask, smooth_and_mask!, getapebudget, buoyancybudget, add_allcyclones!, averageallindistance, detect_cyclones, detect_cyclones!, get_diabatic_as_residual_buoyancy, run_distributed_test, ##Constants R, Dryair, Watervapor, Liquidwater, epsilon, g, #Physics functions compute_N2, compute_mse, get_mse_budget, get_vorticity, get_okubo_weiss, get_divergence, get_saturation_vapor_pressure, get_partial_vapor_pressure, get_mixing_ratio, get_virtual_temperature, get_lifted_condensation_level, get_specific_entropy, get_potential_temperature, get_virtual_temperature, mixing_ratio_to_specific_humidity, specific_humidity_to_mixing_ratio, get_buoyancy_of_lifted_parcel, surface_sensible_heat_flux_to_buoyancy, surface_latent_heat_flux_to_buoyancy, get_buoyancy, radiative_heating_rate_to_buoyancy, get_density_ideal_gas, #math functions integrate_vertically, average_precipitation_per_pw_bin, average_precipitation_per_pw_bin_dayang, #Files and datamanagement smooth_vars_and_write_to_netcdf!, create_APE_netcdf, set_netcdf_var! end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
20203
### Two methods to compute APE budgets and Buoyancy budgets from SAM v3 outputs, modified from Da Yang, and based on the mathematics from # Yang, Da. β€œBoundary Layer Diabatic Processes, the Virtual Effect, and Convective Self-Aggregation.” Journal of Advances in Modeling Earth Systems 10, no. 9 (September 2018): 2163–76. https://doi.org/10.1029/2017MS001261. """ Returns an apebudget object. Input is B (buoyancy) U,V,W The three dimensional velocities U,V and W N2 The Brunt Va"isala frequency squared Fs the Surface fluxes Diabatic_other other sources of diabatic heating rho0 the mean density x,y,z,t the coordinate vectors dx,dy,dz,dt the steps in each coordinate z_up the maximum height that will be used """ function getapebudget_old_old(B, U,V, W, N2, RAD_b, Fs, Diabatic_other, rho0, x,y, z, t, dx,dy, dz, dt, z_up) #***********Empty array generation***********# Udb2dx = similar(U) Vdb2dy = similar(V) #************* APE ************** b2 = B.*B/2 APE_b2 = mean(b2,dims=(1,2))[1,1,:,:]./N2; # # # figure(4) # # # contourf(APE_b2) #************ KE ******************** #KE = U.*U/2 + V.*V/2 xBar_KE = mean(U.*U/2 + V.*V/2,dims=(1,2))[1,1,:,:] #************ APE rate *************** xBar_APE_rate = Array{eltype(B),2}(undef,length(z), length(t)) xBar_APE_rate[:,1:end-1] = (APE_b2[:,2:end] - APE_b2[:,1:end-1])/dt; xBar_APE_rate[:,end] = xBar_APE_rate[:,end-1] #************* UdxB2 ************** b2_ghost= Array{typeof(B)}(undef, length(x)+1,length(y)+1, length(z), length(t)) b2_ghost[1:end-1,1:end-1,:,:] = b2 b2_ghost[end,1:end-1,:,:] = b2[1,:,:,:] b2_ghost[1:end-1,end,:,:] = b2[:,1,:,:] @. Udb2dx = U*(b2_ghost[2:end,1:end-1,:,:]-b2_ghost[1:end-1,1:end-1,:,:])/dx @. Vdb2dy = V*(b2_ghost[1:end-1,2:end,:,:]-b2_ghost[1:end-1,1:end-1,:,:])/dy xBar_APE_Ub2 = mean(Udb2dx,dims=(1,2))[1,1,:,:]./N2 xBar_APE_Vb2 = mean(Vdb2dy,dims=(1,2))[1,1,:,:]./N2 # static stability WN2 #APE_WN2 = W.*B xBar_APE_WN2= mean(W.*B,dims=(1,2))[1,1,:,:] # RAD generation xBar_APE_RAD = mean(RAD_b.*B,dims=(1,2))[1,1,:,:]./N2; # Diabatic_other xBar_APE_DIA = mean(Diabatic_other.*B,dims=(1,2))[1,1,:,:]./N2; # interpolation k_up = argmin(abs.(z.-z_up)); z1 = z[1]:dz:z[k_up]; @info z1 rho01 = zeros(length(z1),length(t)) xBar_APE_b21 = similar(rho01) xBar_APE_RAD1 = similar(rho01) xBar_APE_DIA1 = similar(rho01) xBar_APE_WN21 = similar(rho01) xBar_APE_Ub21 = similar(rho01) xBar_APE_Vb21 = similar(rho01) xBar_KE1 = similar(rho01) xBar_APE_rate1 = similar(rho01) for time in 1:length(t) rho01_itp = LinearInterpolation(z, rho0[:,time]); xBar_APE_b21_itp = LinearInterpolation(z, APE_b2[:,time]); xBar_APE_RAD1_itp = LinearInterpolation(z, xBar_APE_RAD[:,time]); xBar_APE_DIA1_itp = LinearInterpolation(z, xBar_APE_DIA[:,time]); xBar_APE_WN21_itp = LinearInterpolation(z, xBar_APE_WN2[:,time]); xBar_APE_Ub21_itp = LinearInterpolation(z, xBar_APE_Ub2[:,time]); xBar_APE_Vb21_itp = LinearInterpolation(z, xBar_APE_Vb2[:,time]); xBar_KE1_itp = LinearInterpolation(z, xBar_KE[:,time]); xBar_APE_rate1_itp = LinearInterpolation(z, xBar_APE_rate[:,time]); rho01[:,time] = [rho01_itp(x) for x in z1] xBar_APE_b21[:,time] = [xBar_APE_b21_itp(x) for x in z1] xBar_APE_RAD1[:,time] = [xBar_APE_RAD1_itp(x) for x in z1] xBar_APE_DIA1[:,time] = [xBar_APE_DIA1_itp(x) for x in z1] xBar_APE_WN21[:,time] = [xBar_APE_WN21_itp(x) for x in z1] xBar_APE_Ub21[:,time] = [xBar_APE_Ub21_itp(x) for x in z1] xBar_APE_Vb21[:,time] = [xBar_APE_Vb21_itp(x) for x in z1] xBar_KE1[:,time] = [xBar_KE1_itp(x) for x in z1] xBar_APE_rate1[:,time] = [xBar_APE_rate1_itp(x) for x in z1] end # vertical integration int_mass = sum(rho01.*dz,dims=1)[1,:] int_KE = sum(rho01.*xBar_KE1.*dz,dims=1)[1,:] int_APE = sum(rho01.*xBar_APE_b21.*dz,dims=1)[1,:] int_APE_RAD = sum(rho01.*xBar_APE_RAD1.*dz,dims=1)[1,:] int_APE_DIA = sum(rho01.*xBar_APE_DIA1.*dz,dims=1)[1,:] int_APE_WN2 = sum(rho01.*xBar_APE_WN21.*dz,dims=1)[1,:] int_APE_Ub2 = sum(rho01.*xBar_APE_Ub21.*dz,dims=1)[1,:] int_APE_Vb2 = sum(rho01.*xBar_APE_Vb21.*dz,dims=1)[1,:] int_APE_rate = sum(rho01.*xBar_APE_rate1.*dz,dims=1)[1,:] # surface flux contribution #N2S = N2[1,:] #APE_Fs = B[:,:,1,:].*Fs xBar_APE_Fs = mean(B[:,:,1,:].*Fs, dims=(1,2))[1,1,1,:]./N2[1,:]; residual = int_APE_rate .+ int_APE_Ub2 .+ int_APE_Vb2+int_APE_WN2 .- (int_APE_RAD .+ int_APE_DIA .+ xBar_APE_Fs) return (int_mass, int_KE, int_APE, int_APE_rate, int_APE_Ub2,int_APE_Vb2, int_APE_WN2, int_APE_RAD, int_APE_DIA, xBar_APE_Fs, residual) end """ -------------Computes the APE budgets budget--------------- """ function getapebudget_old(B, U,V, W, N2, RAD_b, Fs, Diabatic_other, rho0, x,y, z, t, dx,dy, dz, dt, z_up) N2 = reshape(N2,1,1,length(z),length(t)) #***********Empty array generation***********# T = eltype(B) lt = length(t) lz = length(z) lx = length(y) ly = length(x) buf = Array{T}(undef,lx,ly,lz, lt) xBar_KE = Array{T}(undef,1,1,lz, lt) APE_b2 = Array{T}(undef,1,1,lz, lt) xBar_APE_rate = Array{T}(undef,lz, lt) b2_ghost = Array{T}(undef, length(x)+1,length(y)+1, lz, lt) xBar_APE_Ub2 = Array{T}(undef,1,1,lz, lt) xBar_APE_Vb2 = Array{T}(undef,1,1,lz, lt) xBar_APE_WN2 = Array{T}(undef,1,1,lz, lt) xBar_APE_RAD = Array{T}(undef,1,1,lz, lt) xBar_APE_DIA = Array{T}(undef,1,1,lz, lt) xBar_APE_FS = Array{T}(undef,1,1,lz, lt) #************* APE ************** @. buf = B*B/2 mean!(APE_b2,buf); @. APE_b2 = APE_b2/N2 @. b2_ghost[1:end-1,1:end-1,:,:] = buf @. b2_ghost[end,1:end-1,:,:] = buf[1,:,:,:] @. b2_ghost[1:end-1,end,:,:] = buf[:,1,:,:] #************ KE ******************** #KE = U.*U/2 + V.*V/2 @. buf = U*U/2 + V*V/2 xBar_KE = mean!(xBar_KE,buf) #************ APE rate *************** @. xBar_APE_rate[:,1:end-1] = (APE_b2[1,1,:,2:end] - APE_b2[1,1,:,1:end-1])/dt; @. xBar_APE_rate[:,end] = xBar_APE_rate[:,end-1] #************* UdxB2 ************** @. buf = U*(b2_ghost[2:end,1:end-1,:,:]-b2_ghost[1:end-1,1:end-1,:,:])/dx mean!(xBar_APE_Ub2,buf) @. buf = V*(b2_ghost[1:end-1,2:end,:,:]-b2_ghost[1:end-1,1:end-1,:,:])/dy mean!(xBar_APE_Vb2,buf) @. xBar_APE_Ub2 = xBar_APE_Ub2/N2 @. xBar_APE_Vb2 = xBar_APE_Vb2/N2 # static stability WN2 #APE_WN2 = W.*B @. buf = W*B mean!(xBar_APE_WN2,buf) # RAD generation @. buf = RAD_b.*B mean!(xBar_APE_RAD,buf); @. xBar_APE_RAD = xBar_APE_RAD/N2 # Diabatic_other @. buf = Diabatic_other.*B mean!(xBar_APE_DIA,buf) @. xBar_APE_DIA = xBar_APE_DIA/N2; # Surface fluxes contribution xBar_APE_Fs = mean(B[:,:,1,:].*Fs, dims=(1,2))[1,1,1,:]./N2[1,1,1,:]; # interpolation k_up = argmin(abs.(z.-z_up)); z1 = z[1]:dz:z[k_up]; # int_mass = Array{T}(undef,lt) int_mass = zeros(T,lt) int_KE = zeros(T,lt) int_APE = zeros(T,lt) int_APE_RAD = zeros(T,lt) int_APE_DIA = zeros(T,lt) int_APE_WN2 = zeros(T,lt) int_APE_Ub2 = zeros(T,lt) int_APE_Vb2 = zeros(T,lt) int_APE_rate = zeros(T,lt) for timeind in 1:lt rho01_itp = interpolate((z,), rho0[:,timeind],Gridded(Linear())) xBar_APE_b21_itp = interpolate((z,), APE_b2[1,1,:,timeind],Gridded(Linear())) xBar_APE_RAD1_itp = interpolate((z,), xBar_APE_RAD[1,1,:,timeind],Gridded(Linear())) xBar_APE_DIA1_itp = interpolate((z,), xBar_APE_DIA[1,1,:,timeind],Gridded(Linear())) xBar_APE_WN21_itp = interpolate((z,), xBar_APE_WN2[1,1,:,timeind],Gridded(Linear())) xBar_APE_Ub21_itp = interpolate((z,), xBar_APE_Ub2[1,1,:,timeind],Gridded(Linear())) xBar_APE_Vb21_itp = interpolate((z,), xBar_APE_Vb2[1,1,:,timeind],Gridded(Linear())) xBar_KE1_itp = interpolate((z,), xBar_KE[1,1,:,timeind],Gridded(Linear())) xBar_APE_rate1_itp = interpolate((z,), xBar_APE_rate[:,timeind],Gridded(Linear())) for zeta in z1 mass = dz*rho01_itp(zeta) int_mass[timeind] += mass int_APE[timeind] += mass*xBar_APE_b21_itp(zeta) int_APE_RAD[timeind] += mass*xBar_APE_RAD1_itp(zeta) int_APE_DIA[timeind] += mass*xBar_APE_DIA1_itp(zeta) int_APE_WN2[timeind] += mass*xBar_APE_WN21_itp(zeta) int_APE_Ub2[timeind] += mass*xBar_APE_Ub21_itp(zeta) int_APE_Vb2[timeind] += mass*xBar_APE_Vb21_itp(zeta) int_KE[timeind] += mass*xBar_KE1_itp(zeta) int_APE_rate[timeind] += mass*xBar_APE_rate1_itp(zeta) end end residual = int_APE_rate .+ int_APE_Ub2 .+ int_APE_Vb2 .+ int_APE_WN2 .- (int_APE_RAD .+ int_APE_DIA .+ xBar_APE_Fs) return (int_mass, int_KE, int_APE, int_APE_rate, int_APE_Ub2,int_APE_Vb2, int_APE_WN2, int_APE_RAD, int_APE_DIA, xBar_APE_Fs, residual) end """ -------------Computes the APE budgets budget--------------- """ function getapebudget(B, U,V, W, N2, RAD_b, Fs, Diabatic_other, rho0, x,y, z, t, dx,dy, dz, dt, z_up) N2 = reshape(N2,1,1,length(z),length(t)) rho0 = reshape(rho0,1,1,length(z),length(t)) #***********Empty array generation***********# T = eltype(B) lx = length(x) ly = length(y) lt = length(t) lz = length(z) buf = similar(U) buf_2d = similar(Fs) xBar_KE = Array{T}(undef,1,1,lz, lt) APE_b2 = Array{T}(undef,1,1,lz, lt) xBar_APE_rate = Array{T}(undef,1,1,lz, lt) xBar_APE_Ub2 = Array{T}(undef,1,1,lz, lt) xBar_APE_Vb2 = Array{T}(undef,1,1,lz, lt) xBar_APE_WN2 = Array{T}(undef,1,1,lz, lt) xBar_APE_RAD = Array{T}(undef,1,1,lz, lt) xBar_APE_DIA = Array{T}(undef,1,1,lz, lt) xBar_APE_Fs = Array{T}(undef,1,1,lt) neighborx(indx,lx) = mod1(indx+1,lx) onex = CartesianIndex((1,0,0,0)) oney = CartesianIndex((0,1,0,0)) onet = CartesianIndex((0,0,0,1)) # for ind in CartesianIndices((1:(sx - 1), 2:(sy - 1), 1:sz, 2:(st-1))) #************* APE ************** @. buf = B*B/2 mean!(APE_b2,buf./N2) #************ KE ******************** @. buf = U*U/2 + V*V/2 xBar_KE = mean!(xBar_KE,buf) #************ APE rate *************** @inbounds for it in 1:(lt -1), iz in 1:lz, iy in 1:ly, ix in 1:lx ind = CartesianIndex((ix,iy,iz,it)) buf[ind] = B[ind]*(B[ind + onet] - B[ind]) / N2[1,1,iz,it] / dt end @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_rate,buf); #************* Advection ************** @inbounds for it in 1:(lt - 1), iz in 1:lz, iy in 1:ly, ix in 1:lx ind = CartesianIndex((ix,iy,iz,it)) buf[ind] = B[ind]*U[ind]*(B[neighborx(ix,lx),iy,iz,it] - B[ind]) / N2[1,1,iz,it] /dx end @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_Ub2,buf) @inbounds for it in 1:lt, iz in 1:lz, iy in 1:ly, ix in 1:lx ind = CartesianIndex((ix,iy,iz,it)) buf[ind] = B[ind]*V[ind]*(B[ix,neighborx(iy,ly),iz,it] - B[ind]) / N2[1,1,iz,it] /dy end @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_Vb2,buf) ################################# static stability WN2 @. buf = W*B @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_WN2,buf) # RAD generation @. buf = RAD_b*B/N2 @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_RAD,buf); ########################## Diabatic_other @. buf = Diabatic_other*B/N2 @inbounds for ind in CartesianIndices((1:lx,1:ly,1:lz,lt:lt)) buf[ind] = buf[ind-onet] end mean!(xBar_APE_DIA,buf) ##################### Surface fluxes contribution @inbounds for tind in 1:lt for yind in 1:ly for xind in 1:lx buf_2d[xind,yind,tind] = B[xind,yind,1,tind]*Fs[xind,yind,tind]/N2[1,1,1,tind] end end end @inbounds for ind in CartesianIndices((1:lx,1:ly,lt:lt)) buf_2d[ind] = buf_2d[ind - CartesianIndex((0,0,1))] end mean!(xBar_APE_Fs,buf_2d) xBar_APE_Fs = dropdims(xBar_APE_Fs, dims=(1,2)) ##################### interpolation k_up = argmin(abs.(z.-z_up)); z1 = z[1]:dz:z[k_up]; int_mass = zeros(T,lt) int_KE = zeros(T,lt) int_APE = zeros(T,lt) int_APE_RAD = zeros(T,lt) int_APE_DIA = zeros(T,lt) int_APE_WN2 = zeros(T,lt) int_APE_Ub2 = zeros(T,lt) int_APE_Vb2 = zeros(T,lt) int_APE_rate = zeros(T,lt) @inbounds for time in 1:lt rho01_itp = interpolate((z,), rho0[1,1,:,time],Gridded(Linear())) xBar_APE_b21_itp = interpolate((z,), APE_b2[1,1,:,time],Gridded(Linear())) xBar_APE_RAD1_itp = interpolate((z,), xBar_APE_RAD[1,1,:,time],Gridded(Linear())) xBar_APE_DIA1_itp = interpolate((z,), xBar_APE_DIA[1,1,:,time],Gridded(Linear())) xBar_APE_WN21_itp = interpolate((z,), xBar_APE_WN2[1,1,:,time],Gridded(Linear())) xBar_APE_Ub21_itp = interpolate((z,), xBar_APE_Ub2[1,1,:,time],Gridded(Linear())) xBar_APE_Vb21_itp = interpolate((z,), xBar_APE_Vb2[1,1,:,time],Gridded(Linear())) xBar_KE1_itp = interpolate((z,), xBar_KE[1,1,:,time],Gridded(Linear())) xBar_APE_rate1_itp = interpolate((z,), xBar_APE_rate[1,1,:,time],Gridded(Linear())) @inbounds for zeta in z1 mass = dz*rho01_itp(zeta) int_mass[time] += mass int_APE[time] += mass*xBar_APE_b21_itp(zeta) int_APE_RAD[time] += mass*xBar_APE_RAD1_itp(zeta) int_APE_DIA[time] += mass*xBar_APE_DIA1_itp(zeta) int_APE_WN2[time] += mass*xBar_APE_WN21_itp(zeta) int_APE_Ub2[time] += mass*xBar_APE_Ub21_itp(zeta) int_APE_Vb2[time] += mass*xBar_APE_Vb21_itp(zeta) int_KE[time] += mass*xBar_KE1_itp(zeta) int_APE_rate[time] += mass*xBar_APE_rate1_itp(zeta) end end residual = int_APE_rate .+ int_APE_Ub2 .+ int_APE_Vb2 .+ int_APE_WN2 .- (int_APE_RAD .+ int_APE_DIA .+ xBar_APE_Fs) return (int_mass, int_KE, int_APE, int_APE_rate, int_APE_Ub2,int_APE_Vb2, int_APE_WN2, int_APE_RAD, int_APE_DIA, xBar_APE_Fs, residual) end """ -------------This function computes the buoyancy budget--------------- Inputs: B (buoyancy) RAD_b the radiative heating, converted to units of buoyancy Fs the Surface fluxes U,V,W The three dimensional velocities N2 The Brunt Va"isala frequency squared dx,dy,dz,dt the steps in each coordinate x,y,z,t the coordinate vectors """ function buoyancybudget_old(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt, x,y, z, t) #************ Array creation **************# Qs = zeros(typeof(B[1]),length(x),length(y),length(z),length(t)) B_ghost = Array{typeof(B[1])}(undef, length(x)+1,length(y)+1, length(z), length(t)) WN2 = similar(W) dBdt = similar(B) UdBdx = similar(U) VdBdy = similar(U) #************ WN2 ***************** WN2 .= reshape(N2,(1,1,size(N2,1),size(N2,2))).*W #************* Advection ************** @. B_ghost[1:end-1,1:end-1,:,:] = B @. B_ghost[end,1:end-1,:,:] = B[1,:,:,:] @. B_ghost[1:end-1,end,:,:] = B[:,1,:,:] @. UdBdx = U*(B_ghost[2:end,1:end-1,:,:]-B_ghost[1:end-1,1:end-1,:,:])/dx @. VdBdy = V*(B_ghost[1:end-1,2:end,:,:]-B_ghost[1:end-1,1:end-1,:,:])/dy # @. UdBdx[1:end-1,:,:,:] .= U[1:end-1,:,:,:]*(B[2:end,:,:,:]-B[1:end-1,:,:,:])/dx # @. UdBdx[end,:,:,:] = U[end,:,:,:]*(B[1,:,:,:]-B[end,:,:,:])/dx # @. VdBdy[:,1:end-1,:,:] = V[:,1:end-1,:,:].*(B[:,2:end,:,:]-B[:,1:end-1,:,:])/dy # @. VdBdy[:,end,:,:] = V[:,end,:,:]*(B[:,1,:,:]-B[:,end,:,:])/dy Qs[:,:,1,:] .= Fs./dz #************ Time evolution *************# @. dBdt[:,:,:,1:end-1] = (B[:,:,:,2:end] - B[:,:,:,1:end-1])/dt; @. dBdt[:,:,:,end] = dBdt[:,:,:,end-1]/dt #*************** Return ********************# Diabatic_other = dBdt .+ UdBdx .+ VdBdy .+ WN2 .- RAD_b .- Qs return dBdt, UdBdx,VdBdy, WN2, Qs, Diabatic_other end """ -------------This function computes the buoyancy budget--------------- Inputs: B (buoyancy) RAD_b the radiative heating, converted to units of buoyancy Fs the Surface fluxes U,V,W The three dimensional velocities N2 The Brunt Va"isala frequency squared dx,dy,dz,dt the steps in each coordinate x,y,z,t the coordinate vectors """ function buoyancybudget(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt, x,y, z, t) #************ Array creation **************# #Qs = zeros(eltype(B),length(x),length(y),length(z),length(t)) #B_ghost = Array{typeof(B[1])}(undef, length(x)+1,length(y)+1, length(z), length(t)) WN2 = similar(W) dBdt = similar(B) UdBdx = similar(U) VdBdy = similar(U) #************ WN2 ***************** WN2 .= reshape(N2,(1,1,size(N2,1),size(N2,2))).*W #************* Advection ************** @. @views UdBdx[1:end-1,:,:,:] = U[1:end-1,:,:,:]*(B[2:end,:,:,:]-B[1:end-1,:,:,:])/dx @. @views UdBdx[end,:,:,:] = U[end,:,:,:]*(B[1,:,:,:]-B[end,:,:,:])/dx @. @views VdBdy[:,1:end-1,:,:] = V[:,1:end-1,:,:]*(B[:,2:end,:,:]-B[:,1:end-1,:,:])/dy @. @views VdBdy[:,end,:,:] = V[:,end,:,:]*(B[:,1,:,:]-B[:,end,:,:])/dy #@. Qs[:,:,1,:] = Fs/dz #************ Time evolution *************# @. @views dBdt[:,:,:,1:end-1] = (B[:,:,:,2:end] - B[:,:,:,1:end-1])/dt @. @views dBdt[:,:,:,end] = dBdt[:,:,:,end-1] #*************** Return ********************# Diabatic_other = dBdt .+ UdBdx .+ VdBdy .+ WN2 .- RAD_b Diabatic_other[:,:,1,:] .= @views Diabatic_other[:,:,1,:] - Fs/dz # return dBdt, UdBdx,VdBdy, WN2, Fs/dz, Diabatic_other return Diabatic_other end function get_diabatic_as_residual_buoyancy(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt) #************ Array creation **************# #Qs = zeros(eltype(B),length(x),length(y),length(z),length(t)) #B_ghost = Array{typeof(B[1])}(undef, length(x)+1,length(y)+1, length(z), length(t)) Diabatic_other = similar(B) onex = CartesianIndex((1,0,0,0)) oney = CartesianIndex((0,1,0,0)) onet = CartesianIndex((0,0,0,1)) sx,sy,sz,st = size(Diabatic_other) N2 = reshape(N2,1,1,sz,st) neighborx(indx,sx) = mod1(indx+1,sx) # for ind in CartesianIndices((1:(sx - 1), 2:(sy - 1), 1:sz, 2:(st-1))) #### derivative @inbounds for it in 1:(st - 1), iz in 1:sz, iy in 1:sy, ix in 1:sx ind = CartesianIndex((ix,iy,iz,it)) Diabatic_other[ind] = (B[ind+onet] - B[ind])/dt + U[ind]*(B[neighborx(ix,sx),iy,iz,it] - B[ind])/dx + V[ind]*(B[ix,neighborx(iy,sy),iz,it] - B[ind])/dy + W[ind]*N2[1,1,iz,it] - RAD_b[ind] end @inbounds for it in 1:(st - 1), iy in 1:sy, ix in 1:sx Diabatic_other[ix,iy,1,it] = Diabatic_other[ix,iy,1,it] - Fs[ix,iy,it]/dz end # for it in st:st, iz in 1:sz, iy in 1:(sy - 1), ix in 1:(sx - 1) @inbounds for ind in CartesianIndices((1:sx,1:sy,1:sz,st:st)) Diabatic_other[ind] = Diabatic_other[ind-onet] end return Diabatic_other end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
2357
function cutborders!(array::Array{T,4},smooth_time,position) where T <: Real if position == 1 array = array[:,:,:,1+div((smooth_time-1),2):end] elseif position == 2 array = array[:,:,:,1+div((smooth_time-1),2):end-div((smooth_time-1),2)] elseif position == 3 array = array[:,:,:,1:end - div((smooth_time-1),2)] end return array end function cutborders!(array::Array{T,3},smooth_time,position) where T <: Real if position == 1 array = array[:,:,1+div((smooth_time-1),2):end] elseif position == 2 array = array[:,:,1+div((smooth_time-1),2):end-div((smooth_time-1),2)] elseif position == 3 array = array[:,:,1:end - div((smooth_time-1),2)] end return array end function cutborders!(array::Array{T,1},smooth_time,position) where T <: Real if position == 1 array = array[1+div((smooth_time-1),2):end] elseif position == 2 array = array[1+div((smooth_time-1),2):end-div((smooth_time-1),2)] elseif position == 3 array = array[1:end-div((smooth_time-1),2)] end return array end function getsmoothdata!(U,V, W, Tv, ThetaV, RAD, Fs, smooth_x,smooth_y,smooth_time,position) buf3d = similar(U) buf2d = similar(Fs) filter_array!(buf3d,U,smooth_x,smooth_time,position) filter_array!(buf3d,V,smooth_x,smooth_time,position) filter_array!(buf3d,W,smooth_x,smooth_time,position) filter_array!(buf3d,Tv,smooth_x,smooth_time,position) filter_array!(buf3d,ThetaV,smooth_x,smooth_time,position) filter_array!(buf3d,RAD,smooth_x,smooth_time,position) filter_array!(buf2d,Fs,smooth_x,smooth_time,position) #return U, V, W, Tv, ThetaV, RAD, Fs end function getsmoothdata_nospace(U::Array{T,4},V::Array{T,4}, W::Array{T,4}, Tv::Array{T,4}, ThetaV::Array{T,4}, RAD::Array{T,4}, Fs::Array{T,3}, smooth_x::Int,smooth_y::Int,smooth_time::Int,position::Int) where T <: Real U = filter_array_nospace(U,smooth_time,position) V = filter_array_nospace(V,smooth_time,position) W = filter_array_nospace(W,smooth_time,position) Tv = filter_array_nospace(Tv,smooth_time,position) ThetaV = filter_array_nospace(ThetaV,smooth_time,position) RAD = filter_array_nospace(RAD,smooth_time,position) Fs = filter_array_nospace(Fs,smooth_time,position) return U, V, W, Tv, ThetaV, RAD, Fs end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
12262
""" kernel_1d(window) Create a kernel to perform a moving average filtering of a 1-d array. It will use window as windows size unless the given vaule is even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_1d(window) if !isodd(window) window += 1 end kernel_t = centered(ones(window)./(window)) end """ kernel_4d(window_h,window_t,T :: Type :: Float64) Create a kernel to perform a moving average filtering of a 4-d array along the dimensions 1,2 and 4. It will use window_h (dimensions 1 and 2) and window_t (dimension 4) as windows sizes unless the given vaules are even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_4d(window_h,window_t,T::Type=Float64) kernel_h = if (window_h == 1) | (window_h == false) centered([T(1.0)]) else !isodd(window_h) && (window_h += 1 ) ones(T,window_h)./(window_h) end if !isodd(window_t) window_t += 1 end kernel_t = if (window_t == 1) | (window_t == false) centered([T(1.0)]) else !isodd(window_t) && (window_t += 1 ) ones(T,window_t)./(window_t) end return kernelfactors(( kernel_h, kernel_h, centered([T(1.0)]) , kernel_t )) end """ kernel_3d(window_h,window_t,T :: Type :: Float64) Create a kernel to perform a moving average filtering of a 3-d array along the dimensions 1,2 and 3. It will use window_h (dimensions 1 and 2) and window_t (dimension 3) as windows sizes unless the given vaules are even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_3d(window_h,window_t,T::Type=Float64) if !isodd(window_h) window_h += 1 end if !isodd(window_t) window_t += 1 end kernel_h = ones(T,window_h)./(window_h) return kernelfactors(( centered(kernel_h), centered(kernel_h), centered([T(1.0)]) )) end """ kernel_2d(window_h,T :: Type :: Float64) Create a kernel to perform a moving average filtering of a 2-d array along the dimensions 1,2. It will use window_h as windows size unless the given vaule is even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_2d(window_h,T::Type=Float64) if !isodd(window_h) window_h += 1 end kernel_h = ones(T,window_h)./(window_h) return kernelfactors(( centered(kernel_h), centered(kernel_h) )) end """ kernel_4d_t(window_t,T :: Type :: Float64) Create a kernel to perform a moving average filtering of a 4-d array along the dimension 4. It will use window_t as windows size unless the given vaule is even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_4d_t(window_t,T::Type=Float64) if !isodd(window_t) window_t += 1 end kernel_t = ones(T,window_t)./(window_t) return kernelfactors(( centered([T(1.0)]), centered([T(1.0)]), centered([T(1.0)]), centered(kernel_t) )) end """ kernel_3d_t(window_t,T :: Type :: Float64) Create a kernel to perform a moving average filtering of a 3-d array along the dimension 3. It will use window_t as windows size unless the given vaule is even, in which case it will add one to the given value before creating the kernel. This kernel has to be passed into imfilter or imfilter! """ function kernel_3d_t(window_t,T::Type=Float64) if !isodd(window_t) window_t += 1 end kernel_t = ones(T,window_t)./(window_t) return kernelfactors(( centered([T(1.0)]), centered([T(1.0)]), centered(kernel_t) )) end """ filter_array_2!(array,smooth_x,smooth_t,position) Filter the input array _in-place_ using a moving mean. In the first two dimensions the window width is smooth_x and the border is treated as circular (for doubly periodic domains). In the space dimension the width is smooth_t and the border value is replicated. This function calls under the hood the imfilter function of Images.jl """ function filter_array_2!(buf :: Array{T,4},array::Array{T,4},smooth_x,smooth_time,position) where T <: Real sx,sy,sz,st = size(array) # filtered = similar(array) if position == 2 filtered = imfilter(imfilter(array, kernel4d(smooth_x,smooth_time),"circular"),kernel_4d_t(smooth_time),"inner") else ###Filtering in space @info typeof(array) typeof(buf) @inbounds for t in 1:st @Threads.threads for z in 1:sz imfilter!(view(buf,:,:,z,t),array[:,:,z,t], kernel_2d(smooth_x),"circular") end end @info typeof(array) typeof(buf) ### filtering in time @inbounds for z in 1:sz, y in 1:sy @Threads.threads for x in 1:sx array[x,y,z,:] .= imfilter(buf[x,y,z,:], kernel_1d(smooth_time),"symmetric") end end end return array end """ filter_array_2!(array,smooth_x,smooth_t,position) Filters the input array _in-place_ using a moving mean. In the first two dimensions the window width is smooth_x and the border is treated as circular (for doubly periodic domains). In the space dimension the width is smooth_t and the border value is replicated. This function calls under the hood the imfilter function of Images.jl """ function filter_array_2!(array::Array{T,3},smooth_x,smooth_time,position) where T <: Real filtered = similar(array) sx,sy,st = size(array) if position == 2 filtered = imfilter(imfilter(array, kernel4d(smooth_x,smooth_time),"circular"),kernel4d_t(smooth_time),"inner") else ###Filtering in space for t in 1:st filtered[:,:,t] = imfilter(filtered,array[:,:,t], kernel_2d(smooth_x),"circular") end ### filtering in time for y in 1:sy, x in 1:sx array[x,y,:] = imfilter(filtered[x,y,:], kernel_1d(smooth_time),"symmetric") end end #return array end """ filter_array!(buffer,array,smooth_x,smooth_t,position) Filters the input array _in-place_ using a moving mean. In the first two dimensions the window width is smooth_x and the border is treated as circular (for doubly periodic domains). In the space dimension the width is smooth_t and the border value is replicated. This function calls under the hood the imfilter function of Images.jl The first argument must be a buffer of the same size of array. """ function filter_array!(buf::Array{T,4},array::Array{T,4},smooth_x,smooth_time,position) where T <: Real if position == 2 error("Filter_array: Inner array is not implemented yet") else imfilter!(buf,array,kernel_4d(smooth_x,smooth_time,T)[1:2],"circular") imfilter!(array,buf,(kernel_4d_t(smooth_time,T)[4],),"symmetric") end # return filtered end function filter_array!(buf::Array{T,3},array::Array{T,3},smooth_x,smooth_time,position) where T <: Real if position==2 error("Filter_array: Inner array is not implemented yet") else imfilter!(buf,array, kernel_3d(smooth_x,smooth_time,T)[1:2],"circular") imfilter!(array,buf,(kernel_3d_t(smooth_time,T)[3],),"symmetric") end end """ filter_array(array,smooth_x,smooth_t,position) Filters the input arrayusing a moving mean. In the first two dimensions the window width is smooth_x and the border is treated as circular (for doubly periodic domains). In the space dimension the width is smooth_t and the border value is replicated. This function calls under the hood the imfilter function of Images.jl The first argument must be a buffer of the same size of array. """ function filter_array(array::Array{T,4},smooth_x,smooth_time,position = 1) where T <: Real if position == 2 asize = size(array) tail_size = (asize[4]-1)Γ·2 buf1 = Array{T,4}(undef,asize[1],asize[2],asize[3],asize[4] - 2*tail_size) buf2 = Array{T,4}(undef,asize[1],asize[2],asize[3],asize[4] - 2*tail_size) buf_axes = axes(buf1) imfilter!(OffsetArray(buf1,buf_axes[1],buf_axes[2],buf_axes[3],buf_axes[4].+tail_size),array,(kernel_4d_t(smooth_time,T)[3],),Inner()) imfilter!(buf2,buf1, kernel_4d(smooth_x,smooth_time,T)[1:2],"circular") else buf1 = similar(array) buf2 = similar(array) imfilter!(buf1,array,kernel_4d(smooth_x,smooth_time,T)[1:2],"circular") imfilter!(buf2,buf1,(kernel_4d_t(smooth_time,T)[4],),"symmetric") end return buf2 end """ filter_array(array,smooth_x,smooth_t,position) Filters the input arrayusing a moving mean. In the first two dimensions the window width is smooth_x and the border is treated as circular (for doubly periodic domains). In the space dimension the width is smooth_t and the border value is replicated. This function calls under the hood the imfilter function of Images.jl The first argument must be a buffer of the same size of array. """ function filter_array(array::Array{T,3},smooth_x,smooth_time,position = 1) where T <: Real if !isodd(smooth_time) smooth_time += 1 end if position==2 asize = size(array) tail_size = (asize[3]-1)Γ·2 buf1 = Array{T,3}(undef,asize[1],asize[2],asize[3] - 2*tail_size) buf2 = Array{T,3}(undef,asize[1],asize[2],asize[3] - 2*tail_size) buf_axes = axes(buf1) imfilter!(OffsetArray(buf1,buf_axes[1],buf_axes[2],buf_axes[3].+tail_size),array,(kernel_3d_t(smooth_time,T)[3],),Inner()) imfilter!(buf2,buf1, kernel_3d(smooth_x,smooth_time,T)[1:2],"circular") else buf1 = similar(array) buf2 = similar(array) imfilter!(buf1,array, kernel_3d(smooth_x,smooth_time,T)[1:2],"circular") imfilter!(buf2,buf1,(kernel_3d_t(smooth_time,T)[3],),"symmetric") end return buf2 end """ filter_array_nospace(array,smooth_t,position) Filters the input array using a moving mean along the fourth dimension. In the 4th dimension the width is smooth_t and the border value is replicated except if position = 2, in which case it only takes the inner part of the smoothed array. This function calls under the hood the imfilter function of Images.jl """ function filter_array_nospace(array::Array{T,4},smooth_time,position = 1) where T <: Real if position==2 filtered = imfilter(array,kernel_4d_t(smooth_time),"inner") else filtered = imfilter(array,kernel_4d_t(smooth_time),"replicate") end return filtered end """ filter_array_nospace(array,smooth_t,position) Filters the input array using a moving mean along the third dimension. In the 3th dimension the width is smooth_t and the border value is replicated except if position = 2, in which case it only takes the inner part of the smoothed array. This function calls under the hood the imfilter function of Images.jl """ function filter_array_nospace(array::Array{T,3},smooth_time,position = 1) where T <: Real if position==2 filtered = imfilter(array,kernel_3d_t(smooth_time),"inner") else filtered = imfilter(array,kernel_3d_t(smooth_time),"replicate") end return filtered end """ filter_array_nospace(array,smooth_t,position=1) Filters the input, 1-d array. The border value is replicated except if position = 2, in which case it only takes the inner part of the smoothed array. This function calls under the hood the imfilter function of Images.jl """ function filter_array_time(array::Array{T,1},window,position = 1) where T <: Real kern = centered(ones(window)./window) if position==2 smooth_t = imfilter(array,kern,"inner") else smooth_t = imfilter(array,kern,"symmetric") end return smooth_t end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
17452
abstract type CycloneDetectionAlgorithm end struct PressureMinima <: CycloneDetectionAlgorithm end struct VorticityMaxima <: CycloneDetectionAlgorithm end """ smooth_and_mask(surf_pres_anomaly, threshold = -9) Takes a 2d array and smooths it using a rolling median filter. It then returns the elements of the filtered array whose values are less than the threshold. """ function smooth_and_mask(surf_pres_anomaly,threshold=-9, resolution = 2000; target_lengthscale = 30000) buf1 = similar(surf_pres_anomaly) buf2 = similar(buf1) smooth_and_mask!(buf1,buf2,surf_pres_anomaly,threshold,resolution; target_lengthscale) return buf2 end """ smooth_and_mask!(buf,surf_pres_anomaly, threshold = -9) Takes a 2d array and smooths it using a rolling median filter. It then returns the elements of the filtered array whose values are less than the threshold. """ function smooth_and_mask!(buf,buf2,target_variable,threshold=-9, resolution = 2000; target_lengthscale = 30000) windowsize = target_lengthscale Γ· (2*resolution) # Length order of magnitude of the eye windowsize % 2 == 0 ? windowsize = windowsize + 1 : windowsize mapwindow!(median!,buf,target_variable,[windowsize,windowsize],border="circular"); imfilter!(buf2,buf,Kernel.gaussian(3),"circular"); @inbounds @simd for ind in eachindex(buf2) if buf2[ind] >= threshold buf2[ind] = -9999 end end return buf2 end """ findcyclonecenters_aspressureminima(surf_pres_anomaly,detection_threshold) Takes a surface pressure anomaly array surf_pres_anomaly[x,y] = surf_pres[x,y] .- mean(surf_pres,dims(1,2)) a detection threshold for the anomaly, and return an array of tuples (x,y) where each tuple represents the centers of cyclones identified as the minima of the anomaly. """ function findcyclonecenters(cyclone_detection_algorithm,target_variable,detection_threshold;grid_spacing=2000, target_lengthscale = 30000) buf1 = similar(target_variable) buf2 = similar(buf1) peaks = findcyclonecenters!(cyclone_detection_algorithm,buf1,buf2,target_variable,detection_threshold;grid_spacing, target_lengthscale) return peaks end """ findcyclonecenters_aspressureminima!(buf1,buf2,surf_pres_anomaly,detection_threshold) Takes a surface pressure anomaly array surf_pres_anomaly[x,y] = surf_pres[x,y] .- mean(surf_pres,dims(1,2)) a detection threshold for the anomaly, and return an array of tuples (x,y) where each tuple represents the centers of cyclones identified as the minima of the anomaly. """ function findcyclonecenters!(::VorticityMaxima,buf1,buf2,target_variable,detection_threshold;grid_spacing=2000, target_lengthscale = 30000) filtered_variable = smooth_and_mask!(buf1,buf2,target_variable,detection_threshold,grid_spacing; target_lengthscale); peaks = findlocalmaxima(filtered_variable,[1,2],false); return peaks end """ findcyclonecenters_aspressureminima!(buf1,buf2,surf_pres_anomaly,detection_threshold) Takes a surface pressure anomaly array surf_pres_anomaly[x,y] = surf_pres[x,y] .- mean(surf_pres,dims(1,2)) a detection threshold for the anomaly, and return an array of tuples (x,y) where each tuple represents the centers of cyclones identified as the minima of the anomaly. """ function findcyclonecenters!(::PressureMinima,buf1,buf2,target_variable,detection_threshold;grid_spacing=2000, target_lengthscale = 30000) filtered_variable = smooth_and_mask!(buf1,buf2,target_variable,detection_threshold,grid_spacing; target_lengthscale); peaks = findlocalminima(filtered_variable,[1,2],false); return peaks end """ neighbours_2d(arraysize,indicesCartesian) Compute de neighboring points of an index in a 2-d array considering periodic boundaries """ function neighbours_2d(arraysize,indicesCartesian) decrement_mod1(num, n) = num == 1 ? n : num - 1 increment_mod1(num, n) = num == n ? one(num) : num + 1 x_ind = indicesCartesian[1] y_ind = indicesCartesian[2] size_x = arraysize[1] size_y = arraysize[2] @inbounds neighbours = Iterators.product( (decrement_mod1(x_ind,size_x), x_ind, increment_mod1(x_ind,size_x)), (decrement_mod1(y_ind,size_y), y_ind, increment_mod1(y_ind,size_y)) ) return CartesianIndex.(neighbours) end """ function detect_cyclones!(buf1, buf2,pressure_anomaly,pressure_threshold,resolution) receive 2 buffers and a pressure anomaly and returns a segmented image with the cyclones """ function detect_cyclones(cyclone_detection_algorithm,target_variable,detection_threshold,resolution; target_lengthscale = 30000) buf1 = similar(target_variable) buf2 = similar(buf1) frame_with_detected_cyclones = detect_cyclones!(cyclone_detection_algorithm,buf1,buf2,target_variable,detection_threshold,resolution; target_lengthscale) return frame_with_detected_cyclones end """ function detect_cyclones!(buf1, buf2,pressure_anomaly,pressure_threshold,resolution) receive 2 buffers and a pressure anomaly and returns a segmented image with the cyclones """ function detect_cyclones!(cyclone_detection_algorithm,buf1,buf2,target_variable,detection_threshold,resolution; target_lengthscale = 30000) neighbourhood_gen(arraysize) = point -> AvailablePotentialEnergyFramework.neighbours_2d(arraysize,point) centers = findcyclonecenters!(cyclone_detection_algorithm,buf1,buf2,target_variable,detection_threshold; grid_spacing = resolution, target_lengthscale)#buf2 is the masked array #@info centers if length(centers) == 0 return (nothing,nothing) end centers_and_labels = [(centers[i],i) for i in 1:length(centers)] #mask = pres_anomaly .<= pressure_threshold push!(centers_and_labels,(findfirst(==(-9999),buf2),1000)) cyclones = seeded_region_growing(buf2,centers_and_labels,neighbourhood_gen(size(target_variable))) #Many allocations? this may be the culprit return (centers_and_labels,cyclones) end """ isinteracting(adjacencyMatrix :: SparseMatrixCSC,regionnumber) Computes the adjacency of identified cyclones and returns true if the cylone-number is adjacent to a region other than the background. """ function isinteracting(adjacencyMatrix :: SparseMatrixCSC{T,N},regionnumber) where {T,N} @inbounds for i in 1:(adjacencyMatrix.m - 1) @views adjacencyMatrix[regionnumber,i] == 1 && (return true) end return false end """ isinteracting(cyclones :: SegmentedImage,regionnumber) Computes the adjacency of identified cyclones and returns true if the cylone-number is adjacent to a region other than the background. """ function isinteracting(cyclones :: SegmentedImage,regionnumber) adjacency, vert_map = region_adjacency_graph(cyclones,(i,j)->1) @inbounds for i in 1:(adjacency.weights.m - 1) adjacency.weights[regionnumber,i] == 1 ? (return true) : nothing end return false end """ add_allcyclones(array :: Array{T,2},radius_bins,array :: Array{T,3},segmentedcyclones,cyclonescenters,gridspacing) Compute the azimuthal average of some quantity around a center. Repeats the process and averages about all the tropical cyclones detected on the array. It receives an array with the radius bins to use,the field to average, called `array`, each cyclone as a SegmentedImage,the centers of the cyclones and the gridspacing. """ function add_allcyclones(array,segmentedcyclones,cyclonescenters;maskcyclones = true) addition = zeros(eltype(array),size(array)) buf1 = similar(addition) buf2 = similar(addition) cyclonecount = add_allcyclones!(addition,buf1,buf2,array,segmentedcyclones,cyclonescenters;maskcyclones) return (cyclonecount,addition) end """ add_allcyclones!(addition :: Array{T,2}, buf :: Array{T,2},array :: Array{T,2},radius_bins,array :: Array{T,3},segmentedcyclones,cyclonescenters,gridspacing) Compute the azimuthal average of some quantity around a center. Repeats the process and averages about all the tropical cyclones detected on the array. It receives an array with the radius bins to use,the field to average, called `array`, each cyclone as a SegmentedImage,the centers of the cyclones and the gridspacing. """ function add_allcyclones!(addition,buf1,buf2,array,segmentedcyclones,cyclonescenters;maskcyclones = true) if !(size(addition) == size(buf1) == size(array)) DimensionMismatch("Addition, buffer and array must all have the same dimensions") end center = size(array)[1:2] .Γ· 2 #@info center adjacency, vert_map = region_adjacency_graph(segmentedcyclones, (i,j)->1) cyclonecount = 0 if maskcyclones @inbounds for cyclone in 1:(length(segmentedcyclones.segment_labels)-1) labelsmap = labels_map(segmentedcyclones) @inbounds for ind in CartesianIndices(array) if labelsmap[ind[1],ind[2]] == cyclone buf2[ind] = array[ind] else buf2[ind] = 0.0 end end if !isinteracting(adjacency.weights,cyclone) cyclonecount += 1 addition .+= shifter!(buf1,buf2,center,cyclonescenters[cyclone][1]) end end else #no cyclone masking @inbounds for cyclone in 1:(length(segmentedcyclones.segment_labels)-1) if !isinteracting(adjacency.weights,cyclone) cyclonecount += 1 addition .+= shifter!(buf1,array,center,cyclonescenters[cyclone][1]) else @debug "Cyclone is too close to another one" end end end return cyclonecount end """ isindexindistancebin(binlimits,index,center = (0,0),gridspacing=1) = (binlimits[1] < distance(index,center,gridspacing) <= binlimits[2]) ? true : false computes the distance of one index to the origin and returns true if that distance is inside a bin """ isindexindistancebin(binlimits,index,center,gridspacing=1) = (binlimits[1] < distance(index,center,gridspacing) <= binlimits[2]) ? true : false """ averageallindistance(radiusbin,array :: Array{T,2},mask,center,gridspacing = 1) Create an average of the quantity in array at all the points located between radiusbin[1] and radiusbin[2] from a center. The points should be masked by a boolean array. It assumes a uniform gridspacing. """ function averageallindistance(radiusbin,array :: Array{T,2},center,gridspacing = one(T)) where T average = zero(T) count = 0 @inbounds for index in CartesianIndices(array) if isindexindistancebin(radiusbin,index,center,gridspacing) count += 1 average += array[index] end end iszero(count) ? average : average/count end """ averageallindistance(radiusbin,array :: Array{T,3},mask,center,gridspacing = 1) Create an average of the quantity in array at all the points located between radiusbin[1] and radiusbin[2] from a center. The points should be masked by a boolean array. It assumes a uniform gridspacing. """ function averageallindistance(radiusbin,array :: Array{T,3},center,gridspacing = one{T} ) where T sx,sy,sz = size(array) average = zeros(T,sz) averageallindistance!(average,radiusbin,array,center,gridspacing) return average end """ averageallindistance!(radiusbin,array :: Array{T,3},center,gridspacing = 1) Create an average of the quantity in array at all the points located between radiusbin[1] and radiusbin[2] from a center. The points should be masked by a boolean array. It assumes a uniform gridspacing. """ function averageallindistance!(average,radiusbin,array :: Array{T,3},center,gridspacing = 1) where T sx,sy,sz = size(array) count = 0 @inbounds for index in CartesianIndices((1:sx,1:sy)) if isindexindistancebin(radiusbin,index,center,gridspacing) #@info "In distance bin" count += 1 for idz in 1:sz average[idz] += array[index[1],index[2],idz] end end end if !iszero(count) average .= average./count end return average end """ azimuthalaverage_allcyclones(radius_bins,array :: Array{T,3},segmentedcyclones,cyclonescenters,gridspacing) Compute the azimuthal average of some quantity around a center. Repeats the process and averages about all the tropical cyclones detected on the array. It receives an array with the radius bins to use,the field to average, called `array`, each cyclone as a SegmentedImage,the centers of the cyclones and the gridspacing. """ function azimuthalaverage_allcyclones(radius_bins,array :: Array{T,3},segmentedcyclones,cyclonescenters,gridspacing) where T G, vert_map = region_adjacency_graph(segmentedcyclones, (i,j)->1) labelsmap = labels_map(segmentedcyclones) adjacencymatrix = G.weights average = zeros(size(array,3),length(radius_bins)-1) cyclonecount = 0 for cyclone in 1:(length(segmentedcyclones.segment_labels)-1) if !isinteracting(segmentedcyclones,cyclone) cyclonecount += 1 for bin in 1:(length(radius_bins) - 1) average[:,bin] .+= averageallindistance((radius_bins[bin],radius_bins[bin+1]),array,cyclonescenters[cyclone][1],gridspacing) end end end if !iszero(cyclonecount) return average./cyclonecount else return average end end """ azimuthalaverage_allcyclones(radius_bins,array :: Array{T,3},segmentedcyclones,cyclonescenters,gridspacing) Compute the azimuthal average of some quantity around a center. Repeats the process and averages about all the tropical cyclones detected on the array. It receives an array with the radius bins to use,the field to average, called `array`, each cyclone as a SegmentedImage,the centers of the cyclones and the gridspacing. """ function azimuthalaverage_allcyclones(radius_bins,array :: Array{T,2},segmentedcyclones,cyclonescenters,gridspacing) where T average = zeros(length(radius_bins)-1) G, vert_map = region_adjacency_graph(segmentedcyclones, (i,j)->1) labelsmap = labels_map(segmentedcyclones) adjacencymatrix = G.weights cyclonecount = 0 for cyclone in 1:(length(segmentedcyclones.segment_labels)-1) if !isinteracting(segmentedcyclones,cyclone) cyclonecount += 1 for bin in 1:(length(radius_bins) - 1) average[bin] += averageallindistance((radius_bins[bin],radius_bins[bin+1]),array,cyclonescenters[cyclone][1],gridspacing) end end end if !iszero(cyclonecount) return average./cyclonecount else return average end end """ shifter(array,domain_center,peak) Returns an array in which a pressure perturbation center is displaced to the center of the domain using circshift. Using it may assume periodic domain. Receives and SAM 3D+time or 2D+time array and two tuples, the (x,y) indices of the domain center, and the (x,y) indices of the location of the pressure perturbation peak. """ function shifter(array,domain_center,peak) if ndims(array)==2 return circshift(array[:,:],[domain_center[1]-peak[1],domain_center[2]-peak[2]]); elseif ndims(array)==3 return circshift(array[:,:,:],[domain_center[1]-peak[1],domain_center[2]-peak[2],0]); end end """ shifter!(dest,array,time,domain_center,peak) Stores in `dest` an array in which a pressure perturbation center is displaced to the center of the domain using circshift. Using it may assume periodic domain. Receives and SAM 3D+time or 2D+time array and two tuples, the (x,y) indices of the domain center, and the (x,y) indices of the location of the pressure perturbation peak. """ function shifter!(dest,array,domain_center,peak) return circshift!(dest,array,[domain_center[1]-peak[1],domain_center[2]-peak[2]]); end """ timemean_nofalseframe(input) Takes a 3-d or 3-d array and computes the average along the third or fourth dimension, skipping the slices input[:,:,:,i] for which the maxiumum value is 0.0 """ function timemean_nofalseframe(input::Array{T,4}) where {T<:Real} sx,sy,sz,st = size(input) copy = zeros(T,sx,sy,sz) trueframes = 1 for t in 1:size(input,4) if maximum(view(input,:,:,:,t)) != 0.0 copy[:,:,:] .+= @views input[:,:,:,t] trueframes = trueframes + 1 end end return copy .= copy ./ trueframes end function timemean_nofalseframe(input::Array{T,3}) where {T<:Real} sx,sy,st = size(input) copy = zeros(T,sx,sy) trueframes = 1 for t in 1:size(input,4) if maximum(view(input,:,:,t)) != 0.0 copy[:,:] .+= @views input[:,:,t] trueframes = trueframes + 1 end end return copy .= copy ./ trueframes end function removefalseframes(input::Array{T,4},peaktimes) where {T<:Real} sizet = length(unique(peaktimes)) copy = zeros(T,size(input,1),size(input,2),size(input,3),sizet) trueframes = 1 Threads.@threads for t in 1:size(input,4) if maximum(view(input,:,:,:,t)) != 0 @views copy[:,:,:,trueframes] .= input[:,:,:,t] trueframes = trueframes + 1 end end return copy end function removefalseframes(input::Array{T,3},peaktimes) where {T<:Real} sizet = length(unique(peaktimes)) copy = zeros(T,size(input,1),size(input,2),sizet) trueframes = 1 Threads.@threads for t in 1:size(input,3) if maximum(view(input,:,:,t)) != 0 @views copy[:,:,trueframes] .= input[:,:,t] trueframes = trueframes + 1 end end return copy end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
7766
""" smooth_vars_and_write_to_netcdf!(output_file,input_file,vars_to_smooth,window_h,window_t) Take a netcdf file, a list of variables and two integers and performs a moving mean smoothing of these variables. Write the smoothed fields into a netcdf file called output_file """ function smooth_vars_and_write_to_netcdf!(output_file,input_file,vars_to_smooth,window_h,window_t) ds_orig = Dataset(input_file) ds_new = Dataset(output_file,"c", attrib = OrderedDict( "history" => "Filtered data from file: $input_file, using $window_h points in the space dimensions and $window_t points in the time dimension" )) # Dimensions for (dim,dim_size) in ds_orig.dim @info "Writing $dim coordinate in netcdf file" flush(stdout) ds_new.dim[dim] = dim_size # unlimited dimension v = ds_orig[dim] create_var = defVar(ds_new,dim, eltype(v.var), dimnames(v),attrib = v.var.attrib) create_var[:] = v[:] end # Declare variables for current_var in vars_to_smooth @info "Processing $current_var" flush(stdout) v = ds_orig[current_var] create_var = defVar(ds_new,current_var, eltype(v.var), dimnames(v),attrib = v.var.attrib) create_var[:] = filter_array(v[:],window_h,window_t) @info "Finished processing $current_var" flush(stdout) end close(ds_new) close(ds_orig) end const dimensions_of_APE_variables = Dict( "rho0" => ("z","t"), "N2" => ("z","t"), "B" => ("x","y","z","t"), "QCONVEC" => ("x","y","z","t"), "QRAD" => ("x","y","z","t"), "APE" => ("t",), "KE" => ("t",), "APERAD" => ("t",), "APEDIA" => ("t",), "APEWN2" => ("t",), "APEUb2" => ("t",), "APEVb2" => ("t",), "APErate" => ("t",), "APESURF" => ("t",) ) """ Create NetCDF for storing ape budget variables """ function create_APE_netcdf(filename,var_size) Dataset(filename,"c") do ds # Dimensions ds.dim["x"] = var_size[1] ds.dim["y"] = var_size[2] ds.dim["z"] = var_size[3] ds.dim["time"] = Inf # unlimited dimension # Declare variables ncx = defVar(ds,"x", Float32, ("x",), deflatelevel=1, attrib = OrderedDict( "units" => "m", )) ncy = defVar(ds,"y", Float32, ("y",), deflatelevel=1, attrib = OrderedDict( "units" => "m", )) ncz = defVar(ds,"z", Float32, ("z",), deflatelevel=1, attrib = OrderedDict( "units" => "m", "long_name" => "height", )) nctime = defVar(ds,"time", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "units" => "d", "long_name" => "time", )) ncAPE = defVar(ds,"APE", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy", "units" => "J/m^2 ", )) ncKE = defVar(ds,"KE", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Kinetic energy", "units" => "J/m^2 ", )) ncAPERAD = defVar(ds,"APERAD", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy production by radiative processes", "units" => "W/m^2 ", )) ncAPEDIA = defVar(ds,"APEDIA", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy production by radiative processes other than radiative and surface fluxes", "units" => "W/m^2 ", )) ncAPEWN2 = defVar(ds,"APEWN2", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy conversion into kinetic energy", "units" => "W/m^2 ", )) ncAPEUB2 = defVar(ds,"APEUb2", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy advection by the U component of the wind", "units" => "W/m^2 ", )) ncAPEVB2 = defVar(ds,"APEVb2", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy advection by the V component of the wind", "units" => "W/m^2 ", )) ncAPESURF = defVar(ds,"APESURF", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy production by surface fluxes", "units" => "W/m^2 ", )) ncAPErate = defVar(ds,"APErate", Float32, ("time",), deflatelevel=1, attrib = OrderedDict( "long_name" => "Available Potential Energy rate of change", "units" => "W/m^2 ", )) ncrho0 = defVar(ds,"rho0", Float32, ("z","time"), deflatelevel=1, shuffle=true, attrib = OrderedDict( "units" => "kg/m^3", "long_name" => "Horizontally averaged density", )) ncN2 = defVar(ds,"N2", Float32, ("z","time"), deflatelevel=1, shuffle=true, attrib = OrderedDict( "units" => "1/s^2", "long_name" => "Brunt-Vaisala frequency", )) ncQCONVEC = defVar(ds,"QCONVEC", Float32, ("x", "y", "z", "time"), deflatelevel=1, shuffle=true, attrib = OrderedDict( "long_name" => "Convective heating departure from horizontal mean", "units" => "m/s^3 ", )) ncQRAD = defVar(ds,"QRAD", Float32, ("x", "y", "z", "time"), deflatelevel=1, shuffle=true, attrib = OrderedDict( "long_name" => "Radiative heating rate departure from horizontal mean", "units" => "m/s^3 ", )) ncB = defVar(ds,"B", Float32, ("x", "y", "z", "time"), deflatelevel=1, shuffle=true, attrib = OrderedDict( "long_name" => "Buoyancy rate departure from horizontal mean", "units" => "m/s^2 ", )) for itime = 1:var_size[end] nctime[itime] = itime * 3600.0 end end end """ Create NetCDF for storing ape budget variables """ function set_netcdf_var!(filename,var,data) @info "Started writing: $var into file: $filename" n_dimensions = ndims(data) last_dimension_size = last(size(data)) Dataset(filename,"a") do ds #for ind in 1:last_dimension_size # #@show ndims(data),last_dimension_size, ind, selectdim(data,n_dimensions,ind) # @info "Writing step: " ind # selectdim(ds[var],n_dimensions,ind)[:] = selectdim(data,n_dimensions,ind) #end if n_dimensions == 1 ds[var][:] = data[:] elseif n_dimensions == 2 ds[var][:,:] = data[:,:] elseif n_dimensions == 3 ds[var][:,:,:] = data[:,:,:] elseif n_dimensions == 4 ds[var][:,:,:,:] = data[:,:,:,:] end @info "Finished writing: $var into file: $filename" end end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
731
const epsilon = 18.016/28.966 const g = 10u"m/s/s" #acceleration of gravity struct Substance{T} cp :: Union{Nothing,T} cv :: Union{Nothing,T} R :: Union{Nothing,T} Lv :: Union{Nothing,T} Lf :: Union{Nothing,T} end Substance{T}(;cp = nothing, cv = nothing, R = nothing, Lv = nothing, Lf = nothing) where T = Substance{T}(cp,cv,R,Lv,Lf) const Dryair = Substance{Quantity}( cp = 1006.0u"J/kg/K", #J/kg/k at 1013 hPa cv = 718.0u"J/kg/K", R = 287.05u"J/kg/K" # J/kg/k ) const Liquidwater = Substance{Quantity}( Lv = 2.5e6u"J/kg", #J/kg Lf = 3.33e5u"J/kg", cp = 4200.0u"J/kg/K" #j/kg/k ) const Watervapor = Substance{Quantity}( R = 461.52u"J/kg/K" #j/kg/K )
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
20164
""" distance(x1,x2,gridspacing :: Number) Compute the cartesian distance between two points given their indices and the gridspacing. It asummes uniform grid. """ function distance(x1,x2,gridspacing :: Number,weight=1) return gridspacing*hypot( x2[1]-x1[1], x2[2]-x1[2] ) end """ compute_N2(xBar_Tv,z) Take a (1,1,size(z),size(t)) profile of temperature or virtual temperature and return the Brunt - VΓ€isΓ€lΓ€ frequency at each z level and at each t. """ function compute_N2(xBar_Tv,z) T = typeof(ustrip(g)/z[1]) N2 = zeros(T,length(z),size(xBar_Tv,4)) factor = ustrip(g/Dryair.cp) @views N2[1:end-1,:] .= ustrip(g) .* ( (xBar_Tv[1,1,2:end,:] .- xBar_Tv[1,1,1:end-1,:]) ./(z[2:end] .- z[1:end-1]) .+ factor) ./ xBar_Tv[1,1,1:end-1,:] @views N2[end,:] .= N2[end-1,:] ind_smallN2 = findall(abs.(N2) .< 1e-6) one_z = CartesianIndex(1,0) @inbounds for ind in ind_smallN2 if 1 < ind[1] < length(z) N2[ind] = (N2[ind + one_z] + N2[ind - one_z])/2 # If N2 is small, substite by mean of neighbours elseif ind[1] == 1 N2[ind] = N2[ind + one_z] elseif ind[1] == length(z) N2[ind] = N2[ind - one_z] end end return N2 end function compute_N2(xBar_Tv :: Array{ <:Quantity }, z :: Array{ <:Quantity }) T = typeof(g/z[1]) N2 = zeros(T,length(z),size(xBar_Tv,4)) factor = g/Dryair.cp @views N2[1:end-1,:] .= g .* ( (xBar_Tv[1,1,2:end,:] .- xBar_Tv[1,1,1:end-1,:]) ./ (z[2:end] .- z[1:end-1]) .+ factor) ./ xBar_Tv[1,1,1:end-1,:] @views N2[end,:] .= N2[end-1,:] ind_smallN2 = findall(abs.(N2) .< 1e-6u"s^-2") one_z = CartesianIndex(1,0) @inbounds for ind in ind_smallN2 if 1 < ind[1] < length(z) N2[ind] = (N2[ind + one_z] + N2[ind - one_z])/2 # If N2 is small, substite by mean of neighbours elseif ind[1] == 1 N2[ind] = N2[ind + one_z] elseif ind[1] == length(z) N2[ind] = N2[ind - one_z] end end return N2 end #WIP function compute_mse(T,z,qv) sz = size(T) return Dryair.cp*T .+ g*reshape(z,(1,1,sz[3],1)) .+ liquidwater.Lv*qv end function get_tendency(field :: AbstractArray{T,4}; dt = error("dt is required for the budget computation")) where T dfield_dt = similar(field) @. dfield_dt[:,:,:,1:end-1] = @views (field[:,:,:,2:end] - field[:,:,:,1:end-1]) / dt @. dfield_dt[:,:,:,end] = dfield_dt[:,:,:,end-1] return dfield_dt end function get_tendency(field :: AbstractArray{T,1}; dt = error("dt is required for the budget computation")) where T dfield_dt = similar(field) @. dfield_dt[1:end-1] = (field[2:end] - field[1:end-1]) / dt dfield_dt[end] = dfield_dt[end-1] return dfield_dt end function get_advection_asresidual(tendency,sources...) return reduce(+,sources) .- tendency end # integrate_vertically(field :: AbstractArray{T,4};dz = 1, weight = 1) where {T} = reduce(+,dz*weight.*field,dims=3) # integrate_vertically(field :: AbstractArray{T,3};dz = 1, weight = 1) where {T} = reduce(+,dz*weight.*field,dims=2) # integrate_vertically(field :: AbstractArray{T,2};dz = 1, weight = 1) where {T} = reduce(+,dz*weight.*field,dims=2) # integrate_vertically(field :: AbstractArray{T,1};dz = 1 , weight = 1) where {T} = reduce(+,dz*weight*field) # function integrate_vertically(field :: AbstractArray{T,4}; coord :: AbstractArray{T,1},weight = 1) where T # sz = size(field) # sc = size(coord) # integral = zeros(eltype(field),(sz[1],sz[2],1,sz[4])) # @inbounds for ind in CartesianIndices(field) # if ind[3] != sz[3] # integral[ind[1],ind[2],1,ind[4]] = weight*(coord[ind[3]+1] - coord[ind[3]]) * field[ind] # end # end # return integral # end # function integrate_vertically(field :: AbstractArray{T,4}; coord :: AbstractArray{T,1},weight :: AbstractArray{T,1}) where T # sz = size(field) # sc = size(coord) # integral = zeros(eltype(field),(sz[1],sz[2],1,sz[4])) # @inbounds for ind in CartesianIndices(field) # if ind[3] != sz[3] # integral[ind[1],ind[2],1,ind[4]] += weight[ind[3]]*(coord[ind[3]+1] - coord[ind[3]]) * field[ind] # end # end # return integral # end function integrate_horizontally(field :: AbstractArray{T,4}; darea) where T return darea*reduce(+,field) end function integrate_vertically(field :: AbstractArray{T,4}; coord :: AbstractArray{T,1},weight :: AbstractArray{T,4}) where T sz = size(field) sc = size(coord) integral = zeros(eltype(field),(sz[1],sz[2],1,sz[4])) for ind in CartesianIndices(field) if ind[3] != sz[3] integral[ind[1],ind[2],1,ind[4]] += weight[ind]*(coord[ind[3]+1] - coord[ind[3]]) * field[ind] end end return integral end """ compute_virtual_temp(temperature, specific_humidity) Compute the virtual temperature considering only water vapor mixing ratio. """ function compute_virtual_temp(temperature,specific_humidity) return temperature*(1 + epsilon*specific_humidity) end function spatial_derivative!(output,field,dx,dim) if dim == 1 onex = CartesianIndex((1, ntuple(_->0, ndims(u) - 1)...)) @inbounds for ind in CartesianIndices(field) if ind[dim] == 1 output[ind] = (field[ind+onex] - field[ind])/dx elseif ind[dim] == size(field,dim) output[ind] = (field[ind] - field[ind-onex])/dx else output[ind] = (field[ind+onex] - field[ind-onex])/2dx end end elseif dim == 2 oney = CartesianIndex((0,1, ntuple(_->0, ndims(u) - 2)...)) @inbounds for ind in CartesianIndices(field) if ind[dim] == 1 output[ind] = (field[ind+oney] - field[ind])/dx elseif ind[dim] == size(field,dim) output[ind] = (field[ind] - field[ind-oney])/dx else output[ind] = (field[ind+oney] - field[ind-oney])/2dx end end end return output end function spatial_derivative(field, dx, dim) output = similar(field) return spatial_derivative!(output,field,dx,dim) end function get_vorticity!(output,u,v,dx,dy) ## This implementation assumes 4d input onex = CartesianIndex((1, ntuple(_->0, ndims(u) - 1)...)) oney = CartesianIndex((0,1, ntuple(_->0, ndims(u) - 2)...)) for ind in CartesianIndices(output) if ind[1] == 1 output[ind] = (v[ind+onex] - v[ind])/dx elseif ind[1] == size(v,1) output[ind] = (v[ind] - v[ind-onex])/dx else output[ind] = (v[ind+onex] - v[ind-onex])/2dx end end for ind in CartesianIndices(output) if ind[2] == 1 output[ind] -= (u[ind+oney] - u[ind])/dy elseif ind[2] == size(u,2) output[ind] -= (u[ind] - u[ind-oney])/dy else output[ind] -= (u[ind+oney] - u[ind-oney])/2dy end end return output end function get_divergence!(output,u,v,dx,dy) ## This implementation assumes 4d input onex = CartesianIndex((1, ntuple(_->0, ndims(u) - 1)...)) oney = CartesianIndex((0,1, ntuple(_->0, ndims(u) - 2)...)) for ind in CartesianIndices(output) if ind[1] == 1 output[ind] = (v[ind+onex] - v[ind])/dy elseif ind[1] == size(v,1) output[ind] = (v[ind] - v[ind-onex])/dy else output[ind] = (v[ind+onex] - v[ind-onex])/2dy end end for ind in CartesianIndices(output) if ind[2] == 1 output[ind] += (u[ind+oney] - u[ind])/dx elseif ind[2] == size(u,2) output[ind] += (u[ind] - u[ind-oney])/dx else output[ind] += (u[ind+oney] - u[ind-oney])/2dx end end return output end function get_divergence(u,v,dx,dy) output = similar(u) return get_divergence!(output,u,v,dx,dy) end function get_vorticity(u,v,dx,dy) output = similar(u) return get_vorticity!(output,u,v,dx,dy) end function get_okubo_weiss!(output,u,v,dx,dy) onex = CartesianIndex((1, ntuple(_->0, ndims(u) - 1)...)) oney = CartesianIndex((0,1, ntuple(_->0, ndims(u) - 2)...)) sz = size(u) # dvdx for ind in CartesianIndices(u) ##dudx and dvdx if ind[1] == 1 dudx = (u[ind+onex] - u[ind])/dx dvdx = (v[ind+onex] - v[ind])/dx elseif ind[1] == sz[1] dudx = (u[ind] - u[ind-onex])/dx dvdx = (v[ind] - v[ind-onex])/dx else dudx = (u[ind+onex] - u[ind-onex])/2dx dvdx = (v[ind+onex] - v[ind-onex])/2dx end #dudy and dvdy if ind[2] == 1 dvdy = (v[ind+oney] - v[ind])/dy dudy = (u[ind+oney] - u[ind])/dy elseif ind[2] == sz[2] dvdy = (v[ind] - v[ind-oney])/dy dudy = (u[ind] - u[ind-oney])/dy else dvdy = (v[ind+oney] - v[ind-oney])/2dy dudy = (u[ind+oney] - u[ind-oney])/2dy end output[ind] = dudx*dudx + dvdy*dvdy - 2dudx*dvdy + 2dvdx*dudy + 2dvdx*dudy end return output end function get_okubo_weiss(u,v,dx,dy) ow = similar(u) get_okubo_weiss!(ow,u,v,dx,dy) return ow end """ get_saturation_vapor_pressure(T) Receive temperature T in Kelvin and compute the saturation vapor pressure in hPa from the August-Roche-Magnus formula that approximates the solution to the Clausius-Clapeyron relationship (Wikipedia contributors. (2020, December 19). Clausius–Clapeyron relation. In Wikipedia, The Free Encyclopedia. Retrieved 06:57, December 20, 2020, from https://en.wikipedia.org/w/index.php?title=Clausius%E2%80%93Clapeyron_relation&oldid=995159175) """ function get_saturation_vapor_pressure(T) return 6.112*exp(17.67 * (T-273.15) / (243.5 + (T - 273.15))) end function get_saturation_vapor_pressure(T :: Quantity) return 6.112u"hPa"*exp(17.67 * (T-273.15u"K") / (243.5u"K" + (T - 273.15u"K"))) end """ get_partial_vapor_pressure(mixing_ratio,pressure) Receive a water vapor mixing ratio (unitless g/g) and environmental pressure and compute the partial pressure of water vapor in the same units as the input pressure. """ function get_partial_vapor_pressure(mixing_ratio,pressure) return mixing_ratio*pressure/(epsilon + mixing_ratio) end """ get_mixing_ratio(water_vapor_partial_pressure,env_pressure) Receive a water vapor mixing ratio (unitless g/g) and environmental pressure and compute the partial pressure of water vapor in the same units as the incoming pressure. """ function get_mixing_ratio(water_vapor_partial_pressure,env_pressure) return epsilon*water_vapor_partial_pressure/(env_pressure - water_vapor_partial_pressure) end """ get_specific_entropy(temperature,mixing_ratio,pressure) Receive temperature in Kelvin, water vapor mixing ratio (unitless g/g) and pressure (hPa) and compute the specific entropy of a parcel using equation in Emmanuel's (E94, EQN. 4.5.9) """ function get_specific_entropy(temperature,mixing_ratio,pressure) vapor_pressure = get_partial_vapor_pressure(mixing_ratio,pressure) saturation_vapor_pressure = get_saturation_vapor_pressure(temperature) RH = min(vapor_pressure/saturation_vapor_pressure,1.0) specific_entropy = (Dryair.cp + mixing_ratio * Liquidwater.cp) * log(temperature/unit(temperature)) - Dryair.R * log((pressure - vapor_pressure)/unit(pressure)) + Liquidwater.Lv * mixing_ratio / temperature - mixing_ratio * Watervapor.R * log(RH) end """ get_lifted_condensation_level(temperature,relative_humidity,pressure) Receive temperature in Kelvin, relative humidity (unitless) and pressure (hPa) and compute the lifted condensation level based on Emanuel's E94 "calcsound.f" code at http://texmex.mit.edu/pub/emanuel/BOOK/ """ function get_lifted_condensation_level(temperature,relative_humidity,pressure) return pressure * (relative_humidity^(temperature/(1669.0-122.0*relative_humidity-temperature))) end function get_lifted_condensation_level(temperature :: Quantity ,relative_humidity :: Quantity ,pressure :: Quantity) return pressure * (relative_humidity^(temperature/(1669.0u"K"-122.0u"K"*relative_humidity-temperature))) end #we need temperature to celsius #saturation vapor pressure """ specific_humidity_to_mixing_ratio(specific_humidity) Take a specific humidity (unitless g/g) and return a mixing ratio """ function specific_humidity_to_mixing_ratio(specific_humidity) return mixing_ratio = specific_humidity / (1 - specific_humidity) end """ mixing_ratio_to_specific_humidity(mixing_ratio) Take a mixing ratio (unitless g/g) and return a specific humidity """ function mixing_ratio_to_specific_humidity(mixing_ratio) return q = mixing_ratio / (1 + mixing_ratio) end """ get_virtual_temperature(temperature,mixing_ratio_total_water,mixing_ratio_water_vapor) Receive temperature (K) and mixing ratios of total water and water vapor (unitless g/g) and compute the virtual temperature """ function get_virtual_temperature(temperature,mixing_ratio_total_water,mixing_ratio_water_vapor) return temperature*(1 + mixing_ratio_water_vapor/epsilon)/(1 + mixing_ratio_total_water) end """ get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,t,r,p,ptop=50) """ function get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,t,r,p,ptop=50u"hPa") n_valid_levels = findfirst(<(ptop),p) p = p[begin:n_valid_levels] t = t[begin:n_valid_levels] r = r[begin:n_valid_levels] tvirtual_diff_parcel_env = similar(t) parcel_sat_vapor_pressure = get_saturation_vapor_pressure(tparcel) parcel_vapor_pressure = get_partial_vapor_pressure(rparcel,pparcel) parcel_rh = min(parcel_vapor_pressure/parcel_sat_vapor_pressure , 1.0) parcel_specific_entropy = get_specific_entropy(tparcel,rparcel,pparcel) parcel_lcl = get_lifted_condensation_level(tparcel,parcel_rh,pparcel) @show parcel_lcl below_lcl = findall(>=(parcel_lcl),p) above_lcl = findall(<(parcel_lcl),p) #These two must populate buoyancy of lifted parcel_get_vapor_pressure #this would be adiabatic lifting, easy enough for level in below_lcl tlifted = tparcel*(p[level]/pparcel)^(Dryair.R/Dryair.cp) rlifted = rparcel tvirtual_lifted = get_virtual_temperature(tlifted,rlifted,rlifted) tvirtual_env = get_virtual_temperature(t[level],r[level],r[level]) tvirtual_diff_parcel_env[level] = tvirtual_lifted - tvirtual_env end #We start with environmental values of temperature, mixing ratio, entropy etc for level in above_lcl niter = 0 t_previousiter = t[level] saturation_vapor_pressure_previousiter = get_saturation_vapor_pressure(t_previousiter) mixing_ratio_previousiter = get_mixing_ratio(saturation_vapor_pressure_previousiter,p[level]) t_currentiter = 0.0u"K" mixing_ratio_currentiter = 0.0u"g/g" while (abs(t_previousiter - t_currentiter) > 0.001u"K" ) niter += 1 t_currentiter = t_previousiter saturation_vapor_pressure_currentiter = get_saturation_vapor_pressure(t_currentiter) mixing_ratio_currentiter = get_mixing_ratio(saturation_vapor_pressure_currentiter,p[level]) dsdt = (Dryair.cp + rparcel*Liquidwater.cp + Liquidwater.Lv*Liquidwater.Lv*mixing_ratio_currentiter/ (Watervapor.R*t_currentiter*t_currentiter))/t_currentiter vapor_pressure_currentiter = get_partial_vapor_pressure(mixing_ratio_currentiter,p[level]) entropy_currentinter = (Dryair.cp+rparcel*Liquidwater.cp)*log(t_currentiter/unit(t_currentiter)) - Dryair.R*log((p[level]-vapor_pressure_currentiter)/unit(p[level])) + Liquidwater.Lv*mixing_ratio_currentiter / t_currentiter if niter < 3 temperature_step = 0.3 else temperature_step = 1 end t_previousiter = t_currentiter + temperature_step*(parcel_specific_entropy - entropy_currentinter)/dsdt if (niter > 500 ) | (vapor_pressure_currentiter > ( p[level] - 1.0u"hPa") ) error("Temperature didn't converge during lift") end end tvirtual_lifted = get_virtual_temperature(t_currentiter,rparcel,mixing_ratio_currentiter) tvirtual_env = get_virtual_temperature(t[level],r[level],r[level]) tvirtual_diff_parcel_env[level] = tvirtual_lifted - tvirtual_env end return tvirtual_diff_parcel_env end """ get_potential_temperature(temperature, pressure, reference_pressure) Compute potential temperature from temperature and pressure. """ function get_potential_temperature(temperature, pressure, reference_pressure) exponent = ustrip(Dryair.R / Dryair.cp) return temperature * (reference_pressure/pressure)^exponent end function get_potential_temperature(temperature :: Quantity, pressure :: Quantity, reference_pressure :: Quantity) exponent = Dryair.R / Dryair.cp return temperature * (reference_pressure/pressure)^exponent end """ get_virtual_temperature(temperature, specific_humidity) Compute virtual temperature from temperature and specific humidity. """ function get_virtual_temperature(temperature, specific_humidity) return (one(temperature) + one(temperature)/1000*epsilon*specific_humidity)*temperature end function get_virtual_temperature(temperature :: Quantity, specific_humidity :: Quantity) return (one(temperature) + one(temperature)/1000*epsilon*specific_humidity)*temperature end """ function surface_sensible_heat_flux_to_buoyancy(SST , sensible_heat_flux ; rho = 1) Convert surface energy fluxes in units of W/m^2 to units of buoyancy m^2/s^3). """ function surface_sensible_heat_flux_to_buoyancy(SST, sensible_heat_flux; rho = 1.0) return ustrip(g) /(ustrip(Dryair.cp)*SST) * sensible_heat_flux end function surface_sensible_heat_flux_to_buoyancy(SST :: Quantity, sensible_heat_flux :: Quantity; rho = 1u"kg/m^3") return g /(1u"kg/m^3"*Dryair.cp*SST) * sensible_heat_flux end """ function surface_latent_heat_flux_to_buoyancy(SST , sensible_heat_flux ; rho = 1) Convert surface energy fluxes in units of W/m^2 to units of buoyancy m^2/s^3). """ function surface_latent_heat_flux_to_buoyancy(SST, latent_heat_flux; rho = 1.0) return ustrip(g)/(one(SST)*ustrip(Dryair.cp)*SST)*(epsilon*ustrip(Dryair.cp)*SST/ustrip(Liquidwater.Lv)*latent_heat_flux) end function surface_latent_heat_flux_to_buoyancy(SST :: Quantity, latent_heat_flux :: Quantity; rho = 1u"kg/m^3") return g/(1u"kg/m^3"*Dryair.cp*SST)*(epsilon*Dryair.cp*SST/Liquidwater.Lv*latent_heat_flux) end """ get_buoyancy(temperature_anomaly,mean_temperature) Compute buoyancy from a temperature anomaly and a temperature profile as in RamirezReyes and Yang 2021 """ function get_buoyancy(temperature_anomaly,mean_temperature) return ustrip(g) * ustrip(temperature_anomaly)/ustrip(mean_temperature) end function get_buoyancy(temperature_anomaly :: Quantity ,mean_temperature :: Quantity) return g * temperature_anomaly/mean_temperature end """ radiative_heating_rate_to_buoyancy(mean_temperature,radiative_heating_rate) Convert radiative heating rate in K/s to buoyancy production rate in m/s^2 using the a mean sounding as reference profile """ function radiative_heating_rate_to_buoyancy(mean_temperature,radiative_heating_rate) return ustrip(g) * radiative_heating_rate / mean_temperature end function radiative_heating_rate_to_buoyancy(mean_temperature :: Quantity,radiative_heating_rate :: Quantity) return g * radiative_heating_rate / mean_temperature end """ get_density_ideal_gas(pressure, temperature) Compute density of dry air from pressure and temperature using the Ideal gas law. """ function get_density_ideal_gas(pressure, temperature) return pressure / temperature / eltype(temperature)(ustrip(Dryair.R)) end function get_density_ideal_gas(pressure :: Quantity, temperature :: Quantity) return pressure / temperature / Dryair.R end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
3358
""" """ function average_precipitation_per_pw_bin_dayang(pw,precipitation,max_precip_bin,binspacing) precip_bin = Float64[] pw_bins = 0:binspacing:max_precip_bin n_pw_interval = length(pw_bins) for i in 1:n_pw_interval pw_i_low = pw_bins[1] + binspacing*(i-1) pw_i_up = pw_bins[1] + binspacing*i ind_i = findall(x -> (x>pw_i_low)&(x<pw_i_up),pw) if isempty(ind_i) push!(precip_bin,0.0) else push!(precip_bin,mean(precipitation[ind_i])) end end return precip_bin end """ average_precipitation_per_pw_bin(pw,precipitation,bins,binspacing) Computes the mean precipitation as a function of the binned precipitable water following Yang, D., 2018: Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation. J. Atmos. Sci., 75, 469–478, https://doi.org/10.1175/JAS-D-17-0150.1. It will be happy if bins is quite large (example from 0 to 300 mm). """ function average_precipitation_per_pw_bin(pw,precipitation,pw_bins,binspacing) T = eltype(pw) tone = one(T) tzero = zero(T) probability_of_being_in_bin = zeros(T,length(pw_bins)) average_precipitation_per_bin = zeros(T,length(pw_bins)) number_of_columns = reduce(*,size(pw)) factor = number_of_columns * binspacing @inbounds @simd for column in CartesianIndices(pw) binindex = ceil(Int,pw[column]/binspacing) average_precipitation_per_bin[binindex] += precipitation[column] probability_of_being_in_bin[binindex] += tone end @tturbo for ind in eachindex(probability_of_being_in_bin) divideby = ifelse(probability_of_being_in_bin[ind] == tzero,tone,probability_of_being_in_bin[ind]) average_precipitation_per_bin[ind] /= divideby end @tturbo probability_of_being_in_bin ./= factor return probability_of_being_in_bin,average_precipitation_per_bin end """ velocity_topolar(u,v,index,center) Take a velocity vector, an origin of said vector and a center and return the tangential and azimuthal velocities with respect to that center. """ function velocity_topolar(u,v,index,center) pos = index .- center theta1 = atan(v,u) theta2 = atan(pos[2],pos[1]) return -hypot(u,v) * cos(theta1 + theta2), hypot(u,v)*sin(theta1 + theta2) end """ velocity_cartesian_to_polar(u,v,index_of_point = (0,0),index_of_center = (0,0)) Take matrix of U and V components of velocities as well as a matrix of locations and the location of a center. Compute the tangential and radial components of velocity around this center. """ function velocity_cartesian_to_polar(u,v,index_of_point = (0,0),index_of_center = (0,0)) tangential = similar(u) radial = similar(u) for index in CartesianIndices(u) t,r = velocity_cartesian_to_polar(u[index],v[index],Tuple(index)[1:2],index_of_center[1:2]) radial[index] = r tangential[index] = t end return tangential,radial end function velocity_cartesian_to_polar(u :: Number,v :: Number,index_of_point = (0,0),index_of_center = (0,0)) speed = hypot(u,v) x,y = index_of_point .- index_of_center angle_of_position_vector = atan(y,x) angle_of_velocity_vector = atan(v,u) return velocity_polar = speed.*sincos( angle_of_velocity_vector - angle_of_position_vector ) end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
13908
#using AvailablePotentialEnergyFramework #using NCDatasets #using Statistics #using JLD #using Unitful: ustrip """ getapeanalysis(file2d,file3d,output_name,outputInterval,FloatType::Type=Float64) """ function testAPEBudget() file2d = "/Users/arreyes/Documents/Research/Developement/testNetCDF/timeSlab_2d.nc" file3d = "/Users/arreyes/Documents/Research/Developement/testNetCDF/timeSlab_3d.nc" Float_type = Float32 day = 86400 sst = 300 dt = 14400 Pref = 1000*1e2 #Pa Ts = sst #Sea surface temperature qs = 25.7*1e-3 Tvs = Ts*(1+epsilon*qs) c1 = ustrip(Dryair.R/Dryair.cp) ds3d = Dataset(file3d) ds2d = Dataset(file2d) x = variable(ds3d,"x")[:] :: Array{Float_type,1} y = variable(ds3d,"y")[:] :: Array{Float_type,1} z = variable(ds3d,"z")[:] :: Array{Float_type,1} t = variable(ds3d,"time")[:] :: Array{Float_type,1} P0 = variable(ds3d,"p")[:] :: Array{Float_type,1} U = variable(ds3d,"U")[:,:,:,:] :: Array{Float_type,4} V = variable(ds3d,"V")[:,:,:,:] :: Array{Float_type,4} W = variable(ds3d,"W")[:,:,:,:] :: Array{Float_type,4} RAD = variable(ds3d,"QRAD")[:,:,:,:] :: Array{Float_type,4} T = variable(ds3d,"TABS")[:,:,:,:] :: Array{Float_type,4} Tv = variable(ds3d,"QV")[:,:,:,:] :: Array{Float_type,4} PP = variable(ds3d,"PP")[:,:,:,:] :: Array{Float_type,4} SHF = variable(ds2d,"SHF")[:,:,:] :: Array{Float_type,3} LHF = variable(ds2d,"LHF")[:,:,:] :: Array{Float_type,3} close(ds3d) close(ds2d) ########## FilFloat_Typeering and chopping ########## @. SHF = ustrip(g)/(1*ustrip(Dryair.cp)*Ts)*(SHF) @. LHF = ustrip(g)/(1*ustrip(Dryair.cp)*Ts)*(epsilon*ustrip(Dryair.cp)*Ts/ustrip(Liquidwater.Lv*LHF)) @. SHF += LHF # Now it is transformed ThetaV = similar(T) xBar_Pt = Array{eltype(T),4}(undef,1,1,size(PP,3),size(PP,4)) xBar_Tv = Array{eltype(T),4}(undef,1,1,size(Tv,3),size(Tv,4)) xBar_ThetaV = Array{eltype(T),4}(undef,1,1,size(ThetaV,3),size(ThetaV,4)) #****** dx = x[2]-x[1] dy = y[2]-y[1] # Grid size kz = length(z) # vertical levels kx = length(x) # # of horizonal grid points ky = length(y) # # of horizonal grid points @. RAD = RAD/day # K/s #Heating rate per second; @. Tv = get_virtual_temperature.(T,Tv)#(1 + 1e-3*epsilon*Tv)*T # Virtual temperature @. P0 = P0*1e2 PP .= PP .+ reshape(P0,(1,1,kz,1)) #ThetaV .= Tv.*(PP./reshape(P0,(1,1,kz,1))).^c1 # Virtual potential temp ThetaV .= get_potential_temperature.(Tv,PP,P0[1]) #Tv.*(PP/P0[1]).^c1 # Virtual potential temp mean!(xBar_Pt,PP) mean!(xBar_Tv,Tv) mean!(xBar_ThetaV,ThetaV) var_Tv = Tv .- xBar_Tv var_ThetaV = ThetaV .- xBar_ThetaV rho0 = xBar_Pt./ustrip(Dryair.R)./xBar_Tv B = ustrip(g) .* var_ThetaV./xBar_ThetaV @. RAD = RAD*(ustrip(g)/xBar_Tv) # convert unit to buoyancy/s N2 = compute_N2(xBar_Tv,z) # PP = [] # T = [] # ThetaV = [] # Tv = [] # var_ThetaV = [] # var_Tv = [] ### NOTE that SHF is now the sum, saving memory # Buoyancy budget dz = 50 #@info size(B), size(RAD), size(SHF), size(U),size(V) ,size(W), size(N2), size(dx),size(dy), size(dz), size(dt), size(x),size(y), size(z), size(t) # dBdt, UdBdx,VdBdy, WN2, Qs, Diabatic_other = buoyancybudget(B, RAD, SHF, U,V ,W, N2, dx,dy, dz, dt, x,y, z, t); Diabatic_other = get_diabatic_as_residual_buoyancy(B, RAD, SHF, U,V ,W, N2, dx,dy, dz, dt); @info "hola" # APE budget z_up = 15000 z_BL = 2000 (int_mass, int_KE, int_APE, int_APE_rate, int_APE_Ub2, int_APE_Vb2, int_APE_WN2, int_APE_RAD, int_APE_DIA, xBar_APE_Fs, residual) = getapebudget(B, U,V, W, N2, RAD, SHF, Diabatic_other, rho0, x,y, z, t, dx,dy, dz, dt, z_up) # Diabatic_other .= Diabatic_other .- mean(Diabatic_other,dims=(1,2)) #They are now perturbations # RAD .= RAD .- mean(RAD,dims=(1,2)) # B .= B .- mean(B,dims=(1,2)) # dia_ape = Diabatic_other.*B # rad_ape = RAD.*B # jldopen(string("outputfile.jld"), "w") do file # write(file,"int_APE",int_APE) # write(file,"int_KE",int_KE) # write(file,"int_RAD",int_APE_RAD) # write(file,"int_DIA",int_APE_DIA) # write(file,"int_WN2",int_APE_WN2) # write(file,"int_Ub2",int_APE_Ub2) # write(file,"int_Vb2",int_APE_Vb2) # write(file,"int_APE_rate",int_APE_rate) # write(file,"APE_Fs",xBar_APE_Fs) # write(file,"convec_heating_anomaly",Diabatic_other) # write(file,"rad_heating_anomaly",RAD) # write(file,"buoyancy_anomaly",B) # write(file,"radiative_ape_production",dia_ape) # write(file,"convective_ape_production",rad_ape) # end end # """ # getapeanalysis(file2d,file3d,output_name,outputInterval,FloatType::Type=Float64) # """ # function testAPEBudget_distributed() # file2d = "/Users/arreyes/Documents/Research/Developement/testNetCDF/timeSlab_2d.nc" # file3d = "/Users/arreyes/Documents/Research/Developement/testNetCDF/timeSlab_3d.nc" # Float_type = Float32 # day = 86400 # sst = 300 # dt = 14400 # Pref = 1000*1e2 #Pa # Ts = sst #Sea surface temperature # qs = 25.7*1e-3 # Tvs = Ts*(1+epsilon*qs) # c1 = (R/Dryair.cp) # # ds3d = Dataset(file3d) # # ds2d = Dataset(file2d) # # x = variable(ds3d,"x")[:] :: Array{Float_type,1} # # y = variable(ds3d,"y")[:] :: Array{Float_type,1} # # z = variable(ds3d,"z")[:] :: Array{Float_type,1} # # t = variable(ds3d,"time")[:] :: Array{Float_type,1} # # P0 = variable(ds3d,"p")[:] :: Array{Float_type,1} # # U = variable(ds3d,"U")[:,:,:,:] :: Array{Float_type,4} # # V = variable(ds3d,"V")[:,:,:,:] :: Array{Float_type,4} # # W = variable(ds3d,"W")[:,:,:,:] :: Array{Float_type,4} # # RAD = variable(ds3d,"QRAD")[:,:,:,:] :: Array{Float_type,4} # # T = variable(ds3d,"TABS")[:,:,:,:] :: Array{Float_type,4} # # Tv = variable(ds3d,"QV")[:,:,:,:] :: Array{Float_type,4} # # PP = variable(ds3d,"PP")[:,:,:,:] :: Array{Float_type,4} # # SHF = variable(ds2d,"SHF")[:,:,:] :: Array{Float_type,3} # # LHF = variable(ds2d,"LHF")[:,:,:] :: Array{Float_type,3} # # close(ds3d) # # close(ds2d) # smooth_x = smooth_y = 15 #it was 11 # smooth_time = floor(Int,12*5)+1 # position = 2 # sx = sy = 100 # sz = 80 # st = 120 # dx = dy = 1000 # dz = 50 # dt = 7200 # x = y = collect(range(0,step = dx,length=sx)); # z = collect(range(0, step = dz,length = sz)); # t = collect(range(0, step = dt, length = st)); # P0 = 1000*exp.(z./8000); # U = V = 5.0rand(sx,sy,sz,st); # W = 0.2rand(sx,sy,sz,st); # RAD = rand(sx,sy,sz,st);; # T = 300 .+ rand(sx,sy,sz,st); # Tv = 0.2rand(sx,sy,sz,st); # PP = rand(sx,sy,sz,st); # SHF = rand(sx,sy,st); # LHF = rand(sx,sy,st); # B = similar(RAD); # ########## smoothing and chopping ########## # @info "Smoothing batch 1" # fU = @spawnat 2 cutborders!(filter_array(U,smooth_x,smooth_time,1),smooth_time,position) # U = fetch(fU) # fV = @spawnat 3 cutborders!(filter_array(V,smooth_x,smooth_time,1),smooth_time,position) # V = fetch(fV) # fW = @spawnat 2 cutborders!(filter_array(W,smooth_x,smooth_time,1),smooth_time,position) # W = fetch(fW) # fTv = @spawnat 3 cutborders!(filter_array(Tv,smooth_x,smooth_time,1),smooth_time,position) # Tv = fetch(fTv) # fetch(@spawnat 2 GC.gc()) # fetch(@spawnat 3 GC.gc()) # @info "smoothing batch 2" # fT = @spawnat 2 cutborders!(filter_array(T,smooth_x,smooth_time,1),smooth_time,position) # fPP = @spawnat 3 cutborders!(filter_array(PP,smooth_x,smooth_time,1),smooth_time,position) # fRAD = @spawnat 3 cutborders!(filter_array(RAD,smooth_x,smooth_time,1),smooth_time,position) # SHF = cutborders!(filter_array(SHF,smooth_x,smooth_time,1),smooth_time,position) # LHF = cutborders!(filter_array(LHF,smooth_x,smooth_time,1),smooth_time,position) # t = cutborders!(t,smooth_time,position) # T = fetch(fT) # PP = fetch(fPP) # RAD = fetch(fRAD) # fetch(@spawnat 2 GC.gc()) # fetch(@spawnat 3 GC.gc()) # GC.gc() # GC.gc() # ## Processing # @info "Beginning processing" # @. SHF = g/(1*Dryair.cp*Ts)*(SHF) # @. LHF = g/(1*Dryair.cp*Ts)*(epsilon*Dryair.cp*Ts/Liquidwater.Lv*LHF) # @. SHF += LHF # Now it is transformed # ThetaV = similar(T) # xBar_Pt = Array{eltype(T),4}(undef,1,1,size(PP,3),size(PP,4)) # xBar_Tv = Array{eltype(T),4}(undef,1,1,size(Tv,3),size(Tv,4)) # xBar_ThetaV = Array{eltype(T),4}(undef,1,1,size(ThetaV,3),size(ThetaV,4)) # #****** # dx = x[2]-x[1] # dy = y[2]-y[1] # Grid size # kz = length(z) # vertical levels # kx = length(x) # # of horizonal grid points # ky = length(y) # # of horizonal grid points # @. RAD = RAD/day # K/s #Heating rate per second; # @. Tv = (1 + 1e-3*epsilon*Tv)*T # Virtual temperature # @. P0 = P0*1e2 # PP .= PP .+ reshape(P0,(1,1,kz,1)) # #ThetaV .= Tv.*(PP./reshape(P0,(1,1,kz,1))).^c1 # Virtual potential temp # ThetaV .= Tv.*(PP/P0[1]).^c1 # Virtual potential temp # mean!(xBar_Pt,PP) # mean!(xBar_Tv,Tv) # mean!(xBar_ThetaV,ThetaV) # var_Tv = Tv .- xBar_Tv # var_ThetaV = ThetaV .- xBar_ThetaV # rho0 = dropdims(xBar_Pt./R./xBar_Tv,dims=(1,2)) # B = g .* var_ThetaV./xBar_ThetaV # @. RAD = RAD*(g/xBar_Tv) # convert unit to buoyancy/s # N2 = compute_N2(xBar_Tv,z) # # PP = [] # # T = [] # # ThetaV = [] # # Tv = [] # # var_ThetaV = [] # # var_Tv = [] # ### NOTE that SHF is now the sum, saving memory # # Buoyancy budget # dz = 50 # #@info size(B), size(RAD), size(SHF), size(U),size(V) ,size(W), size(N2), size(dx),size(dy), size(dz), size(dt), size(x),size(y), size(z), size(t) # @info "Computing buoyancy" # Diabatic_other = fetch(@spawnat 3 get_diabatic_as_residual_buoyancy(B, RAD, SHF, U,V ,W, N2, dx,dy, dz, dt, x,y, z, t)) # fetch(@spawnat 3 GC.gc()) # # APE budget # z_up = 15000 # z_BL = 2000 # @info "Computing APE budget" # (int_mass, # int_KE, # int_APE, # int_APE_rate, # int_APE_Ub2, # int_APE_Vb2, # int_APE_WN2, # int_APE_RAD, # int_APE_DIA, # xBar_APE_Fs, # residual) = fetch( @spawnat 3 getapebudget(B, U,V, W, N2, RAD, SHF, Diabatic_other, rho0, x,y, z, t, dx,dy, dz, dt, z_up)) # fetch(@spawnat 3 GC.gc()) # Diabatic_other .= Diabatic_other .- mean(Diabatic_other,dims=(1,2)) #They are now perturbations # RAD .= RAD .- mean(RAD,dims=(1,2)) # B .= B .- mean(B,dims=(1,2)) # dia_ape = Diabatic_other.*B # rad_ape = RAD.*B # # plot([int_APE_rate, # # int_APE_Ub2, # # int_APE_Vb2, # # int_APE_WN2, # # int_APE_RAD, # # int_APE_DIA, # # xBar_APE_Fs],label=["rate" "advu" "advv" "wn2" "rad" "dia" "fs" ]) # # plot!(residual,lw=4,label="residual") # return true # end # @test testAPEBudget_distributed() # """ # run_distributed_test() # Don't forget to first run: \n # addprocs(2) \n # @everywhere using Pkg \n # @everywhere Pkg.activate("/users/arreyes/Documents/Research/Developement/AvailablePotentialEnergyFramework/") \n # @everywhere using AvailablePotentialEnergyFramework \n # """ # function run_distributed_test() # @info """ Don't forget to first run: \n # addprocs(2) \n # @everywhere using Pkg \n # @everywhere Pkg.activate("/users/arreyes/Documents/Research/Developement/AvailablePotentialEnergyFramework/") \n # @everywhere using AvailablePotentialEnergyFramework \n # """ # for i in 1:10 # @info "Running ape budget, this is the $i iteration" # testAPEBudget_distributed() # end # end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
4169
### This will have profile tests for the ape budgets @testset "APE budgets" begin sx,sy,sz,st = 100,100,100,10 x = y = range(0.0,stop=10.0,length = sx); z = range(0.0,stop=500.0,length = sz); t = range(0.0,stop=50.0,length = st); dx = dy = x[2] - x[1]; dz = z[2] - z[1]; dt = t[2] - t[1]; zero_profile = zeros(sx,sy,sz,st); one_profile = ones(sx,sy,sz,st); test_brunt = 1e-4*ones(sz,st) test_rho = ones(1,1,sz,st) test_surface = zeros(sx,sy,st) @test getapebudget(zero_profile,zero_profile,zero_profile,zero_profile,test_brunt, zero_profile,test_surface,zero_profile,test_rho,x,y,z,t,dx,dy,dz,dt,50.0)[3] β‰ˆ zeros(st) ### If B is constant in space, advection should be zero B = 5ones(sx,sy,sz,st); for i in 1:st for j in 1:sy for k in 1:sx B[j,k,:,i] .= B[j,k,:,i] .* sin(2pi/st*i) end end end RAD_b = 2ones(sx,sy,sz,st); Fs = 2ones(sx,sy,st); U = 10ones(sx,sy,sz,st); V = 10ones(sx,sy,sz,st); W = 10ones(sx,sy,sz,st); N2 = 1e-4 .* ones(1,1,sz,st); rho0 = ones(1,1,sz,st); diabatic_other = get_diabatic_as_residual_buoyancy(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt); a = getapebudget(B,U,V,W,N2,RAD_b,Fs,diabatic_other, rho0, x,y,z,t,dx,dy,dz,dt,500) @test a[4] β‰ˆ -(a[7] - a[8] - a[9] - a[10]) ### Budget must be closed when we have Advection, Rad, and Surface fluxes B = 5ones(sx,sy,sz,st); for i in 1:st for j in 1:sy for k in 1:sx B[j,k,:,i] .= B[j,k,:,i] .* sin(2pi/st*i)*sin(2pi/sx*k)*sin(2pi/sy*j) end end end RAD_b = 2ones(sx,sy,sz,st); Fs = 2ones(sx,sy,st); U = 10rand(sx,sy,sz,st); V = 10rand(sx,sy,sz,st); W = 5rand(sx,sy,sz,st); N2 = 1e-4 .* ones(1,1,sz,st); rho0 = ones(1,1,sz,st); diabatic_other = get_diabatic_as_residual_buoyancy(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt); a = getapebudget(B,U,V,W,N2,RAD_b,Fs,diabatic_other, rho0, x,y,z,t,dx,dy,dz,dt,500) @test a[4] β‰ˆ -(a[5] + a[6] + a[7] - a[8] - a[9] - a[10]) ### Budget must be closed when we have Advection, Rad, and zero surface fluxes B = 5ones(sx,sy,sz,st); for i in 1:st for j in 1:sy for k in 1:sx B[j,k,:,i] .= B[j,k,:,i] .* sin(2pi/st*i)*sin(2pi/sx*k)*sin(2pi/sy*j) end end end RAD_b = 2ones(sx,sy,sz,st); Fs = zeros(sx,sy,st); U = 10rand(sx,sy,sz,st); V = 10rand(sx,sy,sz,st); W = 5rand(sx,sy,sz,st); N2 = 1e-4 .* ones(1,1,sz,st); rho0 = ones(1,1,sz,st); diabatic_other = get_diabatic_as_residual_buoyancy(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt); a = getapebudget(B,U,V,W,N2,RAD_b,Fs,diabatic_other, rho0, x,y,z,t,dx,dy,dz,dt,500) @test a[4] β‰ˆ -(a[5] + a[6] + a[7] - a[8] - a[9] ) ### Budget must be closed when we have Advection, zero Rad, and finite surface fluxes B = 5ones(sx,sy,sz,st); for i in 1:st for j in 1:sy for k in 1:sx B[j,k,:,i] .= B[j,k,:,i] .* sin(2pi/st*i)*sin(2pi/sx*k)*sin(2pi/sy*j) end end end RAD_b = zeros(sx,sy,sz,st); Fs = 2ones(sx,sy,st); U = 10rand(sx,sy,sz,st); V = 10rand(sx,sy,sz,st); W = 5rand(sx,sy,sz,st); N2 = 1e-4 .* ones(1,1,sz,st); rho0 = ones(1,1,sz,st); diabatic_other = get_diabatic_as_residual_buoyancy(B, RAD_b, Fs, U,V, W, N2, dx,dy, dz, dt); a = getapebudget(B,U,V,W,N2,RAD_b,Fs,diabatic_other, rho0, x,y,z,t,dx,dy,dz,dt,500) @test a[4] β‰ˆ -(a[5] + a[6] + a[7] - a[9] - a[10]) # labels = ["mass" "KE" "APE" "βˆ‚tAPE" "AdvecU" "AdvecV" "Conversion" "Rad" "Convec" "Surf" "Res"] # mycolors = distinguishable_colors(11) #NEEDS COLORS.JL # fig = Figure(resolution = (1200, 700), backgroundcolor = RGBf0(0.98, 0.98, 0.98),title = "APE budget closure test") # ax1 = fig[1,1] = Axis(fig) # ylims!(ax1,extrema(reduce(vcat,a[4:11]))) # for i in 4:11 # lines!(ax1,a[i], label = labels[i], color = mycolors[i], linewidth = 5) # end # axislegend(ax1) # fig end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
2465
using AvailablePotentialEnergyFramework, ImageFiltering, Test @testset "Array filtering" begin @testset "Kernel creation" begin @test AvailablePotentialEnergyFramework.kernel_4d(false,false) == ImageFiltering.kernelfactors((centered([(1.0)]),centered([(1.0)]),centered([(1.0)]),centered([(1.0)]) )) @test AvailablePotentialEnergyFramework.kernel_4d(5,false) == ImageFiltering.kernelfactors((centered(ones(5)./5.0),centered(ones(5)./5.0),centered([(1.0)]),centered([(1.0)]) )) end @testset "Filter arrays 1 and 2" begin @testset "Filter_array!" begin ones3d = ones(20,20,20) ones4d = ones(20,20,20,20) zeros3d = zeros(20,20,20) zeros4d = zeros(20,20,20,20) buf3d = similar(ones3d) buf4d = similar(ones4d) filter_array!(buf3d,zeros3d,5,5,1) filter_array!(buf3d,ones3d,5,5,1) filter_array!(buf4d,zeros4d,5,5,1) filter_array!(buf4d,ones4d,5,5,1) @test ones3d == ones(20,20,20) @test zeros3d == zeros(20,20,20) @test ones4d == ones(20,20,20,20) @test zeros4d == zeros(20,20,20,20) end @testset "Filter_array_2" begin zeros3d = zeros(20,20,20); ones3d = ones(20,20,20) zeros4d = zeros(20,20,20,20); ones4d = ones(20,20,20,20) filter_array_2!(ones3d,5,5,1) filter_array_2!(zeros3d,5,5,1) filter_array_2!(ones4d,5,5,1) filter_array_2!(zeros4d,5,5,1) @test ones3d == ones(20,20,20) @test zeros3d == zeros(20,20,20) @test ones4d == ones(20,20,20,20) @test zeros4d == zeros(20,20,20,20) end @testset "Both filters simultaneously" begin arr3d = rand(20,20,20) arr3d2 = copy(arr3d) arr3d3 = copy(arr3d) arr4d = rand(20,20,20,20) arr4d2 = copy(arr4d) arr4d3 = copy(arr4d) buf3d = similar(arr3d) buf4d = similar(arr4d) filter_array_2!(arr3d2,5,5,1) filter_array_2!(arr4d2,5,5,1) filter_array!(buf3d,arr3d3,5,5,1) filter_array!(buf4d,arr4d3,5,5,1) @test arr3d3 == arr3d2 @test arr4d3 == arr4d2 end end end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
4678
@testset "Composite helper functions" begin x1 = origin = (0,0) x2 = (1,1) x3 = (0,4) x4 = (0,2) binlimits = (0,2) gridspacing = 1 @test AvailablePotentialEnergyFramework.distance(x1,x2,gridspacing) == AvailablePotentialEnergyFramework.distance(x2,x1,gridspacing) == sqrt(2) @test AvailablePotentialEnergyFramework.isindexindistancebin(binlimits,x2,x1) == true @test AvailablePotentialEnergyFramework.isindexindistancebin(binlimits,x3,x1) == false @test AvailablePotentialEnergyFramework.isindexindistancebin(binlimits,x4,x1) == true array_allindistance_2d = let array_allindistance_2d = zeros(100,100) for i in 1:100, j in 1:100 array_allindistance_2d[i,j] = hypot(i,j) end array_allindistance_2d end @test isapprox(AvailablePotentialEnergyFramework.averageallindistance((99,100),array_allindistance_2d,origin), 100; rtol = 1) array_allindistance_3d = let array_allindistance_3d = zeros(100,100,10) for i in 1:100, j in 1:100 array_allindistance_3d[i,j,:] .= hypot(i,j) end array_allindistance_3d end #@test isapprox.(AvailablePotentialEnergyFramework.averageallindistance((99,100),array_allindistance_3d,origin), 100; rtol = 1) == fill(true,10) @test all(isapprox.(AvailablePotentialEnergyFramework.velocity_topolar(10,0,x4,origin),(0,10),atol=0.1)) @test all(isapprox.(AvailablePotentialEnergyFramework.velocity_topolar(-10,0,x4,origin),(0,-10),atol=0.1)) @test all(isapprox.(AvailablePotentialEnergyFramework.velocity_topolar(0,10,x4,origin),(10,0),atol=0.1)) @test all(isapprox.(AvailablePotentialEnergyFramework.velocity_topolar(0,-10,x4,origin),(-10,0),atol=0.1)) end @testset "Cyclone detection tools" begin psfc = Dataset(joinpath(@__DIR__,"testfiles/test_composite_PSFC_TABS.nc")) do ds variable(ds, "PSFC")[:,:,:] end psfc = cat(psfc,fill(mean(psfc) ,size(psfc)) + 5rand(size(psfc)...),dims=3) TABS = Dataset(joinpath(@__DIR__,"testfiles/test_composite_PSFC_TABS.nc")) do ds variable(ds, "TABS")[:,:,:,:] end TABS = cat(TABS,fill(mean(TABS) ,size(TABS)) + 1rand(size(TABS)...),dims=3) @testset "Detect centers" begin pressure_anomaly = psfc .- mean(psfc,dims=(1,2)) centerstest = AvailablePotentialEnergyFramework.findcyclonecenters(AvailablePotentialEnergyFramework.PressureMinima(),pressure_anomaly[:,:,1],-5) @test length(centerstest) == 5 centers_and_labels,cyclones = detect_cyclones(AvailablePotentialEnergyFramework.PressureMinima(),pressure_anomaly[:,:,1],-5,2000) @test length(centers_and_labels) == 6 @test all([cyclones.segment_pixel_count[key] > 1 for key in keys(cyclones.segment_pixel_count)]) (cyclonecount_2d,addition_2d) = AvailablePotentialEnergyFramework.add_allcyclones(psfc[:,:,1],cyclones,centers_and_labels; maskcyclones = false) @test cyclonecount_2d == 3 (cyclonecount_2d,addition_2d) = AvailablePotentialEnergyFramework.add_allcyclones(psfc[:,:,1],cyclones,centers_and_labels; maskcyclones = true) @test cyclonecount_2d == 3 (cyclonecount_3d,addition_3d) = AvailablePotentialEnergyFramework.add_allcyclones(TABS[:,:,:,1],cyclones,centers_and_labels; maskcyclones = false) @test cyclonecount_3d == 3 (cyclonecount_3d,addition_3d) = AvailablePotentialEnergyFramework.add_allcyclones(TABS[:,:,:,1],cyclones,centers_and_labels; maskcyclones = true) @test cyclonecount_3d == 3 binlimits = 0:2000:300000 bins = [(binlimits[ind] , binlimits[ind + 1]) for ind in 1:(length(binlimits) - 1) ] @test_nowarn [averageallindistance(bin,addition_2d,(128,128),4000) for bin in bins] @test_nowarn [averageallindistance(bin,addition_3d,(128,128),4000) for bin in bins] ### Try and add two frames, one with and one without TC centers_labels_and_cyclones = [detect_cyclones(AvailablePotentialEnergyFramework.PressureMinima(),pressure_anomaly[:,:,i],-5,2000) for i in 1:2] @test 3 == begin totalcyclonecount = 0 for timeindex in 1:2 centers_and_labels,cyclones = centers_labels_and_cyclones[timeindex] if !isnothing(centers_and_labels) count, _ = AvailablePotentialEnergyFramework.add_allcyclones(TABS[:,:,timeindex],cyclones,centers_and_labels;maskcyclones = false) totalcyclonecount += count end end totalcyclonecount end end end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
636
#Test matrix with cyclones matrixwithcyclones = zeros(Float64,20,20) matrixwithcyclones[2,1] = -2 #Center matrixwithcyclones[8:10,5:7] .= -1 matrixwithcyclones[9,6] = -2 #Center matrixwithcyclones[17:19,17:19] .= -1 matrixwithcyclones[18,18] = -2 ## Fake pressure perturbation @testset "Cyclone detection tools" begin @testset "Detect centers" begin centerstest = AvailablePotentialEnergyFramework.findcyclonecenters_aspressureminima(matrixwithcyclones,0) @test length(centerstest) == 2 @test centerstest[1] == CartesianIndex(9, 6) @test centerstest[2] == CartesianIndex(18, 18) end end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
4933
@testset "Brunt-Vaisala" begin Ξ“neutral = AvailablePotentialEnergyFramework.g/AvailablePotentialEnergyFramework.Dryair.cp Ξ“stable = Ξ“neutral - 10e-3u"K/m" Ξ“unstable = Ξ“neutral + 10e-3u"K/m" z = 1u"m" .* collect(0:50:10e3) tvprofile(Ξ“,z) = reshape(repeat(300 .- Ξ“*z,1,2),1,1,length(z),2) tvprofile(Ξ“ :: Quantity, z :: Array{ <: Quantity}) = reshape(repeat(300u"K" .- Ξ“*z,1,2),1,1,length(z),2) function plot_N2(Ξ“,z) tv_profile = tvprofile(Ξ“,z) p1 = plot(profile1[1,1,:,1],z,title = "Tv profile, Ξ“ = $Ξ“") p2 = plot(AvailablePotentialEnergyFramework.compute_N2_attempt(tv_profile,z),z, title = "N2") plot(p1,p2) end @test isapprox( 1u"1/s/s" .* zeros(length(z),2),compute_N2(tvprofile(Ξ“neutral,z),z), atol=1e-10u"1/s/s") @test all(compute_N2(tvprofile(Ξ“unstable,z),z) .< 0u"1/s/s" ) @test all(compute_N2(tvprofile(Ξ“stable,z),z) .> 0u"1/s/s" ) @test isapprox( zeros(length(z),2),compute_N2(tvprofile(ustrip(Ξ“neutral),ustrip.(z)),ustrip.(z)), atol=1e-10) @test all(compute_N2(tvprofile(ustrip(Ξ“unstable),ustrip.(z)),ustrip.(z)) .< 0 ) @test all(compute_N2(tvprofile(ustrip(Ξ“stable),ustrip.(z)),ustrip.(z)) .> 0 ) end @testset "Thermodynamics" begin @test get_saturation_vapor_pressure(273.15u"K") == 6.112u"hPa" @test get_partial_vapor_pressure(0,1000u"hPa") == 0u"hPa" @test get_partial_vapor_pressure(1,1000u"hPa") == 1000u"hPa"/(18.016/28.966 + 1.0) @test get_mixing_ratio(0u"hPa",1000u"hPa") == 0 @test get_mixing_ratio(get_partial_vapor_pressure(0.5,1000.0), 1000.0) == 0.5 @test get_virtual_temperature(300u"K",0,0) == 300u"K" @test specific_humidity_to_mixing_ratio(mixing_ratio_to_specific_humidity(0.5)) β‰ˆ 0.5 @test mixing_ratio_to_specific_humidity(specific_humidity_to_mixing_ratio(0.5)) β‰ˆ 0.5 @test unit(get_specific_entropy(300u"K",0.2,1000u"hPa"))== u"J/K/kg" @test get_potential_temperature(300u"K",1000u"hPa",1000u"hPa") == 300u"K" @test get_potential_temperature(300u"K",1010u"hPa",1000u"hPa") < 300u"K" @test get_potential_temperature(300u"K",900u"hPa",1000u"hPa") > 300u"K" @test get_virtual_temperature(300u"K",0u"g/kg") == 300u"K" @test get_virtual_temperature(300u"K",0u"g/kg") == 300u"K" @test get_virtual_temperature(300u"K",10u"g/kg") > 300u"K" @test 1unit(surface_sensible_heat_flux_to_buoyancy(300u"K", 100u"W/m^2")) == 1unit(g)/u"s"*u"m" @test 1unit(surface_latent_heat_flux_to_buoyancy(300u"K", 100u"W/m^2")) == 1unit(g)/u"s"*u"m" @test 1unit(get_buoyancy(0.5u"K",10.5u"K")) == 1unit(g) @test 1unit(radiative_heating_rate_to_buoyancy(10u"K",5u"K/s")) == 1u"m/s^2/s" @test 1unit(get_density_ideal_gas(10.0u"Pa",5.0u"K")) == 1u"kg/m^3" # No units @test get_saturation_vapor_pressure(273.15) == 6.112 @test get_partial_vapor_pressure(0,1000) == 0 @test get_partial_vapor_pressure(1,1000) == 1000/(18.016/28.966 + 1.0) @test get_mixing_ratio(0,1000) == 0 @test get_potential_temperature(300,1000,1000) == 300 @test get_potential_temperature(300,1010,1000) < 300 @test get_potential_temperature(300,900,1000) > 300 @test get_virtual_temperature(300,0) == 300 @test get_virtual_temperature(300,0) == 300 @test get_virtual_temperature(300,10) > 300 @test ustrip(surface_sensible_heat_flux_to_buoyancy(300u"K", 100u"W/m^2")) == surface_sensible_heat_flux_to_buoyancy(300, 100) @test ustrip(surface_latent_heat_flux_to_buoyancy(300u"K", 100u"W/m^2")) == surface_latent_heat_flux_to_buoyancy(300, 100) @test ustrip(get_buoyancy(0.5u"K",10.5u"K")) == get_buoyancy(0.5,10.5) @test ustrip(radiative_heating_rate_to_buoyancy(10u"K",5u"K/s")) == ustrip(radiative_heating_rate_to_buoyancy(10,5)) @test ustrip(get_density_ideal_gas(10.0u"Pa",5.0u"K")) == get_density_ideal_gas(10.0,5.0) pres = Dataset(joinpath(@__DIR__,"testfiles/thermoprofile.nc")) do ds 1u"hPa" .* variable(ds, "PRES")[:,:] end tabs = Dataset(joinpath(@__DIR__,"testfiles/thermoprofile.nc")) do ds 1u"K" .* variable(ds, "TABS")[:,:] end qv = 1e-3u"kg/g" .* 1u"g/kg" .* Dataset(joinpath(@__DIR__,"testfiles/thermoprofile.nc")) do ds variable(ds, "QV")[:,:] #was originally in g/kg end @info size(pres) size(qv) size(tabs) r = specific_humidity_to_mixing_ratio.(qv) timeindex = 1200 pparcel = pres[1,timeindex] tparcel = tabs[1,timeindex] rparcel = r[1,timeindex] #I will create a similar profile but with a perturbation to see what happens tabs_unstable = copy(tabs) tabs_unstable[2:40,:] .- 7.0u"K" tabs_unstable[41:end,:] .+ 7.0u"K" @test_broken unit(get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,tabs[:,timeindex],r[:,timeindex],pres[:,timeindex])[1]) == u"K" @test_broken get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,tabs_unstable[:,timeindex],r[:,timeindex],pres[:,timeindex]) end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
949
using AvailablePotentialEnergyFramework using Test using NCDatasets: Dataset, variable using Statistics: mean using Unitful: @u_str, unit, ustrip, Quantity # @test integrate_vertically(1:10,dz=2) == 110 # @test integrate_vertically(1:10,dz=2,weight=2) == 220 # testmat_2d= repeat(1:10,1,10) # testweights_1d = reverse(1:10) # testweights_2d = (1:10)'.*repeat(reverse(1:10),1,10) # @test integrate_vertically(testmat_2d) == reshape(10*(1:10),10,1) # @test integrate_vertically(testmat_2d,weight=testweights_1d) == reshape(10*(1:10)).*reverse((1:10),10,1) # @test integrate_vertically(testmat_2d,weight=testweights_2d) == reshape(55*(1:10)).*reverse(1:10),10,1) @testset "AvailablePotentialEnergyFramework" begin include("compositehelperfunctions.jl") include("physicsfunctions.jl") include("useful_diagnostics.jl") include("apebudgets.jl") # include("ape_computation_from_julia_output.jl") #include("arrayfiltering.jl") end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
516
@testset "Diagnostic utilities" begin pw = 200rand(100,100,100) precipitation = 3pw max_precip_bin = 200 binspacing = 0.25 pw_bins = 0:binspacing:max_precip_bin average_precip_per_bin_da = AvailablePotentialEnergyFramework.average_precipitation_per_pw_bin_dayang(pw,precipitation,max_precip_bin,binspacing) probabilities,average_precip_per_bin = AvailablePotentialEnergyFramework.average_precipitation_per_pw_bin(pw,precipitation,pw_bins,binspacing) @test average_precip_per_bin β‰ˆ average_precip_per_bin_da end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
363
#### #### Coverage summary, printed as "(percentage) covered". #### #### Useful for CI environments that just want a summary (eg a Gitlab setup). #### using Coverage cd(joinpath(@__DIR__, "..", "..")) do covered_lines, total_lines = get_summary(process_folder()) percentage = covered_lines / total_lines * 100 println("($(percentage)%) covered") end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
code
266
# only push coverage from one bot get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0) get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.0" || exit(0) using Coverage cd(joinpath(@__DIR__, "..", "..")) do Codecov.submit(Codecov.process_folder()) end
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
docs
1503
# AvailablePotentialEnergyFramework.jl ![Lifecycle](https://img.shields.io/badge/lifecycle-experimental-orange.svg)<!-- ![Lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-stable-green.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-retired-orange.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-archived-red.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-dormant-blue.svg) --> [![codecov.io](http://codecov.io/github/aramirezreyes/AvailablePotentialEnergyFramework.jl/coverage.svg?branch=master)](http://codecov.io/github/aramirezreyes/AvailablePotentialEnergyFramework.jl?branch=dev) A module to work in the APE framework using outputs from the System for Atmospheric Modeling (SAM) 3d As a part of my PhD path, I am doing experiments with the System for Atmospheric Modeling (SAM32, Khairoutdinov, M. F., and D.A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary Results. Geophys. Res. Lett., 28, 3617-3620) I am currently working on analzing idealized experiments from an Available Potential Energy (APE) framework, focusing specially on the cyclogenesis process. This, naturally, establishes the kind of functionality I am implementing on these lines. This is an attempt to order my scripting with the hope that it will be useful to other people wile forcing me to keep good developing practices. Argel Ramirez Reyes
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MIT" ]
0.1.0
1c56c6aa813337249e142d227a661747b0d287cd
docs
39
# SAMtools *Documentation goes here.*
AvailablePotentialEnergyFramework
https://github.com/aramirezreyes/AvailablePotentialEnergyFramework.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1318
# You need to add the Distributed package as a dependency in order for this to run @everywhere using Pkg @everywhere Pkg.activate(".") @everywhere include("benchmark/maxthroughputbase.jl") # Create schedulers and pingers on worker processes @sync @distributed for i = 1:nworkers() global schedulers global pingers ps = [Pinger(nothing, emptycore(ctx)) for i=1:1] scheduler = Scheduler(ctx, ps) # A single scheduler per process for pinger in ps send(scheduler, addr(pinger), CreatePeer()) push!(pingers, addr(pinger)) end push!(schedulers, scheduler) end # Collect pingers from worker processes all_pingers = [] for i = 2:nworkers() + 1 global all_pingers push!(all_pingers, fetch(@spawnat i pingers)...) end # Run remote schedulers @distributed for i = 1:nworkers() for scheduler in schedulers scheduler(; remote = true) end end # Wait Rudimentarily for them to start sleep(8) # Create and run the coordinator on the master process coordinator = Coordinator(all_pingers) scheduler = Scheduler(ctx, [coordinator]) spawn(scheduler, coordinator) # TODO Check this if it's run correctly scheduler(; remote = true) # Stop remote schedulers @distributed for i = 1:nworkers() for scheduler in schedulers shutdown!(scheduler) end end ;
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1769
include("pingpongbase.jl") mutable struct Coordinator <: Actor{Any} pingeraddrs::Vector{Addr} results::Dict{ActorId, Vector{PerfReading}} gotreads::Int core Coordinator(pingeraddrs) = begin results = Dict{ActorId, Vector{PerfReading}}(box(a) => PerfReading[] for a in pingeraddrs) return new(pingeraddrs, results, 0) end end CircoCore.onmessage(me::Coordinator, ::OnSpawn, service) = begin @info "Monitoring $(length(me.pingeraddrs)) pingers." sendreqs(me, service) end function sendreqs(me::Coordinator, service) me.gotreads = 0 for p in me.pingeraddrs send(service, me, p, ReadPerf(addr(me))) end end CircoCore.onmessage(me::Coordinator, r::PerfReading, service) = begin push!(me.results[r.reporter], r) me.gotreads += 1 if me.gotreads == length(me.pingeraddrs) printlastresults(me) settimeout(service, me, 1.0) end end CircoCore.onmessage(me::Coordinator, ::Timeout, service) = begin sendreqs(me, service) end function printlastresults(c::Coordinator) println() total = 0 totaltime = 0.0 for perfs in values(c.results) length(perfs) <= 1 && continue curperf = perfs[end] lastperf = perfs[end - 1] msgcount = curperf.pings_sent + curperf.pongs_got - lastperf.pings_sent - lastperf.pongs_got cputime = curperf.timestamp - lastperf.timestamp total += msgcount totaltime += cputime print("$(msgcount / cputime), ") end if totaltime > 0 println("\nTotal: $(total / totaltime * length(c.pingeraddrs))") end end schedulers = [] pingers = [] ctx = CircoContext(; profile=CircoCore.Profiles.MinimalProfile(), userpluginsfn=() -> [CircoCore.PostOffice()] )
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1403
# SPDX-License-Identifier: MPL-2.0 using CircoCore # ANCHOR Ping-Pong mutable struct Pinger{TCore} <: Actor{TCore} peer::Union{Addr, Nothing} pings_sent::Int64 pongs_got::Int64 core::TCore Pinger(peer, core) = new{typeof(core)}(peer, 0, 0, core) end mutable struct Ponger{TCore} <: Actor{TCore} peer::Addr core::TCore Ponger(peer, core) = new{typeof(core)}(peer, core) end struct Ping end struct Pong end struct CreatePeer end function sendping(service, me::Pinger) send(service, me, me.peer, Ping()) me.pings_sent += 1 end function sendpong(service, me::Ponger) send(service, me, me.peer, Pong()) end CircoCore.onmessage(me::Pinger, ::CreatePeer, service) = begin peer = Ponger(addr(me), emptycore(service)) me.peer = spawn(service, peer) sendping(service, me) end CircoCore.onmessage(me::Ponger, ::Ping, service) = sendpong(service, me) CircoCore.onmessage(me::Pinger, ::Pong, service) = begin me.pongs_got += 1 sendping(service, me) return nothing end struct ReadPerf requestor::Addr end struct PerfReading reporter::ActorId pings_sent::Int pongs_got::Int timestamp::Float64 end PerfReading() = PerfReading(0, 0, 0, Libc.time()) CircoCore.onmessage(me::Pinger, req::ReadPerf, service) = begin send(service, me, req.requestor, PerfReading(box(me), me.pings_sent, me.pongs_got, Libc.time())) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2727
# SPDX-License-Identifier: MPL-2.0 using CircoCore const MSG_COUNT = 50_000_000 mutable struct PingPonger{TCore} <: Actor{TCore} peer::Union{Addr, Nothing} pings_sent::Int64 pongs_got::Int64 core::TCore end PingPonger(peer, core) = PingPonger(peer, 0, 0, core) struct Ping end struct Pong end struct CreatePeer end function sendping(service, me::PingPonger) send(service, me, me.peer, Ping()) me.pings_sent += 1 if me.pings_sent == MSG_COUNT die(service, me) end end function sendpong(service, me::PingPonger) send(service, me, me.peer, Pong()) end for i=1:1000 typename = Symbol("XX$i") eval(quote struct $typename end CircoCore.onmessage(me::PingPonger, message::$typename, service::Service) = $i end) end function CircoCore.onmessage(me::PingPonger, message::CreatePeer, service) peer = PingPonger(addr(me), emptycore(service)) me.peer = spawn(service, peer) sendping(service, me) end function CircoCore.onmessage(me::PingPonger, ::Ping, service) sendpong(service, me) return nothing end function CircoCore.onmessage(me::PingPonger, ::Pong, service) me.pongs_got += 1 if me.pongs_got == MSG_COUNT die(service, me) else sendping(service, me) end return nothing end function createbench(ctx) pingers = [PingPonger(nothing, emptycore(ctx)) for i=1:1] scheduler = Scheduler(ctx, pingers) for pinger in pingers deliver!(scheduler, addr(pinger), CreatePeer()) end return (run! = () -> scheduler(; remote = false), teardown! = () -> shutdown!(scheduler), scheduler = scheduler) end function pingpongbench() bench = createbench(ctx) @time bench.run!() bench.teardown!() end const ctx = CircoContext(;profile=CircoCore.Profiles.DefaultProfile()) using Main.Atom.Profiler using Profile using Main.Atom.Profiler.FlameGraphs using AbstractTrees AbstractTrees.children(d::Dict{Symbol,Any}) = d[:children] # To make the json dict iterable pingers = [PingPonger(nothing, emptycore(ctx)) for i=1:1] scheduler = Scheduler(ctx, pingers) for pinger in pingers deliver!(scheduler, addr(pinger), CreatePeer()) end #run profiler here......... @profiler scheduler(; remote = false) data = Profile.fetch() @info "Analyzing" graph = FlameGraphs.flamegraph(data) #Main.Atom.Profiler.pruneinternal!(graph) #Main.Atom.Profiler.prunetask!(graph) js = Main.Atom.Profiler.tojson(graph) dynamic_dispatches = count(PostOrderDFS(js)) do l d = "dynamic-dispatch" ∈ l[:classes] end @show dynamic_dispatches for l in PostOrderDFS(js) if "dynamic-dispatch" ∈ l[:classes] println("$(l[:count]) - $(l[:location]):$(l[:line])") end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
403
using Documenter, CircoCore makedocs(; modules=[CircoCore], format=Documenter.HTML( assets = ["assets/favicon.ico"] ), pages=[ "index.md", "reference.md", ], repo="https://github.com/Circo-dev/CircoCore/blob/{commit}{path}#L{line}", sitename="CircoCore", authors="KrisztiΓ‘n Schaffer", ) deploydocs(; repo="github.com/Circo-dev/CircoCore", )
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
7835
# SPDX-License-Identifier: MPL-2.0 module CircoCore export CircoContext, Scheduler, AbstractScheduler, run!, pause!, Actor, ActorId, schedule!, emptycore, # Lifecycle OnSpawn, OnDeath, OnBecome, #Plugins reexport Plugin, setup!, shutdown!, symbol, #Plugins plugin, getactorbyid, unschedule!, ActivityService, # Messaging PostCode, postcode, PostOffice, PostException, postoffice, Addr, addr, box, port, AbstractMsg, Msg, redirect, body, target, sender, nulladdr, Token, TokenId, Tokenized, token, Request, Response, Failure, Timeout, TimerTimeout, settimeout, # Actor API send, bulksend, spawn, become, die, migrate, getname, registername, NameQuery, NameResponse, # Events EventSource, Event, Subscribe, UnSubscribe, fire, # Signals SigTerm, # Space Pos, pos, nullpos, Infoton, Space import Base: show, string import Plugins const Plugin = Plugins.Plugin const shutdown! = Plugins.shutdown! const setup! = Plugins.setup! const symbol = Plugins.symbol const hooks = Plugins.hooks include("hooks.jl") abstract type AbstractContext end """ ActorId A cluster-unique id that is randomly generated when the actor is spawned (first scheduled). `ActorId` is an alias to `UInt64` at the time, so it may pop up in error messages as such. """ ActorId = UInt64 """ abstract type Actor{TCoreState} Supertype of all actors. Subtypes must be mutable and must provide a field `core::TCoreState` that can remain undefined after creation. # Examples ```julia mutable struct DataHolder{TValue, TCore} <: Actor{TCore} value::TValue core::TCore end ``` """ abstract type Actor{TCoreState} end coretype(::Actor{TCore}) where TCore = TCore abstract type AbstractAddr end postcode(address::AbstractAddr) = address.postcode postcode(actor::Actor) = postcode(addr(actor)) box(address::AbstractAddr) = address.box """ PostCode A string that identifies a scheduler. # Examples "192.168.1.11:24721" """ PostCode = String # TODO (perf): destructured storage port(postcode::PostCode) = parse(UInt32, split(postcode, ":")[end]) network_host(postcode::PostCode) = SubString(postcode, 1, findfirst(":", postcode)[1]) invalidpostcode = "0.0.0.0:0" postcode(::Any) = invalidpostcode """ Addr(postcode::PostCode, box::ActorId) Addr(readable_address::String) Addr() The full address of an actor. When created without arguments, it will be the null address. See [`isnulladdr()`](@ref) If the referenced actor migrates to a different scheduler, messages sent to the old address will bounce back as [`RecipientMoved`](@ref) and the Addr must be updated manually. # Examples Addr("192.168.1.11:24721", 0xbc6ac81fc7e4ea2) Addr("192.168.1.11:24721/bc6ac81fc7e4ea2") """ struct Addr <: AbstractAddr postcode::PostCode box::ActorId end nulladdr = Addr("", UInt64(0)) Addr() = nulladdr Addr(box::ActorId) = Addr("", box) Addr(readable_address::String) = begin parts = split(readable_address, "/") # Handles only dns.or.ip:port[/actorid] actorid = length(parts) == 2 ? parse(ActorId, parts[2], base=16) : 0 return Addr(parts[1], actorid) end string(a::Addr) = "$(a.postcode)/$(string(a.box, base=16))" Base.convert(::Type{Addr}, x::Actor) = addr(x) """ isnulladdr(a::Addr) Check if the given address is a null address, meaning that it points to "nowhere", messages sent to it will be dropped. """ isnulladdr(a::Addr) = a == nulladdr """ box(a::Addr)::ActorId Return the box of the address, that is the id of the actor. When the actor migrates, its box remains the same, only the PostCode of the address changes. """ box(a)::ActorId = a.box """ isbaseaddress(addr::Addr)::Bool Return true if `addr` is a base address, meaning it references a scheduler directly. """ isbaseaddress(addr::Addr) = box(addr) == 0 function Base.show(io::IO, a::Addr) print(io, string(a)) end """ redirect(addr::Addr, topostcode::PostCode):Addr Create a new Addr by replacing the postcode of the given one. """ redirect(addr::Addr, topostcode::PostCode) = Addr(topostcode, box(addr)) """ addr(a::Actor) Return the address of the actor. Call this on a spawned actor to get its address. Throws `UndefRefError` if the actor is not spawned. """ addr(a::Actor) = a.core.addr::Addr """ addr(entity) Return the address of entity. The default implementation returns the `addr` field, allowing you to use your own structs with such fields as message targets. """ addr(a) = a.addr """ box(a::Actor) Return the 'P.O. box' of the spawned actor. Call this on a spawned actor to get its id (aka box). Throws `UndefRefError` if the actor is not spawned. """ box(a::Actor) = box(addr(a))::ActorId # Actor lifecycle messages """ OnSpawn Actor lifecycle message that marks the first scheduling of the actor, sent during spawning, before any other message. # Examples ```julia CircoCore.onmessage(me::MyActor, ::OnSpawn, service) = begin registername(service, "MyActor", me) # Register this actor in the local name service end ``` """ struct OnSpawn end """ onmessage(me::Actor, message, service) Actor callback to handle a message arriving at an actor. Only the payload of the message is delivered, there is currently no way to access the infoton or the sender address. If you need a reply, include the sender address in the request. Note: Do not forget to import it or use its qualified name to allow overloading! # Examples ```julia import CircoCore.onmessage struct TestRequest replyto::Addr end struct TestResponse end function onmessage(me::MyActor, message::TestRequest, service) send(service, me, message.replyto, TestResponse()) end ``` """ function onmessage(me::Actor, message, service) end """ OnDeath Actor lifecycle message to release resources when the actor dies (meaning unscheduled "permanently"). The actor is still scheduled when this message is delivered, but no more messages will be delivered after this. """ struct OnDeath end """ OnBecome(reincarnation::Actor) Actor lifecycle message marking the `become()` action. `reincarnation` points to the new incarnation of the actor. `me` is scheduled at the delivery time of this message, `reincarnation` is not. Exceptions thrown while handling `OnBecome`` will propagate to the initiating `become` call. """ struct OnBecome reincarnation::Actor end # scheduler abstract type AbstractScheduler{TMsg, TCoreState} end addr(scheduler::AbstractScheduler) = Addr(postcode(scheduler), 0) abstract type Delivery <: Plugin end Plugins.symbol(::Delivery) = :delivery const PORT_RANGE = 24721:24999 abstract type PostOffice <: Plugin end Plugins.symbol(::PostOffice) = :postoffice postcode(post::PostOffice) = post.postcode addr(post::PostOffice) = Addr(postcode(post), 0) struct PostException message::String end abstract type LocalRegistry <: Plugin end Plugins.symbol(::LocalRegistry) = :registry abstract type SparseActivity <: Plugin end Plugins.symbol(::SparseActivity) = :sparseactivity abstract type Space <: Plugin end abstract type EuclideanSpace <: Space end Plugins.symbol(::Space) = :space abstract type Positioner <: Plugin end Plugins.symbol(::Positioner) = :positioner # naming function registername end function getname end include("actorstore.jl") include("msg.jl") include("onmessage.jl") include("signal.jl") include("zmq_postoffice.jl") #include("udp_postoffice.jl") include("token.jl") include("registry.jl") include("service.jl") include("sparse_activity.jl") include("space.jl") include("positioning.jl") include("profiles.jl") include("context.jl") include("scheduler.jl") include("event.jl") include("classic.jl") function __init__() Plugins.register(EuclideanSpaceImpl) Plugins.register(OnMessageImpl) end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1175
struct StoreKey key::ActorId end Base.hash(a::StoreKey, h::UInt) = xor(a.key, h) Base.:(==)(a::StoreKey, b::StoreKey) = a.key == b.key struct ActorStore{T} cache::Dict{StoreKey, T} ActorStore{T}(args...) where T = new{T}(Dict([map(p -> Pair(StoreKey(p.first), p.second), args)]...)) end ActorStore(args...) = ActorStore{Any}(args...) Base.getindex(s::ActorStore, key::ActorId) = s.cache[StoreKey(key)] Base.setindex!(s::ActorStore, actor, key::ActorId) = s.cache[StoreKey(key)] = actor Base.haskey(s::ActorStore, key::ActorId) = haskey(s.cache,StoreKey(key)) Base.get(s::ActorStore, key::ActorId, default) = get(s.cache, StoreKey(key), default) Base.get(f::Function, s::ActorStore, key) = get(f, s.cache, StoreKey(key)) Base.delete!(s::ActorStore, key::ActorId) = delete!(s.cache, StoreKey(key)) Base.pop!(s::ActorStore, key::ActorId, default) = pop!(s.cache, StoreKey(key), default) Base.length(s::ActorStore) = length(s.cache) Base.iterate(s::ActorStore, state...) = begin inner = iterate(s.cache, state...) isnothing(inner) && return nothing return (Pair(inner[1][1].key, inner[1][2]), inner[2]) end Base.values(s::ActorStore) = values(s.cache)
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1796
import ActorInterfaces struct CircoCtx{TActor, TService, TCore} actor::TActor service::TService CircoCtx(actor::Actor{TCore}, service) where TCore = new{typeof(actor), typeof(service), TCore}(actor, service) end mutable struct ClassicActor{TState, TCore} <: Actor{TCore} state::TState core::TCore end struct CircoAddr <: ActorInterfaces.Classic.Addr addr::Addr end import Base.convert function Base.convert(::Type{Addr}, a::CircoAddr) return a.addr end function Base.convert(::Type{ActorInterfaces.Classic.Addr}, a::Addr) return CircoAddr(a) end struct CircoMessage addr::Addr end function onmessage(me::ClassicActor, msg, service) ActorInterfaces.Classic.onmessage(me.state, msg, CircoCtx(me, service)) end function onmessage(me::ClassicActor, msg::Union{OnSpawn, OnDeath, OnBecome}, service) @debug "Lifecycle events are not delivered to classic" # TODO add lifecycle to classic end function ActorInterfaces.Classic.self(ctx::CircoCtx)::CircoAddr return CircoAddr(addr(ctx.actor)) end function ActorInterfaces.Classic.send(recipient::CircoAddr, msg, ctx::CircoCtx) send(ctx.service, ctx.actor, recipient.addr, msg) end function ActorInterfaces.Classic.spawn(behavior, ctx::CircoCtx)::CircoAddr spawned = spawn(ctx.service, ClassicActor(behavior, emptycore(ctx.service))) return CircoAddr(spawned) end function ActorInterfaces.Classic.become(behavior, ctx::CircoCtx) CircoCore.become(ctx.service, ctx.actor, ClassicActor(behavior, ctx.actor.core)) return nothing end spawn(scheduler::AbstractScheduler, actor) = spawn(scheduler, ClassicActor(actor, emptycore(scheduler.service))) function send(scheduler::AbstractScheduler, to::CircoAddr, msgbody; kwargs...) send(scheduler, to.addr, msgbody; kwargs...) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2082
# SPDX-License-Identifier: MPL-2.0 """ CircoContext(;options...) <: AbstractContext Store configuration, manage staging and run-time code optimizations for Circo. """ struct CircoContext <: AbstractContext userpluginsfn::Union{Nothing, Function} profile::Profiles.AbstractProfile plugins::Plugins.PluginStack options corestate_type::Type msg_type::Type end function CircoContext(; options...) target_module = get(options, :target_module, Main) # Use :profilefn if provided, :profile otherwise directprofget = (;opts...) -> ((;opts...) -> get(() -> Profiles.DefaultProfile(;opts...), opts, :profile)) profilefn = get(directprofget, options, :profilefn) profile = profilefn(;options...) userpluginsfn = get(() -> (() -> []), options, :userpluginsfn) plugins = instantiate_plugins(profile, userpluginsfn) types = generate_types(plugins; target_module) ctx = CircoContext(userpluginsfn, profile, plugins, options, types...) call_lifecycle_hook(ctx, prepare_hook) return ctx end Base.show(io::IO, ::MIME"text/plain", ctx::CircoContext) = begin print(io, "CircoContext with $(length(ctx.plugins)) plugins") end function instantiate_plugins(profile, userpluginsfn) userplugins = userpluginsfn() if !(userplugins isa AbstractArray) && !(userplugins isa Tuple) error("The userpluginsfn option of CircoContext should return a tuple or an array.") end allplugins = [userplugins..., Profiles.core_plugins(profile)...] return Plugins.PluginStack(allplugins, scheduler_hooks; profile.options...) end function instantiate_plugins(ctx::AbstractContext) return instantiate_plugins(ctx.profile, ctx.userpluginsfn) end function generate_types(pluginstack::Plugins.PluginStack; target_module=Main) return ( corestate_type = Plugins.customtype(pluginstack, :CoreState, AbstractCoreState, Symbol[], target_module), msg_type = Plugins.customtype(pluginstack, :Msg, AbstractMsg, [:TBody], target_module), ) end emptycore(ctx::AbstractContext) = ctx.corestate_type()
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
3991
# SPDX-License-Identifier: MPL-2.0 abstract type Event end abstract type OneShotEvent <: Event end abstract type RecurringEvent <: Event end const RecurrentEvent = RecurringEvent """ Subscribe(eventtype::Type, subscriber::Union{Actor, Addr}, filter::Union{Nothing, String, Function} = nothing) Message for subscribing to events of the given `eventtype`. The subscription can be optionally filtered by a topic string or a predicate function. Filtering and subscription management will be done by the event dispatcher, which is a separate actor. `eventtype` must be concrete. # Examples ```julia fs = getname(service, "fs") send(service, me, fs, Subscribe(FSEvent, me, "MODIFY")) send(service, me, fs, Subscribe(FSEvent, me, event -> event.path == "test.txt")) ``` """ struct Subscribe # TODO: <: Request + handle forwarding subscriber::Addr filter::Union{Nothing, String, Function} eventtype::Type Subscribe(eventtype:: Type, subscriber::Actor, filter=nothing) = new(addr(subscriber), filter, eventtype) Subscribe(eventtype:: Type, subscriber::Addr, filter=nothing) = new(subscriber, filter, eventtype) end """ Unsubscribe(subscriber::Addr, eventtype::Type) Message for unsubscribing from events of the given `eventtype`. Cancels all subscriptions of the given `subscriber` for the given `eventtype`. """ struct UnSubscribe subscriber::Addr eventtype::Type end """ EventSource Trait for actors that can publish events. Manages subscriptions and dispatches events. You need to add a field `eventdispatcher::Addr` to your actor to use this trait. """ struct EventSource end function initdispatcher(me::Actor, service) @assert hasfield(typeof(me), :eventdispatcher) "Missing field 'eventdispatcher::Addr' in $(typeof(me))" @assert !isdefined(me, :eventdispatcher) || me.eventdispatcher == Addr() me.eventdispatcher = spawn(service, EventDispatcher(emptycore(service))) end ontraitmessage(::EventSource, me::Actor, msg::Union{Subscribe, UnSubscribe}, service) = begin send(service, me, me.eventdispatcher, msg) end ontraitmessage(::EventSource, me::Actor, msg::OnSpawn, service) = begin initdispatcher(me, service) end """ EventSourceDied SigTerm cause for terminating event dispatchers. """ struct EventSourceDied end ontraitmessage(::EventSource, me::Actor, msg::OnDeath, service) = begin send(service, me, me.eventdispatcher, SigTerm(EventSourceDied())) end """ fire(service, me::Actor, event::Event) Fire an event on the actor to be delivered by the actor's eventdispatcher. To fire an event, the actor must have a field `eventdispatcher::Addr`, which will be filled automatically. """ function fire(service, me::Actor, event::TEvent) where TEvent <: Event send(service, me, me.eventdispatcher, event) end mutable struct EventDispatcher{TCore} <: Actor{TCore} listeners::IdDict #{Type{<:Event}, Array{Subscribe}} core::TCore end EventDispatcher(core) = EventDispatcher(IdDict(), core) function onmessage(me::EventDispatcher, msg::Subscribe, service) if !haskey(me.listeners, msg.eventtype) me.listeners[msg.eventtype] = Array{Subscribe}(undef, 0) end push!(me.listeners[msg.eventtype], msg) # TODO ack end function onmessage(me::EventDispatcher, msg::UnSubscribe, service) if !haskey(me.listeners, msg.eventtype) return end filter!(me.listeners[msg.eventtype]) do sub return sub.eventtype == msg.eventtype && sub.subscriber == msg.subscriber end # TODO ack end function onmessage(me::EventDispatcher, msg::Event, service) for subscription in get(me.listeners, typeof(msg), []) if subscription.filter isa Nothing || (hasfield(typeof(msg), :topic) && subscription.filter isa String && msg.topic == subscription.filter) || (subscription.filter isa Function && subscription.filter(msg) == true) send(service, me, subscription.subscriber, msg) end end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2696
# SPDX-License-Identifier: MPL-2.0 # Lifecycle hooks prepare(::Plugin, ::Any) = false schedule_start(::Plugin, ::Any) = false schedule_pause(::Plugin, ::Any) = false schedule_continue(::Plugin, ::Any) = false schedule_stop(::Plugin, ::Any) = false stage(::Plugin, ::Any) = false prepare_hook = Plugins.create_lifecyclehook(prepare) # For staging. Will be called only once per ctx, do not use the plugin instance! schedule_start_hook = Plugins.create_lifecyclehook(schedule_start) schedule_pause_hook = Plugins.create_lifecyclehook(schedule_pause) schedule_continue_hook = Plugins.create_lifecyclehook(schedule_continue) schedule_stop_hook = Plugins.create_lifecyclehook(schedule_stop) stage_hook = Plugins.create_lifecyclehook(stage) # Event hooks function actor_activity_sparse16 end # An actor just received a message, called with 1/16 probability function actor_activity_sparse256 end # An actor just received a message, called with 1/256 probability function actor_spawning end # called when the actor is already spawned, but before delivering OnSpawn. function actor_dying end # called when the actor will die, but before delivering OnDeath. function actor_state_write end # A write to an actor state will be applied (transaction commit) function idle end # called irregularly while the message queue is empty. function letin_remote end # Let external sources push messages into the queue (using deliver!). function localdelivery end # deliver a message to an actor (e.g. call onmessage) function localroutes end # Handle messages that are targeted to actors not (currently) scheduled locally (e.g. during migration). function remoteroutes end # Deliver messages to external targets function spawnpos end # Provide initial position of an actor when it is spawned function specialmsg end # Handle messages that are targeted to the scheduler (to the box 0) scheduler_hooks = [remoteroutes, localdelivery, actor_spawning, actor_dying, actor_state_write, localroutes, specialmsg, letin_remote, actor_activity_sparse16, actor_activity_sparse256, idle, spawnpos] # Plugin-assembled types abstract type AbstractCoreState end abstract type AbstractMsg{TBody} end # TODO rename to AbstractEnvelope # Helpers function call_lifecycle_hook(target, lfhook, args...) res = lfhook(target.plugins, target, args...) if !res.allok for (i, result) in enumerate(res.results) if result isa Tuple && result[1] isa Exception trimhook(s) = endswith(s, "_hook") ? s[1:end-5] : s @error "Error in calling '$(trimhook(string(lfhook)))' lifecycle hook of plugin $(typeof(target.plugins[i])):" result end end end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
987
struct MsgTemplate <: Plugins.TemplateStyle end Plugins.TemplateStyle(::Type{AbstractMsg}) = MsgTemplate() Plugins.typedef(::MsgTemplate, spec) = quote struct TYPE_NAME{TBody} <: CircoCore.AbstractMsg{TBody} sender::CircoCore.Addr target::CircoCore.Addr body::TBody $(Plugins.structfields(spec)) end; TYPE_NAME(sender::CircoCore.Addr, target, body, args...; kwargs...) = TYPE_NAME{typeof(body)}(sender, target, body, $(msgfieldcalls(spec)...)) TYPE_NAME(sender::CircoCore.Actor, target, body, args...; kwargs...) = TYPE_NAME{typeof(body)}(CircoCore.addr(sender), target, body, $(msgfieldcalls(spec)...)) TYPE_NAME end msgfieldcalls(spec) = map(field -> :($(field.constructor)(sender, target, body, args...; kwargs...)), spec.fields) sender(m::AbstractMsg) = m.sender::Addr target(m::AbstractMsg) = m.target::Addr body(m::AbstractMsg) = m.body redirect(m::AbstractMsg, to::Addr) = (typeof(m))(target(m), to, body(m))
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1767
# SPDX-License-Identifier: MPL-2.0 abstract type OnMessage <: Delivery end mutable struct OnMessageImpl <: OnMessage OnMessageImpl(;options...) = new() end @inline localdelivery(::OnMessage, scheduler, msg, targetactor) = begin _body = body(msg) _service = scheduler.service for trait in traits(typeof(targetactor)) ontraitmessage(trait isa Type ? trait() : trait, targetactor, _body, _service) end onmessage(targetactor, _body, _service) return false end """ traits(::Type{<:Actor}) = () You can declare the traits of an actor by defining a method of this function. Traits can handle messages in the name of the actor, helping to compose the behavior of the actor (See [`ontraitmessage()`](@ref).). E.g.: The EventSource trait handles the Subscribe and UnSubscribe messages automatically (among others). Anything can be a trait, but we recommend to use immutable structs. Return a tuple of traits, either instantiated or not. Instantiated traits can hold values, while traits given as types will be instantiated without arguments. Important: Traits _cannot_ hold state. If a trait needs to store state in the actor you have to add fields to the actor manually. # Examples struct DumpFieldTrait # Dumps a single field of the actor to stdout when the actor is dying. fieldname::Symbol end CircoCore.ontraitmessage(trait::DumpFieldTrait, me, ::OnDeath, service) = begin println("Β¨\$(trait.fieldname): \$(getfield(me, trait.fieldname))") end mutable struct MyActor <: Actor{Any} a b core MyActor() = new(rand(Int8), rand(Int8)) end CircoCore.traits(::Type{MyActor}) = (DumpFieldTrait(:a), DumpFieldTrait(:b)) """ traits(::Type{<:Actor}) = () ontraitmessage(trait, me, msg, service) = nothing
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2055
module Positioning using Random using Plugins using ..CircoCore const HOST_VIEW_SIZE = 1000 # TODO eliminate mutable struct SimplePositioner <: CircoCore.Positioner isroot::Bool hostid::UInt64 # TODO: eliminate non-core notions center::Pos SimplePositioner(;options...) = new( length(get(options, :roots, [])) == 0 # TODO eliminate dirtiness ) end __init__() = Plugins.register(SimplePositioner) function randpos(rng = Random.GLOBAL_RNG) return Pos( rand(rng, Float32) * HOST_VIEW_SIZE - HOST_VIEW_SIZE / 2, rand(rng, Float32) * HOST_VIEW_SIZE - HOST_VIEW_SIZE / 2, rand(rng, Float32) * HOST_VIEW_SIZE - HOST_VIEW_SIZE / 2 ) end flat_gridpoints(grids) = Pos.(vec(collect(Iterators.product(grids...)))) function gridpos(idx) @assert idx < 17300 # This method may fail to generate unique values for higher idxes (and it is slow anyway). edge_length = floor(idx^(1/3)) / 2 + 1 edge = -edge_length:edge_length points = sort(flat_gridpoints((edge, edge, edge))) return points[idx] end function hostrelative_schedulerpos(positioner, postcode) # return randpos() p = port(postcode) return gridpos(p - 24721 + 1) * HOST_VIEW_SIZE end function hostpos(positioner, postcode) if positioner.isroot return Pos(0, 0, 0) else rng = MersenneTwister(positioner.hostid) return randpos(rng) * 5.0 end end function Plugins.setup!(p::SimplePositioner, scheduler) postoffice = get(scheduler.plugins, :postoffice, nothing) host = get(scheduler.plugins, :host, nothing) p.hostid = isnothing(host) ? 0 : host.hostid if isnothing(postoffice) p.center = nullpos scheduler.pos = randpos() else p.center = hostpos(p, postcode(postoffice)) scheduler.pos = p.center + hostrelative_schedulerpos(p, postcode(postoffice)) end return nothing end function CircoCore.spawnpos(p::SimplePositioner, scheduler, actor, result::Ref{Pos}) result[] = randpos() + p.center return true end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1067
module Profiles import ..CircoCore abstract type AbstractProfile end function core_plugins end struct EmptyProfile <: AbstractProfile options EmptyProfile(;options...) = new(options) end core_plugins(::EmptyProfile) = [] struct MinimalProfile <: AbstractProfile options MinimalProfile(;options...) = new(options) end core_plugins(profile::MinimalProfile) = [CircoCore.OnMessage] struct TinyProfile <: AbstractProfile options TinyProfile(;options...) = new(options) end function core_plugins(profile::TinyProfile) options = profile.options return [ CircoCore.LocalRegistry, CircoCore.SparseActivity, CircoCore.Space, core_plugins(MinimalProfile(;options...))..., ] end struct DefaultProfile <: AbstractProfile options DefaultProfile(;options...) = new(options) end function core_plugins(profile::DefaultProfile) options = profile.options return [ CircoCore.Positioner, CircoCore.PostOffice, core_plugins(TinyProfile(;options...))..., ] end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2443
# SPDX-License-Identifier: MPL-2.0 # Local, in-scheduler registry that can be queried from the outside module Registry using Plugins using ..CircoCore export NameQuery, NameResponse """ NameQuery(name::String) <: Request A query that can be sent to a remote scheduler for querying its local registry. """ struct NameQuery <: Request # TODO add respondto name::String token::Token NameQuery(name, token) = new(name, token) NameQuery(name) = new(name, Token()) end struct NameResponse <: Response query::NameQuery handler::Union{Addr, Nothing} token::Token end mutable struct RegistryHelper{TCore} <: Actor{TCore} registry::Any core::TCore end mutable struct LocalRegistryImpl <: CircoCore.LocalRegistry register::Dict{String, Addr} helperactor::RegistryHelper LocalRegistryImpl(;options...) = new(Dict()) end __init__() = Plugins.register(LocalRegistryImpl) abstract type RegistryException end struct RegisteredException <: RegistryException name::String end Base.show(io::IO, e::RegisteredException) = print(io, "name '", e.name, "' already registered") struct NoRegistryException <: RegistryException msg::String end CircoCore.schedule_start(registry::LocalRegistryImpl, scheduler) = begin registry.helperactor = RegistryHelper(registry, emptycore(scheduler.service)) spawn(scheduler, registry.helperactor) end function CircoCore.registername(registry::LocalRegistryImpl, name::String, handler::Addr, initiator::Union{Addr,Nothing}=nothing) if !isnothing(initiator) && initiator != handler if haskey(registry.register, name) throw(RegisteredException(name)) end @info "Registering name $name to $handler by another actor: $(addr(initiator_actor))" end registry.register[name] = handler return true end function CircoCore.getname(registry::LocalRegistryImpl, name::String)::Union{Addr, Nothing} get(registry.register, name, nothing) end CircoCore.specialmsg(registry::LocalRegistryImpl, scheduler, message) = false CircoCore.specialmsg(registry::LocalRegistryImpl, scheduler, message::AbstractMsg{NameQuery}) = begin @debug "Registry specialmsg $message" send(scheduler.service, registry.helperactor, sender(message), NameResponse(body(message), getname(registry, body(message).name), body(message).token) ) return true end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
13038
# SPDX-License-Identifier: MPL-2.0 using DataStructures @enum SchedulerState::Int8 created=0 running=10 paused=20 stopped=30 struct StateChangeError <: Exception from::SchedulerState to::SchedulerState end mutable struct Scheduler{THooks, TMsg, TCoreState} <: AbstractScheduler{TMsg, TCoreState} # TODO THooks -> TSchedulerState pos::Pos # TODO -> state postcode::PostCode # TODO -> state actorcount::UInt64 actorcache::ActorStore{Any} msgqueue::Deque{Any}# CircularBuffer{Msg} tokenservice::TokenService state::SchedulerState # TODO state::TSchedulerState , plugin-assembled maintask::Union{Task, Nothing} # The task that runs the event loop lock::ReentrantLock # TODO -> state (?) startcond::Threads.Condition # TODO -> state pausecond::Threads.Condition # TODO -> state startup_actor_count::UInt16 # Number of actors created by plugins TODO eliminate plugins::Plugins.PluginStack hooks::THooks # TODO -> state zygote::AbstractArray exitflag::Bool service::Service{Scheduler{THooks, TMsg, TCoreState}, TMsg, TCoreState} function Scheduler( ctx::AbstractContext, zygote::AbstractArray = []; pos = nullpos, # TODO: eliminate # msgqueue_capacity = 100_000 ) plugins = instantiate_plugins(ctx) _hooks = hooks(plugins) _lock = ReentrantLock() scheduler = new{typeof(_hooks), ctx.msg_type, ctx.corestate_type}( pos, invalidpostcode, 0, ActorStore(), Deque{Any}(),#msgqueue_capacity), TokenService(), created, nothing, _lock, Threads.Condition(_lock), Threads.Condition(_lock), 0, plugins, _hooks, zygote, false) scheduler.service = Service(ctx, scheduler) call_lifecycle_hook(scheduler, setup!) postoffice = get(plugins, :postoffice, nothing) # TODO eliminate scheduler.postcode = isnothing(postoffice) ? invalidpostcode : postcode(postoffice) # TODO eliminate return scheduler end end Base.show(io::IO, ::Type{<:Scheduler}) = print(io, "Scheduler") Base.show(io::IO, ::MIME"text/plain", scheduler::AbstractScheduler) = begin print(io, "Scheduler at $(postcode(scheduler)) with $(scheduler.actorcount) actors") end pos(scheduler::AbstractScheduler) = scheduler.pos # TODO find a better location postcode(scheduler::AbstractScheduler) = scheduler.postcode # TODO find a better location function setstate!(scheduler::AbstractScheduler, newstate::SchedulerState) callcount = 0 callhook(hook) = begin call_lifecycle_hook(scheduler, hook) callcount += 1 end curstate = scheduler.state curstate == newstate && return newstate if newstate == running if curstate == created || curstate == stopped actorcount = scheduler.actorcount callhook(schedule_start_hook) callhook(schedule_continue_hook) scheduler.startup_actor_count = scheduler.actorcount - actorcount # TODO not just count and not here for a in scheduler.zygote; spawn(scheduler, a); end elseif curstate == paused callhook(schedule_continue_hook) end elseif newstate == paused if curstate == running callhook(schedule_pause_hook) end elseif newstate == stopped if curstate == running callhook(schedule_pause_hook) callhook(schedule_stop_hook) elseif curstate == paused || curstate == created callhook(schedule_stop_hook) end end callcount == 0 && throw(StateChangeError(scheduler.state, newstate)) scheduler.state = newstate return newstate end function lockop(op::Function, cond) lock(cond) try op(cond) finally unlock(cond) end end function lockop(op::Function, obj, cond_sym::Symbol) lockop(op, getfield(obj, cond_sym)) end function pause!(scheduler) setstate!(scheduler, paused) lockop(wait, scheduler, :pausecond) return nothing end # TODO collect startup info from a hook logstart(scheduler::AbstractScheduler) = scheduler.state == created && @info "Circo scheduler starting on thread $(Threads.threadid())" function run!(scheduler; nowait = false, kwargs...) isrunning(scheduler) && throw(StateChangeError(scheduler.state, running)) logstart(scheduler) task = @async eventloop(scheduler; kwargs...) nowait && return task lockop(wait, scheduler, :startcond) return task end isrunning(scheduler) = scheduler.state == running # For external calls # TODO find a better place function send(scheduler::AbstractScheduler{TMsg, TCoreState}, from::Addr, to::Addr, msgbody; kwargs...) where {TMsg, TCoreState} msg = TMsg(from, to, msgbody, scheduler; kwargs...) deliver!(scheduler, msg) end function send(scheduler::AbstractScheduler, to::Addr, msgbody; kwargs...) send(scheduler, Addr(), to, msgbody; kwargs...) end function send(scheduler::AbstractScheduler, to::Actor, msgbody; kwargs...) send(scheduler, addr(to), msgbody; kwargs...) end @inline function deliver!(scheduler::AbstractScheduler, msg::AbstractMsg) # @debug "deliver! at $(postcode(scheduler)) $msg" # degrades ping-pong perf even if debugging is not enabled target_postcode = postcode(target(msg)) # TODO eliminate if postcode(scheduler) === target_postcode deliver_locally!(scheduler, msg) return nothing end if !scheduler.hooks.remoteroutes(scheduler, msg) @info "Unhandled remote delivery: $msg" end return nothing end @inline function deliver_locally!(scheduler::AbstractScheduler, msg::AbstractMsg) deliver_locally_kern!(scheduler, msg) return nothing end @inline function deliver_locally!(scheduler::AbstractScheduler, msg::AbstractMsg{<:Response}) cleartimeout(scheduler.tokenservice, token(msg.body)) deliver_locally_kern!(scheduler, msg) return nothing end @inline function deliver_locally_kern!(scheduler::AbstractScheduler, msg::AbstractMsg) if box(target(msg)) == 0 # TODO (?) always push, check later only if target not found if !scheduler.hooks.specialmsg(scheduler, msg) @debug("Unhandled special message: $msg") end else push!(scheduler.msgqueue, msg) end return true end @inline function fill_corestate!(scheduler::AbstractScheduler{TMsg, TCoreState}, actor) where {TMsg, TCoreState} actorid = !isdefined(actor, :core) || box(actor) == 0 ? rand(ActorId) : box(actor) actor.core = TCoreState(scheduler, actor, actorid) return nothing end @inline is_scheduled(scheduler::AbstractScheduler, actor::Union{Actor, Addr}) = haskey(scheduler.actorcache, box(actor)) function spawn(scheduler::AbstractScheduler{TMsg}, actor::Actor) where {TMsg} isfirstschedule = !isdefined(actor, :core) || box(actor) == 0 if !isfirstschedule && is_scheduled(scheduler, actor) error("Actor already spawned") end fill_corestate!(scheduler, actor) schedule!(scheduler, actor) scheduler.actorcount += 1 if isfirstschedule scheduler.hooks.actor_spawning(scheduler, actor) _immediate_delivery(actor, scheduler, TMsg(addr(scheduler), actor, OnSpawn(), scheduler) ) end return addr(actor) end @inline function schedule!(scheduler::AbstractScheduler, actor::Actor)::Addr scheduler.actorcache[box(actor)] = actor return addr(actor) end function kill!(scheduler::AbstractScheduler{TMsg}, actor::Actor) where {TMsg} scheduler.hooks.actor_dying(scheduler, actor) try _immediate_delivery(actor, scheduler, TMsg(addr(scheduler), actor, OnDeath(), scheduler)) catch e @warn "Exception in handling OnDeath of actor $(addr(actor)). Unscheduling anyway." exception = (e, catch_backtrace()) end if is_scheduled(scheduler, actor) unschedule!(scheduler, actor) scheduler.actorcount -= 1 else error("Actor wasn't scheduled!") end end @inline function unschedule!(scheduler::AbstractScheduler, actor::Actor) if is_scheduled(scheduler, actor) delete!(scheduler.actorcache, box(actor)) end return nothing end @inline function step!(scheduler::AbstractScheduler) msg = popfirst!(scheduler.msgqueue) _immediate_delivery(msg, scheduler) return nothing end @inline function _immediate_delivery(msg, scheduler) targetbox = target(msg).box::ActorId targetactor = get(scheduler.actorcache, targetbox, nothing) _immediate_delivery(targetactor, scheduler, msg) end @inline function _immediate_delivery(targetactor, scheduler, msg) if isnothing(targetactor) if !scheduler.hooks.localroutes(scheduler, msg) @debug "Cannot deliver on host: $msg" end else scheduler.hooks.localdelivery(scheduler, msg, targetactor) end return nothing end @inline function checktimeouts(scheduler::AbstractScheduler{TMsg, TCoreState}) where {TMsg, TCoreState} needchecktimeouts!(scheduler.tokenservice) || return false firedtimeouts = poptimeouts!(scheduler.tokenservice) if length(firedtimeouts) > 0 @debug "Fired timeouts: $firedtimeouts" for timeout in firedtimeouts deliver_locally!(scheduler, TMsg( addr(scheduler), timeout.watcher, timeout, scheduler) ) end return true end return false end @inline function safe_sleep(sleeplength) try sleep(sleeplength) catch e # EOFError happens if e isa InterruptException rethrow(e) else @info "Exception while sleeping: $e" end end end @inline function process_remote_and_timeout(scheduler::AbstractScheduler) incomingmsg = nothing hadtimeout = false sleeplength = 0.001 enter_ts = time_ns() while true yield() # Allow plugin tasks to run scheduler.hooks.letin_remote(scheduler) hadtimeout = checktimeouts(scheduler) if haswork(scheduler) || !isrunning(scheduler) return nothing else scheduler.hooks.idle(scheduler) safe_sleep(sleeplength) if time_ns() - enter_ts > 1_000_000 sleeplength = min(sleeplength * 1.002, 0.03) end end end end @inline function haswork(scheduler::AbstractScheduler) return !isempty(scheduler.msgqueue) end @inline function nomorework(scheduler::AbstractScheduler, remote::Bool) return !haswork(scheduler) && !remote end function eventloop(scheduler::AbstractScheduler; remote = true) try if isnothing(scheduler.maintask) scheduler.maintask = current_task() end setstate!(scheduler, running) scheduler.exitflag = false lockop(notify, scheduler, :startcond) while true msg_batch = UInt8(255) while msg_batch != 0 && haswork(scheduler) && !scheduler.exitflag msg_batch -= UInt8(1) step!(scheduler) end if !isrunning(scheduler) || nomorework(scheduler, remote) || scheduler.exitflag @debug "Scheduler loop $(postcode(scheduler)) exiting." return end process_remote_and_timeout(scheduler) end catch e if e isa InterruptException @info "Interrupt to scheduler on thread $(Threads.threadid())" else @error "Error while scheduling on thread $(Threads.threadid())" exception = (e, catch_backtrace()) end finally isrunning(scheduler) && setstate!(scheduler, paused) scheduler.exitflag = false lockop(notify, scheduler, :pausecond) @assert !isnothing(scheduler.maintask) if scheduler.maintask != current_task() yieldto(scheduler.maintask) else scheduler.maintask = nothing end end end function (scheduler::AbstractScheduler)(;remote = true) logstart(scheduler) eventloop(scheduler; remote = remote) end # NOTE remote keyword signals that there may be remote connection to actors and shouldn't stop automatically. In this case ( remot = true) scheduling stop when the last actor die() function called with "exit = true" keyword function (scheduler::AbstractScheduler)(msgs; remote = false) if msgs isa AbstractMsg msgs = [msgs] end for msg in msgs deliver!(scheduler, msg) end scheduler(;remote = remote) end function shutdown!(scheduler::AbstractScheduler) setstate!(scheduler, stopped) call_lifecycle_hook(scheduler, shutdown!) @debug "Scheduler at $(postcode(scheduler)) exited." end # Helpers for plugins getactorbyid(scheduler::AbstractScheduler, id::ActorId) = get(scheduler.actorcache, id, nothing)
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
7725
# SPDX-License-Identifier: MPL-2.0 abstract type AbstractService{TScheduler, TMsg, TCore} end struct Service{TScheduler, TMsg, TCore} <: AbstractService{TScheduler, TMsg, TCore} scheduler::TScheduler emptycore::TCore end Base.show(io::IO, ::Type{<:AbstractService}) = print(io, "Circo Service") Service(ctx::AbstractContext, scheduler::AbstractScheduler) = Service{typeof(scheduler), ctx.msg_type, ctx.corestate_type}(scheduler, emptycore(ctx)) emptycore(s::AbstractService) = s.emptycore emptycore(sdl::AbstractScheduler) = emptycore(sdl.service) plugin(service::AbstractService, symbol::Symbol) = plugin(service.scheduler, symbol) plugin(sdl::AbstractScheduler, symbol::Symbol) = sdl.plugins[symbol] """ send(service, sender::Actor, to::Addr, messagebody::Any; energy::Real = 1, timeout::Real = 2.0) Send a message from an actor to an another. Part of the actor API, can be called from a lifecycle callback, providing the `service` you got. `messagebody` can be of any type, but a current limitation of inter-node communication is that the serialized form of `messagebody` must fit in an IPv4 UDP packet with ~100 bytes margin. The exact value depends on the MTU size of the network and changing implementation details, but 1380 bytes can be considered safe. You may be able to tune your system to get higher values. If `messagebody` is a `Request`, a timeout will be set for the token of it. The `timeout` keyword argument can be used to control the deadline (seconds). `energy` sets the energy and sign of the Infoton attached to the message (if the infoton optimizer is running). # Examples ```julia const QUERY = "The Ultimate Question of Life, The Universe, and Everything." mutable struct MyActor <: Actor{TCoreState} searcher::Addr core::CoreState MyActor() = new() end struct Start end struct Search query::String end [...] # Spawn the searcher or receive its address function CircoCore.onmessage(me::MyActor, message::Start, service) send(service, me, me.searcher, Search(QUERY, addr(me))) end ``` # Implementation Please note that `service` is always the last argument of lifecycle callbacks like `onmessage`. It's because `onmessage` is dynamically dispatched, and `service` provides no information about where to dispatch. (Only one service instance exists as of `v"0.2.0"`) Listing it at the end improves performance. On the other hand, actor API endpoints like `send` are always statically dispatched, thus they can accept the service as their first argument, allowing the user to treat e.g. "`spawn(service`" as a single unit of thought and not forget to write out the ballast `service`. Consistency is just as important as convenience. But performance is king. """ @inline function send(service::AbstractService{TScheduler, TMsg}, sender, to::Addr, messagebody; kwargs...) where {TScheduler, TMsg, TCore} message = TMsg(sender, to, messagebody, service.scheduler; kwargs...) deliver!(service.scheduler, message) end @inline function send(service::AbstractService{TScheduler, TMsg}, sender, to::Addr, messagebody::Request; timeout = 2.0, kwargs...) where {TScheduler, TMsg} settimeout(service.scheduler.tokenservice, Timeout(sender, token(messagebody), timeout, messagebody)) message = TMsg(sender, to, messagebody, service.scheduler; kwargs...) deliver!(service.scheduler, message) end @inline function send(service::AbstractService, sender, to, messagebody; kwargs...) send(service, sender, addr(to), messagebody; kwargs...) end @inline function send(service::AbstractService, sender, to::Nothing, messagebody; kwargs...) @error "Sending message to 'Nothing' is not possible!" end @inline function bulksend(service::AbstractService, sender::Actor, targets, messagebody; kwargs...) for target in targets send(service, sender, target, messagebody; kwargs...) end end """ spawn(service, actor::Actor, [pos::Pos])::Addr Spawn the given actor on the scheduler represented by `service`, return the address of it. Part of the actor API, can be called from a lifecycle callback, providing the `service` you got. The `OnSpawn` message will be delivered to `actor` before this function returns. # Examples # TODO: update this sample ``` mutable struct ListItem{TData, TCore} <: Actor{TCore} data::TData next::Union{Nothing, Addr} core::TCore ListItem(data, core) = new{typeof(data), typeof(core)}(data, nothing, core) end struct Append{TData} value::TData end function CircoCore.onmessage(me::ListItem, message::Append, service) me.next = spawn(service, ListItem(message.value)) end ``` """ @inline function spawn(service::AbstractService, actor::Actor)::Addr return spawn(service.scheduler, actor) end """ become(service, old::Actor, reincarnated::Actor) Reincarnates the `old` actor into `new`, meaning that `old` will be unscheduled, and `reincarnated` will be scheduled reusing the address of `old`. The `onbecome` lifecycle callback will be called. Note: As the name suggests, `become` is the Circonian way of behavior change. """ function become(service::AbstractService{TScheduler, TMsg}, old::Actor, reincarnated::Actor) where {TScheduler, TMsg} scheduler = service.scheduler _immediate_delivery(old, scheduler, TMsg(addr(scheduler), old, OnBecome(reincarnated), scheduler)) reincarnated.core = old.core unschedule!(scheduler, old) return spawn(service, reincarnated) end """ die(service, me::Actor; exit=false) Permanently unschedule the actor from its current scheduler. if `exit` is true and this is the last actor on its scheduler, the scheduler will be terminated. """ @inline function die(service::AbstractService, me::Actor; exit = false) kill!(service.scheduler, me) if exit if service.scheduler.actorcount <= service.scheduler.startup_actor_count service.scheduler.exitflag = true @debug "Scheduler's exitflag raised" end end end """ registername(service, name::String, actor::Union{Addr,Actor}) Register the given actor under the given name in the scheduler-local name registry. Note that there is no need to unregister the name when migrating or dying # TODO implement manual and auto-unregistration """ @inline function registername(service::AbstractService, name::String, actor::Addr) registry = get(service.scheduler.plugins, :registry, nothing) isnothing(registry) && throw(NoRegistryException("Cannot register name $name: Registry plugin not found")) registername(registry, name, actor) end registername(service::AbstractService, name::String, actor::Actor) = registername(service, name, addr(actor)) registername(sdl::AbstractScheduler, name::String, actor_addr) = registername(sdl.service, name, actor_addr) """ function getname(service, name::String)::Union{Addr, Nothing} Return the registered name from the scheduler-local registry, or nothing. See also: [`NameQuery`](@ref) """ @inline function getname(service, name::String)::Union{Addr, Nothing} registry = get(service.scheduler.plugins, :registry, nothing) isnothing(registry) && throw(NoRegistryException("Cannot search for name $name: Registry plugin not found")) return getname(registry, name) end @inline function settimeout(service::AbstractService, actor::Actor, timeout_secs::Real = 0.0) return settimeout(service.scheduler.tokenservice, Timeout(actor, Token(), timeout_secs)) end @inline function cleartimeout(service::AbstractService, token::Token) return cleartimeout(service.scheduler.tokenservice, token) end @inline pos(service::AbstractService) = pos(service.scheduler) # TODO find its place
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
579
abstract type Signal end """ SigTerm(cause=Nothing; exit=Nothing) Signal to terminate an actor. The default handler terminates the actor without delay. """ struct SigTerm <: Signal cause exit::Union{Nothing, Bool} # Whether the scheduler should exit when this was the last actor and no more work SigTerm(cause=nothing; exit=nothing) = new(cause, exit) end onmessage(me::Actor, msg::SigTerm, service) = begin @debug "$(box(me)): Dying on" msg die(service, me; exit=isnothing(msg.exit) ? exitwhenlast(me) : msg.exit) end exitwhenlast(me::Actor) = true
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2324
# SPDX-License-Identifier: MPL-2.0 using LinearAlgebra """ pos(a::Actor)::Pos return the current position of the actor. Call this on a spawned actor to get its position. Throws `UndefRefError` if the actor is not spawned. """ pos(a::Actor) = a.core.pos """ Pos(x::Real, y::Real, z::Real) Pos(coords) A point in the 3D "actor space". You can access the coords by pos.x, pos.y, pos.z. """ struct Pos <: AbstractVector{Float32} coords::Tuple{Float32, Float32, Float32} Pos(x, y, z) = new((x, y, z)) Pos(coords) = new(coords) end dist(a::Pos, b::Pos) = sqrt((a.coords[1]-b.coords[1])^2 + (a.coords[2]-b.coords[2])^2 + (a.coords[3]-b.coords[3])^2) Base.isless(a::Pos, b::Pos) = norm(a) < norm(b) Base.:*(a::Pos, x::Real) = Pos(a.coords[1] * x, a.coords[2] * x, a.coords[3] * x) Base.:/(a::Pos, x::Real) = Pos(a.coords[1] / x, a.coords[2] / x, a.coords[3] / x) Base.:+(a::Pos, b::Pos) = Pos(a.coords[1] + b.coords[1], a.coords[2] + b.coords[2], a.coords[3] + b.coords[3]) Base.:-(a::Pos, b::Pos) = Pos(a.coords[1] - b.coords[1], a.coords[2] - b.coords[2], a.coords[3] - b.coords[3]) Base.getindex(pos::Pos, i::Int) = getindex(pos.coords, i) Base.getproperty(pos::Pos, symbol::Symbol) = (symbol == :x) ? getfield(pos, :coords)[1] : (symbol == :y) ? getfield(pos, :coords)[2] : (symbol == :z) ? getfield(pos, :coords)[3] : getfield(pos, symbol) Base.iterate(pos::Pos) = iterate(pos.coords) Base.iterate(pos::Pos, state) = iterate(pos.coords, state) Base.length(pos::Pos) = length(pos.coords) Base.size(pos::Pos) = 3 Base.show(io::IO, ::MIME"text/plain", pos::Pos) = begin print(io, "Pos($(pos[1]), $(pos[2]), $(pos[3]))") end nullpos = Pos(0, 0, 0) struct EuclideanSpaceImpl <: EuclideanSpace # registered at CircoCore.__init__ EuclideanSpaceImpl(;options...) = new() end posinit() = nullpos posinit(scheduler, actor, actorid) = begin if isdefined(actor, :core) && pos(actor) != nullpos return pos(actor) # Predefined pos or migration end outpos = Ref(nullpos) actorpos = scheduler.hooks.spawnpos(scheduler, actor, outpos) return outpos[] end Plugins.customfield(::Space, ::Type{AbstractCoreState}) = Plugins.FieldSpec("pos", Pos, posinit)
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
754
# SPDX-License-Identifier: MPL-2.0 module Activity using Plugins using ..CircoCore mutable struct SparseActivityImpl <: CircoCore.SparseActivity counter::UInt SparseActivityImpl(;options...) = new(1) end __init__() = Plugins.register(SparseActivityImpl) @inline function CircoCore.localdelivery(as::SparseActivityImpl, scheduler, msg, targetactor) if as.counter == 0 scheduler.hooks.actor_activity_sparse16(scheduler, targetactor) as.counter = rand(UInt8) >> 3 if as.counter % 2 == 1 as.counter -= 1 end if as.counter < 2 scheduler.hooks.actor_activity_sparse256(scheduler, targetactor) end else as.counter -= 1 end return false end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2449
# SPDX-License-Identifier: MPL-2.0 import Base.isless const TIMEOUTCHECK_INTERVAL = 1.0 TokenId = UInt64 struct Token id::TokenId Token() = new(rand(TokenId)) Token(id::TokenId) = new(id) end """ abstract type Tokenized end Tokenized messages can be tracked automatically by the scheduler. When an actor sends out a [`Request`](@ref), a timeout will be set up to track the fulfillment of the request. When a `Response` with the same token is received, the timeout will be cancelled. See also: [`send`](@ref). """ abstract type Tokenized end token(t::Tokenized) = t.token abstract type Request <: Tokenized end abstract type Response <: Tokenized end """ abstract type Failure <: Response end `Failure` is a type of `Response` to a `Request` that fails to fulfill it. """ abstract type Failure <: Response end struct Timer timeout_secs::Float64 end struct Timeout{TCause} watcher::Addr token::Token deadline::Float64 cause::TCause end Timeout(watcher::Actor, token::Token, timeout_secs, cause = Timer(timeout_secs)) = Timeout{typeof(cause)}(addr(watcher), token, Base.Libc.time() + timeout_secs, cause) Base.isless(a::Timeout, b::Timeout) = isless(a.deadline, b.deadline) const TimerTimeout = Timeout{Timer} mutable struct TokenService # TODO <: Plugin next_timeoutcheck_ts::Float64 timeouts::Dict{Token, Timeout} TokenService() = new(Base.Libc.time() + TIMEOUTCHECK_INTERVAL, Dict()) end @inline function settimeout(tokenservice::TokenService, timeout::Timeout) tokenservice.timeouts[timeout.token] = timeout end @inline function cleartimeout(tokenservice::TokenService, token::Token) removed = pop!(tokenservice.timeouts, token, nothing) end @inline function needchecktimeouts!(tokenservice::TokenService) ts = Base.Libc.time() if tokenservice.next_timeoutcheck_ts > ts return false end tokenservice.next_timeoutcheck_ts = ts + TIMEOUTCHECK_INTERVAL return true end # TODO optimize @inline function poptimeouts!(tokenservice::TokenService, currenttime = Base.Libc.time())::Vector{Timeout} retval = Vector{Timeout}() firedtokens = Vector{Token}() for (token, timeout) in tokenservice.timeouts if timeout.deadline < currenttime push!(retval, timeout) push!(firedtokens, token) end end for token in firedtokens delete!(tokenservice.timeouts, token) end return retval end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2964
# SPDX-License-Identifier: MPL-2.0 module UDPPostOffice_ using Plugins using ..CircoCore import ..CircoCore: AbstractCoreState using Serialization using Sockets using DataStructures mutable struct UDPPostOffice <: CircoCore.PostOffice outsocket::UDPSocket inqueue::Deque{Any} stopped::Bool postcode::PostCode socket::UDPSocket intask UDPPostOffice(;options...) = begin return new(UDPSocket(), Deque{Any}(), false) end end __init__() = Plugins.register(UDPPostOffice) addrinit() = nulladdr addrinit(scheduler, actor, actorid) = Addr(postcode(scheduler.plugins[:postoffice]), actorid) Plugins.customfield(::PostOffice, ::Type{AbstractCoreState}) = Plugins.FieldSpec("addr", Addr, addrinit) function allocate_postcode() socket = UDPSocket() ipaddr = Sockets.getipaddr() for port in CircoCore.PORT_RANGE postcode = "$(ipaddr):$port" bound = bind(socket, ipaddr, port) bound || continue @debug "Bound to $postcode" return postcode, socket end throw(PostException("No available port found for a Post Office")) end CircoCore.setup!(post::UDPPostOffice, scheduler) = begin postcode, socket = allocate_postcode() post.postcode = postcode post.socket = socket end CircoCore.schedule_start(post::UDPPostOffice, scheduler) = begin post.intask = @async arrivals(post) # TODO errors throwed here are not logged end CircoCore.schedule_stop(post::UDPPostOffice, scheduler) = begin post.stopped = true yield() end CircoCore.shutdown!(post::UDPPostOffice, scheduler) = close(post.socket) @inline CircoCore.letin_remote(post::UDPPostOffice, scheduler::AbstractScheduler)::Bool = begin for i = 1:min(length(post.inqueue), 30) CircoCore.deliver!(scheduler, popfirst!(post.inqueue)) end return false end function arrivals(post::UDPPostOffice) try while !post.stopped rawmsg = recv(post.socket) # TODO: this blocks, so we will only exit if an extra message comes in after stopping stream = IOBuffer(rawmsg) msg = deserialize(stream) @debug "Postoffice got message $msg" push!(post.inqueue, msg) end catch e if !(e isa EOFError) @info "Exception in arrivals", e end end end function send(post::UDPPostOffice, msg::AbstractMsg) remoteroutes(post, nothing, msg) end @inline function CircoCore.remoteroutes(post::UDPPostOffice, scheduler, msg::AbstractMsg)::Bool @debug "PostOffice delivery at $(postcode(post)): $msg" try parts = split(postcode(target(msg)), ":") ip = parse(IPAddr, parts[1]) port = parse(UInt16, parts[2]) io = IOBuffer() serialize(io, msg) Sockets.send(post.outsocket, ip, port, take!(io)) catch e @error "Unable to send $msg" exception = (e, catch_backtrace()) return false end return true end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
4269
# SPDX-License-Identifier: MPL-2.0 module ZMQPostOffices using Plugins using ..CircoCore import ..CircoCore: AbstractCoreState using Serialization, Sockets using DataStructures import ZMQ mutable struct ZMQPostOffice <: CircoCore.PostOffice outsockets::Dict{PostCode, ZMQ.Socket} inqueue::Deque{Any} stopped::Bool ip::IPv4 postcode::PostCode socket::ZMQ.Socket intask ZMQPostOffice(;zmq_postoffice_ip::Union{IPv4, Nothing}=nothing, _...) = begin if isnothing(zmq_postoffice_ip) zmq_postoffice_ip = haskey(ENV, "ZMQ_POSTOFFICE_IP") ? IPv4(ENV["ZMQ_POSTOFFICE_IP"]) : getipaddr() # TODO support ipv6 end return new(Dict(), Deque{Any}(), false, zmq_postoffice_ip) end end addrinit() = nulladdr addrinit(scheduler, actor, actorid) = Addr(postcode(scheduler.plugins[:postoffice]), actorid) Plugins.customfield(::ZMQPostOffice, ::Type{AbstractCoreState}) = Plugins.FieldSpec("addr", Addr, addrinit) __init__() = Plugins.register(ZMQPostOffice) CircoCore.postcode(post::ZMQPostOffice) = post.postcode CircoCore.addr(post::ZMQPostOffice) = Addr(postcode(post), 0) function allocate_postcode(ip) socket = ZMQ.Socket(ZMQ.PULL) for port in CircoCore.PORT_RANGE try buf = IOBuffer() print(buf, ip) ipstr = String(take!(buf)) postcode = "$(ipstr):$port" ZMQ.bind(socket, "tcp://" * postcode) @info "ZMQPostOffice bound to $postcode" return postcode, socket catch e isa(e, ZMQ.StateError) || rethrow() end end throw(PostException("No available port found for a Post Office")) end CircoCore.setup!(post::ZMQPostOffice, scheduler) = begin postcode, socket = allocate_postcode(post.ip) post.postcode = postcode post.socket = socket end CircoCore.schedule_start(post::ZMQPostOffice, scheduler) = begin post.intask = @async arrivals(post) # TODO errors throwed here are not logged end CircoCore.schedule_stop(post::ZMQPostOffice, scheduler) = begin post.stopped = true yield() end CircoCore.shutdown!(post::ZMQPostOffice, scheduler) = begin close(post.socket) for socket in values(post.outsockets) ZMQ.close(socket) end end @inline CircoCore.letin_remote(post::ZMQPostOffice, scheduler::AbstractScheduler)::Bool = begin for i = 1:min(length(post.inqueue), 30) CircoCore.deliver!(scheduler, popfirst!(post.inqueue)) end return false end function arrivals(post::ZMQPostOffice) try while !post.stopped message = recv(post.socket) stream = convert(IOStream, message) seek(stream, 0) msg = deserialize(stream) push!(post.inqueue, msg) end catch e if !(e isa EOFError) @error "Exception in arrivals" exception = (e, catch_backtrace()) end end end function createsocket!(post::ZMQPostOffice, targetpostcode::PostCode) socket = ZMQ.Socket(ZMQ.PUSH) socketstr = "tcp://" * targetpostcode ZMQ.connect(socket, socketstr) post.outsockets[targetpostcode] = socket return socket end createsocket!(post::ZMQPostOffice, target::Addr) = createsocket!(post, postcode(target)) @inline function getsocket(post::ZMQPostOffice, target::Addr) socket = get(post.outsockets, postcode(target), nothing) if isnothing(socket) return createsocket!(post, target) end return socket end function send(post::ZMQPostOffice, msg::AbstractMsg) remoteroutes(post, nothing, msg) end @inline function send(post::PostOffice, message) #println("Sending out $message") socket = getsocket(post, target(message)) io = IOBuffer() serialize(io, message) ZMQ.send(socket, ZMQ.Message(io)) end @inline function CircoCore.remoteroutes(post::ZMQPostOffice, scheduler, msg::AbstractMsg)::Bool @debug "PostOffice delivery at $(postcode(post)): $msg" try socket = getsocket(post, target(msg)) io = IOBuffer() serialize(io, msg) ZMQ.send(socket, ZMQ.Message(io)) catch e @error "Unable to send $msg" exception = (e, catch_backtrace()) error(42) return false end return true end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2894
# SPDX-License-Identifier: MPL-2.0 # A Zygote creates a Cell which then repeatedly reincarnates and # sends back notifications from lifecycle callbacks. # Both die after DEPTH incarnations. using Test using CircoCore using Plugins const DEPTH = 10 mutable struct Zygote <: Actor{Any} cell_incarnation_count::Int cell_spawn_count::Int cell_death_count::Int core::Any Zygote() = new(0, 0, 0) end mutable struct Cell{T} <: Actor{Any} zygote::Addr core::Any Cell{T}(zygote) where T = new{T}(zygote) end CircoCore.onmessage(me::Zygote, ::OnSpawn, service) = begin child = spawn(service, Cell{Val(1)}(addr(me))) me.cell_incarnation_count = 1 send(service, me, child, Reincarnate()) end struct Reincarnate end getval(v::Val{V}) where V = V getval(c::Cell{T}) where T = getval(T) CircoCore.onmessage(me::Cell, ::Reincarnate, service) = begin depth = getval(me) if depth >= DEPTH die(service, me) else reincarnated = Cell{Val(depth + 1)}(me.zygote) @test become(service, me, reincarnated) == addr(me) send(service, reincarnated, addr(me), Reincarnate()) end end struct Reincarnated addr::Addr end CircoCore.onmessage(me::Cell, msg::OnBecome, service) = begin @test msg.reincarnation isa Cell @test getval(me) + 1 == getval(msg.reincarnation) send(service, me, me.zygote, Reincarnated(addr(me))) end CircoCore.onmessage(me::Zygote, ::Reincarnated, service) = begin me.cell_incarnation_count += 1 end struct Spawned addr::Addr end CircoCore.onmessage(me::Cell, ::OnSpawn, service) = begin send(service, me, me.zygote, Spawned(me)) end CircoCore.onmessage(me::Zygote, msg::Spawned, service) = begin me.cell_spawn_count += 1 end struct Died addr::Addr end CircoCore.onmessage(me::Cell, ::OnDeath, service) = begin send(service, me, me.zygote, Died(me)) end CircoCore.onmessage(me::Zygote, msg::Died, service) = begin me.cell_death_count += 1 die(service, me; exit = true) end struct LifecyclePlugin <: Plugin actor_spawning_calls::Dict{ActorId, Int} LifecyclePlugin(;options...) = new(Dict()) end Plugins.symbol(::LifecyclePlugin) = :lifecycle Plugins.register(LifecyclePlugin) function CircoCore.actor_spawning(p::LifecyclePlugin, scheduler, actor) count = get(p.actor_spawning_calls, box(actor), 0) p.actor_spawning_calls[box(actor)] = count + 1 end @testset "Actor Lifecycle" begin ctx = CircoContext(target_module = @__MODULE__; userpluginsfn = (;options...) -> [LifecyclePlugin]) zygote = Zygote() scheduler = Scheduler(ctx, [zygote]) wait(run!(scheduler; remote = false)) @test zygote.cell_incarnation_count == DEPTH @test zygote.cell_spawn_count == 1 @test zygote.cell_death_count == 1 @test scheduler.plugins[:lifecycle].actor_spawning_calls[box(zygote)] == 1 shutdown!(scheduler) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
608
using Test using CircoCore struct Actor1 <: Actor{Any} core end @testset "ActorStore" begin s = CircoCore.ActorStore(UInt64(1) => Actor1(1), UInt64(2) => Actor1(2)) @test length(s) == 2 @test haskey(s, UInt64(1)) @test s[UInt64(1)].core == 1 @test get(s, UInt64(2), nothing).core == 2 for p in s @test p isa Pair{UInt64, Actor1} end for a in values(s) @test a isa Actor1 end delete!(s, UInt64(1)) @test !haskey(s, UInt64(1)) @test length(s) == 1 s[UInt64(1)] = Actor1(42) @test s[UInt64(1)].core == 42 @test length(s) == 2 end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1976
# SPDX-License-Identifier: MPL-2.0 # This test builds a binary tree of TreeActors, growing a new level for every # Start message received by the TreeCreator. # The growth of every leaf is reported back by its parent to the # TreeCreator, which counts the nodes in the tree. using Test using CircoCore import CircoCore.onmessage struct Start end struct GrowRequest creator::Addr end struct GrowResponse leafsgrown::Int end mutable struct TreeActor{TCore} <: Actor{TCore} left::Addr right::Addr core::TCore end TreeActor(core) = TreeActor(Addr(), Addr(), core) function onmessage(me::TreeActor, message::GrowRequest, service) if CircoCore.isnulladdr(me.left) me.left = spawn(service, TreeActor(emptycore(service))) me.right = spawn(service, TreeActor(emptycore(service))) send(service, me, message.creator, GrowResponse(2)) else send(service, me, me.left, message) send(service, me, me.right, message) end end mutable struct TreeCreator{TCore} <: Actor{TCore} nodecount::Int64 root::Addr core::TCore end TreeCreator(core) = TreeCreator(0, Addr(), core) function onmessage(me::TreeCreator, ::Start, service) if CircoCore.isnulladdr(me.root) me.root = spawn(service, TreeActor(emptycore(service))) me.nodecount = 1 end send(service, me, me.root, GrowRequest(addr(me))) end function onmessage(me::TreeCreator, message::GrowResponse, service) me.nodecount += message.leafsgrown end @testset "Actor" begin @testset "Actor-Tree" begin ctx = CircoContext(;target_module=@__MODULE__) creator = TreeCreator(emptycore(ctx)) scheduler = Scheduler(ctx, [creator]) scheduler(;remote = false) # to spawn the zygote for i in 1:17 send(scheduler, creator, Start()) @time scheduler(;remote = false) @test creator.nodecount == 2^(i+1)-1 end shutdown!(scheduler) end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1804
module ClassicTest using ActorInterfaces.Classic export Pop, Push, StackNode, TestCoordinator struct Pop customer::Addr end struct Push content end struct StackNode content link::Union{Addr, Nothing} end struct Forwarder target::Addr end @ctx function Classic.onmessage(me::Forwarder, msg) send(me.target, msg) end @ctx function Classic.onmessage(me::StackNode, msg::Push) p = spawn(StackNode(me.content, me.link)) become(StackNode(msg.content, p)) end @ctx function Classic.onmessage(me::StackNode, msg::Pop) if !isnothing(me.link) become(Forwarder(me.link)) end send(msg.customer, me.content) end struct TestCoordinator received::Vector{Any} end @ctx function Classic.onmessage(me::TestCoordinator, msg) push!(me.received, msg) end end # module import CircoCore using Test using .ClassicTest @testset "Stack" begin ctx = CircoCore.CircoContext(;target_module=@__MODULE__) s = CircoCore.Scheduler(ctx) CircoCore.run!(s) stack = StackNode(nothing, nothing) stackaddr = CircoCore.spawn(s, stack) coordinator = TestCoordinator([]) coordaddr = CircoCore.spawn(s, coordinator) CircoCore.send(s, stackaddr, Push(42)) CircoCore.send(s, stackaddr, Push(43)) @test length(coordinator.received) == 0 CircoCore.send(s, stackaddr, Pop(coordaddr)) sleep(0.05) @test coordinator.received == Any[43] CircoCore.send(s, stackaddr, Pop(coordaddr)) sleep(0.05) @test coordinator.received == Any[43, 42] CircoCore.send(s, stackaddr, Pop(coordaddr)) sleep(0.05) @test coordinator.received == Any[43, 42, nothing] CircoCore.send(s, stackaddr, Pop(coordaddr)) sleep(0.05) @test coordinator.received == Any[43, 42, nothing, nothing] CircoCore.shutdown!(s) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2713
# SPDX-License-Identifier: MPL-2.0 using Test using CircoCore import CircoCore: onmessage const TARGET_COUNT = 13 const EVENT_COUNT = 133 struct Start end struct NonTopicEvent <: Event value::String end struct TopicEvent <: Event topic::String value::String end mutable struct TestEventSource{TCore} <: Actor{TCore} eventdispatcher::Addr core::TCore end TestEventSource(core) = TestEventSource(Addr(), core) CircoCore.traits(::Type{<:TestEventSource}) = (EventSource,) mutable struct EventTarget{TCore} <: Actor{TCore} received_nontopic_count::Int64 received_topic_count::Int64 core::TCore end EventTarget(core) = EventTarget(0, 0, core) function onmessage(me::TestEventSource, ::OnSpawn, service) registername(service, "eventsource", me) end function onmessage(me::EventTarget, ::OnSpawn, service) eventsource = getname(service, "eventsource") send(service, me, eventsource, Subscribe(NonTopicEvent, addr(me))) send(service, me, eventsource, Subscribe(TopicEvent, addr(me), "topic3")) send(service, me, eventsource, Subscribe(TopicEvent, addr(me), "topic4")) send(service, me, eventsource, Subscribe(TopicEvent, addr(me), event -> event.topic == "topic5")) end function onmessage(me::TestEventSource, message::Start, service) for i=1:EVENT_COUNT fire(service, me, NonTopicEvent("Test event #$i")) fire(service, me, TopicEvent("topic$i", "Topic event #$i")) end end function onmessage(me::EventTarget, message::NonTopicEvent, service) me.received_nontopic_count += 1 end function onmessage(me::EventTarget, message::TopicEvent, service) me.received_topic_count += 1 end @testset "Event" begin ctx = CircoContext(;target_module=@__MODULE__) source = TestEventSource(emptycore(ctx)) targets = [EventTarget(emptycore(ctx)) for i=1:TARGET_COUNT] scheduler = Scheduler(ctx, [source; targets]) scheduler(;remote = false) # to spawn the zygote send(scheduler, source, Start()) scheduler(;remote = false) for target in targets @test target.received_nontopic_count == EVENT_COUNT @test target.received_topic_count == 3 end # unsubscribe and rerun send(scheduler, source, UnSubscribe(addr(source), TopicEvent)) send(scheduler, source, Start()) scheduler(;remote = false) for target in targets @test target.received_nontopic_count == 2 * EVENT_COUNT @test target.received_topic_count == 3 end send(scheduler, source, SigTerm()) @test CircoCore.is_scheduled(scheduler, source.eventdispatcher) scheduler(;remote = false) @test !CircoCore.is_scheduled(scheduler, source.eventdispatcher) shutdown!(scheduler) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2453
# SPDX-License-Identifier: MPL-2.0 using Test, Printf using CircoCore mutable struct PingPonger{TCore} <: Actor{TCore} peer::Union{Addr, Nothing} pings_sent::Int64 pongs_got::Int64 core::TCore end PingPonger(peer, core) = PingPonger(peer, 0, 0, core) struct Ping end struct Pong end struct CreatePeer end @inline function sendping(service, me::PingPonger) send(service, me, me.peer, Ping()) me.pings_sent += 1 end @inline function sendpong(service, me::PingPonger) send(service, me, me.peer, Pong()) end function CircoCore.onmessage(me::PingPonger, message::CreatePeer, service) peer = PingPonger(addr(me), emptycore(service)) me.peer = spawn(service, peer) sendping(service, me) end @inline function CircoCore.onmessage(me::PingPonger, ::Ping, service) sendpong(service, me) end @inline function CircoCore.onmessage(me::PingPonger, ::Pong, service) me.pongs_got += 1 sendping(service, me) end const PINGER_PARALLELISM = 1 @testset "PingPong" begin ctx = CircoContext(;target_module=@__MODULE__, profile=CircoCore.Profiles.MinimalProfile(), userpluginsfn=()->[CircoCore.PostOffice]) pingers = [PingPonger(nothing, emptycore(ctx)) for i=1:PINGER_PARALLELISM] scheduler = Scheduler(ctx, pingers) scheduler(;remote = false) # to spawn the zygote for pinger in pingers send(scheduler, pinger, CreatePeer()) end schedulertask = @async scheduler(; remote = false) @info "Sleeping to allow ping-pong to start." sleep(3.0) for pinger in pingers @test pinger.pings_sent > 1e3 @test pinger.pongs_got > 1e3 end @info "Measuring ping-pong performance (10 secs)" startpingcounts = [pinger.pings_sent for pinger in pingers] startts = Base.time_ns() sleep(4.0) rounds_made = sum([pingers[i].pings_sent - startpingcounts[i] for i=1:length(pingers)]) wall_time_used = Base.time_ns() - startts for pinger in pingers @test pinger.pings_sent > 1e3 @test pinger.pongs_got > 1e3 end shutdown!(scheduler) sleep(0.001) endpingcounts = [pinger.pings_sent for pinger in pingers] sleep(0.1) for i = 1:length(pingers) @test pingers[i].pongs_got in [pingers[i].pings_sent, pingers[i].pings_sent - 1] @test endpingcounts[i] === pingers[i].pings_sent end @printf "In-thread ping-pong performance: %f rounds/sec\n" (rounds_made / wall_time_used * 1e9) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
384
# SPDX-License-Identifier: MPL-2.0 # julia -i -q --color=yes --project revise.jl example using Revise, Jive using CircoCore trigger = function (path) printstyled("changed ", color=:cyan) println(path) revise() runtests(@__DIR__, skip=["revise.jl"]) end watch(trigger, @__DIR__, sources=[pathof(CircoCore)]) trigger("") Base.JLOptions().isinteractive==0 && wait()
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
113
# SPDX-License-Identifier: MPL-2.0 using Jive runtests(@__DIR__, skip=["revise.jl", "remotesend/remotesend.jl"])
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
3464
# SPDX-License-Identifier: MPL-2.0 using Test using CircoCore using Plugins struct StartMsg end struct Die exit::Bool end mutable struct Dummy <: Actor{Any} core::Any diemessagearrived::Bool Dummy(core) = new(core, false) end function CircoCore.onmessage(me::Dummy, msg::Die, service) me.diemessagearrived = true die(service, me; exit = msg.exit) end function createDummyActors(numberOfActor, ctx) actors = [] while numberOfActor != 0 push!(actors, Dummy(emptycore(ctx))) numberOfActor -= 1 end return actors end function validateActors(actors::Vector{Any}, expectedValue::Bool) # every actor has the same diemessagearrived fieldvalue @test mapreduce(a -> a.diemessagearrived, *, actors) == expectedValue end @testset "Scheduler" begin @testset "Scheduler with remote = false and exit = false" begin ctx = ctx = CircoContext(target_module = @__MODULE__) dummy = Dummy(emptycore(ctx)) sdl = Scheduler(ctx, []) spawn(sdl, dummy) @test isempty(sdl.msgqueue) @test sdl.actorcount >= sdl.startup_actor_count @test dummy.diemessagearrived == false send(sdl, dummy, StartMsg()) @test !isempty(sdl.msgqueue) sdl(;remote = false) @test isempty(sdl.msgqueue) @test sdl.actorcount >= sdl.startup_actor_count @test dummy.diemessagearrived == false shutdown!(sdl) end @testset "Scheduler with remote false and exiting true" begin ctx = ctx = CircoContext(target_module = @__MODULE__) dummy = Dummy(emptycore(ctx)) sdl = Scheduler(ctx, []) spawn(sdl, dummy) @test isempty(sdl.msgqueue) @test sdl.actorcount >= sdl.startup_actor_count @test dummy.diemessagearrived == false send(sdl, dummy, Die(true)) @test !isempty(sdl.msgqueue) sdl(;remote = false) @test isempty(sdl.msgqueue) @test sdl.actorcount == sdl.startup_actor_count @test dummy.diemessagearrived == true shutdown!(sdl) end @testset "Scheduler with remote true and exiting true, more Actor" begin ctx = CircoContext(target_module = @__MODULE__) actors = createDummyActors(10, ctx) finishedSignal = Channel{}(2) sdl = Scheduler(ctx, []) map(a -> spawn(sdl, a), actors) @async begin sdl(;remote = true) #stops when all actors die @test isempty(sdl.msgqueue) @test sdl.actorcount == sdl.startup_actor_count # if every body got the Die message that means the scheduler didn't exited when got the first exit = true "call" validateActors(actors, true) put!(finishedSignal, true) end @test isempty(sdl.msgqueue) @test sdl.actorcount >= sdl.startup_actor_count validateActors(actors, false) for index in eachindex(actors) dummy = actors[index] send(sdl, dummy, Die(true)) sleep(0.8) @test isempty(sdl.msgqueue) @test sdl.actorcount + index - length(actors) == sdl.startup_actor_count @test dummy.diemessagearrived == true end @test take!(finishedSignal) shutdown!(sdl) end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
596
module SignalTest using Test using CircoCore mutable struct SigTest <: Actor{Any} core end @testset "SigTerm" begin ctx = CircoContext(;target_module=@__MODULE__) tester = SigTest(emptycore(ctx)) scheduler = Scheduler(ctx, [tester]) scheduler(;remote = false) @test CircoCore.is_scheduled(scheduler, tester) == true send(scheduler, tester, SigTerm()) actorcount = scheduler.actorcount scheduler(;remote = false) @test CircoCore.is_scheduled(scheduler, tester) == false @test scheduler.actorcount == actorcount - 1 shutdown!(scheduler) end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
996
# SPDX-License-Identifier: MPL-2.0 using Test using CircoCore using Plugins struct SchedulerMock hooks SchedulerMock() = new(( actor_activity_sparse16 = (scheduler, actor) -> actor.count16 += 1, actor_activity_sparse256 = (scheduler, actor) -> actor.count256 += 1 )) end struct HooksMock actor_activity_sparse16 actor_activity_sparse256 end mutable struct ActorMock count16::Int count256::Int end const NUM_SAMPLES = 20000 @testset "SparseActivity" begin scheduler = SchedulerMock() as = CircoCore.Activity.SparseActivityImpl() actor = ActorMock(0, 0) for i = 1:NUM_SAMPLES CircoCore.localdelivery(as, scheduler, nothing, actor) end println("sparse16: $(actor.count16 / NUM_SAMPLES) vs $(1 / 16)") println("sparse256: $(actor.count256 / NUM_SAMPLES) vs $(1 / 256)") @test isapprox(actor.count16 / NUM_SAMPLES, 1 / 16; atol = 0.06) @test isapprox(actor.count256 / NUM_SAMPLES, 1 / 256; atol = 0.03) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
2317
# SPDX-License-Identifier: MPL-2.0 module TokenTest using Test using Dates using CircoCore MESSAGE_COUNT = 201 struct TRequest <: Request id::UInt64 token::Token TRequest(id) = new(id, Token()) end mutable struct Requestor{TCore} <: Actor{TCore} replycount::Int failurecount::Int timeoutcount::Int responder::Addr core::TCore Requestor(core) = new{typeof(core)}(0, 0, 0, Addr(), core) end struct TReply <: Response requestid::UInt64 token::Token end struct TFailure <: Failure requestid::UInt64 token::Token end mutable struct Responder{TCore} <: Actor{TCore} core::TCore end CircoCore.onmessage(me::Responder, ::OnSpawn, service) = begin registername(service, string(TRequest), me) end CircoCore.onmessage(me::Requestor, ::OnSpawn, service) = begin registername(service, "requestor", me) me.responder = getname(service, string(TRequest)) for i=1:MESSAGE_COUNT send(service, me, me.responder, TRequest(i); timeout = 2.0) end end CircoCore.onmessage(me::Responder, req::TRequest, service) = begin if req.id % 3 == 1 send(service, me, getname(service, "requestor"), TReply(req.id, req.token)) end if req.id % 3 == 2 send(service, me, getname(service, "requestor"), TFailure(req.id, req.token)) end if req.id == MESSAGE_COUNT die(service, me) end end CircoCore.onmessage(me::Requestor, resp::TReply, service) = begin me.replycount += 1 end CircoCore.onmessage(me::Requestor, resp::TFailure, service) = begin me.failurecount += 1 end CircoCore.onmessage(me::Requestor, timeout::Timeout, service) = begin me.timeoutcount += 1 if me.timeoutcount == MESSAGE_COUNT / 3 println("Got $(me.timeoutcount) timeouts, exiting.") die(service, me; exit=true) end end @testset "Token" begin ctx = CircoContext(;target_module=@__MODULE__) requestor = Requestor(emptycore(ctx)) responder = Responder(emptycore(ctx)) scheduler = Scheduler(ctx, [responder, requestor]) scheduler(;remote=true) @test requestor.responder == addr(responder) @test requestor.replycount == MESSAGE_COUNT / 3 @test requestor.failurecount == MESSAGE_COUNT / 3 @test length(scheduler.tokenservice.timeouts) == 0 shutdown!(scheduler) end end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1650
module TraitTest using CircoCore using Test abstract type MyMsg end struct NonTraitedMsg <: MyMsg a end struct AllTraitMsg <: MyMsg a end struct SecondTraitMsg <: MyMsg a end struct Trait1 end struct Trait2 config::Int end struct Trait3 end mutable struct TraitTester <: Actor{Any} gotmessages core TraitTester() = new([]) end CircoCore.traits(::Type{TraitTester}) = (Trait1, Trait2(42), Trait3) CircoCore.ontraitmessage(t::Union{Trait1, Trait2, Trait3}, me, msg::AllTraitMsg, service) = begin push!(me.gotmessages, (typeof(t), msg)) end CircoCore.ontraitmessage(t::Trait2, me, msg::SecondTraitMsg, service) = begin push!(me.gotmessages, (typeof(t), t.config, msg)) end CircoCore.onmessage(me::TraitTester, msg::MyMsg, service) = begin push!(me.gotmessages, (Nothing, msg)) end @testset "Trait Order" begin ctx = CircoContext(;target_module=@__MODULE__) tester = TraitTester() scheduler = Scheduler(ctx, [tester]) scheduler(;remote=false) send(scheduler, tester, SecondTraitMsg(2)) send(scheduler, tester, AllTraitMsg(1)) send(scheduler, tester, NonTraitedMsg(3)) scheduler(;remote=false) @test tester.gotmessages[1] == (Trait2, 42, SecondTraitMsg(2)) @test tester.gotmessages[2] == (Nothing, SecondTraitMsg(2)) @test tester.gotmessages[3] == (Trait1, AllTraitMsg(1)) @test tester.gotmessages[4] == (Trait2, AllTraitMsg(1)) @test tester.gotmessages[5] == (Trait3, AllTraitMsg(1)) @test tester.gotmessages[6] == (Nothing, AllTraitMsg(1)) @test tester.gotmessages[7] == (Nothing, NonTraitedMsg(3)) shutdown!(scheduler) end end # module
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
149
# SPDX-License-Identifier: MPL-2.0 REMOTE_TEST_PAYLOAD = "Sent remotely" MESSAGE_COUNT = 3752 struct TestMessage id::UInt64 data::String end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
667
using CircoCore include("remotesend-base.jl") ctx = CircoContext(;target_module=@__MODULE__) println(@__MODULE__) function sendtoremote(receiveraddress) scheduler = Scheduler(ctx) println("Sending out $MESSAGE_COUNT messages to $receiveraddress") @time begin sentout = 0 while sentout < MESSAGE_COUNT for i in 1:min(100, MESSAGE_COUNT - sentout) send(scheduler, Addr(receiveraddress), TestMessage(i, REMOTE_TEST_PAYLOAD)) sentout += 1 end scheduler(;remote = false) sleep(0.1) end end println("Messages sent.") shutdown!(scheduler) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
code
1283
using Test using CircoCore import CircoCore.onmessage include("remotesend-base.jl") mutable struct Receiver{TCore} <: Actor{TCore} messages::Array{TestMessage} core::TCore end Receiver(core) = Receiver(TestMessage[], core) function onmessage(me::Receiver, message::TestMessage, service) push!(me.messages, message) if length(me.messages) >= MESSAGE_COUNT die(service, me; exit = true) end end function startsender(receiveraddress) prefix = endswith(pwd(), "test") ? "" : "test/" source = "include(\"$(prefix)remotesend/remotesend-sender.jl\");sendtoremote(\"$receiveraddress\")" run(pipeline(Cmd(["julia", "--project", "-e", source]);stdout=stdout,stderr=stderr);wait=false) end @testset "Remote Send" begin ctx = CircoContext(;target_module=@__MODULE__) receiver = Receiver(emptycore(ctx)) scheduler = Scheduler(ctx) spawn(scheduler, receiver) sender = startsender(addr(receiver)) scheduler(;remote = false) wait(sender) # Do not print test results before sender exit logs @test length(receiver.messages) == MESSAGE_COUNT @test receiver.messages[end].data == REMOTE_TEST_PAYLOAD @test receiver.messages[1].id == 1 #@test receiver.messages[end].id == MESSAGE_COUNT shutdown!(scheduler) end
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git