licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3369
@testset "LongSubSeq" begin @testset "Construction" begin seq = LongSequence{AminoAcidAlphabet}([AA_A, AA_V, AA_W, AA_Y, AA_H]) v1 = LongSubSeq{AminoAcidAlphabet}(seq.data, 2:4) v2 = LongSubSeq(seq, 2:4) v3 = view(seq, 2:4) v4 = @view seq[2:4] v5 = LongSubSeq(seq, :) vv = LongSubSeq(v1, 2:3) vv2 = v1[2:3] vv3 = LongSubSeq(vv) @test_throws BoundsError LongSubSeq(seq, 0:4) @test_throws BoundsError LongSubSeq(seq, 1:6) @test_throws BoundsError LongSubSeq(v1, 1:4) @test collect(v5) == collect(seq) @test typeof(v1) == typeof(v2) == typeof(v3) == typeof(v4) == typeof(vv) == LongSubSeq{AminoAcidAlphabet} @test v1 == v2 == v3 == v4 @test vv == vv2 == vv3 vv[1] = AA_V @test vv == vv2 == vv3 @test LongSubSeq{AminoAcidAlphabet}(seq) == view(seq, eachindex(seq)) s = dna"TASCTAWTA" @test collect(LongSubSeq{RNAAlphabet{4}}(s, 3:7)) == collect(LongRNA{4}(s)[3:7]) end @testset "Basics" begin seq = LongSequence{AminoAcidAlphabet}([AA_A, AA_V, AA_W, AA_Y, AA_H]) v1 = LongSubSeq{AminoAcidAlphabet}(seq, 2:4) v2 = LongSubSeq(seq, 1:0) @test length(v1) == 3 @test !isempty(v1) @test isempty(v2) @test length(v2) == 0 v1[1] = 'N' v1[2] = 'K' @test String(seq) == "ANKYH" end # Added after issue 260 @testset "Random construction" begin for i in 1:100 seq = randdnaseq(rand(15:65)) begin_ = min(lastindex(seq), rand(10:30)) range = begin_:min(lastindex(seq), begin_ + rand(0:40)) seq2 = view(seq, range) @test seq2 isa LongSubSeq{typeof(Alphabet(seq))} seq3 = LongSequence(seq2) @test typeof(seq) == typeof(seq3) @test seq[range] == seq2 == seq3 end # See issue 260 seq = dna"CATTTTTTTTTTTTTTT" seq2 = LongSequence(LongSubSeq(seq, 1:17)) @test seq == seq2 end @testset "Conversion" begin seq = LongDNA{4}("TAGTATCGAAMYCGNA") v = LongSubSeq(seq, 3:14) @test LongSequence(v) == seq[3:14] s2 = LongSequence{RNAAlphabet{4}}(seq[3:14]) @test LongSequence{RNAAlphabet{4}}(v) == s2 @test LongSequence(LongSubSeq{RNAAlphabet{4}}(seq)) == LongSequence{RNAAlphabet{4}}(seq) @test LongSubSeq{RNAAlphabet{4}}(seq) == LongSequence{RNAAlphabet{4}}(seq) end @testset "Transformations" begin # Reverse! str = "SKVANNSFDGRKIQAWPSRQ" seq = LongAA(str) seq2 = copy(seq) v = view(seq, 1:lastindex(seq)) reverse!(v) @test seq == LongAA(reverse(str)) @test seq == v @test seq != seq2 reverse!(v) @test seq == LongAA(str) @test seq == v @test seq == seq2 seq = LongDNA{4}("TGAGTCGTAGGAAGGACCTAAA") seq2 = copy(seq) v = LongSubSeq(seq2, 3:15) complement!(v) @test seq2[3:15] == complement(seq[3:15]) @test seq2[1:2] == dna"TG" @test seq2[16:end] == seq[16:end] # A longer example to engage some inner loops seq = randdnaseq(38) seq2 = copy(seq) v = LongSubSeq(seq, 3:36) complement!(v) @test v == complement(seq2[3:36]) end @testset "Copying" begin seq = LongRNA{4}("UAUUAACCGGAGAUCAUUCAGGUAA") v1 = view(seq, 1:3) v2 = view(seq, 4:11) @test copy(v1) == seq[1:3] @test copy(v2) == seq[4:11] # Can't resize views @test_throws Exception copy!(v1, v2) # Works even when sharing underlying data # Note it is not possible to have v2 == v3 after copying v3 = view(seq, 1:8) before = LongSequence(v3) copy!(v2, v3) @test v2 == before # Also works with nonshared data v1 = view(randaaseq(20), 3:17) v2 = view(randaaseq(20), 3:17) copy!(v1, v2) @test v1 == v2 end end # seqview
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
561
@testset "Shuffle" begin @testset for i in 1:10 @test shuffle(dna"") == dna"" @test shuffle(dna"A") == dna"A" @test shuffle(dna"C") == dna"C" end seq = dna"ACGTN"^10 @test shuffle(seq) != dna"ACGTN"^10 @test seq == dna"ACGTN"^10 @test shuffle!(seq) === seq @test seq != dna"ACGTN"^10 @test count(x -> x == DNA_A, seq) == 10 @test count(x -> x == DNA_C, seq) == 10 @test count(x -> x == DNA_G, seq) == 10 @test count(x -> x == DNA_T, seq) == 10 @test count(x -> x == DNA_N, seq) == 10 end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
6831
@testset "Transformations" begin function test_reverse(A, seq) revseq = reverse(LongSequence{A}(seq)) @test String(revseq) == reverse(seq) revseq = reverse!(LongSequence{A}(seq)) @test String(revseq) == reverse(seq) end function test_dna_complement(A, seq) comp = complement(LongSequence{A}(seq)) @test String(comp) == dna_complement(seq) end function test_rna_complement(A, seq) comp = complement(LongSequence{A}(seq)) @test String(comp) == rna_complement(seq) end function test_dna_revcomp(A, seq) revcomp = reverse_complement(LongSequence{A}(seq)) @test String(revcomp) == reverse(dna_complement(seq)) end function test_rna_revcomp(A, seq) revcomp = reverse_complement(LongSequence{A}(seq)) @test String(revcomp) == reverse(rna_complement(seq)) end @testset "Reverse" begin for len in [0, 1, 32, 1000], _ in 1:5 test_reverse(DNAAlphabet{4}, random_dna(len)) test_reverse(RNAAlphabet{4}, random_rna(len)) test_reverse(AminoAcidAlphabet, random_aa(len)) probs = [0.25, 0.25, 0.25, 0.25, 0.00] test_reverse(DNAAlphabet{2}, random_dna(len, probs)) test_reverse(RNAAlphabet{2}, random_rna(len, probs)) end end @testset "Complement" begin for len in [0, 1, 10, 32, 1000], _ in 1:5 test_dna_complement(DNAAlphabet{4}, random_dna(len)) test_rna_complement(RNAAlphabet{4}, random_rna(len)) probs = [0.25, 0.25, 0.25, 0.25, 0.00] test_dna_complement(DNAAlphabet{2}, random_dna(len, probs)) test_rna_complement(RNAAlphabet{2}, random_rna(len, probs)) end seq_string = join(rand("-ACGTSWKMYRBDHVN", 1000)) seq = complement(LongSequence{DNAAlphabet{4}}(seq_string)) @test String(seq) == dna_complement(seq_string) seq_string = join(rand("-ACGUSWKMYRBDHVN", 1000)) seq = complement(LongSequence{RNAAlphabet{4}}(seq_string)) @test String(seq) == rna_complement(seq_string) end @testset "Reverse complement" begin for len in [0, 1, 10, 32, 1000], _ in 1:5 test_dna_revcomp(DNAAlphabet{4}, random_dna(len)) test_rna_revcomp(RNAAlphabet{4}, random_rna(len)) probs = [0.25, 0.25, 0.25, 0.25, 0.00] test_dna_revcomp(DNAAlphabet{2}, random_dna(len, probs)) test_rna_revcomp(RNAAlphabet{2}, random_rna(len, probs)) end seq_string = join(rand("-ACGTSWKMYRBDHVN", 1000)) seq = reverse_complement(LongSequence{DNAAlphabet{4}}(seq_string)) @test String(seq) == reverse(dna_complement(seq_string)) seq_string = join(rand("-ACGUSWKMYRBDHVN", 1000)) seq = reverse_complement(LongSequence{RNAAlphabet{4}}(seq_string)) @test String(seq) == reverse(rna_complement(seq_string)) seq_string = join(rand("-ACGTSWKMYRBDHVN", 1000)) seq = reverse_complement!(LongSequence{DNAAlphabet{4}}(seq_string)) @test String(seq) == reverse(dna_complement(seq_string)) seq_string = join(rand("-ACGTSWKMYRBDHVN", 1000)) seq = LongSequence{DNAAlphabet{4}}(seq_string) seq2 = seq[100:200] reverse_complement!(seq2) @test String(seq) == seq_string @test String(seq2) == reverse(dna_complement(seq_string[100:200])) # Test RC'ing works even with extra data in data buffer seq = ungap!(dna"ACTG-----------CCAG") @test String(reverse_complement(seq)) == reverse(dna_complement(String(seq))) slice = randdnaseq(10)[2:9] @test reverse_complement(reverse_complement(slice)) == slice end @testset "Map" begin seq = dna"" @test map(identity, seq) == dna"" seq = dna"AAA" @test map(x -> DNA_C, seq) == dna"CCC" seq = dna"ACGTNACGTN" @test map(x -> x == DNA_N ? DNA_A : x, seq) == dna"ACGTAACGTA" @test seq == dna"ACGTNACGTN" @test map!(x -> x == DNA_N ? DNA_A : x, seq) === seq @test seq == dna"ACGTAACGTA" seq = rna"" @test map(identity, seq) == rna"" seq = rna"AAA" @test map(x -> RNA_C, seq) == rna"CCC" seq = rna"ACGUNACGUN" @test map(x -> x == RNA_N ? RNA_A : x, seq) == rna"ACGUAACGUA" @test seq == rna"ACGUNACGUN" @test map!(x -> x == RNA_N ? RNA_A : x, seq) === seq @test seq == rna"ACGUAACGUA" seq = aa"" @test map(identity, seq) == aa"" seq = aa"MMM" @test map(x -> AA_P, seq) == aa"PPP" seq = aa"XRNDCQXE" @test map(x -> x == AA_X ? AA_A : x, seq) == aa"ARNDCQAE" @test seq == aa"XRNDCQXE" @test map!(x -> x == AA_X ? AA_A : x, seq) === seq @test seq == aa"ARNDCQAE" end @testset "Filter" begin seq = dna"" @test filter(x -> true, seq) == dna"" @test filter(x -> false, seq) == dna"" seq = dna"AAA" @test filter(x -> x == DNA_A, seq) == dna"AAA" @test filter(x -> x == DNA_C, seq) == dna"" seq = dna"ACGTNACGTN" @test filter(x -> x == DNA_N, seq) == dna"NN" @test filter(x -> x != DNA_N, seq) == dna"ACGTACGT" @test seq == dna"ACGTNACGTN" @test filter!(x -> x != DNA_N, seq) == seq @test seq == dna"ACGTACGT" for len in [1, 2, 3, 5, 8, 9, 15, 19, 31, 32, 33, 50], _ in 1:5 str = random_dna(len) seq = LongDNA{4}(str) @test filter(x -> x == DNA_N, seq) == LongDNA{4}(filter(x -> x == 'N', str)) @test filter(x -> x != DNA_N, seq) == LongDNA{4}(filter(x -> x != 'N', str)) end seq = rna"" @test filter(x -> true, seq) == rna"" @test filter(x -> false, seq) == rna"" seq = rna"AAA" @test filter(x -> x == RNA_A, seq) == rna"AAA" @test filter(x -> x == RNA_C, seq) == rna"" seq = rna"ACGUNACGUN" @test filter(x -> x == RNA_N, seq) == rna"NN" @test filter(x -> x != RNA_N, seq) == rna"ACGUACGU" @test seq == rna"ACGUNACGUN" @test filter!(x -> x != RNA_N, seq) == seq @test seq == rna"ACGUACGU" seq = aa"" @test filter(x -> true, seq) == aa"" @test filter(x -> false, seq) == aa"" seq = aa"PPP" @test filter(x -> x == AA_P, seq) == aa"PPP" @test filter(x -> x != AA_P, seq) == aa"" seq = aa"ARNDCQXGHILKMFPXTWYVOUX" @test filter(x -> x == AA_X, seq) == aa"XXX" @test filter(x -> x != AA_X, seq) == aa"ARNDCQGHILKMFPTWYVOU" @test seq == aa"ARNDCQXGHILKMFPXTWYVOUX" @test filter!(x -> x != AA_X, seq) == seq @test seq == aa"ARNDCQGHILKMFPTWYVOU" end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
6006
@testset "Approximate" begin seq = dna"ACGTACG" @testset "iscompatible" begin @testset "forward" begin @test findnext(ApproximateSearchQuery(dna"", iscompatible), 0, seq, 1) === 1:0 @test findnext(ApproximateSearchQuery(dna"AC", iscompatible), 0, seq, 1) === 1:2 @test findnext(ApproximateSearchQuery(dna"AC", iscompatible), 0, seq, 2) === 5:6 @test findnext(ApproximateSearchQuery(dna"AT", iscompatible), 0, seq, 1) === nothing @test findnext(ApproximateSearchQuery(dna"AT", iscompatible), 1, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"AT", iscompatible), 1, seq, 2) === 3:4 @test findnext(ApproximateSearchQuery(dna"NG", iscompatible), 0, seq, 1) === 2:3 @test findnext(ApproximateSearchQuery(dna"NG", iscompatible), 1, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"GN", iscompatible), 0, seq, 1) === 3:4 @test findnext(ApproximateSearchQuery(dna"GN", iscompatible), 1, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"ACG", iscompatible), 0, seq, 1) === 1:3 @test findnext(ApproximateSearchQuery(dna"ACG", iscompatible), 1, seq, 1) === 1:2 @test findnext(ApproximateSearchQuery(dna"ACG", iscompatible), 2, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"ACG", iscompatible), 3, seq, 1) === 1:0 @test findnext(ApproximateSearchQuery(dna"ACG", iscompatible), 4, seq, 1) === 1:0 end @testset "backward" begin # TODO: maybe this should return 8:7 like rsearch @test findprev(ApproximateSearchQuery(dna"", iscompatible), 0, seq, 7) === 7:6 @test findprev(ApproximateSearchQuery(dna"AC", iscompatible), 0, seq, 7) === 5:6 @test findprev(ApproximateSearchQuery(dna"AC", iscompatible), 0, seq, 5) === 1:2 @test findprev(ApproximateSearchQuery(dna"AT", iscompatible), 0, seq, 7) === nothing @test findprev(ApproximateSearchQuery(dna"AT", iscompatible), 1, seq, 7) === 5:6 @test findprev(ApproximateSearchQuery(dna"AT", iscompatible), 1, seq, 6) === 5:6 @test findprev(ApproximateSearchQuery(dna"AT", iscompatible), 1, seq, 5) === 5:5 @test findprev(ApproximateSearchQuery(dna"NG", iscompatible), 0, seq, 7) === 6:7 @test findprev(ApproximateSearchQuery(dna"NG", iscompatible), 0, seq, 6) === 2:3 @test findprev(ApproximateSearchQuery(dna"GN", iscompatible), 0, seq, 7) === 3:4 @test findprev(ApproximateSearchQuery(dna"GN", iscompatible), 1, seq, 7) === 7:7 @test findprev(ApproximateSearchQuery(dna"ACG", iscompatible), 0, seq, 7) === 5:7 @test findprev(ApproximateSearchQuery(dna"ACG", iscompatible), 1, seq, 7) === 6:7 @test findprev(ApproximateSearchQuery(dna"ACG", iscompatible), 2, seq, 7) === 7:7 @test findprev(ApproximateSearchQuery(dna"ACG", iscompatible), 3, seq, 7) === 7:6 @test findprev(ApproximateSearchQuery(dna"ACG", iscompatible), 4, seq, 7) === 7:6 end end @testset "isequal" begin @testset "forward" begin @test findnext(ApproximateSearchQuery(dna""), 0, seq, 1) === 1:0 @test findnext(ApproximateSearchQuery(dna"AC"), 0, seq, 1) === 1:2 @test findnext(ApproximateSearchQuery(dna"AC"), 0, seq, 2) === 5:6 @test findnext(ApproximateSearchQuery(dna"AT"), 0, seq, 1) === nothing @test findnext(ApproximateSearchQuery(dna"AT"), 1, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"AT"), 1, seq, 2) === 3:4 @test findnext(ApproximateSearchQuery(dna"NG"), 0, seq, 1) === nothing @test findnext(ApproximateSearchQuery(dna"NG"), 1, seq, 1) === 2:3 @test findnext(ApproximateSearchQuery(dna"GN"), 0, seq, 1) === nothing @test findnext(ApproximateSearchQuery(dna"GN"), 1, seq, 1) === 3:3 @test findnext(ApproximateSearchQuery(dna"ACG"), 0, seq, 1) === 1:3 @test findnext(ApproximateSearchQuery(dna"ACG"), 1, seq, 1) === 1:2 @test findnext(ApproximateSearchQuery(dna"ACG"), 2, seq, 1) === 1:1 @test findnext(ApproximateSearchQuery(dna"ACG"), 3, seq, 1) === 1:0 @test findnext(ApproximateSearchQuery(dna"ACG"), 4, seq, 1) === 1:0 end @testset "backward" begin # TODO: maybe this should return 8:7 like rsearch @test findprev(ApproximateSearchQuery(dna""), 0, seq, 7) === 7:6 @test findprev(ApproximateSearchQuery(dna"AC"), 0, seq, 7) === 5:6 @test findprev(ApproximateSearchQuery(dna"AC"), 0, seq, 5) === 1:2 @test findprev(ApproximateSearchQuery(dna"AT"), 0, seq, 7) === nothing @test findprev(ApproximateSearchQuery(dna"AT"), 1, seq, 7) === 5:6 @test findprev(ApproximateSearchQuery(dna"AT"), 1, seq, 6) === 5:6 @test findprev(ApproximateSearchQuery(dna"AT"), 1, seq, 5) === 5:5 @test findprev(ApproximateSearchQuery(dna"NG"), 0, seq, 7) === nothing @test findprev(ApproximateSearchQuery(dna"NG"), 1, seq, 6) === 3:3 @test findprev(ApproximateSearchQuery(dna"GN"), 0, seq, 7) === nothing @test findprev(ApproximateSearchQuery(dna"GN"), 1, seq, 7) === 7:7 @test findprev(ApproximateSearchQuery(dna"ACG"), 0, seq, 7) === 5:7 @test findprev(ApproximateSearchQuery(dna"ACG"), 1, seq, 7) === 6:7 @test findprev(ApproximateSearchQuery(dna"ACG"), 2, seq, 7) === 7:7 @test findprev(ApproximateSearchQuery(dna"ACG"), 3, seq, 7) === 7:6 @test findprev(ApproximateSearchQuery(dna"ACG"), 4, seq, 7) === 7:6 end end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
7644
@testset "ExactSearchQuery" begin seq = dna"ACGTACG" @testset "isequal" begin @testset "forward" begin @test findfirst(ExactSearchQuery(dna""), seq) === 1:0 @test findfirst(ExactSearchQuery(dna"AC"), seq) === 1:2 @test findnext(ExactSearchQuery(dna"AC"), seq, 2) === 5:6 #@test findfirst(ExactSearchQuery(dna"AC"), seq, 2, 5) === nothing @test findfirst(ExactSearchQuery(dna"TG"), seq) === nothing @test findfirst(ExactSearchQuery(dna"TN"), seq) === nothing @test findfirst(ExactSearchQuery(dna"ACG"), seq) === 1:3 @test findnext(ExactSearchQuery(dna"ACG"), seq, 2) === 5:7 @test findfirst(ExactSearchQuery(seq), seq) === 1:lastindex(seq) @test findfirst(ExactSearchQuery(dna""), dna"") === 1:0 @test findnext(ExactSearchQuery(dna""), dna"", -1) === 1:0 @test findnext(ExactSearchQuery(dna""), dna"", 2) === nothing @test first(findfirst(ExactSearchQuery(dna""), seq)) === 1 @test first(findfirst(ExactSearchQuery(dna"AC"), seq)) === 1 @test first(findnext(ExactSearchQuery(dna"AC"), seq, 2)) === 5 #@test findnext(ExactSearchQuery(dna"AC"), seq, 2) === nothing query = ExactSearchQuery(dna"ACG") @test findfirst(query, seq) === 1:3 @test findnext(query, seq, 2) === 5:7 #@test findfirst(query, seq, 2, 6) === nothing @test first(findfirst(query, seq)) === 1 @test first(findnext(query, seq, 2)) === 5 #@test findfirst(query, seq, 2, 6) === nothing end @testset "backward" begin @test findlast(ExactSearchQuery(dna""), seq) === 8:7 @test findlast(ExactSearchQuery(dna"AC"), seq) === 5:6 @test findprev(ExactSearchQuery(dna"AC"), seq, 5) === 1:2 #@test findlast(ExactSearchQuery(dna"AC"), seq, 5, 2) === nothing @test findlast(ExactSearchQuery(dna"TG"), seq) === nothing @test findlast(ExactSearchQuery(dna"TN"), seq) === nothing @test findlast(ExactSearchQuery(dna"ACG"), seq) === 5:7 @test findprev(ExactSearchQuery(dna"ACG"), seq, 6) === 1:3 @test findlast(ExactSearchQuery(seq), seq) === 1:lastindex(seq) @test findlast(ExactSearchQuery(dna""), dna"") === 1:0 @test findprev(ExactSearchQuery(dna""), dna"", 2) === 1:0 @test findprev(ExactSearchQuery(dna""), dna"", -1) === nothing @test first(findlast(ExactSearchQuery(dna""), seq)) === 8 @test first(findlast(ExactSearchQuery(dna"AC"), seq)) === 5 @test first(findprev(ExactSearchQuery(dna"AC"), seq, 5)) === 1 #@test findlast(ExactSearchQuery(dna"AC"), seq, 5, 2) === nothing query = ExactSearchQuery(dna"ACG") @test findlast(query, seq) === 5:7 @test findprev(query, seq, 6) === 1:3 #@test findlast(query, seq, 2, 6) === nothing @test first(findlast(query, seq)) === 5 @test first(findprev(query, seq, 6)) === 1 #@test findlast(query, seq, 6, 2) === nothing end @testset "occursin" begin @test occursin(ExactSearchQuery(dna"ACG"), dna"GGGTACACGTTT") == true @test occursin(ExactSearchQuery(dna"TGT"), dna"GGGTACACGTGT") == true @test occursin(ExactSearchQuery(dna"GGG"), dna"GGGTACACGTGT") == true @test occursin(ExactSearchQuery(dna"AAA"), dna"GGGTACACGTGT") == false end end @testset "iscompatible" begin @testset "forward" begin @test findfirst(ExactSearchQuery(dna"", iscompatible), seq) === 1:0 @test findfirst(ExactSearchQuery(dna"AC", iscompatible), seq) === 1:2 @test findnext(ExactSearchQuery(dna"AC", iscompatible), seq, 2) === 5:6 #@test findfirst(ExactSearchQuery(dna"AC"), seq, 2, 5) === nothing @test findfirst(ExactSearchQuery(dna"TG", iscompatible), seq) === nothing @test findfirst(ExactSearchQuery(dna"TN", iscompatible), seq) === 4:5 @test findfirst(ExactSearchQuery(dna"ACG", iscompatible), seq) === 1:3 @test findnext(ExactSearchQuery(dna"ACG", iscompatible), seq, 2) === 5:7 @test findfirst(ExactSearchQuery(seq, iscompatible), seq) === 1:lastindex(seq) @test findfirst(ExactSearchQuery(dna"", iscompatible), dna"") === 1:0 @test findnext(ExactSearchQuery(dna"", iscompatible), dna"", -1) === 1:0 @test findnext(ExactSearchQuery(dna"", iscompatible), dna"", 2) === nothing @test first(findfirst(ExactSearchQuery(dna"", iscompatible), seq)) === 1 @test first(findfirst(ExactSearchQuery(dna"AC", iscompatible), seq)) === 1 @test first(findnext(ExactSearchQuery(dna"AC", iscompatible), seq, 2)) === 5 #@test findnext(ExactSearchQuery(dna"AC"), seq, 2) === nothing query = ExactSearchQuery(dna"ACG", iscompatible) @test findfirst(query, seq) === 1:3 @test findnext(query, seq, 2) === 5:7 #@test findfirst(query, seq, 2, 6) === nothing @test first(findfirst(query, seq)) === 1 @test first(findnext(query, seq, 2)) === 5 #@test findfirst(query, seq, 2, 6) === nothing end @testset "backward" begin @test findlast(ExactSearchQuery(dna"", iscompatible), seq) === 8:7 @test findlast(ExactSearchQuery(dna"AC", iscompatible), seq) === 5:6 @test findprev(ExactSearchQuery(dna"AC", iscompatible), seq, 5) === 1:2 #@test findlast(ExactSearchQuery(dna"AC"), seq, 5, 2) === nothing @test findlast(ExactSearchQuery(dna"TG", iscompatible), seq) === nothing @test findlast(ExactSearchQuery(dna"TN", iscompatible), seq) === 4:5 @test findlast(ExactSearchQuery(dna"ACG", iscompatible), seq) === 5:7 @test findprev(ExactSearchQuery(dna"ACG", iscompatible), seq, 6) === 1:3 @test findlast(ExactSearchQuery(seq, iscompatible), seq) === 1:lastindex(seq) @test findlast(ExactSearchQuery(dna"", iscompatible), dna"") === 1:0 @test findprev(ExactSearchQuery(dna"", iscompatible), dna"", 2) === 1:0 @test findprev(ExactSearchQuery(dna"", iscompatible), dna"", -1) === nothing @test first(findlast(ExactSearchQuery(dna"", iscompatible), seq)) === 8 @test first(findlast(ExactSearchQuery(dna"AC", iscompatible), seq)) === 5 @test first(findprev(ExactSearchQuery(dna"AC", iscompatible), seq, 5)) === 1 #@test findlast(ExactSearchQuery(dna"AC"), seq, 5, 2) === nothing query = ExactSearchQuery(dna"ACG", iscompatible) @test findlast(query, seq) === 5:7 @test findprev(query, seq, 6) === 1:3 #@test findlast(query, seq, 2, 6) === nothing @test first(findlast(query, seq)) === 5 @test first(findprev(query, seq, 6)) === 1 #@test findlast(query, seq, 6, 2) === nothing end @testset "occursin" begin @test occursin(ExactSearchQuery(dna"ACG", iscompatible), dna"GGGTACACGTTT") == true @test occursin(ExactSearchQuery(dna"TGT", iscompatible), dna"GGGTACACGTGT") == true @test occursin(ExactSearchQuery(dna"GGG", iscompatible), dna"GGGTACACGTGT") == true @test occursin(ExactSearchQuery(dna"AAA", iscompatible), dna"GGGTACACGTGT") == false end end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
3943
@testset "Position weight matrix" begin @testset "PFM" begin m = [ 1 2 3 4 5 6 7 8 9 10 11 12 ] pfm = PFM{DNA}(m) @test pfm isa PFM{DNA,Int} @test convert(Matrix, pfm) == m @test all(pfm[i] == m[i] for i in eachindex(pfm)) @test all(pfm[i,j] == m[i,j] for i in 1:4, j in 1:3) @test all(pfm[ACGT[i],j] == m[i,j] for i in 1:4, j in 1:3) @test startswith(sprint(show, pfm), string(summary(pfm), ":\n")) @test_throws ArgumentError PFM{DNA}(vcat(m, [13 14 15])) # indexing pfm[5] = 100 @test pfm[5] == pfm[DNA_A,2] == 100 pfm[2,3] = 200 @test pfm[2,3] == pfm[DNA_C,3] == 200 pfm[DNA_G,1] = 300 @test pfm[3,1] == pfm[DNA_G,1] == 300 @test_throws ArgumentError pfm[DNA_N,1] # broadcast @test log.(pfm) isa PFM{DNA,Float64} @test log.(pfm) == PFM{DNA}(log.(m)) @test pfm .+ 1 isa PFM{DNA,Int} @test pfm .+ 1 == PFM{DNA}(m .+ 1) @test pfm .+ 1.1 isa PFM{DNA,Float64} @test pfm .+ 1.1 == PFM{DNA}(m .+ 1.1) @test pfm .+ [0,1,2,3] isa PFM{DNA,Int} @test pfm .+ [0,1,2,3] == PFM{DNA}(m .+ [0,1,2,3]) set = LongDNA{4}.(split( """ ACG ATG AGG ACC """)) pfm = PFM(set) @test pfm == [ 4 0 0 # A 0 2 1 # C 0 1 3 # G 0 1 0 # T ] @test pfm == PFM(Set(set)) @test_throws ArgumentError PFM(LongDNA{4}[]) @test_throws ArgumentError PFM(["foo"]) # @test_throws ArgumentError PFM([LongDNA{4}("AA"), LongDNA{4}("AA")]) @test_throws ArgumentError PFM([LongDNA{4}("AA"), LongDNA{4}("AAA")]) end @testset "PWM" begin m = [ 1 2 3 4 5 6 7 8 9 10 11 12 ] pfm = PFM{DNA}(m) pwm = PWM(pfm) raw = log2.((pfm ./ sum(pfm, dims=1)) ./ fill(1/4, 4)) @test pwm isa PWM{DNA,Float64} @test pwm == raw @test PWM(pfm, prior=[0.1, 0.4, 0.4, 0.1]) == log2.((pfm ./ sum(pfm, dims=1)) ./ [0.1, 0.4, 0.4, 0.1]) @test PWM(pfm) == PWM{DNA}(raw) @test maxscore(pwm) ≈ sum(maximum(raw, dims=1)) @test maxscore(PWM{DNA}(zeros(4, 0))) === 0.0 @test PWM(pfm .+ 0.1) isa PWM{DNA,Float64} # pseudo count @test_throws Exception PWM{DNA}(hcat(m, [13, 14, 15])) @test_throws Exception PWM(pfm, prior=normalize([0,1,2,3], 1)) @test_throws Exception PWM(pfm, prior=normalize([0,1,2,3], 1).+1e-3) @test all(pwm[i] === pwm[i] for i in eachindex(pwm)) @test all(pwm[i,j] === raw[i,j] for i in 1:4, j in 1:3) @test all(pwm[ACGT[i],j] === pwm[i,j] for i in 1:4, j in 1:3) @test startswith(sprint(show, pwm), string(summary(pwm), ":\n")) end @testset "findfirst and findlast" begin seq = dna"ACGATNATCGCGTANTG" data = [ 1.0 0.1 0.2 0.0 0.2 0.3 0.1 0.2 0.0 0.9 0.5 0.2 ] pwm = PWM{DNA}(data) @test maxscore(pwm) == 1.8 @test scoreat(seq, pwm, 1) === 1.2 @test findfirst(PWMSearchQuery(pwm, 1.0), seq) === 1 @test findfirst(PWMSearchQuery(pwm, 1.4), seq) === 4 @test findfirst(PWMSearchQuery(pwm, 1.8), seq) === 7 @test findfirst(PWMSearchQuery(pwm, 2.0), seq) === nothing @test_throws ArgumentError findfirst(PWMSearchQuery(pwm, 1.0), LongRNA{4}(seq)) @test findlast(PWMSearchQuery(pwm, 1.0), seq) == 14 @test findlast(PWMSearchQuery(pwm, 1.4), seq) === 7 @test findlast(PWMSearchQuery(pwm, 1.8), seq) === 7 @test findlast(PWMSearchQuery(pwm, 2.0), seq) === nothing @test_throws ArgumentError findlast(PWMSearchQuery(pwm, 1.0), LongRNA{4}(seq)) end end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
code
5033
@testset "Regular Expression" begin # First test the biore syntax works as intended @test biore"A+[CG]N"d == BioRegex{DNA}("A+[CG]N") @test biore"A+[CG]N"d != BioRegex{DNA}("A*[CG]N") @test biore"MV?(I|L)W{3,5}$"a == BioRegex{AminoAcid}("MV?(I|L)W{3,5}\$") @test biore"MV?(I|L)W{3,5}$"a != BioRegex{AminoAcid}("MV?(I|L)W{3,4}\$") @test biore"A+UUC*"r == BioRegex{RNA}("A+UUC*") @test biore"A+UC*"r != BioRegex{RNA}("A+UUC*") @test isa(biore"A+"d, BioSequences.RE.Regex{DNA}) @test isa(biore"A+"r, BioSequences.RE.Regex{RNA}) @test isa(biore"A+"a, BioSequences.RE.Regex{AminoAcid}) @test isa(biore"A+"dna, BioSequences.RE.Regex{DNA}) @test isa(biore"A+"rna, BioSequences.RE.Regex{RNA}) @test isa(biore"A+"aa, BioSequences.RE.Regex{AminoAcid}) @test_throws Exception eval(:(biore"A+")) @test_throws Exception eval(:(biore"A+"foo)) @test string(biore"A+"dna) == "biore\"A+\"dna" @test string(biore"A+"rna) == "biore\"A+\"rna" @test string(biore"A+"aa) == "biore\"A+\"aa" @test occursin(biore"A"d, dna"A") @test !occursin(biore"A"d, dna"C") @test !occursin(biore"A"d, dna"G") @test !occursin(biore"A"d, dna"T") @test occursin(biore"N"d, dna"A") @test occursin(biore"N"d, dna"C") @test occursin(biore"N"d, dna"G") @test occursin(biore"N"d, dna"T") @test occursin(biore"[AT]"d, dna"A") @test !occursin(biore"[AT]"d, dna"C") @test !occursin(biore"[AT]"d, dna"G") @test occursin(biore"[AT]"d, dna"T") @test !occursin(biore"[^AT]"d, dna"A") @test occursin(biore"[^AT]"d, dna"C") @test occursin(biore"[^AT]"d, dna"G") @test !occursin(biore"[^AT]"d, dna"T") re = biore"^A(C+G*)(T{2,})N$"d @test !occursin(re, dna"AC") @test !occursin(re, dna"AGTT") @test !occursin(re, dna"CCGTT") @test !occursin(re, dna"ACTT") @test !occursin(re, dna"ACTTGT") @test occursin(re, dna"ACGTTA") @test occursin(re, dna"ACGTTT") @test occursin(re, dna"ACCGGTTT") @test occursin(re, dna"ACCGGTTT") @test occursin(re, dna"ACCGGTTTA") @test occursin(re, dna"ACCGGTTTG") @test matched(match(re, dna"ACCGTTTTA")) == dna"ACCGTTTTA" @test captured(match(re, dna"ACCGTTTTA"))[1] == dna"CCG" @test captured(match(re, dna"ACCGTTTTA"))[2] == dna"TTTT" # greedy @test matched(match(biore"A*"d, dna"AAA")) == dna"AAA" @test matched(match(biore"A+"d, dna"AAA")) == dna"AAA" @test matched(match(biore"A?"d, dna"AAA")) == dna"A" @test matched(match(biore"A{2}"d, dna"AAA")) == dna"AA" @test matched(match(biore"A{2,}"d, dna"AAA")) == dna"AAA" @test matched(match(biore"A{2,4}"d, dna"AAA")) == dna"AAA" # lazy @test matched(match(biore"A*?"d, dna"AAA")) == dna"" @test matched(match(biore"A+?"d, dna"AAA")) == dna"A" @test matched(match(biore"A??"d, dna"AAA")) == dna"" @test matched(match(biore"A{2}?"d, dna"AAA")) == dna"AA" @test matched(match(biore"A{2,}?"d, dna"AAA")) == dna"AA" @test matched(match(biore"A{2,4}?"d, dna"AAA")) == dna"AA" # search @test findfirst(biore"A+"d, dna"ACGTAAT") == 1:1 @test findfirst(biore"A+"d, dna"ACGTAAT", 1) == 1:1 @test findfirst(biore"A+"d, dna"ACGTAAT", 2) == 5:6 @test findfirst(biore"A+"d, dna"ACGTAAT", 7) === nothing # eachmatch matches = [dna"CG", dna"GC", dna"GC", dna"CG"] for (i, m) in enumerate(eachmatch(biore"GC|CG"d, dna"ACGTTATGCATGGCG")) @test matched(m) == matches[i] end matches = [dna"CG", dna"GC", dna"GC"] for (i, m) in enumerate(collect(eachmatch(biore"GC|CG"d, dna"ACGTTATGCATGGCG", false))) @test matched(m) == matches[i] end # matchall matchall(pat, seq, overlap=true) = collect(map(matched, eachmatch(pat, seq, overlap))) @test matchall(biore"A*"d, dna"") == [dna""] @test matchall(biore"A*"d, dna"AAA") == [ dna"AAA", dna"AA", dna"A", dna"", dna"AA", dna"A", dna"", dna"A", dna""] @test matchall(biore"AC*G*T"d, dna"ACCGGGT") == [dna"ACCGGGT"] @test matchall(biore"A*"d, dna"", false) == [dna""] @test matchall(biore"A*"d, dna"AAA", false) == [dna"AAA"] @test matchall(biore"AC*G*T"d, dna"ACCGGGT", false) == [dna"ACCGGGT"] # RNA and Amino acid @test occursin(biore"U(A[AG]|GA)$"r, rna"AUUGUAUGA") @test !occursin(biore"U(A[AG]|GA)$"r, rna"AUUGUAUGG") @test occursin(biore"T+[NQ]A?P"a, aa"MTTQAPMFTQPL") @test occursin(biore"T+[NQ]A?P"a, aa"MTTAAPMFTQPL") @test !occursin(biore"T+[NQ]A?P"a, aa"MTTAAPMFSQPL") # PROSITE @test occursin(prosite"[AC]-x-V-x(4)-{ED}", aa"ADVAARRK") @test occursin(prosite"[AC]-x-V-x(4)-{ED}", aa"CPVAARRK") @test !occursin(prosite"[AC]-x-V-x(4)-{ED}", aa"ADVAARRE") @test !occursin(prosite"[AC]-x-V-x(4)-{ED}", aa"CPVAARK") @test occursin(prosite"<[AC]-x-V-x(4)-{ED}>", aa"ADVAARRK") @test !occursin(prosite"<[AC]-x-V-x(4)-{ED}>", aa"AADVAARRK") @test !occursin(prosite"<[AC]-x-V-x(4)-{ED}>", aa"ADVAARRKA") end
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
8441
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html). ## [UNRELEASED] * Relax requirement of `decode`, such that it no longer needs to check for invalid data. Note that this change is not breaking, since it is not possible for correctly-implemented `Alphabet` and `BioSequence` to store invalid data. ## [3.1.6] * The heuristics for translating sequences with ambiguous symbols is now improved. Now, `translate` does not rely on heuristics but uses an algorithm that always returns exactly the right amino acid in the face of ambiguous nucleotides. ## [3.1.5] * Attempting to translate a nucleotide sequence with gap symbols now throws an error (#278, see #277) ## [3.1.4] * Migrate from SnoopPrecompile to PrecompileTools (#273) ## [3.1.3] * Improve error when mis-encoding `LongDNA` from byte-like inputs (#267) * Remove references to internal `Random.GLOBAL_RNG` (#265) ## [3.1.2] * Fix bug in converting `LongSubSeq` to `LongSequence` (#261) ## [3.1.1] * Add `iterate` method for `Alphabets` (#233) * Add SnoopPrecompile workload and dependency on SnoopPrecompile (#257) ## [3.1.0] ### Added * Add `rand!([::AbstractRNG], ::LongSequence, [::Sampler])` methods ## [3.0.2] ### Added * It is now possible to `join` BioSymbols into a BioSequence. * Add `findall` methods to `BioSequence` ## [3.0.1] Release has been yanked from General Registry ## [3.0] ### Removed - Removed `unsafe_setindex!`. Instead, use normal setindex with `@inbounds`. - Removed minhashing functionality - see package MinHash.jl - Removed composition functionality - see package Kmers.jl - Removed ReferenceSequence functionality - Removed demultiplexer functionality - Removed kmer functionality - this is moved to Kmers.jl - Removed VoidAlphabet and CharAlphabet - Removed ConditionIterator ### Added - Added type `LongSubSeq`, a view into a `LongSequence`. - Added method `translate!(::LongAminoAcidSeq, ::LongNucleotideSeq; kwargs...)` - Added method `join(::Type{T<:BioSeuence}, it)` to join an iterable of biosequences to a new instance of T. - Added method `join!(s::BioSequence, it)`, an in-place version of `join` ### Changed - `LongSequence` is no longer copy-on-write. For views, use `LongSubSeq`. - Renamed `LongAminoAcidSeq` -> `LongAA`, `LongNucleotideSeq` -> `LongNuc` `LongRNASeq` -> `LongRNA` and `LongDNASeq` -> `LongDNA` - The interface for `Alphabet` and `BioSequence` is now more clearly defined, documented, and tested. - The constructor `LongSequence{A}(::Integer)` has been removed in favor of `LongSequence{A}(undef, ::Integer)`. - Biological sequences can no longer be converted to/from strings and vectors. - Updated the element and substring search API to conform to `Base.find*` patterns. ## [2.0.1] ### Changed - Fixed syntax errors where functions were marked with `@inbounds` instead of `@inline`. ## [2.0] ### Added - New subtypes of Random.Sampler, SamplerUniform and SamplerWeighted. - Random `LongSequence`s can now be created with `randseq`, optionally using a sampler to specify element distribution. - All random `LongSequence` generator methods take an optional AbstractRNG argument. - Add methods to `randseq` to optimize random generation of `NucleicAcid` or `AminoAcid` `LongSequence`s. - BioGenerics is now a dependency - replaces BioCore. - A `SkipmerFactory` iterator that allows iteration over the Skipmers in a nucleotide sequence. A Skipmer is a `Mer` (see changed below), that is generated using a certain cyclic nucleotide sampling pattern. See [this paper](https://www.biorxiv.org/content/early/2017/09/19/179960.full.pdf+html) for more details. - A `BigMer` parametric primitive type has been added, that has the same functionality as `Mer` (see changed section), but uses 128 bits instead of 64. - An abstract parametric type called `AbstractMer` has been added to unify `Mer` and `BigMer`. - Generators of bit-parallel iteration code have been introduced to help developers write bitparallel implementations of some methods. Counting GC content, matches and mismatches have been migrated to use these generators. - Added `occursin` methods for exact matching. ### Changed - The abstract `Sequence` type is now called `BioSequence{A}`. - The type previously called `BioSequence{A}` is now `LongSequence{A}`. - `Kmers` are now a parametric primitive type: `Mer{A<:NucleicAcidAlphabet{2},K}`. - `unsafe_setindex!` has been made systematic for all `setindex` methods as a way of bypassing all bound checking and `orphan!` calls. - Kmer string literals have been updated, they are now `mer""` string literals, and they have a flag to enforce the type of `Mer` e.g.: `mer"ATCG"dna`, `mer"AUCG"rna` - No longer use an old version of Twiddle and deprecated functions. - Using `Base.count` with certain functions and sequence combinations dispatches to highly optimized bit-parallel implementations, falling back to a default naive counting loop by default for all other predicate-sequence combinations. - No more implicit conversion from strings to biological sequences. The `Base.convert` methods have been renamed to `Base.parse` methods. ### Removed - The FASTQ module. - The FASTA module. - The TwoBit module. - The ABIF module. - BioCore is no longer a dependency. - Automa is no longer a dependency. ## [1.1.0] ### Changed - Automatic conversion of `LongDNASeq` to `LongRNASeq` when translating sequences. - Add `alternative_start` keyword argument to translate(). - Add abstract type for kmer iterators. - :racehorse: Faster kmer iteration. - Fixed indexing in ABIF records. ## [1.0.0] - 2018-08-23 ### Added - Issue and PR templates. - Code of Conduct and Contributing files. - A changelog file. - Support for julia v0.7 and v1.0. ### Removed - :exclamation: Support for julia v0.6. ## [0.8.3] - 2018-02-28 ### Changed - Fix the `sequence` method so as the sequence type can be specified, allowing type-stable efficient code generation. ## [0.8.2] - 2018-02-19 ### Changed - A bug fix for `FASTA.Record` writing where the width parameter of a `FASTA.Writer` is less than or equal to zero. ## [0.8.1] - 2017-11-10 ### Changed - Update documentation generation. - Fixes to type definition keywords. - Bit-parallel GC counting. ## [0.8.0] - 2017-08-16 ### Added - Position weight matrix search functionality. - A generalised composition method. - `typemin` and `typemax` methods for `Kmer` types. ### Changed - `MinHash` function now generalised to `Reader` types. - Updates to doc tests. ## [0.7.0] - 2017-07-28 ### Added - Support for julia v0.6 only. ### Removed - :exclamation: Dropped support for julia v0.5. ## [0.6.3] - 2017-07-06 ### Changed - Iterators.jl is not longer used as a dependency in favour of Itertools.jl. ## [0.6.1] - 2017-06-20 ### Changed - Bug-fix for site-counting algorithm. ## [0.6.0] - 2017-06-14 ### Added - :arrow_up: Compatibility with julia v0.6. - The `ungap` and `ungap!` methods, that are shorthand for filtering gaps from biological sequences. ### Changed - Bug fixes for Kmer iteration that were caused by gaps in 4-bit encoded sequences. ## [0.5.0] - 2017-06-07 ### Added - All files pertaining to the old Bio.Seq module. [Unreleased]: https://github.com/BioJulia/BioSequences.jl/compare/v2.0.1...HEAD [2.0.1]: https://github.com/BioJulia/BioSequences.jl/compare/v2.0.0...v2.0.1 [2.0.0]: https://github.com/BioJulia/BioSequences.jl/compare/v1.1.0...v2.0.0 [1.1.0]: https://github.com/BioJulia/BioSequences.jl/compare/v1.0.0...v1.1.0 [1.0.0]: https://github.com/BioJulia/BioSequences.jl/compare/v0.8.3...v1.0.0 [0.8.3]: https://github.com/BioJulia/BioSequences.jl/compare/v0.8.2...v0.8.3 [0.8.2]: https://github.com/BioJulia/BioSequences.jl/compare/v0.8.1...v0.8.2 [0.8.1]: https://github.com/BioJulia/BioSequences.jl/compare/v0.8.0...v0.8.1 [0.8.0]: https://github.com/BioJulia/BioSequences.jl/compare/v0.7.0...v0.8.0 [0.7.0]: https://github.com/BioJulia/BioSequences.jl/compare/v0.6.3...v0.7.0 [0.6.3]: https://github.com/BioJulia/BioSequences.jl/compare/v0.6.1...v0.6.3 [0.6.1]: https://github.com/BioJulia/BioSequences.jl/compare/v0.6.0...v0.6.1 [0.6.0]: https://github.com/BioJulia/BioSequences.jl/compare/v0.5.0...v0.6.0 [0.5.0]: https://github.com/BioJulia/BioSequences.jl/tree/v0.5.0
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
3807
# <img src="./sticker.svg" width="30%" align="right" /> BioSequences [![Latest Release](https://img.shields.io/github/release/BioJulia/BioSequences.jl.svg)](https://github.com/BioJulia/BioSequences.jl/releases/latest) [![MIT license](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE) [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://biojulia.github.io/BioSequences.jl/stable) [![Pkg Status](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Chat](https://img.shields.io/gitter/room/BioJulia/BioSequences.svg)](https://gitter.im/BioJulia/BioSequences.jl) ## Description BioSequences provides data types and methods for common operations with biological sequences, including DNA, RNA, and amino acid sequences. ## Installation You can install BioSequences from the julia REPL. Press `]` to enter pkg mode, and enter the following: ```julia add BioSequences ``` If you are interested in the cutting edge of the development, please check out the master branch to try new features before release. ## Testing BioSequences is tested against Julia `1.X` on Linux, OS X, and Windows. [![Unit tests](https://github.com/BioJulia/BioSequences.jl/workflows/Unit%20tests/badge.svg?branch=master)](https://github.com/BioJulia/BioSequences.jl/actions?query=workflow%3A%22Unit+tests%22+branch%3Amaster) [![Documentation](https://github.com/BioJulia/BioSequences.jl/workflows/Documentation/badge.svg?branch=master)](https://github.com/BioJulia/BioSequences.jl/actions?query=workflow%3ADocumentation+branch%3Amaster) [![](https://codecov.io/gh/BioJulia/BioSequences.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/BioJulia/BioSequences.jl) [![Downstream](https://github.com/BioJulia/BioSequences.jl/actions/workflows/Downstream.yml/badge.svg)](https://github.com/BioJulia/BioSequences.jl/actions/workflows/Downstream.yml) ## Contributing We appreciate contributions from users including reporting bugs, fixing issues, improving performance and adding new features. Take a look at the [contributing files](https://github.com/BioJulia/Contributing) detailed contributor and maintainer guidelines, and code of conduct. ## Backers & Sponsors Thank you to all our backers and sponsors! [![](https://opencollective.com/biojulia/sponsor/0/avatar.svg)](https://opencollective.com/biojulia/sponsor/0/website) [![](https://opencollective.com/biojulia/sponsor/1/avatar.svg)](https://opencollective.com/biojulia/sponsor/1/website) [![](https://opencollective.com/biojulia/sponsor/2/avatar.svg)](https://opencollective.com/biojulia/sponsor/2/website) [![](https://opencollective.com/biojulia/sponsor/3/avatar.svg)](https://opencollective.com/biojulia/sponsor/3/website) [![](https://opencollective.com/biojulia/sponsor/4/avatar.svg)](https://opencollective.com/biojulia/sponsor/4/website) [![](https://opencollective.com/biojulia/sponsor/5/avatar.svg)](https://opencollective.com/biojulia/sponsor/5/website) [![](https://opencollective.com/biojulia/sponsor/6/avatar.svg)](https://opencollective.com/biojulia/sponsor/6/website) [![](https://opencollective.com/biojulia/sponsor/7/avatar.svg)](https://opencollective.com/biojulia/sponsor/7/website) [![](https://opencollective.com/biojulia/sponsor/8/avatar.svg)](https://opencollective.com/biojulia/sponsor/8/website) [![](https://opencollective.com/biojulia/sponsor/9/avatar.svg)](https://opencollective.com/biojulia/sponsor/9/website) ## Questions? If you have a question about contributing or using BioJulia software, come on over and chat to us on [the Julia Slack workspace](https://julialang.org/slack/), or you can try the [Bio category of the Julia discourse site](https://discourse.julialang.org/c/domain/bio).
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
1874
<!--- Provide a general summary of the issue in the Title above --> > _This template is rather extensive. Fill out all that you can, if are a new contributor or you're unsure about any section, leave it unchanged and a reviewer will help you_ :smile:. _This template is simply a tool to help everyone remember the BioJulia guidelines, if you feel anything in this template is not relevant, simply delete it._ ## Expected Behavior <!--- If you're describing a bug, tell us what you expect to happen --> <!--- If you're suggesting a change/improvement, tell us how it should work --> ## Current Behavior <!--- If describing a bug, tell us what happens instead of the expected behavior --> <!--- If suggesting a change/improvement, explain the difference from current behavior --> ## Possible Solution / Implementation <!--- If describing a bug, suggest a fix/reason for the bug (optional) --> <!--- If you're suggesting a change/improvement, suggest ideas how to implement the addition or change --> ## Steps to Reproduce (for bugs) <!--- You may include copy/pasteable snippets or a list of steps to reproduce the bug --> 1. 2. 3. 4. <!--- Optionally, provide a link to a live example --> <!--- You can use [this tool](https://www.cockos.com/licecap/) --> <!--- ...Or [this tool](https://github.com/colinkeenan/silentcast) --> <!--- ...Or [this tool](https://github.com/GNOME/byzanz) on Linux --> ## Context <!--- How has this issue affected you? What are you trying to accomplish? --> <!--- Providing context helps us come up with a solution that is most useful in the real world --> ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> - Package Version used: - Julia Version used: - Operating System and version (desktop or mobile): - Link to your project: <!-- Can you list installed packages here? -->
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
2783
# A clear and descriptive title (No issue numbers please) > _This template is rather extensive. Fill out all that you can, if are a new contributor or you're unsure about any section, leave it unchanged and a reviewer will help you_ :smile:. _This template is simply a tool to help everyone remember the BioJulia guidelines, if you feel anything in this template is not relevant, simply delete it._ ## Types of changes This PR implements the following changes: _(Please tick any or all of the following that are applicable)_ * [ ] :sparkles: New feature (A non-breaking change which adds functionality). * [ ] :bug: Bug fix (A non-breaking change, which fixes an issue). * [ ] :boom: Breaking change (fix or feature that would cause existing functionality to change). ## :clipboard: Additional detail - If you have implemented new features or behaviour - **Provide a description of the addition** in as many details as possible. - **Provide justification of the addition**. - **Provide a runnable example of use of your addition**. This lets reviewers and others try out the feature before it is merged or makes it's way to release. - If you have changed current behaviour... - **Describe the behaviour prior to you changes** - **Describe the behaviour after your changes** and justify why you have made the changes, Please describe any breakages you anticipate as a result of these changes. - **Does your change alter APIs or existing exposed methods/types?** If so, this may cause dependency issues and breakages, so the maintainer will need to consider this when versioning the next release. - If you are implementing changes that are intended to increase performance, you should provide the results of a simple performance benchmark exercise demonstrating the improvement. Especially if the changes make code less legible. ## :ballot_box_with_check: Checklist - [ ] :art: The changes implemented is consistent with the [julia style guide](https://docs.julialang.org/en/v1/manual/style-guide/). - [ ] :blue_book: I have updated and added relevant docstrings, in a manner consistent with the [documentation styleguide](https://docs.julialang.org/en/v1/manual/documentation/). - [ ] :blue_book: I have added or updated relevant user and developer manuals/documentation in `docs/src/`. - [ ] :ok: There are unit tests that cover the code changes I have made. - [ ] :ok: The unit tests cover my code changes AND they pass. - [ ] :pencil: I have added an entry to the `[UNRELEASED]` section of the manually curated `CHANGELOG.md` file for this repository. - [ ] :ok: All changes should be compatible with the latest stable version of Julia. - [ ] :thought_balloon: I have commented liberally for any complex pieces of internal code.
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
6746
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Construction & conversion Here we will showcase the various ways you can construct the various sequence types in BioSequences. ## Constructing sequences ### From strings Sequences can be constructed from strings using their constructors: ```jldoctest julia> LongDNA{4}("TTANC") 5nt DNA Sequence: TTANC julia> LongSequence{DNAAlphabet{2}}("TTAGC") 5nt DNA Sequence: TTAGC julia> LongRNA{4}("UUANC") 5nt RNA Sequence: UUANC julia> LongSequence{RNAAlphabet{2}}("UUAGC") 5nt RNA Sequence: UUAGC ``` Type alias' can also be used for brevity. ```jldoctest julia> LongDNA{4}("TTANC") 5nt DNA Sequence: TTANC julia> LongDNA{2}("TTAGC") 5nt DNA Sequence: TTAGC julia> LongRNA{4}("UUANC") 5nt RNA Sequence: UUANC julia> LongRNA{2}("UUAGC") 5nt RNA Sequence: UUAGC ``` ### Constructing sequences from arrays of BioSymbols Sequences can be constructed using vectors or arrays of a `BioSymbol` type: ```jldoctest julia> LongDNA{4}([DNA_T, DNA_T, DNA_A, DNA_N, DNA_C]) 5nt DNA Sequence: TTANC julia> LongSequence{DNAAlphabet{2}}([DNA_T, DNA_T, DNA_A, DNA_G, DNA_C]) 5nt DNA Sequence: TTAGC ``` ### Constructing sequences from other sequences You can create sequences, by concatenating other sequences together: ```jldoctest julia> LongDNA{2}("ACGT") * LongDNA{2}("TGCA") 8nt DNA Sequence: ACGTTGCA julia> repeat(LongDNA{4}("TA"), 10) 20nt DNA Sequence: TATATATATATATATATATA julia> LongDNA{4}("TA") ^ 10 20nt DNA Sequence: TATATATATATATATATATA ``` Sequence views (`LongSubSeq`s) are special, in that they do not own their own data, and must be constructed from a `LongSequence` or another `LongSubSeq`: ```jldoctest julia> seq = LongDNA{4}("TACGGACATTA") 11nt DNA Sequence: TACGGACATTA julia> seqview = LongSubSeq(seq, 3:7) 5nt DNA Sequence: CGGAC julia> seqview2 = @view seq[1:3] 3nt DNA Sequence: TAC julia> typeof(seqview) == typeof(seqview2) && typeof(seqview) <: LongSubSeq true ``` ## Conversion of sequence types You can convert between sequence types, if the sequences are compatible - that is, if the source sequence does not contain symbols that are un-encodable by the destination type. ```jldoctest julia> dna = dna"TTACGTAGACCG" 12nt DNA Sequence: TTACGTAGACCG julia> dna2 = convert(LongDNA{2}, dna) 12nt DNA Sequence: TTACGTAGACCG ``` DNA/RNA are special in that they can be converted to each other, despite containing distinct symbols. When doing so, `DNA_T` is converted to `RNA_U` and vice versa. ```jldoctest julia> convert(LongRNA{2}, dna"TAGCTAGG") 8nt RNA Sequence: UAGCUAGG ``` ## String literals BioSequences provides several string literal macros for creating sequences. !!! note When you use literals you may mix the case of characters. ### Long sequence literals ```jldoctest julia> dna"TACGTANNATC" 11nt DNA Sequence: TACGTANNATC julia> rna"AUUUGNCCANU" 11nt RNA Sequence: AUUUGNCCANU julia> aa"ARNDCQEGHILKMFPSTWYVX" 21aa Amino Acid Sequence: ARNDCQEGHILKMFPSTWYVX ``` However, it should be noted that by default these sequence literals allocate the `LongSequence` object before the code containing the sequence literal is run. This means there may be occasions where your program does not behave as you first expect. For example consider the following code: ```jldoctest julia> function foo() s = dna"CTT" push!(s, DNA_A) end foo (generic function with 1 method) ``` ```@meta DocTestSetup = quote using BioSequences function foo() s = dna"CTT"d push!(s, DNA_A) end end ``` You might expect that every time you call `foo`, that a DNA sequence `CTTA` would be returned. You might expect that this is because every time `foo` is called, a new DNA sequence variable `CTT` is created, and the `A` nucleotide is pushed to it, and the result, `CTTA` is returned. In other words you might expect the following output: ```jldoctest julia> foo() 4nt DNA Sequence: CTTA julia> foo() 4nt DNA Sequence: CTTA julia> foo() 4nt DNA Sequence: CTTA ``` However, this is not what happens, instead the following happens: ```@meta DocTestSetup = quote using BioSequences function foo() s = dna"CTT"s push!(s, DNA_A) end end ``` ```jldoctest julia> foo() 4nt DNA Sequence: CTTA julia> foo() 5nt DNA Sequence: CTTAA julia> foo() 6nt DNA Sequence: CTTAAA ``` The reason for this is because the sequence literal is allocated only once before the first time the function `foo` is called and run. Therefore, `s` in `foo` is always a reference to that one sequence that was allocated. So one sequence is created before `foo` is called, and then it is pushed to every time `foo` is called. Thus, that one allocated sequence grows with every call of `foo`. If you wanted `foo` to create a new sequence each time it is called, then you can add a flag to the end of the sequence literal to dictate behaviour: A flag of 's' means 'static': the sequence will be allocated before code is run, as is the default behaviour described above. However providing 'd' flag changes the behaviour: 'd' means 'dynamic': the sequence will be allocated whilst the code is running, and not before. So to change `foo` so as it creates a new sequence each time it is called, simply add the 'd' flag to the sequence literal: ```@meta DocTestSetup = quote using BioSequences end ``` ```jldoctest julia> function foo() s = dna"CTT"d # 'd' flag appended to the string literal. push!(s, DNA_A) end foo (generic function with 1 method) ``` Now every time `foo` is called, a new sequence `CTT` is created, and an `A` nucleotide is pushed to it: ```@meta DocTestSetup = quote using BioSequences function foo() s = dna"CTT"d push!(s, DNA_A) end end ``` ```jldoctest julia> foo() 4nt DNA Sequence: CTTA julia> foo() 4nt DNA Sequence: CTTA julia> foo() 4nt DNA Sequence: CTTA ``` ```@meta DocTestSetup = quote using BioSequences end ``` So the take home message of sequence literals is this: Be careful when you are using sequence literals inside of functions, and inside the bodies of things like for loops. And if you use them and are unsure, use the 's' and 'd' flags to ensure the behaviour you get is the behaviour you intend. ## Comparison to other sequence types Following Base standards, BioSequences do not compare equal to other containers even if they have the same elements. To e.g. compare a BioSequence with a vector of DNA, compare the elements themselves: ```jldoctest julia> seq = dna"GAGCTGA"; vec = collect(seq); julia> seq == vec, isequal(seq, vec) (false, false) julia> length(seq) == length(vec) && all(i == j for (i, j) in zip(seq, vec)) true ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
2215
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Counting BioSequences extends the `Base.count` method to provide some useful utilities for counting the number of sites in biological sequences. Most generically you can count the number of sites that satisfy some condition i.e. cause some function to return `true`: ```jldoctest julia> count(isambiguous, dna"ATCGM") 1 ``` You can also use two sequences, for example to compute the number of matching or mismatching symbols: ```jldoctest julia> count(!=, dna"ATCGM", dna"GCCGM") 2 julia> count(==, dna"ATCGM", dna"GCCGM") 3 ``` ## Alias functions A number of functions which are aliases for various invocations of `Base.count` are provided. | Alias function | Base.count call(s) | | :------------- | :---------------------------------------------------------- | | `n_ambiguous` | `count(isambiguous, seq)`, `count(isambiguous, seqa, seqb)` | | `n_certain` | `count(iscertain, seq)`, `count(iscertain, seqa, seqb)` | | `n_gap` | `count(isgap, seq)`, `count(isgap, seqa, seqb)` | | `matches` | `count(==, seqa, seqb)` | | `mismatches` | `count(!=, seqa, seqb)` | ## Bit-parallel optimisations For the vast majority of `Base.count(f, seq)` and `Base.count(f, seqa, seqb)` methods, a naive counting is done: the internal `count_naive` function is called, which simply loops over each position, applies `f`, and accumulates the result. However, for some functions, it is possible to implement highly efficient methods that use bit-parallelism to check many elements at one time. This is made possible by the succinct encoding of BioSequences. Usually `f` is one of the functions provided by BioSymbols.jl or by BioSequences.jl For such sequence and function combinations, `Base.count(f, seq)` is overloaded to call an internal `BioSequences.count_*_bitpar` function, which is passed the sequence(s). If you want to force BioSequences to use naive counting for the purposes of testing or debugging for example, then you can call `BioSequences.count_naive` directly.
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
4371
# BioSequences [![Latest Release](https://img.shields.io/github/release/BioJulia/BioSequences.jl.svg)](https://github.com/BioJulia/BioSequences.jl/releases/latest) [![MIT license](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/BioJulia/BioSequences.jl/blob/master/LICENSE) [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://biojulia.github.io/BioSequences.jl/stable) [![Pkg Status](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Chat](https://img.shields.io/gitter/room/BioJulia/BioSequences.svg)](https://gitter.im/BioJulia/BioSequences.jl) ## Description BioSequences provides data types and methods for common operations with biological sequences, including DNA, RNA, and amino acid sequences. ## Installation You can install BioSequences from the julia REPL. Press `]` to enter pkg mode again, and enter the following: ```julia add BioSequences ``` If you are interested in the cutting edge of the development, please check out the master branch to try new features before release. ## Testing BioSequences is tested against Julia `1.X` on Linux, OS X, and Windows. [![Unit tests](https://github.com/BioJulia/BioSequences.jl/workflows/Unit%20tests/badge.svg?branch=master)](https://github.com/BioJulia/BioSequences.jl/actions?query=workflow%3A%22Unit+tests%22+branch%3Amaster) [![Documentation](https://github.com/BioJulia/BioSequences.jl/workflows/Documentation/badge.svg?branch=master)](https://github.com/BioJulia/BioSequences.jl/actions?query=workflow%3ADocumentation+branch%3Amaster) [![](https://codecov.io/gh/BioJulia/BioSequences.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/BioJulia/BioSequences.jl) ## Contributing We appreciate contributions from users including reporting bugs, fixing issues, improving performance and adding new features. Take a look at the [contributing files](https://github.com/BioJulia/Contributing) detailed contributor and maintainer guidelines, and code of conduct. ### Financial contributions We also welcome financial contributions in full transparency on our [open collective](https://opencollective.com/biojulia). Anyone can file an expense. If the expense makes sense for the development of the community, it will be "merged" in the ledger of our open collective by the core contributors and the person who filed the expense will be reimbursed. ## Backers & Sponsors Thank you to all our backers and sponsors! Love our work and community? [Become a backer](https://opencollective.com/biojulia#backer). [![backers](https://opencollective.com/biojulia/backers.svg?width=890)](https://opencollective.com/biojulia#backers) Does your company use BioJulia? Help keep BioJulia feature rich and healthy by [sponsoring the project](https://opencollective.com/biojulia#sponsor) Your logo will show up here with a link to your website. [![](https://opencollective.com/biojulia/sponsor/0/avatar.svg)](https://opencollective.com/biojulia/sponsor/0/website) [![](https://opencollective.com/biojulia/sponsor/1/avatar.svg)](https://opencollective.com/biojulia/sponsor/1/website) [![](https://opencollective.com/biojulia/sponsor/2/avatar.svg)](https://opencollective.com/biojulia/sponsor/2/website) [![](https://opencollective.com/biojulia/sponsor/3/avatar.svg)](https://opencollective.com/biojulia/sponsor/3/website) [![](https://opencollective.com/biojulia/sponsor/4/avatar.svg)](https://opencollective.com/biojulia/sponsor/4/website) [![](https://opencollective.com/biojulia/sponsor/5/avatar.svg)](https://opencollective.com/biojulia/sponsor/5/website) [![](https://opencollective.com/biojulia/sponsor/6/avatar.svg)](https://opencollective.com/biojulia/sponsor/6/website) [![](https://opencollective.com/biojulia/sponsor/7/avatar.svg)](https://opencollective.com/biojulia/sponsor/7/website) [![](https://opencollective.com/biojulia/sponsor/8/avatar.svg)](https://opencollective.com/biojulia/sponsor/8/website) [![](https://opencollective.com/biojulia/sponsor/9/avatar.svg)](https://opencollective.com/biojulia/sponsor/9/website) ## Questions? If you have a question about contributing or using BioJulia software, come on over and chat to us on [Gitter](https://gitter.im/BioJulia/General), or you can try the [Bio category of the Julia discourse site](https://discourse.julialang.org/c/domain/bio).
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
3908
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Custom BioSequences types If you're a developing your own Bioinformatics package or method, you may find that the reference implementation of concrete `LongSequence` types provided in this package are not optimal for your purposes. This page describes the interfaces for BioSequences' core types for developers or other packages implementing their own sequence types or extending BioSequences functionality. ## Implementing custom Alphabets Recall the required methods that define the [`Alphabet`](@ref) interface. To create an example custom alphabet, we need to create a singleton type, that implements a few methods in order to conform to the interface as described in the [`Alphabet`](@ref) documentation. Let's do that for a restricted Amino Acid alphabet. We can test that it conforms to the interface with the [`BioSequences.has_interface`](@ref) function. ```jldoctest julia> struct ReducedAAAlphabet <: Alphabet end julia> Base.eltype(::Type{ReducedAAAlphabet}) = AminoAcid julia> BioSequences.BitsPerSymbol(::ReducedAAAlphabet) = BioSequences.BitsPerSymbol{4}() julia> function BioSequences.symbols(::ReducedAAAlphabet) (AA_L, AA_C, AA_A, AA_G, AA_S, AA_T, AA_P, AA_F, AA_W, AA_E, AA_D, AA_N, AA_Q, AA_K, AA_H, AA_M) end julia> const (ENC_LUT, DEC_LUT) = let enc_lut = fill(0xff, length(alphabet(AminoAcid))) dec_lut = fill(AA_A, length(symbols(ReducedAAAlphabet()))) for (i, aa) in enumerate(symbols(ReducedAAAlphabet())) enc_lut[reinterpret(UInt8, aa) + 0x01] = i - 1 dec_lut[i] = aa end (Tuple(enc_lut), Tuple(dec_lut)) end ((0x02, 0xff, 0x0b, 0x0a, 0x01, 0x0c, 0x09, 0x03, 0x0e, 0xff, 0x00, 0x0d, 0x0f, 0x07, 0x06, 0x04, 0x05, 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff), (AA_L, AA_C, AA_A, AA_G, AA_S, AA_T, AA_P, AA_F, AA_W, AA_E, AA_D, AA_N, AA_Q, AA_K, AA_H, AA_M)) julia> function BioSequences.encode(::ReducedAAAlphabet, aa::AminoAcid) i = reinterpret(UInt8, aa) + 0x01 (i ≥ length(ENC_LUT) || @inbounds ENC_LUT[i] === 0xff) && throw(DomainError(aa)) (@inbounds ENC_LUT[i]) % UInt end julia> function BioSequences.decode(::ReducedAAAlphabet, x::UInt) x ≥ length(DEC_LUT) && throw(DomainError(aa)) @inbounds DEC_LUT[x + UInt(1)] end julia> BioSequences.has_interface(Alphabet, ReducedAAAlphabet()) true ``` ## Implementing custom BioSequences Recall the required methods that define the [`BioSequence`](@ref) interface. To create an example custom alphabet, we need to create a singleton type, that implements a few methods in order to conform to the interface as described in the [`BioSequence`](@ref) documentation. Let's do that for a custom sequence type that is optimised to represent a small sequence: A Codon. We can test that it conforms to the interface with the [`BioSequences.has_interface`](@ref) function. ```jldoctest julia> struct Codon <: BioSequence{RNAAlphabet{2}} x::UInt8 end julia> function Codon(iterable) length(iterable) == 3 || error("Must have length 3") x = zero(UInt) for (i, nt) in enumerate(iterable) x |= BioSequences.encode(Alphabet(Codon), convert(RNA, nt)) << (6-2i) end Codon(x % UInt8) end Codon julia> Base.length(::Codon) = 3 julia> BioSequences.encoded_data_eltype(::Type{Codon}) = UInt julia> function BioSequences.extract_encoded_element(x::Codon, i::Int) ((x.x >>> (6-2i)) & 3) % UInt end julia> Base.copy(seq::Codon) = Codon(seq.x) julia> BioSequences.has_interface(BioSequence, Codon, [RNA_C, RNA_U, RNA_A], false) true ``` ## Interface checking functions ```@docs BioSequences.has_interface ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
797
# I/O for sequencing file formats Versions of BioSequences prior to v2.0 provided a FASTA, FASTQ, and 2Bit submodule for working with formatted sequence files. After version v2.0, in order to neatly separate concerns, these submodules were removed. Instead there will now be dedicated BioJulia packages for each format. Each of these will be compatible with BioSequences. A list of all of the different formats and packages is provided below to help you find them quickly. | Format | Package | |:------ |:------------------------------------------------ | | FASTA | [FASTX.jl](https://github.com/BioJulia/FASTX.jl) | | FASTQ | [FASTX.jl](https://github.com/BioJulia/FASTX.jl) | | 2Bit | [TwoBit.jl](https://github.com/BioJulia/TwoBit.jl) |
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
332
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Iteration As you might expect, sequence types are iterators over their elements: ```jldoctest julia> n = 0 0 julia> for nt in dna"ATNGNNT" if nt == DNA_N global n += 1 end end julia> n 3 ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
300
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Predicates A number of predicate or query functions are supported for sequences, allowing you to check for certain properties of a sequence. ```@docs isrepetitive ispalindromic hasambiguity iscanonical ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
341
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Generating random sequences ## Long sequences You can generate random long sequences using the `randdna` function and the `Sampler`'s implemented in BioSequences: ```@docs randseq randdnaseq randrnaseq randaaseq SamplerUniform SamplerWeighted ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
7452
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Searching for sequence motifs There are many ways to search for particular motifs in biological sequences: 1. Exact searches, where you are looking for exact matches of a particular character of substring. 2. Approximate searches, where you are looking for sequences that are sufficiently similar to a given sequence or family of sequences. 3. Searches where you are looking for sequences that conform to some sort of pattern. Like other Julia sequences such as `Vector`, you can search a `BioSequence` with the `findfirst(predicate, collection)` method pattern. All these kinds of searches are provided in BioSequences.jl, and they all conform to the `findnext`, `findprev`, and `occursin` patterns established in `Base` for `String` and collections like `Vector`. The exception is searching using the specialised regex provided in this package, which as you shall see, conforms to the `match` pattern established in `Base` for pcre and `String`s. ## Symbol search ```jldoctest julia> seq = dna"ACAGCGTAGCT"; julia> findfirst(DNA_A, seq) 1 julia> findlast(DNA_A, seq) 8 julia> findnext(DNA_A, seq, 2) 3 julia> findprev(DNA_A, seq, 7) 3 julia> findall(DNA_A, seq) 3-element Vector{Int64}: 1 3 8 ``` ## Exact search ```@docs ExactSearchQuery ``` ## Allowing mismatches ```@docs ApproximateSearchQuery ``` ## Searching according to a pattern ### Regular expression search Query patterns can be described in regular expressions. The syntax supports a subset of Perl and PROSITE's notation. Biological regexes can be constructed using the `BioRegex` constructor, for example by doing `BioRegex{AminoAcid}("MV+")`. For bioregex literals, it is instead recommended using the `@biore_str` macro: The Perl-like syntax starts with `biore` (BIOlogical REgular expression) and ends with a symbol option: "dna", "rna" or "aa". For example, `biore"A+"dna` is a regular expression for DNA sequences and `biore"A+"aa` is for amino acid sequences. The symbol options can be abbreviated to its first character: "d", "r" or "a", respectively. Here are examples of using the regular expression for `BioSequence`s: ```jldoctest julia> match(biore"A+C*"dna, dna"AAAACC") RegexMatch("AAAACC") julia> match(biore"A+C*"d, dna"AAAACC") RegexMatch("AAAACC") julia> occursin(biore"A+C*"dna, dna"AAC") true julia> occursin(biore"A+C*"dna, dna"C") false ``` `match` will return a `RegexMatch` if a match is found, otherwise it will return `nothing` if no match is found. The table below summarizes available syntax elements. | Syntax | Description | Example | |:------:|:------------|:--------| | `\|` | alternation | `"A\|T"` matches `"A"` and `"T"` | | `*` | zero or more times repeat | `"TA*"` matches `"T"`, `"TA"` and `"TAA"` | | `+` | one or more times repeat | `"TA+"` matches `"TA"` and `"TAA"` | | `?` | zero or one time | `"TA?"` matches `"T"` and `"TA"` | | `{n,}` | `n` or more times repeat | `"A{3,}"` matches `"AAA"` and `"AAAA"` | | `{n,m}` | `n`-`m` times repeat | `"A{3,5}"` matches `"AAA"`, `"AAAA"` and `"AAAAA"`| | `^` | the start of the sequence | `"^TAN*"` matches `"TATGT"` | | `$` | the end of the sequence | `"N*TA$"` matches `"GCTA"` | | `(...)` | pattern grouping | `"(TA)+"` matches `"TA"` and `"TATA"` | | `[...]` | one of symbols | `"[ACG]+"` matches `"AGGC"` | `eachmatch` and `findfirst` are also defined, just like usual regex and strings found in `Base`. ```jldoctest julia> collect(matched(x) for x in eachmatch(biore"TATA*?"d, dna"TATTATAATTA")) # overlap 4-element Vector{LongSequence{DNAAlphabet{4}}}: TAT TAT TATA TATAA julia> collect(matched(x) for x in eachmatch(biore"TATA*"d, dna"TATTATAATTA", false)) # no overlap 2-element Vector{LongSequence{DNAAlphabet{4}}}: TAT TATAA julia> findfirst(biore"TATA*"d, dna"TATTATAATTA") 1:3 julia> findfirst(biore"TATA*"d, dna"TATTATAATTA", 2) 4:8 ``` Noteworthy differences from strings are: * Ambiguous characters match any compatible characters (e.g. `biore"N"d` is equivalent to `biore"[ACGT]"d`). * Whitespaces are ignored (e.g. `biore"A C G"d` is equivalent to `biore"ACG"d`). The PROSITE notation is described in [ScanProsite - user manual](https://prosite.expasy.org/scanprosite/scanprosite_doc.html). The syntax supports almost all notations including the extended syntax. The PROSITE notation starts with `prosite` prefix and no symbol option is needed because it always describes patterns of amino acid sequences: ```jldoctest julia> match(prosite"[AC]-x-V-x(4)-{ED}", aa"CPVPQARG") RegexMatch("CPVPQARG") julia> match(prosite"[AC]xVx(4){ED}", aa"CPVPQARG") RegexMatch("CPVPQARG") ``` ### Position weight matrix search A motif can be specified using [position weight matrix](https://en.wikipedia.org/wiki/Position_weight_matrix) (PWM) in a probabilistic way. This method searches for the first position in the sequence where a score calculated using a PWM is greater than or equal to a threshold. More formally, denoting the sequence as ``S`` and the PWM value of symbol ``s`` at position ``j`` as ``M_{s,j}``, the score starting from a position ``p`` is defined as ```math \operatorname{score}(S, p) = \sum_{i=1}^L M_{S[p+i-1],i} ``` and the search returns the smallest ``p`` that satisfies ``\operatorname{score}(S, p) \ge t``. There are two kinds of matrices in this package: `PFM` and `PWM`. The `PFM` type is a position frequency matrix and stores symbol frequencies for each position. The `PWM` is a position weight matrix and stores symbol scores for each position. You can create a `PFM` from a set of sequences with the same length and then create a `PWM` from the `PFM` object. ```jldoctest julia> motifs = [dna"TTA", dna"CTA", dna"ACA", dna"TCA", dna"GTA"] 5-element Vector{LongSequence{DNAAlphabet{4}}}: TTA CTA ACA TCA GTA julia> pfm = PFM(motifs) # sequence set => PFM 4×3 PFM{DNA, Int64}: A 1 0 5 C 1 2 0 G 1 0 0 T 2 3 0 julia> pwm = PWM(pfm) # PFM => PWM 4×3 PWM{DNA, Float64}: A -0.321928 -Inf 2.0 C -0.321928 0.678072 -Inf G -0.321928 -Inf -Inf T 0.678072 1.26303 -Inf julia> pwm = PWM(pfm .+ 0.01) # add pseudo counts to avoid infinite values 4×3 PWM{DNA, Float64}: A -0.319068 -6.97728 1.99139 C -0.319068 0.673772 -6.97728 G -0.319068 -6.97728 -6.97728 T 0.673772 1.25634 -6.97728 julia> pwm = PWM(pfm .+ 0.01, prior=[0.2, 0.3, 0.3, 0.2]) # GC-rich prior 4×3 PWM{DNA, Float64}: A 0.00285965 -6.65535 2.31331 C -0.582103 0.410737 -7.24031 G -0.582103 -7.24031 -7.24031 T 0.9957 1.57827 -6.65535 ``` The ``PWM_{s,j}`` matrix is computed from ``PFM_{s,j}`` and the prior probability ``p(s)`` as follows ([Wasserman2004]): ```math \begin{align} PWM_{s,j} &= \log_2 \frac{p(s,j)}{p(s)} \\ p(s,j) &= \frac{PFM_{s,j}}{\sum_{s'} PFM_{s',j}}. \end{align} ``` However, if you just want to quickly conduct a search, constructing the PFM and PWM is done for you as a convenience if you build a `PWMSearchQuery`, using a collection of sequences: ```jldoctest julia> motifs = [dna"TTA", dna"CTA", dna"ACA", dna"TCA", dna"GTA"] 5-element Vector{LongSequence{DNAAlphabet{4}}}: TTA CTA ACA TCA GTA julia> subject = dna"TATTATAATTA"; julia> qa = PWMSearchQuery(motifs, 1.0); julia> findfirst(qa, subject) 3 julia> findall(qa, subject) 3-element Vector{Int64}: 3 5 9 ``` [Wasserman2004]: https://doi.org/10.1038/nrg1315
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
4808
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Biological symbols The `BioSequences` module reexports the biological symbol (character) types that are provided by [BioSymbols.jl:](https://biojulia.dev/BioSymbols.jl/) | Type | Meaning | | :-------------- | :------------- | | `DNA` | DNA nucleotide | | `RNA` | RNA nucleotide | | `AminoAcid` | Amino acid | These symbols are elements of biological sequence types, just as characters are elements of strings. ## DNA and RNA nucleotides Set of nucleotide symbols in BioSequences covers IUPAC nucleotide base plus a gap symbol: | Symbol | Constant | Meaning | | :----- | :-------------------- | :------------------------- | | 'A' | `DNA_A` / `RNA_A` | A; Adenine | | 'C' | `DNA_C` / `RNA_C` | C; Cytosine | | 'G' | `DNA_G` / `RNA_G` | G; Guanine | | 'T' | `DNA_T` | T; Thymine (DNA only) | | 'U' | `RNA_U` | U; Uracil (RNA only) | | 'M' | `DNA_M` / `RNA_M` | A or C | | 'R' | `DNA_R` / `RNA_R` | A or G | | 'W' | `DNA_W` / `RNA_W` | A or T/U | | 'S' | `DNA_S` / `RNA_S` | C or G | | 'Y' | `DNA_Y` / `RNA_Y` | C or T/U | | 'K' | `DNA_K` / `RNA_K` | G or T/U | | 'V' | `DNA_V` / `RNA_V` | A or C or G; not T/U | | 'H' | `DNA_H` / `RNA_H` | A or C or T; not G | | 'D' | `DNA_D` / `RNA_D` | A or G or T/U; not C | | 'B' | `DNA_B` / `RNA_B` | C or G or T/U; not A | | 'N' | `DNA_N` / `RNA_N` | A or C or G or T/U | | '-' | `DNA_Gap` / `RNA_Gap` | Gap (none of the above) | <https://www.bioinformatics.org/sms/iupac.html> Symbols are accessible as constants with `DNA_` or `RNA_` prefix: ```jldoctest julia> DNA_A DNA_A julia> DNA_T DNA_T julia> RNA_U RNA_U julia> DNA_Gap DNA_Gap julia> typeof(DNA_A) DNA julia> typeof(RNA_A) RNA ``` Symbols can be constructed by converting regular characters: ```jldoctest julia> convert(DNA, 'C') DNA_C julia> convert(DNA, 'C') === DNA_C true ``` ## Amino acids Set of amino acid symbols also covers IUPAC amino acid symbols plus a gap symbol: | Symbol | Constant | Meaning | | :----------- | :-------------- | :-------------------------- | | 'A' | `AA_A` | Alanine | | 'R' | `AA_R` | Arginine | | 'N' | `AA_N` | Asparagine | | 'D' | `AA_D` | Aspartic acid (Aspartate) | | 'C' | `AA_C` | Cysteine | | 'Q' | `AA_Q` | Glutamine | | 'E' | `AA_E` | Glutamic acid (Glutamate) | | 'G' | `AA_G` | Glycine | | 'H' | `AA_H` | Histidine | | 'I' | `AA_I` | Isoleucine | | 'L' | `AA_L` | Leucine | | 'K' | `AA_K` | Lysine | | 'M' | `AA_M` | Methionine | | 'F' | `AA_F` | Phenylalanine | | 'P' | `AA_P` | Proline | | 'S' | `AA_S` | Serine | | 'T' | `AA_T` | Threonine | | 'W' | `AA_W` | Tryptophan | | 'Y' | `AA_Y` | Tyrosine | | 'V' | `AA_V` | Valine | | 'O' | `AA_O` | Pyrrolysine | | 'U' | `AA_U` | Selenocysteine | | 'B' | `AA_B` | Aspartic acid or Asparagine | | 'J' | `AA_J` | Leucine or Isoleucine | | 'Z' | `AA_Z` | Glutamine or Glutamic acid | | 'X' | `AA_X` | Any amino acid | | '*' | `AA_Term` | Termination codon | | '-' | `AA_Gap` | Gap (none of the above) | <https://www.bioinformatics.org/sms/iupac.html> Symbols are accessible as constants with `AA_` prefix: ```jldoctest julia> AA_A AA_A julia> AA_Q AA_Q julia> AA_Term AA_Term julia> typeof(AA_A) AminoAcid ``` Symbols can be constructed by converting regular characters: ```jldoctest julia> convert(AminoAcid, 'A') AA_A julia> convert(AminoAcid, 'P') === AA_P true ``` ## Other functions ```@docs alphabet gap iscompatible isambiguous ```
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
4970
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Indexing & modifying sequences ## Indexing Most `BioSequence` concrete subtypes for the most part behave like other vector or string types. They can be indexed using integers or ranges: For example, with `LongSequence`s: ```jldoctest julia> seq = dna"ACGTTTANAGTNNAGTACC" 19nt DNA Sequence: ACGTTTANAGTNNAGTACC julia> seq[5] DNA_T julia> seq[6:end] 14nt DNA Sequence: TANAGTNNAGTACC ``` The biological symbol at a given locus in a biological sequence can be set using setindex: ```jldoctest julia> seq = dna"ACGTTTANAGTNNAGTACC" 19nt DNA Sequence: ACGTTTANAGTNNAGTACC julia> seq[5] = DNA_A DNA_A ``` !!! note Some types such can be indexed using integers but not using ranges. For `LongSequence` types, indexing a sequence by range creates a copy of the original sequence, similar to `Array` in Julia's `Base` library. If you find yourself slowed down by the allocation of these subsequences, consider using a sequence view instead. ## Modifying sequences In addition to `setindex`, many other modifying operations are possible for biological sequences such as `push!`, `pop!`, and `insert!`, which should be familiar to anyone used to editing arrays. ```@docs push!(::BioSequences.BioSequence, ::Any) pop!(::BioSequences.BioSequence) pushfirst!(::BioSequences.BioSequence, ::Any) popfirst!(::BioSequences.BioSequence) insert!(::BioSequences.BioSequence, ::Integer, ::Any) deleteat!(::BioSequences.BioSequence, ::Integer) append!(::BioSequences.BioSequence, ::BioSequences.BioSequence) resize!(::BioSequences.LongSequence, ::Integer) empty!(::BioSequences.BioSequence) ``` Here are some examples: ```jldoctest julia> seq = dna"ACG" 3nt DNA Sequence: ACG julia> push!(seq, DNA_T) 4nt DNA Sequence: ACGT julia> append!(seq, dna"AT") 6nt DNA Sequence: ACGTAT julia> deleteat!(seq, 2) 5nt DNA Sequence: AGTAT julia> deleteat!(seq, 2:3) 3nt DNA Sequence: AAT ``` ### Additional transformations In addition to these basic modifying functions, other sequence transformations that are common in bioinformatics are also provided. ```@docs reverse!(::BioSequences.LongSequence) reverse(::BioSequences.LongSequence{<:NucleicAcidAlphabet}) complement! complement reverse_complement! reverse_complement ungap! ungap canonical! canonical ``` Some examples: ```jldoctest julia> seq = dna"ACGTAT" 6nt DNA Sequence: ACGTAT julia> reverse!(seq) 6nt DNA Sequence: TATGCA julia> complement!(seq) 6nt DNA Sequence: ATACGT julia> reverse_complement!(seq) 6nt DNA Sequence: ACGTAT ``` Many of these methods also have a version which makes a copy of the input sequence, so you get a modified copy, and don't alter the original sequence. Such methods are named the same, but without the exclamation mark. E.g. `reverse` instead of `reverse!`, and `ungap` instead of `ungap!`. #### Translation Translation is a slightly more complex transformation for RNA Sequences and so we describe it here in more detail. The [`translate`](@ref) function translates a sequence of codons in a RNA sequence to a amino acid sequence based on a genetic code. The `BioSequences` package provides all NCBI defined genetic codes and they are registered in [`ncbi_trans_table`](@ref). ```@docs translate ncbi_trans_table ``` ```jldoctest julia> ncbi_trans_table Translation Tables: 1. The Standard Code (standard_genetic_code) 2. The Vertebrate Mitochondrial Code (vertebrate_mitochondrial_genetic_code) 3. The Yeast Mitochondrial Code (yeast_mitochondrial_genetic_code) 4. The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (mold_mitochondrial_genetic_code) 5. The Invertebrate Mitochondrial Code (invertebrate_mitochondrial_genetic_code) 6. The Ciliate, Dasycladacean and Hexamita Nuclear Code (ciliate_nuclear_genetic_code) 9. The Echinoderm and Flatworm Mitochondrial Code (echinoderm_mitochondrial_genetic_code) 10. The Euplotid Nuclear Code (euplotid_nuclear_genetic_code) 11. The Bacterial, Archaeal and Plant Plastid Code (bacterial_plastid_genetic_code) 12. The Alternative Yeast Nuclear Code (alternative_yeast_nuclear_genetic_code) 13. The Ascidian Mitochondrial Code (ascidian_mitochondrial_genetic_code) 14. The Alternative Flatworm Mitochondrial Code (alternative_flatworm_mitochondrial_genetic_code) 16. Chlorophycean Mitochondrial Code (chlorophycean_mitochondrial_genetic_code) 21. Trematode Mitochondrial Code (trematode_mitochondrial_genetic_code) 22. Scenedesmus obliquus Mitochondrial Code (scenedesmus_obliquus_mitochondrial_genetic_code) 23. Thraustochytrium Mitochondrial Code (thraustochytrium_mitochondrial_genetic_code) 24. Pterobranchia Mitochondrial Code (pterobrachia_mitochondrial_genetic_code) 25. Candidate Division SR1 and Gracilibacteria Code (candidate_division_sr1_genetic_code) ``` <https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=cgencodes>
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
3.1.6
6fdba8b4279460fef5674e9aa2dac7ef5be361d5
docs
2952
```@meta CurrentModule = BioSequences DocTestSetup = quote using BioSequences end ``` # Abstract Types BioSequences exports an abstract `BioSequence` type, and several concrete sequence types which inherit from it. ## The abstract BioSequence BioSequences provides an abstract type called a `BioSequence{A<:Alphabet}`. This abstract type, and the methods and traits is supports, allows for many algorithms in BioSequences to be written as generically as possible, thus reducing the amount of code to read and understand, whilst maintaining high performance when such code is compiled for a concrete BioSequence subtype. Additionally, it allows new types to be implemented that are fully compatible with the rest of BioSequences, providing that key methods or traits are defined). ```@docs BioSequence ``` Some aliases for `BioSequence` are also provided for your convenience: ```@docs NucSeq AASeq ``` Let's have a closer look at some of those methods that a subtype of `BioSequence` must implement. Check out julia base library docs for `length`, `copy` and `resize!`. ```@docs encoded_data_eltype extract_encoded_element encoded_setindex! ``` A correctly defined subtype of `BioSequence` that satisfies the interface, will find the vast majority of methods described in the rest of this manual should work out of the box for that type. But they can always be overloaded if needed. Indeed the `LongSequence` type overloads Indeed some of the generic `BioSequence` methods, are overloaded for `LongSequence`, for example for transformation and counting operations where efficiency gains can be made due to the specific internal representation of a specific type. ## The abstract Alphabet Alphabets control how biological symbols are encoded and decoded. They also confer many of the automatic traits and methods that any subtype of `T<:BioSequence{A<:Alphabet}` will get. ```@docs BioSequences.Alphabet BioSequences.AsciiAlphabet ``` # Concrete types ## Implemented alphabets ```@docs DNAAlphabet RNAAlphabet AminoAcidAlphabet ``` ## Long Sequences ```@docs LongSequence ``` ## Sequence views Similar to how Base Julia offers views of array objects, BioSequences offers view of `LongSequence`s - the `LongSubSeq{A<:Alphabet}`. Conceptually, a `LongSubSeq{A}` is similar to a `LongSequence{A}`, but instead of storing their own data, they refer to the data of a `LongSequence`. Modiying the `LongSequence` will be reflected in the view, and vice versa. If the underlying `LongSequence` is truncated, the behaviour of a view is undefined. For the same reason, some operations are not supported for views, such as resizing. The purpose of `LongSubSeq` is that, since they only contain a pointer to the underlying array, an offset and a length, they are much lighter than `LongSequences`, and will be stack allocated on Julia 1.5 and newer. Thus, the user may construct millions of views without major performance implications.
BioSequences
https://github.com/BioJulia/BioSequences.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
495
push!(LOAD_PATH, "../src/") using Documenter, CJKFrequencies makedocs( sitename="CJKFrequencies.jl Documentation", format=Documenter.HTML( prettyurls=get(ENV, "CI", nothing) == "true" ), modules=[CJKFrequencies], pages=[ "Home" => "index.md", "API Reference" => "api_reference.md", "Developer Docs" => "devdocs.md" ] ) deploydocs( repo = "github.com/tmthyln/CJKFrequencies.jl.git", devbranch = "main", devurl="latest" )
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
253
module CJKFrequencies using LightXML using DataStructures using LazyArtifacts export CJKFrequency, charfreq, SimplifiedLCMC, SimplifiedJunDa, Lexicon, tagged_with include("charfreq.jl") include("frequency_datasets.jl") include("lexicon.jl") end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
3191
""" Accumulator-like data structure for storing frequencies of CJK words (although other tokens can be stored as well). You generally don't need to explicitly call this struct's constructor yourself; rather, use the `charfreq` function. """ struct CJKFrequency{S <: AbstractString, C <: Number} freq::Accumulator{S, C} size::Ref{C} function CJKFrequency(frequencies=Dict{String, Int}()) key_type = eltype(keys(frequencies)) val_type = eltype(values(frequencies)) new{key_type, val_type}(counter(frequencies), Ref(sum(values(frequencies)))) end end # mutation function DataStructures.inc!(cf::CJKFrequency, key, count=1) inc!(cf.freq, key, count) cf.size[] += count end function DataStructures.dec!(cf::CJKFrequency, key, count=1) if key in keys(cf.freq) cf.size[] -= cf.freq[key] - max(0, cf.freq[key] - count) dec!(cf.freq, key, min(count, cf.freq[key])) end end function DataStructures.reset!(cf::CJKFrequency, key) key in keys(cf.freq) && (size[] -= cf.freq[key]) reset!(cf.freq, key) end # collections operations Base.isempty(cf::CJKFrequency) = isempty(cf.freq) function Base.empty!(cf::CJKFrequency) empty!(cf.freq) size = 0 return cf end Base.in(item, cf::CJKFrequency) = in(item, cf.freq) # dictionaries Base.haskey(cf::CJKFrequency, key) = haskey(cf.freq, key) Base.keys(cf::CJKFrequency) = keys(cf.freq) Base.values(cf::CJKFrequency) = values(cf.freq) # indexing Base.getindex(cf::CJKFrequency, i) = getindex(cf.freq, i) Base.firstindex(cf::CJKFrequency) = firstindex(cf.freq) Base.lastindex(cf::CJKFrequency) = lastindex(cf.freq) # iteration Base.iterate(cf::CJKFrequency) = iterate(cf.freq) Base.iterate(cf::CJKFrequency, state) = iterate(cf.freq, state) Base.length(cf::CJKFrequency) = length(cf.freq) Base.size(cf::CJKFrequency) = cf.size[] """ charfreq(text) charfreq(charfreq_type) Create a character frequency mapping from either text or load it from a default location for pre-specified character frequency datasets (e.g. `SimplifiedLCMC`, `SimplifiedJunDa`, etc.). ## Examples When creating a character frequency from text, this method behaves almost exactly like `DataStructures.counter` except that the return value always has type `CharacterFrequency` (`Accumulator{String, Int}`). ```julia-repl julia> text = split("王老师性格内向,沉默寡言,我除在课外活动小组“文学研究会”听过他一次报告,并听-邓知识渊博,是“老师的老师”外,对他一无所知。所以,研读他的作", ""); julia> charfreq(text) CJKFrequency{SubString{String}, Int64}(Accumulator(除 => 1, 报 => 1, 是 => 1, 知 => 2, 并 => 1, 性 => 1, , => 6, 言 => 1, 邓 => 1, 外 => 2, 所 => 2, 对 => 1, 动 => 1, 寡 => 1, 。 => 1, 渊 => 1, 学 => 1, - => 1, 听 => 2, 我 => 1, 次 => 1, 一 => 2, 读 => 1, 作 => 1, 格 => 1, “ => 2, 博 => 1, 课 => 1, 老 => 3, 会 => 1, 告 => 1, 无 => 1, 活 => 1, 组 => 1, 内 => 1, 师 => 3, 的 => 2, 小 => 1, 文 => 1, 默 => 1, 究 => 1, 过 => 1, 在 => 1, 以 => 1, ” => 2, 研 => 2, 他 => 3, 向 => 1, 沉 => 1, 王 => 1), Base.RefValue{Int64}(71)) ``` See the documentation for individual character frequency dataset structs for examples of the second case. """ function charfreq end charfreq(tokens) = CJKFrequency(counter(tokens)) charfreq(text::AbstractString) = CJKFrequency(counter(split(text, "")))
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
4679
#==============================================================================# #= Simplified LCMC =# #==============================================================================# const LCMC_CATEGORIES = Dict( 'A' => "Press: reportage", 'B' => "Press: editorials", 'C' => "Press: reviews", 'D' => "Religion", 'E' => "Skills, trades and hobbies", 'F' => "Popular lore", 'G' => "Biographies and essays", 'H' => "Miscellaneous: reports and official documents", 'J' => "Science: academic prose", 'K' => "General fiction", 'L' => "Mystery and detective fiction", 'M' => "Science fiction", 'N' => "Adventure and martial arts fiction", 'P' => "Romantic fiction", 'R' => "Humour") """ SimplifiedLCMC([categories]) A character frequency dataset: Lancaster Corpus for Mandarin Chinese, simplified terms only, based on simplified text corpus. See their [website](https://www.lancaster.ac.uk/fass/projects/corpus/LCMC/default.htm) for more details about the corpus. The character frequency can be based only on selected categories (see `CJKFrequencies.LCMC_CATEGORIES` for valid category keys and corresponding category names). Any invalid categories will be ignored. ## Examples Loading all the categories: ```julia-repl julia> charfreq(SimplifiedLCMC()) DataStructures.Accumulator{String,Int64} with 45411 entries: "一路… => 1 "舍得" => 9 "58" => 1 "神农… => 1 "十点" => 8 "随从" => 9 "荡心… => 1 "尺码" => 1 ⋮ => ⋮ ``` Or loading just a subset (argument can be any iterable): ```julia-repl julia> charfreq(SimplifiedLCMC("ABEGKLMNR")) DataStructures.Accumulator{String,Int64} with 35488 entries: "废… => 1 "蜷" => 1 "哇" => 13 "丰… => 1 "弊… => 3 "议… => 10 "滴" => 28 "美… => 1 ⋮ => ⋮ ``` ## Licensing/Copyright Note: This corpus has some conflicting licensing information, depending on who is supplying the data. The original corpus is provided primarily for non-profit-making research. Be sure to see the full [end user license agreement](https://www.lancaster.ac.uk/fass/projects/corpus/LCMC/lcmc/lcmc_license.htm). Via the [Oxford Text Archive](https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2474), this corpus is distributed under the [CC BY-NC-SA 3.0](http://creativecommons.org/licenses/by-nc-sa/3.0/) license. """ struct SimplifiedLCMC categories::Set{Char} function SimplifiedLCMC(cats) lcmc = new(Set{String}()) for cat in cats haskey(LCMC_CATEGORIES, cat) && push!(lcmc.categories, cat) end lcmc end SimplifiedLCMC() = new(keys(LCMC_CATEGORIES)) end function charfreq(lcmc::SimplifiedLCMC) cf = CJKFrequency() for cat in lcmc.categories filename = joinpath(artifact"lcmc", "LCMC_$(cat).XML") doc = parse_file(filename) _words_from_xml(root(doc), cf) end cf end function _words_from_xml(xml_elem, accum) for c in child_nodes(xml_elem) if name(c) == "w" inc!(accum, content(c)) else _words_from_xml(c, accum) end end end #==============================================================================# #= Simplified Jun Da =# #==============================================================================# """ SimplifiedJunDa() A character frequency [dataset](https://lingua.mtsu.edu/chinese-computing/) of modern Chinese compiled by Jun Da, simplified single-character words only. Currently, only the modern Chinese dataset is fetched; however, in the future, the other lists may also be provided as an option. ## Examples ```julia-repl julia> charfreq(SimplifiedJunDa()) DataStructures.Accumulator{String,Int64} with 9932 entries: "蜷… => 837 "哇… => 4055 "湓… => 62 "滴… => 8104 "堞… => 74 "狭… => 6901 "尚… => 38376 "懈… => 2893 ⋮ => ⋮ ``` ## Licensing/Copyright The original author maintains full copyright to the character frequency lists, but provides the lists for research and teaching/learning purposes only, no commercial use without permission from the author. See their full disclaimer and copyright notice [here](https://lingua.mtsu.edu/chinese-computing/copyright.html). """ struct SimplifiedJunDa end function charfreq(::SimplifiedJunDa) cf = CJKFrequency() pattern = r"^\d+\s+(\w)\s+(\d+)\s+\d+(?:\.\d+)\s+.+$" for line in eachline(joinpath(artifact"junda", "freq.txt")) m = match(pattern, line) m !== nothing && inc!(cf, m.captures[1], Base.parse(Int, m.captures[2])) end cf end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
2183
struct Lexicon words::Dict{String, Set{String}} tags::Set{String} end """ Lexicon() Lexicon(io_or_filename) Lexicon(words) Construct a lexicon. It can be empty (no parameters) or created from some IO-like object or a sequence/iterable of words. A lexicon is a list of (known) words, each of which can be tagged with various tags (e.g. indicating how it is known, etc.). """ function Lexicon end Lexicon(words) = Lexicon(Dict(word => Set{String}() for word in words), Set{String}()) Lexicon() = Lexicon(Dict{String, Set{String}}(), Set{String}()) function Lexicon(io::Union{IO, AbstractString}) lex = Lexicon() for line in eachline(io) char, tag_string = split(line, ":") tags = split(tag_string, ",") push!(lex, char; tags=tags) end lex end Base.length(lex::Lexicon) = length(lex.words) Base.in(item, lex::Lexicon) = haskey(lex.words, item) Base.getindex(lex::Lexicon, index) = getindex(lex.words, index) Base.print(io::IO, lex::Lexicon) = for (word, tags) in lex.words println(io, "$word:$(join(tags, ","))") end function Base.push!(lex::Lexicon, words...; tags=()) for word in words haskey(lex.words, word) || (lex.words[word] = Set{String}()) for tag in tags push!(lex.words[word], tag) end end for tag in tags push!(lex.tags, tag) end nothing end tagged_with(lex::Lexicon, tag) = [word for (word, tags) in lex.words if tag in tags] """ coverage(lexicon, charfreq) coverage(lexicon, text) Compute a lexicon's coverage of a text (possibly via a precomputed character frequency dictionary). Both token and type coverage are provided. """ function coverage(lex::Lexicon, cf::Accumulator) known_tokens, total_tokens, known_types, total_types = 0, 0, 0, length(lex) for (char, freq) in cf if char in lex known_tokens += freq known_types += 1 end total_tokens += freq total_types += 1 end (char_coverage=Float(known_tokens)/total_tokens, type_coverage=Float(known_types)/total_types) end coverage(lex::Lexicon, text) = coverage(charfreq(text), lex)
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
580
@testset "char freq from text" begin test_text = "十七道身影,十七道白色的身影,宛如星丸跳跃一般从山腰处朝山顶方向而来,这十七道身影的主人,年纪最小的也超过了五旬,一个个神色凝重,他们身穿的白袍代表的是内门,而胸前那金色的唐字则是唐门长老的象征。" cf = charfreq(test_text) @test "十" in keys(cf) && cf["十"] == 3 @test length(cf) == 65 end @testset "char freq from iterable" begin tokens = ["a", "b", "a", "c", "b", "a", "c", "b", "a"] cf = charfreq(tokens) @test "a" in keys(cf) && cf["a"] == 4 @test "b" in keys(cf) && cf["b"] == 3 @test "c" in keys(cf) && cf["c"] == 2 @test length(cf) == 3 @test size(cf) == length(tokens) end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
238
@testset "load lcmc w/ no errors" begin lcmc_cf = charfreq(SimplifiedLCMC()) @test length(lcmc_cf) != 0 end @testset "load junda w/ no errors" begin junda_cf = charfreq(SimplifiedJunDa()) @test length(junda_cf) != 0 end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
2291
@testset "lexicon plain text IO" begin # test basic lexicon reading @testset "basic lexicon reading" begin lex = Lexicon("res/lexicon-0.txt") for elem in ["word", "tagless", "target", "lexicon", "pencil", "pen", "manytags"] @test elem in lex end for elem in ["word", "target", "pencil", "pen"] @test elem in tagged_with(lex, "tag2") end for elem in ["tagless", "lexicon", "manytags"] @test !(elem in tagged_with(lex, "tag2")) end for tag in ["tag1", "tag2", "meta", "unique", "tag", "another", "more", "evenmore", "lots", "toomany"] @test tag in lex.tags end for tag in ["tag", "another", "more", "evenmore", "lots", "toomany"] @test tag in lex["manytags"] end end # words and tags with special characters @testset "reading lexicons with special chars" begin lex = Lexicon("res/lexicon-1.txt") for elem in ["with space", "with,comma", "multipart,sentence with both", "word"] @test elem in lex end for tag in ["symbol", "whitespace"] @test tag in lex["multipart,sentence with both"] end @test "spaced tag" in lex["word"] @test !("spaced" in lex["word"]) @test !("tag" in lex["word"]) end # writing and reading a lexicon from file @testset "lexicon writing and reading" begin lex = Lexicon() push!(lex, "command", "exception", "ide", tags=("computer",)) push!(lex, "don't know where this word comes from") push!(lex, "pencil", tags=("stationary",)) push!(lex, "two category item", tags=("category1", "category2")) file = IOBuffer() println(file, lex) read_lex = Lexicon(file) for elem in ["command", "exception", "ide", "pencil"] @test elem in lex end for tag in ["category1", "category2"] @test tag in lex["two category item"] end @test "stationary" in lex["pencil"] for elem in ["command", "exception", "ide"] @test "computer" in lex[elem] end end end @testset "lexicon IO (other formats)" begin end @testset "coverage under lexicon" begin end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
code
168
using CJKFrequencies using Test @testset "all tests" begin include("charfreq_tests.jl") include("freq_datasets_tests.jl") include("lexicon_tests.jl") end
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
docs
969
# CJKFrequencies.jl ![Unit Tests](https://github.com/tmthyln/CJKFrequencies.jl/workflows/Unit%20Tests/badge.svg) [![Documentation](https://github.com/tmthyln/CJKFrequencies.jl/workflows/Documentation/badge.svg)](https://tmthyln.github.io/CJKFrequencies.jl/latest/) ![Nightly Tests](https://github.com/tmthyln/CJKFrequencies.jl/workflows/Nightly%20Tests/badge.svg) A Julia package that provides some convenience functions for working with character/term frequencies of CJK language corpora (currently only implemented for specific Chinese frequency datasets, but see the docs for how to add more). See the [documentation](https://tmthyln.github.io/CJKFrequencies.jl/latest/) for more details. # Licensing The package is provided under the MIT License, but the associated data used to load different character frequencies are licensed under various other licenses, depending on the source of the data. See the documentation for details on licensing for each data set.
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
docs
562
# API Reference A character frequency can be computed or loaded via the `charfreq` function, either from some text or a predefined corpus. ```@docs charfreq ``` ## Supported Predefined Character Frequency Datasets A Chinese character frequency dataset's `struct`'s name will be prefixed with either `Traditional` or `Simplified` depending on whether it is based on a traditional or simplified text corpus. ```@docs SimplifiedLCMC SimplifiedJunDa ``` Other data sets are planned to be added. To add a data set to this API, see the [Developer Docs](@ref) page.
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
docs
578
# Developer Docs To add a new character frequency dataset using this API, a method just needs to be added to the `charfreq` function. It should have the signature ```julia function charfreq(cf::CustomDataSetStruct)::CharacterFrequency end ``` where the `CustomDataSetStruct` is any struct that you define for that particular character frequency data set. If needed, the constructor for the struct should take any arguments (e.g. see [`SimplifiedLCMC`](@ref) for an example with arguments). The return value should have type `CharacterFrequency` (`Accumulator{String, Int}`).
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
0.2.0
49b02f1e6a54e4397720f84e95386e7eabb4ca71
docs
451
# CJKFrequencies.jl Documentation This package primarily provides the function `charfreq` for computing and loading character frequencies of CJK-like languages. Note that while the source code for this package is MIT-licensed, some of the character frequency datasets are not. The licensing/copyright information for each dataset is listed under the respective `struct` on [Supported Predefined Character Frequency Datasets](@ref). ```@contents ```
CJKFrequencies
https://github.com/JuliaCJK/CJKFrequencies.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
1582
using Pkg, Downloads, TreeArchival, SHA, Base.BinaryPlatforms root_url = "https://github.com/dbhi/qus/releases/download/v0.0.11-v7.1%2Bdfsg-2--bpo11%2B3" qemu_host_maps = ( "x86_64" => "amd64", "aarch64" => "arm64v8", "armv7l" => "arm32v7", "ppc64le" => "ppc64le", ) qemu_target_arch_list = [ "x86_64", "i386", "aarch64", "arm", "ppc64le", ] for (host_arch, tarball_arch) in qemu_host_maps for target_arch in qemu_target_arch_list # First, download the tarball mktempdir() do dir url = "$(root_url)/qemu-$(target_arch)-static_$(tarball_arch).tgz" file_path = joinpath(dir, basename(url)) Downloads.download(url, file_path) # Get the tarball and tree hashes tarball_hash = bytes2hex(open(SHA.sha256, file_path)) tree_hash = Base.SHA1(TreeArchival.treehash(file_path)) artifacts_toml = Pkg.Artifacts.find_artifacts_toml(dirname(@__DIR__)) # Because this is technically a static executable, we drop the implicit `libc` constraint # so that it matches both `glibc` and `musl` hosts: host_platform = Platform(host_arch, "linux") delete!(tags(host_platform), "libc") Pkg.Artifacts.bind_artifact!( artifacts_toml, "qemu-$(target_arch)", tree_hash; platform=host_platform, download_info=[(url, tarball_hash)], lazy=true, force=true, ) end end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
1377
#!/usr/bin/env julia using Sandbox, Pkg.Artifacts, Scratch, SHA, ghr_jll if isempty(ARGS) println("Usage: julia --project build_docker_image.jl <dir>") println(" Where <dir> is something like `debian-julia-python3`") end image_name = ARGS[1] run(`docker build -t $(image_name) $(image_name)`) artifact_hash = create_artifact() do dir @info("Building $(image_name)") Sandbox.export_docker_image(image_name, dir; verbose=true) @info("Hashing") end # Write out to a file tarball_path = joinpath(@get_scratch!("archived"), "$(image_name).tar.gz") @info("Archiving out to $(tarball_path)") archive_artifact(artifact_hash, tarball_path) # Hash the tarball @info("Hashing tarball") tarball_hash = open(io -> bytes2hex(sha256(io)), tarball_path) # Upload to `staticfloat/Sandbox.jl`, create a tag based on this docker image tag_name = "$(image_name)-$(bytes2hex(artifact_hash.bytes[end-3:end]))" @info("Uploading to staticfloat/Sandbox.jl@$(tag_name)") run(`$(ghr_jll.ghr()) -replace $(tag_name) $(tarball_path)`) # Bind it into `Artifacts.toml` tarball_url = "https://github.com/staticfloat/Sandbox.jl/releases/download/$(tag_name)/$(basename(tarball_path))" bind_artifact!( joinpath(dirname(@__DIR__), "Artifacts.toml"), "$(image_name)-rootfs", artifact_hash; download_info=[(tarball_url, tarball_hash)], lazy=true, force=true, )
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
2343
using Pkg.Artifacts, SHA, Scratch, ghr_jll, Base.BinaryPlatforms, Downloads, TreeArchival ## Download and create our `multiarch-testing` artifact, which contains HelloWorldC_jll for all our architectures. HWC_version = v"1.3.0+0" HWC_platforms = ( Platform("x86_64", "linux"; libc="glibc"), Platform("x86_64", "linux"; libc="musl"), Platform("i686", "linux"; libc="glibc"), Platform("i686", "linux"; libc="musl"), Platform("aarch64", "linux"; libc="glibc"), Platform("aarch64", "linux"; libc="musl"), Platform("armv7l", "linux"; libc="glibc"), Platform("armv7l", "linux"; libc="musl"), Platform("powerpc64le", "linux"; libc="glibc"), # We don't have this one yet #Platform("powerpc64le", "linux"; libc="musl"), ) artifact_hash = create_artifact() do dir for platform in HWC_platforms url = "https://github.com/JuliaBinaryWrappers/HelloWorldC_jll.jl/releases/download/HelloWorldC-v$(HWC_version)/HelloWorldC.v$(HWC_version.major).$(HWC_version.minor).$(HWC_version.patch).$(triplet(platform)).tar.gz" mktempdir() do temp_dir tarball_path = joinpath(temp_dir, basename(url)) Downloads.download(url, tarball_path) TreeArchival.unarchive(tarball_path, joinpath(temp_dir, "out")) try mv(joinpath(temp_dir, "out", "bin", "hello_world"), joinpath(dir, "hello_world.$(triplet(platform))")) catch end end end end @info("Archiving") tarball_path = joinpath(@get_scratch!("archived"), "multiarch-testing.tar.gz") archive_artifact(artifact_hash, tarball_path) # Hash the tarball @info("Hashing tarball") tarball_hash = open(io -> bytes2hex(sha256(io)), tarball_path) # Upload it to `staticfloat/Sandbox.jl` tag_name = "multiarch-testing-$(bytes2hex(artifact_hash.bytes[end-3:end]))" @info("Uploading to staticfloat/Sandbox.jl@$(tag_name)") run(`$(ghr_jll.ghr()) -replace $(tag_name) $(tarball_path)`) tarball_url = "https://github.com/staticfloat/Sandbox.jl/releases/download/$(tag_name)/$(basename(tarball_path))" # Bind it into our Artifacts.toml (advertising support for both glibc and musl) bind_artifact!( joinpath(@__DIR__, "..", "Artifacts.toml"), "multiarch-testing", artifact_hash; download_info=[(tarball_url, tarball_hash)], force=true, lazy=true, )
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
2775
#!/usr/bin/env julia # This is an example invocation of `debootstrap` to generate a Debian/Ubuntu-based rootfs using Scratch, Tar, Pkg, Pkg.Artifacts, ghr_jll, SHA if Sys.which("debootstrap") === nothing error("Must install `debootstrap`!") end # Utility functions getuid() = ccall(:getuid, Cint, ()) getgid() = ccall(:getgid, Cint, ()) artifact_hash = create_artifact() do rootfs release = "buster" @info("Running debootstrap") run(`sudo debootstrap --variant=minbase --include=locales $(release) "$(rootfs)"`) # Remove special `dev` files @info("Cleaning up `/dev`") for f in readdir(joinpath(rootfs, "dev"); join=true) # Keep the symlinks around (such as `/dev/fd`), as they're useful if !islink(f) run(`sudo rm -rf "$(f)"`) end end # take ownership of the entire rootfs @info("Chown'ing rootfs") run(`sudo chown $(getuid()):$(getgid()) -R "$(rootfs)"`) # Write out a reasonable default resolv.conf open(joinpath(rootfs, "etc", "resolv.conf"), write=true) do io write(io, """ nameserver 1.1.1.1 nameserver 8.8.8.8 nameserver 8.8.4.4 nameserver 4.4.4.4 """) end # Remove `_apt` user so that `apt` doesn't try to `setgroups()` @info("Removing `_apt` user") open(joinpath(rootfs, "etc", "passwd"), write=true, read=true) do io filtered_lines = filter(l -> !startswith(l, "_apt:"), readlines(io)) truncate(io, 0) seek(io, 0) for l in filtered_lines println(io, l) end end # Set up the one true locale @info("Setting up UTF-8 locale") open(joinpath(rootfs, "etc", "locale.gen"), "a") do io println(io, "en_US.UTF-8 UTF-8") end @info("Regenerating locale") run(`sudo chroot --userspec=$(getuid()):$(getgid()) $(rootfs) locale-gen`) @info("Done!") end # Archive it into a `.tar.gz` file @info("Archiving") tarball_path = joinpath(@get_scratch!("archived"), "debian_minimal.tar.gz") archive_artifact(artifact_hash, tarball_path) # Hash the tarball @info("Hashing tarball") tarball_hash = open(io -> bytes2hex(sha256(io)), tarball_path) # Upload it to `staticfloat/Sandbox.jl` tag_name = "debian-minimal-$(bytes2hex(artifact_hash.bytes[end-3:end]))" @info("Uploading to staticfloat/Sandbox.jl@$(tag_name)") run(`$(ghr_jll.ghr()) -replace $(tag_name) $(tarball_path)`) # Bind this artifact into our Artifacts.toml tarball_url = "https://github.com/staticfloat/Sandbox.jl/releases/download/$(tag_name)/$(basename(tarball_path))" bind_artifact!( joinpath(dirname(@__DIR__), "Artifacts.toml"), "debian-minimal-rootfs", artifact_hash; download_info=[(tarball_url, tarball_hash)], lazy=true, force=true, )
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
653
using Pkg, Scratch, Preferences # Use `cc` to build `sandbox.c` into a scratch space owned by `Sandbox` sandbox_uuid = Base.UUID("9307e30f-c43e-9ca7-d17c-c2dc59df670d") sdir = get_scratch!(sandbox_uuid, "local_sandbox") run(`make -C $(@__DIR__) -j$(Sys.CPU_THREADS) bindir=$(sdir)`) # Tell UserNSSandbox_jll to load our `sandbox` instead of the default artifact one jll_uuid = Base.UUID("b88861f7-1d72-59dd-91e7-a8cc876a4984") set_preferences!( jll_uuid, "sandbox_path" => joinpath(sdir, "userns_sandbox"); force=true, ) set_preferences!( jll_uuid, "overlay_probe_path" => joinpath(sdir, "userns_overlay_probe"); force=true, )
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
209
using Documenter, Sandbox makedocs( modules = [Sandbox], sitename = "Sandbox.jl", ) deploydocs( repo = "github.com/staticfloat/Sandbox.jl.git", push_preview = true, devbranch = "main", )
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
13048
using Random, Tar import Tar_jll Base.@kwdef mutable struct DockerExecutor <: SandboxExecutor label::String = Random.randstring(10) privileges::Symbol = :privileged end function docker_exe() return load_env_pref( "SANDBOX_DOCKER_EXE", "docker_exe", something(Sys.which.(("docker", "podman"))..., Some(nothing)), ) end function cleanup(exe::DockerExecutor) success(`$(docker_exe()) system prune --force --filter=label=$(docker_image_label(exe))`) end Base.show(io::IO, exe::DockerExecutor) = write(io, "Docker Executor") function executor_available(::Type{DockerExecutor}; verbose::Bool = false) # don't even try to exec if it doesn't exist if docker_exe() === nothing if verbose @info("No `docker` or `podman` command found; DockerExecutor unavailable") end return false end # Return true if we can `docker ps`; if we can't, then there's probably a permissions issue if !success(`$(docker_exe()) ps`) if verbose @warn("Unable to run `$(docker_exe()) ps`; perhaps you're not in the `docker` group?") end return false end return with_executor(DockerExecutor) do exe return probe_executor(exe; verbose) end end timestamps_path() = joinpath(@get_scratch!("docker_timestamp_hashes"), "path_timestamps.toml") function load_timestamps() path = timestamps_path() if !isfile(path) return Dict() end try return TOML.parsefile(path) catch e @error("couldn't load $(path)", exception=e) return Dict() end end function save_timestamp(image_name::String, timestamp::Float64) timestamps_toml = entry = sprint() do io timestamps = load_timestamps() timestamps[image_name] = timestamp TOML.print(io, timestamps) end open(timestamps_path(), write=true) do io write(io, timestamps_toml) end end function docker_image_name(paths::Dict{String,String}, uid::Cint, gid::Cint) hash = foldl(⊻, vcat(Base._crc32c.(keys(paths))..., Base._crc32c.(values(paths)))) return "sandbox_rootfs:$(string(hash, base=16))-$(uid)-$(gid)" end docker_image_label(exe::DockerExecutor) = string("org.julialang.sandbox.jl=", exe.label) function should_build_docker_image(paths::Dict{String,String}, uid::Cint, gid::Cint) # If the image doesn't exist at all, always return true image_name = docker_image_name(paths, uid, gid) if !success(`$(docker_exe()) image inspect $(image_name)`) return true end # If this image has been built before, compare its historical timestamp to the current one prev_ctime = get(load_timestamps(), image_name, 0.0) return any(max_directory_ctime(path) > prev_ctime for path in values(paths)) end """ build_docker_image(root_path::String) Docker doesn't like volume mounts within volume mounts, like we do with `sandbox`. So we do things "the docker way", where we construct a rootfs docker image, then mount things on top of that, with no recursive mounting. We cut down on unnecessary work somewhat by quick-scanning the directory for changes and only rebuilding if changes are detected. """ function build_docker_image(mounts::Dict, uid::Cint, gid::Cint; verbose::Bool = false) overlayed_paths = Dict(path => m.host_path for (path, m) in mounts if m.type == MountType.Overlayed) image_name = docker_image_name(overlayed_paths, uid, gid) if should_build_docker_image(overlayed_paths, uid, gid) max_ctime = maximum(max_directory_ctime(path) for path in values(overlayed_paths)) if verbose @info("Building docker image $(image_name) with max timestamp 0x$(string(round(UInt64, max_ctime), base=16))") end # We're going to tar up all Overlayed mounts, using `--transform` to convert our host paths # to the required destination paths. tar_cmds = String[] append!(tar_cmds, ["--transform=s&$(host[2:end])&$(dst[2:end])&" for (dst, host) in overlayed_paths]) append!(tar_cmds, [host for (_, host) in overlayed_paths]) # Build the docker image open(`$(docker_exe()) import - $(image_name)`, "w", verbose ? stdout : devnull) do io # We need to record permissions, and therefore we cannot use Tar.jl. # Some systems (e.g. macOS) ship with a BSD tar that does not support the # `--owner` and `--group` command-line options. Therefore, if Tar_jll is # available, we use the GNU tar provided by Tar_jll. If Tar_jll is not available, # we fall back to the system tar. tar = Tar_jll.is_available() ? Tar_jll.tar() : `tar` run(pipeline( `$(tar) -c --owner=$(uid) --group=$(gid) $(tar_cmds)`, stdout=io, stderr=verbose ? stderr : devnull, )) end # Record that we built it save_timestamp(image_name, max_ctime) end return image_name end function commit_previous_run(exe::DockerExecutor, image_name::String) ids = split(readchomp(`$(docker_exe()) ps -a --filter label=$(docker_image_label(exe)) --format "{{.ID}}"`)) if isempty(ids) return image_name end # We'll take the first docker container ID that we get, as its the most recent, and commit it. image_name = "sandbox_rootfs_persist:$(first(ids))" run(`$(docker_exe()) commit $(first(ids)) $(image_name)`) return image_name end function build_executor_command(exe::DockerExecutor, config::SandboxConfig, user_cmd::Cmd) # Build the docker image that corresponds to this rootfs image_name = build_docker_image(config.mounts, config.uid, config.gid; verbose=config.verbose) if config.persist # If this is a persistent run, check to see if any previous runs have happened from # this executor, and if they have, we'll commit that previous run as a new image and # use it instead of the "base" image. image_name = commit_previous_run(exe, image_name) end # Begin building `docker` args if exe.privileges === :privileged # this is the default # pros: allows you to do nested execution. e.g. the ability to run `Sandbox` inside `Sandbox` # cons: may allow processes inside the Docker container to access secure environment variables of processes outside the container privilege_args = String["--privileged"] elseif exe.privileges === :no_new_privileges # pros: may prevent privilege escalation attempts # cons: you won't be able to do nested execution privilege_args = String["--security-opt", "no-new-privileges"] elseif exe.privileges === :unprivileged # cons: you won't be able to do nested execution; privilege escalation may still work privilege_args = String[] else throw(ArgumentError("invalid value for exe.privileges: $(exe.privileges)")) end cmd_string = String[docker_exe(), "run", privilege_args..., "-i", "--label", docker_image_label(exe)] # If we're doing a fully-interactive session, tell it to allocate a psuedo-TTY if all(isa.((config.stdin, config.stdout, config.stderr), Base.TTY)) push!(cmd_string, "-t") end # Start in the right directory append!(cmd_string, ["-w", config.pwd]) # Add in read-only mappings (skipping the rootfs) overlay_mappings = String[] for (sandbox_path, mount_info) in config.mounts if sandbox_path == "/" continue end local mount_type_str if mount_info.type == MountType.ReadOnly mount_type_str = ":ro" elseif mount_info.type == MountType.Overlayed continue elseif mount_info.type == MountType.ReadWrite mount_type_str = "" else throw(ArgumentError("Unknown mount type: $(mount_info.type)")) end append!(cmd_string, ["-v", "$(mount_info.host_path):$(sandbox_path)$(mount_type_str)"]) end # Apply environment mappings, first from `config`, next from `user_cmd`. for (k, v) in config.env append!(cmd_string, ["-e", "$(k)=$(v)"]) end if user_cmd.env !== nothing for pair in user_cmd.env append!(cmd_string, ["-e", pair]) end end # Add in entrypoint, if it is set if config.entrypoint !== nothing append!(cmd_string, ["--entrypoint", config.entrypoint]) end if config.hostname !== nothing append!(cmd_string, ["--hostname", config.hostname]) end # For each platform requested by `multiarch`, ensure its matching interpreter is registered, # but only if we're on Linux. If we're on some other platform, like macOS where Docker is # implemented with a virtual machine, we just trust the docker folks to have set up the # relevant `binfmt_misc` mappings properly. if Sys.islinux() register_requested_formats!(config.multiarch_formats; verbose=config.verbose) end # Set the user and group append!(cmd_string, ["--user", "$(config.uid):$(config.gid)"]) # Finally, append the docker image name user-requested command string push!(cmd_string, image_name) append!(cmd_string, user_cmd.exec) docker_cmd = Cmd(cmd_string) # If the user has asked that this command be allowed to fail silently, pass that on if user_cmd.ignorestatus docker_cmd = ignorestatus(docker_cmd) end return docker_cmd end sanitize_key(name) = replace(name, ':' => '-') """ export_docker_image(image::String, output_dir::String = <default scratch location>; verbose::Bool = false, force::Bool = false) Exports the given docker image name to the requested output directory. Useful for pulling down a known good rootfs image from Docker Hub, for future use by Sandbox executors. If `force` is set to true, will overwrite a pre-existing directory, otherwise will silently return. """ function export_docker_image(image_name::String, output_dir::String = @get_scratch!("docker-$(sanitize_key(image_name))"); force::Bool = false, verbose::Bool = false) if ispath(output_dir) && !isempty(readdir(output_dir)) if force rmdir(output_dir; force=true, recursive=true) else if verbose @warn("Will not overwrite pre-existing directory $(output_dir)") end return output_dir end end # Get a container ID ready to be passed to `docker export` container_id = readchomp(`$(docker_exe()) create $(image_name) /bin/true`) # Get the ID of that container (since we can't export by label, sadly) if isempty(container_id) if verbose @warn("Unable to create conatiner based on $(image_name)") end return nothing end # Export the container filesystem to a directory try mkpath(output_dir) open(`$(docker_exe()) export $(container_id)`) do tar_io Tar.extract(tar_io, output_dir) do hdr # Skip known troublesome files return hdr.type ∉ (:chardev,) end end finally run(`$(docker_exe()) rm -f $(container_id)`) end return output_dir end """ pull_docker_image(image::String, output_dir::String = <default scratch location>; platform::String = "", verbose::Bool = false, force::Bool = false) Pulls and saves the given docker image name to the requested output directory. Useful for pulling down a known good rootfs image from Docker Hub, for future use by Sandbox executors. If `force` is set to true, will overwrite a pre-existing directory, otherwise will silently return. Optionally specify the platform of the image with `platform`. """ function pull_docker_image(image_name::String, output_dir::String = @get_scratch!("docker-$(sanitize_key(image_name))"); platform::Union{String,Nothing} = nothing, force::Bool = false, verbose::Bool = false) if ispath(output_dir) && !isempty(readdir(output_dir)) if force rmdir(output_dir; force=true, recursive=true) else if verbose @warn("Will not overwrite pre-existing directory $(output_dir)") end return output_dir end end # Pull the latest version of the image try p = platform === nothing ? `` : `--platform $(platform)` run(`$(docker_exe()) pull $(p) $(image_name)`) catch e @warn("Cannot pull", image_name, e) return nothing end # Once the image is pulled, export it to given output directory return export_docker_image(image_name, output_dir; force, verbose) end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
8309
module Sandbox using Preferences, Scratch, LazyArtifacts, TOML, Libdl import Base: run, success export SandboxExecutor, DockerExecutor, UserNamespacesExecutor, SandboxConfig, preferred_executor, executor_available, probe_executor, run, cleanup, with_executor using Base.BinaryPlatforms # Include some utilities for things like file manipulation, uname() parsing, etc... include("utils.jl") """ SandboxExecutor This represents the base type for all execution backends within this package. Valid concrete subtypes must implement at least the following methods: * `T()`: no-argument constructor to ready an execution engine with all defaults. * `executor_available(::DataType{T})`: Checks whether executor type `T` is available on this system. For example, `UserNamespacesExecutor`s are only available on Linux, and even then only on certain kernels. Availablility checks may run a program to determine whether that executor is actually available. * `build_executor_command(exe::T, config::SandboxConfig, cmd::Cmd)`: Builds the `Cmd` object that, when run, executes the user's desired command within the given sandbox. The `config` object contains all necessary metadata such as shard mappings, environment variables, `stdin`/`stdout`/`stderr` redirection, etc... * `cleanup(exe::T)`: Cleans up any persistent data storage that this executor may have built up over the course of its execution. Note that while you can manually construct and cleanup an executor, it is recommended that users instead make use of the `with_executor()` convenience function: with_executor(UnprivilegedUserNamespacesExecutor) do exe run(exe, config, ...) end """ abstract type SandboxExecutor; end # Utilities to help with reading `binfmt_misc` entries in `/proc` include("binfmt_misc.jl") # Our SandboxConfig object, defining the environment sandboxed executions happen within include("SandboxConfig.jl") # Load the Docker executor include("Docker.jl") # Load the UserNamespace executor include("UserNamespaces.jl") all_executors = Type{<:SandboxExecutor}[ # We always prefer the UserNamespaces executor, if we can use it, # and the unprivileged one most of all. Only after that do we try `docker`. UnprivilegedUserNamespacesExecutor, PrivilegedUserNamespacesExecutor, DockerExecutor, ] function select_executor(verbose::Bool) # If `FORCE_SANDBOX_MODE` is set, we're a nested Sandbox.jl invocation, and we should always use whatever it says executor = load_env_pref("FORCE_SANDBOX_MODE", "executor", nothing) if executor !== nothing executor = lowercase(executor) if executor ∈ ("unprivilegedusernamespacesexecutor", "unprivileged", "userns") return UnprivilegedUserNamespacesExecutor elseif executor ∈ ("privilegedusernamespacesexecutor", "privileged") return PrivilegedUserNamespacesExecutor elseif executor ∈ ("dockerexecutor", "docker") return DockerExecutor end end # Otherwise, just try them in priority order for executor in all_executors if executor_available(executor; verbose) return executor end end error("Could not find any available executors for $(triplet(HostPlatform()))!") end _preferred_executor = nothing const _preferred_executor_lock = ReentrantLock() function preferred_executor(;verbose::Bool = false) lock(_preferred_executor_lock) do # If we've already asked this question, return the old answer global _preferred_executor if _preferred_executor === nothing _preferred_executor = select_executor(verbose) end return _preferred_executor end end # Helper function for warning about privileged execution trying to invoke `sudo` function warn_priviledged(::PrivilegedUserNamespacesExecutor) @info("Running privileged container via `sudo`, may ask for your password:", maxlog=1) return nothing end warn_priviledged(::SandboxExecutor) = nothing for f in (:run, :success) @eval begin function $f(exe::SandboxExecutor, config::SandboxConfig, user_cmd::Cmd) # Because Julia 1.8+ closes IOBuffers like `stdout` and `stderr`, we create temporary # IOBuffers that get copied over to the persistent `stdin`/`stdout` after the run is complete. temp_stdout = isa(config.stdout, IOBuffer) ? IOBuffer() : config.stdout temp_stderr = isa(config.stderr, IOBuffer) ? IOBuffer() : config.stderr cmd = pipeline(build_executor_command(exe, config, user_cmd); config.stdin, stdout=temp_stdout, stderr=temp_stderr) if config.verbose @info("Running sandboxed command", user_cmd.exec) end warn_priviledged(exe) ret = $f(cmd) # If we were using temporary IOBuffers, write the result out to `config.std{out,err}` if isa(temp_stdout, IOBuffer) write(config.stdout, take!(temp_stdout)) end if isa(temp_stderr, IOBuffer) write(config.stderr, take!(temp_stderr)) end return ret end end end """ with_executor(f::Function, ::Type{<:SandboxExecutor} = preferred_executor(); kwargs...) """ function with_executor(f::F, ::Type{T} = preferred_executor(); kwargs...) where {F <: Function, T <: SandboxExecutor} exe = T(; kwargs...) try return f(exe) finally cleanup(exe) end end function probe_executor(executor::SandboxExecutor; verbose::Bool = false) mktempdir() do tmpdir rw_dir = joinpath(tmpdir, "rw") mkpath(rw_dir) mounts = Dict( "/" => MountInfo(debian_rootfs(), MountType.Overlayed), "/read_write" => MountInfo(rw_dir, MountType.ReadWrite), ) # Do a quick test that this executor works inner_cmd = """ echo 'hello julia' echo 'read-write mapping successful' >> /read_write/foo """ cmd_stdout = IOBuffer() cmd_stderr = IOBuffer() config = SandboxConfig( mounts, Dict("PATH" => "/bin:/usr/bin"); stdout=cmd_stdout, stderr=cmd_stderr, verbose, ) user_cmd = `/bin/bash -c "$(inner_cmd)"` # Command should execute successfully user_cmd = ignorestatus(user_cmd) if !success(run(executor, config, user_cmd)) if verbose cmd_stdout = String(take!(cmd_stdout)) cmd_stderr = String(take!(cmd_stderr)) @warn("Unable to run `sandbox` itself", cmd_stdout) println(cmd_stderr) end return false end # stdout should contain "hello julia" as its own line cmd_stdout = String(take!(cmd_stdout)) stdout_lines = split(cmd_stdout, "\n") if !("hello julia" in stdout_lines) cmd_stderr = String(take!(cmd_stderr)) stderr_lines = split(cmd_stderr, "\n") if verbose @warn(" -> Basic stdout sentinel missing!", stdout_lines, stderr_lines) end return false end foo_file = joinpath(joinpath(tmpdir, "rw", "foo")) if !isfile(foo_file) if verbose @warn(" -> Read-write mapping sentinel file missing!") end return false end foo_file_contents = String(read(foo_file)) if foo_file_contents != "read-write mapping successful\n" if verbose @warn(" -> Read-write mapping data corrupted", foo_file_contents) end return false end return true end end # Convenience function for other users who want to do some testing function debian_rootfs(;platform=HostPlatform()) return @artifact_str("debian-minimal-rootfs-$(arch(platform))") end # The multiarch rootfs is truly multiarch multiarch_rootfs(;platform=nothing) = artifact"multiarch-rootfs" # Precompilation section let f(exe) = run(exe, SandboxConfig(Dict("/" => "/")), `/bin/bash -c exit`) precompile(select_executor, (Bool,)) precompile(with_executor, (typeof(f),)) end end # module
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
7003
using Base.BinaryPlatforms, EnumX const AnyRedirectable = Union{Base.AbstractCmd, Base.TTY, <:IO} @enumx MountType begin ReadWrite ReadOnly Overlayed end struct MountInfo host_path::String type::MountType.T end export MountInfo, MountType """ SandboxConfig(read_only_maps, read_write_maps, env) Sandbox executors require a configuration to set up the environment properly. - `read_only_maps`: Directories that are mapped into the sandbox as read-only mappings. - Specified as pairs, e.g. `sandbox_path => host_path`. All paths must be absolute. - Must always include a mapping for root, e.g. `"/" => rootfs_path`. - `read_write_maps`: Directories that are mapped into the sandbox as read-write mappings. - Specified as pairs, e.g. `sandbox_path => host_path`. All paths must be absolute. - Note that some executors may not show perfect live updates; consistency is guaranteed only after execution is finished. - `env`: Dictionary mapping of environment variables that should be set within the sandbox. - `entrypoint`: Executable that gets passed the actual command being run. - This is a path within the sandbox, and must be absolute. - Defaults to `nothing`, which causes the command to be executed directly. - `pwd`: Set the working directory of the command that will be run. - This is a path within the sandbox, and must be absolute. - `persist`: Tell the executor object to persist changes made to the rootfs. - This is a boolean value, it is up to interpretation by the executor. - Persistence is a property of an individual executor and changes live only as long as the executor object itself. - You cannot transfer persistent changes from one executor to another. - `multiarch`: Request multiarch executable support - This is an array of `Platform` objects - Sandbox will ensure that interpreters (such as `qemu-*-static` binaries) are available for each platform. - Requesting multiarch support for a platform that we don't support results in an `ArgumentError`. - `uid` and `gid`: Numeric user and group identifiers to spawn the sandboxed process as. - By default, these are both `0`, signifying `root` inside the sandbox. - `stdin`, `stdout`, `stderr`: input/output streams for the sandboxed process. - Can be any kind of `IO`, `TTY`, `devnull`, etc... - `hostname`: Set the hostname within the sandbox, defaults to the current hostname - `verbose`: Set whether the sandbox construction process should be more or less verbose. """ struct SandboxConfig mounts::Dict{String,MountInfo} env::Dict{String,String} entrypoint::Union{String,Nothing} pwd::String persist::Bool multiarch_formats::Vector{BinFmtRegistration} uid::Cint gid::Cint tmpfs_size::Union{String, Nothing} hostname::Union{String, Nothing} stdin::AnyRedirectable stdout::AnyRedirectable stderr::AnyRedirectable verbose::Bool function SandboxConfig(mounts::Dict{String,MountInfo}, env::Dict{String,String} = Dict{String,String}(); entrypoint::Union{String,Nothing} = nothing, pwd::String = "/", persist::Bool = true, multiarch::Vector{<:Platform} = Platform[], uid::Integer=0, gid::Integer=0, tmpfs_size::Union{String, Nothing}=nothing, hostname::Union{String, Nothing}=nothing, stdin::AnyRedirectable = Base.devnull, stdout::AnyRedirectable = Base.stdout, stderr::AnyRedirectable = Base.stderr, verbose::Bool = false) # Lint the maps to ensure that all are absolute paths: for path in [keys(mounts)..., [v.host_path for v in values(mounts)]..., something(entrypoint, "/"), pwd] if !startswith(path, "/") throw(ArgumentError("Path mapping $(path) is not absolute!")) end end for (sandbox_path, mount_info) in mounts # Force every path to be `realpath()`'ed (up to the point of existence) # This allows us to point to as-of-yet nonexistant files, but to collapse # as many symlinks as possible. mount_info = MountInfo(realpath_stem(mount_info.host_path), mount_info.type) mounts[sandbox_path] = mount_info # Disallow ecryptfs mount points, they don't play well with user namespaces. crypt, mountpoint = is_ecryptfs(mount_info.host_path; verbose) if crypt throw(ArgumentError("Path $(mount_info.host_path) is mounted on the ecryptfs filesystem $(mountpoint)!")) end end # Ensure that read_only_maps contains a mapping for the root in the guest: if !haskey(mounts, "/") || mounts["/"].type != MountType.Overlayed throw(ArgumentError("Must provide an overlayed root mapping!")) end # Collect all multiarch platforms, mapping to the known interpreter for that platform. multiarch_formats = Set{BinFmtRegistration}() interp_platforms = collect(keys(platform_qemu_registrations)) for platform in multiarch # If this platform is natively runnable, skip it if natively_runnable(platform) continue end platform_idx = findfirst(p -> platforms_match(platform, p), interp_platforms) if platform_idx === nothing throw(ArgumentError("Platform $(triplet(platform)) unsupported for multiarch!")) end push!(multiarch_formats, platform_qemu_registrations[interp_platforms[platform_idx]]) end return new(mounts, env, entrypoint, pwd, persist, collect(multiarch_formats), Cint(uid), Cint(gid), tmpfs_size, hostname, stdin, stdout, stderr, verbose) end end # Compatibility shim for `read_only_maps`/`read_write_maps` API: function SandboxConfig(read_only_maps::Dict{String,String}, read_write_maps::Dict{String,String} = Dict{String,String}(), env::Dict{String,String} = Dict{String,String}(); kwargs...) # Our new API uses a unified `mounts` with mount types set: mounts = Dict{String,MountInfo}() for (sandbox_path, host_path) in read_only_maps mt = sandbox_path == "/" ? MountType.Overlayed : MountType.ReadOnly mounts[sandbox_path] = MountInfo(host_path, mt) end for (sandbox_path, host_path) in read_write_maps if sandbox_path ∈ keys(mounts) throw(ArgumentError("Cannot specify the same sandbox path twice in maps! ('$(sandbox_path)')")) end mounts[sandbox_path] = MountInfo(host_path, MountType.ReadWrite) end return SandboxConfig(mounts, env; kwargs...) end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
8883
using UserNSSandbox_jll # Use User Namespaces to provide isolation on Linux hosts whose kernels support it export UserNamespacesExecutor, UnprivilegedUserNamespacesExecutor, PrivilegedUserNamespacesExecutor abstract type UserNamespacesExecutor <: SandboxExecutor; end # A version of `chmod()` that hides all of its errors. function chmod_recursive(root::String, perms, use_sudo::Bool) files = String[] try files = readdir(root) catch e if !isa(e, Base.IOError) rethrow(e) end end for f in files path = joinpath(root, f) try if use_sudo run(`$(sudo_cmd()) chmod $(string(perms, base=8)) $(path)`) else chmod(path, perms) end catch e if !isa(e, Base.IOError) rethrow(e) end end if isdir(path) && !islink(path) chmod_recursive(path, perms, use_sudo) end end end function cleanup(exe::UserNamespacesExecutor) if exe.persistence_dir !== nothing && isdir(exe.persistence_dir) # Because a lot of these files are unreadable, we must `chmod +r` them before deleting chmod_recursive(exe.persistence_dir, 0o777, isa(exe, PrivilegedUserNamespacesExecutor)) try rm(exe.persistence_dir; force=true, recursive=true) catch end end end # Because we can run in "privileged" or "unprivileged" mode, let's treat # these as two separate, but very similar, executors. mutable struct UnprivilegedUserNamespacesExecutor <: UserNamespacesExecutor persistence_dir::Union{String,Nothing} userxattr::Bool UnprivilegedUserNamespacesExecutor() = new(nothing, false) end mutable struct PrivilegedUserNamespacesExecutor <: UserNamespacesExecutor persistence_dir::Union{String,Nothing} userxattr::Bool PrivilegedUserNamespacesExecutor() = new(nothing, false) end Base.show(io::IO, exe::UnprivilegedUserNamespacesExecutor) = write(io, "Unprivileged User Namespaces Executor") Base.show(io::IO, exe::PrivilegedUserNamespacesExecutor) = write(io, "Privileged User Namespaces Executor") function executor_available(::Type{T}; verbose::Bool=false) where {T <: UserNamespacesExecutor} # If we're on a platform that doesn't even have `sandbox` available, return false if !UserNSSandbox_jll.is_available() return false end return with_executor(T) do exe return check_kernel_version(;verbose) && check_overlayfs_loaded(;verbose) && probe_executor(exe; verbose) end end function check_kernel_version(;verbose::Bool = false) # Don't bother to do anything on non-Linux if !Sys.islinux() return false end kernel_version = get_kernel_version() # If we were unable to parse any part of the version number, then warn and exit. if kernel_version === nothing @warn("Unable to check version number") return false end # Otherwise, we have a kernel version and if it's too old, we should freak out. if kernel_version < v"3.18" @warn("Kernel version too old: detected $(kernel_version), need at least 3.18!") return false end if verbose @info("Parsed kernel version \"$(kernel_version)\"") end return true end function check_overlayfs_loaded(;verbose::Bool = false) if !Sys.islinux() return false end # If the user has disabled this check, return `true` if parse(Bool, get(ENV, "SANDBOX_SKIP_OVERLAYFS_CHECK", "false")) return true end mods = get_loaded_modules() if verbose @info("Found $(length(mods)) loaded modules") end filter!(mods) do (name, size, count, deps, state, addr) return name == "overlay" end if isempty(mods) @warn(""" The `overlay` kernel module is needed for the UserNS executors, but could not find it loaded. Try `sudo modprobe overlay` or export SANDBOX_SKIP_OVERLAYFS_CHECK=true to disable this check! """) return false end if verbose @info("Found loaded `overlay` module") end return true end function build_executor_command(exe::UserNamespacesExecutor, config::SandboxConfig, user_cmd::Cmd) # While we would usually prefer to use the `executable_product()` function to get a # `Cmd` object that has all of the `PATH` and `LD_LIBRARY_PATH` environment variables # set properly so that the executable product can be run, we are careful to ensure # that `sandbox` has no dependencies (as much as that is possible). cmd_string = String[UserNSSandbox_jll.sandbox_path] # Enable verbose mode on the sandbox wrapper itself if config.verbose push!(cmd_string, "--verbose") end # Extract the rootfs, as it's treated specially append!(cmd_string, ["--rootfs", config.mounts["/"].host_path]) # Add our `--cd` command append!(cmd_string, ["--cd", config.pwd]) # Add in read-only mappings (skipping the rootfs) for (sandbox_path, mount_info) in config.mounts if sandbox_path == "/" continue end local mount_type_str if mount_info.type == MountType.ReadOnly mount_type_str = ":ro" elseif mount_info.type == MountType.ReadWrite mount_type_str = ":rw" elseif mount_info.type == MountType.Overlayed mount_type_str = ":ov" else throw(ArgumentError("Unknown mount type: $(mount_info.type)")) end append!(cmd_string, ["--mount", "$(mount_info.host_path):$(sandbox_path)$(mount_type_str)"]) end # Add in entrypoint, if it is set if config.entrypoint !== nothing append!(cmd_string, ["--entrypoint", config.entrypoint]) end # If we have a `--persist` argument, check to see if we already have a persistence_dir # setup, if we do not, create a temporary directory and set it into our executor if config.persist if exe.persistence_dir === nothing # Search for a functional persistence directory persist_root, userxattr = find_persist_dir_root(config.mounts["/"].host_path; verbose=config.verbose) if persist_root === nothing throw(ArgumentError("Unable to find a persistence directory root that works!")) end exe.persistence_dir = mktempdir(persist_root) exe.userxattr = userxattr end append!(cmd_string, ["--persist", exe.persistence_dir]) if exe.userxattr push!(cmd_string, "--userxattr") end end # For each platform requested by `multiarch`, ensure its matching interpreter is registered. register_requested_formats!(config.multiarch_formats; verbose=config.verbose) # Set the user and group, if requested append!(cmd_string, ["--uid", string(config.uid), "--gid", string(config.gid)]) # Set the custom tmpfs_size, if requested if config.tmpfs_size !== nothing append!(cmd_string, ["--tmpfs-size", config.tmpfs_size]) end if config.hostname !== nothing append!(cmd_string, ["--hostname", config.hostname]) end # If we're running in privileged mode, we need to add `sudo` (or `su`, if `sudo` doesn't exist) if isa(exe, PrivilegedUserNamespacesExecutor) # Next, prefer `sudo`, but allow fallback to `su`. Also, force-set our # environmental mappings with sudo, because many of these are often lost # and forgotten due to `sudo` restrictions on setting `LD_LIBRARY_PATH`, etc... if get(sudo_cmd(), 1, "") == "sudo" sudo_envs = vcat([["-E", "$k=$(config.env[k])"] for k in keys(config.env)]...) if user_cmd.env !== nothing append!(sudo_envs, vcat([["-E", pair] for pair in user_cmd.env]...)) end prepend!(cmd_string, String[sudo_cmd()..., sudo_envs...]) else prepend!(cmd_string, sudo_cmd()) end end # Finally, append the user-requested command string push!(cmd_string, "--") append!(cmd_string, user_cmd.exec) # Construct a `Cmd` object off of those, with the SandboxConfig's env (if this is an unprivileged runner): sandbox_cmd = setenv(Cmd(cmd_string), String[]) if isa(exe, UnprivilegedUserNamespacesExecutor) sandbox_cmd = setenv(sandbox_cmd, config.env) # If the user has provided an environment with their command, merge that in as well if user_cmd.env !== nothing sandbox_cmd = addenv(sandbox_cmd, user_cmd.env) end end # If the user has asked that this command be allowed to fail silently, pass that on if user_cmd.ignorestatus sandbox_cmd = ignorestatus(sandbox_cmd) end return sandbox_cmd end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
11715
using Base.BinaryPlatforms """ check_binfmt_misc_loaded() Check that the `binfmt_misc` kernel module is loaded and enabled. """ function check_binfmt_misc_loaded() # If we're not running on Linux, then clearly `binfmt_misc` is not available if !Sys.islinux() return false end # If the `binfmt_misc` directory doesn't exist, the kernel module is likely not installed if !isdir("/proc/sys/fs/binfmt_misc") return false end # If the `status` file does not exist, the kernel module may not be loaded, or the # special `binfmt_misc` filesystem may not be mounted. if !isfile("/proc/sys/fs/binfmt_misc/status") return false end # Finally, check that the module itself has not been disabled. return strip(String(read("/proc/sys/fs/binfmt_misc/status"))) == "enabled" end """ BinFmtRegistration Provides a structured view of a `binfmt_misc` interpreter registration. Note that only "magic" matching rules are allowed, we do not support "extension" matching rules. """ struct BinFmtRegistration name::String interpreter::String flags::Vector{Symbol} offset::Int64 magic::Vector{UInt8} mask::Vector{UInt8} function BinFmtRegistration(name::AbstractString, interpreter::AbstractString, flags::Union{AbstractString,Vector{Symbol}}, offset::Integer, magic::Vector{UInt8}, mask::Union{Nothing,Vector{UInt8}} = nothing) # Default mask is all `0xff`. if mask === nothing mask = UInt8[0xff for _ in 1:length(magic)] end if isa(flags, AbstractString) flags = Symbol.(collect(flags)) end return new(String(name), String(interpreter), sort(flags), Int64(offset), magic, mask) end end """ register_string(reg::BinFmtRegistration) Constructs the string used to register a `binfmt_misc` registration with the `register` file endpoint within `/proc/sys/fs/binfmt_misc/register`. To actually register the interpreter, use `write_binfmt_misc_registration()`. """ function register_string(reg::BinFmtRegistration) return string( ":", reg.name, ":", # We only support `magic` style registrations "M", ":", string(reg.offset), ":", # We need to actually emit double-escaped hex codes, since that's what `/register` expects. join([string("\\x", string(x, base=16, pad=2)) for x in reg.magic], ""), ":", join([string("\\x", string(x, base=16, pad=2)) for x in reg.mask], ""), ":", reg.interpreter, ":", join(String.(reg.flags), ""), ) end macro check_specified(name) return quote if $(esc(name)) === nothing throw(ArgumentError($("Error, $(name) must be specified"))) end end end """ BinFmtRegistration(file::String) Reads a `binfmt_misc` registration in from disk, if it cannot be parsed (because it is malformed, or uses unsupported features) it an `ArgumentError` will be thrown. """ function BinFmtRegistration(file::String) enabled = false interpreter = nothing flags = nothing offset = nothing magic = nothing mask = nothing for l in strip.(filter(!isempty, split(String(read(file)), "\n"))) # Handle enabled/disabled line if l in ("enabled", "disabled") enabled = l == "enabled" elseif startswith(l, "interpreter ") interpreter = l[13:end] elseif startswith(l, "flags:") flags = l[8:end] elseif startswith(l, "offset ") offset = parse(Int64, l[8:end]) elseif startswith(l, "magic ") magic = hex2bytes(l[7:end]) elseif startswith(l, "mask ") mask = hex2bytes(l[6:end]) else @warn("Unknown `binfmt_misc` configuration directive", line=l) end end # Ensure we are only dealing with properly fully-specified binfmt_misc registrations @check_specified interpreter @check_specified flags @check_specified offset @check_specified magic # If we found a disabled binfmt_misc registration, just ignore it if !enabled return nothing end return BinFmtRegistration(basename(file), interpreter, flags, offset, magic, mask) end function formats_match(a::BinFmtRegistration, b::BinFmtRegistration) return (a.magic .& a.mask) == (b.magic .& b.mask) end """ read_binfmt_misc_registrations() Return a list of `BinFmtRegistration` objects, one per readable registration, as found sitting in `/proc/sys/fs/binfmt_misc/*`. Registrations that cannot be parsed are silently ignored. """ function read_binfmt_misc_registrations() if !check_binfmt_misc_loaded() return String[] end registrations = BinFmtRegistration[] for f in readdir("/proc/sys/fs/binfmt_misc"; join=true) # Skip "special" files if basename(f) ∈ ("register", "status") continue end try reg = BinFmtRegistration(f) if reg !== nothing push!(registrations, reg) end catch e if isa(e, ArgumentError) continue end rethrow(e) end end return registrations end sudo_tee(f::Function, path::String) = open(f, Cmd([sudo_cmd()..., "tee", "-a", path]), write=true) """ write_binfmt_misc_registration(reg::BinFmtRegistration) Write a `binfmt_misc` registration out to the kernel's `register` file endpoint. Requires `sudo` privileges. """ function write_binfmt_misc_registration!(reg::BinFmtRegistration) try sudo_tee("/proc/sys/fs/binfmt_misc/register") do io write(io, register_string(reg)) end catch e @error("Unable to register binfmt_misc format", register_string=register_string(reg)) rethrow(e) end end function clear_binfmt_misc_registrations!() sudo_tee("/proc/sys/fs/binfmt_misc/status") do io write(io, "-1") end return nothing end """ register_requested_formats(formats::Vector{BinFmtRegistration}) Given the list of `binfmt_misc` formats, check the currently-registered formats through `read_binfmt_misc_registrations()`, check to see if any in `formats` are not yet registered, and if they are not, call `write_binfmt_misc_registration!()` to register it with an artifact-sourced `qemu-*-static` binary. """ function register_requested_formats!(formats::Vector{BinFmtRegistration}; verbose::Bool = false) # Do nothing if we're not asking for any formats. if isempty(formats) return nothing end # Read in the current binfmt_misc registrations: if !check_binfmt_misc_loaded() error("Cannot provide multiarch support if `binfmt_misc` not loaded!") end regs = read_binfmt_misc_registrations() # For each format, If there are no pre-existing registrations add it to `formats_to_register` formats_to_register = BinFmtRegistration[] for reg in formats if !any(formats_match.(Ref(reg), regs)) push!(formats_to_register, BinFmtRegistration( reg.name, # This artifact contains the necessary QEMU executable (for the current host architecture) @artifact_str("$(reg.name)/$(reg.name)-static"), reg.flags, reg.offset, reg.magic, reg.mask, )) end end # Notify the user if we have any formats to register, then register them. if !isempty(formats_to_register) format_names = sort([f.name for f in formats_to_register]) msg = "Registering $(length(formats_to_register)) binfmt_misc entries, this may ask for your `sudo` password." if verbose @info(msg, formats=format_names) elseif (Sys.which("sudo") !== nothing) && (success(`sudo -k -n true`)) # in this case, we know that `sudo` will not prompt the user for a password else @info(msg) end write_binfmt_misc_registration!.(formats_to_register) end return nothing end ## binfmt_misc registration templates for various architectures. ## Note that these are true no matter the host architecture; e.g. these ## can just as easily point at `x86_64-qemu-aarch64-static` as `ppc64le-qemu-aarch64-static`. ## In fact, the interpreter path typically gets overwritten in `build_executor_command` anyway. const qemu_x86_64 = BinFmtRegistration( "qemu-x86_64", "/usr/bin/qemu-x86_64-static", "OFC", 0, UInt8[0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x3e, 0x00], UInt8[0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff], ) const qemu_i386 = BinFmtRegistration( "qemu-i386", "/usr/bin/qemu-i386-static", "OFC", 0, UInt8[0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x03, 0x00], UInt8[0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff], ) const qemu_aarch64 = BinFmtRegistration( "qemu-aarch64", "/usr/bin/qemu-aarch64-static", "OFC", 0, UInt8[0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0xb7, 0x00], UInt8[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff], ) const qemu_arm = BinFmtRegistration( "qemu-arm", "/usr/bin/qemu-arm-static", "OFC", 0, UInt8[0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x28, 0x00], UInt8[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff], ) const qemu_ppc64le = BinFmtRegistration( "qemu-ppc64le", "/usr/bin/qemu-ppc64le-static", "OFC", 0, UInt8[0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x15, 0x00], UInt8[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0x00], ) const platform_qemu_registrations = Dict( # We register these `qemu-*-static` executables as capable of interpreting both `glibc` and `musl` platforms: Platform("x86_64", "linux"; libc="glibc") => qemu_x86_64, Platform("x86_64", "linux"; libc="musl") => qemu_x86_64, Platform("i686", "linux"; libc="glibc") => qemu_i386, Platform("i686", "linux"; libc="musl") => qemu_i386, Platform("aarch64", "linux"; libc="glibc") => qemu_aarch64, Platform("aarch64", "linux"; libc="musl") => qemu_aarch64, Platform("armv7l", "linux"; libc="glibc") => qemu_arm, Platform("armv7l", "linux"; libc="musl") => qemu_arm, Platform("ppc64le", "linux"; libc="glibc") => qemu_ppc64le, Platform("ppc64le", "linux"; libc="musl") => qemu_ppc64le, ) # Define what is a natively-runnable const host_arch = arch(HostPlatform()) function natively_runnable(p::Platform) if host_arch == "x86_64" return arch(p) ∈ ("x86_64", "i686") end # Disabling this for now until I figure out how to reliably determine whether this is true. #= if host_arch == "aarch64" return arch(p) ∈ ("aarch64", "armv7l") end =# return host_arch == arch(p) end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
12190
""" max_directory_ctime(prefix::String) Takes the `stat()` of all files in a directory root, keeping the maximum ctime, recursively. Comparing just this value allows for quick directory change detection. """ function max_directory_ctime(prefix::String) max_time = 0.0 for (root, dirs, files) in walkdir(prefix) for f in files max_time = max(max_time, lstat(joinpath(root, f)).ctime) end end return max_time end function get_mounts(;verbose::Bool = false) # Get a listing of the current mounts. If we can't do this, just give up if !isfile("/proc/mounts") if verbose @info("Couldn't open /proc/mounts, returning...") end return Tuple{String,SubString{String}}[] end mounts = String(read("/proc/mounts")) # Grab the fstype and the mountpoints mounts = [split(m)[2:3] for m in split(mounts, "\n") if !isempty(m)] # Canonicalize mountpoints now so as to dodge symlink difficulties mounts = [(abspath(m[1]*"/"), m[2]) for m in mounts] return mounts end """ realpath_stem(path::AbstractString) Given a path, return the `realpath` of it. If it does not exist, try to resolve the `realpath` of its containing directory, then append the tail portion onto the end of that resolved stem. This iterates until we find a stem that can be resolved. This allows for resolving directory symlinks halfway through a path, while not requiring that the final path leaf exist at the time of calling `realpath_stem()`. Of course, if the final path leaf is itself a symlink, this will not work correctly, so this should be considered a "best effort" function. Internally, we use this to attempt to discover the actual mountpoint a mapping is or will be stored on. """ function realpath_stem(path::AbstractString) if ispath(path) return realpath(path) end dir, leaf = splitdir(path) if dir == path # This shouldn't really be possible throw(ArgumentError("Unable to find any real component of path!")) end return joinpath(realpath_stem(dir), leaf) end """ is_ecryptfs(path::AbstractString; verbose::Bool=false) Checks to see if the given `path` (or any parent directory) is placed upon an `ecryptfs` mount. This is known not to work on current kernels, see this bug for more details: https://bugzilla.kernel.org/show_bug.cgi?id=197603 This method returns whether it is encrypted or not, and what mountpoint it used to make that decision. """ function is_ecryptfs(path::AbstractString; verbose::Bool=false) # Canonicalize `path` immediately, and if it's a directory, add a "/" so # as to be consistent with the rest of this function path = abspath(path) if isdir(path) path = abspath(path * "/") end if verbose @info("Checking to see if $path is encrypted...") end # Get a listing of the current mounts. If we can't do this, just give up mounts = get_mounts() if isempty(mounts) return false, path end # Fast-path asking for a mountpoint directly (e.g. not a subdirectory) direct_path = [m[1] == path for m in mounts] local parent if any(direct_path) parent = mounts[findfirst(direct_path)] else # Find the longest prefix mount: parent_mounts = [m for m in mounts if startswith(path, m[1])] if isempty(parent_mounts) # This is weird; this means that we can't find any mountpoints that # hold the given path. I've only ever seen this in `chroot`'ed scenarios. return false, path end parent = parent_mounts[argmax(map(m->length(m[1]), parent_mounts))] end # Return true if this mountpoint is an ecryptfs mount val = parent[2] == "ecryptfs" if verbose && val @info(" -> $path is encrypted from mountpoint $(parent[1])") end return val, parent[1] end """ uname() On Linux systems, return the strings returned by the `uname()` function in libc. """ function uname() @static if !Sys.islinux() return String[] end # The uname struct can have wildly differing layouts; we take advantage # of the fact that it is just a bunch of NULL-terminated strings laid out # one after the other, and that it is (as best as I can tell) at maximum # around 1.5KB long. We bump up to 2KB to be safe. uname_struct = zeros(UInt8, 2048) ccall(:uname, Cint, (Ptr{UInt8},), uname_struct) # Parse out all the strings embedded within this struct strings = String[] idx = 1 while idx < length(uname_struct) # Extract string new_string = unsafe_string(pointer(uname_struct, idx)) push!(strings, new_string) idx += length(new_string) + 1 # Skip trailing zeros while uname_struct[idx] == 0 && idx < length(uname_struct) idx += 1 end end return strings end """ get_kernel_version(;verbose::Bool = false) Use `uname()` to get the kernel version and parse it out as a `VersionNumber`, returning `nothing` if parsing fails or this is not `Linux`. """ function get_kernel_version(;verbose::Bool = false) if !Sys.islinux() return nothing end uname_strings = try uname() catch e if isa(e, InterruptException) rethrow(e) end @warn("Unable to run `uname()` to check version number!") return nothing end # Some distributions tack extra stuff onto the version number. We walk backwards # from the end, searching for the longest string that we can extract a VersionNumber # out of. We choose a minimum length of 5, as all kernel version numbers will be at # least `X.Y.Z`. for end_idx in length(uname_strings[3]):-1:5 try return VersionNumber(uname_strings[3][1:end_idx]) catch e if isa(e, InterruptException) rethrow(e) end end end # We could never parse anything good out of it. :( if verbose @warn("Unablet to parse a VersionNumber out of uname output", uname_strings) end return nothing end """ get_loaded_modules() Returns a list of modules currently loaded by the system. On non-Linux platforms, returns an empty list. """ function get_loaded_modules() @static if !Sys.islinux() return Vector{String}[] end !isfile("/proc/modules") && return Vector{SubString{String}}[] filter!(split.(readlines("/proc/modules"))) do (name, size, count, deps, state, addr) state == "Live" end end """ getuid() Wrapper around libc's `getuid()` function """ getuid() = ccall(:getuid, Cint, ()) """ getgid() Wrapper around libc's `getgid()` function """ getgid() = ccall(:getgid, Cint, ()) _sudo_cmd = nothing function sudo_cmd() global _sudo_cmd # Use cached value if we've already run this if _sudo_cmd !== nothing return _sudo_cmd end if getuid() == 0 # If we're already root, don't use any kind of sudo program _sudo_cmd = String[] elseif Sys.which("sudo") !== nothing && success(`sudo -V`) # If `sudo` is available, use that _sudo_cmd = ["sudo"] elseif Sys.which("su") !== nothing && success(`su --version`) # Fall back to `su` if all else fails _sudo_cmd = ["su", "root", "-c"] else @warn("No known sudo-like wrappers!") _sudo_cmd = String[] end return _sudo_cmd end _env_pref_dict = Dict{AbstractString,Union{AbstractString,Nothing}}() """ load_env_pref(env_var, prefs_name, default) Many pieces of `Sandbox.jl` functionality can be controlled either through environment variables or preferences. This utility function makes it easy to check first the environment, then preferences, finally falling back to the default. Additionally, it memoizes the result in a caching dictionary. """ function load_env_pref(env_var::AbstractString, prefs_name::AbstractString, default::Union{AbstractString,Nothing}) if !haskey(_env_pref_dict, env_var) _env_pref_dict[env_var] = get(ENV, env_var, @load_preference(prefs_name, default)) end return _env_pref_dict[env_var] end """ default_persist_root_dirs() Returns the default list of directories that should be attempted to be used as persistence storage. Influenced by the `SANDBOX_PERSISTENCE_DIR` environment variable, as well as the `persist_dir` preference. The last place searched by default is the `persist_dirs` scratch space. """ function default_persist_root_dirs() # While this function appears to be duplicating much of the logic within # `load_env_pref()`, it actually collects all of the given values, rather # than choosing just one. dirs = String[] # When doing nested sandboxing, we pass information via environment variables: if haskey(ENV, "SANDBOX_PERSISTENCE_DIR") push!(dirs, ENV["SANDBOX_PERSISTENCE_DIR"]) end # If the user has set a persistence dir preference, try that too ppd_pref = @load_preference("persist_dir", nothing) if ppd_pref !== nothing push!(dirs, ppd_pref) end # Storing in a scratch space (which is within our writable depot) usually works, # except when our depot is on a `zfs` or `ecryptfs` mount, for example. push!(dirs, @get_scratch!("persist_dirs")) return dirs end function find_persist_dir_root(rootfs_path::String, dir_hints::Vector{String} = default_persist_root_dirs(); verbose::Bool = false) function probe_overlay_mount(rootfs_path, mount_path; verbose::Bool = false, userxattr::Bool = false) probe_exe = UserNSSandbox_jll.overlay_probe_path probe_args = String[] if verbose push!(probe_args, "--verbose") end if userxattr push!(probe_args, "--userxattr") end return success(run(pipeline(ignorestatus( `$(probe_exe) $(probe_args) $(realpath(rootfs_path)) $(realpath(mount_path))` ); stdout = verbose ? stdout : devnull, stderr = verbose ? stderr : devnull))) end # If one of our `dir_hints` works, use that, as those are typically our first # choices; things like a scratchspace, a user-supplied path, etc... for mount_path in dir_hints, userxattr in (true, false) if probe_overlay_mount(rootfs_path, mount_path; userxattr, verbose) return (mount_path, userxattr) end end # Otherwise, walk over the list of mounts, excluding mount types we know won't work disallowed_mount_types = Set([ # ecryptfs doesn't play nicely with sandboxes at all "ecryptfs", # zfs does not support features (RENAME_WHITEOUT) required for overlay upper dirs "zfs", # overlays cannot stack, of course "overlay", # Exclude mount types that are not for storing data: "auristorfs", "autofs", "binfmt_misc", "bpf", "cgroup2", "configfs", "debugfs", "devpts", "devtmpfs", "efivarfs", "fusectl", "hugetlbfs", "mqueue", "proc", "pstore", "ramfs", "rpc_pipefs", "securityfs", "sysfs", "tracefs", ]) mounts = first.(filter(((path, type),) -> type ∉ disallowed_mount_types, get_mounts())) # Filter each `mount` point on a set of criteria that we like (e.g. the mount point # is owned by us (user-specific `tmpdir`, for instance)) function owned_by_me(path) try return stat(path).uid == getuid() catch e if isa(e, Base.IOError) && -e.code ∈ (Base.Libc.EACCES,) return false end rethrow(e) end end sort!(mounts; by = owned_by_me, rev=true) for mount_path in mounts, userxattr in (true, false) if probe_overlay_mount(rootfs_path, mount_path; userxattr, verbose) return (mount_path, userxattr) end end # Not able to find a SINGLE persistent directory location that works! return (nothing, false) end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
4622
using Test, Sandbox, Scratch, Base.BinaryPlatforms function with_temp_scratch(f::Function) mktempdir() do scratch_dir with_scratch_directory(scratch_dir) do f() end end end if executor_available(DockerExecutor) @testset "Docker" begin uid = Sandbox.getuid() gid = Sandbox.getgid() with_temp_scratch() do # With a temporary scratch directory, let's start by testing load/save timestamps @test !isfile(Sandbox.timestamps_path()) @test isempty(Sandbox.load_timestamps()) Sandbox.save_timestamp("foo", 1.0) @test isfile(Sandbox.timestamps_path()) timestamps = Sandbox.load_timestamps() @test timestamps["foo"] == 1.0 # Next, let's actually create a docker image out of our debian rootfs image mktempdir() do rootfs_path; mktempdir() do data_path mounts = Dict( "/" => MountInfo(rootfs_path, MountType.Overlayed), "/data" => MountInfo(data_path, MountType.Overlayed), ) overlay_mounts = Dict(p => m.host_path for (p, m) in mounts if m.type == MountType.Overlayed) cp(Sandbox.debian_rootfs(), rootfs_path; force=true) @test Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs (:info, r"Building docker image") match_mode=:any begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end # Ensure that it doesn't try to build again since the content is unchanged @test !Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end # Change the content chmod(joinpath(rootfs_path, "bin", "bash"), 0o775) @test Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs (:info, r"Building docker image") match_mode=:any begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end # Ensure that it once again doesn't try to build @test !Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end # change the content of `/data`: touch(joinpath(data_path, "foo")) @test Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs (:info, r"Building docker image") match_mode=:any begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end # Ensure that it once again doesn't try to build @test !Sandbox.should_build_docker_image(overlay_mounts, uid, gid) @test_logs begin Sandbox.build_docker_image(mounts, uid, gid; verbose=true) end end; end end @testset "probe_executor" begin with_executor(DockerExecutor) do exe @test probe_executor(exe) end end @testset "pull_docker_image" begin curr_arch = arch(HostPlatform()) platform = nothing if curr_arch == "x86_64" platform = "linux/amd64" elseif curr_arch == "aarch64" platform = "linux/arm64" end with_temp_scratch() do julia_rootfs = Sandbox.pull_docker_image("julia:latest"; force=true, verbose=true, platform) @test_logs (:warn, r"Will not overwrite") begin other_julia_rootfs = Sandbox.pull_docker_image("julia:latest"; verbose=true, platform) @test other_julia_rootfs == julia_rootfs end @test_logs (:warn, r"Cannot pull") begin @test Sandbox.pull_docker_image("pleasenooneactuallycreateanimagenamedthis"; verbose=true) === nothing end @test julia_rootfs !== nothing @test isdir(julia_rootfs) # Ensure it pulls a rootfs that actually contains `julia` @test isfile(joinpath(julia_rootfs, "usr", "local", "julia", "bin", "julia")) end end end else @error("Skipping Docker tests, as it does not seem to be available") end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
4710
using Test, Sandbox, Base.BinaryPlatforms, LazyArtifacts @testset "multiarch" begin # This is a set of multiarch platforms that is _not_ our current platform native_arch = arch(HostPlatform()) sub_arch = native_arch if native_arch == "x86_64" sub_arch = "i686" # Disabled for now #elseif native_arch == "aarch64" # sub_arch = "armv7l" end alien_arch = native_arch ∈ ("x86_64", "i686") ? "aarch64" : "x86_64" @testset "argument parsing" begin # Test that our `multiarch` kwarg is correctly parsed config = SandboxConfig( Dict("/" => Sandbox.multiarch_rootfs()); multiarch = [ Platform(alien_arch, "linux"; libc="glibc"), Platform(alien_arch, "linux"; libc="musl"), Platform(native_arch, "linux"; libgfortran_version=v"4"), Platform(native_arch, "linux"; libgfortran_version=v"5"), Platform(sub_arch, "linux"), ], ) # qemu doesn't care about `libc` or `libgfortran_version` or anything like that. # Also, native architectures (and sub-architectures such as `i686` for `x86_64`, # or `armv7l` for `aarch64`) get ignored, so we end up with only one multiarch # format from all that above, which is just `alien_arch`. @test length(config.multiarch_formats) == 1 @test occursin(alien_arch, config.multiarch_formats[1].name) end # Of our available executors, let's check to see if each can be used to run multiarch workloads multiarch_executors = filter(executor_available, Sandbox.all_executors) old_binfmt_misc_regs = nothing if get(ENV, "SANDBOX_TEST_MULTIARCH", "true") != "true" @warn("Refusing to test multiarch because SANDBOX_TEST_MULTIARCH set to $(ENV["SANDBOX_TEST_MULTIARCH"])") multiarch_executors = Sandbox.SandboxExecutor[] elseif Sys.islinux() # On Linux, we need passwordless sudo to be able to register things if Sys.which("sudo") !== nothing && !success(`sudo -k -n true`) @warn("Refusing to test multiarch on a system without passwordless sudo!") multiarch_executors = Sandbox.SandboxExecutor[] end # Otherwise, let's save the current set of binfmt_misc registrations old_binfmt_misc_regs = Sandbox.read_binfmt_misc_registrations() end for executor in multiarch_executors if Sys.islinux() # Start by clearing out the binfmt_misc registrations, so that each executor # has to set things up from scratch. Sandbox.clear_binfmt_misc_registrations!() end @testset "HelloWorldC_jll" begin multiarch = [ Platform("x86_64", "linux"; libc="glibc"), Platform("x86_64", "linux"; libc="musl"), Platform("i686", "linux"; libc="glibc"), Platform("i686", "linux"; libc="musl"), Platform("aarch64", "linux"; libc="glibc"), Platform("aarch64", "linux"; libc="musl"), Platform("armv7l", "linux"; libc="glibc"), Platform("armv7l", "linux"; libc="musl"), Platform("powerpc64le", "linux"; libc="glibc"), # We don't have this one yet #Platform("powerpc64le", "linux"; libc="musl"), ] stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict( "/" => Sandbox.multiarch_rootfs(), "/apps" => LazyArtifacts.ensure_artifact_installed("multiarch-testing", joinpath(dirname(@__DIR__), "Artifacts.toml")), ); multiarch, stdout, stderr, ) # Ensure that we're going to try and install some of these formats @test !isempty(config.multiarch_formats) with_executor(executor) do exe for platform in multiarch @testset "$(platform)" begin @test success(exe, config, `/apps/hello_world.$(triplet(platform))`) @test String(take!(stdout)) == "Hello, World!\n"; @test isempty(String(take!(stderr))) end end end end end if old_binfmt_misc_regs !== nothing && !isempty(old_binfmt_misc_regs) # Restore old binfmt_misc registrations so that our test suite isn't clobbering things for others Sandbox.clear_binfmt_misc_registrations!() Sandbox.write_binfmt_misc_registration!.(old_binfmt_misc_regs) end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
7321
using Test, Sandbox, Scratch, Pkg, Base.BinaryPlatforms curr_version() = VersionNumber(VERSION.major, VERSION.minor, VERSION.patch) function get_nestable_julia(target_arch = arch(HostPlatform()), version=VERSION) function get_julia_url() arch_folder = target_arch if target_arch == "x86_64" arch_folder = "x64" elseif target_arch == "i686" arch_folder = "x86" end if !isempty(version.prerelease) # Get the latest version in this major.minor series: return "https://julialangnightlies-s3.julialang.org/bin/linux/$(target_arch)/$(version.major).$(version.minor)/julia-latest-linux-$(target_arch).tar.gz" else return "https://julialang-s3.julialang.org/bin/linux/$(arch_folder)/$(version.major).$(version.minor)/julia-$(version)-linux-$(target_arch).tar.gz" end end sanitized_version = VersionNumber(version.major, version.minor, version.patch) julia_dir = @get_scratch!("julia-$(target_arch)-$(sanitized_version)") if !isfile(joinpath(julia_dir, "julia-$(sanitized_version)", "bin", "julia")) url = get_julia_url() rm(julia_dir; force=true, recursive=true) Pkg.PlatformEngines.download_verify_unpack(url, nothing, julia_dir; ignore_existence=true, verbose=true) end return joinpath(julia_dir, only(readdir(julia_dir))) end @testset "Nesting Sandbox.jl" begin all_executors = Sandbox.all_executors rootfs_dir = Sandbox.debian_rootfs() for executor in all_executors if !executor_available(executor) @error("Skipping $(executor) tests, as it does not seem to be available") continue end # Nested sandboxing explicitly does not work with privileged user namespaces, # since the whole issue is that once we've dropped privileges the kernel cannot # sandbox properly (hence the need to use privileged executor at all). if executor <: PrivilegedUserNamespacesExecutor continue end @testset "$(executor) Nesting" begin pkgdir = dirname(@__DIR__) mktempdir() do dir # Directory to hold read-writing from nested sandboxen rw_dir = joinpath(dir, "rw") mkpath(rw_dir) mkpath(joinpath(rw_dir, "home")) # Directory to hold sandbox persistence data persist_dir = mktempdir(first(Sandbox.find_persist_dir_root(rootfs_dir))) ro_mappings = Dict( # Mount in the rootfs "/" => rootfs_dir, # Mount our package in at its own location pkgdir => pkgdir, # Mount our current active project, which may contain a local # preferences file with a custom sandbox path. "/project" => dirname(Base.active_project()), # Mount in a Julia that can run in this sandbox "/usr/local/julia" => get_nestable_julia(), ) # On the off-chance that we're using a custom `sandbox`, # make sure it's available at the path that the project will expect if UserNSSandbox_jll.is_available() sandbox_path = dirname(Sandbox.UserNSSandbox_jll.sandbox_path) ro_mappings[sandbox_path] = sandbox_path end # Mount in `/etc/resolv.conf` as a read-only mount if using a UserNS executor, so that we have DNS if executor <: UserNamespacesExecutor && isfile("/etc/resolv.conf") resolv_conf = joinpath(rw_dir, "resolv.conf") cp("/etc/resolv.conf", resolv_conf; follow_symlinks=true) ro_mappings["/etc/resolv.conf"] = resolv_conf end # read-write mappings rw_mappings = Dict( # Mount a temporary directory in as writable "/tmp/readwrite" => rw_dir, # Mount a directory to hold our persistent sandbox data "/sandbox_persistence" => persist_dir, ) # Build environment mappings env = Dict( "PATH" => "/usr/local/julia/bin:/usr/local/bin:/usr/bin:/bin", "HOME" => "/tmp/readwrite/home", # Because overlayfs nesting with persistence requires mounting an overlayfs with # a non-tmpfs-hosted workdir, and that's illegal on top of another overlayfs, we # need to thread our persistence mappings through to the client. We do so by # bind-mounting `/sandbox_persistence` into the sandbox for future recursive mountings "SANDBOX_PERSISTENCE_DIR" => "/sandbox_persistence", ) # If we're a nested sandbox, pass the forcing through if haskey(ENV, "FORCE_SANDBOX_MODE") env["FORCE_SANDBOX_MODE"] = ENV["FORCE_SANDBOX_MODE"] end config = SandboxConfig( ro_mappings, rw_mappings, env; pwd = pkgdir, uid = Sandbox.getuid(), gid = Sandbox.getgid(), ) cmd = `/bin/sh -c "julia --color=yes test/nested/nested_child.jl"` with_executor(executor) do exe @test success(exe, config, cmd) end @test isfile(joinpath(rw_dir, "single_nested.txt")) @test isfile(joinpath(rw_dir, "double_nested.txt")) @test String(read(joinpath(rw_dir, "single_nested.txt"))) == "aperture\n" @test String(read(joinpath(rw_dir, "double_nested.txt"))) == "science\n" if executor <: DockerExecutor stderr = IOBuffer() config_with_stderr = SandboxConfig( ro_mappings, # Mount a temporary directory in as writable Dict("/tmp/readwrite" => rw_dir), # Add the path to `julia` onto the path Dict( "PATH" => "/usr/local/julia/bin:/usr/local/bin:/usr/bin:/bin", "HOME" => "/tmp/readwrite/home", ); pwd = pkgdir, uid = Sandbox.getuid(), gid = Sandbox.getgid(), stderr = stderr, persist = false, ) for privileges in [:no_new_privileges, :unprivileged] with_executor(executor; privileges) do exe @test !success(exe, config_with_stderr, cmd) # Ensure that we get the nested sandbox unable to run any nested sandboxing @test_broken occursin("Could not find any available executors", String(take!(stderr))) end end end end end end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
17542
using Test, Sandbox, SHA, Base.BinaryPlatforms all_executors = Sandbox.all_executors # Can we run `sudo` without a password? If not, don't attempt to test the privileged runner if Sys.which("sudo") !== nothing && !success(`sudo -k -n true`) all_executors = filter(exe -> exe != PrivilegedUserNamespacesExecutor, all_executors) end if Sandbox.getuid() == 0 all_executors = filter(exe -> exe != UnprivilegedUserNamespacesExecutor, all_executors) end function print_if_nonempty(stderr::Vector{UInt8}) if !isempty(stderr) stderr = String(stderr) @error("not empty") println(stderr) return false end return true end rootfs_dir = Sandbox.debian_rootfs() for executor in all_executors if !executor_available(executor) @error("Skipping $(executor) tests, as it does not seem to be available") continue end @testset "$(executor) Sandboxing" begin @testset "capturing stdout/stderr" begin stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir); stdout, stderr, ) with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "echo stdout; echo stderr >&2"`) @test String(take!(stdout)) == "stdout\n" @test String(take!(stderr)) == "stderr\n" end end @testset "ignorestatus()" begin config = SandboxConfig(Dict("/" => rootfs_dir)) with_executor(executor) do exe @test_throws ProcessFailedException run(exe, config, `/bin/sh -c "false"`) @test !success(exe, config, ignorestatus(`/bin/sh -c "false"`)) end end @testset "environment passing" begin # Ensure all those pesky "special" variables make it through env = Dict( "PATH" => "for", "LD_LIBRARY_PATH" => "science", "DYLD_LIBRARY_PATH" => "you", "SHELL" => "monster", ) stdout = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir), Dict{String,String}(), env; stdout, ) user_cmd = `/bin/sh -c "echo \$PATH \$LD_LIBRARY_PATH \$DYLD_LIBRARY_PATH \$SHELL"` with_executor(executor) do exe @test success(exe, config, user_cmd) @test String(take!(stdout)) == "for science you monster\n"; end # Test that setting some environment onto `user_cmd` can override the `config` env: user_cmd = setenv(user_cmd, "DYLD_LIBRARY_PATH" => "my", "SHELL" => "friend") with_executor(executor) do exe @test success(exe, config, user_cmd) @test String(take!(stdout)) == "for science my friend\n"; end end @testset "reading from mounts" begin mktempdir() do dir open(joinpath(dir, "note.txt"), write=true) do io write(io, "great success") end stdout = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir, "/glados" => dir); stdout, ) with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "cat /glados/note.txt"`) @test String(take!(stdout)) == "great success"; end end end @testset "writing to mounts" begin mktempdir() do dir stdout = IOBuffer() config = SandboxConfig( Dict( "/" => MountInfo(rootfs_dir, MountType.Overlayed), "/glados" => MountInfo(dir, MountType.ReadWrite), ); ) with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "echo aperture > /glados/science.txt"`) @test isfile(joinpath(dir, "science.txt")) @test String(read(joinpath(dir, "science.txt"))) == "aperture\n" end end end @testset "pipelining" begin pipe = PipeBuffer() stdout = IOBuffer() first_config = SandboxConfig( Dict("/" => rootfs_dir), stdout = pipe, ) second_config = SandboxConfig( Dict("/" => rootfs_dir), stdin = pipe, stdout = stdout, ) with_executor(executor) do exe @test success(exe, first_config, `/bin/sh -c "echo 'ignore me'; echo 'pick this up foo'; echo 'ignore me as well'"`) @test success(exe, second_config, `/bin/sh -c "grep foo"`) @test String(take!(stdout)) == "pick this up foo\n"; end end # While we don't strictly care about read-only mounts, we might in the future, # so we ensure they're supported. What we _truly_ care about is Overlayed, # mounts, where the modifications are visible only inside the sandbox, and are # saved within the persistence directory @testset "ReadOnly, ReadWrite and Overlayed MountTypes" begin mktempdir() do dir stdout = IOBuffer() stderr = IOBuffer() mkpath(joinpath(dir, "read_only")) mkpath(joinpath(dir, "read_write")) mkpath(joinpath(dir, "overlayed")) config = SandboxConfig( Dict( "/" => MountInfo(rootfs_dir, MountType.Overlayed), "/read_only" => MountInfo(joinpath(dir, "read_only"), MountType.ReadOnly), "/read_write" => MountInfo(joinpath(dir, "read_write"), MountType.ReadWrite), "/overlayed" => MountInfo(joinpath(dir, "overlayed"), MountType.Overlayed), ); stdout, stderr, persist=false, #verbose=executor == DockerExecutor, ) # Modifying the rootfs works, and is temporary; for docker containers this is modifying # the rootfs image, for userns this is all mounted within an overlay backed by a tmpfs, # because we have `persist` set to `false`. Modifying `/read_only` does not work, # Modifying `/read_write` works and is visible to the host, modifying `/overlayed` works # but is not visible to the host. with_executor(executor) do exe # Because `persist=false`, this is non-persistent. @test success(exe, config, `/bin/sh -c "echo aperture >> /bin/science && cat /bin/science"`) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test success(exe, config, `/bin/sh -c "echo aperture >> /bin/science && cat /bin/science"`) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) # An actual read-only mount will not allow writing, because it's truly read-only @test !success(exe, config, ignorestatus(`/bin/sh -c "echo aperture >> /read_only/science && cat /read_only/science"`)) @test occursin("Read-only file system", String(take!(stderr))) @test !isfile(joinpath(dir, "read_only", "science")) # A read-write mount, on the other hand, will be permanent, and visible to the host @test success(exe, config, `/bin/sh -c "echo aperture >> /read_write/science && cat /read_write/science"`) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test isfile(joinpath(dir, "read_write", "science")) @test success(exe, config, `/bin/sh -c "echo aperture >> /read_write/science && cat /read_write/science"`) @test String(take!(stdout)) == "aperture\naperture\n"; @test print_if_nonempty(take!(stderr)) @test isfile(joinpath(dir, "read_write", "science")) # An overlay mount allows writing and reading, but does not modify the host environment. # Because this is a non-persistent executor, changes are lost from invocation to invocation. @test success(exe, config, `/bin/sh -c "echo aperture >> /overlayed/science && cat /overlayed/science"`) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test success(exe, config, `/bin/sh -c "echo aperture >> /overlayed/science && cat /overlayed/science"`) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test !isfile(joinpath(dir, "overlayed", "science")) end end end @testset "entrypoint" begin mktempdir() do dir read_only_dir = joinpath(dir, "read_only") mkdir(read_only_dir) stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir, "/read_only" => read_only_dir), entrypoint = "/read_only/entrypoint", stdout = stdout, stderr = stderr, persist = false, ) # Generate an `entrypoint` script that mounts a tmpfs-backed overlayfs over our read-only mounts # Allowing us to write to those read-only mounts, but the changes are temporary open(joinpath(read_only_dir, "entrypoint"), write=true) do io write(io, """ #!/bin/sh echo entrypoint activated mkdir /overlay_workdir mount -t tmpfs -osize=1G tmpfs /overlay_workdir mkdir -p /overlay_workdir/upper mkdir -p /overlay_workdir/work mount -t overlay overlay -olowerdir=/read_only -oupperdir=/overlay_workdir/upper -oworkdir=/overlay_workdir/work /read_only exec "\$@" """) end chmod(joinpath(read_only_dir, "entrypoint"), 0o755) # Modifying the read-only files now works, and is temporary with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "echo aperture >> /read_only/science && cat /read_only/science"`) @test String(take!(stdout)) == "entrypoint activated\naperture\n"; @test print_if_nonempty(take!(stderr)) @test success(exe, config, `/bin/sh -c "echo aperture >> /read_only/science && cat /read_only/science"`) @test String(take!(stdout)) == "entrypoint activated\naperture\n"; @test print_if_nonempty(take!(stderr)) end end end @testset "persistence" begin mktempdir() do dir stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict( "/" => MountInfo(rootfs_dir, MountType.Overlayed), "/overlayed" => MountInfo(dir, MountType.Overlayed), ), stdout = stdout, stderr = stderr, persist = true, ) # Modifying the rootfs or the overlay mount is persistent within a single executor for prefix in ("/bin", "/overlayed") cmd = `/bin/sh -c "echo aperture >> $prefix/science && cat $prefix/science"` with_executor(executor) do exe @test success(exe, config, cmd) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test success(exe, config, cmd) @test String(take!(stdout)) == "aperture\naperture\n"; @test print_if_nonempty(take!(stderr)) @test !isfile(joinpath(dir, "science")) end with_executor(executor) do exe @test success(exe, config, cmd) @test String(take!(stdout)) == "aperture\n"; @test print_if_nonempty(take!(stderr)) @test !isfile(joinpath(dir, "science")) end end end end @testset "explicit user and group" begin for (uid,gid) in [(0,0), (999,0), (0,999), (999,999)] stdout = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir); stdout, uid, gid ) with_executor(executor) do exe @test success(exe, config, `/usr/bin/id`) str = String(take!(stdout)) @test contains(str, "uid=$(uid)") @test contains(str, "gid=$(gid)") end end end # If we have the docker executor available (necessary to do the initial pull), # let's test launching off of a docker image. Only run this on x86_64 because # docker doesn't (yet) have images with this name for other architectures. if executor_available(DockerExecutor) && arch(HostPlatform()) == "x86_64" julia_rootfs = Sandbox.pull_docker_image("julia:alpine") @testset "launch from docker image" begin stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict("/" => julia_rootfs), Dict{String,String}(), # Add the path to `julia` onto the path, then use `sh` to process the PATH Dict("PATH" => "/usr/local/julia/bin:/usr/local/bin:/usr/bin:/bin"); stdout = stdout, stderr = stderr, ) with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "julia -e 'println(\"Hello, Julia!\")'"`) @test String(take!(stdout)) == "Hello, Julia!\n"; @test print_if_nonempty(take!(stderr)) end end end @testset "hostname" begin stdout = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir); stdout, hostname="sandy", ) with_executor(executor) do exe @test success(exe, config, `/bin/uname -n`) @test chomp(String(take!(stdout))) == "sandy" end end @testset "Internet access" begin mktempdir() do rw_dir ro_mappings = Dict( "/" => rootfs_dir, ) # Mount in `/etc/resolv.conf` as a read-only mount if using a UserNS executor, so that we have DNS if executor <: UserNamespacesExecutor && isfile("/etc/resolv.conf") resolv_conf = joinpath(rw_dir, "resolv.conf") cp("/etc/resolv.conf", resolv_conf; follow_symlinks=true) ro_mappings["/etc/resolv.conf"] = resolv_conf end # Do a test with the debian rootfs where we try to use `apt` to install `curl`, then use that to download something. socrates_url = "https://github.com/staticfloat/small_bin/raw/master/socrates.tar.xz" socrates_hash = "61bcf109fcb749ee7b6a570a6057602c08c836b6f81091eab7aa5f5870ec6475" config = SandboxConfig( ro_mappings, Dict("/tmp/rw_dir" => rw_dir), Dict("HOME" => "/root"); verbose = true, ) with_executor(executor) do exe @test success(exe, config, `/bin/sh -c "apt update && apt install -y curl && curl -L $(socrates_url) -o /tmp/rw_dir/$(basename(socrates_url))"`) end socrates_path = joinpath(rw_dir, basename(socrates_url)) @test isfile(socrates_path) @test open(io -> bytes2hex(sha256(io)), socrates_path) == socrates_hash end end end end @testset "default executor" begin stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig( Dict("/" => rootfs_dir); stdout, stderr, ) with_executor() do exe @test success(exe, config, `/bin/sh -c "echo stdout; echo stderr >&2"`) @test String(take!(stdout)) == "stdout\n"; @test String(take!(stderr)) == "stderr\n"; end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
4267
using Test, LazyArtifacts, Sandbox @testset "SandboxConfig" begin rootfs_dir = Sandbox.debian_rootfs() @testset "minimal config" begin config = SandboxConfig(Dict("/" => rootfs_dir)) @test haskey(config.mounts, "/") @test config.mounts["/"].host_path == realpath(rootfs_dir) @test isempty([m for (k, m) in config.mounts if m.type == MountType.ReadWrite]) @test isempty(config.env) @test config.pwd == "/" @test config.stdin == Base.devnull @test config.stdout == Base.stdout @test config.stderr == Base.stderr @test config.hostname === nothing end @testset "full options" begin stdout = IOBuffer() config = SandboxConfig( # read-only maps Dict( "/" => rootfs_dir, "/lib" => rootfs_dir, ), # read-write maps Dict("/workspace" => @__DIR__), # env Dict("PATH" => "/bin:/usr/bin"); entrypoint = "/init", pwd = "/lib", persist = true, stdin = Base.stdout, stdout = stdout, stderr = Base.devnull, hostname="sandy", ) # Test the old style API getting mapped to the new MountInfo API: @test config.mounts["/"].host_path == realpath(rootfs_dir) @test config.mounts["/"].type == MountType.Overlayed @test config.mounts["/lib"].host_path == realpath(rootfs_dir) @test config.mounts["/lib"].type == MountType.ReadOnly @test config.mounts["/workspace"].host_path == realpath(@__DIR__) @test config.mounts["/workspace"].type == MountType.ReadWrite @test config.env["PATH"] == "/bin:/usr/bin" @test config.entrypoint == "/init" @test config.pwd == "/lib" @test config.persist @test config.stdin == Base.stdout @test config.stdout == stdout @test config.stderr == Base.devnull @test config.hostname == "sandy" end @testset "errors" begin # No root dir error @test_throws ArgumentError SandboxConfig(Dict("/rootfs" => rootfs_dir)) # relative dirs error @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir, "rootfs" => rootfs_dir)) @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir, "/rootfs" => basename(rootfs_dir))) @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir), Dict("rootfs" => rootfs_dir)) @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir), Dict("/rootfs" => basename(rootfs_dir))) @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir); pwd="lib") @test_throws ArgumentError SandboxConfig(Dict("/" => rootfs_dir); entrypoint="init") end using Sandbox: realpath_stem @testset "realpath_stem" begin mktempdir() do dir dir = realpath(dir) mkdir(joinpath(dir, "bar")) touch(joinpath(dir, "bar", "foo")) symlink("foo", joinpath(dir, "bar", "l_foo")) symlink("bar", joinpath(dir, "l_bar")) symlink(joinpath(dir, "l_bar", "foo"), joinpath(dir, "l_bar_foo")) # Test that `realpath_stem` works just like `realpath()` on existent paths: existent_paths = [ joinpath(dir, "bar"), joinpath(dir, "bar", "foo"), joinpath(dir, "bar", "l_foo"), joinpath(dir, "l_bar"), joinpath(dir, "l_bar", "foo"), joinpath(dir, "l_bar", "l_foo"), joinpath(dir, "l_bar_foo"), ] for path in existent_paths @test realpath_stem(path) == realpath(path) end # Test that `realpath_stem` gives good answers for non-existent paths: non_existent_path_mappings = [ joinpath(dir, "l_bar", "spoon") => joinpath(dir, "bar", "spoon"), joinpath(dir, "l_bar", "..", "l_bar", "spoon") => joinpath(dir, "bar", "spoon"), ] for (non_path, path) in non_existent_path_mappings @test realpath_stem(non_path) == path end end end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
4450
using Test, Sandbox if Sys.islinux() @test isa(Sandbox.get_kernel_version(), VersionNumber) @test Sandbox.check_kernel_version() end if executor_available(UnprivilegedUserNamespacesExecutor) @testset "UnprivilegedUserNamespacesExecutor" begin with_executor(UnprivilegedUserNamespacesExecutor) do exe @test probe_executor(exe) end end # Can run these tests only if we can actually mount tmpfs with unprivileged executor. @testset "Customize the tempfs size" begin rootfs_dir = Sandbox.debian_rootfs() mounts = Dict( "/" => MountInfo(rootfs_dir, MountType.Overlayed), ) env = Dict( "PATH" => "/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin", "HOME" => "/home/juliaci", "USER" => "juliaci", ) cmd = `/bin/sh -c "mkdir -p /home/juliaci && cd /home/juliaci && dd if=/dev/zero of=sample.txt bs=50M count=1"` @testset "tempfs is big enough" begin stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig(mounts, env; tmpfs_size = "1G", stdout, stderr, persist=false) with_executor(UnprivilegedUserNamespacesExecutor) do exe @test success(exe, config, cmd) @test isempty(take!(stdout)) @test startswith(strip(String(take!(stderr))), strip(""" 1+0 records in 1+0 records out""")) end end @testset "tempfs is too small" begin stdout = IOBuffer() stderr = IOBuffer() config = SandboxConfig(mounts, env; tmpfs_size = "10M", stdout, stderr, persist=false) with_executor(UnprivilegedUserNamespacesExecutor) do exe @test !success(exe, config, cmd) @test startswith(strip(String(take!(stderr))), strip(""" dd: error writing 'sample.txt': No space left on device 1+0 records in 0+0 records out""")) end end end @testset "Signal Handling" begin # This test ensures that killing the child returns a receivable signal config = SandboxConfig(Dict("/" => Sandbox.debian_rootfs())) with_executor(UnprivilegedUserNamespacesExecutor) do exe p = run(exe, config, ignorestatus(`/bin/sh -c "kill -s TERM \$\$"`)) @test p.termsignal == Base.SIGTERM end # This test ensures that killing the sandbox executable passes the # signal on to the child (which then returns a receivable signal) config = SandboxConfig(Dict("/" => Sandbox.debian_rootfs())) with_executor(UnprivilegedUserNamespacesExecutor) do exe stdout = IOBuffer() stderr = IOBuffer() signal_test = """ trap "echo received SIGINT" INT trap "echo received SIGTERM ; trap - TERM; kill -s TERM \$\$" TERM sleep 2 """ # We use `build_executor_command()` here so that we can use `run(; wait=false)`. signal_cmd = pipeline( ignorestatus(Sandbox.build_executor_command(exe, config, `/bin/sh -c "$(signal_test)"`)); stdout, stderr ) p = run(signal_cmd; wait=false) sleep(0.1) # Send SIGINT, wait a bit kill(p, Base.SIGINT) sleep(0.01) # Send SIGTERM, wait for process termination kill(p, Base.SIGTERM) wait(p) # Ensure that the sandbox died as we expected, but that the child process got # the messages and responded appropriately. @test p.termsignal == Base.SIGTERM @test String(take!(stdout)) == "received SIGINT\nreceived SIGTERM\n" end end else @error("Skipping Unprivileged tests, as it does not seem to be available") end # Only test privileged runner if sudo doesn't require a password if Sys.which("sudo") !== nothing && success(`sudo -k -n true`) if executor_available(PrivilegedUserNamespacesExecutor) @testset "PrivilegedUserNamespacesExecutor" begin with_executor(PrivilegedUserNamespacesExecutor) do exe @test probe_executor(exe) end end else @error("Skipping Privileged tests, as it does not seem to be available") end end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
1953
# If our test harness requests a local sandbox, make it so! REPO_ROOT = dirname(@__DIR__) should_build_local_sandbox = parse(Bool, get(ENV, "SANDBOX_BUILD_LOCAL_SANDBOX", "false")) if should_build_local_sandbox @info("Building local sandbox") run(`$(Base.julia_cmd()) --project=$(Base.active_project()) $(REPO_ROOT)/deps/build_local_sandbox.jl`) else # Clear out any `LocalPreferences.toml` files that we may or may not have. for prefix in (REPO_ROOT, joinpath(REPO_ROOT, "test")) local_prefs = joinpath(prefix, "LocalPreferences.toml") if isfile(local_prefs) @warn("Wiping $(local_prefs) as SANDBOX_BUILD_LOCAL_SANDBOX not set...") rm(local_prefs) end end end # Remove `SANDBOX_FORCE_MODE`, as we want to test all modes if haskey(ENV, "FORCE_SANDBOX_MODE") @warn("Un-setting `FORCE_SANDBOX_MODE` for tests...") delete!(ENV, "FORCE_SANDBOX_MODE") end using Test, Sandbox, Scratch # If we're on a UserNSSandbox_jll-compatible system, ensure that the sandbox is coming from where we expect. UserNSSandbox_jll = Sandbox.UserNSSandbox_jll if UserNSSandbox_jll.is_available() Artifacts = Sandbox.UserNSSandbox_jll.Artifacts sandbox_path = Sandbox.UserNSSandbox_jll.sandbox_path @info("On a UserNSSandbox_jll-capable platform", sandbox_path) if should_build_local_sandbox @test startswith(UserNSSandbox_jll.sandbox_path, Scratch.scratch_dir()) else @test any(startswith(UserNSSandbox_jll.sandbox_path, d) for d in Artifacts.artifacts_dirs()) end end # Ensure we're not running as root; that breaks unprivileged user namespaces testing if Sandbox.getuid() == 0 @warn("You are running Sandbox.jl tests as root! This cannot test unprivileged namespaces!") end include("SandboxConfig.jl") include("UserNamespaces.jl") include("Docker.jl") include("Sandbox.jl") if Sys.islinux() include("Nesting.jl") include("Multiarch.jl") end
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
code
1689
# When we are a child, we do the following: # 1. Set up a temp directory that we can write to. # 2. Copy the contents of package's project from `/project` (which is read-only) # to our temp directory (which is read-and-write). # 3. Delete any manifest files in the temp directory (which may refer to host paths). # 4. Instantiate the environment inside our temp directory. original_app_directory = "/project" # this is read-only; we cannot write to this directory new_app_directory = mktempdir(; cleanup = true) # we have write access to this directory cp(original_app_directory, new_app_directory; force=true) #rm.(joinpath.(Ref(new_app_directory), Base.manifest_names); force = true) using Pkg Pkg.activate(new_app_directory) Pkg.instantiate() Pkg.precompile() # Load Sandbox, then try to launch a nested sandbox using Sandbox, Test rootfs_dir = Sandbox.debian_rootfs() config = SandboxConfig( # This rootfs was downloaded within the sandbox in the `Pkg.instantiate()` above Dict("/" => rootfs_dir), # Propagate our readwrite mounting into the nested sandbox Dict{String,String}("/tmp/readwrite" => "/tmp/readwrite"), persist=true, verbose=true, ) # Prove that we can write into the `readwrite` location open("/tmp/readwrite/single_nested.txt", "w") do io println(io, "aperture") end # For debugging, dump the list of mounts: #run(`mount`) # This should always default to the unprivileged executor, since if we're nested, `FORCE_SANDBOX_MODE` should be set with_executor() do exe @test success(exe, config, `/bin/sh -c "echo science > /tmp/readwrite/double_nested.txt"`) end @test String(read("/tmp/readwrite/double_nested.txt")) == "science\n"
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
docs
3427
# Sandbox.jl [![Stable][docs-stable-img]][docs-stable-url] [![Dev][docs-dev-img]][docs-dev-url] [![Build Status][ci-img]][ci-url] [![Coverage][codecov-img]][codecov-url] [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://staticfloat.github.io/Sandbox.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://staticfloat.github.io/Sandbox.jl/dev [ci-img]: https://github.com/staticfloat/Sandbox.jl/workflows/CI/badge.svg [ci-url]: https://github.com/staticfloat/Sandbox.jl/actions/workflows/ci.yml [codecov-img]: https://codecov.io/gh/staticfloat/Sandbox.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/staticfloat/Sandbox.jl > The cultured host's toolkit for ill-mannered Linux guests. This package provides basic containerization tools for running Linux guests on a variety of platforms. As of the time of writing, it supports two execution backends: * A Linux User Namespaces executor, which is very fast and lightweight * A [Docker](https://www.docker.com/) (or [Podman](https://podman.io/)) executor which is slower, but more compatible (it works on macOS, and may work on Windows) The executors are responsible for running/virtualizing a given `Cmd` within a root filesystem that is defined by the user, along with various paths that can be mounted within the sandbox. These capabilities were originally built for [BinaryBuilder.jl](https://github.com/JuliaPackaging/BinaryBuilder.jl), however this functionality is now mature enough that it may be useful elsewhere. ## Basic usage To make use of this toolkit, you will need to have a root filesystem image that you want to use. This package can download a minimal Debian rootfs that can be used for quick tests; to launch `/bin/bash` in an interactive shell run the following: ```julia using Sandbox config = SandboxConfig( Dict("/" => Sandbox.debian_rootfs()); stdin, stdout, stderr, ) with_executor() do exe run(exe, config, `/bin/bash -l`) end ``` While this launches an interactive session due to hooking up `stdout`/`stdin`, one can easily capture output by setting `stdout` to an `IOBuffer`, or even a `PipeBuffer` to chain together multiple processes from different sandboxes. ## Getting more rootfs images To use more interesting rootfs images, you can either create your own using tools such as [`debootstrap`](https://wiki.debian.org/Debootstrap) or you can pull one from docker by using the `pull_docker_image()` function defined within this package. See the [`contrib`](contrib/) directory for examples of both. You can also check out the latest releases of the [`JuliaCI/rootfs-images` repository](https://github.com/JuliaCI/rootfs-images/), which curates a collection of rootfs images for use in CI workloads. ## Multiarch usage Sandbox contains facilities for automatically registering `qemu-user-static` interpreters with `binfmt_misc` to support running on multiple architectures. As of the time of this writing, this is only supported on when running on a Linux host with the `x86_64`, `aarch64` or `powerpc64le` host architectures. The target architectures supported are `x86_64`, `i686`, `aarch64`, `armv7l` and `powerpc64le`. Note that while `qemu-user-static` is a marvel of modern engineering, it does still impose some performance penalties, and there may be occasional bugs that break emulation faithfulness.
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MIT" ]
2.0.2
0f7b398a74a9fd40e7286f4ae352ba959fe52151
docs
334
# Sandbox.jl Documentation [`Sandbox.jl`](https://github.com/staticfloat/Sandbox.jl) provides basic containerization tools for running Linux guests on a variety of platforms. ## Index ```@index ``` ## Types ```@autodocs Modules = [Sandbox] Order = [:type] ``` ## Functions ```@autodocs Modules = [Sandbox] Order = [:function] ```
Sandbox
https://github.com/staticfloat/Sandbox.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4048
using Documenter, Coluna, Literate, BlockDecomposition, Parameters, DocumenterMermaid, DynamicSparseArrays JULIA_DEBUG=Documenter TUTORIAL_GAP = joinpath(@__DIR__, "src", "start", "start.jl") TUTORIAL_CUTS = joinpath(@__DIR__, "src", "start", "cuts.jl") TUTORIAL_PRICING = joinpath(@__DIR__, "src", "start", "pricing.jl") TUTORIAL_IDENTICAL_SP = joinpath(@__DIR__, "src", "start", "identical_sp.jl") TUTORIAL_CUSTOMDATA = joinpath(@__DIR__, "src", "start", "custom_data.jl") TUTORIAL_INITCOLS = joinpath(@__DIR__, "src", "start", "initial_columns.jl") TUTORIAL_ADVANCED = joinpath(@__DIR__, "src", "start", "advanced_demo.jl") TUTORIAL_STORAGE_API = joinpath(@__DIR__, "src", "api", "storage.jl") OUTPUT_GAP = joinpath(@__DIR__, "src", "start") OUTPUT_CUTS = joinpath(@__DIR__, "src", "start") OUTPUT_PRICING = joinpath(@__DIR__, "src", "start") OUTPUT_IDENTICAL_SP = joinpath(@__DIR__, "src", "start") OUTPUT_CUSTOMDATA = joinpath(@__DIR__, "src", "start") OUTPUT_INITCOLS = joinpath(@__DIR__, "src", "start") OUTPUT_ADVANCED = joinpath(@__DIR__, "src", "start") OUTPUT_STORAGE_API = joinpath(@__DIR__, "src", "api") Literate.markdown(TUTORIAL_GAP, OUTPUT_GAP, documenter=true) Literate.markdown(TUTORIAL_CUTS, OUTPUT_CUTS, documenter=true) Literate.markdown(TUTORIAL_PRICING, OUTPUT_PRICING, documenter=true) Literate.markdown(TUTORIAL_IDENTICAL_SP, OUTPUT_IDENTICAL_SP, documenter=true) Literate.markdown(TUTORIAL_CUSTOMDATA, OUTPUT_CUSTOMDATA, documenter=true) Literate.markdown(TUTORIAL_INITCOLS, OUTPUT_INITCOLS, documenter=true) Literate.markdown(TUTORIAL_ADVANCED, OUTPUT_ADVANCED, documenter=true) Literate.markdown(TUTORIAL_STORAGE_API, OUTPUT_STORAGE_API, documenter=true) makedocs( modules = [Coluna, BlockDecomposition, DynamicSparseArrays], checkdocs = :exports, sitename = "Coluna.jl", authors = "Atoptima & contributors", format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", collapselevel = 2, assets = ["assets/js/init.js"] ), warnonly = true, pages = Any[ "Introduction" => "index.md", "Tutorials" => Any[ "Getting Started" => Any[ "Column generation" => joinpath("start", "start.md"), "Cut Generation" => joinpath("start", "cuts.md"), "Pricing callback" => joinpath("start", "pricing.md"), "Identical subproblems" => joinpath("start", "identical_sp.md"), "Custom data" => joinpath("start", "custom_data.md"), "Initial columns callback" => joinpath("start", "initial_columns.md") ], "Advanced tutorials" => Any[ "Column Generation and Benders on Location Routing" => joinpath("start", "advanced_demo.md"), "Other classic problems" => joinpath("start", "other_pbs.md") ] ], "Manual" => Any[ "Decomposition" => Any[ "Decomposition paradigms" => joinpath("man", "decomposition.md"), "Setup decomposition using BlockDecomposition" => joinpath("man", "blockdecomposition.md") ], "Configuration" => joinpath("man", "config.md"), "Built-in algorithms" => joinpath("man", "algorithm.md"), "User-defined Callbacks" => joinpath("man", "callbacks.md"), "Presolve algorithm" => joinpath("man", "presolve.md"), ], "API" => Any[ "Algorithms" => joinpath("api", "algos.md"), "Benders" => joinpath("api", "benders.md"), "Branching" => joinpath("api", "branching.md"), "ColGen" => joinpath("api", "colgen.md"), "Presolve" => joinpath("api", "presolve.md"), "TreeSearch" => joinpath("api", "treesearch.md"), "Storage" => joinpath("api", "storage.md"), ], "Dynamic Sparse Arrays" => "dynamic_sparse_arrays.md", "Q&A" => "qa.md", ] ) deploydocs( repo = "github.com/atoptima/Coluna.jl.git", push_preview = true )
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1069
# # Storage API # ```@meta # CurrentModule = Coluna # ``` # ## API # To summarize from a developer's point of view, there is a one-to-one correspondence between # storage unit types and record types. # This correspondence is implemented by methods # `record_type(StorageUnitType)` and `storage_unit_type(RecordType)`. # The developer must also implement methods `storage_unit(StorageUnitType)` and # `record(RecordType, id, model, storage_unit)` that must call constructors of the custom # storage unit and one of its associated records. # Arguments of `record` allow the developer to record the state of entities from # both the storage unit and the model. # At last, he must implement `restore_from_record!(storage_unit, model, record)` to restore the # state of the entities represented by the storage unit. # Entities can be in the storage unit, the model, or both of them. # ```@docs # ColunaBase.record_type # ColunaBase.storage_unit_type # ColunaBase.storage_unit # ColunaBase.record # ColunaBase.restore_from_record! # ```
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
41870
# # Advanced tutorial - Location Routing # We demonstrate the main features of Coluna on a variant of the Location Routing problem. # In the Location Routing Problem, we are given a set of facilities and a set of customers. # Each customer must be delivered by a route starting from one facility. Each facility has # a setup cost, while the cost of a route is the distance traveled. # A route is defined as a vector of locations that satisfies the following rules: # - it must start from an open facility location # - it can finish at any customer (open route variant) # - its length is limited (the maximum number of visited locations is equal to a constant `nb_positions`) # Our objective is to minimize the sum of fixed costs for opening facilities and the total traveled distance # while ensuring that each customer is covered by a route. # In this tutorial, we will show you how to solve this problem by applying: # - a direct approach with JuMP and a MILP solver (without Coluna) # - a branch-and-price algorithm provided by Coluna, which uses a custom pricing callback to optimize pricing subproblems # - a robust branch-cut-and-price algorithm, which separates valid inequalities on the original arc variables (so-called "robust" cuts) # - a non-robust branch-cut-and-price algorithm, which separates valid inequalities on the route variables of the Dantzig-Wolfe reformulation (so-called "non-robust" cuts) # - a multi-stage column generation algorithm using two different pricing solvers # - a classic Benders decomposition approach, which uses the LP relaxation of the subproblem # For illustration purposes, we use a small instance with 2 facilities and 7 customers. # The maximum length of a route is fixed to 4. # We also provide a larger instance in the last section of the tutorial. nb_positions = 4 facilities_fixed_costs = [120, 150] facilities = [1, 2] customers = [3, 4, 5, 6, 7, 8, 9] arc_costs = [ 0.0 25.3 25.4 25.4 35.4 37.4 31.9 24.6 34.2; 25.3 0.0 21.2 16.2 27.1 26.8 17.8 16.7 23.2; 25.4 21.2 0.0 14.2 23.4 23.8 18.3 17.0 21.6; 25.4 16.2 14.2 0.0 28.6 28.8 22.6 15.6 29.5; 35.4 27.1 23.4 28.6 0.0 42.1 30.4 24.9 39.1; 37.4 26.8 23.8 28.8 42.1 0.0 32.4 29.5 38.2; 31.9 17.8 18.3 22.6 30.4 32.4 0.0 22.5 30.7; 24.6 16.7 17.0 15.6 24.9 29.5 22.5 0.0 21.4; 34.2 23.2 21.6 29.5 39.1 38.2 30.7 21.4 0.0; ] locations = vcat(facilities, customers) nb_customers = length(customers) nb_facilities = length(facilities) positions = 1:nb_positions; # In this tutorial, we will use the following packages: using JuMP, HiGHS, GLPK, BlockDecomposition, Coluna; # We want to set an upper bound `nb_routes_per_facility` on the number of routes starting from a facility. # This limit is computed as follows: ## We compute the minimum number of routes needed to visit all customers: nb_routes = Int(ceil(nb_customers / nb_positions)) ## We define the upper bound `nb_routes_per_facility`: nb_routes_per_facility = min(Int(ceil(nb_routes / nb_facilities)) * 2, nb_routes) routes_per_facility = 1:nb_routes_per_facility; # ## Direct model # First, we solve the problem by a direct approach, using the HiGHS solver. # We start by creating a JuMP model: model = JuMP.Model(HiGHS.Optimizer); # We declare 3 types of binary variables: ## y[j] equals 1 if facility j is open; 0 otherwise. @variable(model, y[j in facilities], Bin) ## z[u,v] equals 1 if a vehicle travels from u to v; 0 otherwise @variable(model, z[u in locations, v in locations], Bin) ## x[i,j,k,p] equals 1 if customer i is delivered from facility j at position p of route k; 0 otherwise @variable(model, x[i in customers, j in facilities, k in routes_per_facility, p in positions], Bin); # We define the constraints: ## each customer is visited once @constraint(model, cov[i in customers], sum(x[i, j, k, p] for j in facilities, k in routes_per_facility, p in positions) == 1) ## a facility is open if there is a route starting from it @constraint(model, setup[j in facilities, k in routes_per_facility], sum(x[i, j, k, 1] for i in customers) <= y[j]) ## flow conservation @constraint(model, flow_conservation[j in facilities, k in routes_per_facility, p in positions; p > 1], sum(x[i, j, k, p] for i in customers) <= sum(x[i, j, k, p-1] for i in customers)) ## there is an arc between two customers whose demand is satisfied by the same route at consecutive positions @constraint(model, route_arc[i in customers, l in customers, j in facilities, k in routes_per_facility, p in positions; p > 1 && i != l], z[i, l] >= x[l, j, k, p] + x[i, j, k, p-1] - 1) ## there is an arc between facility `j` and the first customer visited by route `k` from facility `j` @constraint(model, start_arc[i in customers, j in facilities, k in routes_per_facility], z[j, i] >= x[i, j, k, 1]); # We set the objective function: @objective(model, Min, sum(arc_costs[u, v] * z[u, v] for u in locations, v in locations) + sum(facilities_fixed_costs[j] * y[j] for j in facilities)); # and we optimize the model: optimize!(model) objective_value(model) # We find an optimal solution involving two routes starting from facility 1: # - `1` -> `8` -> `9` -> `3` -> `6` # - `1` -> `4` -> `5` -> `7` # ## Dantzig-Wolfe decomposition and Branch-and-Price # One can solve the problem by exploiting its structure with a Dantzig-Wolfe decomposition approach. # The subproblem induced by such decomposition amounts to generate routes starting from each facility. # A possible decomposition is to consider a subproblem associated with each vehicle, generating the vehicle route. # However, for a given facility, the vehicles that are identical will give rise to the same subproblem and route solutions. # So instead of this decomposition with several identical subproblems for each facility, we define below a single subproblem per facility. # For each subproblem, we define its multiplicity, i.e. we bound the number of solutions of this subproblem that can be used in a master solution. # The following method creates the model according to the decomposition described: function create_model(optimizer, pricing_algorithms) ## A user should resort to axes to communicate to Coluna how to decompose a formulation. ## For our problem, we declare an axis over the facilities, thus `facilities_axis` contain subproblem indices. ## We must use `facilities_axis` instead of `facilities` in the declaration of the ## variables and constraints that belong to pricing subproblems. @axis(facilities_axis, collect(facilities)) ## We declare a `BlockModel` instead of `Model`. model = BlockModel(optimizer) ## `y[j]` is a master variable equal to 1 if the facility j is open; 0 otherwise @variable(model, y[j in facilities], Bin) ## `x[i,j]` is a subproblem variable equal to 1 if customer i is delivered from facility j; 0 otherwise. @variable(model, x[i in customers, j in facilities_axis], Bin) ## `z[u,v]` is assimilated to a subproblem variable equal to 1 if a vehicle travels from u to v; 0 otherwise. ## we don't use the `facilities_axis` axis here because the `z` variables are defined as ## representatives of the subproblem variables later in the model. @variable(model, z[u in locations, v in locations], Bin) ## `cov` constraints are master constraints ensuring that each customer is visited once. @constraint(model, cov[i in customers], sum(x[i, j] for j in facilities) >= 1) ## `open_facilities` are master constraints ensuring that the depot is open if one vehicle ## leaves it. @constraint(model, open_facility[j in facilities], sum(z[j, i] for i in customers) <= y[j] * nb_routes_per_facility) ## We don't need to describe the subproblem constraints because we use a pricing callback. ## We set the objective function: @objective(model, Min, sum(arc_costs[u, v] * z[u, v] for u in locations, v in locations) + sum(facilities_fixed_costs[j] * y[j] for j in facilities) ) ## We perform decomposition over the facilities. @dantzig_wolfe_decomposition(model, dec, facilities_axis) ## Subproblems generate routes starting from each facility. ## The number of routes from each facility is at most `nb_routes_per_facility`. subproblems = BlockDecomposition.getsubproblems(dec) specify!.(subproblems, lower_multiplicity=0, upper_multiplicity=nb_routes_per_facility, solver=pricing_algorithms) ## We define `z` as a subproblem variable common to all subproblems. ## Each implicit variable `z` replaces a sum of explicit `z'` variables: `z[u,v] = sum(z'[j,u,v] for j in facilities_axis)` ## This way the model is simplified, and column generation is accelerated as the reduced cost for pair `z[u,v]` is calculated only once ## instead of performing the same reduced cost calculation for variables `z'[j,u,v]`, `j in facilities_axis`. subproblemrepresentative.(z, Ref(subproblems)) return model, x, y, z, cov end; # Contrary to the direct model, we do not add constraints to ensure the # feasibility of the routes because we solve our subproblems in a pricing callback. # The user who implements the pricing callback has the responsibility to create only feasible routes. # We setup Coluna: coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm( ## default branch-and-bound of Coluna maxnumnodes=100, conqueralg=Coluna.ColCutGenConquer() ## default column and cut generation of Coluna ) ## default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); # ### Pricing callback # If the user declares all the necessary subproblem constraints and possibly additional subproblem variables # to describe the set of feasible subproblem solutions, Coluna may perform automatic Dantzig-Wolfe # decomposition in which the pricing subproblems are solved by applying a (default) MIP solver. # In our case, applying a MIP solver is not the most efficient way to solve the pricing problem. # Therefore, we implement an ad-hoc algorithm for solving the pricing subproblems and declare it as a pricing callback. # In our pricing callback for a given facility, we inspect all feasible routes enumerated before calling the branch-cut-and-price algorithm. # The inspection algorithm calculates the reduced cost for each enumerated route and returns a route with the minimum reduced cost. # We first define a structure to store the routes: mutable struct Route length::Int # record the length of the route (number of visited customers + 1) path::Vector{Int} # record the sequence of visited customers end; # We can reduce the number of enumerated routes by exploiting the following property. # Consider two routes starting from the same facility and visiting the same subset of locations (customers). # These two routes correspond to columns with the same vector of coefficients in master constraints. # A solution containing the route with a larger traveled distance (i.e., larger route original cost) is dominated: # this dominated route can be replaced by the other route without increasing the total solution cost. # Therefore, for each subset of locations of a size not exceeding the maximum one, # the enumeration procedure keeps only one route visiting this subset, the one with the smallest cost. # A method that computes the cost of a route: function route_original_cost(arc_costs, route::Route) route_cost = 0.0 path = route.path path_length = route.length for i in 1:(path_length-1) route_cost += arc_costs[path[i], path[i+1]] end return route_cost end; # This procedure finds a least-cost sequence of visiting the given set of customers starting from a given facility. function best_visit_sequence(arc_costs, cust_subset, facility_id) ## generate all the possible visit orders set_size = size(cust_subset)[1] all_paths = collect(multiset_permutations(cust_subset, set_size)) all_routes = Vector{Route}() for path in all_paths ## add the first index i.e. the facility id enpath = vcat([facility_id], path) ## length of the route = 1 + number of visited customers route = Route(set_size + 1, enpath) push!(all_routes, route) end ## compute each route original cost routes_costs = map(r -> (r, route_original_cost(arc_costs, r)), all_routes) ## keep only the best visit sequence tmp = argmin([c for (_, c) in routes_costs]) (best_order, _) = routes_costs[tmp] return best_order end; # We are now able to compute a dominating route for all the possible customers' subsets, # given a facility id: using Combinatorics function best_route_forall_cust_subsets(arc_costs, customers, facility_id, max_size) best_routes = Vector{Route}() all_subsets = Vector{Vector{Int}}() for subset_size in 1:max_size subsets = collect(combinations(customers, subset_size)) for s in subsets push!(all_subsets, s) end end for s in all_subsets route_s = best_visit_sequence(arc_costs, s, facility_id) push!(best_routes, route_s) end return best_routes end; # We store all the information given by the enumeration phase in a dictionary. # For each facility id, we match a vector of routes that are the best visiting sequences # for each possible subset of customers. routes_per_facility = Dict( j => best_route_forall_cust_subsets(arc_costs, customers, j, nb_positions) for j in facilities ) # Our pricing callback must compute the reduced cost of each route, # given the reduced cost of the subproblem variables `x` and `z`. # Remember that subproblem variables `z` are implicitly defined by master representative variables `z`. # We remark that `z` variables participate only in the objective function. # Thus their reduced costs are initially equal to the original costs (i.e., objective coefficients) # This is not true anymore after adding branching constraints and robust cuts involving variables `z`. # We need methods to compute the contributions to the reduced cost of the `x` and `z` variables: function x_contribution(route::Route, j::Int, x_red_costs) x = 0.0 visited_customers = route.path[2:route.length] for i in visited_customers x += x_red_costs["x_$(i)_$(j)"] end return x end; function z_contribution(route::Route, z_red_costs) z = 0.0 for i in 1:(route.length-1) current_position = route.path[i] next_position = route.path[i+1] z += z_red_costs["z_$(current_position)_$(next_position)"] end return z end; # We are now able to write our pricing callback: function pricing_callback(cbdata) ## Get the id of the facility. j = BlockDecomposition.indice(BlockDecomposition.callback_spid(cbdata, model)) ## Retrieve variables reduced costs. z_red_costs = Dict( "z_$(u)_$(v)" => BlockDecomposition.callback_reduced_cost(cbdata, z[u, v]) for u in locations, v in locations) x_red_costs = Dict( "x_$(i)_$(j)" => BlockDecomposition.callback_reduced_cost(cbdata, x[i, j]) for i in customers ) ## Keep route with minimum reduced cost. red_costs_j = map(r -> ( r, x_contribution(r, j, x_red_costs) + z_contribution(r, z_red_costs) # the reduced cost of a route is the sum of the contribution of the variables ), routes_per_facility[j] ) min_index = argmin([x for (_, x) in red_costs_j]) (best_route, min_reduced_cost) = red_costs_j[min_index] ## Retrieve the route's arcs. best_route_arcs = Vector{Tuple{Int,Int}}() for i in 1:(best_route.length-1) push!(best_route_arcs, (best_route.path[i], best_route.path[i+1])) end best_route_customers = best_route.path[2:best_route.length] ## Create the solution (send only variables with non-zero values). z_vars = [z[u, v] for (u, v) in best_route_arcs] x_vars = [x[i, j] for i in best_route_customers] sol_vars = vcat(z_vars, x_vars) sol_vals = ones(Float64, length(z_vars) + length(x_vars)) sol_cost = min_reduced_cost ## Submit the solution to the subproblem to Coluna. MOI.submit(model, BlockDecomposition.PricingSolution(cbdata), sol_cost, sol_vars, sol_vals) ## Submit the dual bound to the solution of the subproblem. ## This bound is used to compute the contribution of the subproblem to the lagrangian ## bound in column generation. MOI.submit(model, BlockDecomposition.PricingDualBound(cbdata), sol_cost) ## optimal solution end; # Create the model: model, x, y, z, _ = create_model(coluna, pricing_callback); # Solve: JuMP.optimize!(model) # ### Strengthening the master with linear valid inequalities on the original variables (so-called "robust" cuts) # To improve the quality of the linear relaxation, a family of classic facility location valid inequalities can be used: # # ```math # x_{ij} \leq y_j\; \forall i \in I, \forall j \in J # ``` # where $I$ is the set of customers and $J$ the set of facilities. # We declare a structure representing an inequality in this family: struct OpenFacilityInequality facility_id::Int customer_id::Int end # To identify violated valid inequalities from a current master LP solution, # we proceed by enumeration (i.e. iterating over all pairs of customer and facility). # Enumeration separation procedure is implemented in the following callback. function valid_inequalities_callback(cbdata) ## Get variables valuations and store them in dictionaries. x_vals = Dict( "x_$(i)_$(j)" => BlockDecomposition.callback_value(cbdata, x[i, j]) for i in customers, j in facilities ) y_vals = Dict( "y_$(j)" => BlockDecomposition.callback_value(cbdata, y[j]) for j in facilities ) ## Separate the valid inequalities (i.e. retrieve the inequalities that are violated by ## the current solution) by enumeration. inequalities = OpenFacilityInequality[] for j in facilities y_j = y_vals["y_$(j)"] for i in customers x_i_j = x_vals["x_$(i)_$(j)"] if x_i_j > y_j push!(inequalities, OpenFacilityInequality(j, i)) end end end ## Add the valid inequalities to the model. for ineq in inequalities constr = JuMP.@build_constraint(x[ineq.customer_id, ineq.facility_id] <= y[ineq.facility_id]) MOI.submit(model, MOI.UserCut(cbdata), constr) end end; # We re-declare the model and optimize it with these valid inequalities: model, x, y, z, _ = create_model(coluna, pricing_callback); MOI.set(model, MOI.UserCutCallback(), valid_inequalities_callback); JuMP.optimize!(model) # ### Strengthening the master with valid inequalities on the column generation variables (so-called "non-robust" cuts) # In order to further strengthen the linear relaxation of the Dantzig-Wolfe reformulation, # we separate a family of subset-row cuts, which is a subfamily of Chvátal-Gomory rank-1 cuts (R1C), # obtained from the set-partitioning constraints. # These cuts cannot be expressed as a linear combination of the original variables of the model. # Instead, they are expressed with the master columns variables $λ_k$, $k \in K$, where $K$ is the set of generated columns # or set of solutions returned by the pricing subproblems. # Subset-row cuts are "non-robust" in the sense that they modify the structure of the pricing subproblems, # and not just the reduced cost of subproblem variables. Thus, the implementation of the pricing callback should # be updated to take into account dual costs associated with non-robust cutting planes. # Each Chvátal-Gomory rank-1 cut is characterized by a subset of set-partitioning constraints, or equivalently by a subset $C$ of customers, # and a multiplier $\alpha_i$ for each customer $i\in C$: # ```math # \sum_{k \in K} \lfloor \sum_{i \in C} \alpha_i \tilde{x}^k_{i,j} \lambda_{k} \rfloor \leq \lfloor \sum_{i\in C} \alpha_i \rfloor, \; C \subseteq I, # ``` # where $\tilde{x}^k_{ij}$ is the value of the variable $x_{ij}$ in the $k$-th column generated. # For subset-row cuts, $|C|=3$, and $\alpha_i=\frac{1}{2}$, $i\in C$. # Since we obtain subset-row cuts based on set-partitioning constraints, we must be able to # differentiate them from the other constraints of the model. # To do this, we exploit a feature of Coluna that allows us to attach custom data to the # constraints and variables of a model, via the add-ons of BlockDecomposition package. # First, we create special custom data with the only information we need to characterize # our cover constraints: the customer id that corresponds to this constraint. struct CoverConstrData <: BlockDecomposition.AbstractCustomConstrData customer::Int end # We re-create the model: (model, x, y, z, cov) = create_model(coluna, pricing_callback); # We declare our custom data to Coluna and we attach one custom data to each cover constraint BlockDecomposition.customconstrs!(model, CoverConstrData); for i in customers customdata!(cov[i], CoverConstrData(i)) end # We perform the separation by enumeration (i.e. iterating over all subsets of customers of size three). # The subset-row cut has the following form: # ```math # \sum_{k \in K} \tilde{\alpha}(C, k) \lambda_{k} \leq 1\; C \subseteq I, |C| = 3, # ``` # where coefficient $\tilde{\alpha}(C, k)$ equals $1$ if route $k$ visits at least two customers of $C$; $0$ otherwise. # For instance, if we consider separating a cut over constraints `cov[3]`, `cov[6]` and `cov[8]`, # then the route `1`->`4`->`6`->`7` has a zero coefficient while the route `1`->`4`->`6`->`3` # has a coefficient equal to one. # Since columns are generated dynamically, we cannot pre-compute the coefficients of columns in the subset-row cuts. # Instead, coefficients are computed dynamically via a user-defined `computecoeff` method which takes # a cut and a column as arguments. To recognize which cut and which column are passed to the method, # custom data structures are attached to the cut constraints and the master variables. # When a new column is generated, Coluna computes its coefficients in the original constraints and robust cuts # using coefficients of subproblem variables in the master constraints. # Coluna retrieves coefficients of the new column in the non-robust cuts by calling the `computecoeff` method for the column and each such cut. # When a new non-robust cut is generated, Coluna retrieves the coefficients of columns in this cut by calling the `computecoeff` method for the cut and all existing columns. # We now proceed to the implementation of necessary data structures and methods needed to support the subset-row cuts. # First, we attach a custom data structure to master columns `λ_k` associated with a given route `k`. # They record the set of customers that are visited by the given route `k`. # Thus, to each `λ_k`, we associate a `R1cVarData` structure that carries the customers it visits. struct R1cVarData <: BlockDecomposition.AbstractCustomVarData visited_locations::Vector{Int} end # Then, we attach a `R1cCutData` custom data structure to the subset-row cuts. # It contains the set $C$ of customers characterizing the cut. struct R1cCutData <: BlockDecomposition.AbstractCustomVarData cov_constrs::Vector{Int} end # We declare our custom data to Coluna via BlockDecomposition add-ons: BlockDecomposition.customvars!(model, R1cVarData) BlockDecomposition.customconstrs!(model, [CoverConstrData, R1cCutData]); # The next method calculates the coefficients of a column `λ_k` in a subset-row cut: function Coluna.MathProg.computecoeff( var_custom_data::R1cVarData, constr_custom_data::R1cCutData ) return floor(1 / 2 * length(var_custom_data.visited_locations ∩ constr_custom_data.cov_constrs)) end # We also need to define a second method for the case of the cover constraints. # Indeed, we use custom data to know the customer attached to each cover constraint # There is no contribution of the non-robust part of the coefficient of the `λ_k`, so # the method returns 0. function Coluna.MathProg.computecoeff(::R1cVarData, ::CoverConstrData) return 0 end # We are now able to write our rank-one cut callback completely: function r1c_callback(cbdata) original_sol = cbdata.orig_sol master = Coluna.MathProg.getmodel(original_sol) ## Retrieve the cover constraints. cov_constrs = Int[] for constr in values(Coluna.MathProg.getconstrs(master)) constr_custom_data = Coluna.MathProg.getcustomdata(master, constr) if typeof(constr_custom_data) <: CoverConstrData push!(cov_constrs, constr_custom_data.customer) end end ## Retrieve the master columns λ and their values in the current fractional solution lambdas = Tuple{Float64,Coluna.MathProg.Variable}[] for (var_id, val) in original_sol if Coluna.MathProg.getduty(var_id) <= Coluna.MathProg.MasterCol push!(lambdas, (val, Coluna.MathProg.getvar(master, var_id))) end end ## Separate the valid subset-row cuts violated by the current solution. ## For a fixed subset of customers of size three, iterate on the master columns ## and check if lhs > 1: for cov_constr_subset in collect(combinations(cov_constrs, 3)) lhs = 0 for lambda in lambdas (val, var) = lambda var_custom_data = Coluna.MathProg.getcustomdata(master, var) if !isnothing(var_custom_data) coeff = floor(1 / 2 * length(var_custom_data.visited_locations ∩ cov_constr_subset)) lhs += coeff * val end end if lhs > 1 ## Create the constraint and add it to the model. MOI.submit(model, MOI.UserCut(cbdata), JuMP.ScalarConstraint(JuMP.AffExpr(0.0), MOI.LessThan(1.0)), R1cCutData(cov_constr_subset) ) end end end; # When creating non-robust constraints, only the linear (i.e., robust) part is passed to the model. # In our case, the constraint `0 <= 1` is passed. # As explained above, the non-robust part is computed by calling the `computecoeff` method using # the structure of type `R1cCutData` provided. # Finally, we need to update our pricing callback to take into account the active non-robust cuts. # The contribution of these cuts to the reduced cost of a column is not captured by the reduced cost # of subproblem variables. We must therefore take this contribution into account manually, by inquiring # the set of existing non-robust cuts and their values in the current dual solution. # The contribution of a subset-row cut to the reduced cost of a route is managed by the following method: function r1c_contrib(route::Route, custduals) cost = 0 if !isempty(custduals) for (r1c_cov_constrs, dual) in custduals coeff = floor(1 / 2 * length(route.path ∩ r1c_cov_constrs)) cost += coeff * dual end end return cost end; # We re-write our pricing callback to: # - retrieve the dual cost of the subset-row cuts # - take into account the contribution of the subset-row cuts in the reduced cost of the route # - attach custom data to the route so that its coefficient in the existing non-robust cuts can be computed function pricing_callback(cbdata) j = BlockDecomposition.indice(BlockDecomposition.callback_spid(cbdata, model)) z_red_costs = Dict( "z_$(u)_$(v)" => BlockDecomposition.callback_reduced_cost(cbdata, z[u, v]) for u in locations, v in locations ) x_red_costs = Dict( "x_$(i)_$(j)" => BlockDecomposition.callback_reduced_cost(cbdata, x[i, j]) for i in customers ) ## FIRST CHANGE HERE: ## Get the dual values of the constraints of the specific type to compute the contributions of ## non-robust cuts to the cost of the solution: master = cbdata.form.parent_formulation custduals = Tuple{Vector{Int},Float64}[] for (_, constr) in Coluna.MathProg.getconstrs(master) constr_custom_data = Coluna.MathProg.getcustomdata(master, constr) if typeof(constr_custom_data) == R1cCutData push!(custduals, ( constr_custom_data.cov_constrs, Coluna.MathProg.getcurincval(master, constr) )) end end ## END OF FIRST CHANGE ## SECOND CHANGE HERE: ## Keep route with the minimum reduced cost: contribution of the subproblem variables and ## the non-robust cuts. red_costs_j = map(r -> ( r, x_contribution(r, j, x_red_costs) + z_contribution(r, z_red_costs) - r1c_contrib(r, custduals) ), routes_per_facility[j] ) ## END OF SECOND CHANGE min_index = argmin([x for (_, x) in red_costs_j]) best_route, min_reduced_cost = red_costs_j[min_index] best_route_arcs = Tuple{Int,Int}[] for i in 1:(best_route.length-1) push!(best_route_arcs, (best_route.path[i], best_route.path[i+1])) end best_route_customers = best_route.path[2:best_route.length] z_vars = [z[u, v] for (u, v) in best_route_arcs] x_vars = [x[i, j] for i in best_route_customers] sol_vars = vcat(z_vars, x_vars) sol_vals = ones(Float64, length(z_vars) + length(x_vars)) sol_cost = min_reduced_cost ## Submit the solution of the subproblem to Coluna ## THIRD CHANGE HERE: ## You must attach the visited customers in the structure of type `R1cVarData` to the solution of the subproblem MOI.submit( model, BlockDecomposition.PricingSolution(cbdata), sol_cost, sol_vars, sol_vals, R1cVarData(best_route.path) ) ## END OF THIRD CHANGE MOI.submit(model, BlockDecomposition.PricingDualBound(cbdata), sol_cost) end MOI.set(model, MOI.UserCutCallback(), r1c_callback); JuMP.optimize!(model) # ### Multi-stage pricing callback # In this section, we implement a pricing heuristic that can be used together with the exact # pricing callback to generate subproblems solutions. # The idea of the heuristic is very simple: # - Given a facility `j`, the heuristic finds the closest customer to `j` and adds it to the route. # - Then, while the reduced cost keeps improving and the maximum length of the route is not reached, the heuristic computes and adds to the route the nearest neighbor to the last customer of the route. # We first define an auxiliary function used to compute the route tail's nearest neighbor at each step: function add_nearest_neighbor(route::Route, customers, costs) ## Get the last customer of the route. loc = last(route.path) ## Initialize its nearest neighbor to zero and mincost to infinity. (nearest, mincost) = (0, Inf) ## Compute nearest and mincost. for i in customers if !(i in route.path) # implying in particular (i != loc) if (costs[loc, i] < mincost) nearest = i mincost = costs[loc, i] end end end ## Add the last customer's nearest neighbor to the route. if nearest != 0 push!(route.path, nearest) route.length += 1 end end; # We then define our heuristic for the enumeration of the routes, the method returns the best route found by the heuristic together with its cost: function enumeration_heuristic(x_red_costs, z_red_costs, j) ## Initialize our "greedy best route". best_route = Route(1, [j]) ## Initialize the route's cost to zero. current_redcost = 0.0 old_redcost = Inf ## main loop while (current_redcost < old_redcost) add_nearest_neighbor(best_route, customers, arc_costs) old_redcost = current_redcost current_redcost = x_contribution(best_route, j, x_red_costs) + z_contribution(best_route, z_red_costs) ## Max length is reached. if best_route.length == nb_positions break end end return (best_route, current_redcost) end; # We can now define our heuristic pricing callback: function approx_pricing(cbdata) j = BlockDecomposition.indice(BlockDecomposition.callback_spid(cbdata, model)) z_red_costs = Dict( "z_$(u)_$(v)" => BlockDecomposition.callback_reduced_cost(cbdata, z[u, v]) for u in locations, v in locations ) x_red_costs = Dict( "x_$(i)_$(j)" => BlockDecomposition.callback_reduced_cost(cbdata, x[i, j]) for i in customers ) ## Call the heuristic to elect the "greedy best route": best_route, sol_cost = enumeration_heuristic(x_red_costs, z_red_costs, j) ## Build the solution: best_route_arcs = Vector{Tuple{Int,Int}}() for i in 1:(best_route.length-1) push!(best_route_arcs, (best_route.path[i], best_route.path[i+1])) end best_route_customers = best_route.path[2:length(best_route.path)] z_vars = [z[u, v] for (u, v) in best_route_arcs] x_vars = [x[i, j] for i in best_route_customers] sol_vars = vcat(z_vars, x_vars) sol_vals = ones(Float64, length(z_vars) + length(x_vars)) MOI.submit(model, BlockDecomposition.PricingSolution(cbdata), sol_cost, sol_vars, sol_vals) ## As the procedure is inexact, no dual bound can be computed, we set it to -Inf. MOI.submit(model, BlockDecomposition.PricingDualBound(cbdata), -Inf) end; # We set the solver; `colgen_stages_pricing_solvers` indicates which solver to use first (here it is `approx_pricing`) coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.BranchCutAndPriceAlgorithm( maxnumnodes=100, colgen_stages_pricing_solvers=[2, 1] ) ) ); # We add the two pricing algorithms to our model: model, x, y, z, cov = create_model(coluna, [approx_pricing, pricing_callback]); # We declare our custom data to Coluna: BlockDecomposition.customvars!(model, R1cVarData) BlockDecomposition.customconstrs!(model, [CoverConstrData, R1cCutData]); for i in customers customdata!(cov[i], CoverConstrData(i)) end # Optimize: JuMP.optimize!(model) # ## Benders decomposition # In this section, we show how one can solve the linear relaxation of the master program of # a Benders Decomposition approach to this facility location demo problem. # The first-stage decisions consist in choosing a subset of facilities to open. # The second-stage decisions consist in choosing the routes that are assigned to each facility. # The second stage problem is an integer program, so for simplicity, we use its linear relaxation instead. To improve the quality of this # relaxation, we enumerate the routes and use one variable per route. As this approach is practical only for small instances, # we use it only for illustration purposes. For larger instances, we would have to implement a column generation approach # to solve the subproblem, i.e., the Benders cut separation problem. # In the same spirit as the above models, we use the variables. # Let `y[j]` equal 1 if the facility `j` is open and 0 otherwise. # Let `λ[j,k]` equal 1 if route `k` starting from facility `j` is selected and 0 otherwise. # Since there is only one subproblem in the second stage, we introduce a fake axis that contains # only one element. This approach can be generalized to the case where customer demand uncertainty is expressed with scenarios. # In this case, we would have one subproblem for each scenario, and the axis would have been defined for the set of scenarios. # In our case, the set of scenarios consists of one "fake" scenario. fake = 1 @axis(axis, collect(fake:fake)) coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params(solver=Coluna.Algorithm.BendersCutGeneration() ), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna); # We introduce auxiliary structures to improve the clarity of the code. ## routes covering customer i from facility j. covering_routes = Dict( (j, i) => findall(r -> (i in r.path), routes_per_facility[j]) for i in customers, j in facilities ); ## routes costs from facility j. routes_costs = Dict( j => [route_original_cost(arc_costs, r) for r in routes_per_facility[j]] for j in facilities ); # We declare the variables. @variable(model, 0 <= y[j in facilities] <= 1) ## 1st stage @variable(model, 0 <= λ[f in axis, j in facilities, k in 1:length(routes_per_facility[j])] <= 1); ## 2nd stage # We declare the constraints. ## Linking constraints @constraint(model, open[fake in axis, j in facilities, k in 1:length(routes_per_facility[j])], y[j] >= λ[fake, j, k]) ## Second-stage constraints @constraint(model, cover[fake in axis, i in customers], sum(λ[fake, j, k] for j in facilities, k in covering_routes[(j, i)]) >= 1) ## Second-stage constraints @constraint(model, limit_nb_routes[fake in axis, j in facilities], sum(λ[fake, j, q] for q in 1:length(routes_per_facility[j])) <= nb_routes_per_facility ) ## First-stage constraint ## This constraint is redundant, we add it in order not to start with an empty master problem @constraint(model, min_opening, sum(y[j] for j in facilities) >= 1) @objective(model, Min, sum(facilities_fixed_costs[j] * y[j] for j in facilities) + sum(routes_costs[j][k] * λ[fake, j, k] for j in facilities, k in 1:length(routes_per_facility[j]))); # We perform the decomposition over the axis and we optimize the problem. @benders_decomposition(model, dec, axis) JuMP.optimize!(model) # ## Example of comparison of the dual bounds # In this section, we use a larger instance with 3 facilities and 13 customers. We solve only the root node and look at the dual bound: # - with the standard column generation (without cut separation) # - by adding robust cuts # - by adding non-robust cuts # - by adding both robust and non-robust cuts nb_positions = 6 facilities_fixed_costs = [120, 150, 110] facilities = [1, 2, 3] customers = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] arc_costs = [ 0.0 125.6 148.9 182.2 174.9 126.2 158.6 172.9 127.4 133.1 152.6 183.8 182.4 176.9 120.7 129.5; 123.6 0.0 175.0 146.7 191.0 130.4 142.5 139.3 130.1 133.3 163.8 127.8 139.3 128.4 186.4 115.6; 101.5 189.6 0.0 198.2 150.5 159.6 128.3 133.0 195.1 167.3 187.3 178.1 171.7 161.5 142.9 142.1; 159.4 188.4 124.7 0.0 174.5 174.0 142.6 102.5 135.5 184.4 121.6 112.1 139.9 105.5 190.9 140.7; 157.7 160.3 184.2 196.1 0.0 115.5 175.2 153.5 137.7 141.3 109.5 107.7 125.3 151.0 133.1 140.6; 145.2 120.4 106.7 138.8 157.3 0.0 153.6 192.2 153.2 184.4 133.6 164.9 163.6 126.3 121.3 161.4; 182.6 152.1 178.8 184.1 150.8 163.5 0.0 164.1 104.0 100.5 117.3 156.1 115.1 168.6 186.5 100.2; 144.9 193.8 146.1 191.4 136.8 172.7 108.1 0.0 131.0 166.3 116.4 187.0 161.3 148.2 162.1 116.0; 173.4 199.1 132.9 133.2 139.8 112.7 138.1 118.8 0.0 173.4 131.8 180.6 191.0 133.9 178.7 108.7; 150.5 171.0 163.8 171.5 116.3 149.1 124.0 192.5 188.8 0.0 112.2 188.7 197.3 144.9 110.7 186.6; 153.6 104.4 141.1 124.7 121.1 137.5 190.3 177.1 194.4 135.3 0.0 146.4 132.7 103.2 150.3 118.4; 112.5 133.7 187.1 170.0 130.2 177.7 159.2 169.9 183.8 101.6 156.2 0.0 114.7 169.3 149.9 125.3; 151.5 165.6 162.1 133.4 159.4 200.5 132.7 199.9 136.8 121.3 118.1 123.4 0.0 104.8 197.1 134.4; 195.0 101.1 194.1 160.1 147.1 164.6 137.2 138.6 166.7 191.2 169.2 186.0 171.2 0.0 106.8 150.9; 158.2 152.7 104.0 136.0 168.9 175.7 139.2 163.2 102.7 153.3 185.9 164.0 113.2 200.7 0.0 127.4; 136.6 174.3 103.2 131.4 107.8 191.6 115.1 127.6 163.2 123.2 173.3 133.0 120.5 176.9 173.8 0.0; ] locations = vcat(facilities, customers) nb_customers = length(customers) nb_facilities = length(facilities) positions = 1:nb_positions; routes_per_facility = Dict( j => best_route_forall_cust_subsets(arc_costs, customers, j, nb_positions) for j in facilities ); # We set `maxnumnodes` to zero to optimize only the root node: coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm( maxnumnodes=0, conqueralg=Coluna.ColCutGenConquer() ) ), "default_optimizer" => GLPK.Optimizer ); # We define a method to call both `valid_inequalities_callback` and `r1c_callback`: function cuts_callback(cbdata) valid_inequalities_callback(cbdata) r1c_callback(cbdata) end function attach_data(model, cov) BlockDecomposition.customvars!(model, R1cVarData) BlockDecomposition.customconstrs!(model, [CoverConstrData, R1cCutData]) for i in customers customdata!(cov[i], CoverConstrData(i)) end end; # First, we solve the root node with the "raw" decomposition model: model, x, y, z, cov = create_model(coluna, pricing_callback) attach_data(model, cov) # dual bound found after optimization = 1588.00 # Then, we re-solve it with the robust cuts: model, x, y, z, cov = create_model(coluna, pricing_callback) attach_data(model, cov) MOI.set(model, MOI.UserCutCallback(), valid_inequalities_callback); # dual bound found after optimization = 1591.55 # And with non-robust cuts: model, x, y, z, cov = create_model(coluna, pricing_callback) attach_data(model, cov) MOI.set(model, MOI.UserCutCallback(), r1c_callback); # dual bound found after optimization = 1598.26 # Finally we add both robust and non-robust cuts: model, x, y, z, cov = create_model(coluna, pricing_callback) attach_data(model, cov) MOI.set(model, MOI.UserCutCallback(), cuts_callback); # dual bound found after optimization = 1600.63
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
9052
# # [Custom Variables and Cuts](@id tuto_custom_data) # # Coluna allows users to attach custom data to variables and constraints. # This data is useful to store information about the variables or constraints in a custom # format much easier to process than extracted information from the formulation # (coefficient matrix, bounds, costs, and right-hand side). # # In this example, we will show how to attach custom data to variables and constraints and # use them to separate non-robust cuts. We will use the Bin Packing problem as an example. # # Let us consider a Bin Packing problem with only 3 items such that any pair of items # fits into one bin but the 3 items do not. The objective function is to minimize the number # of bins being used. Pricing is done by inspection over the 6 combinations of items (3 pairs and 3 # singletons). The master LP solution has 1.5 bins at the root node, # each 0.5 corresponding to a bin with one of the possible pairs of items. # # In this example, we will show you how to use non-robust cuts to improve the master LP # solution at the root node. # Obviously, Coluna is able to solve this instance by branching on the # number of bins but the limit one on the number of nodes prevents it to be solved without # cuts. # # We define the dependencies: using JuMP, BlockDecomposition, Coluna, GLPK; # We define the solver. coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm( conqueralg = Coluna.Algorithm.ColCutGenConquer( colgen = Coluna.Algorithm.ColumnGeneration( pricing_prob_solve_alg = Coluna.Algorithm.SolveIpForm( optimizer_id = 1 )) ), maxnumnodes = 1 # we only treat the root node. ) ) ); # Let's define the model. # Let's $B$ the set of bins and $I$ the set of items. # We introduce variable $y_b$ that is equal to 1 if a bin $b$ is used and 0 otherwise. # We introduce variable $x_{b,i}$ that is equal to 1 if item $i$ is put in a bin $b$ and 0 otherwise. model = BlockModel(coluna); # We must assign three items: I = [1, 2, 3]; # And we have three bins: B = [1, 2, 3]; # Each bin is defining a subproblem, we declare our axis: @axis(axis, collect(B)); # We declare subproblem variables `y[b]`: @variable(model, y[b in axis], Bin); # And `x[b,i]`: @variable(model, x[b in axis, i in I], Bin); # Each item must be assigned to one bin: @constraint(model, sp[i in I], sum(x[b,i] for b in axis) == 1); # We minimize the number of bins and we declare the decomposition: @objective(model, Min, sum(y[b] for b in axis)) @dantzig_wolfe_decomposition(model, dec, axis); # ## Custom data for non-robust cuts # As said previously, at the end of the column generation at the root node, # the master LP solution has 1.5 bins. It corresponds to three bins, each of them used 0.5 times # containing one pair `(1,2)`, `(1, 3)`, or `(2, 3)` of items. # We are going to introduce the following non-robust cut to make the master LP solution integral: # $$\sum\limits_{s \in S~if~length(s) \geq 2} λ_s \leq 1$$ # # where : # - $S$ is the set of possible bin assignments generated by the pricing problem. # - $length(s)$ the number of items in bin assignment $s \in S$. # This cut means that we cannot have more than one bin with at least two items. # But the problem is that the cut is expressed over the master column and we don't have # access to these variables from the JuMP model. # To address this problem, Coluna offers a way to compute the coefficient of a column in a # constraint by implementing the following method: # # ```@docs # Coluna.MathProg.computecoeff # ``` # # # We therefore need to attach custom data to the master columns and the non-robust cut to # use the method `compute_coeff`. # # For every subproblem solution $s$, we define custom data with the number of items in the bin. struct MyCustomVarData <: BlockDecomposition.AbstractCustomVarData nb_items::Int end BlockDecomposition.customvars!(model, MyCustomVarData); # We define custom data for the cut that will contain the minimum number of items # in a bin that can be used. The value will be `2` in this example. struct MyCustomCutData <: BlockDecomposition.AbstractCustomConstrData min_items::Int end BlockDecomposition.customconstrs!(model, MyCustomCutData); # We implement the `computecoeff` method for the custom data we defined. function Coluna.MathProg.computecoeff( var_custom_data::MyCustomVarData, constr_custom_data::MyCustomCutData ) return (var_custom_data.nb_items >= constr_custom_data.min_items) ? 1.0 : 0.0 end # ## Pricing callback # We define the pricing callback that will generate the bin with best-reduced cost. # Be careful, when using non-robust cuts, you must take into account the contribution of the # non-robust cuts to the reduced cost of your solution. function my_pricing_callback(cbdata) ## Get the reduced costs of the original variables. I = [1, 2, 3] b = BlockDecomposition.callback_spid(cbdata, model) rc_y = BlockDecomposition.callback_reduced_cost(cbdata, y[b]) rc_x = [BlockDecomposition.callback_reduced_cost(cbdata, x[b, i]) for i in I] ## Get the dual values of the custom cuts (to calculate contributions of ## non-robust cuts to the cost of the solution). custduals = Tuple{Int, Float64}[] for (_, constr) in Coluna.MathProg.getconstrs(cbdata.form.parent_formulation) if typeof(constr.custom_data) == MyCustomCutData push!(custduals, ( constr.custom_data.min_items, Coluna.MathProg.getcurincval(cbdata.form.parent_formulation, constr) )) end end ## Pricing by inspection. sols = [[1], [2], [3], [1, 2], [1, 3], [2, 3]] best_s = Int[] best_rc = Inf for s in sols rc_s = rc_y + sum(rc_x[i] for i in s) # reduced cost of the subproblem variables if !isempty(custduals) ## contribution of the non-robust cuts rc_s -= sum((length(s) >= minits) ? dual : 0.0 for (minits, dual) in custduals) end if rc_s < best_rc best_rc = rc_s best_s = s end end @show best_s ## build the best one and submit solcost = best_rc solvars = JuMP.VariableRef[] solvarvals = Float64[] for i in best_s push!(solvars, x[b, i]) push!(solvarvals, 1.0) end push!(solvars, y[b]) push!(solvarvals, 1.0) ## submit the solution MOI.submit( model, BlockDecomposition.PricingSolution(cbdata), solcost, solvars, solvarvals, MyCustomVarData(length(best_s)) # attach a custom data to the column ) MOI.submit(model, BlockDecomposition.PricingDualBound(cbdata), solcost) return end # The pricing callback is done, we define it as the solver of our pricing problem. subproblems = BlockDecomposition.getsubproblems(dec) BlockDecomposition.specify!.( subproblems, solver = my_pricing_callback ); # ## Non-robust cut separation callback. # We now define the cut separation callback for our non-robust cut. # This is the same callback as the one used for robust cuts. # There is just one slight difference when you submit the non-robust cut. # Since cuts are expressed over the master variables and these variables are inaccessible from # the JuMP model, you'll submit a constraint with an empty left-hand side and you'll leave Coluna # populate the left-hand side with the values returned by `Coluna.MathProg.computecoeff`. # So let's define the callback. # Basically, if the solution uses more than one bin with two items, # The cut is added to the model. function custom_cut_sep(cbdata) ## Compute the constraint violation by iterating over the master solution. viol = -1.0 for (varid, varval) in cbdata.orig_sol var = Coluna.MathProg.getvar(cbdata.form, varid) if !isnothing(var.custom_data) if var.custom_data.nb_items >= 2 viol += varval end end end ## Add the cut (at most one variable with 2 or more of the 3 items) if violated. if viol > 0.001 MOI.submit( model, MOI.UserCut(cbdata), JuMP.ScalarConstraint( JuMP.AffExpr(0.0), # We cannot express the left-hand side so we push 0. MOI.LessThan(1.0) ), MyCustomCutData(2) # Cut custom data. ) end return end MOI.set(model, MOI.UserCutCallback(), custom_cut_sep) JuMP.optimize!(model) # We see on the output that the algorithm has converged a first time before a cut is added. # Coluna then starts a new iteration taking into account the cut. # We notice here an improvement of the value of the dual bound: before the cut, # we converge towards 1.5. After the cut, we reach 2.0.
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4199
# # [Valid inequalities](@id tuto_cut_callback) # Now let us consider a variant of the Generalized Assignment Problem in which we have to # pay `f[m]` to use machine `m`. # Consider the following instance: J = 1:10 M = 1:5 c = [10.13 15.6 15.54 13.41 17.08;19.58 16.83 10.75 15.8 14.89;14.23 17.36 16.05 14.49 18.96;16.47 16.38 18.14 15.46 11.64;17.87 18.25 13.12 19.16 16.33;11.09 16.76 15.5 12.08 13.06;15.19 13.86 16.08 19.47 15.79;10.79 18.96 16.11 19.78 15.55;12.03 19.03 16.01 14.46 12.77;14.48 11.75 16.97 19.95 18.32]; w = [5, 4, 5, 6, 8, 9, 5, 8, 10, 7]; Q = [25, 24, 31, 28, 24]; f = [105, 103, 109, 112, 100]; # We define the dependencies: using JuMP, BlockDecomposition, Coluna, GLPK; # We parametrize the solver. # We solve only the root node of the branch-and-bound tree and we use a column and cut # generation algorithm to conquer (optimize) this node. coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm( conqueralg = Coluna.Algorithm.ColCutGenConquer( max_nb_cut_rounds = 20 ), branchingtreefile = "tree2.dot", maxnumnodes = 1 ) ), "default_optimizer" => GLPK.Optimizer ); # ## Column generation # We write the model: model = BlockModel(coluna; direct_model = true); @axis(M_axis, M) @variable(model, x[j in J, m in M_axis], Bin); @variable(model, y[m in M_axis], Bin); @constraint(model, setpartitioning[j in J], sum(x[j,m] for m in M_axis) == 1); @constraint(model, knp[m in M_axis], sum(w[j]*x[j,m] for j in J) <= Q[m] * y[m]); @objective(model, Min, sum(c[j,m] * x[j,m] for m in M_axis, j in J) + sum(f[m] * y[m] for m in M_axis)); @dantzig_wolfe_decomposition(model, dec, M_axis); sp = getsubproblems(dec); specify!.(sp, lower_multiplicity = 0); # We optimize: optimize!(model) # The final dual bound is: db1 = objective_bound(model) # ## Strengthen with valid inequalities # Let `H` be the set of configurations of open machines (`h[m] = 1` if machine m open; `0` otherwise) # such that all jobs can be assigned : `sum(h'Q) >= sum(w)` # i.e. the total capacity of the open machines must exceed the total weight of the jobs. H = Vector{Int}[] for h in digits.(1:(2^length(M) - 1), base=2, pad=length(M)) if sum(h'Q) >= sum(w) push!(H, h) end end H # Let `ȳ` be the solution to the linear relaxation of the problem. # Let us try to express `ȳ` as a linear expression of the configurations. # If `ȳ ∈ conv H`, we can derive a cut because the optimal integer solution to the problem uses one of the configurations of H. # We need MathOptInterface to define the cut callback: using MathOptInterface # The separation algorithm looks for the non-negative coefficients `χ[k]`, `k = 1:length(H)`, : # `max sum(χ[k] for k in 1:length(H))` such that `sum(χ[k]* h for (k,h) in enumerate(H)) <= ̄ȳ`. # If the objective value is less than 1, we must add a cut. # Since the separation algorithm is a linear program, strong duality applies. # So we separate these cuts with the dual. fc_sep_m = Model(GLPK.Optimizer) @variable(fc_sep_m, ψ[m in M] >= 0) # one variable for each constraint @constraint(fc_sep_m, config_dual[h in H], ψ'h >= 1) # one constraint for each χ[k] MathOptInterface.set(fc_sep_m, MathOptInterface.Silent(), true) # The objective is `min ȳ'ψ` = `sum(χ[k] for k in 1:length(H))`. # Let `ψ*` be an optimal solution to the dual. If `ȳ'ψ* < 1`, then `ψ*'y >= 1` is a valid inequality. function fenchel_cuts_separation(cbdata) println("Fenchel cuts separation callback...") ȳ = [callback_value(cbdata, y[m]) for m in M_axis] @objective(fc_sep_m, Min, ȳ'ψ) # update objective optimize!(fc_sep_m) if objective_value(fc_sep_m) < 1 con = @build_constraint(value.(ψ)'y >= 1) # valid inequality. MathOptInterface.submit(model, MathOptInterface.UserCut(cbdata), con) end end MathOptInterface.set(model, MathOptInterface.UserCutCallback(), fenchel_cuts_separation); # We optimize: optimize!(model) # Valid inequalities significantly improve the previous dual bound: db2 = objective_bound(model) db2
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3459
# # [Identical subproblems](@id tuto_identical_sp) # Let us see an example of resolution using the advantage of identical subproblems with Dantzig-Wolfe and a variant of the Generalized Assignment Problem. # Consider a set of machine type `T = 1:nb_machine_types` and a set of jobs `J = 1:nb_jobs`. # A machine type `t` has a resource capacity `Q[t]` and the factory contains `U[t]` machines of type `t`. # A job `j` assigned to a machine of type `t` has a cost `c[t,j]` and consumes `w[t,j]` resource units of the machine of type `t`. # Consider the following instance : nb_machine_types = 2; nb_jobs = 8; J = 1:nb_jobs; Q = [10, 15]; U = [3, 2]; # 3 machines of type 1 & 2 machines of type 2 c = [10 11 13 11 12 14 15 8; 20 21 23 21 22 24 25 18]; w = [4 4 5 4 4 3 4 5; 5 5 6 5 5 4 5 6]; #Here is the JuMP model to optimize this instance with a classic solver : using JuMP, GLPK; T1 = [1, 2, 3]; # U[1] machines T2 = [4, 5]; # U[2] machines M = union(T1, T2); m2t = [1, 1, 1, 2, 2]; # machine id -> type id model = Model(GLPK.Optimizer); @variable(model, x[M, J], Bin); # 1 if job j assigned to machine m @constraint(model, cov[j in J], sum(x[m,j] for m in M) == 1); @constraint(model, knp[m in M], sum(w[m2t[m],j] * x[m,j] for j in J) <= Q[m2t[m]]); @objective(model, Min, sum(c[m2t[m],j] * x[m,j] for m in M, j in J)); optimize!(model); objective_value(model) # You can decompose over the machines by defining an axis on `M`. # However, if you want to take advantage of the identical subproblems, you must # define the formulation as follows : using BlockDecomposition, Coluna, JuMP, GLPK; const BD = BlockDecomposition coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default BCP ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); @axis(T, 1:nb_machine_types); model = BlockModel(coluna); @variable(model, x[T, J], Bin); # 1 if job j assigned to machine m @constraint(model, cov[j in J], sum(x[t,j] for t in T) == 1); @constraint(model, knp[t in T], sum(w[t] * x[t,j] for j in J) <= Q[t]); @objective(model, Min, sum(c[t,j] * x[t,j] for t in T, j in J)); # We assign jobs to a type of machine and we define one knapsack constraint for # each type. This formulation cannot be solved as it stands with a commercial solver. # # Then, we decompose and specify the multiplicity of each knapsack subproblem : @dantzig_wolfe_decomposition(model, dec_on_types, T); sps = getsubproblems(dec_on_types) for t in T specify!(sps[t], lower_multiplicity = 0, upper_multiplicity = U[t]); end getsubproblems(dec_on_types) # We see that subproblem for machine type 1 has an upper multiplicity equals to 3, # and the second subproblem for machine type 2 has an upper multiplicity equals to 2. # It means that we can use at most 3 machines of type 1 and at most 2 machines of type 2. # We can then optimize optimize!(model); # and retrieve the disaggregated solution for t in T assignment_patterns = BD.getsolutions(model, t); for pattern in assignment_patterns nb_times_pattern_used = BD.value(pattern); jobs_in_pattern = []; for j in J if BD.value(pattern, x[t, j]) ≈ 1 push!(jobs_in_pattern, j); end end println("Pattern of machine type $t used $nb_times_pattern_used times : $jobs_in_pattern"); end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2884
# # Initial columns # The initial columns callback let you provide initial columns associated to each problem # ahead the optimization. # This callback is useful when you have an efficient heuristic that finds feasible solutions # to the problem. You can then extract columns from the solutions and give them to Coluna # through the callback. # You have to make sure the columns you provide are feasible because Coluna won't check their # feasibility. # The cost of the columns will be computed using the perennial cost of subproblem variables. # Let us see an example with the following generalized assignment problem : M = 1:3; J = 1:5; c = [1 1 1 1 1; 1.2 1.2 1.1 1.1 1; 1.3 1.3 1.1 1.2 1.4]; Q = [3, 2, 3]; # with the following Coluna configuration using JuMP, GLPK, BlockDecomposition, Coluna; coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); # for which the JuMP model takes the form: @axis(M_axis, M); model = BlockModel(coluna); @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J], sum(x[m, j] for m in M_axis) >= 1); @constraint(model, knp[m in M_axis], sum(x[m, j] for j in J) <= Q[m]); @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J)); @dantzig_wolfe_decomposition(model, decomposition, M_axis) subproblems = getsubproblems(decomposition) specify!.(subproblems, lower_multiplicity = 0, upper_multiplicity = 1) # Let's consider that the following assignment patterns are good candidates: machine1 = [[1,2,4], [1,3,4], [2,3,4], [2,3,5]]; machine2 = [[1,2], [1,5], [2,5], [3,4]]; machine3 = [[1,2,3], [1,3,4], [1,3,5], [2,3,4]]; initial_columns = [machine1, machine2, machine3]; # We can write the initial columns callback: function initial_columns_callback(cbdata) ## Retrieve the index of the subproblem (it will be one of the values in M_axis) spid = BlockDecomposition.callback_spid(cbdata, model) println("initial columns callback $spid") ## Retrieve assignment patterns of a given machine for col in initial_columns[spid] ## Create the column in the good representation vars = [x[spid, j] for j in col] vals = [1.0 for _ in col] ## Submit the column MOI.submit(model, BlockDecomposition.InitialColumn(cbdata), vars, vals) end end # The initial columns callback is a function. # It takes as argument `cbdata` which is a data structure # that allows the user to interact with Coluna within the callback. # We provide the initial columns callback to Coluna through the following method: MOI.set(model, BlockDecomposition.InitialColumnsCallback(), initial_columns_callback) # You can then optimize: optimize!(model)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4414
# # [Pricing callback](@id tuto_pricing_callback) # The pricing callback lets you define how to solve the subproblems of a Dantzig-Wolfe # decomposition to generate a new entering column in the master program. # This callback is useful when you know an efficient algorithm to solve the subproblems, # i.e. an algorithm better than solving the subproblem with a MIP solver. # First, we load the packages and define aliases : using Coluna, BlockDecomposition, JuMP, MathOptInterface, GLPK; const BD = BlockDecomposition; const MOI = MathOptInterface; # Let us see an example with the following generalized assignment problem : M = 1:3; J = 1:15; c = [12.7 22.5 8.9 20.8 13.6 12.4 24.8 19.1 11.5 17.4 24.7 6.8 21.7 14.3 10.5; 19.1 24.8 24.4 23.6 16.1 20.6 15.0 9.5 7.9 11.3 22.6 8.0 21.5 14.7 23.2; 18.6 14.1 22.7 9.9 24.2 24.5 20.8 12.9 17.7 11.9 18.7 10.1 9.1 8.9 7.7; 13.1 16.2 16.8 16.7 9.0 16.9 17.9 12.1 17.5 22.0 19.9 14.6 18.2 19.6 24.2]; w = [61 70 57 82 51 74 98 64 86 80 69 79 60 76 78; 50 57 61 83 81 79 63 99 82 59 83 91 59 99 91;91 81 66 63 59 81 87 90 65 55 57 68 92 91 86; 62 79 73 60 75 66 68 99 69 60 56 100 67 68 54]; Q = [1020 1460 1530]; # with the following Coluna configuration coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default BCP ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); # for which the JuMP model takes the form: model = BlockModel(coluna); @axis(M_axis, M); @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J], sum(x[m,j] for m in M_axis) == 1); @objective(model, Min, sum(c[m,j]*x[m,j] for m in M_axis, j in J)); @dantzig_wolfe_decomposition(model, dwdec, M_axis); # where, as you can see, we omitted the knapsack constraints. # These constraints are implicitly defined by the algorithm called in the pricing callback. # Let's use a knapsack algorithm defined by the following function to solve the knapsack # subproblems: function solve_knapsack(cost, weight, capacity) sp_model = Model(GLPK.Optimizer) items = 1:length(weight) @variable(sp_model, x[i in items], Bin) @constraint(sp_model, weight' * x <= capacity) @objective(sp_model, Min, cost' * x) optimize!(sp_model) x_val = value.(x) return filter(i -> x_val[i] ≈ 1, collect(items)) end # You can replace the content of the function with any algorithm that solves the knapsack # problem (such as algorithms provided by the unregistered package # [Knapsacks](https://github.com/rafaelmartinelli/Knapsacks.jl)). # The pricing callback is a function. # It takes as argument `cbdata` which is a data structure # that allows the user to interact with Coluna within the pricing callback. function my_pricing_callback(cbdata) ## Retrieve the index of the subproblem (it will be one of the values in M_axis) cur_machine = BD.callback_spid(cbdata, model) ## Uncomment to see that the pricing callback is called. ## println("Pricing callback for machine $(cur_machine).") ## Retrieve reduced costs of subproblem variables red_costs = [BD.callback_reduced_cost(cbdata, x[cur_machine, j]) for j in J] ## Run the knapsack algorithm jobs_assigned_to_cur_machine = solve_knapsack(red_costs, w[cur_machine, :], Q[cur_machine]) ## Create the solution (send only variables with non-zero values) sol_vars = [x[cur_machine, j] for j in jobs_assigned_to_cur_machine] sol_vals = [1.0 for _ in jobs_assigned_to_cur_machine] sol_cost = sum(red_costs[j] for j in jobs_assigned_to_cur_machine) ## Submit the solution to the subproblem to Coluna MOI.submit(model, BD.PricingSolution(cbdata), sol_cost, sol_vars, sol_vals) ## Submit the dual bound to the solution of the subproblem ## This bound is used to compute the contribution of the subproblem to the lagrangian ## bound in column generation. MOI.submit(model, BD.PricingDualBound(cbdata), sol_cost) # optimal solution return end # The pricing callback is provided to Coluna using the keyword `solver` in the method # `specify!`. subproblems = BD.getsubproblems(dwdec); BD.specify!.(subproblems, lower_multiplicity = 0, solver = my_pricing_callback); # You can then optimize : optimize!(model); # and retrieve the information you need as usual : objective_value(model)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6456
# # [Column generation with the Generalized Assignment Problem](@id tuto_gen_assignement) # This quick start guide introduces the main features of Coluna through the example of the # Generalized Assignment Problem. # ## Classic model solved with MIP solver # Consider a set of machines `M` and a set of jobs `J`. # A machine $m$ has a resource capacity $Q_m$ . # A job $j$ assigned to a machine $m$ has a cost $c_{mj}$ and consumes $w_{mj}$ resource units # of the machine $m$. # The goal is to minimize the sum of job costs while assigning each job to a machine and not # exceeding the capacity of each machine. # Let $x_{mj}$ equal to one if job $j$ is assigned to machine $m$; $0$ otherwise. # The problem has the original formulation: # ```math # \begin{alignedat}{4} # \text{[GAP]} \equiv \min \mathrlap{\sum_{m \in M}\sum_{j \in J} c_{mj} x_{mj}} \\ # \text{s.t.} && \sum_{m \in M} x_{mj} &= 1 \quad& j \in J \\ # && \sum_{j \in J} w_{mj} x_{mj} &\leq Q_m  \quad \quad& m \in M \\ # && x_{mj} &\in \{0,1\} &m \in M,\; j \in J # \end{alignedat} # ``` # Let us consider the following instance. M = 1:3; J = 1:15; c = [12.7 22.5 8.9 20.8 13.6 12.4 24.8 19.1 11.5 17.4 24.7 6.8 21.7 14.3 10.5; 19.1 24.8 24.4 23.6 16.1 20.6 15.0 9.5 7.9 11.3 22.6 8.0 21.5 14.7 23.2; 18.6 14.1 22.7 9.9 24.2 24.5 20.8 12.9 17.7 11.9 18.7 10.1 9.1 8.9 7.7; 13.1 16.2 16.8 16.7 9.0 16.9 17.9 12.1 17.5 22.0 19.9 14.6 18.2 19.6 24.2]; w = [61 70 57 82 51 74 98 64 86 80 69 79 60 76 78; 50 57 61 83 81 79 63 99 82 59 83 91 59 99 91;91 81 66 63 59 81 87 90 65 55 57 68 92 91 86; 62 79 73 60 75 66 68 99 69 60 56 100 67 68 54]; Q = [1020 1460 1530]; # We write the model with [JuMP](https://github.com/jump-dev/JuMP.jl), a domain-specific modeling # language for mathematical optimization embedded in Julia. We optimize with GLPK. # If you are not familiar with the JuMP package, you may want to check its # [documentation](https://jump.dev/JuMP.jl/stable/). using JuMP, GLPK; # A JuMP model for the original formulation is: model = Model(GLPK.Optimizer) @variable(model, x[m in M, j in J], Bin); @constraint(model, cov[j in J], sum(x[m, j] for m in M) >= 1); @constraint(model, knp[m in M], sum(w[m, j] * x[m, j] for j in J) <= Q[m]); @objective(model, Min, sum(c[m, j] * x[m, j] for m in M, j in J)); # We optimize the instance and retrieve the objective value. optimize!(model); objective_value(model) # ## Try column generation easily with Coluna and BlockDecomposition # This model has a block structure: each knapsack constraint defines # an independent block and the set-partitioning constraints couple these independent # blocks. By applying the Dantzig-Wolfe reformulation, each knapsack constraint forms # a tractable subproblem and the set-partitioning constraints are handled in a master problem. # To write the model, you need JuMP and BlockDecomposition. # The latter is an extension built on top of JuMP to model Dantzig-Wolfe and Benders decompositions. # You will find more documentation about BlockDecomposition in the # [Decomposition & reformulation](@ref) # To optimize the problem, you need Coluna and a Julia package that provides a MIP solver such as GLPK. # Since we have already loaded JuMP and GLPK, we just need: using BlockDecomposition, Coluna; # Next, you instantiate the solver and define the algorithm that you use to optimize the problem. # In this case, the algorithm is a classic branch-and-price provided by Coluna. coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); # In BlockDecomposition, an axis is an index set of subproblems. # Let `M_axis` be the index set of machines; it defines an axis along which we can implement the # desired decomposition. @axis(M_axis, M); # In this example, the axis `M_axis` defines one knapsack subproblem for each machine. # For instance, the first machine index is 1 and is of type `BlockDecomposition.AxisId`: M_axis[1] typeof(M_axis[1]) # Jobs are not involved in the decomposition, set `J` of jobs thus stays as a classic # range. # The model takes the form: model = BlockModel(coluna); # You can write `BlockModel(coluna; direct_model = true)` to pass names of variables # and constraints to Coluna. @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J], sum(x[m, j] for m in M_axis) >= 1); @constraint(model, knp[m in M_axis], sum(w[m, j] * x[m, j] for j in J) <= Q[m]); @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J)); # This is the same model as above except that we use a `BlockModel` instead of a `Model` and # `M_axis` as the set of machines instead of `M`. # Therefore, BlockDecomposition will know which variables and constraints are involved in subproblems # because one of their indices is a `BlockDecomposition.AxisId`. # You then apply a Dantzig-Wolfe decomposition along `M_axis`: @dantzig_wolfe_decomposition(model, decomposition, M_axis) # where `decomposition` is a variable that contains information about the decomposition. decomposition # Once the decomposition is defined, you can retrieve the master and the subproblems to give # additional information to the solver. master = getmaster(decomposition) subproblems = getsubproblems(decomposition) # The multiplicity of a subproblem is the number of times that the same independent block # shaped by the subproblem appears in the model. This multiplicity also specifies the number of # solutions to the subproblem that can appear in the solution to the original problem. # In this GAP instance, the upper multiplicity is $1$ because every subproblem is different, # *i.e.*, every machine is different and used at most once. # The lower multiplicity is $0$ because a machine may stay unused. # The multiplicity specifications take the form: specify!.(subproblems, lower_multiplicity = 0, upper_multiplicity = 1) getsubproblems(decomposition) # The model is now fully defined. To solve it, you need to call: optimize!(model) # You can find more information about the output of the column generation algorithm [ColumnGeneration](@ref). # Finally, you can retrieve the solution to the original formulation with JuMP methods. # For example, if we want to know if job 3 is assigned to machine 1: value(x[1,3])
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1720
module Coluna # Base functions for which we define more methods in Coluna import Base: isempty, hash, isequal, length, iterate, getindex, lastindex, getkey, delete!, setindex!, haskey, copy, promote_rule, convert, isinteger, push!, filter, diff, hcat, in import BlockDecomposition, MathOptInterface, TimerOutputs using Base.Threads, Dates, DynamicSparseArrays, Logging, Parameters, Printf, TOML const BD = BlockDecomposition const MOI = MathOptInterface const TO = TimerOutputs ### Default parameters values const DEF_OPTIMALITY_ATOL = 1e-5 const DEF_OPTIMALITY_RTOL = 1e-9 const TOL = 1e-8 # if - ϵ_tol < val < ϵ_tol, we consider val = 0 const TOL_DIGITS = 8 # because round(val, digits = n) where n is from 1e-n const MAX_NB_ELEMS = typemax(Int32) # max number of variables or constraints. ### # submodules export Algorithm, ColunaBase, MathProg, Env, DefaultOptimizer, Parameters, elapsed_optim_time const _to = TO.TimerOutput() version() = v"0.8.1" include("kpis.jl") include("parameters.jl") include("env.jl") export Env include("MustImplement/MustImplement.jl") using .MustImplement include("ColunaBase/ColunaBase.jl") using .ColunaBase include("MathProg/MathProg.jl") using .MathProg include("interface.jl") using .AlgoAPI include("TreeSearch/TreeSearch.jl") using .TreeSearch include("Branching/Branching.jl") using .Branching include("ColGen/ColGen.jl") using .ColGen include("Benders/Benders.jl") using .Benders include("Algorithm/Algorithm.jl") using .Algorithm include("annotations.jl") include("optimize.jl") # Wrapper functions include("MOIwrapper.jl") include("MOIcallbacks.jl") include("decomposition.jl") # For testing purposes include("Tests/Tests.jl") end # module
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8241
############################################################################################ # Set callbacks ############################################################################################ function MOI.set(model::Coluna.Optimizer, attr::MOI.UserCutCallback, callback_function) model.has_usercut_cb = true orig_form = get_original_formulation(model.inner) _register_callback!(orig_form, attr, callback_function) return end function MOI.set(model::Coluna.Optimizer, attr::MOI.LazyConstraintCallback, callback_function) model.has_lazyconstraint_cb = true orig_form = get_original_formulation(model.inner) _register_callback!(orig_form, attr, callback_function) return end function MOI.set(model::Coluna.Optimizer, ::BD.PricingCallback, ::Nothing) model.has_pricing_cb = true # We register the pricing callback through the annotations. return end function MOI.set(model::Coluna.Optimizer, ::BD.InitialColumnsCallback, callback_function::Function) model.has_initialcol_cb = true problem = model.inner MathProg._register_initcols_callback!(problem, callback_function) return end ############################################################################################ # Pricing Callback # ############################################################################################ function _submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) form = cbdata.form solval = cost colunavarids = Coluna.MathProg.VarId[ _get_varid_of_origvar_in_form(env, form, v) for v in variables ] # setup variable setup_var_id = form.duty_data.setup_var if !isnothing(setup_var_id) push!(colunavarids, setup_var_id) push!(values, 1.0) solval += getcurcost(form, setup_var_id) end if !isnothing(solval) sol = PrimalSolution( form, colunavarids, values, solval, FEASIBLE_SOL; custom_data = custom_data ) push!(cbdata.primal_solutions, sol) end return end function MOI.submit( model::Optimizer, cb::BD.PricingSolution{MathProg.PricingCallbackData}, cost::Float64, variables::Vector{MOI.VariableIndex}, values::Vector{Float64}, custom_data::Union{Nothing, BD.AbstractCustomVarData} = nothing ) return _submit_pricing_solution(model.env, cb.callback_data, cost, variables, values, custom_data) end function _submit_dual_bound(cbdata, bound) setup_var_cur_cost = if !isnothing(cbdata.form.duty_data.setup_var) getcurcost(cbdata.form, cbdata.form.duty_data.setup_var) else 0 end if !isnothing(bound) cbdata.dual_bound = bound + setup_var_cur_cost else cbdata.dual_bound = nothing end cbdata.nb_times_dual_bound_set += 1 return end function MOI.submit( ::Optimizer, cb::BD.PricingDualBound{MathProg.PricingCallbackData}, bound ) return _submit_dual_bound(cb.callback_data, bound) end function MOI.get(model::Optimizer, spid::BD.PricingSubproblemId{MathProg.PricingCallbackData}) callback_data = spid.callback_data uid = getuid(callback_data.form) axis_index_value = model.annotations.ann_per_form[uid].axis_index_value return axis_index_value end function _get_pricing_var_cost(env::Env, cbdata, x) form = cbdata.form return getcurcost(form, _get_orig_varid(env, x)) end function MOI.get( model::Optimizer, pvc::BD.PricingVariableCost{MathProg.PricingCallbackData}, x::MOI.VariableIndex ) return _get_pricing_var_cost(model.env, pvc.callback_data, x) end function _get_pricing_var_lb(env::Env, cbdata, x) form = cbdata.form return getcurlb(form, _get_orig_varid(env, x)) end function MOI.get( model::Optimizer, pvlb::BD.PricingVariableLowerBound{MathProg.PricingCallbackData}, x::MOI.VariableIndex ) return _get_pricing_var_lb(model.env, pvlb.callback_data, x) end function _get_pricing_var_ub(env::Env, cbdata, x) form = cbdata.form return getcurub(form, _get_orig_varid(env, x)) end function MOI.get( model::Optimizer, pvub::BD.PricingVariableUpperBound{MathProg.PricingCallbackData}, x::MOI.VariableIndex ) return _get_pricing_var_ub(model.env, pvub.callback_data, x) end ############################################################################################ # Robust Constraints Callback # ############################################################################################ function _register_callback!(form::Formulation, ::MOI.UserCutCallback, sep::Function) set_robust_constr_generator!(form, Facultative, sep) return end function _register_callback!(form::Formulation, ::MOI.LazyConstraintCallback, sep::Function) set_robust_constr_generator!(form, Essential, sep) return end function MOI.get( model::Optimizer, cvp::MOI.CallbackVariablePrimal{Algorithm.RobustCutCallbackContext}, x::MOI.VariableIndex ) return get(cvp.callback_data.proj_sol_dict, _get_orig_varid(model.env, x), 0.0) end function MOI.submit( model::Optimizer, cb::Union{MOI.UserCut{Algorithm.RobustCutCallbackContext}, MOI.LazyConstraint{Algorithm.RobustCutCallbackContext}}, func::MOI.ScalarAffineFunction{Float64}, set::Union{MOI.LessThan{Float64}, MOI.GreaterThan{Float64}, MOI.EqualTo{Float64}}, custom_data::Union{Nothing, BD.AbstractCustomConstrData} = nothing ) form = cb.callback_data.form rhs = MathProg.convert_moi_rhs_to_coluna(set) sense = MathProg.convert_moi_sense_to_coluna(set) lhs = 0.0 members = Dict{VarId, Float64}() # Robust terms for term in func.terms varid = _get_varid_of_origvar_in_form(model.env, form, term.variable) members[varid] = term.coefficient lhs += term.coefficient * get(cb.callback_data.proj_sol_dict, varid, 0.0) end constr = setconstr!( form, "", MasterUserCutConstr; rhs = rhs, kind = cb.callback_data.constrkind, sense = sense, members = members, loc_art_var_abs_cost = cb.callback_data.env.params.local_art_var_cost, custom_data = custom_data ) # Non-robust terms for (varid, var) in getvars(form) if !isnothing(var.custom_data) lhs += MathProg.computecoeff(var.custom_data, custom_data) end end gap = lhs - rhs if sense == Less push!(cb.callback_data.viol_vals, max(0.0, gap)) elseif sense == Greater push!(cb.callback_data.viol_vals, -min(0.0, gap)) else push!(cb.callback_data.viol_vals, abs(gap)) end return getid(constr) end MOI.supports(::Optimizer, ::MOI.UserCutCallback) = true MOI.supports(::Optimizer, ::MOI.LazyConstraintCallback) = true ############################################################################################ # Initial columns Callback # ############################################################################################ function _submit_initial_solution(env, cbdata, variables, values, custom_data) @assert length(variables) == length(values) form = cbdata.form colunavarids = [_get_varid_of_origvar_in_form(env, form, v) for v in variables] cost = sum(value * getperencost(form, varid) for (varid, value) in Iterators.zip(colunavarids, values)) return _submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) end function MOI.submit( model::Optimizer, cb::BD.InitialColumn{MathProg.InitialColumnsCallbackData}, variables::Vector{MOI.VariableIndex}, values::Vector{Float64}, custom_data::Union{Nothing, BD.AbstractCustomVarData} = nothing ) return _submit_initial_solution(model.env, cb.callback_data, variables, values, custom_data) end function MOI.get(model::Optimizer, spid::BD.PricingSubproblemId{MathProg.InitialColumnsCallbackData}) callback_data = spid.callback_data uid = getuid(callback_data.form) axis_index_value = model.annotations.ann_per_form[uid].axis_index_value return axis_index_value end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
47068
const CleverDicts = MOI.Utilities.CleverDicts CleverDicts.index_to_key(::Type{Int}, index) = index CleverDicts.key_to_index(key::Int) = key @enum(ObjectiveType, SINGLE_VARIABLE, SCALAR_AFFINE, ZERO) @enum(_VarKind, _CONT, _INT, _BINARY) @enum(_VarBound, _LESS, _GREATER, _EQUAL, _INTERVAL, _NONE) mutable struct _VarInfo lb_type::_VarBound ub_type::_VarBound kind::_VarKind index::MOI.VariableIndex name::String var::Variable data::Union{Nothing, BlockDecomposition.AbstractCustomVarData} end _VarInfo(var::Variable) = _VarInfo(_NONE, _NONE, _CONT, MOI.VariableIndex(0), "", var, nothing) mutable struct _ConstrInfo name::String index::Union{Nothing, MOI.ConstraintIndex} constr::Constraint data::Union{Nothing, BlockDecomposition.AbstractCustomConstrData} end _ConstrInfo(constr::Constraint) = _ConstrInfo("", nothing, constr, nothing) mutable struct Optimizer <: MOI.AbstractOptimizer env::Env inner::Problem is_objective_set::Bool objective_type::ObjectiveType objective_sense::Union{Nothing, MOI.OptimizationSense} annotations::Annotations varinfos::CleverDicts.CleverDict{MOI.VariableIndex, _VarInfo} moi_varids::Dict{VarId, MOI.VariableIndex} constrinfos::CleverDicts.CleverDict{Int, _ConstrInfo} # ScalarAffineFunction{Float64}-in-Set storage. result::OptimizationState disagg_result::Union{Nothing, OptimizationState} default_optimizer_builder::Union{Nothing, Function} # Names management # name -> (index of the first variable that has the name, nb of vars with this name) names_to_vars::Dict{String, Tuple{MOI.VariableIndex, Int}} # Same for constraints (the first int is the id). names_to_constrs::Dict{String, Tuple{Int, Int}} # Callbacks has_pricing_cb::Bool has_usercut_cb::Bool has_lazyconstraint_cb::Bool has_initialcol_cb::Bool function Optimizer() model = new() model.env = Env{VarId}(Params()) model.inner = Problem(model.env) model.is_objective_set = false model.objective_type = ZERO model.objective_sense = nothing model.annotations = Annotations() model.varinfos = CleverDicts.CleverDict{MOI.VariableIndex, _VarInfo}() model.moi_varids = Dict{VarId, MOI.VariableIndex}() model.constrinfos = CleverDicts.CleverDict{Int, _ConstrInfo}() model.result = OptimizationState(get_optimization_target(model.inner)) model.disagg_result = nothing model.default_optimizer_builder = nothing model.names_to_vars = Dict{String, Tuple{MOI.VariableIndex,Int}}() model.names_to_constrs = Dict{String, Tuple{Int,Int}}() model.has_pricing_cb = false model.has_usercut_cb = false model.has_lazyconstraint_cb = false model.has_initialcol_cb = false return model end end MOI.get(::Optimizer, ::MOI.SolverName) = "Coluna" MOI.get(::Optimizer, ::MOI.SolverVersion) = string(Coluna.version()) ############################################################################################ # Empty. ############################################################################################ function MOI.empty!(model::Optimizer) model.env.varids = CleverDicts.CleverDict{MOI.VariableIndex, VarId}() model.inner = Problem(model.env) model.is_objective_set = false model.objective_type = ZERO model.objective_sense = nothing model.annotations = Annotations() model.varinfos = CleverDicts.CleverDict{MOI.VariableIndex, _VarInfo}() model.moi_varids = Dict{VarId, MOI.VariableIndex}() model.constrinfos = CleverDicts.CleverDict{Int, _ConstrInfo}() model.result = OptimizationState(get_optimization_target(model.inner)) model.disagg_result = nothing if model.default_optimizer_builder !== nothing set_default_optimizer_builder!(model.inner, model.default_optimizer_builder) end model.names_to_vars = Dict{String, Tuple{MOI.VariableIndex, Int}}() model.names_to_constrs = Dict{String, Tuple{Int, Int}}() model.has_pricing_cb = false model.has_usercut_cb = false model.has_lazyconstraint_cb = false model.has_initialcol_cb = false return end function MOI.is_empty(model::Optimizer) reform = model.inner.re_formulation origform = model.inner.original_formulation return reform === nothing && length(getvars(origform)) == 0 && length(getconstrs(origform)) == 0 && !model.is_objective_set end ############################################################################################ # Methods to get variable and constraint info. ############################################################################################ function _info(model::Optimizer, key::MOI.VariableIndex) if haskey(model.varinfos, key) return model.varinfos[key] end return throw(MOI.InvalidIndex(key)) end function _info(model::Optimizer, key::MOI.ConstraintIndex{MOI.VariableIndex, S}) where {S} varindex = MOI.VariableIndex(key.value) return _info(model, varindex) end function _info(model::Optimizer, key::MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}}) if haskey(model.constrinfos, key.value) return model.constrinfos[key.value] end return throw(MOI.InvalidIndex(key)) end function _info(model::Optimizer, key::Int) if haskey(model.constrinfos, key) return model.constrinfos[key] end return throw(MOI.InvalidIndex(key)) end ############################################################################################ # Supported variables, constraints, and objectives. ############################################################################################ const SupportedObjFunc = Union{MOI.ScalarAffineFunction{Float64}, MOI.VariableIndex} const SupportedVarSets = Union{ MOI.ZeroOne, MOI.Integer, MOI.LessThan{Float64}, MOI.EqualTo{Float64}, MOI.GreaterThan{Float64}, MOI.Interval{Float64} } const SupportedConstrFunc = Union{MOI.ScalarAffineFunction{Float64}} const SupportedConstrSets = Union{ MOI.EqualTo{Float64}, MOI.GreaterThan{Float64}, MOI.LessThan{Float64} } MOI.supports_incremental_interface(::Optimizer) = true MOI.supports_constraint(::Optimizer, ::Type{<:SupportedConstrFunc}, ::Type{<:SupportedConstrSets}) = true MOI.supports_constraint(::Optimizer, ::Type{MOI.VariableIndex}, ::Type{<:SupportedVarSets}) = true MOI.supports(::Optimizer, ::MOI.ObjectiveFunction{<:SupportedObjFunc}) = true MOI.supports(::Optimizer, ::MOI.ObjectiveSense) = true MOI.supports(::Optimizer, ::MOI.ConstraintPrimalStart) = false MOI.supports(::Optimizer, ::MOI.ConstraintDualStart) = false MOI.supports(::Optimizer, ::BlockDecomposition.ConstraintDecomposition) = true MOI.supports(::Optimizer, ::BlockDecomposition.VariableDecomposition) = true MOI.supports(::Optimizer, ::BlockDecomposition.RepresentativeVar) = true MOI.supports(::Optimizer, ::BlockDecomposition.CustomVarValue) = true MOI.supports(::Optimizer, ::BlockDecomposition.CustomConstrValue) = true # Parameters function MOI.set(model::Optimizer, param::MOI.RawOptimizerAttribute, val) if param.name == "params" model.env.params = val elseif param.name == "default_optimizer" optimizer_builder = () -> MoiOptimizer(MOI._instantiate_and_check(val)) model.default_optimizer_builder = optimizer_builder set_default_optimizer_builder!(model.inner, optimizer_builder) else @warn("Unknown parameter $(param.name).") end return end function _get_orig_varid(env::Env, x::MOI.VariableIndex) if haskey(env.varids, x) return env.varids[x] end throw(MOI.InvalidIndex(x)) end function _get_varid_of_origvar_in_form( env::Env, form::Formulation, x::MOI.VariableIndex ) origid = _get_orig_varid(env, x) return getid(getvar(form, origid)) end function MOI.optimize!(model::Optimizer) model.result, model.disagg_result = optimize!( model.env, model.inner, model.annotations ) return end function MOI.copy_to(dest::Optimizer, src::MOI.ModelLike) return MOI.Utilities.default_copy_to(dest, src) end ############################################################################################ # Add variables ############################################################################################ # See https://jump.dev/JuMP.jl/stable/moi/tutorials/implementing/#Dealing-with-multiple-variable-bounds # to understand the purpose of _throw_if_existing_* methods. function _throw_if_existing_lower( bound::_VarBound, ::Type{S}, variable::MOI.VariableIndex, ) where {S<:MOI.AbstractSet} if bound == _GREATER throw(MOI.LowerBoundAlreadySet{MOI.GreaterThan{Float64},S}(variable)) elseif bound == _INTERVAL throw(MOI.LowerBoundAlreadySet{MOI.Interval{Float64},S}(variable)) elseif bound == _EQUAL throw(MOI.LowerBoundAlreadySet{MOI.EqualTo{Float64},S}(variable)) end return end function _throw_if_existing_upper( bound::_VarBound, ::Type{S}, variable::MOI.VariableIndex, ) where {S<:MOI.AbstractSet} if bound == _LESS throw(MOI.UpperBoundAlreadySet{MOI.LessThan{Float64},S}(variable)) elseif bound == _INTERVAL throw(MOI.UpperBoundAlreadySet{MOI.Interval{Float64},S}(variable)) elseif bound == _EQUAL throw(MOI.UpperBoundAlreadySet{MOI.EqualTo{Float64},S}(variable)) end return end function MOI.add_variable(model::Optimizer) orig_form = get_original_formulation(model.inner) var = setvar!(orig_form, "", OriginalVar) varinfo = _VarInfo(var) index = CleverDicts.add_item(model.varinfos, varinfo) varinfo.index = index model.moi_varids[getid(var)] = index index2 = CleverDicts.add_item(model.env.varids, getid(var)) @assert index == index2 return index end ############################################################################################ # Add constraint ############################################################################################ function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::MOI.Integer ) setperenkind!(form, varinfo.var, Integ) varinfo.kind = _INT return end function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::MOI.ZeroOne ) setperenkind!(form, varinfo.var, Binary) varinfo.kind = _BINARY return end function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, set::MOI.GreaterThan{Float64} ) _throw_if_existing_lower(varinfo.lb_type, MOI.GreaterThan{Float64}, varinfo.index) MathProg.setperenlb!(form, varinfo.var, set.lower) varinfo.lb_type = _GREATER return end function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, set::MOI.LessThan{Float64} ) _throw_if_existing_upper(varinfo.ub_type, MOI.LessThan{Float64}, varinfo.index) MathProg.setperenub!(form, varinfo.var, set.upper) varinfo.ub_type = _LESS return end function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, set::MOI.EqualTo{Float64} ) _throw_if_existing_lower(varinfo.lb_type, MOI.EqualTo{Float64}, varinfo.index) _throw_if_existing_upper(varinfo.ub_type, MOI.EqualTo{Float64}, varinfo.index) MathProg.setperenlb!(form, varinfo.var, set.value) MathProg.setperenub!(form, varinfo.var, set.value) varinfo.lb_type = _EQUAL varinfo.ub_type = _EQUAL return end function _add_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, set::MOI.Interval{Float64} ) _throw_if_existing_lower(varinfo.lb_type, MOI.Interval{Float64}, varinfo.index) _throw_if_existing_upper(varinfo.ub_type, MOI.Interval{Float64}, varinfo.index) MathProg.setperenlb!(form, varinfo.var, set.lower) MathProg.setperenub!(form, varinfo.var, set.upper) varinfo.lb_type = _INTERVAL varinfo.ub_type = _INTERVAL return end function MOI.add_constraint( model::Optimizer, func::MOI.VariableIndex, set::S ) where {S<:SupportedVarSets} origform = get_original_formulation(model.inner) varinfo = _info(model, func) _add_constraint_on_variable!(origform, varinfo, set) index = MOI.ConstraintIndex{MOI.VariableIndex, S}(func.value) return index end function MOI.add_constraint( model::Optimizer, func::F, set::S ) where {F<:MOI.ScalarAffineFunction{Float64}, S<:SupportedConstrSets} if !iszero(func.constant) throw(MOI.ScalarFunctionConstantNotZero{Float64,F,S}(func.constant)) end orig_form = get_original_formulation(model.inner) members = Dict{VarId, Float64}() for term in func.terms var = _info(model, term.variable).var members[getid(var)] = get(members, getid(var), 0.0) + term.coefficient end constr = setconstr!( orig_form, "", OriginalConstr; rhs = MathProg.convert_moi_rhs_to_coluna(set), kind = Essential, sense = MathProg.convert_moi_sense_to_coluna(set), inc_val = 10.0, members = members ) constrinfo = _ConstrInfo(constr) constr_index = CleverDicts.add_item(model.constrinfos, constrinfo) model.constrinfos[constr_index] = constrinfo index = MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}, S}(constr_index) constrinfo.index = index return index end ############################################################################################ # Delete and modify variable ############################################################################################ function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.Integer} ) varinfo.kind = _CONT setperenkind!(form, varinfo.var, Continuous) return end function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.ZeroOne} ) varinfo.kind = _CONT setperenkind!(form, varinfo.var, Continuous) return end function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.GreaterThan{Float64}} ) varinfo.lb_type = _NONE MathProg.setperenlb!(form, varinfo.var, -Inf) return end function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.LessThan{Float64}} ) varinfo.ub_type = _NONE MathProg.setperenub!(form, varinfo.var, Inf) return end function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.EqualTo{Float64}} ) varinfo.lb_type = _NONE varinfo.ub_type = _NONE MathProg.setperenlb!(form, varinfo.var, -Inf) MathProg.setperenub!(form, varinfo.var, Inf) return end function _delete_constraint_on_variable!( form::Formulation, varinfo::_VarInfo, ::Type{<:MOI.Interval{Float64}} ) varinfo.lb_type = _NONE varinfo.ub_type = _NONE MathProg.setperenlb!(form, varinfo.var, -Inf) MathProg.setperenub!(form, varinfo.var, Inf) return end function MOI.delete(model::Optimizer, vi::MOI.VariableIndex) MOI.throw_if_not_valid(model, vi) MOI.modify(model, MoiObjective(), MOI.ScalarCoefficientChange(vi, 0.0)) for (_, constrinfo) in model.constrinfos MOI.modify(model, constrinfo.index, MOI.ScalarCoefficientChange(vi, 0.0)) end varid = getid(_info(model, vi).var) delete!(get_original_formulation(model.inner), varid) delete!(model.moi_varids, varid) delete!(model.varinfos, vi) delete!(model.env.varids, vi) return end function MOI.modify( model::Optimizer, ::MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}, change::MathOptInterface.ScalarCoefficientChange{Float64} ) setperencost!( get_original_formulation(model.inner), _info(model, change.variable).var, change.new_coefficient ) model.is_objective_set = true return end ############################################################################################ # Delete and modify constraint ############################################################################################ function MOI.delete( model::Optimizer, ci::MOI.ConstraintIndex{F,S} ) where {F<:MOI.VariableIndex,S} MOI.throw_if_not_valid(model, ci) origform = get_original_formulation(model.inner) varinfo = _info(model, ci) _delete_constraint_on_variable!(origform, varinfo, S) return end function MOI.delete( model::Optimizer, ci::MOI.ConstraintIndex{F,S} ) where {F<:MOI.ScalarAffineFunction{Float64},S} MOI.throw_if_not_valid(model, ci) constrid = getid(_info(model, ci).constr) orig_form = get_original_formulation(model.inner) coefmatrix = getcoefmatrix(orig_form) varids = VarId[] for (varid, _) in @view coefmatrix[constrid, :] push!(varids, varid) end for varid in varids coefmatrix[constrid, varid] = 0.0 end delete!(orig_form, constrid) delete!(model.constrinfos, ci.value) return end function MOI.modify( model::Optimizer, ci::MOI.ConstraintIndex{F,S}, change::MOI.ScalarConstantChange{Float64} ) where {F<:MOI.ScalarAffineFunction{Float64},S} MOI.throw_if_not_valid(model, ci) setperenrhs!(get_original_formulation(model.inner), _info(model, ci).constr, change.new_constant) return end function MOI.modify( model::Optimizer, ci::MOI.ConstraintIndex{F,S}, change::MOI.ScalarCoefficientChange{Float64} ) where {F<:MOI.ScalarAffineFunction{Float64},S} MOI.throw_if_not_valid(model, ci) varid = getid(_info(model, change.variable).var) constrid = getid(_info(model, ci).constr) getcoefmatrix(get_original_formulation(model.inner))[constrid, varid] = change.new_coefficient return end ############################################################################################ # Get variables ############################################################################################ function MOI.get(model::Optimizer, ::MOI.ListOfVariableIndices) indices = Vector{MathOptInterface.VariableIndex}() for (_, value) in model.moi_varids push!(indices, value) end return sort!(indices, by = x -> x.value) end ############################################################################################ # Get constraints ############################################################################################ function MOI.get(model::Optimizer, ::MOI.ListOfConstraintTypesPresent) orig_form = get_original_formulation(model.inner) constraints = Set{Tuple{DataType, DataType}}() for (_, varinfo) in model.varinfos # Bounds lb_type = varinfo.lb_type ub_type = varinfo.ub_type if lb_type == _GREATER push!(constraints, (MOI.VariableIndex, MOI.GreaterThan{Float64})) end if ub_type == _LESS push!(constraints, (MOI.VariableIndex, MOI.LessThan{Float64})) end if ub_type == _INTERVAL && lb_type == _INTERVAL push!(constraints, (MOI.VariableIndex, MOI.Interval{Float64})) end if ub_type == _EQUAL && lb_type == _EQUAL push!(constraints, (MOI.VariableIndex, MOI.EqualTo{Float64})) end # Kind kind = varinfo.kind if kind == _INT push!(constraints, (MOI.VariableIndex, MOI.Integer)) end if kind == _BINARY push!(constraints, (MOI.VariableIndex, MOI.ZeroOne)) end end for (_, constrinfo) in model.constrinfos constr = constrinfo.constr constr_sense = MathProg.convert_coluna_sense_to_moi(getperensense(orig_form, constr)) push!(constraints, (MOI.ScalarAffineFunction{Float64}, constr_sense)) end return collect(constraints) end function _add_constraint!( indices::Vector{MOI.ConstraintIndex{F,S}}, index::MOI.ConstraintIndex{F,S} ) where {F,S} push!(indices, index) return end function _add_constraint!( ::Vector{MOI.ConstraintIndex{F,S}}, index::MOI.ConstraintIndex ) where {F,S} return end function MOI.get( model::Optimizer, ::MOI.ListOfConstraintIndices{F, S} ) where {F<:MOI.ScalarAffineFunction{Float64}, S} indices = MOI.ConstraintIndex{F,S}[] for (_, constrinfo) in model.constrinfos _add_constraint!(indices, constrinfo.index) end return sort!(indices, by = x -> x.value) end _bound_enum(::Type{<:MOI.LessThan}) = _LESS _bound_enum(::Type{<:MOI.GreaterThan}) = _GREATER _bound_enum(::Type{<:MOI.Interval}) = _INTERVAL _bound_enum(::Type{<:MOI.EqualTo}) = _EQUAL _bound_enum(::Any) = nothing _kind_enum(::Type{<:MOI.ZeroOne}) = _BINARY _kind_enum(::Type{<:MOI.Integer}) = _INT _kind_enum(::Any) = nothing function MOI.get( model::Optimizer, ::MOI.ListOfConstraintIndices{F, S} ) where {F<:MOI.VariableIndex, S} indices = MOI.ConstraintIndex{F,S}[] for (_, varinfo) in model.varinfos if varinfo.lb_type == _bound_enum(S) || varinfo.ub_type == _bound_enum(S) || varinfo.kind == _kind_enum(S) push!(indices, MOI.ConstraintIndex{MOI.VariableIndex, S}(varinfo.index.value)) end end return sort!(indices, by = x -> x.value) end function MOI.get( model::Optimizer, ::MOI.ConstraintFunction, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.ScalarAffineFunction{Float64}, S} MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) constrid = getid(_info(model, index).constr) terms = MOI.ScalarAffineTerm{Float64}[] # Cannot get a view of the coefficient matrix when it is in fill mode. matrix = getcoefmatrix(orig_form) if matrix.matrix.fillmode for (varid, coef) in view(matrix.matrix.buffer, constrid, :) push!(terms, MOI.ScalarAffineTerm(coef, model.moi_varids[varid])) end else for (varid, coef) in @view matrix[constrid, :] push!(terms, MOI.ScalarAffineTerm(coef, model.moi_varids[varid])) end end return MOI.ScalarAffineFunction(terms, 0.0) end function MOI.get( model::Optimizer, ::MOI.ConstraintFunction, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.VariableIndex, S} MOI.throw_if_not_valid(model, index) return MOI.VariableIndex(index.value) end function MOI.get( model::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.ScalarAffineFunction{Float64},S} MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) rhs = getperenrhs(orig_form, _info(model, index).constr) return S(rhs) end function MOI.get( model::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.GreaterThan{Float64}} ) MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) lb = getperenlb(orig_form, _info(model, MOI.VariableIndex(index.value)).var) return MOI.GreaterThan(lb) end function MOI.get( model::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.LessThan{Float64}} ) MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) ub = getperenub(orig_form, _info(model, MOI.VariableIndex(index.value)).var) return MOI.LessThan(ub) end function MOI.get( model::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.EqualTo{Float64}} ) MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) lb = getperenlb(orig_form, _info(model, MOI.VariableIndex(index.value)).var) ub = getperenub(orig_form, _info(model, MOI.VariableIndex(index.value)).var) @assert lb == ub return MOI.EqualTo(lb) end function MOI.get( model::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.Interval{Float64}} ) MOI.throw_if_not_valid(model, index) orig_form = get_original_formulation(model.inner) lb = getperenlb(orig_form, _info(model, MOI.VariableIndex(index.value)).var) ub = getperenub(orig_form, _info(model, MOI.VariableIndex(index.value)).var) return MOI.Interval(lb, ub) end function MOI.get( ::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.ZeroOne} ) return MOI.ZeroOne() end function MOI.get( ::Optimizer, ::MOI.ConstraintSet, index::MOI.ConstraintIndex{MOI.VariableIndex, MOI.Integer} ) return MOI.Integer() end ############################################################################################ # Set constraints ############################################################################################ function MOI.set( model::Optimizer, ::MOI.ConstraintFunction, constrid::MOI.ConstraintIndex{F,S}, func::F ) where {F<:SupportedConstrFunc, S<:SupportedConstrSets} MOI.throw_if_not_valid(model, constrid) if !iszero(func.constant) throw(MOI.ScalarFunctionConstantNotZero(func.constant)) end constrinfo = _info(model, constrid) id = getid(constrinfo.constr) origform = get_original_formulation(model.inner) coefmatrix = getcoefmatrix(origform) varids = VarId[] for (varid, _) in @view coefmatrix[id, :] push!(varids, varid) end for varid in varids coefmatrix[id, varid] = 0.0 end for term in func.terms var = _info(model, term.variable).var coefmatrix[id, getid(var)] += term.coefficient end return end function MOI.set( model::Optimizer, ::MOI.ConstraintSet, constrid::MOI.ConstraintIndex{F,S}, set::S ) where {F<:SupportedConstrFunc,S<:SupportedConstrSets} MOI.throw_if_not_valid(model, constrid) origform = get_original_formulation(model.inner) constr = _info(model, constrid).constr setperenrhs!(origform, constr, MathProg.convert_moi_rhs_to_coluna(set)) setperensense!(origform, constr, MathProg.convert_moi_sense_to_coluna(set)) return end function MOI.set( ::Optimizer, ::MOI.ConstraintFunction, ::MOI.ConstraintIndex{F,S}, ::S ) where {F<:MOI.VariableIndex,S} return throw(MOI.SettingVariableIndexNotAllowed()) end function MOI.set( model::Optimizer, ::MOI.ConstraintSet, constrid::MOI.ConstraintIndex{F,S}, set::S ) where {F<:MOI.VariableIndex, S<:SupportedVarSets} MOI.throw_if_not_valid(model, constrid) (lb, ub) = MathProg.convert_moi_bounds_to_coluna(set) varinfo = _info(model, constrid) origform = get_original_formulation(model.inner) MathProg.setperenlb!(origform, varinfo.var, lb) MathProg.setperenub!(origform, varinfo.var, ub) return end ############################################################################################ # Names ############################################################################################ MOI.supports(::Optimizer, ::MOI.VariableName, ::Type{MOI.VariableIndex}) = true function MOI.get(model::Optimizer, ::MOI.VariableName, varid::MOI.VariableIndex) MOI.throw_if_not_valid(model, varid) return _info(model, varid).name end function MOI.set( model::Optimizer, ::MOI.VariableName, varid::MOI.VariableIndex, name::String ) MOI.throw_if_not_valid(model, varid) varinfo = _info(model, varid) oldname = varinfo.name varinfo.name = name varinfo.var.name = name if !isempty(oldname) i, n = model.names_to_vars[oldname] if n <= 1 delete!(model.names_to_vars, oldname) else model.names_to_vars[oldname] = (i, n-1) end end if !isempty(name) if !haskey(model.names_to_vars, name) model.names_to_vars[name] = (varid, 1) else i, n = model.names_to_vars[name] model.names_to_vars[name] = (i, n+1) end end return end function MOI.supports(::Optimizer, ::MOI.ConstraintName, ::Type{<:MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}}}) return true end function MOI.get(model::Optimizer, ::MOI.ConstraintName, constrid::MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}, <:Any}) MOI.throw_if_not_valid(model, constrid) return _info(model, constrid).name end function MOI.set( model::Optimizer, ::MOI.ConstraintName, constrid::MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}, <:Any}, name::String ) MOI.throw_if_not_valid(model, constrid) constrinfo = _info(model, constrid) oldname = constrinfo.name constrinfo.name = name constrinfo.constr.name = name if !isempty(oldname) i, n = model.names_to_constrs[oldname] if n <= 1 delete!(model.names_to_constrs, oldname) else model.names_to_constrs[oldname] = (i, n-1) end end if !isempty(name) if !haskey(model.names_to_constrs, name) model.names_to_constrs[name] = (constrid.value, 1) else i, n = model.names_to_constrs[name] model.names_to_constrs[name] = (i, n+1) end end return end function MOI.get(model::Optimizer, ::Type{MOI.VariableIndex}, name::String) index, nb_vars_with_same_name = get(model.names_to_vars, name, (nothing, 0)) if nb_vars_with_same_name > 1 error("Duplicate variable name detected: $(name).") end return index end function MOI.get( model::Optimizer, ::Type{MOI.ConstraintIndex}, name::String ) index, nb_constrs_with_same_name = get(model.names_to_constrs, name, (nothing, 0)) if nb_constrs_with_same_name > 1 error("Duplicate constraint name detected: $(name).") end if index === nothing return nothing end return _info(model, index).index end function MOI.get(model::Optimizer, ::Type{MOI.ConstraintIndex{F,S}}, name::String) where {F,S} index = MOI.get(model, MOI.ConstraintIndex, name) if typeof(index) == MOI.ConstraintIndex{F,S} return index::MOI.ConstraintIndex{F,S} end return end ############################################################################################ # Attributes of variables ############################################################################################ function MOI.set( model::Optimizer, ::BD.VariableDecomposition, varid::MOI.VariableIndex, annotation::BD.Annotation ) store!(model.annotations, annotation, _info(model, varid).var) return end # In the case of a representative variable. function MOI.set( model::Optimizer, ::BD.VariableDecomposition, varid::MOI.VariableIndex, annotations::Vector{<:BD.Annotation} ) store_repr!(model.annotations, annotations, _info(model, varid).var) return end function MOI.set( model::Optimizer, ::BD.VarBranchingPriority, varid::MOI.VariableIndex, branching_priority::Float64 ) var = _info(model, varid).var var.branching_priority = branching_priority return end function MOI.set( model::Optimizer, ::BD.VarBranchingPriority, varid::MOI.VariableIndex, branching_priority::Int ) var = _info(model, varid).var var.branching_priority = Float64(branching_priority) return end function MOI.set( model::Optimizer, ::BD.CustomVarValue, varid::MOI.VariableIndex, custom_data ) MOI.throw_if_not_valid(model, varid) var = _info(model, varid).var var.custom_data = custom_data return end function MOI.get(model::Optimizer, ::BD.VarBranchingPriority, varid::MOI.VariableIndex) var = _info(model, varid).var return var.branching_priority end function MOI.get(model::Optimizer, ::MOI.ListOfVariableAttributesSet) return MOI.AbstractVariableAttribute[MOI.VariableName()] end # TODO: we'll have to check if this implementation fits good pratices. function MOI.set(model::Optimizer, ::BD.RepresentativeVar, varid::MOI.VariableIndex, annotations) # nothing to do. # see MOI.set(model, ::BD.VariableDecomposition, varid, ::Vector{<:BD.Annotation}) return end function MOI.get(model::Optimizer, ::BD.RepresentativeVar, varid::MOI.VariableIndex) # nothing to return. return end function MOI.set(model::Optimizer, ::BD.ListOfRepresentatives, list) # nothing to do. return end function MOI.get(model::Optimizer, ::BD.ListOfRepresentatives) # nothing to return return end ############################################################################################ # Attributes of constraints ############################################################################################ # TODO move into BlockDecomposition. function MOI.set( model::MOI.ModelLike, attr::BlockDecomposition.ConstraintDecomposition, bridge::MOI.Bridges.Constraint.SplitIntervalBridge, value ) MOI.set(model.model, attr, bridge.lower, value) MOI.set(model.model, attr, bridge.upper, value) return end function MOI.set( model::Optimizer, ::BD.ConstraintDecomposition, constrid::MOI.ConstraintIndex, annotation::BD.Annotation ) MOI.throw_if_not_valid(model, constrid) store!(model.annotations, annotation, _info(model, constrid).constr) return end function MOI.set( model::Optimizer, ::BlockDecomposition.CustomConstrValue, constrid::MOI.ConstraintIndex, custom_data ) MOI.throw_if_not_valid(model, constrid) constr = _info(model, constrid).constr constr.custom_data = custom_data return end function MOI.get(model::Optimizer, ::BD.ConstraintDecomposition, index::MOI.ConstraintIndex) MOI.throw_if_not_valid(model, index) constrinfo = _info(model, index) return get(model.annotations.ann_per_constr, getid(constrinfo.constr), nothing) end function MOI.get(model::Optimizer, ::BD.VariableDecomposition, index::MOI.VariableIndex) MOI.throw_if_not_valid(model, index) varinfo = _info(model, index) return get(model.annotations.ann_per_var, getid(varinfo.var), nothing) end function MOI.get(model::Optimizer, ::MOI.ListOfConstraintAttributesSet) return MOI.AbstractConstraintAttribute[MOI.ConstraintName()] end function MOI.get(::Optimizer, ::MOI.ListOfConstraintAttributesSet{MOI.VariableIndex,<:MOI.AbstractScalarSet}) return MOI.AbstractConstraintAttribute[] end ############################################################################################ # Objective ############################################################################################ function MOI.set(model::Optimizer, ::MOI.ObjectiveSense, sense::MOI.OptimizationSense) orig_form = get_original_formulation(model.inner) if sense == MOI.MIN_SENSE set_objective_sense!(orig_form, true) # Min elseif sense == MOI.MAX_SENSE set_objective_sense!(orig_form, false) # Max else set_objective_sense!(orig_form, true) # Min # Set the cost of all variables to 0 for (_, varinfo) in model.varinfos setperencost!(orig_form, varinfo.var, 0.0) end end model.objective_sense = sense return end function MOI.get(model::Optimizer, ::MOI.ObjectiveSense) if !isnothing(model.objective_sense) return model.objective_sense end return MOI.FEASIBILITY_SENSE end function MOI.get(model::Optimizer, ::MOI.ObjectiveFunctionType) if model.objective_type == SINGLE_VARIABLE return MOI.VariableIndex end return MOI.ScalarAffineFunction{Float64} end function MOI.set( model::Optimizer, ::MOI.ObjectiveFunction{F}, func::F ) where {F<:MOI.ScalarAffineFunction{Float64}} origform = get_original_formulation(model.inner) for (_, varinfo) in model.varinfos setperencost!(origform, varinfo.var, 0.0) end for term in func.terms var = _info(model, term.variable).var cost = term.coefficient + getperencost(origform, var) setperencost!(origform, var, cost) end if !iszero(func.constant) setobjconst!(origform, func.constant) end model.objective_type = SCALAR_AFFINE model.is_objective_set = true return end function MOI.set( model::Optimizer, ::MOI.ObjectiveFunction{MOI.VariableIndex}, func::MOI.VariableIndex ) setperencost!(get_original_formulation(model.inner), _info(model, func).var, 1.0) model.objective_type = SINGLE_VARIABLE model.is_objective_set = true return end function MOI.get(model::Optimizer, ::MOI.ObjectiveFunction{F}) where {F} obj = MOI.get(model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}()) return convert(F, obj) end function MOI.get( model::Optimizer, ::MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}} ) orig_form = get_original_formulation(model.inner) terms = MOI.ScalarAffineTerm{Float64}[] for (id, varinfo) in model.varinfos cost = getperencost(orig_form, varinfo.var) if !iszero(cost) push!(terms, MOI.ScalarAffineTerm(cost, id)) end end return MOI.ScalarAffineFunction(terms, getobjconst(orig_form)) end ############################################################################################ # Attributes of model ############################################################################################ function MOI.set(model::Optimizer, ::BD.DecompositionTree, tree::BD.Tree) model.annotations.tree = tree return end function MOI.set(model::Optimizer, ::BD.ObjectiveDualBound, db) set_initial_dual_bound!(model.inner, db) return end function MOI.set(model::Optimizer, ::BD.ObjectivePrimalBound, pb) set_initial_primal_bound!(model.inner, pb) return end function _customdata!(model::Optimizer, type::DataType) haskey(model.env.custom_families_id, type) && return model.env.custom_families_id[type] = length(model.env.custom_families_id) return end function MOI.set( model::Optimizer, ::BD.CustomVars, customvars ) for customvar in customvars _customdata!(model, customvar) end return end function MOI.set( model::Optimizer, ::BD.CustomConstrs, customconstrs ) for customconstr in customconstrs _customdata!(model, customconstr) end return end mutable struct ColumnInfo <: BD.AbstractColumnInfo optimizer::Optimizer column_var_id::VarId column_val::Float64 end function BD.getsolutions(model::Optimizer, k) ip_primal_sol = get_best_ip_primal_sol(model.disagg_result) sp_columns_info = Vector{ColumnInfo}() for (varid, val) in ip_primal_sol if getduty(varid) <= MasterCol if model.annotations.ann_per_form[getoriginformuid(varid)].axis_index_value == k push!(sp_columns_info, ColumnInfo(model, varid, val)) end end end return sp_columns_info end BD.value(info::ColumnInfo) = info.column_val function BD.customdata(info::ColumnInfo) masterform = getmaster(info.optimizer.inner.re_formulation) return getcustomdata(masterform, info.column_var_id) end function BD.value(info::ColumnInfo, index::MOI.VariableIndex) varid = info.optimizer.env.varids[index] origin_form_uid = getoriginformuid(info.column_var_id) spform = get_dw_pricing_sps(info.optimizer.inner.re_formulation)[origin_form_uid] return get_primal_sol_pool(spform).solutions[info.column_var_id,varid] end function MOI.get(model::Optimizer, ::MOI.NumberOfVariables) orig_form = get_original_formulation(model.inner) return length(getvars(orig_form)) end function MOI.get(model::Optimizer, ::MOI.NumberOfConstraints{F, S}) where {F, S} return length(MOI.get(model, MOI.ListOfConstraintIndices{F, S}())) end function MOI.get(model::Optimizer, ::MOI.ListOfModelAttributesSet) attributes = MOI.AbstractModelAttribute[] if model.is_objective_set F = MOI.get(model, MOI.ObjectiveFunctionType()) push!(attributes, MOI.ObjectiveFunction{F}()) end if !isnothing(model.objective_sense) push!(attributes, MOI.ObjectiveSense()) end if model.has_usercut_cb push!(attributes, MOI.UserCutCallback()) end if model.has_lazyconstraint_cb push!(attributes, MOI.LazyConstraintCallback()) end if model.has_pricing_cb push!(attributes, BD.PricingCallback()) end if model.has_initialcol_cb push!(attributes, BD.InitialColumnsCallback()) end return attributes end ############################################################################################ # is_valid methods ########################################################################################### _is_valid(::Type{<:MOI.LessThan{Float64}}, lb, ub, kind) = ub == _LESS _is_valid(::Type{<:MOI.GreaterThan{Float64}}, lb, ub, kind) = lb == _GREATER _is_valid(::Type{<:MOI.EqualTo{Float64}}, lb, ub, kind) = lb == ub == _EQUAL _is_valid(::Type{<:MOI.Interval{Float64}}, lb, ub, kind) = lb == ub == _INTERVAL _is_valid(::Type{<:MOI.ZeroOne}, lb, ub, kind) = kind == _BINARY _is_valid(::Type{<:MOI.Integer}, lb, ub, kind) = kind == _INT function MOI.is_valid( model::Optimizer, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.VariableIndex,S} if !haskey(model.varinfos, MOI.VariableIndex(index.value)) return false end varinfo = _info(model, index) return _is_valid(S, varinfo.lb_type, varinfo.ub_type, varinfo.kind) end function MOI.is_valid( model::Optimizer, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.ScalarAffineFunction,S} return haskey(model.constrinfos, index.value) end function MOI.is_valid(model::Optimizer, index::MOI.VariableIndex) return haskey(model.varinfos, index) end # ###################### # ### Get functions #### # ###################### function MOI.get(model::Optimizer, ::MOI.ObjectiveBound) return getvalue(get_ip_dual_bound(model.result)) end function MOI.get(model::Optimizer, attr::MOI.ObjectiveValue) MOI.check_result_index_bounds(model, attr) return getvalue(get_ip_primal_bound(model.result)) end function MOI.get(model::Optimizer, attr::MOI.DualObjectiveValue) MOI.check_result_index_bounds(model, attr) return getvalue(get_lp_dual_bound(model.result)) end function MOI.get(model::Optimizer, ::MOI.RelativeGap) return ip_gap(model.result) end function MOI.get(model::Optimizer, attr::MOI.VariablePrimal, ref::MOI.VariableIndex) MOI.check_result_index_bounds(model, attr) id = getid(_info(model, ref).var) # This gets a coluna VarId primalsols = get_ip_primal_sols(model.result) if 1 <= attr.result_index <= length(primalsols) return get(primalsols[attr.result_index], id, 0.0) end return error("Invalid result index.") end function MOI.get(model::Optimizer, attr::MOI.VariablePrimal, refs::Vector{MOI.VariableIndex}) MOI.check_result_index_bounds(model, attr) best_primal_sol = get_best_ip_primal_sol(model.result) if best_primal_sol === nothing @warn "Coluna did not find a primal feasible solution." return [NaN for ref in refs] end return [get(best_primal_sol, getid(model.varinfos[ref].var), 0.0) for ref in refs] end function MOI.get(model::Optimizer, ::MOI.TerminationStatus) return convert_status(getterminationstatus(model.result)) end function MOI.get(model::Optimizer, attr::MOI.PrimalStatus) if attr.result_index != 1 return MOI.NO_SOLUTION end primal_sol = get_best_ip_primal_sol(model.result) primal_sol === nothing && return MOI.NO_SOLUTION return convert_status(getstatus(primal_sol)) end function MOI.get(model::Optimizer, attr::MOI.DualStatus) if attr.result_index != 1 return MOI.NO_SOLUTION end dual_sol = get_best_lp_dual_sol(model.result) dual_sol === nothing && return MOI.NO_SOLUTION return convert_status(getstatus(dual_sol)) end function MOI.get(model::Optimizer, ::MOI.RawStatusString) return string(getterminationstatus(model.result)) end function MOI.get(model::Optimizer, ::MOI.ResultCount) return length(get_ip_primal_sols(model.result)) end function MOI.get( model::Optimizer, attr::MOI.ConstraintPrimal, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.VariableIndex,S} # TODO: throw if optimization in progress. MOI.check_result_index_bounds(model, attr) return MOI.get(model, MOI.VariablePrimal(), MOI.VariableIndex(index.value)) end function MOI.get(model::Optimizer, attr::MOI.ConstraintPrimal, index::MOI.ConstraintIndex) # TODO: throw if optimization in progress. MOI.check_result_index_bounds(model, attr) constr = _info(model, index).constr best_primal_sol = get_best_ip_primal_sol(model.result) return constraint_primal(best_primal_sol, getid(constr)) end MOI.get(model::Optimizer, ::MOI.NodeCount) = model.env.kpis.node_count MOI.get(model::Optimizer, ::MOI.SolveTimeSec) = model.env.kpis.elapsed_optimization_time function MOI.get( model::Optimizer, attr::MOI.ConstraintDual, index::MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}} ) MOI.throw_if_not_valid(model, index) dualsols = get_lp_dual_sols(model.result) sense = model.objective_sense == MOI.MAX_SENSE ? -1.0 : 1.0 if 1 <= attr.result_index <= length(dualsols) return sense * get(dualsols[attr.result_index], getid(_info(model, index).constr), 0.0) end return error("Invalid result index.") end function _singlevarconstrdualval(dualsol, var, ::Type{<:MOI.GreaterThan}) value, activebound = get(get_var_redcosts(dualsol), getid(var), (0.0, MathProg.LOWER)) if !iszero(value) && activebound != MathProg.LOWER return 0.0 end return value end function _singlevarconstrdualval(dualsol, var, ::Type{<:MOI.LessThan}) value, activebound = get(get_var_redcosts(dualsol), getid(var), (0.0, MathProg.UPPER)) if !iszero(value) && activebound != MathProg.UPPER return 0.0 end return value end function _singlevarconstrdualval(dualsol, var, ::Type{<:MOI.EqualTo}) value, _ = get(get_var_redcosts(dualsol), getid(var), (0.0, MathProg.LOWER)) return value end function _singlevarconstrdualval(dualsol, var, ::Type{<:MOI.Interval}) value, _ = get(get_var_redcosts(dualsol), getid(var), (0.0, MathProg.LOWER)) return value end function MOI.get( model::Optimizer, attr::MOI.ConstraintDual, index::MOI.ConstraintIndex{F,S} ) where {F<:MOI.VariableIndex,S} # TODO: check if optimization in progress. MOI.check_result_index_bounds(model, attr) dualsols = get_lp_dual_sols(model.result) sense = model.objective_sense == MOI.MAX_SENSE ? -1.0 : 1.0 if 1 <= attr.result_index <= length(dualsols) dualsol = dualsols[attr.result_index] varinfo = _info(model, MOI.VariableIndex(index.value)) return sense * _singlevarconstrdualval(dualsol, varinfo.var, S) end error("Invalid result index.") end # Useful method to retrieve dual values of generated cuts because they don't # have MOI.ConstraintIndex function MOI.get( model::Optimizer, attr::MOI.ConstraintDual, constrid::ConstrId ) # TODO: check if optimization in progress. MOI.check_result_index_bounds(model, attr) dualsols = get_lp_dual_sols(model.result) sense = model.objective_sense == MOI.MAX_SENSE ? -1.0 : 1.0 if 1 <= attr.result_index <= length(dualsols) return sense * get(dualsols[attr.result_index], constrid, 0.0) end return error("Invalid result index.") end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2627
## Annotations mutable struct Annotations tree::Union{BD.Tree, Nothing} ann_per_var::Dict{VarId, BD.Annotation} ann_per_repr_var::Dict{VarId, Vector{BD.Annotation}} ann_per_constr::Dict{ConstrId, BD.Annotation} vars_per_ann::Dict{BD.Annotation, Dict{VarId,Variable}} constrs_per_ann::Dict{BD.Annotation, Dict{ConstrId,Constraint}} ann_per_form::Dict{Int, BD.Annotation} annotation_set::Set{BD.Annotation} end Annotations() = Annotations( nothing, Dict{VarId, BD.Annotation}(), Dict{VarId, Vector{BD.Annotation}}(), Dict{ConstrId, BD.Annotation}(), Dict{BD.Annotation, Dict{VarId,Variable}}(), Dict{BD.Annotation, Dict{ConstrId,Constraint}}(), Dict{Int, BD.Annotation}(), Set{BD.Annotation}() ) function store!(annotations::Annotations, ann::BD.Annotation, var::Variable) push!(annotations.annotation_set, ann) annotations.ann_per_var[getid(var)] = ann if !haskey(annotations.vars_per_ann, ann) annotations.vars_per_ann[ann] = Dict{VarId, Variable}() end annotations.vars_per_ann[ann][getid(var)] = var return end function store_repr!(annotations::Annotations, ann::Vector{<:BD.Annotation}, var::Variable) push!(annotations.annotation_set, ann...) annotations.ann_per_repr_var[getid(var)] = ann for a in ann if !haskey(annotations.vars_per_ann, a) annotations.vars_per_ann[a] = Dict{VarId, Variable}() end annotations.vars_per_ann[a][getid(var)] = var end return end function store!(annotations::Annotations, ann::BD.Annotation, constr::Constraint) push!(annotations.annotation_set, ann) annotations.ann_per_constr[getid(constr)] = ann if !haskey(annotations.constrs_per_ann, ann) annotations.constrs_per_ann[ann] = Dict{ConstrId, Constraint}() end annotations.constrs_per_ann[ann][getid(constr)] = constr return end function store!(annotations::Annotations, form::AbstractFormulation, ann::BD.Annotation) form_uid = getuid(form) if haskey(annotations.ann_per_form, form_uid) error("Formulation with uid $form_uid already has annotation.") end annotations.ann_per_form[form_uid] = ann return end function Base.get(annotations::Annotations, form::AbstractFormulation) form_uid = getuid(form) if !haskey(annotations.ann_per_form, form_uid) error("Formulation with uid $form_uid does not have any annotation.") end return annotations.ann_per_form[form_uid] end function is_representative(annotations::Annotations, varid::VarId) return haskey(annotations.ann_per_repr_var, varid) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
20294
function set_glob_art_var(form::Formulation, is_pos::Bool, env::Env) name = string("global_", (is_pos ? "pos" : "neg"), "_art_var") cost = env.params.global_art_var_cost cost *= getobjsense(form) == MinSense ? 1.0 : -1.0 return setvar!( form, name, MasterArtVar; cost=cost, lb=0.0, ub=Inf, kind=Continuous ) end function create_global_art_vars!(masterform::Formulation, env::Env) global_pos = set_glob_art_var(masterform, true, env) global_neg = set_glob_art_var(masterform, false, env) matrix = getcoefmatrix(masterform) for (constrid, constr) in getconstrs(masterform) iscuractive(masterform, constrid) || continue getduty(constrid) <= AbstractMasterOriginConstr || continue if getcursense(masterform, constr) == Greater matrix[constrid, getid(global_pos)] = 1.0 elseif getcursense(masterform, constr) == Less matrix[constrid, getid(global_neg)] = -1.0 else # Equal matrix[constrid, getid(global_pos)] = 1.0 matrix[constrid, getid(global_neg)] = -1.0 end end end function instantiate_master!( env::Env, origform::Formulation{Original}, ::Type{BD.Master}, ::Type{BD.DantzigWolfe} ) form = create_formulation!( env, MathProg.DwMaster(); obj_sense=getobjsense(origform) ) setobjconst!(form, getobjconst(origform)) return form end function instantiate_master!( env::Env, origform::Formulation{Original}, ::Type{BD.Master}, ::Type{BD.Benders} ) return create_formulation!( env, MathProg.BendersMaster(); obj_sense=getobjsense(origform) ) end function instantiate_sp!( env::Env, master::Formulation{DwMaster}, ::Type{BD.DwPricingSp}, ::Type{BD.DantzigWolfe} ) return create_formulation!( env, MathProg.DwSp(nothing, nothing, nothing, Integ); parent_formulation=master, obj_sense=getobjsense(master) ) end function instantiate_sp!( env::Env, master::Formulation{BendersMaster}, ::Type{BD.BendersSepSp}, ::Type{BD.Benders} ) return create_formulation!( env, MathProg.BendersSp(); parent_formulation=master, obj_sense=getobjsense(master) ) end # Master of Dantzig-Wolfe decomposition # We clone the variables and the single variable constraints at the same time function instantiate_orig_vars!( masterform::Formulation{DwMaster}, origform::Formulation, annotations::Annotations, mast_ann ) vars_per_ann = annotations.vars_per_ann for (ann, vars) in vars_per_ann formtype = BD.getformulation(ann) if formtype <: BD.Master for (_, var) in vars clonevar!(origform, masterform, masterform, var, MasterPureVar, is_explicit=true) end end end return end function instantiate_orig_constrs!( masterform::Formulation{DwMaster}, origform::Formulation{Original}, env::Env, annotations::Annotations, mast_ann ) !haskey(annotations.constrs_per_ann, mast_ann) && return constrs = annotations.constrs_per_ann[mast_ann] for (_, constr) in constrs cloneconstr!( origform, masterform, masterform, constr, MasterMixedConstr, loc_art_var_abs_cost=env.params.local_art_var_cost ) # TODO distinguish Pure versus Mixed end # Cut generation callbacks for constrgen in get_robust_constr_generators(origform) set_robust_constr_generator!(masterform, constrgen.kind, constrgen.separation_alg) end return end function create_side_vars_constrs!( masterform::Formulation{DwMaster}, origform::Formulation{Original}, env::Env, annotations::Annotations ) coefmatrix = getcoefmatrix(masterform) for (spuid, spform) in get_dw_pricing_sps(masterform.parent_formulation) ann = get(annotations, spform) setupvars = filter(v -> getduty(v.first) == DwSpSetupVar, getvars(spform)) @assert length(setupvars) == 1 setupvar = collect(values(setupvars))[1] setuprepvar = clonevar!(origform, masterform, spform, setupvar, MasterRepPricingSetupVar, is_explicit=false) # create convexity constraint & storing information about the convexity constraint # in the duty data of the formulation lb_mult = Float64(BD.getlowermultiplicity(ann)) name = string("sp_lb_", spuid) lb_conv_constr = setconstr!( masterform, name, MasterConvexityConstr; rhs=lb_mult, kind=Essential, sense=Greater, inc_val=100.0, loc_art_var_abs_cost=env.params.local_art_var_cost ) coefmatrix[getid(lb_conv_constr), getid(setuprepvar)] = 1.0 ub_mult = Float64(BD.getuppermultiplicity(ann)) name = string("sp_ub_", spuid) ub_conv_constr = setconstr!( masterform, name, MasterConvexityConstr; rhs=ub_mult, kind=Essential, sense=Less, inc_val=100.0, loc_art_var_abs_cost=env.params.local_art_var_cost ) coefmatrix[getid(ub_conv_constr), getid(setuprepvar)] = 1.0 spform.duty_data.lower_multiplicity_constr_id = getid(lb_conv_constr) spform.duty_data.upper_multiplicity_constr_id = getid(ub_conv_constr) spform.duty_data.setup_var = getid(setupvar) spform.duty_data.branching_priority = BD.getbranchingpriority(ann) # If pricing subproblem variables are continuous, the master columns generated by # the subproblem must have a continuous perenkind. # This piece of information is stored in the duty data of the formulation. continuous_columns = true for (varid, var) in getvars(spform) if getduty(varid) <= DwSpPricingVar && getperenkind(spform, var) !== Continuous continuous_columns = false break end end spform.duty_data.column_var_kind = continuous_columns ? Continuous : Integ end return end function create_artificial_vars!(masterform::Formulation{DwMaster}, env::Env) create_global_art_vars!(masterform, env) return end # Pricing subproblem of Danztig-Wolfe decomposition function instantiate_orig_vars!( spform::Formulation{DwSp}, origform::Formulation{Original}, annotations::Annotations, sp_ann ) !haskey(annotations.vars_per_ann, sp_ann) && return vars = annotations.vars_per_ann[sp_ann] masterform = spform.parent_formulation for (varid, var) in vars # An original variable annotated in a subproblem is a DwSpPricingVar clonevar!(origform, spform, spform, var, DwSpPricingVar, is_explicit=true) if haskey(masterform, varid) && !is_representative(annotations, varid) error(""" Variable $(getname(masterform, varid)) is in two subproblems but is not representative. Please open an issue. """) end if !haskey(masterform, varid) lb, ub = if is_representative(annotations, varid) mult_lb = sum(BD.getlowermultiplicity.(annotations.ann_per_repr_var[varid])) mult_ub = sum(BD.getuppermultiplicity.(annotations.ann_per_repr_var[varid])) ( min(getperenlb(origform, var) * mult_lb, getperenlb(origform, var) * mult_ub), max(getperenub(origform, var) * mult_lb, getperenub(origform, var) * mult_ub) ) else mult_lb = BD.getlowermultiplicity(sp_ann) mult_ub = BD.getuppermultiplicity(sp_ann) ( min(getperenlb(origform, var) * mult_lb, getperenlb(origform, var) * mult_ub), max(getperenub(origform, var) * mult_lb, getperenub(origform, var) * mult_ub) ) end isnan(lb) && (lb = -Inf) isnan(ub) && (ub = Inf) clonevar!( origform, masterform, spform, var, MasterRepPricingVar, is_explicit=false, lb=lb, ub=ub ) end end return end function instantiate_orig_constrs!( spform::Formulation{DwSp}, origform::Formulation{Original}, ::Env, annotations::Annotations, sp_ann ) !haskey(annotations.constrs_per_ann, sp_ann) && return constrs = annotations.constrs_per_ann[sp_ann] for (_, constr) in constrs cloneconstr!(origform, spform, spform, constr, DwSpPureConstr; loc_art_var_abs_cost=0.0) end return end function create_side_vars_constrs!( spform::Formulation{DwSp}, ::Formulation{Original}, ::Env, ::Annotations ) name = "PricingSetupVar_sp_$(getuid(spform))" setvar!( spform, name, DwSpSetupVar; cost=0.0, lb=1.0, ub=1.0, kind=Integ, is_explicit=true ) return end function _dutyexpofbendmastvar( var::Variable, annotations::Annotations, origform::Formulation{Original} ) orig_coef = getcoefmatrix(origform) for (constrid, _) in @view orig_coef[:, getid(var)] constr_ann = annotations.ann_per_constr[constrid] #if coef != 0 && BD.getformulation(constr_ann) == BD.Benders # TODO use haskey instead testing != 0 if BD.getformulation(constr_ann) == BD.BendersSepSp return MasterBendFirstStageVar, true end end return MasterPureVar, true end # Master of Benders decomposition function instantiate_orig_vars!( masterform::Formulation{BendersMaster}, origform::Formulation{Original}, annotations::Annotations, mast_ann ) !haskey(annotations.vars_per_ann, mast_ann) && return vars = annotations.vars_per_ann[mast_ann] for (_, var) in vars clonevar!(origform, masterform, masterform, var, MasterPureVar, is_explicit=true) end return end function instantiate_orig_constrs!( masterform::Formulation{BendersMaster}, origform::Formulation{Original}, ::Env, annotations::Annotations, mast_ann ) !haskey(annotations.constrs_per_ann, mast_ann) && return constrs = annotations.constrs_per_ann[mast_ann] for (_, constr) in constrs cloneconstr!( origform, masterform, masterform, constr, MasterPureConstr, is_explicit=true ) end return end function create_side_vars_constrs!( masterform::Formulation{BendersMaster}, ::Formulation{Original}, ::Env, ::Annotations ) for (spid, spform) in get_benders_sep_sps(masterform.parent_formulation) name = "η[$(spid)]" var = setvar!( masterform, name, MasterBendSecondStageCostVar; cost=1.0, lb=-Inf, ub=Inf, kind=Continuous, is_explicit=true ) spform.duty_data.second_stage_cost_var = getid(var) end return end create_artificial_vars!(::Formulation{BendersMaster}, ::Env) = return function instantiate_orig_vars!( spform::Formulation{BendersSp}, origform::Formulation{Original}, annotations::Annotations, sp_ann ) if haskey(annotations.vars_per_ann, sp_ann) vars = annotations.vars_per_ann[sp_ann] for (_, var) in vars clonevar!(origform, spform, spform, var, BendSpSepVar, cost=getperencost(origform, var)) end end return end function _dutyexpofbendspconstr(constr, annotations::Annotations, origform) orig_coef = getcoefmatrix(origform) for (varid, _) in orig_coef[getid(constr), :] var_ann = annotations.ann_per_var[varid] if BD.getformulation(var_ann) == BD.Master return BendSpTechnologicalConstr, true end end return BendSpPureConstr, true end function instantiate_orig_constrs!( spform::Formulation{BendersSp}, origform::Formulation{Original}, ::Env, annotations::Annotations, sp_ann ) !haskey(annotations.constrs_per_ann, sp_ann) && return constrs = annotations.constrs_per_ann[sp_ann] for (_, constr) in constrs duty, explicit = _dutyexpofbendspconstr(constr, annotations, origform) cloneconstr!(origform, spform, spform, constr, duty, is_explicit=explicit, loc_art_var_abs_cost=1.0) end return end function create_side_vars_constrs!( spform::Formulation{BendersSp}, origform::Formulation{Original}, ::Env, annotations::Annotations ) spcoef = getcoefmatrix(spform) origcoef = getcoefmatrix(origform) # 1st level representative variables. masterform = getmaster(spform) mast_ann = get(annotations, masterform) if haskey(annotations.vars_per_ann, mast_ann) vars = annotations.vars_per_ann[mast_ann] for (varid, var) in vars duty, _ = _dutyexpofbendmastvar(var, annotations, origform) if duty == MasterBendFirstStageVar name = getname(origform, var) repr_id = VarId( varid, duty=BendSpFirstStageRepVar, assigned_form_uid=getuid(masterform) ) repr = setvar!( spform, name, BendSpFirstStageRepVar; cost=getcurcost(origform, var), lb=getcurlb(origform, var), ub=getcurub(origform, var), kind=Continuous, is_explicit=false, id=repr_id ) for (constrid, coeff) in @view origcoef[:, varid] spconstr = getconstr(spform, constrid) if spconstr !== nothing spcoef[getid(spconstr), getid(repr)] = coeff end end end end end return end function assign_orig_vars_constrs!( destform::Formulation, origform::Formulation{Original}, env::Env, annotations::Annotations, ann ) instantiate_orig_vars!(destform, origform, annotations, ann) instantiate_orig_constrs!(destform, origform, env, annotations, ann) clonecoeffs!(origform, destform) end _optimizerbuilder(opt::Function) = () -> UserOptimizer(opt) _optimizerbuilder(opt::MOI.AbstractOptimizer) = () -> MoiOptimizer(opt) _optimizerbuilder(opt::BD.AbstractCustomOptimizer) = () -> CustomOptimizer(opt) function getoptimizerbuilders(prob::Problem, ann::BD.Annotation) optimizers = BD.getoptimizerbuilders(ann) if length(optimizers) > 0 return map(o -> _optimizerbuilder(o), optimizers) end return [prob.default_optimizer_builder] end function _push_in_sp_dict!( dws::Dict{FormId,Formulation{DwSp}}, ::Dict{FormId,Formulation{BendersSp}}, spform::Formulation{DwSp} ) push!(dws, getuid(spform) => spform) end function _push_in_sp_dict!( ::Dict{FormId,Formulation{DwSp}}, benders::Dict{FormId,Formulation{BendersSp}}, spform::Formulation{BendersSp} ) push!(benders, getuid(spform) => spform) end function instantiate_formulations!( prob::Problem, env::Env, annotations::Annotations, parent, node::BD.Root ) ann = BD.annotation(node) form_type = BD.getformulation(ann) dec_type = BD.getdecomposition(ann) origform = get_original_formulation(prob) master = instantiate_master!(env, origform, form_type, dec_type) store!(annotations, master, ann) dw_pricing_sps = Dict{FormId,Formulation{DwSp}}() benders_sep_sps = Dict{FormId,Formulation{BendersSp}}() for (_, child) in BD.subproblems(node) sp = instantiate_formulations!(prob, env, annotations, master, child) _push_in_sp_dict!(dw_pricing_sps, benders_sep_sps, sp) end return master, dw_pricing_sps, benders_sep_sps end function instantiate_formulations!( prob::Problem, env::Env, annotations::Annotations, parent::Formulation{MasterDuty}, node::BD.Leaf ) where {MasterDuty} ann = BD.annotation(node) form_type = BD.getformulation(ann) dec_type = BD.getdecomposition(ann) spform = instantiate_sp!(env, parent, form_type, dec_type) store!(annotations, spform, ann) return spform end function build_formulations!( reform::Reformulation, prob::Problem, env::Env, annotations::Annotations, parent, node::BD.Root ) ann = BD.annotation(node) master = getmaster(reform) for (_, dw_sp) in get_dw_pricing_sps(reform) build_formulations!(dw_sp, reform, prob, env, annotations, master) end for (_, bend_sp) in get_benders_sep_sps(reform) build_formulations!(bend_sp, reform, prob, env, annotations, master) end origform = get_original_formulation(prob) assign_orig_vars_constrs!(master, origform, env, annotations, ann) create_side_vars_constrs!(master, origform, env, annotations) create_artificial_vars!(master, env) closefillmode!(getcoefmatrix(master)) push_optimizer!.(Ref(master), getoptimizerbuilders(prob, ann)) push_optimizer!.(Ref(origform), getoptimizerbuilders(prob, ann)) end # parent is master function build_formulations!( spform, reform::Reformulation, prob::Problem, env::Env, annotations::Annotations, parent::Formulation{MasterDuty} ) where {MasterDuty} ann = annotations.ann_per_form[getuid(spform)] origform = get_original_formulation(prob) assign_orig_vars_constrs!(spform, origform, env, annotations, ann) create_side_vars_constrs!(spform, origform, env, annotations) closefillmode!(getcoefmatrix(spform)) push_optimizer!.(Ref(spform), getoptimizerbuilders(prob, ann)) end # Error messages for `check_annotations`. # TODO: specific error type for these two errors. _err_check_annotations(id::VarId) = error(""" A variable (id = $id) is not annotated. Make sure you do not use anonymous variables (variable with no name declared in JuMP macro variable). Otherwise, open an issue at https://github.com/atoptima/Coluna.jl/issues """) _err_check_annotations(id::ConstrId) = error(""" A constraint (id = $id) is not annotated. Make sure you do not use anonymous constraints (constraint with no name declared in JuMP macro variable). Otherwise, open an issue at https://github.com/atoptima/Coluna.jl/issues """) """ Make sure that all variables and constraints of the original formulation are annotated. Otherwise, it returns an error. """ function check_annotations(prob::Problem, annotations::Annotations) origform = get_original_formulation(prob) for (varid, _) in getvars(origform) if !haskey(annotations.ann_per_var, varid) && !haskey(annotations.ann_per_repr_var, varid) return _err_check_annotations(varid) end end for (constrid, _) in getconstrs(origform) if !haskey(annotations.ann_per_constr, constrid) return _err_check_annotations(constrid) end end return true end function build_reformulation(prob::Problem, annotations::Annotations, env::Env) end """ Reformulate the original formulation of prob according to the annotations. The environment maintains formulation ids. """ function reformulate!(prob::Problem, annotations::Annotations, env::Env) # Once the original formulation built, we close the "fill mode" of the # coefficient matrix which is a super fast writing mode compared to the default # writing mode of the dynamic sparse matrix. origform = get_original_formulation(prob) if getcoefmatrix(origform).matrix.fillmode closefillmode!(getcoefmatrix(origform)) end decomposition_tree = annotations.tree if !isnothing(decomposition_tree) check_annotations(prob, annotations) root = BD.getroot(decomposition_tree) master, dw_pricing_subprs, benders_sep_subprs = instantiate_formulations!(prob, env, annotations, origform, root) reform = Reformulation(env, origform, master, dw_pricing_subprs, benders_sep_subprs) master.parent_formulation = reform set_reformulation!(prob, reform) build_formulations!(reform, prob, env, annotations, origform, root) relax_integrality!(getmaster(reform)) else # No decomposition provided by BlockDecomposition push_optimizer!( prob.original_formulation, prob.default_optimizer_builder ) end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
884
mutable struct Env{Id} env_starting_time::DateTime optim_starting_time::Union{Nothing, DateTime} global_time_limit::Int64 # -1 means no time limit params::Params kpis::Kpis form_counter::Int # 0 is for original form var_counter::Int constr_counter::Int varids::MOI.Utilities.CleverDicts.CleverDict{MOI.VariableIndex, Id} custom_families_id::Dict{DataType, Int} end Env{Id}(params::Params) where {Id} = Env{Id}( now(), nothing, -1, params, Kpis(nothing, nothing), 0, 0, 0, MOI.Utilities.CleverDicts.CleverDict{MOI.VariableIndex, Id}(), Dict{DataType, Int}() ) set_optim_start_time!(env::Env) = env.optim_starting_time = now() elapsed_optim_time(env::Env) = Dates.toms(now() - env.optim_starting_time) / Dates.toms(Second(1)) time_limit_reached(env::Env) = env.global_time_limit > 0 && elapsed_optim_time(env) > env.global_time_limit
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1911
############################################################################################ # Algorithm API ############################################################################################ module AlgoAPI include("MustImplement/MustImplement.jl") using .MustImplement include("ColunaBase/ColunaBase.jl") using .ColunaBase " Supertype for algorithms parameters. Data structures that inherit from this type are intented for the users. The convention is to define the data structure together with a constructor that contains only kw args. For instance: struct MyAlgorithmParams <: AbstractAlgorithmParams param1::Int param2::Int MyAlgorithmParams(; param1::Int = 1, param2::Int = 2) = new(param1, param2) end " abstract type AbstractAlgorithm end """ run!(algo::AbstractAlgorithm, env, model, input) Default method to call an algorithm. """ @mustimplement "Algorithm" run!(algo::AbstractAlgorithm, env, model, input) = nothing @mustimplement "Algorithm" ismanager(algo::AbstractAlgorithm) = false """ Returns `true` if the algorithm will perform changes on the formulation that must be reverted at the end of the execution of the algorithm; `false` otherwise. """ @mustimplement "Algorithm" change_model_state(algo::AbstractAlgorithm) = false ############################################################################################ # Divide Algorithm API ############################################################################################ """ This algorithm type is used by the tree search algorithm to generate nodes. """ abstract type AbstractDivideAlgorithm <: AbstractAlgorithm end # divide algorithms are always manager algorithms (they manage storing and restoring units) ismanager(algo::AbstractDivideAlgorithm) = true ##### # Default tolerances ### default_opt_atol() = 1e-6 default_opt_rtol() = 1e-5 end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
114
mutable struct Kpis node_count::Union{Nothing, Int} elapsed_optimization_time::Union{Nothing, Float64} end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5164
function _welcome_message() welcome = """ Coluna Version $(version()) | https://github.com/atoptima/Coluna.jl """ print(welcome) end function _adjust_params(params, init_pb) if params.global_art_var_cost === nothing if init_pb != Inf && init_pb != -Inf exp = ceil(log(10, init_pb)) params.global_art_var_cost = 10^(exp + 1) else params.global_art_var_cost = 100000.0 end end if params.local_art_var_cost === nothing if init_pb != Inf && init_pb != -Inf exp = ceil(log(10, init_pb)) params.local_art_var_cost = 10^exp else params.local_art_var_cost = 10000.0 end end return end """ Starting point of the solver. """ function optimize!(env::Env, prob::MathProg.Problem, annotations::Annotations) _welcome_message() buffer_reset = prob.original_formulation.buffer ann_pf_reset = annotations.ann_per_form # Adjust parameters ## Retrieve initial bounds on the objective given by the user init_pb = get_initial_primal_bound(prob) init_db = get_initial_dual_bound(prob) init_cols = prob.initial_columns_callback _adjust_params(env.params, init_pb) # Apply decomposition reformulate!(prob, annotations, env) # Coluna ready to start set_optim_start_time!(env) @logmsg LogLevel(-1) "Coluna ready to start." @logmsg LogLevel(-1) env.params TO.@timeit _to "Coluna" begin outstate, algstate = optimize!(get_optimization_target(prob), env, init_pb, init_db, init_cols) end env.kpis.elapsed_optimization_time = elapsed_optim_time(env) prob.original_formulation.buffer = buffer_reset annotations.ann_per_form = ann_pf_reset println(_to) TO.reset_timer!(_to) @logmsg LogLevel(0) "Terminated" @logmsg LogLevel(0) string("Primal bound: ", get_ip_primal_bound(outstate)) @logmsg LogLevel(0) string("Dual bound: ", get_ip_dual_bound(outstate)) return outstate, algstate end function optimize!( reform::MathProg.Reformulation, env::Env, initial_primal_bound, initial_dual_bound, initial_columns ) master = getmaster(reform) initstate = OptimizationState( master, ip_primal_bound = initial_primal_bound, ip_dual_bound = initial_dual_bound, lp_dual_bound = initial_dual_bound ) algorithm = env.params.solver # retrieve initial columns MathProg.initialize_solution_pools!(reform, initial_columns) # initialize all the units used by the algorithm and its child algorithms Algorithm.initialize_storage_units!(reform, algorithm) # print(IOContext(stdout, :user_only => true), reform) algstate = Algorithm.run!(algorithm, env, reform, initstate) # we copy optimisation state as we want to project the solution to the compact space outstate = OptimizationState( master, termination_status = getterminationstatus(algstate), ip_primal_bound = get_ip_primal_bound(algstate), ip_dual_bound = get_ip_dual_bound(algstate), lp_primal_bound = get_lp_primal_bound(algstate), lp_dual_bound = get_lp_dual_bound(algstate) ) ip_primal_sols = get_ip_primal_sols(algstate) if !isnothing(ip_primal_sols) for sol in ip_primal_sols add_ip_primal_sol!(outstate, proj_cols_on_rep(sol)) end end # lp_primal_sol may also be of interest, for example when solving the relaxation lp_primal_sol = get_best_lp_primal_sol(algstate) if !isnothing(lp_primal_sol) add_lp_primal_sol!(outstate, proj_cols_on_rep(lp_primal_sol)) end # lp_dual_sol to retrieve, for instance, the dual value of generated cuts lp_dual_sol = get_best_lp_dual_sol(algstate) if !isnothing(lp_dual_sol) add_lp_dual_sol!(outstate, lp_dual_sol) end # It returns two optimisation states. # The first one contains the solutions projected on the original formulation. # The second one contains the solutions to the master formulation so the user can # retrieve the disagreggated solution. return outstate, algstate end function optimize!( form::MathProg.Formulation, env::Env, initial_primal_bound, initial_dual_bound, _ ) initstate = OptimizationState( form, ip_primal_bound = initial_primal_bound, ip_dual_bound = initial_dual_bound, lp_dual_bound = initial_dual_bound ) algorithm = env.params.solver output = Algorithm.run!(algorithm, env, form, initstate) return output, nothing end """ Fallback if no solver provided by the user. """ function optimize!(::MathProg.Reformulation, ::Nothing, ::Real, ::Real, _) error(""" No solver to optimize the reformulation. You should provide a solver through Coluna parameters. Please, check the starting guide of Coluna. """) end function optimize!(::MathProg.Formulation, ::Nothing, ::Real, ::Real, _) error(""" No solver to optimize the formulation. You should provide a solver through Coluna parameters. Please, check the starting guide of Coluna. """) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
589
""" Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm(), global_art_var_cost = 10e6, local_art_var_cost = 10e4 ) Parameters of Coluna : - `solver` is the algorithm used to optimize the reformulation. - `global_art_var_cost` is the cost of the global artificial variables in the master - `local_art_var_cost` is the cost of the local artificial variables in the master """ @with_kw mutable struct Params global_art_var_cost::Union{Float64, Nothing} = nothing local_art_var_cost::Union{Float64, Nothing} = nothing solver = nothing end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5233
module Algorithm using DataStructures import MathOptInterface import TimerOutputs using ..Coluna, ..ColunaBase, ..MathProg, ..MustImplement, ..ColGen, ..Benders, ..AlgoAPI, ..TreeSearch, ..Branching using Crayons, DynamicSparseArrays, Logging, Parameters, Printf, Random, Statistics, SparseArrays, LinearAlgebra const TO = TimerOutputs const DS = DataStructures const MOI = MathOptInterface const ClB = ColunaBase import Base: push! ############################################################################################ # Incumbent primal bound handler ############################################################################################ """ Abstract type for an utilarity structure that handles the incumbent primal bound. """ abstract type AbstractGlobalPrimalBoundHandler end @mustimplement "GlobalPrimalBoundHandler" get_global_primal_bound(m::AbstractGlobalPrimalBoundHandler) = nothing @mustimplement "GlobalPrimalBoundHandler" get_global_primal_sol(m::AbstractGlobalPrimalBoundHandler) = nothing @mustimplement "GlobalPrimalBoundHandler" store_ip_primal_sol!(m::AbstractGlobalPrimalBoundHandler, sol) = nothing # Utilities to build algorithms include("utilities/optimizationstate.jl") include("utilities/helpers.jl") ############################################################################################ # Primal bound manager ############################################################################################ """ Default implementation of a manager of the incumbent primal bound. This implementation does not support paralellization. """ struct GlobalPrimalBoundHandler <: AbstractGlobalPrimalBoundHandler # It only stores the IP primal solutions. optstate::OptimizationState end function GlobalPrimalBoundHandler( reform::Reformulation; ip_primal_bound = nothing ) opt_state = OptimizationState(getmaster(reform)) if !isnothing(ip_primal_bound) set_ip_primal_bound!(opt_state, ip_primal_bound) end return GlobalPrimalBoundHandler(opt_state) end get_global_primal_bound(manager::GlobalPrimalBoundHandler) = get_ip_primal_bound(manager.optstate) get_global_primal_sol(manager::GlobalPrimalBoundHandler) = get_best_ip_primal_sol(manager.optstate) store_ip_primal_sol!(manager::GlobalPrimalBoundHandler, sol) = add_ip_primal_sols!(manager.optstate, sol) ############################################################################################ # API on top of storage API include("data.jl") # Algorithm interface include("interface.jl") # Storage units & records implementation include("formstorages.jl") # Basic algorithms include("basic/subsolvers.jl") include("basic/solvelpform.jl") include("basic/solveipform.jl") include("basic/cutcallback.jl") # Child algorithms used by conquer algorithms include("colgenstabilization.jl") # Column generation include("colgen/utils.jl") include("colgen/stabilization.jl") include("colgen/default.jl") include("colgen/printer.jl") include("colgen.jl") # Benders algorithm include("benders/utils.jl") include("benders/default.jl") include("benders/printer.jl") include("benders.jl") # Presolve include("presolve/helpers.jl") include("presolve/interface.jl") include("presolve/propagation.jl") # Conquer include("conquer.jl") # Here include divide algorithms include("branching/interface.jl") include("branching/sbnode.jl") include("branching/selectioncriteria.jl") include("branching/scores.jl") include("branching/single_var_branching.jl") include("branching/printer.jl") include("branching/branchingalgo.jl") # Heuristics include("heuristic/restricted_master.jl") # Tree search include("treesearch.jl") include("treesearch/printer.jl") include("treesearch/branch_and_bound.jl") include("branchcutprice.jl") # Algorithm should export only methods usefull to define & parametrize algorithms, and # data structures from utilities. # Other Coluna's submodules should be independent to Algorithm # Utilities export getterminationstatus, setterminationstatus!, get_ip_primal_sols, get_lp_primal_sols, get_lp_dual_sols, get_best_ip_primal_sol, get_best_lp_primal_sol, get_best_lp_dual_sol, update_ip_primal_sol!, update_lp_primal_sol!, update_lp_dual_sol!, add_ip_primal_sol!, add_ip_primal_sols!, add_lp_primal_sol!, add_lp_dual_sol!, set_ip_primal_sol!, set_lp_primal_sol!, set_lp_dual_sol!, empty_ip_primal_sols!, empty_lp_primal_sols!, empty_lp_dual_sols!, get_ip_primal_bound, get_lp_primal_bound, get_lp_dual_bound, get_ip_dual_bound, set_ip_primal_bound!, set_lp_primal_bound!, set_lp_dual_bound!, set_ip_dual_bound!, update_ip_primal_bound!, update_lp_primal_bound!, update_lp_dual_bound!, update_ip_dual_bound!, run! # Algorithms export TreeSearchAlgorithm, ColCutGenConquer, ColumnGeneration, BendersConquer, BendersCutGeneration, SolveIpForm, RestrictedMasterIPHeuristic, SolveLpForm, NoBranching, Branching, StrongBranching, PresolveAlgorithm, PresolveOutput, FirstFoundCriterion, MostFractionalCriterion, LeastFractionalCriterion, ClosestToNonZeroIntegerCriterion, SingleVarBranchingRule # Algorithm's types export AbstractOptimizationAlgorithm, OptimizationState # Types of optimizers export MoiOptimize, UserOptimizer end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6437
""" Coluna.Algorithm.BendersCutGeneration( restr_master_solve_alg = SolveLpForm(get_dual_sol = true, relax_integrality = true), restr_master_optimizer_id = 1, separation_solve_alg = SolveLpForm(get_dual_sol = true, relax_integrality = true) max_nb_iterations::Int = 100, ) Benders cut generation algorithm that can be applied to a formulation reformulated using Benders decomposition. This algorithm is an implementation of the generic algorithm provided by the `Benders` submodule. **Parameters:** - `restr_master_solve_alg`: algorithm to solve the restricted master problem - `restr_master_optimizer_id`: optimizer id to use to solve the restricted master problem - `separation_solve_alg`: algorithm to solve the separation problem (must be a LP solver that returns a dual solution) **Option:** - `max_nb_iterations`: maximum number of iterations ## About the output At each iteration, the Benders cut generation algorithm show following statistics: <it= 6> <et= 0.05> <mst= 0.00> <sp= 0.00> <cuts= 0> <master= 293.5000> where: - `it` stands for the current number of iterations of the algorithm - `et` is the elapsed time in seconds since Coluna has started the optimisation - `mst` is the time in seconds spent solving the master problem at the current iteration - `sp` is the time in seconds spent solving the separation problem at the current iteration - `cuts` is the number of cuts generated at the current iteration - `master` is the objective value of the master problem at the current iteration **Debug options** (print at each iteration): - `debug_print_master`: print the master problem - `debug_print_master_primal_solution`: print the master problem with the primal solution - `debug_print_master_dual_solution`: print the master problem with the dual solution (make sure the `restr_master_solve_alg` returns a dual solution) - `debug_print_subproblem`: print the subproblem - `debug_print_subproblem_primal_solution`: print the subproblem with the primal solution - `debug_print_subproblem_dual_solution`: print the subproblem with the dual solution - `debug_print_generated_cuts`: print the generated cuts """ struct BendersCutGeneration <: AbstractOptimizationAlgorithm restr_master_solve_alg::Union{SolveLpForm, SolveIpForm} restr_master_optimizer_id::Int feasibility_tol::Float64 optimality_tol::Float64 max_nb_iterations::Int separation_solve_alg::SolveLpForm print::Bool debug_print_master::Bool debug_print_master_primal_solution::Bool debug_print_master_dual_solution::Bool debug_print_subproblem::Bool debug_print_subproblem_primal_solution::Bool debug_print_subproblem_dual_solution::Bool debug_print_generated_cuts::Bool BendersCutGeneration(; restr_master_solve_alg = SolveLpForm(get_dual_sol = true, relax_integrality = true), restr_master_optimizer_id = 1, feasibility_tol = 1e-5, optimality_tol = Coluna.DEF_OPTIMALITY_ATOL, max_nb_iterations = 100, separation_solve_alg = SolveLpForm(get_dual_sol = true, relax_integrality = true), print = true, debug_print_master = false, debug_print_master_primal_solution = false, debug_print_master_dual_solution = false, debug_print_subproblem = false, debug_print_subproblem_primal_solution = false, debug_print_subproblem_dual_solution = false, debug_print_generated_cuts = false ) = new( restr_master_solve_alg, restr_master_optimizer_id, feasibility_tol, optimality_tol, max_nb_iterations, separation_solve_alg, print, debug_print_master, debug_print_master_primal_solution, debug_print_master_dual_solution, debug_print_subproblem, debug_print_subproblem_primal_solution, debug_print_subproblem_dual_solution, debug_print_generated_cuts ) end # TO DO : BendersCutGeneration does not have yet the child algorithms # it should have at least the algorithm to solve the master LP and the algorithms # to solve the subproblems function get_units_usage(algo::BendersCutGeneration, reform::Reformulation) units_usage = Tuple{AbstractModel, UnitType, UnitPermission}[] master = getmaster(reform) push!(units_usage, (master, MasterCutsUnit, READ_AND_WRITE)) # TO DO : everything else should be communicated by the child algorithms push!(units_usage, (master, StaticVarConstrUnit, READ_ONLY)) push!(units_usage, (master, PartialSolutionUnit, READ_ONLY)) push!(units_usage, (master, MasterBranchConstrsUnit, READ_ONLY)) push!(units_usage, (master, MasterColumnsUnit, READ_ONLY)) for (_, spform) in get_benders_sep_sps(reform) push!(units_usage, (spform, StaticVarConstrUnit, READ_ONLY)) end return units_usage end function _new_context(C::Type{<:Benders.AbstractBendersContext}, reform, algo) return C(reform, algo) end # TODO: fis this method function _benders_optstate_output(result, master) optstate = OptimizationState(master) if result.infeasible setterminationstatus!(optstate, INFEASIBLE) end if !isnothing(result.ip_primal_sol) set_lp_primal_sol!(optstate, result.ip_primal_sol) end if !isnothing(result.mlp) set_lp_dual_bound!(optstate, DualBound(master, result.mlp)) set_ip_dual_bound!(optstate, DualBound(master, result.mlp)) set_lp_primal_bound!(optstate, PrimalBound(master, result.mlp)) end return optstate end function run!( algo::BendersCutGeneration, env::Env, reform::Reformulation, input::OptimizationState ) ctx = Coluna.Algorithm.BendersPrinterContext( reform, algo; print = true, debug_print_master = algo.debug_print_master, debug_print_master_primal_solution = algo.debug_print_master_primal_solution, debug_print_master_dual_solution = algo.debug_print_master_dual_solution, debug_print_subproblem = algo.debug_print_subproblem, debug_print_subproblem_primal_solution = algo.debug_print_subproblem_primal_solution, debug_print_subproblem_dual_solution = algo.debug_print_subproblem_dual_solution, debug_print_generated_cuts = algo.debug_print_generated_cuts ) result = Benders.run_benders_loop!(ctx, env) return _benders_optstate_output(result, getmaster(reform)) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8901
""" Coluna.Algorithm.BranchCutAndPriceAlgorithm(; run_presolve::Bool = false, maxnumnodes::Int = 100000, opt_atol::Float64 = Coluna.DEF_OPTIMALITY_ATOL, opt_rtol::Float64 = Coluna.DEF_OPTIMALITY_RTOL, restmastipheur_timelimit::Int = 600, restmastipheur_frequency::Int = 1, restmastipheur_maxdepth::Int = 1000, max_nb_cut_rounds::Int = 3, colgen_stabilization::Float64 = 0.0, colgen_cleanup_threshold::Int = 10000, colgen_stages_pricing_solvers::Vector{Int} = [1], colgen_strict_integrality_check::Bool, stbranch_phases_num_candidates::Vector{Int} = Int[], stbranch_intrmphase_stages::Vector{NamedTuple{(:userstage, :solverid, :maxiters), Tuple{Int64, Int64, Int64}}} ) Alias for a simplified parameterisation of the branch-cut-and-price algorithm. Parameters : - `run_presolve` : whether to call the presolve algorithm before running the branch-cut-and-price - `maxnumnodes` : maximum number of nodes explored by the algorithm - `opt_atol` : optimality absolute tolerance - `opt_rtol` : optimality relative tolerance - `restmastipheur_timelimit` : time limit in seconds for the restricted master heuristic (if <= 0 then the heuristic is disabled) - `restmastipheur_frequency` : frequency of calls to the restricted master heuristic - `restmastipheur_maxdepth` : maximum depth of the search tree when the restricted master heuristic is called - `max_nb_cut_rounds` : maximum number of cut generation rounds in every node of the search tree - `colgen_stabilization` : parameterisation of the dual price smoothing stabilization of column generation 0.0 - disabled, 1.0 - automatic, ∈(0.0,1.0) - fixed smoothing parameter - `colgen_cleanup_threshold` : threshold (number of active columns) to trigger the restricted master LP clean up - `colgen_stages_pricing_solvers` : vector of pricing solver ids for every column generation stage, pricing solvers should be specified using argument `solver` of `BlockDecomposition.specify!()`, the number of column generation stages is equal to the length of this vector, column generation stages are executed in the reverse order, the first stage should be exact to ensure the optimality of the BCP algorithm - `colgen_strict_integrality_check` : see description in `Coluna.Algorithm.ColumnGeneration` - `stbranch_phases_num_candidates` : maximum number of candidates for each strong branching phase, strong branching is activated if this vector is not empty, the number of phases in strong branching is equal to min{3, length(stbranch_phases_num_candidates)}, in the last phase, the standard column-and-cut generation procedure is run, in the first phase (if their number is >= 2), only the restricted master LP is resolved, in the second (intermediate) phase (if their number is >= 3), usually a heuristic pricing is used or the number of column generation iterations is limited, this is parameterised with the three next parameters, cut separation is not called in the intermediate strong branching phase, if the lenth of this vector > 3, then all values except first, second, and last ones are ignored - `stbranch_intrmphase_stages` : the size of this vector is the number of column generation stages in the intemediate phase of strong branching each element of the vector is the named triple (userstage, solver, maxiters). "userstage" is the value of "stage" parameter passed to the pricing callback on this stage, "solverid" is the solver id on this stage, and "maxiters" is the maximum number of column generation iterations on this stage """ function BranchCutAndPriceAlgorithm(; run_presolve::Bool = false, maxnumnodes::Int = 100000, branchingtreefile::String = "", jsonfile::String = "", opt_atol::Float64 = Coluna.DEF_OPTIMALITY_ATOL, opt_rtol::Float64 = Coluna.DEF_OPTIMALITY_RTOL, restmastipheur_timelimit::Int = 600, restmastipheur_frequency::Int = 1, restmastipheur_maxdepth::Int = 1000, max_nb_cut_rounds::Int = 3, colgen_stabilization::Float64 = 0.0, colgen_cleanup_threshold::Int = 10000, colgen_stages_pricing_solvers::Vector{Int64} = [1], colgen_strict_integrality_check::Bool = false, stbranch_phases_num_candidates::Vector{Int64} = Int[], stbranch_intrmphase_stages::Vector{NamedTuple{(:userstage, :solverid, :maxiters), Tuple{Int64, Int64, Int64}}} = [(userstage=1, solverid=1, maxiters=100)] ) heuristics = ParameterizedHeuristic[] if restmastipheur_timelimit > 0 heuristic = ParameterizedHeuristic( RestrictedMasterHeuristic(), 1.0, 1.0, restmastipheur_frequency, restmastipheur_maxdepth, "Restricted Master IP" ) push!(heuristics, heuristic) end colgen = ColumnGeneration( pricing_prob_solve_alg = SolveIpForm( user_params = UserOptimize(), moi_params = MoiOptimize( deactivate_artificial_vars = false, enforce_integrality = false ) ), strict_integrality_check = colgen_strict_integrality_check, stages_pricing_solver_ids = colgen_stages_pricing_solvers, smoothing_stabilization = colgen_stabilization, cleanup_threshold = colgen_cleanup_threshold, opt_atol = opt_atol, opt_rtol = opt_rtol ) conquer = ColCutGenConquer( colgen = colgen, max_nb_cut_rounds = max_nb_cut_rounds, primal_heuristics = heuristics, opt_atol = opt_atol, opt_rtol = opt_rtol ) branching = NoBranching() branching_rules = Branching.PrioritisedBranchingRule[Branching.PrioritisedBranchingRule(SingleVarBranchingRule(), 1.0, 1.0)] if !isempty(stbranch_phases_num_candidates) branching_phases = BranchingPhase[] if length(stbranch_phases_num_candidates) >= 2 push!(branching_phases, BranchingPhase(first(stbranch_phases_num_candidates), RestrMasterLPConquer(), ProductScore()) ) if length(stbranch_phases_num_candidates) >= 3 colgen = ColumnGeneration( pricing_prob_solve_alg = SolveIpForm( user_params = UserOptimize(), moi_params = MoiOptimize( deactivate_artificial_vars = false, enforce_integrality = false ) ), strict_integrality_check = colgen_strict_integrality_check, stages_pricing_solver_ids = map(t -> t.solverid, stbranch_intrmphase_stages), smoothing_stabilization = colgen_stabilization, cleanup_threshold = colgen_cleanup_threshold, max_nb_iterations = mapreduce(t -> t.maxiters, +, stbranch_intrmphase_stages), opt_atol = opt_atol, opt_rtol = opt_rtol ) intrmphase_conquer = ColCutGenConquer( #stages = intrmphase_stages, colgen = colgen, max_nb_cut_rounds = 0, primal_heuristics = [], opt_atol = opt_atol, opt_rtol = opt_rtol ) push!(branching_phases, BranchingPhase(stbranch_phases_num_candidates[2], intrmphase_conquer, ProductScore()) ) end end push!(branching_phases, BranchingPhase(last(stbranch_phases_num_candidates), conquer, TreeDepthScore())) branching = StrongBranching(rules = branching_rules, phases = branching_phases) else branching = ClassicBranching(rules = branching_rules) end return TreeSearchAlgorithm( presolvealg = run_presolve ? PresolveAlgorithm() : nothing, conqueralg = conquer, dividealg = branching, maxnumnodes = maxnumnodes, branchingtreefile = branchingtreefile, jsonfile = jsonfile, opt_atol = opt_atol; opt_rtol = opt_rtol ) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
11190
""" Coluna.Algorithm.ColumnGeneration( restr_master_solve_alg = SolveLpForm(get_dual_sol = true), pricing_prob_solve_alg = SolveIpForm( moi_params = MoiOptimize( deactivate_artificial_vars = false, enforce_integrality = false ) ), essential_cut_gen_alg = CutCallbacks(call_robust_facultative = false), strict_integrality_check = false, max_nb_iterations = 1000, log_print_frequency = 1, redcost_tol = 1e-4, show_column_already_inserted_warning = true, cleanup_threshold = 10000, cleanup_ratio = 0.66, smoothing_stabilization = 0.0 # should be in [0, 1], ) Column generation algorithm that can be applied to formulation reformulated using Dantzig-Wolfe decomposition. This algorithm first solves the linear relaxation of the master (master LP) using `restr_master_solve_alg`. Then, it solves the subproblems by calling `pricing_prob_solve_alg` to get the columns that have the best reduced costs and that hence, may improve the master LP's objective the most. In order for the algorithm to converge towards the optimal solution of the master LP, it suffices that the pricing oracle returns, at each iteration, a negative reduced cost solution if one exists. The algorithm stops when all subproblems fail to generate a column with negative (positive) reduced cost in the case of a minimization (maximization) problem or when it reaches the maximum number of iterations. **Parameters:** - `restr_master_solve_alg`: algorithm to optimize the master LP - `pricing_prob_solve_alg`: algorithm to optimize the subproblems - `essential_cut_gen_alg`: algorithm to generate essential cuts which is run when the solution of the master LP is integer. **Options:** - `max_nb_iterations`: maximum number of iterations - `log_print_frequency`: display frequency of iterations statistics - `strict_integrality_check`: by default (value `false`) the integrality check in column generation is performed by the mapping procedure from "F. Vanderbeck, Branching in branch-and-price: a generic scheme, Math.Prog. (2011)"; in the case the pricing subproblems are solved by a callback, and some subproblem integer variables are "hidden" from _Coluna_, the mapping procedure may not be valid, and the integrality should be checked in the "strict" way (explicitly verifying that all columns are integer) Undocumented parameters are in alpha version. ## About the ouput At each iteration (depending on `log_print_frequency`), the column generation algorithm can display following statistics. <it= 90> <et=15.62> <mst= 0.02> <sp= 0.05> <cols= 4> <al= 0.00> <DB= 300.2921> <mlp= 310.3000> <PB=310.3000> Here are their meanings : - `it` stands for the current number of iterations of the algorithm - `et` is the elapsed time in seconds since Coluna has started the optimisation - `mst` is the time in seconds spent solving the master LP at the current iteration - `sp` is the time in seconds spent solving the subproblems at the current iteration - `cols` is the number of column generated by the subproblems at the current iteration - `al` is the smoothing factor of the stabilisation at the current iteration (alpha version) - `DB` is the dual bound of the master LP at the current iteration - `mlp` is the objective value of the master LP at the current iteration - `PB` is the objective value of the best primal solution found by Coluna at the current iteration """ struct ColumnGeneration <: AbstractOptimizationAlgorithm restr_master_solve_alg::SolveLpForm restr_master_optimizer_id::Int pricing_prob_solve_alg::SolveIpForm stages_pricing_solver_ids::Vector{Int} essential_cut_gen_alg::CutCallbacks strict_integrality_check::Bool max_nb_iterations::Int64 log_print_frequency::Int64 store_all_ip_primal_sols::Bool redcost_tol::Float64 show_column_already_inserted_warning::Bool throw_column_already_inserted_warning::Bool solve_subproblems_parallel::Bool cleanup_threshold::Int64 cleanup_ratio::Float64 smoothing_stabilization::Float64 opt_atol::Float64 opt_rtol::Float64 print::Bool ColumnGeneration(; restr_master_solve_alg = SolveLpForm(get_dual_sol=true), restr_master_optimizer_id = 1, pricing_prob_solve_alg = SolveIpForm( moi_params = MoiOptimize( deactivate_artificial_vars = false, enforce_integrality = false ) ), stages_pricing_solver_ids = [1], essential_cut_gen_alg = CutCallbacks(call_robust_facultative=false), strict_integrality_check = false, max_nb_iterations = 1000, log_print_frequency = 1, store_all_ip_primal_sols = false, redcost_tol = 1e-4, show_column_already_inserted_warning = true, throw_column_already_inserted_warning = false, solve_subproblems_parallel = false, cleanup_threshold = 10000, cleanup_ratio = 0.66, smoothing_stabilization = 0.0, # should be in [0, 1] opt_atol = Coluna.DEF_OPTIMALITY_ATOL, opt_rtol = Coluna.DEF_OPTIMALITY_RTOL, print = true ) = new( restr_master_solve_alg, restr_master_optimizer_id, pricing_prob_solve_alg, stages_pricing_solver_ids, essential_cut_gen_alg, strict_integrality_check, max_nb_iterations, log_print_frequency, store_all_ip_primal_sols, redcost_tol, show_column_already_inserted_warning, throw_column_already_inserted_warning, solve_subproblems_parallel, cleanup_threshold, cleanup_ratio, smoothing_stabilization, opt_atol, opt_rtol, print ) end ############################################################################################ # Column generation parameters checker. # `check_parameter` returns true by default ############################################################################################1 # function check_parameter(::ColumnGeneration, ::Val{:restr_master_solve_alg}, value, reform) # end # function check_parameter(::ColumnGeneration, ::Val{:restr_master_optimizer_id}, value, reform) # end # function check_parameter(::ColumnGeneration, ::Val{:pricing_prob_solve_alg}, value, reform) # end # function check_parameter(::ColumnGeneration, ::Val{:stages_pricing_solver_ids}, value, reform) # end # function check_parameter(::ColumnGeneration, ::Val{:essential_cut_gen_alg}, value, reform) # end check_parameter(::ColumnGeneration, ::Val{:max_nb_iterations}, value, reform) = value > 0 check_parameter(::ColumnGeneration, ::Val{:log_print_frequency}, value, reform) = value > 1 check_parameter(::ColumnGeneration, ::Val{:redcost_tol}, value, reform) = value > 0 check_parameter(::ColumnGeneration, ::Val{:cleanup_threshold}, value, reform) = value > 0 check_parameter(::ColumnGeneration, ::Val{:cleanup_ratio}, value, reform) = 0 < value < 1 check_parameter(::ColumnGeneration, ::Val{:smoothing_stabilization}, value, reform) = 0 <= value <= 1 check_parameter(::ColumnGeneration, ::Val{:opt_atol}, value, reform) = value > 0 check_parameter(::ColumnGeneration, ::Val{:opt_rtol}, value, reform) = value > 0 stabilization_is_used(algo::ColumnGeneration) = !iszero(algo.smoothing_stabilization) ############################################################################################ # Implementation of Algorithm interface. ############################################################################################ function get_child_algorithms(algo::ColumnGeneration, reform::Reformulation) child_algs = Dict{String, Tuple{AlgoAPI.AbstractAlgorithm, MathProg.Formulation}}( "restr_master_solve_alg" => (algo.restr_master_solve_alg, getmaster(reform)), "essential_cut_gen_alg" => (algo.essential_cut_gen_alg, getmaster(reform)) ) for (id, spform) in get_dw_pricing_sps(reform) child_algs["pricing_prob_solve_alg_sp$id"] = (algo.pricing_prob_solve_alg, spform) end return child_algs end function get_units_usage(algo::ColumnGeneration, reform::Reformulation) units_usage = Tuple{AbstractModel,UnitType,UnitPermission}[] master = getmaster(reform) push!(units_usage, (master, MasterColumnsUnit, READ_AND_WRITE)) push!(units_usage, (master, StaticVarConstrUnit, READ_ONLY)) push!(units_usage, (master, PartialSolutionUnit, READ_ONLY)) # as column generation may call essential cut callbacks # TO DO: it would be good to verify first whether any callback is really defined push!(units_usage, (master, MasterCutsUnit, READ_AND_WRITE)) for (_, spform) in get_dw_pricing_sps(reform) push!(units_usage, (spform, StaticVarConstrUnit, READ_ONLY)) end if stabilization_is_used(algo) #push!(units_usage, (master, ColGenStabilizationUnit, READ_AND_WRITE)) end return units_usage end ############################################################################################ # Column generation algorithm. ############################################################################################ function _colgen_context(algo::ColumnGeneration) algo.print && return ColGenPrinterContext return ColGenContext end function _new_context(C::Type{<:ColGen.AbstractColGenContext}, reform, algo) return C(reform, algo) end function _colgen_optstate_output(result, master) optstate = OptimizationState(master) if ColGen.is_infeasible(result) # If the column generation finds the problem infeasible, we consider that all the # other information are irrelevant. setterminationstatus!(optstate, INFEASIBLE) else lp_primal_sol = ColGen.get_master_lp_primal_sol(result) if !isnothing(lp_primal_sol) set_lp_primal_sol!(optstate, lp_primal_sol) end ip_primal_sol = ColGen.get_master_ip_primal_sol(result) if !isnothing(ip_primal_sol) update_ip_primal_sol!(optstate, ip_primal_sol) end lp_dual_sol = ColGen.get_master_dual_sol(result) if !isnothing(lp_dual_sol) update_lp_dual_sol!(optstate, lp_dual_sol) end db = ColGen.get_dual_bound(result) if !isnothing(result.db) set_lp_dual_bound!(optstate, DualBound(master, db)) set_ip_dual_bound!(optstate, DualBound(master, db)) end mlp = ColGen.get_master_lp_primal_bound(result) if !isnothing(mlp) set_lp_primal_bound!(optstate, PrimalBound(master, mlp)) end end return optstate end function run!(algo::ColumnGeneration, env::Env, reform::Reformulation, input::AbstractConquerInput) # We build C = _colgen_context(algo) ctx = _new_context(C, reform, algo) result = ColGen.run!(ctx, env, get_global_primal_handler(input)) master = getmaster(reform) return _colgen_optstate_output(result, master) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2030
# mutable struct ColGenStabilizationUnit <: AbstractRecordUnit # basealpha::Float64 # "global" alpha parameter # curalpha::Float64 # alpha parameter during the current misprice sequence # nb_misprices::Int64 # number of misprices during the current misprice sequence # pseudo_dual_bound::ColunaBase.Bound # pseudo dual bound, may be non-valid, f.e. when the pricing problem solved heuristically # valid_dual_bound::ColunaBase.Bound # valid dual bound # stabcenter::Union{Nothing,DualSolution} # current stability center, correspond to cur_dual_bound # newstabcenter::Union{Nothing,DualSolution} # to keep temporarily stab. center after update # basestabcenter::Union{Nothing,DualSolution} # stability center, corresponding to valid_dual_bound # end # function ClB.storage_unit(::Type{ColGenStabilizationUnit}, master::Formulation{DwMaster}) # return ColGenStabilizationUnit( # 0.5, 0.0, 0, DualBound(master), DualBound(master), nothing, nothing, nothing # ) # end # mutable struct ColGenStabRecord <: AbstractRecord # alpha::Float64 # dualbound::ColunaBase.Bound # stabcenter::Union{Nothing,DualSolution} # end # struct ColGenStabKey <: AbstractStorageUnitKey end # key_from_storage_unit_type(::Type{ColGenStabilizationUnit}) = ColGenStabKey() # record_type_from_key(::ColGenStabKey) = ColGenStabRecord # function ClB.record(::Type{ColGenStabRecord}, id::Int, form::Formulation, unit::ColGenStabilizationUnit) # alpha = unit.basealpha < 0.5 ? 0.5 : unit.basealpha # return ColGenStabRecord(alpha, unit.valid_dual_bound, unit.basestabcenter) # end # ClB.record_type(::Type{ColGenStabilizationUnit}) = ColGenStabRecord # ClB.storage_unit_type(::Type{ColGenStabRecord}) = ColGenStabilizationUnit # function ClB.restore_from_record!( # ::Formulation, unit::ColGenStabilizationUnit, state::ColGenStabRecord # ) # unit.basealpha = state.alpha # unit.valid_dual_bound = state.dualbound # unit.basestabcenter = state.stabcenter # return # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
16357
#################################################################### # ParameterizedHeuristic #################################################################### struct ParameterizedHeuristic{A <: AbstractOptimizationAlgorithm} algorithm::A root_priority::Float64 nonroot_priority::Float64 frequency::Integer max_depth::Integer name::String end ParamRestrictedMasterHeuristic() = ParameterizedHeuristic( RestrictedMasterHeuristic(), 1.0, 1.0, 1, 1000, "Restricted Master IP" ) #################################################################### # NodeFinalizer #################################################################### struct NodeFinalizer <: AbstractConquerAlgorithm algorithm::AbstractOptimizationAlgorithm min_depth::Integer name::String end #################################################################### # BeforeCutGenAlgo #################################################################### "Algorithm called before cut generation." struct BeforeCutGenAlgo <: AbstractConquerAlgorithm algorithm::AbstractOptimizationAlgorithm name::String end get_child_algorithms(algo::BeforeCutGenAlgo, reform::Reformulation) = Dict("algorithm" => (algo.algorithm, reform)) #################################################################### # BendersConquer #################################################################### @with_kw struct BendersConquer <: AbstractConquerAlgorithm benders::BendersCutGeneration = BendersCutGeneration() end # BendersConquer does not use any unit for the moment, it just calls # BendersCutSeparation algorithm, therefore get_units_usage() is not defined for it get_child_algorithms(algo::BendersConquer, reform::Reformulation) = Dict("benders" => (algo.benders, reform)) function run!(algo::BendersConquer, env::Env, reform::Reformulation, input::AbstractConquerInput) # !run_conquer(input) && return # node = getnode(input) # node_state = <optimization state of node> # output = run!(algo.benders, env, reform, node_state) # update!(node_state, output) return end #################################################################### # ColCutGenConquer #################################################################### """ Coluna.Algorithm.ColCutGenConquer( colgen = ColumnGeneration(), cutgen = CutCallbacks(), primal_heuristics = ParameterizedHeuristic[ParamRestrictedMasterHeuristic()], max_nb_cut_rounds = 3 ) Column-and-cut-generation based algorithm to find primal and dual bounds for a problem decomposed using Dantzig-Wolfe paradigm. Parameters : - `colgen`: column generation algorithm - `cutgen`: cut generation algorithm - `primal_heuristics`: heuristics to find a feasible solution - `max_nb_cut_rounds` : number of cut generation done by the algorithm """ struct ColCutGenConquer <: AbstractConquerAlgorithm colgen::ColumnGeneration primal_heuristics::Vector{ParameterizedHeuristic} before_cutgen_user_algorithm::Union{Nothing, BeforeCutGenAlgo} node_finalizer::Union{Nothing, NodeFinalizer} preprocess cutgen max_nb_cut_rounds::Int # TODO : tailing-off ? opt_atol::Float64# TODO : force this value in an init() method opt_rtol::Float64 # TODO : force this value in an init() method verbose::Bool end ColCutGenConquer(; colgen = ColumnGeneration(), primal_heuristics = [ParamRestrictedMasterHeuristic()], before_cutgen_user_algorithm = nothing, node_finalizer = nothing, preprocess = nothing, cutgen = CutCallbacks(), max_nb_cut_rounds = 3, opt_atol = AlgoAPI.default_opt_atol(), opt_rtol = AlgoAPI.default_opt_rtol(), verbose = true ) = ColCutGenConquer( colgen, primal_heuristics, before_cutgen_user_algorithm, node_finalizer, preprocess, cutgen, max_nb_cut_rounds, opt_atol, opt_rtol, verbose ) # ColCutGenConquer does not use any storage unit for the moment, therefore # get_units_usage() is not defined for i function get_child_algorithms(algo::ColCutGenConquer, reform::Reformulation) child_algos = Dict( "colgen" => (algo.colgen, reform), "cutgen" => (algo.cutgen, getmaster(reform)) ) if !isnothing(algo.preprocess) child_algos["preprocess"] = (algo.preprocess, reform) end if !isnothing(algo.node_finalizer) child_algos["node_finalizer"] = (algo.node_finalizer, reform) end if !isnothing(algo.before_cutgen_user_algorithm) child_algos["before_cutgen_user"] = (algo.before_cutgen_user_algorithm, reform) end for heuristic in algo.primal_heuristics child_algos["heuristic_$(heuristic.name)"] = (heuristic.algorithm, reform) end return child_algos end struct ColCutGenContext params::ColCutGenConquer end function type_of_context(::ColCutGenConquer) return ColCutGenContext end function new_context(::Type{ColCutGenContext}, algo::ColCutGenConquer, reform, input) return ColCutGenContext(algo) end """ Runs a round of cut generation. Returns `true` if at least one cut is separated; `false` otherwise. """ function run_cutgen!(::ColCutGenContext, env, reform, sol) cutcb_output = run!(CutCallbacks(), env, getmaster(reform), CutCallbacksInput(sol)) cuts_were_added = cutcb_output.nb_cuts_added + cutcb_output.nb_essential_cuts_added > 0 return cuts_were_added end """ Runs a column generation algorithm and updates the optimization state of the node with the result of the column generation. Returns `false` if the node is infeasible, subsolver time limit is reached, or node gap is closed; `true` if the conquer algorithm continues. """ function run_colgen!(ctx::ColCutGenContext, env, reform, input, conquer_output) colgen_output = run!(ctx.params.colgen, env, reform, input) update!(conquer_output, colgen_output) if getterminationstatus(conquer_output) == INFEASIBLE || getterminationstatus(conquer_output) == TIME_LIMIT || ip_gap_closed(conquer_output, atol = ctx.params.opt_atol, rtol = ctx.params.opt_rtol) return false end return true end function run_before_cutgen_user_algo!( ::ColCutGenContext, before_cutgen_user_algo, env, reform, conquer_output ) if ismanager(before_cutgen_user_algo.algorithm) records = create_records(reform) end changed = run!(before_cutgen_user_algo.algorithm, env, reform, conquer_output) if ismanager(before_cutgen_user_algo.algorithm) restore_from_records!(input.units_to_restore, records) end return changed end """ Runs several rounds of column and cut generation. Returns `false` if the column generation returns `false` or time limit is reached. Returns `true` if the conquer algorithm continues. """ function run_colcutgen!(ctx::ColCutGenContext, env, reform, input, conquer_output) nb_cut_rounds = 0 run_conquer = true master_changed = true # stores value returned by the algorithm called before cut gen. cuts_were_added = true # stores value returned by cut gen. while run_conquer && (cuts_were_added || master_changed) run_conquer = run_colgen!(ctx, env, reform, input, conquer_output) if !run_conquer return false end master_changed = false before_cutgen_user_algorithm = ctx.params.before_cutgen_user_algorithm if !isnothing(before_cutgen_user_algorithm) master_changed = run_before_cutgen_user_algo!( ctx, before_cutgen_user_algorithm, env, reform, conquer_output ) end sol = get_best_lp_primal_sol(conquer_output) cuts_were_added = false if !isnothing(sol) if run_conquer && nb_cut_rounds < ctx.params.max_nb_cut_rounds cuts_were_added = run_cutgen!(ctx, env, reform, sol) nb_cut_rounds += 1 end else @warn "Column generation did not produce an LP primal solution. Skip cut generation." end time_limit_reached!(conquer_output, env) && return false end return true end # get_heuristics_to_run! function get_heuristics_to_run(ctx::ColCutGenContext, node_depth) return sort!( filter( h -> node_depth <= h.max_depth #= & frequency () TODO define a function here =#, ctx.params.primal_heuristics ), by = h -> node_depth == 0 ? h.root_priority : h.nonroot_priority, rev = true ) end # run_heuristics! function run_heuristics!(ctx::ColCutGenContext, heuristics, env, reform, input, conquer_output) for heuristic in heuristics # TODO: check time limit of Coluna if ip_gap_closed(conquer_output, atol = ctx.params.opt_atol, rtol = ctx.params.opt_rtol) return false end if ismanager(heuristic.algorithm) records = create_records(reform) end prev_primal_bound = get_ip_primal_bound(conquer_output) heuristic_output = run!(heuristic.algorithm, env, reform, conquer_output) add_ip_primal_sols!(conquer_output, get_ip_primal_sols(heuristic_output)...) update_ip_dual_bound!(conquer_output, get_ip_dual_bound(heuristic_output)) if ctx.params.verbose curr_primal_bound = get_ip_primal_bound(conquer_output) if curr_primal_bound != prev_primal_bound @info "Heuristic $(heuristic.name) found improving primal solution with value $(curr_primal_bound.value)" end end if ismanager(heuristic.algorithm) restore_from_records!(input.units_to_restore, records) end if getterminationstatus(conquer_output) == TIME_LIMIT || ip_gap_closed(conquer_output, atol = ctx.params.opt_atol, rtol = ctx.params.opt_rtol) return false end end return true end """ Runs the preprocessing algorithm. Returns `true` if conquer algorithm should continue; `false` otherwise (in the case where preprocessing finds the formulation infeasible). """ function run_preprocessing!(::ColCutGenContext, preprocess_algo, env, reform, conquer_output) preprocess_output = run!(preprocess_algo, env, reform, nothing) if isinfeasible(preprocess_output) setterminationstatus!(conquer_output, INFEASIBLE) return false end return true end function run_node_finalizer!(::ColCutGenContext, node_finalizer, env, reform, node_depth, conquer_output) if node_depth >= node_finalizer.min_depth #= TODO: put in a function =# if ismanager(node_finalizer.algorithm) records = create_records(reform) end nf_output = run!(node_finalizer.algorithm, env, reform, conquer_output) status = getterminationstatus(nf_output) ip_primal_sols = get_ip_primal_sols(nf_output) # if the node has been conquered by the node finalizer if status in (OPTIMAL, INFEASIBLE) # set the ip solutions found without checking the cuts and finish if !isnothing(ip_primal_sols) && length(ip_primal_sols) > 0 for sol in sort(ip_primal_sols) update_ip_primal_sol!(conquer_output, sol) end end # make sure that the gap is closed for the current node dual_bound = DualBound(reform, getvalue(get_ip_primal_bound(conquer_output))) update_lp_dual_bound!(conquer_output, dual_bound) update_ip_dual_bound!(conquer_output, dual_bound) else if !isnothing(ip_primal_sols) && length(ip_primal_sols) > 0 # we start with worst solution to add all improving solutions for sol in sort(ip_primal_sols) cutgen = CutCallbacks(call_robust_facultative = false) # TODO by Artur : Node finalizer should ensure itselves that the returned solution is feasible # NOTE by Guillaume: How can we do that ? I'm not sure it's a good idea to couple NF and cut gen. cutcb_output = run!(cutgen, env, getmaster(reform), CutCallbacksInput(sol)) if cutcb_output.nb_cuts_added == 0 update_ip_primal_sol!(conquer_output, sol) end end end end if ismanager(node_finalizer.algorithm) restore_from_records!(input.units_to_restore, records) end end return true end function run_colcutgen_conquer!(ctx::ColCutGenContext, env, reform, input) run_conquer = true # certainly useless # We initialize the output of the conquer algorithm using the input given by the algorithm # that calls the conquer strategy. This output will be updated by the conquer algorithm. conquer_output = OptimizationState( getmaster(reform); global_primal_bound_handler = get_global_primal_handler(input) ) time_limit_reached!(conquer_output, env) && return conquer_output if !isnothing(ctx.params.preprocess) run_conquer = run_preprocessing!(ctx, ctx.params.preprocess, env, reform, conquer_output) !run_conquer && return conquer_output end time_limit_reached!(conquer_output, env) && return conquer_output run_conquer = run_colcutgen!(ctx, env, reform, input, conquer_output) !run_conquer && return conquer_output time_limit_reached!(conquer_output, env) && return conquer_output heuristics_to_run = get_heuristics_to_run(ctx, get_node_depth(input)) run_conquer = run_heuristics!(ctx, heuristics_to_run, env, reform, input, conquer_output) !run_conquer && return conquer_output time_limit_reached!(conquer_output, env) && return conquer_output # if the gap is still unclosed, try to run the node finalizer node_finalizer = ctx.params.node_finalizer if !ip_gap_closed(conquer_output, atol = ctx.params.opt_atol, rtol = ctx.params.opt_rtol) && !isnothing(node_finalizer) run_node_finalizer!(ctx, node_finalizer, env, reform, get_node_depth(input), conquer_output) end time_limit_reached!(conquer_output, env) && return conquer_output if ip_gap_closed(conquer_output, atol = ctx.params.opt_atol, rtol = ctx.params.opt_rtol) setterminationstatus!(conquer_output, OPTIMAL) elseif getterminationstatus(conquer_output) != TIME_LIMIT && getterminationstatus(conquer_output) != INFEASIBLE setterminationstatus!(conquer_output, OTHER_LIMIT) end return conquer_output end function run!(algo::ColCutGenConquer, env::Env, reform::Reformulation, input::AbstractConquerInput) ctx = new_context(type_of_context(algo), algo, reform, input) return run_colcutgen_conquer!(ctx, env, reform, input) end #################################################################### # RestrMasterLPConquer #################################################################### """ RestrMasterLPConquer( masterlpalgo = SolveLpForm( get_ip_primal_sol = true ) ) Conquer algorithm that solves the master problem using a linear programming solver. """ @with_kw struct RestrMasterLPConquer <: AbstractConquerAlgorithm masterlpalgo::SolveLpForm = SolveLpForm( get_ip_primal_sol = true ) end # RestrMasterLPConquer does not use any unit, therefore get_units_usage() is not defined for it function get_child_algorithms(algo::RestrMasterLPConquer, reform::Reformulation) return Dict("restr_master_lp" => (algo.masterlpalgo, getmaster(reform))) end function run!(algo::RestrMasterLPConquer, env::Env, reform::Reformulation, input::AbstractConquerInput) conquer_output = OptimizationState( getmaster(reform); global_primal_bound_handler = get_global_primal_handler(input) ) masterlp_state = run!(algo.masterlpalgo, env, getmaster(reform), conquer_output) update!(conquer_output, masterlp_state) if ip_gap_closed(masterlp_state) setterminationstatus!(conquer_output, OPTIMAL) else setterminationstatus!(conquer_output, OTHER_LIMIT) end return conquer_output end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4536
# The storage API is easy to use when you have one model. # However, when you optimize a problem with Coluna, you generally have one reformulation that # maintains several formulations. # Each reformulation and formulation has a storage that has storage units. # It becomes very hard to know which storage a record should restore. # Therefore, we built this API on top of the storage API. # It performs the same operations than the storage API but maintain additional information # when you create records to easily restore the good storage unit. # For each storage unit of Coluna, you must define a storage unit key. # In nodes, we don't know the type of record we store. # We thus use the AbstractStorageUnitKey and following methods for type inference. abstract type AbstractStorageUnitKey end key_from_storage_unit_type(T::Type{<:AbstractRecordUnit}) = error("key_from_storage_unit_type(::Type{$(T)}) not implemented.") record_type_from_key(k::AbstractStorageUnitKey) = error("record_type_from_key(::$(typeof(k))) not implemented.") ############################################################################################ # create_records built on top of ClB.create_record ############################################################################################ struct Records records_by_model_id::Dict{Int, Dict{AbstractStorageUnitKey, AbstractRecord}} Records() = new(Dict{Int, Dict{AbstractStorageUnitKey, AbstractRecord}}()) end function _add_rec!( r::Records, model::AbstractModel, storage_unit_type::Type{<:AbstractRecordUnit}, record::AbstractRecord ) model_id = getuid(model) if !haskey(r.records_by_model_id, model_id) r.records_by_model_id[model_id] = Dict{AbstractStorageUnitKey, AbstractRecord}() end if haskey(r.records_by_model_id[model_id], storage_unit_type) @error "Already added record for model $(getuid(model)) and storage unit $(storage_unit_type). Going to replace it." end key = key_from_storage_unit_type(storage_unit_type) r.records_by_model_id[getuid(model)][key] = record return end function _get_rec(r::Records, model::AbstractModel, key::AbstractStorageUnitKey) model_id = getuid(model) records_of_model = get(r.records_by_model_id, model_id, nothing) if !isnothing(records_of_model) if haskey(records_of_model, key) RT = record_type_from_key(key) # Note that the `::RT` in the line below is necessary for type inference. return records_of_model[key]::RT end end return nothing end function _create_records!(records::Records, model) storage = getstorage(model) for storage_unit_type in Iterators.keys(storage.units) record = create_record(storage, storage_unit_type) _add_rec!(records, model, storage_unit_type, record) end return end """ create_records(reformulation) -> Records Methods to create records of all storage units of a reformulation and the formulations handled by the reformulation. """ function create_records(reform::Reformulation) records = Records() _create_records!(records, reform) _create_records!(records, getmaster(reform)) for form in Iterators.values(get_dw_pricing_sps(reform)) _create_records!(records, form) end for form in Iterators.values(get_benders_sep_sps(reform)) _create_records!(records, form) end return records end ############################################################################################ # restore_from_records! built on top of ClB.restore_from_record! ############################################################################################ """ Store a set of storage unit type associated to the model. Used to indicate what storage units from what models we want to restore. """ struct UnitsUsage units_used::Vector{Tuple{AbstractModel,DataType}} end UnitsUsage() = UnitsUsage(Vector{Tuple{AbstractModel,DataType}}()) """ restore_from_records!(units_used::UnitsUsage, records::Records) Method to restore storage units from reformulations and formulations given a set of records stored in an object of type `Records`. """ function restore_from_records!(units_usage::UnitsUsage, records::Records) for (model, storage_unit_type) in units_usage.units_used record = _get_rec(records, model, key_from_storage_unit_type(storage_unit_type)) if !isnothing(record) restore_from_record!(getstorage(model), record) end end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
12921
""" StaticVarState Used in formulation records """ struct StaticVarState cost::Float64 lb::Float64 ub::Float64 end function apply_state!(form::Formulation, var::Variable, var_state::StaticVarState) if getcurlb(form, var) != var_state.lb setcurlb!(form, var, var_state.lb) end if getcurub(form, var) != var_state.ub setcurub!(form, var, var_state.ub) end if getcurcost(form, var) != var_state.cost setcurcost!(form, var, var_state.cost) end return end """ ConstrState Used in formulation records """ struct ConstrState rhs::Float64 end function apply_state!(form::Formulation, constr::Constraint, constr_state::ConstrState) if getcurrhs(form, constr) != constr_state.rhs setcurrhs!(form, constr, constr_state.rhs) end return end """ MasterBranchConstrsUnit Unit for master branching constraints. Can be restored using MasterBranchConstrsRecord. """ struct MasterBranchConstrsUnit <: AbstractRecordUnit end mutable struct MasterBranchConstrsRecord <: AbstractRecord constrs::Dict{ConstrId,ConstrState} end struct MasterBranchConstrsKey <: AbstractStorageUnitKey end key_from_storage_unit_type(::Type{MasterBranchConstrsUnit}) = MasterBranchConstrsKey() record_type_from_key(::MasterBranchConstrsKey) = MasterBranchConstrsRecord ClB.storage_unit(::Type{MasterBranchConstrsUnit}, _) = MasterBranchConstrsUnit() function ClB.record(::Type{MasterBranchConstrsRecord}, id::Int, form::Formulation, unit::MasterBranchConstrsUnit) @logmsg LogLevel(-2) "Storing branching constraints" record = MasterBranchConstrsRecord(Dict{ConstrId,ConstrState}()) for (id, constr) in getconstrs(form) if getduty(id) <= AbstractMasterBranchingConstr && iscuractive(form, constr) && isexplicit(form, constr) constrstate = ConstrState(getcurrhs(form, constr)) record.constrs[id] = constrstate end end return record end ClB.record_type(::Type{MasterBranchConstrsUnit}) = MasterBranchConstrsRecord ClB.storage_unit_type(::Type{MasterBranchConstrsRecord}) = MasterBranchConstrsUnit function ClB.restore_from_record!( form::Formulation, ::MasterBranchConstrsUnit, record::MasterBranchConstrsRecord ) @logmsg LogLevel(-2) "Restoring branching constraints" for (id, constr) in getconstrs(form) if getduty(id) <= AbstractMasterBranchingConstr && isexplicit(form, constr) @logmsg LogLevel(-4) "Checking " getname(form, constr) if haskey(record.constrs, id) if !iscuractive(form, constr) @logmsg LogLevel(-2) string("Activating branching constraint", getname(form, constr)) activate!(form, constr) else @logmsg LogLevel(-2) string("Leaving branching constraint", getname(form, constr)) end @logmsg LogLevel(-4) "Updating data" apply_state!(form, constr, record.constrs[id]) else if iscuractive(form, constr) @logmsg LogLevel(-2) string("Deactivating branching constraint", getname(form, constr)) deactivate!(form, constr) end end end end end """ MasterColumnsUnit Unit for branching constraints of a formulation. Can be restored using a MasterColumnsRecord. """ struct MasterColumnsUnit <: AbstractRecordUnit end mutable struct MasterColumnsRecord <: AbstractRecord active_cols::Set{VarId} MasterColumnsRecord() = new(Set{VarId}()) end push!(record::MasterColumnsRecord, id::VarId) = push!(record.active_cols, id) struct MasterColumnsKey <: AbstractStorageUnitKey end key_from_storage_unit_type(::Type{MasterColumnsUnit}) = MasterColumnsKey() record_type_from_key(::MasterColumnsKey) = MasterColumnsRecord ClB.storage_unit(::Type{MasterColumnsUnit}, _) = MasterColumnsUnit() function ClB.record(::Type{MasterColumnsRecord}, id::Int, form::Formulation, unit::MasterColumnsUnit) record = MasterColumnsRecord() for (id, var) in getvars(form) if getduty(id) <= MasterCol && isexplicit(form, var) && iscuractive(form, var) push!(record, id) end end return record end ClB.record_type(::Type{MasterColumnsUnit}) = MasterColumnsRecord ClB.storage_unit_type(::Type{MasterColumnsRecord}) = MasterColumnsUnit function ClB.restore_from_record!( form::Formulation, ::MasterColumnsUnit, state::MasterColumnsRecord ) for (id, var) in getvars(form) if getduty(id) <= MasterCol && isexplicit(form, var) if id in state.active_cols if !iscuractive(form, var) activate!(form, var) end else if iscuractive(form, var) deactivate!(form, var) end end end end return end """ MasterCutsUnit Unit for cutting planes of a formulation. Can be restored using a MasterCutsRecord. """ struct MasterCutsUnit <: AbstractRecordUnit end MasterCutsUnit(::Formulation) = MasterCutsUnit() mutable struct MasterCutsRecord <: AbstractRecord cuts::Dict{ConstrId,ConstrState} end struct MasterCutsKey <: AbstractStorageUnitKey end key_from_storage_unit_type(::Type{MasterCutsUnit}) = MasterCutsKey() record_type_from_key(::MasterCutsKey) = MasterCutsRecord ClB.storage_unit(::Type{MasterCutsUnit}, _) = MasterCutsUnit() function ClB.record(::Type{MasterCutsRecord}, id::Int, form::Formulation, unit::MasterCutsUnit) @logmsg LogLevel(-2) "Storing master cuts" record = MasterCutsRecord(Dict{ConstrId,ConstrState}()) for (id, constr) in getconstrs(form) if getduty(id) <= AbstractMasterCutConstr && iscuractive(form, constr) && isexplicit(form, constr) constrstate = ConstrState(getcurrhs(form, constr)) record.cuts[id] = constrstate end end return record end ClB.record_type(::Type{MasterCutsUnit}) = MasterCutsRecord ClB.storage_unit_type(::Type{MasterCutsRecord}) = MasterCutsUnit function ClB.restore_from_record!( form::Formulation, ::MasterCutsUnit, state::MasterCutsRecord ) @logmsg LogLevel(-2) "Storing master cuts" for (id, constr) in getconstrs(form) if getduty(id) <= AbstractMasterCutConstr && isexplicit(form, constr) @logmsg LogLevel(-4) "Checking " getname(form, constr) if haskey(state.cuts, id) if !iscuractive(form, constr) @logmsg LogLevel(-4) string("Activating cut", getname(form, constr)) activate!(form, constr) end @logmsg LogLevel(-4) "Updating data" apply_state!(form, constr, state.cuts[id]) else if iscuractive(form, constr) @logmsg LogLevel(-4) string("Deactivating cut", getname(form, constr)) deactivate!(form, constr) end end end end end """ StaticVarConstrUnit Unit for static variables and constraints of a formulation. Can be restored using a StaticVarConstrRecord. """ struct StaticVarConstrUnit <: AbstractRecordUnit end StaticVarConstrUnit(::Formulation) = StaticVarConstrUnit() mutable struct StaticVarConstrRecord <: AbstractRecord constrs::Dict{ConstrId,ConstrState} vars::Dict{VarId,StaticVarState} end # TO DO: we need to keep here only the difference with the initial data struct StaticVarConstrKey <: AbstractStorageUnitKey end key_from_storage_unit_type(::Type{StaticVarConstrUnit}) = StaticVarConstrKey() record_type_from_key(::StaticVarConstrKey) = StaticVarConstrRecord ClB.storage_unit(::Type{StaticVarConstrUnit}, _) = StaticVarConstrUnit() # function Base.show(io::IO, record::StaticVarConstrRecord) # print(io, "[vars:") # for (id, var) in record.vars # print(io, " ", MathProg.getuid(id)) # end # print(io, ", constrs:") # for (id, constr) in record.constrs # print(io, " ", MathProg.getuid(id)) # end # print(io, "]") # end function ClB.record(::Type{StaticVarConstrRecord}, id::Int, form::Formulation, unit::StaticVarConstrUnit) @logmsg LogLevel(-2) string("Storing static vars and consts") record = StaticVarConstrRecord(Dict{ConstrId,ConstrState}(), Dict{VarId,StaticVarState}()) for (id, constr) in getconstrs(form) if isaStaticDuty(getduty(id)) && iscuractive(form, constr) && isexplicit(form, constr) constrstate = ConstrState(getcurrhs(form, constr)) record.constrs[id] = constrstate end end for (id, var) in getvars(form) if isaStaticDuty(getduty(id)) && isexplicit(form, var) && iscuractive(form, var) varstate = StaticVarState( getcurcost(form, var), getcurlb(form, var), getcurub(form, var) ) record.vars[id] = varstate end end return record end ClB.record_type(::Type{StaticVarConstrUnit}) = StaticVarConstrRecord ClB.storage_unit_type(::Type{StaticVarConstrRecord}) = StaticVarConstrUnit function ClB.restore_from_record!( form::Formulation, ::StaticVarConstrUnit, record::StaticVarConstrRecord ) @logmsg LogLevel(-2) "Restoring static vars and consts" for (id, constr) in getconstrs(form) if isaStaticDuty(getduty(id)) && isexplicit(form, constr) @logmsg LogLevel(-4) "Checking " getname(form, constr) if haskey(record.constrs, id) if !iscuractive(form, constr) @logmsg LogLevel(-2) string("Activating constraint", getname(form, constr)) activate!(form, constr) end @logmsg LogLevel(-4) "Updating data" apply_state!(form, constr, record.constrs[id]) else if iscuractive(form, constr) @logmsg LogLevel(-2) string("Deactivating constraint", getname(form, constr)) deactivate!(form, constr) end end end end for (id, var) in getvars(form) if isaStaticDuty(getduty(id)) && isexplicit(form, var) @logmsg LogLevel(-4) "Checking " getname(form, var) if haskey(record.vars, id) if !iscuractive(form, var) @logmsg LogLevel(-4) string("Activating variable", getname(form, var)) activate!(form, var) end @logmsg LogLevel(-4) "Updating data" apply_state!(form, var, record.vars[id]) else if iscuractive(form, var) @logmsg LogLevel(-4) string("Deactivating variable", getname(form, var)) deactivate!(form, var) end end end end end """ PartialSolutionUnit Unit for current the partial solution of a formulation. Can be restored using a PartialSolutionRecord. """ struct PartialSolutionUnit <: AbstractRecordUnit end PartialSolutionUnit(::Formulation) = PartialSolutionUnit() mutable struct PartialSolutionRecord <: AbstractRecord partial_solution::Dict{VarId, Float64} PartialSolutionRecord(form::Formulation) = new(copy(MathProg.getpartialsol(form))) end struct PartialSolutionKey <: AbstractStorageUnitKey end key_from_storage_unit_type(::Type{PartialSolutionUnit}) = PartialSolutionKey() record_type_from_key(::PartialSolutionKey) = PartialSolutionRecord ClB.storage_unit(::Type{PartialSolutionUnit}, _) = PartialSolutionUnit() function ClB.record(::Type{PartialSolutionRecord}, id::Int, form::Formulation, unit::PartialSolutionUnit) return PartialSolutionRecord(form) end ClB.record_type(::Type{PartialSolutionUnit}) = PartialSolutionRecord ClB.storage_unit_type(::Type{PartialSolutionRecord}) = PartialSolutionUnit function ClB.restore_from_record!( form::Formulation, ::PartialSolutionUnit, record::PartialSolutionRecord ) @logmsg LogLevel(-2) "Restoring partial solution" form_part_sol = MathProg.getpartialsol(form) change_dict = Dict{VarId, Float64}() for (var_id, cur_value) in form_part_sol record_value = get(record.partial_solution, var_id, 0.0) if cur_value != record_value change_dict[var_id] = record_value end end for (var_id, record_value) in record.partial_solution if !haskey(form_part_sol, var_id) change_dict[var_id] = record_value end end for (var_id, value) in change_dict @logmsg LogLevel(-4) string("Changing value of ", getname(form, var_id), " in partial solution to ", value) MathProg.set_value_in_partial_solution!(form, var_id, value) end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8029
############################################################################################ # Algorithm API ############################################################################################ # TODO: remove this method. # We currently need it because we give to the parent algorithm the responsability of recording # and restoring the state of a formulation when a child algorithm may divide the calculation # flow and thus making invalid the formulation for the parent algorithm at the end of the # child execution. # If we give the responsability of recording/restoring to the child, we won't need this method # anymore and we'll get rid of the concept of manager & worker algorithm. ismanager(algo::AlgoAPI.AbstractAlgorithm) = false """ get_child_algorithms(algo, model) -> Dict{String, Tuple{AbstractAlgorithm, AbstractModel}} Every algorithm should communicate its child algorithms and the model to which each child algorithm is applied. It should returns a dictionary where the keys are the names of the child algorithms and the values are the algorithm parameters and the model to which the algorithm is applied. By default, `get_child_algorithms` returns an empty dictionary. """ get_child_algorithms(::AlgoAPI.AbstractAlgorithm, ::AbstractModel) = Dict{String, Tuple{AlgoAPI.AbstractAlgorithm, AbstractModel}}() """ get_units_usage(algo, model) -> Tuple{AbstractModel, UnitType, UnitPermission}[] Every algorithm should communicate the storage units it uses (so that these units are created in the beginning) and the usage mode (read only or read-and-write). Usage mode is needed for in order to restore units before running a worker algorithm. """ get_units_usage(::AlgoAPI.AbstractAlgorithm, ::AbstractModel) = Tuple{AlgoAPI.AbstractModel, UnitType, UnitPermission}[] ############################################################################################ # Conquer Algorithm API ############################################################################################ """ AbstractConquerInput Input of a conquer algorithm used by the tree search algorithm. Contains the node in the search tree and the collection of units to restore before running the conquer algorithm. This collection of units is passed in the input so that it is not obtained each time the conquer algorithm runs. """ abstract type AbstractConquerInput end @mustimplement "ConquerInput" get_node(i::AbstractConquerInput) = nothing @mustimplement "ConquerInput" get_units_to_restore(i::AbstractConquerInput) = nothing @mustimplement "ConquerInput" run_conquer(i::AbstractConquerInput) = nothing @mustimplement "ConquerInput" get_global_primal_handler(i::AbstractConquerInput) = nothing @mustimplement "ConquerInput" get_conquer_input_ip_dual_bound(i::AbstractConquerInput) = nothing """ AbstractConquerAlgorithm This algorithm type is used by the tree search algorithm to update the incumbents and the formulation. For the moment, a conquer algorithm can be run only on reformulation. A conquer algorithm should restore records of storage units using `restore_from_records!(conquer_input)` - each time it runs in the beginning - each time after calling a child manager algorithm """ abstract type AbstractConquerAlgorithm <: AlgoAPI.AbstractAlgorithm end # conquer algorithms are always manager algorithms (they manage storing and restoring units) ismanager(algo::AbstractConquerAlgorithm) = true @mustimplement "ConquerAlgorithm" run!(::AbstractConquerAlgorithm, ::Env, ::Reformulation, ::AbstractConquerInput) = nothing ############################################################################################ # Optimization Algorithm API ############################################################################################ """ AbstractOptimizationAlgorithm This type of algorithm is used to "bound" a model, i.e. to improve primal and dual bounds of the model. Solving to optimality is a special case of "bounding". The input of such algorithm should be of type OptimizationState. The output of such algorithm should be of type OptimizationState. """ abstract type AbstractOptimizationAlgorithm <: AlgoAPI.AbstractAlgorithm end # this function collects storage units to restore for an algorithm and all its child worker algorithms, # child manager algorithms are skipped, as their restore units themselves function _collect_units_to_restore!( global_units_usage::UnitsUsage, algo::AlgoAPI.AbstractAlgorithm, model::AbstractModel ) for (unit_model, unit_type, unit_usage) in get_units_usage(algo, model) push!(global_units_usage.units_used, (unit_model, unit_type)) end for (childalgo, childmodel) in values(get_child_algorithms(algo, model)) if !ismanager(childalgo) _collect_units_to_restore!(global_units_usage, childalgo, childmodel) end end end function collect_units_to_restore!(algo::AlgoAPI.AbstractAlgorithm, model::AbstractModel) global_units_usage = UnitsUsage() _collect_units_to_restore!(global_units_usage, algo, model) return global_units_usage end # this function collects units to create for an algorithm and all its child algorithms # this function is used only the function initialize_storage_units! below function collect_units_to_create!( units_to_create::Dict{AbstractModel,Set{UnitType}}, algo::AlgoAPI.AbstractAlgorithm, model::AbstractModel ) units_usage = get_units_usage(algo, model) for (unit_model, unit_pair, _) in units_usage if !haskey(units_to_create, unit_model) units_to_create[unit_model] = Set{UnitType}() end push!(units_to_create[unit_model], unit_pair) end child_algos = values(get_child_algorithms(algo, model)) for (childalgo, childmodel) in child_algos collect_units_to_create!(units_to_create, childalgo, childmodel) end return end # this function initializes all the storage units function initialize_storage_units!(reform::Reformulation, algo::AbstractOptimizationAlgorithm) units_to_create = Dict{AbstractModel,Set{UnitType}}() collect_units_to_create!(units_to_create, algo, reform) for (model, types_of_storage_unit) in units_to_create storagedict = model.storage.units if storagedict === nothing error(string("Model of type $(typeof(model)) with id $(getuid(model)) ", "is not contained in $(getnicename(data))") ) end for storage_unit_type in types_of_storage_unit storagedict[storage_unit_type] = RecordUnitManager(storage_unit_type, model) end end end ############################################################################################ # Routines to check & initialize algorithms before starting the optimization. ############################################################################################ function _check_alg_parameters!(inconsistencies, algo, reform::Reformulation) for (name, (child_algo, model)) in get_child_algorithms(algo, reform) for name in fieldnames(typeof(child_algo)) value = getfield(child_algo, name) consistent_val = check_parameter(child_algo, Val(name), value, reform) if !consistent_val push!(inconsistencies, (name, child_algo, value)) end end _check_alg_parameters!(inconsistencies, child_algo, model) end return end """ check_alg_parameters(top_algo, reform) -> Vector{Tuple{Symbol, AbstractAlgorithm, Any}} Checks the consistency of the parameters of the top algorithm and its children algorithms. Returns a vector of tuples (name of the parameter, algorithm, value of the parameter) that lists all the inconsistencies found in the algorithms tree. """ function check_alg_parameters(top_algo, reform::Reformulation) inconsistencies = [] _check_alg_parameters!(inconsistencies, top_algo, reform) return inconsistencies end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
9846
""" Coluna.Algorithm.TreeSearchAlgorithm( presolvealg = nothing, conqueralg::AbstractConquerAlgorithm = ColCutGenConquer(), dividealg::AbstractDivideAlgorithm = Branching(), explorestrategy::AbstractExploreStrategy = DepthFirstStrategy(), maxnumnodes = 100000, opennodeslimit = 100, timelimit = -1, # -1 means no time limit opt_atol::Float64 = DEF_OPTIMALITY_ATOL, opt_rtol::Float64 = DEF_OPTIMALITY_RTOL, branchingtreefile = "", jsonfile = "", print_node_info = true ) This algorithm is a branch and bound that uses a search tree to optimize the reformulation. At each node in the tree, it applies `conqueralg` to evaluate the node and improve the bounds, `dividealg` to generate branching constraints, and `explorestrategy` to select the next node to treat. Optionally, the `presolvealg` is run in the beginning to preprocess the formulation. The three main elements of the algorithm are: - the conquer strategy (`conqueralg`): evaluation of the problem at a node of the Branch-and-Bound tree. Depending on the type of decomposition used ahead of the Branch-and-Bound, you can use either Column Generation (if your problem is decomposed following Dantzig-Wolfe transformation) and/or Cut Generation (for Dantzig-Wolfe and Benders decompositions). - the branching strategy (`dividealg`): how to create new branches i.e. how to divide the search space - the explore strategy (`explorestrategy`): the evaluation order of your nodes Parameters: - `maxnumnodes` : maximum number of nodes explored by the algorithm - `opennodeslimit` : maximum number of nodes waiting to be explored - `timelimit` : time limit in seconds of the algorithm - `opt_atol` : optimality absolute tolerance (alpha) - `opt_rtol` : optimality relative tolerance (alpha) Options: - `branchingtreefile` : name of the file in which the algorithm writes an overview of the branching tree - `jsonfile` : name of the file in which the algorithm writes the solution in JSON format - `print_node_info` : log the tree into the console **Warning**: if you set a name for the `branchingtreefile` AND the `jsonfile`, the algorithm will only write in the json file. """ struct TreeSearchAlgorithm <: AbstractOptimizationAlgorithm presolvealg::Union{Nothing,PresolveAlgorithm} conqueralg::AbstractConquerAlgorithm dividealg::AlgoAPI.AbstractDivideAlgorithm explorestrategy::TreeSearch.AbstractExploreStrategy maxnumnodes::Int64 opennodeslimit::Int64 timelimit::Int64 opt_atol::Float64 opt_rtol::Float64 branchingtreefile::String jsonfile::String print_node_info::Bool TreeSearchAlgorithm(; presolvealg = nothing, conqueralg = ColCutGenConquer(), dividealg = ClassicBranching(), explorestrategy = TreeSearch.DepthFirstStrategy(), maxnumnodes = 100000, opennodeslimit = 100, timelimit = -1, # means no time limit opt_atol = AlgoAPI.default_opt_atol(), opt_rtol = AlgoAPI.default_opt_rtol(), branchingtreefile = "", jsonfile = "", print_node_info = true ) = new(presolvealg, conqueralg, dividealg, explorestrategy, maxnumnodes, opennodeslimit, timelimit, opt_atol, opt_rtol, branchingtreefile, jsonfile, print_node_info) end # TreeSearchAlgorithm is a manager algorithm (manages storing and restoring storage units) ismanager(algo::TreeSearchAlgorithm) = true # TreeSearchAlgorithm does not use any record itself, # therefore get_units_usage() is not defined for it function get_child_algorithms(algo::TreeSearchAlgorithm, reform::Reformulation) child_algos = Dict( "conquer" => (algo.conqueralg, reform), "divide" => (algo.dividealg, reform) ) if !isnothing(algo.presolvealg) child_algos["presolve"] = (algo.presolvealg, reform) end return child_algos end function run!(algo::TreeSearchAlgorithm, env::Env, reform::Reformulation, input::OptimizationState) # TreeSearchAlgorithm is the only algorithm that changes the global time limit in the # environment. However, time limit set from JuMP/MOI has priority. if env.global_time_limit == -1 env.global_time_limit = algo.timelimit else @warn "Global time limit has been set through JuMP/MOI. Ignoring the time limit of TreeSearchAlgorithm." end if !isnothing(algo.presolvealg) if !isfeasible(run!(algo.presolvealg, env, reform, PresolveInput())) output = input setterminationstatus!(output, ColunaBase.INFEASIBLE) return output end end search_space = TreeSearch.new_space(TreeSearch.search_space_type(algo), algo, reform, input) return TreeSearch.tree_search(algo.explorestrategy, search_space, env, input) end ############################################################################################ # Tree search interface for Coluna algorithms ############################################################################################ "Search space for tree search algorithms in Coluna." abstract type AbstractColunaSearchSpace <: TreeSearch.AbstractSearchSpace end # Additional methods to implement to use the tree search algorithms together with Coluna's # algorithms. "Returns the previous node explored by the tree search algorithm." @mustimplement "ColunaSearchSpace" get_previous(s::AbstractColunaSearchSpace) = nothing "Sets the previous node explored by the tree search algorithm." @mustimplement "ColunaSearchSpace" set_previous!(s::AbstractColunaSearchSpace, previous) = nothing "Returns the conquer algorithm." @mustimplement "ColunaSearchSpace" get_conquer(sp::AbstractColunaSearchSpace) = nothing "Returns the divide algorithm." @mustimplement "ColunaSearchSpace" get_divide(sp::AbstractColunaSearchSpace) = nothing "Returns the reformulation that will be passed to an algorithm." @mustimplement "ColunaSearchSpace" get_reformulation(s::AbstractColunaSearchSpace) = nothing """ Returns the input that will be passed to an algorithm. The input can be built from information contained in a search space and a node. """ @mustimplement "ColunaSearchSpace" get_input(a::AlgoAPI.AbstractAlgorithm, s::AbstractColunaSearchSpace, n::TreeSearch.AbstractNode) = nothing """ Methods to perform operations before the tree search algorithm evaluates a node (`current`). This is useful to restore the state of the formulation for instance. """ @mustimplement "ColunaSearchSpace" node_change!(previous::TreeSearch.AbstractNode, current::TreeSearch.AbstractNode, space::AbstractColunaSearchSpace) = nothing """ Methods to perform operations after the conquer algorithms. It receives the output of the conquer algorithm. """ @mustimplement "ColunaSearchSpace" after_conquer!(::AbstractColunaSearchSpace, current, output) = nothing "Returns the number of children generated by the divide algorithm." @mustimplement "ColunaSearchSpace" number_of_children(divide_output) = nothing """ Performs operations after the divide algorithm when the current node is finally a leaf. """ @mustimplement "ColunaSearchSpace" node_is_leaf(::AbstractColunaSearchSpace, current, output) = nothing "Creates and returns the children of a node associated to a search space." @mustimplement "ColunaSearchSpace" new_children(sp::AbstractColunaSearchSpace, candidates, n::TreeSearch.AbstractNode) = nothing @mustimplement "ColunaSearchSpace" run_divide(sp::AbstractColunaSearchSpace, divide_input) = nothing "Returns true if the current node should not be explored i.e. if its local dual bound inherited from its parent is worst than a primal bound of the search space." @mustimplement "ColunaSearchSpace" is_pruned(sp::AbstractColunaSearchSpace, current) = nothing "Method to perform some operations if the current node is pruned." @mustimplement "ColunaSearchSpace" node_is_pruned(sp::AbstractColunaSearchSpace, current) = nothing # Implementation of the `children` method for the `AbstractColunaSearchSpace` algorithm. function TreeSearch.children(space::AbstractColunaSearchSpace, current::TreeSearch.AbstractNode, env) # restore state of the formulation for the current node. previous = get_previous(space) if !isnothing(previous) node_change!(previous, current, space) end set_previous!(space, current) # We should avoid the whole exploration of a node if its local dual bound inherited from its parent is worst than a primal bound found elsewhere on the tree. if is_pruned(space, current) node_is_pruned(space, current) return [] end # Else we run the conquer algorithm. # This algorithm has the responsibility to check whether the node is pruned. reform = get_reformulation(space) conquer_output = TreeSearch.get_conquer_output(current) if conquer_output === nothing conquer_alg = get_conquer(space) conquer_input = get_input(conquer_alg, space, current) conquer_output = run!(conquer_alg, env, reform, conquer_input) after_conquer!(space, current, conquer_output) # callback to do some operations after the conquer. end # Build the divide input from the conquer output divide_alg = get_divide(space) divide_input = get_input(divide_alg, space, current, conquer_output) branches = nothing # if `run_divide` returns false, the divide is not run and the node is pruned. if run_divide(space, divide_input) branches = run!(divide_alg, env, reform, divide_input) end if isnothing(branches) || number_of_children(branches) == 0 node_is_leaf(space, current, conquer_output) # callback to do some operations when the node is a leaf. return [] # node is pruned, no children is generated end return new_children(space, branches, current) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3519
""" CutCallbacks( call_robust_facultative = true, call_robust_essential = true, tol::Float64 = 1e-6 ) Runs the cut user callbacks attached to a formulation. **Parameters:** - `call_robust_facultative`: if true, call all the robust facultative cut user callbacks (i.e. user cut callbacks) - `call_robust_essential`: if true, call all the robust essential cut user callbacks (i.e. lazy constraint callbacks) - `tol`: tolerance used to determine if a cut is violated See the JuMP documentation for more information about user callbacks and the tutorials in the Coluna documentation for examples of user callbacks. """ @with_kw struct CutCallbacks <: AlgoAPI.AbstractAlgorithm call_robust_facultative = true call_robust_essential = true tol = 1e-6 end struct CutCallbacksInput primalsol::PrimalSolution end struct CutCallbacksOutput nb_cuts_added::Int nb_essential_cuts_added::Int nb_facultative_cuts_added::Int end struct RobustCutCallbackContext form::Formulation env::Env constrkind::ConstrKind proj_sol::PrimalSolution # ordered non zero but O(log^2(n)) lookup time proj_sol_dict::Dict{VarId, Float64} # O(1) lookup time viol_vals::Vector{Float64} orig_sol::PrimalSolution end # CutCallbacks does not have child algorithms, therefore get_child_algorithms() is not defined function get_units_usage(algo::CutCallbacks, form::Formulation{Duty} ) where {Duty<:MathProg.AbstractFormDuty} return [(form, MasterCutsUnit, READ_AND_WRITE)] end function run!(algo::CutCallbacks, env::Env, form::Formulation, input::CutCallbacksInput) robust_generators = get_robust_constr_generators(form) nb_ess_cuts = 0 nb_fac_cuts = 0 if length(robust_generators) > 0 && (algo.call_robust_facultative || algo.call_robust_essential) !MathProg.projection_is_possible(form) && error("Cannot do projection on original variables. Open an issue.") projsol1 = proj_cols_on_rep(input.primalsol) projsol2 = Dict{VarId, Float64}(varid => val for (varid, val) in projsol1) viol_vals = Float64[] for constrgen in robust_generators cur_viol_vals = Float64[] if constrgen.kind == Facultative && !algo.call_robust_facultative continue end if constrgen.kind == Essential && !algo.call_robust_essential continue end context = RobustCutCallbackContext( form, env, constrgen.kind, projsol1, projsol2, cur_viol_vals, input.primalsol ) constrgen.separation_alg(context) if constrgen.kind == Facultative nb_fac_cuts += length(cur_viol_vals) else nb_ess_cuts += length(cur_viol_vals) end for v in cur_viol_vals push!(viol_vals, v) end end zeroviols = 0 for v in viol_vals if v < algo.tol zeroviols += 1 end end @printf "Cut separation callback adds %i new essential cuts " nb_ess_cuts @printf "and %i new facultative cuts.\n" nb_fac_cuts if nb_fac_cuts + nb_ess_cuts > 0 @printf( "avg. viol. = %.2f, max. viol. = %.2f, zero viol. = %i.\n", mean(viol_vals), maximum(viol_vals), zeroviols ) end end return CutCallbacksOutput(nb_ess_cuts + nb_fac_cuts, nb_ess_cuts, nb_fac_cuts) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
10698
################################################################################ # Algorithm ################################################################################ """ Coluna.Algorithm.SolveIpForm( optimizer_id = 1 moi_params = MoiOptimize() user_params = UserOptimize() custom_params = CustomOptimize() ) Solve an optimization problem. This algorithm can call different type of optimizers : - subsolver interfaced with MathOptInterface to optimize a mixed integer program - pricing callback defined by the user - custom optimizer to solve a custom model You can specify an optimizer using the `default_optimizer` attribute of Coluna or with the method `specify!` from BlockDecomposition. If you want to define several optimizers for a given subproblem, you must use `specify!`: specify!(subproblem, optimizers = [optimizer1, optimizer2, optimizer3]) Value of `optimizer_id` is the position of the optimizer you want to use. For example, if `optimizer_id` is equal to 2, the algorithm will use `optimizer2`. By default, the algorihm uses the first optimizer or the default optimizer if no optimizer has been specified through `specify!`. Depending on the type of the optimizer chosen, the algorithm will use one the three configurations : - `moi_params` for subsolver interfaced with MathOptInterface - `user_params` for pricing callbacks - `custom_params` for custom solvers Custom solver is undocumented because alpha. """ struct SolveIpForm <: AbstractOptimizationAlgorithm optimizer_id::Int moi_params::MoiOptimize user_params::UserOptimize custom_params::CustomOptimize SolveIpForm(; optimizer_id = 1, moi_params = MoiOptimize(), user_params = UserOptimize(), custom_params = CustomOptimize() ) = new(optimizer_id, moi_params, user_params, custom_params) end # SolveIpForm does not have child algorithms, therefore get_child_algorithms() is not defined # Dispatch on the type of the optimizer to return the parameters _optimizer_params(::Formulation, algo::SolveIpForm, ::MoiOptimizer) = algo.moi_params _optimizer_params(::Formulation, algo::SolveIpForm, ::UserOptimizer) = algo.user_params _optimizer_params(form::Formulation, algo::SolveIpForm, ::CustomOptimizer) = getinner(getoptimizer(form, algo.optimizer_id)) _optimizer_params(::Formulation, ::SolveIpForm, ::NoOptimizer) = nothing function run!(algo::SolveIpForm, env::Env, form::Formulation, input::OptimizationState, optimizer_id = 1) opt = getoptimizer(form, algo.optimizer_id) params = _optimizer_params(form, algo, opt) if params !== nothing return run!(params, env, form, input; optimizer_id = algo.optimizer_id) end return error("Cannot optimize formulation with optimizer of type $(typeof(opt)).") end run!(algo::SolveIpForm, env::Env, reform::Reformulation, input::OptimizationState) = run!(algo, env, getmaster(reform), input) ################################################################################ # Get units usage (depends on the type of the optimizer) ################################################################################ function get_units_usage(algo::SolveIpForm, form::Formulation) opt = getoptimizer(form, algo.optimizer_id) params = _optimizer_params(form, algo, opt) if params !== nothing return get_units_usage(params, form) end return error("Cannot get units usage of optimizer of type $(typeof(opt)).") end # get_units_usage of MoiOptimize function get_units_usage( ::MoiOptimize, form::Formulation{Duty} ) where {Duty<:MathProg.AbstractFormDuty} # we use storage units in the read only mode, as all modifications # (deactivating artificial vars and enforcing integrality) # are reverted before the end of the algorithm, # so the state of the formulation remains the same units_usage = Tuple{AbstractModel, UnitType, UnitPermission}[] push!(units_usage, (form, StaticVarConstrUnit, READ_ONLY)) if Duty <: MathProg.AbstractMasterDuty push!(units_usage, (form, MasterColumnsUnit, READ_ONLY)) push!(units_usage, (form, MasterBranchConstrsUnit, READ_ONLY)) push!(units_usage, (form, MasterCutsUnit, READ_ONLY)) push!(units_usage, (form, PartialSolutionUnit, READ_ONLY)) end return units_usage end get_units_usage(algo::SolveIpForm, reform::Reformulation) = get_units_usage(algo, getmaster(reform)) # get_units_usage of UserOptimize function get_units_usage(::UserOptimize, spform::Formulation{DwSp}) units_usage = Tuple{AbstractModel, UnitType, UnitPermission}[] return units_usage end # no get_units_usage of CustomOptimize because it directly calls the # get_units_usage of the custom optimizer ################################################################################ # run! methods (depends on the type of the optimizer) ################################################################################ function check_if_optimizer_supports_ip(optimizer::MoiOptimizer) return MOI.supports_constraint(optimizer.inner, MOI.VariableIndex, MOI.Integer) end check_if_optimizer_supports_ip(optimizer::UserOptimizer) = false check_if_optimizer_supports_ip(optimizer::NoOptimizer) = false # run! of MoiOptimize function run!( algo::MoiOptimize, ::Env, form::Formulation, input::OptimizationState; optimizer_id::Int = 1 ) result = OptimizationState( form, ip_primal_bound = get_ip_primal_bound(input), max_length_ip_primal_sols = algo.max_nb_ip_primal_sols ) optimizer = getoptimizer(form, optimizer_id) ip_supported = check_if_optimizer_supports_ip(optimizer) if !ip_supported @warn "Optimizer of formulation with id =", getuid(form), " does not support integer variables. Skip SolveIpForm algorithm." return result end primal_sols = optimize_ip_form!(algo, optimizer, form, result) if length(primal_sols) > 0 for primal_sol in primal_sols add_ip_primal_sol!(result, primal_sol) end if algo.log_level == 0 @printf "Found primal solution of %.4f \n" getvalue(get_ip_primal_bound(result)) end @logmsg LogLevel(-3) get_best_ip_primal_sol(result) else if algo.log_level == 0 println( "No primal solution found. Termination status is ", getterminationstatus(result), ". " ) end end if algo.get_dual_bound && getterminationstatus(result) == OPTIMAL dual_bound = getvalue(get_ip_primal_bound(result)) set_ip_dual_bound!(result, DualBound(form, dual_bound)) set_lp_dual_bound!(result, DualBound(form, dual_bound)) end if algo.get_dual_solution && getterminationstatus(result) == OPTIMAL dual_sols = get_dual_solutions(form, optimizer) if length(dual_sols) > 0 coeff = getobjsense(form) == MinSense ? 1.0 : -1.0 lp_dual_sol_pos = argmax(coeff * getvalue.(dual_sols)) lp_dual_sol = dual_sols[lp_dual_sol_pos] set_lp_dual_sol!(result, lp_dual_sol) end end return result end function optimize_ip_form!( algo::MoiOptimize, optimizer::MoiOptimizer, form::Formulation, result::OptimizationState ) # No way to enforce upper bound or lower bound through MOI. # We must add a constraint c'x <= UB in formulation. if algo.deactivate_artificial_vars deactivate!(form, vcid -> isanArtificialDuty(getduty(vcid))) end if algo.enforce_integrality enforce_integrality!(form) end optimize_with_moi!(optimizer, form, algo, result) primal_sols = get_primal_solutions(form, optimizer) if algo.enforce_integrality relax_integrality!(form) end if algo.deactivate_artificial_vars activate!(form, vcid -> isanArtificialDuty(getduty(vcid))) end return primal_sols end # errors for the pricing callback """ IncorrectPricingDualBound Error thrown when transmitting a dual bound larger than the primal bound of the best solution to the pricing subproblem found in a run of the pricing callback. """ struct IncorrectPricingDualBound pb::ColunaBase.Bound db::Union{Nothing,ColunaBase.Bound} end """ MissingPricingDualBound Error thrown when the pricing callback does not transmit any dual bound. Make sure you call `MOI.submit(model, BD.PricingDualBound(cbdata), db)` in your pricing callback. """ struct MissingPricingDualBound end """ MultiplePricingDualBounds Error thrown when the pricing transmits multiple dual bound. Make sure you call `MOI.submit(model, BD.PricingDualBound(cbdata), db)` only once in your pricing callback. """ struct MultiplePricingDualBounds nb_dual_bounds::Int end # run! of UserOptimize function run!( algo::UserOptimize, ::Env, spform::Formulation{DwSp}, input::OptimizationState; optimizer_id::Int = 1 ) result = OptimizationState( spform, ip_primal_bound = get_ip_primal_bound(input), max_length_ip_primal_sols = algo.max_nb_ip_primal_sols ) optimizer = getoptimizer(spform, optimizer_id) cbdata = MathProg.PricingCallbackData(spform) optimizer.user_oracle(cbdata) if cbdata.nb_times_dual_bound_set == 0 throw(MissingPricingDualBound()) elseif cbdata.nb_times_dual_bound_set > 1 throw(MultiplePricingDualBounds(cbdata.nb_times_dual_bound_set)) end # If the user does not submit any primal solution, we consider the primal as infeasible. primal_infeasible = length(cbdata.primal_solutions) == 0 # If the dual bound from the pricing callback data is nothing, we consider the dual as # infeasible. dual_infeasible = isnothing(cbdata.dual_bound) set_ip_dual_bound!(result, DualBound(spform, cbdata.dual_bound)) db = get_ip_dual_bound(result) for primal_sol in cbdata.primal_solutions add_ip_primal_sol!(result, primal_sol) end pb = get_ip_primal_bound(result) if primal_infeasible && isunbounded(db) setterminationstatus!(result, INFEASIBLE) set_ip_primal_bound!(result, nothing) elseif isunbounded(pb) && dual_infeasible setterminationstatus!(result, UNBOUNDED) set_ip_dual_bound!(result, nothing) elseif abs(gap(pb, db)) <= 1e-4 setterminationstatus!(result, OPTIMAL) elseif gap(pb, db) < -1e-4 throw(IncorrectPricingDualBound(pb, db)) else setterminationstatus!(result, OTHER_LIMIT) end return result end # No run! method for CustomOptimize because it directly calls the run! method # of the custom optimizer
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4485
""" Coluna.Algorithm.SolveLpForm( get_ip_primal_sol = false, get_dual_sol = false, relax_integrality = false, get_dual_bound = false, silent = true ) Solve a linear program stored in a formulation using its first optimizer. This algorithm works only if the optimizer is interfaced with MathOptInterface. You can define the optimizer using the `default_optimizer` attribute of Coluna or with the method `specify!` from BlockDecomposition Parameters: - `get_ip_primal_sol`: update the primal solution of the formulation if equals `true` - `get_dual_sol`: retrieve the dual solution and store it in the ouput if equals `true` - `relax_integrality`: relax integer variables of the formulation before optimization if equals `true` - `get_dual_bound`: store the dual objective value in the output if equals `true` - `silent`: set `MOI.Silent()` to its value Undocumented parameters are alpha. """ struct SolveLpForm <: AbstractOptimizationAlgorithm get_ip_primal_sol::Bool get_dual_sol::Bool relax_integrality::Bool get_dual_bound::Bool silent::Bool SolveLpForm(; get_ip_primal_sol = false, get_dual_sol = false, relax_integrality = false, get_dual_bound = false, silent = true ) = new(get_ip_primal_sol, get_dual_sol, relax_integrality, get_dual_bound, silent) end # SolveLpForm does not have child algorithms, therefore get_child_algorithms() is not defined function get_units_usage( algo::SolveLpForm, form::Formulation{Duty} ) where {Duty<:MathProg.AbstractFormDuty} # we use units in the read only mode, as relaxing integrality # is reverted before the end of the algorithm, # so the state of the formulation remains the same units_usage = Tuple{AbstractModel, UnitType, UnitPermission}[] push!(units_usage, (form, StaticVarConstrUnit, READ_ONLY)) if Duty <: MathProg.AbstractMasterDuty push!(units_usage, (form, MasterColumnsUnit, READ_ONLY)) push!(units_usage, (form, PartialSolutionUnit, READ_ONLY)) push!(units_usage, (form, MasterBranchConstrsUnit, READ_ONLY)) push!(units_usage, (form, MasterCutsUnit, READ_ONLY)) end return units_usage end function optimize_lp_form!(::SolveLpForm, optimizer, ::Formulation, ::OptimizationState) # fallback error("Cannot optimize LP formulation with optimizer of type ", typeof(optimizer), ".") end function optimize_lp_form!( algo::SolveLpForm, optimizer::MoiOptimizer, form::Formulation, result::OptimizationState ) moi_params = MoiOptimize( time_limit = 3600, # TODO: expose deactivate_artificial_vars = false, enforce_integrality = false, relax_integrality = algo.relax_integrality, get_dual_bound = algo.get_dual_bound, get_dual_solution = algo.get_dual_sol, silent = algo.silent ) optimize_with_moi!(optimizer, form, moi_params, result) return end function run!( algo::SolveLpForm, ::Env, form::Formulation, input::OptimizationState, optimizer_id::Int = 1 ) result = OptimizationState(form) TO.@timeit Coluna._to "SolveLpForm" begin if algo.relax_integrality relax_integrality!(form) end optimizer = getoptimizer(form, optimizer_id) optimize_lp_form!(algo, optimizer, form, result) primal_sols = get_primal_solutions(form, optimizer) coeff = getobjsense(form) == MinSense ? 1.0 : -1.0 if algo.get_dual_sol dual_sols = get_dual_solutions(form, optimizer) if length(dual_sols) > 0 lp_dual_sol_pos = argmax(coeff * getvalue.(dual_sols)) lp_dual_sol = dual_sols[lp_dual_sol_pos] set_lp_dual_sol!(result, lp_dual_sol) if algo.get_dual_bound db = DualBound(form, getvalue(lp_dual_sol)) set_lp_dual_bound!(result, db) end end end if length(primal_sols) > 0 lp_primal_sol_pos = argmin(coeff * getvalue.(primal_sols)) lp_primal_sol = primal_sols[lp_primal_sol_pos] add_lp_primal_sol!(result, lp_primal_sol) pb = PrimalBound(form, getvalue(lp_primal_sol)) set_lp_primal_bound!(result, pb) if algo.get_ip_primal_sol && isinteger(lp_primal_sol) && !contains(lp_primal_sol, varid -> isanArtificialDuty(getduty(varid))) add_ip_primal_sol!(result, lp_primal_sol) end end end # @timeit return result end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4198
################################################################################ # Parameters for each type of optimizer (subsolver). ################################################################################ """ MoiOptimize( time_limit = 600 deactivate_artificial_vars = false enforce_integrality = false get_dual_bound = true ) Configuration for an optimizer that calls a subsolver through MathOptInterface. Parameters: - `time_limit`: in seconds - `deactivate_artificial_vars`: deactivate all artificial variables of the formulation if equals `true` - `enforce_integrality`: enforce integer variables that are relaxed if equals `true` - `get_dual_bound`: store the dual objective value in the output if equals `true` """ @with_kw struct MoiOptimize time_limit::Int = 600 deactivate_artificial_vars::Bool = true enforce_integrality::Bool = true relax_integrality::Bool = false get_dual_bound::Bool = true get_dual_solution::Bool = false # Used in MOI integration tests. max_nb_ip_primal_sols::Int = 50 log_level::Int = 2 silent::Bool = true custom_parameters = Dict{String,Any}() end function _get_cur_optimizer_params(optimizer::MoiOptimizer, algo::MoiOptimize) moi_parameters = Dict{DataType, Any}() for param_type in [MOI.TimeLimitSec, MOI.Silent] moi_parameters[param_type] = MOI.get(optimizer.inner, param_type()) end raw_parameters = Dict{String, Any}() for name in Iterators.keys(algo.custom_parameters) raw_parameters[name] = MOI.get(optimizer.inner, MOI.RawOptimizerAttribute(name)) end return moi_parameters, raw_parameters end function _set_optimizer_params!(optimizer::MoiOptimizer, moi_parameters, raw_parameters) for (param_type, value) in moi_parameters MOI.set(optimizer.inner, param_type(), value) end for (param_name, value) in raw_parameters MOI.set(optimizer.inner, MOI.RawOptimizerAttribute(param_name), value) end return end function _termination_status!(result::OptimizationState, optimizer::MoiOptimizer) termination_status = MOI.get(getinner(optimizer), MOI.TerminationStatus()) coluna_termination_status = convert_status(termination_status) if coluna_termination_status == OPTIMAL if MOI.get(getinner(optimizer), MOI.ResultCount()) <= 0 msg = """ Termination status = $(termination_status) but no results. Please, open an issue at https://github.com/atoptima/Coluna.jl/issues """ error(msg) end end setterminationstatus!(result, coluna_termination_status) return end function optimize_with_moi!( optimizer::MoiOptimizer, form::Formulation, algo::MoiOptimize, result::OptimizationState ) # Get current parameter values that we are going to set. init_moi_params, init_raw_params = _get_cur_optimizer_params(optimizer, algo) # Set parameters. cur_moi_params = Dict( MOI.TimeLimitSec => algo.time_limit, MOI.Silent => algo.silent ) cur_raw_params = algo.custom_parameters _set_optimizer_params!(optimizer, cur_moi_params, cur_raw_params) # Synchronize the subsolver by transmitting all buffered formulation changes. sync_solver!(optimizer, form) nbvars = MOI.get(optimizer.inner, MOI.NumberOfVariables()) if nbvars <= 0 @warn "No variable in the formulation." end # Solve. MOI.optimize!(getinner(optimizer)) # Reset parameters. _set_optimizer_params!(optimizer, init_moi_params, init_raw_params) # Retrieve termination status from MOI and convert into Coluna termination status. _termination_status!(result, optimizer) return end """ UserOptimize( max_nb_ip_primal_sols = 50 ) Configuration for an optimizer that calls a pricing callback to solve the problem. Parameters: - `max_nb_ip_primal_sols`: maximum number of solutions returned by the callback kept """ @with_kw struct UserOptimize max_nb_ip_primal_sols::Int = 50 end """ CustomOptimize() Configuration for an optimizer that calls a custom solver to solve a custom model. """ struct CustomOptimize end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
24453
""" BendersContext(reformulation, algo_params) -> BendersContext Default implementation of the Benders algorithm. """ struct BendersContext <: Benders.AbstractBendersContext reform::Reformulation optim_sense restr_master_solve_alg restr_master_optimizer_id::Int nb_benders_iteration_limits::Int rhs_helper::RhsCalculationHelper second_stage_cost_var_ids::Vector{VarId} separation_solve_alg function BendersContext(reform, alg) return new( reform, getobjsense(reform), alg.restr_master_solve_alg, alg.restr_master_optimizer_id, alg.max_nb_iterations, RhsCalculationHelper(reform), _second_stage_cost_var_ids(reform), alg.separation_solve_alg ) end end function _second_stage_cost_var_ids(reform) var_ids = VarId[] for (_, sp) in get_benders_sep_sps(reform) id = sp.duty_data.second_stage_cost_var @assert !isnothing(id) push!(var_ids, id) end return var_ids end Benders.is_minimization(ctx::BendersContext) = ctx.optim_sense == MinSense Benders.get_reform(ctx::BendersContext) = ctx.reform Benders.get_master(ctx::BendersContext) = getmaster(ctx.reform) Benders.get_benders_subprobs(ctx::BendersContext) = get_benders_sep_sps(ctx.reform) _deactivate_art_vars(sp) = deactivate!(sp, vcid -> isanArtificialDuty(getduty(vcid))) _activate_art_vars(sp) = activate!(sp, vcid -> isanArtificialDuty(getduty(vcid))) function Benders.setup_reformulation!(reform::Reformulation, env) for (_, sp) in get_benders_sep_sps(reform) _deactivate_art_vars(sp) end return end """ Output of the default implementation of the `Benders.optimize_master_problem!` method. It contains: - `ip_solver`: `true` if the master problem is solved with a MIP solver and involves integral variables, `false` otherwise. - `result`: the result of the master problem optimization stored in an `OptimizationState` object. - `infeasible`: `true` if the master at the current iteration is infeasible; `false` otherwise. - `unbounded`: `true` if the master at the current iteration is unbounded; `false` otherwise. - `certificate`: `true` if the master at the current iteration is unbounded and if the current result is a dual infeasibility certificate, `false` otherwise. """ struct BendersMasterResult{F} ip_solver::Bool result::OptimizationState{F} infeasible::Bool unbounded::Bool certificate::Bool end Benders.is_unbounded(master_res::BendersMasterResult) = master_res.unbounded Benders.is_infeasible(master_res::BendersMasterResult) = master_res.infeasible Benders.is_certificate(master_res::BendersMasterResult) = master_res.certificate function Benders.get_primal_sol(master_res::BendersMasterResult) if master_res.ip_solver return get_best_ip_primal_sol(master_res.result) end return get_best_lp_primal_sol(master_res.result) end Benders.get_dual_sol(master_res::BendersMasterResult) = get_best_lp_dual_sol(master_res.result) Benders.get_obj_val(master_res::BendersMasterResult) = getvalue(Benders.get_primal_sol(master_res)) function _reset_second_stage_cost_var_inc_vals(ctx::BendersContext) for var_id in ctx.second_stage_cost_var_ids setcurincval!(Benders.get_master(ctx), var_id, 0.0) end return end function _update_second_stage_cost_var_inc_vals(ctx::BendersContext, master_res::BendersMasterResult) isnothing(Benders.get_primal_sol(master_res)) && return _reset_second_stage_cost_var_inc_vals(ctx) for (var_id, val) in Benders.get_primal_sol(master_res) setcurincval!(Benders.get_master(ctx), var_id, val) end return end function Benders.optimize_master_problem!(master, ctx::BendersContext, env) rm_input = OptimizationState(master) opt_state = run!(ctx.restr_master_solve_alg, env, master, rm_input, ctx.restr_master_optimizer_id) ip_solver = typeof(ctx.restr_master_solve_alg) <: SolveIpForm unbounded = getterminationstatus(opt_state) == UNBOUNDED infeasible = getterminationstatus(opt_state) == INFEASIBLE master_res = BendersMasterResult(ip_solver, opt_state, infeasible, unbounded, false) _update_second_stage_cost_var_inc_vals(ctx, master_res) return master_res end function Benders.treat_unbounded_master_problem_case!(master, ctx::BendersContext, env) mast_result = nothing ip_solver = typeof(ctx.restr_master_solve_alg) <: SolveIpForm # In the unbounded case, to get a dual infeasibility certificate, we need to relax the # integrality and solve the master again. (at least with GLPK & the current implementation of SolveIpForm) if ip_solver relax_integrality!(master) rm_input = OptimizationState(master) opt_state = run!(SolveLpForm(get_dual_sol = true), env, master, rm_input, ctx.restr_master_optimizer_id) enforce_integrality!(master) end # We can derive a cut from the extreme ray certificates = MathProg.get_dual_infeasibility_certificate(master, getoptimizer(master, ctx.restr_master_optimizer_id)) if length(certificates) > 0 opt_state = OptimizationState(master; ) set_ip_primal_sol!(opt_state, first(certificates)) set_lp_primal_sol!(opt_state, first(certificates)) mast_result = BendersMasterResult(ip_solver, opt_state, false, false, true) _update_second_stage_cost_var_inc_vals(ctx, mast_result) else # If there is no dual infeasibility certificate, we set the cost of the second stage # cost variable to zero and solve the master. # TODO: This trick can backfire on us if the optimizer finds the master unbounded # and does not return any dual infeasibility certificate for several consecutive iterations. # It this case, we can end up with the same first level solution over and over again # and probably be trapped in an infinite loop. # We can escape the infinite loop by implementing a cut duplication checker but the # algorithm won't exit gracefully. set_second_stage_var_costs_to_zero!(ctx) mast_result = Benders.optimize_master_problem!(master, ctx, env) reset_second_stage_var_costs!(ctx) end return mast_result end function set_second_stage_var_costs_to_zero!(ctx::BendersContext) master = Coluna.MathProg.getmaster(ctx.reform) vars = filter(varid -> getduty(varid) <= MasterBendSecondStageCostVar, keys(getvars(master))) for varid in vars setcurcost!(master, varid, 0.0) end return end function reset_second_stage_var_costs!(ctx::BendersContext) master = Coluna.MathProg.getmaster(ctx.reform) vars = filter(varid -> getduty(varid) <= MasterBendSecondStageCostVar, keys(getvars(master))) for varid in vars setcurcost!(master, varid, getperencost(master, varid)) end return end function Benders.update_sp_rhs!(ctx::BendersContext, sp, mast_primal_sol) spid = getuid(sp) peren_rhs = ctx.rhs_helper.rhs[spid] T = ctx.rhs_helper.T[spid] new_rhs = peren_rhs - T * mast_primal_sol for (constr_id, constr) in getconstrs(sp) if getduty(constr_id) <= BendSpTechnologicalConstr setcurrhs!(sp, constr_id, new_rhs[constr_id]) else setcurrhs!(sp, constr_id, getperenrhs(sp, constr_id)) end end for (var_id, var) in getvars(sp) setcurlb!(sp, var_id, getperenlb(sp, var_id)) setcurub!(sp, var_id, getperenub(sp, var_id)) end return end function Benders.setup_separation_for_unbounded_master_case!(ctx::BendersContext, sp, mast_primal_sol) spid = getuid(sp) T = ctx.rhs_helper.T[spid] new_rhs = T * mast_primal_sol for (constr_id, constr) in getconstrs(sp) if getduty(constr_id) <= BendSpTechnologicalConstr setcurrhs!(sp, constr_id, - new_rhs[constr_id]) else setcurrhs!(sp, constr_id, 0.0) end end for (var_id, var) in getvars(sp) if !(getduty(var_id) <= BendSpSecondStageArtVar) if getobjsense(sp) == MinSense setcurlb!(sp, var_id, 0.0) setcurub!(sp, var_id, Inf) else setcurlb!(sp, var_id, 0.0) setcurub!(sp, var_id, Inf) end end end return end """ Solution to the separation problem together with its corresponding benders cut. It contains: - `min_sense`: `true` if it's a minimization problem; `false` otherwise. - `lhs`: the left-hand side of the cut. - `rhs`: the right-hand side of the cut. - `dual_sol`: an optimal dual solution to the separation problem. """ struct GeneratedCut{F} min_sense::Bool lhs::Dict{VarId, Float64} rhs::Float64 dual_sol::DualSolution{F} end """ Stores a collection of cuts. It contains `cuts` a vector of `GeneratedCut` objects. """ struct CutsSet cuts::Vector{GeneratedCut} CutsSet() = new(GeneratedCut[]) end Base.iterate(set::CutsSet) = iterate(set.cuts) Base.iterate(set::CutsSet, state) = iterate(set.cuts, state) Benders.set_of_cuts(::BendersContext) = CutsSet() """ Primal solutions to the separation problems optimized at the current iteration. This is used to build a primal solution. It contains `sols` a vector of primal solutions. """ struct SepSolSet{F} sols::Vector{MathProg.PrimalSolution{F}} end SepSolSet{F}() where {F} = SepSolSet{F}(MathProg.PrimalSolution{F}[]) Benders.set_of_sep_sols(::BendersContext) = SepSolSet{MathProg.Formulation{MathProg.BendersSp}}() """ Output of the default implementation of the `Benders.optimize_separation_problem!` and `Benders.treat_infeasible_separation_problem_case!` methods. It contains: - `second_stage_estimation_in_master`: the value of the second stage cost variable in the solution to the master problem. - `second_stage_cost`: the value of the second stage cost variable in the solution to the separation problem. - `lp_primal_sol`: the primal solution to the separation problem. - `infeasible`: `true` if the current separation problem is infeasible; `false` otherwise. - `unbounded`: `true` if the current separation problem is unbounded; `false` otherwise. - `cut`: the cut generated by the separation problem. - `infeasible_treatment`: `true` if this object is an output of the `Benders.treat_infeasible_separation_problem_case!` method; `false` otherwise. - `unbounded_master`: `true` if the separation subproblem has the form of Lemma 2 to separate a cut to truncate an unbounded ray of the restricted master problem; `false` otherwise. """ struct BendersSeparationResult{F} second_stage_estimation_in_master::Float64 second_stage_cost::Union{Nothing,Float64} lp_primal_sol::Union{Nothing,MathProg.PrimalSolution{F}} infeasible::Bool unbounded::Bool cut::Union{Nothing,GeneratedCut{F}} infeasible_treatment::Bool unbounded_master::Bool end Benders.get_obj_val(res::BendersSeparationResult) = res.second_stage_cost Benders.get_primal_sol(res::BendersSeparationResult) = res.lp_primal_sol Benders.is_infeasible(res::BendersSeparationResult) = res.infeasible Benders.is_unbounded(res::BendersSeparationResult) = res.unbounded Benders.get_dual_sol(res::BendersSeparationResult) = res.cut.dual_sol ## original MIP: ## min cx + dy s.t. ## Ax >= b ## Tx + Qy >= r ## x, y >= 0, x ∈ Z^n ## master: ## min cx + η ## Ax >= B ## < benders cuts > ## SP: ## depends on master attributes (e.g. unbounded), x* fixed ## min dy ## Tx* + Qy >= r ## y >= 0 ## π: dual sol ## η: contribution to the objective of the second-level variables ## feasibility cut: πTx >= πr ## optimality cut: η + πTx >= πr ## Depending on the nature of the cut (feasibility of optimality cut), the left hand side of the cut is equal to either 0.η + πT.x or to 1.η + πT.x. In both cases we have to compute the coefficients behind x variables using the matrix T. The coefficients are stored in a dictionnary cut_lhs that matches each var id with its coefficient in the cut. ## second_stage_cost_var: id of the variable η representing the cost of the second stage variables ## T: the matrix which stores the coefficients of x variables in the current subproblem ## dual sol: the dual solution π of the current subproblem ## feasibility_cut: boolean set to true if the current cut is a feasibility cut, false otherwise function _compute_cut_lhs(ctx, sp, dual_sol, feasibility_cut) cut_lhs = Dict{VarId, Float64}() coeffs = transpose(ctx.rhs_helper.T[getuid(sp)]) * dual_sol ## πTx for (varid, coeff) in zip(findnz(coeffs)...) cut_lhs[varid] = coeff end if feasibility_cut cut_lhs[sp.duty_data.second_stage_cost_var] = 0.0 ## πTx (feasibility cut) else cut_lhs[sp.duty_data.second_stage_cost_var] = 1.0 ## η + πTx (optimality cut) end return cut_lhs end ## For both feasibility and optimality cuts, the right-hand side is given by πr with π the dual solution of the current sp and r the right-hand side of the sp linear constraints. However, in the implementation, the bounding constraints are considered separately from the other linear constraints. Thus, we add to πr the contribution of the bounding constraints to the right-hand side of our cut. function _compute_cut_rhs_contrib(ctx, sp, dual_sol) spid = getuid(sp) bounds_contrib_to_rhs = 0.0 ##init bounding constraints contribution to the right-hand side of the cut for (varid, (val, active_bound)) in get_var_redcosts(dual_sol) ##compute bounding constraints contribution ; val is the dual value of the bounding constraint, active_bound indicates whoever the bound is a LOWER or a UPPER bound if active_bound == MathProg.LOWER bounds_contrib_to_rhs += val * getperenlb(sp, varid) elseif active_bound == MathProg.UPPER bounds_contrib_to_rhs += val * getperenub(sp, varid) end end cut_rhs = transpose(dual_sol) * ctx.rhs_helper.rhs[spid] + bounds_contrib_to_rhs ## πr + bounding constraints contrib return cut_rhs end function Benders.optimize_separation_problem!(ctx::BendersContext, sp::Formulation{BendersSp}, env, unbounded_master) spid = getuid(sp) second_stage_cost_var = sp.duty_data.second_stage_cost_var @assert !isnothing(second_stage_cost_var) estimated_cost = getcurincval(Benders.get_master(ctx), second_stage_cost_var) input = OptimizationState(sp) opt_state = run!(ctx.separation_solve_alg, env, sp, input) if getterminationstatus(opt_state) == UNBOUNDED return BendersSeparationResult{Formulation{BendersSp}}(estimated_cost, nothing, get_best_lp_primal_sol(opt_state), false, true, nothing, false, unbounded_master) end if getterminationstatus(opt_state) == INFEASIBLE ## we then enter treat_infeasible_separation_problem_case! (phase 1) return BendersSeparationResult{Formulation{BendersSp}}(estimated_cost, nothing, get_best_lp_primal_sol(opt_state), true, false, nothing, false, unbounded_master) end ## create and add cuts to the result dual_sol = get_best_lp_dual_sol(opt_state) cost = getvalue(dual_sol) min_sense = Benders.is_minimization(ctx) cut_lhs = _compute_cut_lhs(ctx, sp, dual_sol, false) cut_rhs = _compute_cut_rhs_contrib(ctx, sp, dual_sol) cut = GeneratedCut(min_sense, cut_lhs, cut_rhs, dual_sol) return BendersSeparationResult(estimated_cost, cost, get_best_lp_primal_sol(opt_state), false, false, cut, false, unbounded_master) end function Benders.master_is_unbounded(ctx::BendersContext, second_stage_cost, unbounded_master_case) if !unbounded_master_case return false end estimated_cost = 0 for (spid, sp) in Benders.get_benders_subprobs(ctx) second_stage_cost_var = sp.duty_data.second_stage_cost_var estimated_cost += getcurincval(Benders.get_master(ctx), second_stage_cost_var) ## compute cost η considering ALL subproblems end min_sense = Benders.is_minimization(ctx) sc = min_sense ? 1.0 : - 1.0 return sc * second_stage_cost < sc * estimated_cost + 1e-5 end ## it is a phase 1: add artificial variables in order to find a feasible solution function Benders.treat_infeasible_separation_problem_case!(ctx::BendersContext, sp::Formulation{BendersSp}, env, unbounded_master_case) second_stage_cost_var = sp.duty_data.second_stage_cost_var @assert !isnothing(second_stage_cost_var) estimated_cost = getcurincval(Benders.get_master(ctx), second_stage_cost_var) for (varid, _) in getvars(sp) if !isanArtificialDuty(getduty(varid)) setcurcost!(sp, varid, 0.0) end end _activate_art_vars(sp) input = OptimizationState(sp) opt_state = run!(ctx.separation_solve_alg, env, sp, input) for (varid, _) in getvars(sp) if !isanArtificialDuty(getduty(varid)) setcurcost!(sp, varid, getperencost(sp, varid)) end end _deactivate_art_vars(sp) if getterminationstatus(opt_state) == INFEASIBLE error("A") # should not happen end dual_sol = get_best_lp_dual_sol(opt_state) cost = getvalue(dual_sol) min_sense = Benders.is_minimization(ctx) sc = min_sense ? 1.0 : - 1.0 if sc * cost <= 0 error("B") # should not happen end cut_lhs = _compute_cut_lhs(ctx, sp, dual_sol, true) cut_rhs = _compute_cut_rhs_contrib(ctx, sp, dual_sol) cut = GeneratedCut(min_sense, cut_lhs, cut_rhs, dual_sol) return BendersSeparationResult(estimated_cost, cost, get_best_lp_primal_sol(opt_state), false, false, cut, true, unbounded_master_case) end function Benders.push_in_set!(ctx::BendersContext, set::CutsSet, sep_result::BendersSeparationResult) if isnothing(sep_result.cut) return false end sc = Benders.is_minimization(ctx) ? 1.0 : -1.0 eq = abs(sep_result.second_stage_cost - sep_result.second_stage_estimation_in_master) < 1e-5 gt = sc * sep_result.second_stage_cost + 1e-5 > sc * sep_result.second_stage_estimation_in_master # if cost of separation result > second cost variable in master result if !eq && gt || sep_result.infeasible_treatment push!(set.cuts, sep_result.cut) return true end return false end function Benders.push_in_set!(ctx::BendersContext, set::SepSolSet, sep_result::BendersSeparationResult) push!(set.sols, Benders.get_primal_sol(sep_result)) end struct CutAlreadyInsertedBendersWarning cut_in_master::Bool cut_is_active::Bool cut_id::ConstrId master::Formulation{BendersMaster} subproblem::Formulation{BendersSp} end function Base.show(io::IO, err::CutAlreadyInsertedBendersWarning) msg = """ Unexpected constraint state during cut insertion. ====== Cut id: $(err.cut_id). The cut is in the master ? $(err.cut_in_master). The cut is active ? $(err.cut_is_active). ====== """ println(io, msg) end function Benders.insert_cuts!(reform, ctx::BendersContext, cuts) master = Benders.get_master(ctx) cuts_to_insert = GeneratedCut[] cut_ids_to_activate = Set{ConstrId}() for cut in cuts.cuts dual_sol = cut.dual_sol spform = getmodel(dual_sol) pool = get_dual_sol_pool(spform) cut_id = MathProg.get_from_pool(pool, dual_sol) if !isnothing(cut_id) if haskey(master, cut_id) && !iscuractive(master, cut_id) push!(cut_ids_to_activate, cut_id) else in_master = haskey(master, cut_id) is_active = iscuractive(master, cut_id) warning = CutAlreadyInsertedBendersWarning( in_master, is_active, cut_id, master, spform ) throw(warning) # TODO: parameter end else push!(cuts_to_insert, cut) end end nb_added_cuts = 0 nb_reactivated_cut = 0 # Then, we add the new cuts (i.e. not in the pool) cut_ids = ConstrId[] for cut in cuts_to_insert constr = setconstr!( master, "Benders", MasterBendCutConstr; rhs = cut.rhs, members = cut.lhs, sense = cut.min_sense ? Greater : Less, ) push!(cut_ids, getid(constr)) dual_sol = cut.dual_sol spform = getmodel(dual_sol) pool = get_dual_sol_pool(spform) # if store_in_sp_pool cut_id = ConstrId(getid(constr); duty = MasterBendCutConstr) MathProg.push_in_pool!(pool, dual_sol, cut_id, getvalue(dual_sol)) # end nb_added_cuts += 1 end # Finally, we reactivate the cuts that were already in the pool for cut_id in cut_ids_to_activate activate!(master, cut_id) push!(cut_ids, cut_id) nb_reactivated_cut += 1 end return cut_ids end function Benders.build_primal_solution(context::BendersContext, mast_primal_sol, sep_sp_sols) # Keep BendSpSepVar and MasterPureVar var_ids = VarId[] var_vals = Float64[] for (varid, val) in mast_primal_sol if getduty(varid) <= MasterPureVar push!(var_ids, varid) push!(var_vals, val) end end for sp_sol in sep_sp_sols.sols for (varid, val) in sp_sol #if getduty(varid) <= BendSpSepVar push!(var_ids, varid) push!(var_vals, val) #end end end return Coluna.PrimalSolution( Benders.get_master(context), # TODO: second stage vars does not belong to the master var_ids, var_vals, getvalue(mast_primal_sol), FEASIBLE_SOL ) end """ Output of the default implementation of an iteration of the Benders algorithm. It contains: - `min_sense`: the original problem is a minimization problem - `nb_new_cuts`: the number of new cuts added to the master problem - `ip_primal_sol`: the primal solution to the original problem found during this iteration - `infeasible`: the original problem is infeasible - `time_limit_reached`: the time limit was reached - `master`: the solution value to the master problem """ struct BendersIterationOutput <: Benders.AbstractBendersIterationOutput min_sense::Bool nb_new_cuts::Int ip_primal_sol::Union{Nothing,PrimalSolution} infeasible::Bool time_limit_reached::Bool master::Union{Nothing,Float64} end Benders.benders_iteration_output_type(ctx::BendersContext) = BendersIterationOutput function Benders.new_iteration_output( ::Type{BendersIterationOutput}, is_min_sense, nb_new_cuts, ip_primal_sol, infeasible, time_limit_reached, master_value ) if !isnothing(ip_primal_sol) && contains(ip_primal_sol, varid -> isanArtificialDuty(getduty(varid))) infeasible_subproblem = true end return BendersIterationOutput( is_min_sense, nb_new_cuts, ip_primal_sol, infeasible, time_limit_reached, master_value ) end """ Output of the default implementation of the Benders algorithm. It contains: - `infeasible`: the original problem is infeasible - `time_limit_reached`: the time limit was reached - `mlp`: the final bound obtained with the Benders cut algorithm - `ip_primal_sol`: the best primal solution to the original problem found by the Benders cut algorithm """ struct BendersOutput <: Benders.AbstractBendersOutput infeasible::Bool time_limit_reached::Bool mlp::Union{Nothing, Float64} ip_primal_sol::Union{Nothing,PrimalSolution} end Benders.benders_output_type(::BendersContext) = BendersOutput function Benders.new_output( ::Type{BendersOutput}, benders_iter_output::BendersIterationOutput ) return BendersOutput( benders_iter_output.infeasible, benders_iter_output.time_limit_reached, benders_iter_output.master, benders_iter_output.ip_primal_sol ) end Benders.stop_benders(::BendersContext, ::Nothing, benders_iteration) = false function Benders.stop_benders(ctx::BendersContext, benders_iteration_output::BendersIterationOutput, benders_iteration) return benders_iteration_output.infeasible || benders_iteration_output.time_limit_reached || benders_iteration_output.nb_new_cuts <= 0 || ctx.nb_benders_iteration_limits <= benders_iteration end function Benders.after_benders_iteration(::BendersContext, phase, env, iteration, benders_iter_output) return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
9257
""" BendersPrinterContext(reformulation, algo_params) -> BendersPrinterContext Creates a context to run the default implementation of the Benders algorithm together with a printer that prints information about the algorithm execution. """ mutable struct BendersPrinterContext inner::BendersContext sp_elapsed_time::Float64 mst_elapsed_time::Float64 print::Bool debug_mode::Bool debug_print_master::Bool debug_print_master_primal_solution::Bool debug_print_master_dual_solution::Bool debug_print_subproblem::Bool debug_print_subproblem_primal_solution::Bool debug_print_subproblem_dual_solution::Bool debug_print_generated_cuts::Bool end function BendersPrinterContext( reform, alg; print = false, debug_print_master = false, debug_print_master_primal_solution = false, debug_print_master_dual_solution = false, debug_print_subproblem = false, debug_print_subproblem_primal_solution = false, debug_print_subproblem_dual_solution = false, debug_print_generated_cuts = false, ) debug_mode = debug_print_master || debug_print_master_primal_solution || debug_print_subproblem || debug_print_subproblem_primal_solution || debug_print_subproblem_dual_solution || debug_print_generated_cuts return BendersPrinterContext( BendersContext(reform, alg), 0.0, 0.0, print, debug_mode, debug_print_master, debug_print_master_primal_solution, debug_print_master_dual_solution, debug_print_subproblem, debug_print_subproblem_primal_solution, debug_print_subproblem_dual_solution, debug_print_generated_cuts, ) end Benders.is_minimization(ctx::BendersPrinterContext) = Benders.is_minimization(ctx.inner) Benders.get_reform(ctx::BendersPrinterContext) = Benders.get_reform(ctx.inner) Benders.get_master(ctx::BendersPrinterContext) = Benders.get_master(ctx.inner) Benders.get_benders_subprobs(ctx::BendersPrinterContext) = Benders.get_benders_subprobs(ctx.inner) function Benders.optimize_master_problem!(master, ctx::BendersPrinterContext, env) if ctx.debug_print_master || ctx.debug_print_master_primal_solution || ctx.debug_print_master_dual_solution println(crayon"bold blue", repeat('-', 80), crayon"reset") end ctx.mst_elapsed_time = @elapsed begin result = Benders.optimize_master_problem!(master, ctx.inner, env) end if ctx.debug_print_master print(crayon"bold underline blue", "Master problem:", crayon"!bold !underline") @show master print(crayon"reset") end if ctx.debug_print_master_primal_solution print(crayon"bold underline blue", "Master primal solution:", crayon"!bold !underline") @show Benders.get_primal_sol(result) print(crayon"reset") end if ctx.debug_print_master_dual_solution print(crayon"bold underline blue", "Master dual solution:", crayon"!bold !underline") @show Benders.get_dual_sol(result) print(crayon"reset") end if ctx.debug_print_master || ctx.debug_print_master_primal_solution || ctx.debug_print_master_dual_solution println(crayon"bold blue", repeat('-', 80), crayon"reset") end return result end function Benders.treat_unbounded_master_problem_case!(master, ctx::BendersPrinterContext, env) result = Benders.treat_unbounded_master_problem_case!(master, ctx.inner, env) if ctx.debug_print_master || ctx.debug_print_master_primal_solution || ctx.debug_print_master_dual_solution println(crayon"bold blue", repeat('-', 80), crayon"reset") println(crayon"bold underline blue", "Treat unbounded master", crayon"reset") @show master print(crayon"bold underline blue", "Master primal solution:", crayon"!bold !underline") @show Benders.get_primal_sol(result) print(crayon"reset") println(crayon"bold blue", repeat('-', 80), crayon"reset") end return result end Benders.update_sp_rhs!(ctx::BendersPrinterContext, sp, primal_sol) = Benders.update_sp_rhs!(ctx.inner, sp, primal_sol) Benders.setup_separation_for_unbounded_master_case!(ctx::BendersPrinterContext, sp, primal_sol) = Benders.setup_separation_for_unbounded_master_case!(ctx.inner, sp, primal_sol) Benders.set_of_cuts(ctx::BendersPrinterContext) = Benders.set_of_cuts(ctx.inner) Benders.set_of_sep_sols(ctx::BendersPrinterContext) = Benders.set_of_sep_sols(ctx.inner) function Benders.optimize_separation_problem!(ctx::BendersPrinterContext, sp::Formulation{BendersSp}, env, unbounded_master) if ctx.debug_print_subproblem || ctx.debug_print_subproblem_primal_solution || ctx.debug_print_subproblem_dual_solution println(crayon"bold green", repeat('-', 80), crayon"reset") end if ctx.debug_print_subproblem print(crayon"bold underline green", "Separation problem (unbounded master = $unbounded_master):", crayon"!bold !underline") @show sp print(crayon"reset") end ctx.sp_elapsed_time = @elapsed begin result = Benders.optimize_separation_problem!(ctx.inner, sp, env, unbounded_master) end if ctx.debug_print_subproblem_primal_solution print(crayon"bold underline green", "Separation problem primal solution:", crayon"!bold !underline") @show Benders.get_primal_sol(result) print(crayon"reset") end if ctx.debug_print_subproblem_dual_solution print(crayon"bold underline green", "Separation problem dual solution:", crayon"!bold !underline") @show Benders.get_dual_sol(result) print(crayon"reset") end if ctx.debug_print_subproblem || ctx.debug_print_subproblem_primal_solution || ctx.debug_print_subproblem_dual_solution println(crayon"bold green", repeat('-', 80), crayon"reset") end return result end function Benders.treat_infeasible_separation_problem_case!(ctx::BendersPrinterContext, sp, env, unbounded_master_case) result = Benders.treat_infeasible_separation_problem_case!(ctx.inner, sp, env, unbounded_master_case) if ctx.debug_print_subproblem || ctx.debug_print_subproblem_primal_solution || ctx.debug_print_subproblem_dual_solution println(crayon"bold green", repeat('-', 80), crayon"reset") end if ctx.debug_print_subproblem print(crayon"bold underline green", "Phase 1 Separation problem (unbounded_master = $unbounded_master_case):", crayon"!bold !underline") @show sp print(crayon"reset") end ctx.sp_elapsed_time = @elapsed begin result = Benders.treat_infeasible_separation_problem_case!(ctx.inner, sp, env, unbounded_master_case) end if ctx.debug_print_subproblem_primal_solution print(crayon"bold underline green", "Separation problem primal solution:", crayon"!bold !underline") @show Benders.get_primal_sol(result) print(crayon"reset") end if ctx.debug_print_subproblem_dual_solution print(crayon"bold underline green", "Separation problem dual solution:", crayon"!bold !underline") @show Benders.get_dual_sol(result) print(crayon"reset") end if ctx.debug_print_subproblem || ctx.debug_print_subproblem_primal_solution || ctx.debug_print_subproblem_dual_solution println(crayon"bold green", repeat('-', 80), crayon"reset") end return result end Benders.push_in_set!(ctx::BendersPrinterContext, set, sep_result) = Benders.push_in_set!(ctx.inner, set, sep_result) function Benders.insert_cuts!(reform, ctx::BendersPrinterContext, cuts) cut_ids = Benders.insert_cuts!(reform, ctx.inner, cuts) end Benders.benders_iteration_output_type(ctx::BendersPrinterContext) = Benders.benders_iteration_output_type(ctx.inner) Benders.stop_benders(ctx::BendersPrinterContext, benders_iter_output, benders_iteration) = Benders.stop_benders(ctx.inner, benders_iter_output, benders_iteration) Benders.benders_output_type(ctx::BendersPrinterContext) = Benders.benders_output_type(ctx.inner) function _benders_iter_str(iteration, benders_iter_output, sp_time::Float64, mst_time::Float64, optim_time::Float64) master::Float64 = isnothing(benders_iter_output.master) ? NaN : benders_iter_output.master nb_new_cuts = benders_iter_output.nb_new_cuts return @sprintf( "<it=%3i> <et=%5.2f> <mst=%5.2f> <sp=%5.2f> <cuts=%2i> <master=%10.4f>", iteration, optim_time, mst_time, sp_time, nb_new_cuts, master ) end function Benders.after_benders_iteration(ctx::BendersPrinterContext, phase, env, iteration, benders_iter_output) println(_benders_iter_str(iteration, benders_iter_output, ctx.sp_elapsed_time, ctx.mst_elapsed_time, elapsed_optim_time(env))) if ctx.debug_mode println(crayon"bold red", repeat('-', 30), " end of iteration ", iteration, " ", repeat('-', 30), crayon"reset") end return end function Benders.build_primal_solution(context::BendersPrinterContext, mast_primal_sol, sep_sp_sols) return Benders.build_primal_solution(context.inner, mast_primal_sol, sep_sp_sols) end Benders.master_is_unbounded(ctx::BendersPrinterContext, second_stage_cost, unbounded_master_case) = Benders.master_is_unbounded(ctx.inner, second_stage_cost, unbounded_master_case)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1433
""" Precompute information to speed-up calculation of right-hand side of benders subproblems. We extract the following information from the subproblems: - `a` contains the perenial rhs of all subproblem constraints; - `A` is a submatrix of the subproblem coefficient matrix that involves only first stage variables. """ struct RhsCalculationHelper rhs::Dict{FormId, SparseVector{Float64,ConstrId}} T::Dict{FormId, DynamicSparseMatrix{ConstrId,VarId,Float64}} end function _add_subproblem!(rhs, T, spid, sp) @assert !haskey(rhs, spid) && !haskey(T, spid) constr_ids = ConstrId[] constr_rhs = Float64[] for (constr_id, constr) in getconstrs(sp) if iscuractive(sp, constr) && isexplicit(sp, constr) push!(constr_ids, constr_id) push!(constr_rhs, getperenrhs(sp, constr_id)) end end rhs[spid] = sparsevec(constr_ids, constr_rhs, Coluna.MAX_NB_ELEMS) T[spid] = _submatrix( sp, (_, constr_id, _) -> getduty(constr_id) <= BendSpTechnologicalConstr, (_, var_id, _) -> getduty(var_id) <= BendSpFirstStageRepVar ) return end function RhsCalculationHelper(reform) rhs = Dict{FormId, SparseVector{Float64,ConstrId}}() T = Dict{FormId, DynamicSparseMatrix{ConstrId,VarId,Float64}}() for (spid, sp) in get_benders_sep_sps(reform) _add_subproblem!(rhs, T, spid, sp) end return RhsCalculationHelper(rhs, T) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
12608
############################################################################################ # AbstractConquerInput implementation for the strong branching. ############################################################################################ "Conquer input object created by the strong branching algorithm." struct ConquerInputFromSb <: AbstractConquerInput global_primal_handler::GlobalPrimalBoundHandler children_candidate::SbNode children_units_to_restore::UnitsUsage end get_conquer_input_ip_dual_bound(i::ConquerInputFromSb) = get_ip_dual_bound(i.children_candidate.optstate) get_global_primal_handler(i::ConquerInputFromSb) = i.global_primal_handler get_node_depth(i::ConquerInputFromSb) = i.children_candidate.depth get_units_to_restore(i::ConquerInputFromSb) = i.children_units_to_restore ############################################################################################ # NoBranching ############################################################################################ """ Divide algorithm that does nothing. It does not generate any child. """ struct NoBranching <: AlgoAPI.AbstractDivideAlgorithm end function run!(::NoBranching, ::Env, reform::Reformulation, ::Branching.AbstractDivideInput) return DivideOutput([]) end ############################################################################################ # Branching API implementation for the (classic) branching ############################################################################################ """ ClassicBranching( selection_criterion = MostFractionalCriterion() rules = [Branching.PrioritisedBranchingRule(SingleVarBranchingRule(), 1.0, 1.0)] int_tol = 1e-6 ) Chooses the best candidate according to a selection criterion and generates the two children. **Parameters** - `selection_criterion`: selection criterion to choose the best candidate - `rules`: branching rules to generate the candidates - `int_tol`: tolerance to determine if a variable is integer It is implemented as a specific case of the strong branching algorithm. """ struct ClassicBranching <: AlgoAPI.AbstractDivideAlgorithm selection_criterion::Branching.AbstractSelectionCriterion rules::Vector{Branching.PrioritisedBranchingRule} int_tol::Float64 ClassicBranching(; selection_criterion = MostFractionalCriterion(), rules = [Branching.PrioritisedBranchingRule(SingleVarBranchingRule(), 1.0, 1.0)], int_tol = 1e-6 ) = new(selection_criterion, rules, int_tol) end struct BranchingContext{SelectionCriterion<:Branching.AbstractSelectionCriterion} <: Branching.AbstractBranchingContext selection_criterion::SelectionCriterion rules::Vector{Branching.PrioritisedBranchingRule} max_nb_candidates::Int int_tol::Float64 end branching_context_type(::ClassicBranching) = BranchingContext Branching.get_selection_nb_candidates(ctx::BranchingContext) = ctx.max_nb_candidates function new_context(::Type{<:BranchingContext}, algo::ClassicBranching, _) return BranchingContext(algo.selection_criterion, algo.rules, 1, algo.int_tol) end Branching.get_int_tol(ctx::BranchingContext) = ctx.int_tol Branching.get_selection_criterion(ctx::BranchingContext) = ctx.selection_criterion Branching.get_rules(ctx::BranchingContext) = ctx.rules function _has_identical_sps(master::Formulation{DwMaster}, reform::Reformulation) for (sp_id, sp) in get_dw_pricing_sps(reform) lm_constr_id = sp.duty_data.lower_multiplicity_constr_id um_constr_id = sp.duty_data.upper_multiplicity_constr_id lb = getcurrhs(master, lm_constr_id) ub = getcurrhs(master, um_constr_id) if ub > 1 return true end end return false end function _why_no_candidate(master::Formulation{DwMaster}, reform, input, extended_sol, original_sol) integer_orig_sol = isinteger(original_sol) integer_ext_sol = isinteger(extended_sol) identical_sp = _has_identical_sps(master, reform) if integer_orig_sol && !integer_ext_sol && identical_sp message = """ The solution to the master is not integral and the projection on the original variables is integral. Your reformulation involves subproblems with upper multiplicity greater than 1. Column generation algorithm could not create an integral solution to the master using the column generated. In order to generate columns that can lead to an integral solution, you may have to use a branching scheme that changes the structure of the subproblems. This is not provided by the default implementation of the branching algorithm in the current version of Coluna. """ @warn message end return nothing end function _why_no_candidate(::Formulation{BendersMaster}, reform, input, extended_sol, original_sol) return nothing end function Branching.why_no_candidate(reform::Reformulation, input, extended_sol, original_sol) master = getmaster(reform) return _why_no_candidate(master, reform, input, extended_sol, original_sol) end Branching.new_divide_output(children::Vector{SbNode}) = DivideOutput(children) Branching.new_divide_output(::Nothing) = DivideOutput(SbNode[]) ############################################################################################ # Branching API implementation for the strong branching ############################################################################################ """ BranchingPhase(max_nb_candidates, conquer_algo, score) Define a phase in strong branching. It contains the maximum number of candidates to evaluate, the conquer algorithm which does evaluation, and the score used to sort the candidates. """ struct BranchingPhase max_nb_candidates::Int64 conquer_algo::AbstractConquerAlgorithm score::Branching.AbstractBranchingScore end """ StrongBranching( phases = [], rules = [Branching.PrioritisedBranchingRule(SingleVarBranchingRule(), 1.0, 1.0)], selection_criterion = MostFractionalCriterion(), verbose = true, int_tol = 1e-6 ) The algorithm that performs a (multi-phase) (strong) branching in a tree search algorithm. Strong branching is a procedure that heuristically selects a branching constraint that potentially gives the best progress of the dual bound. The procedure selects a collection of branching candidates based on their branching rule and their score. Then, the procedure evaluates the progress of the dual bound in both branches of each branching candidate by solving both potential children using a conquer algorithm. The candidate that has the largest product of dual bound improvements in the branches is chosen to be the branching constraint. When the dual bound improvement produced by the branching constraint is difficult to compute (e.g. time-consuming in the context of column generation), one can let the branching algorithm quickly estimate the dual bound improvement of each candidate and retain the most promising branching candidates. This is called a **phase**. The goal is to first evaluate a large number of candidates with a very fast conquer algorithm and retain a certain number of promising ones. Then, over the phases, it evaluates the improvement with a more precise conquer algorithm and restrict the number of retained candidates until only one is left. **Parameters**: - `phases`: a vector of [`Coluna.Algorithm.BranchingPhase`](@ref) - `rules`: a vector of [`Coluna.Algorithm.Branching.PrioritisedBranchingRule`](@ref) - `selection_criterion`: a selection criterion to choose the initial candidates - `verbose`: if true, print the progress of the strong branching procedure - `int_tol`: tolerance to determine if a variable is integer """ struct StrongBranching <: AlgoAPI.AbstractDivideAlgorithm phases::Vector{BranchingPhase} rules::Vector{Branching.PrioritisedBranchingRule} selection_criterion::Branching.AbstractSelectionCriterion verbose::Bool int_tol::Float64 StrongBranching(; phases = [], rules = [], selection_criterion = MostFractionalCriterion(), verbose = true, int_tol = 1e-6 ) = new(phases, rules, selection_criterion, verbose, int_tol) end ## Implementation of Algorithm API. # StrongBranching does not use any storage unit itself, # therefore get_units_usage() is not defined for it function get_child_algorithms(algo::StrongBranching, reform::Reformulation) child_algos = Dict() for (i, phase) in enumerate(algo.phases) child_algos["phase$i"] = (phase.conquer_algo, reform) end for (i, prioritised_rule) in enumerate(algo.rules) child_algos["rule$i"] = (prioritised_rule.rule, reform) end return child_algos end # Implementation of the strong branching API. struct StrongBranchingPhaseContext <: Branching.AbstractStrongBrPhaseContext phase_params::BranchingPhase units_to_restore_for_conquer::UnitsUsage end Branching.get_score(ph::StrongBranchingPhaseContext) = ph.phase_params.score Branching.get_conquer(ph::StrongBranchingPhaseContext) = ph.phase_params.conquer_algo Branching.get_units_to_restore_for_conquer(ph::StrongBranchingPhaseContext) = ph.units_to_restore_for_conquer Branching.get_max_nb_candidates(ph::StrongBranchingPhaseContext) = ph.phase_params.max_nb_candidates function new_phase_context(::Type{StrongBranchingPhaseContext}, phase::BranchingPhase, reform, _) units_to_restore_for_conquer = collect_units_to_restore!(phase.conquer_algo, reform) return StrongBranchingPhaseContext(phase, units_to_restore_for_conquer) end struct StrongBranchingContext{ PhaseContext<:Branching.AbstractStrongBrPhaseContext, SelectionCriterion<:Branching.AbstractSelectionCriterion } <: Branching.AbstractStrongBrContext phases::Vector{PhaseContext} rules::Vector{Branching.PrioritisedBranchingRule} selection_criterion::SelectionCriterion int_tol::Float64 end Branching.get_selection_nb_candidates(ctx::StrongBranchingContext) = Branching.get_max_nb_candidates(first(ctx.phases)) Branching.get_rules(ctx::StrongBranchingContext) = ctx.rules Branching.get_selection_criterion(ctx::StrongBranchingContext) = ctx.selection_criterion Branching.get_int_tol(ctx::StrongBranchingContext) = ctx.int_tol Branching.get_phases(ctx::StrongBranchingContext) = ctx.phases function branching_context_type(algo::StrongBranching) select_crit_type = typeof(algo.selection_criterion) if algo.verbose return BranchingPrinter{StrongBranchingContext{PhasePrinter{StrongBranchingPhaseContext},select_crit_type}} end return StrongBranchingContext{StrongBranchingPhaseContext,select_crit_type} end function new_context( ::Type{StrongBranchingContext{PhaseContext, SelectionCriterion}}, algo::StrongBranching, reform ) where {PhaseContext<:Branching.AbstractStrongBrPhaseContext,SelectionCriterion<:Branching.AbstractSelectionCriterion} if isempty(algo.rules) error("Strong branching: no branching rule is defined.") end if isempty(algo.phases) error("Strong branching: no branching phase is defined.") end phases = map(((i, phase),) -> new_phase_context(PhaseContext, phase, reform, i), enumerate(algo.phases)) return StrongBranchingContext( phases, algo.rules, algo.selection_criterion, algo.int_tol ) end function Branching.eval_child_of_candidate!(child, phase::Branching.AbstractStrongBrPhaseContext, env, reform, input) child_state = OptimizationState(getmaster(reform)) child.conquer_output = child_state global_primal_handler = Branching.get_global_primal_handler(input) update_ip_primal_bound!(child_state, get_global_primal_bound(global_primal_handler)) if !ip_gap_closed(child_state) units_to_restore = Branching.get_units_to_restore_for_conquer(phase) restore_from_records!(units_to_restore, child.records) conquer_input = ConquerInputFromSb(global_primal_handler, child, units_to_restore) child.conquer_output = run!(Branching.get_conquer(phase), env, reform, conquer_input) child.ip_dual_bound = get_lp_dual_bound(child.conquer_output) for sol in get_ip_primal_sols(child.conquer_output) store_ip_primal_sol!(global_primal_handler, sol) end TreeSearch.set_records!(child, create_records(reform)) end # Store new primal solutions found during the evaluation of the child. for sol in get_ip_primal_sols(child_state) store_ip_primal_sol!(global_primal_handler, sol) end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1350
struct DivideOutput{N} <: Branching.AbstractDivideOutput children::Vector{N} end Branching.get_children(output::DivideOutput) = output.children function get_extended_sol(reform, opt_state) return get_best_lp_primal_sol(opt_state) end function get_original_sol(reform, opt_state) extended_sol = get_best_lp_primal_sol(opt_state) master = getmaster(reform) original_sol = nothing if !isnothing(extended_sol) original_sol = if MathProg.projection_is_possible(master) proj_cols_on_rep(extended_sol) else get_best_lp_primal_sol(opt_state) # it means original_sol equals extended_sol(requires discussion) end end return original_sol end function Branching.projection_on_master_is_possible(::Branching.AbstractDivideContext, reform) return MathProg.projection_is_possible(getmaster(reform)) end function run!(algo::AlgoAPI.AbstractDivideAlgorithm, env::Env, reform::Reformulation, input::Branching.AbstractDivideInput) ctx = new_context(branching_context_type(algo), algo, reform) conquer_opt_state = Branching.get_conquer_opt_state(input) extended_sol = get_extended_sol(reform, conquer_opt_state) original_sol = get_original_sol(reform, conquer_opt_state) return Branching.run_branching!(ctx, env, reform, input, extended_sol, original_sol) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2672
struct BranchingPrinter{StrongBrContext<:Branching.AbstractStrongBrContext} <: Branching.AbstractStrongBrContext inner::StrongBrContext end Branching.get_rules(ctx::BranchingPrinter) = Branching.get_rules(ctx.inner) Branching.get_int_tol(ctx::BranchingPrinter) = Branching.get_int_tol(ctx.inner) Branching.get_selection_criterion(ctx::BranchingPrinter) = Branching.get_selection_criterion(ctx.inner) Branching.get_selection_nb_candidates(ctx::BranchingPrinter) = Branching.get_selection_nb_candidates(ctx.inner) Branching.get_phases(ctx::BranchingPrinter) = Branching.get_phases(ctx.inner) struct PhasePrinter{PhaseContext<:Branching.AbstractStrongBrPhaseContext} <: Branching.AbstractStrongBrPhaseContext inner::PhaseContext phase_index::Int end Branching.get_max_nb_candidates(ctx::PhasePrinter) = Branching.get_max_nb_candidates(ctx.inner) Branching.get_score(ctx::PhasePrinter) = Branching.get_score(ctx.inner) function new_context( ::Type{BranchingPrinter{StrongBrContext}}, algo::AlgoAPI.AbstractDivideAlgorithm, reform ) where {StrongBrContext<:Branching.AbstractStrongBrContext} inner_ctx = new_context(StrongBrContext, algo, reform) return BranchingPrinter(inner_ctx) end function new_phase_context( ::Type{PhasePrinter{PhaseContext}}, phase, reform, phase_index ) where {PhaseContext<:Branching.AbstractStrongBrPhaseContext} inner_ctx = new_phase_context(PhaseContext, phase, reform, phase_index) return PhasePrinter(inner_ctx, phase_index) end function Branching.perform_branching_phase!(candidates, cand_children, phase::PhasePrinter, env, reform, input) println("**** Strong branching phase ", phase.phase_index, " is started *****"); scores = Branching.perform_branching_phase_inner!(cand_children, phase, env, reform, input) for (candidate, children, score) in Iterators.zip(candidates, cand_children, scores) @printf "SB phase %i branch on %+10s" phase.phase_index Branching.getdescription(candidate) @printf " (lhs=%.4f) : [" Branching.get_lhs(candidate) for (node_index, node) in enumerate(children) node_index > 1 && print(",") @printf "%10.4f" getvalue(get_lp_primal_bound(node.conquer_output)) end @printf "], score = %10.4f\n" score end return scores end Branching.eval_child_of_candidate!(node, phase::PhasePrinter, env, reform) = Branching.eval_child_of_candidate!(node, phase.inner, env, reform) Branching.get_units_to_restore_for_conquer(phase::PhasePrinter) = Branching.get_units_to_restore_for_conquer(phase.inner) Branching.get_conquer(phase::PhasePrinter) = Branching.get_conquer(phase.inner)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1277
### WIP ### Node for the strong branching (Goal: decouple strong branching from tree search) ### TODO: transform into a very light node dedicated to the strong branching algorithm. ### This light node will contain information to generate the real node of the tree search. mutable struct SbNode <: TreeSearch.AbstractNode depth::Int # Receives the current incumbent primal bound of the B&B tree and will be updated using # the output of the conquer algorithms called by the strong branching. # There information are printed by the StrongBranchingPrinter. # These information will be then transfered to the B&B algorithm when instantating the # node of the tree search. conquer_output::Union{Nothing, OptimizationState} branchdescription::String ip_dual_bound::Bound records::Records function SbNode( depth, branch_description::String, ip_dual_bound::Bound, records::Records ) return new(depth, nothing, branch_description, ip_dual_bound, records) end end getdepth(n::SbNode) = n.depth TreeSearch.set_records!(n::SbNode, records) = n.records = records TreeSearch.get_branch_description(n::SbNode) = n.branchdescription TreeSearch.isroot(n::SbNode) = false Branching.isroot(n::SbNode) = TreeSearch.isroot(n)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4356
struct ProductScore <: Branching.AbstractBranchingScore end function Branching.compute_score(::ProductScore, children, input) parent = Branching.get_conquer_opt_state(input) parent_lp_dual_bound = get_lp_dual_bound(parent) parent_ip_primal_bound = get_ip_primal_bound(parent) children_lp_primal_bounds = get_lp_primal_bound.(getfield.(children, Ref(:conquer_output))) return _product_score(parent_lp_dual_bound, parent_ip_primal_bound, children_lp_primal_bounds) end struct TreeDepthScore <: Branching.AbstractBranchingScore end function Branching.compute_score(::TreeDepthScore, children, input) parent = Branching.get_conquer_opt_state(input) parent_lp_dual_bound = get_lp_dual_bound(parent) parent_ip_primal_bound = get_ip_primal_bound(parent) children_lp_primal_bounds = get_lp_primal_bound.(getfield.(children, :conquer_output)) return _tree_depth_score(parent_lp_dual_bound, parent_ip_primal_bound, children_lp_primal_bounds) end # TODO : this method needs code documentation & context # TODO : unit tests function _product_score( parent_lp_dual_bound, parent_ip_primal_bound, children_lp_primal_bounds::Vector ) # TO DO : we need to mesure the gap to the cut-off value parent_delta = ColunaBase.diff(parent_ip_primal_bound, parent_lp_dual_bound) all_branches_above_delta = true deltas = zeros(Float64, length(children_lp_primal_bounds)) for (i, child_lp_primal_bound) in enumerate(children_lp_primal_bounds) node_delta = ColunaBase.diff(child_lp_primal_bound, parent_lp_dual_bound) if node_delta < parent_delta all_branches_above_delta = false end deltas[i] = node_delta end score = 1.0 if isempty(deltas) score = parent_delta * parent_delta elseif length(deltas) == 1 score = parent_delta else sort!(deltas) for (delta_index, node_delta) in enumerate(deltas) if node_delta > parent_delta && (!all_branches_above_delta || delta_index > 2) node_delta = parent_delta end node_delta = max(node_delta, 1e-6) # TO DO : use tolerance here if (delta_index <= 2) score *= node_delta else score *= node_delta / parent_delta end end end return score end # TODO : this method needs code documentation & context # TODO ; unit tests function _number_of_leaves(gap::Float64, deltas::Vector{Float64}) inf::Float64 = 0.0 sup::Float64 = 1e20 mid::Float64 = 0.0 for _ in 1:100 mid = (inf + sup) / 2.0 if sup - inf < sup / 1000000 break end exp::Float64 = 0.0 for delta in deltas exp += mid^(-delta / gap) end if exp < 1.0 sup = mid else inf = mid end if mid > 0.999e20 return -1 end end return mid end # TODO : this method needs code documentation & context # TODO : this method needs unit tests function _tree_depth_score( parent_lp_dual_bound, parent_ip_primal_bound, children_lp_primal_bounds ) nb_children = length(children_lp_primal_bounds) if iszero(nb_children) return 0.0 end # TO DO : we need to mesure the gap to the cut-off value parent_delta = ColunaBase.diff(parent_ip_primal_bound, parent_lp_dual_bound) deltas = zeros(Float64, nb_children) nb_zero_deltas = 0 for (i, child_lp_primal_bound) in enumerate(children_lp_primal_bounds) node_delta = ColunaBase.diff(child_lp_primal_bound, parent_lp_dual_bound) if node_delta < 1e-6 # TO DO : use tolerance here nb_zero_deltas += 1 end deltas[i] = min(parent_delta, node_delta) end max_delta = maximum(deltas) if nb_zero_deltas < length(deltas) && parent_delta > max_delta * 30 parent_delta = max_delta * 30 end score = 0.0 if nb_zero_deltas == length(deltas) score = -Inf elseif length(deltas) == 1 score = -parent_delta / deltas[1] else numleaves = _number_of_leaves(parent_delta, deltas) if numleaves < 0 score = -Inf else score = -log(numleaves) / log(length(deltas)) end end return score end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2161
# Criterion 1 """ Select the branching candidates that have been generated first (sort by `local_id`). """ struct FirstFoundCriterion <: Branching.AbstractSelectionCriterion end function Branching.select_candidates!( candidates::Vector{C}, ::FirstFoundCriterion, max_nb_candidates::Int ) where {C <: Branching.AbstractBranchingCandidate} sort!(candidates, by = c -> Branching.get_local_id(c)) if length(candidates) > max_nb_candidates resize!(candidates, max_nb_candidates) end return candidates end # Criterion 2 """ Select the most fractional branching candidates. """ struct MostFractionalCriterion <: Branching.AbstractSelectionCriterion end function Branching.select_candidates!( candidates::Vector{C}, ::MostFractionalCriterion, max_nb_candidates::Int ) where {C <: Branching.AbstractBranchingCandidate} sort!(candidates, rev = true, by = c -> dist_to_int(Branching.get_lhs(c))) if length(candidates) > max_nb_candidates resize!(candidates, max_nb_candidates) end return candidates end # Criterion 3 """ Select the least fractional branching candidates """ struct LeastFractionalCriterion <: Branching.AbstractSelectionCriterion end function Branching.select_candidates!( candidates::Vector{C}, ::LeastFractionalCriterion, max_nb_candidates::Int ) where {C <: Branching.AbstractBranchingCandidate} sort!(candidates, by = c -> dist_to_int(Branching.get_lhs(c))) if length(candidates) > max_nb_candidates resize!(candidates, max_nb_candidates) end return candidates end # Criterion 4 """ Select the candidate with the smallest distance to the closest non-zero integer (often used in diving). """ struct ClosestToNonZeroIntegerCriterion <: Branching.AbstractSelectionCriterion end function Branching.select_candidates!( candidates::Vector{C}, ::ClosestToNonZeroIntegerCriterion, max_nb_candidates::Int ) where {C <: Branching.AbstractBranchingCandidate} sort!(candidates, by = c -> dist_to_non_zero_int(Branching.get_lhs(c))) if length(candidates) > max_nb_candidates resize!(candidates, max_nb_candidates) end return candidates end
Coluna
https://github.com/atoptima/Coluna.jl.git