licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
docs
487
[![CI](https://github.com/Circo-dev/CircoCore.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/Circo-dev/CircoCore.jl/actions/workflows/ci.yml) [![codecov.io](http://codecov.io/github/Circo-dev/CircoCore.jl/coverage.svg?branch=master)](http://codecov.io/github/Circo-dev/CircoCore.jl?branch=master) CircoCore.jl is the small inner core of the Circo decentralized actor system. As a normal user you probably want to check out the main repo: https://github.com/Circo-dev/Circo
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
docs
593
# Introducing CircoCore.jl CircoCore.jl is the small inner core of the [Circo](https://github.com/Circo-dev/Circo) actor system. You may want to use the full-featured system directly. CircoCore.jl provides a single-threaded actor scheduler with a powerful plugin architecture, plus a few plugins to serve minimalistic use cases. Circo extends this system with plugins that provide multithreading, clustering, debugging, interoperability and more. The main goal of separating these packages is to allow alternative implementations of the high level functionality. (like kernel and distros)
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MPL-2.0" ]
0.2.21
693005fe9ead5e4a74af9fb943e7c37ff635ef08
docs
67
# Reference ```@index ``` ```@autodocs Modules = [CircoCore] ```
CircoCore
https://github.com/Circo-dev/CircoCore.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
643
using CryptoMarketData using Documenter DocMeta.setdocmeta!(CryptoMarketData, :DocTestSetup, :(using CryptoMarketData); recursive=true) makedocs(; modules=[CryptoMarketData], authors="contributors", sitename="CryptoMarketData.jl", format=Documenter.HTML(; canonical="https://g-gundam.github.io/CryptoMarketData.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", "API" => "api.md", "Exchanges" => "exchanges.md", "Examples" => "examples.md" ], ) deploydocs(; repo="github.com/g-gundam/CryptoMarketData.jl", devbranch="main", )
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
13433
module CryptoMarketData using URIs using HTTP using JSON3 using TimeZones using Dates using NanoDates using DataStructures using DocStringExtensions using CSV using DataFrames using DataFramesMeta # Every exchange implements its own subtype of these. abstract type AbstractExchange end abstract type AbstractCandle end # This is used to contain WebSocket sessions and interact with them. # It's generic and can be used for any exchange. @kwdef mutable struct Session url::URI commands::Union{Channel, Missing} messages::Union{Channel, Missing} ws::Union{HTTP.WebSocket, Missing} task::Union{Task, Missing} end # Include NHDaly/Select locally. # It may be old and unmaintained, but I like the way it works. # When a better way to wait on multiple channels appears, I'll switch. include("Select.jl") # unexported utility functions include("helpers.jl") # exported exchange-specific structures and methods include("exchanges/binance.jl") # DONE include("exchanges/bitget.jl") # DONE include("exchanges/bitmex.jl") # DONE include("exchanges/bitstamp.jl") # DONE include("exchanges/bybit.jl") # DONE include("exchanges/pancakeswap.jl") # DONE # general functions export get_saved_markets # general functions that operate on exchanges export save! export load export earliest_candle export get_candles_for_day export save_day! # functions with exchange-specific methods export csv_headers export csv_select export ts2datetime_fn export candle_datetime export short_name export candles_max export get_markets export get_candles export subscribe """ get_markets(exchange) Fetch the available markets for the given exchange. # Example ```julia-repl julia> bitstamp = Bitstamp() julia> markets = get_markets(bitstamp) ``` """ CryptoMarketData.get_markets(exchange) """ subscribe(url::String) This is a convenience method that accepts URLs as strings. """ function subscribe(url::String) uri = URI(url) subscribe(uri) end """ subscribe(uri::URI) This is the general version of websocket subscription that the other exchange-specific versions of subscribe are built on. It connects to the given uri and returns a struct that contains two Channels that can be used to interact with the WebSocket. # Example ```julia-repl julia> using URIs, JSON3 julia> s = subscribe(URI("wss://ws.bitstamp.net")) CryptoMarketData.Session(URI("wss://ws.bitstamp.net"), missing, missing, missing, Task (runnable) @0x00007970dac63d00) julia> btcusd_subscribe = Dict(:event => "bts:subscribe", :data => Dict(:channel => "live_trades_btcusd")) Dict{Symbol, Any} with 2 entries: :event => "bts:subscribe" :data => Dict(:channel=>"live_trades_btcusd") julia> put!(s.commands, JSON3.write(btcusd_subscribe)) "{\"event\":\"bts:subscribe\",\"data\":{\"channel\":\"live_trades_btcusd\"}}" julia> s.messages Channel{Any}(32) (2 items available) julia> take!(s.messages) "{\"event\":\"bts:subscription_succeeded\",\"channel\":\"live_trades_btcusd\",\"data\":{}}" julia> JSON3.read(take!(s.messages)) JSON3.Object{Base.CodeUnits{UInt8, String}, Vector{UInt64}} with 3 entries: :data => {… :channel => "live_trades_btcusd" :event => "trade" ``` """ function subscribe(uri::URI) session = Session(uri, missing, missing, missing, missing) handler = function (ws) session.ws = ws session.commands = Channel(32) session.messages = Channel(32) do ch while true msg = WebSockets.receive(ws) put!(ch, msg) end end try while true command = take!(session.commands) WebSockets.send(session.ws, command) end catch e @warn "exception, restart" sleep(0.10) # TODO: debounce the websocket reconnection session.task = Threads.@spawn WebSockets.open(handler, uri) end end session.task = Threads.@spawn WebSockets.open(handler, uri) return session end """ $(SIGNATURES) Return a DataFrame that lists the currently saved markets. # Keyword Arguments * datadir="./data" - directory where saved data is stored # Example ```julia-repl julia> saved = get_saved_markets() 10×4 DataFrame Row │ exchange market start stop │ Any Any Any Any ─────┼─────────────────────────────────────────────────────── 1 │ binance BTCUSD_240628 2023-12-29 2024-02-17 2 │ binance BTCUSD_PERP 2020-08-11 2020-08-16 3 │ bitget BTCUSD_DMCBL 2019-04-23 2024-02-16 4 │ bitget DOGEUSD_DMCBL 2024-02-01 2024-02-20 5 │ bitmex ETHUSD 2018-08-02 2024-02-19 6 │ bitstamp BTCUSD 2011-08-18 2024-02-25 7 │ bybit ADAUSD 2022-03-24 2022-04-21 8 │ bybit-inverse ADAUSD 2022-03-24 2022-04-20 9 │ bybit-linear 10000LADYSUSDT 2023-05-11 2024-03-04 10 │ pancakeswap BTCUSD 2023-03-15 2024-03-04 ``` """ function get_saved_markets(; datadir="./data") @debug "datadir" datadir df = DataFrame(exchange=[], market=[], start=[], stop=[]) exchanges = readdir(datadir) for ex in exchanges markets = readdir("$(datadir)/$(ex)") for mk in markets csv_a = first_csv("$(datadir)/$(ex)/$(mk)") csv_b = last_csv("$(datadir)/$(ex)/$(mk)") start = if ismissing(csv_a) missing else _filename_to_date(csv_a) end stop = if ismissing(csv_b) missing else _filename_to_date(csv_b) end df = vcat(df, DataFrame(exchange=[ex], market=[mk], start=[start], stop=[stop])) end end return df end """ $(SIGNATURES) Download 1m candles from the given exchange and market, and save them locally. # Keyword Arguments * datadir="./data" - directory where saved data is stored * startday - a `Date` to start fetching candles from * endday - a `Date` to stop fetching candles * delay - a delay to be passed to `sleep()` that will pause between internal calls to `save_day!()` # Example ```julia-repl julia> bitstamp = Bitstamp() julia> save!(bitstamp, "BTC/USD", endday=Date("2020-08-16")) ``` """ function save!(exchange::AbstractExchange, market; datadir="./data", startday=missing, endday=today(tz"UTC"), delay=0.5) # make directories if they don't already exist outdir = joinpath(datadir, short_name(exchange), replace(market, "/" => "")) mkpath(outdir) # figure out what day we're on csv_name = last_csv(outdir) current_day = missing if !ismissing(startday) current_day = Date(startday) elseif ismissing(csv_name) first_candle = earliest_candle(exchange, market) current_day = Date(candle_datetime(first_candle)) else csv_date = Date(replace(csv_name, ".csv" => "")) lines = countlines(joinpath(outdir, csv_name)) if lines > 1440 current_day = csv_date + Dates.Day(1) else current_day = csv_date end end while current_day <= endday cs = get_candles_for_day(exchange, market, current_day) @info current_day length(cs) save_day!(exchange, market, cs) current_day = current_day + Dates.Day(1) sleep(delay) end end """ save_day!(exchange, market, candles; datadir="./data") Save a day worth of 1m candles the caller provides for the given exchange and market. # Keyword Arguments * datadir="./data" - directory where saved data is stored """ function save_day!(exchange::AbstractExchange, market, candles; datadir="./data") current_day = Date(candle_datetime(candles[1])) outdir = joinpath(datadir, short_name(exchange), replace(market, "/" => "")) outfile = outdir * "/" * Dates.format(current_day, "yyyy-mm-dd") * ".csv" CSV.write(outfile, candles |> DataFrame) end """ earliest_candle(exchange, market) Return the earliest candle for the given market in the 1m timeframe. """ function earliest_candle(exchange::AbstractExchange, market; endday=today(tz"UTC")) # starting from the current day stop = DateTime(endday) max = candles_max(exchange; tf=Day(1)) start = stop - Dates.Day(max) candles = missing # grab as many (large timeframe like 1d) candles as is allowed and while true @debug "ec" start stop candles = get_candles(exchange, market; tf=Day(1), start=start, stop=stop, limit=max) length(candles) == max || break stop = start start = stop - Dates.Day(max) end @debug "after 1d" # work backwards until a result with fewer items than the limit is reached. # go to the earliest day first_day = floor(candle_datetime(candles[1]), Dates.Day) half_way = first_day + Dates.Hour(12) end_of_day = half_way + Dates.Hour(12) # there are 1440 minutes in a day. # grab 720 candles # XXX :: hopefully candles_max(exchange) > 720 @debug "1m" first_day (:start => half_way) (:stop => end_of_day) candles2 = get_candles(exchange, market; tf=Minute(1), start=half_way, stop=end_of_day - Minute(1), limit=720) # start at later half of the day # if less than 720 returned, we've found the earliest candle if length(candles2) < 720 @debug "< 720" length(candles2) return candles2[1] else # if not, go to earlier half of the day # grab 720 more candles @debug ">= 720" first_day half_way candles3 = get_candles(exchange, market; tf=Minute(1), start=first_day, stop=half_way - Minute(1), limit=720) if length(candles3) == 0 @debug "length(candles3) == 0" return candles2[1] else @debug "ok" length(candles3) length(candles2) return candles3[1] end end # it better be less than 720 returned and earliest candle found # if not? there's a bug. end """ get_candles_for_day(exchange, market, day::Date) Fetch all of the 1m candles for the given exchange, market, and day. The vector and candles returned is just the right size to save to the archives. """ function get_candles_for_day(exchange::AbstractExchange, market, day::Date) limit = candles_max(exchange) # tf exists to get around a special case for binance n_reqs = convert(Int64, ceil(1440 / limit)) # number of requests l_preq = convert(Int64, 1440 / n_reqs) # limit per request candles = [] current_ts = DateTime(day) stop_ts = current_ts + Dates.Minute(l_preq - 1) for _ in 1:n_reqs c = get_candles(exchange, market; start=current_ts, stop=stop_ts, limit=l_preq) append!(candles, c) current_ts = stop_ts + Dates.Minute(1) stop_ts = current_ts + Dates.Minute(l_preq - 1) end candles end """ $(SIGNATURES) Load candles for the given exchange and market from the file system. # Keyword Arguments * datadir="./data" - directory where saved data is stored * span - a `Date` span that defines what Dates to load candles. If it's `missing`, load everything. * tf - a `Period` that is used to aggregate 1m candles into higher timeframes. * table - a Tables.jl-compatible struct to load candles into. The default is `DataFrame`. # Example ```julia-repl julia> bitstamp = Bitstamp() julia> btcusd4h = load(bitstamp, "BTC/USD"; span=Date("2024-01-01"):Date("2024-02-10"), tf=Hour(4)) ``` """ function load(exchange::AbstractExchange, market; datadir="./data", span=missing, tf::Union{Period,Missing}=missing, table=DataFrame) indir = joinpath(datadir, short_name(exchange), replace(market, "/" => "")) cfs = readdir(indir; join=true) if !ismissing(span) if typeof(span) <: UnitRange cfs = cfs[span] elseif typeof(span) <: StepRange # convert span to UnitRange a = _d2i(first(span), cfs) b = _d2i(last(span), cfs) cfs = cfs[range(a, b)] end end res = missing headers = csv_headers(exchange) select = csv_select(exchange) #csv_read = (cf) -> CSV.read(cf, table; headers=headers, select=select, skipto=2) for cf in cfs csv = CSV.read(cf, table; header=headers, select=select, skipto=2) csv[!, :ts] = map(ts2datetime_fn(exchange), csv[!, :ts]) if ismissing(res) res = csv else append!(res, csv) end end # Do optional timeframe summarization if ismissing(tf) return res else return @chain res begin @transform(:ts2 = floor.(:ts, tf)) groupby(:ts2) # LSP doesn't know the @chain macro is doing magic. @combine begin :o = first(:o) :h = maximum(:h) :l = minimum(:l) :c = last(:c) :v = sum(:v) end @select(:ts = :ts2, :o, :h, :l, :c, :v) end end end end #= using CryptoMarketData using DataFrames using DataFramesMeta using NanoDates using Dates 1 + 1 b = 9 c = 9 markets = get_saved_markets() pancakeswap = PancakeSwap() bitstamp = Bitstamp() btcusd = load(bitstamp, "BTCUSD"; tf=Minute(1), span=Date("2024-01-01"):Date("2024-01-02")) s = subscribe(pancakeswap) # s for websocket session =#
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
20048
module Select using Nullables export @select # ========================================================================================= # Custom concurrency primitives needed to support `@select` # ------------------ function isready_put(c::Channel, sibling_tasks) # TODO: To fix the circular dependency, I think it might be enough to just add a check # here that there is at least one ready task that _isn't_ one of our siblings! We can # take another argument to this function, which is the list of tasks, and cross-reference it? return if Base.isbuffered(c) length(c.data) != c.sz_max else # TODO: No this isn't enough. I need to do it for the _wait_ function, not the wait_put. :'( #@info sibling_tasks #@info "isready_put:" (!isempty(c.cond_take.waitq))#, collect(c.cond_take.waitq)) !isempty(c.cond_take.waitq) && any(t->!in(t, sibling_tasks), c.cond_take.waitq) end end function wait_put(c::Channel, sibling_tasks) #isready_put(c, sibling_tasks) && return # TODO: Is this sufficiently thread-safe? lock(c) try while !isready_put(c, sibling_tasks) Base.check_channel_state(c) wait(c.cond_put) # Can be cancelled while waiting here... end finally unlock(c) end nothing end isready_wait_nosibs(c::Channel, sibling_tasks) = n_avail_nosibs(c, sibling_tasks) > 0 function n_avail_nosibs(c::Channel, sibling_tasks) if Base.isbuffered(c) length(c.data) else #@info "isready_wait_nosibs:" (isempty(c.cond_put.waitq), collect(c.cond_put.waitq)) length(filter(t->0==count(x->x==t, sibling_tasks), collect(c.cond_put.waitq))) end end function wait_nosibs(c::Channel, sibling_tasks) # I don't understand why its okay to access this outside the lock...? #isready_wait_nosibs(c, sibling_tasks) && return lock(c) try while !isready_wait_nosibs(c, sibling_tasks) Base.check_channel_state(c) wait(c.cond_wait) end finally unlock(c) end nothing end wait_select(c::Channel, parent_task, sibling_tasks) = wait_nosibs(c, sibling_tasks) wait_select(c::Base.GenericCondition, parent_task, sibling_tasks) = wait_from_parent(c, parent_task) wait_select(x, parent_task, sibling_tasks) = wait(x) # ---- Conditions --------- assert_parent_haslock(c::Base.GenericCondition, parent_task) = assert_parent_haslock(c.lock, parent_task) assert_parent_haslock(l::ReentrantLock, parent_task) = (islocked(l) && l.locked_by === parent_task) ? nothing : Base.concurrency_violation() assert_parent_haslock(l::Base.AlwaysLockedST, parent_task) = (islocked(l) && l.ownertid === parent_task) ? nothing : Base.concurrency_violation() function wait_from_parent(c::Base.GenericCondition, parent_task) ct = current_task() # Note that the parent task is guaranteed to be blocking on us, so this is okay. assert_parent_haslock(c, parent_task) push!(c.waitq, ct) token = unlockall_from_parent(c.lock, parent_task) try return wait() catch ct.queue === nothing || Base.list_deletefirst!(ct.queue, ct) rethrow() finally # Note that now _this task_ gets the lock, so we can execute the remaining body w/ the lock Base.relockall(c.lock, token) # eww, manually re-assign the parent to own this lock c.lock.locked_by = parent_task end end function unlockall_from_parent(rl::ReentrantLock, parent_task) n = rl.reentrancy_cnt rl.locked_by === parent_task || error("unlock from wrong thread") n == 0 && error("unlock count must match lock count") lock(rl.cond_wait) rl.reentrancy_cnt = 0 rl.locked_by = nothing if !isempty(rl.cond_wait.waitq) try notify(rl.cond_wait) catch unlock(rl.cond_wait) rethrow() end end unlock(rl.cond_wait) return n end # ========================================================================================= ## Implementation of 'select' mechanism to block on the disjunction of ## of 'waitable' objects. @enum SelectClauseKind SelectPut SelectTake SelectDefault # Represents a single parsed select "clause" of a @select macro call. # eg, the (channel |> value) part of # @select if channel |> value # println(value) # ... # end struct SelectClause{ChannelT, ValueT} kind::SelectClauseKind channel::Nullable{ChannelT} value::Nullable{ValueT} end const select_take_symbol = :|> const select_put_symbol = :<| # A 'structured' select clause is one of the form "channel|>val" or # "channel<|val". All other clauses are considered "non-structured", meaning # the entire clause is assumed to be an expression that evaluates to a # conditional to which "_take!" will be applied. is_structured_select_clause(clause::Expr) = clause.head == :call && length(clause.args) == 3 && clause.args[1] ∈ (select_take_symbol, select_put_symbol) is_structured_select_clause(clause) = false function parse_select_clause(clause) if is_structured_select_clause(clause) if clause.args[1] == select_take_symbol SelectClause(SelectTake, Nullable(clause.args[2]), Nullable(clause.args[3])) elseif clause.args[1] == select_put_symbol SelectClause(SelectPut, Nullable(clause.args[2]), Nullable(clause.args[3])) end else # Assume this is a 'take' clause whose return value isn't wanted. # To simplify the rest of the code to not have to deal with this special case, # the return value is assigned to a throw-away gensym. SelectClause(SelectTake, Nullable(clause), Nullable(gensym())) end end """ `@select` A select expression of the form: ```julia @select begin clause1 => body1 clause2 => body2 _ => default_body end end ``` Wait for multiple clauses simultaneously using a pattern matching syntax, taking a different action depending on which clause is available first. A clause has three possible forms: 1) `event |> value` If `event` is an `AbstractChannel`, wait for a value to become available in the channel and assign `take!(event)` to `value`. if `event` is a `Task`, wait for the task to complete and assign `value` the return value of the task. 2) `event |< value` Only suppored for `AbstractChannel`s. Wait for the channel to capabity to store an element, and then call `put!(event, value)`. 3) `event` Calls `wait` on `event`, discarding the return value. Usable on any "waitable" events", which include channels, tasks, `Condition` objects, and processes. If a default branch is provided, `@select` will check arbitrary choose any event which is ready and execute its body, or will execute `default_body` if none of them are. Otherise, `@select` blocks until at least one event is ready. For example, ```julia channel1 = Channel() channel2 = Channel() task = @task ... result = @select begin channel1 |> value => begin info("Took from channel1") value end channel2 <| :test => info("Put :test into channel2") task => info("task finished") end ``` """ macro select(expr) clauses = Tuple{SelectClause, Any}[] # @select can operate in blocking or nonblocking mode, determined by whether # an 'else' clause is present in the @select body (in which case it will be # nonblocking). mode = :blocking for se in expr.args # skip line nodes isa(se, Expr) || continue # grab all the pairs if se.head == :call && se.args[1] == :(=>) if se.args[2] != :_ push!(clauses, (parse_select_clause(se.args[2]), se.args[3])) else # The defaule case (_). If present, the select # statement is considered non-blocking and will return this # section if none of the other conditions are immediately available. push!(clauses, (SelectClause(SelectDefault, Nullable(), Nullable()), se.args[3])) mode = :nonblocking end elseif se.head != :block && se.head != :line # if we run into an expression that is not a block. line or pair throw an error throw(ErrorException("Selection expressions must be Pairs. Found: $(se.head)")) end end if mode == :nonblocking _select_nonblock_macro(clauses) else _select_block_macro(clauses) end end # These defintions allow for any condition-like object to be used # with select. # @select if x |> value ... will ultimately insert an expression value=_take!(x). _take!(c::AbstractChannel) = take!(c) _take!(x) = fetch(x) # @select if x <| value .... will ultimately inset value=put!(x), which currently # is only meanginful for channels and so no underscore varirant is used here. # These are used with the non-blocking variant of select, which will # only work with channels and tasks. Arbitrary conditionals can't be supported # since "wait" is level-triggered. _isready(c::AbstractChannel) = isready(c) _isready(t::Task) = istaskdone(t) _wait_condition(c::AbstractChannel) = c.cond_wait _wait_condition(x) = x # helper function to place the default case in the proper position function set_default_first!(clauses) default_pos = findall(clauses) do x clause, body = x clause.kind == SelectDefault end l = length(default_pos) l == 0 && return # bail out if there is no default case l > 1 && throw(ErrorException("Select takes at most one default case. Found: $l")) # swap elements to sure make SelectDefault comes first clauses[1], clauses[default_pos[1]] = clauses[default_pos[1]], clauses[1] clauses end function _select_nonblock_macro(clauses) set_default_first!(clauses) branches = Expr(:block) for (clause, body) in clauses branch = if clause.kind == SelectPut channel_var = gensym("channel") channel_assignment_expr = :($channel_var = $(clause.channel|>get|>esc)) :(if ($channel_assignment_expr; isready_put($channel_var, [])) put!($channel_var, $(clause.value|>get|>esc)) $(esc(body)) end) elseif clause.kind == SelectTake channel_var = gensym("channel") channel_assignment_expr = :($channel_var = $(clause.channel|>get|>esc)) :(if ($channel_assignment_expr; _isready($channel_var)) $(clause.value|>get|>esc) = _take!($channel_var) $(esc(body)) end) elseif clause.kind == SelectDefault :($(esc(body))) end # the next two lines build an if / elseif chain from the bottom up push!(branch.args, branches) branches = branch end :($branches) end # The strategy for blocking select statements is to create a set of "rival" # tasks, one per condition. When a rival "wins" by having its conditional be # the first available, it sends a special interrupt to its rivals to kill them. # The interrupt includes the task where control should be resumed # once the rival has shut itself down. struct SelectInterrupt <: Exception parent::Task end # Kill all tasks in "tasks" besides a given task. Used for killing the rivals # of the winning waiting task. function select_kill_rivals(tasks, myidx) #@info myidx for (taskidx, task) in enumerate(tasks) taskidx == myidx && continue #@info taskidx, task #if task.state == :waiting || task.state == :queued # Rival is blocked waiting for its channel; send it a message that it's # lost the race. Base.schedule(task, SelectInterrupt(current_task()), error=true) # TODO: Is this still a legit optimization?: # elseif task.state==:queued # # Rival hasn't starting running yet and so hasn't blocked or set up # # a try-catch block to listen for SelectInterrupt. # # Just delete it from the workqueue. # queueidx = findfirst(Base.Workqueue.==task) # deleteat!(Base.Workqueue, queueidx) # end end #@info "done killing" end function _select_block_macro(clauses) branches = Expr(:block) body_branches = Expr(:block) clause_lock = gensym("clause_lock") lock_assignment_expr = :($clause_lock = Base.ReentrantLock()) for (i, (clause, body)) in enumerate(clauses) channel_var = gensym("channel") value_var = clause.value|>get|>esc channel_declaration_expr = :(local $channel_var) channel_assignment_expr = :($channel_var = $(clause.channel|>get|>esc)) if clause.kind == SelectPut isready_func = isready_put wait_for_channel = :(wait_put($channel_var, tasks)) mutate_channel = :(put!($channel_var, $value_var)) bind_variable = :(nothing) elseif clause.kind == SelectTake isready_func = _isready wait_for_channel = :(wait_select($channel_var, maintask, tasks)) mutate_channel = :(_take!($channel_var)) bind_variable = :($value_var = branch_val) end branch = quote tasks[$i] = @async begin $channel_declaration_expr try # Listen for genuine errors to throw to the main task $channel_assignment_expr # ---- Begin the actual `wait_and_select` algorithm ---- # TODO: Is this sufficiently thread-safe? # Listen for SelectInterrupt messages so we can shutdown # if a rival's channel unblocks first. try #@info "Task $($i) about to wait" $wait_for_channel # TODO: Because of this gap, where no locks are held, it's possible # that multiple tasks can be woken-up due to a `put!` or `take!` on # a channel they were waiting for. Only once will proceed in this # @select, but a channel running _outside this macro_ may yet proceed # and cause a problem.. I think this is bad. Fix this (probably) by # returning the lock to unlock from `wait_for_channel`. # NOTE: This is _not a deadock_ because there is a global ordering # to the locks: we _ALWAYS_ wait on the channel before waiting on # the clause_lock. This invariant must not be violated. #@info "Task $($i) about to lock" lock($clause_lock) # We got the lock, so run this task to completion. try #@info "Task $($i): got lock" # This block is atomic, so it _shouldn't_ matter whether we kill # rivals first or mutate_channel first. It only matters if one # case is accidentally synchronizing w/ another case, which # should be specifically prohibited (somehow). # For now, I'm killing rivals first so that at least we'll get # an exception, rather than a deadlock, if we end up waiting on # our rival, sibling cases. #@info "Task $($i): killing rivals" select_kill_rivals(tasks, $i) #@info "Task $($i): mutating" event_val = $mutate_channel #@info "Got event_val: $event_val" put!(winner_ch, ($i, event_val)) finally #@info "Task $($i)) unlock" unlock($clause_lock) end catch err if isa(err, SelectInterrupt) #@info "CAUGHT SelectInterrupt: $err" #yieldto(err.parent) # TODO: is this still a thing we should do? return else rethrow() end end catch err Base.throwto(maintask, err) end end # if end # for push!(branches.args, branch) body_branch = :(if branch_id == $i; $bind_variable; $(esc(body)); end) # the next two lines build an if / elseif chain from the bottom up push!(body_branch.args, body_branches) body_branches = body_branch end quote winner_ch = Channel(1) tasks = Array{Task}(undef, $(length(clauses))) maintask = current_task() $lock_assignment_expr $branches # set up competing tasks (branch_id, branch_val) = take!(winner_ch) # get the id of the winning task $body_branches # execute the winning block in the original lexical context end end # The following methods are the functional (as opposed to macro) forms of # the select statement. function _select_nonblock(clauses) for (i, clause) in enumerate(clauses) if clause[1] == :put if isready_put(clause[2], []) return (i, put!(clause[2], clause[3])) end elseif clause[1] == :take if _isready(clause[2]) return (i, _take!(clause[2])) end else error("Invalid select clause: $clause") end end return (0, nothing) end function _select_block(clauses) winner_ch = Channel{Tuple{Int, Any}}(1) tasks = Array{Task}(undef, length(clauses)) maintask = current_task() for (i, clause) in enumerate(clauses) tasks[i] = Threads.@spawn begin try try if clause[1] == :put wait_put(clause[2], tasks) elseif clause[1] == :take wait_select(clause[2], maintask, tasks) end catch err if isa(err, SelectInterrupt) yieldto(err.parent) return else rethrow() end end select_kill_rivals(tasks, i) if clause[1] == :put ret = put!(clause[2], clause[3]) elseif clause[1] == :take ret = _take!(clause[2]) end put!(winner_ch, (i, ret)) catch err Base.throwto(maintask, err) end end end take!(winner_ch) end """ `select(clauses[, block=true]) -> (clause_index, clause_value)` Functional form of the `@select` macro, intended to be used when the set of clauses is dynamic. In general, this method will be less performant than the macro variant. Clauses are specified as an array of tuples. Each tuple is expected to have 2 or 3 elements, as follows: 1) The clause type (`:take` or `:put`) 2) The waitable object 3) If the clause type is `:put`, the value to insert into the object. If `block` is `true` (the default), wait for at least one clause to be satisfied and return a tuple whose first elmement is the index of the clause which unblocked first and whose whose second element is the value of the clause (see the manual on `select` for the meaning of clause value). Otherwise, an arbitrary available clause will be executed, or a return value of `(0, nothing)` will be returned immediately if no clause is available. """ function select(clauses, block=true) if block _select_block(clauses) else _select_nonblock(clauses) end end # package code goes here end # module
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
869
function pui64(n) parse(UInt64, n) end function pf64(n) parse(Float64, n) end function first_csv(outdir) cfs = readdir(outdir) if length(cfs) == 0 missing else cfs[1] end end function last_csv(outdir) cfs = readdir(outdir) if length(cfs) == 0 missing else cfs[end] end end function _filename_to_date(f) ds = replace(basename(f), ".csv" => "") m = match(r"(\d{4})-(\d{2})-(\d{2})", ds) Date(parse.(Int32, m.captures)...) end # date to index in span function _d2i(d::Date, cfs) a = _filename_to_date(first(cfs)) b = _filename_to_date(last(cfs)) if a <= d <= b diff = d - a return diff.value + 1 else missing end end function get_tz_offset(n=now(localzone())) secs = (n.zone.offset.std + n.zone.offset.dst) secs.value * -1000 end
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
2758
struct Binance <: AbstractExchange base_url::String http_options::Dict function Binance() new("https://dapi.binance.com", Dict()) end function Binance(http_options::Dict) new("https://dapi.binance.com", http_options) end function Binance(base_url::String) new(base_url, Dict()) end function Binance(base_url::String, http_options::Dict) new(base_url, http_options) end end struct BinanceCandle <: AbstractCandle ts::UInt64 o::Float64 h::Float64 l::Float64 c::Float64 v::Float64 # I might not care about anything below this comment, but someone else might so I keep it. close_ts::UInt64 v2::Float64 trades::UInt64 tbv::Float64 tbv2::Float64 ignore::Float64 end function csv_headers(binance::Binance) collect(fieldnames(BinanceCandle)) end function csv_select(binance::Binance) 1:6 end function ts2datetime_fn(binance::Binance) DateTime ∘ unixmillis2nanodate end function candle_datetime(c::BinanceCandle) unixmillis2nanodate(c.ts) end function short_name(binance::Binance) "binance" end function candles_max(binance::Binance; tf=Minute(1)) if tf == Day(1) 200 elseif tf == Minute(1) 1500 else 1500 end end function get_markets(binance::Binance) info_url = binance.base_url * "/dapi/v1/exchangeInfo" uri = URI(info_url) res = HTTP.get(uri; binance.http_options...) json = JSON3.read(res.body) return map(m -> m[:symbol], json[:symbols]) end function get_candles(binance::Binance, market; start, stop, tf=Minute(1), limit::Integer=10) symbol = replace(market, r"\W" => s"") |> lowercase interval = if tf == Day(1) "1d" elseif tf == Minute(1) "1m" else "1m" end q = OrderedDict( "interval" => interval, "startTime" => nanodate2unixmillis(NanoDate(start)), "endTime" => nanodate2unixmillis(NanoDate(stop)), "limit" => limit, "symbol" => symbol ) ohlc_url = binance.base_url * "/dapi/v1/klines" uri = URI(ohlc_url, query=q) res = HTTP.get(uri; binance.http_options...) json = JSON3.read(res.body) map(json) do c BinanceCandle( c[1] % UInt64, # Casting Int64 to UInt64 :: https://discourse.julialang.org/t/casting-int64-to-uint64/33856/4 pf64(c[2]), pf64(c[3]), pf64(c[4]), pf64(c[5]), pf64(c[6]), # keeping data after this even if I don't use it. c[7] % UInt64, pf64(c[8]), c[9] % UInt64, pf64(c[10]), pf64(c[11]), pf64(c[12]) ) end end export Binance export BinanceCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
3507
struct Bitget <: AbstractExchange base_url::String home_url::String http_options::Dict type::String function Bitget(; type="dmcbl") new("https://api.bitget.com", "https://www.bitget.com", Dict(), type) end function Bitget(http_options::Dict; type="dmcbl") new("https://api.bitget.com", "https://www.bitget.com", http_options, type) end end struct BitgetCandle <: AbstractCandle ts::UInt64 o::Float64 h::Float64 l::Float64 c::Float64 v::Float64 v2::Float64 end function csv_headers(Bitget::Bitget) collect(fieldnames(BitgetCandle)) end function csv_select(Bitget::Bitget) 1:6 end function ts2datetime_fn(bitget::Bitget) DateTime ∘ unixmillis2nanodate end function candle_datetime(c::BitgetCandle) unixmillis2nanodate(c.ts) end function short_name(bitget::Bitget) # symbol names don't collide so all market types can be saved to the same directory "bitget" end function candles_max(bitget::Bitget; tf=Minute(1)) 1000 end function get_markets(bitget::Bitget) # type can be # umcbl (usdt settled contracts) # dmcbl (coin settled contracts) # sumcbl (testnet usdt settled contracts) # sdmcbl (testnet coin settled contracts) info_url = bitget.base_url * "/api/mix/v1/market/contracts" q = OrderedDict( "productType" => bitget.type ) uri = URI(info_url; query=q) res = HTTP.get(uri; bitget.http_options...) json = JSON3.read(res.body) return map(m -> m[:symbol], json[:data]) end function get_candles(bitget::Bitget, market; start, stop, tf=Minute(1), limit::Integer=10, tz_offset=get_tz_offset()) symbol = market interval = if tf == Day(1) "1D" elseif tf == Minute(1) "1m" else "1m" end # Add 1 minute to end time, because their API doesn't include the last minute otherwise. # Not sure if the 1D interval also needs an adjustment. adjustment = if interval == "1m" Minute(1) else Minute(0) end q = OrderedDict( "symbolId" => symbol, "kLineStep" => interval, "kLineType" => 1, "languageType" => 0, "startTime" => nanodate2unixmillis(NanoDate(start)), "endTime" => nanodate2unixmillis(NanoDate(stop) + adjustment), "limit" => limit ) #@info "get_candles" start q["startTime"] stop q["endTime"] limit ohlc_url = bitget.home_url * "/v1/kline/getMoreKlineData" uri = URI(ohlc_url) headers = ["Content-Type" => "application/json"] body = JSON3.write(q) res = HTTP.post(uri, headers, body; bitget.http_options...) json = JSON3.read(res.body) # I don't know how, but bitget seems to be able to infer my local timezone # even though I'm behind a proxy. What is going on? effective_offset = if interval == "1D" tz_offset else 0 end candles = map(json.data) do c BitgetCandle( pui64(c[1]) + effective_offset, pf64(c[2]), pf64(c[3]), pf64(c[4]), pf64(c[5]), pf64(c[6]), pf64(c[7]) ) end real_start = findfirst(candles) do c c.ts == q["startTime"] end #@info "cdl" real_start length(candles) candle_datetime(candles[1]) if isnothing(real_start) return [] elseif real_start > 0 return candles[real_start:end] else return candles end end export Bitget export BitgetCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
4732
const BITMEX_API = "https://www.bitmex.com" const BITMEX_TESTNET_API = "https://testnet.bitmex.com" struct Bitmex <: AbstractExchange base_url::String http_options::Dict function Bitmex() new("https://www.bitmex.com", Dict()) end function Bitmex(http_options::Dict) new("https://www.bitmex.com", http_options) end function Bitmex(base_url::String) new(base_url, Dict()) end function Bitmex(base_url::String, http_options::Dict) new(base_url, http_options) end # TODO - implement optional authentication to get improved rate limits # https://www.bitmex.com/app/apiKeysUsage # https://www.bitmex.com/app/restAPI#Limits end struct BitmexCandle <: AbstractCandle timestamp::String symbol::String open::Union{Float64,Missing} high::Union{Float64,Missing} low::Union{Float64,Missing} close::Union{Float64,Missing} trades::Integer volume::Union{Float64,Missing} vwap::Union{Float64,Missing} lastSize::Union{Integer,Missing} turnover::Integer homeNotional::Float64 foreignNotional::Float64 end function Base.getproperty(c::BitmexCandle, s::Symbol) if s == :ts return getfield(c, :timestamp) elseif s == :o return getfield(c, :open) elseif s == :h return getfield(c, :high) elseif s == :l return getfield(c, :low) elseif s == :c return getfield(c, :close) elseif s == :v return getfield(c, :volume) else return getfield(c, s) end end # https://www.bitmex.com/api/explorer/#!/Trade/Trade_getBucketed # Timestamps returned by our bucketed endpoints are the end of the period, # indicating when the bucket was written to disk. Some other common systems use # the timestamp as the beginning of the period. Please be aware of this when # using this endpoint. # # This leads to subtraction and addition of 1 minute at key points. function csv_headers(bitmex::Bitmex) [:ts, :symbol, :o, :h, :l, :c, :trades, :v, :vwap, :lastSize, :turnOver, :homeNotional, :foreignNotional] end function csv_select(bitmex::Bitmex) [1, 3, 4, 5, 6, 8] end function ts2datetime_fn(bitmex::Bitmex) return function (dt) DateTime(NanoDate(dt) - Minute(1)) end end function candle_datetime(c::BitmexCandle) NanoDate(c.ts) - Minute(1) end function short_name(bitmex::Bitmex) if bitmex.base_url == BITMEX_API "bitmex" elseif bitmex.base_url == BITMEX_TESTNET_API "bitmex-testnet" else "bitmex-unknown" end end function candles_max(bitmex::Bitmex; tf=Minute(1)) 1000 end function get_markets(bitmex::Bitmex) url = bitmex.base_url * "/api/v1/instrument/active" uri = URI(url) res = HTTP.get(uri; bitmex.http_options...) json = JSON3.read(res.body) return map(m -> m[:symbol], json) end function get_candles(bitmex::Bitmex, market; start, stop, tf=Minute(1), limit::Integer=10) interval = if tf == Day(1) "1d" elseif tf == Minute(1) "1m" else "1m" end adjustment = if tf == Minute(1) Minute(1) else Minute(0) end q = OrderedDict( "symbol" => market, "binSize" => interval, "startTime" => format(NanoDate(start) + adjustment), "endTime" => format(NanoDate(stop) + adjustment), "count" => limit ) ohlc_url = bitmex.base_url * "/api/v1/trade/bucketed" uri = URI(ohlc_url; query=q) headers = ["Content-Type" => "application/json"] res = HTTP.get(uri, headers; bitmex.http_options...) json = JSON3.read(res.body) candles = map(json) do c open = if hasproperty(c, :open) c[:open] else missing end high = if hasproperty(c, :high) c[:high] else missing end low = if hasproperty(c, :low) c[:low] else missing end close = if hasproperty(c, :close) c[:close] else missing end vwap = if hasproperty(c, :vwap) c[:vwap] else missing end lastSize = if hasproperty(c, :lastSize) c[:lastSize] else missing end BitmexCandle( c[:timestamp], c[:symbol], open, high, low, close, c[:trades], c[:volume], vwap, lastSize, c[:turnover], c[:homeNotional], c[:foreignNotional] ) end return candles end export Bitmex export BitmexCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
2425
struct Bitstamp <: AbstractExchange base_url::String function Bitstamp() new("https://www.bitstamp.net") end end struct BitstampCandle <: AbstractCandle timestamp::UInt64 open::Union{Float64,Missing} high::Union{Float64,Missing} low::Union{Float64,Missing} close::Union{Float64,Missing} volume::Union{Float64,Missing} end function Base.getproperty(c::BitstampCandle, s::Symbol) if s == :ts return getfield(c, :timestamp) elseif s == :o return getfield(c, :open) elseif s == :h return getfield(c, :high) elseif s == :l return getfield(c, :low) elseif s == :c return getfield(c, :close) elseif s == :v return getfield(c, :volume) else return getfield(c, s) end end function csv_headers(bitstamp::Bitstamp) [:ts, :o, :h, :l, :c, :v] end function csv_select(bitstamp::Bitstamp) 1:6 end function ts2datetime_fn(bitstamp::Bitstamp) DateTime ∘ unixseconds2nanodate end function candle_datetime(c::BitstampCandle) unixseconds2nanodate(c.ts) end function short_name(bitstamp::Bitstamp) "bitstamp" end function candles_max(bitstamp::Bitstamp; tf=Minute(1)) 1000 end function get_markets(bitstamp::Bitstamp) market_url = bitstamp.base_url * "/api/v2/ticker/" res = HTTP.get(market_url) json = JSON3.read(res.body) return map(r -> r.pair, json) end function get_candles(bitstamp::Bitstamp, market; start, stop, tf=Minute(1), limit::Integer=10) mark2 = replace(market, r"\W" => s"") |> lowercase # I only support two timeframes. 1d and 1m step = if tf == Day(1) 60 * 60 * 24 elseif tf == Minute(1) 60 else 60 end q2 = OrderedDict( "step" => step, "start" => nanodate2unixseconds(NanoDate(start)), "end" => nanodate2unixseconds(NanoDate(stop)), "limit" => limit ) ohlc_url = bitstamp.base_url * "/api/v2/ohlc/" * mark2 * "/" uri = URI(ohlc_url, query=q2) res = HTTP.get(uri) json = JSON3.read(res.body) # TODO - return a standardized candle, not JSON map(json[:data][:ohlc]) do c BitstampCandle( pui64(c[:timestamp]), pf64(c[:open]), pf64(c[:high]), pf64(c[:low]), pf64(c[:close]), pf64(c[:volume]) ) end end export Bitstamp export BitstampCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
2836
const BYBIT_API = "https://api.bybit.com" const BYBIT_TESTNET_API = "https://api-testnet.bybit.com" struct Bybit <: AbstractExchange base_url::String http_options::Dict category::String function Bybit(; category="inverse") new(BYBIT_API, Dict(), category) end function Bybit(http_options::Dict; category="inverse") new(BYBIT_API, http_options, category) end end struct BybitCandle <: AbstractCandle # Their API returns candles in a JSON array, so I picked the field names to suit me. ts::UInt64 o::Float64 h::Float64 l::Float64 c::Float64 v::Float64 v2::Float64 end function csv_headers(bybit::Bybit) collect(fieldnames(BybitCandle)) # https://discourse.julialang.org/t/convert-tuple-to-array/2147/6 end function csv_select(bybit::Bybit) 1:6 end function ts2datetime_fn(bybit::Bybit) DateTime ∘ unixmillis2nanodate end function candle_datetime(c::BybitCandle) unixmillis2nanodate(c.ts) end function short_name(bybit::Bybit) # symbol name collision is possible so candles of different categories # are stored in separate directories. network = if bybit.base_url == BYBIT_API "" elseif bybit.base_url == BYBIT_TESTNET_API "testnet" else "unknown" end if network == "" return "bybit-$(bybit.category)" else return "bybit-$(bybit.category)-$(network)" end end function candles_max(bybit::Bybit; tf=Minute(1)) 1000 end # valid categories: linear, inverse, option, spot function get_markets(bybit::Bybit) url = bybit.base_url * "/v5/market/instruments-info" q = OrderedDict("category" => bybit.category) uri = URI(url; query=q) res = HTTP.get(uri; bybit.http_options...) json = JSON3.read(res.body) return map(m -> m[:symbol], json[:result][:list]) end function get_candles(bybit::Bybit, market; start, stop, tf=Minute(1), limit::Integer=10) interval = if tf == Day(1) "D" elseif tf == Minute(1) "1" else "1" end q = OrderedDict( "category" => bybit.category, "symbol" => market, "interval" => interval, "start" => nanodate2unixmillis(NanoDate(start)), "end" => nanodate2unixmillis(NanoDate(stop)), "limit" => limit ) ohlc_url = bybit.base_url * "/v5/market/kline" uri = URI(ohlc_url; query=q) headers = ["Content-Type" => "application/json"] res = HTTP.get(uri, headers; bybit.http_options...) json = JSON3.read(res.body) return map(reverse(json[:result][:list])) do c BybitCandle( pui64(c[1]), pf64(c[2]), pf64(c[3]), pf64(c[4]), pf64(c[5]), pf64(c[6]), pf64(c[7]) ) end end export Bybit export BybitCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
3392
struct PancakeSwap <: AbstractExchange base_url::String http_options::Dict function PancakeSwap() new("https://perp.pancakeswap.finance", Dict()) end end struct PancakeSwapCandle <: AbstractCandle ts::UInt64 o::Float64 h::Float64 l::Float64 c::Float64 v::Float64 close_ts::UInt64 v2::Float64 trades::UInt64 tbv::Float64 tbv2::Float64 ignore::Float64 end function csv_headers(pancakeswap::PancakeSwap) collect(fieldnames(PancakeSwapCandle)) end function csv_select(pancakeswap::PancakeSwap) 1:6 end function ts2datetime_fn(pancakeswap::PancakeSwap) DateTime ∘ unixmillis2nanodate end function candle_datetime(c::PancakeSwapCandle) unixmillis2nanodate(c.ts) end function short_name(pancakeswap::PancakeSwap) "pancakeswap" end function candles_max(pancakeswap::PancakeSwap; tf=Minute(1)) 1500 end # Hard-code the [list of market pairs](https://docs.pancakeswap.finance/products/perpetual-trading/perpetual-trading-v2/supported-chains-modes-and-markets#supported-chain-markets) until an API for this info is discovered. PANCAKESWAP_MARKETS = [ "BTCUSD", "MADBTCUSD", "ETHUSD", "BNBUSD", "SUIUSD", "CAKEUSD", "ARBUSD", "XRPUSD", "OPUSD", "RDNTUSD", "1000PEPEUSD", "SOLUSD", "DOTUSD", "MKRUSD", "LDOUSD", "UNIUSD", "DOGEUSD", "GMXUSD", "MATICUSD", "BCHUSD", "LTCUSD", "TRXUSD", "ADAUSD", "LINKUSD", "AVAXUSD", "EURUSD", "JPYUSD", "AUDUSD", "GBPUSD", "CHFUSD", "MXNUSD" ] function get_markets(pancakeswap::PancakeSwap) # info_url = pancakeswap.base_url * "/fapi/v1/exchangeInfo" # uri = URI(info_url) # res = HTTP.get(uri; pancakeswap.http_options...) # json = JSON3.read(res.body) # return map(m -> m[:symbol], json[:symbols]) return PANCAKESWAP_MARKETS end function get_candles(pancakeswap::PancakeSwap, market; start, stop, tf=Minute(1), limit::Integer=10) symbol = replace(market, r"\W" => s"") |> lowercase interval = if tf == Day(1) "1d" elseif tf == Minute(1) "1m" else "1m" end q = OrderedDict( "interval" => interval, "contractType" => "PERPETUAL", "startTime" => nanodate2unixmillis(NanoDate(start)), "endTime" => nanodate2unixmillis(NanoDate(stop)), "limit" => limit, "symbol" => symbol ) ohlc_url = pancakeswap.base_url * "/fapi/v1/markPriceKlines" uri = URI(ohlc_url, query=q) res = HTTP.get(uri; pancakeswap.http_options...) json = JSON3.read(res.body) map(json) do c PancakeSwapCandle( c[1] % UInt64, # Casting Int64 to UInt64 :: https://discourse.julialang.org/t/casting-int64-to-uint64/33856/4 pf64(c[2]), pf64(c[3]), pf64(c[4]), pf64(c[5]), pf64(c[6]), c[7] % UInt64, pf64(c[8]), c[9] % UInt64, pf64(c[10]), pf64(c[11]), pf64(c[12]) ) end end function subscribe(pancakeswap::PancakeSwap) uri = URI("wss://perp-fstream.pancakeswap.finance/plain/stream?streams=!markPriceTicker@arr") session = subscribe(uri) return session end function subscribe(pancakeswap::PancakeSwap, market) end export PancakeSwap export PancakeSwapCandle
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
code
105
using CryptoMarketData using Test @testset "CryptoMarketData.jl" begin # Write your tests here. end
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
docs
2509
# CryptoMarketData [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://g-gundam.github.io/CryptoMarketData.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://g-gundam.github.io/CryptoMarketData.jl/dev/) [![Build Status](https://github.com/g-gundam/CryptoMarketData.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/g-gundam/CryptoMarketData.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/g-gundam/CryptoMarketData.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/g-gundam/CryptoMarketData.jl) A library for saving and loading OHLCV candle data from cryptocurrency exchanges ## Goals 1. **Be able to save 1 minute candle data from a variety of cryptocurrency exchanges.** + I only want 1 minute candles, because I can derive higher timeframes myself. + Implement extremely minimal exchange drivers for this purpose. - Don't try to do everything. - Focus on fetching 1 minute and 1 day candles well. + Save all the candle data the exchange gives us. - Save even the non-OHLCV data. - I don't care about it, but maybe someone else does. - Each day worth of 1 minute candles should be saved in its own date-stamped CSV file. 2. **After saving, be able to load that data into a DataFrame.** + 1m candles are the default. + Other arbitrary timeframes should be supported. ## Exchanges | Name | Status | |-------------|------------------| | Binance | Work in Progress | | Bitget | Slightly Broken | | Bitmex | Done | | Bitstamp | Done | | Bybit | Done | | PancakeSwap | Done | ## Examples ### Save and Load Candles This is the most basic thing you can do with this library. ```julia-repl julia> using CryptoMarketData julia> bitstamp = Bitstamp() Bitstamp("https://www.bitstamp.net") julia> markets = get_markets(bitstamp); markets[1:5] 5-element Vector{String}: "BTC/USD" "BTC/EUR" "BTC/GBP" "BTC/PAX" "GBP/USD" julia> save!(bitstamp, "BTC/USD"; endday=Date("2011-08-25")) ┌ Info: 2011-08-18 └ length(cs) = 683 ┌ Info: 2011-08-19 └ length(cs) = 1440 ┌ Info: 2011-08-20 └ length(cs) = 1440 ┌ Info: 2011-08-21 └ length(cs) = 1440 ┌ Info: 2011-08-22 └ length(cs) = 1440 ┌ Info: 2011-08-23 └ length(cs) = 1440 ┌ Info: 2011-08-24 └ length(cs) = 1440 ┌ Info: 2011-08-25 └ length(cs) = 1440 julia> btcusd = load(bitstamp, "BTC/USD") ```
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
docs
940
```@meta CurrentModule = CryptoMarketData ``` # API Documentation for [CryptoMarketData](https://github.com/g-gundam/CryptoMarketData.jl). ## Types ### AbstractExchange Every exchange is a subtype of AbstractExchange. ### AbstractCandle Every exchange also has a matching candle type that's a subtype of AbstractCandle. Its purpose is to capture the data given to us by the exchange. ## Functions ### General Functions - [`get_saved_markets`](@ref) ```@docs get_saved_markets ``` ### Generalized on Exchange - [`save!`](@ref) - [`load`](@ref) - [`earliest_candle`](@ref) - [`get_candles_for_day`](@ref) - [`save_day!`](@ref) ```@docs save! ``` ```@docs load ``` ```@docs earliest_candle ``` ```@docs get_candles_for_day ``` ```@docs save_day! ``` ### Exchange Specific Implementations - csv_headers - csv_select - ts2datetime_fn - short_name - candles_max - [`get_markets`](@ref) - get_candles ```@docs get_markets ```
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
docs
2932
# Examples ## Construct an Exchange The defaults are usually fine. ```julia-repl julia> using CryptoMarketData julia> bitget = Bitget() Bitget("https://api.bitget.com", "https://www.bitget.com", Dict{Any, Any}(), "dmcbl") julia> bitmex = Bitmex() Bitmex("https://www.bitmex.com", Dict{Any, Any}()) julia> bitstamp = Bitstamp() Bitstamp("https://www.bitstamp.net") julia> bybit = Bybit() Bybit("https://api.bybit.com", Dict{Any, Any}(), "inverse") julia> pancakeswap = PancakeSwap() PancakeSwap("https://perp.pancakeswap.finance", Dict{Any, Any}()) ``` Some exchanges categorize their markets in a way that affects the API calls that must be used to access them. This is expressed during exchange construction. ```julia-repl julia> bitget_u = Bitget(;type="umcbl") Bitget("https://api.bitget.com", "https://www.bitget.com", Dict{Any, Any}(), "umcbl") julia> bitget_d = Bitget(;type="dmcbl") # default Bitget("https://api.bitget.com", "https://www.bitget.com", Dict{Any, Any}(), "dmcbl") julia> markets_u = get_markets(bitget_u); julia> markets_d = get_markets(bitget_d); julia> size(markets_u) (195,) julia> size(markets_d) (12,) ``` Some of you who live in forbidden countries will need to use a proxy that's outside of your home country to get around IP bans. Setting up a proxy is beyond the scope of this document, but I recommend [Squid](https://www.digitalocean.com/community/tutorials/how-to-set-up-squid-proxy-on-ubuntu-22-04). ```julia-repl julia> bybit = Bybit(Dict(:proxy => "http://user:pass@proxyhost:3128")) Bybit("https://api.bybit.com", Dict(:proxy => "http://user:pass@proxyhost:3128"), "inverse") ``` ## Get a List of Available Markets ```julia-repl julia> markets = get_markets(bitstamp); markets[1:5] 5-element Vector{String}: "BTC/USD" "BTC/EUR" "BTC/GBP" "BTC/PAX" "GBP/USD" ``` ## Save Candles This is the most basic thing you can do with this library. ```julia-repl julia> save!(bitstamp, "BTC/USD"; endday=Date("2011-08-25")) ┌ Info: 2011-08-18 └ length(cs) = 683 ┌ Info: 2011-08-19 └ length(cs) = 1440 ┌ Info: 2011-08-20 └ length(cs) = 1440 ┌ Info: 2011-08-21 └ length(cs) = 1440 ┌ Info: 2011-08-22 └ length(cs) = 1440 ┌ Info: 2011-08-23 └ length(cs) = 1440 ┌ Info: 2011-08-24 └ length(cs) = 1440 ┌ Info: 2011-08-25 └ length(cs) = 1440 ``` ### Find Out When Candle Data for a Market Begins ```julia-repl julia> ec = earliest_candle(bitstamp, "BTC/USD") BitstampCandle(0x000000004e4d076c, 10.9, 10.9, 10.9, 10.9, 0.48990826) julia> candle_datetime(ec) 2011-08-18T12:37:00 ``` ## Load Candles ### Everything ```julia-repl julia> btcusd = load(bitstamp, "BTC/USD") ``` ### Within a Certain Date Range ```julia-repl julia> btcusd = load(bitstamp, "BTC/USD"; span=Date("2024-01-01"):Date("2024-01-15")) ``` ### In a Certain Time Frame ```julia-repl julia> btcusd4h = load(bitstamp, "BTC/USD"; tf=Hour(4), span=Date("2024-01-01"):Date("2024-01-15")) ```
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
docs
2568
# Exchanges ## Binance Status: Work in Progress I have a preliminary `Binance` struct, and it supports Binance's COIN-M Futures API. It works, but to properly support all of Binance's APIs, I'm going to have to add more structs and rename the current `Binance` struct to something like `BinanceCMFutures`. In the end, there may be 4 or 5 exchange types just for Binance. Proxies are needed if you're local IP is from a forbidden country. ## Bitget Status: Slightly Broken I had to use an undocumented API that their trading front-end uses to acquire 1m candles, because their official API only gives you the last 30 days of 1m candles. It was working fine for a while, but in early February 2024, its behavior changed and broke `earliest_candle()`. The constructor for `Bitget` takes an optional named parameter `type` to specify which [`productType`](https://bitgetlimited.github.io/apidoc/en/mix/#producttype) to use. The default value is `dmcbl`. ```julia-repl julia> bitget_u = Bitget(;type="umcbl") Bitget("https://api.bitget.com", "https://www.bitget.com", Dict{Any, Any}(), "umcbl") ``` Proxies are needed if you're local IP is from a forbidden country. ## Bitmex Status: DONE When running `save!(bitmex, market)`, I strongly advise setting `delay=3.5`. That'll keep you under the rate limit for unauthenticated users. One thing I like about this library is that you don't need to be authenticated to use it. However, Bitmex gives authenticated users a much better rate limit, so I'd like to support authentication eventually. ## Bitstamp Status: DONE This exchange is a valuable source of historical data. Their "BTC/USD" goes back all the way to 2011-08-18 which is the longest of any known exchange. ## Bybit Status: DONE The `Bybit` constructor takes an optional `category` parameter that chooses which of the 3 market categories to use. The default value is `inverse`, but `linear` and `spot` can also be specified. ```julia-repl julia> bybit_spot = Bybit(;category=spot) Bybit("https://api.bybit.com", Dict{Any, Any}(), "spot") ``` Proxies are needed if you're local IP is from a forbidden country. (The v5 iteration of their API is one of the nicest I've worked with.) ## PancakeSwap Status: DONE* I say it's done, but I'm not totally sure. Instead of using documentation (which I couldn't find), I ended up reverse engineering their APIs. I later discovered that they look a lot like Binance's APIs, and that helped me take this to a working state. This is the only DEX among the currently supported exchanges.
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
1.0.3
59b6e9c5d3148a8d5cf2693725cd20e1b45a8e9f
docs
1190
```@meta CurrentModule = CryptoMarketData ``` # CryptoMarketData A library for saving and loading OHLCV candle data from cryptocurrency exchanges ## Goals 1. **Be able to save 1 minute candle data from a variety of cryptocurrency exchanges.** + I only want 1 minute candles, because I can derive higher timeframes myself. + Implement extremely minimal exchange drivers for this purpose. - Don't try to do everything. - Focus on fetching 1 minute and 1 day candles well. + Save all the candle data the exchange gives us. - Save even the non-OHLCV data. - I don't care about it, but maybe someone else does. - Each day worth of 1 minute candles should be saved in its own date-stamped CSV file. 2. **After saving, be able to load that data into a DataFrame.** + 1m candles are the default. + Other arbitrary timeframes should be supported. ## Exchanges | Name | Status | |-------------|------------------| | Binance | Work in Progress | | Bitget | Slightly Broken | | Bitmex | Done | | Bitstamp | Done | | Bybit | Done | | PancakeSwap | Done |
CryptoMarketData
https://github.com/g-gundam/CryptoMarketData.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
3257
using Documenter, Jusdl # using DocumenterLaTeX DocMeta.setdocmeta!(Jusdl, :DocTestSetup, :(using Jusdl); recursive=true) makedocs( modules=[Jusdl], sitename="Jusdl", pages=[ "Home" => "index.md", "Modeling and Simulation in Jusdl" => [ "modeling_and_simulation/modeling.md", "modeling_and_simulation/simulation.md", ], "Tutorials" => [ "Model Construction" => "tutorials/model_construction.md", "Model Simulation" => "tutorials/model_simulation.md", "Algebraic Loops" => "tutorials/algebraic_loops.md", "Extending Component Library" => "tutorials/defining_new_components.md", "Coupled Systems" => "tutorials/coupled_systems.md", ], "Manual" => [ "Utilities" => [ "manual/utilities/callback.md", "manual/utilities/buffers.md" ], "Connections" => [ "manual/connections/link.md", "manual/connections/pin.md", "manual/connections/port.md", ], "Components" => [ "ComponentsBase" => [ "manual/components/componentsbase/hierarchy.md", "manual/components/componentsbase/evolution.md", "manual/components/componentsbase/interpolation.md", ], "Sources" => [ "manual/components/sources/clock.md", "manual/components/sources/generators.md", ], "Sinks" => [ "manual/components/sinks/sinks.md", "manual/components/sinks/writer.md", "manual/components/sinks/printer.md", "manual/components/sinks/scope.md", ], "Systems" => [ "StaticSystems" => [ "StaticSystems" => "manual/components/systems/staticsystems/staticsystems.md", # "Subsystem" => "manual/components/systems/staticsystems/subsystem.md", ], "DynamicSystems" => [ "DiscreteSystem" => "manual/components/systems/dynamicsystems/discretesystem.md", "ODESystem" => "manual/components/systems/dynamicsystems/odesystem.md", "DAESystem" => "manual/components/systems/dynamicsystems/daesystem.md", "RODESystem" => "manual/components/systems/dynamicsystems/rodesystem.md", "SDESystem" => "manual/components/systems/dynamicsystems/sdesystem.md", "DDESystem" => "manual/components/systems/dynamicsystems/ddesystem.md", ], ] ], "Models" => [ "manual/models/taskmanager.md", "manual/models/simulation.md", "manual/models/model.md", ], "Plugins" => "manual/plugins/plugins.md", ] ] ) deploydocs(; repo="github.com/zekeriyasari/Jusdl.jl.git", devbranch = "master", devurl = "dev", versions = ["stable" => "v^", "v#.#", "v#.#.#"] )
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
941
# This file illustrates the use of memory blocks to break algebraic loops using Jusdl using Plots # Simualation settings t0, dt, tf = 0, 1 / 64, 1. # Construct the model @defmodel model begin @nodes begin gen = FunctionGenerator(readout=identity) adder = Adder(signs = (+, -)) mem = Memory(delay = dt) writer = Writer(input=Inport(2)) end @branches begin gen[1] => adder[1] adder[1] => mem[1] mem[1] => adder[2] gen[1] => writer[1] adder[1] => writer[2] end end # Simulate the model sim = simulate!(model, t0, dt, tf) # Diplay model taskmanager display(model.taskmanager.pairs) # Read the simulation data t, x = read(getnode(model, :writer).component) # Plot the results p1 = plot(t, x[:, 1], label=:u, marker=(:circle, 1)) plot!(t, x[:, 2], label=:y, marker=(:circle, 1)) display(p1)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
958
# This file includes an example file by breaking algebraic loops by solving loop equation numerically. using Jusdl using Plots # Simulation parameter α = 3. # Construct model with algebraic loop @defmodel model begin @nodes begin gen = RampGenerator() adder = Adder(signs=(+,-)) gain = Gain(gain=α) writer = Writer(input=Inport(2)) end @branches begin gen[1] => adder[1] adder[1] => gain[1] gain[1] => adder[2] gen[1] => writer[1] gain[1] => writer[2] end end # Simulate the model simulate!(model, 0., 1., 100.) # Plot the results t, y = read(getnode(model, :writer).component) yt = α / (α + 1) * getnode(model, :gen).component.readout.(t) err = yt - y[:, 2] p1 = plot(t, y[:, 1], label=:u) plot!(t, y[:, 2], label=:y) plot!(t, yt, label=:true) p2 = plot(t, err, label=:err) plot(p1, p2, layout=(2, 1))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
951
# This file includes the simulation of a model consisting an algrebraic loop with multiple inneighbor branches joinin an algrebraic loop. using Jusdl using Plots # Construct the model @defmodel model begin @nodes begin gen1 = SinewaveGenerator(frequency=2.) gain1 = Gain() adder1 = Adder(signs=(+,+)) gen2 = SinewaveGenerator(frequency=3.) adder2 = Adder(signs=(+,+,-)) gain2 = Gain() writer = Writer() gain3 = Gain() end @branches begin gen1[1] => gain1[1] gain1[1] => adder1[1] adder1[1] => adder2[1] gen2[1] => adder1[2] gen2[1] => adder2[2] adder2[1] => gain2[1] gain2[1] => writer[1] gain2[1] => gain3[1] gain3[1] => adder2[3] end end simulate!(model) t, x = read(getnode(model, :writer).component) plot(t, x)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1072
# Simulation of coupled Lorenz systems. using Jusdl using Plots # Construct the model ε = 10. @defmodel model begin @nodes begin ds1 = ForcedLorenzSystem() ds2 = ForcedLorenzSystem() coupler = Coupler(conmat = ε*[-1. 1; 1 -1], cplmat=[1. 0 0; 0 0 0; 0 0 0]) writer = Writer(input=Inport(6)) end @branches begin ds1[1:3] => coupler[1:3] ds2[1:3] => coupler[4:6] coupler[1:3] => ds1[1:3] coupler[4:6] => ds2[1:3] ds1[1:3] => writer[1:3] ds2[1:3] => writer[4:6] end end # Plot signal flow diagram of model display(signalflow(model)) # Simulate the model simulate!(model, 0., 0.01, 100) # Plot signal flow diagram of model display(signalflow(model)) # Read simulation data t, x = read(getnode(model, :writer).component) # Compute errors err = x[:, 1] - x[:, 4] # Plot the results. p1 = plot(x[:, 1], x[:, 2]) p2 = plot(x[:, 4], x[:, 5]) p3 = plot(t, err) display(plot(p1, p2, p3, layout=(3, 1)))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
607
using Jusdl using Plots # Construct the model @defmodel model begin @nodes begin ds = ChenSystem() writer = Writer(input=Inport(3)) end @branches begin ds[1:3] => writer[1:3] end end # Simulate the model simulate!(model, 0, 0.01, 100.) # Plot results t, x = read(getnode(model, :writer).component) plots = [ plot(t, x[:, 1], label=:x1), plot(t, x[:, 2], label=:x1), plot(t, x[:, 3], label=:x1), plot(x[:, 1], x[:, 2], label=:x1x2), plot(x[:, 1], x[:, 3], label=:x1x3), plot(x[:, 2], x[:, 3], label=:x2x3) ] display(plot(plots...))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
954
# This file simulates a closed system using Jusdl # Construct the model @defmodel model begin @nodes begin gen = FunctionGenerator(readout=sin) adder = Adder(signs=(+,-)) ds = ContinuousLinearSystem() writer = Writer(input=Inport(2)) end @branches begin gen[1] => adder[1] adder[1] => ds[1] ds[1] => adder[2] gen[1] => writer[1] ds[1] => writer[2] end end # Simualate the model sim = simulate!(model, 0., 0.01, 10.) # Read and plot data t, x = read(getnode(model, :writer).component) using Plots plot(t, x[:, 1], label="r(t)", xlabel="t", lw=3) plot!(t, x[:, 2], label="y(t)", xlabel="t", lw=3) plot!(t, 6 / 5 * exp.(-2t) + 1 / 5 * (2 * sin.(t) - cos.(t)), label="Analytical Solution", lw=3) # fileanme = "readme_example.svg" # path = joinpath(@__DIR__, "../docs/src/assets/ReadMePlot/") # savefig(joinpath(path, fileanme))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
996
# This file illustrates the simulation of feedthrough dynamical system in a unity feedback. using Jusdl using Plots # Construct the model x0 = ones(1) @defmodel model begin @nodes begin gen = FunctionGenerator(readout=sin) adder = Adder(signs=(+,-)) ds = ContinuousLinearSystem(state=x0) writer = Writer() end @branches begin gen[1] => adder[1] adder => ds ds[1] => adder[2] ds => writer end end # Simulate the model simulate!(model, 0., 0.01, 10.) # Read simulation data t, ys = read(getnode(model, :writer).component) # Compoute simulation error r = getnode(model,:gen).component.readout.(t) xa = (x0[1] + 2 / 13) * exp.(-3 / 2 * t) + 3 / 13 * sin.(t) - 2 / 13 * cos.(t) ya = (xa + r) / 2 er = ys - ya # Plot results. p1 = plot(t, ys, label=:simulation) plot!(t, ya, label=:analytic) p2 = plot(t, er, label=:error) display(plot(p1, p2, layout=(2, 1)))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
748
# This file simulates an opamp integrator circuit. using Jusdl using Plots freq = 5e3 T = 1 / freq r = 10e3 c = 10e-9 τ = r * c t0, dt, tf = 0, T/1000, 5T @defmodel model begin @nodes begin gen = SquarewaveGenerator(high=0.5, low=-0.5, period=T) ds = ContinuousLinearSystem(A=fill(0., 1, 1), B=fill(1/τ, 1, 1), C=fill(-1., 1, 1), state=zeros(1)) writerin = Writer() writerout = Writer() end @branches begin gen => ds gen => writerin ds => writerout end end sim = simulate!(model, t0, dt, tf) t, u = read(getnode(model, :writerin).component) t, y = read(getnode(model, :writerout).component) p1 = plot(t, u) plot!(t, y) display(p1)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1128
# This file includes an example of memory operation. # In this example `mem` delays its input for one step size time. using Jusdl using Plots # Construct a model ti, dt, tf = 0., 1., 100. numtaps = 5 # Number of buffer taps in Memory. delay = dt # One step size delay. model = Model(clock=Clock(ti, dt, tf)) @defmodel model begin @nodes begin gen = RampGenerator() mem = Memory(delay=dt, numtaps=numtaps) writer = Writer(input=Inport(2)) end @branches begin gen => mem mem[1] => writer[1] gen[1] => writer[2] end end # Simulate model simulate!(model, ti, dt, tf) # Read simulation data t, x = read(getnode(model, :writer).component) u = getnode(model, :gen).component.readout.(t .- delay) err = u - x[:, 2] # Plots simulation data n1, n2 = 1, 5 marker = (:circle, 2) p1 = plot(t[n1:n2], x[n1:n2, 1], label=:mem, marker=marker) plot!(t[n1:n2], x[n1:n2, 2], label=:gen, marker=marker) plot!(t[n1:n2], u[n1:n2], label=:real, marker=marker) p2 = plot(t[n1:n2], err[n1:n2], label=:error, marker=marker) display(plot(p1, p2, layout=(2,1)))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
333
# This file is illustrates multiple simulations of a model using Jusdl # Constrcut the model @defmodel model begin @nodes begin gen = SinewaveGenerator() writer = Writer() end @branches begin gen => writer end end # Multiple simulations. for i in 1 : 5 simulate!(model) end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
874
using Jusdl # Deifne model @defmodel model begin @nodes begin gen = SinewaveGenerator(amplitude=1., frequency=1/2π) adder = Adder(signs=(+, -)) ds = ContinuousLinearSystem(A=fill(-1., 1, 1), state=[1.]) writer = Writer(input=Inport(2)) end @branches begin gen[1] => adder[1] adder[1] => ds[1] ds[1] => adder[2] ds[1] => writer[1] gen[1] => writer[2] end end # Simulate the model tinit, tsample, tfinal = 0., 0.01, 10. sim = simulate!(model, tinit, tsample, tfinal) # Read and plot data t, x = read(getnode(model, :writer).component) t, x = read(getnode(model, :writer).component) using Plots plot(t, x[:, 1], label="r(t)", xlabel="t") plot!(t, x[:, 2], label="y(t)", xlabel="t") plot!(t, 6 / 5 * exp.(-2t) + 1 / 5 * (2 * sin.(t) - cos.(t)), label="Analytical Solution")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1082
# This file illustrates synchronizing channels that are bound the different tasks that elapse in different amount of # time.. function taker5(ch, chr) while true val = take!(ch) @info "In $(objectid(ch)). Took $val" val === missing && (@info "Breaking out of $(objectid(ch))"; break) sleep(5) @info "Slept 5 seconds in $(objectid(ch)) for $val" put!(chr, true) end end function taker20(ch, chr) while true val = take!(ch) @info "In $(objectid(ch)). Took $val" val === missing && (@info "Breaking out of $(objectid(ch))"; break) sleep(20) @info "Slept 20 seconds in $(objectid(ch)) for $val" put!(chr, true) end end chn1 = Channel(0) chn2 = Channel(0) chr1 = Channel(0) chr2 = Channel(0) @info objectid(chn1) @info objectid(chn2) t1 = @async taker5(chn1, chr1) t2 = @async taker20(chn2, chr2) for t in 1. : 2. foreach(chn -> put!(chn, t), [chn1, chn2]) foreach(take!, [chr1, chr2]) end @info "Out of loop" # foreach(chn -> put!(chn, missing), [chn1, chn2])
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
4730
# # Julia System Desciption Language # module Jusdl @warn "Jusdl.jl is being renamed to Causal.jl. For further updates greater than v0.2.2, you will need to add Causal.jl\n" using UUIDs using DifferentialEquations using Sundials using LightGraphs using DataStructures using JLD2 using Plots using ProgressMeter using Logging using LinearAlgebra using Dates using NLsolve using Interpolations using LibGit2 using DocStringExtensions import GraphPlot.gplot import FileIO: load import Base: show, display, write, read, close, setproperty!, mv, cp, open, istaskdone, istaskfailed, getindex, setindex!, size, isempty include("utilities/utils.jl") export equip include("utilities/callback.jl") export Callback, enable!, disable!, isenabled, applycallbacks include("utilities/buffer.jl") export BufferMode, LinearMode, CyclicMode, Buffer, Normal, Cyclic, Fifo, Lifo, write!, isfull, ishit, content, mode, snapshot, datalength, inbuf, outbuf include("connections/link.jl") export Link, launch, refresh! include("connections/pin.jl") export AbstractPin, Outpin, Inpin, connect!, disconnect!, isconnected, isbound include("connections/port.jl") export AbstractPort, Inport, Outport, datatype include("components/componentsbase/hierarchy.jl") export AbstractComponent, AbstractSource, AbstractSystem, AbstractSink, AbstractStaticSystem, AbstractDynamicSystem, AbstractSubSystem, AbstractMemory, AbstractDiscreteSystem, AbstractODESystem, AbstractRODESystem, AbstractDAESystem, AbstractSDESystem, AbstractDDESystem include("components/componentsbase/macros.jl") include("components/componentsbase/interpolant.jl") export Interpolant include("components/componentsbase/takestep.jl") export readtime!, readstate, readinput!, writeoutput!, computeoutput, evolve!, takestep!, drive!, approve! include("components/sources/clock.jl") export Clock, isrunning, ispaused, isoutoftime, set!, stop!, pause! include("components/sources/generators.jl") export @def_source, FunctionGenerator, SinewaveGenerator, DampedSinewaveGenerator, SquarewaveGenerator, TriangularwaveGenerator, ConstantGenerator, RampGenerator, StepGenerator, ExponentialGenerator, DampedExponentialGenerator include("components/systems/staticsystems/staticsystems.jl") export @def_static_system, StaticSystem, Adder, Multiplier, Gain, Terminator, Memory, Coupler, Differentiator include("components/systems/dynamicalsystems/init.jl") include("components/systems/dynamicalsystems/odesystems.jl") export @def_ode_system, ODESystem, ContinuousLinearSystem, LorenzSystem, ChenSystem, ChuaSystem, RosslerSystem, VanderpolSystem, ForcedLorenzSystem, ForcedChenSystem, ForcedChuaSystem, ForcedRosslerSystem, ForcedVanderpolSystem, Integrator include("components/systems/dynamicalsystems/discretesystems.jl") export @def_discrete_system, DiscreteSystem, DiscreteLinearSystem, HenonSystem, LoziSystem, BogdanovSystem, GingerbreadmanSystem, LogisticSystem include("components/systems/dynamicalsystems/sdesystems.jl") export @def_sde_system, SDESystem, NoisyLorenzSystem, ForcedNoisyLorenzSystem include("components/systems/dynamicalsystems/daesystems.jl") export @def_dae_system, DAESystem, RobertsonSystem, PendulumSystem, RLCSystem include("components/systems/dynamicalsystems/rodesystems.jl") export @def_rode_system, RODESystem, MultiplicativeNoiseLinearSystem include("components/systems/dynamicalsystems/ddesystems.jl") export @def_dde_system, DDESystem, DelayFeedbackSystem include("components/sinks/sinks.jl") export @def_sink, Writer, Printer, Scope, write!, fwrite!, fread, update! include("models/taskmanager.jl") export TaskManager, checktaskmanager include("models/simulation.jl") export Simulation, setlogger, closelogger, report include("models/model.jl") export @defmodel, Model, inspect!, initialize!, run!, terminate!, simulate!, getloops, breakloop!, Node, Branch, addnode!, getnode, addbranch!, getbranch, deletebranch!, signalflow, troubleshoot include("plugins/loadplugins.jl") export AbstractPlugin, process, add, remove, enable, disable, check end # module
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2031
# This file contains the Base module of Plugins module. # Type hierarchy """ $(TYPEDEF) Abstract type of all components """ abstract type AbstractComponent end """ $(TYPEDEF) Abstract typeof all source components """ abstract type AbstractSource <: AbstractComponent end """ $(TYPEDEF) Abstract type of all system components """ abstract type AbstractSystem <: AbstractComponent end """ $(TYPEDEF) Abstract type of all sink components """ abstract type AbstractSink <: AbstractComponent end """ $(TYPEDEF) Abstract type of all static systems """ abstract type AbstractStaticSystem <: AbstractSystem end """ $(TYPEDEF) Abstract type of all dynamic system components """ abstract type AbstractDynamicSystem <: AbstractSystem end """ $(TYPEDEF) Abstract type of all subsystem components """ abstract type AbstractSubSystem <: AbstractSystem end """ $(TYPEDEF) Abstract type of all memory components """ abstract type AbstractMemory <: AbstractStaticSystem end """ $(TYPEDEF) Abstract type of all dynamic systems modelled by dicrete difference equations. """ abstract type AbstractDiscreteSystem <: AbstractDynamicSystem end """ $(TYPEDEF) Abstract type of all dynamical systems modelled by ordinary differential equations. """ abstract type AbstractODESystem <: AbstractDynamicSystem end """ $(TYPEDEF) Abstract type of all dynamical systems modelled by random ordinary differential equations. """ abstract type AbstractRODESystem <: AbstractDynamicSystem end """ $(TYPEDEF) Abstract type of all dynamical systems modelled by differential algebraic equations """ abstract type AbstractDAESystem <: AbstractDynamicSystem end """ $(TYPEDEF) Abstract type of all dynamical systems modelled by stochastic differential equations. """ abstract type AbstractSDESystem <: AbstractDynamicSystem end """ $(TYPEDEF) Abstract type of all dynamical systems modlled by delay dynamical systems. """ abstract type AbstractDDESystem <: AbstractDynamicSystem end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1803
# This file includes interpolant for interplation of sampled inputs. """ Interpolant(tinit, tfinal, coefinit, coeffinal) Constructs a linnear interpolant that interpolates between the poinsts `(tinit, coefinit)` and `(tfinal, coeffinal)`. """ mutable struct Interpolant{TMB, INB, ITP} timebuf::TMB databuf::INB itp::ITP function Interpolant(nt::Int, nd::Int) timebuf = Buffer(nt) databuf = nd == 1 ? Buffer(nt) : Buffer(nd, nt) itp = [interpolation(zeros(1), zeros(1)) for i in 1 : nd] new{typeof(timebuf), typeof(databuf), typeof(itp)}(timebuf, databuf, itp) end end show(io::IO, interpolant::Interpolant) = print(io, "Interpolant(timebuf:$(interpolant.timebuf), ", "databuf:$(interpolant.databuf), itp:$(interpolant.itp))") # Callling interpolant. getindex(interpolant::Interpolant, idx::Int) = interpolant.itp[idx] # Update of interpolant. That is, reinterpolation. """ update!(intepolant) Updates `interpolant` using the data in `timebuf` and `databuf` of `interpolant`. """ update!(interpolant::Interpolant{T1, <:AbstractVector, T2}) where {T1,T2} = interpolant.itp[1] = _update!(interpolant) update!(interpolant::Interpolant{T1, <:AbstractMatrix, T2}) where {T1,T2} = interpolant.itp = _update!(interpolant) _update!(interpolant) = interpolation(content(interpolant.timebuf, flip=true), content(interpolant.databuf, flip=true)) interpolation(tt, uu::AbstractMatrix) = map(row -> interpolation(tt, row), eachrow(uu)) interpolation(tt, uu::AbstractVector) = CubicSplineInterpolation(getranges(tt, uu)...; extrapolation_bc=Line()) function getranges(tt, uu) length(tt) < 2 && return (range(tt[1], length=2, step=eps()), range(uu[1], length=2, step=eps())) return range(tt[1], tt[end], length=length(tt)), uu end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2756
# This file includes macro tools to define new components types function _append_common_fields!(ex, newbody, newparamtypes) # Append body body = ex.args[3] append!(body.args, newbody.args) # Append struct type parameters name = ex.args[2] if name isa Expr && name.head === :(<:) name = name.args[1] end if name isa Expr && name.head === :curly append!(name.args, newparamtypes) elseif name isa Symbol ex.args[2] = Expr(:curly, name, newparamtypes...) # parametrize ex end end function deftype(ex) # Check ex head ex isa Expr && ex.head == :struct || error("Invalid source defition") # Get struct name name = ex.args[2] if name isa Expr && name.head === :(<:) name = name.args[1] end # Process struct body body = ex.args[3] kwargs = Expr(:parameters) callargs = Symbol[] _def!(body, kwargs, callargs) # struct has no fields isempty(kwargs.args) && return quote Base.@__doc__($(esc(ex))) end if name isa Symbol return quote Base.@__doc__($(esc(ex))) $(esc(name))($kwargs) = $(esc(name))($(callargs...)) end elseif name isa Expr && name.head === :curly _name = name.args[1] _param_types = name.args[2:end] __param_types = [_type_ isa Symbol ? _type_ : _type_.args[1] for _type_ in _param_types] return quote Base.@__doc__($(esc(ex))) $(esc(_name))($kwargs) = $(esc(_name))($(callargs...)) $(esc(_name)){$(esc.(__param_types)...)}($kwargs) where {$(esc.(_param_types)...)} = $(esc(_name)){$(esc.(__param_types)...)}($(callargs...)) end end end function _def!(body, kwargs, callargs) for i in 1 : length(body.args) bodyex = body.args[i] if bodyex isa Symbol # var push!(kwargs.args, bodyex) push!(callargs, bodyex) elseif bodyex isa Expr if bodyex.head === :(=) rhs = bodyex.args[2] lhs = bodyex.args[1] if lhs isa Expr && lhs.head === :(::) # var::T = 1 var = lhs.args[1] elseif lhs isa Symbol # var = 1 var = lhs elseif lhs isa Expr && lhs.head == :call # inner constructors continue end push!(kwargs.args, Expr(:kw, var, esc(rhs))) push!(callargs, var) body.args[i] = lhs elseif bodyex.head === :(::) # var::T var = bodyex.args[1] push!(kwargs.args, var) push!(callargs, var) end end end end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
9361
# This file includes stepping of abstract types. ##### Input-Output reading and writing. """ readtime!(comp::AbstractComponent) Returns current time of `comp` read from its `trigger` link. !!! note To read time of `comp`, `comp` must be launched. See also: [`launch(comp::AbstractComponent)`](@ref). """ readtime!(comp::AbstractComponent) = take!(comp.trigger) """ readstate(comp::AbstractComponent) Returns the state of `comp` if `comp` is `AbstractDynamicSystem`. Otherwise, returns `nothing`. """ readstate(comp::AbstractComponent) = typeof(comp) <: AbstractDynamicSystem ? comp.state : nothing """ readinput!(comp::AbstractComponent) Returns the input value of `comp` if the `input` of `comp` is `Inport`. Otherwise, returns `nothing`. !!! note To read input value of `comp`, `comp` must be launched. See also: [`launch(comp::AbstractComponent)`](@ref) """ function readinput!(comp::AbstractComponent) typeof(comp) <: AbstractSource && return nothing typeof(comp.input) <: Inport ? take!(comp.input) : nothing end """ writeoutput!(comp::AbstractComponent, out) Writes `out` to the output of `comp` if the `output` of `comp` is `Outport`. Otherwise, does `nothing`. """ function writeoutput!(comp::AbstractComponent, out) typeof(comp) <: AbstractSink && return nothing typeof(comp.output) <: Outport ? put!(comp.output, out) : nothing end """ computeoutput(comp, x, u, t) Computes the output of `comp` according to its `readout` if `readout` is not `nothing`. Otherwise, `nothing` is done. `x` is the state, `u` is the value of input, `t` is the time. """ function computeoutput end computeoutput(comp::AbstractSource, x, u, t) = comp.readout(t) computeoutput(comp::AbstractStaticSystem, x, u, t) = typeof(comp.readout) <: Nothing ? nothing : comp.readout(u, t) function computeoutput(comp::AbstractDynamicSystem, x, u, t) typeof(comp.readout) <: Nothing && return nothing typeof(u) <: Nothing ? comp.readout(x, u, t) : comp.readout(x, map(uu -> t -> uu, u), t) end # typeof(comp.readout) <: Nothing ? nothing : comp.readout(x, constructinput(comp, u, t), t) computeoutput(comp::AbstractSink, x, u, t) = nothing """ evolve!(comp::AbstractSource, u, t) Does nothing. `u` is the value of `input` and `t` is time. evolve!(comp::AbstractSink, u, t) Writes `t` to time buffer `timebuf` and `u` to `databuf` of `comp`. `u` is the value of `input` and `t` is time. evolve!(comp::AbstractStaticSystem, u, t) Writes `u` to `buffer` of `comp` if `comp` is an `AbstractMemory`. Otherwise, `nothing` is done. `u` is the value of `input` and `t` is time. evolve!(comp::AbstractDynamicSystem, u, t) Solves the differential equation of the system of `comp` for the time interval `(comp.t, t)` for the inital condition `x` where `x` is the current state of `comp` . `u` is the input function defined for `(comp.t, t)`. The `comp` is updated with the computed state and time `t`. """ function evolve! end evolve!(comp::AbstractSource, u, t) = nothing evolve!(comp::AbstractSink, u, t) = (write!(comp.timebuf, t); write!(comp.databuf, u); comp.sinkcallback(comp); nothing) function evolve!(comp::AbstractStaticSystem, u, t) if typeof(comp) <: AbstractMemory timebuf = comp.timebuf databuf = comp.databuf write!(timebuf, t) write!(databuf, u) end end function evolve!(comp::AbstractDynamicSystem, u, t) # For DDESystems, the problem for a time span of (t, t) cannot be solved. # Thus, there will be no evolution in such a case. integrator = comp.integrator interpolator = integrator.sol.prob.p update_interpolator!(interpolator, u, t) comp.t == t && return comp.state # Advance the system and update the system. step!(integrator, t - comp.t, true) comp.t = integrator.t comp.state = integrator.u # Return comp state return comp.state end update_interpolator!(interp::Nothing) = nothing update_interpolator!(interp::Nothing, u, t) = nothing function update_interpolator!(interp::Interpolant, u, t) write!(interp.timebuf, t) write!(interp.databuf, u) update!(interp) end ##### Task management """ takestep!(comp::AbstractComponent) Reads the time `t` from the `trigger` link of `comp`. If `comp` is an `AbstractMemory`, a backward step is taken. Otherwise, a forward step is taken. See also: [`forwardstep`](@ref), [`backwardstep`](@ref). """ function takestep!(comp::AbstractComponent) t = readtime!(comp) t === NaN && return t typeof(comp) <: AbstractMemory ? backwardstep(comp, t) : forwardstep(comp, t) end """ forwardstep(comp, t) Makes `comp` takes a forward step. The input value `u` and state `x` of `comp` are read. Using `x`, `u` and time `t`, `comp` is evolved. The output `y` of `comp` is computed and written into the output bus of `comp`. """ function forwardstep(comp, t) u = readinput!(comp) x = evolve!(comp, u, t) y = computeoutput(comp, x, u, t) writeoutput!(comp, y) applycallbacks(comp) return t end """ backwardstep(comp, t) Reads the state `x`. Using the time `t` and `x`, computes and writes the ouput value `y` of `comp`. Then, the input value `u` is read and `comp` is evolved. """ function backwardstep(comp, t) x = readstate(comp) y = computeoutput(comp, x, nothing, t) writeoutput!(comp, y) u = readinput!(comp) xn = evolve!(comp, u, t) applycallbacks(comp) return t end """ launch(comp::AbstractComponent) Returns a tuple of tasks so that `trigger` link and `output` bus of `comp` is drivable. When launched, `comp` is ready to be driven from its `trigger` link. See also: [`drive!(comp::AbstractComponent, t)`](@ref) """ function launch(comp::AbstractComponent) @async begin while true takestep!(comp) === NaN && break put!(comp.handshake, true) end typeof(comp) <: AbstractSink && close(comp) end end """ drive!(comp::AbstractComponent, t) Writes `t` to the `trigger` link of `comp`. When driven, `comp` takes a step. See also: [`takestep!(comp::AbstractComponent)`](@ref) """ drive!(comp::AbstractComponent, t) = put!(comp.trigger, t) """ approve!(comp::AbstractComponent) Read `handshake` link of `comp`. When not approved or `false` is read from the `handshake` link, the task launched for the `trigger` link of `comp` gets stuck during `comp` is taking step. """ approve!(comp::AbstractComponent) = take!(comp.handshake) # """ # release(comp::AbstractComponent) # Releases the `input` and `output` bus of `comp`. # """ # function release(comp::AbstractComponent) # typeof(comp) <: AbstractSource || typeof(comp.input) <: Nothing || release(comp.input) # typeof(comp) <: AbstractSink || typeof(comp.output) <: Nothing || release(comp.output) # return # end """ terminate!(comp::AbstractComponent) Closes the `trigger` link and `output` bus of `comp`. """ function terminate!(comp::AbstractComponent) typeof(comp) <: AbstractSink || typeof(comp.output) <: Nothing || close(comp.output) close(comp.trigger) return end ##### SubSystem interface """ launch(comp::AbstractSubSystem) Launches all subcomponents of `comp`. See also: [`launch(comp::AbstractComponent)`](@ref) """ function launch(comp::AbstractSubSystem) comptask = @async begin while true if takestep!(comp) === NaN put!(comp.triggerport, fill(NaN, length(comp.components))) break end put!(comp.handshake, true) end end [launch.(comp.components)..., comptask] end """ takestep!(comp::AbstractSubSystem) Makes `comp` to take a step by making each subcomponent of `comp` take a step. See also: [`takestep!(comp::AbstractComponent)`](@ref) """ function takestep!(comp::AbstractSubSystem) t = readtime!(comp) t === NaN && return t put!(comp.triggerport, fill(t, length(comp.components))) all(take!(comp.handshakeport)) || @warn "Could not be approved in the subsystem" # foreach(takestep!, comp.components) # approve!(comp) || @warn "Could not be approved in the subsystem" # put!(comp.handshake, true) end """ drive!(comp::AbstractSubSystem, t) Drives `comp` by driving each subcomponent of `comp`. See also: [`drive!(comp::AbstractComponent, t)`](@ref) """ drive!(comp::AbstractSubSystem, t) = foreach(component -> drive!(component, t), comp.components) """ approve!(comp::AbstractSubSystem) Approves `comp` by approving each subcomponent of `comp`. See also: [`approve!(comp::AbstractComponent)`](@ref) """ approve!(comp::AbstractSubSystem) = all(approve!.(comp.components)) # """ # release(comp::AbstractSubSystem) # Releases `comp` by releasing each subcomponent of `comp`. See also: [`release(comp::AbstractComponent)`](@ref) # """ # function release(comp::AbstractSubSystem) # foreach(release, comp.components) # typeof(comp.input) <: Inport && release(comp.input) # typeof(comp.output) <: Outport && release(comp.output) # end """ terminate!(comp::AbstractSubSystem) Terminates `comp` by terminating each subcomponent of `comp`. See also: [`terminate!(comp::AbstractComponent)`](@ref) """ terminate!(comp::AbstractSubSystem) = foreach(terminate!, comp.components)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
10611
# This file constains sink tools for the objects of Jusdl. """ @def_sink ex where `ex` is the expression to define to define a new AbstractSink component type. The usage is as follows: ```julia @def_sink struct MySink{T1,T2,T3,...,TN, A} <: AbstractSink param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field action::A = action_function # mandatory field end ``` Here, `MySink` has `N` parameters and `action` function !!! warning `action` function must have a method `action(sink::MySink, t, u)` where `t` is the time data and `u` is the data flowing into the sink. !!! warning New static system must be a subtype of `AbstractSink` to function properly. # Example ```jldoctest julia> @def_sink struct MySink{A} <: AbstractSink action::A = actionfunc end julia> actionfunc(sink::MySink, t, u) = println(t, u) actionfunc (generic function with 1 method) julia> sink = MySink(); julia> sink.action(sink, ones(2), ones(2) * 2) [1.0, 1.0][2.0, 2.0] ``` """ macro def_sink(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, IP, PL, TB, DB, SCB of types of trigger, handshake, callbacks, id, input, plugin, timebuf, databuf, sinkcallback by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_sink mutable struct MySink{TR} <: AbstractSink field::TR = nothing end Note that the parameter name of field is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# ex.args[2].head == :(<:) && ex.args[2].args[2] == :AbstractSink || error("Invalid usage. The type should be a subtype of AbstractSink.\n$ex") TR, HS, CB, ID, IP, PL, TB, DB, SCB = [gensym() for i in 1 : 9] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() input::$(IP) = Inport() buflen::Int = 64 plugin::$(PL) = nothing timebuf::$(TB) = Buffer(buflen) databuf::$(DB) = length(input) == 1 ? Buffer(buflen) : Buffer(length(input), buflen) sinkcallback::$(SCB) = plugin === nothing ? Callback(sink->ishit(databuf), sink->action(sink, outbuf(timebuf), outbuf(databuf)), true, id) : Callback(sink->ishit(databuf), sink->action(sink, outbuf(timebuf), plugin.process(outbuf(databuf))), true, id) end, [TR, HS, CB, ID, IP, PL, TB, DB, SCB] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define sink library # ----------------------------- Writer -------------------------------- """ Writer(input=Inport(); buflen=64, plugin=nothing, callbacks=nothing, name=Symbol(uuid4()), path=joinpath(tempdir(), string(name))) Constructs a `Writer` whose input bus is `input`. `buflen` is the length of the internal buffer of `Writer`. If not nothing, `plugin` is used to processes the incomming data. `path` determines the path of the file of `Writer`. !!! note The type of `file` of `Writer` is [`JLD2`](https://github.com/JuliaIO/JLD2.jl). !!! warning When initialized, the `file` of `Writer` is closed. See [`open(writer::Writer)`](@ref) and [`close(writer::Writer)`](@ref). """ @def_sink mutable struct Writer{A, FL} <: AbstractSink action::A = write! path::String = joinpath(tempdir(), string(uuid4())) file::FL = (f = jldopen(path, "w"); close(f); f) end """ write!(writer, td, xd) Writes `xd` corresponding to `xd` to the file of `writer`. # Example ```julia julia> w = Writer(Inport(1)) Writer(path:/tmp/e907d6ad-8db2-4c4a-9959-5b8d33d32156.jld2, nin:1) julia> open(w) Writer(path:/tmp/e907d6ad-8db2-4c4a-9959-5b8d33d32156.jld2, nin:1) julia> write!(w, 0., 10.) 10.0 julia> write!(w, 1., 20.) 20.0 julia> w.file JLDFile /tmp/e907d6ad-8db2-4c4a-9959-5b8d33d32156.jld2 (read/write) ├─🔢 0.0 └─🔢 1.0 julia> w.file[string(0.)] 10.0 ``` """ write!(writer::Writer, td, xd) = fwrite!(writer.file, td, xd) fwrite!(file, td, xd) = file[string(td)] = xd """ read(writer::Writer, flatten=false) Read the contents of the file of `writer` and returns the sorted content of the file. If `flatten` is `true`, the content is also flattened. """ read(writer::Writer; flatten=true) = fread(writer.file.path, flatten=flatten) """ fread(path::String) Reads the content of `jld2` file and returns the sorted file content. """ function fread(path::String; flatten=false) content = load(path) data = SortedDict([(eval(Meta.parse(key)), val) for (key, val) in zip(keys(content), values(content))]) if flatten t = vcat(reverse.(keys(data), dims=1)...) if typeof(data) <: SortedDict{T1, T2, T3} where {T1, T2<:AbstractVector, T3} x = vcat(reverse.(values(data), dims=1)...) elseif typeof(data) <: SortedDict{T1, T2, T3} where {T1, T2<:AbstractMatrix, T3} x = collect(hcat(reverse.(values(data), dims=2)...)') end return t, x else return data end end flatten(content) = (collect(vcat(keys(content)...)), collect(vcat(values(content)...))) """ mv(writer::Writer, dst; force::Bool=false) Moves the file of `writer` to `dst`. If `force` is `true`, the if `dst` is not a valid path, it is forced to be constructed. # Example ```julia julia> mkdir(joinpath(tempdir(), "testdir1")) "/tmp/testdir1" julia> mkdir(joinpath(tempdir(), "testdir2")) "/tmp/testdir2" julia> w = Writer(Inport(), path="/tmp/testdir1/myfile.jld2") Writer(path:/tmp/testdir1/myfile.jld2, nin:1) julia> mv(w, "/tmp/testdir2") Writer(path:/tmp/testdir2/myfile.jld2, nin:1) ``` """ function mv(writer::Writer, dst; force::Bool=false) # id = writer.id id = basename(writer.file.path) dstpath = joinpath(dst, string(id)) srcpath = writer.file.path mv(srcpath, dstpath, force=force) writer.file.path = dstpath # Update the file path writer end """ cp(writer::Writer, dst; force=false, follow_symlinks=false) Copies the file of `writer` to `dst`. If `force` is `true`, the if `dst` is not a valid path, it is forced to be constructed. If `follow_symlinks` is `true`, symbolinks are followed. # Example ```julia julia> mkdir(joinpath(tempdir(), "testdir1")) "/tmp/testdir1" julia> mkdir(joinpath(tempdir(), "testdir2")) "/tmp/testdir2" julia> w = Writer(Inport(), path="/tmp/testdir1") Writer(path:/tmp/testdir1.jld2, nin:1) julia> cp(w, "/tmp/testdir2") Writer(path:/tmp/testdir2/1e72bad1-9800-4ca0-bccd-702afe75e555, nin:1) ``` """ function cp(writer::Writer, dst; force=false, follow_symlinks=false) # id = writer.id id = basename(writer.file.path) dstpath = joinpath(dst, string(id)) cp(writer.file.path, dstpath, force=force, follow_symlinks=follow_symlinks) writer end """ open(writer::Writer) Opens `writer` by opening the its `file` in `read/write` mode. When `writer` is not openned, it is not possible to write data in `writer`. See also [`close(writer::Writer)`](@ref) """ open(writer::Writer) = (writer.file = jldopen(writer.file.path, "a"); writer) """ close(writer::Writer) Closes `writer` by closing its `file`. When `writer` is closed, it is not possible to write data in `writer`. See also [`open(writer::Writer)`](@ref) """ close(writer::Writer) = (close(writer.file); writer) # ----------------------------- Printer -------------------------------- """ Printer(input=Inport(); buflen=64, plugin=nothing, callbacks=nothing, name=Symbol()) where T Constructs a `Printer` with input bus `input`. `buflen` is the length of its internal `buflen`. `plugin` is data proccessing tool. """ @def_sink mutable struct Printer{A} <: AbstractSink action::A = print end import Base.print """ print(printer::Printer, td, xd) Prints `xd` corresponding to `xd` to the console. """ print(printer::Printer, td, xd) = print("For time", "[", td[1], " ... ", td[end], "]", " => ", xd, "\n") """ open(printer::Printer) Does nothing. Just a common interface function ot `AbstractSink` interface. """ open(printer::Printer) = printer """ close(printer::Printer) Does nothing. Just a common interface function ot `AbstractSink` interface. """ close(printer::Printer) = printer # ----------------------------- Scope -------------------------------- """ Scope(input=Inport(), args...; buflen::Int=64, plugin=nothing, callbacks=nothing, name=Symbol(), kwargs...) Constructs a `Scope` with input bus `input`. `buflen` is the length of the internal buffer of `Scope`. `plugin` is the additional data processing tool. `args`,`kwargs` are passed into `plots(args...; kwargs...))`. See (https://github.com/JuliaPlots/Plots.jl) for more information. !!! warning When initialized, the `plot` of `Scope` is closed. See [`open(sink::Scope)`](@ref) and [`close(sink::Scope)`](@ref). """ @def_sink mutable struct Scope{A, PA, PK, PLT} <: AbstractSink action::A = update! pltargs::PA = () pltkwargs::PK = NamedTuple() plt::PLT = plot(pltargs...; pltkwargs...) end """ update!(s::Scope, x, yi) Updates the series of the plot windows of `s` with `x` and `yi`. """ function update!(s::Scope, x, yi) y = collect(hcat(yi...)') plt = s.plt subplots = plt.subplots clear.(subplots) plot!(plt, x, y, xlim=(x[1], x[end]), label="") # Plot the new series gui() end clear(sp::Plots.Subplot) = popfirst!(sp.series_list) # Delete the old series """ close(sink::Scope) Closes the plot window of the plot of `sink`. """ close(sink::Scope) = closeall() """ open(sink::Scope) Opens the plot window for the plots of `sink`. """ open(sink::Scope) = Plots.isplotnull() ? (@warn "No current plots") : gui() ##### Pretty printing show(io::IO, writer::Writer) = print(io, "Writer(path:$(writer.file.path), nin:$(length(writer.input)))") show(io::IO, printer::Printer) = print(io, "Printer(nin:$(length(printer.input)))") show(io::IO, scp::Scope) = print(io, "Scope(nin:$(length(scp.input)))") ##### Deprecated # function unfasten!(sink::AbstractSink) # callbacks = sink.callbacks # sid = sink.id # typeof(callbacks) <: AbstractVector && disable!(callbacks[callback.id == sid for callback in callbacks]) # typeof(callbacks) <: Callback && disable!(callbacks) # sink # end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
5068
# This file constains the Clock tools for time synchronization of DsSimulator. import Base: iterate, take!, length Generator(t0, dt, tf) = Channel{promote_type(typeof(t0),typeof(dt),typeof(tf))}(channel -> foreach(t -> put!(channel, t), t0:dt:tf)) """ Clock(t::Real, dt::Real, tf::Real) Constructs a `Clock` with starting time `t`, final time `tf` and sampling inteval `dt`. When iterated, the `Clock` returns its current time. !!! warning When constructed, `Clock` is not running. To take clock ticks from `Clock`, the `Clock` must be setted. See [`take!(clk::Clock)`](@ref) and [`set!`](@ref) """ mutable struct Clock{T, CB} t::T ti::T dt::T tf::T generator::Channel{T} paused::Bool callbacks::CB name::Symbol uuid::UUID Clock{T}(ti::T, dt::T, tf::T; callbacks::CB=nothing, name=Symbol()) where {T, CB} = new{T, CB}(ti, ti, dt, tf, Channel{T}(0), false, callbacks, name, uuid4()) end Clock(t::T, dt::T, tf::T; kwargs...) where T = Clock{T}(t, dt, tf; kwargs...) Clock(t=0., dt=0.01, tf=1.; kwargs...) = Clock(promote(t, dt, tf)...; kwargs...) show(io::IO, clk::Clock) = print(io, "Clock(t:$(clk.t), dt:$(clk.dt), tf:$(clk.tf), paused:$(clk.paused), isrunning:$(isrunning(clk)))") ##### Reading from clock """ take!(clk::Clock) Takes a values from `clk`. # Example ```jldoctest julia> clk = Clock(0., 0.1, 0.5) Clock(t:0.0, dt:0.1, tf:0.5, paused:false, isrunning:false) julia> set!(clk) Clock(t:0.0, dt:0.1, tf:0.5, paused:false, isrunning:true) julia> for i in 0 : 5 @show take!(clk) end take!(clk) = 0.0 take!(clk) = 0.1 take!(clk) = 0.2 take!(clk) = 0.3 take!(clk) = 0.4 take!(clk) = 0.5 ``` """ function take!(clk::Clock) if ispaused(clk) @warn "Clock is paused." return clk.t end if isoutoftime(clk) @warn "Clock is out of time." return clk.t end ## ## NOTE: If this code block is uncommented, a bug occurs ## The same clock times is sent multiple time. ## # if !isrunning(clk) # @warn "Clock is not running." # return clk.t # end clk.t = take!(clk.generator) applycallbacks(clk) clk.t end ##### Clock state check """ isrunning(clk::Clock) Returns `true` if `clk` if `clk` is running. """ isrunning(clk::Clock) = isready(clk.generator) """ ispaused(clk::Clock) Returns `true` if `clk` is paused. When paused, the currnent time of `clk` is not advanced. See also [`pause!(clk::Clock)`](@ref) """ ispaused(clk::Clock) = clk.paused """ isoutoftime(clk::Clock) Returns `true` if `clk` is out of time, i.e., the current time of `clk` exceeds its final time. """ isoutoftime(clk::Clock) = clk.t >= clk.tf ##### Controlling clock. """ set(clk::Clock, t::Real, dt::Real, tf::Real) Sets `clk` for current clock time `t`, sampling time `dt` and final time `tf`. After the set, it is possible to take clock tick from `clk`. See also [`take!(clk::Clock)`](@ref) # Example ```jldoctest julia> clk = Clock(0., 0.1, 0.5) Clock(t:0.0, dt:0.1, tf:0.5, paused:false, isrunning:false) julia> set!(clk) Clock(t:0.0, dt:0.1, tf:0.5, paused:false, isrunning:true) julia> take!(clk) 0.0 ``` """ function set!(clk::Clock, t::Real=clk.ti, dt::Real=clk.dt, tf::Real=clk.tf) # set!(clk, Generator(t, dt, tf)) clk.generator = Generator(t, dt, tf) clk.t = t clk.dt = dt clk.tf = tf clk.paused = false clk end # function set!(clk::Clock, generator::Channel=Generator(clk.ti, clk.dt, clk.tf)) # clk.generator = generator # clk.paused = false # clk # end """ stop!(clk::Clock) Unsets `clk`. After the stpp, it is possible to take clock ticks from `clk`. See also [`take!(clk::Clock)`](@ref) """ function stop!(clk::Clock) set!(clk, Channel{typeof(clk.t)}(0)) clk end """ pause!(clk::Clock) Pauses `clk`. When paused, the current time of `clk` does not advance. # Example ```julia julia> clk = Clock(0., 0.1, 0.5); julia> set!(clk); julia> for i = 1 : 5 i > 3 && pause!(clk) @show take!(clk) end take!(clk) = 0.0 take!(clk) = 0.1 take!(clk) = 0.2 ┌ Warning: Clock is paused. └ @ Jusdl ~/.julia/dev/Jusdl/src/components/sources/clock.jl:61 take!(clk) = 0.2 ┌ Warning: Clock is paused. └ @ Jusdl ~/.julia/dev/Jusdl/src/components/sources/clock.jl:61 take!(clk) = 0.2 ``` """ pause!(clk::Clock) = (clk.paused = true; clk) ##### Iterating clock. """ iterate(clk::Clock[, t=clk.t) Iterationk interface for `clk`. `clk` can be iterated in a loop. # Example ```jldoctest julia> clk = Clock(0., 0.1, 0.3); julia> set!(clk) Clock(t:0.0, dt:0.1, tf:0.3, paused:false, isrunning:true) julia> for t in clk @show t end t = 0.0 t = 0.1 t = 0.2 t = 0.3 ``` """ iterate(clk::Clock, t=clk.t) = isready(clk.generator) ? (take!(clk), clk.t) : nothing ##### ProgressMeter interface. ### This `length` method is implemented for [ProgressMeter](https://github.com/timholy/ProgressMeter.jl) length(clk::Clock) = length(clk.t:clk.dt:clk.tf)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
10843
# This file contains the function generator tools to drive other tools of DsSimulator. import UUIDs: uuid4 """ @def_source ex where `ex` is the expression to define to define a new AbstractSource component type. The usage is as follows: ```julia @def_source struct MySource{T1,T2,T3,...,TN,OP, RO} <: AbstractSource param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field output::OP = output_default # mandatory field readout::RO = readout_function # mandatory field end ``` Here, `MySource` has `N` parameters, an `output` port and a `readout` function. !!! warning `output` and `readout` are mandatory fields to define a new source. The rest of the fields are the parameters of the source. !!! warning `readout` must be a single-argument function, i.e. a fucntion of time `t`. !!! warning New source must be a subtype of `AbstractSource` to function properly. # Example ```jldoctest julia> @def_source struct MySource{OP, RO} <: AbstractSource a::Int = 1 b::Float64 = 2. output::OP = Outport() readout::RO = t -> (a + b) * sin(t) end julia> gen = MySource(); julia> gen.a 1 julia> gen.output 1-element Outport{Outpin{Float64}}: Outpin(eltype:Float64, isbound:false) ``` """ macro def_source(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID of types of trigger, handshake, callbacks, id by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_source struct Mygen{RO, TR} <: AbstractSource readout::RO = t -> sin(t) output::TR = Outport() end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# ex.args[2].head == :(<:) && ex.args[2].args[2] == :AbstractSource || error("Invalid usage. The type should be a subtype of AbstractSource.\n$ex") TR, HS, CB, ID = [gensym() for i in 1 : 4] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() end, [TR, HS, CB, ID] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define Sources library """ FunctionGenerator(; readout, output=Outport()) Constructs a generic function generator with `readout` function and `output` port. # Example ```jldoctest julia> gen = FunctionGenerator(readout = t -> [t, 2t], output = Outport(2)); julia> gen.readout(1.) 2-element Array{Float64,1}: 1.0 2.0 ``` """ @def_source struct FunctionGenerator{RO, OP} <: AbstractSource readout::RO output::OP = Outport(1) end @doc raw""" SinewaveGenerator(;amplitude=1., frequency=1., phase=0., delay=0., offset=0.) Constructs a `SinewaveGenerator` with output of the form ```math x(t) = A sin(2 \pi f (t - \tau) + \phi) + B ``` where ``A`` is `amplitude`, ``f`` is `frequency`, ``\tau`` is `delay` and ``\phi`` is `phase` and ``B`` is `offset`. """ @def_source struct SinewaveGenerator{RO, OP} <: AbstractSource amplitude::Float64 = 1. frequency::Float64 = 1. phase::Float64 = 0. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, amplitude=amplitude, frequency=frequency, delay=delay, offset=offset) -> amplitude * sin(2 * pi * frequency * (t - delay) + phase) + offset end @doc raw""" DampedSinewaveGenerator(;amplitude=1., decay=-0.5, frequency=1., phase=0., delay=0., offset=0.) Constructs a `DampedSinewaveGenerator` which generates outputs of the form ```math x(t) = A e^{\alpha t} sin(2 \pi f (t - \tau) + \phi) + B ``` where ``A`` is `amplitude`, ``\alpha`` is `decay`, ``f`` is `frequency`, ``\phi`` is `phase`, ``\tau`` is `delay` and ``B`` is `offset`. """ @def_source struct DampedSinewaveGenerator{RO, OP} <: AbstractSource amplitude::Float64 = 1. decay::Float64 = 0.5 frequency::Float64 = 1. phase::Float64 = 0. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, amplitude=amplitude, decay=decay, frequency=frequency, phase=phase, delay=delay, offset=offset) -> amplitude * exp(decay * t) * sin(2 * pi * frequency * (t - delay)) + offset end @doc raw""" SquarewaveGenerator(;level1=1., level2=0., period=1., duty=0.5, delay=0.) Constructs a `SquarewaveGenerator` with output of the form ```math x(t) = \left\{\begin{array}{lr} A_1 + B, & kT + \tau \leq t \leq (k + \alpha) T + \tau \\ A_2 + B, & (k + \alpha) T + \tau \leq t \leq (k + 1) T + \tau \end{array} \right. \quad k \in Z ``` where ``A_1``, ``A_2`` is `level1` and `level2`, ``T`` is `period`, ``\tau`` is `delay` ``\alpha`` is `duty`. """ @def_source struct SquarewaveGenerator{OP, RO} <: AbstractSource high::Float64 = 1. low::Float64 = 0. period::Float64 = 1. duty::Float64 = 0.5 delay::Float64 = 0. output::OP = Outport() readout::RO = (t, high=high, low=low, period=period, duty=duty, delay=delay) -> t <= delay ? low : ( ((t - delay) % period <= duty * period) ? high : low ) end @doc raw""" TriangularwaveGenerator(;amplitude=1, period=1, duty=0.5, delay=0, offset=0) Constructs a `TriangularwaveGenerator` with output of the form ```math x(t) = \left\{\begin{array}{lr} \dfrac{A t}{\alpha T} + B, & kT + \tau \leq t \leq (k + \alpha) T + \tau \\[0.25cm] \dfrac{A (T - t)}{T (1 - \alpha)} + B, & (k + \alpha) T + \tau \leq t \leq (k + 1) T + \tau \end{array} \right. \quad k \in Z ``` where ``A`` is `amplitude`, ``T`` is `period`, ``\tau`` is `delay` ``\alpha`` is `duty`. """ @def_source struct TriangularwaveGenerator{OP, RO} <: AbstractSource amplitude::Float64 = 1. period::Float64 = 1. duty::Float64 = 0.5 delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, amplitude=amplitude, period=period, duty=duty, delay=delay, offset=offset) -> begin if t <= delay return offset else t = (t - delay) % period if t <= duty * period amplitude / (duty * period) * t + offset else (amplitude * (period - t)) / (period * (1 - duty)) + offset end end end end @doc raw""" ConstantGenerator(;amplitude=1.) Constructs a `ConstantGenerator` with output of the form ```math x(t) = A ``` where ``A`` is `amplitude. """ @def_source struct ConstantGenerator{OP, RO} <: AbstractSource amplitude::Float64 = 1. output::OP = Outport() readout::RO = (t, amplitude=amplitude) -> amplitude end @doc raw""" RampGenerator(;scale=1, delay=0.) Constructs a `RampGenerator` with output of the form ```math x(t) = \alpha (t - \tau) ``` where ``\alpha`` is the `scale` and ``\tau`` is `delay`. """ @def_source struct RampGenerator{OP, RO} <: AbstractSource scale::Float64 = 1. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, scale=scale, delay=delay, offset=offset) -> scale * (t - delay) + offset end @doc raw""" StepGenerator(;amplitude=1, delay=0, offset=0) Constructs a `StepGenerator` with output of the form ```math x(t) = \left\{\begin{array}{lr} B, & t \leq \tau \\ A + B, & t > \tau \end{array} \right. ``` where ``A`` is `amplitude`, ``B`` is the `offset` and ``\tau`` is the `delay`. """ @def_source struct StepGenerator{OP, RO} <: AbstractSource amplitude::Float64 = 1. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, amplitude=amplitude, delay=delay, offset=offset) -> t - delay >= 0 ? amplitude + offset : offset end @doc raw""" ExponentialGenerator(;scale=1, decay=-1, delay=0.) Constructs an `ExponentialGenerator` with output of the form ```math x(t) = A e^{\alpha (t - \tau)} ``` where ``A`` is `scale`, ``\alpha`` is `decay` and ``\tau`` is `delay`. """ @def_source struct ExponentialGenerator{OP, RO} <: AbstractSource scale::Float64 = 1. decay::Float64 = -1. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, scale=scale, decay=decay, delay=delay, offset=offset) -> scale * exp(decay * (t - delay)) + offset end @doc raw""" DampedExponentialGenerator(;scale=1, decay=-1, delay=0.) Constructs an `DampedExponentialGenerator` with outpsuts of the form ```math x(t) = A (t - \tau) e^{\alpha (t - \tau)} ``` where ``A`` is `scale`, ``\alpha`` is `decay`, ``\tau`` is `delay`. """ @def_source struct DampedExponentialGenerator{OP, RO} <: AbstractSource scale::Float64 = 1. decay::Float64 = -1. delay::Float64 = 0. offset::Float64 = 0. output::OP = Outport() readout::RO = (t, scale=scale, decay=decay, delay=delay, offset=offset) -> scale * (t - delay) * exp(decay * (t - delay)) + offset end ##### Pretty-Printing of generators. show(io::IO, gen::FunctionGenerator) = print(io, "FunctionGenerator(readout:$(gen.readout), output:$(gen.output))") show(io::IO, gen::SinewaveGenerator) = print(io, "SinewaveGenerator(amp:$(gen.amplitude), freq:$(gen.frequency), phase:$(gen.phase), ", "offset:$(gen.offset), delay:$(gen.delay))") show(io::IO, gen::DampedSinewaveGenerator) = print(io, "DampedSinewaveGenerator(amp:$(gen.amplitude), decay:$(gen.delay), freq:$(gen.frequency), ", "phase:$(gen.phase), delay:$(gen.delay), offset:$(gen.offset))") show(io::IO, gen::SquarewaveGenerator) = print(io, "SquarewaveGenerator(high:$(gen.high), low:$(gen.low), period:$(gen.period), duty:$(gen.duty), ", "delay:$(gen.delay))") show(io::IO, gen::TriangularwaveGenerator) = print(io, "TriangularwaveGenerator(amp:$(gen.amplitude), period:$(gen.period), duty:$(gen.duty), ", "delay:$(gen.delay), offset:$(gen.offset))") show(io::IO, gen::ConstantGenerator) = print(io, "ConstantGenerator(amp:$(gen.amplitude))") show(io::IO, gen::RampGenerator) = print(io, "RampGenerator(scale:$(gen.scale), delay:$(gen.delay))") show(io::IO, gen::StepGenerator) = print(io, "StepGenerator(amp:$(gen.amplitude), delay:$(gen.delay), offset:$(gen.offset))") show(io::IO, gen::ExponentialGenerator) = print(io, "ExponentialGenerator(scale:$(gen.scale), decay:$(gen.decay), delay:$(gen.delay))") show(io::IO, gen::DampedExponentialGenerator) = print(io, "DampedExponentialGenerator(scale:$(gen.scale), decay:$(gen.decay), delay:$(gen.delay))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
8983
# This file includes DAESystems import DifferentialEquations: DAEProblem import Sundials: IDA import UUIDs: uuid4 """ @def_dae_system ex where `ex` is the expression to define to define a new AbstractDAESystem component type. The usage is as follows: ```julia @def_dae_system mutable struct MyDAESystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractDAESystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field righthandside::RH = righthandside_function # mandatory field readout::RO = readout_function # mandatory field state::ST = state_default # mandatory field stateder::ST = stateder_default # mandatory field diffvars::Vector{Bool} = diffvars_default # mandatory field input::IP = input_default # mandatory field output::OP = output_default # mandatory field end ``` Here, `MyDAESystem` has `N` parameters. `MyDAESystem` is represented by the `righthandside` and `readout` function. `state`, 'stateder`, `diffvars`, `input` and `output` is the initial state, initial value of differential variables, vector signifing differetial variables, input port and output port of `MyDAESystem`. !!! warning `righthandside` must have the signature ```julia function righthandside(out, dx, x, u, t, args...; kwargs...) out .= .... # update out end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New DAE system must be a subtype of `AbstractDAESystem` to function properly. # Example ```jldoctest julia> @def_dae_system mutable struct MyDAESystem{RH, RO, ST, IP, OP} <: AbstractDAESystem righthandside::RH = function sfuncdae(out, dx, x, u, t) out[1] = x[1] + 1 - dx[1] out[2] = (x[1] + 1) * x[2] + 2 end readout::RO = (x,u,t) -> x state::ST = [1., -1] stateder::ST = [2., 0] diffvars::Vector{Bool} = [true, false] input::IP = nothing output::OP = Outport(1) end julia> ds = MyDAESystem(); ``` """ macro def_dae_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_dae_system mutable struct MyDAESystem{RH, RO, ST, IP, TR} <: AbstractDAESystem righthandside::RH readout::RO state::ST stateder::ST diffvars::Vector{Bool} input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractDAESystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = NamedTuple() alg::$(AL) = Jusdl.IDA() integrator::$(IT) = Jusdl.construct_integrator(Jusdl.DAEProblem, input, righthandside, state, t, modelargs, solverargs; alg=alg, stateder=stateder, modelkwargs=(; zip((keys(modelkwargs)..., :differential_vars), (values(modelkwargs)..., diffvars))...), solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end ##### Defien DAE system library """ DAESystem(; righthandside, readout, state, stateder, diffvars, input, output) Constructs a generic DAE system. # Example ```jldoctest julia> function sfuncdae(out, dx, x, u, t) out[1] = x[1] + 1 - dx[1] out[2] = (x[1] + 1) * x[2] + 2 end; julia> ofuncdae(x, u, t) = x; julia> x0 = [1., -1]; julia> dx0 = [2., 0.]; julia> DAESystem(righthandside=sfuncdae, readout=ofuncdae, state=x0, input=nothing, output=Outport(1), diffvars=[true, false], stateder=dx0) DAESystem(righthandside:sfuncdae, readout:ofuncdae, state:[1.0, -1.0], t:0.0, input:nothing, output:Outport(numpins:1, eltype:Outpin{Float64})) ``` """ @def_dae_system mutable struct DAESystem{RH, RO, ST, IP, OP} <: AbstractDAESystem righthandside::RH readout::RO state::ST stateder::ST diffvars::Vector{Bool} input::IP output::OP end @doc raw""" RobertsonSystem() Constructs a Robertson systme with the dynamcis ```math \begin{array}{l} \dot{x}_1 = -k_1 x_1 + k_3 x_2 x_3 \\[0.25cm] \dot{x}_2 = k_1 x_1 - k_2 x_2^2 - k_3 x_2 x_3 \\[0.25cm] 1 = x_1 + x_2 + x_3 \end{array} ``` """ @def_dae_system mutable struct RobertsonSystem{RH, RO, IP, OP} <: AbstractDAESystem k1::Float64 = 0.04 k2::Float64 = 3e7 k3::Float64 = 1e4 righthandside::RH = function robertsonrhs(out, dx, x, u, t) out[1] = -k1 * x[1] + k3 * x[2] * x[3] - dx[1] out[2] = k1 * x[1] - k2 * x[2]^2 - k3 * x[2] * x[3] - dx[2] out[3] = x[1] + x[2] + x[3] - 1 end rightout::RO = (x, u, t) -> x[1:2] state::Vector{Float64} = [1., 0., 0.] stateder::Vector{Float64} = [-k1, k1, 0.] diffvars::Vector{Bool} = [true, true, false] input::IP = nothing output::OP = Outport(2) end @doc raw""" PendulumSystem() Constructs a Pendulum systme with the dynamics ```math \begin{array}{l} \dot{x}_1 = x_3 \\[0.25cm] \dot{x}_2 = x_4 \\[0.25cm] \dot{x}_3 = -\dfrac{F}{m l} x_1 \\[0.25cm] \dot{x}_4 = g \dfrac{F}{l} x_2 \\[0.25cm] 0 = x_1^2 + x_2^2 - l^2 \end{array} ``` where ``F`` is the external force, ``l`` is the length, ``m`` is the mass and ``g`` is the accelaration of gravity. """ @def_dae_system mutable struct PendulumSystem{RH, RO, IP, OP} <: AbstractDAESystem F::Float64 = 1. l::Float64 = 1. g::Float64 = 9.8 m::Float64 = 1. righthandside::RH = function pendulumrhs(out, dx, x, u, t) out[1] = x[3] - dx[1] out[2] = x[4] - dx[2] out[3] = - F / (m * l) * x[1] - dx[3] out[4] = g * F / l * x[2] - dx[4] out[5] = x[1]^2 + x[2]^2 - l^2 end readout::RO = (x, u, t) -> x[1:4] state::Vector{Float64} = [1., 0., 0., 0., 0.] stateder::Vector{Float64} = [0., 0., -1., 0., 0.] diffvars::Vector{Bool} = [true, true, true, true, false] input::IP = nothing output::OP = Outport(4) end @doc raw""" RLCSystem() Construsts a RLC system with the dynamics ```math \begin{array}{l} \dot{x}_1 = x_3 \\[0.25cm] \dot{x}_2 = x_4 \\[0.25cm] \dot{x}_3 = -\dfrac{F}{m l} x_1 \\[0.25cm] \dot{x}_4 = g \dfrac{F}{l} x_2 \\[0.25cm] 0 = x_1^2 + x_2^2 - l^2 \end{array} ``` where ``F`` is the external force, ``l`` is the length, ``m`` is the mass and ``g`` is the accelaration of gravity. """ @def_dae_system mutable struct RLCSystem{RH, RO, IP, OP} <: AbstractDAESystem R::Float64 = 1. L::Float64 = 1. C::Float64 = 1. righthandside::RH = function pendulumrhs(out, dx, x, u, t) out[1] = 1 / C * x[4] - dx[1] out[2] = 1 / L * x[4] - dx[2] out[3] = x[3] + R * x[5] out[4] = x[1] + x[2] + x[3] + u[1](t) out[5] = x[4] - x[5] end readout::RO = (x, u, t) -> x[1:2] state::Vector{Float64} = [0., 0., 0., 0., 0.] stateder::Vector{Float64} = [0., 0., 0., 0., 0.] diffvars::Vector{Bool} = [true, true, false, false, false] input::IP = Inport(1) output::OP = Outport(2) end ##### Pretty printing show(io::IO, ds::DAESystem) = print(io, "DAESystem(righthandside:$(ds.righthandside), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::RobertsonSystem) = print(io, "RobersonSystem(k1:$(ds.k1), k2:$(ds.k2), k2:$(ds.k3), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::PendulumSystem) = print(io, "PendulumSystem(F:$(ds.F), m:$(ds.m), l:$(ds.l), g:$(ds.g), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::RLCSystem) = print(io, "RLCSystem(R:$(ds.R), L:$(ds.L), C:$(ds.C), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
6655
# This file includes DDESystems import DifferentialEquations: MethodOfSteps, Tsit5 import UUIDs: uuid4 """ @def_dde_system ex where `ex` is the expression to define to define a new AbstractDDESystem component type. The usage is as follows: ```julia @def_dde_system mutable struct MyDDESystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractDDESystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field constlags::CL = constlags_default # mandatory field depslags::DL = depslags_default # mandatory field righthandside::RH = righthandside_function # mandatory field history::HST = history_function # mandatory field readout::RO = readout_function # mandatory field state::ST = state_default # mandatory field input::IP = input_defauult # mandatory field output::OP = output_default # mandatory field end ``` Here, `MyDDESystem` has `N` parameters. `MyDDESystem` is represented by the `righthandside` and `readout` function. `state`, `input` and `output` is the state, input port and output port of `MyDDESystem`. !!! warning `righthandside` must have the signature ```julia function righthandside(dx, x, u, t, args...; kwargs...) dx .= .... # update dx end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New DDE system must be a subtype of `AbstractDDESystem` to function properly. # Example ```jldoctest julia> _delay_feedback_system_cache = zeros(1) 1-element Array{Float64,1}: 0.0 julia> _delay_feedback_system_tau = 1. 1.0 julia> _delay_feedback_system_constlags = [1.] 1-element Array{Float64,1}: 1.0 julia> _delay_feedback_system_history(cache, u, t) = (cache .= 1.) _delay_feedback_system_history (generic function with 1 method) julia> function _delay_feedback_system_rhs(dx, x, h, u, t, cache=_delay_feedback_system_cache, τ=_delay_feedback_system_tau) h(cache, u, t - τ) # Update cache dx[1] = cache[1] + x[1] end _delay_feedback_system_rhs (generic function with 3 methods) julia> @def_dde_system mutable struct MyDDESystem{RH, HST, RO, IP, OP} <: AbstractDDESystem constlags::Vector{Float64} = _delay_feedback_system_constlags depslags::Nothing = nothing righthandside::RH = _delay_feedback_system_rhs history::HST = _delay_feedback_system_history readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(1) input::IP = nothing output::OP = Outport(1) end julia> ds = MyDDESystem(); ``` """ macro def_dde_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_dde_system mutable struct MyDDESystem{CL, DL, RH, HST, RO, ST, IP, TR} <: AbstractDDESystem constlags::CL depslags::DL righthandside::RH history::HST readout::RO state::ST input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractDDESystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = NamedTuple() alg::$(AL) = Jusdl.MethodOfSteps(Jusdl.Tsit5()) integrator::$(IT) = Jusdl.construct_integrator( Jusdl.DDEProblem, input, (righthandside, history), state, t, modelargs, solverargs; alg=alg, modelkwargs=(; zip( (keys(modelkwargs)..., :constant_lags, :dependent_lags), (values(modelkwargs)..., constlags, depslags))... ), solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define DDE system library. """ DDESystem(; constantlags, depslags, righthandside, history, readout, state, input, output) Construct a generic DDE system """ @def_dde_system mutable struct DDESystem{CL, DL, RH, HST, RO, ST, IP, OP} <: AbstractDDESystem constlags::CL depslags::DL righthandside::RH history::HST readout::RO state::ST input::IP output::OP end """ DDESystem(; constantlags, depslags, righthandside, history, readout, state, input, output) Constructs DelayFeedbackSystem """ @def_dde_system mutable struct DelayFeedbackSystem{RH, HST, RO, IP, OP} <: AbstractDDESystem constlags::Vector{Float64} = Jusdl._delay_feedback_system_constlags depslags::Nothing = nothing righthandside::RH = Jusdl._delay_feedback_system_rhs history::HST = Jusdl._delay_feedback_system_history readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(1) input::IP = nothing output::OP = Outport(1) end _delay_feedback_system_cache = zeros(1) _delay_feedback_system_tau = 1. _delay_feedback_system_constlags = [1.] _delay_feedback_system_history(cache, u, t) = (cache .= 1.) function _delay_feedback_system_rhs(dx, x, h, u, t, cache=Jusdl._delay_feedback_system_cache, τ=Jusdl._delay_feedback_system_tau) h(cache, u, t - τ) # Update cache dx[1] = cache[1] + x[1] end ##### Pretty-printing show(io::IO, ds::DDESystem) = print(io, "DDESystem(righthandside:$(ds.righthandside), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::DelayFeedbackSystem) = print(io, "DelayFeedbackSystem(state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
10622
# This file includes the Discrete Systems import DifferentialEquations: FunctionMap, DiscreteProblem import UUIDs: uuid4 """ @def_discrete_system ex where `ex` is the expression to define to define a new AbstractDiscreteSystem component type. The usage is as follows: ```julia @def_discrete_system mutable struct MyDiscreteSystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractDiscreteSystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field righthandside::RH = righthandside_function # mandatory field readout::RO = readout_function # mandatory field state::ST = state_default # mandatory field input::IP = input_default # mandatory field output::OP = output_default # mandatory field end ``` Here, `MyDiscreteSystem` has `N` parameters. `MyDiscreteSystem` is represented by the `righthandside` and `readout` function. `state`, `input` and `output` is the state, input port and output port of `MyDiscreteSystem`. !!! warning `righthandside` must have the signature ```julia function righthandside(dx, x, u, t, args...; kwargs...) dx .= .... # update dx end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New discrete system must be a subtype of `AbstractDiscreteSystem` to function properly. # Example ```jldoctest julia> @def_discrete_system mutable struct MyDiscreteSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem α::Float64 = 1. β::Float64 = 2. righthandside::RH = (dx, x, u, t, α=α) -> (dx[1] = α * x[1] + u[1](t)) state::Vector{Float64} = [1.] readout::RO = (x, u, t) -> x input::IP = Inport(1) output::OP = Outport(1) end julia> ds = MyDiscreteSystem(); julia> ds.input 1-element Inport{Inpin{Float64}}: Inpin(eltype:Float64, isbound:false) ``` """ macro def_discrete_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_discrete_system mutable struct MyDiscreteSystem{RH, RO, ST, IP, TR} <: AbstractDiscreteSystem righthandside::RH readout::RO state::ST input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractDiscreteSystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID )= Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = NamedTuple() alg::$(AL) = Jusdl.FunctionMap() integrator::$(IT) = Jusdl.construct_integrator(Jusdl.DiscreteProblem, input, righthandside, state, t, modelargs, solverargs; alg=alg, modelkwargs=modelkwargs, solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define Discrete system library """ DiscreteSystem(; righthandside, readout, state, input, output) Constructs a generic discrete system # Example ```jldoctest julia> sfuncdiscrete(dx,x,u,t) = (dx .= 0.5x); julia> ofuncdiscrete(x, u, t) = x; julia> DiscreteSystem(righthandside=sfuncdiscrete, readout=ofuncdiscrete, state=[1.], input=nothing, output=Outport()) DiscreteSystem(righthandside:sfuncdiscrete, readout:ofuncdiscrete, state:[1.0], t:0.0, input:nothing, output:Outport(numpins:1, eltype:Outpin{Float64})) ``` """ @def_discrete_system mutable struct DiscreteSystem{RH, RO, ST, IP, OP} <: AbstractDiscreteSystem righthandside::RH readout::RO state::ST input::IP output::OP end @doc raw""" DiscreteLinearSystem(input, output, modelargs=(), solverargs=(); A=fill(-1, 1, 1), B=fill(0, 1, 1), C=fill(1, 1, 1), D=fill(0, 1, 1), state=rand(size(A,1)), t=0., alg=ODEAlg, modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `DiscreteLinearSystem` with `input` and `output`. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. The `DiscreteLinearSystem` is represented by the following state and output equations. ```math \begin{array}{l} \dot{x} = A x + B u \\[0.25cm] y = C x + D u \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. """ @def_discrete_system mutable struct DiscreteLinearSystem{IP, OP, RH, RO} <: AbstractDiscreteSystem A::Matrix{Float64} = fill(-1., 1, 1) B::Matrix{Float64} = fill(0., 1, 1) C::Matrix{Float64} = fill(1., 1, 1) D::Matrix{Float64} = fill(-1., 1, 1) input::IP = Inport(1) output::OP = nothing state::Vector{Float64} = rand(size(A, 1)) righthandside::RH = input === nothing ? (dx, x, u, t) -> (dx .= A * x) : (dx, x, u, t) -> (dx .= A * x + B * map(ui -> ui(t), u.itp)) readout::RO = input === nothing ? (x, u, t) -> (C * x) : ( (C === nothing || D === nothing) ? nothing : (x, u, t) -> (C * x + D * map(ui -> ui(t), u)) ) end @doc raw""" Henon() Constructs a `Henon` system evolving with the dynamics ```math \begin{array}{l} \dot{x}_1 = 1 - \alpha (x_1^2) + x_2 \\[0.25cm] \dot{x}_2 = \beta x_1 \end{array} ``` """ @def_discrete_system mutable struct HenonSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem α::Float64 = 1.4 β::Float64 = 0.3 γ::Float64 = 1. righthandside::RH = function henonrhs(dx, x, u, t, α=α, β=β, γ=γ) dx[1] = 1 - α * x[1]^2 + x[2] dx[2] = β * x[1] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end @doc raw""" LoziSystem() Constructs a `Lozi` system evolving with the dynamics ```math \begin{array}{l} \dot{x}_1 = 1 - \alpha |x_1| + x_2 \\[0.25cm] \dot{x}_2 = \beta x_1 \end{array} ``` """ @def_discrete_system mutable struct LoziSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem α::Float64 = 1.4 β::Float64 = 0.3 γ::Float64 = 1. righthandside::RH = function lozirhs(dx, x, u, t, α=α, β=β, γ=γ) dx[1] = 1 - α * abs(x[1]) + x[2] dx[2] = β * x[1] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end @doc raw""" BogdanovSystem() Constructs a Bogdanov system with equations ```math \begin{array}{l} \dot{x}_1 = x_1 + \dot{x}_2 \\[0.25cm] \dot{x}_2 = x_2 + \epsilon + x_2 + k x_1 (x_1 - 1) + \mu x_1 x_2 \end{array} ``` """ @def_discrete_system mutable struct BogdanovSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem ε::Float64 = 0. μ::Float64 = 0. k::Float64 = 1.2 γ::Float64 = 1. righthandside::RH = function bogdanovrhs(dx, x, u, t, ε=ε, μ=μ, k=k, γ=γ) dx[2]= x[2] + ε * x[2] + k * x[1] * (x[1] - 1) + μ * x[1] * x[2] dx[1] = x[1] + dx[2] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end @doc raw""" GingerbreadmanSystem() Constructs a GingerbreadmanSystem with the dynamics ```math \begin{array}{l} \dot{x}_1 = 1 - x_2 + |x_1|\\[0.25cm] \dot{x}_2 = x_1 \end{array} ``` """ @def_discrete_system mutable struct GingerbreadmanSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem γ::Float64 = 1. righthandside::RH = function gingerbreadmanrhs(dx, x, u, t, γ=γ) dx[1] = 1 - x[2] + abs(x[1]) dx[2] = x[1] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end @doc raw""" LogisticSystem() Constructs a LogisticSystem with the dynamics ```math \begin{array}{l} \dot{x} = r x (1 - x) \end{array} ``` """ @def_discrete_system mutable struct LogisticSystem{RH, RO, IP, OP} <: AbstractDiscreteSystem r::Float64 = 1. γ::Float64 = 1. righthandside::RH = function logisticrhs(dx, x, u, t, r = r, γ=γ) dx[1] = r * x[1] * (1 - x[1]) dx[1] *= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(1) input::IP = nothing output::OP = Outport(1) end ##### Pretty-printting show(io::IO, ds::DiscreteSystem) = print(io, "DiscreteSystem(righthandside:$(ds.righthandside), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::DiscreteLinearSystem) = print(io, "DiscreteLinearystem(A:$(ds.A), B:$(ds.B), C:$(ds.C), D:$(ds.D), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::HenonSystem) = print(io, "HenonSystem(α:$(ds.α), β:$(ds.β), γ:$(ds.γ),state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))") show(io::IO, ds::LoziSystem) = print(io, "LoziSystem(α:$(ds.α), β:$(ds.β), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::BogdanovSystem) = print(io, "BogdanovSystem(ε:$(ds.ε), μ:$(ds.μ), k:$(ds.k), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::GingerbreadmanSystem) = print(io, "GingerbreadmanSystem(γ:$(ds.γ), state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))") show(io::IO, ds::LogisticSystem) = print(io, "LogisticSystem(r:$(ds.r), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1845
# This file includes intregrator construction function construct_integrator(deproblem, input, righthandside, state, t, modelargs=(), solverargs=(); alg=nothing, stateder=state, modelkwargs=NamedTuple(), solverkwargs=NamedTuple(), numtaps=3) # If needed, construct interpolant for input. interpolant = input === nothing ? nothing : Interpolant(numtaps, length(input)) # Construct the problem if deproblem == SDEProblem problem = deproblem(righthandside[1], righthandside[2], state, (t, Inf), interpolant, modelargs...; modelkwargs...) elseif deproblem == DDEProblem problem = deproblem(righthandside[1], state, righthandside[2], (t, Inf), interpolant, modelargs...; modelkwargs...) elseif deproblem == DAEProblem problem = deproblem(righthandside, stateder, state, (t, Inf), interpolant, modelargs...; modelkwargs...) else problem = deproblem(righthandside, state, (t, Inf), interpolant, modelargs...; modelkwargs...) end # Initialize the integrator init(problem, alg, solverargs...; save_everystep=false, dense=true, solverkwargs...) end #= This function checks whether the syntax is of the form @my_macro_to_define_new_dynamical_system mutable struct NewSystem{T, S} <: SuperTypeName # fields end where @my_macro_to_define_new_dynamical_system is any macro used to define new dynamical system such as @def_ode_system, @def_sde_system, etc. =# function checksyntax(ex::Expr, supertypename::Symbol) ex.head == :struct && ex.args[1] || error("Invalid usage. The expression should start with `mutable struct`.\n$ex") ex.args[2].head == :(<:) && ex.args[2].args[2] == supertypename || error("Invalid usage. The type should be a subtype of $supertypename.\n$ex") end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
23517
# This file contains ODESystem prototypes import DifferentialEquations: Tsit5, ODEProblem import UUIDs: uuid4 """ @def_ode_system ex where `ex` is the expression to define to define a new AbstractODESystem component type. The usage is as follows: ```julia @def_ode_system mutable struct MyODESystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractODESystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field righthandside::RH = righthandeside_function # mandatory field readout::RO = readout_function # mandatory field state::ST = state_default # mandatory field input::IP = input_default # mandatory field output::OP = output_default # mandatory field end ``` Here, `MyODESystem` has `N` parameters. `MyODESystem` is represented by the `righthandside` and `readout` function. `state`, `input` and `output` is the state, input port and output port of `MyODESystem`. !!! warning `righthandside` must have the signature ```julia function righthandside(dx, x, u, t, args...; kwargs...) dx .= .... # update dx end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New ODE system must be a subtype of `AbstractODESystem` to function properly. !!! warning New ODE system must be mutable type. # Example ```jldoctest julia> @def_ode_system mutable struct MyODESystem{RH, RO, IP, OP} <: AbstractODESystem α::Float64 = 1. β::Float64 = 2. righthandside::RH = (dx, x, u, t, α=α) -> (dx[1] = α * x[1] + u[1](t)) readout::RO = (x, u, t) -> x state::Vector{Float64} = [1.] input::IP = Inport(1) output::OP = Outport(1) end julia> ds = MyODESystem(); julia> ds.input 1-element Inport{Inpin{Float64}}: Inpin(eltype:Float64, isbound:false) ``` """ macro def_ode_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_discrete_system mutablestruct MyODESystem{RH, RO, ST, IP, TR} <: AbstractODESystem righthandside::RH readout::RO state::ST input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractODESystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = NamedTuple() alg::$(AL) = Jusdl.Tsit5() integrator::$(IT) = Jusdl.construct_integrator(Jusdl.ODEProblem, input, righthandside, state, t, modelargs, solverargs; alg=alg, modelkwargs=modelkwargs, solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end #### Define ODE system library. """ ODESystem(;righthandside, readout, state, input, output) Constructs a generic ODE system. # Example ```jldoctest julia> ds = ODESystem(righthandside=(dx,x,u,t)->(dx.=-x), readout=(x,u,t)->x, state=[1.],input=nothing, output=Outport(1)); julia> ds.state 1-element Array{Float64,1}: 1.0 ``` """ @def_ode_system mutable struct ODESystem{RH, RO, ST, IP, OP} <: AbstractODESystem righthandside::RH readout::RO state::ST input::IP output::OP end @doc raw""" ContinuousLinearSystem(input, output, modelargs=(), solverargs=(); A=fill(-1, 1, 1), B=fill(0, 1, 1), C=fill(1, 1, 1), D=fill(0, 1, 1), state=rand(size(A,1)), t=0., alg=ODEAlg, modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `ContinuousLinearSystem` with `input` and `output`. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. The `ContinuousLinearSystem` is represented by the following state and output equations. ```math \begin{array}{l} \dot{x} = A x + B u \\[0.25cm] y = C x + D u \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. """ @def_ode_system mutable struct ContinuousLinearSystem{IP, OP, RH, RO} <: AbstractODESystem A::Matrix{Float64} = fill(-1., 1, 1) B::Matrix{Float64} = fill(1., 1, 1) C::Matrix{Float64} = fill(1., 1, 1) D::Matrix{Float64} = fill(0., 1, 1) input::IP = Inport(1) output::OP = Outport(1) state::Vector{Float64} = rand(size(A, 1)) righthandside::RH = input === nothing ? (dx, x, u, t) -> (dx .= A * x) : (dx, x, u, t) -> (dx .= A * x + B * map(ui -> ui(t), u.itp)) readout::RO = input === nothing ? (x, u, t) -> (C * x) : ( (C === nothing || D === nothing) ? nothing : (x, u, t) -> (C * x + D * map(ui -> ui(t), u)) ) end @doc raw""" LorenzSystem(input, output, modelargs=(), solverargs=(); sigma=10, beta=8/3, rho=28, gamma=1, outputfunc=allstates, state=rand(3), t=0., alg=ODEAlg, cplmat=diagm([1., 1., 1.]), modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `LorenzSystem` with `input` and `output`. `sigma`, `beta`, `rho` and `gamma` is the system parameters. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. If `input` is `nothing`, the state equation of `LorenzSystem` is ```math \begin{array}{l} \dot{x}_1 = \gamma (\sigma (x_2 - x_1)) \\[0.25cm] \dot{x}_2 = \gamma (x_1 (\rho - x_3) - x_2) \\[0.25cm] \dot{x}_3 = \gamma (x_1 x_2 - \beta x_3) \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. If `input` is not `nothing`, then the state eqaution is ```math \begin{array}{l} \dot{x}_1 = \gamma (\sigma (x_2 - x_1)) + \sum_{j = 1}^3 \alpha_{1j} u_j \\[0.25cm] \dot{x}_2 = \gamma (x_1 (\rho - x_3) - x_2) + \sum_{j = 1}^3 \alpha_{2j} u_j \\[0.25cm] \dot{x}_3 = \gamma (x_1 x_2 - \beta x_3) + \sum_{j = 1}^3 \alpha_{3j} u_j \end{array} ``` where ``A = [\alpha_{ij}]`` is `cplmat` and ``u = [u_{j}]`` is the value of the `input`. The output function is ```math y = g(x, u, t) ``` where ``t`` is time `t`, ``y`` is the value of the `output` and ``g`` is `outputfunc`. """ @def_ode_system mutable struct LorenzSystem{RH, RO, IP, OP} <: AbstractODESystem σ::Float64 = 10. β::Float64 = 8 / 3 ρ::Float64 = 28. γ::Float64 = 1. righthandside::RH = function lorenzrhs(dx, x, u, t, σ=σ, β=β, ρ=ρ, γ=γ) dx[1] = σ * (x[2] - x[1]) dx[2] = x[1] * (ρ - x[3]) - x[2] dx[3] = x[1] * x[2] - β * x[3] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = nothing output::OP = Outport(3) end """ ForcedLorenzSystem() Constructs a LorenzSystem that is driven by its inputs. """ @def_ode_system mutable struct ForcedLorenzSystem{CM, RH, RO, IP, OP} <: AbstractODESystem σ::Float64 = 10. β::Float64 = 8 / 3 ρ::Float64 = 28. γ::Float64 = 1. cplmat::CM = I(3) righthandside::RH = function lorenzrhs(dx, x, u, t, σ=σ, β=β, ρ=ρ, γ=γ, cplmat=cplmat) dx[1] = σ * (x[2] - x[1]) dx[2] = x[1] * (ρ - x[3]) - x[2] dx[3] = x[1] * x[2] - β * x[3] dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = Inport(3) output::OP = Outport(3) end @doc raw""" ChenSystem(input, output, modelargs=(), solverargs=(); a=35, b=3, c=28, gamma=1, outputfunc=allstates, state=rand(3), t=0., alg=ODEAlg, cplmat=diagm([1., 1., 1.]), modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `ChenSystem` with `input` and `output`. `a`, `b`, `c` and `gamma` is the system parameters. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. If `input` is `nothing`, the state equation of `ChenSystem` is ```math \begin{array}{l} \dot{x}_1 = \gamma (a (x_2 - x_1)) \\[0.25cm] \dot{x}_2 = \gamma ((c - a) x_1 + c x_2 + x_1 x_3) \\[0.25cm] \dot{x}_3 = \gamma (x_1 x_2 - b x_3) \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. If `input` is not `nothing`, then the state eqaution is ```math \begin{array}{l} \dot{x}_1 = \gamma (a (x_2 - x_1)) + \sum_{j = 1}^3 \alpha_{1j} u_j \\[0.25cm] \dot{x}_2 = \gamma ((c - a) x_1 + c x_2 + x_1 x_3) + \sum_{j = 1}^3 \alpha_{2j} u_j \\[0.25cm] \dot{x}_3 = \gamma (x_1 x_2 - b x_3) + \sum_{j = 1}^3 \alpha_{3j} u_j \end{array} ``` where ``A = [\alpha_{ij}]`` is `cplmat` and ``u = [u_{j}]`` is the value of the `input`. The output function is ```math y = g(x, u, t) ``` where ``t`` is time `t`, ``y`` is the value of the `output` and ``g`` is `outputfunc`. """ @def_ode_system mutable struct ChenSystem{RH, RO, IP, OP} <: AbstractODESystem a::Float64 = 35. b::Float64 = 3. c::Float64 = 28. γ::Float64 = 1. righthandside::RH = function chenrhs(dx, x, u, t, a=a, b=b, c=c, γ=γ) dx[1] = a * (x[2] - x[1]) dx[2] = (c - a) * x[1] + c * x[2] - x[1] * x[3] dx[3] = x[1] * x[2] - b * x[3] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = nothing output::OP = Outport(3) end """ ForcedChenSystem() Constructs Chen system driven by its inputs. """ @def_ode_system mutable struct ForcedChenSystem{CM, RH, RO, IP, OP} <: AbstractODESystem a::Float64 = 35. b::Float64 = 3. c::Float64 = 28. γ::Float64 = 1. cplmat::CM = I(3) righthandside::RH = function chenrhs(dx, x, u, t, a=a, b=b, c=c, γ=γ) dx[1] = a * (x[2] - x[1]) dx[2] = (c - a) * x[1] + c * x[2] - x[1] * x[3] dx[3] = x[1] * x[2] - b * x[3] dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = Inport(3) output::OP = Outport(3) end Base.@kwdef struct PiecewiseLinearDiode m0::Float64 = -1.143 m1::Float64 = -0.714 m2::Float64 = 5. bp1::Float64 = 1. bp2::Float64 = 5. end @inline function (d::PiecewiseLinearDiode)(x) m0, m1, m2, bp1, bp2 = d.m0, d.m1, d.m2, d.bp1, d.bp2 if x < -bp2 return m2 * x + (m2 - m1) * bp2 + (m1 - m0) * bp1 elseif -bp2 <= x < -bp1 return m1 * x + (m1 - m0) * bp1 elseif -bp1 <= x < bp1 return m0 * x elseif bp1 <= x < bp2 return m1 * x + (m0 - m1) * bp1 else return m2 * x + (m1 - m2) * bp2 + (m0 - m1) * bp1 end end Base.@kwdef struct PolynomialDiode a::Float64 = 1 / 16 b::Float64 = - 1 / 6 end (d::PolynomialDiode)(x) = d.a * x^3 + d.b * x @doc raw""" ChuaSystem(input, output, modelargs=(), solverargs=(); diode=PiecewiseLinearDiode(), alpha=15.6, beta=28., gamma=1., outputfunc=allstates, state=rand(3), t=0., alg=ODEAlg, cplmat=diagm([1., 1., 1.]), modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `ChuaSystem` with `input` and `output`. `diode`, `alpha`, `beta` and `gamma` is the system parameters. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. If `input` is `nothing`, the state equation of `ChuaSystem` is ```math \begin{array}{l} \dot{x}_1 = \gamma (\alpha (x_2 - x_1 - h(x_1))) \\[0.25cm] \dot{x}_2 = \gamma (x_1 - x_2 + x_3 ) \\[0.25cm] \dot{x}_3 = \gamma (-\beta x_2) \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. If `input` is not `nothing`, then the state eqaution is ```math \begin{array}{l} \dot{x}_1 = \gamma (\alpha (x_2 - x_1 - h(x_1))) + \sum_{j = 1}^3 \theta_{1j} u_j \\[0.25cm] \dot{x}_2 = \gamma (x_1 - x_2 + x_3 ) + \sum_{j = 1}^3 \theta_{2j} u_j \\[0.25cm] \dot{x}_3 = \gamma (-\beta x_2) + \sum_{j = 1}^3 \theta_{3j} u_j \end{array} ``` where ``\Theta = [\theta_{ij}]`` is `cplmat` and ``u = [u_{j}]`` is the value of the `input`. The output function is ```math y = g(x, u, t) ``` where ``t`` is time `t`, ``y`` is the value of the `output` and ``g`` is `outputfunc`. """ @def_ode_system mutable struct ChuaSystem{DT,RH, RO, IP, OP} <: AbstractODESystem diode::DT = PiecewiseLinearDiode() α::Float64 = 15.6 β::Float64 = 28. γ::Float64 = 1. righthandside::RH = function chuarhs(dx, x, u, t, diode=diode, α=α, β=β, γ=γ) dx[1] = α * (x[2] - x[1] - diode(x[1])) dx[2] = x[1] - x[2] + x[3] dx[3] = -β * x[2] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = nothing output::OP = Outport(3) end """ ForcedChuaSystem() Constructs a Chua system with inputs. """ @def_ode_system mutable struct ForcedChuaSystem{DT, CM, RH, RO, IP, OP} <: AbstractODESystem diode::DT = PiecewiseLinearDiode() α::Float64 = 15.6 β::Float64 = 28. γ::Float64 = 1. cplmat::CM = I(3) righthandside::RH = function chuarhs(dx, x, u, t, diode=diode, α=α, β=β, γ=γ) dx[1] = α * (x[2] - x[1] - diode(x[1])) dx[2] = x[1] - x[2] + x[3] dx[3] = -β * x[2] dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = Inport(3) output::OP = Outport(3) end @doc raw""" RosslerSystem(input, output, modelargs=(), solverargs=(); a=0.38, b=0.3, c=4.82, gamma=1., outputfunc=allstates, state=rand(3), t=0., alg=ODEAlg, cplmat=diagm([1., 1., 1.]), modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `RosllerSystem` with `input` and `output`. `a`, `b`, `c` and `gamma` is the system parameters. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. If `input` is `nothing`, the state equation of `RosslerSystem` is ```math \begin{array}{l} \dot{x}_1 = \gamma (-x_2 - x_3) \\[0.25cm] \dot{x}_2 = \gamma (x_1 + a x_2) \\[0.25cm] \dot{x}_3 = \gamma (b + x_3 (x_1 - c)) \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. If `input` is not `nothing`, then the state eqaution is ```math \begin{array}{l} \dot{x}_1 = \gamma (-x_2 - x_3) + \sum_{j = 1}^3 \theta_{1j} u_j \\[0.25cm] \dot{x}_2 = \gamma (x_1 + a x_2 ) + \sum_{j = 1}^3 \theta_{2j} u_j \\[0.25cm] \dot{x}_3 = \gamma (b + x_3 (x_1 - c)) + \sum_{j = 1}^3 \theta_{3j} u_j \end{array} ``` where ``\Theta = [\theta_{ij}]`` is `cplmat` and ``u = [u_{j}]`` is the value of the `input`. The output function is ```math y = g(x, u, t) ``` where ``t`` is time `t`, ``y`` is the value of the `output` and ``g`` is `outputfunc`. """ @def_ode_system mutable struct RosslerSystem{RH, RO, IP, OP} <: AbstractODESystem a::Float64 = 0.38 b::Float64 = 0.3 c::Float64 = 4.82 γ::Float64 = 1. righthandside::RH = function rosslerrhs(dx, x, u, t, a=a, b=b, c=c, γ=γ) dx[1] = -x[2] - x[3] dx[2] = x[1] + a * x[2] dx[3] = b + x[3] * (x[1] - c) dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = nothing output::OP = Outport(3) end """ ForcedRosslerSystem() Constructs a Rossler system driven by its input. """ @def_ode_system mutable struct ForcedRosslerSystem{CM, RH, RO, IP, OP} <: AbstractODESystem a::Float64 = 0.38 b::Float64 = 0.3 c::Float64 = 4.82 γ::Float64 = 1. cplmat::CM = I(3) righthandside::RH = function rosslerrhs(dx, x, u, t, a=a, b=b, c=c, γ=γ) dx[1] = -x[2] - x[3] dx[2] = x[1] + a * x[2] dx[3] = b + x[3] * (x[1] - c) dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = Inport(3) output::OP = Outport(3) end @doc raw""" VanderpolSystem(input, output, modelargs=(), solverargs=(); mu=5., gamma=1., outputfunc=allstates, state=rand(2), t=0., alg=ODEAlg, cplmat=diagm([1., 1]), modelkwargs=NamedTuple(), solverkwargs=NamedTuple()) Constructs a `VanderpolSystem` with `input` and `output`. `mu` and `gamma` is the system parameters. `state` is the initial state and `t` is the time. `modelargs` and `modelkwargs` are passed into `ODEProblem` and `solverargs` and `solverkwargs` are passed into `solve` method of `DifferentialEquations`. `alg` is the algorithm to solve the differential equation of the system. If `input` is `nothing`, the state equation of `VanderpolSystem` is ```math \begin{array}{l} \dot{x}_1 = \gamma (x_2) \\[0.25cm] \dot{x}_2 = \gamma (\mu (x_1^2 - 1) x_2 - x_1 ) \end{array} ``` where ``x`` is `state`. `solver` is used to solve the above differential equation. If `input` is not `nothing`, then the state eqaution is ```math \begin{array}{l} \dot{x}_1 = \gamma (x_2) + \sum_{j = 1}^3 \theta_{1j} u_j \\[0.25cm] \dot{x}_2 = \gamma (\mu (x_1^2 - 1) x_2 - x_1) + \sum_{j = 1}^3 \theta_{2j} u_j \end{array} ``` where ``\Theta = [\theta_{ij}]`` is `cplmat` and ``u = [u_{j}]`` is the value of the `input`. The output function is ```math y = g(x, u, t) ``` where ``t`` is time `t`, ``y`` is the value of the `output` and ``g`` is `outputfunc`. """ @def_ode_system mutable struct VanderpolSystem{RH, RO, IP, OP} <: AbstractODESystem μ::Float64 = 5. γ::Float64 = 1. righthandside::RH = function vanderpolrhs(dx, x, u, t, μ=μ, γ=γ) dx[1] = x[2] dx[2] = -μ * (x[1]^2 - 1) * x[2] - x[1] dx .*= γ end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(3) end """ ForcedVanderpolSystem() Constructs a Vanderpol system driven by its input. """ @def_ode_system mutable struct ForcedVanderpolSystem{CM, RH, RO, IP, OP} <: AbstractODESystem μ::Float64 = 5. γ::Float64 = 1. cplmat::CM = I(2) righthandside::RH = function vanderpolrhs(dx, x, u, t, μ=μ, γ=γ) dx[1] = x[2] dx[2] = -μ * (x[1]^2 - 1) * x[2] - x[1] dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = Inport(2) output::OP = Outport(3) end @doc raw""" Integrator(state=zeros(0), t=0., modelargs=(), solverargs=(); alg=ODEAlg, modelkwargs=NamedTuple(), solverkwargs=NamedTuple(), numtaps=numtaps, callbacks=nothing, name=Symbol()) Constructs an integrator whose input output relation is given by ```math u(t) = ki * \int_{0}^{t} u(\tau) d\tau ``` where ``u(t)`` is the input, ``y(t)`` is the output and ``ki`` is the integration constant. """ @def_ode_system mutable struct Integrator{RH, RO, IP, OP} <: AbstractODESystem ki::Float64 = 1. righthandside::RH = (dx, x, u, t) -> (dx[1] = ki * u[1](t)) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(1) input::IP = Inport() output::OP = Outport() end ##### Pretty-printing show(io::IO, ds::ODESystem) = print(io, "ODESystem(righthandside:$(ds.righthandside), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ContinuousLinearSystem) = print(io, "ContinuousLinearSystem(A:$(ds.A), B:$(ds.B), C:$(ds.C), D:$(ds.D), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::LorenzSystem) = print(io, "LorenzSystem(σ:$(ds.σ), β:$(ds.β), ρ:$(ds.ρ), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedLorenzSystem) = print(io, "LorenzSystem(σ:$(ds.σ), β:$(ds.β), ρ:$(ds.ρ), γ:$(ds.γ), cplmat:$(ds.cplmat), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ChenSystem) = print(io, "ChenSystem(a:$(ds.a), b:$(ds.b), c:$(ds.c), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedChenSystem) = print(io, "ChenSystem(a:$(ds.a), b:$(ds.b), c:$(ds.c), γ:$(ds.γ), cplmat:$(ds.cplmat), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ChuaSystem) = print(io, "ChuaSystem(diode:$(ds.diode), α:$(ds.α), β:$(ds.β), γ:$(ds.γ), state:$(ds.state), ", "t:$(ds.t), input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedChuaSystem) = print(io, "ChuaSystem(diode:$(ds.diode), α:$(ds.α), β:$(ds.β), γ:$(ds.γ), cplmat:$(ds.cplmat), state:$(ds.state), ", "t:$(ds.t), input:$(ds.input), output:$(ds.output))") show(io::IO, ds::RosslerSystem) = print(io, "RosslerSystem(a:$(ds.a), b:$(ds.b), c:$(ds.c), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedRosslerSystem) = print(io, "RosslerSystem(a:$(ds.a), b:$(ds.b), c:$(ds.c), γ:$(ds.γ), cplmat:$(ds.cplmat), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::VanderpolSystem) = print(io, "VanderpolSystem(μ:$(ds.μ), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedVanderpolSystem) = print(io, "VanderpolSystem(μ:$(ds.μ), γ:$(ds.γ), cplmat:$(ds.cplmat), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::Integrator) = print(io, "Integrator(ki:$(ds.ki), state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
4951
# This file includes RODESystems import DifferentialEquations: RandomEM, RODEProblem import UUIDs: uuid4 """ @def_rode_system ex where `ex` is the expression to define to define a new AbstractRODESystem component type. The usage is as follows: ```julia @def_rode_system mutable struct MyRODESystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractRODESystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field righthandside::RH = righthandside_function # mandatory field readout::RO = readout_function # mandatory field state::ST = state_default # mandatory field input::IP = input_default # mandatory field output::OP = output_default # mandatory field end ``` Here, `MyRODESystem` has `N` parameters. `MyRODESystem` is represented by the `righthandside` and `readout` function. `state`, `input` and `output` is the initial state, input port and output port of `MyRODESystem`. !!! warning `righthandside` must have the signature ```julia function righthandside((dx, x, u, t, W, args...; kwargs...) dx .= .... # update dx end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New RODE system must be a subtype of `AbstractRODESystem` to function properly. # Example ```jldoctest julia> @def_rode_system mutable struct MySystem{RH, RO, IP, OP} <: AbstractRODESystem A::Matrix{Float64} = [2. 0.; 0 -2] righthandside::RH = (dx, x, u, t, W) -> (dx .= A * x * W) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end julia> ds = MySystem(); ``` """ macro def_rode_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_rode_system mutable struct MyRODESystem{RH, RO, ST, IP, TR} <: AbstractRODESystem righthandside::RH readout::RO state::ST input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractRODESystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = (dt=0.01, ) alg::$(AL) = Jusdl.RandomEM() integrator::$(IT) = Jusdl.construct_integrator(Jusdl.RODEProblem, input, righthandside, state, t, modelargs, solverargs; alg=alg, modelkwargs=modelkwargs, solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define RODE sytem library """ RODESystem(; righthandside, readout, state, input, output) Constructs a generic RODE system """ @def_rode_system mutable struct RODESystem{RH, RO, ST, IP, OP} <: AbstractRODESystem righthandside::RH readout::RO state::ST input::IP output::OP end @doc raw""" MultiplicativeNoiseLinearSystem() Constructs a `MultiplicativeNoiseLinearSystem` with the dynamics ```math \begin{array}{l} \dot{x} = A x W \end{array} where `W` is the noise process. ``` """ @def_rode_system mutable struct MultiplicativeNoiseLinearSystem{RH, RO, IP, OP} <: AbstractRODESystem A::Matrix{Float64} = [2. 0.; 0 -2] righthandside::RH = (dx, x, u, t, W) -> (dx .= A * x * W) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end ##### Pretty printing show(io::IO, ds::RODESystem) = print(io, "RODESystem(righthandside:$(ds.righthandside), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))") show(io::IO, ds::MultiplicativeNoiseLinearSystem) = print(io, "MultiplicativeNoiseLinearSystem(A:$(ds.A), state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
6405
# This file contains SDESystem prototypes import DifferentialEquations: LambaEM, SDEProblem import UUIDs: uuid4 """ @def_sde_system ex where `ex` is the expression to define to define a new AbstractSDESystem component type. The usage is as follows: ```julia @def_sde_system mutable struct MySDESystem{T1,T2,T3,...,TN,OP,RH,RO,ST,IP,OP} <: AbstractSDESystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field drift::DR = drift_function # mandatory field diffusion::DF = diffusion_function # mandatory field readout::RO = readout_functtion # mandatory field state::ST = state_default # mandatory field input::IP = input_default # mandatory field output::OP = output_default # mandatory field end ``` Here, `MySDESystem` has `N` parameters. `MySDESystem` is represented by the `drift`, `diffusion` and `readout` function. `state`, `input` and `output` is the initial state, input port and output port of `MySDESystem`. !!! warning `drift` must have the signature ```julia function drift((dx, x, u, t, args...; kwargs...) dx .= .... # update dx end ``` and `diffusion` must have the signature ```julia function diffusion((dx, x, u, t, args...; kwargs...) dx .= .... # update dx end ``` and `readout` must have the signature ```julia function readout(x, u, t) y = ... return y end ``` !!! warning New SDE system must be a subtype of `AbstractSDESystem` to function properly. # Example ```jldoctest julia> @def_sde_system mutable struct MySDESystem{DR, DF, RO, IP, OP} <: AbstractSDESystem η::Float64 = 1. drift::DR = (dx, x, u, t) -> (dx .= x) diffusion::DF = (dx, x, u, t, η=η) -> (dx .= η) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(2) input::IP = nothing output::OP = Outport(2) end julia> ds = MySDESystem(); ``` """ macro def_sde_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID, MA, MK, SA, SK, AL, IT of types of trigger, handshake, callbacks, id, modelargs, modelkwargs, solverargs, solverkwargs, alg, integrator by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_sde_system mutable struct MySDESystem{DR, DF, RO, ST, IP, TR} <: AbstractSDESystem drift::DR diffusion::DF readout::RO state::ST input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# checksyntax(ex, :AbstractSDESystem) TR, HS, CB, ID, MA, MK, SA, SK, AL, IT = [gensym() for i in 1 : 10] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() t::Float64 = 0. modelargs::$(MA) = () modelkwargs::$(MK) = NamedTuple() solverargs::$(SA) = () solverkwargs::$(SK) = NamedTuple() alg::$(AL) = Jusdl.LambaEM{true}() integrator::$(IT) = Jusdl.construct_integrator(Jusdl.SDEProblem, input, (drift, diffusion), state, t, modelargs, solverargs; alg=alg, modelkwargs=modelkwargs, solverkwargs=solverkwargs, numtaps=3) end, [TR, HS, CB, ID, MA, MK, SA, SK, AL, IT] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define SDE system library """ SDESystem(; drift, diffusion, readout, state, input, output) Constructs a SDE system. """ @def_sde_system mutable struct SDESystem{DR, DF, RO, ST, IP, OP} <: AbstractSDESystem drift::DR diffusion::DF readout::RO state::ST input::IP output::OP end @doc raw""" NoisyLorenzSystem() Constructs a noisy Lorenz system """ @def_sde_system mutable struct NoisyLorenzSystem{ET, DR, DF, RO, IP, OP} <: AbstractSDESystem σ::Float64 = 10. β::Float64 = 8 / 3 ρ::Float64 = 28. η::ET = 1. γ::Float64 = 1. drift::DR = function lorenzdrift(dx, x, u, t, σ=σ, β=β, ρ=ρ, γ=γ) dx[1] = σ * (x[2] - x[1]) dx[2] = x[1] * (ρ - x[3]) - x[2] dx[3] = x[1] * x[2] - β * x[3] dx .*= γ end diffusion::DF = (dx, x, u, t, η=η) -> (dx .= η) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = nothing output::OP = Outport(3) end @doc raw""" NoisyLorenzSystem() Constructs a noisy Lorenz system """ @def_sde_system mutable struct ForcedNoisyLorenzSystem{ET, CM, DR, DF, RO, IP, OP} <: AbstractSDESystem σ::Float64 = 10. β::Float64 = 8 / 3 ρ::Float64 = 28. η::ET = 1. cplmat::CM = I(3) γ::Float64 = 1. drift::DR = function forcedlorenzdrift(dx, x, u, t, σ=σ, β=β, ρ=ρ, γ=γ, cplmat=cplmat) dx[1] = σ * (x[2] - x[1]) dx[2] = x[1] * (ρ - x[3]) - x[2] dx[3] = x[1] * x[2] - β * x[3] dx .*= γ dx .+= cplmat * map(ui -> ui(t), u.itp) # Couple inputs end diffusion::DF = (dx, x, u, t, η=η) -> (dx .= η) readout::RO = (x, u, t) -> x state::Vector{Float64} = rand(3) input::IP = Inport(3) output::OP = Outport(3) end ##### Pretty printing show(io::IO, ds::SDESystem) = print(io, "SDESystem(drift:$(ds.drift), diffusion:$(ds.diffusion), readout:$(ds.readout), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::NoisyLorenzSystem) = print(io, "NoisyLorenzSystem(σ:$(ds.σ), β:$(ds.β), ρ:$(ds.ρ), η:$(ds.η), γ:$(ds.γ), state:$(ds.state), t:$(ds.t), ", "input:$(ds.input), output:$(ds.output))") show(io::IO, ds::ForcedNoisyLorenzSystem) = print(io, "ForcedNoisyLorenzSystem(σ:$(ds.σ), β:$(ds.β), ρ:$(ds.ρ), η:$(ds.η), γ:$(ds.γ), cplmat:$(ds.cplmat), ", "state:$(ds.state), t:$(ds.t), input:$(ds.input), output:$(ds.output))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
10505
# This file contains the static systems of Jusdl. import UUIDs: uuid4 """ @def_static_system ex where `ex` is the expression to define to define a new AbstractStaticSystem component type. The usage is as follows: ```julia @def_source struct MyStaticSystem{T1,T2,T3,...,TN,OP, RO} <: AbstractStaticSystem param1::T1 = param1_default # optional field param2::T2 = param2_default # optional field param3::T3 = param3_default # optional field ⋮ paramN::TN = paramN_default # optional field input::IP = input_default # mandatory field output::OP = output_default # mandatory field readout::RO = readout_function # mandatory field end ``` Here, `MyStaticSystem` has `N` parameters, an `output` port, an `input` port and a `readout` function. !!! warning `input`, `output` and `readout` are mandatory fields to define a new static system. The rest of the fields are the parameters of the system. !!! warning `readout` must be a two-argument function, i.e. a function of time `t` and input value `u`. !!! warning New static system must be a subtype of `AbstractStaticSystem` to function properly. # Example ```jldoctest julia> @def_static_system struct MyStaticSystem{IP, OP, RO} <: AbstractStaticSystem α::Float64 = 1. β::Float64 = 2. input::IP = Inport() output::OP = Outport() readout::RO = (t,u) -> α * u[1] + β * u[2] end julia> sys = MyStaticSystem(); julia> sys.α 1.0 julia> sys.input 1-element Inport{Inpin{Float64}}: Inpin(eltype:Float64, isbound:false) ``` """ macro def_static_system(ex) #= NOTE: Generate the parameter names TR, HS, CB, ID of types of trigger, handshake, callbacks, id by using `gensym` to avoid duplicate type parameter names so that the users can parametrizde their types as @def_static_system struct MyStaticSystem{RO, IP, TR} <: AbstractStaticSystem readout::RO input::IP output::TR end Note that the parameter name of output is TR. But, since the parameter name TR of trigger of the compnent is generated by `gensym`, we get rid of duplicate parameter names. =# ex.args[2].head == :(<:) && ex.args[2].args[2] in [:AbstractStaticSystem, :AbstractMemory] || error("Invalid usage. The type should be a subtype of AbstractStaticSystem or AbstractMemory.\n$ex") TR, HS, CB, ID = [gensym() for i in 1 : 4] fields = quote trigger::$(TR) = Inpin() handshake::$(HS) = Outpin{Bool}() callbacks::$(CB) = nothing name::Symbol = Symbol() id::$(ID) = Jusdl.uuid4() end, [TR, HS, CB, ID] _append_common_fields!(ex, fields...) deftype(ex) end ##### Define prototipical static systems. """ StaticSystem(; readout, input, output) Consructs a generic static system with `readout` function, `input` port and `output` port. # Example ```jldoctest julia> ss = StaticSystem(readout = (t,u) -> u[1] + u[2], input=Inport(2), output=Outport(1)); julia> ss.readout(0., ones(2)) 2.0 ``` """ @def_static_system struct StaticSystem{RO, IP, OP} <: AbstractStaticSystem readout::RO input::IP output::OP end @doc raw""" Adder(signs=(+,+)) Construts an `Adder` with input bus `input` and signs `signs`. `signs` is a tuplle of `+` and/or `-`. The output function `g` of `Adder` is of the form, ```math y = g(u, t) = \sum_{j = 1}^n s_k u_k ``` where `n` is the length of the `input`, ``s_k`` is the `k`th element of `signs`, ``u_k`` is the `k`th value of `input` and ``y`` is the value of `output`. The default value of `signs` is all `+`. # Example ```jldoctest julia> adder = Adder(signs=(+, +, -)); julia> adder.readout([3, 4, 5], 0.) == 3 + 4 - 5 true ``` """ @def_static_system struct Adder{S, IP, OP, RO} <: AbstractStaticSystem signs::S = (+, +) input::IP = Inport(length(signs)) output::OP = Outport() readout::RO = (u, t, signs=signs) -> sum([sign(val) for (sign, val) in zip(signs, u)]) end @doc raw""" Multiplier(ops=(*,*)) Construts an `Multiplier` with input bus `input` and signs `signs`. `signs` is a tuplle of `*` and/or `/`. The output function `g` of `Multiplier` is of the form, ```math y = g(u, t) = \prod_{j = 1}^n s_k u_k ``` where `n` is the length of the `input`, ``s_k`` is the `k`th element of `signs`, ``u_k`` is the `k`th value of `input` and ``y`` is the value of the `output`. The default value of `signs` is all `*`. # Example ```jldoctest julia> mlt = Multiplier(ops=(*, *, /)); julia> mlt.readout([3, 4, 5], 0.) == 3 * 4 / 5 true ``` """ @def_static_system struct Multiplier{S, IP, OP, RO} <: AbstractStaticSystem ops::S = (*,*) input::IP = Inport(length(ops)) output::OP = Outport() readout::RO = (u, t, ops=ops) -> begin ops = ops val = 1 for i = 1 : length(ops) val = ops[i](val, u[i]) end val end end @doc raw""" Gain(input; gain=1.) Constructs a `Gain` whose output function `g` is of the form ```math y = g(u, t) = K u ``` where ``K`` is `gain`, ``u`` is the value of `input` and `y` is the value of `output`. # Example ```jldoctest julia> K = [1. 2.; 3. 4.]; julia> sfunc = Gain(input=Inport(2), gain=K); julia> sfunc.readout([1., 2.], 0.) == K * [1., 2.] true ``` """ @def_static_system struct Gain{G, IP, OP, RO} <: AbstractStaticSystem gain::G = 1. input::IP = Inport() output::OP = Outport(length(gain * zeros(length(input)))) readout::RO = (u, t, gain=gain) -> gain * u end @doc raw""" Terminator(input::Inport) Constructs a `Terminator` with input bus `input`. The output function `g` is eqaul to `nothing`. A `Terminator` is used just to sink the incomming data flowing from its `input`. """ @def_static_system struct Terminator{IP, OP, RO} <: AbstractStaticSystem input::IP = Inport() output::OP = nothing readout::RO = nothing end """ Memory(delay=1.; initial::AbstractVector{T}=zeros(1), numtaps::Int=5, t0=0., dt=0.01, callbacks=nothing, name=Symbol()) where T Constructs a 'Memory` with input bus `input`. A 'Memory` delays the values of `input` by an amount of `numdelay`. `initial` determines the transient output from the `Memory`, that is, until the internal buffer of `Memory` is full, the values from `initial` is returned. # Example ```jldoctest julia> Memory(delay=0.1) Memory(delay:0.1, numtaps:5, input:Inport(numpins:1, eltype:Inpin{Float64}), output:Outport(numpins:1, eltype:Outpin{Float64})) julia> Memory(delay=0.1, numtaps=5) Memory(delay:0.1, numtaps:5, input:Inport(numpins:1, eltype:Inpin{Float64}), output:Outport(numpins:1, eltype:Outpin{Float64})) ``` """ @def_static_system struct Memory{D, IN, TB, DB, IP, OP, RO} <: AbstractMemory delay::D = 1. initial::IN = zeros(1) numtaps::Int = 5 timebuf::TB = Buffer(numtaps) databuf::DB = length(initial) == 1 ? Buffer(numtaps) : Buffer(length(initial), numtaps) input::IP = Inport(length(initial)) output::OP = Outport(length(initial)) readout::RO = (u, t, delay=delay, initial=initial, numtaps=numtaps, timebuf=timebuf, databuf=databuf) -> begin if t <= delay return initial else tt = content(timebuf, flip=false) uu = content(databuf, flip=false) if length(tt) == 1 return uu[1] end if ndims(databuf) == 1 itp = CubicSplineInterpolation(range(tt[end], tt[1], length=length(tt)), reverse(uu), extrapolation_bc=Line()) return itp(t - delay) else itp = map(row -> CubicSplineInterpolation(range(tt[end], tt[1], length=length(tt)), reverse(row), extrapolation_bc=Line()), eachrow(uu)) return map(f -> f(t - delay), itp) end end end end @doc raw""" Coupler(conmat::AbstractMatrix, cplmat::AbstractMatrix) Constructs a coupler from connection matrix `conmat` of size ``n \times n`` and coupling matrix `cplmat` of size ``d \times d``. The output function `g` of `Coupler` is of the form ```math y = g(u, t) = (E \otimes P) u ``` where ``\otimes`` is the Kronecker product, ``E`` is `conmat` and ``P`` is `cplmat`, ``u`` is the value of `input` and `y` is the value of `output`. """ @def_static_system struct Coupler{C1, C2, IP, OP, RO} <: AbstractStaticSystem conmat::C1 = [-1. 1; 1. 1.] cplmat::C2 = [1 0 0; 0 0 0; 0 0 0] input::IP = Inport(size(conmat, 1) * size(cplmat, 1)) output::OP = Outport(size(conmat, 1) * size(cplmat, 1)) readout::RO = typeof(conmat) <: AbstractMatrix{<:Real} ? ( (u, t, conmat=conmat, cplmat=cplmat) -> kron(conmat, cplmat) * u ) : ( (u, t, conmat=conmat, cplmat=cplmat) -> kron(map(f -> f(t), conmat), cplmat) * u ) end @doc raw""" Differentiator(kd=1; callbacks=nothing, name=Symbol()) Consructs a `Differentiator` whose input output relation is of the form ```math y(t) = k_d \dot{u}(t) ``` where ``u(t)`` is the input and ``y(t)`` is the output and ``kd`` is the differentiation constant. """ @def_static_system struct Differentiator{IP, OP, RO} <: AbstractStaticSystem kd::Float64 = 1. t::Float64 = zeros(0.) u::Float64 = zeros(0.) input::IP = Inport() output::OP = Outport() readout::RO = (uu, tt, t=t, u=u, kd=kd) -> begin val = only(uu) sst = t[1] ssu = u[1] out = tt ≤ sst ? ssu : (val - ssu) / (tt - sst) t .= t u .= val kd * out end end ##### Pretty-printing show(io::IO, ss::StaticSystem) = print(io,"StaticSystem(readout:$(ss.readout), input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Adder) = print(io, "Adder(signs:$(ss.signs), input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Multiplier) = print(io, "Multiplier(ops:$(ss.ops), input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Gain) = print(io, "Gain(gain:$(ss.gain), input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Terminator) = print(io, "Terminator(input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Memory) = print(io, "Memory(delay:$(ss.delay), numtaps:$(length(ss.timebuf)), input:$(ss.input), output:$(ss.output))") show(io::IO, ss::Coupler) = print(io, "Coupler(conmat:$(ss.conmat), cplmat:$(ss.cplmat))") show(io::IO, ss::Differentiator) = print(io, "Differentiator(kd:$(ss.kd))")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
5956
# This file contains the links to connect together the tools of DsSimulator. import Base: put!, take!, close, isready, eltype, isopen, isreadable, iswritable, bind, collect, iterate """ Link{T}(ln::Int=64) where {T} Constructs a `Link` with element type `T` and buffer length `ln`. The buffer element type is `T` and mode is `Cyclic`. Link(ln::Int=64) Constructs a `Link` with element type `Float64` and buffer length `ln`. The buffer element type is `Float64` and mode is `Cyclic`. # Example ```jldoctest julia> l = Link{Int}(5) Link(state:open, eltype:Int64, isreadable:false, iswritable:false) julia> l = Link{Bool}() Link(state:open, eltype:Bool, isreadable:false, iswritable:false) ``` """ mutable struct Link{T} buffer::Buffer{Cyclic, T, 1} channel::Channel{T} masterid::UUID slaveid::UUID id::UUID Link{T}(ln::Int=64) where {T} = new{T}(Buffer(T, ln), Channel{T}(0), uuid4(), uuid4(), uuid4()) end Link(ln::Int=64) = Link{Float64}(ln) show(io::IO, link::Link) = print(io, "Link(state:$(isopen(link) ? :open : :closed), eltype:$(eltype(link)), ", "isreadable:$(isreadable(link)), iswritable:$(iswritable(link)))") """ eltype(link::Link) Returns element type of `link`. """ eltype(link::Link{T}) where {T} = T ##### Link reading writing. """ put!(link::Link, val) Puts `val` to `link`. `val` is handed over to the `channel` of `link`. `val` is also written in to the `buffer` of `link`. !!! warning `link` must be writable to put `val`. That is, a runnable task that takes items from the link must be bounded to `link`. # Example ```jldoctest julia> l = Link(); julia> t = @async while true item = take!(l) item === NaN && break println("Took " * string(item)) end; julia> bind(l, t); julia> put!(l, 1.) Took 1.0 1.0 julia> put!(l, 2.) Took 2.0 2.0 julia> put!(l, NaN) NaN ``` """ function put!(link::Link, val) write!(link.buffer, val) put!(link.channel, val) end """ take!(link::Link) Take an element from `link`. !!! warning `link` must be readable to take value. That is, a runnable task that puts items from the link must be bounded to `link`. # Example ```jldoctest julia> l = Link(5); julia> t = @async for item in 1. : 5. put!(l, item) end; julia> bind(l, t); julia> take!(l) 1.0 julia> take!(l) 2.0 ``` """ function take!(link::Link) val = take!(link.channel) return val end """ close(link) Closes `link`. All the task bound the `link` is also terminated safely. When closed, it is not possible to take and put element from the `link`. See also: [`take!(link::Link)`](@ref), [`put!(link::Link, val)`](@ref) ``` """ function close(link::Link) channel = link.channel iswritable(link) && put!(link, NaN) # Terminate taker task isreadable(link) && collect(link.channel) # Terminater putter task isopen(link) && close(link.channel) # Close link channel if it is open. return end ##### State check of link. """ isopen(link::Link) Returns `true` if `link` is open. A `link` is open if its `channel` is open. """ isopen(link::Link) = isopen(link.channel) """ isreadable(link::Link) Returns `true` if `link` is readable. When `link` is readable, data can be read from `link` with `take` function. """ isreadable(link::Link) = length(link.channel.cond_put.waitq) > 0 """ writable(link::Link) Returns `true` if `link` is writable. When `link` is writable, data can be written into `link` with `put` function. """ iswritable(link::Link) = length(link.channel.cond_take.waitq) > 0 """ isfull(link::Link) Returns `true` if the `buffer` of `link` is full. """ isfull(link::Link) = isfull(link.buffer) """ snapshot(link::Link) Returns all the data of the `buffer` of `link`. """ snapshot(link::Link) = link.buffer.data ##### Launching links. ##### Auxilary functions to launch links. ### The `taker` and `puter` functions are just used for troubleshooting purpose. function taker(link::Link) while true val = take!(link) val === NaN && break # Poison-pill the tasks to terminate safely. @info "Took " val end end function putter(link::Link, vals) for val in vals put!(link, val) end end """ bind(link::Link, task::Task) Binds `task` to `link`. When `task` is done `link` is closed. """ bind(link::Link, task::Task) = bind(link.channel, task) """ collect(link::Link) Collects all the available data on the `link`. !!! warning To collect all available data from `link`, a task must be bounded to it. # Example ```jldoctest julia> l = Link(); # Construct a link. julia> t = @async for item in 1 : 5 # Construct a task put!(l, item) end; julia> bind(l, t); # Bind it to the link. julia> take!(l) # Take element from link. 1.0 julia> take!(l) # Take again ... 2.0 julia> collect(l) # Collect remaining data. 3-element Array{Float64,1}: 3.0 4.0 5.0 ``` """ collect(link::Link) = collect(link.channel) """ launch(link::Link) Constructs a `taker` task and binds it to `link`. The `taker` task reads the data and prints an info message until `missing` is read from the `link`. """ function launch(link::Link) task = @async taker(link) bind(link.channel, task) task end """ launch(link:Link, valrange) Constructs a `putter` task and binds it to `link`. `putter` tasks puts the data in `valrange`. """ function launch(link::Link, valrange) task = @async putter(link, valrange) bind(link.channel, task) task end function launch(link::Link, taskname::Symbol, valrange) msg = "`launch(link, taskname, valrange)` has been deprecated." msg *= "Use `launch(link)` to launch taker task, `launch(link, valrange)` to launch putter task" @warn msg end """ refresh!(link::Link) Reconstructst the channel of `link` is its channel is closed. """ refresh!(l::Link{T}) where {T} = (l.channel = Channel{T}(); l)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
6439
# This file contains the Pins to connect the links """ AbstractPin{T} Abstract type of `Outpin` and `Inpin`. See also: [`Outpin`](@ref), [`Inpin`](@ref) """ abstract type AbstractPin{T} end """ Outpin{T}() Constructs and `OutPut` pin. The data flow from `Outpin` is outwards from the pin i.e., data is written from `OutPort` to its links. """ mutable struct Outpin{T} <: AbstractPin{T} links::Union{Vector{Link{T}}, Missing} id::UUID # NOTE: When Outpin is initialized, its links are missing. # The existance of links of Outpin is used to determine # whether the Outpin is bound or not. Outpin{T}() where {T} = new{T}(missing, uuid4()) end Outpin() = Outpin{Float64}() show(io::IO, outpin::Outpin) = print(io, "Outpin(eltype:$(eltype(outpin)), isbound:$(isbound(outpin)))") """ Inpin{T}() Constructs and `InPut` pin. The data flow from `Inpin` is inwards to the pin i.e., data is read from links of `InPort`. """ mutable struct Inpin{T} <: AbstractPin{T} link::Union{Link{T}, Missing} id::UUID # NOTE: When an Inpin is initialized, its link is missing. # The state of link of the Inpin is used to decide whether the Inpin is bound or not. Inpin{T}() where {T} = new{T}(missing, uuid4()) end Inpin() = Inpin{Float64}() show(io::IO, inpin::Inpin) = print(io, "Inpin(eltype:$(eltype(inpin)), isbound:$(isbound(inpin)))") """ bind(link::Link, pin) Binds `link` to `pin`. When bound, data written into or read from `pin` is written into or read from `link`. """ bind(link::Link, inpin::Inpin) = (inpin.link = link; link.slaveid = inpin.id) bind(link::Link, outpin::Outpin) = (outpin.links === missing ? (outpin.links = [link]) : push!(outpin.links, link); link.masterid = outpin.id) """ isbound(pin::AbstractPin) Returns `true` if `pin` is bound to other pins. """ function isbound(outpin::Outpin) outpin.links === missing && return false !isempty(outpin.links) end isbound(inpin::Inpin) = inpin.link !== missing """ eltype(pin::AbstractPin) Returns element typef of pin. """ eltype(pin::AbstractPin{T}) where T = T """ take!(pin::Inpin) Takes data from `pin`. The data is taken from the links of `pin`. !!! warning To take data from `pin`, a running task that puts data must be bound to `link` of `pin`. # Example ```jldoctest julia> ip = Inpin(); julia> l = Link(); julia> bind(l, ip); julia> t = @async for item in 1 : 5 put!(l, item) end; julia> take!(ip) 1.0 julia> take!(ip) 2.0 ``` """ take!(pin::Inpin) = take!(pin.link) """ put!(pin::Outpin, val) Puts `val` to `pin`. `val` is put into the links of `pin`. !!! warning To take data from `pin`, a running task that puts data must be bound to `link` of `pin`. # Example ```jldoctest julia> op = Outpin(); julia> l = Link(); julia> bind(l, op); julia> t = @async while true val = take!(l) val === NaN && break println("Took " * string(val)) end; julia> put!(op, 1.) Took 1.0 julia> put!(op, 3.) Took 3.0 julia> put!(op, NaN) ``` """ put!(pin::Outpin, val) = foreach(link -> put!(link, val), pin.links) ##### Connecting and disconnecting links # # # # This `iterate` function is dummy. It is defined just for `[l...]` to be written. # # # iterate(l::AbstractPin, i=1) = i > 1 ? nothing : (l, i + 1) """ connect!(outpin::Link, inpin::Link) Connects `outpin` to `inpin`. When connected, any element that is put into `outpin` is also put into `inpin`. connect!(outpin::AbstractVector{<:Link}, inpin::AbstractVector{<:Link}) Connects each link in `outpin` to each link in `inpin` one by one. See also: [`disconnect!`](@ref) # Example ```jldoctest julia> op, ip = Outpin(), Inpin(); julia> l = connect!(op, ip) Link(state:open, eltype:Float64, isreadable:false, iswritable:false) julia> l in op.links true julia> ip.link === l true ``` """ function connect!(outpin::Outpin, inpin::Inpin) # NOTE: The connecion of an `Outpin` to multiple `Inpin`s is possible since an `Outpin` may drive multiple # `Inpin`s. However, the connection of multiple `Outpin`s to the same `Inpin` is NOT possible since an `Inpin` # can be driven by a single `Outpin`. isbound(inpin) && error("$inpin is already bound. No new connections.") isconnected(outpin, inpin) && (@warn "$outpin and $inpin are already connected."; return) link = Link{promote_type(eltype(outpin), eltype(inpin))}() bind(link, outpin) bind(link, inpin) return link end connect!(outpins::AbstractVector{<:Outpin}, inpins::AbstractVector{<:Inpin}) = connect!.(outpins, inpins) """ disconnect!(link1::Link, link2::Link) Disconnects `link1` and `link2`. The order of arguments is not important. See also: [`connect!`](@ref) """ function disconnect!(outpin::Outpin, inpin::Inpin) outpin.links === missing || deleteat!(outpin.links, findall(link -> link == inpin.link, outpin.links)) inpin.link = missing # inpin.link = Link{eltype(inpin)}() end disconnect!(outpins::AbstractVector{<:Outpin}, inpins::AbstractVector{<:Inpin}) = (disconnect!.(outpins, inpins); nothing) """ isconnected(link1, link2) Returns `true` if `link1` is connected to `link2`. The order of the arguments are not important. See also [`connect!`](@ref), [`disconnect!`](@ref) """ function isconnected(outpin::Outpin, inpin::Inpin) if !isbound(outpin) || !isbound(inpin) return false else inpin.link in [link for link in outpin.links] end end isconnected(outpins::AbstractVector{<:Outpin}, inpins::AbstractVector{<:Inpin}) = all(isconnected.(outpins, inpins)) # ------------------------ Deprecations ----------------------- #= NOTE: The methods connect!(outpins, inpins) = connect!([outpins...], [inpins...]) disconnect!(outpins, inpins) = disconnect!([outpins...], [inpins...]) isconnected(outpins, inpins) = isconnected([outpins...], [inpins...]) are ambiguis. Since these methods throws StackOverflowError when called with `outpins` are `Inpin`s and inpins are `Outpin`s. So, there is not need for iterate(l::AbstractPin, i=1) = i > 1 ? nothing : (l, i + 1) method- =# # """ # UnconnectedLinkError <: Exception # Exception thrown when the links are not connected to each other. # """ # struct UnconnectedLinkError <: Exception # msg::String # end # Base.showerror(io::IO, err::UnconnectedLinkError) = print(io, "UnconnectedLinkError:\n $(err.msg)")
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
6138
# This file contains the Port tool for connecting the tools of Jusdl """ AbstractPort{P} Abstract type of [`Outport`](@ref) and [`Inport`](@ref). See also: [`Outport`](@ref), [`Inport`](@ref). """ abstract type AbstractPort{P} <: AbstractVector{P} end """ Outport{T}(numpins=1) Constructs an `Outport` with `numpins` [`Outpin`](@ref). !!! warning Element type of an `Outport` must be `Outpin`. See also [`Outpin`](@ref) # Example ```jldoctest julia> Outport{Int}(2) 2-element Outport{Outpin{Int64}}: Outpin(eltype:Int64, isbound:false) Outpin(eltype:Int64, isbound:false) julia> Outport() 1-element Outport{Outpin{Float64}}: Outpin(eltype:Float64, isbound:false) ``` """ struct Outport{P} <: AbstractPort{P} pins::Vector{P} id::UUID Outport(pins::AbstractVector{P}) where {T, P<:Outpin{T}} = new{P}(pins, uuid4()) end Outport(pin::Outpin) = Outport([pin]) Outport{T}(numpins::Int=1) where T = Outport([Outpin{T}() for i = 1 : numpins]) Outport(numpins::Int=1) = Outport{Float64}(numpins) show(io::IO, outport::Outport) = print(io, "Outport(numpins:$(length(outport)), eltype:$(eltype(outport)))") # display(outport::Outport) = println("Outport(numpins:$(length(outport)), eltype:$(eltype(outport)))") """ Inport{T}(numpins=1) Constructs an `Inport` with `numpins` [`Inpin`](@ref). !!! warning Element type of an `Inport` must be `Inpin`. See also [`Inpin`](@ref) # Example ```jldoctest julia> Inport{Int}(2) 2-element Inport{Inpin{Int64}}: Inpin(eltype:Int64, isbound:false) Inpin(eltype:Int64, isbound:false) julia> Inport() 1-element Inport{Inpin{Float64}}: Inpin(eltype:Float64, isbound:false) ``` """ struct Inport{P} <: AbstractPort{P} pins::Vector{P} Inport(pins::AbstractVector{P}) where {T, P<:Inpin{T}} = new{P}(pins) end Inport(pin::Inpin) = Inport([pin]) Inport{T}(numpins::Int=1) where T = Inport([Inpin{T}() for i = 1 : numpins]) Inport(numpins::Int=1) = Inport{Float64}(numpins) show(io::IO, inport::Inport) = print(io, "Inport(numpins:$(length(inport)), eltype:$(eltype(inport)))") # display(inport::Inport) = println("Inport(numpins:$(length(inport)), eltype:$(eltype(inport)))") """ datatype(port::AbstractPort) Returns the data type of `port`. """ datatype(port::AbstractPort{<:AbstractPin{T}}) where T = T ##### AbstractVector interface """ size(port::AbstractPort) Retruns size of `port`. """ size(port::AbstractPort) = size(port.pins) """ getindex(port::AbstractPort, idx::Vararg{Int, N}) where N Returns elements from `port` at index `idx`. Same as `port[idx]`. # Example ```jldoctest julia> op = Outport(3) 3-element Outport{Outpin{Float64}}: Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) julia> op[1] Outpin(eltype:Float64, isbound:false) julia> op[end] Outpin(eltype:Float64, isbound:false) julia> op[:] 3-element Array{Outpin{Float64},1}: Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) ``` """ getindex(port::AbstractPort, idx::Vararg{Int, N}) where N = port.pins[idx...] """ setindex!(port::AbstractPort, item, idx::Vararg{Int, N}) where N Sets `item` to `port` at index `idx`. Same as `port[idx] = item`. # Example ```jldoctest julia> op = Outport(3) 3-element Outport{Outpin{Float64}}: Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) julia> op[1] = Outpin() Outpin(eltype:Float64, isbound:false) julia> op[end] = Outpin() Outpin(eltype:Float64, isbound:false) julia> op[1:2] = [Outpin(), Outpin()] 2-element Array{Outpin{Float64},1}: Outpin(eltype:Float64, isbound:false) Outpin(eltype:Float64, isbound:false) ``` """ setindex!(port::AbstractPort, item, idx::Vararg{Int, N}) where N = port.pins[idx...] = item ##### Reading from and writing into from buses """ take!(inport::Inport) Takes an element from `inport`. Each link of the `inport` is a read and a vector containing the results is returned. !!! warning The `inport` must be readable to be read. That is, there must be a runnable tasks bound to links of the `inport` that writes data to `inport`. # Example ```jldoctest julia> op, ip = Outport(), Inport() (Outport(numpins:1, eltype:Outpin{Float64}), Inport(numpins:1, eltype:Inpin{Float64})) julia> ls = connect!(op, ip) 1-element Array{Link{Float64},1}: Link(state:open, eltype:Float64, isreadable:false, iswritable:false) julia> t = @async for val in 1 : 5 put!(op, [val]) end; julia> take!(ip) 1-element Array{Float64,1}: 1.0 julia> take!(ip) 1-element Array{Float64,1}: 2.0 ``` """ take!(inport::Inport) = take!.(inport[:]) """ put!(outport::Outport, vals) Puts `vals` to `outport`. Each item in `vals` is putted to the `links` of the `outport`. !!! warning The `outport` must be writable to be read. That is, there must be a runnable tasks bound to links of the `outport` that reads data from `outport`. # Example ```jldoctest julia> op, ip = Outport(), Inport() (Outport(numpins:1, eltype:Outpin{Float64}), Inport(numpins:1, eltype:Inpin{Float64})) julia> ls = connect!(op, ip) 1-element Array{Link{Float64},1}: Link(state:open, eltype:Float64, isreadable:false, iswritable:false) julia> t = @async while true val = take!(ip) all(val .=== NaN) && break println("Took " * string(val)) end; julia> put!(op, [1.]) Took [1.0] 1-element Array{Float64,1}: 1.0 julia> put!(op, [NaN]) 1-element Array{Float64,1}: NaN ``` """ function put!(outport::Outport, vals) put!.(outport[:], vals) vals end ##### Interconnection of busses. """ similar(port, numpins::Int=length(outport)) where {P<:Outpin{T}} where {T} Returns a new port that is similar to `port` with the same element type. The number of links in the new port is `nlinks` and data buffer length is `ln`. """ similar(outport::Outport{P}, numpins::Int=length(outport)) where {P<:Outpin{T}} where {T} = Outport{T}(numpins) similar(inport::Inport{P}, numpins::Int=length(inport)) where {P<:Inpin{T}} where {T} = Inport{T}(numpins)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
26202
# This file includes the Model object """ Node(component, idx, label) Constructs a model `Node` with `component`. `idx` is the index and `label` is label of `Node`. """ struct Node{CP, L} component::CP idx::Int label::L end show(io::IO, node::Node) = print(io, "Node(component:$(node.component), idx:$(node.idx), label:$(node.label))") """ Branch(nodepair, indexpair, links) Constructs a `Branch` connecting the first and second element of `nodepair` with `links`. `indexpair` determines the subindices by which the elements of `nodepair` are connected. """ struct Branch{NP, IP, LN<:AbstractVector{<:Link}} nodepair::NP indexpair::IP links::LN end show(io::IO, branch::Branch) = print(io, "Branch(nodepair:$(branch.nodepair), indexpair:$(branch.indexpair), ", "links:$(branch.links))") """ Model(components::AbstractVector) Constructs a `Model` whose with components `components` which are of type `AbstractComponent`. Model() Constructs a `Model` with empty components. After the construction, components can be added to `Model`. !!! warning `Model`s are units that can be simulated. As the data flows through the branches i.e. input output busses of the components, its is important that the components must be connected to each other. See also: [`simulate!`](@ref) """ struct Model{GR, ND, BR, CK, TM, CB} graph::GR nodes::ND branches::BR clock::CK taskmanager::TM callbacks::CB name::Symbol id::UUID function Model(nodes::AbstractVector=[], branches::AbstractVector=[]; clock=Clock(0, 0.01, 1.), callbacks=nothing, name=Symbol()) graph = SimpleDiGraph() taskmanager = TaskManager() new{typeof(graph), typeof(nodes), typeof(branches), typeof(clock), typeof(taskmanager), typeof(callbacks)}(graph, nodes, branches, clock, taskmanager, callbacks, name, uuid4()) end end show(io::IO, model::Model) = print(io, "Model(numnodes:$(length(model.nodes)), ", "numedges:$(length(model.branches)), timesettings=($(model.clock.t), $(model.clock.dt), $(model.clock.tf)))") ##### Addinng nodes and branches. """ addnode!(model, component; label=nothing) Adds a node to `model`. Component is `component` and `label` is `label` the label of node. Returns added node. # Example ```jldoctest julia> model = Model() Model(numnodes:0, numedges:0, timesettings=(0.0, 0.01, 1.0)) julia> addnode!(model, SinewaveGenerator(), label=:gen) Node(component:SinewaveGenerator(amp:1.0, freq:1.0, phase:0.0, offset:0.0, delay:0.0), idx:1, label:gen) ``` """ function addnode!(model::Model, component::AbstractComponent; label=nothing) label === nothing || label in [node.label for node in model.nodes] && error(label," is already assigned.") node = Node(component, length(model.nodes) + 1, label) push!(model.nodes, node) register(model.taskmanager, component) add_vertex!(model.graph) node end """ getnode(model, idx::Int) Returns node of `model` whose index is `idx`. getnode(model, label) Returns node of `model` whose label is `label`. # Example ```jldoctest julia> model = Model() Model(numnodes:0, numedges:0, timesettings=(0.0, 0.01, 1.0)) julia> addnode!(model, SinewaveGenerator(), label=:gen) Node(component:SinewaveGenerator(amp:1.0, freq:1.0, phase:0.0, offset:0.0, delay:0.0), idx:1, label:gen) julia> addnode!(model, Gain(), label=:gain) Node(component:Gain(gain:1.0, input:Inport(numpins:1, eltype:Inpin{Float64}), output:Outport(numpins:1, eltype:Outpin{Float64})), idx:2, label:gain) julia> getnode(model, :gen) Node(component:SinewaveGenerator(amp:1.0, freq:1.0, phase:0.0, offset:0.0, delay:0.0), idx:1, label:gen) julia> getnode(model, 2) Node(component:Gain(gain:1.0, input:Inport(numpins:1, eltype:Inpin{Float64}), output:Outport(numpins:1, eltype:Outpin{Float64})), idx:2, label:gain) ``` """ getnode(model::Model, idx::Int) = model.nodes[idx] getnode(model::Model, label) = filter(node -> node.label === label, model.nodes)[1] function register(taskmanager, component) triggerport, handshakeport = taskmanager.triggerport, taskmanager.handshakeport triggerpin, handshakepin = Outpin(), Inpin{Bool}() connect!(triggerpin, component.trigger) connect!(component.handshake, handshakepin) push!(triggerport.pins, triggerpin) push!(handshakeport.pins, handshakepin) taskmanager.pairs[component] = nothing end """ addbranch!(model::Model, branch::Branch) Adds `branch` to branched of `model`. """ function addbranch!(model::Model, nodepair::Pair, indexpair::Pair=(:)=>(:)) srcnode, dstnode = getnode(model, nodepair.first), getnode(model, nodepair.second) links = connect!(srcnode.component.output[indexpair.first], dstnode.component.input[indexpair.second]) typeof(links) <: AbstractVector{<:Link} || (links = [links]) srcidx, dstidx = srcnode.idx, dstnode.idx branch = Branch(srcidx => dstidx, indexpair, links) push!(model.branches, branch) add_edge!(model.graph, srcidx, dstidx) branch end getbranch(model::Model, nodepair::Pair{Int, Int}) = filter(branch -> branch.nodepair == nodepair, model.branches)[1] getbranch(model::Model, nodepair::Pair{Symbol, Symbol}) = getbranch(model, getnode(model, nodepair.first).idx => getnode(model, nodepair.second).idx) """ deletebranch!(model::Model, branch::Branch) Deletes `branch` from branched of `model`. deletebranch!(model::Model, srcnode::Node, dstnode::Node) Deletes branch between `srcnode` and `dstnode` of the `model`. """ function deletebranch!(model::Model, nodepair::Pair{Int, Int}) srcnode, dstnode = getnode(model, nodepair.first), getnode(model, nodepair.second) branch = getbranch(model, nodepair) srcidx, dstidx = branch.indexpair disconnect!(srcnode.component.output[srcidx], dstnode.component.input[dstidx]) deleteat!(model.branches, findall(br -> br == branch, model.branches)) rem_edge!(model.graph, srcnode.idx, dstnode.idx) branch end deletebranch!(model::Model, nodepair::Pair{Symbol, Symbol}) = deletebranch!(model, getnode(model, nodepair.first).idx, getnode(model, nodepair.second).idx) ##### Model inspection. """ inspect!(model::Model) Inspects the `model`. If `model` has some inconsistencies such as including algebraic loops or unterminated busses and error is thrown. """ function inspect!(model, breakpoints::Vector{Int}=Int[]) # Check unbound pins in ports of componensts checknodeports(model) # Check links of the model checkchannels(model) # Break algebraic loops if there exits. loops = getloops(model) if !isempty(loops) msg = "\tThe model has algrebraic loops:$(loops)" msg *= "\n\t\tTrying to break these loops..." @info msg while !isempty(loops) loop = popfirst!(loops) if hasmemory(model, loop) @info "\tLoop $loop has a Memory component. The loops is broken" continue end breakpoint = isempty(breakpoints) ? length(loop) : popfirst!(breakpoints) breakloop!(model, loop, breakpoint) @info "\tLoop $loop is broken" loops = getloops(model) end end # Return model model end hasmemory(model, loop) = any([getnode(model, idx).component isa Memory for idx in loop]) """ getloops(model) Returns idx of nodes that constructs algrebraic loops. """ getloops(model::Model) = simplecycles(model.graph) # LoopBreaker to break the loop @def_static_system struct LoopBreaker{OP, RO} <: AbstractStaticSystem input::Nothing = nothing output::OP readout::RO end """ breakloop!(model, loop, breakpoint=length(loop)) Breaks the algebraic `loop` of `model`. The `loop` of the `model` is broken by inserting a `Memory` at the `breakpoint` of loop. """ function breakloop!(model::Model, loop, breakpoint=length(loop)) nftidx = findfirst(idx -> !isfeedthrough(getnode(model, idx).component), loop) nftidx === nothing || (breakpoint = nftidx) # Delete the branch at the breakpoint. srcnode = getnode(model, loop[breakpoint]) if breakpoint == length(loop) dstnode = getnode(model, loop[1]) else dstnode = getnode(model, loop[(breakpoint + 1)]) end branch = getbranch(model, srcnode.idx => dstnode.idx) # Construct the loopbreaker. if nftidx === nothing nodefuncs = wrap(model, loop) ff = feedforward(nodefuncs, breakpoint) n = length(srcnode.component.output) breaker = LoopBreaker(readout = (u,t) -> findroot(ff, n, t), output=Outport(n)) else component = srcnode.component n = length(component.output) breaker = LoopBreaker(readout = (u,t)->component.readout(component.state, nothing, t), output=Outport(n)) end # newidx = length(model.nodes) + 1 newnode = addnode!(model, breaker) # Delete the branch at the breakpoint deletebranch!(model, branch.nodepair) # Connect the loopbreker to the loop at the breakpoint. addbranch!(model, newnode.idx => dstnode.idx, branch.indexpair) return newnode end function wrap(model, loop) graph = model.graph map(loop) do idx node = getnode(model, idx) innbrs = filter(i -> i ∉ loop, inneighbors(graph, idx)) outnbrs = filter(i -> i ∉ loop, outneighbors(graph, idx)) if isempty(innbrs) && isempty(outnbrs) zero_in_zero_out(node) elseif isempty(innbrs) && !isempty(outnbrs) zero_in_nonzero_out(node, getoutmask(model, node, loop)) elseif !isempty(innbrs) && isempty(outnbrs) nonzero_in_zero_out(node, getinmask(model, node, loop)) else nonzero_in_nonzero_out(node, getinmask(model, node, loop), getoutmask(model, node, loop)) end end end function zero_in_zero_out(node) component = node.component function func(ut) u, t = ut out = [_computeoutput(component, u, t)...] out, t end end function zero_in_nonzero_out(node, outmask) component = node.component function func(ut) u, t = ut out = [_computeoutput(component, u, t)...] out[outmask], t end end function nonzero_in_zero_out(node, inmask) component = node.component nin = length(inmask) function func(ut) u, t = ut uu = zeros(nin) uu[inmask] .= readbuffer(component.input, inmask) uu[.!inmask] .= u out = [_computeoutput(component, uu, t)...] out, t end end function nonzero_in_nonzero_out(node, inmask, outmask) component = node.component nin = length(inmask) function func(ut) u, t = ut uu = zeros(nin) uu[inmask] .= readbuffer(component.input, inmask) uu[.!inmask] .= u out = [_computeoutput(component, uu, t)...] out[outmask] out, t end end function getinmask(model, node, loop) idx = node.idx inmask = falses(length(node.component.input)) for nidx in filter(n -> n ∉ loop, inneighbors(model.graph, idx)) # Not-in-loop inneighbors k = getbranch(model, nidx => idx).indexpair.second if length(k) == 1 inmask[k] = true else inmask[k] .= trues(length(k)) end end inmask end function getoutmask(model, node, loop) idx = node.idx outmask = falses(length(node.component.output)) for nidx in filter(n -> n ∈ loop, outneighbors(model.graph, idx)) # In-loop outneighbors k = getbranch(model, idx => nidx).indexpair.first if length(k) == 1 outmask[k] = true else outmask[k] .= trues(length(k)) end end outmask end readbuffer(input, inmask) = map(pin -> read(pin.link.buffer), input[inmask]) _computeoutput(comp::AbstractStaticSystem, u, t) = comp.readout(u, t) _computeoutput(comp::AbstractDynamicSystem, u, t) = comp.readout(comp.state, map(uu -> t -> uu, u), t) function feedforward(nodefuncs, breakpoint=length(nodefuncs)) (u, t) -> ∘(reverse(circshift(nodefuncs, -breakpoint))...)((u, t))[1] - u end function findroot(ff, n, t) sol = nlsolve((dx, x) -> (dx .= ff(x, t)), rand(n)) sol.zero end function isfeedthrough(component) try out = typeof(component) <: AbstractStaticSystem ? component.readout(nothing, 0.) : component.readout(component.state, nothing, 0.) return false catch ex return true end end # Check if components of nodes of the models has unbound pins. In case there are any unbound pins, # the simulation is got stuck since the data flow through an unbound pin is not possible. checknodeports(model) = foreach(node -> checkports(node.component), model.nodes) function checkports(comp::T) where T if hasfield(T, :input) idx = unboundpins(comp.input) isempty(idx) || error("Input port of $comp has unbound pins at index $idx") end if hasfield(T, :output) idx = unboundpins(comp.output) isempty(idx) || error("Output port of $comp has unbound pins at index $idx") end end unboundpins(port::AbstractPort) = findall(.!isbound.(port)) unboundpins(port::Nothing) = Int[] # Checks if all the channels the links in the model is open. If a link is not open, than # it is not possible to bind a task that reads and writes data from the channel. function checkchannels(model) # Check branch links for branch in model.branches for link in branch.links isopen(link) || refresh!(link) end end # Check taskmanager links for pin in model.taskmanager.triggerport link = only(pin.links) isopen(link) || refresh!(link) end for pin in model.taskmanager.handshakeport link = pin.link isopen(link) || refresh!(link) end end ##### Model initialization """ initialize!(model::Model) Initializes `model` by launching component task for each of the component of `model`. The pairs component and component tasks are recordedin the task manager of the `model`. The `model` clock is [`set!`](@ref) and the files of [`Writer`](@ref) are openned. """ function initialize!(model::Model) taskmanager = model.taskmanager pairs = taskmanager.pairs nodes = model.nodes # NOTE: Tasks to make the components be triggerable are launched here. # The important point here is that the simulation should be cancelled if an error is thrown in any of the tasks # launched here. This is done by binding the task to the chnnel of the trigger link of the component. Hrence the # lifetime of the channel of the link connecting the component to the taskmanger is determined by the lifetime of # the task launched for the component. To cancel the simulation and report the stacktrace the task is `fetch`ed. for node in nodes component = node.component link = whichlink(taskmanager, component) # Link connecting the component to taskmanager. task = launch(component) # Task launched to make `componnent` be triggerable. bind(link.channel, task) # Bind the task to the channel of the link. pairs[component] = task end # Turn on clock model clock if it is running. if isoutoftime(model.clock) msg = "Model clock is out of time. Its current time $(model.clock.t) should be less than its final time " msg *= "$(model.clock.tf). Resettting the model clock to its defaults." @warn msg set!(model.clock) end isrunning(model.clock) || set!(model.clock) # Open the files, GUI's for sink components. foreach(node -> open(node.component), filter(node->isa(node.component, AbstractSink), model.nodes)) # Return the model back. model end # Find the link connecting `component` to `taskmanager`. function whichlink(taskmanager, component) tpin = component.trigger tport = taskmanager.triggerport # NOTE: `component` must be connected to `taskmanager` by a single link which is checked by `only` # `outpin.links` must have just a single link which checked by `only` outpin = filter(pin -> isconnected(pin, tpin), tport) |> only outpin.links |> only end ##### Model running # Copy-paste loop body. See `run!(model, withbar)`. # NOTE: We first trigger the component, Then the tasks fo the `taskmanager` is checked. If an error is thrown in one # of the tasks, the simulation is cancelled and stacktrace is printed reporting the error. In order to ensure the # time synchronization between the components of the model, `handshakeport` of the taskmanger is read. When all the # components take step succesfully, then the simulation goes with the next step after calling the callbacks of the # components. # Note we first check the tasks of the taskmanager and then read the `handshakeport` of the taskmanager. Otherwise, # the simulation gets stuck without printing the stacktrace if an error occurs in one of the tasks of the taskmanager. @def loopbody begin put!(triggerport, fill(t, ncomponents)) checktaskmanager(taskmanager) all(take!(handshakeport)) || @warn "Taking step could not be approved." applycallbacks(model) end """ run!(model::Model, withbar::Bool=true) Runs the `model` by triggering the components of the `model`. This triggering is done by generating clock tick using the model clock `model.clock`. Triggering starts with initial time of model clock, goes on with a step size of the sampling period of the model clock, and finishes at the finishing time of the model clock. If `withbar` is `true`, a progress bar indicating the simulation status is displayed on the console. !!! warning The `model` must first be initialized to be run. See also: [`initialize!`](@ref). """ function run!(model::Model, withbar::Bool=true) taskmanager = model.taskmanager triggerport, handshakeport = taskmanager.triggerport, taskmanager.handshakeport ncomponents = length(model.nodes) clock = model.clock withbar ? (@showprogress clock.dt for t in clock @loopbody end) : (for t in clock @loopbody end) model end # ##### Model termination # """ # release(model::Model) # Releaes the each component of `model`, i.e., the input and output bus of each component is released. # """ # release(model::Model) = foreach(release, model.nodes) """ terminate!(model::Model) Terminates `model` by terminating all the components of the `model`, i.e., the components tasks in the task manager of the `model` is terminated. """ function terminate!(model::Model) taskmanager = model.taskmanager tasks = unwrap(collect(values(taskmanager.pairs)), Task, depth=length(taskmanager.pairs)) any(istaskstarted.(tasks)) && put!(taskmanager.triggerport, fill(NaN, length(model.nodes))) isrunning(model.clock) && stop!(model.clock) model end function _simulate(sim::Simulation, reportsim::Bool, withbar::Bool, breakpoints::Vector{Int}) model = sim.model @siminfo "Started simulation..." sim.state = :running @siminfo "Inspecting model..." inspect!(model, breakpoints) @siminfo "Done." @siminfo "Initializing the model..." initialize!(model) @siminfo "Done..." @siminfo "Running the simulation..." run!(model, withbar) sim.state = :done sim.retcode = :success @siminfo "Done..." @siminfo "Terminating the simulation..." terminate!(model) @siminfo "Done." reportsim && report(sim) return sim end """ simulate!(model::Model; simdir::String=tempdir(), simprefix::String="Simulation-", simname=string(uuid4()), logtofile::Bool=false, loglevel::LogLevel=Logging.Info, reportsim::Bool=false, withbar::Bool=true) Simulates `model`. `simdir` is the path of the directory into which simulation files are saved. `simprefix` is the prefix of the simulation name `simname`. If `logtofile` is `true`, a log file for the simulation is constructed. `loglevel` determines the logging level. If `reportsim` is `true`, model components are saved into files. If `withbar` is `true`, a progress bar indicating the simualation status is displayed on the console. """ function simulate!(model::Model; simdir::String=tempdir(), simprefix::String="Simulation-", simname=string(uuid4()), logtofile::Bool=false, loglevel::LogLevel=Logging.Info, reportsim::Bool=false, withbar::Bool=true, breakpoints::Vector{Int}=Int[]) # Construct a Simulation sim = Simulation(model, simdir=simdir, simprefix=simprefix, simname=simname) sim.logger = logtofile ? SimpleLogger(open(joinpath(sim.path, "simlog.log"), "w+"), loglevel) : ConsoleLogger(stderr, loglevel) # Simualate the modoel with_logger(sim.logger) do _simulate(sim, reportsim, withbar, breakpoints) end logtofile && flush(sim.logger.stream) # Close logger file stream. return sim end """ simulate!(model::Model, t0::Real, dt::Real, tf::Real; kwargs...) Simulates the `model` starting from the initial time `t0` until the final time `tf` with the sampling interval of `tf`. For `kwargs` are * `logtofile::Bool`: If `true`, a log file is contructed logging each step of the simulation. * `reportsim::Bool`: If `true`, `model` components are written files after the simulation. When this file is read back, the model components can be consructed back with their status at the end of the simulation. * `simdir::String`: The path of the directory in which simulation file are recorded. """ function simulate!(model::Model, t0::Real, dt::Real, tf::Real; kwargs...) set!(model.clock, t0, dt, tf) simulate!(model; kwargs...) end #### Troubleshooting """ troubleshoot(model) Prints the exceptions of the tasks that are failed during the simulation of `model`. """ function troubleshoot(model::Model) fails = filter(pair -> istaskfailed(pair.second), model.taskmanager.pairs) if isempty(fails) @info "No failed tasks in $model." else for (comp, task) in fails println("", comp) @error task.exception end end end ##### Plotting signal flow of the model """ signalflow(model, args...; kwargs...) Plots the signal flow of `model`. `args` and `kwargs` are passed into [`gplot`](https://github.com/JuliaGraphs/GraphPlot.jl) function. """ signalflow(model::Model, args...; kwargs...) = gplot(model.graph, args...; nodelabel=[node.label for node in model.nodes], kwargs...) ##### @model macro function check_macro_syntax(name, ex) name isa Symbol || error("Invalid usage of @model") ex isa Expr && ex.head == :block || error("Invalid usage of @model") end function check_block_syntax(node_expr, branch_expr) #------------------- Node expression check --------------- # Check syntax the following syntax # @nodes begin # label1 = Component1() # label2 = Component2() # ⋮ # end ( node_expr isa Expr && node_expr.head === :(macrocall) && node_expr.args[1] === Symbol("@nodes") ) || error("Invalid usage of @nodes") node_block = node_expr.args[3] ( node_block.head === :block && all([ex.head === :(=) for ex in filter(arg -> isa(arg, Expr), node_block.args)]) ) || error("Invalid usage of @nodes") #--------------------- Branch expression check -------------- # Check syntax the following syntax # @branches begin # src1[srcidx1] => dst1[dstidx1] # src2[srcidx2] => dst2[dstidx2] # ⋮ # end ( branch_expr isa Expr && branch_expr.head === :(macrocall) && branch_expr.args[1] === Symbol("@branches") ) || error("Invalid usage of @branches") branch_block = branch_expr.args[3] ( branch_block.head === :block && all([ex.head === :call && ex.args[1] == :(=>) for ex in filter(arg -> isa(arg, Expr), branch_block.args)]) ) || error("Invalid usage of @branches") end """ @defmodel name ex Construts a model. The expected syntax is. ``` @defmodel mymodel begin @nodes begin label1 = Component1() label2 = Component1() ⋮ end @branches begin src1 => dst1 src2 => dst2 ⋮ end end ``` Here `@nodes` and `@branches` blocks adefine the nodes and branches of the model, respectively. """ macro defmodel(name, ex) # Check syntax check_macro_syntax(name, ex) node_expr = ex.args[2] branch_expr = ex.args[4] check_block_syntax(node_expr, branch_expr) # Extract nodes info node_block = node_expr.args[3] node_labels = [expr.args[1] for expr in node_block.args if expr isa Expr] node_components = [expr.args[2] for expr in node_block.args if expr isa Expr] # Extract branches info branch_block = branch_expr.args[3] lhs = [expr.args[2] for expr in filter(ex -> isa(ex, Expr), branch_block.args)] rhs = [expr.args[3] for expr in filter(ex -> isa(ex, Expr), branch_block.args)] quote # Construct model $name = Model() # Add nodes to model for (node_label, node_component) in zip($node_labels, $node_components) addnode!($name, eval(node_component), label=node_label) end # Add braches to model for (src, dst) in zip($lhs, $rhs) if src isa Symbol && dst isa Symbol addbranch!($name, src => dst) elseif src isa Expr && dst isa Expr # src and dst has index. if src.args[2] isa Expr && dst.args[2] isa Expr # array or range index. addbranch!($name, src.args[1] => dst.args[1], eval(src.args[2]) => eval(dst.args[2])) else # integer index addbranch!($name, src.args[1] => dst.args[1], src.args[2] => dst.args[2]) end else error("Ambbiuos connection. Specify the indexes explicitely.") end end end |> esc end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
4270
# This file is for Simulation object. """ Simulation(model; simdir=tempdir(), simname=string(uuid4()), simprefix="Simulation-", logger=SimpleLogger()) Constructs a `Simulation` object for the simulation of `model`. The `Simulation` object is used to monitor the state of the simulation of the `model`. `simdir` is the path of the directory into which the simulation files(log, data files etc.) are recorded. `simname` is the name of the `Simulation` and `simprefix` is the prefix of the name of the `Simulation`. `logger` is used to log the simulation steps of the `model`. See also: [`Model`](@ref), [`Logging`](https://docs.julialang.org/en/v1/stdlib/Logging/) """ mutable struct Simulation{MD} model::MD path::String logger::Union{SimpleLogger, ConsoleLogger} state::Symbol retcode::Symbol name::String function Simulation(model; simdir=tempdir(), simname=string(uuid4()), simprefix="Simulation-", logger=SimpleLogger()) name = simprefix * simname # `get_instant()` may be used for time-based paths names. path = joinpath(simdir, name) ispath(path) || mkpath(path) check_writer_files(model, path, force=true) new{typeof(model)}(model, path, logger, :idle, :unknown, name) end end show(io::IO, sim::Simulation) = print(io, "Simulation(state:$(sim.state), retcode:$(sim.retcode), path:$(sim.path))") ##### Simulation checks function check_writer_files(model, path; force=true) for node in filter(node-> isa(node.component, Writer), model.nodes) dirname(node.component.file.path) == path || mv(node.component, path, force=true) end end ##### Simulation logging """ setlogger(path, name; setglobal::Bool=true) Returns a logger. `path` is the path and `name` is the name of the file of the logger. If `setglobal` is `true`, the returned logger is a global logger. # Example ```julia julia> logger = setlogger(tempdir(), "mylogger", setglobal=true) Base.CoreLogging.SimpleLogger(IOStream(<file /tmp/mylogger>), Info, Dict{Any,Int64}()) ``` """ function setlogger(path::AbstractString, name::AbstractString; setglobal::Bool=true, loglevel::LogLevel=Logging.Info) io = open(joinpath(path, name), "w+") logger = SimpleLogger(io, loglevel) if setglobal global_logger(logger) end logger end """ closelogger(logger=global_logger()) Closes the `logger` the file of the `loggger`. See also: [`setlogger`](@ref) """ function closelogger(logger=global_logger()) if isa(logger, AbstractLogger) close(logger.stream) end end ##### Simulation reporting """ report(simulation::Simulation) Records the state of the `simulation` by writing all its fields into a data file. All the fields of the `simulation` is written into file. When the file is read back, the `simulation` object is constructed back. The data file is written under the path of the `simulation`. """ function report(simulation::Simulation) # Write simulation info. jldopen(joinpath(simulation.path, "report.jld2"), "w") do simreport simreport["name"] = simulation.name simreport["path"] = simulation.path simreport["state"] = simulation.state simreport["retcode"] = simulation.retcode # Save simulation model components. model = simulation.model components = [node.component for node in model.nodes] # foreach(unfasten!, filter(component->isa(component, AbstractSink), components)) model_group = JLD2.Group(simreport, "model") model_group["id"] = string(simulation.model.id) model_group["name"] = string(simulation.model.name) model_group["clock"] = simulation.model.clock model_group["callbacks"] = simulation.model.callbacks model_blocks_group = JLD2.Group(simreport, "components") for component in filter(component->!isa(component, Writer), components) model_blocks_group[string(component.name)] = component end end # close(simreport) end ##### SimulationError type """ SimulationError(msg::String) Thrown when an error occurs during a simulation. """ struct SimulationError <: Exception msg::String end Base.showerror(io::IO, err::SimulationError) = println(io, err.msg)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
3018
# This file is for TaskManager object. """ TaskManager(pairs) Constructs a `TaskManager` with `pairs`. `pairs` is a dictionary whose keys are components and values are component tasks. Component tasks are constructed correponding to the components. A `TaskManager` is used to keep track of the component task launched corresponding to components. TaskManager() Constructs a `TaskManager` with empty `pairs`. ``` """ mutable struct TaskManager{T, S, IP, OP, CB} pairs::Dict{T, S} handshakeport::IP triggerport::OP callbacks::CB name::Symbol id::UUID function TaskManager(pairs::Dict{T, S}; callbacks=nothing, name=Symbol()) where {T, S} triggerport, handshakeport = Outport(0), Inport{Bool}(0) new{T, S, typeof(handshakeport), typeof(triggerport), typeof(callbacks)}(pairs, handshakeport, triggerport, callbacks, name, uuid4()) end end TaskManager() = TaskManager(Dict{Any, Any}()) show(io::IO, tm::TaskManager) = print(io, "TaskManager(pairs:$(tm.pairs))") """ checktaskmanager(tm::TaskManager) Throws an error if any of the component task of `tm` is failed. See also: [`TaskManager`](@ref) """ function checktaskmanager(tm::TaskManager) for (component, comptask) in tm.pairs # NOTE: If any of the tasks of the taskmanager failes during its computation, the tasks are fetched # to cancel the simulation and stacktrace is printed to report the error. checkcomptask(comptask) || (@error "Failed for $component"; fetch(comptask)) end end function checkcomptask(comptask) if typeof(comptask) <: AbstractArray return checkcomptask(comptask...) else istaskfailed(comptask) ? false : true end end checkcomptask(comptask...) = all(checkcomptask.(comptask)) """ istaskfailed(task::Nothing) Returns `false`. istaskfailed(comptask::ComponentTask) Returns `true` is `triggertask` or `outputtask` of `comptask` is failed. """ # function istaskfailed end # istaskfailed(task::Nothing) = false # istaskfailed(comptask::ComponentTask) = istaskfailed(comptask.triggertask) || istaskfailed(comptask.outputtask) """ istaskrunning(task::Task) Returns `true` is the state of `task` is `runnable`. istaskrunning(task::Nothing) Returns `true` istaskrunning(comptask::ComponentTask) Returns `true` if `triggertask` and `outputtask` of `comptask` is running. """ function istaskrunning end istaskrunning(task::Task) = task.state == :runnable # istaskrunning(task::Nothing) = true # istaskrunning(comptask::ComponentTask) = istaskrunning(comptask.triggertask) && istaskrunning(comptask.outputtask) # """ # istaskrunning(task::Nothing) # Returns `true` # istaskdone(comptask::ComponentTask) # Returns `true` if the state of `triggertask` and `outputtask` of `comptask` is `done`. # """ # function istaskdone end # istaskdone(task::Nothing) = true # istaskdone(comptask::ComponentTask) = istaskdone(comptask.triggertask) && istaskdone(comptask.outputtask)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1927
# This file includes the Plugins module abstract type AbstractPlugin end # Define generic plugin functions. function process end function enable end function disable end function check end function add end function remove end function search(rootpath::AbstractString, filename::AbstractString) paths = String[] for (root, dirs, files) in walkdir(rootpath) for file in files if occursin(filename, file) push!(paths, joinpath(root, file)) end end end paths end const remote_repo_url = "https://imel.eee.deu.edu.tr/git/JusdlPlugins.jl.git" function add(name::AbstractString, url::AbstractString=remote_repo_url) startswith(name, ".") && error("Name of plugin should not start with `.`") startswith(name, "Plugins") && error("Name of plugin cannot be `Plugins`") startswith(".jl", name) || (name *= ".jl") repopath = joinpath("/tmp", "JusdlPlugins", randstring()) ispath(repopath) || mkpath(repopath) @info "Cloning avaliable plugins from $url" LibGit2.clone(url, repopath) @info "Done..." @info "Searching for $name in plugins repo." srcpath = search(joinpath(repopath, "src"), name)[1] if isempty(srcpath) error("$name could not be found in avaliable plugins") else dstdir = joinpath(@__DIR__, "additionals") dstpath = joinpath(dstdir, name) cp(srcpath, dstpath, force=true) include(dstpath) @info "$name is added to Jusdl.Plugins" end end # # Includes essential plugins from Jusdl # foreach(include, search(joinpath(@__DIR__, "essentials"), ".jl")) # Includes additional plugins from Jusdl foreach(include, search(joinpath(@__DIR__, "additionals"), ".jl")) # Include plugins from user working directory. user_plugins_path = joinpath(pwd(), "plugins") ispath(user_plugins_path) && foreach(include, search(joinpath(user_plugins_path), ".jl"))
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
174
# This file includes the template plugin struct TemplatePlugin <: AbstractPlugin process(plg::TemplatePlugin, x) = println("In the template plugin. Doing nothing") end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1044
# This file includes the plugin for calculation of fast fourier transform of data using FFTW """ Fft(dims::Int) Constructs an `Fft` plugin. The [`process(plg::Fft, x)`](@ref) function performes an `fft` operatinon along `dims` of `x`. See also: [`fft`](https://juliamath.github.io/AbstractFFTs.jl/stable/api/#AbstractFFTs.fft) """ struct Fft <: AbstractPlugin dims::Int end Fft(;dims::Int=1) = Fft(dims) show(io::IO, plg::Fft) = print(io, "Fft(dims:$(plg.dims))") """ process(plg::Fft, x) Performes an `fft` transformation for the input data `x`. # Example ```julia julia> x = collect(reshape(1:16, 4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> plg = Plugins.Fft(dims=1) Fft(dims:1) julia> process(plg, x) 4×4 Array{Complex{Float64},2}: 10.0+0.0im 26.0+0.0im 42.0+0.0im 58.0+0.0im -2.0+2.0im -2.0+2.0im -2.0+2.0im -2.0+2.0im -2.0+0.0im -2.0+0.0im -2.0+0.0im -2.0+0.0im -2.0-2.0im -2.0-2.0im -2.0-2.0im -2.0-2.0im ``` """ process(plg::Fft, x) = fft(x, plg.dims)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2788
# This file includes the plugin for calculation of Lyapunov exponents. using ChaosTools """ Lyapunov(;m::Int=15, J::Int=5, ni::Int=300, ts::Float64=0.01) Constructs a `Lyapunov` plugin. The [`process(plg::Lyapunov, x)`](@ref) function computes the maximum numerical Lyapunov exponents. `m` is the reconstruction dimension, `J` is the amount of delay in reconstruction, `ni` is the number of steps during transient steps and `ts` is the sampling time between samples of the input data `x`. See also: (https://juliadynamics.github.io/DynamicalSystems.jl/latest/chaos/nlts/) """ struct Lyapunov <: AbstractPlugin m::Int J::Int ni::Int ts::Float64 end Lyapunov(;m::Int=15, J::Int=5, ni::Int=300, ts::Float64=0.01) = Lyapunov(m, J, ni, ts) show(io::IO, plg::Lyapunov) = print(io, "Lyapunov(embeddingdim:$(plg.m), numlags:$(plg.J), numiteration:$(plg.ni), samplingtime:$(plg.ts)") """ process(plg::Lyapunov, x) Computes the maximum Lyapunov exponent of the input data `x`. # Example ```julia julia> using Random julia> rng = MersenneTwister(1234); julia> x = rand(rng, 1000); julia> plg = Plugins.Lyapunov() Lyapunov(embeddingdim:15, numlags:5, numiteration:300, samplingtime:0.01 julia> process(plg, x) -0.42032928176193973 ``` """ function process(plg::Lyapunov, x) ndims(x) == 1 || (x = x[:]) ntype = FixedMassNeighborhood(5) ks = 1 : 4 : plg.ni R = reconstruct(x, plg.m, plg.J) E = numericallyapunov(R, ks, ntype=ntype) val = linear_region(plg.ts .* ks, E)[2] return val end # using NearestNeighbors # using LinearAlgebra # using Statistics # using LsqFit # import Base.log # process(plg::Lyapunov, x) = lyapunov(x, plg.m, plg.J, plg.ni, plg.ts)[2] # function reconstruct(x, m, J) # N = length(x) # M = N - (m - 1) * J # X = zeros(m, M) # for i = 1 : M # data = x[i : J : i + (m - 1)* J] # X[:, i] = data # end # X # end # function knneighbours(X) # tree = KDTree(X) # [knn(tree, X[:, j], 2)[1][1] for j = 1 : size(X, 2)] # end # distance(Xj, Xjhat) = norm(Xj - Xjhat) # Base.log(a::Vector) = log.(a) # function lyapunov(x, m, J, ni, ts) # X = reconstruct(x, m, J) # M = size(X, 2) # js = collect(1:M) # jbars = knneighbours(X) # m1 = js .+ ni .<= M # m2 = jbars .+ ni .<= M # m = m1 .& m2 # mjs = js[m] # mjbars = jbars[m] # y = mean(log.([distance.(eachcol(X[:, j : j + ni]), eachcol(X[:, jbar : jbar + ni])) # for (j, jbar) in zip(mjs, mjbars)])) / ts # @. model(x, p) = p[1]*x # ydata = y[round(Int, length(y) * 0.25) : end] # Discard first transient region and go to the linear region. # lambda = coef(curve_fit(model, collect(1:length(ydata)), ydata, rand(1)))[1] # return y, lambda # end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
788
# This file illustrates the plugin for calculation of mean of data using Statistics """ Mean(dims::Int) Constructs a `Mean` plugin. The [`process(plg::Mean, x)`](@ref) function takes the mean of the input data `x` along dimension `dims`. """ struct Mean <: AbstractPlugin dims::Int end Mean(;dims::Int=1) = Mean(dims) show(io::IO, plg::Mean) = print(io, "Mean(dims:$(plg.dims))") """ process(plg::Mean, x) Returns the means of `x` along the dimension `plg.dims`. # Example ```julia julia> x = collect(reshape(1:16, 4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> plg = Plugins.Mean(dims=1) Mean(dims:1) julia> process(plg, x) 1×4 Array{Float64,2}: 2.5 6.5 10.5 14.5 ``` """ process(plg::Mean, x) = mean(x, dims=plg.dims)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
816
# This file includes the plugin for standard deviation of data using Statistics """ Std(dims::Int) Constructs a `Std` plugin. The [`process(plg::Std, x)`](@ref) function takes the standard deviation of the input data `x` along dimension `dims`. """ struct Std <: AbstractPlugin dims::Int end Std(;dims::Int=1) = Std(dims) show(io::IO, plg::Std) = print(io, "Mean(dims:$(plg.dims))") """ process(plg::Std, x) Returns the standard deviation of `x` along the dimension `plg.dims`. # Example ```julia julia> x = collect(reshape(1:16, 4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> plg = Plugins.Std(dims=1) Mean(dims:1) julia> process(plg, x) 1×4 Array{Float64,2}: 1.29099 1.29099 1.29099 1.29099 ``` """ process(plg::Std, x) = std(x, dims=plg.dims)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
857
# This file includes the plugin for the calculation variance of data using Statistics """ Variance(dims::Int) Constructs a `Variance` plugin. The [`process(plg::Variance, x)`](@ref) function takes the variance of the input data `x` along dimension `dims`. """ struct Variance <: AbstractPlugin dims::Int end Variance(;dims::Int=1) = Variance(dims) show(io::IO, plg::Variance) = print(io, "Mean(dims:$(plg.dims))") """ process(plg::Std, x) Returns the standard deviation of `x` along the dimension `plg.dims`. # Example ```julia julia> x = collect(reshape(1:16, 4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> plg = Plugins.Variance(dims=1) Mean(dims:1) julia> process(plg, x) 1×4 Array{Float64,2}: 1.66667 1.66667 1.66667 1.66667 ``` """ process(plg::Variance, x) = var(x, dims=plg.dims)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
13007
# This file constains the Buffer for data buffering. ##### Buffer modes """ BufferMode Abstract type for buffer mode. Subtypes of `BufferMode` is `CyclicMode` and `LinearMode`. """ abstract type BufferMode end """ CyclicMode <: BufferMode Abstract type of cyclic buffer modes. See [`Cyclic`](@ref) """ abstract type CyclicMode <: BufferMode end """ LinearMode <: BufferMode Abstract type of linear buffer modes. See [`Normal`](@ref), [`Lifo`](@ref), [`Fifo`](@ref) """ abstract type LinearMode <: BufferMode end """ Cyclic <: CyclicMode Cyclic buffer mode. The data is written to buffer until the buffer is full. When the buffer is full, new data is written by overwriting the data available in the buffer starting from the beginning of the buffer. When the buffer is read, the element written last is returned and the returned element is not deleted from the buffer. """ struct Cyclic <: CyclicMode end """ Normal <: LinearMode LinearMode buffer mode. The data is written to buffer until the buffer is full. When it is full, no more data is written to the buffer. When read, the data written last is returned and the returned data is not deleted from the internal container of the buffer. """ struct Normal <: LinearMode end """ Lifo <: LinearMode Lifo (Last-in-first-out) buffer mode. This type of buffer is a *last-in-first-out* buffer. Data is written to the buffer until the buffer is full. When the buffer is full, no more element can be written into the buffer. When read, the last element written into buffer is returned. The returned element is deleted from the buffer. """ struct Lifo <: LinearMode end """ Fifo <: LinearMode Fifo (First-in-last-out) buffer mode. This type of buffer is a *first-in-first-out* buffer. The data is written to the buffer until the buffer is full. When the buffer is full, no more element can be written into the buffer. When read, the first element written into the buffer is returned. The returned element is deleted from the buffer. """ struct Fifo <: LinearMode end ##### Buffer """ Buffer{M}(dtype::Type{T}, sz::Int...) where {M, T} Constructs a `Buffer` of size `sz` with element type of `T`. `M` is the mode of the `Buffer` that determines how data is to read from and written into the `Buffer`. There exists for different buffer modes: * `Normal`: See [`Normal`](@ref) * `Cyclic`: See [`Cyclic`](@ref) * `Lifo`: See [`Lifo`](@ref) * `Fifo`: See [`Fifo`](@ref) The default mode for `Buffer` is `Cyclic` and default element type is `Float64`. Buffer{M}(sz::Int...) where {M, T} Constructs a `Buffer` of size `sz` and with element type of `T` and mode `M`. Buffer(dtype::Type{T}, sz::Int...) where T Constructs a `Buffer` of size `sz` and element type `T`. The mode of buffer is `Cyclic`. Buffer(sz::Int...) Constructs a `Buffer` of size `sz` with mode `Cyclic` and element type of `Float64`. Buffer{M}(data::AbstractVecOrMat{T}) where {M, T<:Real} Constructs a `Buffer` with `data`. # Example ```jldoctest julia> buf = Buffer(5) 5-element Buffer{Cyclic,Float64,1} julia> buf = Buffer{Fifo}(2, 5) 2×5 Buffer{Fifo,Float64,2} julia> buf = Buffer{Lifo}(collect(reshape(1:8, 2, 4))) 2×4 Buffer{Lifo,Int64,2} ``` """ mutable struct Buffer{M<:BufferMode, T, N} <: AbstractArray{T, N} internals::Vector{Array{T, N}} src::Int dst::Int index::Int state::Symbol id::UUID Buffer{M}(data::AbstractVecOrMat{T}) where {M, T<:Real} = new{M, T, ndims(data)}([copy(data), data], 1, 2, 1, :empty, uuid4()) end Buffer{M}(dtype::Type{T}, sz::Int...) where {M, T} = Buffer{M}(zeros(T, sz...)) Buffer{M}(sz::Int...) where {M, T} = Buffer{M}(zeros(Float64, sz...)) Buffer(dtype::Type{T}, sz::Int...) where T = Buffer{Cyclic}(dtype, sz...) Buffer(sz::Int...) = Buffer(Float64, sz...) show(io::IO, buf::Buffer)= print(io, "Buffer(mode:$(mode(buf)), eltype:$(eltype(buf)), size:$(size(buf)), index:$(buf.index), state:$(buf.state))") # display(buf::Buffer) = println( # "Buffer(mode:$(mode(buf)), eltype:$(eltype(buf)), size:$(size(buf)), index:$(buf.index), state:$(buf.state))") function swapinternals(buf::Buffer) temp = buf.src buf.src = buf.dst buf.dst = temp end """ inbuf(buf::Buffer) Returns the element of `internals` of `buf` that is used to input data to `buf`. See also [`outbuf`][@ref) """ inbuf(buf::Buffer) = buf.internals[buf.src] """ outbuf(buf::Buffer) Returns the element of `intervals` of `buf` that is used to take data out of `buf`. See also: [`inbuf`](@ref) """ outbuf(buf::Buffer) = buf.internals[buf.dst] ##### Buffer info. """ mode(buf::Buffer) Returns buffer mode of `buf`. See also: [`Normal`](@ref), [`Cyclic`](@ref), [`Lifo`](@ref), [`Fifo`](@ref) for buffer modes. """ mode(buf::Buffer{M, T, N}) where {M, T, N} = M ##### AbstractArray interface. """ datalength(buf::Buffer) Returns the maximum number of data that can be hold in `buf`. # Example ```jldoctest julia> buf = Buffer(5); julia> datalength(buf) 5 julia> buf2 = Buffer(2, 10); julia> datalength(buf2) 10 ``` """ datalength(buf::Buffer{M, T, N}) where {M, T, N} = N == 1 ? size(buf, 1) : size(buf, 2) """ size(buf::Buffer) Returns the size of `buf`. """ size(buf::Buffer) = size(outbuf(buf)) """ getindex(buf::Buffer, idx::Vararg{Int, N}) Returns an element from `buf` at index `idx`. Same as `buf[idx]` # Example ```jldoctest julia> buf = Buffer(2, 5); # Construct a buffer. julia> write!(buf, reshape(2 : 2 : 20, 2, 5)) # Write data into buffer. julia> buf[1] 18.0 julia> buf[1, 2] 14.0 julia> buf[1, end] 2.0 julia> buf[:, 2] 2-element Array{Float64,1}: 14.0 16.0 ``` """ getindex(buf::Buffer, idx::Vararg{Int, N}) where N = getindex(outbuf(buf), idx...) """ setindex!(buf::Buffer, val, idx) Sets `val` to `buf` at index `idx`. Same as `buf[idx] = val`. # Example ```jldoctest julia> buf = Buffer(2, 5); julia> buf[1] = 1 1 julia> buf[:, 2] = [1, 1] 2-element Array{Int64,1}: 1 1 julia> buf[end] = 10 10 julia> buf.internals 2-element Array{Array{Float64,2},1}: [1.0 1.0 … 0.0 0.0; 0.0 1.0 … 0.0 10.0] [0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] ``` """ setindex!(buf::Buffer, item, idx::Vararg{Int, N}) where N = setindex!(inbuf(buf), item, idx...) ##### Buffer state control and check. """ isempty(buf::Buffer) Returns `true` if the index of `buf` is 1. """ isempty(buf::Buffer) = buf.state == :empty """ isfull(buf::Buffer) Returns `true` if the index of `buf` is equal to the length of `buf`. """ isfull(buf::Buffer) = buf.state == :full """ ishit(buf::Buffer) Returns true when `buf` index is an integer multiple of datalength of `buf`. # Example ```jldoctest julia> buf = Buffer(3); julia> for val in 1 : 7 write!(buf, val) @show ishit(buf) end ishit(buf) = false ishit(buf) = false ishit(buf) = true ishit(buf) = false ishit(buf) = false ishit(buf) = true ishit(buf) = false ``` """ ishit(buf::Buffer) = buf.index % datalength(buf) == 1 # # `setproperty!` function is used to keep track of buffer status. # The tracking is done through the updates of `index` of buffer. # function setproperty!(buf::Buffer, name::Symbol, val::Int) if name == :index val < 1 && error("Buffer index cannot be less than 1.") setfield!(buf, name, val) if val == 1 buf.state = :empty elseif val > datalength(buf) buf.state = :full # mode(buf) == Cyclic && setfield!(buf, :index, %(buf.index, datalength(buf))) else buf.state = :nonempty end else setfield!(buf, name, val) end end ##### Writing into buffers """ write!(buf::Buffer{M, <:Real, 1}, val::Real) where {M} Writes `val` into `buf`. write!(buf::Buffer{M, <:Real, 2}, val::AbstractVector{<:Real}) where {M} Writes `val` into `buf`. write!(buf::Buffer{M, <:Real, 1}, vals::AbstractVector{<:Real}) where {M} Writes each element of `vals` into `buf`. write!(buf::Buffer{M, <:Real, 2}, vals::AbstractMatrix{<:Real}) where {M} Writes each column of `vals` into `buf`. !!! warning Buffer mode determines how data is written into buffers. See also: [`Normal`](@ref), [`Cyclic`](@ref), [`Lifo`](@ref), [`Fifo`](@ref) for buffer modes. # Example ```jldoctest julia> buf = Buffer(5) 5-element Buffer{Cyclic,Float64,1} julia> write!(buf, 1.) 1.0 julia> write!(buf, [2, 3]) julia> buf.internals 2-element Array{Array{Float64,1},1}: [3.0, 2.0, 1.0, 0.0, 0.0] [2.0, 1.0, 0.0, 0.0, 0.0] julia> buf = Buffer(2,5) 2×5 Buffer{Cyclic,Float64,2} julia> write!(buf, [1, 1]) 2-element Array{Int64,1}: 1 1 julia> write!(buf, [2 3; 2 3]) julia> buf.internals 2-element Array{Array{Float64,2},1}: [3.0 2.0 … 0.0 0.0; 3.0 2.0 … 0.0 0.0] [2.0 1.0 … 0.0 0.0; 2.0 1.0 … 0.0 0.0] ``` """ function write!(buf::Buffer, val) end write!(buf::Buffer{M, <:Real, 1}, val::Real) where {M} = _write!(buf, val) write!(buf::Buffer{M, <:Real, 2}, val::AbstractVector{<:Real}) where {M} = _write!(buf, val) write!(buf::Buffer{M, <:Real, 1}, vals::AbstractVector{<:Real}) where {M} = foreach(val -> _write!(buf, val), vals) write!(buf::Buffer{M, <:Real, 2}, vals::AbstractMatrix{<:Real}) where {M} = foreach(val -> _write!(buf, val), eachcol(vals)) function _write!(buf::Buffer, val) checkstate(buf) ibuf = inbuf(buf) obuf = outbuf(buf) rotate(ibuf, obuf, 1) writeitem(ibuf, val) buf.index += 1 swapinternals(buf) val end # writeitem(buf::Buffer{M, T, 1}, val) where {M, T} = (buf[buf.index] = val; buf.index += 1) writeitem(buf::AbstractArray{T, 1}, val) where {T} = buf[1] = val writeitem(buf::AbstractArray{T, 2}, val) where {T} = buf[:, 1] = val checkstate(buf::Buffer) = mode(buf) != Cyclic && isfull(buf) && error("Buffer is full") ##### Reading from buffers """ read(buf::Buffer) Reads an element from `buf`. Reading is performed according to the mode of `buf`. See also: [`Normal`](@ref), [`Cyclic`](@ref), [`Lifo`](@ref), [`Fifo`](@ref) for buffer modes. # Example ```jldoctest julia> buf = Buffer(3) 3-element Buffer{Cyclic,Float64,1} julia> write!(buf, [2, 4, 6]) julia> for i = 1 : 3 @show (read(buf), buf.internals) end (read(buf), buf.internals) = (6.0, [[6.0, 4.0, 2.0], [4.0, 2.0, 0.0]]) (read(buf), buf.internals) = (6.0, [[6.0, 4.0, 2.0], [4.0, 2.0, 0.0]]) (read(buf), buf.internals) = (6.0, [[6.0, 4.0, 2.0], [4.0, 2.0, 0.0]]) julia> buf = Buffer{Fifo}(5) 5-element Buffer{Fifo,Float64,1} julia> write!(buf, [2, 4, 6]) julia> for i = 1 : 3 @show (read(buf), buf.internals) end (read(buf), buf.internals) = (2.0, [[6.0, 4.0, 0.0, 0.0, 0.0], [4.0, 2.0, 0.0, 0.0, 0.0]]) (read(buf), buf.internals) = (4.0, [[6.0, 0.0, 0.0, 0.0, 0.0], [4.0, 2.0, 0.0, 0.0, 0.0]]) (read(buf), buf.internals) = (6.0, [[0.0, 0.0, 0.0, 0.0, 0.0], [4.0, 2.0, 0.0, 0.0, 0.0]]) ``` """ function read(buf::Buffer) isempty(buf) && error("Buffer is empty.") val = _read(buf) val end function _read(buf::Buffer{Fifo, T, N}) where {T, N} obuf = outbuf(buf) val = readitem(obuf, buf.index - 1) buf.index -= 1 insertzero(obuf, buf.index) val end function _read(buf::Buffer{Lifo, T, N}) where {T, N} obuf = outbuf(buf) ibuf = inbuf(buf) val = readitem(obuf, 1) rotate(ibuf, obuf, -1) buf.index -= 1 swapinternals(buf) val end function _read(buf::Buffer{M, T, N}) where {M<:Union{Normal, Cyclic}, T, N} readitem(outbuf(buf), 1) end readitem(buf::AbstractArray{T, 1}, idx::Int) where {T} = buf[idx] readitem(buf::AbstractArray{T, 2}, idx::Int) where {T} = buf[:, idx] insertzero(buf::AbstractArray{T, 1}, idx::Int) where {T} = buf[idx] = zero(T) insertzero(buf::AbstractArray{T, 2}, idx::Int) where {T} = buf[:, idx] = zeros(T, size(buf, 1)) rotate(ibuf::AbstractArray{T, 1}, obuf::AbstractArray{T, 1}, idx::Int) where {T} = circshift!(ibuf, obuf, idx) rotate(ibuf::AbstractArray{T, 2}, obuf::AbstractArray{T, 2}, idx::Int) where {T} = circshift!(ibuf, obuf, (0, idx)) ##### Accessing buffer internals """ content(buf, [flip=true]) Returns the current data of `buf`. If `flip` is `true`, the data to be returned is flipped. See also [`snapshot`](@ref) # Example ```jldoctest julia> buf = Buffer(5); julia> write!(buf, 1:3) julia> content(buf, flip=false) 3-element Array{Float64,1}: 3.0 2.0 1.0 julia> buf = Buffer(2, 5); julia> write!(buf, reshape(1:10, 2, 5)) julia> content(buf) 2×5 Array{Float64,2}: 1.0 3.0 5.0 7.0 9.0 2.0 4.0 6.0 8.0 10.0 ``` """ function content(buf::Buffer; flip::Bool=true) bufdim = ndims(buf) if isfull(buf) val = outbuf(buf) else val = bufdim == 1 ? buf[1 : buf.index - 1] : buf[:, 1 : buf.index - 1] end if flip return bufdim == 1 ? reverse(val, dims=1) : reverse(val, dims=2) else return val end end """ snapshot(buf::Buffer) Returns all elements in `buf`. See also: [`content`](@ref) """ snapshot(buf::Buffer) = outbuf(buf)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2362
# This file constains the callbacks for event monitoring. """ Callback(condition, action) Constructs a `Callback` from `condition` and `action`. The `condition` and `action` must be a single-argument function. The `condition` returns `true` if the condition it checks occurs, otherwise, it returns `false`. `action` performs the specific action for which the `Callback` is constructed. A `Callback` can be called by passing its single argument which is mostly bound to the `Callback`. # Example ```julia julia> struct Object # Define a dummy type. x::Int clb::Callback end julia> cond(obj) = obj.x > 0; # Define callback condition. julia> action(obj) = println("obj.x = ", obj.x); # Define callback action. julia> obj = Object(1, Callback(condition=cond, action=action)) Object(1, Callback(condition:cond, action:action)) julia> obj.clb(obj) # Call the callback bound `obj`. obj.x = 1 ``` """ Base.@kwdef mutable struct Callback{CN, AC} condition::CN = obj -> false action::AC = obj -> nothing enabled::Bool = true id::UUID = uuid4() end show(io::IO, clb::Callback) = print(io, "Callback(condition:$(clb.condition), action:$(clb.action))") ##### Callback controls """ enable!(clb::Callback) Enables `clb`. """ enable!(clb::Callback) = clb.enabled = true """ disable!(clb::Callback) Disables `clb`. """ disable!(clb::Callback) = clb.enabled = false """ isenabled(clb::Callback) Returns `true` if `clb` is enabled. Otherwise, returns `false`. """ isenabled(clb::Callback) = clb.enabled ##### Callback calls # Apply callback asynchronously. # (clb::Callback)(obj) = clb.enabled && clb.condition(obj) ? clb.action(obj) : nothing (clb::Callback)(obj) = clb.enabled && clb.condition(obj) ? (@async(clb.action(obj)); nothing) : nothing (clbs::AbstractVector{CB})(obj) where CB<:Callback = foreach(clb -> clb(obj), clbs) """ applycallbacks(obj) Calls the callbacks of `obj` if the callbacks are not nothing. # Example ```julia julia> mutable struct MyType{CB} x::Int callbacks::CB end julia> obj = MyType(5, Callback(condition=obj -> obj.x > 0, action=obj -> println("x is positive"))); julia> applycallbacks(obj) x is positive julia> obj.x = -1 -1 julia> applycallbacks(obj) ``` """ applycallbacks(obj) = typeof(obj.callbacks) <: Nothing || obj.callbacks(obj)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1575
# This file includes utiliti functions for Systems module macro siminfo(msg...) quote @info "$(now()) $($msg...)" end end #= @def begin name code end Copy paste macro =# macro def(name, code) quote macro $(esc(name))() esc($(Meta.quot(code))) end end end hasargs(func, n) = n + 1 in [method.nargs for method in methods(func)] function unwrap(container, etype; depth=10) for i in 1 : depth container = vcat(container...) eltype(container) == etype && break end container end launchport(iport) = @async while true all(take!(iport) .=== NaN) && break end # Equips `comp` to make it launchable. Equipment is done by constructing and connecting signalling pins (i.e. `trigger` # and `handshake`), input and output ports (if necessary) function equip(comp, kickoff::Bool=true) oport = typeof(comp) <: AbstractSource ? nothing : (typeof(comp.input) === nothing ? nothing : Outport(length(comp.input))) iport = typeof(comp) <: AbstractSink ? nothing : (typeof(comp.output) === nothing ? nothing : Inport(length(comp.output))) trg = Outpin() hnd = Inpin{Bool}() oport === nothing || connect!(oport, comp.input) iport === nothing || connect!(comp.output, iport) connect!(trg, comp.trigger) connect!(comp.handshake, hnd) if kickoff comptask, outputtask = launch(comp), launchport(iport) else comptask, outputtask = nothing, nothing end oport, iport, trg, hnd, comptask, outputtask end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
866
# This file is used for code coverage of Jusdl test suites. # NOTE: Before executing this script, run test suite of Jusdl as # ] test --coverage Jusdl # using Coverage # process '*.cov' files coverage = process_folder() # defaults to src/; alternatively, supply the folder name as argument coverage = append!(coverage, process_folder("deps")) # process '*.info' files coverage = merge_coverage_counts(coverage, filter!( let prefixes = (joinpath(pwd(), "src", ""), joinpath(pwd(), "deps", "")) c -> any(p -> startswith(c.filename, p), prefixes) end, LCOV.readfolder("test"))) # Get total coverage for all Julia files covered_lines, total_lines = get_summary(coverage) percentage = covered_lines / total_lines * 100 @info "Code coverage percentage : $percentage%" # Clean folders foreach(clean_folder, ["src", "test"])
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
933
# This file includes the main test set of Jusdl. # To include new tests, write your tests in files and save them in directories under `test` directory. using Test using Jusdl using Logging using Random using JLD2, FileIO using UUIDs using Statistics using LightGraphs import Jusdl.process # --------------------------- Deprecated -------------------------- function prepare(comp, kickoff::Bool=true) @warn "`prepare` function has been deprecated in favor of `equip`" equip(comp, kickoff) end # ---------------------------------- Include all test files --------------------- # Construct the file tree in `test` directory. filetree = walkdir(@__DIR__) take!(filetree) # Pop the root directory `test` in which `runtests.jl` is. # Include all test files under `test` @time @testset "JusdlTestSet" begin for (root, dirs, files) in filetree foreach(file -> include(joinpath(root, file)), files) end end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
973
# This file constains testset for Printer @testset "PrinterTestSet" begin @info "Running PrinterTestSet ..." # Printer construction printer = Printer(input=Inport(2), buflen=100) @test typeof(printer.trigger) == Inpin{Float64} @test typeof(printer.handshake) == Outpin{Bool} @test size(printer.timebuf) == (100,) @test size(printer.databuf) == (2, 100) @test isa(printer.input, Inport) @test printer.plugin === nothing @test typeof(printer.callbacks) <: Nothing @test typeof(printer.sinkcallback) <: Callback # Driving Printer oport, iport, trg, hnd, tsk, tsk2 = prepare(printer) for t in 1 : 200 put!(trg, t) put!(oport, ones(2) * t) take!(hnd) @test read(printer.timebuf) == t @test [read(pin.links[1].buffer) for pin in oport] == ones(2) * t end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) @info "Done PrinterTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
963
# This file constains testset for Scope @testset "ScopeTestSet" begin @info "Running ScopeTestSet ..." # Scope construction scope = Scope(input=Inport(1), buflen=100) @test typeof(scope.trigger) == Inpin{Float64} @test typeof(scope.handshake) == Outpin{Bool} @test size(scope.timebuf) == (100,) @test size(scope.databuf) == (100,) @test isa(scope.input, Inport) @test scope.plugin === nothing @test typeof(scope.callbacks) <: Nothing @test typeof(scope.sinkcallback) <: Callback # Driving Scope open(scope) oport, iport, trg, hnd, tsk, tsk2 = prepare(scope) for t in 1 : 200 put!(trg, t) put!(oport, ones(1) * t) take!(hnd) @test read(scope.timebuf) == t @test [read(pin.links[1].buffer) for pin in oport] == ones(1) * t @show t end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) @info "Done ScopeTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2335
# This file constains testset for Writer @testset "WriterTestSet" begin @info "Running WriterTestSet ..." # Preliminaries randdirname() = string(uuid4()) randfilename() = join([string(uuid4()), ".jld2"], "") testdir = tempdir() # Writer construction writer = Writer(input=Inport(3), buflen=10) writer = Writer(input=Inport(3), buflen=10, path=joinpath(testdir, randfilename())) path = joinpath(testdir, randfilename()) writer = Writer(input=Inport(3), path=path) @test typeof(writer.trigger) == Inpin{Float64} @test typeof(writer.handshake) == Outpin{Bool} @test isa(writer.input, Inport) @test length(writer.input) == 3 @test size(writer.timebuf) == (64,) @test size(writer.databuf) == (3, 64) @test writer.plugin === nothing @test writer.callbacks === nothing @test typeof(writer.sinkcallback) <: Callback # Reading and writing into Writer writer = Writer(input=Inport()) open(writer) for t in 1 : 10 write!(writer, t, sin(t)) end close(writer) data = read(writer, flatten=false) for (t, u) in data @test sin(t) == u end data = fread(writer.file.path, flatten=false) for (t, u) in data @test sin(t) == u end # Moving/Copying Writer file. filename = randfilename() dirnames = map(1:3) do i path = joinpath(testdir, randdirname()) ispath(path) || mkdir(path) path end paths = map(dname -> joinpath(dname, filename), dirnames) w = Writer(input=Inport(), path=paths[1]) mv(w, dirnames[2], force=true) @test w.file.path == paths[2] cp(w, dirnames[3], force=true) @test isfile(paths[3]) # Driving Writer writer = Writer(input=Inport(3), buflen=10) open(writer) oport, iport, trg, hnd, comptask, outtask = prepare(writer) for t in 1 : 100 put!(trg, t) put!(oport, ones(3)*t) take!(hnd) @test read(writer.timebuf) == t @test [read(pin.links[1].buffer) for pin in oport] == ones(3) * t end close(writer) t, x = read(writer, flatten=true) @test t == collect(1 : 100) @test x == [collect(1:100) collect(1:100) collect(1:100)] put!(trg, NaN) sleep(0.1) @test istaskdone(comptask) @info "Done WriterTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
427
# This file includes testset to define new sink types @testset "NewSinkDefinitionTestset" begin # New sink types must be of subtypes of `AbstractSink`. @test_throws Exception @eval @def_sink struct Mysink{T,S} field1::T field2::S end @test_throws Exception @eval @def_source struct Mysink{T,S} <: SomeDummyType readout::RO = t -> sin(t) output::OP = Outport() end end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
3063
# This file includes testset for sources. @testset "ClockTestSet" begin @info "Running ClockTestSet ..." # Clock construction clk1 = Clock(0., 1., 10.) clk2 = Clock(0., 1, 10) clk3 = Clock(0, 1, 10) @test eltype(clk1.t) == Float64 @test eltype(clk2.t) == Float64 @test eltype(clk3.t) == Int # Check Clock defaults. clk = clk1 @test clk.t == 0. @test clk.dt == 1. @test clk.tf == 10. @test typeof(clk.generator) == Channel{Float64} @test clk.generator.sz_max == 0 @test !ispaused(clk) @test !isrunning(clk) # Set Clock set!(clk) @test isrunning(clk) # Taking values from clk clk = Clock(0., 1., 10.) set!(clk) @test [take!(clk) for i in 0 : 10] == collect(Float64, 0:10) @test isoutoftime(clk) # Pausing Clock clk = set!(Clock(0., 1, 10)) @test take!(clk) == 0 @test take!(clk) == 1. pause!(clk) for i = 1 : 10 @test take!(clk) == 1. end @info "Done ClockTestSet." end # testset @testset "GeneratorsTestSet" begin @info "Running GeneratorsTestSet ..." # FunctionGenerator construction gen = SinewaveGenerator() @test typeof(gen.trigger) == Inpin{Float64} @test typeof(gen.handshake) == Outpin{Bool} @test !hasfield(typeof(gen), :input) @test typeof(gen.output) == Outport{Outpin{Float64}} @def_source struct Mygen{OP, RO} <: AbstractSource output::OP = Outport(2) readout::RO = t -> [sin(t), cos(t)] end gen = Mygen() @test length(gen.output) == 2 # Driving FunctionGenerator gen = Mygen(readout = t -> t, output=Outport(1)) trg = Outpin() hnd = Inpin{Bool}() ip = Inport() connect!(gen.output, ip) connect!(trg, gen.trigger) connect!(gen.handshake, hnd) task = launch(gen) task2 = @async while true all(take!(ip) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) end @test content(ip[1].link.buffer) == collect(1:10) @test !istaskdone(task) put!(trg, NaN) @test istaskdone(task) put!(gen.output, [NaN]) @test istaskdone(task2) # Construction of other generators sinegen = SinewaveGenerator() dampedsinegen = DampedSinewaveGenerator() sqauregen = SquarewaveGenerator() trigen = TriangularwaveGenerator() congen = ConstantGenerator() rampgen = RampGenerator() stepgen = StepGenerator() expgen = ExponentialGenerator() dampedexpgen = DampedExponentialGenerator() # Mutaton of generators @test_throws Exception sinegen.amplitude = 5. @test_throws Exception sqauregen.high = 10. # Test redefining new source types. @test_throws Exception @eval @def_source struct Mygen{RO,OP} readout::RO = t -> sin(t) output::OP = Outport() end @test_throws Exception @eval @def_source struct Mygen{RO,OP} <: SomeDummyType readout::RO = t -> sin(t) output::OP = Outport() end @info "Done GeneratorsTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
4355
# This file includes testset for DAESystem @testset "DAESystemTestSet" begin @info "Running DAESystemTestSet ..." # DAESystem construction function sfunc(out, dx, x, u, t) out[1] = -0.04 * x[1] + 1e4 * x[2] * x[3] - dx[1] out[2] = 0.04 * x[1] - 3e7 * x[2]^2 - 1e4 * x[2] * x[3] - dx[2] out[3] = x[1] + x[2] + x[3] - 1.0 end ofunc(x, u, t) = x state = [1., 0., 0.] stateder = [-0.04, 0.04, 0.] differential_vars = [true, true, false] ds = DAESystem(righthandside=sfunc, readout=ofunc, state=state, input=nothing, output=Outport(3), stateder=stateder, diffvars=differential_vars) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test typeof(ds.output) == Outport{Outpin{Float64}} @test length(ds.output) == 3 @test ds.state == state @test ds.t == 0. @test ds.integrator.sol.prob.p === nothing # Driving DAESystem iport = Inport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # DAESystem with inputs function sfunc2(out, dx, x, u, t) out[1] = -0.04 * x[1] + 1e4 * x[2] * x[3] - dx[1] + u[1](t) out[2] = 0.04 * x[1] - 3e7 * x[2]^2 - 1e4 * x[2] * x[3] - dx[2] + u[2](t) out[3] = x[1] + x[2] + x[3] - 1.0 end ofunc2(x, u, t) = x state = [1., 0., 0.] stateder = [-0.04, 0.04, 0.] differential_vars = [true, true, false] ds = DAESystem(righthandside=sfunc2, readout=ofunc2, state=state, input=Inport(2), output=Outport(3), stateder=stateder, diffvars=differential_vars) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test typeof(ds.input) <: Inport @test typeof(ds.output) == Outport{Outpin{Float64}} @test length(ds.input) == 2 @test length(ds.output) == 3 @test ds.state == state @test ds.t == 0. @test typeof(ds.integrator.sol.prob.p) <: Interpolant @test size(ds.integrator.sol.prob.p.timebuf) == (3,) @test size(ds.integrator.sol.prob.p.databuf) == (2,3) # Driving DAESystem with input oport = Outport(2) iport = Inport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) put!(oport, ones(2) * t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test defining new DAESystems # Type mest be mutable @test_throws Exception @eval @def_dae_system struct DAESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST stateder::ST diffvars::Vector{Bool} input::IP output::OP end # The type must be a subtype of AbstractDAESystem @test_throws Exception @eval @def_dae_system mutable struct DAESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST stateder::ST diffvars::Vector{Bool} input::IP output::OP end # The type must be a subtype of AbstractDAESystem @test_throws Exception @eval @def_dae_system mutable struct DAESystem{RH, RO, ST, IP, OP} <: MyDummyAbstractDAESystem righthandside::RH readout::RO state::ST stateder::ST diffvars::Vector{Bool} input::IP output::OP end @info "Done DAESystemTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
4339
# This file includes testset for DDESystem import DifferentialEquations: MethodOfSteps, Vern9 @testset "DDESystemTestSet" begin @info "Running DDESystemTestSet ..." # DDESystem construction out = zeros(1) tau = 1 constlags = [tau] histfunc(out, u, t) = (out .= 1.) function statefunc(dx, x, h, u, t) h(out, u, t - tau) # Update `out`. dx[1] = out[1] + x[1] end outputfunc(x, u, t) = x ds = DDESystem(righthandside=statefunc, history=histfunc, readout=outputfunc, state=[1.], input=nothing, output=Outport(1), alg=MethodOfSteps(Vern9()), constlags=constlags, depslags=nothing) # ds = DDESystem((statefunc, histfunc), outputfunc, [1.], 0., nothing, Outport(1), alg=MethodOfSteps(Tsit5()), modelkwargs=(constant_lags=constlags,)) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 1 @test ds.integrator.sol.prob.constant_lags == constlags @test ds.integrator.sol.prob.dependent_lags === nothing @test ds.integrator.sol.prob.neutral == false @test ds.integrator.alg == Vern9() # Driving DDESystem iport = Inport(1) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # DDESystem with input # hist2 = History(histfunc, constlags, ()) function statefunc2(dx, x, h, u, t) h(out, u, t - tau) # Update `out`. dx[1] = out[1] + x[1] + sin(u[1](t)) + cos(u[2](t)) end outputfunc2(x, u, t) = x ds = DDESystem(righthandside=statefunc2, history=histfunc, readout=outputfunc2, state=[1.], input=Inport(2), output=Outport(1), constlags=constlags, depslags=nothing) @test isa(ds.input, Inport) @test isa(ds.output, Outport) @test length(ds.input) == 2 @test length(ds.output) == 1 @test typeof(ds.integrator.sol.prob.p) <: Interpolant @test size(ds.integrator.sol.prob.p.timebuf) == (3,) @test size(ds.integrator.sol.prob.p.databuf) == (2, 3) oport = Outport(2) iport = Inport(1) trg = Outpin() hnd = Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) put!(oport, [t, 2t]) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test defining new DDESystem # The type must be mutable @test_throws Exception @eval @def_dde_system struct DDESystem{CL, DL, RH, HST, RO, ST, IP, OP} constlags::CL depslags::DL righthandside::RH history::HST readout::RO state::ST input::IP output::OP end # The type must be a subtype of AbstractDAESystem @test_throws Exception @eval @def_dde_system mutable struct DDESystem{CL, DL, RH, HST, RO, ST, IP, OP} constlags::CL depslags::DL righthandside::RH history::HST readout::RO state::ST input::IP output::OP end # The type must be a subtype of AbstractDAESystem @test_throws Exception @eval @def_dde_system mutable struct DDESystem{CL, DL, RH, HST, RO, ST, IP, OP} <: MyDummyAbstractDDESystem constlags::CL depslags::DL righthandside::RH history::HST readout::RO state::ST input::IP output::OP end @info "Done DDESystemTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2956
# This file includes testset for DiscreteSystem @testset "DiscreteSystemTestSet" begin @info "Running DiscreteSystemTestSet ..." # ODESystem construction sfunc1(dx, x, u, t) = (dx .= -x) ofunc1(x, u, t) = x ds = DiscreteSystem(righthandside=sfunc1, readout=ofunc1, state=[1.], input=nothing, output=Outport()) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test typeof(ds.output) == Outport{Outpin{Float64}} @test length(ds.output) == 1 @test ds.state == [1.] @test ds.t == 0. @test ds.integrator.sol.prob.p === nothing function sfunc2(dx, x, u, t) dx[1] = x[1] + u[1](t) dx[2] = x[2] - u[2](t) dx[3] = x[3] + sin(u[1](t)) end ofunc2(x, u, t) = x ds = DiscreteSystem(righthandside=sfunc2, readout=ofunc2, state=ones(3), input=Inport(2), output=Outport(3)) @test isa(ds.input, Inport) @test isa(ds.output, Outport) @test length(ds.input) == 2 @test length(ds.output) == 3 ds = DiscreteSystem(righthandside=sfunc2, readout=nothing, state=ones(3), input = Inport(2), output = nothing) @test isa(ds.input, Inport) @test length(ds.input) == 2 @test ds.readout === nothing @test ds.output === nothing # Driving ODESystem sfunc3(dx, x, u, t) = (dx .= -x) ofunc3(x, u, t) = x ds = DiscreteSystem(righthandside=sfunc3, readout=ofunc3, state=[1.], input=nothing, output=Outport()) iport = Inport() trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test definining new DiscreteSystem # Type must be mutable # The type must be mutable @test_throws Exception @eval @def_discrete_system struct MyDiscreteSystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end # Type must be a subtype of AbstractDiscreteSystem @test_throws Exception @eval @def_discrete_system mutable struct MyDiscreteSystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end @test_throws Exception @eval @def_discrete_system mutable struct MyDiscreteSystem{RH, RO, ST, IP, OP} <: MyDummyAbstractDiscreteSystem righthandside::RH readout::RO state::ST input::IP output::OP end @info "Done DiscreteSystemTestSet ..." end
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
9836
# This file includes testset for ODESystem @testset "ODESystemTestSet" begin @info "Running ODESystemTestSet ..." # ODESystem construction sfunc1(dx, x, u, t) = (dx .= -x) ofunc1(x, u, t) = x ds = ODESystem(righthandside = sfunc1, readout=ofunc1, state=[1.], solverkwargs=(dt=0.1,), input=nothing, output=Outport()) ds = ODESystem(righthandside = sfunc1, readout=ofunc1, state=[1.], solverkwargs=(dt=0.1, dense=true), input=nothing, output=Outport()) ds = ODESystem(righthandside = sfunc1, readout=ofunc1, state=[1.], input=nothing, output=Outport()) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test typeof(ds.output) == Outport{Outpin{Float64}} @test length(ds.output) == 1 @test ds.state == [1.] @test ds.t == 0. @test ds.integrator.sol.prob.p === nothing function sfunc2(dx, x, u, t) dx[1] = x[1] + u[1](t) dx[2] = x[2] - u[2](t) dx[3] = x[3] + sin(u[1](t)) end ofunc2(x, u, t) = x ds = ODESystem(righthandside=sfunc2, readout=ofunc2, state=ones(3), input=Inport(2), output=Outport(3)) @test isa(ds.input, Inport) @test isa(ds.output, Outport) @test length(ds.input) == 2 @test length(ds.output) == 3 ds = ODESystem(righthandside=sfunc2, readout=nothing, state=ones(3), input=Inport(2), output=nothing) @test isa(ds.input, Inport) @test length(ds.input) == 2 @test ds.readout === nothing @test ds.output === nothing # Driving ODESystem sfunc3(dx, x, u, t) = (dx .= -x) ofunc3(x, u, t) = x ds = ODESystem(righthandside=sfunc3, readout=ofunc3, state=[1.], input=nothing, output=Outport()) iport = Inport() trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # LinaerSystem tests ds = ContinuousLinearSystem(input=nothing, output=Outport(1)) @test ds.A == fill(-1, 1, 1) @test ds.B == fill(1., 1, 1) @test ds.C == fill(1, 1, 1) @test ds.D == fill(0, 1, 1) @test_throws Exception ds.γ == 1. ds = ContinuousLinearSystem(input=nothing, output=Outport(2), A=ones(2,2), C=ones(2,2)) @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 2 ds = ContinuousLinearSystem(input=Inport(2), output=Outport(3), A=ones(4,4), B=ones(4,2), C=ones(3,4), D=ones(3, 2), state=zeros(4)) @test ds.t == 0. @test ds.state == zeros(4) ds = ContinuousLinearSystem(input=Inport(2), output=Outport(3), A=ones(4,4), B=ones(4,2), C=ones(3,4), D=ones(3, 2)) @test typeof(ds.integrator.sol.prob.p) <: Interpolant @test size(ds.integrator.sol.prob.p.timebuf) == (3,) @test size(ds.integrator.sol.prob.p.databuf) == (2, 3) @test isa(ds.output, Outport) @test length(ds.input) == 2 @test length(ds.output) == 3 @test length(ds.state) == 4 oport = Outport(2) iport = Inport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(ds.handshake, hnd) connect!(trg, ds.trigger) connect!(oport, ds.input) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) u = [sin(t), cos(t)] put!(oport, u) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.C * ds.state + ds.D * u end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Other 3-Dimensional AbstractODESystem tests for (DSystem, defaults) in zip( [ LorenzSystem, ChenSystem, ChuaSystem, RosslerSystem ], [ (σ = 10., β = 8/3, ρ = 28., γ = 1.), (a = 35., b = 3., c = 28., γ = 1.), (diode = Jusdl.PiecewiseLinearDiode(), α = 15.6, β = 28., γ = 1.), (a = 0.38, b = 0.3, c = 4.82, γ = 1.) ] ) ds = DSystem(input=nothing, output=Outport(3); defaults...) # System with key-value pairs with no input and bus output. ds = DSystem(input=nothing, output=Outport(3)) # System with no input @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 3 @test length(ds.state) == 3 iport = Inport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) end for (DSystem, defaults) in zip( [ ForcedLorenzSystem, ForcedChenSystem, ForcedChuaSystem, ForcedRosslerSystem ], [ (σ = 10., β = 8/3, ρ = 28., γ = 1.), (a = 35., b = 3., c = 28., γ = 1.), (diode = Jusdl.PiecewiseLinearDiode(), α = 15.6, β = 28., γ = 1.), (a = 0.38, b = 0.3, c = 4.82, γ = 1.) ] ) ds = DSystem(input=Inport(3), output=Outport(3), state=rand(3), cplmat=[1. 0 0; 0 1 0; 0 0 0]) @test typeof(ds.integrator.sol.prob.p) <: Interpolant @test size(ds.integrator.sol.prob.p.timebuf) == (3,) @test size(ds.integrator.sol.prob.p.databuf) == (3,3) @test isa(ds.input, Inport) @test isa(ds.output, Outport) @test length(ds.input) == 3 @test length(ds.output) == 3 iport = Inport(3) oport = Outport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(oport, ds.input) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) u = [sin(t), cos(t), log(t)] put!(oport, u) take!(hnd) @test ds.t == t end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) end # VanderpolSystem tests. ds = VanderpolSystem(input=nothing, output=Outport(2)) # System with no input @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 2 @test length(ds.state) == 2 @test ds.μ == 5. @test ds.γ == 1. iport = Inport(2) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) ds = ForcedVanderpolSystem(input=Inport(2), output=Outport(2), cplmat=[1 0; 0 0]) # Add input values to 1. state @test isa(ds.input, Inport) @test isa(ds.output, Outport) @test length(ds.input) == 2 @test length(ds.output) == 2 iport = Inport(2) oport = Outport(2) trg = Outpin() hnd = Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) u = [sin(t), cos(t)] put!(oport, u) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test defining new ODE systems # The type must be mutabe @test_throws Exception @eval @def_ode_system struct ODESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end # The type must be a subtype of AbstractODESystem @test_throws Exception @eval @def_ode_system mutable struct ODESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end # The type must be subtype of AbstractODESystem @test_throws Exception @eval @def_ode_system mutable struct ODESystem{RH, RO, ST, IP, OP} <: MyDummyyAbstractODESystem righthandside::RH readout::RO state::ST input::IP output::OP end @info "Done ODESystemTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
3628
# This file includes testset for RODESystem import DifferentialEquations.RandomEM @testset "RODESystemTestSet" begin @info "Running RODESystemTestSet ..." # RODESystem construction function statefunc(dx, x, u, t, W) dx[1] = 2x[1]*sin(W[1] - W[2]) dx[2] = -2x[2]*cos(W[1] + W[2]) end outputfunc(x, u, t) = x ds = RODESystem(righthandside=statefunc, readout=outputfunc, state=ones(2), input=nothing, output=Outport(2), alg=RandomEM()) ds = RODESystem(righthandside=statefunc, readout=outputfunc, state=ones(2), input=nothing, output=Outport(2), alg=RandomEM(), modelkwargs=(rand_prototype=zeros(2),)) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 2 @test ds.state == ones(2) @test ds.integrator.sol.prob.p === nothing # Driving RODESystem iport = Inport(2) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Driving RODESystem with input function sfunc(dx, x, u, t, W) dx[1] = 2x[1]*sin(W[1] - W[2]) + cos(u[1](t)) dx[2] = -2x[2]*cos(W[1] + W[2]) - sin(u[1](t)) end ofunc(x, u, t) = x ds = RODESystem(righthandside=sfunc, readout=ofunc, state=ones(2), input=Inport(2), output=Outport(2), modelkwargs=(rand_prototype=zeros(2),)) @test typeof(ds.integrator.sol.prob.p) <: Interpolant @test size(ds.integrator.sol.prob.p.timebuf) == (3,) @test size(ds.integrator.sol.prob.p.databuf) == (2,3) oport = Outport(2) iport = Inport(2) trg = Outpin() hnd = Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) put!(oport, [t, 2t]) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test defining new RODESystem types # The type must be mutable @test_throws Exception @eval @def_rode_system struct RODESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end # The type must be of type AbstractRODESystem @test_throws Exception @eval @def_rode_system mutable struct RODESystem{RH, RO, ST, IP, OP} righthandside::RH readout::RO state::ST input::IP output::OP end # The type must be of type AbstractRODESystem @test_throws Exception @eval @def_rode_system mutable struct RODESystem{RH, RO, ST, IP, OP} <: MyDummyAbstractRODESystem righthandside::RH readout::RO state::ST input::IP output::OP end @info "Done RODESystemTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
3386
# This file includes testset for SDESystem import DifferentialEquations: LambaEM @testset "SDESystemTestSet" begin @info "Running SDESystemTestSet ..." # SDESystem construction f(dx, x, u, t) = (dx[1] = -x[1]) h(dx, x, u, t) = (dx[1] = -x[1]) g(x, u, t) = x ds = SDESystem(drift=f, diffusion=h, readout=g, state=[1.], input=nothing, output=Outport(1), alg=LambaEM{true}()) ds = SDESystem(drift=f, diffusion=h, readout=g, state=[1.], input=nothing, output=Outport(1)) @test typeof(ds.trigger) == Inpin{Float64} @test typeof(ds.handshake) == Outpin{Bool} @test ds.input === nothing @test isa(ds.output, Outport) @test length(ds.output) == 1 @test ds.integrator.sol.prob.p === nothing # Driving SDESystem iport = Inport(1) trg = Outpin() hnd = Inpin{Bool}() connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(trg, t) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # SDESystem with input function f2(dx, x, u, t) dx[1] = -x[1] + sin(u[2](t)) dx[2] = -x[2] + cos(u[1](t)) dx[3] = -x[3] + cos(u[1](t)) end function h2(dx, x, u, t) dx[1] = -x[1] dx[2] = -x[2] + cos(u[1](t)) dx[3] = -x[3] + cos(u[2](t)) end g2(x, u, t) = x ds = SDESystem(drift=f2, diffusion=h2, readout=g2, state=ones(3), input=Inport(2), output=Outport(3)) oport = Outport(2) iport = Inport(3) trg = Outpin() hnd = Inpin{Bool}() connect!(oport, ds.input) connect!(ds.output, iport) connect!(trg, ds.trigger) connect!(ds.handshake, hnd) tsk = launch(ds) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1 : 10 put!(trg, t) put!(oport, [t, 2t]) take!(hnd) @test ds.t == t @test [read(pin.link.buffer) for pin in iport] == ds.state end put!(trg, NaN) sleep(0.1) @test istaskdone(tsk) put!(ds.output, NaN * ones(length(ds.output))) sleep(0.1) @test istaskdone(tsk2) # Test defining new SDESystem types # The type must be mutable @test_throws Exception @eval @def_sde_system struct SDESystem{DR, DF, RO, ST, IP, OP} drift::DR diffusion::DF readout::RO state::ST input::IP output::OP end # The type must be subtype of AbstractSDESystem @test_throws Exception @eval @def_sde_system mutable struct SDESystem{DR, DF, RO, ST, IP, OP} drift::DR diffusion::DF readout::RO state::ST input::IP output::OP end # The type must be subtype of AbstractSDESystem @test_throws Exception @eval @def_sde_system mutable struct SDESystem{DR, DF, RO, ST, IP, OP} <: MyDummyAbstractSDESystem drift::DR diffusion::DF readout::RO state::ST input::IP output::OP end @info "Running SDESystemTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
7287
# This file includes testset for StaticSystems @testset "StaticSystems" begin @info "Running StaticSystemTestSet ..." # StaticSystem construction @def_static_system struct Mysystem{IP, OP, RO} <: AbstractStaticSystem input::IP = Inport(2) output::OP = Outport(3) readout::RO = (u, t) -> [u[1] + u[2], u[1] - u[2], u[1] * u[2]] end # ofunc(u, t) = [u[1] + u[2], u[1] - u[2], u[1] * u[2]] ss = Mysystem() @test isimmutable(ss) @test length(ss.input) == 2 @test length(ss.output) == 3 @test typeof(ss.input) == Inport{Inpin{Float64}} @test typeof(ss.output) == Outport{Outpin{Float64}} @test typeof(ss.trigger) == Inpin{Float64} @test typeof(ss.handshake) == Outpin{Bool} # ofunc2(u, t) = nothing ss = Mysystem(readout=nothing, input=nothing, output=nothing) # Input or output may be nothing @test ss.input === nothing @test ss.output === nothing # Driving of StaticSystem ofunc3(u, t) = u[1] + u[2] ss = Mysystem(readout = ofunc3, input=Inport(2), output=Outport(1)) iport, oport, ipin, opin = Inport(1), Outport(2), Inpin{Bool}(), Outpin() connect!(oport, ss.input) connect!(ss.output, iport) connect!(opin, ss.trigger) connect!(ss.handshake, ipin) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end for t in 1. : 10. put!(opin, t) put!(oport, [t, t]) take!(ipin) end @test content(iport[1].link.buffer) == collect(1 : 10) * 2 @test !istaskdone(tsk) put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, [NaN]) sleep(0.1) @test istaskdone(tsk2) # Adder tests ss = Adder() @test isimmutable(ss) @test ss.signs == (+, +) @test length(ss.output) == 1 ss = Adder(signs=(+, +, -)) @test ss.signs == (+, +, -) oport, iport, opin, ipin = Outport(3), Inport(1), Outpin(), Inpin{Bool}() connect!(opin, ss.trigger) connect!(oport, ss.input) connect!(ss.handshake, ipin) connect!(ss.output, iport) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end put!(opin, 1.) put!(oport, [1, 3, 5]) take!(ipin) @test read(iport[1].link.buffer) == 1 + 3 - 5 put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, [NaN]) sleep(0.1) @test istaskdone(tsk2) # Multiplier tests ss = Multiplier(ops=(*, *)) @test isimmutable(ss) @test ss.ops == (*, *) @test length(ss.output) == 1 ss = Multiplier(ops=(*, *, /,*)) @test ss.ops == (*, *, /, *) oport, iport, opin, ipin = Outport(4), Inport(1), Outpin(), Inpin{Bool}() connect!(opin, ss.trigger) connect!(oport, ss.input) connect!(ss.handshake, ipin) connect!(ss.output, iport) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end put!(opin, 1.) put!(oport, [1, 3, 5, 6]) take!(ipin) @test read(iport[1].link.buffer) == 1 * 3 / 5 * 6 put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, [NaN]) sleep(0.1) @test istaskdone(tsk2) # Gain tests ss = Gain(input=Inport(3)) @test isimmutable(ss) @test ss.gain == 1. @test length(ss.output) == 3 K = rand(3, 3) ss = Gain(input=Inport(3), gain=K) oport, iport, opin, ipin = Outport(3), Inport(3), Outpin(), Inpin{Bool}() connect!(oport, ss.input) connect!(opin, ss.trigger) connect!(ss.handshake, ipin) connect!(ss.output, iport) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end u = rand(3) put!(opin, 1.) put!(oport, u) take!(ipin) @test [read(pin.link.buffer) for pin in iport] == K * u put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, NaN * ones(3)) sleep(0.1) @test istaskdone(tsk2) # Terminator tests ss = Terminator(input=Inport(3)) @test isimmutable(ss) @test ss.readout === nothing @test ss.output === nothing @test typeof(ss.trigger) == Inpin{Float64} @test typeof(ss.handshake) == Outpin{Bool} oport, opin, ipin = Outport(3), Outpin(), Inpin{Bool}() connect!(oport, ss.input) connect!(opin, ss.trigger) connect!(ss.handshake, ipin) tsk = launch(ss) put!(opin, 1.) put!(oport, [1., 2., 3.]) take!(ipin) @test [read(pin.link.buffer) for pin in ss.input] == [1., 2., 3.] put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) # Memory tests ss = Memory(delay=1., numtaps=10, initial=zeros(3)) @test isimmutable(ss) @test size(ss.databuf) == (3, 10) @test size(ss.timebuf) == (10,) @test mode(ss.databuf) == Cyclic @test mode(ss.timebuf) == Cyclic @test typeof(ss.trigger) == Inpin{Float64} @test typeof(ss.handshake) == Outpin{Bool} @test typeof(ss.input) == Inport{Inpin{Float64}} @test typeof(ss.output) == Outport{Outpin{Float64}} @test outbuf(ss.databuf) == zeros(3, 10) oport, iport, opin, ipin = Outport(3), Inport(3), Outpin(), Inpin{Bool}() connect!(oport, ss.input) connect!(opin, ss.trigger) connect!(ss.handshake, ipin) connect!(ss.output, iport) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end put!(opin, 1.) put!(oport, [10, 20, 30]) take!(ipin) @test [read(pin.link.buffer) for pin in iport] == zeros(3) @test ss.databuf[:, 1] == [10, 20, 30] put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, NaN * ones(3)) sleep(0.1) @test istaskdone(tsk2) # Coupler test conmat = [-1 1; 1 -1] cplmat = [1 0 0; 0 0 0; 0 0 0] ss = Coupler(conmat=conmat, cplmat=cplmat) @test isimmutable(ss) @test typeof(ss.trigger) == Inpin{Float64} @test typeof(ss.handshake) == Outpin{Bool} @test typeof(ss.input) == Inport{Inpin{Float64}} @test typeof(ss.output) == Outport{Outpin{Float64}} @test length(ss.input) == 6 @test length(ss.output) == 6 oport, iport, opin, ipin = Outport(6), Inport(6), Outpin(), Inpin{Bool}() connect!(oport, ss.input) connect!(opin, ss.trigger) connect!(ss.handshake, ipin) connect!(ss.output, iport) tsk = launch(ss) tsk2 = @async while true all(take!(iport) .=== NaN) && break end put!(opin, 1.) u = rand(6) put!(oport, u) take!(ipin) @test [read(pin.link.buffer) for pin in iport] == kron(conmat, cplmat) * u put!(opin, NaN) sleep(0.1) @test istaskdone(tsk) put!(ss.output, NaN * ones(6)) sleep(0.1) @test istaskdone(tsk2) # Test defining new statik systems # The type must be a subtype of AbstractStaticSystem @test_throws Exception @eval @def_static_system struct MyStaticSystem{RO, OP} reaout::RO = (u, t) -> u output::OP = Outport() end # The type must be a subtype of AbstractStaticSystem @test_throws Exception @eval @def_static_system struct MyStaticSystem{RO, OP} <: MyDummyAbstractStaticSystem reaout::RO = (u, t) -> u output::OP = Outport() end @info "Done StaticSystemTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1219
# This file includes the testset for links @testset "LinkTestSet" begin @info "Running LinkTestSet ..." # Link construction. l = Link(5) @test eltype(l) == Float64 @test eltype(l.channel) == Float64 @test l.channel.sz_max == 0 @test length(l.buffer) == 5 @test mode(l.buffer) == Cyclic @test !iswritable(l) @test !isreadable(l) # More on Buffer construction l = Link{Int}(5) @test size(l.buffer) == (5,) @test eltype(l) == Int l = Link{Bool}() @test size(l.buffer) == (64,) l = Link() @test eltype(l) == Float64 @test size(l.buffer) == (64,) # Putting values to link l = Link() t = @async while true take!(l) === NaN && break end vals = collect(1:5) for i = 1 : length(vals) put!(l, vals[i]) @test l.buffer[1] == vals[i] end close(l) @test istaskdone(t) @test !isopen(l.channel) # Taking values from the link l = Link() vals = collect(1 : 10) t = launch(l, vals) val = take!(l) @test val == 1. for i = 2 : 10 @test take!(l) == vals[i] end close(l) wait(t) @test istaskdone(t) @info "Done LinkTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2540
# This file includes the testset for pins @testset "PinTestSet" begin @info "Running PinTestSet ..." # Construction of Outpin op = Outpin() @test isa(op.links, Missing) @test !isbound(op) # Construction of Inpin ip = Inpin() @test !isbound(ip) # Connection of pins op, ip = Outpin(), Inpin() l = connect!(op, ip) @test isa(l, Link) @test isbound(op) @test isbound(ip) @test l.masterid == op.id @test l.slaveid == ip.id @test isconnected(op, ip) op2, ip2 = Outpin(), Inpin() @test_throws Exception connect!(op, op2) # Outpin cannot be connected to Inpin @test_throws Exception connect!(ip, ip2) # Inpin cannot be connected to Inpin @test_throws Exception connect!(ip, op) # Inpin cannot be connected to Outpin op1 = Outpin() op2 = Outpin() ip = Inpin() @test_throws MethodError connect!(ip, op1) # Inpin cannot drive and Outpin @test_throws MethodError connect!(op1, op2) # Outpoin cannot drive and Outpin @test !isbound(op1) @test !isbound(op2) @test !isbound(ip) l = connect!(op1, ip) # Outpin can drive Inpin @test isbound(op1) @test isbound(ip) @test_throws ErrorException connect!(op1, ip) # Reconnection is not possible @test_throws ErrorException connect!(op2, ip) # `ip` is bound. No new connections are allowed. @test isconnected(op1, ip) disconnect!(op1, ip) @test !isconnected(op1, ip) l = connect!(op2, ip) @test isconnected(op2, ip) @test isbound(ip) # Connection of multiple Inpins to an Outpin op = Outpin() ips = [Inpin() for i in 1 : 5] ls = map(ip -> connect!(op, ip), ips) for (l, ip) in zip(ls, ips) @test l.masterid == op.id @test l.slaveid == ip.id end # Data transfer through pins op, ip = Outpin(), Inpin() @test_throws MethodError take!(op) # Data cannot be read from Outpin @test_throws MethodError put!(ip, 1.) # Data cannot be written into Inpin l = connect!(op, ip) t = @async while true take!(ip) === NaN && break # Take from ip end for val in 1 : 5 put!(op, val) # Write into op. @test !istaskdone(t) @test read(l.buffer) == val end put!(op, NaN) @test istaskdone(t) # Disconnection of Outpin and Inpin op, ip = Outpin(), Inpin() l = connect!(op, ip) @test isconnected(op, ip) disconnect!(op, ip) @test !isconnected(op, ip) @info "Done PinTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1952
# # This file includes the test set for ports @testset "PortTestSet" begin @info "Running PortTestSet ..." # Constructiokn of Outport and Inport op = Outport(5) @test length(op.pins) == 5 @test all(.!isbound.(op)) @test eltype(op) == Outpin{Float64} op = Outport{Int}(5) @test eltype(op) == Outpin{Int} op = Outport() @test length(op.pins) == 1 # Construction of Inport ip = Inport(3) @test length(ip.pins) == 3 @test all(.!isbound.(ip)) @test eltype(ip) == Inpin{Float64} ip = Inport{Bool}(4) @test eltype(ip) == Inpin{Bool} ip = Inport() @test length(ip.pins) == 1 # Connection of Outport and Inport op, ip = Outport(3), Inport(3) ls = connect!(op, ip) @test typeof(ls) <: Vector{<:Link} @test length(ls) == 3 for (l, _op, _ip) in zip(ls, op, ip) @test l.masterid == _op.id @test l.slaveid == _ip.id end @test isconnected(op, ip) # Partial connection of Outport and Inport op = Outport(5) ip1, ip2 = Inport(3), Inport(2) @test_throws DimensionMismatch connect!(op, ip1) # Length of op and ip1 are not same ls1 = connect!(op[1:3], ip1) ls2 = connect!(op[4:5], ip2) @test isconnected(op[1], ip1[1]) @test isconnected(op[4], ip2[1]) @test !isconnected(op[3], ip2[1]) # Data transfer through ports. op, ip = Outport(2), Inport(2) @test_throws MethodError take!(op) @test_throws MethodError put!(ip, zeros(2)) ls = connect!(op, ip) t = @async while true all(take!(ip) .=== NaN) && break end for val in 1 : 5 put!(op, ones(2) * val) @test !istaskfailed(t) end put!(op, [NaN, NaN]) @test istaskdone(t) # Disconnection of ports op, ip = Outport(), Inport() ls = connect!(op, ip) @test isconnected(op, ip) disconnect!(op, ip) @test !isconnected(op, ip) @info "Donke PortTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
6551
# This file includes testset for Model @testset "ModelTestSet" begin @info "Running ModelTestSet ..." # Model construction model = Model() @test isempty(model.nodes) @test isempty(model.branches) @test isempty(model.taskmanager.pairs) @test model.clock.t == 0. @test model.clock.dt == 0.01 @test model.clock.tf == 1. @test typeof(model.graph) <: SimpleDiGraph @test nv(model.graph) == 0 @test ne(model.graph) == 0 # Adding nodes to model model = Model() comps = [SinewaveGenerator(), Gain(), Gain(), Writer()] for (k,comp) in enumerate(comps) node = addnode!(model, comp) @test node.component === comp @test node.idx == k @test node.label === nothing @test length(model.nodes) == k @test nv(model.graph) == k @test ne(model.graph) == 0 end n = length(model.nodes) singen = FunctionGenerator(readout=sin) newnode = addnode!(model, singen, label=:gen) @test newnode.idx == n + 1 @test newnode.label == :gen rampgen = RampGenerator() @test_throws Exception addnode!(model, rampgen, label=:gen) # Accessing nodes in model node = getnode(model, 1) @test node.idx == 1 @test node.label == nothing @test node.component == comps[1] node = getnode(model, :gen) @test node.idx == 5 @test node.label == :gen @test node.component == singen # Adding branches to model model = Model() @test_throws BoundsError addbranch!(model, 1 => 2) @test_throws MethodError addbranch!(model, 1, 2) for (comp, label) in zip( [FunctionGenerator(readout=t -> [sin(t), cos(t)], output=Outport(2)), Gain(input=Inport(2)), Gain(input=Inport(3)), Writer(input=Inport(3))], [:gen, :gain1, :gain2, :writer] ) addnode!(model, comp, label=label) end branch = addbranch!(model, :gen => :gain1) @test branch.nodepair == (1 => 2) @test branch.indexpair == ((:) => (:)) @test typeof(branch.links) <: Vector{<:Link} @test length(branch.links) == 2 @test length(model.branches) == 1 @test ne(model.graph) == 1 @test collect(edges(model.graph)) == [Edge(1, 2)] branch2 = addbranch!(model, 2 => 3, 1 => 1) @test branch2.nodepair == (2 => 3) @test branch2.indexpair == (1 => 1) @test typeof(branch2.links) <: Vector{<:Link} @test length(model.branches) == 2 @test ne(model.graph) == 2 branch3 = addbranch!(model, 3 => :writer, 1:2 => 2:3) @test length(model.branches) == 3 @test ne(model.graph) == 3 # Accessing branches br = getbranch(model, 1 => 2) @test br === branch br2 = getbranch(model, :gain1 => :gain2) @test br2 === branch2 @test_throws MethodError getbranch(model, 3 => :writer) # Deleting branches n = length(model.nodes) br = deletebranch!(model, 1 => 2) @test br === branch @test branch ∉ model.branches @test Edge(1, 2) ∉ edges(model.graph) @test length(model.nodes) == n @test !isconnected( getnode(model, br.nodepair.first).component.output[br.indexpair.first], getnode(model, br.nodepair.second).component.input[br.indexpair.second] ) # Investigation of algebrraic loops function contruct_model_with_loops() model = Model() for (comp, label) in zip( [SinewaveGenerator(), Adder(signs=(+, +, +)), Gain(), Writer()], [:gen, :adder, :gain, :writer] ) addnode!(model, comp, label=label) end addbranch!(model, :gen => :adder, 1 => 1) addbranch!(model, :adder => :gain, 1 => 1) addbranch!(model, :gain => :adder, 1 => 2) addbranch!(model, :adder => :adder, 1 => 3) addbranch!(model, :gain => :writer, 1 => 1) model end model = contruct_model_with_loops() loops = getloops(model) @test length(loops) == 2 @test [2] ∈ loops @test [2, 3] ∈ loops # Breaking algebrraic loops loop = filter(loop -> loop == [2], loops)[1] loopcomp = getnode(model, :adder).component @test isconnected(loopcomp.output[1], loopcomp.input[3]) nn = length(model.nodes) nb = length(model.branches) breakernode = breakloop!(model, loop) @test typeof(breakernode.component) <: Jusdl.LoopBreaker @test breakernode.idx == nn + 1 @test breakernode.label === nothing @test !isconnected(loopcomp.output[1], loopcomp.input[3]) @test length(model.nodes) == nn + 1 @test length(model.branches) == nb loops = getloops(model) @test length(loops) == 1 @test loops[1] == [2, 3] nn = length(model.nodes) nb = length(model.branches) comp1 = getnode(model, 2).component comp2 = getnode(model, 3).component @test isconnected(comp2.output[1], comp1.input[2]) newbreakernode = breakloop!(model, loops[1]) @test typeof(newbreakernode.component) <: Jusdl.LoopBreaker @test !isconnected(comp2.output[1], comp1.input[2]) # Initializing Model model = Model() addnode!(model, SinewaveGenerator()) addnode!(model, Writer()) addbranch!(model, 1 => 2) Jusdl.initialize!(model) @test !isempty(model.taskmanager.pairs) @test checktaskmanager(model.taskmanager) === nothing @test length(model.taskmanager.pairs) == 2 @test getnode(model, 1).component in keys(model.taskmanager.pairs) @test getnode(model, 2).component in keys(model.taskmanager.pairs) # Running Model ti, dt, tf = 0., 0.01, 10. set!(model.clock, ti, dt, tf) run!(model) @test isoutoftime(model.clock) @test isapprox(read(getbranch(model, 1 => 2).links[1].buffer), sin(2 * pi * tf)) @test read(getnode(model, 2).component.timebuf) == tf # Terminating Model @test !any(istaskdone.(values(model.taskmanager.pairs))) Jusdl.terminate!(model) @test all(istaskdone.(values(model.taskmanager.pairs))) # Simulating Model model = Model() addnode!(model, FunctionGenerator(readout=t -> [sin(t), cos(t)], output=Outport(2)), label=:gen) addnode!(model, Adder(), label=:adder) addnode!(model, Writer(), label=:writer) addbranch!(model, :gen => :adder) addbranch!(model, :adder => :writer) sim = simulate!(model) @test typeof(sim) <: Simulation @test sim.model === model @test sim.retcode == :success @test sim.state == :done @test isoutoftime(model.clock) @test all(istaskdone.(values(model.taskmanager.pairs))) @info "Done ModelTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
1427
# This file includes testset for Simulation @testset "SimulationTestSet" begin @info "Running SimulationTestSet ..." # Simulation construction model = Model() simname = string(uuid4()) simdir = tempdir() sim = Simulation(model, simdir=simdir, simname=simname, logger=SimpleLogger()) @test sim.model === model @test startswith(basename(sim.path), "Simulation-") @test sim.path == joinpath(simdir, "Simulation-" * simname) @test sim.state == :idle @test sim.retcode == :unknown @test sim.name == "Simulation-" * simname # Check Writer files model = Model() addnode!(model, SinewaveGenerator(), label=:gen) addnode!(model, Writer(), label=:writer) addbranch!(model, :gen => :writer) dname1 = dirname(getnode(model, :writer).component.file.path) simname = string(uuid4()) simdir = tempdir() sim = Simulation(model, simdir=simdir, simname=simname) @test dirname(getnode(model, :writer).component.file.path) == sim.path @test dname1 != sim.path # Report Simulation sim = simulate!(model, 0., 0.01, 10.) report(sim) filename = joinpath(sim.path, "report.jld2") @test isfile(filename) data = load(filename) @test data["name"] == sim.name @test data["path"] == sim.path @test data["state"] == sim.state @test data["retcode"] == sim.retcode @info "Done SimulationTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
925
# This file includes testset for TaskManager @testset "TaskManager" begin @info "Running TaskManagerTestSet ..." # Preliminaries. gettask(ch) = @async while true val = take!(ch) val === NaN && break val == 0 && error("The task failed.") println("Took val" * string(val)) end # TaskManager construction struct Mytype1 x::Int end comps = [Mytype1(i) for i = 1 : 5] chpairs = [Channel(0) for i = 1 : 5] comptasks = [gettask(chpair) for chpair in chpairs] ps = Dict(zip(comps, comptasks)) tm = TaskManager(ps) @test checktaskmanager(tm) === nothing # All tasks are running, nothing is thrown. put!(chpairs[1], 0.) # Fail the trigger task first Mytype1 put!(chpairs[2], 0.) # Fail the output task first Mytype1 @test_throws Exception checktaskmanager(tm) @info "Done TaskManagerTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
780
# This file includes testset for Plugin @testset "PluginTestSet" begin @info "Running PluginTestSet ..." # Construction of a new plugin Base.@kwdef struct MeanPlugin{PR} <: AbstractPlugin process::PR = x -> mean(x) end # Try equip a writer in a model. model = Model(clock=Clock(0., 0.01, 10.)) addnode!(model, SinewaveGenerator(), label=:gen) addnode!(model, Writer(buflen=50, plugin=MeanPlugin()), label=:writer) addbranch!(model, :gen => :writer) simulate!(model) # Test the simulation data data = read(getnode(model, :writer).component, flatten=false) @test length(data) == 20 for (t,x) in data @test isapprox(x, mean(sin.(2 * pi * t))) end @info "Done PluginTestSet ..." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
2839
# This file includes the buffer test set @testset "BufferTestSet" begin @info "Running BufferTestSet ..." # Simple Buffer construction buf = Buffer(5) @test eltype(buf) == Float64 @test length(buf) == 5 @test size(buf) == (5,) @test mode(buf) == Cyclic @test buf.index == 1 @test isempty(buf) @test buf.state == :empty @test size(buf) == (5,) @test isa(buf, AbstractArray) # Buffer data length buf = Buffer(5) @test datalength(buf) == 5 buf = Buffer(3, 10) @test datalength(buf) == 10 # Writing values into Buffers buf = Buffer(5) write!(buf, 1.) @test !isempty(buf) @test !isfull(buf) @test buf.index == 2 @test buf.state == :nonempty # Reading from buffers val = read(buf) @test val == 1. @test buf.index == 2 @test !isempty(buf) # More on buffer construction buf = Buffer{Fifo}(Float64, 2, 5) buf = Buffer{Fifo}(Float64, 5) buf = Buffer{Fifo}(5) buf = Buffer{Normal}(5) buf = Buffer(5) # # Filling buffers # buf = Buffer{Cyclic}(5) # fill!(buf, 1.) # @test outbuf(buf) == ones(5) # buf = Buffer{Normal}(2,5) # fill!(buf, [1, 1]) # @test buf.data == ones(2, 5) # Writing into Buffers with different modes for bufmode in [Normal, Lifo, Fifo] buf = Buffer{bufmode}(2, 5) for item in 1 : 5 write!(buf, [item, item]) end @test outbuf(buf) == [5. 4. 3. 2. 1.; 5. 4. 3. 2. 1.] @test isfull(buf) @test buf.index == 6 @test_throws Exception write!(buf, [1., 2.]) # When full, data cannot be written into buffers. end buf = Buffer{Cyclic}(2, 5) for item in 1 : 5 write!(buf, [item, item]) end @test outbuf(buf) == [5. 4. 3. 2. 1.; 5. 4. 3. 2. 1.] @test isfull(buf) @test buf.index == 6 temp = outbuf(buf) write!(buf, [6., 6.]) # When full, data can be written into Cyclic buffers. @test outbuf(buf) == hcat([6., 6.], temp[:, 1:end-1]) # Reading from Buffers with different modes for bufmode in [Normal, Cyclic] buf = Buffer{bufmode}(5) foreach(item -> write!(buf, item), 1 : 5) for i = 1 : 5 @test read(buf) == 5 end @test !isempty(buf) end buf = Buffer{Fifo}(5) foreach(item -> write!(buf, item), 1 : 5) for i = 1 : 5 @test read(buf) == i end @test isempty(buf) @test_throws Exception read(buf) # When buffer is empty, no more reads. buf = Buffer{Lifo}(5) foreach(item -> write!(buf, item), 1 : 5) vals = collect(5:-1:1) for i = 1 : 5 @test read(buf) == vals[i] end @test isempty(buf) @test_throws Exception read(buf) # When buffer is empty, no more reads. @info "Done BufferTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
code
782
# This file includees the callbacks tests @testset "CallbackTestSet" begin @info "Running CallbackTestSet ..." condition(obj) = obj.x >= 5 action(obj) = println("Callaback activated . obj.x = ", obj.x) clb = Callback(condition=condition, action=action) @test isenabled(clb) disable!(clb) @test !isenabled(clb) mutable struct Object{CB} x::Int clb::CB end obj = Object(1, clb) for val in 1 : 10 obj.x = val obj.clb(obj) end mutable struct Object2{CB} x::Int callbacks::CB end obj2 = Object2(4, Callback(condition=condition, action=action)) for val in 1 : 10 obj2.x = val applycallbacks(obj2) end @info "Done CallbackTestSet." end # testset
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
5670
# Jusdl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://zekeriyasari.github.io/Jusdl.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://zekeriyasari.github.io/Jusdl.jl/dev) [![Build Status](https://travis-ci.com/zekeriyasari/Jusdl.jl.svg?branch=master)](https://travis-ci.com/zekeriyasari/Jusdl.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/github/zekeriyasari/Jusdl.jl?svg=true)](https://ci.appveyor.com/project/zekeriyasari/Jusdl-jl) [![Codecov](https://codecov.io/gh/zekeriyasari/Jusdl.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/zekeriyasari/Jusdl.jl) [![Coveralls](https://coveralls.io/repos/github/zekeriyasari/Jusdl.jl/badge.svg)](https://coveralls.io/github/zekeriyasari/Jusdl.jl) Jusdl (Julia-Based System Description Language) focusses on effective systems simulations together with online and offline data analysis. In Jusdl, it is possible to simulate discrete time and continuous time, static or dynamical systems. In particular, it is possible to simulate dynamical systems modeled by different types of differential equations such as ODE (Ordinary Differential Equation), Random Ordinary Differential Equation (RODE), SDE (Stochastic Differential Equation), DDE (Delay Differential Equation) and DAE (Differential Algebraic Equation), and discrete difference equations. During the simulation, the data flowing through the links of the model can processed online and specialized analyzes can be performed. These analyzes can also be enriched with plugins that can easily be defined using the standard Julia library or various Julia packages. The simulation is performed by evolving the components of the model individually and in parallel in sampling time intervals. The individual evolution of the components allows the simulation of the models including the components that are represented by different kinds of mathematical equations. ## Features * Simulation of a large class of systems: * Static systems (whose input, output relation is represented by a functional relation) * Dynamical systems (whose input, state and output relation is represented by difference or differential equations[1]). * Dynamical systems modelled by continuous time differential equations: ODE, DAE, RODE, SDE, DDE. * Dynamics systems modelled by discrete time difference equations. * Simulation of models consisting of components that are represented by different type mathematical equations. * Individual construction of components, no need to construct a unique equation representing the whole model. * Online data analysis through plugins * Flexibility to enrich the data analysis scope through user-defined plugins. [1] : [DifferentialEquations.jl](https://docs.juliadiffeq.org/) package is used for differential equation solving. ## Installation Installation of Jusdl is like any other registered Julia package. Enter the Pkg REPL by pressing ] from the Julia REPL and then add Jusdl: ```julia ] add Jusdl ``` ## A First Look Consider following simple model. <center> <img src="docs/src/assets/ReadMeModel/brokenloop.svg" alt="Closed Loop System" style="float: center; margin-right: 10px;" width="75%"/> </center> Note that the model consists of connected components. In this example, the components are the sinusoidal wave generator, an adder, a dynamical system. The writer is included in the model to save simulation data. By using Jusdl, the model is simulated as follows: ```julia using Jusdl # Describe model @defmodel model begin @nodes begin gen = SinewaveGenerator(amplitude=1., frequency=1/2π) adder = Adder(signs=(+, -)) ds = ContinuousLinearSystem(state=[1.]) writer = Writer(input=Inport(2)) end @branches begin gen[1] => adder[1] adder[1] => ds[1] ds[1] => adder[2] ds[1] => writer[1] gen[1] => writer[2] end end # Simulate the model tinit, tsample, tfinal = 0., 0.01, 10. sim = simulate!(model, tinit, tsample, tfinal) # Read and plot data t, x = read(getnode(model, :writer).component) t, x = read(getnode(model, :writer).component) using Plots plot(t, x[:, 1], label="r(t)", xlabel="t") plot!(t, x[:, 2], label="y(t)", xlabel="t") plot!(t, 6 / 5 * exp.(-2t) + 1 / 5 * (2 * sin.(t) - cos.(t)), label="Analytical Solution") ``` ``` [ Info: 2020-05-04T23:32:00.338 Started simulation... [ Info: 2020-05-04T23:32:00.338 Inspecting model... ┌ Info: The model has algrebraic loops:[[2, 3]] └ Trying to break these loops... [ Info: Loop [2, 3] is broken [ Info: 2020-05-04T23:32:00.479 Done. [ Info: 2020-05-04T23:32:00.479 Initializing the model... [ Info: 2020-05-04T23:32:01.283 Done... [ Info: 2020-05-04T23:32:01.283 Running the simulation... Progress: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:00 [ Info: 2020-05-04T23:32:01.469 Done... [ Info: 2020-05-04T23:32:01.469 Terminating the simulation... [ Info: 2020-05-04T23:32:01.476 Done. ``` <center> <img src="docs/src/assets/ReadMePlot/readme_example.svg" alt="Readme Plot" style="float: center; margin-right: 10px;" width="75%"/> </center> For more information about how to use Jusdl, see its [documentation](https://zekeriyasari.github.io/Jusdl.jl/) . ## Contribution Any form of contribution is welcome. Please feel free to open an [issue](https://github.com/zekeriyasari/Jusdl.jl/issues) for bug reports, feature requests, new ideas and suggestions etc., or to send a pull request for any bug fixes.
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2733
# Construction and Simulation of Subsystems In this tutorial, we will construct and simulate subsystems. A subsystem consists of connected components. A subsystem can serve as a component of a model. That is, components of a model can be a subsystem consisting of sub-components. The input/output port of a subsystem can be specified from the input/output port of components of the subsystem. It is also possible that a subsystem may have no input/output. That is, the input or output of a subsystem is nothing. Like the construction of a model, a subsystem is constructed by constructing the sub-components of the subsystem and connecting the sub-components. !!! warning Since a subsystem serves a standalone component in a model, the components of the subsystem must be connected to each other. Otherwise, the subsystem cannot take step which in turn causes the simulation to get stuck. Consider the simple subsystem whose block diagram is given below. ```@raw html <center> <img src="../../assets/Subsystem/subsystem.svg" alt="model" width="60%"/> </center> ``` We first construct the subsystem. ```@example subsystem_tutorial using Jusdl # Construct a subsystem adder = Adder((+,-)) gain = Gain() gen = ConstantGenerator() connect!(gen.output, adder.input[2]) connect!(adder.output, gain.input) sub = SubSystem([gen, adder, gain], adder.input[1], gain.output) ``` Since these components will serve as a subsystem, we must connect them. The input port of `adder` and output port of `gain` is specified as the input and output port of the subsystem `sub`. That is, we have a single-input-single-output subsystem. Then, we construct the model. We drive the subsystem with a generator and save its output in a writer as shown in the block diagram below. ```@raw html <center> <img src="../../assets/SubsystemConnected/subsystemconnected.svg" alt="model" width="45%"/> </center> ``` Thus, we construct other remaining components. ```@example subsystem_tutorial model = Model() addnode!(model, sub, label=:sub) addnode!(model, SinewaveGenerator(frequency=5), label=:gen) addnode!(model, Writer(), label=:writer) nothing # hide ``` Then, to construct the model, we connect the components of the model ```@example subsystem_tutorial addbranch!(model, :gen => :sub, 1 => 1) addbranch!(model, :sub => :writer, 1 => 1) nothing # hide ``` At this step, we are ready to simulate the model. ```@example subsystem_tutorial sim = simulate!(model) sim ``` We, then, read the simulation data from the writer and plot it. ```@example subsystem_tutorial using Plots t, x = read(getnode(model, :writer).component) plot(t, x) savefig("subsystem_tutorial_plot.svg"); nothing # hide ``` ![](subsystem_tutorial_plot.svg)
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
1285
# Jusdl Jusdl enables fast and effective systems simulations together with online and offline data analysis. In Jusdl, it is possible to simulate discrete-time and continuous-time, static or dynamical systems. In particular, it is possible to simulate dynamical systems modeled by different types of differential equations such as ODE (Ordinary Differential Equation), Random Ordinary Differential Equation (RODE), SDE (Stochastic Differential Equation), DDE (Delay Differential Equation) and DAE (Differential Algebraic Equation), and discrete difference equations. During the simulation, the data flowing through the links of the model can be processed online and offline and specialized analyzes can be performed. These analyses can also be enriched with plugins that can easily be defined using the standard Julia library or various Julia packages. The simulation is performed by evolving the components individually and in parallel during sampling time intervals. The individual evolution of the components allows the simulation of the models that include components represented by different kinds of mathematical equations. ## Installation Installation of `Jusdl` is the similar to any other registered Julia package. Start a Julia session and type ```julia ] add Jusdl ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
1770
# Evolution of Components In Jusdl, the simulation of a model is performed by individual evolution of components (see [Modeling](@ref) and [Simulation](@ref section) for more information of modeling and simulation adopted in Jusdl). Basically, when triggered through its `trigger` pin, based on its type, a component takes a forward step as follows, 1. The next clock time `t` is read from its `trigger` pin. 2. The next input value `u(t)` is read from from its `input` port, 3. The component evolves from its current time `t - dt` to the current clock time `t` 4. Using the state variable `x(t)` at time `t`, current clock time `t` and `u(t)`, the next output value `y(t)` is computed. 5. The component writes `true` to its `handshake` pin to signal that taking step is performed with success. or a backward step as follows. 1. The next clock time `t` is read from its `trigger` pin. 2. Using the state variable `x(t - dt)` at time `t - dt`, current component time `t - dt` and `u(t - dt)`, the next output value `y(t)` is computed. 3. The next input value `u(t)` is read from from its `input` port, 4. The component evolves from its current time `t - dt` to the current clock time `t` 5. The component writes `true` to its `handshake` pin to signal that taking step is performed with success. Here `dt` is the simulation step size. ## Reading Time ```@docs readtime! ``` ## Reading State ```@docs readstate ``` ## Reading Input ```@docs readinput! ``` ## Writing Output ```@docs writeoutput! ``` ## Computing Output ```@docs computeoutput ``` ## Evolve ```@docs evolve! ``` ## Taking Steps ```@docs takestep! Jusdl.forwardstep Jusdl.backwardstep launch(comp::AbstractComponent) launch(comp::AbstractSubSystem) drive! approve! terminate! ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
306
# Component Type Hierarchy ```@docs AbstractComponent AbstractSource AbstractSystem AbstractSink AbstractStaticSystem AbstractDynamicSystem AbstractSubSystem AbstractMemory AbstractDiscreteSystem AbstractODESystem AbstractRODESystem AbstractDAESystem AbstractSDESystem AbstractDDESystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
120
# Interpolation ## Full API ```@autodocs Modules = [Jusdl] Pages = ["interpolant.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
285
# Printer ## Basic Operation of Printers See [Basic Operation of Writers](@ref) since the operation of [`Writer`](@ref) and that of [`Printer`](@ref) is very similar. ## Full API ```@docs Printer print(printer::Printer, td, xd) open(printer::Printer) close(printer::Printer) ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
258
# Scope ## Basic Operation of Scopes See [Basic Operation of Writers](@ref) since the operation of [`Writer`](@ref) and that of [`Scope`](@ref) is very similar. ## Full API ```@docs Scope update!(s::Scope, x, yi) close(sink::Scope) open(sink::Scope) ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
1030
# Sinks `Sink`s are used to simulation data flowing through the connections of the model. The data processing is done online during the simulation. `Sink` type is a subtype of `AbstractSink`. An `AbstractSink` is also a subtype of `AbstractComponent` (see [Components](@ref)), so an `AbstractSink` instance has a `trigger` link to be triggered and a `handshake` link to signal that evolution is succeeded. In addition, an `AbstractSink` has an input buffer `inbuf` whose mode is [`Cyclic`](@ref). When an `AbstractSink` instance is triggered through its trigger link, it basically reads its incoming data and writes to its input buffer `inbuf`. When its input buffer `inbuf` is full, the data in `inbuf` is processed according to the type of `AbstractSink`. `Jusdl` provides three concrete subtypes of `AbstractSink` which are [Writer](@ref), [Printer](@ref) and [Scope](@ref). As the operation of an `AbstractSink` just depends on incoming data, an `AbstractSink` does not have an output. ## Full API ```@docs @def_sink ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2587
# Writer ## Basic Operation of Writers Having `launch`ed, a `Writer` is triggered through its `trigger` pin. When triggered, a `Writer` reads its input and then writes it to its internal buffer `databuf`. When `databuf` is full, the data in `databuf` is processed. Thus, the length of the data that is to be processed by the `Writer` is determined by the length of their internal buffer `databuf`. Let us construct a `Writer`. ```@repl writer_ex using Jusdl # hide w = Writer(input=Inport(), buflen=5) ``` The file of `w` is closed and the `trigger` pin of `w` is not writable. That is, it is not possible to trigger `w` from its `trigger` pin. ```@repl writer_ex w.file w.trigger ``` To trigger `w`, we need to open and launch it, ```@repl writer_ex oport, trg, hnd = Outport(), Outpin(), Inpin{Bool}() connect!(oport, w.input) connect!(trg, w.trigger) connect!(w.handshake, hnd) open(w) t = launch(w) ``` Now, the internal file of `w` is opened in read/write mode and its `trigger` pin is writable. ```@repl writer_ex w.file w.trigger.link ``` Let us now trigger `w`. ```@repl writer_ex put!(trg, 1.) ``` The `input` of `w` is now readable and `handshake` pin is not readable since `w` have not signaled that its triggering is succeeded yet. To do that, we need to put a value to the `input` of `w` ```@repl writer_ex put!(oport, [10.]) ``` Now, `w` signalled that its step is succeeded. It read the data from its `input` and written it into is `databuf`. ```@repl writer_ex hnd.link take!(hnd) w.databuf ``` Since the `databuf` is not full nothing is written to the `file` of `w`. ```@repl writer_ex w.file ``` Let us continue triggering `w` until the `databuf` of `w` is full. ```@repl writer_ex for t in 2. : 5. put!(trg, t) put!(oport, [t * 10]) take!(hnd) end ``` Now check that the content of the `file` of `w`. ```@repl writer_ex w.file ``` Note that the content of `databuf` is written to the `file` of `w`. The operation of `w` can be terminated. ```@repl writer_ex put!(trg, NaN) ``` When terminated, the `file` of `w` is closed. ```@repl writer_ex w.file ``` !!! note In this example, `w` does not have a `plugin` so nothing has been derived or computed from the data in `databuf`. The data in `databuf` is just written to `file` of `w`. To further data processing, see [Plugins](@ref) ## Full API ```@docs Writer write!(writer::Writer, td, xd) read(writer::Writer; flatten=true) fread mv(writer::Writer, dst; force::Bool=false) cp(writer::Writer, dst; force=false, follow_symlinks=false) open(writer::Writer) close(writer::Writer) ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2657
# Clock `Jusdl` is a *clocked* simulation environment. That is, model components are evolved in different time intervals, called the *sampling interval*. During the simulation, model components are triggered by these generated time pulses. A `Clock` instance is used to to generate those time pulses. The simulation time settings--the simulation start time, stop time, sampling interval--are configured through the `Clock`. ## Construction of Clock Construction of `Clock` is done by specifying its start time and final time and the simulation sampling period. ```@repl clock_example_1 using Jusdl # hide Clock(0., 1, 10.) Clock{Int}(1, 1, 10) ``` ## Basic Usage of Clocks A `Clock` has a [Callback](@ref) list so that a [`Callback`](@ref) can be constructed to trigger specific events configured with the time settings. See the following case study. Let us consider a `Clock` with initial time of `0`, sampling interval of `1` and final time of `10`. ```@repl clk_ex using Jusdl # hide clk = Clock(0., 1., 10.) ``` Notice that `clk` is not *running*, since it is not set. Now, let us set it ```@repl clk_ex set!(clk) ``` `clk` is ready to run, i.e., to be iterated. The following commands generated clock ticks and shows it on the console. ```@repl clk_ex for t in clk @show t end ``` At this point, `clk` is out of time. The current time of `clk` does not advance any more. ```@repl clk_ex take!(clk) ``` But, `clk` can be reset again. ```@repl clk_ex set!(clk, 0., 1., 10.) ``` Consider that we want to configure an alarm. For this, let us consider that when the time of `clk` is greater than `5` an alarm message is printed on the console. To this end, we need to construct a [`Callback`](@ref) and add it to the callbacks of `clk`. (When constructed callback list of `clk` is empty.) ```@repl clk_ex condition(clk) = clk.t > 5 action(clk) = println("Clock time = ", clk.t) clk = Clock(0., 1., 10., callbacks=Callback(condition=condition, action=action)) set!(clk) ``` Now, let us run `clk` by iterating it. ```@repl clk_ex for t in clk @show t end ``` Note that we, constructed a simple callback. It is of course possible to construct more complex callbacks. ## Usage of Clocks with ProgressMeter It also possible to iterate the `Clock`s by using a progress meter. See [ProgressMeter](https://github.com/timholy/ProgressMeter.jl) for further information for progress meter. ```julia using Jusdl using ProgressMeter clk = Clock(0., 0.01, 1.) set!(clk) @showprogress for t in clk end ``` Note that `clk` is just iterated. ## Full API ```@autodocs Modules = [Jusdl] Pages = ["clock.jl"] Order = [:type, :function] ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
2666
# Generators ## Basic Operation AbstractSource An `AbstractSource` is a subtype of `AbstractComponent`. (See [Components](@ref) for more information.) An `AbstractComponent` has `input` port and `output` port for data flow. The `AbstractComponent` reads data from the `input` port and writes data to `output` port. Since the input-output relation of `AbstractSource` depends on just the current time `t`, `Source`s do not have `input` ports since they do not read input values. They just need time `t` to compute its output. During their evolution, an `AbstractComponent` reads time `t` from its `trigger` pins, computes its output according to its output function and writes its computed output to its `output` ports. An `AbstractComponent` also writes `true` to their `handshake` pin to signal that the evolution is succeeded. To further clarify the operation of `AbstractSource`, let us do some examples. ```@repl source_ex using Jusdl # hide f(t) = t * exp(t) + sin(t) gen = FunctionGenerator(readout=f) ``` We constructed a [`FunctionGenerator`](@ref) which is an `AbstractSource`. ```@repl source_ex gen isa AbstractSource ``` To drive `gen`, that is to make `gen` evolve, we need to launch `gen`. To this end, we construct ports and pins for input-output and signaling. ```@repl source_ex trg, hnd, iport = Outpin(), Inpin{Bool}(), Inport(length(gen.output)) connect!(gen.output, iport) connect!(trg, gen.trigger) connect!(gen.handshake, hnd) t = launch(gen) tout = @async while true all(take!(iport) .=== NaN) && break end ``` At this moment, `gen` is ready to be triggered from its `trigger` link. Note that the trigger link `gen.trigger` and the output `gen.output` of `gen` are writable. ```@repl source_ex gen.trigger.link gen.output[1].links[1] ``` `gen` is triggered by writing time `t` to `trg` ```@repl source_ex put!(trg, 1.) ``` When triggered `gen` writes `true` to its handshake link `gen.handshake` which can be read from `hnd`. ```@repl source_ex hnd.link ``` and to drive `gen` for another time `hnd` must be read. ```@repl source_ex take!(hnd) ``` Now continue driving `gen`. ```@repl source_ex for t in 2. : 10. put!(trg, t) take!(hnd) end ``` When triggered, the output of `gen` is written to its output `gen.output`. ```@repl source_ex gen.output[1].links[1].buffer ``` `Jusdl` provides some other function generators which are documented in the following section. ## Full API ```@docs @def_source FunctionGenerator SinewaveGenerator DampedSinewaveGenerator SquarewaveGenerator TriangularwaveGenerator ConstantGenerator RampGenerator StepGenerator ExponentialGenerator DampedExponentialGenerator ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git
[ "MIT" ]
0.2.2
510eb782ce371063928a9ad7069cfd2acfee8114
docs
110
# DAESystem ## Full API ```@docs @def_dae_system DAESystem RobertsonSystem PendulumSystem RLCSystem ```
Jusdl
https://github.com/zekeriyasari/Causal.jl.git