licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5336
############################################################################################ # SingleVarBranchingCandidate ############################################################################################ """ SingleVarBranchingCandidate It is an implementation of AbstractBranchingCandidate. This is the type of branching candidates produced by the branching rule `SingleVarBranchingRule`. """ mutable struct SingleVarBranchingCandidate <: Branching.AbstractBranchingCandidate varname::String varid::VarId local_id::Int64 lhs::Float64 function SingleVarBranchingCandidate( varname::String, varid::VarId, local_id::Int64, lhs::Float64 ) return new(varname, varid, local_id, lhs) end end Branching.getdescription(candidate::SingleVarBranchingCandidate) = candidate.varname Branching.get_lhs(candidate::SingleVarBranchingCandidate) = candidate.lhs Branching.get_local_id(candidate::SingleVarBranchingCandidate) = candidate.local_id function get_branching_candidate_units_usage(::SingleVarBranchingCandidate, reform) units_to_restore = UnitsUsage() master = getmaster(reform) push!(units_to_restore.units_used, (master, MasterBranchConstrsUnit)) return units_to_restore end function Branching.generate_children!( ctx, candidate::SingleVarBranchingCandidate, env::Env, reform::Reformulation, input ) master = getmaster(reform) lhs = Branching.get_lhs(candidate) @logmsg LogLevel(-1) string( "Chosen branching variable : ", getname(master, candidate.varid), " with value ", lhs, "." ) units_to_restore = get_branching_candidate_units_usage(candidate, reform) d = Branching.get_parent_depth(input) parent_ip_dual_bound = get_ip_dual_bound(Branching.get_conquer_opt_state(input)) # adding the first branching constraints restore_from_records!(units_to_restore, Branching.parent_records(input)) setconstr!( master, string("branch_geq_", d, "_", getname(master,candidate.varid)), MasterBranchOnOrigVarConstr; sense = Greater, rhs = ceil(lhs), loc_art_var_abs_cost = env.params.local_art_var_cost, members = Dict{VarId,Float64}(candidate.varid => 1.0) ) child1description = candidate.varname * ">=" * string(ceil(lhs)) child1 = SbNode(d+1, child1description, parent_ip_dual_bound, create_records(reform)) # adding the second branching constraints restore_from_records!(units_to_restore, Branching.parent_records(input)) setconstr!( master, string("branch_leq_", d, "_", getname(master,candidate.varid)), MasterBranchOnOrigVarConstr; sense = Less, rhs = floor(lhs), loc_art_var_abs_cost = env.params.local_art_var_cost, members = Dict{VarId,Float64}(candidate.varid => 1.0) ) child2description = candidate.varname * "<=" * string(floor(lhs)) child2 = SbNode(d+1, child2description, parent_ip_dual_bound, create_records(reform)) return [child1, child2] end ############################################################################################ # SingleVarBranchingRule ############################################################################################ """ SingleVarBranchingRule This branching rule allows the divide algorithm to branch on single integer variables. For instance, `SingleVarBranchingRule` can produce the branching `x <= 2` and `x >= 3` where `x` is a scalar integer variable. """ struct SingleVarBranchingRule <: Branching.AbstractBranchingRule end # SingleVarBranchingRule does not have child algorithms function get_units_usage(::SingleVarBranchingRule, reform::Reformulation) return [(getmaster(reform), MasterBranchConstrsUnit, READ_AND_WRITE)] end # TODO : unit tests (especially branching priority). function Branching.apply_branching_rule(::SingleVarBranchingRule, env::Env, reform::Reformulation, input::Branching.BranchingRuleInput) # Single variable branching works only for the original solution. if !input.isoriginalsol return SingleVarBranchingCandidate[] end master = getmaster(reform) @assert !isnothing(input.solution) # We do not consider continuous variables and variables with integer value in the # current solution as branching candidates. candidate_vars = Iterators.filter( ((var_id, val),) -> !is_cont_var(master, var_id) && !is_int_val(val, input.int_tol), input.solution ) max_priority = mapreduce( ((var_id, _),) -> getbranchingpriority(master, var_id), max, candidate_vars; init = -Inf ) if max_priority == -Inf return SingleVarBranchingCandidate[] end # We select all the variables that have the maximum branching prority. candidates = reduce( candidate_vars; init = SingleVarBranchingCandidate[] ) do collection, (var_id, val) br_priority = getbranchingpriority(master, var_id) if br_priority == max_priority name = getname(master, var_id) local_id = input.local_id + length(collection) + 1 candidate = SingleVarBranchingCandidate(name, var_id, local_id, val) push!(collection, candidate) end return collection end return candidates end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
38735
""" ColGenContext(reformulation, algo_params) -> ColGenContext Creates a context to run the default implementation of the column generation algorithm. """ mutable struct ColGenContext <: ColGen.AbstractColGenContext reform::Reformulation optim_sense # TODO: type current_ip_primal_bound # TODO: type restr_master_solve_alg # TODO: type restr_master_optimizer_id::Int stages_pricing_solver_ids::Vector{Int} strict_integrality_check::Bool reduced_cost_helper::ReducedCostsCalculationHelper subgradient_helper::SubgradientCalculationHelper sp_var_redcosts::Union{Nothing,Any} # TODO: type show_column_already_inserted_warning::Bool throw_column_already_inserted_warning::Bool nb_colgen_iteration_limit::Int opt_rtol::Float64 opt_atol::Float64 incumbent_primal_solution::Union{Nothing,PrimalSolution} # stabilization stabilization::Bool self_adjusting_α::Bool init_α::Float64 function ColGenContext(reform, alg) rch = ReducedCostsCalculationHelper(getmaster(reform)) sh = SubgradientCalculationHelper(getmaster(reform)) stabilization, self_adjusting_α, init_α = _stabilization_info(alg) return new( reform, getobjsense(reform), 0.0, alg.restr_master_solve_alg, alg.restr_master_optimizer_id, alg.stages_pricing_solver_ids, alg.strict_integrality_check, rch, sh, nothing, alg.show_column_already_inserted_warning, alg.throw_column_already_inserted_warning, alg.max_nb_iterations, alg.opt_rtol, alg.opt_atol, nothing, stabilization, self_adjusting_α, init_α ) end end function _stabilization_info(alg) s = alg.smoothing_stabilization if s > 0.0 automatic = s == 1 return true, automatic, automatic ? 0.5 : s end return false, false, 0.0 end subgradient_helper(ctx::ColGenContext) = ctx.subgradient_helper ColGen.get_reform(ctx::ColGenContext) = ctx.reform ColGen.get_master(ctx::ColGenContext) = getmaster(ctx.reform) ColGen.is_minimization(ctx::ColGenContext) = getobjsense(ctx.reform) == MinSense ColGen.get_pricing_subprobs(ctx::ColGenContext) = get_dw_pricing_sps(ctx.reform) # ColGen.setup_stabilization!(ctx, master) = ColGenStab(master) function ColGen.setup_stabilization!(ctx::ColGenContext, master) if ctx.stabilization return ColGenStab(master, ctx.self_adjusting_α, ctx.init_α) end return NoColGenStab() end "Output of the default implementation of a phase of the column generation algorithm." struct ColGenPhaseOutput <: ColGen.AbstractColGenPhaseOutput master_lp_primal_sol::Union{Nothing,PrimalSolution} master_ip_primal_sol::Union{Nothing,PrimalSolution} master_lp_dual_sol::Union{Nothing,DualSolution} ipb::Union{Nothing,Float64} mlp::Union{Nothing,Float64} db::Union{Nothing,Float64} new_cut_in_master::Bool no_more_columns::Bool infeasible::Bool exact_stage::Bool time_limit_reached::Bool nb_iterations::Int min_sense::Bool end "Output of the default implementation of the column generation algorithm." struct ColGenOutput <: ColGen.AbstractColGenOutput master_lp_primal_sol::Union{Nothing,PrimalSolution} master_ip_primal_sol::Union{Nothing,PrimalSolution} master_lp_dual_sol::Union{Nothing,DualSolution} ipb::Union{Nothing,Float64} mlp::Union{Nothing,Float64} db::Union{Nothing,Float64} infeasible::Bool end function ColGen.new_output(::Type{<:ColGenOutput}, output::ColGenPhaseOutput) return ColGenOutput( output.master_lp_primal_sol, output.master_ip_primal_sol, output.master_lp_dual_sol, output.ipb, output.mlp, output.db, output.infeasible ) end ColGen.colgen_output_type(::ColGenContext) = ColGenOutput ColGen.stop_colgen(::ColGenContext, ::Nothing) = false function ColGen.stop_colgen(ctx::ColGenContext, output::ColGenPhaseOutput) return output.infeasible || output.time_limit_reached || output.nb_iterations >= ctx.nb_colgen_iteration_limit end ColGen.is_infeasible(output::ColGenOutput) = output.infeasible ColGen.get_master_ip_primal_sol(output::ColGenOutput) = output.master_ip_primal_sol ColGen.get_master_lp_primal_sol(output::ColGenOutput) = output.master_lp_primal_sol ColGen.get_master_dual_sol(output::ColGenOutput) = output.master_lp_dual_sol ColGen.get_dual_bound(output::ColGenOutput) = output.db ColGen.get_master_lp_primal_bound(output::ColGenOutput) = output.mlp function ColGen.is_better_dual_bound(ctx::ColGenContext, new_dual_bound, dual_bound) sc = ColGen.is_minimization(ctx) ? 1 : -1 return sc * new_dual_bound > sc * dual_bound end ############################################################################### # Sequence of phases ############################################################################### """ Type for the default implementation of the sequence of phases. """ struct ColunaColGenPhaseIterator <: ColGen.AbstractColGenPhaseIterator end ColGen.new_phase_iterator(::ColGenContext) = ColunaColGenPhaseIterator() """ Phase 1 sets the cost of variables to 0 except for artifical variables. The goal is to find a solution to the master LP problem that has no artificial variables. """ struct ColGenPhase1 <: ColGen.AbstractColGenPhase end """ Phase 2 solves the master LP without artificial variables. To start, it requires a set of columns that forms a feasible solution to the LP master. This set is found with phase 1. """ struct ColGenPhase2 <: ColGen.AbstractColGenPhase end """ Phase 0 is a mix of phase 1 and phase 2. It sets a very large cost to artifical variables to force them to be removed from the master LP solution. If the final master LP solution contains artifical variables either the master is infeasible or the cost of artificial variables is not large enough. Phase 1 must be run. """ struct ColGenPhase0 <: ColGen.AbstractColGenPhase end """ Thrown when the phase ended with an unexpected output. The algorithm cannot continue because theory is not verified. """ struct UnexpectedEndOfColGenPhase end # Implementation of ColGenPhase interface ## Implementation of `initial_phase`. ColGen.initial_phase(::ColunaColGenPhaseIterator) = ColGenPhase0() function colgen_mast_lp_sol_has_art_vars(output::ColGenPhaseOutput) master_lp_primal_sol = output.master_lp_primal_sol if isnothing(master_lp_primal_sol) return false end return contains(master_lp_primal_sol, varid -> isanArtificialDuty(getduty(varid))) end colgen_master_has_new_cuts(output::ColGenPhaseOutput) = output.new_cut_in_master colgen_uses_exact_stage(output::ColGenPhaseOutput) = output.exact_stage function colgen_has_converged(output::ColGenPhaseOutput) # Check if master LP and dual bound converged. db_mlp = !isnothing(output.mlp) && !isnothing(output.db) && ( abs(output.mlp - output.db) < 1e-5 || (output.min_sense && output.db >= output.mlp) || (!output.min_sense && output.db <= output.mlp) ) # Check is global IP bound and dual bound converged. db_ipb = !isnothing(output.ipb) && !isnothing(output.db) && ( abs(output.ipb - output.db) < 1e-5 || (output.min_sense && output.db >= output.ipb) || (!output.min_sense && output.db <= output.ipb) ) return db_mlp || db_ipb end colgen_has_no_new_cols(output::ColGenPhaseOutput) = output.no_more_columns ## Implementation of `next_phase`. function ColGen.next_phase(::ColunaColGenPhaseIterator, ::ColGenPhase1, output::ColGen.AbstractColGenPhaseOutput) if colgen_mast_lp_sol_has_art_vars(output) && colgen_has_converged(output) && colgen_uses_exact_stage(output) return nothing # infeasible end # If the master lp solution still has artificial variables, we restart the phase. # If there is a new essential cut in the master, we restart the phase. if colgen_mast_lp_sol_has_art_vars(output) || colgen_master_has_new_cuts(output) return ColGenPhase1() end return ColGenPhase2() end function ColGen.next_phase(::ColunaColGenPhaseIterator, ::ColGenPhase2, output::ColGen.AbstractColGenPhaseOutput) if colgen_mast_lp_sol_has_art_vars(output) # No artificial variables in formulation for phase 2, so this case is impossible. throw(UnexpectedEndOfColGenPhase()) end # If we converged using exact stage and there is no new cut in the master, column generation is done. if !colgen_master_has_new_cuts(output) && colgen_has_converged(output) && colgen_uses_exact_stage(output) return nothing end # If there is a new essential cut in the master, we go the phase 1 to prevent infeasibility. if colgen_master_has_new_cuts(output) return ColGenPhase1() end return ColGenPhase2() end function ColGen.next_phase(::ColunaColGenPhaseIterator, ::ColGenPhase0, output::ColGen.AbstractColGenPhaseOutput) # Column generation converged. if !colgen_mast_lp_sol_has_art_vars(output) && !colgen_master_has_new_cuts(output) && colgen_has_converged(output) && colgen_uses_exact_stage(output) return nothing end # If the master lp solution still has artificial variables, we start pahse 1. if colgen_mast_lp_sol_has_art_vars(output) && !colgen_master_has_new_cuts(output) && colgen_uses_exact_stage(output) return ColGenPhase1() end return ColGenPhase0() end # Implementatation of `setup_reformulation!` ## Phase 1 => non-artifical variables have cost equal to 0 function ColGen.setup_reformulation!(reform, ::ColGenPhase1) master = getmaster(reform) for (varid, _) in getvars(master) if !isanArtificialDuty(getduty(varid)) setcurcost!(master, varid, 0.0) end end return end ## Phase 2 => deactivate artifical variables and make sure that the cost of non-artifical ## variables is correct. function ColGen.setup_reformulation!(reform, ::ColGenPhase2) master = getmaster(reform) for (varid, var) in getvars(master) if isanArtificialDuty(getduty(varid)) deactivate!(master, varid) else setcurcost!(master, varid, getperencost(master, var)) end end return end ## Phase 0 => make sure artifical variables are active and cost is correct. function ColGen.setup_reformulation!(reform, ::ColGenPhase0) master = getmaster(reform) for (varid, var) in getvars(master) if isanArtificialDuty(getduty(varid)) activate!(master, varid) end setcurcost!(master, varid, getperencost(master, var)) end return end function ColGen.setup_context!(ctx::ColGenContext, phase::ColGen.AbstractColGenPhase) ctx.reduced_cost_helper = ReducedCostsCalculationHelper(ColGen.get_master(ctx)) return end ############################################################################### # Column generation stages ############################################################################### """ Default implementation of the column generation stages works as follows. Consider a set {A,B,C} of subproblems each of them associated to the following sets of pricing solvers: {a1, a2, a3}, {b1, b2}, {c1, c2, c3, c4}. Pricing solvers a1, b1, c1 are exact solvers; others are heuristic. The column generation algorithm will run the following stages: - stage 4 with pricing solvers {a3, b2, c4} - stage 3 with pricing solvers {a2, b1, c3} - stage 2 with pricing solvers {a1, b1, c2} - stage 1 with pricing solvers {a1, b1, c1} (exact stage) Column generation moves from one stage to another when all solvers find no column. """ struct ColGenStageIterator <: ColGen.AbstractColGenStageIterator nb_stages::Int optimizers_per_pricing_prob::Dict{FormId, Vector{Int}} end struct ColGenStage <: ColGen.AbstractColGenStage current_stage::Int cur_optimizers_id_per_pricing_prob::Dict{FormId, Int} end ColGen.stage_id(stage::ColGenStage) = stage.current_stage ColGen.is_exact_stage(stage::ColGenStage) = ColGen.stage_id(stage) == 1 ColGen.get_pricing_subprob_optimizer(stage::ColGenStage, form) = stage.cur_optimizers_id_per_pricing_prob[getuid(form)] function ColGen.new_stage_iterator(ctx::ColGenContext) # TODO: At the moment, the optimizer id defined at each stage stage applies to all # pricing subproblems. In the future, we would like to have a different optimizer id # for each pricing subproblem but we need to change the user interface. A solution would # be to allow the user to retrieve the "future id" of the subproblem from BlockDecomposition. # Another solution would be to allow the user to mark the solvers in `specify`. optimizers = Dict( form_id => ctx.stages_pricing_solver_ids ∩ collect(1:length(getoptimizers(form))) for (form_id, form) in ColGen.get_pricing_subprobs(ctx) ) nb_stages = maximum(length.(values(optimizers))) return ColGenStageIterator(nb_stages, optimizers) end function ColGen.initial_stage(it::ColGenStageIterator) first_stage = maximum(length.(values(it.optimizers_per_pricing_prob))) optimizers_id_per_pricing_prob = Dict{FormId, Int}( form_id => last(optimizer_ids) for (form_id, optimizer_ids) in it.optimizers_per_pricing_prob ) return ColGenStage(first_stage, optimizers_id_per_pricing_prob) end function ColGen.decrease_stage(it::ColGenStageIterator, cur_stage::ColGenStage) if ColGen.is_exact_stage(cur_stage) return nothing end new_stage_id = ColGen.stage_id(cur_stage) - 1 optimizers_id_per_pricing_prob = Dict( form_id => pricing_solver_ids[max(1, (new_stage_id - it.nb_stages + length(pricing_solver_ids)))] for (form_id, pricing_solver_ids) in it.optimizers_per_pricing_prob ) return ColGenStage(new_stage_id, optimizers_id_per_pricing_prob) end function ColGen.next_stage(it::ColGenStageIterator, cur_stage::ColGenStage, output) if colgen_master_has_new_cuts(output) return ColGen.initial_stage(it) end if colgen_has_no_new_cols(output) && !colgen_has_converged(output) return ColGen.decrease_stage(it, cur_stage) end return cur_stage end ############################################################################### # Master resolution ############################################################################### """ Output of the `ColGen.optimize_master_lp_problem!` method. Contains `result`, an `OptimizationState` object that is the output of the `SolveLpForm` algorithm called to optimize the master LP problem. """ struct ColGenMasterResult{F} result::OptimizationState{F} end # TODO: not type stable !! function ColGen.optimize_master_lp_problem!(master, ctx::ColGenContext, env) rm_input = OptimizationState(master, ip_primal_bound=ctx.current_ip_primal_bound) opt_state = run!(ctx.restr_master_solve_alg, env, master, rm_input, ctx.restr_master_optimizer_id) return ColGenMasterResult(opt_state) end function ColGen.is_infeasible(master_res::ColGenMasterResult) status = getterminationstatus(master_res.result) return status == ClB.INFEASIBLE end function ColGen.is_unbounded(master_res::ColGenMasterResult) status = getterminationstatus(master_res.result) return status == ClB.UNBOUNDED end ColGen.get_primal_sol(master_res::ColGenMasterResult) = get_best_lp_primal_sol(master_res.result) ColGen.get_dual_sol(master_res::ColGenMasterResult) = get_best_lp_dual_sol(master_res.result) ColGen.get_obj_val(master_res::ColGenMasterResult) = get_lp_primal_bound(master_res.result) function ColGen.update_master_constrs_dual_vals!(ctx::ColGenContext, master_lp_dual_sol) master = ColGen.get_master(ctx) # Set all dual value of all constraints to 0. for constr in Iterators.values(getconstrs(master)) setcurincval!(master, constr, 0.0) end # Update constraints that have non-zero dual values. for (constr_id, val) in master_lp_dual_sol setcurincval!(master, constr_id, val) end return end function ColGen.update_reduced_costs!(ctx::ColGenContext, phase, red_costs) ctx.sp_var_redcosts = red_costs return end function _violates_essential_cuts!(master, master_lp_primal_sol, env) cutcb_input = CutCallbacksInput(master_lp_primal_sol) cutcb_output = run!( CutCallbacks(call_robust_facultative=false), env, master, cutcb_input ) return cutcb_output.nb_cuts_added > 0 end ColGen.check_primal_ip_feasibility!(_, ctx::ColGenContext, ::ColGenPhase1, _) = nothing, false function ColGen.check_primal_ip_feasibility!(master_lp_primal_sol, ctx::ColGenContext, phase, env) # Check if feasible. if contains(master_lp_primal_sol, varid -> isanArtificialDuty(getduty(varid))) return nothing, false end # Check if integral. primal_sol_is_integer = ctx.strict_integrality_check ? isinteger(master_lp_primal_sol) : MathProg.proj_cols_is_integer(master_lp_primal_sol) if !primal_sol_is_integer return nothing, false end # Check if violated essential cuts new_cut_in_master = _violates_essential_cuts!(ColGen.get_master(ctx), master_lp_primal_sol, env) # Returns disaggregated solution if feasible and integral. return master_lp_primal_sol, new_cut_in_master end # In our column generation default implementation, when we found a new IP primal solution, # we push it in the GlobalPrimalBoundHandler object that stores the incumbent IP primal solution # of the B&B algorithm. It is possible to redefine this function to use another type of primal # solution manager. function ColGen.is_better_primal_sol(new_ip_primal_sol::PrimalSolution, ip_primal_sol::GlobalPrimalBoundHandler) new_val = ColunaBase.getvalue(new_ip_primal_sol) cur_val = ColunaBase.getvalue(get_global_primal_bound(ip_primal_sol)) sc = MathProg.getobjsense(ColunaBase.getmodel(new_ip_primal_sol)) == MinSense ? 1 : -1 return sc * new_val < sc * cur_val && abs(new_val - cur_val) > 1e-6 end function ColGen.update_inc_primal_sol!(::ColGenContext, ip_primal_sol, new_ip_primal_sol) store_ip_primal_sol!(ip_primal_sol, new_ip_primal_sol) return end # Reduced costs calculation ColGen.get_subprob_var_orig_costs(ctx::ColGenContext) = ctx.reduced_cost_helper.dw_subprob_c ColGen.get_subprob_var_coef_matrix(ctx::ColGenContext) = ctx.reduced_cost_helper.dw_subprob_A function ColGen.update_sp_vars_red_costs!(ctx::ColGenContext, sp::Formulation{DwSp}, red_costs) for (var_id, _) in getvars(sp) setcurcost!(sp, var_id, red_costs[var_id]) end return end # Columns insertion _set_column_cost!(master, col_id, phase) = nothing _set_column_cost!(master, col_id, ::ColGenPhase1) = setcurcost!(master, col_id, 0.0) function ColGen.insert_columns!(ctx::ColGenContext, phase, columns) reform = ColGen.get_reform(ctx) primal_sols_to_insert = PrimalSolution{Formulation{DwSp}}[] col_ids_to_activate = Set{VarId}() master = ColGen.get_master(ctx) for column in columns col_id = get_column_from_pool(column.column) if !isnothing(col_id) if haskey(master, col_id) && !iscuractive(master, col_id) push!(col_ids_to_activate, col_id) else in_master = haskey(master, col_id) is_active = iscuractive(master, col_id) warning = ColumnAlreadyInsertedColGenWarning( in_master, is_active, column.red_cost, col_id, master, column.column.solution.model ) if ctx.show_column_already_inserted_warning @warn warning end if ctx.throw_column_already_inserted_warning throw(warning) end end else push!(primal_sols_to_insert, column.column) end end nb_added_cols = 0 nb_reactivated_cols = 0 # Then, we add the new columns (i.e. not in the pool). col_ids = VarId[] for sol in primal_sols_to_insert col_id = insert_column!(master, sol, "MC") _set_column_cost!(master, col_id, phase) push!(col_ids, col_id) nb_added_cols += 1 end # And we reactivate the deactivated columns already generated. for col_id in col_ids_to_activate activate!(master, col_id) _set_column_cost!(master, col_id, phase) push!(col_ids, col_id) nb_reactivated_cols += 1 end return col_ids end ############################################################################# # Pricing strategy ############################################################################# struct ClassicColGenPricingStrategy <: ColGen.AbstractPricingStrategy subprobs::Dict{FormId, Formulation{DwSp}} end ColGen.get_pricing_strategy(ctx::ColGen.AbstractColGenContext, _) = ClassicColGenPricingStrategy(ColGen.get_pricing_subprobs(ctx)) ColGen.pricing_strategy_iterate(ps::ClassicColGenPricingStrategy) = iterate(ps.subprobs) ColGen.pricing_strategy_iterate(ps::ClassicColGenPricingStrategy, state) = iterate(ps.subprobs, state) ############################################################################# # Column generation ############################################################################# function ColGen.compute_sp_init_db(ctx::ColGenContext, sp::Formulation{DwSp}) return ctx.optim_sense == MinSense ? -Inf : Inf end function ColGen.compute_sp_init_pb(ctx::ColGenContext, sp::Formulation{DwSp}) return ctx.optim_sense == MinSense ? Inf : -Inf end """ Solution to a pricing subproblem after a given optimization. It contains: - `column`: the solution stored as a `PrimalSolution` object - `red_cost`: the reduced cost of the column - `min_obj`: a boolean indicating if the objective is to minimize or maximize """ struct GeneratedColumn column::PrimalSolution{Formulation{DwSp}} red_cost::Float64 min_obj::Bool # TODO remove when formulation will be parametrized by the sense. function GeneratedColumn(column, red_cost) min_obj = getobjsense(column.solution.model) == MinSense return new(column, red_cost, min_obj) end end """ Columns generated at the current iteration that forms the "current primal solution". This is used to compute the Lagragian dual bound. It contains: - `primal_sols` a dictionary that maps a formulation id to the best primal solution found by the pricing subproblem associated to this formulation - `improve_master` a dictionary that maps a formulation id to a boolean indicating if the best primal solution found by the pricing subproblem associated to this formulation has negative reduced cost This structure also helps to compute the subgradient of the Lagrangian function. """ struct SubprobPrimalSolsSet primal_sols::Dict{MathProg.FormId, MathProg.PrimalSolution{MathProg.Formulation{MathProg.DwSp}}} improve_master::Dict{MathProg.FormId, Bool} function SubprobPrimalSolsSet() return new(Dict{FormId, PrimalSolution{Formulation{DwSp}}}(), Dict{FormId, Bool}()) end end function add_primal_sol!(sps::SubprobPrimalSolsSet, primal_sol::PrimalSolution{Formulation{DwSp}}, improves::Bool) form_id = getuid(primal_sol.solution.model) cur_primal_sol = get(sps.primal_sols, form_id, nothing) sc = getobjsense(primal_sol.solution.model) == MinSense ? 1 : -1 if isnothing(cur_primal_sol) || sc * getvalue(primal_sol) < sc * getvalue(cur_primal_sol) sps.primal_sols[form_id] = primal_sol sps.improve_master[form_id] = improves return true end return false end """ Stores a collection of columns. It contains: - `columns`: a vector of `GeneratedColumn` objects by all pricing subproblems that will be inserted into the master - `subprob_primal_solutions`: an object that stores the best columns generated by each pricing subproblem at this iteration. """ struct ColumnsSet # Columns that will be added to the master. columns::Vector{GeneratedColumn} # Columns generated at the current iterations that forms the "current primal solution". # This is used to compute the subgradient for "Smoothing with a self adjusting # parameter" stabilization. subprob_primal_sols::SubprobPrimalSolsSet ColumnsSet() = new(GeneratedColumn[], SubprobPrimalSolsSet()) end Base.iterate(set::ColumnsSet) = iterate(set.columns) Base.iterate(set::ColumnsSet, state) = iterate(set.columns, state) ColGen.set_of_columns(::ColGenContext) = ColumnsSet() """ Output of the default implementation of `ColGen.optimize_pricing_problem!`. It contains: - `result`: the output of the `SolveIpForm` algorithm called to optimize the pricing subproblem - `columns`: a vector of `GeneratedColumn` objects obtained by processing of the output of pricing subproblem optimization, it stores the reduced cost of each column - `best_red_cost`: the best reduced cost of the columns """ struct ColGenPricingResult{F} result::OptimizationState{F} columns::Vector{GeneratedColumn} best_red_cost::Float64 end function ColGen.is_infeasible(pricing_res::ColGenPricingResult) status = getterminationstatus(pricing_res.result) return status == ClB.INFEASIBLE end function ColGen.is_unbounded(pricing_res::ColGenPricingResult) status = getterminationstatus(pricing_res.result) return status == ClB.UNBOUNDED end ColGen.get_primal_sols(pricing_res::ColGenPricingResult) = pricing_res.columns ColGen.get_dual_bound(pricing_res::ColGenPricingResult) = get_ip_dual_bound(pricing_res.result) ColGen.get_primal_bound(pricing_res::ColGenPricingResult) = get_ip_primal_bound(pricing_res.result) is_improving_red_cost(ctx::ColGenContext, red_cost) = red_cost > 0 + ctx.opt_atol is_improving_red_cost_min_sense(ctx::ColGenContext, red_cost) = red_cost < 0 - ctx.opt_atol function has_improving_red_cost(ctx, column::GeneratedColumn) if column.min_obj return is_improving_red_cost_min_sense(ctx, column.red_cost) end return is_improving_red_cost(ctx, column.red_cost) end # In our implementation of `push_in_set!`, we keep only columns that have improving reduced # cost. function ColGen.push_in_set!(ctx::ColGenContext, pool::ColumnsSet, column::GeneratedColumn) # We keep only columns that improve reduced cost improving = has_improving_red_cost(ctx, column) add_primal_sol!(pool.subprob_primal_sols, column.column, improving) if improving push!(pool.columns, column) return true end return false end function _nonrobust_cuts_contrib(master, col, master_dual_sol) contrib = 0.0 for (constrid, dual_val) in master_dual_sol if constrid.custom_family_id != -1 constr = getconstr(master, constrid) if !isnothing(col.custom_data) coeff = MathProg.computecoeff(col.custom_data, constr.custom_data) contrib -= coeff * dual_val end end end return contrib end """ When we use a smoothed dual solution, we need to recompute the reduced cost of the subproblem variables using the non-smoothed dual solution (out point). This reduced cost is stored in the context (field `sp_var_redcosts`) and we use it to compute the contribution of the subproblem variables. """ function _subprob_var_contrib(ctx::ColGenContext, col, stab_changes_mast_dual_sol, master_dual_sol) if stab_changes_mast_dual_sol cost = 0.0 for (var_id, val) in col cost += ctx.sp_var_redcosts[var_id] * val end # When using the smoothed dual solution, we also need to recompute the contribution # of the non-robust cuts. return cost + _nonrobust_cuts_contrib(ColGen.get_master(ctx), col, master_dual_sol) end # When not using stabilization, the value of the column returned by the pricing subproblem # must take into account the contributions of the subproblem variables and the non-robust cuts. return getvalue(col) end function ColGen.optimize_pricing_problem!(ctx::ColGenContext, sp::Formulation{DwSp}, env, optimizer, master_dual_sol, stab_changes_mast_dual_sol) input = OptimizationState(sp) alg = SolveIpForm( optimizer_id = optimizer, moi_params = MoiOptimize( deactivate_artificial_vars = false, enforce_integrality = false ) ) opt_state = run!(alg, env, sp, input) # master & master dual sol for non robust cuts # Reduced cost of a column is composed of # (A) the cost of the subproblem variables # (B) the contribution of the master convexity constraints. # Master convexity constraints contribution is the same for all columns generated by a # given subproblem. lb_dual = master_dual_sol[sp.duty_data.lower_multiplicity_constr_id] ub_dual = master_dual_sol[sp.duty_data.upper_multiplicity_constr_id] # Compute the reduced cost of each column and keep the best reduced cost value. is_min = ColGen.is_minimization(ctx) sc = is_min ? 1 : -1 best_red_cost = is_min ? Inf : -Inf generated_columns = GeneratedColumn[] for col in get_ip_primal_sols(opt_state) # `subprob_var_contrib` includes contribution of non-robust cuts. subprob_var_contrib = _subprob_var_contrib(ctx, col, stab_changes_mast_dual_sol, master_dual_sol) red_cost = subprob_var_contrib - lb_dual - ub_dual push!(generated_columns, GeneratedColumn(col, red_cost)) if sc * best_red_cost > sc * red_cost best_red_cost = red_cost end end return ColGenPricingResult(opt_state, generated_columns, best_red_cost) end function _convexity_contrib(ctx, master_dual_sol) master = ColGen.get_master(ctx) contrib = mapreduce(+, ColGen.get_pricing_subprobs(ctx)) do it _, sp = it lb_dual = master_dual_sol[sp.duty_data.lower_multiplicity_constr_id] ub_dual = master_dual_sol[sp.duty_data.upper_multiplicity_constr_id] lb = getcurrhs(master, sp.duty_data.lower_multiplicity_constr_id) ub = getcurrhs(master, sp.duty_data.upper_multiplicity_constr_id) return lb_dual * lb + ub_dual * ub end return contrib end function _subprob_contrib(ctx, sp_dbs, generated_columns) master = ColGen.get_master(ctx) min_sense = ColGen.is_minimization(ctx) contrib = mapreduce(+, ColGen.get_pricing_subprobs(ctx)) do it id, sp = it lb = getcurrhs(master, sp.duty_data.lower_multiplicity_constr_id) ub = getcurrhs(master, sp.duty_data.upper_multiplicity_constr_id) db = sp_dbs[id] improving = min_sense ? is_improving_red_cost_min_sense(ctx, db) : is_improving_red_cost(ctx, db) mult = improving ? ub : lb return mult * db end return contrib end function ColGen.compute_dual_bound(ctx::ColGenContext, phase, sp_dbs, generated_columns, master_dual_sol) sc = ColGen.is_minimization(ctx) ? 1 : -1 master_lp_obj_val = if ctx.stabilization partial_sol_val = MathProg.getpartialsolvalue(ColGen.get_master(ctx)) partial_sol_val + (transpose(master_dual_sol) * ctx.subgradient_helper.a_for_dual) else getvalue(master_dual_sol) - _convexity_contrib(ctx, master_dual_sol) end sp_contrib = _subprob_contrib(ctx, sp_dbs, generated_columns) # Pure master variables contribution. # TODO (only when stabilization is used otherwise already taken into account by master obj val puremastvars_contrib = 0.0 if ctx.stabilization master = ColGen.get_master(ctx) master_coef_matrix = getcoefmatrix(master) for (varid, var) in getvars(master) if getduty(varid) <= MasterPureVar && iscuractive(master, var) && isexplicit(master, var) redcost = getcurcost(master, varid) for (constrid, var_coeff) in @view master_coef_matrix[:,varid] redcost -= var_coeff * master_dual_sol[constrid] end min_sense = ColGen.is_minimization(ctx) improves = min_sense ? is_improving_red_cost_min_sense(ctx, redcost) : is_improving_red_cost(ctx, redcost) mult = improves ? getcurub(master, varid) : getcurlb(master, varid) puremastvars_contrib += redcost * mult end end end return master_lp_obj_val + sp_contrib + puremastvars_contrib end # Iteration output "Object for the output of an iteration of the column generation default implementation." struct ColGenIterationOutput <: ColGen.AbstractColGenIterationOutput min_sense::Bool ipb::Union{Nothing,Float64} mlp::Union{Nothing,Float64} db::Union{Nothing,Float64} nb_new_cols::Int new_cut_in_master::Bool # Equals `true` if the master subsolver returns infeasible. infeasible_master::Bool unbounded_master::Bool # Equals `true` if one of the pricing subsolver returns infeasible. infeasible_subproblem::Bool unbounded_subproblem::Bool time_limit_reached::Bool master_lp_primal_sol::Union{Nothing, PrimalSolution} master_ip_primal_sol::Union{Nothing, PrimalSolution} master_lp_dual_sol::Union{Nothing, DualSolution} end ColGen.colgen_iteration_output_type(::ColGenContext) = ColGenIterationOutput function ColGen.new_iteration_output(::Type{<:ColGenIterationOutput}, min_sense, mlp, db, nb_new_cols, new_cut_in_master, infeasible_master, unbounded_master, infeasible_subproblem, unbounded_subproblem, time_limit_reached, master_lp_primal_sol, master_ip_primal_sol, master_lp_dual_sol, ) return ColGenIterationOutput( min_sense, get_global_primal_bound(master_ip_primal_sol), mlp, db, nb_new_cols, new_cut_in_master, infeasible_master, unbounded_master, infeasible_subproblem, unbounded_subproblem, time_limit_reached, master_lp_primal_sol, get_global_primal_sol(master_ip_primal_sol), master_lp_dual_sol, ) end ColGen.get_nb_new_cols(output::ColGenIterationOutput) = output.nb_new_cols ColGen.get_master_ip_primal_sol(output::ColGenIterationOutput) = output.master_ip_primal_sol ColGen.get_dual_bound(output::ColGenIterationOutput) = output.db ############################################################################# # Column generation loop ############################################################################# # Works only for minimization. _gap(mlp, db) = (mlp - db) / abs(db) _colgen_gap_closed(mlp, db, atol, rtol) = _gap(mlp, db) < 0 || isapprox(mlp, db, atol = atol, rtol = rtol) ColGen.stop_colgen_phase(ctx::ColGenContext, phase, env, ::Nothing, inc_dual_bound, ip_primal_sol, colgen_iteration) = false function ColGen.stop_colgen_phase(ctx::ColGenContext, phase, env, colgen_iter_output::ColGenIterationOutput, inc_dual_bound, ip_primal_sol, colgen_iteration) mlp = colgen_iter_output.mlp pb = getvalue(get_global_primal_bound(ip_primal_sol)) db = inc_dual_bound sc = colgen_iter_output.min_sense ? 1 : -1 return colgen_iteration >= ctx.nb_colgen_iteration_limit || colgen_iter_output.time_limit_reached || colgen_iter_output.infeasible_master || colgen_iter_output.unbounded_master || colgen_iter_output.infeasible_subproblem || colgen_iter_output.unbounded_subproblem || colgen_iter_output.nb_new_cols <= 0 || colgen_iter_output.new_cut_in_master || _colgen_gap_closed(sc * mlp, sc * db, 1e-8, 1e-5) || _colgen_gap_closed(sc * pb, sc * db, 1e-8, 1e-5) end ColGen.before_colgen_iteration(ctx::ColGenContext, phase) = nothing ColGen.after_colgen_iteration(ctx::ColGenContext, phase, stage, env, colgen_iteration, stab, ip_primal_sol, colgen_iter_output) = nothing ColGen.colgen_phase_output_type(::ColGenContext) = ColGenPhaseOutput function ColGen.new_phase_output(::Type{<:ColGenPhaseOutput}, min_sense, phase, stage, colgen_iter_output::ColGenIterationOutput, iteration, inc_dual_bound) return ColGenPhaseOutput( colgen_iter_output.master_lp_primal_sol, colgen_iter_output.master_ip_primal_sol, colgen_iter_output.master_lp_dual_sol, colgen_iter_output.ipb, colgen_iter_output.mlp, inc_dual_bound, colgen_iter_output.new_cut_in_master, colgen_iter_output.nb_new_cols <= 0, colgen_iter_output.infeasible_master || colgen_iter_output.infeasible_subproblem, ColGen.is_exact_stage(stage), colgen_iter_output.time_limit_reached, iteration, min_sense ) end function ColGen.new_phase_output(::Type{<:ColGenPhaseOutput}, min_sense, phase::ColGenPhase1, stage, colgen_iter_output::ColGenIterationOutput, iteration, inc_dual_bound) return ColGenPhaseOutput( colgen_iter_output.master_lp_primal_sol, colgen_iter_output.master_ip_primal_sol, colgen_iter_output.master_lp_dual_sol, colgen_iter_output.ipb, colgen_iter_output.mlp, inc_dual_bound, colgen_iter_output.new_cut_in_master, colgen_iter_output.nb_new_cols <= 0, colgen_iter_output.infeasible_master || colgen_iter_output.infeasible_subproblem || abs(colgen_iter_output.mlp) > 1e-5, ColGen.is_exact_stage(stage), colgen_iter_output.time_limit_reached, iteration, min_sense ) end ColGen.get_master_ip_primal_sol(output::ColGenPhaseOutput) = output.master_ip_primal_sol ColGen.update_stabilization_after_pricing_optim!(::NoColGenStab, ctx::ColGenContext, generated_columns, master, pseudo_db, smooth_dual_sol) = nothing function ColGen.update_stabilization_after_pricing_optim!(stab::ColGenStab, ctx::ColGenContext, generated_columns, master, pseudo_db, smooth_dual_sol) # At each iteration, we always update α after the first pricing optimization. # We don't update α if we are in a misprice sequence. if stab.automatic && stab.nb_misprices == 0 is_min = ColGen.is_minimization(ctx) primal_sol = _primal_solution(master, generated_columns, is_min) α = _dynamic_alpha_schedule(stab.base_α, smooth_dual_sol, stab.cur_stab_center, subgradient_helper(ctx), primal_sol, is_min) stab.base_α = α end if isbetter(DualBound(master, pseudo_db), stab.pseudo_dual_bound) stab.stab_center_for_next_iteration = smooth_dual_sol stab.pseudo_dual_bound = DualBound(master, pseudo_db) end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8871
""" ColGenPrinterContext(reformulation, algo_params) -> ColGenPrinterContext Creates a context to run the default implementation of the column generation algorithm together with a printer that prints information about the algorithm execution. """ mutable struct ColGenPrinterContext <: ColGen.AbstractColGenContext inner::ColGenContext phase::Int mst_elapsed_time::Float64 sp_elapsed_time::Float64 print_column_reduced_cost::Bool function ColGenPrinterContext( reform, alg; print_column_reduced_cost = false ) inner = ColGenContext(reform, alg) new(inner, 3, 0.0, 0.0, print_column_reduced_cost) end end subgradient_helper(ctx::ColGenPrinterContext) = subgradient_helper(ctx.inner) ColGen.get_reform(ctx::ColGenPrinterContext) = ColGen.get_reform(ctx.inner) ColGen.get_master(ctx::ColGenPrinterContext) = ColGen.get_master(ctx.inner) ColGen.is_minimization(ctx::ColGenPrinterContext) = ColGen.is_minimization(ctx.inner) ColGen.get_pricing_subprobs(ctx::ColGenPrinterContext) = ColGen.get_pricing_subprobs(ctx.inner) ColGen.setup_stabilization!(ctx::ColGenPrinterContext, master) = ColGen.setup_stabilization!(ctx.inner, master) function ColGen.update_stabilization_after_pricing_optim!(stab, ctx::ColGenPrinterContext, generated_columns, master, pseudo_db, smooth_dual_sol) return ColGen.update_stabilization_after_pricing_optim!(stab, ctx.inner, generated_columns, master, pseudo_db, smooth_dual_sol) end ColGen.new_phase_iterator(ctx::ColGenPrinterContext) = ColGen.new_phase_iterator(ctx.inner) ColGen.new_stage_iterator(ctx::ColGenPrinterContext) = ColGen.new_stage_iterator(ctx.inner) _phase_type_to_number(::ColGenPhase1) = 1 _phase_type_to_number(::ColGenPhase2) = 2 _phase_type_to_number(::ColGenPhase0) = 0 function ColGen.setup_context!(ctx::ColGenPrinterContext, phase::ColGen.AbstractColGenPhase) ctx.phase = _phase_type_to_number(phase) return ColGen.setup_context!(ctx.inner, phase) end function ColGen.optimize_master_lp_problem!(master, ctx::ColGenPrinterContext, env) ctx.mst_elapsed_time = @elapsed begin output = ColGen.optimize_master_lp_problem!(master, ctx.inner, env) end return output end function ColGen.update_master_constrs_dual_vals!(ctx::ColGenPrinterContext, master_lp_dual_sol) return ColGen.update_master_constrs_dual_vals!(ctx.inner, master_lp_dual_sol) end ColGen.check_primal_ip_feasibility!(mast_primal_sol, ctx::ColGenPrinterContext, phase, env) = ColGen.check_primal_ip_feasibility!(mast_primal_sol, ctx.inner, phase, env) function ColGen.update_inc_primal_sol!(ctx::ColGenPrinterContext, ip_primal_sol, new_ip_primal_sol) @info "Improving primal solution with value $(ColunaBase.getvalue(new_ip_primal_sol)) is found during column generation" ColGen.update_inc_primal_sol!(ctx.inner, ip_primal_sol, new_ip_primal_sol) end ColGen.get_subprob_var_orig_costs(ctx::ColGenPrinterContext) = ColGen.get_subprob_var_orig_costs(ctx.inner) ColGen.get_subprob_var_coef_matrix(ctx::ColGenPrinterContext) = ColGen.get_subprob_var_coef_matrix(ctx.inner) function ColGen.update_sp_vars_red_costs!(ctx::ColGenPrinterContext, sp::Formulation{DwSp}, red_costs) return ColGen.update_sp_vars_red_costs!(ctx.inner, sp, red_costs) end ColGen.update_reduced_costs!(ctx::ColGenPrinterContext, phase, red_costs) = ColGen.update_reduced_costs!(ctx.inner, phase, red_costs) function ColGen.insert_columns!(ctx::ColGenPrinterContext, phase, columns) col_ids = ColGen.insert_columns!(ctx.inner, phase, columns) if ctx.print_column_reduced_cost _print_column_reduced_costs(ColGen.get_reform(ctx), col_ids) end return col_ids end ColGen.compute_sp_init_db(ctx::ColGenPrinterContext, sp::Formulation{DwSp}) = ColGen.compute_sp_init_db(ctx.inner, sp) ColGen.compute_sp_init_pb(ctx::ColGenPrinterContext, sp::Formulation{DwSp}) = ColGen.compute_sp_init_pb(ctx.inner, sp) ColGen.set_of_columns(ctx::ColGenPrinterContext) = ColGen.set_of_columns(ctx.inner) function _calculate_column_reduced_cost(reform, col_id) master = getmaster(reform) matrix = getcoefmatrix(master) c = getcurcost(master, col_id) convex_constr_redcost = 0 remainder = 0 for (constrid, coef) in @view matrix[:, col_id] #retrieve the original cost if getduty(constrid) <= MasterConvexityConstr convex_constr_redcost += coef * getcurincval(master, constrid) else remainder += coef * getcurincval(master, constrid) end end convex_constr_redcost = c - convex_constr_redcost remainder = c - remainder return (convex_constr_redcost, remainder) end function _print_column_reduced_costs(reform, col_ids) for col_id in col_ids (convex_constr_redcost, remainder) = _calculate_column_reduced_cost(reform, col_id) println("********** column $(col_id) with convex constraints reduced cost = $(convex_constr_redcost) and reduced cost remainder = $(remainder) (total reduced cost =$(convex_constr_redcost + remainder)) **********") end end function ColGen.push_in_set!(ctx::ColGenPrinterContext, set, col) return ColGen.push_in_set!(ctx.inner, set, col) end function ColGen.optimize_pricing_problem!(ctx::ColGenPrinterContext, sp::Formulation{DwSp}, env, optimizer, master_dual_sol, stab_changes_mast_dual_sol) ctx.sp_elapsed_time = @elapsed begin output = ColGen.optimize_pricing_problem!(ctx.inner, sp, env, optimizer, master_dual_sol, stab_changes_mast_dual_sol) end return output end function ColGen.compute_dual_bound(ctx::ColGenPrinterContext, phase, sp_dbs, generated_columns, master_dual_sol) return ColGen.compute_dual_bound(ctx.inner, phase, sp_dbs, generated_columns, master_dual_sol) end function ColGen.colgen_iteration_output_type(ctx::ColGenPrinterContext) return ColGen.colgen_iteration_output_type(ctx.inner) end function ColGen.stop_colgen_phase(ctx::ColGenPrinterContext, phase, env, colgen_iter_output, inc_dual_bound, ip_primal_sol, colgen_iteration) return ColGen.stop_colgen_phase(ctx.inner, phase, env, colgen_iter_output, inc_dual_bound, ip_primal_sol, colgen_iteration) end ColGen.before_colgen_iteration(ctx::ColGenPrinterContext, phase) = nothing function _colgen_iter_str( colgen_iteration, colgen_iter_output::ColGenIterationOutput, phase::Int, stage::Int, sp_time::Float64, mst_time::Float64, optim_time::Float64, alpha ) phase_string = " " if phase == 1 phase_string = "# " elseif phase == 2 phase_string = "##" end iteration::Int = colgen_iteration if colgen_iter_output.new_cut_in_master return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> - new essential cut in master", phase_string, stage, iteration, optim_time ) end if colgen_iter_output.infeasible_master return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> - infeasible master", phase_string, stage, iteration, optim_time ) end if colgen_iter_output.unbounded_master return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> - unbounded master", phase_string, stage, iteration, optim_time ) end if colgen_iter_output.infeasible_subproblem return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> - infeasible subproblem", phase_string, stage, iteration, optim_time ) end if colgen_iter_output.unbounded_subproblem return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> - unbounded subproblem", phase_string, stage, iteration, optim_time ) end mlp::Float64 = colgen_iter_output.mlp db::Float64 = colgen_iter_output.db pb::Float64 = colgen_iter_output.ipb nb_new_col::Int = ColGen.get_nb_new_cols(colgen_iter_output) return @sprintf( "%s<st=%2i> <it=%3i> <et=%5.2f> <mst=%5.2f> <sp=%5.2f> <cols=%2i> <al=%5.2f> <DB=%10.4f> <mlp=%10.4f> <PB=%.4f>", phase_string, stage, iteration, optim_time, mst_time, sp_time, nb_new_col, alpha, db, mlp, pb ) end function ColGen.after_colgen_iteration(ctx::ColGenPrinterContext, phase, stage, env, colgen_iteration, stab, ip_primal_sol, colgen_iter_output) println(_colgen_iter_str(colgen_iteration, colgen_iter_output, ctx.phase, ColGen.stage_id(stage), ctx.sp_elapsed_time, ctx.mst_elapsed_time, elapsed_optim_time(env), ColGen.get_output_str(stab))) return end ColGen.stop_colgen(ctx::ColGenPrinterContext, phase_output) = ColGen.stop_colgen(ctx.inner, phase_output) ColGen.is_better_dual_bound(ctx::ColGenPrinterContext, new_dual_bound, dual_bound) = ColGen.is_better_dual_bound(ctx.inner, new_dual_bound, dual_bound) ColGen.colgen_output_type(::ColGenPrinterContext) = ColGenOutput ColGen.colgen_phase_output_type(::ColGenPrinterContext) = ColGenPhaseOutput
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6031
struct NoColGenStab end #ColGen.setup_stabilization(ctx, master) = NoColGenStab() ColGen.update_stabilization_after_master_optim!(::NoColGenStab, phase, mast_dual_sol) = false ColGen.get_stab_dual_sol(::NoColGenStab, phase, mast_dual_sol) = mast_dual_sol ColGen.check_misprice(::NoColGenStab, generated_cols, mast_dual_sol) = false ColGen.update_stabilization_after_misprice!(::NoColGenStab, mast_dual_sol) = nothing ColGen.update_stabilization_after_iter!(::NoColGenStab, mast_dual_sol) = nothing ColGen.get_output_str(::NoColGenStab) = 0.0 """ Implementation of the "Smoothing with a self adjusting parameter" described in the paper of Pessoa et al. TODO: docstring - in: stability center - dual solution of the previous iteration under Neame rule, - incumbent dual solution under Wentges rule. - out: current dual solution - sep: smoothed dual solution π^sep <- α * π^in + (1 - α) * π^out """ mutable struct ColGenStab{F} automatic::Bool base_α::Float64 # "global" α parameter cur_α::Float64 # α parameter during the current misprice sequence nb_misprices::Int # number of misprices during the current misprice sequence pseudo_dual_bound::ColunaBase.Bound # pseudo dual bound, may be non-valid, f.e. when the pricing problem solved heuristically valid_dual_bound::ColunaBase.Bound # valid dual bound stab_center::Union{Nothing,MathProg.DualSolution{F}} # stability center, corresponding to valid_dual_bound (in point) cur_stab_center::Union{Nothing,MathProg.DualSolution{F}} # current stability center, correspond to cur_dual_bound stab_center_for_next_iteration::Union{Nothing,MathProg.DualSolution{F}} # to keep temporarily stab. center after update ColGenStab(master::F, automatic, init_α) where {F} = new{F}( automatic, init_α, 0.0, 0, MathProg.DualBound(master), MathProg.DualBound(master), nothing, nothing, nothing ) end ColGen.get_output_str(stab::ColGenStab) = stab.base_α function ColGen.update_stabilization_after_master_optim!(stab::ColGenStab, phase, mast_dual_sol) stab.nb_misprices = 0 stab.cur_α = 0.0 if isnothing(stab.cur_stab_center) stab.cur_stab_center = mast_dual_sol return false end stab.cur_α = stab.base_α return stab.cur_α > 0 end function ColGen.get_stab_dual_sol(stab::ColGenStab, phase, mast_dual_sol) return stab.cur_α * stab.cur_stab_center + (1 - stab.cur_α) * mast_dual_sol end ColGen.check_misprice(stab::ColGenStab, generated_cols, mast_dual_sol) = length(generated_cols.columns) == 0 && stab.cur_α > 0.0 function _misprice_schedule(automatic, nb_misprices, base_α) # Rule from the paper Pessoa et al. (α-schedule in a mis-pricing sequence, Step 1) α = 1.0 - (nb_misprices + 1) * (1 - base_α) if nb_misprices > 10 || α <= 1e-3 # After 10 mis-priced iterations, we deactivate stabilization to use the "real" # dual solution. α = 0.0 end return α end function ColGen.update_stabilization_after_misprice!(stab::ColGenStab, mast_dual_sol) stab.nb_misprices += 1 α = _misprice_schedule(stab.automatic, stab.nb_misprices, stab.base_α) stab.cur_α = α return end f_decr(α) = max(0.0, α - 0.1) f_incr(α) = min(α + (1.0 - α) * 0.1, 0.9999) function _pure_master_vars(master) puremastervars = Vector{Pair{VarId,Float64}}() for (varid, var) in getvars(master) if isanOriginalRepresentatives(getduty(varid)) && iscuractive(master, var) && isexplicit(master, var) push!(puremastervars, varid => 0.0) end end return puremastervars end function _primal_solution(master::Formulation, generated_columns, is_minimization) sense = MathProg.getobjsense(master) var_ids = MathProg.VarId[] var_vals = Float64[] puremastervars = _pure_master_vars(master) for (var_id, mult) in puremastervars push!(var_ids, var_id) push!(var_vals, mult) # always 0 in the previous implementation ? end for (sp_id, sp_primal_sol) in generated_columns.subprob_primal_sols.primal_sols sp = getmodel(sp_primal_sol) lb = getcurrhs(master, sp.duty_data.lower_multiplicity_constr_id) ub = getcurrhs(master, sp.duty_data.upper_multiplicity_constr_id) iszero(ub) && continue mult = get(generated_columns.subprob_primal_sols.improve_master, sp_id, false) ? ub : lb for (sp_var_id, sp_var_val) in sp_primal_sol push!(var_ids, sp_var_id) push!(var_vals, sp_var_val * mult) end end return sparsevec(var_ids, var_vals) end function _increase(smooth_dual_sol, cur_stab_center, h, primal_solution, is_minimization) # Calculate the in-sep direction. in_sep_direction = smooth_dual_sol - cur_stab_center in_sep_dir_norm = norm(in_sep_direction) # if in & sep are the same point, we need to decrease α becase it is the weight of the # stability center (in) in the formula to compute the sep point. if iszero(in_sep_dir_norm) return false end # Calculate the subgradient subgradient = h.a - h.A * primal_solution subgradient_norm = norm(subgradient) # we now calculate the angle between the in-sep direction and the subgradient cos_angle = (transpose(in_sep_direction) * subgradient) / (in_sep_dir_norm * subgradient_norm) if !is_minimization cos_angle *= -1 end return cos_angle < 1e-12 end function _dynamic_alpha_schedule( α, smooth_dual_sol, cur_stab_center, h, primal_solution, is_minimization ) increase = _increase(smooth_dual_sol, cur_stab_center, h, primal_solution, is_minimization) # we modify the alpha parameter based on the calculated angle return increase ? f_incr(α) : f_decr(α) end function ColGen.update_stabilization_after_iter!(stab::ColGenStab, mast_dual_sol) if !isnothing(stab.stab_center_for_next_iteration) stab.cur_stab_center = stab.stab_center_for_next_iteration stab.stab_center_for_next_iteration = nothing end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8551
############################################################################################ # Errors and warnings ############################################################################################ """ Error thrown when when a subproblem generates a column with negative (resp. positive) reduced cost in min (resp. max) problem that already exists in the master and that is already active. An active master column cannot have a negative reduced cost. """ struct ColumnAlreadyInsertedColGenWarning column_in_master::Bool column_is_active::Bool column_reduced_cost::Float64 column_id::VarId master::Formulation{DwMaster} subproblem::Formulation{DwSp} end function Base.show(io::IO, err::ColumnAlreadyInsertedColGenWarning) msg = """ Unexpected variable state during column insertion. ====== Column id: $(err.column_id). Reduced cost of the column: $(err.column_reduced_cost). The column is in the master ? $(err.column_in_master). The column is active ? $(err.column_is_active). ====== If the column is in the master and active, it means a subproblem found a solution with negative (minimization) / positive (maximization) reduced cost that is already active in the master. This should not happen. ====== If you are using a pricing callback, make sure there is no bug in your code. If you are using a solver (e.g. GLPK, Gurobi...), check the reduced cost tolerance `redcost_tol` parameter of `ColumnGeneration`. If you find a bug in Coluna, please open an issue at https://github.com/atoptima/Coluna.jl/issues with an example that reproduces the bug. ====== """ println(io, msg) end ############################################################################################ # Information extracted to speed-up some computations. ############################################################################################ function _submatrix_nz_elems( form::Formulation, keep_constr::Function, keep_var::Function, m::Function = (form, is_min, constr_id, var_id) -> 1.0 ) is_min = getobjsense(form) == MinSense matrix = getcoefmatrix(form) constr_ids = ConstrId[] var_ids = VarId[] nz = Float64[] for (constr_id, constr) in getconstrs(form) if keep_constr(form, constr_id, constr) for (var_id, coeff) in @view matrix[constr_id, :] var = getvar(form, var_id) @assert !isnothing(var) if keep_var(form, var_id, var) c = m(form, is_min, constr_id, var_id) push!(constr_ids, constr_id) push!(var_ids, var_id) push!(nz, c * coeff) end end end end return constr_ids, var_ids, nz end function _submatrix( form::Formulation, keep_constr::Function, keep_var::Function, m::Function = (form, is_min, constr_id, var_id) -> 1.0 ) constr_ids, var_ids, nz = _submatrix_nz_elems(form, keep_constr, keep_var, m) return dynamicsparse( constr_ids, var_ids, nz, ConstrId(Coluna.MAX_NB_ELEMS), VarId(Coluna.MAX_NB_ELEMS) ) end """ Extracted information to speed-up calculation of reduced costs of subproblem representatives and pure master variables. We extract from the master the information we need to compute the reduced cost of DW subproblem variables: - `dw_subprob_c` contains the perenial cost of DW subproblem representative variables - `dw_subprob_A` is a submatrix of the master coefficient matrix that involves only DW subproblem representative variables. We also extract from the master the information we need to compute the reduced cost of pure master variables: - `pure_master_c` contains the perenial cost of pure master variables - `pure_master_A` is a submatrix of the master coefficient matrix that involves only pure master variables. Calculation is `c - transpose(A) * master_lp_dual_solution`. This information is given to the generic implementation of the column generation algorithm through methods: - ColGen.get_subprob_var_orig_costs - ColGen.get_orig_coefmatrix """ struct ReducedCostsCalculationHelper dw_subprob_c::SparseVector{Float64,VarId} dw_subprob_A::DynamicSparseMatrix{ConstrId,VarId,Float64} master_c::SparseVector{Float64,VarId} master_A::DynamicSparseMatrix{ConstrId,VarId,Float64} end """ Function `var_duty_func(form, var_id, var)` returns `true` if we want to keep the variable `var_id`; `false` otherwise. Same for `constr_duty_func(form, constr_id, constr)`. """ function _get_costs_and_coeffs(master, var_duty_func, constr_duty_func) var_ids = VarId[] peren_costs = Float64[] for (var_id, var) in getvars(master) if var_duty_func(master, var_id, var) push!(var_ids, var_id) push!(peren_costs, getcurcost(master, var_id)) end end costs = sparsevec(var_ids, peren_costs, Coluna.MAX_NB_ELEMS) coef_matrix = _submatrix(master, constr_duty_func, var_duty_func) return costs, coef_matrix end function ReducedCostsCalculationHelper(master) dw_subprob_c, dw_subprob_A = _get_costs_and_coeffs( master, (form, var_id, var) -> getduty(var_id) <= AbstractMasterRepDwSpVar && iscuractive(form, var), (form, constr_id, constr) -> !(getduty(constr_id) <= MasterConvexityConstr) && iscuractive(form, constr) ) master_c, master_A = _get_costs_and_coeffs( master, (form, var_id, var) -> getduty(var_id) <= AbstractOriginMasterVar && iscuractive(form, var), (form, constr_id, constr) -> !(getduty(constr_id) <= MasterConvexityConstr) ) return ReducedCostsCalculationHelper(dw_subprob_c, dw_subprob_A, master_c, master_A) end """ Precompute information to speed-up calculation of subgradient of master variables. We extract from the master follwowing information: - `a` contains the perenial rhs of all master constraints except convexity constraints; - `A` is a submatrix of the master coefficient matrix that involves only representative of original variables (pure master vars + DW subproblem represtative vars) Calculation is `a - A * (m .* z)` where : - `m` contains a multiplicity factor for each variable involved in the calculation (lower or upper sp multiplicity depending on variable reduced cost); - `z` is the concatenation of the solution to the master (for pure master vars) and pricing subproblems (for DW subproblem represtative vars). Operation `m .* z` "mimics" a solution in the original space. """ struct SubgradientCalculationHelper # Changes the sense of the constraint to put the LP in canonical form. # (expect == constraints -> needs discussion on how to do that.) a::SparseVector{Float64,ConstrId} # Used to compute master contribution in the lagrangian bound. # Keeps the original sense of the constraint because the sign of the dual is the one # in the canonical form. a_for_dual::SparseVector{Float64,ConstrId} A::DynamicSparseMatrix{ConstrId,VarId,Float64} end function SubgradientCalculationHelper(master) m_rhs = (master, is_min, constr_id) -> begin constr_sense = getcursense(master, constr_id) if is_min return constr_sense == Less ? -1.0 : 1.0 else return constr_sense == Greater ? -1.0 : 1.0 end end m_submatrix = (master, is_min, constr_id, var_id) -> begin m_rhs(master, is_min, constr_id) end constr_ids = ConstrId[] constr_rhs = Float64[] constr_rhs_dual = Float64[] is_min = getobjsense(master) == MinSense for (constr_id, constr) in getconstrs(master) if !(getduty(constr_id) <= MasterConvexityConstr) && iscuractive(master, constr) && isexplicit(master, constr) push!(constr_ids, constr_id) push!(constr_rhs, m_rhs(master, is_min, constr_id) * getcurrhs(master, constr_id)) push!(constr_rhs_dual, getcurrhs(master, constr_id)) end end a = sparsevec(constr_ids, constr_rhs, Coluna.MAX_NB_ELEMS) a_dual = sparsevec(constr_ids, constr_rhs_dual, Coluna.MAX_NB_ELEMS) A = _submatrix( master, (form, constr_id, constr) -> !(getduty(constr_id) <= MasterConvexityConstr) && iscuractive(form, constr), (form, var_id, var) -> getduty(var_id) <= MasterPureVar || getduty(var_id) <= MasterRepPricingVar, m_submatrix ) return SubgradientCalculationHelper(a, a_dual, A) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1731
""" The restricted master heuristic enforces integrality of the master column variables and optimizes the master problem restricted to active master column variables using a MIP solver. If the heuristic finds a solution, it checks that this solution does not violate any essential cut. """ struct RestrictedMasterHeuristic <: AbstractOptimizationAlgorithm solve_ip_form_alg::SolveIpForm RestrictedMasterHeuristic(; solve_ip_form_alg = SolveIpForm(moi_params = MoiOptimize(get_dual_bound = false)) ) = new(solve_ip_form_alg) end ismanager(::RestrictedMasterHeuristic) = false function get_child_algorithms(algo::RestrictedMasterHeuristic, reform::Reformulation) child_algs = Dict{String, Tuple{AlgoAPI.AbstractAlgorithm, MathProg.Formulation}}( "solve_ip_form_alg" => (algo.solve_ip_form_alg, getmaster(reform)) ) return child_algs end function run!(algo::RestrictedMasterHeuristic, env, reform, input::OptimizationState) master = getmaster(reform) ip_form_output = run!(algo.solve_ip_form_alg, env, master, input) ip_primal_sols = get_ip_primal_sols(ip_form_output) output = OptimizationState(master) # We need to make sure that the solution is feasible by separating essential cuts and then # project the solution on master. if length(ip_primal_sols) > 0 for sol in sort(ip_primal_sols) # we start with worst solution to add all improving solutions cutgen = CutCallbacks(call_robust_facultative = false) cutcb_output = run!(cutgen, env, master, CutCallbacksInput(sol)) if cutcb_output.nb_cuts_added == 0 add_ip_primal_sol!(output, sol) end end end return output end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
9070
const PRECISION_DIGITS = 6 # floating point numbers have between 6 and 9 significant digits """ Temporary data structure where we store a representation of the formulation that we presolve. """ mutable struct PresolveFormRepr nb_vars::Int nb_constrs::Int col_major_coef_matrix::SparseMatrixCSC{Float64,Int64} # col major row_major_coef_matrix::SparseMatrixCSC{Float64,Int64} # row major rhs::Vector{Float64} # on constraints sense::Vector{ConstrSense} # on constraints lbs::Vector{Float64} # on variables ubs::Vector{Float64} # on variables partial_solution::Vector{Float64} # on variables lower_multiplicity::Float64 upper_multiplicity::Float64 end function PresolveFormRepr( coef_matrix, rhs, sense, lbs, ubs, partial_solution, lm, um ) length(lbs) == length(ubs) || throw(ArgumentError("Inconsistent sizes of bounds and coef_matrix.")) length(rhs) == length(sense) || throw(ArgumentError("Inconsistent sizes of rhs and coef_matrix.")) nb_vars = length(lbs) nb_constrs = length(rhs) @assert reduce(&, map(lb -> !isnan(lb), lbs)) @assert reduce(&, map(ub -> !isnan(ub), ubs)) return PresolveFormRepr( nb_vars, nb_constrs, coef_matrix, transpose(coef_matrix), rhs, sense, lbs, ubs, partial_solution, lm, um ) end _lb_prec(lb) = floor(round(lb, sigdigits = PRECISION_DIGITS + 1), sigdigits = PRECISION_DIGITS) _ub_prec(ub) = ceil(round(ub, sigdigits = PRECISION_DIGITS + 1), sigdigits = PRECISION_DIGITS) function _act_contrib(a, l, u) if a > 0 return l*a elseif a < 0 return u*a end return 0.0 end function row_min_activity(form::PresolveFormRepr, row::Int, except_col::Function = _ -> false) activity = 0.0 A = form.row_major_coef_matrix cols = rowvals(A) vals = nonzeros(A) for i in nzrange(A, row) col = cols[i] val = vals[i] l = form.lbs[col] u = form.ubs[col] if !except_col(col) activity += _act_contrib(val, l, u) end end return activity end function row_max_activity(form::PresolveFormRepr, row::Int, except_col::Function = _ -> false) activity = 0.0 A = form.row_major_coef_matrix cols = rowvals(A) vals = nonzeros(A) for i in nzrange(A, row) col = cols[i] val = vals[i] l = form.lbs[col] u = form.ubs[col] if !except_col(col) activity += _act_contrib(val, u, l) end end return activity end function row_max_slack(form::PresolveFormRepr, row::Int, except_col::Function = _ -> false) act = row_min_activity(form, row, except_col) return form.rhs[row] - act end function row_min_slack(form::PresolveFormRepr, row::Int, except_col::Function = _ -> false) act = row_max_activity(form, row, except_col) return form.rhs[row] - act end function _unbounded_row(sense::ConstrSense, rhs::Real) return rhs > 0 && isinf(rhs) && sense == Less || rhs < 0 && isinf(rhs) && sense == Greater end function _row_bounded_by_var_bounds(sense::ConstrSense, min_slack::Real, max_slack::Real, ϵ::Real) return sense == Less && min_slack >= -ϵ || sense == Greater && max_slack <= ϵ || sense == Equal && max_slack <= ϵ && min_slack >= -ϵ end function _infeasible_row(sense::ConstrSense, min_slack::Real, max_slack::Real, ϵ::Real) return (sense == Greater || sense == Equal) && min_slack > ϵ || (sense == Less || sense == Equal) && max_slack < -ϵ end function _var_lb_from_row(sense::ConstrSense, min_slack::Real, max_slack::Real, var_coef_in_row::Real) if (sense == Equal || sense == Greater) && var_coef_in_row > 0 return min_slack / var_coef_in_row elseif (sense == Less || sense == Equal) && var_coef_in_row < 0 return max_slack / var_coef_in_row end return -Inf end function _var_ub_from_row(sense::ConstrSense, min_slack::Real, max_slack::Real, var_coef_in_row::Real) if (sense == Greater || sense == Equal) && var_coef_in_row < 0 return min_slack / var_coef_in_row elseif (sense == Equal || sense == Less) && var_coef_in_row > 0 return max_slack / var_coef_in_row end return Inf end # Is not used for the moment, but we keep it as it might be needed # function rows_to_deactivate(form::PresolveFormRepr) # # Compute slacks of each constraints # rows_to_deactivate = Int[] # min_slacks = Float64[row_min_slack(form, row) for row in 1:form.nb_constrs] # max_slacks = Float64[row_max_slack(form, row) for row in 1:form.nb_constrs] # for row in 1:form.nb_constrs # sense = form.sense[row] # rhs = form.rhs[row] # if _infeasible_row(sense, min_slacks[row], max_slacks[row], 1e-6) # error("Infeasible row $row.") # end # if _unbounded_row(sense, rhs) || _row_bounded_by_var_bounds(sense, min_slacks[row], max_slacks[row], 1e-6) # push!(rows_to_deactivate, row) # end # end # return rows_to_deactivate # end function bounds_tightening(form::PresolveFormRepr) #length(ignore_rows) == form.nb_constrs || throw(ArgumentError("Inconsistent sizes of ignore_rows and nb of constraints.")) tightened_bounds = Dict{Int, Tuple{Float64, Bool, Float64, Bool}}() for col in 1:form.nb_vars var_lb = form.lbs[col] var_ub = form.ubs[col] tighter_lb = false tighter_ub = false for row in 1:form.nb_constrs min_slack = row_min_slack(form, row, i -> i == col) max_slack = row_max_slack(form, row, i -> i == col) var_coef_in_row = form.col_major_coef_matrix[row, col] sense = form.sense[row] var_lb_from_row = _var_lb_from_row(sense, min_slack, max_slack, var_coef_in_row) @assert !isnan(var_lb) @assert !isnan(var_lb_from_row) if var_lb_from_row > var_lb var_lb = var_lb_from_row tighter_lb = true end var_ub_from_row = _var_ub_from_row(sense, min_slack, max_slack, var_coef_in_row) @assert !isnan(var_ub) @assert !isnan(var_ub_from_row) if var_ub_from_row < var_ub var_ub = var_ub_from_row tighter_ub = true end end if tighter_lb || tighter_ub push!(tightened_bounds, col => (_lb_prec(var_lb), tighter_lb, _ub_prec(var_ub), tighter_ub)) end end return tightened_bounds end function find_uninvolved_vars(col_major_coef_matrix) uninvolved_vars = Int[] vals = nonzeros(col_major_coef_matrix) for j in 1:size(col_major_coef_matrix, 2) uninvolved = true for i in nzrange(col_major_coef_matrix, j) if abs(vals[i]) > 1e-6 uninvolved = false break end end if uninvolved push!(uninvolved_vars, j) end end return uninvolved_vars end function tighten_bounds_presolve_form_repr(form::PresolveFormRepr, tightened_bounds::Dict{Int, Tuple{Float64, Bool, Float64, Bool}}, lm, um) coef_matrix = form.col_major_coef_matrix rhs = form.rhs sense = form.sense lbs = form.lbs ubs = form.ubs partial_sol = form.partial_solution # Tighten bounds for (col, (lb, tighter_lb, ub, tighter_ub)) in tightened_bounds @assert !isnan(lb) @assert !isnan(ub) if tighter_lb lbs[col] = lb end if tighter_ub ubs[col] = ub end end row_mask = ones(Bool, form.nb_constrs) col_mask = ones(Bool, form.nb_vars) return PresolveFormRepr(coef_matrix, rhs, sense, lbs, ubs, partial_sol, lm, um), row_mask, col_mask end function shrink_row_presolve_form_repr(form::PresolveFormRepr, rows_to_deactivate::Vector{Int}, lm, um) nb_rows = form.nb_constrs coef_matrix = form.col_major_coef_matrix rhs = form.rhs sense = form.sense lbs = form.lbs ubs = form.ubs partial_sol = form.partial_solution row_mask = ones(Bool, nb_rows) row_mask[rows_to_deactivate] .= false return PresolveFormRepr( coef_matrix[row_mask, :], rhs[row_mask], sense[row_mask], lbs, ubs, partial_sol, lm, um ), row_mask end function PresolveFormRepr( presolve_form_repr::PresolveFormRepr, rows_to_deactivate::Vector{Int}, tightened_bounds::Dict{Int, Tuple{Float64, Bool, Float64, Bool}}, lm, um ) row_mask = ones(Bool, presolve_form_repr.nb_constrs) col_mask = ones(Bool, presolve_form_repr.nb_vars) presolve_form_repr, row_mask, col_mask = tighten_bounds_presolve_form_repr( presolve_form_repr, tightened_bounds, lm, um ) presolve_form_repr, row_mask = shrink_row_presolve_form_repr( presolve_form_repr, rows_to_deactivate, lm, um ) return presolve_form_repr, row_mask, col_mask end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
18979
""" Stores a matrix-representation of the formulation and the mapping between the variables & constraints of the formulation to the row and column of the matrix and components of the vector that represents the formulation. """ struct PresolveFormulation col_to_var::Vector{Variable} row_to_constr::Vector{Constraint} var_to_col::Dict{VarId,Int64} constr_to_row::Dict{ConstrId,Int64} form::PresolveFormRepr deactivated_constrs::Vector{ConstrId} fixed_variables::Dict{VarId,Float64} end """ Stores the presolve-representation of the formulations of the Dantzig-Wolfe reformulation. This datastructure contains: - `representative_master` that contains the master formulation expressed with representative variables and pure master variables - `restricted_master` that contains the master formulation expressed with pure master variables, master columns, and artificial variables - `dw_sps` a dictionary that contains the subproblem formulations. """ mutable struct DwPresolveReform representative_master::PresolveFormulation restricted_master::PresolveFormulation dw_sps::Dict{FormId,PresolveFormulation} end function create_presolve_form( form::Formulation, keep_var::Function, keep_constr::Function; lower_multiplicity=1, upper_multiplicity=1 ) sm_constr_ids, sm_var_ids, nz = _submatrix_nz_elems(form, keep_constr, keep_var) constr_ids = Set{ConstrId}() for (constr_id, constr) in getconstrs(form) if keep_constr(form, constr_id, constr) push!(constr_ids, constr_id) end end var_ids = Set{VarId}() for (var_id, var) in getvars(form) if keep_var(form, var_id, var) push!(var_ids, var_id) end end var_to_col = Dict{VarId,Int64}() col_to_var = Variable[] for (k, varid) in enumerate(unique(var_ids)) var = getvar(form, varid) @assert !isnothing(var) push!(col_to_var, var) var_to_col[varid] = k end constr_to_row = Dict{ConstrId,Int64}() row_to_constr = Constraint[] for (k, constrid) in enumerate(unique(constr_ids)) constr = getconstr(form, constrid) @assert !isnothing(constr) push!(row_to_constr, constr) constr_to_row[constrid] = k end coef_submatrix = sparse( map(constr_id -> constr_to_row[constr_id], sm_constr_ids), map(var_id -> var_to_col[var_id], sm_var_ids), nz, length(row_to_constr), length(col_to_var), ) lbs_vals = Float64[] ubs_vals = Float64[] partial_sol = Float64[] for var in col_to_var push!(lbs_vals, getcurlb(form, var)) push!(ubs_vals, getcurub(form, var)) @assert !isnan(getcurlb(form, var)) @assert !isnan(getcurub(form, var)) #push!(partial_sol, MathProg.get_value_in_partial_sol(form, var)) push!(partial_sol, 0.0) end rhs_vals = Float64[] sense_vals = Coluna.ConstrSense[] for constr in row_to_constr push!(rhs_vals, getcurrhs(form, constr)) push!(sense_vals, getcursense(form, constr)) end form = PresolveFormRepr( coef_submatrix, rhs_vals, sense_vals, lbs_vals, ubs_vals, partial_sol, lower_multiplicity, upper_multiplicity ) deactivated_constrs = ConstrId[] return PresolveFormulation( col_to_var, row_to_constr, var_to_col, constr_to_row, form, deactivated_constrs, Dict{VarId,Float64}() ) end function create_presolve_reform(reform::Reformulation{DwMaster}; verbose::Bool=false) master = getmaster(reform) # Create the presolve formulations # Master 1: # Variables: subproblem representatives & master pure # Constraints: master pure & master mixed & branching constraints & cuts original_master_vars = (form, varid, var) -> ( (getduty(varid) <= MasterPureVar && iscuractive(form, var)) || getduty(varid) <= MasterRepPricingVar ) original_master_constrs = (form, constrid, constr) -> ( iscuractive(form, constr) && ( getduty(constrid) <= MasterPureConstr || getduty(constrid) <= MasterMixedConstr || getduty(constrid) <= MasterBranchOnOrigVarConstr || getduty(constrid) <= MasterUserCutConstr || getduty(constrid) <= MasterConvexityConstr ) ) original_master = create_presolve_form(master, original_master_vars, original_master_constrs) if verbose print("Initial original and global bounds:") for (col, var) in enumerate(original_master.col_to_var) print( " ", getname(master, var), ":[", original_master.form.lbs[col], ",", original_master.form.ubs[col], "]" ) end println() end # Master 2: # Variables: columns & master pure & artifical variables # Constraints: master pure & master mixed & convexity constraints & branching constraints & cuts restricted_master_vars = (form, varid, var) -> ( iscuractive(form, var) && ( getduty(varid) <= MasterPureVar || getduty(varid) <= MasterCol || getduty(varid) <= MasterArtVar ) ) restricted_master_constrs = (form, constrid, constr) -> ( iscuractive(form, constr) && ( getduty(constrid) <= MasterPureConstr || getduty(constrid) <= MasterMixedConstr || getduty(constrid) <= MasterBranchOnOrigVarConstr || getduty(constrid) <= MasterUserCutConstr || getduty(constrid) <= MasterConvexityConstr ) ) restricted_master = create_presolve_form( master, restricted_master_vars, restricted_master_constrs ) # Subproblems: # Variables: pricing variables # Constraints: DwSpPureConstr sp_vars = (form, varid, var) -> iscuractive(form, var) && getduty(varid) <= DwSpPricingVar sp_constrs = (form, constrid, constr) -> iscuractive(form, constr) && getduty(constrid) <= DwSpPureConstr dw_sps = Dict{FormId,PresolveFormulation}() for (spid, sp) in get_dw_pricing_sps(reform) lm = getcurrhs(master, sp.duty_data.lower_multiplicity_constr_id) um = getcurrhs(master, sp.duty_data.upper_multiplicity_constr_id) dw_sps[spid] = create_presolve_form( sp, sp_vars, sp_constrs, lower_multiplicity=lm, upper_multiplicity=um ) end return DwPresolveReform(original_master, restricted_master, dw_sps) end function update_partial_sol!( form::Formulation{DwMaster}, presolve_form::PresolveFormulation, partial_solution ) # Update partial solution for (col, val) in enumerate(partial_solution) var = presolve_form.col_to_var[col] duty = getduty(getid(var)) if duty <= MasterArtVar && !iszero(val) error(""" Infeasible because artificial variable $(getname(form, var)) is not zero. Fixed to $(val) in partial solution. """) end if !iszero(val) && (duty <= MasterCol || duty <= MasterPureVar) MathProg.add_to_partial_solution!(form, var, val) end end return end function _update_bounds!(form::Formulation, presolve_form::PresolveFormulation) # Update bounds for (col, (lb, ub)) in enumerate(Iterators.zip( presolve_form.form.lbs, presolve_form.form.ubs )) @assert !isnan(lb) @assert !isnan(ub) var = presolve_form.col_to_var[col] if getduty(getid(var)) <= MasterCol @assert iszero(lb) setcurlb!(form, var, 0.0) # ignore the upper bound (we keep Inf) else setcurlb!(form, var, lb) setcurub!(form, var, ub) end end return end function _update_rhs!(form::Formulation, presolve_form::PresolveFormulation) for (row, rhs) in enumerate(presolve_form.form.rhs) constr = presolve_form.row_to_constr[row] setcurrhs!(form, constr, rhs) end return end function update_form_from_presolve!(form::Formulation, presolve_form::PresolveFormulation) # Deactivate Constraints for constr_id in presolve_form.deactivated_constrs if iscuractive(form, getconstr(form, constr_id)) deactivate!(form, getconstr(form, constr_id)) end end _update_rhs!(form, presolve_form) _update_bounds!(form, presolve_form) return end function update_reform_from_presolve!( reform::Reformulation, presolve_reform::DwPresolveReform ) master = getmaster(reform) presolve_repr_master = presolve_reform.representative_master # Update subproblems for (spid, sp) in get_dw_pricing_sps(reform) sp_presolve_form = presolve_reform.dw_sps[spid] update_form_from_presolve!(sp, sp_presolve_form) lm_row = presolve_repr_master.constr_to_row[sp.duty_data.lower_multiplicity_constr_id] presolve_repr_master.form.rhs[lm_row] = sp_presolve_form.form.lower_multiplicity um_row = presolve_repr_master.constr_to_row[sp.duty_data.upper_multiplicity_constr_id] presolve_repr_master.form.rhs[um_row] = sp_presolve_form.form.upper_multiplicity end update_form_from_presolve!(master, presolve_repr_master) return end """ Presolve algorithm """ struct PresolveAlgorithm <: AlgoAPI.AbstractAlgorithm ϵ::Float64 verbose::Bool PresolveAlgorithm(; ϵ=Coluna.TOL, verbose=false) = new(ϵ, verbose) end # PresolveAlgorithm does not have child algorithms, therefore get_child_algorithms() is not defined function get_units_usage(algo::PresolveAlgorithm, reform::Reformulation) units_usage = Tuple{AbstractModel,UnitType,UnitPermission}[] master = getmaster(reform) push!(units_usage, (master, StaticVarConstrUnit, READ_AND_WRITE)) push!(units_usage, (master, PartialSolutionUnit, READ_AND_WRITE)) push!(units_usage, (master, MasterBranchConstrsUnit, READ_AND_WRITE)) push!(units_usage, (master, MasterCutsUnit, READ_AND_WRITE)) push!(units_usage, (master, MasterColumnsUnit, READ_AND_WRITE)) for (_, dw_sp) in get_dw_pricing_sps(reform) push!(units_usage, (dw_sp, StaticVarConstrUnit, READ_AND_WRITE)) end return units_usage end struct PresolveInput partial_sol_to_fix::Dict{VarId,Float64} end PresolveInput() = PresolveInput(Dict{VarId,Float64}()) struct PresolveOutput feasible::Bool end isfeasible(output::PresolveOutput) = output.feasible function presolve_formulation!(presolve_form::PresolveFormulation) tightened_bounds = bounds_tightening(presolve_form.form) presolve_form = propagate_in_presolve_form(presolve_form, Int[], tightened_bounds) end function check_feasibility!(form::Formulation, presolve_form::PresolveFormulation, verbose::Bool) form_repr = presolve_form.form if verbose for col in 1:form_repr.nb_vars if !(form_repr.lbs[col] <= form_repr.ubs[col]) println( "Infeasible due to variable ", getname(form, presolve_form.col_to_var[col]), " lb = ", form_repr.lbs[col], " ub = ", form_repr.ubs[col], " of form. ", getuid(form) ) break end end end feasible = all(col -> form_repr.lbs[col] <= form_repr.ubs[col], 1:form_repr.nb_vars) if verbose && !feasible println("Formulation ", getuid(form), " is infeasible!") end return feasible end function update_multiplicities!(presolve_repr_master, presolve_sp, feasible::Bool) l_mult, u_mult = if feasible lm = presolve_sp.form.lower_multiplicity um = presolve_sp.form.upper_multiplicity for (var, local_lb, local_ub) in zip( presolve_sp.col_to_var, presolve_sp.form.lbs, presolve_sp.form.ubs ) varid = getid(var) master_col = presolve_repr_master.var_to_col[varid] global_lb = presolve_repr_master.form.lbs[master_col] global_ub = presolve_repr_master.form.ubs[master_col] # update of lower multiplicity if global_lb > 0 && local_ub > 0 # no need to check !isinf(global_lb) new_lm = ceil(global_lb / local_ub) lm = max(new_lm, lm) elseif global_ub < 0 && local_lb < 0 # no need to check !isinf(global_ub) new_lm = ceil(global_ub / local_lb) lm = max(new_lm, lm) end # update of upper multiplicity if local_lb > 0 && global_ub > 0 # no need to check !isinf(local_lb) new_um = floor(global_ub / local_lb) um = min(um, new_um) elseif local_ub < 0 && global_lb < 0 # no need to check !isinf(local_ub) new_um = floor(global_lb / local_ub) um = min(um, new_um) end end lm, um else 0, 0 end presolve_sp.form.lower_multiplicity = l_mult presolve_sp.form.upper_multiplicity = u_mult end function presolve_iteration!( reform::Reformulation, presolve_reform::DwPresolveReform, verbose::Bool ) master = getmaster(reform) # Presolve the respresentative master. presolve_formulation!(presolve_reform.representative_master) if verbose print("Global bounds after presolve:") for (col, var) in enumerate(presolve_reform.representative_master.col_to_var) print( " ", getname(master, var), ":[", presolve_reform.representative_master.form.lbs[col], ",", presolve_reform.representative_master.form.ubs[col], "]" ) end println() end # Presolve subproblems for (sp_id, presolve_sp) in presolve_reform.dw_sps iszero(presolve_sp.form.upper_multiplicity) && continue # Propagate and strengthen local bounds. propagate_local_bounds!(presolve_reform.representative_master, presolve_sp) if verbose println( "Multiplicities of $sp_id:[", presolve_sp.form.lower_multiplicity, ",", presolve_sp.form.upper_multiplicity, "]" ) print("Local bounds of sp $sp_id after propagation from global bounds:") for (col, var) in enumerate(presolve_sp.col_to_var) print( " ", getname(get_dw_pricing_sps(reform)[sp_id], var), ":[", presolve_sp.form.lbs[col], ",", presolve_sp.form.ubs[col], "]" ) end println() end presolve_formulation!(presolve_sp) if verbose print("Local bounds of sp $sp_id after presolve:") for (col, var) in enumerate(presolve_sp.col_to_var) print( " ", getname(get_dw_pricing_sps(reform)[sp_id], var), ":[", presolve_sp.form.lbs[col], ",", presolve_sp.form.ubs[col], "]" ) end println() end feasible = check_feasibility!(get_dw_pricing_sps(reform)[sp_id], presolve_sp, verbose) update_multiplicities!(presolve_reform.representative_master, presolve_sp, feasible) # Propagate and strengthen global bounds. propagate_global_bounds!(presolve_reform.representative_master, presolve_sp) end if verbose print("Global bounds after propagation from local bounds:") for (col, var) in enumerate(presolve_reform.representative_master.col_to_var) print( " ", getname(master, var), ":[", presolve_reform.representative_master.form.lbs[col], ",", presolve_reform.representative_master.form.ubs[col], "]" ) end println() end return check_feasibility!(master, presolve_reform.representative_master, verbose) end function deactivate_non_proper_columns!(reform::Reformulation) master = getmaster(reform) dw_sps = get_dw_pricing_sps(reform) for (varid, _) in getvars(master) if getduty(varid) <= MasterCol spid = getoriginformuid(varid) if !_column_is_proper(varid, dw_sps[spid]) deactivate!(master, varid) end end end return end function run!( algo::PresolveAlgorithm, ::Env, reform::Reformulation, input::PresolveInput )::PresolveOutput algo.verbose && println("**** Start of presolve algorithm ****") presolve_reform = create_presolve_reform(reform; verbose = algo.verbose) # Identify the partial solution in the restricted master, compute the new rhs # of all master constraints and new global and local bounds of the representative and # subproblem variables. local_restr_partial_sol = propagate_partial_sol_into_master!( reform, presolve_reform, input.partial_sol_to_fix, algo.verbose ) isnothing(local_restr_partial_sol) && return PresolveOutput(false) # Perform several rounds of presolve. for i in 1:3 algo.verbose && println("**** Presolve step $i ****") if presolve_iteration!(reform, presolve_reform, algo.verbose) == false algo.verbose && println("**** End of presolve algorithm ****") return PresolveOutput(false) end end update_partial_sol!( getmaster(reform), presolve_reform.restricted_master, local_restr_partial_sol ) update_reform_from_presolve!(reform, presolve_reform) deactivate_non_proper_columns!(reform) algo.verbose && println("**** End of presolve algorithm ****") return PresolveOutput(true) end function _column_is_proper(col_id, sp_form) # Retrieve the column in the pool. pool = get_primal_sol_pool(sp_form) solution = @view pool.solutions[col_id, :] for (var_id, value) in solution if value < getcurlb(sp_form, var_id) - Coluna.TOL || value > getcurub(sp_form, var_id) + Coluna.TOL return false end end return true end function column_is_proper(col_id, reform) sp_id = getoriginformuid(col_id) sp_form = get_dw_pricing_sps(reform)[sp_id] return _column_is_proper(col_id, sp_form) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
12364
function propagate_global_bounds!( presolve_repr_master::PresolveFormulation, presolve_sp::PresolveFormulation ) # TODO: does not work with representatives of multiple subproblems. lm = presolve_sp.form.lower_multiplicity um = presolve_sp.form.upper_multiplicity for (i, var) in enumerate(presolve_sp.col_to_var) repr_col = get(presolve_repr_master.var_to_col, getid(var), nothing) if !isnothing(repr_col) local_lb = presolve_sp.form.lbs[i] local_ub = presolve_sp.form.ubs[i] global_lb = presolve_repr_master.form.lbs[repr_col] global_ub = presolve_repr_master.form.ubs[repr_col] new_global_lb = local_lb * (local_lb < 0 ? um : lm) new_global_ub = local_ub * (local_ub < 0 ? lm : um) isnan(new_global_lb) && (new_global_lb = 0) isnan(new_global_ub) && (new_global_ub = 0) presolve_repr_master.form.lbs[repr_col] = max(global_lb, new_global_lb) presolve_repr_master.form.ubs[repr_col] = min(global_ub, new_global_ub) end end return end function propagate_local_bounds!( presolve_repr_master::PresolveFormulation, presolve_sp::PresolveFormulation ) # TODO: does not work with representatives of multiple subproblems. lm = presolve_sp.form.lower_multiplicity um = presolve_sp.form.upper_multiplicity for (i, var) in enumerate(presolve_sp.col_to_var) repr_col = get(presolve_repr_master.var_to_col, getid(var), nothing) if !isnothing(repr_col) global_lb = presolve_repr_master.form.lbs[repr_col] global_ub = presolve_repr_master.form.ubs[repr_col] local_lb = presolve_sp.form.lbs[i] local_ub = presolve_sp.form.ubs[i] if !isinf(global_lb) && !isinf(local_ub) && !isinf(um) new_local_lb = global_lb - (um - 1) * local_ub presolve_sp.form.lbs[i] = max(new_local_lb, local_lb) end if !isinf(global_ub) && !isinf(local_lb) new_local_ub = global_ub - max(0, lm - 1) * local_lb presolve_sp.form.ubs[i] = min(new_local_ub, local_ub) end end end return end function get_partial_sol( presolve_form::PresolveFormulation, partial_sol_to_fix::Dict{VarId,Float64} ) new_partial_sol = zeros(Float64, length(presolve_form.col_to_var)) for (var_id, value) in partial_sol_to_fix if !haskey(presolve_form.var_to_col, var_id) if iszero(value) continue else return nothing end end new_partial_sol[presolve_form.var_to_col[var_id]] += value end return new_partial_sol end function compute_rhs(presolve_form, restr_partial_sol) rhs = presolve_form.form.rhs coef_matrix = presolve_form.form.col_major_coef_matrix return rhs - coef_matrix * restr_partial_sol end function partial_sol_on_repr( dw_sps, presolve_master_repr::PresolveFormulation, presolve_master_restr::PresolveFormulation, restr_partial_sol ) partial_solution = zeros(Float64, presolve_master_repr.form.nb_vars) nb_fixed_columns = Dict(spid => 0 for (spid, _) in dw_sps) new_column_explored = false for (col, partial_sol_value) in enumerate(restr_partial_sol) if abs(partial_sol_value) > Coluna.TOL var = presolve_master_restr.col_to_var[col] varid = getid(var) if getduty(varid) <= MasterCol spid = getoriginformuid(varid) spform = get(dw_sps, spid, nothing) @assert !isnothing(spform) column = @view get_primal_sol_pool(spform).solutions[varid,:] for (varid, val) in column getduty(varid) <= DwSpPricingVar || continue master_repr_var_col = get(presolve_master_repr.var_to_col, varid, nothing) if !isnothing(master_repr_var_col) partial_solution[master_repr_var_col] += val * partial_sol_value end if !new_column_explored nb_fixed_columns[spid] += partial_sol_value new_column_explored = true end end new_column_explored = false elseif getduty(varid) <= MasterPureVar master_repr_var_col = get(presolve_master_repr.var_to_col, varid, nothing) if !isnothing(master_repr_var_col) partial_solution[master_repr_var_col] += partial_sol_value end end end end return partial_solution, nb_fixed_columns end # For each master variable (master representative or master pure), # this function calculates the domain, i.e. intevals in which their new (global) bounds should lie function compute_repr_master_var_domains( dw_pricing_sps, presolve_reform::DwPresolveReform, local_repr_partial_sol ) sp_domains = Dict{VarId,Tuple{Float64,Float64}}() for (sp_id, sp_presolve_form) in presolve_reform.dw_sps lm = sp_presolve_form.form.lower_multiplicity um = sp_presolve_form.form.upper_multiplicity # Update domains for master representative variables using multiplicity. sp_form = dw_pricing_sps[sp_id] for (varid, var) in getvars(sp_form) if getduty(varid) <= DwSpPricingVar lb = getcurlb(sp_form, var) ub = getcurub(sp_form, var) (global_lb, global_ub) = get(sp_domains, varid, (0.0, 0.0)) global_lb += isinf(lb) ? lb : (lb > 0 ? lm : um) * lb global_ub += isinf(ub) ? ub : (ub > 0 ? um : lm) * ub sp_domains[varid] = (global_lb, global_ub) end end end presolve_repr_master = presolve_reform.representative_master domains = Vector{Tuple{Float64, Float64}}() sizehint!(domains, presolve_repr_master.form.nb_vars) for col in 1:presolve_repr_master.form.nb_vars varid = getid(presolve_repr_master.col_to_var[col]) domain = if haskey(sp_domains, varid) sp_domains[varid] elseif iszero(local_repr_partial_sol[col]) (-Inf, Inf) elseif local_repr_partial_sol[col] > 0 (0, Inf) else # local_repr_partial_sol[col] < 0 (-Inf, 0) end push!(domains, domain) end return domains end function propagate_partial_sol_to_global_bounds!( presolve_repr_master, local_repr_partial_sol, master_var_domains ) new_lbs = zeros(Float64, presolve_repr_master.form.nb_vars) new_ubs = zeros(Float64, presolve_repr_master.form.nb_vars) for (col, (val, lb, ub, (min_value, max_value))) in enumerate( Iterators.zip( local_repr_partial_sol, presolve_repr_master.form.lbs, presolve_repr_master.form.ubs, master_var_domains ) ) new_lbs[col] = max(lb - val, min_value) new_ubs[col] = min(ub - val, max_value) end presolve_repr_master.form.lbs = new_lbs presolve_repr_master.form.ubs = new_ubs return end function propagate_in_presolve_form( form::PresolveFormulation, rows_to_deactivate::Vector{Int}, tightened_bounds::Dict{Int,Tuple{Float64,Bool,Float64,Bool}} ) form_repr, row_mask, col_mask = PresolveFormRepr( form.form, rows_to_deactivate, tightened_bounds, form.form.lower_multiplicity, form.form.upper_multiplicity ) col_to_var = form.col_to_var[col_mask] row_to_constr = form.row_to_constr[row_mask] deactivated_constrs = form.deactivated_constrs fixed_vars_dict = form.fixed_variables var_to_col = Dict(getid(var) => k for (k, var) in enumerate(col_to_var)) constr_to_row = Dict(getid(constr) => k for (k, constr) in enumerate(row_to_constr)) for constr in form.row_to_constr[.!row_mask] push!(deactivated_constrs, getid(constr)) end @assert length(col_to_var) == length(form_repr.lbs) @assert length(col_to_var) == length(form_repr.ubs) @assert length(row_to_constr) == length(form_repr.rhs) return PresolveFormulation( col_to_var, row_to_constr, var_to_col, constr_to_row, form_repr, deactivated_constrs, fixed_vars_dict ) end function update_subproblem_multiplicities!(dw_sps, nb_fixed_columns_per_sp) for (spid, presolve_sp) in dw_sps lm = presolve_sp.form.lower_multiplicity um = presolve_sp.form.upper_multiplicity presolve_sp.form.lower_multiplicity = max( 0, lm - nb_fixed_columns_per_sp[spid] ) presolve_sp.form.upper_multiplicity = max( 0, um - nb_fixed_columns_per_sp[spid] ) # TODO if < 0 -> error end return end """ Returns the local restricted partial solution. """ function propagate_partial_sol_into_master!( reform::Reformulation, presolve_reform::DwPresolveReform, partial_sol_to_fix::Dict{VarId,Float64}, verbose::Bool ) presolve_representative_master = presolve_reform.representative_master presolve_restricted_master = presolve_reform.restricted_master # Create the local partial solution from the restricted master presolve representation. # This local partial solution must then be "fixed" & propagated. local_restr_partial_sol = get_partial_sol(presolve_restricted_master, partial_sol_to_fix) isnothing(local_restr_partial_sol) && return nothing # Compute the rhs of all constraints. # Non-robust and convexity constraints rhs can only be computed using this representation. new_rhs = compute_rhs(presolve_restricted_master, local_restr_partial_sol) # Project local partial solution on the representative master. local_repr_partial_sol, nb_fixed_columns_per_sp = partial_sol_on_repr( get_dw_pricing_sps(reform), presolve_representative_master, presolve_restricted_master, local_restr_partial_sol ) if verbose print("Partial solution in the representative formulation:") master = getmaster(reform) for (var, value) in zip(presolve_representative_master.col_to_var, local_repr_partial_sol) if !iszero(value) print(" ", getname(master, var), "=>", value) end end println() end # Update the multiplicity of each subproblem. update_subproblem_multiplicities!(presolve_reform.dw_sps, nb_fixed_columns_per_sp) if verbose print("New subproblem multiplicities:") for (form_id, presolve_sp) in presolve_reform.dw_sps print( " sp.", form_id, ":[", presolve_sp.form.lower_multiplicity, ",", presolve_sp.form.upper_multiplicity, "]" ) end println() end # Compute master variables domains (in which variable bounds should lie) master_var_domains = compute_repr_master_var_domains( get_dw_pricing_sps(reform), presolve_reform, local_repr_partial_sol ) # Propagate local partial solution from the representative master representation # into the global bounds. propagate_partial_sol_to_global_bounds!( presolve_representative_master, local_repr_partial_sol, master_var_domains ) if verbose print("Global bounds after fixing partial solution:") for (col, var) in enumerate(presolve_representative_master.col_to_var) print( " ", getname(master, var), ":[", presolve_representative_master.form.lbs[col], ",", presolve_representative_master.form.ubs[col], "]" ) end println() end # Update the rhs of the representative master. @assert length(new_rhs) == length(presolve_restricted_master.form.rhs) == length(presolve_representative_master.form.rhs) for (row, rhs) in enumerate(new_rhs) presolve_representative_master.form.rhs[row] = rhs end return local_restr_partial_sol end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
15799
############################################################################################ # Node. ############################################################################################ """ Branch-and-bound node. It stores only local information about the node. Global information about the branch-and-bound belong to the search space object. """ mutable struct Node <: TreeSearch.AbstractNode depth::Int branchdescription::String # The Node instance may have been created after its partial evaluation # (e.g. strong branching). In this case, we store an OptimizationState in the node # with the result of its partial evaluation. # We then retrieve from this OptimizationState a possible new incumbent primal # solution and communicate the latter to the branch-and-bound algorithm. # We also store the final result of the conquer algorithm here so we can print these # informations. conquer_output::Union{Nothing, OptimizationState} # Current local dual bound at the node: # - dual bound of the parent node if the node has not been evaluated yet. # - dual bound of the conquer if the node has been evaluated. ip_dual_bound::Bound # Information to restore the reformulation after the creation of the node (e.g. creation # of the branching constraint) or its partial evaluation (e.g. strong branching). records::Records end getdepth(n::Node) = n.depth TreeSearch.isroot(n::Node) = n.depth == 0 Branching.isroot(n::Node) = TreeSearch.isroot(n) TreeSearch.set_records!(n::Node, records) = n.records = records TreeSearch.get_conquer_output(n::Node) = n.conquer_output TreeSearch.get_branch_description(n::Node) = n.branchdescription # printer # Priority of nodes depends on the explore strategy. TreeSearch.get_priority(::TreeSearch.AbstractExploreStrategy, ::Node) = error("todo") TreeSearch.get_priority(::TreeSearch.DepthFirstStrategy, n::Node) = -n.depth TreeSearch.get_priority(::TreeSearch.BestDualBoundStrategy, n::Node) = n.ip_dual_bound # TODO move function Node(node::SbNode) return Node( node.depth, node.branchdescription, node.conquer_output, node.ip_dual_bound, node.records ) end ############################################################################################ # AbstractConquerInput implementation for the branch & bound. ############################################################################################ "Conquer input object created by the branch-and-bound tree search algorithm." struct ConquerInputFromBaB <: AbstractConquerInput units_to_restore::UnitsUsage node_state::OptimizationState # Node state after its creation or its partial evaluation. node_depth::Int # Broadcast a new IP primal bound if found during evaluation of the node. global_primal_handler::GlobalPrimalBoundHandler end get_global_primal_handler(i::ConquerInputFromBaB) = i.global_primal_handler get_conquer_input_ip_dual_bound(i::ConquerInputFromBaB) = get_ip_dual_bound(i.node_state) get_node_depth(i::ConquerInputFromBaB) = i.node_depth get_units_to_restore(i::ConquerInputFromBaB) = i.units_to_restore ############################################################################################ # AbstractDivideInput implementation for the branch & bound. ############################################################################################ "Divide input object created by the branch-and-bound tree search algorithm." struct DivideInputFromBaB <: Branching.AbstractDivideInput parent_depth::Int # The conquer output of the parent is very useful to compute scores when trying several # branching candidates. Usually scores measure a progression between the parent full_evaluation # and the children full evaluations. To allow developers to implement several kind of # scores, we give the full output of the conquer algorithm. parent_conquer_output::OptimizationState # Records allow to restore the reformulation in the state it was at the end of the evaluation # of the parent node. This operation happens in strong branching when evaluating several # branching candidates. parent_records::Records # Broadcast a new IP primal bound if found during evaluation of the candidates in the # strong branching. global_primal_handler::GlobalPrimalBoundHandler end Branching.get_parent_depth(i::DivideInputFromBaB) = i.parent_depth Branching.get_conquer_opt_state(i::DivideInputFromBaB) = i.parent_conquer_output Branching.get_global_primal_handler(i::DivideInputFromBaB) = i.global_primal_handler Branching.parent_is_root(i::DivideInputFromBaB) = i.parent_depth == 0 Branching.parent_records(i::DivideInputFromBaB) = i.parent_records ############################################################################################ # Leaves status ############################################################################################ "Leaves status" mutable struct LeavesStatus infeasible::Bool # true if all leaves are infeasible worst_dual_bound::Union{Nothing,Bound} # worst dual bound of the leaves end LeavesStatus(reform) = LeavesStatus(true, nothing) ############################################################################################ # SearchSpace ############################################################################################ "Branch-and-bound search space." mutable struct BaBSearchSpace <: AbstractColunaSearchSpace # Reformulation that the branch-and-bound algorithm will optimize. reformulation::Reformulation # Algorithm that evaluates a node of the branch-and-bound tree. conquer::AbstractConquerAlgorithm # Algorithm that generated the children of a branch-and-bound node. divide::AlgoAPI.AbstractDivideAlgorithm # Limits max_num_nodes::Int64 open_nodes_limit::Int64 time_limit::Int64 # Tolerances opt_atol::Float64 opt_rtol::Float64 # Units to restore when B&B bound explores another node. conquer_units_to_restore::UnitsUsage # Global information about the branch-and-bound execution. previous::Union{Nothing,TreeSearch.AbstractNode} optstate::OptimizationState # from TreeSearchRuntimeData nb_nodes_treated::Int nb_untreated_nodes::Int leaves_status::LeavesStatus inc_primal_manager::GlobalPrimalBoundHandler # stores the global primal bound (shared with all child algorithms). end get_reformulation(sp::BaBSearchSpace) = sp.reformulation get_conquer(sp::BaBSearchSpace) = sp.conquer get_divide(sp::BaBSearchSpace) = sp.divide get_previous(sp::BaBSearchSpace) = sp.previous set_previous!(sp::BaBSearchSpace, previous::TreeSearch.AbstractNode) = sp.previous = previous ############################################################################################ # Tree search implementation ############################################################################################ function TreeSearch.stop(space::BaBSearchSpace, untreated_nodes) _update_global_dual_bound!(space, space.reformulation, untreated_nodes) # this method needs to be reimplemented. space.nb_untreated_nodes = length(untreated_nodes) return space.nb_nodes_treated >= space.max_num_nodes || space.nb_untreated_nodes > space.open_nodes_limit end function TreeSearch.search_space_type(alg::TreeSearchAlgorithm) # Only one file printer at the time. JSON file printer has priority. active_file_printer = !iszero(length(alg.branchingtreefile)) || !iszero(length(alg.jsonfile)) file_printer_type = if !iszero(length(alg.jsonfile)) JSONFilePrinter elseif !iszero(length(alg.branchingtreefile)) DotFilePrinter else DevNullFilePrinter end return if alg.print_node_info PrinterSearchSpace{BaBSearchSpace,DefaultLogPrinter,file_printer_type} elseif active_file_printer PrinterSearchSpace{BaBSearchSpace,DevNullLogPrinter,file_printer_type} else BaBSearchSpace end end function TreeSearch.new_space( ::Type{BaBSearchSpace}, algo::TreeSearchAlgorithm, reform::Reformulation, input ) optstate = OptimizationState(getmaster(reform)) conquer_units_to_restore = collect_units_to_restore!(algo.conqueralg, reform) return BaBSearchSpace( reform, algo.conqueralg, algo.dividealg, algo.maxnumnodes, algo.opennodeslimit, algo.timelimit, algo.opt_atol, algo.opt_rtol, conquer_units_to_restore, nothing, optstate, 0, 0, LeavesStatus(reform), GlobalPrimalBoundHandler(reform; ip_primal_bound = get_ip_primal_bound(input)) ) end function TreeSearch.new_root(sp::BaBSearchSpace, input) nodestate = OptimizationState(getmaster(sp.reformulation), input, false, false) return Node( 0, "", nothing, get_ip_dual_bound(nodestate), create_records(sp.reformulation) ) end # Send output information of the conquer algorithm to the branch-and-bound. function after_conquer!(space::BaBSearchSpace, current, conquer_output) @assert !isnothing(conquer_output) treestate = space.optstate for sol in get_ip_primal_sols(conquer_output) store_ip_primal_sol!(space.inc_primal_manager, sol) end current.records = create_records(space.reformulation) space.nb_nodes_treated += 1 # Branch & Bound returns the primal LP & the dual solution found at the root node. best_lp_primal_sol = get_best_lp_primal_sol(conquer_output) if TreeSearch.isroot(current) && !isnothing(best_lp_primal_sol) set_lp_primal_sol!(treestate, best_lp_primal_sol) end best_lp_dual_sol = get_best_lp_dual_sol(conquer_output) if TreeSearch.isroot(current) && !isnothing(best_lp_dual_sol) set_lp_dual_sol!(treestate, best_lp_dual_sol) end # TODO: remove later but we currently need it to print information in the json file. current.conquer_output = conquer_output current.ip_dual_bound = get_lp_dual_bound(conquer_output) return end # Conquer function is_pruned(space::BaBSearchSpace, current::Node) return MathProg.gap_closed( get_global_primal_bound(space.inc_primal_manager), current.ip_dual_bound, atol = space.opt_atol, rtol = space.opt_rtol ) end function node_is_pruned(space::BaBSearchSpace, current::Node) leaves_status = space.leaves_status leaves_status.infeasible = false # We have a primal bound, so a primal solution, and we closed the gap, so the original problem is feasible. if isnothing(leaves_status.worst_dual_bound) leaves_status.worst_dual_bound = current.ip_dual_bound else leaves_status.worst_dual_bound = worst(leaves_status.worst_dual_bound, current.ip_dual_bound) end return end function get_input(::AbstractConquerAlgorithm, space::BaBSearchSpace, current::Node) space_state = space.optstate node_state = OptimizationState( getmaster(space.reformulation); ip_dual_bound = current.ip_dual_bound ) best_ip_primal_sol = get_best_ip_primal_sol(space_state) if !isnothing(best_ip_primal_sol) update_ip_primal_sol!(node_state, best_ip_primal_sol) end space_primal_bound = get_ip_primal_bound(space.optstate) if !isnothing(space_primal_bound) update_ip_primal_bound!(node_state, space_primal_bound) end return ConquerInputFromBaB( space.conquer_units_to_restore, node_state, current.depth, space.inc_primal_manager ) end # routine to check if divide should be call or not after a node conquer # If the gap is closed between the prima bound and the LOCAL dual bound, then the exploration of the current branch should stop function run_divide(sp::BaBSearchSpace, divide_input) conquer_opt_state = Branching.get_conquer_opt_state(divide_input) nodestatus = getterminationstatus(conquer_opt_state) return !( nodestatus == INFEASIBLE || MathProg.gap_closed( get_global_primal_bound(sp.inc_primal_manager), get_lp_dual_bound(conquer_opt_state) ) ) end function get_input(::AlgoAPI.AbstractDivideAlgorithm, space::BaBSearchSpace, node::Node, conquer_output) return DivideInputFromBaB(node.depth, conquer_output, node.records, space.inc_primal_manager) end number_of_children(divide_output::DivideOutput) = length(divide_output.children) function node_is_leaf(space::BaBSearchSpace, current::Node, conquer_output::OptimizationState) leaves_status = space.leaves_status if getterminationstatus(conquer_output) != INFEASIBLE leaves_status.infeasible = false # We only store the dual bound of the leaves that are not infeasible. # Dual bound of an infeasible node means nothing. if isnothing(leaves_status.worst_dual_bound) leaves_status.worst_dual_bound = get_lp_dual_bound(conquer_output) else leaves_status.worst_dual_bound = worst(leaves_status.worst_dual_bound, get_lp_dual_bound(conquer_output)) end end return end function new_children(space::AbstractColunaSearchSpace, branches, node::Node) children = map(Branching.get_children(branches)) do child return Node(child) end return children end # Retrieves the current dual bound of unevaluated or partially evaluated nodes # and keeps the worst one. function _update_global_dual_bound!(space, reform::Reformulation, untreated_nodes) treestate = space.optstate leaves_worst_dual_bound = space.leaves_status.worst_dual_bound init_db = if isnothing(leaves_worst_dual_bound) # if we didn't reach any leaf in the branch-and-bound tree, it may exist # some untreated nodes. We use the current ip dual bound of one untreated nodes to # initialize the calculation of the global dual bound. if length(untreated_nodes) > 0 first(untreated_nodes).ip_dual_bound else # or all the leaves are infeasible and there is no untreated node => no dual bound. @assert space.leaves_status.infeasible DualBound(getmaster(reform)) end else # Otherwise, we use the worst dual bound at the leaves. leaves_worst_dual_bound end worst_bound = mapreduce( node -> node.ip_dual_bound, worst, untreated_nodes; init = init_db ) # The global dual bound of the branch-and-bound is a dual bound of the original problem (MIP). set_ip_dual_bound!(treestate, worst_bound) return end function node_change!(previous::Node, current::Node, space::BaBSearchSpace) # We restore the reformulation in the state it was after the creation of the current node (e.g. creation # of the branching constraint) or its partial evaluation (e.g. strong branching). # TODO: We don't need to restore if the formulation has been fully evaluated. restore_from_records!(space.conquer_units_to_restore, current.records) end function TreeSearch.tree_search_output(space::BaBSearchSpace) all_leaves_infeasible = space.leaves_status.infeasible if !isnothing(get_global_primal_sol(space.inc_primal_manager)) add_ip_primal_sol!(space.optstate, get_global_primal_sol(space.inc_primal_manager)) end if all_leaves_infeasible && space.nb_untreated_nodes == 0 setterminationstatus!(space.optstate, INFEASIBLE) elseif ip_gap_closed(space.optstate, rtol = space.opt_rtol, atol = space.opt_atol) setterminationstatus!(space.optstate, OPTIMAL) else setterminationstatus!(space.optstate, OTHER_LIMIT) end #env.kpis.node_count = 0 #get_tree_order(tsdata) - 1 # TODO : check why we need to remove 1 return space.optstate end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
11994
############################################################################################ # File printer API ############################################################################################ "Super type to dispatch on file printer methods." abstract type AbstractFilePrinter end @mustimplement "FilePrinter" new_file_printer(::Type{<:AbstractFilePrinter}, alg) = nothing @mustimplement "FilePrinter" filename(::AbstractFilePrinter) = nothing @mustimplement "FilePrinter" init_tree_search_file!(::AbstractFilePrinter) = nothing @mustimplement "FilePrinter" print_node_in_tree_search_file!(::AbstractFilePrinter, node, space, env) = nothing @mustimplement "FilePrinter" close_tree_search_file!(::AbstractFilePrinter) = nothing ############################################################################################ # Log printer API (on stdin) ############################################################################################ "Super type to dispatch on log printer method." abstract type AbstractLogPrinter end @mustimplement "LogPrinter" new_log_printer(::Type{<:AbstractLogPrinter}) = nothing @mustimplement "LogPrinter" print_log(::AbstractLogPrinter, space, node, env, nb_untreated_nodes) = nothing ############################################################################################ # File & log printer search space. # This is just a composite pattern on the tree search API. ############################################################################################ """ Search space that contains the search space of the Coluna's tree search algorithm for which we want to print execution logs. """ mutable struct PrinterSearchSpace{ ColunaSearchSpace<:AbstractColunaSearchSpace, LogPrinter<:AbstractLogPrinter, FilePrinter<:AbstractFilePrinter } <: TreeSearch.AbstractSearchSpace current_tree_order_id::Int log_printer::LogPrinter file_printer::FilePrinter inner::ColunaSearchSpace end """ Node that contains the node of the Coluna's tree search algorithm for which we want to print execution logs. """ struct PrintedNode{Node<:TreeSearch.AbstractNode} <: TreeSearch.AbstractNode tree_order_id::Int parent_tree_order_id::Union{Int, Nothing} inner::Node end TreeSearch.get_priority(explore::TreeSearch.AbstractExploreStrategy, n::PrintedNode) = TreeSearch.get_priority(explore, n.inner) function TreeSearch.tree_search_output(sp::PrinterSearchSpace) close_tree_search_file!(sp.file_printer) return TreeSearch.tree_search_output(sp.inner) end function TreeSearch.new_space( ::Type{PrinterSearchSpace{ColunaSearchSpace,LogPrinter,FilePrinter}}, alg, model, input ) where { ColunaSearchSpace<:AbstractColunaSearchSpace, LogPrinter<:AbstractLogPrinter, FilePrinter<:AbstractFilePrinter } inner_space = TreeSearch.new_space(ColunaSearchSpace, alg, model, input) return PrinterSearchSpace( 0, new_log_printer(LogPrinter), new_file_printer(FilePrinter, alg), inner_space ) end function TreeSearch.new_root(sp::PrinterSearchSpace, input) inner_root = TreeSearch.new_root(sp.inner, input) init_tree_search_file!(sp.file_printer) return PrintedNode(sp.current_tree_order_id+=1, nothing, inner_root) end _inner_node(n::PrintedNode) = n.inner # `untreated_node` is a stack. _inner_node(n::Pair{<:PrintedNode, Float64}) = first(n).inner # `untreated_node` is a priority queue. function TreeSearch.children(sp::PrinterSearchSpace, current, env) print_log(sp.log_printer, sp, current, env, sp.inner.nb_untreated_nodes) children = TreeSearch.children(sp.inner, current.inner, env) # We print node information in the file after the node has been evaluated. print_node_in_tree_search_file!(sp.file_printer, current, sp, env) return map(children) do child return PrintedNode(sp.current_tree_order_id += 1, current.tree_order_id, child) end end function TreeSearch.stop(sp::PrinterSearchSpace, untreated_nodes) return TreeSearch.stop(sp.inner, Iterators.map(_inner_node, untreated_nodes)) end ############################################################################################ # Default file printers. ############################################################################################ """ Does not print the branch and bound tree. """ struct DevNullFilePrinter <: AbstractFilePrinter end new_file_printer(::Type{DevNullFilePrinter}, _) = DevNullFilePrinter() filename(::DevNullFilePrinter) = nothing init_tree_search_file!(::DevNullFilePrinter) = nothing print_node_in_tree_search_file!(::DevNullFilePrinter, _, _, _) = nothing close_tree_search_file!(::DevNullFilePrinter) = nothing ############################################################################################ # JSON file printer ############################################################################################ """ File printer to create a JSON file of the branch and bound tree. """ struct JSONFilePrinter <: AbstractFilePrinter filename::String end new_file_printer(::Type{JSONFilePrinter}, alg::TreeSearchAlgorithm) = JSONFilePrinter(alg.jsonfile) filename(f::JSONFilePrinter) = f.filename function init_tree_search_file!(f::JSONFilePrinter) open(filename(f), "w") do file println(file, "[") end return end # To get rid of "Inf". function _printed_num(num) if isinf(num) if num < 0 return -99999999999 else return +99999999999 end end return num end function print_node_in_tree_search_file!(f::JSONFilePrinter, node::PrintedNode, sp::PrinterSearchSpace, env) is_root_node = iszero(getdepth(node.inner)) current_node_id = node.tree_order_id current_node_depth = getdepth(node.inner) current_parent_id = node.parent_tree_order_id local_db = getvalue(node.inner.ip_dual_bound) global_db = getvalue(get_ip_dual_bound(sp.inner.optstate)) global_pb = getvalue(get_global_primal_bound(sp.inner.inc_primal_manager)) time = elapsed_optim_time(env) br_constr_description = TreeSearch.get_branch_description(node.inner) gap_closed = ip_gap_closed(node.inner.conquer_output) infeasible = getterminationstatus(node.inner.conquer_output) == INFEASIBLE open(filename(f), "r+") do file seekend(file) @printf file "\n\t\t{ \"node_id\": %i, " current_node_id @printf file "\"depth\": %i, " current_node_depth @printf file "\"parent_id\": %s, " is_root_node ? "null" : string(current_parent_id) @printf file "\"time\": %.2f, " time @printf file "\"primal_bound\": %.4f, " _printed_num(global_pb) @printf file "\"local_dual_bound\": %.4f, " _printed_num(local_db) @printf file "\"global_dual_bound\": %.4f, " _printed_num(global_db) @printf file "\"pruned\": %s, " gap_closed ? "true" : "false" @printf file "\"infeasible\": %s, " infeasible ? "true" : "false" @printf file "\"branch\": %s },\n" is_root_node ? "null" : string("\"", br_constr_description, "\"") end return end function close_tree_search_file!(f::JSONFilePrinter) open(filename(f), "r+") do file # rewind the closing brace character seekend(file) pos = position(file) seek(file, pos - 2) # just move the closing brace to the next line println(file, "\n\t]") end return end ############################################################################################ """ File printer to create a dot file of the branch and bound tree. """ struct DotFilePrinter <: AbstractFilePrinter filename::String end new_file_printer(::Type{DotFilePrinter}, alg::TreeSearchAlgorithm) = DotFilePrinter(alg.branchingtreefile) filename(f::DotFilePrinter) = f.filename function init_tree_search_file!(f::DotFilePrinter) open(filename(f), "w") do file println(file, "## dot -Tpdf thisfile > thisfile.pdf \n") println(file, "digraph Branching_Tree {") print(file, "\tedge[fontname = \"Courier\", fontsize = 10];}") end return end # TODO: fix function print_node_in_tree_search_file!(f::DotFilePrinter, node::PrintedNode, sp::PrinterSearchSpace, env) ncur = node.tree_order_id depth = getdepth(node.inner) npar = node.parent_tree_order_id db = getvalue(node.inner.ip_dual_bound) pb = getvalue(get_ip_primal_bound(sp.inner.optstate)) time = elapsed_optim_time(env) br_constr_description = TreeSearch.get_branch_description(node.inner) gap_closed = ip_gap_closed(node.inner.conquer_output) open(filename(f), "r+") do file # rewind the closing brace character seekend(file) pos = position(file) seek(file, pos - 1) # start writing over this character if gap_closed @printf file "\n\tn%i [label= \"N_%i (%.0f s) \\n[PRUNED , %.4f]\"];" ncur ncur time pb else @printf file "\n\tn%i [label= \"N_%i (%.0f s) \\n[%.4f , %.4f]\"];" ncur ncur time db pb end if depth > 0 # not root node @printf file "\n\tn%i -> n%i [label= \"%s\"];}" npar ncur br_constr_description else print(file, "}") end end return end function close_tree_search_file!(f::DotFilePrinter) open(filename(f), "r+") do file # rewind the closing brace character seekend(file) pos = position(file) seek(file, pos - 1) # just move the closing brace to the next line println(file, "\n}") end return end ############################################################################################ # Default node printers. ############################################################################################ """ Does not log anything. """ struct DevNullLogPrinter <: AbstractLogPrinter end new_log_printer(::Type{DevNullLogPrinter}) = DevNullLogPrinter() print_log(::DevNullLogPrinter, _, _, _, _) = nothing ############################################################################################ "Default log printer." struct DefaultLogPrinter <: AbstractLogPrinter end new_log_printer(::Type{DefaultLogPrinter}) = DefaultLogPrinter() function print_log( ::DefaultLogPrinter, sp::PrinterSearchSpace, node::PrintedNode, env, nb_untreated_nodes ) is_root_node = iszero(getdepth(node.inner)) current_node_id = node.tree_order_id current_node_depth = getdepth(node.inner) current_parent_id = node.parent_tree_order_id local_db = getvalue(node.inner.ip_dual_bound) global_db = getvalue(get_ip_dual_bound(sp.inner.optstate)) global_pb = getvalue(get_global_primal_bound(sp.inner.inc_primal_manager)) time = elapsed_optim_time(env) br_constr_description = TreeSearch.get_branch_description(node.inner) bold = Crayon(bold = true) unbold = Crayon(bold = false) yellow_bg = Crayon(background = :light_yellow) cyan_bg = Crayon(background = :light_cyan) normal_bg = Crayon(background = :default) println("***************************************************************************************") if is_root_node println("**** ", yellow_bg,"B&B tree root node", normal_bg) else println( "**** ", yellow_bg, "B&B tree node N°", bold, current_node_id, unbold, normal_bg, ", parent N°", bold, current_parent_id, unbold, ", depth ", bold, current_node_depth, unbold, ", ", bold, nb_untreated_nodes, unbold, " untreated node", nb_untreated_nodes > 1 ? "s" : "" ) end @printf "**** Local DB = %.4f," local_db @printf " global bounds: [ %.4f , %.4f ]," global_db global_pb @printf " time = %.2f sec.\n" time if !isempty(br_constr_description) println("**** Branching constraint: ", cyan_bg, br_constr_description, normal_bg) end println("***************************************************************************************") return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2051
############################################################################################ # ############################################################################################ is_cont_var(form, var_id) = getperenkind(form, var_id) == Continuous is_int_val(val, tol) = abs(round(val) - val) < tol dist_to_int(val) = min(val - floor(val), ceil(val) - val) function dist_to_non_zero_int(val) dist_to_floor = iszero(floor(val)) ? 1.0 : val - floor(val) dist_to_ceil = iszero(ceil(val)) ? 1.0 : ceil(val) - val return min(dist_to_floor, dist_to_ceil) end ############################################################################################ # Iterate over variables and constraints ############################################################################################ # We need to inject the formulation in the filter function to retrieve variables & constraints # data & filter on them. # This has the same cost of doing a for loop but it allows separation of data manipulation # and algorithmic logic that were mixed together in the body of the for loop. filter_collection(filter, form, collection) = Iterators.filter(filter, Iterators.zip(Iterators.cycle(Ref(form)), collection)) filter_vars(filter, form) = filter_collection(filter, form, getvars(form)) filter_constrs(filter, form) = filter_collection(filter, form, getconstrs(form)) # Predefined filters (two cases: pair and tuple): active_and_explicit((form, key_val)) = iscuractive(form, first(key_val)) && isexplicit(form, first(key_val)) duty((_, (id, _))) = getduty(id) combine(op, args, functions...) = Iterators.mapreduce(f -> f(args...), op, functions) ############################################################################################ # Time limit ############################################################################################ function time_limit_reached!(optim_state, env) if Coluna.time_limit_reached(env) setterminationstatus!(optim_state, TIME_LIMIT) return true end return false end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
15942
mutable struct OptimizationState{F<:AbstractFormulation} termination_status::TerminationStatus incumbents::MathProg.ObjValues max_length_ip_primal_sols::Int max_length_lp_primal_sols::Int max_length_lp_dual_sols::Int insert_function_ip_primal_sols::Function insert_function_lp_primal_sols::Function insert_function_lp_dual_sols::Function ip_primal_sols::Vector{PrimalSolution{F}} lp_primal_sols::Vector{PrimalSolution{F}} lp_dual_sols::Vector{DualSolution{F}} end function bestbound!(solutions::Vector{Sol}, max_len::Int, new_sol::Sol) where {Sol<:AbstractSolution} push!(solutions, new_sol) sort!(solutions, rev = true) while length(solutions) > max_len pop!(solutions) end return end function set!(solutions::Vector{Sol}, ::Int, new_sol::Sol) where {Sol<:AbstractSolution} empty!(solutions) push!(solutions, new_sol) return end """ OptimizationState( form; termination_status = OPTIMIZE_NOT_CALLED, ip_primal_bound = nothing, ip_dual_bound = nothing, lp_primal_bound = nothing, lp_dual_bound = nothing, max_length_ip_primal_sols = 1, max_length_lp_primal_sols = 1, max_length_lp_dual_sols = 1, insert_function_ip_primal_sols = bestbound!, insert_function_lp_primal_sols = bestbound!, insert_function_lp_dual_sols = bestbound! ) A convenient structure to maintain and return solutions and bounds of a formulation `form` during an optimization process. The termination status is `OPTIMIZE_NOT_CALLED` by default. You can define the initial incumbent bounds using `ip_primal_bound`, `ip_dual_bound`, `lp_primal_bound`, and `lp_primal_bound` keyword arguments. Incumbent bounds are set to infinite (according to formulation objective sense) by default. You can store three types of solutions `ip_primal_sols`, `lp_primal_sols`, and `lp_dual_sols`. These solutions are stored in three lists. Keywords `max_length_ip_primal_sols`, `max_length_lp_primal_sols`, and `max_length_lp_dual_sols` let you define the maximum size of the lists. Keywords `insert_function_ip_primal_sols`, `insert_function_lp_primal_sols`, and `insert_function_lp_dual_sols` let you provide a function to define the way you want to insert a new solution in each list. By default, lists are sorted by best bound. You can also create an `OptimizationState` from another one : OptimizationState( form, source_state, copy_ip_primal_sol, copy_lp_primal_sol ) It copies the termination status, all the bounds of `source_state`. If copies the best IP primal solution when `copy_ip_primal_sol` equals `true` and the best LP primal solution when `copy_lp_primal_sol` equals `true`. """ function OptimizationState( form::F; termination_status::TerminationStatus = OPTIMIZE_NOT_CALLED, ip_primal_bound = nothing, ip_dual_bound = nothing, lp_primal_bound = nothing, lp_dual_bound = nothing, max_length_ip_primal_sols = 1, max_length_lp_primal_sols = 1, max_length_lp_dual_sols = 1, insert_function_ip_primal_sols = bestbound!, insert_function_lp_primal_sols = bestbound!, insert_function_lp_dual_sols = bestbound!, global_primal_bound_handler = nothing ) where {F <: AbstractFormulation} if !isnothing(global_primal_bound_handler) if !isnothing(ip_primal_bound) @warn "Value of `ip_primal_bound` will be replaced by the value of the best primal bound stored in `global_primal_bound_manager``." end ip_primal_bound = get_global_primal_bound(global_primal_bound_handler) end incumbents = MathProg.ObjValues( form; ip_primal_bound = ip_primal_bound, ip_dual_bound = ip_dual_bound, lp_primal_bound = lp_primal_bound, lp_dual_bound = lp_dual_bound ) state = OptimizationState{F}( termination_status, incumbents, max_length_ip_primal_sols, max_length_lp_primal_sols, max_length_lp_dual_sols, insert_function_ip_primal_sols, insert_function_lp_primal_sols, insert_function_lp_dual_sols, PrimalSolution{F}[], PrimalSolution{F}[], DualSolution{F}[] ) return state end function OptimizationState( form::AbstractFormulation, source_state::OptimizationState, copy_ip_primal_sol::Bool, copy_lp_primal_sol::Bool ) state = OptimizationState( form, termination_status = getterminationstatus(source_state), ip_primal_bound = get_ip_primal_bound(source_state), lp_primal_bound = PrimalBound(form), ip_dual_bound = get_ip_dual_bound(source_state), lp_dual_bound = get_lp_dual_bound(source_state) ) best_ip_primal_sol = get_best_ip_primal_sol(source_state) if best_ip_primal_sol !== nothing set_ip_primal_sol!(state, best_ip_primal_sol) end best_lp_primal_sol = get_best_lp_primal_sol(source_state) if best_lp_primal_sol !== nothing set_lp_primal_sol!(state, best_lp_primal_sol) end return state end getterminationstatus(state::OptimizationState) = state.termination_status setterminationstatus!(state::OptimizationState, status::TerminationStatus) = state.termination_status = status "Return the best IP primal bound." get_ip_primal_bound(state::OptimizationState) = state.incumbents.ip_primal_bound "Return the best LP primal bound." get_lp_primal_bound(state::OptimizationState) = state.incumbents.lp_primal_bound "Return the best IP dual bound." get_ip_dual_bound(state::OptimizationState) = state.incumbents.ip_dual_bound "Return the best LP dual bound." get_lp_dual_bound(state::OptimizationState) = state.incumbents.lp_dual_bound """ Update the primal bound of the mixed-integer program if the new one is better than the current one according to the objective sense. """ update_ip_primal_bound!(state::OptimizationState, bound) = MathProg._update_ip_primal_bound!(state.incumbents, bound) """ Update the dual bound of the mixed-integer program if the new one is better than the current one according to the objective sense. """ update_ip_dual_bound!(state::OptimizationState, bound) = MathProg._update_ip_dual_bound!(state.incumbents, bound) """ Update the primal bound of the linear program if the new one is better than the current one according to the objective sense. """ update_lp_primal_bound!(state::OptimizationState, bound) = MathProg._update_lp_primal_bound!(state.incumbents, bound) """ Update the dual bound of the linear program if the new one is better than the current one according to the objective sense. """ update_lp_dual_bound!(state::OptimizationState, bound) = MathProg._update_lp_dual_bound!(state.incumbents, bound) "Set the best IP primal bound." set_ip_primal_bound!(state::OptimizationState, bound) = state.incumbents.ip_primal_bound = bound "Set the best LP primal bound." set_lp_primal_bound!(state::OptimizationState, bound) = state.incumbents.lp_primal_bound = bound "Set the best IP dual bound." set_ip_dual_bound!(state::OptimizationState, bound) = state.incumbents.ip_dual_bound = bound "Set the best LP dual bound." set_lp_dual_bound!(state::OptimizationState, bound) = state.incumbents.lp_dual_bound = bound """ Return the gap between the best primal and dual bounds of the integer program. Should not be used to check convergence """ ip_gap(state::OptimizationState) = MathProg._ip_gap(state.incumbents) "Return the gap between the best primal and dual bounds of the linear program." lp_gap(state::OptimizationState) = MathProg._lp_gap(state.incumbents) """ ip_gap_closed(optstate; atol = Coluna.DEF_OPTIMALITY_ATOL, rtol = Coluna.DEF_OPTIMALITY_RTOL) Return true if the gap between the best primal and dual bounds of the integer program is closed given optimality tolerances. """ ip_gap_closed(state::OptimizationState; kw...) = MathProg._ip_gap_closed(state.incumbents; kw...) """ lp_gap_closed(optstate; atol = Coluna.DEF_OPTIMALITY_ATOL, rtol = Coluna.DEF_OPTIMALITY_RTOL) Return true if the gap between the best primal and dual bounds of the linear program is closed given optimality tolerances. """ lp_gap_closed(state::OptimizationState; kw...) = MathProg._lp_gap_closed(state.incumbents; kw...) "Return all IP primal solutions." get_ip_primal_sols(state::OptimizationState) = state.ip_primal_sols "Return the best IP primal solution if it exists; `nothing` otherwise." function get_best_ip_primal_sol(state::OptimizationState) length(state.ip_primal_sols) == 0 && return nothing return state.ip_primal_sols[1] end "Return all LP primal solutions." get_lp_primal_sols(state::OptimizationState) = state.lp_primal_sols "Return the best LP primal solution if it exists; `nothing` otherwise." function get_best_lp_primal_sol(state::OptimizationState) length(state.lp_primal_sols) == 0 && return nothing return state.lp_primal_sols[1] end "Return all LP dual solutions." get_lp_dual_sols(state::OptimizationState) = state.lp_dual_sols "Return the best LP dual solution if it exists; `nothing` otherwise." function get_best_lp_dual_sol(state::OptimizationState) length(state.lp_dual_sols) == 0 && return nothing return state.lp_dual_sols[1] end # TODO : refactoring ? function update!(dest_state::OptimizationState, orig_state::OptimizationState) setterminationstatus!(dest_state, getterminationstatus(orig_state)) add_ip_primal_sols!(dest_state, get_ip_primal_sols(orig_state)...) update_ip_dual_bound!(dest_state, get_ip_dual_bound(orig_state)) update_lp_dual_bound!(dest_state, get_lp_dual_bound(orig_state)) set_lp_primal_bound!(dest_state, get_lp_primal_bound(orig_state)) best_lp_primal_sol = get_best_lp_primal_sol(orig_state) if !isnothing(best_lp_primal_sol) set_lp_primal_sol!(dest_state, best_lp_primal_sol) end best_lp_dual_sol = get_best_lp_dual_sol(orig_state) if !isnothing(best_lp_dual_sol) set_lp_dual_sol!(dest_state, best_lp_dual_sol) end return end """ update_ip_primal_sol!(optstate, sol) Add the solution `sol` in the solutions list of `optstate` if and only if the value of the solution is better than the incumbent. The solution is inserted in the list by the method defined in `insert_function_ip_primal_sols` field of `OptimizationState`. If the maximum length of the list is reached, the solution located at the end of the list is removed. Similar methods : update_lp_primal_sol!(optstate, sol) update_lp_dual_sol!(optstate, sol) """ function update_ip_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_ip_primal_sols == 0 && return b = ColunaBase.Bound(state.incumbents.min, true, getvalue(sol)) if update_ip_primal_bound!(state, b) state.insert_function_ip_primal_sols(state.ip_primal_sols, state.max_length_ip_primal_sols, sol) end return end """ add_ip_primal_sol!(optstate, sol) add_ip_primal_sols!(optstate, sols...) Add the solution `sol` at the end of the solution list of `opstate`, sort the solution list, remove the worst solution if the solution list size is exceded, and update the incumbent bound if the solution is better. Similar methods : add_lp_primal_sol!(optstate, sol) add_lp_dual_sol!(optstate, sol) """ function add_ip_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_ip_primal_sols == 0 && return state.insert_function_ip_primal_sols(state.ip_primal_sols, state.max_length_ip_primal_sols, sol) pb = ColunaBase.Bound(state.incumbents.min, true, getvalue(sol)) update_ip_primal_bound!(state, pb) return end function add_ip_primal_sols!(state::OptimizationState, sols...) for sol in sols add_ip_primal_sol!(state, sol) end return end """ set_ip_primal_sol!(optstate, sol) Empties the list of solutions and add solution `sol` in the list. The incumbent bound is not updated even if the value of the solution is better. Similar methods : set_lp_primal_sol!(optstate, sol) set_lp_dual_sol!(optstate, sol) """ function set_ip_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_ip_primal_sols == 0 && return set!(state.ip_primal_sols, state.max_length_ip_primal_sols, sol) return end """ empty_ip_primal_sols!(optstate) Remove all IP primal solutions from `optstate`. Similar methods : empty_lp_primal_sols!(optstate) empty_lp_dual_sols!(optstate) """ empty_ip_primal_sols!(state::OptimizationState) = empty!(state.ip_primal_sols) "Similar to [`update_ip_primal_sol!`](@ref)." function update_lp_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_lp_primal_sols == 0 && return pb = ColunaBase.Bound(state.incumbents.min, true, getvalue(sol)) if update_lp_primal_bound!(state, pb) state.insert_function_lp_primal_sols(state.lp_primal_sols, state.max_length_lp_primal_sols, sol) end return end "Similar to [`add_ip_primal_sol!`](@ref)." function add_lp_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_lp_primal_sols == 0 && return state.insert_function_lp_primal_sols(state.lp_primal_sols, state.max_length_lp_primal_sols, sol) pb = ColunaBase.Bound(state.incumbents.min, true, getvalue(sol)) update_lp_primal_bound!(state, pb) return end "Similar to [`set_ip_primal_sol!`](@ref)." function set_lp_primal_sol!(state::OptimizationState{F}, sol::PrimalSolution{F}) where {F} state.max_length_lp_primal_sols == 0 && return set!(state.lp_primal_sols, state.max_length_lp_primal_sols, sol) return end "Similar to [`empty_ip_primal_sols!`](@ref)." empty_lp_primal_sols!(state::OptimizationState) = empty!(state.lp_primal_sols) "Similar to [`update_ip_primal_sol!`](@ref)." function update_lp_dual_sol!(state::OptimizationState{F}, sol::DualSolution{F}) where {F} state.max_length_lp_dual_sols == 0 && return db = ColunaBase.Bound(state.incumbents.min, false, getvalue(sol)) if update_lp_dual_bound!(state, db) state.insert_function_lp_dual_sols(state.lp_dual_sols, state.max_length_lp_dual_sols, sol) end return end "Similar to [`add_ip_primal_sol!`](@ref)." function add_lp_dual_sol!(state::OptimizationState{F}, sol::DualSolution{F}) where {F} state.max_length_lp_dual_sols == 0 && return state.insert_function_lp_dual_sols(state.lp_dual_sols, state.max_length_lp_dual_sols, sol) db = ColunaBase.Bound(state.incumbents.min, false, getvalue(sol)) update_lp_dual_bound!(state, db) return end "Similar to [`set_ip_primal_sol!`](@ref)." function set_lp_dual_sol!(state::OptimizationState{F}, sol::DualSolution{F}) where {F} state.max_length_lp_dual_sols == 0 && return set!(state.lp_dual_sols, state.max_length_lp_dual_sols, sol) return end "Similar to [`empty_ip_primal_sols!`](@ref)." empty_lp_dual_sols!(state::OptimizationState) = empty!(state.lp_dual_sols) function Base.print(io::IO, form::AbstractFormulation, optstate::OptimizationState) println(io, "┌ Optimization state ") println(io, "│ Termination status: ", optstate.termination_status) println(io, "| Incumbents: ", optstate.incumbents) n = length(optstate.ip_primal_sols) println(io, "| IP Primal solutions (",n,")") if n > 0 for sol in optstate.ip_primal_sols print(io, form, sol) end end n = length(optstate.lp_primal_sols) println(io, "| LP Primal solutions (",n,"):") if n > 0 for sol in optstate.lp_primal_sols print(io, form, sol) end end n = length(optstate.lp_dual_sols) println(io, "| LP Dual solutions (",n,"):") if n > 0 for sol in optstate.lp_dual_sols print(io, form, sol) end end println(io, "└") return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4700
module Benders include("../MustImplement/MustImplement.jl") using .MustImplement """ Supertype for the objects to which belongs the implementation of the Benders cut generation and that stores any kind of information during the execution of the Bender cut generation algorithm. """ abstract type AbstractBendersContext end struct UnboundedError <: Exception end include("interface.jl") "Main loop of the Benders cut generation algorithm." function run_benders_loop!(context, env; iter = 1) iteration = iter phase = nothing ip_primal_sol = nothing benders_iter_output = nothing setup_reformulation!(get_reform(context), env) while !stop_benders(context, benders_iter_output, iteration) benders_iter_output = run_benders_iteration!(context, phase, env, ip_primal_sol) after_benders_iteration(context, phase, env, iteration, benders_iter_output) iteration += 1 end O = benders_output_type(context) return new_output(O, benders_iter_output) end "Runs one iteration of a Benders cut generation algorithm." function run_benders_iteration!(context, phase, env, ip_primal_sol) ##TODO: remove arg phase from method signature master = get_master(context) mast_result = optimize_master_problem!(master, context, env) O = benders_iteration_output_type(context) is_min_sense = is_minimization(context) # At least at the first iteration, if the master does not contain any Benders cut, the master will be # unbounded. The implementation must provide a routine to handle this case. # If the master is a MIP, we have to relax integrality constraints to retrieve a dual infeasibility # certificate. if is_unbounded(mast_result) mast_result = treat_unbounded_master_problem_case!(master, context, env) end # If the master is unbounded (even after treating unbounded master problem case), we # stop the algorithm because we don't handle unboundedness. if is_unbounded(mast_result) throw(UnboundedError()) end # If the master is infeasible, it means the first level is infeasible and so the whole problem. # We stop Benders. if is_infeasible(mast_result) return new_iteration_output(O, is_min_sense, 0, nothing, true, false, nothing) end mast_primal_sol = get_primal_sol(mast_result) # Depending on whether the master was unbounded, we will solve a different separation problem. # See Lemma 2 of "Implementing Automatic Benders Decomposition in a Modern MIP Solver" (Bonami et al., 2020) # for more information. unbounded_master_case = is_certificate(mast_result) # Separation problems setup. for (_, sp) in get_benders_subprobs(context) if unbounded_master_case setup_separation_for_unbounded_master_case!(context, sp, mast_primal_sol) else update_sp_rhs!(context, sp, mast_primal_sol) end end # Solve the separation problems. # Here one subproblem = one dual sol = possibly one cut (multi-cuts approach). generated_cuts = set_of_cuts(context) sep_sp_sols = set_of_sep_sols(context) second_stage_cost = 0.0 for (_, sp_to_solve) in get_benders_subprobs(context) sep_result = optimize_separation_problem!(context, sp_to_solve, env, unbounded_master_case) if is_infeasible(sep_result) sep_result = treat_infeasible_separation_problem_case!(context, sp_to_solve, env, unbounded_master_case) end if is_unbounded(sep_result) throw(UnboundedError()) end if is_infeasible(sep_result) return new_iteration_output(O, is_min_sense, 0, nothing, true, false, nothing) end second_stage_cost += get_obj_val(sep_result) ## update η = sum of the costs of the subproblems given a fixed 1st level solution # Push generated dual sol and cut in the context. nb_cuts_pushed = 0 if push_in_set!(context, generated_cuts, sep_result) nb_cuts_pushed += 1 else push_in_set!(context, sep_sp_sols, sep_result) end end if master_is_unbounded(context, second_stage_cost, unbounded_master_case) throw(UnboundedError()) end cut_ids = insert_cuts!(get_reform(context), context, generated_cuts) nb_cuts_inserted = length(cut_ids) # Build primal solution ip_primal_sol = nothing if nb_cuts_inserted == 0 ip_primal_sol = build_primal_solution(context, mast_primal_sol, sep_sp_sols) end master_obj_val = get_obj_val(mast_result) return new_iteration_output(O, is_min_sense, nb_cuts_inserted, ip_primal_sol, false, false, master_obj_val) end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
10125
############################################################################################ # Reformulation getters ############################################################################################ "Returns `true` if the objective sense is minimization, `false` otherwise." @mustimplement "BendersProbInfo" is_minimization(context::AbstractBendersContext) = nothing "Returns Benders reformulation." @mustimplement "BendersProbInfo" get_reform(context::AbstractBendersContext) = nothing "Returns the master problem." @mustimplement "BendersProbInfo" get_master(context::AbstractBendersContext) = nothing "Returns the separation subproblems." @mustimplement "BendersProbInfo" get_benders_subprobs(context) = nothing ############################################################################################ # Main loop ############################################################################################ "Prepares the reformulation before starting the Benders cut generation algorithm." @mustimplement "Benders" setup_reformulation!(reform, env) = nothing "Returns `true` if the Benders cut generation algorithm must stop, `false` otherwise." @mustimplement "Benders" stop_benders(::AbstractBendersContext, benders_iter_output, iteration) = nothing "Placeholder method called after each iteration of the Benders cut generation algorithm." @mustimplement "Benders" after_benders_iteration(::AbstractBendersContext, phase, env, iteration, benders_iter_output) = nothing ############################################################################################ # Benders output ############################################################################################ "Supertype for the custom objects that will store the output of the Benders cut generation algorithm." abstract type AbstractBendersOutput end """ benders_output_type(context) -> Type{<:AbstractBendersOutput} Returns the type of the custom object that will store the output of the Benders cut generation algorithm. """ @mustimplement "Benders" benders_output_type(::AbstractBendersContext) = nothing "Returns a new instance of the custom object that stores the output of the Benders cut generation algorithm." @mustimplement "Benders" new_output(::Type{<:AbstractBendersOutput}, benders_iter_output) = nothing ############################################################################################ # Master optimization ############################################################################################ """ optimize_master_problem!(master, context, env) -> MasterResult Returns an instance of a custom object `MasterResult` that implements the following methods: - `is_unbounded(res::MasterResult) -> Bool` - `is_infeasible(res::MasterResult) -> Bool` - `is_certificate(res::MasterResult) -> Bool` - `get_primal_sol(res::MasterResult) -> Union{Nothing, PrimalSolution}` """ @mustimplement "Benders" optimize_master_problem!(master, context, env) = nothing ############################################################################################ # Unbounded master case ############################################################################################ """ treat_unbounded_master_problem_case!(master, context, env) -> MasterResult When after a call to `optimize_master_problem!`, the master is unbounded, this method is called. Returns an instance of a custom object `MasterResult`. """ @mustimplement "Benders" treat_unbounded_master_problem_case!(master, context, env) = nothing ############################################################################################ # Update separation subproblems ############################################################################################ """ update_sp_rhs!(context, sp, mast_primal_sol) Updates the right-hand side of the separation problem `sp` by fixing the first-level solution obtained by solving the master problem `mast_primal_sol`. """ @mustimplement "Benders" update_sp_rhs!(context, sp, mast_primal_sol) = nothing """ setup_separation_for_unbounded_master_case!(context, sp, mast_primal_sol) Updates the separation problem to derive a cut when the master problem is unbounded. """ @mustimplement "Benders" setup_separation_for_unbounded_master_case!(context, sp, mast_primal_sol) = nothing ############################################################################################ # Separation problem optimization ############################################################################################ """ optimize_separation_problem!(context, sp_to_solve, env, unbounded_master) -> SeparationResult Returns an instance of a custom object `SeparationResult` that implements the following methods: - `is_unbounded(res::SeparationResult) -> Bool` - `is_infeasible(res::SeparationResult) -> Bool` - `get_obj_val(res::SeparationResult) -> Float64` - `get_primal_sol(res::SeparationResult) -> Union{Nothing, PrimalSolution}` - `get_dual_sp_sol(res::SeparationResult) -> Union{Nothing, DualSolution}` """ @mustimplement "Benders" optimize_separation_problem!(context, sp_to_solve, env, unbounded_master) = nothing """ treat_infeasible_separation_problem_case!(context, sp_to_solve, env, unbounded_master) -> SeparationResult When after a call to `optimize_separation_problem!`, the separation problem is infeasible, this method is called. Returns an instance of a custom object `SeparationResult`. """ @mustimplement "Benders" treat_infeasible_separation_problem_case!(context, sp_to_solve, env, unbounded_master_case) = nothing ############################################################################################ # Cuts and primal solutions ############################################################################################ """ Returns an empty container that will store all the cuts generated by the separation problems during an iteration of the Benders cut generation algorithm. One must be able to iterate on this container to insert the cuts in the master problem. """ @mustimplement "Benders" set_of_cuts(context) = nothing """ Returns an empty container that will store the primal solutions to the separation problems at a given iteration of the Benders cut generation algorithm. """ @mustimplement "Benders" set_of_sep_sols(context) = nothing """ push_in_set!(context, cut_pool, sep_result) -> Bool Inserts a cut in the set of cuts generated at a given iteration of the Benders cut generation algorithm. The `cut_pool` structure is generated by `set_of_cuts(context)`. push_in_set!(context, sep_sp_sols, sep_result) -> Bool Inserts a primal solution to a separation problem in the set of primal solutions generated at a given iteration of the Benders cut generation algorithm. The `sep_sp_sols` structure is generated by `set_of_sep_sols(context)`. Returns `true` if the cut or the primal solution was inserted in the set, `false` otherwise. """ @mustimplement "Benders" push_in_set!(context, pool, elem) = nothing ############################################################################################ # Cuts insertion ############################################################################################ "Inserts the cuts into the master." @mustimplement "Benders" insert_cuts!(reform, context, generated_cuts) = nothing ############################################################################################ # Benders iteration output ############################################################################################ "Supertype for the custom objects that will store the output of a Benders iteration." abstract type AbstractBendersIterationOutput end """ benders_iteration_output_type(context) -> Type{<:AbstractBendersIterationOutput} Returns the type of the custom object that will store the output of a Benders iteration. """ @mustimplement "Benders" benders_iteration_output_type(::AbstractBendersContext) = nothing "Returns a new instance of the custom object that stores the output of a Benders iteration." @mustimplement "Benders" new_iteration_output(::Type{<:AbstractBendersIterationOutput}, is_min_sense, nb_cuts_inserted, ip_primal_sol, infeasible, time_limit_reached, master_obj_val) = nothing ############################################################################################ # Optimization result getters ############################################################################################ "Returns `true` if the problem is unbounded, `false` otherwise." @mustimplement "Benders" is_unbounded(res) = nothing "Returns `true` if the master is infeasible, `false` otherwise." @mustimplement "Benders" is_infeasible(res) = nothing "Returns the certificate of dual infeasibility if the master is unbounded, `nothing` otherwise." @mustimplement "Benders" is_certificate(res) = nothing "Returns the primal solution of the master problem if it exists, `nothing` otherwise." @mustimplement "Benders" get_primal_sol(res) = nothing "Returns the dual solution of the separation problem if it exists; `nothing` otherwise." @mustimplement "Benders" get_dual_sol(res) = nothing "Returns the objective value of the master or separation problem." @mustimplement "BendersMasterResult" get_obj_val(master_res) = nothing ############################################################################################ # Build primal solution ############################################################################################ """ Builds a primal solution to the original problem from the primal solution to the master problem and the primal solutions to the separation problems. """ @mustimplement "Benders" build_primal_solution(context, mast_primal_sol, sep_sp_sols) = nothing ############################################################################################ # Master unboundedness ############################################################################################ "Returns `true` if the master has been proven unbounded, `false` otherwise." @mustimplement "Benders" master_is_unbounded(context, second_stage_cost, unbounded_master_case) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
13530
module Branching !true && include("../MustImplement/MustImplement.jl") # linter using ..MustImplement !true && include("../interface.jl") # linter using ..AlgoAPI include("candidate.jl") include("criteria.jl") include("rule.jl") include("score.jl") """ Input of a divide algorithm used by the tree search algorithm. Contains the parent node in the search tree for which children should be generated. """ abstract type AbstractDivideInput end @mustimplement "DivideInput" get_parent_depth(i::AbstractDivideInput) = nothing @mustimplement "DivideInput" get_conquer_opt_state(i::AbstractDivideInput) = nothing @mustimplement "DivideInput" get_global_primal_handler(i::AbstractDivideInput) = nothing @mustimplement "DivideInput" parent_is_root(i::AbstractDivideInput) = nothing @mustimplement "DivideInput" parent_records(i::AbstractDivideInput) = nothing """ Output of a divide algorithm used by the tree search algorithm. Should contain the vector of generated nodes. """ abstract type AbstractDivideOutput end @mustimplement "DivideOutput" get_children(output::AbstractDivideOutput) = nothing ############################################################################################ # Branching API ############################################################################################ "Supertype for divide algorithm contexts." abstract type AbstractDivideContext end "Returns the number of candidates that the candidates selection step must return." @mustimplement "Branching" get_selection_nb_candidates(::AlgoAPI.AbstractDivideAlgorithm) = nothing "Returns the type of context required by the algorithm parameters." @mustimplement "Branching" branching_context_type(::AlgoAPI.AbstractDivideAlgorithm) = nothing "Creates a context." @mustimplement "Branching" new_context(::Type{<:AbstractDivideContext}, algo::AlgoAPI.AbstractDivideAlgorithm, reform) = nothing # TODO: can have a default implemntation when strong branching will be generic. "Advanced candidates selection that selects candidates by evaluating their children." @mustimplement "Branching" advanced_select!(::AbstractDivideContext, candidates, env, reform, input::AbstractDivideInput) = nothing "Returns integer tolerance." @mustimplement "Branching" get_int_tol(::AbstractDivideContext) = nothing "Returns branching rules." @mustimplement "Branching" get_rules(::AbstractDivideContext) = nothing "Returns the selection criterion." @mustimplement "Branching" get_selection_criterion(::AbstractDivideContext) = nothing # find better name @mustimplement "Branching" projection_on_master_is_possible(ctx, reform) = nothing # branching output """ new_divide_output(children::Union{Vector{N}, Nothing}) where {N} -> AbstractDivideOutput where: - `N` is the type of nodes generated by the branching algorithm. If no nodes are found, the generic implementation may provide `nothing`. """ @mustimplement "BranchingOutput" new_divide_output(children) = nothing # Default implementations. "Candidates selection for branching algorithms." function select!(rule::AbstractBranchingRule, env, reform, input::Branching.BranchingRuleInput) candidates = apply_branching_rule(rule, env, reform, input) local_id = input.local_id + length(candidates) select_candidates!(candidates, input.criterion, input.max_nb_candidates) return BranchingRuleOutput(local_id, candidates) end abstract type AbstractBranchingContext <: AbstractDivideContext end function advanced_select!(ctx::AbstractBranchingContext, candidates, env, reform, input::AbstractDivideInput) children = generate_children!(ctx, first(candidates), env, reform, input) return new_divide_output(children) end ############################################################################################ # Strong branching API ############################################################################################ # Implementation "Supertype for the strong branching contexts." abstract type AbstractStrongBrContext <: AbstractDivideContext end "Supertype for the branching phase contexts." abstract type AbstractStrongBrPhaseContext end "Creates a context for the branching phase." @mustimplement "StrongBranching" new_phase_context(::Type{<:AbstractDivideContext}, phase, reform, phase_index) = nothing """ Returns the storage units that must be restored by the conquer algorithm called by the strong branching phase. """ @mustimplement "StrongBranching" get_units_to_restore_for_conquer(::AbstractStrongBrPhaseContext) = nothing "Returns all phases context of the strong branching algorithm." @mustimplement "StrongBranching" get_phases(::AbstractStrongBrContext) = nothing "Returns the type of score used to rank the candidates at a given strong branching phase." @mustimplement "StrongBranching" get_score(::AbstractStrongBrPhaseContext) = nothing "Returns the conquer algorithm used to evaluate the candidate's children at a given strong branching phase." @mustimplement "StrongBranching" get_conquer(::AbstractStrongBrPhaseContext) = nothing "Returns the maximum number of candidates kept at the end of a given strong branching phase." @mustimplement "StrongBranching" get_max_nb_candidates(::AbstractStrongBrPhaseContext) = nothing function advanced_select!(ctx::Branching.AbstractStrongBrContext, candidates, env, reform, input::Branching.AbstractDivideInput) return perform_strong_branching!(ctx, env, reform, input, candidates) end function perform_strong_branching!( ctx::AbstractStrongBrContext, env, reform, input::Branching.AbstractDivideInput, candidates::Vector{C} ) where {C<:AbstractBranchingCandidate} return perform_strong_branching_inner!(ctx, env, reform, input, candidates) end function perform_strong_branching_inner!( ctx::AbstractStrongBrContext, env, reform, input::Branching.AbstractDivideInput, candidates::Vector{C} ) where {C<:AbstractBranchingCandidate} cand_children = [generate_children!(ctx, candidate, env, reform, input) for candidate in candidates] phases = get_phases(ctx) for (phase_index, current_phase) in enumerate(phases) nb_candidates_for_next_phase = 1 if phase_index < length(phases) nb_candidates_for_next_phase = get_max_nb_candidates(phases[phase_index + 1]) if length(cand_children) <= nb_candidates_for_next_phase # If at the current phase, we have less candidates than the number of candidates # we want to evaluate at the next phase, we skip the current phase. continue end # In phase 1, we make sure that the number of candidates for the next phase is # at least equal to the number of initial candidates. nb_candidates_for_next_phase = min(nb_candidates_for_next_phase, length(cand_children)) end scores = perform_branching_phase!(candidates, cand_children, current_phase, env, reform, input) perm = sortperm(scores, rev=true) permute!(cand_children, perm) permute!(candidates, perm) # The case where one/many candidate is conquered is not supported yet. # In this case, the number of candidates for next phase is one. # before deleting branching candidates which are not kept for the next phase # we need to remove record kept in these nodes resize!(cand_children, nb_candidates_for_next_phase) resize!(candidates, nb_candidates_for_next_phase) end return new_divide_output(first(cand_children)) end function perform_branching_phase!(candidates, cand_children, phase, env, reform, input) return perform_branching_phase_inner!(cand_children, phase, env, reform, input) end "Performs a branching phase." function perform_branching_phase_inner!(cand_children, phase, env, reform, input) return map(cand_children) do children # TODO; I don't understand why we need to sort the children here. # Looks like eval_children_of_candidiate! and the default implementation of # eval_child_of_candidate is fully independent of the order of the children. # Moreover, given the generic implementation of perform_branching_phase!, # it's not clear to me how the order of the children can affect the result. # At the end, only the score matters and AFAIK, the score is also independent of the order. # The reason of sorting (by Ruslan) : Ideally, we need to estimate the score of the candidate after # the first branch is solved if the score estimation is worse than the best score found so far, we discard the candidate # and do not evaluate the second branch. As estimation of score is not implemented, sorting is useless for now. # children = sort( # Branching.get_children(candidate), # by = child -> get_lp_primal_bound(child) # ) return eval_candidate!(children, phase, env, reform, input) end end function eval_candidate!(children, phase::AbstractStrongBrPhaseContext, env, reform, input) return eval_candidate_inner!(children, phase, env, reform, input) end "Evaluates a candidate." function eval_candidate_inner!(children, phase::AbstractStrongBrPhaseContext, env, reform, input) for child in children eval_child_of_candidate!(child, phase, env, reform, input) end return compute_score(get_score(phase), children, input) end "Evaluate children of a candidate." @mustimplement "StrongBranching" eval_child_of_candidate!(child, phase, env, reform, input) = nothing @mustimplement "Branching" isroot(node) = nothing ############################################################################## # Default implementation of the branching algorithm ############################################################################## function candidates_selection(ctx::Branching.AbstractDivideContext, max_nb_candidates, reform, env, extended_sol, original_sol, input) if isnothing(extended_sol) error("Error") #TODO (talk with Ruslan.) end # We sort branching rules by their root/non-root priority. sorted_rules = sort(Branching.get_rules(ctx), rev = true, by = x -> Branching.getpriority(x, parent_is_root(input))) kept_branch_candidates = Branching.AbstractBranchingCandidate[] local_id = 0 # TODO: this variable needs an explicit name. priority_of_last_gen_candidates = nothing for prioritised_rule in sorted_rules rule = prioritised_rule.rule # Priority of the current branching rule. priority = Branching.getpriority(prioritised_rule, parent_is_root(input)) nb_candidates_found = length(kept_branch_candidates) # Before selecting new candidates with the current branching rule, check if generation # of candidates stops. Generation of candidates stops when: # 1. at least one candidate was generated, and its priority rounded down is stricly greater # than priorities of not yet considered branching rules; (TODO: example? use case?) # 2. all needed candidates were generated and their smallest priority is strictly greater # than priorities of not yet considered branching rules. stop_gen_condition_1 = !isnothing(priority_of_last_gen_candidates) && nb_candidates_found > 0 && priority < floor(priority_of_last_gen_candidates) stop_gen_condition_2 = !isnothing(priority_of_last_gen_candidates) && nb_candidates_found >= max_nb_candidates && priority < priority_of_last_gen_candidates if stop_gen_condition_1 || stop_gen_condition_2 break end # Generate candidates. output = Branching.select!( rule, env, reform, Branching.BranchingRuleInput( original_sol, true, max_nb_candidates, Branching.get_selection_criterion(ctx), local_id, Branching.get_int_tol(ctx), priority, input ) ) append!(kept_branch_candidates, output.candidates) local_id = output.local_id if projection_on_master_is_possible(ctx, reform) && !isnothing(extended_sol) output = Branching.select!( rule, env, reform, Branching.BranchingRuleInput( extended_sol, false, max_nb_candidates, Branching.get_selection_criterion(ctx), local_id, Branching.get_int_tol(ctx), priority, input ) ) append!(kept_branch_candidates, output.candidates) local_id = output.local_id end select_candidates!(kept_branch_candidates, Branching.get_selection_criterion(ctx), max_nb_candidates) priority_of_last_gen_candidates = priority end return kept_branch_candidates end @mustimplement "Branching" why_no_candidate(reform, input, extended_sol, original_sol) = nothing function run_branching!(ctx, env, reform, input::Branching.AbstractDivideInput, extended_sol, original_sol) max_nb_candidates = get_selection_nb_candidates(ctx) candidates = candidates_selection(ctx, max_nb_candidates, reform, env, extended_sol, original_sol, input) # We stop branching if no candidate generated. if length(candidates) == 0 @warn "No candidate generated. No children will be generated. However, the node is not conquered." why_no_candidate(reform, input, extended_sol, original_sol) return new_divide_output(nothing) end return advanced_select!(ctx, candidates, env, reform, input) end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1522
############################################################################################ # Candidates ############################################################################################ """ A branching candidate is a data structure that contain all information needed to generate children of a node. """ abstract type AbstractBranchingCandidate end "Returns a string which serves to print the branching rule in the logs." @mustimplement "BranchingCandidate" getdescription(candidate::AbstractBranchingCandidate) = nothing # Branching candidate and branching rule should be together. # the rule generates the candidate. ## Note: Branching candidates must be created in the BranchingRule algorithm so they do not need ## a generic constructor. "Returns the left-hand side of the candidate." @mustimplement "BranchingCandidate" get_lhs(c::AbstractBranchingCandidate) = nothing "Returns the generation id of the candidiate." @mustimplement "BranchingCandidate" get_local_id(c::AbstractBranchingCandidate) = nothing """ generate_children!(branching_context, branching_candidate, lhs, env, reform, node) This method generates the children of a node described by `branching_candidate`. """ @mustimplement "BranchingCandidate" generate_children!(ctx, candidate::AbstractBranchingCandidate, env, reform, parent) = nothing "List of storage units to restore before evaluating the node." @mustimplement "BranchingCandidate" get_branching_candidate_units_usage(::AbstractBranchingCandidate, reform) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
821
############################################################################################ # Selection Criteria of branching candidates ############################################################################################ """ Supertype of selection criteria of branching candidates. A selection criterion provides a way to keep only the most promising branching candidates. To create a new selection criterion, one needs to create a subtype of `AbstractSelectionCriterion` and implements the method `select_candidates!`. """ abstract type AbstractSelectionCriterion end "Sort branching candidates according to the selection criterion and remove excess ones." @mustimplement "BranchingSelection" select_candidates!(::Vector{<:AbstractBranchingCandidate}, selection::AbstractSelectionCriterion, ::Int) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1665
############################################################################################ # Branching rules ############################################################################################ """ Supertype of branching rules. """ abstract type AbstractBranchingRule <: AlgoAPI.AbstractAlgorithm end """ PrioritisedBranchingRule A branching rule with root and non-root priorities. """ struct PrioritisedBranchingRule rule::AbstractBranchingRule root_priority::Float64 nonroot_priority::Float64 end function getpriority(rule::PrioritisedBranchingRule, isroot::Bool)::Float64 return isroot ? rule.root_priority : rule.nonroot_priority end """ Input of a branching rule (branching separation algorithm) Contains current solution, max number of candidates and local candidate id. """ struct BranchingRuleInput{SelectionCriterion<:AbstractSelectionCriterion,DivideInput,Solution} solution::Solution isoriginalsol::Bool max_nb_candidates::Int64 criterion::SelectionCriterion local_id::Int64 int_tol::Float64 minimum_priority::Float64 input::DivideInput end """ Output of a branching rule (branching separation algorithm) It contains the branching candidates generated and the updated local id value """ struct BranchingRuleOutput local_id::Int64 candidates::Vector{AbstractBranchingCandidate} end # branching rules are always manager algorithms (they manage storing and restoring storage units) ismanager(algo::AbstractBranchingRule) = true "Returns all candidates that satisfy a given branching rule." @mustimplement "BranchingRule" apply_branching_rule(rule, env, reform, input) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
421
############################################################################################ # Branching score ############################################################################################ """ Supertype of branching scores. """ abstract type AbstractBranchingScore end "Returns the score of a candidate." @mustimplement "BranchingScore" compute_score(::AbstractBranchingScore, candidate, input) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
13137
"API and high-level implementation of the column generation algorithm in Julia." module ColGen include("../MustImplement/MustImplement.jl") using .MustImplement """ Supertype for the objects to which belongs the implementation of the column generation and that stores any kind of information during the execution of the column generation algorithm. **IMPORTANT**: implementation of the column generation mainly depends on the context type. """ abstract type AbstractColGenContext end include("stages.jl") include("phases.jl") include("pricing.jl") include("stabilization.jl") include("interface.jl") """ run!(ctx, env, ip_primal_sol; iter = 1) -> AbstractColGenOutput Runs the column generation algorithm. Arguments are: - `ctx`: column generation context - `env`: Coluna environment - `ip_primal_sol`: current best primal solution to the master problem - `iter`: iteration number (default: 1) This function is responsible for initializing the column generation context, the reformulation, and the stabilization. We iterate on the loop each time the phase or the stage changes. """ function run!(context, env, ip_primal_sol; iter = 1) phase_it = new_phase_iterator(context) phase = initial_phase(phase_it) stage_it = new_stage_iterator(context) stage = initial_stage(stage_it) stab = setup_stabilization!(context, get_master(context)) phase_output = nothing while !isnothing(phase) && !stop_colgen(context, phase_output) && !isnothing(stage) setup_reformulation!(get_reform(context), phase) setup_context!(context, phase) last_iter = isnothing(phase_output) ? iter : phase_output.nb_iterations phase_output = run_colgen_phase!(context, phase, stage, env, ip_primal_sol, stab; iter = last_iter) phase = next_phase(phase_it, phase, phase_output) stage = next_stage(stage_it, stage, phase_output) end O = colgen_output_type(context) return new_output(O, phase_output) end """ run_colgen_phase!(ctx, phase, stage, env, ip_primal_sol, stab; iter = 1) -> AbstractColGenPhaseOutput Runs a phase of the column generation algorithm. Arguments are: - `ctx`: column generation context - `phase`: current column generation phase - `stage`: current column generation stage - `env`: Coluna environment - `ip_primal_sol`: current best primal solution to the master problem - `stab`: stabilization - `iter`: iteration number (default: 1) This function is responsible for running the column generation iterations until the phase is finished. """ function run_colgen_phase!(context, phase, stage, env, ip_primal_sol, stab; iter = 1) iteration = iter colgen_iter_output = nothing incumbent_dual_bound = nothing while !stop_colgen_phase(context, phase, env, colgen_iter_output, incumbent_dual_bound, ip_primal_sol, iteration) before_colgen_iteration(context, phase) colgen_iter_output = run_colgen_iteration!(context, phase, stage, env, ip_primal_sol, stab) dual_bound = ColGen.get_dual_bound(colgen_iter_output) if !isnothing(dual_bound) && (isnothing(incumbent_dual_bound) || is_better_dual_bound(context, dual_bound, incumbent_dual_bound)) incumbent_dual_bound = dual_bound end after_colgen_iteration(context, phase, stage, env, iteration, stab, ip_primal_sol, colgen_iter_output) iteration += 1 end O = colgen_phase_output_type(context) return new_phase_output(O, is_minimization(context), phase, stage, colgen_iter_output, iteration, incumbent_dual_bound) end """ run_colgen_iteration!(context, phase, stage, env, ip_primal_sol, stab) -> AbstractColGenIterationOutput Runs an iteration of column generation. Arguments are: - `context`: column generation context - `phase`: current column generation phase - `stage`: current column generation stage - `env`: Coluna environment - `ip_primal_sol`: current best primal solution to the master problem - `stab`: stabilization """ function run_colgen_iteration!(context, phase, stage, env, ip_primal_sol, stab) master = get_master(context) is_min_sense = is_minimization(context) O = colgen_iteration_output_type(context) mast_result = optimize_master_lp_problem!(master, context, env) # Iteration continues only if master is not infeasible nor unbounded and has dual # solution. if is_infeasible(mast_result) return new_iteration_output(O, is_min_sense, nothing, _inf(is_min_sense), 0, false, true, false, false, false, false, nothing, ip_primal_sol, nothing) elseif is_unbounded(mast_result) throw(UnboundedProblemError("Unbounded master problem.")) end # Master primal solution mast_primal_sol = get_primal_sol(mast_result) if !isnothing(mast_primal_sol) && is_better_primal_sol(mast_primal_sol, ip_primal_sol) # If the master LP problem has a primal solution, we can try to find a integer feasible # solution. # If the model has essential cut callbacks and the master LP solution is integral, one # needs to make sure that the master LP solution does not violate any essential cuts. # If an essential cut is violated, we expect that the `check_primal_ip_feasibility!` method # will add the violated cut to the master formulation. # If the formulation changes, one needs to restart the column generation to update # memoization to calculate reduced costs and stabilization. # TODO: the user can get the reformulation from the context. new_ip_primal_sol, new_cut_in_master = check_primal_ip_feasibility!(mast_primal_sol, context, phase, env) if new_cut_in_master return new_iteration_output(O, is_min_sense, nothing, nothing, 0, true, false, false, false, false, false, nothing, ip_primal_sol, nothing) end if !isnothing(new_ip_primal_sol) update_inc_primal_sol!(context, ip_primal_sol, new_ip_primal_sol) end end mast_dual_sol = get_dual_sol(mast_result) if isnothing(mast_dual_sol) error("Column generation interrupted: LP solver did not return an optimal dual solution") end # Stores dual solution in the constraint. This is used when the pricing solver supports # non-robust cuts. update_master_constrs_dual_vals!(context, mast_dual_sol) # Compute reduced cost (generic operation) by you must support math operations. # We always compute the reduced costs of the subproblem variables against the real master # dual solution because this is the cost of the subproblem variables in the pricing problems # if we don't use stabilization, or because we use this cost to compute the real reduced cost # of the columns when using stabilization. c = get_subprob_var_orig_costs(context) A = get_subprob_var_coef_matrix(context) red_costs = c - transpose(A) * mast_dual_sol # Buffer when using stabilization to compute the real reduced cost # of the column once generated. update_reduced_costs!(context, phase, red_costs) # Stabilization stab_changes_mast_dual_sol = update_stabilization_after_master_optim!(stab, phase, mast_dual_sol) # TODO: check the compatibility of the pricing strategy and the stabilization. # All generated columns during this iteration will be stored in the following container. # We will insert them into the master after the optimization of the pricing subproblems. # It is empty. generated_columns = set_of_columns(context) valid_db = nothing misprice = true # because we need to run the pricing at least once. # This variable is updated at the end of the pricing loop. # If there is no stabilization, the pricing loop is run only once. while misprice # `sep_mast_dual_sol` is the master dual solution used to optimize the pricing subproblems. # in the current misprice iteration. sep_mast_dual_sol = get_stab_dual_sol(stab, phase, mast_dual_sol) # We will optimize the pricing subproblem using the master dual solution returned # by the stabilization. We this need to recompute the reduced cost of the subproblem # variables if the stabilization changes the master dual solution. cur_red_costs = if stab_changes_mast_dual_sol c - transpose(A) * sep_mast_dual_sol else red_costs end # Updates subproblems reduced costs. for (_, sp) in get_pricing_subprobs(context) update_sp_vars_red_costs!(context, sp, cur_red_costs) end # To compute the master dual bound, we need a dual bound to each pricing subproblems. # So we ask for an initial dual bound for each pricing subproblem that we update when # solving the pricing subproblem. # Depending on the pricing strategy, the user can choose to solve only some subproblems. # If the some subproblems have not been solved, we use this initial dual bound to # compute the master dual bound. sps_db = Dict(sp_id => compute_sp_init_db(context, sp) for (sp_id, sp) in get_pricing_subprobs(context)) # The primal bound is used to compute the psueudo dual bound (used by stabilization). sps_pb = Dict(sp_id => compute_sp_init_pb(context, sp) for (sp_id, sp) in get_pricing_subprobs(context)) # Solve pricing subproblems pricing_strategy = get_pricing_strategy(context, phase) sp_to_solve_it = pricing_strategy_iterate(pricing_strategy) while !isnothing(sp_to_solve_it) (sp_id, sp_to_solve), state = sp_to_solve_it optimizer = get_pricing_subprob_optimizer(stage, sp_to_solve) pricing_result = optimize_pricing_problem!(context, sp_to_solve, env, optimizer, mast_dual_sol, stab_changes_mast_dual_sol) # Iteration continues only if the pricing solution is not infeasible nor unbounded. if is_infeasible(pricing_result) # TODO: if the lower multiplicity of the subproblem is zero, we can continue. return new_iteration_output(O, is_min_sense, nothing, _inf(is_min_sense), 0, false, false, false, true, false, false, mast_primal_sol, ip_primal_sol, mast_dual_sol) elseif is_unbounded(pricing_result) # We do not support unbounded pricing (even if it's theorically possible). # We must stop Coluna here by throwing an exception because we can't claim # the problem is unbounded. throw(UnboundedProblemError("Unbounded subproblem.")) end primal_sols = get_primal_sols(pricing_result) nb_cols_pushed = 0 for primal_sol in primal_sols # multi column generation support. # The implementation is reponsible for checking if the column is a candidate # for insertion into the master. if push_in_set!(context, generated_columns, primal_sol) nb_cols_pushed += 1 end end # Updates the initial bound if the pricing subproblem result has a dual bound. sp_db = get_dual_bound(pricing_result) if !isnothing(sp_db) sps_db[sp_id] = sp_db end sp_pb = get_primal_bound(pricing_result) if !isnothing(sp_pb) sps_pb[sp_id] = sp_pb end sp_to_solve_it = pricing_strategy_iterate(pricing_strategy, state) end # compute valid dual bound using the dual bounds returned by the user (cf pricing result). valid_db = compute_dual_bound(context, phase, sps_db, generated_columns, sep_mast_dual_sol) # pseudo dual bound is used for stabilization only. pseudo_db = compute_dual_bound(context, phase, sps_pb, generated_columns, sep_mast_dual_sol) update_stabilization_after_pricing_optim!(stab, context, generated_columns, master, pseudo_db, sep_mast_dual_sol) # We have finished to solve all pricing subproblems. # If we have stabilization, we need to check if we have misprice, i.e. if smoothing is active # and no negative reduced cost columns are generated # If we have misprice, we need to update the stabilization center and the smoothed dual solution # and solve again the pricing subproblems. # If we don't have misprice, we can stop the pricing loop. misprice = check_misprice(stab, generated_columns, mast_dual_sol) if misprice update_stabilization_after_misprice!(stab, mast_dual_sol) end end # Insert columns into the master. # The implementation is responsible for checking if the column is "valid". col_ids = insert_columns!(context, phase, generated_columns) nb_cols_inserted = length(col_ids) update_stabilization_after_iter!(stab, mast_dual_sol) return new_iteration_output(O, is_min_sense, get_obj_val(mast_result), valid_db, nb_cols_inserted, false, false, false, false, false, false, mast_primal_sol, ip_primal_sol, mast_dual_sol) end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
14099
struct UnboundedProblemError <: Exception message::String end ############################################################################################ # Reformulation getters ############################################################################################ "Returns Dantzig-Wolfe reformulation." @mustimplement "ColGen" get_reform(ctx) = nothing "Returns master formulation." @mustimplement "ColGen" get_master(ctx) = nothing "Returns `true` if the objective sense is minimization; `false` otherwise." @mustimplement "ColGen" is_minimization(ctx) = nothing """ get_pricing_subprobs(ctx) -> Vector{Tuple{SuproblemId, SpFormulation}} Returns subproblem formulations. """ @mustimplement "ColGen" get_pricing_subprobs(ctx) = nothing ############################################################################################ # Result getters ############################################################################################ "Returns true if a master or pricing problem result is infeasible; false otherwise." @mustimplement "ColGenResultGetter" is_infeasible(res) = nothing "Returns true if a master or pricing problem result is unbounded; false otherwise." @mustimplement "ColGenResultGetter" is_unbounded(res) = nothing """ Returns the optimal objective value of the master LP problem." See `optimize_master_lp_problem!`. """ @mustimplement "ColGenResultGetter" get_obj_val(master_res) = nothing "Returns primal solution to the master LP problem." @mustimplement "ColGenResultGetter" get_primal_sol(master_res) = nothing "Returns dual solution to the master optimization problem." @mustimplement "ColGenResultGetter" get_dual_sol(master_res) = nothing "Array of primal solutions to the pricing subproblem" @mustimplement "ColGenResultGetter" get_primal_sols(pricing_res) = nothing """ Returns dual bound of the pricing subproblem; `nothing` if no dual bound is available and the initial dual bound returned by `compute_sp_init_db` will be used to compute the master dual bound. """ @mustimplement "ColGenResultGetter" get_dual_bound(pricing_res) = nothing """ Returns primal bound of the pricing subproblem; `nothing` if no primal bound is available and the initial dual bound returned by `compute_sp_init_pb` will be used to compute the pseudo dual bound. """ @mustimplement "ColGenResultGetter" get_primal_bound(pricing_res) = nothing ############################################################################################ # Master resolution. ############################################################################################ """ optimize_master_lp_problem!(master, context, env) -> MasterResult Returns an instance of a custom object `MasterResult` that implements the following methods: - `get_obj_val`: objective value of the master (mandatory) - `get_primal_sol`: primal solution to the master (optional) - `get_dual_sol`: dual solution to the master (mandatory otherwise column generation stops) It should at least return a dual solution (obtained with LP optimization or subgradient) otherwise column generation cannot continue. """ @mustimplement "ColGenMaster" optimize_master_lp_problem!(master, context, env) = nothing ############################################################################################ # Master solution integrality. ############################################################################################ """ Returns a primal solution expressed in the original problem variables if the current master LP solution is integer feasible; `nothing` otherwise. """ @mustimplement "ColGenMasterIntegrality" check_primal_ip_feasibility!(mast_lp_primal_sol, ::AbstractColGenContext, phase, env) = nothing """ Returns `true` if the new master IP primal solution is better than the current; `false` otherwise. """ @mustimplement "ColGenMasterIntegrality" is_better_primal_sol(new_ip_primal_sol, ip_primal_sol) = nothing ############################################################################################ # Master IP incumbent. ############################################################################################ """ Updates the current master IP primal solution. """ @mustimplement "ColGenMasterUpdateIncumbent" update_inc_primal_sol!(ctx::AbstractColGenContext, ip_primal_sol, new_ip_primal_sol) = nothing ############################################################################################ # Reduced costs calculation. ############################################################################################ """ Updates dual value of the master constraints. Dual values of the constraints can be used when the pricing solver supports non-robust cuts. """ @mustimplement "ColGenReducedCosts" update_master_constrs_dual_vals!(ctx, mast_lp_dual_sol) = nothing """ Method that you can implement if you want to store the reduced cost of subproblem variables in the context. """ @mustimplement "ColGenReducedCosts" update_reduced_costs!(context, phase, red_costs) = nothing """ Returns the original cost `c` of subproblems variables. to compute reduced cost `̄c = c - transpose(A) * π`. """ @mustimplement "ColGenReducedCosts" get_subprob_var_orig_costs(ctx::AbstractColGenContext) = nothing """ Returns the coefficient matrix `A` of subproblem variables in the master to compute reduced cost `̄c = c - transpose(A) * π`. """ @mustimplement "ColGenReducedCosts" get_subprob_var_coef_matrix(ctx::AbstractColGenContext) = nothing "Updates reduced costs of variables of a given subproblem." @mustimplement "ColGenReducedCosts" update_sp_vars_red_costs!(ctx::AbstractColGenContext, sp, red_costs) = nothing ############################################################################################ # Dual bound calculation. ############################################################################################ """ Returns an initial dual bound for a pricing subproblem. Default value should be +/- infinite depending on the optimization sense. """ @mustimplement "ColGenDualBound" compute_sp_init_db(ctx, sp) = nothing """ Returns an initial primal bound for a pricing subproblem. Default value should be +/- infinite depending on the optimization sense. """ @mustimplement "ColGenDualBound" compute_sp_init_pb(ctx, sp) = nothing """ compute_dual_bound(ctx, phase, master_lp_obj_val, master_dbs, generated_columns, mast_dual_sol) -> Float64 Caculates the dual bound at a given iteration of column generation. The dual bound is composed of: - `master_lp_obj_val`: objective value of the master LP problem - `master_dbs`: dual values of the pricing subproblems - the contribution of the master convexity constraints that you should compute from `mast_dual_sol`. """ @mustimplement "ColGenDualBound" compute_dual_bound(ctx, phase, master_dbs, generated_columns, mast_dual_sol) = nothing ############################################################################################ # Columns insertion. ############################################################################################ """ Inserts columns into the master. Returns the number of columns inserted. Implementation is responsible for checking if the column must be inserted and warn the user if something unexpected happens. """ @mustimplement "ColGenColInsertion" insert_columns!(ctx, phase, columns) = nothing ############################################################################################ # Iteration Output ############################################################################################ "Supertype for the objects that contains the output of a column generation iteration." abstract type AbstractColGenIterationOutput end """ colgen_iteration_output_type(ctx) -> Type{<:AbstractColGenIterationOutput} Returns the type of the column generation iteration output associated to the context. """ @mustimplement "ColGenIterationOutput" colgen_iteration_output_type(::AbstractColGenContext) = nothing """ new_iteration_output(::Type{<:AbstractColGenIterationOutput}, args...) -> AbstractColGenIterationOutput Arguments (i.e. `arg...`) of this function are the following: - `min_sense`: `true` if the objective is a minimization function; `false` otherwise - `mlp`: the optimal solution value of the master LP - `db`: the Lagrangian dual bound - `nb_new_cols`: the number of columns inserted into the master - `new_cut_in_master`: `true` if valid inequalities or new constraints added into the master; `false` otherwise - `infeasible_master`: `true` if the master is proven infeasible; `false` otherwise - `unbounded_master`: `true` if the master is unbounded; `false` otherwise - `infeasible_subproblem`: `true` if a pricing subproblem is proven infeasible; `false` otherwise - `unbounded_subproblem`: `true` if a pricing subproblem is unbounded; `false` otherwise - `time_limit_reached`: `true` if time limit is reached; `false` otherwise - `master_primal_sol`: the primal master LP solution - `ip_primal_sol`: the incumbent primal master solution - `dual_sol`: the dual master LP solution """ @mustimplement "ColGenIterationOutput" new_iteration_output( ::Type{<:AbstractColGenIterationOutput}, min_sense, mlp, db, nb_new_cols, new_cut_in_master, infeasible_master, unbounded_master, infeasible_subproblem, unbounded_subproblem, time_limit_reached, master_primal_sol, ip_primal_sol, dual_sol ) = nothing ############################################################################################ # Phase Output ############################################################################################ "Supertype for the objects that contains the output of a column generation phase." abstract type AbstractColGenPhaseOutput end """ colgen_phase_outputype(ctx) -> Type{<:AbstractColGenPhaseOutput} Returns the type of the column generation phase output associated to the context. """ @mustimplement "ColGenPhaseOutput" colgen_phase_output_type(::AbstractColGenContext) = nothing """ new_phase_output(OutputType, min_sense, phase, stage, colgen_iter_output, iter, inc_dual_bound) -> OutputType Returns the column generation phase output. Arguments of this function are: - `OutputType`: the type of the column generation phase output - `min_sense`: `true` if it is a minimization problem; `false` otherwise - `phase`: the current column generation phase - `stage`: the current column generation stage - `col_gen_iter_output`: the last column generation iteration output - `iter`: the last iteration number - `inc_dual_bound`: the current incumbent dual bound """ @mustimplement "ColGenPhaseOutput" new_phase_output(::Type{<:AbstractColGenPhaseOutput}, min_sense, phase, stage, ::AbstractColGenIterationOutput, iteration, incumbent_dual_bound) = nothing "Returns `true` when the column generation algorithm must stop; `false` otherwise." @mustimplement "ColGenPhaseOutput" stop_colgen(context, phase_output) = nothing ############################################################################################ # Colgen Output ############################################################################################ "Supertype for the objects that contains the output of the column generation algorithm." abstract type AbstractColGenOutput end """ colgen_output_type(ctx) -> Type{<:AbstractColGenOutput} Returns the type of the column generation output associated to the context. """ @mustimplement "ColGenOutput" colgen_output_type(::AbstractColGenContext) = nothing """ new_output(OutputType, colgen_phase_output) -> OutputType Returns the column generation output where `colgen_phase_output` is the output of the last column generation phase executed. """ @mustimplement "ColGenOutput" new_output(::Type{<:AbstractColGenOutput}, colgen_phase_output::AbstractColGenPhaseOutput) = nothing ############################################################################################ # Common to outputs ############################################################################################ "Returns the number of new columns inserted into the master at the end of an iteration." @mustimplement "ColGenOutputs" get_nb_new_cols(output) = nothing "Returns the incumbent primal master IP solution at the end of an iteration or a phase." @mustimplement "ColGenOutputs" get_master_ip_primal_sol(output) = nothing "Returns the primal master LP solution found at the last iteration of the column generation algorithm." @mustimplement "ColGenOutputs" get_master_lp_primal_sol(output) = nothing "Returns the dual master LP solution found at the last iteration of the column generation algorithm." @mustimplement "ColGenOutputs" get_master_dual_sol(output) = nothing "Returns the master LP solution value at the last iteration of the column generation algorithm." @mustimplement "ColGenOutputs" get_master_lp_primal_bound(output) = nothing ############################################################################################ # ColGen Main Loop ############################################################################################ """ Placeholder method called before the column generation iteration. Does nothing by default but can be redefined to print some informations for instance. We strongly advise users against the use of this method to modify the context or the reformulation. """ @mustimplement "ColGen" before_colgen_iteration(ctx::AbstractColGenContext, phase) = nothing """ Placeholder method called after the column generation iteration. Does nothing by default but can be redefined to print some informations for instance. We strongly advise users against the use of this method to modify the context or the reformulation. """ @mustimplement "ColGen" after_colgen_iteration(::AbstractColGenContext, phase, stage, env, colgen_iteration, stab, ip_primal_sol, colgen_iter_output) = nothing "Returns `true` if `new_dual_bound` is better than `dual_bound`; `false` otherwise." @mustimplement "ColGen" is_better_dual_bound(context, new_dual_bound, dual_bound) = nothing ### _inf(is_min_sense) = is_min_sense ? Inf : -Inf
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1239
""" A phase of the column generation. Each phase is associated with a specific set up of the reformulation. """ abstract type AbstractColGenPhase end """ An iterator that indicates how phases follow each other. """ abstract type AbstractColGenPhaseIterator end "Returns a new phase iterator." @mustimplement "ColGenPhase" new_phase_iterator(::AbstractColGenContext) = nothing "Returns the phase with which the column generation algorithm must start." @mustimplement "ColGenPhase" initial_phase(::AbstractColGenPhaseIterator) = nothing """ Returns the next phase of the column generation algorithm. Returns `nothing` if the algorithm must stop. """ @mustimplement "ColGenPhase" next_phase(::AbstractColGenPhaseIterator, ::AbstractColGenPhase, output) = nothing "Setup the reformulation for the given phase." @mustimplement "ColGenPhase" setup_reformulation!(reform, ::AbstractColGenPhase) = nothing "Setup the context for the given phase." @mustimplement "ColGenPhase" setup_context!(context, ::AbstractColGenPhase) = nothing "Returns `true` if the column generation phase must stop." @mustimplement "ColGenPhase" stop_colgen_phase(context, phase, env, colgen_iter_output, inc_dual_bound, ip_primal_sol, colgen_iteration) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3235
############################################################################# # Pricing strategy ############################################################################# """ A pricing strategy defines how we iterate on pricing subproblems. A default pricing strategy consists in iterating on all pricing subproblems. Basically, this object is used like this: ```julia pricing_strategy = ColGen.get_pricing_strategy(ctx, phase) next = ColGen.pricing_strategy_iterate(pricing_strategy) while !isnothing(next) (sp_id, sp_to_solve), state = next # Solve the subproblem `sp_to_solve`. next = ColGen.pricing_strategy_iterate(pricing_strategy, state) end ``` """ abstract type AbstractPricingStrategy end """ get_pricing_strategy(ctx, phase) -> AbstractPricingStrategy Returns the pricing strategy object. """ @mustimplement "ColGenPricing" get_pricing_strategy(ctx, phase) = nothing """ pricing_strategy_iterate(pricing_strategy) -> ((sp_id, sp_to_solve), state) pricing_strategy_iterate(pricing_strategy, state) -> ((sp_id, sp_to_solve), state) Returns an iterator with the first pricing subproblem that must be optimized. The next subproblem is returned by a call to `Base.iterate` using the information provided by this method. """ @mustimplement "ColGenPricing" pricing_strategy_iterate(::AbstractPricingStrategy) = nothing @mustimplement "ColGenPricing" pricing_strategy_iterate(::AbstractPricingStrategy, state) = nothing ############################################################################# # Pricing subproblem optimization ############################################################################# """ optimize_pricing_problem!(ctx, sp, env, optimizer, mast_dual_sol) -> PricingResult Returns a custom object `PricingResult` that must implement the following functions: - `get_primal_sols`: array of primal solution to the pricing subproblem - `get_primal_bound`: best reduced cost (optional ?) - `get_dual_bound`: dual bound of the pricing subproblem (used to compute the master dual bound) - `master_dual_sol`: dual solution ``\\pi^{\\text{out}}`` to the master problem used to compute the real reduced cost of the column when stabilization is active """ @mustimplement "ColGenPricing" optimize_pricing_problem!(ctx, sp, env, optimizer, mast_dual_sol, stab_changes_mast_dual_sol) = nothing ############################################################################# # Set of Generated Columns. ############################################################################# """ Returns an empty container that will store all the columns generated by the pricing problems during an iteration of the column generation algorithm. One must be able to iterate on this container to insert the columns in the master problem. """ @mustimplement "ColGenColumnsSet" set_of_columns(ctx) = nothing """ Pushes the column in the set of columns generated at a given iteration of the column generation algorithm. Columns stored in the set will then be considered for insertion in the master problem. Returns `true` if column was inserted in the set, `false` otherwise. """ @mustimplement "ColGenColumnsSet" push_in_set!(context, pool, column) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2255
""" Returns an instance of a data structure that contain information about the stabilization used in the column generation algorithm. """ @mustimplement "ColGenStab" setup_stabilization!(ctx, master) = nothing """ update_stabilization_after_master_optim!(stab, phase, mast_dual_sol) -> Bool Update stabilization after master optimization where `mast_dual_sol` is the dual solution to the master problem. Returns `true` if the stabilization will change the dual solution used for the pricing in the current column generation iteration, `false` otherwise. """ @mustimplement "ColGenStab" update_stabilization_after_master_optim!(stab, phase, mast_dual_sol) = nothing """ Returns the dual solution used for the pricing in the current column generation iteration (stabilized dual solution). """ @mustimplement "ColGenStab" get_stab_dual_sol(stab, phase, mast_dual_sol) = nothing "Returns `true` if the stabilized dual solution leads to a misprice, `false` otherwise." @mustimplement "ColGenStab" check_misprice(stab, generated_cols, mast_dual_sol) = nothing """ Updates stabilization after pricing optimization where: - `mast_dual_sol` is the dual solution to the master problem - `pseudo_db` is the pseudo dual bound of the problem after optimization of the pricing problems - `smooth_dual_sol` is the current smoothed dual solution """ @mustimplement "ColGenStab" update_stabilization_after_pricing_optim!(stab, ctx, generated_columns, master, pseudo_db, smooth_dual_sol) = nothing """ Updates stabilization after a misprice. Argument `mast_dual_sol` is the dual solution to the master problem. """ @mustimplement "ColGenStab" update_stabilization_after_misprice!(stab, mast_dual_sol) = nothing """ Updates stabilization after an iteration of the column generation algorithm. Arguments: - `stab` is the stabilization data structure - `ctx` is the column generation context - `master` is the master problem - `generated_columns` is the set of generated columns - `mast_dual_sol` is the dual solution to the master problem """ @mustimplement "ColGenStab" update_stabilization_after_iter!(stab, mast_dual_sol) = nothing "Returns a string with a short information about the stabilization." @mustimplement "ColGenStab" get_output_str(stab) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1448
""" A stage of the column generation algorithm. Each stage is associated to a specific solver for each pricing subproblem. """ abstract type AbstractColGenStage end "An iterator that indicates how stages follow each other." abstract type AbstractColGenStageIterator end "Returns a new stage iterator." @mustimplement "ColGenStage" new_stage_iterator(::AbstractColGenContext) = nothing "Returns the stage at which the column generation algorithm must start." @mustimplement "ColGenStage" initial_stage(::AbstractColGenStageIterator) = nothing """ Returns the next stage involving a "more exact solver" than the current one. Returns `nothing` if the algorithm has already reached the exact phase (last phase). """ @mustimplement "ColGenStage" decrease_stage(::AbstractColGenStageIterator, stage, phase_output) = nothing """ Returns the next stage that column generation must use. """ @mustimplement "ColGenStage" next_stage(::AbstractColGenStageIterator, stage, phase_output) = nothing "Returns the optimizer for the pricing subproblem associated to the given stage." @mustimplement "ColGenStage" get_pricing_subprob_optimizer(::AbstractColGenStage, form) = nothing "Returns the id of the stage." @mustimplement "ColGenStage" stage_id(::AbstractColGenStage) = nothing "Returns `true` if the stage uses an exact solver for the pricing subproblem; `false` otherwise." @mustimplement "ColGenStage" is_exact_stage(::AbstractColGenStage) = nothing
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1523
module ColunaBase include("../MustImplement/MustImplement.jl") using .MustImplement using DynamicSparseArrays, MathOptInterface, TimerOutputs, RandomNumbers, Random, SparseArrays const MOI = MathOptInterface const TO = TimerOutputs import BlockDecomposition import Base import Printf # interface.jl export AbstractModel, AbstractProblem, AbstractSense, AbstractMinSense, AbstractMaxSense, getuid, getstorage # nestedenum.jl export NestedEnum, @nestedenum, @exported_nestedenum # solsandbounds.jl export Bound, Solution, getvalue, getbound, isbetter, best, worst, gap, printbounds, getstatus, remove_until_last_point, getmodel, isunbounded, isinfeasible # Statuses export TerminationStatus, SolutionStatus, OPTIMIZE_NOT_CALLED, OPTIMAL, INFEASIBLE, UNBOUNDED, TIME_LIMIT, NODE_LIMIT, OTHER_LIMIT, UNCOVERED_TERMINATION_STATUS, FEASIBLE_SOL, INFEASIBLE_SOL, UNKNOWN_FEASIBILITY, UNKNOWN_SOLUTION_STATUS, UNCOVERED_SOLUTION_STATUS, convert_status # hashtable export HashTable, gethash, savesolid!, getsolids # Storages (TODO : clean) export UnitType, UnitPermission, READ_AND_WRITE, READ_ONLY, NOT_USED, getstorageunit, getstoragewrapper export Storage, RecordUnitManager, AbstractRecordUnit, AbstractRecord, storage_unit, record, record_type, storage_unit_type, restore_from_record!, create_record include("interface.jl") include("nestedenum.jl") include("solsandbounds.jl") include("hashtable.jl") # TODO: extract storage include("recordmanager.jl") include("storage.jl") end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2295
const MT_SEED = 1234567 const MT_MASK = 0x0ffff # hash keys from 1 to 65536 """ This datastructure allows us to quickly find solution that shares the same members: variables for primal solutions and constraints for dual solutions. """ struct HashTable{MemberId,SolId} rng::MersenneTwisters.MT19937 memberid_to_hash::Dict{MemberId, UInt32} # members of the primal/dual solution -> hash hash_to_solids::Vector{Vector{SolId}} # hash of the primal/dual solution -> solution id HashTable{MemberId,SolId}() where {MemberId,SolId} = new( MersenneTwisters.MT19937(MT_SEED), Dict{MemberId, UInt32}(), [SolId[] for _ in 0:MT_MASK] ) end function _gethash!( hashtable::HashTable{MemberId,SolId}, id::MemberId, bad_hash = Int(MT_MASK) + 2 ) where {MemberId,SolId} hash = UInt32(get(hashtable.memberid_to_hash, id, bad_hash) - 1) if hash > MT_MASK hash = MersenneTwisters.mt_get(hashtable.rng) & MT_MASK hashtable.memberid_to_hash[id] = Int(hash) + 1 end return hash end _gethash!(hashtable, entry::Tuple, bad_hash = Int(MT_MASK) + 2) = _gethash!(hashtable, first(entry), bad_hash) # By default, we consider that the iterator of the `sol` argument returns a tuple that # contains the id as first element. function gethash(hashtable::HashTable, sol) acum_hash = UInt32(0) for entry in sol acum_hash ⊻= _gethash!(hashtable, entry) end return Int(acum_hash) + 1 end # If the solution is in a sparse vector, we just want to check indices associated to non-zero # values. function gethash(hashtable::HashTable, sol::SparseVector) acum_hash = UInt32(0) for nzid in SparseArrays.nonzeroinds(sol) acum_hash ⊻= _gethash!(hashtable, nzid) end return Int(acum_hash) + 1 end savesolid!(hashtable::HashTable, solid, sol) = push!(getsolids(hashtable, sol), solid) getsolids(hashtable::HashTable, sol) = hashtable.hash_to_solids[gethash(hashtable, sol)] function Base.show(io::IO, ht::HashTable) println(io, typeof(ht), ":") println(io, " memberid_to_hash : ", ht.memberid_to_hash) println(io, " hash_to_solids :") for (a,b) in Iterators.filter(a -> !isempty(a[2]), enumerate(ht.hash_to_solids)) println(io, "\t", a, "=>", b) end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
753
abstract type AbstractModel end @mustimplement "Model" getuid(m::AbstractModel) = nothing "Return the storage of a model." @mustimplement "Model" getstorage(m::AbstractModel) = nothing abstract type AbstractProblem end abstract type AbstractSense end abstract type AbstractMinSense <: AbstractSense end abstract type AbstractMaxSense <: AbstractSense end function remove_until_last_point(str::String) lastpointindex = findlast(isequal('.'), str) shortstr = SubString( str, lastpointindex === nothing ? 1 : lastpointindex + 1, length(str) ) return shortstr end function Base.show(io::IO, model::AbstractModel) shorttypestring = remove_until_last_point(string(typeof(model))) print(io, "model ", shorttypestring) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5953
abstract type NestedEnum end function Base.:(<=)(a::T, b::T) where {T<:NestedEnum} return a.value % b.value == 0 end function Base.:(<=)(a::T, b::U) where {T<:NestedEnum,U<:NestedEnum} return false end const PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541] # Store the item defined in expr at position i function _store!(expr::Symbol, i, names, parent_pos, depths) names[i] = expr parent_pos[i] = 0 # No parent depths[i] = 0 # No parent return end # Store the item defined in expr at position i function _store!(expr::Expr, i, names, parent_pos, depths) if i == 1 # parent can be a curly expression e.g. Duty{Variable} expr.head == :curly || error("Syntax error : parent can be a Symbol or a curly expression.") names[i] = expr parent_pos[i] = 0 depths[i] = 0 return end expr.head == :call || error("Syntax error : Child <= Parent ") expr.args[1] == :(<=) || error("Syntax error : Child <= Parent ") i > 1 || error("First element cannot have a parent.") name = expr.args[2] parent_name = expr.args[3] r = findall(n -> n == parent_name, names[1:i-1]) length(r) == 0 && error("Unknow parent $(parent_name).") length(r) > 1 && error("$(parent_name) registered more than once.") pos = r[1] parent_pos[i] = pos names[i] = name depths[i] = depths[pos] + 1 return end # Compute the value of each item. The value is equal to the multiplication of # the prime numbers assigned to the item and its ancestors. function _compute_values!(values, parent_pos, primes) for i in 1:length(parent_pos) factor = 1 j = parent_pos[i] if j != 0 factor = values[j] end values[i] = primes[i] * factor end return end # Update parent_pos array in function of permutation p function _update_parent_pos!(parent_pos, p) permute!(parent_pos, p) # We still use positions of the old order. inv_p = invperm(p) for (i, pos) in enumerate(parent_pos) if pos != 0 parent_pos[i] = inv_p[pos] end end return end function _build_expression(names, values, export_symb::Bool = false) len = length(names) root_name = names[1] enum_expr = Expr(:block, :()) # We define a new type iif the root name is a Symbol # If the root name is a curly expression, the user must have defined the # template type inheriting from NestedEnum in its code. if root_name isa Symbol push!(enum_expr.args, :(struct $root_name <: Coluna.ColunaBase.NestedEnum value::UInt end)) end for i in 2:len push!(enum_expr.args, :(const $(names[i]) = $(root_name)(UInt($(values[i]))))) if export_symb push!(enum_expr.args, :(export $(names[i]))) end end return enum_expr end function _build_print_expression(names, values) root_name = names[1] print_expr = Expr(:function) push!(print_expr.args, :(Base.print(io::IO, obj::$(root_name)))) #signature # build the if list in reverse order prev_cond = :(print(io, "UNKNOWN_DUTY")) for i in length(names):-1:2 head = (i == 2) ? :if : :elseif msg = string(names[i]) cond = Expr(head, :(obj == $(names[i])), :(print(io, $msg)), prev_cond) prev_cond = cond end push!(print_expr.args, Expr(:block, prev_cond)) return print_expr end function _assign_values_to_items(expr) Base.remove_linenums!(expr) expr.head == :block || error("Block expression expected.") len = length(expr.args) names = Array{Union{Symbol, Expr}}(undef, len) parent_pos = zeros(Int, len) # Position of the parent. depths = zeros(Int, len) # Depth of each item values = zeros(UInt32, len) # The value is the multiplication of primes of the item and its ancestors. primes = PRIMES[1:len] name_values = Dict{Union{Symbol, Expr}, Int}() for (i, arg) in enumerate(expr.args) _store!(arg, i, names, parent_pos, depths) end p = sortperm(depths) permute!(names, p) _update_parent_pos!(parent_pos, p) _compute_values!(values, parent_pos, primes) return names, values end """ @nestedenum block_expression Create a `NestedEnum` subtype such as : # Example ```@meta DocTestSetup = quote using Coluna end ``` ```jldoctest nestedexample Coluna.ColunaBase.@nestedenum begin TypeOfItem ItemA <= TypeOfItem ChildA1 <= ItemA GrandChildA11 <= ChildA1 GrandChildA12 <= ChildA1 ChildA2 <= ItemA ItemB <= TypeOfItem ItemC <= TypeOfItem end # output ``` Create a nested enumeration with items `ItemA`, `ChildA1`, `ChildA2`, `GrandChildA11`, `GrandChildA12`, `ItemB`, and `ItemC` of type `TypeOfItem`. The operator `<=` indicates the parent of the item. ```jldoctest nestedexample julia> GrandChildA11 <= ItemA true ``` ```jldoctest nestedexample julia> GrandChildA11 <= ItemC false ``` ```@meta DocTestSetup = nothing ``` """ macro nestedenum(expr) return _nestedenum(expr, false) end "Create a nested enumeration and export all the items." macro exported_nestedenum(expr) return _nestedenum(expr, true) end function _nestedenum(expr, export_names) names, values = _assign_values_to_items(expr) enum_expr = _build_expression(names, values, export_names) print_expr = _build_print_expression(names, values) final_expr = quote $enum_expr $print_expr end return esc(final_expr) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3121
abstract type AbstractRecordUnit end abstract type AbstractRecord end # Interface to implement @mustimplement "Storage" get_id(r::AbstractRecord) = nothing "Creates a record of information from the model or a storage unit." @mustimplement "Storage" record(::Type{<:AbstractRecord}, id::Int, model, su::AbstractRecordUnit) = nothing "Restore information from the model or the storage unit that is recorded in a record." @mustimplement "Storage" restore_from_record!(model, su::AbstractRecordUnit, r::AbstractRecord) = nothing "Returns a storage unit from a given type." @mustimplement "Storage" storage_unit(::Type{<:AbstractRecordUnit}, model) = nothing mutable struct RecordUnitManager{Model,RecordType<:AbstractRecord,StorageUnitType<:AbstractRecordUnit} model::Model storage_unit::StorageUnitType active_record_id::Int function RecordUnitManager(::Type{StorageUnitType}, model::M) where {M,StorageUnitType<:AbstractRecordUnit} return new{M,record_type(StorageUnitType),StorageUnitType}( model, storage_unit(StorageUnitType, model), 0 ) end end # Interface "Returns the type of record stored in a type of storage unit." @mustimplement "Storage" record_type(::Type{<:AbstractRecordUnit}) = nothing "Returns the type of storage unit that stores a type of record." @mustimplement "Storage" storage_unit_type(::Type{<:AbstractRecord}) = nothing struct Storage{ModelType} model::ModelType units::Dict{DataType,RecordUnitManager} Storage(model::M) where {M} = new{M}(model, Dict{DataType,RecordUnitManager}()) end function _get_storage_unit_manager!(storage, ::Type{StorageUnitType}) where {StorageUnitType<:AbstractRecordUnit} storage_unit_manager = get(storage.units, StorageUnitType, nothing) if isnothing(storage_unit_manager) storage_unit_manager = RecordUnitManager(StorageUnitType, storage.model) storage.units[StorageUnitType] = storage_unit_manager end return storage_unit_manager end # Creates a new record from the current state of the model and the storage unit. """ create_record(storage, storage_unit_type) Returns a Record that contains a description of the state of the storage unit at the time when the method is called. """ function create_record(storage, ::Type{StorageUnitType}) where {StorageUnitType<:AbstractRecordUnit} storage_unit_manager = _get_storage_unit_manager!(storage, StorageUnitType) id = storage_unit_manager.active_record_id += 1 return record( record_type(StorageUnitType), id, storage.model, storage_unit_manager.storage_unit ) end function restore_from_record!(storage::Storage, record::RecordType) where {RecordType} storage_unit_manager = _get_storage_unit_manager!(storage, storage_unit_type(RecordType)) restore_from_record!(storage.model, storage_unit_manager.storage_unit, record) return true end # TODO: remove function restore_from_record!(storage_manager, record::RecordType) where {RecordType} restore_from_record!(storage_manager.model, storage_manager.storage_unit, record) return true end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
12694
# Bounds struct Bound <: Real min::Bool # max if false. primal::Bool # dual if false. value::Float64 Bound(min::Bool, primal::Bool, x::Number) = new(min, primal, x === NaN ? _defaultboundvalue(primal, min) : x) end function _defaultboundvalue(primal::Bool, min::Bool) sc1 = min ? 1 : -1 sc2 = primal ? 1 : -1 return sc1 * sc2 * Inf end """ Bound(min, primal) Create a default primal bound for a problem with objective sense (min or max) in the space (primal or dual). """ function Bound(min, primal) val = _defaultboundvalue(primal, min) return Bound(min, primal, val) end getvalue(b::Bound) = b.value """ isbetter(b1, b2) Returns true if bound b1 is better than bound b2. The function take into account the space (primal or dual) and the objective sense (min, max) of the bounds. """ function isbetter(b1::Bound, b2::Bound) @assert b1.min == b2.min && b1.primal == b2.primal sc1 = b1.min ? 1 : -1 sc2 = b1.primal ? 1 : -1 return sc1 * sc2 * b1.value < sc1 * sc2 * b2.value end # We use nothing when there is no bound. So we can consider that a new bound is better than # nothing. isbetter(::Bound, ::Nothing) = true """ best(b1, b2) Returns the best bound between b1 and b2. """ best(b1::Bound, b2::Bound) = isbetter(b1, b2) ? b1 : b2 """ worst(b1, b2) Returns the worst bound between b1 and b2. """ worst(b1::Bound, b2::Bound) = isbetter(b1, b2) ? b2 : b1 """ diff(pb, db) diff(db, pb) Distance between a primal bound and a dual bound that have the same objective sense. Distance is non-positive if dual bound reached primal bound. """ function diff(b1::Bound, b2::Bound) @assert b1.min == b2.min && b1.primal != b2.primal pb = b1.primal ? b1 : b2 db = b1.primal ? b2 : b1 sc = b1.min ? 1 : -1 return sc * (pb.value - db.value) end """ gap(pb, db) gap(db, pb) Return relative gap. Gap is non-positive if pb reached db. """ function gap(b1::Bound, b2::Bound) @assert b1.primal != b2.primal && b1.min == b2.min db = b1.primal ? b2 : b1 pb = b1.primal ? b1 : b2 den = b1.min ? db : pb return diff(b1, b2) / abs(den.value) end """ isunbounded(bound) Return true is the primal bound or the dual bound is unbounded. """ function isunbounded(bound::Bound) inf = - _defaultboundvalue(bound.primal, bound.min) return getvalue(bound) == inf end """ isinfeasible(bound) Return true is the primal bound or the dual bound is infeasible. """ isinfeasible(b::Bound) = isnothing(getvalue(b)) """ printbounds(db, pb [, io]) Prints the lower and upper bound according to the objective sense. Can receive io::IO as an input, to eventually output the print to a file or buffer. """ function printbounds(db::Bound, pb::Bound, io::IO=Base.stdout) @assert !db.primal && pb.primal && db.min == pb.min if db.min Printf.@printf io "[ %.4f , %.4f ]" getvalue(db) getvalue(pb) else Printf.@printf io "[ %.4f , %.4f ]" getvalue(pb) getvalue(db) end end function Base.show(io::IO, b::Bound) print(io, getvalue(b)) end # If you work with a Bound and another type, the Bound is promoted to the other type. Base.promote_rule(::Type{Bound}, F::Type{<:AbstractFloat}) = F Base.promote_rule(::Type{Bound}, I::Type{<:Integer}) = I Base.promote_rule(::Type{Bound}, I::Type{<:AbstractIrrational}) = I Base.convert(::Type{<:AbstractFloat}, b::Bound) = b.value Base.convert(::Type{<:Integer}, b::Bound) = b.value Base.convert(::Type{<:AbstractIrrational}, b::Bound) = b.value """ TerminationStatus Theses statuses are the possible reasons why an algorithm stopped the optimization. When a subsolver is called through MOI, the MOI [`TerminationStatusCode`](https://jump.dev/MathOptInterface.jl/stable/apireference/#MathOptInterface.TerminationStatusCode) is translated into a Coluna `TerminationStatus`. Description of the termination statuses: - `OPTIMAL` : the algorithm found a global optimal solution given the optimality tolerance - `INFEASIBLE` : the algorithm proved infeasibility - `UNBOUNDED` : the algorithm proved unboundedness - `TIME_LIMIT` : the algorithm stopped because of the time limit - `NODE_LIMIT` : the branch-and-bound based algorithm stopped due to the node limit - `OTHER_LIMIT` : the algorithm stopped because of a limit that is neither the time limit nor the node limit If the algorithm has not been called, the default value of the termination status should be: - `OPTIMIZE_NOT_CALLED` If the conversion of a `MOI.TerminationStatusCode` returns `UNCOVERED_TERMINATION_STATUS`, Coluna should stop because it enters in an undefined behavior. """ @enum( TerminationStatus, OPTIMIZE_NOT_CALLED, OPTIMAL, INFEASIBLE, UNBOUNDED, TIME_LIMIT, NODE_LIMIT, OTHER_LIMIT, UNCOVERED_TERMINATION_STATUS ) """ SolutionStatus Description of the solution statuses: - `FEASIBLE_SOL` : the solution is feasible - `INFEASIBLE_SOL` : the solution is not feasible If there is no solution or if we don't have information about the solution, the solution status should be : - `UNKNOWN_SOLUTION_STATUS` """ @enum( SolutionStatus, FEASIBLE_SOL, INFEASIBLE_SOL, UNKNOWN_FEASIBILITY, UNKNOWN_SOLUTION_STATUS, UNCOVERED_SOLUTION_STATUS ) """ convert_status(status::MOI.TerminationStatusCode) -> Coluna.TerminationStatus convert_status(status::Coluna.TerminationStatus) -> MOI.TerminationStatusCode convert_status(status::MOI.ResultStatusCode) -> Coluna.SolutionStatus convert_status(status::Coluna.SolutionStatus) -> MOI.ResultStatusCode Convert a termination or solution `status` of a given type to the corresponding status in another type. This method is used to communicate between Coluna and MathOptInterface. """ function convert_status(moi_status::MOI.TerminationStatusCode) moi_status == MOI.OPTIMIZE_NOT_CALLED && return OPTIMIZE_NOT_CALLED moi_status == MOI.OPTIMAL && return OPTIMAL moi_status == MOI.INFEASIBLE && return INFEASIBLE moi_status == MOI.LOCALLY_INFEASIBLE && return INFEASIBLE moi_status == MOI.DUAL_INFEASIBLE && return UNBOUNDED # TODO: Happens in MIP presolve (cf JuMP doc), we treat this case as unbounded. moi_status == MOI.INFEASIBLE_OR_UNBOUNDED && return UNBOUNDED moi_status == MOI.TIME_LIMIT && return TIME_LIMIT moi_status == MOI.NODE_LIMIT && return NODE_LIMIT moi_status == MOI.OTHER_LIMIT && return OTHER_LIMIT return UNCOVERED_TERMINATION_STATUS end function convert_status(coluna_status::TerminationStatus) coluna_status == OPTIMIZE_NOT_CALLED && return MOI.OPTIMIZE_NOT_CALLED coluna_status == OPTIMAL && return MOI.OPTIMAL coluna_status == UNBOUNDED && return MOI.DUAL_INFEASIBLE coluna_status == INFEASIBLE && return MOI.INFEASIBLE coluna_status == TIME_LIMIT && return MOI.TIME_LIMIT coluna_status == NODE_LIMIT && return MOI.NODE_LIMIT coluna_status == OTHER_LIMIT && return MOI.OTHER_LIMIT return MOI.OTHER_LIMIT end function convert_status(moi_status::MOI.ResultStatusCode) moi_status == MOI.NO_SOLUTION && return UNKNOWN_SOLUTION_STATUS moi_status == MOI.FEASIBLE_POINT && return FEASIBLE_SOL moi_status == MOI.INFEASIBLE_POINT && return INFEASIBLE_SOL return UNCOVERED_SOLUTION_STATUS end function convert_status(coluna_status::SolutionStatus) coluna_status == FEASIBLE_SOL && return MOI.FEASIBLE_POINT coluna_status == INFEASIBLE_SOL && return MOI.INFEASIBLE_POINT return MOI.OTHER_RESULT_STATUS end # Basic structure of a solution struct Solution{Model<:AbstractModel,Decision<:Integer,Value} <: AbstractSparseVector{Decision,Value} model::Model bound::Float64 status::SolutionStatus sol::SparseVector{Value,Decision} end """ Solution is an internal data structure of Coluna and should not be used in algorithms. See `MathProg.PrimalSolution` & `MathProg.DualSolution` instead. Solution( model::AbstractModel, decisions::Vector, values::Vector, solution_value::Float64, status::SolutionStatus ) Create a solution to the `model`. Other arguments are: - `decisions` is a vector with the index of each decision. - `values` is a vector with the values for each decision. - `solution_value` is the value of the solution. - `status` is the solution status. """ function Solution{Mo,De,Va}( model::Mo, decisions::Vector{De}, values::Vector{Va}, solution_value::Float64, status::SolutionStatus ) where {Mo<:AbstractModel,De,Va} sol = sparsevec(decisions, values, typemax(Int32)) #Coluna.MAX_NB_ELEMS) return Solution(model, solution_value, status, sol) end "Return the model of a solution." getmodel(s::Solution) = s.model "Return the value (as a Bound) of `solution`" getbound(s::Solution) = s.bound "Return the value of `solution`." getvalue(s::Solution) = float(s.bound) "Return the solution status of `solution`." getstatus(s::Solution) = s.status # implementing indexing interface Base.getindex(s::Solution, i::Integer) = getindex(s.sol, i) Base.setindex!(s::Solution, v, i::Integer) = setindex!(s.sol, v, i) Base.firstindex(s::Solution) = firstindex(s.sol) Base.lastindex(s::Solution) = lastindex(s.sol) # implementing abstract array interface Base.size(s::Solution) = size(s.sol) Base.length(s::Solution) = length(s.sol) Base.IndexStyle(::Type{<:Solution{Mo,De,Va}}) where {Mo,De,Va} = IndexStyle(SparseVector{Va,De}) SparseArrays.nnz(s::Solution) = nnz(s.sol) # It iterates only on non-zero values because: # - we use indices (`Id`) that behaves like an Int with additional information and given a # indice, we cannot deduce the additional information for the next one (i.e. impossible to # create an Id for next integer); # - we don't know the length of the vector (it depends on the number of variables & # constraints that varies over time). function Base.iterate(s::Solution) iterator = Iterators.zip(findnz(s.sol)...) next = iterate(iterator) isnothing(next) && return nothing (item, zip_state) = next return (item, (zip_state, iterator)) end function Base.iterate(::Solution, state) (zip_state, iterator) = state next = iterate(iterator, zip_state) isnothing(next) && return nothing (next_item, next_zip_state) = next return (next_item, (next_zip_state, iterator)) end # # implementing sparse array interface # SparseArrays.nnz(s::Solution) = nnz(s.sol) # SparseArrays.nonzeroinds(s::Solution) = SparseArrays.nonzeroinds(s.sol) # SparseArrays.nonzeros(s::Solution) = nonzeros(s.sol) function _eq_sparse_vec(a::SparseVector, b::SparseVector) a_ids, a_vals = findnz(a) b_ids, b_vals = findnz(b) return a_ids == b_ids && a_vals == b_vals end Base.:(==)(::Solution, ::Solution) = false function Base.:(==)(a::S, b::S) where {S<:Solution} return a.model == b.model && a.bound == b.bound && a.status == b.status && _eq_sparse_vec(a.sol, b.sol) end function Base.in(p::Tuple{De,Va}, a::Solution{Mo,De,Va}, valcmp=(==)) where {Mo,De,Va} v = get(a, p[1], Base.secret_table_token) if v !== Base.secret_table_token return valcmp(v, p[2]) end return false end function Base.show(io::IOContext, solution::Solution{Mo,De,Va}) where {Mo,De,Va} println(io, "Solution") for (decision, value) in solution println(io, "| ", decision, " = ", value) end Printf.@printf(io, "└ value = %.2f \n", getvalue(solution)) end # Todo : revise method Base.copy(s::S) where {S<:Solution} = S(s.model, s.bound, s.status, copy(s.sol)) # Implementing comparison between solution & dynamic matrix col view for solution comparison function Base.:(==)(v1::DynamicMatrixColView, v2::Solution) for ((i1,j1), (i2,j2)) in Iterators.zip(v1,v2) if !(i1 == i2 && j1 == j2) return false end end return true end # Implementation of the addition & subtraction in SparseArrays always converts indices into # `Int`. We need a custom implementation to presever the index type. function _sol_custom_binarymap( f::Function, s1::Solution{Mo,De,Va1}, s2::Solution{Mo,De,Va2} ) where {Mo,De,Va1,Va2} x = s1.sol y = s2.sol R = Base.Broadcast.combine_eltypes(f, (x, y)) n = length(x) length(y) == n || throw(DimensionMismatch()) xnzind = SparseArrays.nonzeroinds(x) xnzval = nonzeros(x) ynzind = SparseArrays.nonzeroinds(y) ynzval = nonzeros(y) mx = length(xnzind) my = length(ynzind) cap = mx + my rind = Vector{De}(undef,cap) rval = Vector{R}(undef,cap) ir = SparseArrays._binarymap_mode_1!(f, mx, my, xnzind, xnzval, ynzind, ynzval, rind, rval) resize!(rind, ir) resize!(rval, ir) return SparseVector(n, rind, rval) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
888
####### # TODO: old code below ####### @enum(UnitPermission, NOT_USED, READ_ONLY, READ_AND_WRITE) # UnitType = Pair{Type{<:AbstractStorageUnit}, Type{<:AbstractRecord}}. # see https://github.com/atoptima/Coluna.jl/pull/323#discussion_r418972805 const UnitType = DataType #Type{<:AbstractStorageUnit} """ IMPORTANT! Every stored or copied record should be either restored or removed so that it's participation is correctly computed and memory correctly controlled """ ##### function getstorageunit(m::AbstractModel, SU::Type{<:AbstractRecordUnit}) return getstoragewrapper(m, SU).storage_unit end function getstoragewrapper(m::AbstractModel, SU::Type{<:AbstractRecordUnit}) storagecont = get(getstorage(m).units, SU, nothing) storagecont === nothing && error("No storage unit of type $SU in $(typeof(m)) with id $(getuid(m)).") return storagecont end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
16295
### Some notes: # # - Make use of : MOI.VariablePrimalStart(), MOI.ConstraintPrimalStart(), # MOI.ConstraintDualStart(), MOI.ConstraintBasisStatus() # # - RawSolver() -> For directly interacting with solver # ############################################################ function set_obj_sense!(optimizer::MoiOptimizer, ::Type{<:MaxSense}) MOI.set(getinner(optimizer), MOI.ObjectiveSense(), MOI.MAX_SENSE) return end function set_obj_sense!(optimizer::MoiOptimizer, ::Type{<:MinSense}) MOI.set(getinner(optimizer), MOI.ObjectiveSense(), MOI.MIN_SENSE) return end function update_bounds_in_optimizer!(form::Formulation, optimizer::MoiOptimizer, var::Variable) inner = getinner(optimizer) moi_record = getmoirecord(var) moi_kind = getkind(moi_record) moi_lower_bound = getlowerbound(moi_record) moi_upper_bound = getupperbound(moi_record) moi_index = getmoiindex(moi_record) if getcurkind(form, var) == Binary && moi_index.value != -1 MOI.delete(inner, moi_kind) setkind!(moi_record, MOI.add_constraint( inner, MOI.VariableIndex(moi_index.value), MOI.Integer() )) end if !isnothing(moi_lower_bound) && moi_lower_bound.value != -1 MOI.set(inner, MOI.ConstraintSet(), moi_lower_bound, MOI.GreaterThan(getcurlb(form, var)) ) else setlowerbound!(moi_record, MOI.add_constraint( inner, MOI.VariableIndex(moi_index.value), MOI.GreaterThan(getcurlb(form, var)) )) end if !isnothing(moi_upper_bound) && moi_upper_bound.value != -1 MOI.set(inner, MOI.ConstraintSet(), moi_upper_bound, MOI.LessThan(getcurub(form, var)) ) else setupperbound!(moi_record, MOI.add_constraint( inner, MOI.VariableIndex(moi_index.value), MOI.LessThan(getcurub(form, var)) )) end return end function update_cost_in_optimizer!(form::Formulation, optimizer::MoiOptimizer, var::Variable) cost = getcurcost(form, var) moi_index = getmoiindex(getmoirecord(var)) MOI.modify( getinner(optimizer), MoiObjective(), MOI.ScalarCoefficientChange{Float64}(moi_index, cost) ) return end function update_constr_member_in_optimizer!( optimizer::MoiOptimizer, c::Constraint, v::Variable, coeff::Float64 ) moi_c_index = getmoiindex(getmoirecord(c)) moi_v_index = getmoiindex(getmoirecord(v)) MOI.modify( getinner(optimizer), moi_c_index, MOI.ScalarCoefficientChange{Float64}(moi_v_index, coeff) ) return end function update_constr_rhs_in_optimizer!( form::Formulation, optimizer::MoiOptimizer, constr::Constraint ) moi_c_index = getmoiindex(getmoirecord(constr)) rhs = getcurrhs(form, constr) sense = getcursense(form, constr) MOI.set(getinner(optimizer), MOI.ConstraintSet(), moi_c_index, convert_coluna_sense_to_moi(sense)(rhs)) return end function enforce_bounds_in_optimizer!( form::Formulation, optimizer::MoiOptimizer, var::Variable ) moirecord = getmoirecord(var) moi_lower_bound = MOI.add_constraint( getinner(optimizer), getmoiindex(moirecord), MOI.GreaterThan(getcurlb(form, var)) ) moi_upper_bound = MOI.add_constraint( getinner(optimizer), getmoiindex(moirecord), MOI.LessThan(getcurub(form, var)) ) setlowerbound!(moirecord, moi_lower_bound) setupperbound!(moirecord, moi_upper_bound) return end function enforce_kind_in_optimizer!( form::Formulation, optimizer::MoiOptimizer, v::Variable ) inner = getinner(optimizer) kind = getcurkind(form, v) moirecord = getmoirecord(v) moi_kind = getkind(moirecord) if moi_kind.value != -1 if MOI.is_valid(inner, moi_kind) MOI.delete(inner, moi_kind) end setkind!(moirecord, MoiVarKind()) end if kind != Continuous # Continuous is translated as no constraint in MOI moi_set = (kind == Binary ? MOI.ZeroOne() : MOI.Integer()) setkind!(moirecord, MOI.add_constraint( inner, getmoiindex(moirecord), moi_set )) end return end function add_to_optimizer!(form::Formulation, optimizer::MoiOptimizer, var::Variable) inner = getinner(optimizer) moirecord = getmoirecord(var) moi_index = MOI.add_variable(inner) setmoiindex!(moirecord, moi_index) update_cost_in_optimizer!(form, optimizer, var) enforce_kind_in_optimizer!(form, optimizer, var) enforce_bounds_in_optimizer!(form, optimizer, var) MOI.set(inner, MOI.VariableName(), moi_index, getname(form, var)) return end function add_to_optimizer!( form::Formulation, optimizer::MoiOptimizer, constr::Constraint, var_checker::Function ) constr_id = getid(constr) inner = getinner(optimizer) matrix = getcoefmatrix(form) terms = MOI.ScalarAffineTerm{Float64}[] for (varid, coeff) in @view matrix[constr_id, :] var = getvar(form, varid) @assert !isnothing(var) if var_checker(form, var) moi_id = getmoiindex(getmoirecord(var)) push!(terms, MOI.ScalarAffineTerm{Float64}(coeff, moi_id)) end end lhs = MOI.ScalarAffineFunction(terms, 0.0) moi_set = convert_coluna_sense_to_moi(getcursense(form, constr)) moi_constr = MOI.add_constraint( inner, lhs, moi_set(getcurrhs(form, constr)) ) moirecord = getmoirecord(constr) setmoiindex!(moirecord, moi_constr) MOI.set(inner, MOI.ConstraintName(), moi_constr, getname(form, constr)) return end function remove_from_optimizer!(form::Formulation, optimizer::MoiOptimizer, ids::Set{I}) where {I<:Id} for id in ids elem = getelem(form, id) if elem !== nothing remove_from_optimizer!(form, optimizer, getelem(form, id)) else definitive_deletion_from_optimizer!(form, optimizer, id) end end return end function definitive_deletion_from_optimizer!(form::Formulation, optimizer::MoiOptimizer, varid::VarId) var = form.buffer.var_buffer.definitive_deletion[varid] remove_from_optimizer!(form, optimizer, var) return end function definitive_deletion_from_optimizer!(form::Formulation, optimizer::MoiOptimizer, constrid::ConstrId) constr = form.buffer.constr_buffer.definitive_deletion[constrid] remove_from_optimizer!(form, optimizer, constr) return end function remove_from_optimizer!(::Formulation, optimizer::MoiOptimizer, var::Variable) inner = getinner(optimizer) moirecord = getmoirecord(var) @assert getmoiindex(moirecord).value != -1 MOI.delete(inner, getlowerbound(moirecord)) MOI.delete(inner, getupperbound(moirecord)) setlowerbound!(moirecord, MoiVarLowerBound()) setupperbound!(moirecord, MoiVarUpperBound()) if getkind(moirecord).value != -1 MOI.delete(inner, getkind(moirecord)) end setkind!(moirecord, MoiVarKind()) MOI.delete(inner, getmoiindex(moirecord)) setmoiindex!(moirecord, MoiVarIndex()) return end function remove_from_optimizer!( ::Formulation, optimizer::MoiOptimizer, constr::Constraint ) moirecord = getmoirecord(constr) @assert getmoiindex(moirecord).value != -1 MOI.delete(getinner(optimizer), getmoiindex(moirecord)) setmoiindex!(moirecord, MoiConstrIndex()) return end function _getcolunakind(record::MoiVarRecord) record.kind.value == -1 && return Continuous record.kind isa MoiBinary && return Binary return Integ end function get_primal_solutions(form::F, optimizer::MoiOptimizer) where {F <: Formulation} inner = getinner(optimizer) nb_primal_sols = MOI.get(inner, MOI.ResultCount()) solutions = PrimalSolution{F}[] for res_idx in 1:nb_primal_sols if MOI.get(inner, MOI.PrimalStatus(res_idx)) != MOI.FEASIBLE_POINT continue end solcost = getobjconst(form) solvars = VarId[] solvals = Float64[] # Get primal values of variables for (id, var) in getvars(form) iscuractive(form, id) && isexplicit(form, id) || continue moirec = getmoirecord(var) moi_index = getmoiindex(moirec) val = MOI.get(inner, MOI.VariablePrimal(res_idx), moi_index) solcost += val * getcurcost(form, id) val = round(val, digits = Coluna.TOL_DIGITS) if abs(val) > Coluna.TOL push!(solvars, id) push!(solvals, val) end end fixed_obj = 0.0 for (var_id, fixed_val) in getpartialsol(form) push!(solvars, var_id) push!(solvals, fixed_val) fixed_obj += getcurcost(form, var_id) * fixed_val end solcost += fixed_obj push!(solutions, PrimalSolution(form, solvars, solvals, solcost, FEASIBLE_SOL)) end return solutions end # Retrieve dual solutions stored in the optimizer of a formulation # It works only if the optimizer is wrapped with MathOptInterface. # NOTE: we don't use the same convention as MOI for signs of duals in the maximisation case. function get_dual_solutions(form::F, optimizer::MoiOptimizer) where {F <: Formulation} inner = getinner(optimizer) nb_dual_sols = MOI.get(inner, MOI.ResultCount()) solutions = DualSolution{F}[] sense = getobjsense(form) == MinSense ? 1.0 : -1.0 for res_idx in 1:nb_dual_sols # We retrieve only feasible dual solutions if MOI.get(inner, MOI.DualStatus(res_idx)) != MOI.FEASIBLE_POINT continue end # Cost of the dual solution solcost = getobjconst(form) # Get dual value of constraints solconstrs = ConstrId[] solvals = Float64[] for (id, constr) in getconstrs(form) moi_index = getmoiindex(getmoirecord(constr)) MOI.is_valid(inner, moi_index) || continue val = MOI.get(inner, MOI.ConstraintDual(res_idx), moi_index) solcost += val * getcurrhs(form, id) val = round(val, digits = Coluna.TOL_DIGITS) if abs(val) > Coluna.TOL push!(solconstrs, id) push!(solvals, sense * val) end end # Get dual value & active bound of variables varids = VarId[] varvals = Float64[] activebounds = ActiveBound[] for (varid, var) in getvars(form) moi_var_index = getmoiindex(getmoirecord(var)) moi_lower_bound_index = getlowerbound(getmoirecord(var)) if MOI.is_valid(inner, moi_var_index) && MOI.is_valid(inner, moi_lower_bound_index) val = MOI.get(inner, MOI.ConstraintDual(res_idx), moi_lower_bound_index) if abs(val) > Coluna.TOL solcost += val * getcurlb(form, varid) push!(varids, varid) push!(varvals, sense * val) push!(activebounds, LOWER) end end moi_upper_bound_index = getupperbound(getmoirecord(var)) if MOI.is_valid(inner, moi_var_index) && MOI.is_valid(inner, moi_upper_bound_index) val = MOI.get(inner, MOI.ConstraintDual(res_idx), moi_upper_bound_index) if abs(val) > Coluna.TOL solcost += val * getcurub(form, varid) push!(varids, varid) push!(varvals, sense * val) push!(activebounds, UPPER) end end end fixed_obj = 0.0 for (var_id, fixed_val) in getpartialsol(form) cost = getcurcost(form, var_id) if abs(cost) > Coluna.TOL fixed_obj += cost * fixed_val end end solcost += fixed_obj push!(solutions, DualSolution( form, solconstrs, solvals, varids, varvals, activebounds, sense*solcost, FEASIBLE_SOL )) end return solutions end function get_dual_infeasibility_certificate(form::F, optimizer::MoiOptimizer) where {F <: Formulation} inner = getinner(optimizer) nb_certificates = MOI.get(inner, MOI.ResultCount()) certificates = PrimalSolution{F}[] for res_idx in 1:nb_certificates if MOI.get(inner, MOI.PrimalStatus(res_idx)) != MOI.INFEASIBILITY_CERTIFICATE continue end # The ray is stored in the primal status. certificate_var_ids = VarId[] certificate_var_vals = Float64[] for (varid, var) in getvars(form) moi_index = getmoiindex(getmoirecord(var)) MOI.is_valid(inner, moi_index) || continue val = MOI.get(inner, MOI.VariablePrimal(res_idx), moi_index) val = round(val, digits = Coluna.TOL_DIGITS) if abs(val) > Coluna.TOL push!(certificate_var_ids, varid) push!(certificate_var_vals, val) end end push!(certificates, PrimalSolution(form, certificate_var_ids, certificate_var_vals, 0.0, INFEASIBLE_SOL)) end return certificates end function _show_function(io::IO, moi_model::MOI.ModelLike, func::MOI.ScalarAffineFunction) for term in func.terms moi_index = term.variable coeff = term.coefficient name = MOI.get(moi_model, MOI.VariableName(), moi_index) if name == "" name = string("x", moi_index.value) end print(io, " + ", coeff, " ", name) end return end function _show_function(io::IO, moi_model::MOI.ModelLike, func::MOI.VariableIndex) moi_index = func.variable name = MOI.get(moi_model, MOI.VariableName(), moi_index) if name == "" name = string("x", moi_index.value) end print(io, " + ", name) return end get_moi_set_info(set::MOI.EqualTo) = ("==", set.value) get_moi_set_info(set::MOI.GreaterThan) = (">=", set.lower) get_moi_set_info(set::MOI.LessThan) = ("<=", set.upper) get_moi_set_info(::MOI.Integer) = ("is", "Integer") get_moi_set_info(::MOI.ZeroOne) = ("is", "Binary") get_moi_set_info(set::MOI.Interval) = ( "is bounded in", string("[", set.lower, ";", set.upper, "]") ) function _show_set(io::IO, moi_model::MOI.ModelLike, set::MOI.AbstractScalarSet) op, rhs = get_moi_set_info(set) print(io, " ", op, " ", rhs) return end function _show_constraint(io::IO, moi_model::MOI.ModelLike, moi_index::MOI.ConstraintIndex) name = MOI.get(moi_model, MOI.ConstraintName(), moi_index) if name == "" name = string("constr_", moi_index.value) end print(io, name, " : ") func = MOI.get(moi_model, MOI.ConstraintFunction(), moi_index) _show_function(io, moi_model, func) set = MOI.get(moi_model, MOI.ConstraintSet(), moi_index) _show_set(io, moi_model, set) println(io, "") return end function _show_constraints(io::IO, moi_model::MOI.ModelLike) for (F, S) in MOI.get(moi_model, MOI.ListOfConstraintTypesPresent()) F == MOI.VariableIndex && continue for moi_index in MOI.get(moi_model, MOI.ListOfConstraintIndices{F, S}()) _show_constraint(io, moi_model, moi_index) end end for (F, S) in MOI.get(moi_model, MOI.ListOfConstraintTypesPresent()) F !== MOI.VariableIndex && continue for moi_index in MOI.get(moi_model, MOI.ListOfConstraintIndices{MOI.VariableIndex,S}()) _show_constraint(io, moi_model, moi_index) end end return end function _show_obj_fun(io::IO, moi_model::MOI.ModelLike) sense = MOI.get(moi_model, MOI.ObjectiveSense()) sense == MOI.MIN_SENSE ? print(io, "Min") : print(io, "Max") obj = MOI.get(moi_model, MoiObjective()) _show_function(io, moi_model, obj) println(io, "") return end function _show_optimizer(io::IO, optimizer::MOI.ModelLike) println(io, "MOI Optimizer {", typeof(optimizer), "} = ") _show_obj_fun(io, optimizer) _show_constraints(io, optimizer) return end _show_optimizer(io::IO, optimizer::MOI.Utilities.CachingOptimizer) = _show_optimizer(io, optimizer.model_cache) Base.show(io::IO, optimizer::MoiOptimizer) = _show_optimizer(io, getinner(optimizer))
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3673
module MathProg import BlockDecomposition import MathOptInterface import TimerOutputs using ..Coluna # for NestedEnum (types.jl:210) using ..ColunaBase import Base: haskey, length, iterate, diff, delete!, contains, setindex!, getindex, view, isequal using DynamicSparseArrays, SparseArrays, Logging, Printf, LinearAlgebra const BD = BlockDecomposition const ClB = ColunaBase const MOI = MathOptInterface const TO = TimerOutputs const MAX_NB_FORMULATIONS = typemax(Int16) include("types.jl") include("vcids.jl") include("variable.jl") include("constraint.jl") include("bounds.jl") include("solutions.jl") include("buffer.jl") include("manager.jl") include("pool.jl") include("duties.jl") include("formulation.jl") include("varconstr.jl") include("optimizerwrappers.jl") include("clone.jl") include("reformulation.jl") include("projection.jl") include("problem.jl") include("MOIinterface.jl") # TODO : clean up # Types export MaxSense, MinSense, Id, ConstrSense, VarSense, FormId, FormulationPhase, Annotations, Counter, MoiObjective # Methods export no_optimizer_builder, set_original_formulation!, getid, enforce_integrality!, relax_integrality!, getobjsense, getoptimizer, getoptimizers, update!, getduty, find_owner_formulation, getsortuid, contains, get_original_formulation, getoriginformuid, sync_solver!, getinner, get_primal_solutions, get_dual_solutions, constraint_primal # Below this line, clean up has been done : # Methods related to Problem export Problem, set_initial_dual_bound!, set_initial_primal_bound!, get_initial_dual_bound, get_initial_primal_bound, get_optimization_target, set_default_optimizer_builder! # Methods related to Reformulation export Reformulation, getmaster, add_dw_pricing_sp!, add_benders_sep_sp!, get_dw_pricing_sps, set_reformulation!, get_benders_sep_sps, get_dw_pricing_sp_ub_constrid, get_dw_pricing_sp_lb_constrid, setmaster! # Methods related to formulations export AbstractFormulation, Formulation, create_formulation!, getvar, getvars, getconstr, getconstrs, getelem, getcoefmatrix, get_primal_sol_pool, get_dual_sol_pool, setvar!, setconstr!, set_robust_constr_generator!, get_robust_constr_generators, set_objective_sense!, clonevar!, cloneconstr!, clonecoeffs!, initialize_optimizer!, push_optimizer!, getobjconst, setobjconst!, insert_column!, get_column_from_pool, getfixedvars # Duties of formulations export Original, DwMaster, BendersMaster, DwSp, BendersSp # Methods related to duties export isanArtificialDuty, isaStaticDuty, isaDynamicDuty, isanOriginalRepresentatives # Types and methods related to variables and constraints export Variable, Constraint, VarId, ConstrId, VarMembership, ConstrMembership, getperencost, setperencost!, getcurcost, setcurcost!, getperenlb, getcurlb, setcurlb!, getperenub, getcurub, setcurub!, getperenrhs, setperenrhs!, getcurrhs, setcurrhs!, getperensense, setperensense!, getcursense, setcursense!, getperenkind, getcurkind, setcurkind!, getperenincval, getcurincval, setcurincval!, isperenactive, iscuractive, activate!, deactivate!, isexplicit, getname, getbranchingpriority, reset!, setperenkind!, add_to_partial_solution!, getcustomdata # Types & methods related to solutions & bounds export PrimalBound, DualBound, AbstractSolution, PrimalSolution, DualSolution, ActiveBound, ObjValues, get_var_redcosts # Methods related to projections export projection_is_possible, proj_cols_on_rep # Optimizers of formulations export MoiOptimizer, CustomOptimizer, UserOptimizer, NoOptimizer end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4828
""" PrimalBound(formulation) PrimalBound(formulation, value) PrimalBound(formualtion, pb) Create a new primal bound for the formulation `formulation`. The value of the primal bound is infinity if you do not specify any initial value. """ function PrimalBound(form::AbstractFormulation) min = getobjsense(form) == MinSense return ColunaBase.Bound(min, true) end function PrimalBound(form::AbstractFormulation, val) min = getobjsense(form) == MinSense return ColunaBase.Bound(min, true, val) end function PrimalBound(form::AbstractFormulation, pb::ColunaBase.Bound) min = getobjsense(form) == MinSense @assert pb.primal && pb.min == min return ColunaBase.Bound(min, true, ColunaBase.getvalue(pb)) end PrimalBound(::AbstractFormulation, ::Nothing) = nothing """ DualBound(formulation) DualBound(formulation, value) DualBound(formulation, db) Create a new dual bound for the formulation `formulation`. The value of the dual bound is infinity if you do not specify any initial value. """ function DualBound(form::AbstractFormulation) min = getobjsense(form) == MinSense return ColunaBase.Bound(min, false) end function DualBound(form::AbstractFormulation, val::Real) min = getobjsense(form) == MinSense return ColunaBase.Bound(min, false, val) end DualBound(::AbstractFormulation, ::Nothing) = nothing function DualBound(form::AbstractFormulation, db::ColunaBase.Bound) min = getobjsense(form) == MinSense @assert !db.primal && db.min == min return ColunaBase.Bound(min, false, ColunaBase.getvalue(db)) end # ObjValues mutable struct ObjValues min::Bool lp_primal_bound::Union{Nothing,ColunaBase.Bound} lp_dual_bound::Union{Nothing,ColunaBase.Bound} ip_primal_bound::Union{Nothing,ColunaBase.Bound} ip_dual_bound::Union{Nothing,ColunaBase.Bound} end "A convenient structure to maintain and return incumbent bounds." function ObjValues( form::M; ip_primal_bound = nothing, ip_dual_bound = nothing, lp_primal_bound = nothing, lp_dual_bound = nothing ) where {M<:AbstractFormulation} min = getobjsense(form) == MinSense ov = ObjValues( min, PrimalBound(form), DualBound(form), PrimalBound(form), DualBound(form) ) if !isnothing(ip_primal_bound) ov.ip_primal_bound = PrimalBound(form, ip_primal_bound) end if !isnothing(ip_dual_bound) ov.ip_dual_bound = DualBound(form, ip_dual_bound) end if !isnothing(lp_primal_bound) ov.lp_primal_bound = PrimalBound(form, lp_primal_bound) end if !isnothing(lp_dual_bound) ov.lp_dual_bound = DualBound(form, lp_dual_bound) end return ov end ## Gaps _ip_gap(ov::ObjValues) = gap(ov.ip_primal_bound, ov.ip_dual_bound) _lp_gap(ov::ObjValues) = gap(ov.lp_primal_bound, ov.lp_dual_bound) function gap_closed( pb::Bound, db::Bound; atol = Coluna.DEF_OPTIMALITY_ATOL, rtol = Coluna.DEF_OPTIMALITY_RTOL ) return gap(pb, db) <= 0 || _gap_closed( pb.value, db.value, atol = atol, rtol = rtol ) end function _ip_gap_closed( ov::ObjValues; atol = Coluna.DEF_OPTIMALITY_ATOL, rtol = Coluna.DEF_OPTIMALITY_RTOL ) return gap_closed(ov.ip_primal_bound, ov.ip_dual_bound, atol = atol, rtol = rtol) end function _lp_gap_closed( ov::ObjValues; atol = Coluna.DEF_OPTIMALITY_ATOL, rtol = Coluna.DEF_OPTIMALITY_RTOL ) return gap_closed(ov.lp_primal_bound, ov.lp_dual_bound, atol = atol, rtol = rtol) end function _gap_closed( x::Number, y::Number; atol::Real = 0, rtol::Real = atol > 0 ? 0 : √eps, norm::Function = abs ) return x == y || (isfinite(x) && isfinite(y) && norm(x - y) <= max(atol, rtol*min(norm(x), norm(y)))) end ## Bound updates function _update_lp_primal_bound!(ov::ObjValues, pb::ColunaBase.Bound) @assert pb.primal && pb.min == ov.min if isnothing(ov.lp_primal_bound) || ColunaBase.isbetter(pb, ov.lp_primal_bound) ov.lp_primal_bound = pb return true end return false end function _update_lp_dual_bound!(ov::ObjValues, db::ColunaBase.Bound) @assert !db.primal && db.min == ov.min if isnothing(ov.lp_dual_bound) || ColunaBase.isbetter(db, ov.lp_dual_bound) ov.lp_dual_bound = db return true end return false end function _update_ip_primal_bound!(ov::ObjValues, pb::ColunaBase.Bound) @assert pb.primal && pb.min == ov.min if isnothing(ov.ip_primal_bound) || ColunaBase.isbetter(pb, ov.ip_primal_bound) ov.ip_primal_bound = pb return true end return false end function _update_ip_dual_bound!(ov::ObjValues, db::ColunaBase.Bound) @assert !db.primal && db.min == ov.min if isnothing(ov.ip_dual_bound) || ColunaBase.isbetter(db, ov.ip_dual_bound) ov.ip_dual_bound = db return true end return false end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5295
""" A `VarConstrBuffer{I,VC}` stores the ids of type `I` of the variables or constraints that will be added and removed from a formulation. """ mutable struct VarConstrBuffer{I,VC} added::Set{I} removed::Set{I} definitive_deletion::Dict{I,VC} end function VarConstrBuffer{I,VC}() where {I,VC} return VarConstrBuffer(Set{I}(), Set{I}(), Dict{I,VC}()) end function Base.isequal(a::VarConstrBuffer{I,VC}, b::VarConstrBuffer{I,VC}) where {I,VC} return isequal(a.added, b.added) && isequal(a.removed, b.removed) end function add!(buffer::VarConstrBuffer{I,VC}, id::I) where {I,VC} if id ∉ buffer.removed push!(buffer.added, id) else delete!(buffer.removed, id) end return end function remove!(buffer::VarConstrBuffer{I,VC}, id::I) where {I,VC} if id ∉ buffer.added push!(buffer.removed, id) else delete!(buffer.added, id) end return end function definitive_deletion!(buffer::VarConstrBuffer{I,VC}, elem::VC) where {I,VC} id = getid(elem) if id ∉ buffer.added push!(buffer.removed, id) buffer.definitive_deletion[id] = elem else delete!(buffer.added, id) end return end """ A `FormulationBuffer` stores all changes done to a formulation since last call to `sync_solver!`. When function `sync_solver!` is called, the optimizer is synched with all changes in FormulationBuffer **Warning** : You should not pass formulation changes straight to its optimizer. Changes must be always buffered. """ mutable struct FormulationBuffer{Vi,V,Ci,C} changed_obj_sense::Bool # sense of the objective function changed_cost::Set{Vi} # cost of a variable changed_bound::Set{Vi} # bound of a variable changed_var_kind::Set{Vi} # kind of a variable changed_rhs::Set{Ci} # rhs and sense of a constraint var_buffer::VarConstrBuffer{Vi,V} # variable added or removed constr_buffer::VarConstrBuffer{Ci,C} # constraint added or removed reset_coeffs::Dict{Pair{Ci,Vi},Float64} # coefficient of the matrix changed end FormulationBuffer{Vi,V,Ci,C}() where {Vi,V,Ci,C} = FormulationBuffer( false, Set{Vi}(), Set{Vi}(), Set{Vi}(), Set{Ci}(), VarConstrBuffer{Vi, V}(), VarConstrBuffer{Ci, C}(), Dict{Pair{Ci,Vi},Float64}() ) function empty!(buffer::FormulationBuffer{Vi,V,Ci,C}) where {Vi,V,Ci,C} buffer.changed_obj_sense = false buffer.changed_cost = Set{Vi}() buffer.changed_bound = Set{Vi}() buffer.changed_var_kind = Set{Vi}() buffer.changed_rhs = Set{Ci}() buffer.var_buffer = VarConstrBuffer{Vi,V}() buffer.constr_buffer = VarConstrBuffer{Ci,C}() buffer.reset_coeffs = Dict{Pair{Ci,Vi},Float64}() end add!(b::FormulationBuffer{Vi,V,Ci,C}, varid::Vi) where {Vi,V,Ci,C} = add!(b.var_buffer, varid) add!(b::FormulationBuffer{Vi,V,Ci,C}, constrid::Ci) where {Vi,V,Ci,C} = add!(b.constr_buffer, constrid) # Since there is no efficient way to remove changes done to the coefficient matrix, # we propagate them if the variable is active and explicit function remove!(buffer::FormulationBuffer{Vi,V,Ci,C}, varid::Vi) where {Vi,V,Ci,C} remove!(buffer.var_buffer, varid) delete!(buffer.changed_cost, varid) delete!(buffer.changed_bound, varid) delete!(buffer.changed_var_kind, varid) return end # Use definitive deletion when you delete the variable from the formulation, # Otherwise, the variable object is garbage collected so we can't retrieve the # other constraints attached to the variable anymore. # definitive_deletion! keeps the object until deletion is performed in the subsolver. function definitive_deletion!(buffer::FormulationBuffer{Vi,V,Ci,C}, var::V) where {Vi,V,Ci,C} varid = getid(var) definitive_deletion!(buffer.var_buffer, var) delete!(buffer.changed_cost, varid) delete!(buffer.changed_bound, varid) delete!(buffer.changed_var_kind, varid) return end # Since there is no efficient way to remove changes done to the coefficient matrix, # we propagate them if and only if the constraint is active and explicit function remove!(buffer::FormulationBuffer{Vi,V,Ci,C}, constrid::Ci) where {Vi,V,Ci,C} remove!(buffer.constr_buffer, constrid) delete!(buffer.changed_rhs, constrid) return end # Same as definitive_deletion! of a variable. function definitive_deletion!(buffer::FormulationBuffer{Vi,V,Ci,C}, constr::C) where {Vi,V,Ci,C} definitive_deletion!(buffer.constr_buffer, constr) delete!(buffer.changed_rhs, getid(constr)) return end function change_rhs!(buffer::FormulationBuffer{Vi,V,Ci,C}, constrid::Ci) where {Vi,V,Ci,C} push!(buffer.changed_rhs, constrid) return end function change_cost!(buffer::FormulationBuffer{Vi,V,Ci,C}, varid::Vi) where {Vi,V,Ci,C} push!(buffer.changed_cost, varid) return end function change_bound!(buffer::FormulationBuffer{Vi,V,Ci,C}, varid::Vi) where {Vi,V,Ci,C} push!(buffer.changed_bound, varid) return end function change_kind!(buffer::FormulationBuffer{Vi,V,Ci,C}, varid::Vi) where {Vi,V,Ci,C} push!(buffer.changed_var_kind, varid) return end function change_matrix_coeff!( buffer::FormulationBuffer{Vi,V,Ci,C}, constrid::Ci, varid::Vi, new_coeff::Float64 ) where {Vi,V,Ci,C} buffer.reset_coeffs[Pair(constrid, varid)] = new_coeff return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2877
# TODO : these methods should not be part of MathProg. function clonevar!( originform::Formulation, destform::Formulation, assignedform::Formulation, var::Variable, duty::Duty{Variable}; name::String = getname(originform, var), cost::Float64 = getperencost(originform, var), lb::Float64 = getperenlb(originform, var), ub::Float64 = getperenub(originform, var), kind::VarKind = getperenkind(originform, var), inc_val::Float64 = getperenincval(originform, var), is_active::Bool = isperenactive(originform, var), is_explicit::Bool = isexplicit(originform, var), branching_priority::Float64 = getbranchingpriority(originform, var), members::Union{ConstrMembership,Nothing} = nothing, custom_data = getcustomdata(originform, var) ) id_of_clone = VarId( getid(var); duty = duty, assigned_form_uid = getuid(assignedform) ) return setvar!( destform, name, duty; cost = cost, lb = lb, ub = ub, kind = kind, inc_val = inc_val, is_active = is_active, is_explicit = is_explicit, branching_priority = branching_priority, members = members, id = id_of_clone, custom_data = custom_data ) end function cloneconstr!( originform::Formulation, destform::Formulation, assignedform::Formulation, constr::Constraint, duty::Duty{Constraint}; name::String = getname(originform, constr), rhs::Float64 = getperenrhs(originform, constr), kind::ConstrKind = getperenkind(originform, constr), sense::ConstrSense = getperensense(originform, constr), inc_val::Float64 = getperenincval(originform, constr), is_active::Bool = isperenactive(originform, constr), is_explicit::Bool = isexplicit(originform, constr), members::Union{VarMembership,Nothing} = nothing, loc_art_var_abs_cost::Float64 = 0.0, custom_data = getcustomdata(originform, constr) ) id_of_clone = ConstrId( getid(constr); duty = duty, assigned_form_uid = getuid(assignedform) ) return setconstr!( destform, name, duty; rhs = rhs, kind = kind, sense = sense, inc_val = inc_val, is_active = is_active, is_explicit = is_explicit, members = members, loc_art_var_abs_cost = loc_art_var_abs_cost, id = id_of_clone, custom_data = custom_data ) end function clonecoeffs!(originform::Formulation, destform::Formulation) dest_matrix = getcoefmatrix(destform) orig_matrix = getcoefmatrix(originform) for (cid, constr) in getconstrs(destform) if haskey(originform, cid) row = @view orig_matrix[cid, :] for (vid, val) in row if haskey(destform, vid) && val != 0 dest_matrix[cid, getid(getvar(destform, vid))] = val end end end end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2091
""" Information that defines a state of a constraint. These data might change during the optimisation procedure. """ mutable struct ConstrData <: AbstractVcData rhs::Float64 kind::ConstrKind sense::ConstrSense inc_val::Float64 is_active::Bool is_explicit::Bool end function ConstrData(; rhs::Float64 = -Inf, kind::ConstrKind = Essential, sense::ConstrSense = Greater, inc_val::Float64 = -1.0, is_active::Bool = true, is_explicit::Bool = true ) return ConstrData(rhs, kind, sense, inc_val, is_active, is_explicit) end ConstrData(cd::ConstrData) = ConstrData( cd.rhs, cd.kind, cd.sense, cd.inc_val, cd.is_active, cd.is_explicit ) "Structure to hold the pointers to the MOI representation of a Coluna Constraint." mutable struct MoiConstrRecord index::MoiConstrIndex end MoiConstrRecord(;index = MoiConstrIndex()) = MoiConstrRecord(index) getmoiindex(record::MoiConstrRecord)::MoiConstrIndex = record.index setmoiindex!(record::MoiConstrRecord, index::MoiConstrIndex) = record.index = index """ Representation of a constraint in Coluna. Coefficients of variables involved in the constraints are stored in the coefficient matrix. """ mutable struct Constraint <: AbstractVarConstr id::Id{Constraint} name::String perendata::ConstrData curdata::ConstrData moirecord::MoiConstrRecord art_var_ids::Vector{VarId} custom_data::Union{Nothing, BD.AbstractCustomConstrData} end const ConstrId = Id{Constraint} # Internal use only, see `MathProg.setconstr!` to create a constraint. function Constraint( id::ConstrId, name::String; constr_data = ConstrData(), moi_index::MoiConstrIndex = MoiConstrIndex(), custom_data::Union{Nothing, BD.AbstractCustomConstrData} = nothing ) return Constraint( id, name, constr_data, ConstrData(constr_data), MoiConstrRecord(index = moi_index), VarId[], custom_data ) end """ Constraints generator (cut callback). """ mutable struct RobustConstraintsGenerator nb_generated::Int kind::ConstrKind separation_alg::Function end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6621
############################################################################################ # Duties for a Formulation ############################################################################################ # These contain data specific to a type of formulation. # For example, the pool of primal solution generated from a Dantzig-Wolfe subproblem. abstract type AbstractFormDuty end abstract type AbstractMasterDuty <: AbstractFormDuty end abstract type AbstractSpDuty <: AbstractFormDuty end "Formulation provided by the user." struct Original <: AbstractFormDuty end "Master of a formulation decomposed using Dantzig-Wolfe." struct DwMaster <: AbstractMasterDuty end "Master of a formulation decomposed using Benders." struct BendersMaster <: AbstractMasterDuty end mutable struct DwSp <: AbstractSpDuty setup_var::Union{VarId,Nothing} lower_multiplicity_constr_id::Union{ConstrId,Nothing} upper_multiplicity_constr_id::Union{ConstrId,Nothing} column_var_kind::VarKind branching_priority::Float64 # Pool of solutions to the Dantzig-Wolfe subproblem. pool::Pool end "A pricing subproblem of a formulation decomposed using Dantzig-Wolfe." function DwSp(setup_var, lower_multiplicity_constr_id, upper_multiplicity_constr_id, column_var_kind) return DwSp( setup_var, lower_multiplicity_constr_id, upper_multiplicity_constr_id, column_var_kind, 1.0, Pool() ) end mutable struct BendersSp <: AbstractSpDuty slack_to_first_stage::Dict{VarId,VarId} second_stage_cost_var::Union{VarId,Nothing} pool::DualSolutionPool end "A Benders subproblem of a formulation decomposed using Benders." BendersSp() = BendersSp(Dict{VarId,VarId}(), nothing, DualSolutionPool()) ############################################################################################ # Duties tree for a Variable ############################################################################################ @exported_nestedenum begin Duty{Variable} AbstractOriginalVar <= Duty{Variable} OriginalVar <= AbstractOriginalVar AbstractMasterVar <= Duty{Variable} AbstractOriginMasterVar <= AbstractMasterVar MasterPureVar <= AbstractOriginMasterVar MasterBendFirstStageVar <= AbstractOriginMasterVar AbstractAddedMasterVar <= AbstractMasterVar MasterCol <= AbstractAddedMasterVar MasterArtVar <= AbstractAddedMasterVar MasterBendSecondStageCostVar <= AbstractAddedMasterVar AbstractImplicitMasterVar <= AbstractMasterVar AbstractMasterRepDwSpVar <= AbstractImplicitMasterVar MasterRepPricingVar <= AbstractMasterRepDwSpVar MasterRepPricingSetupVar <= AbstractMasterRepDwSpVar AbstractDwSpVar <= Duty{Variable} DwSpPricingVar <= AbstractDwSpVar DwSpSetupVar <= AbstractDwSpVar DwSpPrimalSol <= AbstractDwSpVar AbstractBendSpVar <= Duty{Variable} AbstractBendSpSlackMastVar <= AbstractBendSpVar BendSpSlackFirstStageVar <= AbstractBendSpSlackMastVar BendSpPosSlackFirstStageVar <= BendSpSlackFirstStageVar BendSpNegSlackFirstStageVar <= BendSpSlackFirstStageVar BendSpSlackSecondStageCostVar <= AbstractBendSpSlackMastVar BendSpSecondStageArtVar <= AbstractBendSpSlackMastVar BendSpSepVar <= AbstractBendSpVar BendSpFirstStageRepVar <= AbstractBendSpVar BendSpCostRepVar <= AbstractBendSpVar end ############################################################################################ # Duties tree for a Constraint ############################################################################################ @exported_nestedenum begin Duty{Constraint} AbstractOriginalConstr <= Duty{Constraint} OriginalConstr <= AbstractOriginalConstr AbstractMasterConstr <= Duty{Constraint} AbstractMasterOriginConstr <= AbstractMasterConstr MasterPureConstr <= AbstractMasterOriginConstr MasterMixedConstr <= AbstractMasterOriginConstr AbstractMasterAddedConstr <= AbstractMasterConstr MasterConvexityConstr <= AbstractMasterAddedConstr AbstractMasterCutConstr <= AbstractMasterConstr MasterBendCutConstr <= AbstractMasterCutConstr MasterUserCutConstr <= AbstractMasterCutConstr AbstractMasterBranchingConstr <= AbstractMasterConstr MasterBranchOnOrigVarConstr <= AbstractMasterBranchingConstr AbstractDwSpConstr <= Duty{Constraint} DwSpPureConstr <= AbstractDwSpConstr AbstractBendSpConstr <= Duty{Constraint} AbstractBendSpMasterConstr <= AbstractBendSpConstr BendSpSecondStageCostConstr <= AbstractBendSpMasterConstr BendSpTechnologicalConstr <= AbstractBendSpMasterConstr BendSpPureConstr <= AbstractBendSpConstr BendSpDualSol <= AbstractBendSpConstr end ############################################################################################ # Methods to get extra information about duties ############################################################################################ function isaStaticDuty(duty::NestedEnum) return duty <= OriginalVar || duty <= MasterPureVar || duty <= MasterArtVar || duty <= MasterBendSecondStageCostVar || duty <= MasterBendFirstStageVar || duty <= MasterRepPricingVar || duty <= MasterRepPricingSetupVar || duty <= DwSpPricingVar || duty <= DwSpSetupVar || duty <= DwSpPrimalSol || duty <= BendSpSepVar || duty <= BendSpSlackFirstStageVar || duty <= BendSpSlackSecondStageCostVar || duty <= OriginalConstr || duty <= MasterPureConstr || duty <= MasterMixedConstr || duty <= MasterConvexityConstr || duty <= DwSpPureConstr || duty <= BendSpPureConstr || duty <= BendSpDualSol || duty <= BendSpSecondStageCostConstr || duty <= BendSpTechnologicalConstr end function isaDynamicDuty(duty::NestedEnum) return duty <= MasterCol || duty <= MasterBranchOnOrigVarConstr || duty <= MasterBendCutConstr || duty <= MasterBranchOnOrigVarConstr end function isanOriginalRepresentatives(duty::NestedEnum) return duty <= MasterPureVar || duty <= MasterRepPricingVar end function isanArtificialDuty(duty::NestedEnum) return duty <= MasterArtVar || duty <= BendSpSecondStageArtVar end function isaNonUserDefinedDuty(duty::NestedEnum) return duty <= MasterArtVar || duty <= MasterRepPricingSetupVar || duty <= MasterCol || duty <= DwSpSetupVar || duty <= MasterConvexityConstr end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
26627
mutable struct Formulation{Duty<:AbstractFormDuty} <: AbstractFormulation uid::Int parent_formulation::Union{AbstractFormulation,Nothing} # master for sp, reformulation for master optimizers::Vector{AbstractOptimizer} manager::FormulationManager obj_sense::Type{<:Coluna.AbstractSense} buffer::FormulationBuffer storage::Union{Nothing,Storage} duty_data::Duty env::Env{VarId} end ############################################################################################ ############################################################################################ # Formulation classic API ############################################################################################ ############################################################################################ """ A `Formulation` stores a mixed-integer linear program. create_formulation!( env::Coluna.Env, duty::AbstractFormDuty; parent_formulation = nothing, obj_sense::Type{<:Coluna.AbstractSense} = MinSense ) Creates a new formulation in the Coluna's environment `env`. Arguments are `duty` that contains specific information related to the duty of the formulation, `parent_formulation` that is the parent formulation (master for a subproblem, reformulation for a master, `nothing` by default), and `obj_sense` the sense of the objective function (`MinSense` or `MaxSense`). """ function create_formulation!( env::Env{VarId}, duty::AbstractFormDuty; parent_formulation=nothing, obj_sense::Type{<:Coluna.AbstractSense}=MinSense ) if env.form_counter >= MAX_NB_FORMULATIONS error("Maximum number of formulations reached.") end buffer = FormulationBuffer{VarId,Variable,ConstrId,Constraint}() form = Formulation( env.form_counter += 1, parent_formulation, AbstractOptimizer[], FormulationManager(buffer, custom_families_id=env.custom_families_id), obj_sense, buffer, nothing, duty, env ) storage = Storage(form) form.storage = storage return form end # methods of the AbstractModel interface """ getuid(form) -> Int Returns the id of the formulation. """ ClB.getuid(form::Formulation) = form.uid """ getstorage(form) -> Storage Returns the storage of a formulation. Read the documentation of the [Storage API](https://atoptima.github.io/Coluna.jl/stable/api/storage/). """ ClB.getstorage(form::Formulation) = form.storage # methods specific to Formulation """ haskey(formulation, id) -> Bool Returns `true` if `formulation` has a variable or a constraint with given `id`. """ haskey(form::Formulation, id::VarId) = haskey(form.manager.vars, id) haskey(form::Formulation, id::ConstrId) = haskey(form.manager.constrs, id) || haskey(form.manager.single_var_constrs, id) """ getvar(formulation, varid) -> Variable Returns the variable with given `varid` that belongs to `formulation`. """ getvar(form::Formulation, id::VarId) = get(form.manager.vars, id, nothing) """ getconstr(formulation, constrid) -> Constraint Returns the constraint with given `constrid` that belongs to `formulation`. """ getconstr(form::Formulation, id::ConstrId) = get(form.manager.constrs, id, nothing) """ getvars(formulation) -> Dict{VarId, Variable} Returns all variables in `formulation`. """ getvars(form::Formulation) = form.manager.vars """ getconstrs(formulation) -> Dict{ConstrId, Constraint} Returns all constraints in `formulation`. """ getconstrs(form::Formulation) = form.manager.constrs "Returns objective constant of the formulation." getobjconst(form::Formulation) = form.manager.objective_constant "Sets objective constant of the formulation." function setobjconst!(form::Formulation, val::Float64) form.manager.objective_constant = val return end "Returns the representation of the coefficient matrix stored in the formulation manager." getcoefmatrix(form::Formulation) = form.manager.coefficients "Returns the objective function sense of a formulation." getobjsense(form::Formulation) = form.obj_sense "Returns the optimizer of a formulation at a given position." function getoptimizer(form::Formulation, pos::Int) if pos <= 0 || pos > length(form.optimizers) return NoOptimizer() end return form.optimizers[pos] end "Returns the list of optimizers of a formulation." getoptimizers(form::Formulation) = form.optimizers """ getelem(form, varid) -> Variable getelem(form, constrid) -> Constraint Return the element of formulation `form` that has a given id. """ getelem(form::Formulation, id::VarId) = getvar(form, id) getelem(form::Formulation, id::ConstrId) = getconstr(form, id) """ getmaster(form) -> Formulation Returns the master formulation of a given formulation. """ getmaster(form::Formulation{<:AbstractSpDuty}) = form.parent_formulation """ getparent(form) -> AbstractFormulation Returns the parent formulation of a given formulation. This is usually: - the master for a subproblem - the reformulation for the master """ getparent(form::Formulation) = form.parent_formulation # Used to compute the coefficient of a column in the coefficient matrix. _setrobustmembers!(::Formulation, ::Variable, ::Nothing) = nothing function _setrobustmembers!(form::Formulation, var::Variable, members::ConstrMembership) coef_matrix = getcoefmatrix(form) varid = getid(var) for (constrid, constr_coeff) in members coef_matrix[constrid, varid] = constr_coeff end return end # Used to compute the coefficient of a row in the coefficient matrix. _setrobustmembers!(::Formulation, ::Constraint, ::Nothing) = nothing function _setrobustmembers!(form::Formulation, constr::Constraint, members::VarMembership) # Compute row vector from the recorded subproblem solution # This adds the column to the convexity constraints automatically # since the setup variable is in the sp solution and it has a # a coefficient of 1.0 in the convexity constraints coef_matrix = getcoefmatrix(form) constrid = getid(constr) for (varid, var_coeff) in members # Add coef for its own variables coef_matrix[constrid, varid] = var_coeff if getduty(varid) <= MasterRepPricingVar || getduty(varid) <= MasterRepPricingSetupVar # then for all columns having its own variables for (_, spform) in get_dw_pricing_sps(form.parent_formulation) for (col_id, col_coeff) in @view get_primal_sol_pool(spform).solutions[:, varid] coef_matrix[constrid, col_id] += col_coeff * var_coeff end end end end return end """ computecoeff(var_custom_data, constr_custom_data) -> Float64 Dispatches on the type of custom data attached to the variable and the constraint to compute the coefficient of the variable in the constraint. """ function computecoeff(var_custom_data::BD.AbstractCustomVarData, constr_custom_data::BD.AbstractCustomConstrData) error("computecoeff not defined for variable with $(typeof(var_custom_data)) & constraint with $(typeof(constr_custom_data)).") end function _computenonrobustmembers(form::Formulation, var::Variable) coef_matrix = getcoefmatrix(form) for (constrid, constr) in getconstrs(form) # TODO : improve because we loop over all constraints if constrid.custom_family_id != -1 coeff = computecoeff(var.custom_data, constr.custom_data) if coeff != 0 coef_matrix[constrid, getid(var)] = coeff end end end return end function _computenonrobustmembers(form::Formulation, constr::Constraint) coef_matrix = getcoefmatrix(form) for (varid, var) in getvars(form) # TODO : improve because we loop over all variables if varid.custom_family_id != -1 coeff = computecoeff(var.custom_data, constr.custom_data) if coeff != 0 coef_matrix[getid(constr), varid] = coeff end end end return end function _setmembers!(form::Formulation, varconstr, members) _setrobustmembers!(form, varconstr, members) if getid(varconstr).custom_family_id != -1 _computenonrobustmembers(form, varconstr) end return end """ setvar!( formulation, name, duty; cost = 0.0, lb = -Inf, ub = Inf, kind = Continuous, is_active = true, is_explicit = true, members = nothing, ) Create a new variable that has name `name` and duty `duty` in the formulation `formulation`. Following keyword arguments allow the user to set additional information about the new variable: - `cost`: cost of the variable in the objective function - `lb`: lower bound of the variable - `ub`: upper bound of the variable - `kind`: kind which can be `Continuous`, `Binary` or `Integ` - `is_active`: `true` if the variable is used in the formulation, `false` otherwise - `is_explicit`: `true` if the variable takes part to the formulation, `false` otherwise (e.g. a variable used as a shortcut for calculation purposes) - `members`: a dictionary `Dict{ConstrId, Float64}` that contains the coefficients of the new variable in the constraints of the formulation (default coefficient is 0). """ function setvar!( form::Formulation, name::String, duty::Duty{Variable}; # Perennial state of the variable cost::Real=0.0, lb::Real=-Inf, ub::Real=Inf, kind::VarKind=Continuous, inc_val::Real=0.0, is_active::Bool=true, is_explicit::Bool=true, branching_priority::Real=1.0, # The moi index of the variable contains all the information to change its # state in the formulation stores in the underlying MOI solver. moi_index::MoiVarIndex=MoiVarIndex(), # Coefficient of the variable in the constraints of the `form` formulation. members::Union{ConstrMembership,Nothing}=nothing, # Custom representation of the variable (advanced use). custom_data::Union{Nothing,BD.AbstractCustomVarData}=nothing, # Default id of the variable. id=VarId(duty, form.env.var_counter += 1, getuid(form)), # The formulation from which the variable is generated. origin::Union{Nothing,Formulation}=nothing, # By default, the name of the variable is `name`. However, when you do column # generation, you may want to identify each variable without having to generate # a new name for each variable. If you set this attribute to `true`, the name of # the variable will be `name_uid`. id_as_name_suffix=false, ) # TODO: we should have a dedicated procedure for preprocessing. if kind == Binary lb = lb < 0.0 ? 0.0 : lb ub = ub > 1.0 ? 1.0 : ub end origin_form_uid = origin !== nothing ? FormId(getuid(origin)) : nothing custom_family_id = if custom_data !== nothing Int8(form.manager.custom_families_id[typeof(custom_data)]) else nothing end # When the keyword arguments of this `Id` constructor are equal to nothing, they # retrieve their values from `id` (see the code of the constructor in vcids.jl). id = VarId( id; duty=duty, origin_form_uid=origin_form_uid, custom_family_id=custom_family_id ) if id_as_name_suffix name = string(name, "_", getuid(id)) end if isempty(name) name = string("v_", getuid(id)) end v_data = VarData(cost, lb, ub, kind, inc_val, is_active, is_explicit, false) var = Variable( id, name; var_data=v_data, moi_index=moi_index, custom_data=custom_data, branching_priority=branching_priority ) _addvar!(form, var) _setmembers!(form, var, members) return var end function _addvar!(form::Formulation, var::Variable) _addvar!(form.manager, var) if isexplicit(form, var) add!(form.buffer, getid(var)) end return end _localartvarduty(::Formulation{DwMaster}) = MasterArtVar _localartvarduty(::Formulation{BendersSp}) = BendSpSecondStageArtVar function _addlocalartvar!(form::Formulation, constr::Constraint, abs_cost::Float64) art_var_duty = _localartvarduty(form) matrix = getcoefmatrix(form) cost = (getobjsense(form) == MinSense ? 1.0 : -1.0) * abs_cost constrid = getid(constr) constrname = getname(form, constr) constrsense = getperensense(form, constr) if constrsense == Equal name1 = string("local_pos_art_of_", constrname) name2 = string("local_neg_art_of_", constrname) var1 = setvar!( form, name1, art_var_duty; cost=cost, lb=0.0, ub=Inf, kind=Continuous ) var2 = setvar!( form, name2, art_var_duty; cost=cost, lb=0.0, ub=Inf, kind=Continuous ) push!(constr.art_var_ids, getid(var1)) push!(constr.art_var_ids, getid(var2)) matrix[constrid, getid(var1)] = 1.0 matrix[constrid, getid(var2)] = -1.0 else name = string("local_art_of_", constrname) var = setvar!( form, name, art_var_duty; cost=cost, lb=0.0, ub=Inf, kind=Continuous ) push!(constr.art_var_ids, getid(var)) if constrsense == Greater matrix[constrid, getid(var)] = 1.0 elseif constrsense == Less matrix[constrid, getid(var)] = -1.0 end end return end """ setconstr!( formulation, name, duty; rhs = 0.0, kind = Essential, sense = Greater, is_active = true, is_explicit = true, members = nothing, loc_art_var_abs_cost = 0.0, ) Create a new constraint that has name `name` and duty `duty` in the formulation `formulation`. Following keyword arguments allow the user to set additional information about the new constraint : - `rhs`: right-hand side of the constraint - `kind`: kind which can be `Essential` or `Facultative` - `sense`: sense which can be `Greater`, `Less`, or `Equal` - `is_active`: `true` if the constraint is used in the formulation, `false` otherwise - `is_explicit`: `true` if the constraint structures the formulation, `false` otherwise - `members`: a dictionary `Dict{VarId, Float64}` that contains the coefficients of the variables of the formulation in the new constraint (default coefficient is 0). - `loc_art_var_abs_cost`: absolute cost of the artificial variables of the constraint """ function setconstr!( form::Formulation, name::String, duty::Duty{Constraint}; rhs::Real=0.0, kind::ConstrKind=Essential, sense::ConstrSense=Greater, inc_val::Real=0.0, is_active::Bool=true, is_explicit::Bool=true, moi_index::MoiConstrIndex=MoiConstrIndex(), members=nothing, # todo Union{AbstractDict{VarId,Float64},Nothing} loc_art_var_abs_cost::Real=0.0, custom_data::Union{Nothing,BD.AbstractCustomConstrData}=nothing, id=ConstrId(duty, form.env.constr_counter += 1, getuid(form)) ) if getduty(id) != duty id = ConstrId(id, duty=duty) end if isempty(name) name = string("c_", getuid(id)) end if custom_data !== nothing id = ConstrId( id, custom_family_id=form.manager.custom_families_id[typeof(custom_data)] ) end c_data = ConstrData(rhs, kind, sense, inc_val, is_active, is_explicit) constr = Constraint(id, name; constr_data=c_data, moi_index=moi_index, custom_data=custom_data) _setmembers!(form, constr, members) _addconstr!(form.manager, constr) if loc_art_var_abs_cost != 0.0 _addlocalartvar!(form, constr, loc_art_var_abs_cost) end if isexplicit(form, constr) add!(form.buffer, getid(constr)) end return constr end """ enforce_integrality!(formulation) Set the current kind of each active & explicit variable of the formulation to its perennial kind. """ function enforce_integrality!(form::Formulation) for (_, var) in getvars(form) enforce = iscuractive(form, var) && isexplicit(form, var) enforce &= getcurkind(form, var) === Continuous enforce &= getperenkind(form, var) !== Continuous if enforce setcurkind!(form, var, getperenkind(form, var)) end end return end """ relax_integrality!(formulation) Set the current kind of each active & explicit integer or binary variable of the formulation to continuous. """ function relax_integrality!(form::Formulation) for (_, var) in getvars(form) relax = iscuractive(form, var) && isexplicit(form, var) relax &= getcurkind(form, var) !== Continuous if relax setcurkind!(form, var, Continuous) end end return end function push_optimizer!(form::Formulation, builder::Function) opt = builder() push!(form.optimizers, opt) initialize_optimizer!(opt, form) return end ############################################################################################ ############################################################################################ # Methods specific to a Formulation with DwSp duty ############################################################################################ ############################################################################################ get_primal_sol_pool(form::Formulation{DwSp}) = form.duty_data.pool get_dual_sol_pool(form::Formulation{BendersSp}) = form.duty_data.pool function initialize_solution_pool!(form::Formulation{DwSp}, initial_columns_callback::Function) master = getmaster(form) cbdata = InitialColumnsCallbackData(form, PrimalSolution[]) initial_columns_callback(cbdata) for sol in cbdata.primal_solutions insert_column!(master, sol, "iMC") end return end ############################################################################################ # Insertion of a column in the master ############################################################################################ # Compute all the coefficients of the column in the coefficient matrix of the # master formulation. function _col_members(col, master_coef_matrix) members = Dict{ConstrId,Float64}() for (sp_var_id, sp_var_val) in col for (master_constrid, sp_var_coef) in @view master_coef_matrix[:, sp_var_id] val = get(members, master_constrid, 0.0) members[master_constrid] = val + sp_var_val * sp_var_coef end end return members end """ get_column_from_pool(primal_sol) Returns the `var_id` of the master column that represents the primal solution `primal_sol` to a Dantzig-Wolfe subproblem if the primal solution exists in the pool of solutions to the subproblem; `nothing` otherwise. """ function get_column_from_pool(primal_sol::PrimalSolution{Formulation{DwSp}}) spform = primal_sol.solution.model pool = get_primal_sol_pool(spform) return get_from_pool(pool, primal_sol) end """ insert_column!(master_form, primal_sol, name) Inserts the primal solution `primal_sol` to a Dantzig-Wolfe subproblem into the master as a column. Returns `var_id` the id of the column variable in the master formulation. **Warning**: this methods does not check if the column already exists in the pool. """ function insert_column!( master_form::Formulation{DwMaster}, primal_sol::PrimalSolution, name::String; lb::Float64=0.0, ub::Float64=Inf, inc_val::Float64=0.0, is_active::Bool=true, is_explicit::Bool=true, store_in_sp_pool=true, id_as_name_suffix=true ) spform = primal_sol.solution.model # Compute perennial cost of the column. new_col_peren_cost = mapreduce( ((var_id, var_val),) -> getperencost(spform, var_id) * var_val, +, primal_sol ) # Compute coefficient members of the column in the matrix. members = _col_members(primal_sol, getcoefmatrix(master_form)) branching_priority::Float64 = if BD.branchingpriority(primal_sol.custom_data) !== nothing BD.branchingpriority(primal_sol.custom_data) else spform.duty_data.branching_priority end # Insert the column in the master. col = setvar!( master_form, name, MasterCol, cost=new_col_peren_cost, lb=lb, ub=ub, kind=spform.duty_data.column_var_kind, inc_val=inc_val, is_active=is_active, is_explicit=is_explicit, branching_priority=branching_priority, moi_index=MoiVarIndex(), members=members, custom_data=primal_sol.custom_data, id_as_name_suffix=id_as_name_suffix, origin=spform ) setcurkind!(master_form, col, Continuous) # Store the solution in the pool if asked. if store_in_sp_pool pool = get_primal_sol_pool(spform) col_id = VarId(getid(col); duty=DwSpPrimalSol) push_in_pool!(pool, primal_sol, col_id, new_col_peren_cost) end return getid(col) end ############################################################################################ function set_robust_constr_generator!(form::Formulation, kind::ConstrKind, alg::Function) constrgen = RobustConstraintsGenerator(0, kind, alg) push!(form.manager.robust_constr_generators, constrgen) return end get_robust_constr_generators(form::Formulation) = form.manager.robust_constr_generators function set_objective_sense!(form::Formulation, min::Bool) if min form.obj_sense = MinSense else form.obj_sense = MaxSense end form.buffer.changed_obj_sense = true return end function constraint_primal(primalsol::PrimalSolution, constrid::ConstrId) val = 0.0 for (varid, coeff) in @view getcoefmatrix(getmodel(primalsol))[constrid, :] val += coeff * primalsol[varid] end return val end ############################################################################################ ############################################################################################ # Methods to show a formulation ############################################################################################ ############################################################################################ function _show_obj_fun(io::IO, form::Formulation, user_only::Bool=false) print(io, getobjsense(form), " ") vars = filter(v -> isexplicit(form, v.first), getvars(form)) ids = sort!(collect(keys(vars)), by=getsortuid) for id in ids user_only && isaNonUserDefinedDuty(getduty(id)) && continue name = getname(form, vars[id]) cost = getcurcost(form, id) cost == 0.0 && continue op = (cost < 0.0) ? "-" : "+" print(io, op, " ", abs(cost), " ", name, " ") end if !iszero(getobjconst(form)) op = (getobjconst(form) < 0.0) ? "-" : "+" print(io, op, " ", abs(getobjconst(form))) end println(io, " ") return end function _show_constraint(io::IO, form::Formulation, constrid::ConstrId, user_only::Bool=false) constr = getconstr(form, constrid) print(io, getname(form, constr), " : ") for (varid, coeff) in getcoefmatrix(form)[constrid, :] user_only && isaNonUserDefinedDuty(getduty(varid)) && continue !iscuractive(form, varid) && continue name = getname(form, varid) op = (coeff < 0.0) ? "-" : "+" print(io, op, " ", abs(coeff), " ", name, " ") end op = "<=" if getcursense(form, constr) == Equal op = "==" elseif getcursense(form, constr) == Greater op = ">=" end print(io, " ", op, " ", getcurrhs(form, constr)) println(io, " (", getduty(constrid), " | ", isexplicit(form, constr), ")") return end function _show_constraints(io::IO, form::Formulation, user_only::Bool=false) constrs = getconstrs(form) ids = sort!(collect(keys(constrs)), by=getsortuid) for constr_id in ids user_only && isaNonUserDefinedDuty(getduty(constr_id)) && continue if iscuractive(form, constr_id) _show_constraint(io, form, constr_id, user_only) end end return end function _show_variable(io::IO, form::Formulation, var::Variable) name = getname(form, var) lb = getcurlb(form, var) ub = getcurub(form, var) t = getcurkind(form, var) d = getduty(getid(var)) e = isexplicit(form, var) println(io, lb, " <= ", name, " <= ", ub, " (", t, " | ", d, " | ", e, ")") end function _show_variables(io::IO, form::Formulation, user_only::Bool=false) vars = getvars(form) ids = sort!(collect(keys(vars)), by=getsortuid) for varid in ids user_only && isaNonUserDefinedDuty(getduty(varid)) && continue _show_variable(io, form, vars[varid]) end end function _show_partial_sol(io::IO, form::Formulation, user_only::Bool=false) isempty(form.manager.partial_solution) && return println(io, "Partial solution:") for (varid, val) in form.manager.partial_solution if user_only && isaNonUserDefinedDuty(getduty(varid)) if getduty(varid) <= MasterCol print(io, getname(form, varid), " = [") origin_form_uid = getoriginformuid(varid) spform = get_dw_pricing_sps(getparent(form))[origin_form_uid] spsol = @view get_primal_sol_pool(spform).solutions[varid, :] for (sp_var_id, value) in spsol isaNonUserDefinedDuty(getduty(sp_var_id)) && continue print(io, getname(spform, sp_var_id), " = ", value, " ") end println(io, "] = ", val) end else println(io, getname(form, varid), " = ", val) end end return end function Base.show(io::IO, form::Formulation{Duty}) where {Duty<:AbstractFormDuty} compact = get(io, :compact, false) dutystring = remove_until_last_point(string(Duty)) if compact print(io, "form. ", dutystring, " with id=", getuid(form)) else user_only = get(io, :user_only, false) println(io, "Formulation $dutystring id = ", getuid(form)) if user_only && isa(form.duty_data, DwSp) lm = round(Int, getcurrhs(getparent(form), form.duty_data.lower_multiplicity_constr_id)) um = round(Int, getcurrhs(getparent(form), form.duty_data.upper_multiplicity_constr_id)) println(io, "Multiplicities: lower = $lm, upper = $um") end _show_obj_fun(io, form, user_only) _show_constraints(io, form, user_only) _show_variables(io, form, user_only) _show_partial_sol(io, form, user_only) end return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4944
const VarMembership = Dict{VarId, Float64} const ConstrMembership = Dict{ConstrId, Float64} const ConstrConstrMatrix = DynamicSparseArrays.DynamicSparseMatrix{ConstrId,ConstrId,Float64} const VarConstrDualSolMatrix = DynamicSparseArrays.DynamicSparseMatrix{VarId,ConstrId,Tuple{Float64,ActiveBound}} const VarVarMatrix = DynamicSparseArrays.DynamicSparseMatrix{VarId,VarId,Float64} # Define the semaphore of the dynamic sparse matrix using MathProg.Id as index DynamicSparseArrays.semaphore_key(I::Type{Id{VC}}) where VC = I(Duty{VC}(0), -1, -1, -1, -1) # We wrap the coefficient matrix because we need to buffer the changes. struct CoefficientMatrix{C,V,T} matrix::DynamicSparseArrays.DynamicSparseMatrix{C,V,T} buffer::FormulationBuffer end function CoefficientMatrix{C,V,T}(buffer) where {C,V,T} return CoefficientMatrix{C,V,T}(dynamicsparse(C,V,T), buffer) end const ConstrVarMatrix = CoefficientMatrix{ConstrId,VarId,Float64} function Base.setindex!(m::CoefficientMatrix{C,V,T}, val, row::C, col::V) where {C,V,T} setindex!(m.matrix, val, row, col) if row ∉ m.buffer.constr_buffer.added && col ∉ m.buffer.var_buffer.added change_matrix_coeff!(m.buffer, row, col, val) end return end function Base.getindex(m::CoefficientMatrix{C,V,T}, row, col) where {C,V,T} return getindex(m.matrix, row, col) end DynamicSparseArrays.closefillmode!(m::CoefficientMatrix) = closefillmode!(m.matrix) Base.view(m::CoefficientMatrix{C,V,T}, row::C, ::Colon) where {C,V,T} = view(m.matrix, row, :) Base.view(m::CoefficientMatrix{C,V,T}, ::Colon, col::V) where {C,V,T} = view(m.matrix, :, col) Base.transpose(m::CoefficientMatrix) = transpose(m.matrix) # The formulation manager is an internal data structure that contains & manager # all the elements which constitute a MILP formulation: variables, constraints, # objective constant (costs stored in variables), coefficient matrix, # cut generators (that contain cut callbacks)... mutable struct FormulationManager vars::Dict{VarId, Variable} constrs::Dict{ConstrId, Constraint} coefficients::ConstrVarMatrix # rows = constraints, cols = variables objective_constant::Float64 # The partial solution is a lower bound on the absolute value of the variables in the solution. # When the variable is positive, we remove this fixed part from the formulation and treat the variable like a classic # non-negative one (>= 0). # When the variable is negative, we remove this fixed part form the formulation and treat the variable as # a non-positive one (<= 0). # When the variable has negative lower bound and positive upper bound, we treat it as a # non-negative (non-positive) one if the partial solution is positive (negative). # When the bounds of the variable are [0, 0], the variable is deactivated (not in the formulation anymore). # Cost of the partial solution is not stored in objective constant. partial_solution::Dict{VarId, Float64} robust_constr_generators::Vector{RobustConstraintsGenerator} custom_families_id::Dict{DataType,Int} end function FormulationManager(buffer; custom_families_id = Dict{DataType,Int}()) vars = Dict{VarId, Variable}() constrs = Dict{ConstrId, Constraint}() return FormulationManager( vars, constrs, ConstrVarMatrix(buffer), 0.0, Dict{VarId, Float64}(), RobustConstraintsGenerator[], custom_families_id ) end # Internal method to store a Variable in the formulation manager. function _addvar!(m::FormulationManager, var::Variable) if haskey(m.vars, var.id) error(string( "Variable of id ", var.id, " exists. Its name is ", m.vars[var.id].name, " and you want to add a variable named ", var.name, "." )) end m.vars[var.id] = var return end # Internal method to fix a variable in the formulation manager. function _add_partial_value!(m::FormulationManager, var::Variable, value) partial_value = get(m.partial_solution, var.id, 0.0) new_value = partial_value + value _set_partial_value!(m, var, new_value) end function _set_partial_value!(m::FormulationManager, var::Variable, value) if abs(value) <= Coluna.TOL var.curdata.is_in_partial_sol = false delete!(m.partial_solution, var.id) else var.curdata.is_in_partial_sol = true m.partial_solution[var.id] = value end return value end _partial_sol(m::FormulationManager) = m.partial_solution # Internal methods to store a Constraint in the formulation manager. function _addconstr!(m::FormulationManager, constr::Constraint) if haskey(m.constrs, constr.id) error(string( "Constraint of id ", constr.id, " exists. Its name is ", m.constrs[constr.id].name, " and you want to add a constraint named ", constr.name, "." )) end m.constrs[constr.id] = constr return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6177
""" NoOptimizer <: AbstractOptimizer Wrapper when no optimizer is assigned to a formulation. Basic algorithms that call an optimizer to optimize a formulation won't work. """ struct NoOptimizer <: AbstractOptimizer end no_optimizer_builder(args...) = NoOptimizer() """ UserOptimizer <: AbstractOptimizer Wrap a julia function that acts like the optimizer of a formulation. It is for example the function used as a pricing callback. """ mutable struct UserOptimizer <: AbstractOptimizer user_oracle::Function end mutable struct PricingCallbackData form::Formulation primal_solutions::Vector{PrimalSolution} nb_times_dual_bound_set::Int dual_bound::Union{Nothing, Float64} end function PricingCallbackData(form::F) where {F<:Formulation} return PricingCallbackData(form, PrimalSolution{F}[], 0, nothing) end """ MoiOptimizer <: AbstractOptimizer Wrapper that is used when the optimizer of a formulation is an `MOI.AbstractOptimizer`, thus inheriting MOI functionalities. """ struct MoiOptimizer <: AbstractOptimizer inner::MOI.ModelLike end getinner(optimizer::MoiOptimizer) = optimizer.inner function sync_solver!(optimizer::MoiOptimizer, f::Formulation) buffer = f.buffer matrix = getcoefmatrix(f) # Remove constrs @logmsg LogLevel(-2) string("Removing constraints") remove_from_optimizer!(f, optimizer, buffer.constr_buffer.removed) # Remove vars @logmsg LogLevel(-2) string("Removing variables") remove_from_optimizer!(f, optimizer, buffer.var_buffer.removed) # Add vars for id in buffer.var_buffer.added v = getvar(f, id) if isnothing(v) error("Sync_solver: var $id is not in formulation.") else add_to_optimizer!(f, optimizer, v) end end # Add constrs for constr_id in buffer.constr_buffer.added constr = getconstr(f, constr_id) if isnothing(constr) error("Sync_solver: constr $constr_id is not in formulation.") else add_to_optimizer!(f, optimizer, constr, (f, var) -> iscuractive(f, var) && isexplicit(f, var)) end end # Update variable costs # TODO: Pass a new objective function if too many changes for id in buffer.changed_cost (id in buffer.var_buffer.added || id in buffer.var_buffer.removed) && continue v = getvar(f, id) if isnothing(v) error("Sync_solver: var $id is not in formulation.") else update_cost_in_optimizer!(f, optimizer, v) end end # Update objective sense if buffer.changed_obj_sense set_obj_sense!(optimizer, getobjsense(f)) buffer.changed_obj_sense = false end # Update variable bounds for id in buffer.changed_bound (id in buffer.var_buffer.added || id in buffer.var_buffer.removed) && continue v = getvar(f, id) if isnothing(v) error("Sync_solver: var $id is not in formulation.") else update_bounds_in_optimizer!(f, optimizer, v) end end # Update variable kind for id in buffer.changed_var_kind (id in buffer.var_buffer.added || id in buffer.var_buffer.removed) && continue v = getvar(f, id) if isnothing(v) error("Sync_solver: var $id is not in formulation.") else enforce_kind_in_optimizer!(f, optimizer, v) end end # Update constraint rhs for id in buffer.changed_rhs (id in buffer.constr_buffer.added || id in buffer.constr_buffer.removed) && continue constr = getconstr(f, id) if isnothing(constr) error("Sync_solver: constr $id is not in formulation.") else update_constr_rhs_in_optimizer!(f, optimizer, constr) end end # Update matrix # First check if should update members of just-added vars matrix = getcoefmatrix(f) for v_id in buffer.var_buffer.added for (c_id, coeff) in @view matrix[:,v_id] iscuractive(f, c_id) || continue isexplicit(f, c_id) || continue c_id ∉ buffer.constr_buffer.added || continue c = getconstr(f, c_id) v = getvar(f, v_id) if isnothing(c) error("Sync_solver: constr $c_id is not in formulation.") elseif isnothing(v) error("Sync_solver: var $v_id is not in formulation.") else update_constr_member_in_optimizer!(optimizer, c, v, coeff) end end end # Then updated the rest of the matrix coeffs for ((c_id, v_id), coeff) in buffer.reset_coeffs # Ignore modifications involving vc's that were removed (c_id in buffer.constr_buffer.removed || v_id in buffer.var_buffer.removed) && continue iscuractive(f, c_id) && isexplicit(f, c_id) || continue iscuractive(f, v_id) && isexplicit(f, v_id) || continue c = getconstr(f, c_id) v = getvar(f, v_id) if isnothing(c) error("Sync_solver: constr $c_id is not in formulation.") elseif isnothing(v) error("Sync_solver: var $v_id is not in formulation.") else update_constr_member_in_optimizer!(optimizer, c, v, coeff) end end empty!(buffer) return end # Initialization of optimizers function initialize_optimizer!(optimizer::MoiOptimizer, form::Formulation) f = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm{Float64}[], 0.0) MOI.set(optimizer.inner, MoiObjective(), f) set_obj_sense!(optimizer, getobjsense(form)) return end initialize_optimizer!(optimizer, form::Formulation) = return function write_to_LP_file(form::Formulation, optimizer::MoiOptimizer, filename::String) src = getinner(optimizer) dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_LP) MOI.copy_to(dest, src) MOI.write_to_file(dest, filename) end """ CustomOptimizer <: AbstractOptimizer Undocumented because alpha. """ struct CustomOptimizer <: AbstractOptimizer inner::BD.AbstractCustomOptimizer end getinner(optimizer::CustomOptimizer) = optimizer.inner
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5892
abstract type AbstractPool end ############################################################################################ # Primal Solution Pool ############################################################################################ struct Pool <: AbstractPool solutions::DynamicSparseArrays.DynamicSparseMatrix{VarId,VarId,Float64} solutions_hash::ColunaBase.HashTable{VarId,VarId} costs::Dict{VarId,Float64} custom_data::Dict{VarId,BD.AbstractCustomVarData} end function Pool() return Pool( DynamicSparseArrays.dynamicsparse(VarId, VarId, Float64; fill_mode = false), ColunaBase.HashTable{VarId, VarId}(), Dict{VarId, Float64}(), Dict{VarId, BD.AbstractCustomVarData}() ) end # Returns nothing if there is no identical solutions in pool; the id of the # identical solution otherwise. function _get_same_sol_in_pool(solutions, hashtable, sol) sols_with_same_members = ColunaBase.getsolids(hashtable, sol) for existing_sol_id in sols_with_same_members existing_sol = @view solutions[existing_sol_id,:] if existing_sol == sol return existing_sol_id end end return nothing end # We only keep variables that have certain duty in the representation of the # solution stored in the pool. The second argument allows us to dispatch because # filter may change depending on the duty of the formulation. function _sol_repr_for_pool(primal_sol::PrimalSolution) var_ids = VarId[] vals = Float64[] for (var_id, val) in primal_sol if getduty(var_id) <= DwSpSetupVar || getduty(var_id) <= DwSpPricingVar push!(var_ids, var_id) push!(vals, val) end end return var_ids, vals end _same_active_bounds(pool::Pool, existing_sol_id, solution::PrimalSolution) = true """ same_custom_data(custom_data1, custom_data2) -> Bool Returns `true`if the custom data are the same, false otherwise. """ same_custom_data(custom_data1, custom_data2) = custom_data1 == custom_data2 function get_from_pool(pool::AbstractPool, solution) existing_sol_id = _get_same_sol_in_pool(pool.solutions, pool.solutions_hash, solution) if isnothing(existing_sol_id) return nothing end # If it's a pool of dual solution, we must check if the active bounds are the same. if !isnothing(existing_sol_id) && !_same_active_bounds(pool, existing_sol_id, solution) return nothing end # When there are non-robust cuts, Coluna has not enough information to identify that two # columns are identical. The columns may be mapped into the same original variables but # be internally different, meaning that the coefficients of non-robust cuts to be added # in the future may differ. This is why we need to check custom data. custom_data1 = get(pool.custom_data, existing_sol_id, nothing) custom_data2 = solution.custom_data if same_custom_data(custom_data1, custom_data2) return existing_sol_id end return nothing end function push_in_pool!(pool::Pool, solution::PrimalSolution, sol_id, cost) var_ids, vals = _sol_repr_for_pool(solution) DynamicSparseArrays.addrow!(pool.solutions, sol_id, var_ids, vals) pool.costs[sol_id] = cost if !isnothing(solution.custom_data) pool.custom_data[sol_id] = solution.custom_data end ColunaBase.savesolid!(pool.solutions_hash, sol_id, solution) return true end ############################################################################################ # Dual Solution Pool ############################################################################################ struct DualSolutionPool <: AbstractPool solutions::DynamicSparseArrays.DynamicSparseMatrix{ConstrId,ConstrId,Float64} solutions_hash::ColunaBase.HashTable{ConstrId,ConstrId} solutions_active_bounds::Dict{ConstrId,Dict{VarId,Tuple{Float64,ActiveBound}}} costs::Dict{ConstrId,Float64} custom_data::Dict{ConstrId,BD.AbstractCustomConstrData} end function DualSolutionPool() return DualSolutionPool( DynamicSparseArrays.dynamicsparse(ConstrId, ConstrId, Float64; fill_mode = false), ColunaBase.HashTable{ConstrId, ConstrId}(), Dict{ConstrId, Tuple{ActiveBound,Float64}}(), Dict{ConstrId, Float64}(), Dict{ConstrId, BD.AbstractCustomConstrData}() ) end function _same_active_bounds(pool::DualSolutionPool, existing_sol_id, solution::DualSolution) existing_active_bounds = pool.solutions_active_bounds[existing_sol_id] existing_var_ids = keys(existing_active_bounds) var_ids = keys(get_var_redcosts(solution)) if length(union(existing_var_ids, var_ids)) != length(var_ids) return false end for (varid, (val, bnd)) in get_var_redcosts(solution) if !isnothing(get(existing_active_bounds, varid, nothing)) if existing_active_bounds[varid][1] != val || existing_active_bounds[varid][2] != bnd return false end else return false end end return true end function _sol_repr_for_pool(dual_sol::DualSolution) constr_ids = ConstrId[] vals = Float64[] for (constr_id, val) in dual_sol if getduty(constr_id) <= BendSpSepVar push!(constr_ids, constr_id) push!(vals, val) end end return constr_ids, vals end function push_in_pool!(pool::DualSolutionPool, solution::DualSolution, sol_id, cost) constr_ids, vals = _sol_repr_for_pool(solution) DynamicSparseArrays.addrow!(pool.solutions, sol_id, constr_ids, vals) pool.costs[sol_id] = cost pool.solutions_active_bounds[sol_id] = get_var_redcosts(solution) if !isnothing(solution.custom_data) pool.custom_data[sol_id] = solution.custom_data end ColunaBase.savesolid!(pool.solutions_hash, sol_id, solution) return true end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2528
mutable struct Problem <: AbstractProblem initial_primal_bound::Union{Nothing, Float64} initial_dual_bound::Union{Nothing, Float64} original_formulation::Formulation re_formulation::Union{Nothing, Reformulation} default_optimizer_builder::Function initial_columns_callback::Union{Nothing, Function} end """ Problem(env) Constructs an empty `Problem`. """ function Problem(env) original_formulation = create_formulation!(env, Original()) return Problem( nothing, nothing, original_formulation, nothing, no_optimizer_builder, nothing ) end set_original_formulation!(m::Problem, of::Formulation) = m.original_formulation = of set_reformulation!(m::Problem, r::Reformulation) = m.re_formulation = r get_original_formulation(m::Problem) = m.original_formulation get_reformulation(m::Problem) = m.re_formulation set_default_optimizer_builder!(p::Problem, default_opt_builder) = p.default_optimizer_builder = default_opt_builder set_initial_primal_bound!(p::Problem, value::Real) = p.initial_primal_bound = value set_initial_dual_bound!(p::Problem, value::Real) = p.initial_dual_bound = value function get_initial_primal_bound(p::Problem) if isnothing(p.original_formulation) error("Cannot retrieve initial primal bound because the problem does not have original formulation.") end min = getobjsense(get_original_formulation(p)) == MinSense if !isnothing(p.initial_primal_bound) return ColunaBase.Bound(min, true, p.initial_primal_bound) end return ColunaBase.Bound(min, true) end function get_initial_dual_bound(p::Problem) if isnothing(p.original_formulation) error("Cannot retrieve initial dual bound because the problem does not have original formulation.") end min = getobjsense(get_original_formulation(p)) == MinSense if !isnothing(p.initial_dual_bound) return ColunaBase.Bound(min, false, p.initial_dual_bound) end return ColunaBase.Bound(min, false) end """ If the original formulation is not reformulated, it means that the user did not provide a way to decompose the model. In such a case, Coluna will call the subsolver to optimize the original formulation. """ function get_optimization_target(p::Problem) if p.re_formulation === nothing return p.original_formulation end return p.re_formulation end function _register_initcols_callback!(problem::Problem, callback_function::Function) problem.initial_columns_callback = callback_function return end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
7040
"Returns `true` if we can project a solution of `form` to the original formulation." projection_is_possible(form) = false ############################################################################################ # Projection of Dantzig-Wolfe master on original formulation. ############################################################################################ projection_is_possible(master::Formulation{DwMaster}) = true Base.isless(A::DynamicMatrixColView{VarId,VarId,Float64}, B::DynamicMatrixColView{VarId,VarId,Float64}) = cmp(A, B) < 0 function Base.cmp(A::DynamicMatrixColView{VarId,VarId,Float64}, B::DynamicMatrixColView{VarId,VarId,Float64}) for (a, b) in zip(A, B) if !isequal(a, b) return isless(a, b) ? -1 : 1 end end return 0 # no length for dynamic sparse vectors end function _assign_width!(cur_roll, col::Vector, width_to_assign) for i in 1:length(col) cur_roll[i] += col[i] * width_to_assign end return end function _assign_width!(cur_roll::Dict, col::DynamicMatrixColView, width_to_assign) for (id, val) in col if !haskey(cur_roll, id) cur_roll[id] = 0.0 end cur_roll[id] += val * width_to_assign end return end _new_set_of_rolls(::Type{Vector{E}}) where {E} = Vector{Float64}[] _new_roll(::Type{Vector{E}}, col_len) where {E} = zeros(Float64, col_len) _roll_is_integer(roll::Vector{Float64}) = all(map(r -> abs(r - round(r)) <= Coluna.DEF_OPTIMALITY_ATOL, roll)) _new_set_of_rolls(::Type{DynamicMatrixColView{VarId,VarId,Float64}}) = Dict{VarId,Float64}[] _new_roll(::Type{DynamicMatrixColView{VarId,VarId,Float64}}, _) = Dict{VarId,Float64}() _roll_is_integer(roll::Dict{VarId,Float64}) = all(map(r -> abs(r - round(r)) <= Coluna.DEF_OPTIMALITY_ATOL, values(roll))) function _mapping(columns::Vector{A}, values::Vector{B}; col_len::Int=10) where {A,B} p = sortperm(columns, rev=true) columns = columns[p] values = values[p] rolls = _new_set_of_rolls(eltype(columns)) total_width_assigned = 0 nb_roll_opened = 1 # roll is width 1 cur_roll = _new_roll(eltype(columns), col_len) for (val, col) in zip(values, columns) cur_unassigned_width = val while cur_unassigned_width > 0 width_to_assign = min(cur_unassigned_width, nb_roll_opened - total_width_assigned) _assign_width!(cur_roll, col, width_to_assign) cur_unassigned_width -= width_to_assign total_width_assigned += width_to_assign if total_width_assigned == nb_roll_opened push!(rolls, cur_roll) cur_roll = _new_roll(eltype(columns), col_len) nb_roll_opened += 1 end end end return rolls end function _mapping_by_subproblem(columns::Dict{Int,Vector{A}}, values::Dict{Int,Vector{B}}) where {A,B} return Dict( uid => _mapping(cols, values[uid]) for (uid, cols) in columns ) end _rolls_are_integer(rolls) = all(_roll_is_integer.(rolls)) _subproblem_rolls_are_integer(rolls_by_sp::Dict) = all(_rolls_are_integer.(values(rolls_by_sp))) # removes information about continuous variables from rolls, as this information should be ignored when checking integrality function _remove_continuous_vars_from_rolls!(rolls_by_sp::Dict, reform::Reformulation) for (uid, rolls) in rolls_by_sp spform = get_dw_pricing_sps(reform)[uid] for roll in rolls filter!(pair -> getcurkind(spform, pair.first) != Continuous, roll) end end end function _extract_data_for_mapping(sol::PrimalSolution{Formulation{DwMaster}}) columns = Dict{Int,Vector{DynamicMatrixColView{VarId,VarId,Float64}}}() values = Dict{Int,Vector{Float64}}() master = getmodel(sol) reform = getparent(master) if isnothing(reform) error("Projection: master have the reformulation as parent formulation.") end dw_pricing_sps = get_dw_pricing_sps(reform) for (varid, val) in sol duty = getduty(varid) if duty <= MasterCol origin_form_uid = getoriginformuid(varid) spform = get(dw_pricing_sps, origin_form_uid, nothing) if isnothing(spform) error("Projection: cannot retrieve Dantzig-Wolfe pricing subproblem with uid $origin_form_uid") end column = @view get_primal_sol_pool(spform).solutions[varid, :] if !haskey(columns, origin_form_uid) columns[origin_form_uid] = DynamicMatrixColView{VarId,VarId,Float64}[] values[origin_form_uid] = Float64[] end push!(columns[origin_form_uid], column) push!(values[origin_form_uid], val) end end return columns, values end function _proj_cols_on_rep(sol::PrimalSolution{Formulation{DwMaster}}, extracted_cols, extracted_vals) projected_sol_vars = VarId[] projected_sol_vals = Float64[] for (varid, val) in sol duty = getduty(varid) if duty <= MasterPureVar push!(projected_sol_vars, varid) push!(projected_sol_vals, val) end end master = getmodel(sol) for spid in keys(extracted_cols) for (column, val) in Iterators.zip(extracted_cols[spid], extracted_vals[spid]) for (repid, repval) in column if getduty(repid) <= DwSpPricingVar || getduty(repid) <= DwSpSetupVar || getduty(repid) <= MasterRepPricingVar || getduty(repid) <= MasterRepPricingSetupVar mastrepvar = getvar(master, repid) @assert !isnothing(mastrepvar) mastrepid = getid(mastrepvar) push!(projected_sol_vars, mastrepid) push!(projected_sol_vals, repval * val) end end end end return PrimalSolution(master, projected_sol_vars, projected_sol_vals, getvalue(sol), FEASIBLE_SOL) end function proj_cols_on_rep(sol::PrimalSolution{Formulation{DwMaster}}) columns, values = _extract_data_for_mapping(sol) projected_sol = _proj_cols_on_rep(sol, columns, values) return projected_sol end function proj_cols_is_integer(sol::PrimalSolution{Formulation{DwMaster}}) columns, values = _extract_data_for_mapping(sol) projected_sol = _proj_cols_on_rep(sol, columns, values) rolls = _mapping_by_subproblem(columns, values) reform = getparent(getmodel(sol)) _remove_continuous_vars_from_rolls!(rolls, reform) integer_rolls = _subproblem_rolls_are_integer(rolls) return isinteger(projected_sol) && integer_rolls end ############################################################################################ # Projection of Benders master on original formulation. ############################################################################################ projection_is_possible(master::Formulation{BendersMaster}) = false function proj_cols_on_rep(sol::PrimalSolution{Formulation{BendersMaster}}) return sol end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5480
# TODO make immutable mutable struct Reformulation{MasterDuty} <: AbstractFormulation uid::Int parent::Formulation{Original} # reference to (pointer to) ancestor: Formulation or Reformulation (TODO rm Nothing) master::Formulation{MasterDuty} dw_pricing_subprs::Dict{FormId,Formulation{DwSp}} benders_sep_subprs::Dict{FormId,Formulation{BendersSp}} storage::Union{Nothing,Storage} end """ `Reformulation` is a representation of a formulation which is solved by Coluna using a decomposition approach. Reformulation(env, parent, master, dw_pricing_subprs, benders_sep_subprs) Constructs a `Reformulation` where: - `env` is the Coluna environment; - `parent` is the parent formulation (a `Formulation` or a `Reformulation`) (original formulation for the classic decomposition); - `master` is the formulation of the master problem; - `dw_pricing_subprs` is a `Dict{FormId, Formulation}` containing all Dantzig-Wolfe pricing subproblems of the reformulation; - `benders_sep_subprs` is a `Dict{FormId, Formulation}` containing all Benders separation subproblems of the reformulation. """ function Reformulation(env, parent, master, dw_pricing_subprs, benders_sep_subprs) uid = env.form_counter += 1 reform = Reformulation( uid, parent, master, dw_pricing_subprs, benders_sep_subprs, nothing ) reform.storage = Storage(reform) return reform end # methods of the AbstractModel interface ClB.getuid(reform::Reformulation) = reform.uid ClB.getstorage(reform::Reformulation) = reform.storage # methods specific to Formulation """ getobjsense(reformulation) Return the objective sense of the master problem of the reformulation. If the master problem has not been defined, it throws an error. """ function getobjsense(r::Reformulation) r.master !== nothing && return getobjsense(r.master) error("Undefined master in the reformulation, cannot return the objective sense.") end """ getmaster(reform) -> Formulation Return the formulation of the master problem. """ getmaster(r::Reformulation) = r.master # TODO : remove setmaster!(r::Reformulation, f::Formulation) = r.master = f """ add_dw_pricing_sp!(reformulation, abstractmodel) Add a Dantzig-Wolfe pricing subproblem in the reformulation. """ add_dw_pricing_sp!(r::Reformulation, f) = r.dw_pricing_subprs[getuid(f)] = f """ add_benders_sep_sp!(reformulation, abstractmodel) Add a Benders separation subproblem in the reformulation. """ add_benders_sep_sp!(r::Reformulation, f) = r.benders_sep_subprs[getuid(f)] = f """ get_dw_pricing_sps(reformulation) Return a `Dict{FormId, AbstractModel}` containing all Dabtzig-Wolfe pricing subproblems of the reformulation. """ get_dw_pricing_sps(r::Reformulation) = r.dw_pricing_subprs """ get_benders_sep_sps(reformulation) Return a `Dict{FormId, AbstractModel}` containing all Benders separation subproblems of the reformulation. """ get_benders_sep_sps(r::Reformulation) = r.benders_sep_subprs """ get_dw_pricing_sp_ub_constrid(reformulation, spid) Return the `ConstrId` of the upper bounded convexity constraint of Dantzig-Wolfe pricing subproblem with id `spid`. """ get_dw_pricing_sp_ub_constrid(r::Reformulation, spid) = r.dw_pricing_subprs[spid].duty_data.upper_multiplicity_constr_id """ get_dw_pricing_sp_lb_constrid(reformulation, spid) Return the `ConstrId` of the lower bounded convexity constraint of Dantzig-Wolfe pricing subproblem with id `spid`. """ get_dw_pricing_sp_lb_constrid(r::Reformulation, spid) = r.dw_pricing_subprs[spid].duty_data.lower_multiplicity_constr_id ############################################################################################ # Initial columns callback ############################################################################################ struct InitialColumnsCallbackData form::Formulation primal_solutions::Vector{PrimalSolution} end # Method to initial the solution pools of the subproblems function initialize_solution_pools!(reform::Reformulation, initial_columns_callback::Function) for (_, sp) in get_dw_pricing_sps(reform) initialize_solution_pool!(sp, initial_columns_callback) end return end initialize_solution_pools!(::Reformulation, ::Nothing) = nothing # fallback # Following two functions are temporary, we must store a pointer to the vc # being represented by a representative vc function vc_belongs_to_formulation(form::Formulation, vc::AbstractVarConstr) !haskey(form, getid(vc)) && return false vc_in_formulation = getelem(form, getid(vc)) isexplicit(form, vc_in_formulation) && return true return false end function find_owner_formulation(reform::Reformulation, vc::AbstractVarConstr) vc_belongs_to_formulation(reform.master, vc) && return reform.master for (formid, spform) in get_dw_pricing_sps(reform) vc_belongs_to_formulation(spform, vc) && return spform end @error(string("VC ", vc.name, " does not belong to any problem in reformulation")) end function Base.show(io::IO, reform::Reformulation) compact = get(io, :compact, false) user_only = get(io, :user_only, false) if compact print(io, "Reformulation") elseif user_only println(io, "--- Reformulation ---") print(io, getmaster(reform)) for (_, sp) in get_dw_pricing_sps(reform) print(io, sp) end println(io, "---------------------") end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
13106
############################################################################################ # MathProg > Solutions # Representations of the primal & dual solutions to a MILP formulation ############################################################################################ "Supertype for solutions operated by Coluna." abstract type AbstractSolution end # The API for `AbstractSolution` is not very clear yet. # Redefine methods from ColunaBase to access the formulation, the value, the # status of a Solution, and other specific information ColunaBase.getmodel(s::AbstractSolution) = getmodel(s.solution) ColunaBase.getvalue(s::AbstractSolution) = getvalue(s.solution) ColunaBase.getbound(s::AbstractSolution) = getbound(s.solution) ColunaBase.getstatus(s::AbstractSolution) = getstatus(s.solution) Base.length(s::AbstractSolution) = length(s.solution) Base.get(s::AbstractSolution, id, default) = get(s.solution, id, default) Base.getindex(s::AbstractSolution, id) = getindex(s.solution, id) Base.setindex!(s::AbstractSolution, val, id) = setindex!(s.solution, val, id) # Iterating over a PrimalSolution or a DualSolution is similar to iterating over # ColunaBase.Solution Base.iterate(s::AbstractSolution) = iterate(s.solution) Base.iterate(s::AbstractSolution, state) = iterate(s.solution, state) function contains(sol::AbstractSolution, f::Function) for (elemid, _) in sol f(elemid) && return true end return false end function _sols_from_same_model(sols::NTuple{N, S}) where {N,S<:AbstractSolution} for i in 2:length(sols) getmodel(sols[i-1]) != getmodel(sols[i]) && return false end return true end # To check if a solution is part of solutions from the pool. Base.:(==)(v1::DynamicMatrixColView, v2::AbstractSolution) = v1 == v2.solution # To allocate an array with size equals to the number of non-zero elements when using # "generation" syntax. Base.length(gen::Base.Generator{<:AbstractSolution}) = nnz(gen.iter.solution) ############################################################################################ # Primal Solution ############################################################################################ struct PrimalSolution{M} <: AbstractSolution solution::Solution{M,VarId,Float64} custom_data::Union{Nothing, BlockDecomposition.AbstractCustomVarData} end """ PrimalSolution( form::AbstractFormulation, varids::Vector{VarId}, varvals::Vector{Float64}, cost::Float64, status::SolutionStatus; custom_data::Union{Nothing, BlockDecomposition.AbstractCustomVarData} = nothing ) Create a primal solution to the formulation `form` of cost `cost` and status `status`. The representations of the soslution is `varids` the set of the ids of the variables and `varvals` the values of the variables (`varvals[i]` is value of variable `varids[i]`). The user can also attach to the primal solution a customized representation `custom_data`. """ function PrimalSolution( form::M, varids, varvals, cost, status; custom_data = nothing ) where {M<:AbstractFormulation} @assert length(varids) == length(varvals) sol = Solution{M,VarId,Float64}(form, varids, varvals, cost, status) return PrimalSolution{M}(sol, custom_data) end function Base.:(==)(a::PrimalSolution, b::PrimalSolution) return a.solution == b.solution && a.custom_data == b.custom_data end function Base.copy(s::P) where {P<:PrimalSolution} custom_data = isnothing(s.custom_data) ? nothing : copy(s.custom_data) return P(copy(s.solution), custom_data) end function Base.isinteger(sol::PrimalSolution) for (vc_id, val) in sol if getperenkind(getmodel(sol), vc_id) !== Continuous && abs(round(val) - val) > Coluna.DEF_OPTIMALITY_ATOL return false end end return true end function Base.isless(s1::PrimalSolution, s2::PrimalSolution) getobjsense(getmodel(s1)) == MinSense && return s1.solution.bound > s2.solution.bound return s1.solution.bound < s2.solution.bound end # Method `cat` is not implemented for a set of DualSolutions because @guimarqu don't know # how to concatenate var red cost of a variable if both bounds are active in different # solutions and because we don't need it for now. function Base.cat(sols::PrimalSolution...) if !_sols_from_same_model(sols) error("Cannot concatenate solutions not attached to the same model.") end ids = VarId[] vals = Float64[] for sol in sols, (id, value) in sol push!(ids, id) push!(vals, value) end return PrimalSolution( getmodel(sols[1]), ids, vals, sum(getvalue.(sols)), getstatus(sols[1]) ) end ############################################################################################ # Dual Solution ############################################################################################ # Indicate whether the active bound of a variable is the lower or the upper one. @enum ActiveBound LOWER UPPER struct DualSolution{M} <: AbstractSolution solution::Solution{M,ConstrId,Float64} var_redcosts::Dict{VarId, Tuple{Float64,ActiveBound}} custom_data::Union{Nothing, BlockDecomposition.AbstractCustomConstrData} end """ DualSolution( form::AbstractFormulation, constrids::Vector{ConstrId}, constrvals::Vector{Float64}, varids::Vector{VarId}, varvals::Vector{Float64}, varactivebounds::Vector{ActiveBound}, cost::Float64, status::SolutionStatus; custom_data::Union{Nothing, BlockDecomposition.AbstractColumnData} = nothing ) Create a dual solution to the formulation `form` of cost `cost` and status `status`. It contains `constrids` the set of ids of the constraints and `constrvals` the values of the constraints (`constrvals[i]` is dual value of `constrids[i]`). It also contains `varvals[i]` the dual values of the bound constraint `varactivebounds[i]` of the variables `varids` (also known as the reduced cost). The user can attach to the dual solution a customized representation `custom_data`. """ function DualSolution( form::M, constrids, constrvals, varids, varvals, varactivebounds, cost, status; custom_data = nothing ) where {M<:AbstractFormulation} @assert length(constrids) == length(constrvals) @assert length(varids) == length(varvals) == length(varactivebounds) var_redcosts = Dict{VarId, Tuple{Float64,ActiveBound}}() for i in 1:length(varids) var_redcosts[varids[i]] = (varvals[i],varactivebounds[i]) end sol = Solution{M,ConstrId,Float64}(form, constrids, constrvals, cost, status) return DualSolution{M}(sol, var_redcosts, custom_data) end function Base.:(==)(a::DualSolution, b::DualSolution) return a.solution == b.solution && a.var_redcosts == b.var_redcosts && a.custom_data == b.custom_data end Base.copy(s::D) where {D<:DualSolution} = D(copy(s.solution), copy(s.var_redcosts), copy(s.custom_data)) get_var_redcosts(s::DualSolution) = s.var_redcosts function Base.isless(s1::DualSolution, s2::DualSolution) getobjsense(getmodel(s1)) == MinSense && return s1.solution.bound < s2.solution.bound return s1.solution.bound > s2.solution.bound end function Base.show(io::IO, solution::DualSolution{M}) where {M} println(io, "Dual solution") for (constrid, value) in solution println(io, "| ", getname(getmodel(solution), constrid), " = ", value) end for (varid, redcost) in solution.var_redcosts println(io, "| ", getname(getmodel(solution), varid), " = ", redcost[1], " (", redcost[2], ")") end Printf.@printf(io, "└ value = %.2f \n", getvalue(solution)) end function Base.show(io::IO, solution::PrimalSolution{M}) where {M} model = getmodel(solution) user_only = get(io, :user_only, false) && model isa Formulation println(io, "Primal solution") for (varid, value) in solution if user_only && isaNonUserDefinedDuty(getduty(varid)) if getduty(varid) <= MasterCol print(io, "| ", getname(model, varid), " = [") origin_form_uid = getoriginformuid(varid) spform = get_dw_pricing_sps(getparent(model))[origin_form_uid] spsol = @view get_primal_sol_pool(spform).solutions[varid, :] for (sp_var_id, sp_value) in spsol isaNonUserDefinedDuty(getduty(sp_var_id)) && continue print(io, getname(spform, sp_var_id), " = ", sp_value, " ") end println(io, "] = ", value) end else println(io, "| ", getname(model, varid), " = ", value) end end Printf.@printf(io, "└ value = %.2f \n", getvalue(solution)) end ############################################################################################ # Linear Algebra ############################################################################################ # op(::S, ::S) has return type `S` for op ∈ (:+, :-) and S <: AbstractSolution _math_op_constructor(::Type{S}, form::F, varids, varvals, cost) where {S<:PrimalSolution,F} = PrimalSolution(form, varids, varvals, cost, ClB.UNKNOWN_SOLUTION_STATUS) _math_op_constructor(::Type{<:S}, form::F, constrids, constrvals, cost) where {S<:DualSolution,F} = DualSolution(form, constrids, constrvals, [], [], [], cost, ClB.UNKNOWN_SOLUTION_STATUS) _math_op_cost(::Type{<:S}, form, varids, varvals) where {S<:PrimalSolution} = mapreduce(((id,val),) -> getcurcost(form, id) * val, +, Iterators.zip(varids, varvals); init = 0.0) _math_op_cost(::Type{<:S}, form, constrids, constrvals) where {S<:DualSolution} = mapreduce(((id, val),) -> getcurrhs(form, id) * val, +, Iterators.zip(constrids, constrvals); init = 0.0) function Base.:(*)(a::Real, s::S) where {S<:AbstractSolution} ids, vals = findnz(a * s.solution.sol) cost = _math_op_cost(S, getmodel(s), ids, vals) return _math_op_constructor(S, getmodel(s), ids, vals, cost) end for op in (:+, :-) @eval begin function Base.$op(s1::S, s2::S) where {S<:AbstractSolution} @assert getmodel(s1) == getmodel(s2) ids, vals = findnz(ColunaBase._sol_custom_binarymap($op, s1.solution, s2.solution)) cost = _math_op_cost(S, getmodel(s1), ids, vals) return _math_op_constructor(S, getmodel(s1), ids, vals, cost) end end end # transpose struct Transposed{S<:AbstractSolution} sol::S end Base.transpose(s::AbstractSolution) = Transposed(s) Base.:(*)(s1::Transposed{S}, s2::S) where {S<:AbstractSolution} = transpose(s1.sol.solution.sol) * s2.solution.sol function Base.:(*)(s::Transposed{<:AbstractSolution}, vec::SparseVector) # We multiply two sparse vectors that may have different sizes. sol_vec = s.sol.solution.sol len = Coluna.MAX_NB_ELEMS vec1 = sparsevec(findnz(sol_vec)..., len) vec2 = sparsevec(findnz(vec)..., len) return transpose(vec1) * vec2 end # *(::M, ::S) has return type `SparseVector` for: # - M <: DynamicSparseMatrix # - S <: AbstractSolution # We don't support operation with classic sparse matrix because row and col ids # must be of the same type. # In Coluna, we use VarId to index the cols and # ConstrId to index the rows. Base.:(*)(m::DynamicSparseMatrix, s::AbstractSolution) = m * s.solution.sol Base.:(*)(m::DynamicSparseArrays.Transposed{<:DynamicSparseMatrix}, s::AbstractSolution) = m * s.solution.sol LinearAlgebra.norm(s::AbstractSolution) = norm(s.solution.sol) ############################################################################################ # Infeasibility certificate ############################################################################################ @enum PrimalOrDualInfeasibility PRIMAL_INFEASIBILITY DUAL_INFEASIBILITY struct InfeasibilityCertificate{M} <: AbstractSolution infeasibility::PrimalOrDualInfeasibility vars::Solution{M,VarId,Float64} constrs::Solution{M,ConstrId,Float64} end function PrimalInfeasibilityCertificate( form::M, constrids, constrvals, varids, varvals, cost; ) where {M<:AbstractFormulation} @assert length(constrids) == length(constrvals) @assert length(varids) == length(varvals) status = INFEASIBLE_SOL vars = Solution{M,VarId,Float64}(form, varids, varvals, cost, status) constrs = Solution{M,ConstrId,Float64}(form, constrids, constrvals, cost, status) return InfeasibilityCertificate{M}(PRIMAL_INFEASIBILITY, vars, constrs) end function DualInfeasibilityCertificate( form::M, constrids, constrvals, varids, varvals, cost; ) where {M<:AbstractFormulation} @assert length(constrids) == length(constrvals) @assert length(varids) == length(varvals) status = INFEASIBLE_SOL vars = Solution{M,VarId,Float64}(form, varids, varvals, cost, status) constrs = Solution{M,ConstrId,Float64}(form, constrids, constrvals, cost, status) return InfeasibilityCertificate{M}(DUAL_INFEASIBILITY, vars, constrs) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4355
abstract type AbstractVarConstr end abstract type AbstractVcData end abstract type AbstractOptimizer end # Interface (src/interface.jl) struct MinSense <: Coluna.AbstractMinSense end struct MaxSense <: Coluna.AbstractMaxSense end # Duties for variables and constraints """ Duty{Variable} Duties of a variable are tree-structured values wrapped in `Duty{Variable}` instances. Leaves are concret duties of a variable, intermediate nodes are duties representing families of duties, and the root node is a `Duty{Variable}` with value `1`. Duty{Constraint} It works like `Duty{Variable}`. # Examples If a duty `Duty1` inherits from `Duty2`, then ```example julia> Duty1 <= Duty2 true ``` """ struct Duty{VC <: AbstractVarConstr} <: NestedEnum value::UInt end # Source : https://discourse.julialang.org/t/export-enum/5396 macro exported_enum(name, args...) esc(quote @enum($name, $(args...)) export $name $([:(export $arg) for arg in args]...) end) end @exported_enum VarSense Positive Negative Free @exported_enum VarKind Continuous Binary Integ @exported_enum ConstrKind Essential Facultative SubSystem @exported_enum ConstrSense Greater Less Equal # TODO remove following exported_enum @exported_enum FormulationPhase HybridPhase PurePhase1 PurePhase2 # TODO : remove from Benders const FormId = Int16 ############################################################################ ######################## MathOptInterface shortcuts ######################## ############################################################################ # Objective function const MoiObjective = MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}} # Constraint const MoiConstrIndex = MOI.ConstraintIndex MoiConstrIndex{F,S}() where {F,S} = MOI.ConstraintIndex{F,S}(-1) MoiConstrIndex() = MOI.ConstraintIndex{ MOI.ScalarAffineFunction{Float64},MOI.LessThan{Float64} }() # Variable const MoiVarIndex = MOI.VariableIndex MoiVarIndex() = MOI.VariableIndex(-1) # Bounds on variables const MoiVarLowerBound = MOI.ConstraintIndex{MOI.VariableIndex,MOI.GreaterThan{Float64}} const MoiVarUpperBound = MOI.ConstraintIndex{MOI.VariableIndex,MOI.LessThan{Float64}} # Variable kinds const MoiInteger = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Integer} const MoiBinary = MOI.ConstraintIndex{MOI.VariableIndex,MOI.ZeroOne} const MoiVarKind = Union{MoiInteger,MoiBinary} MoiVarKind() = MoiInteger(-1) # Helper functions to transform MOI types in Coluna types convert_moi_sense_to_coluna(::MOI.LessThan{T}) where {T} = Less convert_moi_sense_to_coluna(::MOI.GreaterThan{T}) where {T} = Greater convert_moi_sense_to_coluna(::MOI.EqualTo{T}) where {T} = Equal convert_moi_rhs_to_coluna(set::MOI.LessThan{T}) where {T} = set.upper convert_moi_rhs_to_coluna(set::MOI.GreaterThan{T}) where {T} = set.lower convert_moi_rhs_to_coluna(set::MOI.EqualTo{T}) where {T} = set.value convert_moi_kind_to_coluna(::MOI.ZeroOne) = Binary convert_moi_kind_to_coluna(::MOI.Integer) = Integ convert_moi_bounds_to_coluna(set::MOI.LessThan{T}) where {T} = (-Inf, set.upper) convert_moi_bounds_to_coluna(set::MOI.GreaterThan{T}) where {T} = (set.lower, Inf) convert_moi_bounds_to_coluna(set::MOI.EqualTo{T}) where {T} = (set.value, set.value) convert_moi_bounds_to_coluna(set::MOI.Interval{T}) where {T} = (set.lower, set.upper) function convert_coluna_sense_to_moi(constr_set::ConstrSense) constr_set == Less && return MOI.LessThan{Float64} constr_set == Greater && return MOI.GreaterThan{Float64} @assert constr_set == Equal return MOI.EqualTo{Float64} end function convert_coluna_kind_to_moi(var_kind::VarKind) var_kind == Binary && return MOI.ZeroOne var_kind == Integ && return MOI.Integer @assert var_kind == Continuous return nothing end ############################################################################ """ AbstractFormulation Formulation is a mathematical representation of a problem (model of a problem). A problem may have different formulations. We may rename "formulation" to "model" after. Different algorithms may be applied to a formulation. A formulation should contain a dictionary of storage units used by algorithms. A formulation contains one storage unit per storage unit type used by algorithms. """ abstract type AbstractFormulation <: AbstractModel end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
30121
# There are two levels of data for each element of a formulation (i.e. variables and # constraints). # The first level is called "peren" (for perennial). It contains data that won't change for # almost all the optimisation (e.g. the original cost of a variable, the original sense of # constraint...). Coluna provides methods to set these data because it can ease the setup # of a formulation. Algorithm designers are free to use these method at their own risk. # The second level is called "cur" (for current). It describes the current state of each # element of the formulation. getid(vc::AbstractVarConstr) = vc.id getoriginformuid(vc::AbstractVarConstr) = getoriginformuid(getid(vc)) # no moi record for a single variable constraint getmoirecord(vc::Variable)::MoiVarRecord = vc.moirecord getmoirecord(vc::Constraint)::MoiConstrRecord = vc.moirecord # Variables ## Cost """ getperencost(formulation, variable) getperencost(formulation, varid) Return the cost as defined by the user of a variable in a formulation. """ function getperencost(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperencost(form, var) end getperencost(::Formulation, var::Variable) = var.perendata.cost """ getcurcost(formulation, variable) getcurcost(formulation, varid) Return the current cost of the variable in the formulation. """ function getcurcost(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcurcost(form, var) end getcurcost(::Formulation, var::Variable) = var.curdata.cost """ setperencost!(formulation, variable, cost) setperencost!(formulation, varid, cost) Set the perennial cost of a variable and then propagate change to the current cost of the variable. """ function setperencost!(form::Formulation, var::Variable, cost) var.perendata.cost = cost return setcurcost!(form, var, cost) end function setperencost!(form::Formulation, varid::VarId, cost) var = getvar(form, varid) @assert !isnothing(var) return setperencost!(form, var, cost) end """ setcurcost!(formulation, varid, cost::Float64) setcurcost!(formulation, variable, cost::Float64) Set the current cost of variable in the formulation. If the variable is active and explicit, this change is buffered before application to the subsolver. """ function setcurcost!(form::Formulation, var::Variable, cost) var.curdata.cost = cost if isexplicit(form, var) && iscuractive(form, var) change_cost!(form.buffer, getid(var)) end return end function setcurcost!(form::Formulation, varid::VarId, cost) var = getvar(form, varid) @assert !isnothing(var) return setcurcost!(form, var, cost) end ## Lower bound """ setperenlb!(formulation, var, rhs) Set the perennial lower bound of a variable in a formulation. Change is propagated to the current lower bound of the variable. """ function setperenlb!(form::Formulation, var::Variable, lb) var.perendata.lb = lb _setperenbounds_wrt_perenkind!(form, var, getperenkind(form, var)) return setcurlb!(form, var, lb) end """ getperenlb(formulation, varid) getperenlb(formulation, var) Return the lower bound as defined by the user of a variable in a formulation. """ function getperenlb(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperenlb(form, var) end getperenlb(::Formulation, var::Variable) = var.perendata.lb """ getcurlb(formulation, varid) getcurlb(formulation, var) Return the current lower bound of a variable in a formulation. """ function getcurlb(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcurlb(form, var) end getcurlb(::Formulation, var::Variable) = var.curdata.lb """ setcurlb!(formulation, varid, lb::Float64) setcurlb!(formulation, var, lb::Float64) Set the current lower bound of a variable in a formulation. If the variable is active and explicit, change is buffered before application to the subsolver. If the variable had fixed value, it unfixes the variable. """ function setcurlb!(form::Formulation, var::Variable, lb) # if in_partial_sol(form, var) && !(getduty(getid(var)) <= MasterCol) # @warn "Changing lower bound of fixed variable." # end var.curdata.lb = lb if isexplicit(form, var) && iscuractive(form, var) change_bound!(form.buffer, getid(var)) end _setcurbounds_wrt_curkind!(form, var, getcurkind(form, var)) return end setcurlb!(form::Formulation, varid::VarId, lb) = setcurlb!(form, getvar(form, varid), lb) ## Upper bound """ setperenub!(formulation, var, rhs) Set the perennial upper bound of a variable in a formulation. Change is propagated to the current upper bound of the variable. """ function setperenub!(form::Formulation, var::Variable, ub) var.perendata.ub = ub _setperenbounds_wrt_perenkind!(form, var, getperenkind(form, var)) return setcurub!(form, var, ub) end """ getperenub(formulation, varid) getperenub(formulation, var) Return the upper bound as defined by the user of a variable in a formulation. """ function getperenub(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperenub(form, var) end getperenub(::Formulation, var::Variable) = var.perendata.ub """ getcurub(formulation, varid) getcurub(formulation, var) Return the current upper bound of a variable in a formulation. """ function getcurub(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcurub(form, var) end getcurub(::Formulation, var::Variable) = var.curdata.ub """ setcurub!(formulation, varid, ub::Float64) setcurub!(formulation, var, ub::Float64) Set the current upper bound of a variable in a formulation. If the variable is active and explicit, change is buffered before application to the subsolver. If the variable had fixed value, it unfixes the variable. """ function setcurub!(form::Formulation, var::Variable, ub) # if in_partial_sol(form, var) # @warn "Changing upper bound of fixed variable." # end var.curdata.ub = ub if isexplicit(form, var) && iscuractive(form, var) change_bound!(form.buffer, getid(var)) end _setcurbounds_wrt_curkind!(form, var, getcurkind(form, var)) return end function setcurub!(form::Formulation, varid::VarId, ub) var = getvar(form, varid) @assert !isnothing(var) return setcurub!(form, var, ub) end function _propagate_partial_value_bounds!(form, var, cumulative_value) peren_lb = getperenlb(form, var) peren_ub = getperenub(form, var) if cumulative_value < - Coluna.TOL setcurlb!(form, var, peren_lb - cumulative_value) setcurub!(form, var, min(peren_ub, 0.0)) elseif cumulative_value > Coluna.TOL setcurlb!(form, var, max(peren_lb, 0.0)) setcurub!(form, var, peren_ub - cumulative_value) else setcurlb!(form, var, peren_lb) setcurub!(form, var, peren_ub) end return end """ add_to_partial_solution!(formulation, varid, value) Set the minimal value that the variable with id `varid` takes into the optimal solution. If the variable is already in the partial solution, the value cumulates with the current. If the cumulative value is 0, the variable is removed from the partial solution. **Warning**: by default, there is no propagation, no change on variable bounds, you must call the presolve algorithm. """ function add_to_partial_solution!(form::Formulation, varid::VarId, value, propagation = false) var = getvar(form, varid) @assert !isnothing(var) return add_to_partial_solution!(form, var, value, propagation) end function add_to_partial_solution!(form::Formulation, var::Variable, value, propagation = false) if isexplicit(form, var) cumulative_val = _add_partial_value!(form.manager, var, value) if propagation _propagate_partial_value_bounds!(form, var, cumulative_val) end return true end name = getname(form, var) @warn "Cannot add variable $name to partial solution because it is non-explicit." return false end function set_value_in_partial_solution!(form::Formulation, varid::VarId, value) var = getvar(form, varid) @assert !isnothing(var) return set_value_in_partial_solution!(form, var, value) end function set_value_in_partial_solution!(form::Formulation, var::Variable, value) if isexplicit(form, var) _set_partial_value!(form.manager, var, value) return true end name = getname(form, var) @warn "Cannot set variable $name to partial solution because it is non-explicit." return false end """ in_partial_sol(form, varid) in_partial_sol(form, variable) Return `true` if the variable is in the partial solution; `false` otherwise. """ in_partial_sol(form::Formulation, varid::VarId) = in_partial_sol(form, getvar(form, varid)) in_partial_sol(::Formulation, var::Variable) = var.curdata.is_in_partial_sol """ get_value_in_partial_sol(formulation, varid) get_value_in_partial_sol(formulation, variable) Return the value of the variable in the partial solution. """ get_value_in_partial_sol(form::Formulation, varid::VarId) = get_value_in_partial_sol(form, getvar(form, varid)) function get_value_in_partial_sol(form::Formulation, var::Variable) !in_partial_sol(form, var) && return 0 return get(form.manager.partial_solution, getid(var), 0) end """ getpartialsol(formulation) -> Dict{VarId,Float64} Returns the partial solution to the formulation. """ getpartialsol(form::Formulation) = _partial_sol(form.manager) """ getpartialsolvalue(formulation) -> Float64 Returns the partial solution value. """ function getpartialsolvalue(form::Formulation) partial_sol_val = 0.0 for (varid, val) in getpartialsol(form) partial_sol_val += getcurcost(form, varid) * val end return partial_sol_val end # Constraint ## rhs """ getperenrhs(formulation, constraint) getperenrhs(formulation, constrid) Return the right-hand side as defined by the user of a constraint in a formulation. """ function getperenrhs(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getperenrhs(form, constr) end getperenrhs(::Formulation, constr::Constraint) = constr.perendata.rhs """ getcurrhs(formulation, constraint) getcurrhs(formulation, constrid) Return the current right-hand side of a constraint in a formulation. """ function getcurrhs(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getcurrhs(form, constr) end getcurrhs(::Formulation, constr::Constraint) = constr.curdata.rhs """ setperenrhs!(formulation, constr, rhs) setperenrhs!(formulation, constrid, rhs) Set the perennial rhs of a constraint in a formulation. Change is propagated to the current rhs of the constraint. """ function setperenrhs!(form::Formulation, constr::Constraint, rhs) constr.perendata.rhs = rhs return setcurrhs!(form, constr, rhs) end function setperenrhs!(form::Formulation, constrid::ConstrId, rhs) constr = getconstr(form, constrid) @assert !isnothing(constr) return setperenrhs!(form, constr, rhs) end """ setcurrhs(formulation, constraint, rhs::Float64) setcurrhs(formulation, constrid, rhs::Float64) Set the current right-hand side of a constraint in a formulation. If the constraint is active and explicit, this change is buffered before application to the subsolver. **Warning** : if you change the rhs of a single variable constraint, make sure that you perform bound propagation before calling the subsolver of the formulation. """ function setcurrhs!(form::Formulation, constr::Constraint, rhs::Float64) constr.curdata.rhs = rhs if isexplicit(form, constr) && iscuractive(form, constr) change_rhs!(form.buffer, getid(constr)) end return end function setcurrhs!(form::Formulation, constrid::ConstrId, rhs::Float64) constr = getconstr(form, constrid) @assert !isnothing(constr) return setcurrhs!(form, constr, rhs) end # Variable & Constraints ## kind """ getperenkind(formulation, varconstr) getperenkind(formulation, varconstrid) Return the kind as defined by the user of a variable or a constraint in a formulation. Kinds of variable (`enum VarKind`) are `Continuous`, `Binary`, or `Integ`. Kinds of a constraint (`enum ConstrKind`) are : - `Essential` when the constraint structures the problem - `Facultative` when the constraint does not structure the problem - `SubSystem` (to do) The kind of a constraint cannot change. """ function getperenkind(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperenkind(form, var) end getperenkind(::Formulation, var::Variable) = var.perendata.kind function getperenkind(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getperenkind(form, constr) end getperenkind(::Formulation, constr::Constraint) = constr.perendata.kind """ getcurkind(formulation, variable) getcurkind(formulation, varid) Return the current kind of a variable in a formulation. """ function getcurkind(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcurkind(form, var) end getcurkind(::Formulation, var::Variable) = var.curdata.kind function _setperenbounds_wrt_perenkind!(form::Formulation, var::Variable, kind::VarKind) if kind == Binary if getperenlb(form, var) < 0 setperenlb!(form, var, 0.0) end if getperenub(form, var) > 1 setperenub!(form, var, 1.0) end elseif kind == Integer setperenlb!(form, var, ceil(getperenlb(form, var))) setperenub!(form, var, floor(getperenub(form, var))) end end """ setperenkind!(formulation, variable, kind) setperenkind!(formulation, varid, kind) Set the perennial kind of a variable in a formulation. This change is then propagated to the current kind of the variable. """ function setperenkind!(form::Formulation, var::Variable, kind::VarKind) var.perendata.kind = kind _setperenbounds_wrt_perenkind!(form, var, kind) return setcurkind!(form, var, kind) end setperenkind!(form::Formulation, varid::VarId, kind::VarKind) = setperenkind!(form, getvar(form, varid), kind) function _setcurbounds_wrt_curkind!(form::Formulation, var::Variable, kind::VarKind) if kind == Binary if getcurlb(form, var) < 0 setcurlb!(form, var, 0.0) end if getcurub(form, var) > 1 setcurub!(form, var, 1.0) end elseif kind == Integer setcurlb!(form, var, ceil(getcurlb(form, var))) setcurub!(form, var, floor(getcurub(form, var))) end end """ setcurkind!(formulation, variable, kind::VarKind) setcurkind!(formulation, varid, kind::VarKind) Set the current kind of a variable in a formulation. If the variable is active and explicit, this change is buffered before application to the subsolver """ function setcurkind!(form::Formulation, var::Variable, kind::VarKind) var.curdata.kind = kind _setcurbounds_wrt_curkind!(form, var, kind) if isexplicit(form, var) && iscuractive(form, var) change_kind!(form.buffer, getid(var)) end return end setcurkind!(form::Formulation, varid::VarId, kind::VarKind) = setcurkind!(form, getvar(form, varid), kind) ## sense function _senseofvar(lb::Float64, ub::Float64) lb >= 0 && return Positive ub <= 0 && return Negative return Free end """ getperensense(formulation, varconstr) getperensense(formulation, varconstrid) Return the sense as defined by the user of a variable or a constraint in a formulation. Senses or a variable are (`enum VarSense`) `Positive`, `Negative`, and `Free`. Senses or a constraint are (`enum ConstrSense`) `Greater`, `Less`, and `Equal`. The perennial sense of a variable depends on its perennial bounds. """ function getperensense(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperensense(form, var) end getperensense(form::Formulation, var::Variable) = _senseofvar(getperenlb(form, var), getperenub(form, var)) function getperensense(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getperensense(form, constr) end getperensense(::Formulation, constr::Constraint) = constr.perendata.sense """ getcursense(formulation, varconstr) getcursense(formulation, varconstrid) Return the current sense of a variable or a constraint in a formulation. The current sense of a variable depends on its current bounds. """ function getcursense(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcursense(form, var) end getcursense(form::Formulation, var::Variable) = _senseofvar(getcurlb(form, var), getcurub(form, var)) function getcursense(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getcursense(form, constr) end getcursense(::Formulation, constr::Constraint) = constr.curdata.sense """ setperensense!(form, constr, sense) setperensense!(form, constrid, sense) Set the perennial sense of a constraint in a formulation. Change is propagated to the current sense of the constraint. **Warning** : if you set the sense of a single var constraint, make sure you perform bound propagation before calling the subsolver of the formulation. """ function setperensense!(form::Formulation, constr::Constraint, sense::ConstrSense) constr.perendata.sense = sense return setcursense!(form, constr, sense) end function setperensense!(form::Formulation, constrid::ConstrId, sense::ConstrSense) constr = getconstr(form, constrid) @assert !isnothing(constr) return setperensense!(form, constr, sense) end """ setcursense!(formulation, constr, sense::ConstrSense) setcursense!(formulation, constrid, sense::ConstrSense) Set the current sense of a constraint in a formulation. This method is not applicable to variables because the sense of a variable depends on its bounds. **Warning** : if you set the sense of a single var constraint, make sure you perform bound propagation before calling the subsolver of the formulation. """ function setcursense!(form::Formulation, constr::Constraint, sense::ConstrSense) constr.curdata.sense = sense if isexplicit(form, constr) change_rhs!(form.buffer, getid(constr)) # it's sense & rhs end return end function setcursense!(form::Formulation, constrid::ConstrId, sense::ConstrSense) constr = getconstr(form, constrid) @assert !isnothing(constr) return setcursense!(form, constr, sense) end ## inc_val """ getperenincval(formulation, varconstrid) getperenincval(formulation, varconstr) Return the incumbent value as defined by the user of a variable or a constraint in a formulation. The incumbent value is the primal value associated to a variable or the dual value associated to a constraint. """ function getperenincval(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getperenincval(form, var) end getperenincval(::Formulation, var::Variable) = var.perendata.inc_val function getperenincval(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getperenincval(form, constr) end getperenincval(::Formulation, constr::Constraint) = constr.perendata.inc_val """ getcurincval(formulation, varconstrid) getcurincval(formulation, varconstr) Return the current incumbent value of a variable or a constraint in a formulation. """ function getcurincval(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcurincval(form, var) end getcurincval(::Formulation, var::Variable) = var.curdata.inc_val function getcurincval(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getcurincval(form, constr) end getcurincval(::Formulation, constr::Constraint) = constr.curdata.inc_val """ setcurincval!(formulation, varconstrid, value::Real) Set the current incumbent value of a variable or a constraint in a formulation. """ setcurincval!(::Formulation, var::Variable, inc_val::Real) = var.curdata.inc_val = inc_val function setcurincval!(form::Formulation, varid::VarId, inc_val) var = getvar(form, varid) @assert !isnothing(var) return setcurincval!(form, var, inc_val) end setcurincval!(::Formulation, constr::Constraint, inc_val::Real) = constr.curdata.inc_val = inc_val function setcurincval!(form::Formulation, constrid::ConstrId, inc_val) constr = getconstr(form, constrid) @assert !isnothing(constr) return setcurincval!(form, constr, inc_val) end ## active """ isperenactive(formulation, varconstrid) isperenactive(formulation, varconstr) Return `true` if the variable or the constraint is active in the formulation; `false` otherwise. A variable (or a constraint) is active if it is used in the formulation. You can fake the deletion of the variable by deativate it. This allows you to keep the variable if you want to reactivate it later. """ function isperenactive(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return isperenactive(form, var) end isperenactive(::Formulation, var::Variable) = var.perendata.is_active function isperenactive(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) isperenactive(form, constr) end isperenactive(::Formulation, constr::Constraint) = constr.perendata.is_active """ iscuractive(formulation, varconstrid) iscuractive(formulation, varconstr) Return `true` if the variable or the constraint is currently active; `false` otherwise. """ function iscuractive(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return iscuractive(form, var) end iscuractive(::Formulation, var::Variable) = var.curdata.is_active function iscuractive(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return iscuractive(form, constr) end iscuractive(::Formulation, constr::Constraint) = constr.curdata.is_active ## activate! function _activate!(form::Formulation, varconstr::AbstractVarConstr) if isexplicit(form, varconstr) && !iscuractive(form, varconstr) add!(form.buffer, getid(varconstr)) end varconstr.curdata.is_active = true return end """ activate!(formulation, varconstrid) activate!(formulation, varconstr) Activate a variable or a constraint in a formulation. activate!(formulation, function) It is also possible to activate variables and constraints of a formulation such that `function(varconstrid)` returns `true`. """ function activate!(form::Formulation, constr::Constraint) _activate!(form, constr) for varid in constr.art_var_ids _activate!(form, getvar(form, varid)) end return end function activate!(form::Formulation, var::Variable) _activate!(form, var) return end function activate!(form::Formulation, varconstrid::Id{VC}) where {VC <: AbstractVarConstr} elem = getelem(form, varconstrid) @assert !isnothing(elem) return activate!(form, elem) end function activate!(form::Formulation, f::Function) for (varid, var) in getvars(form) if !iscuractive(form, varid) && f(varid) activate!(form, var) end end for (constrid, constr) in getconstrs(form) if !iscuractive(form, constrid) && f(constrid) activate!(form, constr) end end return end ## deactivate! function _deactivate!(form::Formulation, varconstr::AbstractVarConstr) if isexplicit(form, varconstr) && iscuractive(form, varconstr) remove!(form.buffer, getid(varconstr)) end varconstr.curdata.is_active = false return end """ deactivate!(formulation, varconstrid) deactivate!(formulation, varconstr) Deactivate a variable or a constraint in a formulation. deactivate!(formulation, function) It is also possible to deactivate variables and constraints such that `function(varconstrid)` returns `true`. """ function deactivate!(form::Formulation, constr::Constraint) _deactivate!(form, constr) for varid in constr.art_var_ids _deactivate!(form, getvar(form, varid)) end return end deactivate!(form::Formulation, var::Variable) = _deactivate!(form, var) function deactivate!(form::Formulation, varconstrid::Id{VC}) where {VC<:AbstractVarConstr} elem = getelem(form, varconstrid) @assert !isnothing(elem) return deactivate!(form, elem) end function deactivate!(form::Formulation, f::Function) for (varid, var) in getvars(form) if iscuractive(form, var) && f(varid) deactivate!(form, var) end end for (constrid, constr) in getconstrs(form) if iscuractive(form, constr) && f(constrid) deactivate!(form, constr) end end return end ## delete """ delete!(formulation, varconstr) delete!(formulation, varconstrid) Delete a variable or a constraint from a formulation. """ function Base.delete!(form::Formulation, var::Variable) varid = getid(var) definitive_deletion!(form.buffer, var) delete!(form.manager.vars, varid) return end function Base.delete!(form::Formulation, id::VarId) var = getvar(form, id) @assert !isnothing(var) return delete!(form, var) end function Base.delete!(form::Formulation, constr::Constraint) definitive_deletion!(form.buffer, constr) constrid = getid(constr) coefmatrix = getcoefmatrix(form) varids = VarId[] for (varid, _) in @view coefmatrix[constrid, :] push!(varids, varid) end for varid in varids coefmatrix[constrid, varid] = 0.0 end delete!(form.manager.constrs, constrid) return end function Base.delete!(form::Formulation, id::ConstrId) constr = getconstr(form, id) @assert !isnothing(constr) return delete!(form, constr) end ## explicit """ isexplicit(formulation, varconstr) isexplicit(formulation, varconstrid) Return `true` if a variable or a constraint is explicit in a formulation; `false` otherwise. """ function isexplicit(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return isexplicit(form, var) end isexplicit(::Formulation, var::Variable) = var.perendata.is_explicit function isexplicit(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return isexplicit(form, constr) end isexplicit(::Formulation, constr::Constraint) = constr.perendata.is_explicit ## name """ getname(formulation, varconstr) getname(formulation, varconstrid) Return the name of a variable or a constraint in a formulation. """ function getname(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return var.name end getname(::Formulation, var::Variable) = var.name function getname(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return constr.name end getname(::Formulation, constr::Constraint) = constr.name ## branching_priority """ getbranchingpriority(formulation, var) getbranchingpriority(formulation, varid) Return the branching priority of a variable """ function getbranchingpriority(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getbranchingpriority(form, var) end getbranchingpriority(::Formulation, var::Variable) = var.branching_priority """ getcustomdata(formulation, var) getcustomdata(formulation, varid) getcustomdata(formulation, constr) getcustomdata(formulation, constrid) Return the custom data of a variable or a constraint in a formulation. """ function getcustomdata(form::Formulation, varid::VarId) var = getvar(form, varid) @assert !isnothing(var) return getcustomdata(form, var) end getcustomdata(::Formulation, var::Variable) = var.custom_data function getcustomdata(form::Formulation, constrid::ConstrId) constr = getconstr(form, constrid) @assert !isnothing(constr) return getcustomdata(form, constr) end getcustomdata(::Formulation, constr::Constraint) = constr.custom_data # Reset (this method is used only in tests... @guimarqu doesn't know if we should keep it) """ reset!(form, var) reset!(form, varid) reset!(form, constr) reset!(form, constraint) doc todo """ function reset!(form::Formulation, var::Variable) setcurcost!(form, var, getperencost(form, var)) setcurlb!(form, var, getperenlb(form, var)) setcurub!(form, var, getperenub(form, var)) setcurkind!(form, var, getperenkind(form, var)) setcurincval!(form, var, getperenincval(form, var)) if isperenactive(form, var) activate!(form, var) else deactivate!(form, var) end return end reset!(form::Formulation, varid::VarId) = reset!(form, getvar(form, varid)) function reset!(form::Formulation, constr::Constraint) setcurrhs!(form, constr, getperenrhs(form, constr)) setcursense!(form, constr, getperensense(form, constr)) setcurincval!(form, constr , getperenincval(form, constr)) if isperenactive(form, constr) activate!(form, constr) else deactivate!(form, constr) end return end reset!(form::Formulation, constrid::ConstrId) = reset!(form, getconstr(form,constrid))
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2458
abstract type AbstractVarData <: AbstractVcData end mutable struct VarData <: AbstractVcData cost::Float64 lb::Float64 ub::Float64 kind::VarKind inc_val::Float64 is_active::Bool is_explicit::Bool is_in_partial_sol::Bool end """ VarData Information that defines a state of a variable. """ function VarData( ;cost::Float64 = 0.0, lb::Float64 = 0.0, ub::Float64 = Inf, kind::VarKind = Continuous, inc_val::Float64 = -1.0, is_active::Bool = true, is_explicit::Bool = true ) vc = VarData(cost, lb, ub, kind, inc_val, is_active, is_explicit, false) return vc end VarData(vd::VarData) = VarData( vd.cost, vd.lb, vd.ub, vd.kind, vd.inc_val, vd.is_active, vd.is_explicit, vd.is_in_partial_sol ) """ MoiVarRecord Structure to hold the pointers to the MOI representation of a Coluna Variable. """ mutable struct MoiVarRecord index::MoiVarIndex lower_bound::Union{Nothing, MoiVarLowerBound} upper_bound::Union{Nothing, MoiVarUpperBound} kind::MoiVarKind end function MoiVarRecord(;index::MoiVarIndex = MoiVarIndex()) return MoiVarRecord(index, MoiVarLowerBound(), MoiVarUpperBound(), MoiVarKind()) end getmoiindex(record::MoiVarRecord)::MoiVarIndex = record.index getlowerbound(record::MoiVarRecord) = record.lower_bound getupperbound(record::MoiVarRecord) = record.upper_bound getkind(record::MoiVarRecord) = record.kind setmoiindex!(record::MoiVarRecord, index::MoiVarIndex) = record.index = index setlowerbound!(record::MoiVarRecord, bound::MoiVarLowerBound) = record.lower_bound = bound setupperbound!(record::MoiVarRecord, bound::MoiVarUpperBound) = record.upper_bound = bound setkind!(record::MoiVarRecord, kind::MoiVarKind) = record.kind = kind """ Variable Representation of a variable in Coluna. """ mutable struct Variable <: AbstractVarConstr id::Id{Variable} name::String perendata::VarData curdata::VarData branching_priority::Float64 moirecord::MoiVarRecord custom_data::Union{Nothing, BD.AbstractCustomVarData} end const VarId = Id{Variable} getid(var::Variable) = var.id function Variable( id::VarId, name::String; var_data = VarData(), moi_index::MoiVarIndex = MoiVarIndex(), custom_data::Union{Nothing, BD.AbstractCustomVarData} = nothing, branching_priority = 1.0 ) return Variable( id, name, var_data, VarData(var_data), branching_priority, MoiVarRecord(index = moi_index), custom_data ) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4492
""" Coluna identifier of a `Variable` or a `Constraint`. The identifier is a subtype of `Integer` so we can use it as index of sparse arrays. It behaves like an integer (field `uid`) with additional information (other fields). It is composed by the following ids: 1. `uid`: unique id that is global to the Coluna instance (the integer) 2. `origin_form_uid`: unique id of the formulation where it was generated 3. `assigned_form_uid`: unique id of the formulation where it is assigned in the reformulation process For a JuMP variable/constraint the `origin_form_uid` is the original formulation while the `assigned_form_uid` is the subproblem formulation for a pure subproblem variable/constraint and the master for a pure master variable/constraint. For a variable/constraint generated during optimization, the `origin_form_uid` is the id of the formulation where it was created. For instance, the origin formulation of a master column is the subproblem for which the column is a solution and its assigned formulation is the master. """ struct Id{VC <: AbstractVarConstr} <: Integer duty::Duty{VC} uid::Int origin_form_uid::FormId assigned_form_uid::FormId custom_family_id::Int8 end function Id{VC}( duty::Duty{VC}, uid::Integer, origin_form_uid::Integer; assigned_form_uid::Integer = origin_form_uid, custom_family_id::Integer = -1 ) where {VC} return Id{VC}(duty, uid, origin_form_uid, assigned_form_uid, custom_family_id) end function Id{VC}( orig_id::Id{VC}; duty::Union{Nothing, Duty{VC}} = nothing, origin_form_uid::Union{Nothing, Integer} = nothing, assigned_form_uid::Union{Nothing, Integer} = nothing, custom_family_id::Union{Nothing, Integer} = nothing, ) where {VC} duty = isnothing(duty) ? orig_id.duty : duty origin_form_uid = isnothing(origin_form_uid) ? orig_id.origin_form_uid : origin_form_uid assigned_form_uid = isnothing(assigned_form_uid) ? orig_id.assigned_form_uid : assigned_form_uid custom_family_id = isnothing(custom_family_id) ? orig_id.custom_family_id : custom_family_id return Id{VC}(duty, orig_id.uid, origin_form_uid, assigned_form_uid, custom_family_id) end # Use of this method should be avoided as much as possible. # If you face a `VarId` or a `ConstrId` without any additional information, it can mean: # - the id does not exist but an integer of type Id was needed (e.g. size of sparse vector); # - information have been lost because of chain of converts (e.g. Id with info -> Int -> Id without info) Id{VC}(uid::Integer) where VC = Id{VC}(Duty{VC}(0), uid, -1, -1, -1) Base.hash(a::Id, h::UInt) = hash(a.uid, h) Base.zero(I::Type{Id{VC}}) where {VC} = I(0) Base.zero(::Id{VC}) where {VC} = Id{VC}(0) Base.one(I::Type{Id{VC}}) where {VC} = I(1) Base.typemax(I::Type{Id{VC}}) where {VC} = I(Coluna.MAX_NB_ELEMS) Base.isequal(a::Id{VC}, b::Id{VC}) where {VC} = isequal(a.uid, b.uid) Base.promote_rule(::Type{T}, ::Type{<:Id}) where {T<:Integer} = T Base.promote_rule(::Type{<:Id}, ::Type{T}) where {T<:Integer} = T Base.promote_rule(::Type{<:Id}, ::Type{<:Id}) = Int # Promotion mechanism will never call the following rule: # Base.promote_rule(::Type{I}, ::Type{I}) where {I<:Id} = Int32 # # The problem is that an Id is an integer with additional information and we # cannot generate additional information of a new id from the operation of two # existing ids. # As we want that all operations on ids results on operations on the uid, # we redefine the promotion mechanism for Ids so that operations on Ids return integer: Base.promote_type(::Type{I}, ::Type{I}) where {I<:Id} = Int Base.convert(::Type{Int}, id::I) where {I<:Id} = Int(id.uid) Base.convert(::Type{Int32}, id::I) where {I<:Id} = id.uid Base.:(<)(a::Id{VC}, b::Id{VC}) where {VC} = a.uid < b.uid Base.:(<=)(a::Id{VC}, b::Id{VC}) where {VC} = a.uid <= b.uid Base.:(==)(a::Id{VC}, b::Id{VC}) where {VC} = a.uid == b.uid Base.:(>)(a::Id{VC}, b::Id{VC}) where {VC} = a.uid > b.uid Base.:(>=)(a::Id{VC}, b::Id{VC}) where {VC} = a.uid >= b.uid ClB.getuid(id::Id) = id.uid # TODO: change name getduty(vcid::Id{VC}) where {VC} = vcid.duty getoriginformuid(id::Id) = id.origin_form_uid getassignedformuid(id::Id) = id.assigned_form_uid getsortuid(id::Id) = getuid(id) function Base.show(io::IO, id::Id{T}) where {T} print(io, T, "u", id.uid) end # Methods that Id needs to implement (otherwise error): Base.sub_with_overflow(a::I, b::I) where {I<:Id} = Base.sub_with_overflow(a.uid, b.uid)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2560
""" Exposes `@mustimplement` macro to help developers identifying API definitions. """ module MustImplement using Random """ IncompleteInterfaceError <: Exception Exception to be thrown when an interface function is called without default implementation. """ struct IncompleteInterfaceError <: Exception trait::String # Like the name of the interface func_signature::String end function Base.showerror(io::IO, e::IncompleteInterfaceError) msg = """ Incomplete implementation of interface $(e.trait). $(e.func_signature) not implemented. """ println(io, msg) return end """ @mustimplement "Interface name" f(a,b,c) = nothing Converts into a fallback for function `f(a,b,c)` that throws a `IncompleteInterfaceError`. """ macro mustimplement(interface_name, sig) if !(sig.head == :(=) && sig.args[1].head == :call && sig.args[2].head == :block) err_msg = """ Cannot generate fallback for function $(string(sig)). Got: - sig.head = $(sig.head) instead of :(=) - sig.args[1].head = $(sig.args[1].head) instead of :call - sig.args[2].head = $(sig.args[2].head) instead of :block """ error(err_msg) end sig = sig.args[1] # we only consider the call. str_interface_name = string(interface_name) fname = string(sig.args[1]) args = reduce(sig.args[2:end]; init = Union{String,Expr}[]) do collection, arg varname = if isa(arg, Symbol) # arg without type arg elseif isa(arg, Expr) && arg.head == :(::) # variable with its type if length(arg.args) == 1 # :(::Type) case varname = Symbol(randstring('a':'z', 24)) vartype = arg.args[1] arg.args = [varname, vartype] # change signature of the method varname elseif length(arg.args) == 2 # :(var::Type) case arg.args[1] else nothing end else nothing end if !isnothing(varname) push!(collection, "::", :(typeof($(esc(varname)))), ", ") end return collection end if length(args) > 0 pop!(args) end type_of_args_expr = Expr(:tuple, args...) return quote $(esc(sig)) = throw( IncompleteInterfaceError( $str_interface_name, string($fname, "(", $type_of_args_expr..., ")") ) ) end end export @mustimplement, IncompleteInterfaceError end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
48
module Tests include("Parser/Parser.jl") end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
29941
module Parser using Coluna, DynamicSparseArrays const CL = Coluna const ClMP = Coluna.MathProg const ClB = Coluna.ColunaBase const _KW_HEADER = Val{:header}() const _KW_MASTER = Val{:master}() const _KW_SUBPROBLEM = Val{:subproblem}() const _KW_SEPARATION = Val{:separation}() const _KW_BOUNDS = Val{:bounds}() const _KW_GLOBAL_BOUNDS = Val{:global_bounds}() const _KW_CONSTRAINTS = Val{:constraints}() const _KW_ORIGIN = Val{:origin}() const _KW_SP_SOLUTIONS = Val{:sp_solutions}() const _KW_SECTION = Dict( # _KW_MASTER "master" => _KW_MASTER, # _KW_SUBPROBLEM "dw_sp" => _KW_SUBPROBLEM, "sp" => _KW_SUBPROBLEM, # _KW_SEPARATION "benders_sp" => _KW_SEPARATION, # Integ "int" => ClMP.Integ, "integer" => ClMP.Integ, "integers" => ClMP.Integ, # Continuous "cont" => ClMP.Continuous, "continuous" => ClMP.Continuous, # Binary "bin" => ClMP.Binary, "binary" => ClMP.Binary, "binaries" => ClMP.Binary, # _KW_BOUNDS "bound" => _KW_BOUNDS, "bounds" => _KW_BOUNDS, # _KW_GLOBAL_BOUNDS "global_bound" => _KW_GLOBAL_BOUNDS, "global_bounds" => _KW_GLOBAL_BOUNDS, ) const _KW_SUBSECTION = Dict( # MaxSense "max" => CL.MaxSense, "maximize" => CL.MaxSense, "maximise" => CL.MaxSense, "maximum" => CL.MaxSense, # MinSense "min" => CL.MinSense, "minimize" => CL.MinSense, "minimise" => CL.MinSense, "minimum" => CL.MinSense, # _KW_CONSTRAINTS "subject to" => _KW_CONSTRAINTS, "such that" => _KW_CONSTRAINTS, "st" => _KW_CONSTRAINTS, "s.t." => _KW_CONSTRAINTS, "solutions" => _KW_SP_SOLUTIONS, # Origin of variables "origin" => _KW_ORIGIN, # MasterPureVar "pure" => ClMP.MasterPureVar, "pures" => ClMP.MasterPureVar, # MasterRepPricingVar "representative" => ClMP.MasterRepPricingVar, "representatives" => ClMP.MasterRepPricingVar, # DwSpPricingVar "pricing" => ClMP.DwSpPricingVar, # MasterArtVar "artificial" => ClMP.MasterArtVar, "artificials" => ClMP.MasterArtVar, # MasterColumns "columns" => ClMP.MasterCol, # MasterRepPricingSetupVar "pricing_setup" => ClMP.MasterRepPricingSetupVar, # Benders first stage variable "first_stage" => ClMP.MasterPureVar, "second_stage_cost" => ClMP.MasterBendSecondStageCostVar, # Benders second stage variable "second_stage" => ClMP.BendSpSepVar, "second_stage_artificial" => ClMP.BendSpSecondStageArtVar ) const _KW_CONSTR_DUTIES = Dict( "MasterConvexityConstr" => ClMP.MasterConvexityConstr, "BendTechConstr" => ClMP.BendSpTechnologicalConstr, ) const coeff_re = "\\d+(\\.\\d+)?" struct UndefObjectiveParserError <: Exception end export UndefObjectiveParserError struct UndefVarParserError <: Exception msg::String end export UndefVarParserError mutable struct ExprCache vars::Dict{String, Float64} constant::Float64 end mutable struct VarCache kind::ClMP.VarKind duty::ClMP.Duty lb::Float64 ub::Float64 global_lb::Float64 global_ub::Float64 end mutable struct ConstrCache lhs::ExprCache sense::ClMP.ConstrSense rhs::Float64 duty::Union{Nothing,ClMP.Duty} end mutable struct SolutionCache lhs::ExprCache col_name::String end mutable struct ProblemCache sense::Type{<:ClB.AbstractSense} objective::ExprCache constraints::Vector{ConstrCache} origin::Set{String} # names of variables. solutions::Vector{SolutionCache} generated_formulation::Union{Coluna.MathProg.Formulation,Nothing} end mutable struct ReadCache benders_sp_type::Bool dw_sp_type::Bool master::ProblemCache subproblems::Dict{Int64,ProblemCache} variables::Dict{String,VarCache} end function Base.showerror(io::IO, ::UndefObjectiveParserError) msg = "No objective function provided" println(io, msg) end function Base.showerror(io::IO, e::UndefVarParserError) println(io, e.msg) return end function ReadCache() return ReadCache( false, false, ProblemCache( CL.MinSense, ExprCache( Dict{String, Float64}(), 0.0 ), ConstrCache[], Set{String}(), SolutionCache[], nothing ), Dict{Int64,ProblemCache}(), Dict{String,VarCache}() ) end function _strip_identation(l::AbstractString) m = match(r"^(\s+)(.+)", l) if !isnothing(m) return m[2] end return l end function _strip_line(l::AbstractString) new_line = "" for m in eachmatch(r"[^\s]+", l) new_line = string(new_line, m.match) end return new_line end function _get_vars_list(l::AbstractString) vars = String[] for m in eachmatch(r"(\w+)", l) push!(vars, String(m[1])) end return vars end function _read_expression(l::AbstractString) line = _strip_line(l) vars = Dict{String, Float64}() constant = 0.0 first_m = match(Regex("^([+-])?($coeff_re)?\\*?([a-zA-Z]+\\w*)?(.*)"), line) # first element of expr if !isnothing(first_m) sign = isnothing(first_m[1]) ? "+" : first_m[1] # has a sign coeff = isnothing(first_m[2]) ? "1" : first_m[2] # has a coefficient cost = parse(Float64, string(sign, coeff)) vars[String(first_m[4])] = cost for m in eachmatch(Regex("([+-])($coeff_re)?\\*?([a-zA-Z]+\\w*)?"), first_m[5]) # rest of the elements coeff = isnothing(m[2]) ? "1" : m[2] cost = parse(Float64, string(m[1], coeff)) if isnothing(m[4]) constant += cost else vars[String(m[4])] = cost end end end return ExprCache(vars, constant) end function _read_constraint(l::AbstractString) line = _strip_line(l) m = match(Regex("(.+)(>=|<=|==)(-?$coeff_re)(\\{([a-zA-Z]+)\\})?"), line) if !isnothing(m) lhs = _read_expression(m[1]) sense = if m[2] == ">=" ClMP.Greater else if m[2] == "<=" ClMP.Less else ClMP.Equal end end rhs = parse(Float64, m[3]) duty = isnothing(m[6]) ? nothing : _KW_CONSTR_DUTIES[m[6]] return ConstrCache(lhs, sense, rhs, duty) end return nothing end function _read_solution(l::AbstractString) line = _strip_line(l) m = match(Regex("(.+)\\{([a-zA-Z_][a-zA-Z_0-9]*)\\}?"), line) if !isnothing(m) lhs = _read_expression(m[1]) col_name = m[2] return SolutionCache(lhs, col_name) end return nothing end function _read_bounds(l::AbstractString, r::Regex) line = _strip_line(l) vars = String[] bound1, bound2 = ("","") m = match(r, line) if !isnothing(m) vars = _get_vars_list(m[4]) # separate variables as "x_1, x_2" into a list [x_1, x_2] if !isnothing(m[1]) # has lower bound (nb <= var) or upper bound (nb >= var) bound1 = String(m[2]) end if !isnothing(m[5]) # has upper bound (var <= nb) or lower bound (var >= nb) bound2 = String(m[6]) end end return vars, bound1, bound2 end function read_master!(sense::Type{<:ClB.AbstractSense}, cache::ReadCache, line::AbstractString) obj = _read_expression(line) cache.master.sense = sense cache.master.objective = obj end function read_master!(::Val{:constraints}, cache::ReadCache, line::AbstractString) constr = _read_constraint(line) if !isnothing(constr) push!(cache.master.constraints, constr) end end read_master!(::Any, cache::ReadCache, line::AbstractString) = nothing function read_subproblem!(sense::Type{<:ClB.AbstractSense}, cache::ReadCache, line::AbstractString, nb_sp::Int64) obj = _read_expression(line) if haskey(cache.subproblems, nb_sp) cache.subproblems[nb_sp].sense = sense cache.subproblems[nb_sp].obj = obj else cache.subproblems[nb_sp] = ProblemCache(sense, obj, [], Set{String}(), [], nothing) end end function read_subproblem!(::Val{:constraints}, cache::ReadCache, line::AbstractString, nb_sp::Int64) constr = _read_constraint(line) if !isnothing(constr) if haskey(cache.subproblems, nb_sp) push!(cache.subproblems[nb_sp].constraints, constr) end end end function read_subproblem!(::Val{:origin}, cache::ReadCache, line::AbstractString, nb_sp::Int64) vars = _get_vars_list(line) for var in vars push!(cache.subproblems[nb_sp].origin, var) end return end function read_subproblem!(::Val{:sp_solutions}, cache::ReadCache, line::AbstractString, nb_sp::Int64) solution = _read_solution(line) if !isnothing(solution) push!(cache.subproblems[nb_sp].solutions, solution) end return end function read_bounds!(cache::ReadCache, line::AbstractString) vars = String[] if occursin("<=", line) less_r = Regex("(($coeff_re)<=)?([\\w,]+)(<=($coeff_re))?") vars, lb, ub = _read_bounds(line, less_r) end if occursin(">=", line) greater_r = Regex("(($coeff_re)>=)?([\\w,]+)(>=($coeff_re))?") vars, ub, lb = _read_bounds(line, greater_r) end for v in vars if haskey(cache.variables, v) if lb != "" cache.variables[v].lb = parse(Float64, lb) end if ub != "" cache.variables[v].ub = parse(Float64, ub) end end end end function read_global_bounds!(cache::ReadCache, line::AbstractString) vars = String[] if occursin("<=", line) less_r = Regex("(($coeff_re)<=)?([\\w,]+)(<=($coeff_re))?") vars, lb, ub = _read_bounds(line, less_r) end if occursin(">=", line) greater_r = Regex("(($coeff_re)>=)?([\\w,]+)(>=($coeff_re))?") vars, ub, lb = _read_bounds(line, greater_r) end for v in vars if haskey(cache.variables, v) if lb != "" cache.variables[v].global_lb = parse(Float64, lb) end if ub != "" cache.variables[v].global_ub = parse(Float64, ub) end end end end function read_variables!(kind::ClMP.VarKind, duty::ClMP.Duty, cache::ReadCache, line::AbstractString) vars = _get_vars_list(line) for v in vars cache.variables[v] = VarCache(kind, duty, -Inf, Inf, -Inf, Inf) end end read_variables!(::Any, ::Any, ::ReadCache, ::AbstractString) = nothing function create_subproblems!(::Val{:subproblem}, env::Env{ClMP.VarId}, cache::ReadCache, ::Nothing) i = 1 constraints = ClMP.Constraint[] subproblems = ClMP.Formulation{ClMP.DwSp}[] all_spvars = Dict{String, Tuple{ClMP.Variable, ClMP.Formulation{ClMP.DwSp}}}() for (_, sp) in cache.subproblems spform = nothing for (varid, cost) in sp.objective.vars if haskey(cache.variables, varid) var = cache.variables[varid] if var.duty <= ClMP.DwSpPricingVar || var.duty <= ClMP.MasterRepPricingVar || var.duty <= ClMP.MasterRepPricingSetupVar if isnothing(spform) spform = ClMP.create_formulation!( env, ClMP.DwSp(nothing, nothing, nothing, ClMP.Integ); obj_sense = sp.sense ) sp.generated_formulation = spform end duty = ClMP.DwSpPricingVar if var.duty <= ClMP.MasterRepPricingSetupVar duty = ClMP.DwSpSetupVar end v = ClMP.setvar!(spform, varid, duty; lb = var.lb, ub = var.ub, kind = var.kind) if var.duty <= ClMP.DwSpSetupVar spform.duty_data.setup_var = ClMP.getid(v) end ClMP.setperencost!(spform, v, cost) all_spvars[varid] = (v, spform) end else throw(UndefVarParserError("Variable $varid duty and/or kind not defined")) end end for constr in sp.constraints members = Dict{Coluna.MathProg.VarId,Float64}() for (varid, coeff) in constr.lhs.vars if !iszero(coeff) members[ClMP.getid(all_spvars[varid][1])] = coeff end end c = ClMP.setconstr!(spform, "sp_c$i", ClMP.DwSpPureConstr; rhs = constr.rhs, sense = constr.sense, members = members) push!(constraints, c) i += 1 end push!(subproblems, spform) end return subproblems, all_spvars, constraints end function create_subproblems!(::Val{:separation}, env::Env{ClMP.VarId}, cache::ReadCache, master, mastervars) i = 1 constraints = ClMP.Constraint[] subproblems = ClMP.Formulation{ClMP.BendersSp}[] all_spvars = Dict{String, Tuple{ClMP.Variable, ClMP.Formulation{ClMP.BendersSp}}}() for (_, sp) in cache.subproblems spform = ClMP.create_formulation!( env, ClMP.BendersSp(); obj_sense = sp.sense ) for (varid, cost) in sp.objective.vars if haskey(cache.variables, varid) var = cache.variables[varid] if var.duty <= ClMP.BendSpSecondStageArtVar || var.duty <= ClMP.BendSpSepVar explicit = true duty = var.duty v = ClMP.setvar!(spform, varid, duty; lb = var.lb, ub = var.ub, kind = var.kind, is_explicit = explicit) ClMP.setperencost!(spform, v, cost) all_spvars[varid] = (v, spform) end if var.duty <= ClMP.MasterPureVar || var.duty <= ClMP.MasterBendSecondStageCostVar if var.duty <= ClMP.MasterPureVar duty = ClMP.BendSpFirstStageRepVar explicit = false end if var.duty <= ClMP.MasterBendSecondStageCostVar duty = ClMP.BendSpCostRepVar explicit = false end master_var = mastervars[varid] v = ClMP.clonevar!(master, spform, master, master_var, duty; cost = ClMP.getcurcost(master, master_var), is_explicit = false) all_spvars[varid] = (v, spform) if var.duty <= ClMP.MasterBendSecondStageCostVar spform.duty_data.second_stage_cost_var = ClMP.getid(v) end end else throw(UndefVarParserError("Variable $varid duty and/or kind not defined")) end end for constr in sp.constraints duty = ClMP.BendSpPureConstr if !isnothing(constr.duty) duty = constr.duty @assert duty <= ClMP.BendSpTechnologicalConstr end members = Dict{Coluna.MathProg.VarId,Float64}() for (varid, coeff) in constr.lhs.vars if !iszero(coeff) members[ClMP.getid(all_spvars[varid][1])] = coeff end end c = ClMP.setconstr!(spform, "sp_c$i", duty; rhs = constr.rhs, sense = constr.sense, members = members) push!(constraints, c) i += 1 end push!(subproblems, spform) end return subproblems, all_spvars, constraints end function _get_orig_spid_of_col(cache::ReadCache, varname::String) for (spid, sp) in cache.subproblems if varname ∈ sp.origin return spid end end return nothing end function _get_orig_sp_of_col(cache::ReadCache, varname::String, default) # find the subproblem th id = _get_orig_spid_of_col(cache, varname) if !isnothing(id) return cache.subproblems[id].generated_formulation end return default end function add_dw_master_vars!(master::ClMP.Formulation, master_duty, all_spvars::Dict, cache::ReadCache) mastervars = Dict{String, ClMP.Variable}() for (varid, cost) in cache.master.objective.vars if haskey(cache.variables, varid) var_cache = cache.variables[varid] if var_cache.duty <= ClMP.AbstractOriginMasterVar || var_cache.duty <= ClMP.AbstractAddedMasterVar if var_cache.duty <= ClMP.MasterCol origin_sp = _get_orig_sp_of_col(cache, varid, master) v = ClMP.setvar!( master, varid, var_cache.duty; lb = var_cache.lb, ub = var_cache.ub, kind = ClMP.Integ, is_explicit = true, origin = origin_sp ) else is_explicit = !(var_cache.duty <= ClMP.AbstractImplicitMasterVar) v = ClMP.setvar!( master, varid, var_cache.duty; lb = var_cache.lb, ub = var_cache.ub, kind = var_cache.kind, is_explicit = is_explicit ) end else if haskey(all_spvars, varid) var, sp = all_spvars[varid] duty = ClMP.MasterRepPricingVar explicit = false if ClMP.getduty(ClMP.getid(var)) <= ClMP.DwSpSetupVar duty = ClMP.MasterRepPricingSetupVar elseif ClMP.getduty(ClMP.getid(var)) <= ClMP.BendSpFirstStageRepVar duty = ClMP.MasterPureVar explicit = true end lb, ub, kind = if duty == ClMP.MasterRepPricingVar # the representative of a binary variable in the master is integer in general mast_kind = ClMP.getperenkind(sp, var) == ClMP.Continuous ? ClMP.Continuous : ClMP.Integ var_cache.global_lb, var_cache.global_ub, mast_kind else ClMP.getperenlb(sp, var), ClMP.getperenub(sp, var), ClMP.getperenkind(sp, var) end v = ClMP.clonevar!( sp, master, sp, var, duty; cost = ClMP.getcurcost(sp, var), is_explicit = explicit, lb = lb, ub = ub, kind = kind ) else throw(UndefVarParserError("Variable $varid not present in any subproblem")) end end ClMP.setperencost!(master, v, cost) mastervars[varid] = v else throw(UndefVarParserError("Variable $varid duty and/or kind not defined")) end end return mastervars end function add_master_columns!(master::ClMP.Formulation, all_spvars::Dict, cache::ReadCache) for (_, sp) in cache.subproblems #pool = ClMP.get_primal_sol_pool(spform) for cache_solution in sp.solutions isempty(cache_solution.lhs.vars) && continue vars = ClMP.VarId[] vals = Float64[] for (varid, coeff) in cache_solution.lhs.vars if !iszero(coeff) push!(vars, ClMP.getid(all_spvars[varid][1])) push!(vals, coeff) end end spform = sp.generated_formulation sp_sol = ClMP.PrimalSolution(spform, vars, vals, 0.0, ClMP.FEASIBLE_SOL) ClMP.insert_column!(master, sp_sol, cache_solution.col_name; id_as_name_suffix=false) end end end function add_bend_master_vars!(master::ClMP.Formulation, master_duty, cache::ReadCache) mastervars = Dict{String, ClMP.Variable}() for (varid, cost) in cache.master.objective.vars if haskey(cache.variables, varid) var = cache.variables[varid] v = ClMP.setvar!(master, varid, var.duty; lb = var.lb, ub = var.ub, kind = var.kind, is_explicit = true) ClMP.setperencost!(master, v, cost) mastervars[varid] = v else throw(UndefVarParserError("Variable $varid duty and/or kind not defined")) end end return mastervars end function add_master_constraints!(subproblems, master::ClMP.Formulation, mastervars::Dict{String, ClMP.Variable}, constraints::Vector{ClMP.Constraint}, cache::ReadCache) #create master constraints i = 1 for constr in cache.master.constraints members = Dict{ClMP.VarId, Float64}() constr_duty = ClMP.MasterPureConstr if !isnothing(constr.duty) constr_duty = constr.duty end for (varid, coeff) in constr.lhs.vars if haskey(cache.variables, varid) var = cache.variables[varid] if var.duty <= ClMP.DwSpPricingVar || var.duty <= ClMP.MasterRepPricingVar # check if should be a MasterMixedConstr constr_duty = ClMP.MasterMixedConstr end if haskey(mastervars, varid) if !iszero(coeff) push!(members, ClMP.getid(mastervars[varid]) => coeff) end else throw(UndefVarParserError("Variable $varid not present in objective function")) end else throw(UndefVarParserError("Variable $varid duty and/or kind not defined")) end end c = ClMP.setconstr!(master, "c$i", constr_duty; rhs = constr.rhs, sense = constr.sense, members = members) if constr_duty <= ClMP.MasterConvexityConstr setup_var_id = collect(keys(filter(x -> ClMP.getduty(x[1]) <= ClMP.MasterRepPricingSetupVar, members)))[1] spform = collect(values(filter(sp -> haskey(sp, setup_var_id), subproblems)))[1] # dw pricing sps if constr.sense == ClMP.Less spform.duty_data.upper_multiplicity_constr_id = ClMP.getid(c) elseif constr.sense == ClMP.Greater spform.duty_data.lower_multiplicity_constr_id = ClMP.getid(c) else throw(UndefConstraintParserError("Convexity constraint $c must be <= or >=")) end end push!(constraints, c) i += 1 end end function reformfromcache(cache::ReadCache) if isempty(cache.master.objective.vars) throw(UndefObjectiveParserError()) end if isempty(cache.variables) throw(UndefVarParserError("No variable duty and kind defined")) end env = Env{ClMP.VarId}(CL.Params()) dec = cache.benders_sp_type ? Val(:separation) : Val(:subproblem) master_duty = cache.benders_sp_type ? ClMP.BendersMaster() : ClMP.DwMaster() dw_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.DwSp}}() benders_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.BendersSp}}() origform = ClMP.create_formulation!( env, ClMP.Original(); obj_sense = cache.master.sense, ) # Create master first. master = ClMP.create_formulation!( env, master_duty; obj_sense = cache.master.sense, ) # ugly trick here. dw_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.DwSp}}() benders_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.BendersSp}}() reform = ClMP.Reformulation(env, origform, master, dw_sps, benders_sps) master.parent_formulation = reform # Populate master & create subproblems then. if cache.benders_sp_type mastervars = add_bend_master_vars!(master, master_duty, cache) ClMP.setobjconst!(master, cache.master.objective.constant) subproblems, all_spvars, constraints = create_subproblems!(dec, env, cache, master, mastervars) for sp in subproblems reform.benders_sep_subprs[ClMP.getuid(sp)] = sp end add_master_constraints!(subproblems, master, mastervars, constraints, cache) else subproblems, all_spvars, constraints = create_subproblems!(dec, env, cache, nothing) for sp in subproblems reform.dw_pricing_subprs[ClMP.getuid(sp)] = sp end mastervars = add_dw_master_vars!(master, master_duty, all_spvars, cache) ClMP.setobjconst!(master, cache.master.objective.constant) add_master_constraints!(subproblems, master, mastervars, constraints, cache) end for sp in subproblems sp.parent_formulation = master closefillmode!(ClMP.getcoefmatrix(sp)) end closefillmode!(ClMP.getcoefmatrix(master)) if !cache.benders_sp_type add_master_columns!(master, all_spvars, cache) end return env, master, subproblems, constraints, reform end function reformfromstring(s::String) lines = split(s, "\n", keepempty=false) cache = ReadCache() nb_subproblems = 0 nb_separations = 0 section = _KW_HEADER sub_section = _KW_HEADER for l in lines line = _strip_identation(l) lower_line = lowercase(line) if haskey(_KW_SECTION, lower_line) section = _KW_SECTION[lower_line] if section == _KW_SUBPROBLEM || section == _KW_SEPARATION nb_subproblems += 1 end if section == _KW_SUBPROBLEM cache.dw_sp_type = true @assert !cache.benders_sp_type end if section == _KW_SEPARATION cache.benders_sp_type = true @assert !cache.dw_sp_type end continue end if haskey(_KW_SUBSECTION, lower_line) sub_section = _KW_SUBSECTION[lower_line] continue end if section == _KW_MASTER read_master!(sub_section, cache, line) continue end if section == _KW_SUBPROBLEM || section == _KW_SEPARATION read_subproblem!(sub_section, cache, line, nb_subproblems) continue end if section == _KW_BOUNDS read_bounds!(cache, line) continue end if section == _KW_GLOBAL_BOUNDS read_global_bounds!(cache, line) continue end read_variables!(section, sub_section, cache, line) end env, master, subproblems, constraints, reform = reformfromcache(cache) return env, master, subproblems, constraints, reform end export reformfromstring end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2790
# This module provide an interface to implement tree search algorithms and default # implementations of the tree search algorithm for some explore strategies. module TreeSearch using DataStructures !true && include("../MustImplement/MustImplement.jl") # linter using ..MustImplement !true && include("../interface.jl") # linter using ..AlgoAPI # Interface to implement a tree search algorithm. """ Contains the definition of the problem tackled by the tree search algorithm and how the nodes and transitions of the tree search space will be explored. """ abstract type AbstractSearchSpace end "Algorithm that chooses next node to evaluated in the tree search algorithm." abstract type AbstractExploreStrategy end "A subspace obtained by successive divisions of the search space." abstract type AbstractNode end # The definition of a tree search algorithm is based on three concepts. "Returns the type of search space depending on the tree-search algorithm and its parameters." @mustimplement "TreeSearch" search_space_type(::AlgoAPI.AbstractAlgorithm) = nothing "Creates and returns the search space of a tree search algorithm, its model, and its input." @mustimplement "TreeSearch" new_space(::Type{<:AbstractSearchSpace}, alg, model, input) = nothing "Creates and returns the root node of a search space." @mustimplement "TreeSearch" new_root(::AbstractSearchSpace, input) = nothing "Returns the parent of a node; `nothing` if the node is the root." @mustimplement "Node" get_parent(::AbstractNode) = nothing "Returns the priority of the node depending on the explore strategy." @mustimplement "Node" get_priority(::AbstractExploreStrategy, ::AbstractNode) = nothing "Returns the conquer output if the conquer was already run for this node, otherwise returns nothing" get_conquer_output(::AbstractNode) = nothing ##### Additional methods for the node interface (needed by conquer) ## TODO: move outside TreeSearch module. @mustimplement "Node" set_records!(::AbstractNode, records) = nothing "Returns a `String` to display the branching constraint." @mustimplement "Node" get_branch_description(::AbstractNode) = nothing # printer "Returns `true` is the node is root; `false` otherwise." @mustimplement "Node" isroot(::AbstractNode) = nothing # BaB implementation "Evaluate and generate children. This method has a specific implementation for Coluna." @mustimplement "TreeSearch" children(sp, n, env) = nothing "Returns true if stopping criteria are met; false otherwise." @mustimplement "TreeSearch" stop(::AbstractSearchSpace, untreated_nodes) = nothing "Returns the output of the tree search algorithm." @mustimplement "TreeSearch" tree_search_output(::AbstractSearchSpace) = nothing # Default implementations for some explore strategies. include("explore.jl") end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1703
""" Explore the tree search space with a depth-first strategy. The next visited node is the last one pushed in the stack of unexplored nodes. """ struct DepthFirstStrategy <: AbstractExploreStrategy end abstract type AbstractBestFirstSearch <: AbstractExploreStrategy end """ Explore the tree search space with a best-first strategy. The next visited node is the one with the highest local dual bound. """ struct BestDualBoundStrategy <: AbstractBestFirstSearch end "Generic implementation of the tree search algorithm for a given explore strategy." @mustimplement "TreeSearch" tree_search(s::AbstractExploreStrategy, space, env, input) = nothing function tree_search(::DepthFirstStrategy, space, env, input) root_node = new_root(space, input) stack = Stack{typeof(root_node)}() push!(stack, root_node) # it is important to call `stop()` function first, as it may update `space` while !stop(space, stack) && !isempty(stack) current = pop!(stack) for child in children(space, current, env) push!(stack, child) end end return TreeSearch.tree_search_output(space) end function tree_search(strategy::AbstractBestFirstSearch, space, env, input) root_node = new_root(space, input) pq = PriorityQueue{typeof(root_node), Float64}() enqueue!(pq, root_node, get_priority(strategy, root_node)) # it is important to call `stop()` function first, as it may update `space` while !stop(space, pq) && !isempty(pq) current = dequeue!(pq) for child in children(space, current, env) enqueue!(pq, child, get_priority(strategy, child)) end end return TreeSearch.tree_search_output(space) end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3046
module ColunaTests using Base.CoreLogging: error using DynamicSparseArrays, SparseArrays, Coluna, TOML using ReTest, GLPK, ColunaDemos, JuMP, BlockDecomposition, Random, MathOptInterface, MathOptInterface.Utilities, Base.CoreLogging, Logging global_logger(ConsoleLogger(stderr, LogLevel(0))) const MOI = MathOptInterface const MOIU = MOI.Utilities const MOIT = MOI.Test const MOIB = MOI.Bridges const CleverDicts = MOI.Utilities.CleverDicts const CL = Coluna const ClD = ColunaDemos const BD = BlockDecomposition const ClB = Coluna.ColunaBase const ClMP = Coluna.MathProg const ClA = Coluna.Algorithm rng = MersenneTwister(1234123) include("parser.jl") @testset "Version" begin coluna_ver = Coluna.version() toml_ver = VersionNumber( TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml"))["version"] ) @test coluna_ver == toml_ver end ######################################################################################## # Unit tests ######################################################################################## for submodule in ["MustImplement", "ColunaBase", "MathProg", "Algorithm"] dirpath = joinpath(@__DIR__, "unit", submodule) for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end end include(joinpath(@__DIR__, "unit", "parser.jl")) ######################################################################################## # Integration tests ######################################################################################## dirpath = joinpath(@__DIR__, "integration") for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end # ######################################################################################## # # MOI integration tests # ######################################################################################## @testset "MOI integration" begin include("MathOptInterface/MOI_wrapper.jl") end ######################################################################################## # E2E tests ######################################################################################## dirpath = joinpath(@__DIR__, "e2e") for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end # ######################################################################################## # # Bugfixes tests # ######################################################################################## include("bugfixes.jl") ######################################################################################## # Other tests ######################################################################################## dirpath = joinpath(@__DIR__, "old") for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
18164
@testset "Bug fixes" begin @testset "Issue 425" begin # Issue #425 # When the user does not provide decomposition, Coluna should optimize the # original formulation. # NOTE: this test could be deleted because in MOI integration tests, Coluna # optimizes the original formulation when there is no decomposition. coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveIpForm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model=true) @variable(model, x) @constraint(model, x <= 1) @objective(model, Max, x) optimize!(model) @test JuMP.objective_value(model) == 1.0 @test JuMP.termination_status(model) == MOI.OPTIMAL end @testset "empty! empties the Problem" begin coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveIpForm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model=true) @variable(model, x) @constraint(model, x <= 1) @objective(model, Max, x) optimize!(model) @test JuMP.objective_value(model) == 1.0 @test JuMP.termination_status(model) == MOI.OPTIMAL empty!(model) @variable(model, y) @constraint(model, y <= 2) @objective(model, Max, y) optimize!(model) @test JuMP.objective_value(model) == 2.0 @test JuMP.termination_status(model) == MOI.OPTIMAL end @testset "Decomposition with constant in objective" begin nb_machines = 4 nb_jobs = 30 c = [12.7 22.5 8.9 20.8 13.6 12.4 24.8 19.1 11.5 17.4 24.7 6.8 21.7 14.3 10.5 15.2 14.3 12.6 9.2 20.8 11.7 17.3 9.2 20.3 11.4 6.2 13.8 10.0 20.9 20.6; 19.1 24.8 24.4 23.6 16.1 20.6 15.0 9.5 7.9 11.3 22.6 8.0 21.5 14.7 23.2 19.7 19.5 7.2 6.4 23.2 8.1 13.6 24.6 15.6 22.3 8.8 19.1 18.4 22.9 8.0; 18.6 14.1 22.7 9.9 24.2 24.5 20.8 12.9 17.7 11.9 18.7 10.1 9.1 8.9 7.7 16.6 8.3 15.9 24.3 18.6 21.1 7.5 16.8 20.9 8.9 15.2 15.7 12.7 20.8 10.4; 13.1 16.2 16.8 16.7 9.0 16.9 17.9 12.1 17.5 22.0 19.9 14.6 18.2 19.6 24.2 12.9 11.3 7.5 6.5 11.3 7.8 13.8 20.7 16.8 23.6 19.1 16.8 19.3 12.5 11.0] w = [61 70 57 82 51 74 98 64 86 80 69 79 60 76 78 71 50 99 92 83 53 91 68 61 63 97 91 77 68 80; 50 57 61 83 81 79 63 99 82 59 83 91 59 99 91 75 66 100 69 60 87 98 78 62 90 89 67 87 65 100; 91 81 66 63 59 81 87 90 65 55 57 68 92 91 86 74 80 89 95 57 55 96 77 60 55 57 56 67 81 52; 62 79 73 60 75 66 68 99 69 60 56 100 67 68 54 66 50 56 70 56 72 62 85 70 100 57 96 69 65 50] Q = [1020 1460 1530 1190] coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm() # default BCP ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ) @axis(M, 1:nb_machines) J = 1:nb_jobs model = BlockModel(coluna) @variable(model, x[m in M, j in J], Bin) @constraint(model, cov[j in J], sum(x[m, j] for m in M) >= 1) @constraint(model, knp[m in M], sum(w[m, j] * x[m, j] for j in J) <= Q[m]) @objective(model, Min, sum(c[m, j] * x[m, j] for m in M, j in J) + 2) @dantzig_wolfe_decomposition(model, decomposition, M) optimize!(model) @test objective_value(model) ≈ 307.5 + 2 end @testset "Issue 424 - solve empty model." begin # Issue #424 # - If you try to solve an empty model with Coluna using a SolveIpForm or SolveLpForm # as top solver, the objective value will be 0. # - If you try to solve an empty model using TreeSearchAlgorithm, then Coluna will # throw an error because since there is no decomposition, there is no reformulation # and TreeSearchAlgorithm must be run on a reformulation. coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveIpForm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) optimize!(model) @test JuMP.objective_value(model) == 0 coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveLpForm(get_ip_primal_sol=true)), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) optimize!(model) @test JuMP.objective_value(model) == 0 coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm() ), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) @test_throws ClB.IncompleteInterfaceError optimize!(model) end @testset "Optimize twice (no reformulation + direct model)" begin # no reformulation + direct model coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveIpForm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model=true) @variable(model, x) @constraint(model, x <= 1) @objective(model, Max, x) optimize!(model) @test JuMP.objective_value(model) == 1 optimize!(model) @test JuMP.objective_value(model) == 1 end @testset "Optimize twice (no reformulation + no direct model)" begin coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.SolveIpForm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) @variable(model, x) @constraint(model, x <= 1) @objective(model, Max, x) optimize!(model) @test JuMP.objective_value(model) == 1 optimize!(model) @test JuMP.objective_value(model) == 1 end @testset "Optimize twice (reformulation + direct model)" begin data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.TreeSearchAlgorithm()), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 end @testset "Optimize twice (reformulation + no direct model)" begin coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.TreeSearchAlgorithm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) data = ClD.GeneralizedAssignment.data("play2.txt") @axis(M, data.machines) @variable(model, x[m in M, j in data.jobs], Bin) @constraint(model, cov[j in data.jobs], sum(x[m,j] for m in M) >= 1) @constraint(model, knp[m in M], sum(data.weight[j,m] * x[m,j] for j in data.jobs) <= data.capacity[m]) @objective(model, Min, sum(data.cost[j,m] * x[m,j] for m in M, j in data.jobs)) @dantzig_wolfe_decomposition(model, dec, M) subproblems = BlockDecomposition.getsubproblems(dec) specify!.(subproblems, lower_multiplicity=0) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 end @testset "Use column generation as solver" begin data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.TreeSearchAlgorithm( maxnumnodes=1, )), "default_optimizer" => GLPK.Optimizer ) treesearch, x, dec = ClD.GeneralizedAssignment.model_with_penalties(data, coluna) optimize!(treesearch) coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params(solver=ClA.ColumnGeneration()), "default_optimizer" => GLPK.Optimizer ) colgen, x, dec = ClD.GeneralizedAssignment.model_with_penalties(data, coluna) optimize!(colgen) @test MOI.get(treesearch, MOI.ObjectiveBound()) ≈ MOI.get(colgen, MOI.ObjectiveBound()) end @testset "Branching file completion" begin function get_number_of_nodes_in_branching_tree_file(filename::String) filepath = string(@__DIR__, "/", filename) existing_nodes = Set() open(filepath) do file for line in eachline(file) for pieceofdata in split(line) regex_match = match(r"n\d+", pieceofdata) if regex_match !== nothing regex_match = regex_match.match push!(existing_nodes, parse(Int, regex_match[2:length(regex_match)])) end end end end return length(existing_nodes) end data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.TreeSearchAlgorithm( branchingtreefile="playgap.dot" )), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) JuMP.optimize!(model) @test_broken MOI.get(model, MOI.NodeCount()) == get_number_of_nodes_in_branching_tree_file("playgap.dot") @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL end @testset "Issue 550 - continuous variables in subproblem" begin # Simple min cost flow problem # # n1 ------ f[1] -------> n3 # \ ^ # \ / # -f[2]-> n2 --f[3]-- # # n1: demand = -10.1 # n2: demand = 0 # n3: demand = 10.1 # f[1]: cost = 0, capacity = 8.5, in mip model only integer flow allowed # f[2]: cost = 50, (capacity = 5 can be activated by removing comment at constraint, line 93) # f[3]: cost = 50 # # Correct solution for non-integer f[1] # f[1] = 8.5, f[2] = f[3] = 1.6, cost = 8.5*0 + 1.6*2*50 = 160 # Correct solution for integer f[1] # f[1] = 8, f[2] = f[3] = 2.1, cost = 8.5*0 + 2.1*2*50 = 210 # function solve_flow_model(f1_integer, coluna) @axis(M, 1:1) model = BlockDecomposition.BlockModel(coluna, direct_model=true) @variable(model, f[1:3, m in M] >= 0) if f1_integer JuMP.set_integer(f[1, 1]) end @constraint(model, n1[m in M], f[1,m] + f[2,m] == 10.1) @constraint(model, n2[m in M], f[2,m] == f[3,m]) @constraint(model, n3[m in M], f[1,m] + f[3,m] == 10.1) @constraint(model, cap1, sum(f[1,m] for m in M) <= 8.5) #@JuMP.constraint(model, cap2, sum(f[2,m] for m in M) <= 5) @objective(model, Min, 50 * f[2,1] + 50 * f[3,1]) @dantzig_wolfe_decomposition(model, decomposition, M) subproblems = BlockDecomposition.getsubproblems(decomposition) BlockDecomposition.specify!.(subproblems, lower_multiplicity=1, upper_multiplicity=1) optimize!(model) if f1_integer @test termination_status(model) == MOI.OPTIMAL @test primal_status(model) == MOI.FEASIBLE_POINT @test objective_value(model) ≈ 210 @test value(f[1,1]) ≈ 8 @test value(f[2,1]) ≈ 2.1 @test value(f[3,1]) ≈ 2.1 else @test termination_status(model) == MOI.OPTIMAL @test primal_status(model) == MOI.FEASIBLE_POINT @test objective_value(model) ≈ 160 @test value(f[1,1]) ≈ 8.5 @test value(f[2,1]) ≈ 1.6 @test value(f[3,1]) ≈ 1.6 end end coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm(), ), "default_optimizer" => GLPK.Optimizer ); solve_flow_model(false, coluna) solve_flow_model(true, coluna) end @testset "Issue 553 - unsupported anonymous variables and constraints" begin coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.TreeSearchAlgorithm()), "default_optimizer" => GLPK.Optimizer ) function anonymous_var_model!(m) y = @variable(m, binary = true) @variable(m, 0 <= x[D] <= 1) @constraint(m, sp[d in D], x[d] <= 0.85) @objective(m, Min, sum(x) + y) @dantzig_wolfe_decomposition(m, dec, D) end function anonymous_constr_model!(m) @variable(m, 0 <= x[D] <= 1) sp = @constraint(m, [d in D], x[d] <= 0.85) @objective(m, Min, sum(x)) @dantzig_wolfe_decomposition(m, dec, D) end @axis(D, 1:5) m = BlockModel(coluna, direct_model=true) anonymous_var_model!(m) @test_throws ErrorException optimize!(m) m = BlockModel(coluna) anonymous_var_model!(m) # The variable is annotated in the master. # @test_throws ErrorException optimize!(m) m = BlockModel(coluna, direct_model=true) anonymous_constr_model!(m) @test_throws ErrorException optimize!(m) m = BlockModel(coluna) anonymous_constr_model!(m) @test_throws ErrorException optimize!(m) end @testset "Issue 554 - Simple Benders" begin # Test in Min sense coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.BendersCutGeneration() ), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model=true) @axis(S, 1:2) @variable(model, x, Bin) @variable(model, y[i in S], Bin) @constraint(model, purefirststage, x <= 1) @constraint(model, tech1[S[1]], y[S[1]] <= x) @constraint(model, tech2[S[2]], y[S[2]] <= 1-x) @constraint(model, puresecondstage[s in S], y[s] <= 1) @objective(model, Min, -sum(y)) @benders_decomposition(model, decomposition, S) optimize!(model) @test objective_value(model) == -1.0 # Test in Max sense coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.BendersCutGeneration() ), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model=true) @axis(S, 1:2) @variable(model, x, Bin) @variable(model, y[i in S], Bin) @constraint(model, purefirststage, x <= 1) @constraint(model, tech1[S[1]], y[S[1]] <= x) @constraint(model, tech2[S[2]], y[S[2]] <= 1-x) @constraint(model, puresecondstage[s in S], y[s] <= 1) @objective(model, Max, +sum(y)) @benders_decomposition(model, decomposition, S) optimize!(model) @test_broken objective_value(model) == 1.0 end @testset "Issue 591 - get dual of generated cuts" begin coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver=Coluna.Algorithm.TreeSearchAlgorithm(), ), "default_optimizer" => GLPK.Optimizer ); model = BlockModel(coluna, direct_model=true) @axis(I, 1:7) @variable(model, 0<= x[i in I] <= 1) # subproblem variables & constraints @variable(model, y[1:2] >= 0) # master @variable(model, u >=0) # master @constraint(model, xCon, sum(x[i] for i = I) <= 1) @constraint(model, yCon, sum(y[i] for i = 1:2) == 1) @constraint(model, initCon1, u >= 0.9*y[1] + y[2] - x[1] - x[2] - x[3]) @constraint(model, initCon2, u >= y[1] + y[2] - x[7]) @objective(model, Min, u) callback_called = false constrid = nothing function my_callback_function(cbdata) if !callback_called con = @build_constraint(u >= y[1] + 0.9*y[2] - x[5] - x[6]) constrid = MOI.submit(model, MOI.LazyConstraint(cbdata), con) callback_called = true end return end MOI.set(model, MOI.LazyConstraintCallback(), my_callback_function) @dantzig_wolfe_decomposition(model, dec, I) optimize!(model) @test objective_value(model) ≈ 0.63333333 @test MOI.get(JuMP.unsafe_backend(model), MOI.ConstraintDual(), constrid) ≈ 0.33333333 end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
181
using Coluna, ReTest include("ColunaTests.jl") # Run a specific test: # retest(ColunaTests, "Improve relaxation callback") # retest(Coluna, ColunaTests) include("unit/run.jl")
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2661
# return all julia files in a subdirectory (and its subdirectories) of the current directory function _alljlfiles(basefolder::String) allfiles = [ joinpath(folder, file) for (folder, _, files) in walkdir(joinpath(@__DIR__, basefolder)) for file in files ] return filter(f -> endswith(f, ".jl"), allfiles) end typical_test_dirs = [ joinpath("unit", "ColunaBase"), joinpath("unit", "MathProg"), joinpath("unit", "MustImplement"), joinpath("unit", "ColGen"), joinpath("unit", "Benders"), joinpath("unit", "Parser"), joinpath("unit", "TreeSearch"), joinpath("unit", "Presolve"), joinpath("integration", "custom_data"), joinpath("integration", "parser"), joinpath("integration", "pricing_callback"), joinpath("integration", "MOI"), joinpath("e2e", "gap"), joinpath("e2e_extra", "advanced_colgen"), joinpath("e2e_extra", "gap") ] tracked_dirs = filter(isdir, typical_test_dirs) all_test_files = Iterators.flatten( # get all julia files in the given subdirectories _alljlfiles(folder) for folder in tracked_dirs ) revise_status_lockfile = ".222-revise-exit-code" function listen_to_tests(funcs) recovering = false while true try entr(all_test_files, [MODULES...]; postpone = recovering) do run(`clear`) # clear terminal unit_tests = Registry() map(funcs) do f f() end end catch e recovering = true if isa(e, InterruptException) if isfile(revise_status_lockfile) rm(revise_status_lockfile) end return nothing elseif isa(e, Revise.ReviseEvalException) # needs to reload julia for revise to work again open(revise_status_lockfile, "w") do file write(file, "222") end exit(222) elseif !isa(e, TestSetException) && !isa(e, TaskFailedException) && ( !isa(e, CompositeException) || !any(ie -> isa(ie, TaskFailedException), e.exceptions) ) @warn "Caught Exception" exception = (e, catch_backtrace()) end end end end # include and track all test files for file in all_test_files includet(file) end include("unit/run.jl") include("integration/run.jl") include("e2e/run.jl") include("e2e_extra/run.jl") listen_to_tests([ run_unit_tests, run_integration_tests, run_e2e_tests, run_e2e_extra_tests ])
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1714
using Revise using Base.CoreLogging: error using DynamicSparseArrays, SparseArrays, Coluna, TOML, JET using Test, GLPK, ColunaDemos, JuMP, BlockDecomposition, Random, MathOptInterface, MathOptInterface.Utilities, Base.CoreLogging, Logging global_logger(ConsoleLogger(stderr, LogLevel(0))) const MOI = MathOptInterface const MOIU = MOI.Utilities const MOIT = MOI.Test const MOIB = MOI.Bridges const CleverDicts = MOI.Utilities.CleverDicts const CL = Coluna const ClD = ColunaDemos const BD = BlockDecomposition const ClB = Coluna.ColunaBase const ClMP = Coluna.MathProg const ClA = Coluna.Algorithm using Coluna.ColunaBase, Coluna.MathProg, Coluna.ColGen, Coluna.Branching include("TestRegistry/TestRegistry.jl") using .TestRegistry using Coluna.Tests.Parser unit_tests = Registry() integration_tests = Registry() e2e_tests = Registry() e2e_extra_tests = Registry() const MODULES = [ Coluna, Coluna.ColunaBase, Coluna.MustImplement, Coluna.MathProg, Coluna.Algorithm, Coluna.ColGen, Coluna.Branching, Parser ] rng = MersenneTwister(1234123) if !isempty(ARGS) # assume that the call is coming from revise.sh include("revise.jl") else include("unit/run.jl") include("integration/run.jl") include("e2e/run.jl") include("e2e_extra/run.jl") run_unit_tests() run_integration_tests() @testset "MOI integration" begin include("MathOptInterface/MOI_wrapper.jl") end run_e2e_tests() run_e2e_extra_tests() end @testset "Version" begin coluna_ver = Coluna.version() toml_ver = VersionNumber( TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml"))["version"] ) @test coluna_ver == toml_ver end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3750
# ============================ /test/MOI_wrapper.jl ============================ module TestColuna import Coluna using MathOptInterface using Test using HiGHS const MOI = MathOptInterface const BRIDGED = MOI.instantiate( MOI.OptimizerWithAttributes( Coluna.Optimizer, MOI.RawOptimizerAttribute("default_optimizer") => HiGHS.Optimizer, MOI.RawOptimizerAttribute("params") => Coluna.Params( solver = Coluna.Algorithm.SolveIpForm( moi_params = Coluna.Algorithm.MoiOptimize(get_dual_solution = true) ) ) ), with_bridge_type = Float64, ) # See the docstring of MOI.Test.Config for other arguments. const CONFIG = MOI.Test.Config( # Modify tolerances as necessary. atol = 1e-6, rtol = 1e-6, # Use MOI.LOCALLY_SOLVED for local solvers. optimal_status = MOI.OPTIMAL, # Pass attributes or MOI functions to `exclude` to skip tests that # rely on this functionality. exclude = Any[MOI.VariableName, MOI.delete], ) """ runtests() This function runs all functions in the this Module starting with `test_`. """ function runtests() for name in names(@__MODULE__; all = true) if startswith("$(name)", "test_") @testset "$(name)" begin getfield(@__MODULE__, name)() end end end end """ test_runtests() This function runs all the tests in MathOptInterface.Test. Pass arguments to `exclude` to skip tests for functionality that is not implemented or that your solver doesn't support. """ function test_runtests() MOI.Test.runtests( BRIDGED, CONFIG, exclude = [ "test_attribute_NumberOfThreads", "test_quadratic_", "test_conic_", "test_nonlinear_", "test_cpsat_", # Unsupported attributes "test_attribute_RawStatusString", "test_attribute_SolveTimeSec", # Following tests needs support of variable basis. "test_linear_Interval_inactive", "test_linear_add_constraints", "test_linear_inactive_bounds", "test_linear_integration_2", "test_linear_integration_Interval", "test_linear_integration_delete_variables", "test_linear_transform", # To see later if we need to support SOS2 integration "test_linear_SOS2_integration", # To see if we can support this tests, they fail because # MethodError: no method matching _is_valid(::Type{MathOptInterface.Semicontinuous{Float64}}, ::Coluna._VarBound, ::Coluna._VarBound, ::Coluna._VarKind) "test_basic_ScalarAffineFunction_Semicontinuous", "test_basic_ScalarAffineFunction_Semiinteger", "test_basic_VariableIndex_Semicontinuous", "test_basic_VariableIndex_Semiinteger", "test_linear_Semicontinuous_integration", "test_linear_Semiinteger_integration" ], # This argument is useful to prevent tests from failing on future # releases of MOI that add new tests. Don't let this number get too far # behind the current MOI release though! You should periodically check # for new tests in order to fix bugs and implement new features. exclude_tests_after = v"1.14.0", ) return end """ test_SolverName() You can also write new tests for solver-specific functionality. Write each new test as a function with a name beginning with `test_`. """ function test_SolverName() @test MOI.get(Coluna.Optimizer(), MOI.SolverName()) == "Coluna" return end end # module TestColuna # This line at the end of the file runs all the tests! TestColuna.runtests()
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1807
module TestRegistry using Test struct Registry test_sets::Dict{String, Vector{Tuple{Bool, Bool, Function}}} registered_func_names::Set{String} Registry() = new(Dict{String, Vector{Tuple{Bool, Bool, Function}}}(), Set{String}()) end """ Register a test function `func` in test set `test_set_name`. If you want to exclude the test, add kw arg `x = true`. If you want to focus on the test (run only this test), add kw arg `f = true`. """ function register!(tests::Registry, test_set_name::String, func; x = false, f = false) if !haskey(tests.test_sets, test_set_name) tests.test_sets[test_set_name] = Function[] end if !in(tests.registered_func_names, String(Symbol(func))) push!(tests.test_sets[test_set_name], (x, f, func)) push!(tests.registered_func_names, String(Symbol(func))) else error("Test \"$(String(Symbol(func)))\" already registered.") end return end function run_tests(tests::Registry) focus_mode = false for (_, test_set) in tests.test_sets for (x, f, _) in test_set if f focus_mode = true break end end focus_mode && break end for (test_set_name, test_set) in tests.test_sets @testset "$test_set_name" begin for (x, f, test) in test_set test_name = String(Symbol(test)) @testset "$test_name" begin run = (!focus_mode || f) && !x run && test() end end end end end export Registry, register!, run_tests end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
620
@testset "Capacitated Vehicle Routing" begin @testset "toy instance" begin data = ClD.CapacitatedVehicleRouting.data("A-n16-k3.vrp") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm( maxnumnodes = 10000, branchingtreefile = "cvrp.dot" )), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.CapacitatedVehicleRouting.model(data, coluna) JuMP.optimize!(model) @test objective_value(model) ≈ 504 end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
503
@testset "Cutting Stock" begin @testset "toy instance" begin data = ClD.CuttingStock.data("randomInstances/inst10-10") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, y, dec = ClD.CuttingStock.model(data, coluna) JuMP.optimize!(problem) @test objective_value(problem) ≈ 4 end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1076
@testset "Lot Sizing" begin @testset "single mode multi items lot sizing" begin data = ClD.SingleModeMultiItemsLotSizing.data("lotSizing-3-20-2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params( solver = ClA.BendersCutGeneration() ), "default_optimizer" => GLPK.Optimizer ) problem, x, y, dec = ClD.SingleModeMultiItemsLotSizing.model(data, coluna) JuMP.optimize!(problem) @test objective_value(problem) ≈ 600 end @testset "capacitated lot sizing" begin data = ClD.CapacitatedLotSizing.readData("testSmall") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) model, x, y, s, dec = ClD.CapacitatedLotSizing.model(data, coluna) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
205
for dir in ["gap", "TreeSearch"] dirpath = joinpath(@__DIR__, dir) for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end end run_e2e_tests() = run_tests(e2e_tests)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2558
# GAP instance with two machines and 4 jobs s.t. each machine has a capacity of 2, each job has weight 1 # One of the job is forced to be assigned 0.5 times to machine 1 s.t. the linear relaxation of the problem is feasible, but not the original MIP. function test_treesearch_gap_1() M = [1,2] J = 1:4 c = [10 3 7 5; 3 6 4 12 ] coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ) @axis(M_axis, M) model = BlockModel(coluna) @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J], sum(x[m, j] for m in M_axis) >= 1) @constraint(model, knp[m in M_axis], sum(1.0 * x[m, j] for j in J) <= 2.0) @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J)) #JuMP.relax_integrality(model) JuMP.fix(x[1, 1], 0.5; force=true) @dantzig_wolfe_decomposition(model, decomposition, M_axis) optimize!(model) @test_broken JuMP.termination_status(model) == MOI.INFEASIBLE end register!(e2e_tests, "treesearch", test_treesearch_gap_1) # GAP instance with two machines and 4 jobs s.t. each machine has a capacity of 2, each job has weight 1 # One of the job is forced to be assigned 0.5 times (modification of the cov constraint) s.t. the linear relaxation of the problem is feasible, but not the original MIP. function test_treesearch_gap_2() M = [1,2] J = 1:4 c = [10 3 7 5; 3 6 4 12 ] @axis(M_axis, M) coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ) model = BlockModel(coluna) @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J[2:end]], sum(x[m, j] for m in M_axis) >= 1) @constraint(model, cov2[j in J[1]], sum(x[m, j] for m in M_axis) == 0.5) @constraint(model, knp[m in M_axis], sum(1.0 * x[m, j] for j in J) <= 2.0) @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J)) @dantzig_wolfe_decomposition(model, decomposition, M_axis) optimize!(model) @test JuMP.termination_status(model) == MOI.INFEASIBLE end register!(e2e_tests, "treesearch", test_treesearch_gap_2)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
15395
function gap_toy_instance() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params( solver = ClA.BranchCutAndPriceAlgorithm( branchingtreefile = "playgap.dot", colgen_strict_integrality_check = true, # only for testing purposes, not really needed here run_presolve = true ), local_art_var_cost=10000.0, global_art_var_cost=100000.0), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.primal_status(model) == MOI.FEASIBLE_POINT # @show JuMP.value.(x) @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) @test MOI.get(model, MOI.NumberOfVariables()) == length(x) @test MOI.get(model, MOI.SolverName()) == "Coluna" end register!(e2e_tests, "gap", gap_toy_instance) function gap_toy_instance_2() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver=ClA.BranchCutAndPriceAlgorithm( jsonfile="playgap.json", ), local_art_var_cost=10000.0, global_art_var_cost=100000.0), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test JuMP.primal_status(model) == MOI.FEASIBLE_POINT # @show JuMP.value.(x) @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) @test MOI.get(model, MOI.NumberOfVariables()) == length(x) @test MOI.get(model, MOI.SolverName()) == "Coluna" end register!(e2e_tests, "gap", gap_toy_instance_2) function gap_strong_branching() data = ClD.GeneralizedAssignment.data("mediumgapcuts3.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "params" => CL.Params( solver=ClA.BranchCutAndPriceAlgorithm( maxnumnodes=300, colgen_stabilization=1.0, colgen_cleanup_threshold=150, stbranch_phases_num_candidates=[10, 3, 1], stbranch_intrmphase_stages=[(userstage=1, solverid=1, maxiters=2)] ) ), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # we increase the branching priority of variables which assign jobs to the first two machines for job in data.jobs BD.branchingpriority!(x[1, job], 2) end for job in data.jobs BD.branchingpriority!(x[2, job], 2.0) end BD.objectiveprimalbound!(model, 2000.0) BD.objectivedualbound!(model, 0.0) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 1553.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) end register!(e2e_tests, "gap", gap_strong_branching) # @testset "Generalized Assignment" begin # @testset "small instance" begin # data = ClD.GeneralizedAssignment.data("smallgap3.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # BD.objectiveprimalbound!(model, 500.0) # BD.objectivedualbound!(model, 0.0) # JuMP.optimize!(model) # @test JuMP.objective_value(model) ≈ 438.0 # @test JuMP.termination_status(model) == MOI.OPTIMAL # @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) # end # @testset "node limit" begin # TODO -> replace by unit test for tree search algorithm # data = ClD.GeneralizedAssignment.data("mediumgapcuts3.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "params" => CL.Params( # solver = ClA.BranchCutAndPriceAlgorithm( # maxnumnodes = 5 # ) # ), # "default_optimizer" => GLPK.Optimizer # ) # model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # BD.objectiveprimalbound!(model, 2000.0) # BD.objectivedualbound!(model, 0.0) # JuMP.optimize!(model) # @test JuMP.objective_bound(model) ≈ 1547.3889 # @test JuMP.termination_status(model) == MathOptInterface.OTHER_LIMIT # return # end # @testset "ColGen max nb iterations" begin # data = ClD.GeneralizedAssignment.data("smallgap3.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "params" => CL.Params( # solver = ClA.TreeSearchAlgorithm( # conqueralg = ClA.ColCutGenConquer( # stages = [ClA.ColumnGeneration(max_nb_iterations = 8)], # ) # ) # ), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # JuMP.optimize!(problem) # @test abs(JuMP.objective_value(problem) - 438.0) <= 0.00001 # @test JuMP.termination_status(problem) == MOI.OPTIMAL # Problem with final dual bound ? # @test ClD.GeneralizedAssignment.print_and_check_sol(data, problem, x) # end # @testset "pure master variables (GAP with f)" begin # data = ClD.GeneralizedAssignment.data("smallgap3.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, y, dec = ClD.GeneralizedAssignment.model_with_f(data, coluna) # JuMP.optimize!(problem) # @test JuMP.termination_status(problem) == MOI.OPTIMAL # @test abs(JuMP.objective_value(problem) - 416.4) <= 0.00001 # end # @testset "maximisation objective function" begin # data = ClD.GeneralizedAssignment.data("smallgap3.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, dec = ClD.GeneralizedAssignment.model_max(data, coluna) # JuMP.optimize!(problem) # @test JuMP.termination_status(problem) == MOI.OPTIMAL # @test abs(JuMP.objective_value(problem) - 580.0) <= 0.00001 # end # @testset "infeasible master" begin # data = ClD.GeneralizedAssignment.data("master_infeas.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # JuMP.optimize!(problem) # @test JuMP.termination_status(problem) == MOI.INFEASIBLE # end # # Issue 520 : https://github.com/atoptima/Coluna.jl/issues/520 # @testset "infeasible master 2" begin # data = ClD.GeneralizedAssignment.data("master_infeas2.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # JuMP.optimize!(problem) # @test JuMP.termination_status(problem) == MOI.INFEASIBLE # end # @testset "infeasible subproblem" begin # data = ClD.GeneralizedAssignment.data("sp_infeas.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, dec = ClD.GeneralizedAssignment(data, coluna) # JuMP.optimize!(problem) # @test JuMP.termination_status(problem) == MOI.INFEASIBLE # end # @testset "gap with all phases in col.gen" begin # TODO: replace by unit tests for ColCutGenConquer. # data = ClD.GeneralizedAssignment.data("mediumgapcuts1.txt") # for m in M # data.capacity[m] = floor(Int, data.capacity[m] * 0.5) # end # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.TreeSearchAlgorithm( # conqueralg = ClA.ColCutGenConquer( # stages = [ClA.ColumnGeneration(opt_rtol = 1e-4, smoothing_stabilization = 0.5)] # ) # )), # "default_optimizer" => GLPK.Optimizer # ) # problem, x, y, dec = ClD.GeneralizedAssignment.model_with_penalty(data, coluna) # JuMP.optimize!(problem) # @test abs(JuMP.objective_value(problem) - 31895.0) <= 0.00001 # end # @testset "gap with max. obj., pure mast. vars., and stabilization" begin # data = ClD.GeneralizedAssignment.data("gapC-5-100.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "params" => CL.Params( # solver = ClA.BranchCutAndPriceAlgorithm( # colgen_stabilization = 1.0, # maxnumnodes = 300 # ) # ), # "default_optimizer" => GLPK.Optimizer # ) # model, x, y, dec = ClD.GeneralizedAssignment.max_model_with_subcontracts(data, coluna) # JuMP.optimize!(model) # @test JuMP.objective_value(model) ≈ 3520.1 # @test JuMP.termination_status(model) == MOI.OPTIMAL # end # @testset "toy instance with no solver" begin # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()) # ) # problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # try # JuMP.optimize!(problem) # catch e # @test e isa ErrorException # end # end # # We solve the GAP but only one set-partionning constraint (for job 1) is # # put in the formulation before starting optimization. # # Other set-partionning constraints are added in the essential cut callback. # @testset "toy instance with lazy cuts" begin # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm( # max_nb_cut_rounds = 1000 # )), # "default_optimizer" => GLPK.Optimizer # ) # model = BlockModel(coluna, direct_model = true) # @axis(M, M) # @variable(model, x[m in M, j in J], Bin) # @constraint(model, cov, sum(x[m,1] for m in M) == 1) # add only covering constraint of job 1 # @constraint(model, knp[m in M], # sum(data.weight[j,m]*x[m,j] for j in J) <= data.capacity[m] # ) # @objective(model, Min, # sum(c[j,m]*x[m,j] for m in M, j in J) # ) # @dantzig_wolfe_decomposition(model, dec, M) # subproblems = BlockDecomposition.getsubproblems(dec) # specify!.(subproblems, lower_multiplicity = 0) # cur_j = 1 # # Lazy cut callback (add covering constraints on jobs on the fly) # function my_callback_function(cb_data) # for j in 1:cur_j # @test sum(callback_value(cb_data, x[m,j]) for m in M) ≈ 1 # end # if cur_j < length(J) # cur_j += 1 # con = @build_constraint(sum(x[m,cur_j] for m in M) == 1) # MOI.submit(model, MOI.LazyConstraint(cb_data), con) # end # end # MOI.set(model, MOI.LazyConstraintCallback(), my_callback_function) # optimize!(model) # @test JuMP.objective_value(model) ≈ 75.0 # @test JuMP.termination_status(model) == MOI.OPTIMAL # end # @testset "toy instance with best dual bound" begin # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "params" => CL.Params( # solver = Coluna.Algorithm.TreeSearchAlgorithm( # explorestrategy = Coluna.Algorithm.BestDualBoundStrategy() # ) # ), # "default_optimizer" => GLPK.Optimizer # ) # model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # optimize!(model) # @test JuMP.objective_value(model) ≈ 75.0 # @test JuMP.termination_status(model) == MOI.OPTIMAL # end # @testset "toy instance with objective constant" begin # M = 1:3; # J = 1:15; # c = [12.7 22.5 8.9 20.8 13.6 12.4 24.8 19.1 11.5 17.4 24.7 6.8 21.7 14.3 10.5; 19.1 24.8 24.4 23.6 16.1 20.6 15.0 9.5 7.9 11.3 22.6 8.0 21.5 14.7 23.2; 18.6 14.1 22.7 9.9 24.2 24.5 20.8 12.9 17.7 11.9 18.7 10.1 9.1 8.9 7.7; 13.1 16.2 16.8 16.7 9.0 16.9 17.9 12.1 17.5 22.0 19.9 14.6 18.2 19.6 24.2]; # w = [61 70 57 82 51 74 98 64 86 80 69 79 60 76 78; 50 57 61 83 81 79 63 99 82 59 83 91 59 99 91;91 81 66 63 59 81 87 90 65 55 57 68 92 91 86; 62 79 73 60 75 66 68 99 69 60 56 100 67 68 54]; # Q = [1020 1460 1530]; # coluna = optimizer_with_attributes( # Coluna.Optimizer, # "params" => Coluna.Params( # solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price # ), # "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems # ); # model = BlockModel(coluna) # @axis(M_axis, M); # @variable(model, x[m in M_axis, j in J], Bin); # @constraint(model, cov[j in J], sum(x[m, j] for m in M_axis) >= 1); # @constraint(model, knp[m in M_axis], sum(w[m, j] * x[m, j] for j in J) <= Q[m]); # @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J) + 250); # @dantzig_wolfe_decomposition(model, decomposition, M_axis) # subproblems = getsubproblems(decomposition) # specify!.(subproblems, lower_multiplicity = 0, upper_multiplicity = 1) # optimize!(model) # @test JuMP.objective_value(model) ≈ 250 + 166.5 # return # end # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
221
for dir in ["advanced_colgen", "gap"] dirpath = joinpath(@__DIR__, dir) for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end end run_e2e_extra_tests() = run_tests(e2e_extra_tests)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4545
# In this test, we use the Martinelli's knapsack solver pkg (https://github.com/rafaelmartinelli/Knapsacks.jl) # to test the interface of custom models/solvers. using Knapsacks mutable struct KnapsackLibModel <: Coluna.MathProg.AbstractFormulation nbitems::Int costs::Vector{Float64} weights::Vector{Float64} capacity::Float64 job_to_jumpvar::Dict{Int, JuMP.VariableRef} #varids::Vector{Coluna.MathProg.VarId} #map::Dict{Coluna.MathProg.VarId,Float64} end KnapsackLibModel(nbitems) = KnapsackLibModel( nbitems, zeros(Float64, nbitems), zeros(Float64, nbitems), 0.0, Dict{Int, JuMP.VariableRef}() ) setcapacity!(model::KnapsackLibModel, cap) = model.capacity = cap setweight!(model::KnapsackLibModel, j::Int, w) = model.weights[j] = w setcost!(model::KnapsackLibModel, j::Int, c) = model.costs[j] = c map!(model::KnapsackLibModel, j::Int, x::JuMP.VariableRef) = model.job_to_jumpvar[j] = x mutable struct KnapsackLibOptimizer <: BlockDecomposition.AbstractCustomOptimizer model::KnapsackLibModel end function Coluna.Algorithm.get_units_usage(opt::KnapsackLibOptimizer, form) # form is Coluna Formulation units_usage = Tuple{Coluna.ColunaBase.AbstractModel, ClB.UnitType, ClB.UnitPermission}[] # TODO : the abstract model is KnapsackLibModel (opt.model) return units_usage end function _fixed_costs(model::KnapsackLibModel, form, env::Env) costs = Float64[] for j in 1:length(model.costs) cost = Coluna.MathProg.getcurcost(form, _getvarid(model, form, env, j)) push!(costs, cost < 0 ? -cost : 0) end return costs end function _scale_to_int(vals...) return map(x -> Integer(round(10000x)), vals) end _getvarid(model::KnapsackLibModel, form, env::Env, j::Int) = Coluna.MathProg.getid(Coluna.MathProg.getvar(form, env.varids[model.job_to_jumpvar[j].index])) function Coluna.Algorithm.run!( opt::KnapsackLibOptimizer, env::Coluna.Env, form::Coluna.MathProg.Formulation, input::Coluna.Algorithm.OptimizationState; kw... ) costs = _fixed_costs(opt.model, form, env) ws = _scale_to_int(opt.model.capacity, opt.model.weights...) cs = _scale_to_int(costs...) data = Knapsack(ws[1], [ws[2:end]...], [cs...]) _, selected = solveKnapsack(data) setup_var_id = form.duty_data.setup_var cost = sum(-costs[j] for j in selected) + Coluna.MathProg.getcurcost(form, setup_var_id) varids = Coluna.MathProg.VarId[] varvals = Float64[] for j in selected if costs[j] > 0 push!(varids, _getvarid(opt.model, form, env, j)) push!(varvals, 1) end end push!(varids, setup_var_id) push!(varvals, 1) sol = Coluna.MathProg.PrimalSolution(form, varids, varvals, cost, Coluna.MathProg.FEASIBLE_SOL) result = Coluna.Algorithm.OptimizationState(form; termination_status = Coluna.MathProg.OPTIMAL) Coluna.Algorithm.add_ip_primal_sol!(result, sol) dual_bound = Coluna.getvalue(Coluna.Algorithm.get_ip_primal_bound(result)) Coluna.Algorithm.set_ip_dual_bound!(result, Coluna.DualBound(form, dual_bound)) return result end ################################################################################ # User model ################################################################################ function knapsack_custom_model() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.TreeSearchAlgorithm()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna; direct_model = true) @axis(M, data.machines) @variable(model, x[m in M, j in data.jobs], Bin) @constraint(model, sp[j in data.jobs], sum(x[m,j] for m in data.machines) == 1 ) @objective(model, Min, sum(data.cost[j,m]*x[m,j] for m in M, j in data.jobs) ) @dantzig_wolfe_decomposition(model, dec, M) sp = getsubproblems(dec) for m in M knp_model = KnapsackLibModel(length(data.jobs)) setcapacity!(knp_model, data.capacity[m]) for j in data.jobs setweight!(knp_model, j, data.weight[j,m]) setcost!(knp_model, j, data.cost[j,m]) map!(knp_model, j, x[m,j]) end knp_optimizer = KnapsackLibOptimizer(knp_model) specify!(sp[m], solver = knp_optimizer) ##model = knp_model) end optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 end register!(e2e_extra_tests, "custom_solver", knapsack_custom_model)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
8892
# This file implements a toy bin packing model to test the before-cutgen-user algorithm. # It solves an instance with three items where any two of them fits into a bin but the three # together do not. Pricing is solved by inspection on the set of six possible solutions # (three singletons and three pairs) which gives a fractional solution at the root node. # Then a relaxation improvement function "improve_relaxation" is called to remove two of # the pairs from the list of pricing solutions and from the master problem. CL.@with_kw struct ImproveRelaxationAlgo <: ClA.AbstractOptimizationAlgorithm userfunc::Function end struct VarData <: BD.AbstractCustomVarData items::Vector{Int} end mutable struct ToyNodeInfoUnit <: ClB.AbstractRecordUnit value::Int end ClB.storage_unit(::Type{ToyNodeInfoUnit}, _) = ToyNodeInfoUnit(111) struct ToyNodeInfo <: ClB.AbstractRecord value::Int end ClB.record_type(::Type{ToyNodeInfoUnit}) = ToyNodeInfo ClB.storage_unit_type(::Type{ToyNodeInfo}) = ToyNodeInfoUnit struct ToyNodeInfoKey <: ClA.AbstractStorageUnitKey end ClA.key_from_storage_unit_type(::Type{ToyNodeInfoUnit}) = ToyNodeInfoKey() ClA.record_type_from_key(::ToyNodeInfoKey) = ToyNodeInfo function ClB.record(::Type{ToyNodeInfo}, id::Int, form::ClMP.Formulation, unit::ToyNodeInfoUnit) return ToyNodeInfo(unit.value) end function ClB.restore_from_record!(form::ClMP.Formulation, unit::ToyNodeInfoUnit, record::ToyNodeInfo) unit.value = record.value return end function ClA.get_branching_candidate_units_usage(::ClA.SingleVarBranchingCandidate, reform) units_to_restore = ClA.UnitsUsage() push!(units_to_restore.units_used, (ClMP.getmaster(reform), ClA.MasterBranchConstrsUnit)) push!(units_to_restore.units_used, (ClMP.getmaster(reform), ToyNodeInfoUnit)) return units_to_restore end ClA.ismanager(::ClA.BeforeCutGenAlgo) = false ClA.ismanager(::ImproveRelaxationAlgo) = false # Don't need this because `ToyNodeInfo` is bits # ClMP.copy_info(info::ToyNodeInfo) = ToyNodeInfo(info.value) function ClA.run!( algo::ImproveRelaxationAlgo, ::CL.Env, reform::ClMP.Reformulation, input::ClA.OptimizationState ) masterform = ClMP.getmaster(reform) _, spform = first(ClMP.get_dw_pricing_sps(reform)) cbdata = ClMP.PricingCallbackData(spform) return algo.userfunc(masterform, cbdata) end function ClA.get_units_usage(algo::ImproveRelaxationAlgo, reform::ClMP.Reformulation) units_usage = Tuple{ClMP.AbstractModel,ClB.UnitType,ClB.UnitPermission}[] master = ClMP.getmaster(reform) push!(units_usage, (master, ToyNodeInfoUnit, ClB.READ_AND_WRITE)) return units_usage end function ClA.get_child_algorithms(algo::ClA.BeforeCutGenAlgo, reform::ClMP.Reformulation) child_algos = Tuple{Coluna.AlgoAPI.AbstractAlgorithm, ClMP.AbstractModel}[] push!(child_algos, (algo.algorithm, reform)) return child_algos end function test_improve_relaxation(; do_improve::Bool) function build_toy_model(optimizer) toy = BlockModel(optimizer, direct_model = true) I = [1, 2, 3] @axis(B, [1]) @variable(toy, y[b in B] >= 0, Int) @variable(toy, x[b in B, i in I], Bin) @constraint(toy, sp[i in I], sum(x[b,i] for b in B) == 1) @objective(toy, Min, sum(y[b] for b in B)) @dantzig_wolfe_decomposition(toy, dec, B) customvars!(toy, VarData) return toy, x, y, dec, B end call_improve_relaxation(masterform, cbdata) = improve_relaxation(masterform, cbdata) coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => CL.Params( solver = ClA.TreeSearchAlgorithm( conqueralg = ClA.ColCutGenConquer( colgen = ClA.ColumnGeneration( stages_pricing_solver_ids = [1] ), primal_heuristics = [], before_cutgen_user_algorithm = ClA.BeforeCutGenAlgo( ImproveRelaxationAlgo( userfunc = call_improve_relaxation ), "Improve relaxation" ) ), dividealg = ClA.ClassicBranching(), maxnumnodes = do_improve ? 1 : 10 ) ) ) model, x, y, dec, B = build_toy_model(coluna) max_info_val = 0 function enumerative_pricing(cbdata) # Get the reduced costs of the original variables I = [1, 2, 3] b = BlockDecomposition.callback_spid(cbdata, model) rc_y = BD.callback_reduced_cost(cbdata, y[b]) rc_x = [BD.callback_reduced_cost(cbdata, x[b, i]) for i in I] # check all possible solutions reform = cbdata.form.parent_formulation.parent_formulation storage = ClMP.getstorage(ClMP.getmaster(reform)) unit = storage.units[ToyNodeInfoUnit].storage_unit # TODO: to improve info_val = unit.value max_info_val = max(max_info_val, info_val) if info_val == 9999 sols = [[1], [2], [3], [2, 3]] else sols = [[1], [2], [3], [1, 2], [1, 3], [2, 3]] end best_s = Int[] best_rc = Inf for s in sols rc_s = rc_y + sum(rc_x[i] for i in s) if rc_s < best_rc best_rc = rc_s best_s = s end end # build the best one and submit solcost = best_rc solvars = JuMP.VariableRef[] solvarvals = Float64[] for i in best_s push!(solvars, x[b, i]) push!(solvarvals, 1.0) end push!(solvars, y[b]) push!(solvarvals, 1.0) # Submit the solution MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals, VarData(best_s) ) MOI.submit(model, BD.PricingDualBound(cbdata), solcost) # increment the user info value for testing if !do_improve unit.value += 111 end return end subproblems = BD.getsubproblems(dec) BD.specify!.( subproblems, lower_multiplicity = 0, upper_multiplicity = 3, solver = enumerative_pricing ) function improve_relaxation(masterform, cbdata) if do_improve # Get the reduced costs of the original variables I = [1, 2, 3] b = BlockDecomposition.callback_spid(cbdata, model) rc_y = BD.callback_reduced_cost(cbdata, y[b]) rc_x = [BD.callback_reduced_cost(cbdata, x[b, i]) for i in I] @test (rc_y, rc_x) == (1.0, [-0.5, -0.5, -0.5]) # deactivate the columns of solutions [1, 2] and [1, 3] from the master changed = false for (vid, var) in ClMP.getvars(masterform) if ClMP.iscuractive(masterform, vid) && ClMP.getduty(vid) <= ClMP.MasterCol varname = ClMP.getname(masterform, var) if var.custom_data.items in [[1, 2], [1, 3]] ClMP.deactivate!(masterform, vid) changed = true storage = ClMP.getstorage(masterform) unit = storage.units[ToyNodeInfoUnit].storage_unit # TODO: to improve unit.value = 9999 end end end @info "improve_relaxation $(changed ? "changed" : "did not change")" return changed else return false end end JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 2.0 @test JuMP.termination_status(model) == MOI.OPTIMAL for b in B sets = BD.getsolutions(model, b) for s in sets @test BD.value(s) == 1.0 # value of the master column variable @test BD.customdata(s).items == [1] || BD.customdata(s).items == [2, 3] # either [1] or [2, 3] @test BD.value(s, x[b, 1]) != BD.value(s, x[b, 2]) # only x[1,1] in its set @test BD.value(s, x[b, 1]) != BD.value(s, x[b, 3]) # only x[1,1] in its set @test BD.value(s, x[b, 2]) == BD.value(s, x[b, 3]) # x[1,2] and x[1,3] in the same set end end @test do_improve || max_info_val == 888 end function improve_relaxation_callback() # Make two tests: one to improve the relaxation and solve at the root node and other to test # the inheritance of the new user information (increment it in both children nodes and check # but check if the ones received from parent are unchanged). # Try to mimic MasterBranchConstrsUnit test_improve_relaxation(do_improve = true) test_improve_relaxation(do_improve = false) end register!(e2e_extra_tests, "improve_relax_callback", improve_relaxation_callback)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
6451
# This file implements a toy bin packing model for Node Finalizer. It solves an instance with # three items where any two of them fits into a bin but the three together do not. Pricing is # solved by inspection onn the set of six possible solutions (three singletons and three pairs) # which gives a fractional solution at the root node. Then node finalizer function # "enumerative_finalizer" is called to find the optimal solution still at the root node and # avoid branching (which would fail because maxnumnodes is set to 1). # If "heuristic_finalizer" is true, then it allows branching and assumes that the solution found # is not necessarily optimal. CL.@with_kw struct EnumerativeFinalizer <: ClA.AbstractOptimizationAlgorithm optimizer::Function end function ClA.run!( algo::EnumerativeFinalizer, env::CL.Env, reform::ClMP.Reformulation, input::ClA.OptimizationState ) masterform = ClMP.getmaster(reform) _, spform = first(ClMP.get_dw_pricing_sps(reform)) cbdata = ClMP.PricingCallbackData(spform) isopt, primal_sol = algo.optimizer(masterform, cbdata) result = ClA.OptimizationState( masterform, ip_primal_bound = ClA.get_ip_primal_bound(input), termination_status = isopt ? CL.OPTIMAL : CL.OTHER_LIMIT ) if primal_sol !== nothing ClA.add_ip_primal_sol!(result, primal_sol) end return result end function test_node_finalizer(heuristic_finalizer) function build_toy_model(optimizer) toy = BlockModel(optimizer, direct_model = true) I = [1, 2, 3] @axis(B, [1]) @variable(toy, y[b in B] >= 0, Int) @variable(toy, x[b in B, i in I], Bin) @constraint(toy, sp[i in I], sum(x[b,i] for b in B) == 1) @objective(toy, Min, sum(y[b] for b in B)) @dantzig_wolfe_decomposition(toy, dec, B) return toy, x, y, dec, B end call_enumerative_finalizer(masterform, cbdata) = enumerative_finalizer(masterform, cbdata) coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => CL.Params( solver = ClA.TreeSearchAlgorithm( conqueralg = ClA.ColCutGenConquer( colgen= ClA.ColumnGeneration( stages_pricing_solver_ids = [1] ), primal_heuristics = [], node_finalizer = ClA.NodeFinalizer( EnumerativeFinalizer(optimizer = call_enumerative_finalizer), 0, "Enumerative" ) ), maxnumnodes = heuristic_finalizer ? 15 : 1 ) ) ) model, x, y, dec, B = build_toy_model(coluna) function enumerative_pricing(cbdata) # Get the reduced costs of the original variables I = [1, 2, 3] b = BlockDecomposition.callback_spid(cbdata, model) rc_y = BD.callback_reduced_cost(cbdata, y[b]) rc_x = [BD.callback_reduced_cost(cbdata, x[b, i]) for i in I] # check all possible solutions sols = [[1], [2], [3], [1, 2], [1, 3], [2, 3]] best_s = Int[] best_rc = Inf for s in sols rc_s = rc_y + sum(rc_x[i] for i in s) if rc_s < best_rc best_rc = rc_s best_s = s end end # build the best one and submit solcost = best_rc solvars = JuMP.VariableRef[] solvarvals = Float64[] for i in best_s push!(solvars, x[b, i]) push!(solvarvals, 1.0) end push!(solvars, y[b]) push!(solvarvals, 1.0) # Submit the solution MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals ) MOI.submit(model, BD.PricingDualBound(cbdata), solcost) return end subproblems = BD.getsubproblems(dec) BD.specify!.( subproblems, lower_multiplicity = 0, upper_multiplicity = 3, solver = enumerative_pricing ) function enumerative_finalizer(masterform, cbdata) # Get the reduced costs of the original variables I = [1, 2, 3] b = BlockDecomposition.callback_spid(cbdata, model) rc_y = BD.callback_reduced_cost(cbdata, y[b]) rc_x = [BD.callback_reduced_cost(cbdata, x[b, i]) for i in I] @test (rc_y, rc_x) == (1.0, [-0.5, -0.5, -0.5]) # Add the columns that are possibly missing for the solution [[1], [2,3]] in the master problem # [1] opt = JuMP.backend(model) vars = [y[b], x[b, 1]] varids = [CL._get_varid_of_origvar_in_form(opt.env, cbdata.form, v) for v in JuMP.index.(vars)] push!(varids, cbdata.form.duty_data.setup_var) sol = ClMP.PrimalSolution(cbdata.form, varids, [1.0, 1.0, 1.0], 1.0, CL.FEASIBLE_SOL) col_id = ClMP.insert_column!(masterform, sol, "MC") mc_1 = ClMP.getvar(masterform, col_id) # [2, 3] vars = [y[b], x[b, 2], x[b, 3]] varids = [CL._get_varid_of_origvar_in_form(opt.env, cbdata.form, v) for v in JuMP.index.(vars)] push!(varids, cbdata.form.duty_data.setup_var) sol = ClMP.PrimalSolution(cbdata.form, varids, [1.0, 1.0, 1.0, 1.0], 1.0, CL.FEASIBLE_SOL) col_id = ClMP.insert_column!(masterform, sol, "MC") mc_2_3 = ClMP.getvar(masterform, col_id) # add the solution to the master problem varids = [ClMP.getid(mc_1), ClMP.getid(mc_2_3)] primal_sol = ClMP.PrimalSolution(masterform, varids, [1.0, 1.0], 2.0, CL.FEASIBLE_SOL) return !heuristic_finalizer, primal_sol end JuMP.optimize!(model) @show JuMP.objective_value(model) @test JuMP.termination_status(model) == MOI.OPTIMAL for b in B sets = BD.getsolutions(model, b) for s in sets @test BD.value(s) == 1.0 # value of the master column variable @test BD.value(s, x[b, 1]) != BD.value(s, x[b, 2]) # only x[1,1] in its set @test BD.value(s, x[b, 1]) != BD.value(s, x[b, 3]) # only x[1,1] in its set @test BD.value(s, x[b, 2]) == BD.value(s, x[b, 3]) # x[1,2] and x[1,3] in the same set end end end function test_node_finalizer() test_node_finalizer(false) # exact test_node_finalizer(true) # heuristic end register!(e2e_extra_tests, "node_finalizer", test_node_finalizer)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5280
#= Custom Variable and Cuts test This test creates a Bin Packing instances with only 3 items such that any pair of items fits into one bin but the 3 items not. The objective function is to minimize the number of bins. Pricing is done by inspection over the 6 combinations of items (3 pairs and 3 singletons). The root relaxation has 1.5 bins, each 0.5 corresponding to a bin with one of the possible pairs of items. Coluna is able to solve this instance by branching on the number of bins but the limit one on the number of nodes prevents it to be solved without cuts. Every subproblem solution s has a custom data with the number of items in the bin, given by length(s). The custom cut used to cut the fractional solution is sum(λ_s for s in sols if length(s) >= 2) <= 1.0 where sols is the set of possible combinations of items in a bin. =# struct MyCustomVarData <: BD.AbstractCustomVarData nb_items::Int end BD.branchingpriority(::MyCustomVarData) = 0.5 struct MyCustomCutData <: BD.AbstractCustomConstrData min_items::Int end function Coluna.MathProg.computecoeff( var_custom_data::MyCustomVarData, constr_custom_data::MyCustomCutData ) return (var_custom_data.nb_items >= constr_custom_data.min_items) ? 1.0 : 0.0 end function build_toy_model(optimizer) toy = BlockModel(optimizer) I = [1, 2, 3] @axis(B, [1]) @variable(toy, y[b in B] >= 0, Int) @variable(toy, x[b in B, i in I], Bin) @constraint(toy, sp[i in I], sum(x[b,i] for b in B) == 1) @objective(toy, Min, sum(y[b] for b in B)) @dantzig_wolfe_decomposition(toy, dec, B) return toy, x, y, dec end function test_non_robust_cuts() coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => CL.Params( solver = ClA.TreeSearchAlgorithm( conqueralg = ClA.ColCutGenConquer( colgen = ClA.ColumnGeneration( # pricing_prob_solve_alg = ClA.SolveIpForm( # optimizer_id = 1 # ) ) ), maxnumnodes = 1 ) ) ) model, x, y, dec = build_toy_model(coluna) BD.customvars!(model, MyCustomVarData) BD.customconstrs!(model, MyCustomCutData) function my_pricing_callback(cbdata) # Get the reduced costs of the original variables I = [1, 2, 3] b = BD.callback_spid(cbdata, model) rc_y = BD.callback_reduced_cost(cbdata, y[b]) rc_x = [BD.callback_reduced_cost(cbdata, x[b, i]) for i in I] # Get the dual values of the custom cuts custduals = Tuple{Int, Float64}[] for (_, constr) in Coluna.MathProg.getconstrs(cbdata.form.parent_formulation) if typeof(constr.custom_data) == MyCustomCutData push!(custduals, ( constr.custom_data.min_items, ClMP.getcurincval(cbdata.form.parent_formulation, constr) )) end end # check all possible solutions sols = [[1], [2], [3], [1, 2], [1, 3], [2, 3]] best_s = Int[] best_rc = Inf for s in sols rc_s = rc_y + sum(rc_x[i] for i in s) if !isempty(custduals) rc_s -= sum((length(s) >= minits) ? dual : 0.0 for (minits, dual) in custduals) end if rc_s < best_rc best_rc = rc_s best_s = s end end # build the best one and submit solcost = best_rc solvars = JuMP.VariableRef[] solvarvals = Float64[] for i in best_s push!(solvars, x[b, i]) push!(solvarvals, 1.0) end push!(solvars, y[b]) push!(solvarvals, 1.0) # Submit the solution MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals, MyCustomVarData(length(best_s)) ) MOI.submit(model, BD.PricingDualBound(cbdata), solcost) return end subproblems = BD.getsubproblems(dec) BD.specify!.( subproblems, lower_multiplicity = 0, upper_multiplicity = 3, solver = my_pricing_callback ) function custom_cut_sep(cbdata) # compute the constraint violation viol = -1.0 for (varid, varval) in cbdata.orig_sol var = ClMP.getvar(cbdata.form, varid) if var.custom_data !== nothing if var.custom_data.nb_items >= 2 viol += varval end end end # add the cut (at most one variable with 2 or more of the 3 items) if violated if viol > 0.001 MOI.submit( model, MOI.UserCut(cbdata), JuMP.ScalarConstraint(JuMP.AffExpr(0.0), MOI.LessThan(1.0)), MyCustomCutData(2) ) end return end MOI.set(model, MOI.UserCutCallback(), custom_cut_sep) JuMP.optimize!(model) @test JuMP.termination_status(model) == MOI.OPTIMAL end register!(e2e_extra_tests, "non_robust_cuts", test_non_robust_cuts)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
4067
function gap_with_pricing_callback_and_stages() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => CL.Params( solver = ClA.BranchCutAndPriceAlgorithm( colgen_stages_pricing_solvers = [3, 2] ) ) ) model, x, dec = ClD.GeneralizedAssignment.model_without_knp_constraints(data, coluna) # Subproblem models are created once and for all # One model for each machine. sp_models = Dict{Int, Any}() for m in data.machines sp = JuMP.Model(GLPK.Optimizer) @variable(sp, y[j in data.jobs], Bin) @variable(sp, lb_y[j in data.jobs] >= 0) @variable(sp, ub_y[j in data.jobs] >= 0) @variable(sp, max_card >= 0) # this sets the maximum solution cardinality for heuristic pricing @constraint(sp, card, sum(y[j] for j in data.jobs) <= max_card) @constraint(sp, knp, sum(data.weight[j,m]*y[j] for j in data.jobs) <= data.capacity[m]) @constraint(sp, lbs[j in data.jobs], y[j] + lb_y[j] >= 0) @constraint(sp, ubs[j in data.jobs], y[j] - ub_y[j] <= 0) sp_models[m] = (sp, y, lb_y, ub_y, max_card) end nb_exact_calls = 0 function pricing_callback_stage2(cbdata) machine_id = BD.callback_spid(cbdata, model) _, _, _, _, max_card = sp_models[machine_id] JuMP.fix(max_card, 3, force = true) solcost, solvars, solvarvals = solve_pricing!(cbdata, machine_id) MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals ) MOI.submit(model, BD.PricingDualBound(cbdata), -Inf) end function pricing_callback_stage1(cbdata) machine_id = BD.callback_spid(cbdata, model) _, _, _, _, max_card = sp_models[machine_id] JuMP.fix(max_card, length(data.jobs), force = true) nb_exact_calls += 1 solcost, solvars, solvarvals = solve_pricing!(cbdata, machine_id) MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals ) MOI.submit(model, BD.PricingDualBound(cbdata), solcost) end function solve_pricing!(cbdata, machine_id) sp, y, lb_y, ub_y, _ = sp_models[machine_id] red_costs = [BD.callback_reduced_cost(cbdata, x[machine_id, j]) for j in data.jobs] # Update the model ## Bounds on subproblem variables for j in data.jobs JuMP.fix(lb_y[j], BD.callback_lb(cbdata, x[machine_id, j]), force = true) JuMP.fix(ub_y[j], BD.callback_ub(cbdata, x[machine_id, j]), force = true) end ## Objective function @objective(sp, Min, sum(red_costs[j]*y[j] for j in data.jobs)) JuMP.optimize!(sp) # Retrieve the solution solcost = JuMP.objective_value(sp) solvars = JuMP.VariableRef[] solvarvals = Float64[] for j in data.jobs val = JuMP.value(y[j]) if val ≈ 1 push!(solvars, x[machine_id, j]) push!(solvarvals, 1.0) end end return solcost, solvars, solvarvals end subproblems = BD.getsubproblems(dec) BD.specify!.(subproblems, lower_multiplicity = 0, solver = [GLPK.Optimizer, pricing_callback_stage2, pricing_callback_stage1]) JuMP.optimize!(model) @test nb_exact_calls < 30 # WARNING: this test is necessary to properly test stage 2. # Disabling stage 2 (uncommenting line 48) generates 40 exact # calls, against 18 when it is enabled. These numbers may change # a little bit with versions due to numerical errors. @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) end register!(e2e_extra_tests, "pricing_callback", gap_with_pricing_callback_and_stages)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
11026
function gap_small_instance() data = ClD.GeneralizedAssignment.data("smallgap3.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 500.0) BD.objectivedualbound!(model, 0.0) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 438.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) end register!(e2e_extra_tests, "gap", gap_small_instance) function gap_node_limit() data = ClD.GeneralizedAssignment.data("mediumgapcuts3.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "params" => CL.Params( solver = ClA.BranchCutAndPriceAlgorithm( maxnumnodes = 5 ) ), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 2000.0) BD.objectivedualbound!(model, 0.0) JuMP.optimize!(model) @test JuMP.objective_bound(model) ≈ 1547.3889 @test JuMP.termination_status(model) == MathOptInterface.OTHER_LIMIT end register!(e2e_extra_tests, "gap", gap_node_limit) function gap_colgen_max_nb_iterations() data = ClD.GeneralizedAssignment.data("smallgap3.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "params" => CL.Params( solver = ClA.TreeSearchAlgorithm( conqueralg = ClA.ColCutGenConquer( colgen = ClA.ColumnGeneration(max_nb_iterations = 8), ) ) ), "default_optimizer" => GLPK.Optimizer ) problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) JuMP.optimize!(problem) @test abs(JuMP.objective_value(problem) - 438.0) <= 0.00001 @test JuMP.termination_status(problem) == MOI.OTHER_LIMIT @test ClD.GeneralizedAssignment.print_and_check_sol(data, problem, x) end register!(e2e_extra_tests, "gap", gap_colgen_max_nb_iterations) function gap_pure_master_variables() data = ClD.GeneralizedAssignment.data("smallgap3.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, y, dec = ClD.GeneralizedAssignment.model_with_penalties(data, coluna) JuMP.optimize!(problem) @test JuMP.termination_status(problem) == MOI.OPTIMAL @test abs(JuMP.objective_value(problem) - 416.4) <= 0.00001 end register!(e2e_extra_tests, "gap", gap_pure_master_variables) function gap_maximisation_objective_function() data = ClD.GeneralizedAssignment.data("smallgap3.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, dec = ClD.GeneralizedAssignment.model_max(data, coluna) JuMP.optimize!(problem) @test JuMP.termination_status(problem) == MOI.OPTIMAL @test abs(JuMP.objective_value(problem) - 580.0) <= 0.00001 end register!(e2e_extra_tests, "gap", gap_maximisation_objective_function) function gap_infeasible_master() data = ClD.GeneralizedAssignment.data("master_infeas.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) JuMP.optimize!(problem) @test JuMP.termination_status(problem) == MOI.INFEASIBLE end register!(e2e_extra_tests, "gap", gap_infeasible_master) function gap_infeasible_master_2() data = ClD.GeneralizedAssignment.data("master_infeas2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) JuMP.optimize!(problem) @test JuMP.termination_status(problem) == MOI.INFEASIBLE end register!(e2e_extra_tests, "gap", gap_infeasible_master_2) function gap_infeasible_subproblem() data = ClD.GeneralizedAssignment.data("sp_infeas.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()), "default_optimizer" => GLPK.Optimizer ) problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) JuMP.optimize!(problem) @test JuMP.termination_status(problem) == MOI.INFEASIBLE end register!(e2e_extra_tests, "gap", gap_infeasible_subproblem) function gap_with_all_phases_in_colgen() data = ClD.GeneralizedAssignment.data("mediumgapcuts1.txt") for m in data.machines data.capacity[m] = floor(Int, data.capacity[m] * 0.5) end coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.TreeSearchAlgorithm( conqueralg = ClA.ColCutGenConquer( colgen = ClA.ColumnGeneration(opt_rtol = 1e-4, smoothing_stabilization = 0.5) ) )), "default_optimizer" => GLPK.Optimizer ) problem, x, y, dec = ClD.GeneralizedAssignment.model_with_penalty(data, coluna) JuMP.optimize!(problem) @test abs(JuMP.objective_value(problem) - 31895.0) <= 0.00001 end register!(e2e_extra_tests, "gap", gap_with_all_phases_in_colgen) function gap_with_max_obj_pure_master_vars_and_stab() data = ClD.GeneralizedAssignment.data("gapC-5-100.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "params" => CL.Params( solver = ClA.BranchCutAndPriceAlgorithm( colgen_stabilization = 1.0, maxnumnodes = 300 ) ), "default_optimizer" => GLPK.Optimizer ) model, x, y, dec = ClD.GeneralizedAssignment.max_model_with_subcontracts(data, coluna) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 3520.1 @test JuMP.termination_status(model) == MOI.OPTIMAL end register!(e2e_extra_tests, "gap", gap_with_max_obj_pure_master_vars_and_stab) function gap_with_no_solver() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm()) ) problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna) try JuMP.optimize!(problem) catch e @test e isa ErrorException end end register!(e2e_extra_tests, "gap", gap_with_no_solver) # We solve the GAP but only one set-partionning constraint (for job 1) is # put in the formulation before starting optimization. # Other set-partionning constraints are added in the essential cut callback. function gap_with_lazy_cuts() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm( max_nb_cut_rounds = 1000 )), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna, direct_model = true) @axis(M, data.machines) @variable(model, x[m in M, j in data.jobs], Bin) @constraint(model, cov, sum(x[m,1] for m in M) == 1) # add only covering constraint of job 1 @constraint(model, knp[m in M], sum(data.weight[j,m]*x[m,j] for j in data.jobs) <= data.capacity[m] ) @objective(model, Min, sum(data.cost[j,m]*x[m,j] for m in M, j in data.jobs) ) @dantzig_wolfe_decomposition(model, dec, M) subproblems = BlockDecomposition.getsubproblems(dec) specify!.(subproblems, lower_multiplicity = 0) cur_j = 1 # Lazy cut callback (add covering constraints on jobs on the fly) function my_callback_function(cb_data) for j in 1:cur_j @test sum(callback_value(cb_data, x[m,j]) for m in M) ≈ 1 end if cur_j < length(data.jobs) cur_j += 1 con = @build_constraint(sum(x[m,cur_j] for m in M) == 1) MOI.submit(model, MOI.LazyConstraint(cb_data), con) end end MOI.set(model, MOI.LazyConstraintCallback(), my_callback_function) optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL end register!(e2e_extra_tests, "gap", gap_with_lazy_cuts) function gap_with_best_dual_bound() data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "params" => CL.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm( explorestrategy = Coluna.TreeSearch.BestDualBoundStrategy() ) ), "default_optimizer" => GLPK.Optimizer ) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL end register!(e2e_extra_tests, "gap", gap_with_best_dual_bound) function gap_with_obj_const() M = 1:3; J = 1:15; c = [12.7 22.5 8.9 20.8 13.6 12.4 24.8 19.1 11.5 17.4 24.7 6.8 21.7 14.3 10.5; 19.1 24.8 24.4 23.6 16.1 20.6 15.0 9.5 7.9 11.3 22.6 8.0 21.5 14.7 23.2; 18.6 14.1 22.7 9.9 24.2 24.5 20.8 12.9 17.7 11.9 18.7 10.1 9.1 8.9 7.7; 13.1 16.2 16.8 16.7 9.0 16.9 17.9 12.1 17.5 22.0 19.9 14.6 18.2 19.6 24.2]; w = [61 70 57 82 51 74 98 64 86 80 69 79 60 76 78; 50 57 61 83 81 79 63 99 82 59 83 91 59 99 91;91 81 66 63 59 81 87 90 65 55 57 68 92 91 86; 62 79 73 60 75 66 68 99 69 60 56 100 67 68 54]; Q = [1020 1460 1530]; coluna = optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params( solver = Coluna.Algorithm.TreeSearchAlgorithm() # default branch-cut-and-price ), "default_optimizer" => GLPK.Optimizer # GLPK for the master & the subproblems ); model = BlockModel(coluna) @axis(M_axis, M); @variable(model, x[m in M_axis, j in J], Bin); @constraint(model, cov[j in J], sum(x[m, j] for m in M_axis) >= 1); @constraint(model, knp[m in M_axis], sum(w[m, j] * x[m, j] for j in J) <= Q[m]); @objective(model, Min, sum(c[m, j] * x[m, j] for m in M_axis, j in J) + 250); @dantzig_wolfe_decomposition(model, decomposition, M_axis) subproblems = getsubproblems(decomposition) specify!.(subproblems, lower_multiplicity = 0, upper_multiplicity = 1) optimize!(model) @test JuMP.objective_value(model) ≈ 250 + 166.5 return end register!(e2e_extra_tests, "gap", gap_with_obj_const)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2094
@testset "Integration - initial columns callback" begin function build_reformulation() nb_variables = 4 form_string = """ master min 1.0*x1 + 2.0*x2 + 3.0*x3 + 4.0*x4 s.t. 1.0*x1 + 2.0*x2 + 3.0*x3 + 4.0*x4 >= 0.0 dw_sp min 1.0*x1 + 2.0*x2 + 3.0*x3 + 4.0*x4 continuous representatives x1, x2, x3, x4 """ env, master, subproblems, constraints, _ = reformfromstring(form_string) spform = subproblems[1] spvarids = Dict(CL.getname(spform, var) => varid for (varid, var) in CL.getvars(spform)) # Fake JuMP model to simulate the user interacting with it in the callback. fake_model = JuMP.Model() @variable(fake_model, x[i in 1:nb_variables]) for name in ["x$i" for i in 1:nb_variables] CleverDicts.add_item(env.varids, spvarids[name]) end return env, master, spform, x, constraints[1] end # Create a formulation with 4 variables [x1 x2 x3 x4] and provide an initial column # [1 0 2 0]. # Cost of the column in the master should be 7. # Coefficient of the column in the constraint should be 7. @testset "normal case" begin env, master, spform, x, constr = build_reformulation() function callback(cbdata) variables = [x[1].index, x[3].index] values = [1.0, 2.0] custom_data = nothing CL._submit_initial_solution(env, cbdata, variables, values, custom_data) end ClMP.initialize_solution_pool!(spform, callback) # iMC_5 because 4 variables before this one initcolid = findfirst(var -> ClMP.getname(master, var) == "iMC_5", ClMP.getvars(master)) @test initcolid !== nothing @test ClMP.getperencost(master, initcolid) == 7 @test ClMP.iscuractive(master, initcolid) @test ClMP.getcoefmatrix(master)[ClMP.getid(constr), initcolid] == 7 end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
5389
@testset "Decomposition with representatives and single subproblem" begin d = CvrpToyData(false) model, x, cov, mast, sps, dec = cvrp_with_representatives(d) JuMP.optimize!(model) @test objective_value(model) ≈ 59 end @testset "Decomposition with representatives and multiple subproblems" begin d = CvrpToyData(true) model, x, cov, mast, sps, dec = cvrp_with_representatives(d) JuMP.optimize!(model) @test objective_value(model) ≈ 69 # Test with all routes for the cheapest vehicle because it generated an error d.nb_sols[1] = 13 model, x, cov, mast, sps, dec = cvrp_with_representatives(d) JuMP.optimize!(model) @test objective_value(model) ≈ 59 end struct CvrpSol travel_cost edges coeffs end struct CvrpData vehicle_types E V δ edge_costs fixed_costs # by vehicle type nb_sols # by vehicle type sp_sols end function CvrpToyData(is_hfvrp) vehicle_types = is_hfvrp ? [1, 2] : [1] E = [(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)] V = [1,2,3,4,5] δ = Dict( 1 => [(1,2), (1,3), (1,4), (1,5)], 2 => [(1,2), (2,3), (2,4), (2,5)], 3 => [(1,3), (2,3), (3,4), (3,5)], 4 => [(1,4), (2,4), (3,4), (4,5)], 5 => [(1,5), (2,5), (3,5), (4,5)] ) edge_costs = [10, 11, 13, 12, 4, 5, 6, 7, 8, 9] fixed_costs = is_hfvrp ? [0, 10] : [0] nb_sols = is_hfvrp ? [4, 13] : [13] sp_sols = [ CvrpSol(20, [(1,2)], [2]), CvrpSol(22, [(1,3)], [2]), CvrpSol(26, [(1,4)], [2]), CvrpSol(24, [(1,5)], [2]), CvrpSol(10 + 4 + 11, [(1,2), (2,3), (1,3)], [1, 1, 1]), CvrpSol(10 + 5 + 13, [(1,2), (2,4), (1,4)], [1, 1, 1]), CvrpSol(10 + 6 + 12, [(1,2), (2,5), (1,5)], [1, 1, 1]), CvrpSol(11 + 7 + 13, [(1,3), (3,4), (1,4)], [1, 1, 1]), CvrpSol(11 + 8 + 12, [(1,3), (3,5), (1,5)], [1, 1, 1]), CvrpSol(13 + 9 + 12, [(1,4), (4,5), (1,5)], [1, 1, 1]), CvrpSol(11 + 7 + 9 + 12, [(1,3), (3,4), (4,5), (1,5)], [1, 1, 1, 1]), CvrpSol(13 + 7 + 9 + 12, [(1,4), (3,4), (4,5), (1,5)], [1, 1, 1, 1]), CvrpSol(11 + 8 + 9 + 13, [(1,3), (3,5), (4,5), (1,4)], [1, 1, 1, 1]), ] return CvrpData(vehicle_types, E, V, δ, edge_costs, fixed_costs, nb_sols, sp_sols) end function cvrp_with_representatives(data::CvrpData) V₊ = data.V[2:end] edgeidx = Dict( (1,2) => 1, (1,3) => 2, (1,4) => 3, (1,5) => 4, (2,3) => 5, (2,4) => 6, (2,5) => 7, (3,4) => 8, (3,5) => 9, (4,5) => 10 ) rcost(sol, rcosts) = sum( rcosts[edgeidx[e]] * sol.coeffs[i] for (i,e) in enumerate(sol.edges) ) coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm( maxnumnodes = 10000, branchingtreefile = "cvrp.dot" )), "default_optimizer" => GLPK.Optimizer ) @axis(VehicleTypes, data.vehicle_types) model = BlockModel(coluna) @variable(model, 0 <= x[e in data.E] <= 2, Int) if length(data.vehicle_types) > 1 @variable(model, y[vt in VehicleTypes] >= 0) @objective(model, Min, sum(data.fixed_costs[vt] * y[vt] for vt in VehicleTypes) + sum(data.edge_costs[i] * x[e] for (i,e) in enumerate(data.E)) ) else @objective(model, Min, sum(data.edge_costs[i] * x[e] for (i,e) in enumerate(data.E))) end @constraint(model, cov[v in V₊], sum(x[e] for e in data.δ[v]) == 2) @dantzig_wolfe_decomposition(model, dec, VehicleTypes) function route_pricing_callback(cbdata) spid = BlockDecomposition.callback_spid(cbdata, model) rcosts = [BlockDecomposition.callback_reduced_cost(cbdata, x[e]) for e in data.E] bestsol = data.sp_sols[1] bestrc = rcost(bestsol, rcosts) for sol in data.sp_sols[2:data.nb_sols[spid]] rc = rcost(sol, rcosts) if rc < bestrc bestrc = rc bestsol = sol end end if length(data.vehicle_types) > 1 bestrc += BlockDecomposition.callback_reduced_cost(cbdata, y[spid]) end # Create the solution (send only variables with non-zero values) solvars = JuMP.VariableRef[] solvals = Float64[] for (i,e) in enumerate(bestsol.edges) push!(solvars, x[e]) push!(solvals, bestsol.coeffs[i]) end if length(data.vehicle_types) > 1 push!(solvars, y[spid]) push!(solvals, 1.0) end # Submit the solution to the subproblem to Coluna MOI.submit(model, BlockDecomposition.PricingSolution(cbdata), bestrc, solvars, solvals) MOI.submit(model, BlockDecomposition.PricingDualBound(cbdata), bestrc) end master = BlockDecomposition.getmaster(dec) subproblems = BlockDecomposition.getsubproblems(dec) subproblemrepresentative.(x, Ref(subproblems)) sp_lm = (length(data.vehicle_types) == 1) ? 2 : 0 for vt in VehicleTypes specify!( subproblems[vt], lower_multiplicity = sp_lm, upper_multiplicity = 4, solver = route_pricing_callback ) end return model, x, cov, master, subproblems, dec end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
282
dirs = [ "custom_data", "parser", "pricing_callback", "MOI" ] for dir in dirs dirpath = joinpath(@__DIR__, dir) for filename in readdir(dirpath) include(joinpath(dirpath, filename)) end end run_integration_tests() = run_tests(integration_tests)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2720
# # We want to make sure that when put variables in the partial solution, these variables are # # removed from the subsolver and the solution returned contains the variables in the partial solution # # variables and the cost of the partial solution. function test_fixed_variables() env = CL.Env{ClMP.VarId}(CL.Params()) # Create the following formulation: # min x1 + 2x2 + 3x3 # st. x1 + 2x2 + 3x3 >= 16 # x1 >= 1 # x2 >= 2 # x3 >= 3 form = ClMP.create_formulation!(env, ClMP.DwMaster()) vars = Dict{String, ClMP.Variable}() for i in 1:3 x = ClMP.setvar!(form, "x$i", ClMP.OriginalVar; cost = i, lb = i) vars["x$i"] = x end members = Dict{ClMP.VarId,Float64}( ClMP.getid(vars["x1"]) => 1, ClMP.getid(vars["x2"]) => 2, ClMP.getid(vars["x3"]) => 3 ) c = ClMP.setconstr!(form, "c", ClMP.OriginalConstr; rhs = 16, sense = ClMP.Greater, members = members ) ClMP.push_optimizer!(form, CL._optimizerbuilder(MOI._instantiate_and_check(GLPK.Optimizer))) DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) primal_sol = ClA.get_best_lp_primal_sol(output) dual_sol = ClA.get_best_lp_dual_sol(output) @test ClMP.getvalue(primal_sol) == 16 @test ClMP.getvalue(dual_sol) == 16 @test ClMP.getcurrhs(form, c) == 16 @test primal_sol[ClMP.getid(vars["x1"])] == 1 @test primal_sol[ClMP.getid(vars["x2"])] == 2 @test primal_sol[ClMP.getid(vars["x3"])] ≈ 3 + 2/3 # min x1' + 2x2' + 3x3' # st. x1' + 2x2' + 3x3' >= 16 - 1 - 4 - 9 >= 2 # x1' >= 0 # x2' >= 0 # x3' >= 0 ClMP.add_to_partial_solution!(form, vars["x1"], 1) ClMP.add_to_partial_solution!(form, vars["x2"], 2) ClMP.add_to_partial_solution!(form, vars["x3"], 3) # We perform propagation by hand (the preprocessing should do it) ClMP.setcurrhs!(form, c, 2.0) ClMP.setcurlb!(form, vars["x1"], 0.0) ClMP.setcurlb!(form, vars["x2"], 0.0) ClMP.setcurlb!(form, vars["x3"], 0.0) output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) primal_sol = ClA.get_best_lp_primal_sol(output) dual_sol = ClA.get_best_lp_dual_sol(output) @test ClMP.getvalue(primal_sol) == 16 @test ClMP.getvalue(dual_sol) == 16 @test ClMP.getcurrhs(form, c) == 2 @test primal_sol[ClMP.getid(vars["x1"])] == 1 @test primal_sol[ClMP.getid(vars["x2"])] == 2 @test primal_sol[ClMP.getid(vars["x3"])] ≈ 3 + 2/3 end register!(integration_tests, "MOI - fixed_variables", test_fixed_variables)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1749
function test_getprimal_getdual_case1() # Create the following formulation: # min x1 + 2x2 + 3x3 # st. x1 + 2x2 + 3x3 >= 16 # x1 == 2 # x2 == 3 # x3 >= 3 # Variable x1 and x2 are MOI.NONBASIC but get_dual (MOIinterface) was ignoring them. # As a result, the value of the dual solution was not correct. env = CL.Env{ClMP.VarId}(CL.Params()) form = ClMP.create_formulation!(env, ClMP.DwMaster()) vars = Dict{String, ClMP.Variable}() for i in 1:3 x = ClMP.setvar!(form, "x$i", ClMP.OriginalVar; cost = i, lb = i) vars["x$i"] = x end members = Dict{ClMP.VarId,Float64}( ClMP.getid(vars["x1"]) => 1, ClMP.getid(vars["x2"]) => 2, ClMP.getid(vars["x3"]) => 3 ) c = ClMP.setconstr!(form, "c", ClMP.OriginalConstr; rhs = 16, sense = ClMP.Greater, members = members ) ClMP.setcurlb!(form, vars["x1"], 2) ClMP.setcurlb!(form, vars["x2"], 3) ClMP.setcurub!(form, vars["x1"], 2) ClMP.setcurub!(form, vars["x2"], 3) ClMP.push_optimizer!(form, CL._optimizerbuilder(MOI._instantiate_and_check(GLPK.Optimizer))) DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) @test ClMP.getcurlb(form, vars["x1"]) == ClMP.getcurub(form, vars["x1"]) == 2 @test ClMP.getcurlb(form, vars["x2"]) == ClMP.getcurub(form, vars["x2"]) == 3 output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) primal_sol = ClA.get_best_lp_primal_sol(output) dual_sol = ClA.get_best_lp_dual_sol(output) @test ClMP.getvalue(primal_sol) == 17 @test ClMP.getvalue(dual_sol) == 17 end register!(integration_tests, "MOI - solvelpform", test_getprimal_getdual_case1)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1582
struct TestAttachCustomDataAlgorithm end struct CustomVarData <: BD.AbstractCustomVarData var_value::Int end struct CustomConstrData <: BD.AbstractCustomConstrData constr_value::Int end function Coluna.Algorithm.run!(::TestAttachCustomDataAlgorithm, _, form, _) vars = Dict{String, Coluna.MathProg.Variable}() for (_, var) in Coluna.MathProg.getvars(form) vars[getname(form, var)] = var end constrs = Dict{String, Coluna.MathProg.Constraint}() for (_, constr) in Coluna.MathProg.getconstrs(form) constrs[getname(form, constr)] = constr end @test Coluna.MathProg.getcustomdata(form, vars["x[1]"]).var_value == 1 @test Coluna.MathProg.getcustomdata(form, vars["x[2]"]).var_value == 2 @test Coluna.MathProg.getcustomdata(form, constrs["c"]).constr_value == 3 return Coluna.Algorithm.OptimizationState(form) end function attach_custom_data() coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params( solver = TestAttachCustomDataAlgorithm() ), "default_optimizer" => GLPK.Optimizer, ) model = BlockModel(coluna) @variable(model, x[1:2], Bin) @constraint(model, c, x[1] + x[2] <= 1) @objective(model, Max, 2x[1] + 3x[2]) customvars!(model, CustomVarData) customconstrs!(model, CustomConstrData) customdata!(x[1], CustomVarData(1)) customdata!(x[2], CustomVarData(2)) customdata!(c, CustomConstrData(3)) optimize!(model) end register!(integration_tests, "attach_custom_data", attach_custom_data)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
20335
struct AuxiliaryConstrInfo coeffs::Vector{Tuple{String,Float64}} duty::ClMP.Duty sense::CL.ConstrSense rhs::Float64 end function get_vars_info(form::CL.Formulation) names = String[] kinds = ClMP.VarKind[] duties = ClMP.Duty{ClMP.Variable}[] costs = Float64[] bounds = Tuple{Float64,Float64}[] for (varid, var) in CL.getvars(form) push!(names, CL.getname(form, var)) push!(kinds, CL.getperenkind(form, var)) push!(duties, CL.getduty(varid)) push!(costs, CL.getperencost(form, var)) push!(bounds, (CL.getperenlb(form, var), CL.getperenub(form, var))) end return names, kinds, duties, costs, bounds end function get_constrs_info(form::CL.Formulation) infos = AuxiliaryConstrInfo[] coeff_matrix = CL.getcoefmatrix(form) for (constrid, constr) in CL.getconstrs(form) coeffs = Tuple{String,Float64}[] for (varid, coeff) in @view coeff_matrix[constrid, :] push!(coeffs, (CL.getname(form, varid), coeff)) end duty = CL.getduty(constrid) sense = CL.getperensense(form, constr) rhs = CL.getperenrhs(form, constr) push!(infos, AuxiliaryConstrInfo(coeffs, duty, sense, rhs)) end return infos end function no_objective_function1() s = """ SP Min - 2y1 + y2 S.t. - 6.3y1 + 3y2 == 5.9 Continuous pricing y1, y2 bounds y1 >= 1 1 <= y2 """ @test_throws UndefObjectiveParserError reformfromstring(s) end register!(integration_tests, "parser", no_objective_function1) function no_objective_function2() s = """ Master max such that x + y1 <= 50.3 SP max - 2y1 + y2 such that - 6.3y1 + 3y2 == 5.9 Continuous pure x representative y1 pricing y2 bounds y1 >= 1 1 <= y2 """ @test_throws UndefObjectiveParserError reformfromstring(s) end register!(integration_tests, "parser", no_objective_function2) function no_sp_vars_in_master() # no sp variable present in master s = """ master maximize x + 5*y st 2x - y <= 25 Bin pure x Int pure y bounds y <= 10 """ env, master, subproblems, constraints, _ = reformfromstring(s) @test CL.getobjsense(master) == CL.MaxSense names, kinds, duties, costs, bounds = get_vars_info(master) @test names == ["y", "x"] @test kinds == [ClMP.Integ, ClMP.Binary] @test duties == [ClMP.MasterPureVar, ClMP.MasterPureVar] @test costs == [5.0, 1.0] @test bounds == [(-Inf, 10.0), (0.0, 1.0)] @test isempty(subproblems) end register!(integration_tests, "parser", no_sp_vars_in_master) function rep_var_in_master_but_no_sp() # representative variable present in master but no subproblem s = """ master maximise x + 5*y - w such that 2x - y + w <= 25 Bin pure x Int pure y representative w bounds y <= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", rep_var_in_master_but_no_sp) function rep_var_not_in_obj() # representative variable not present in OF s = """ master maximum 3*x such that x - y1 <= 25 dw_sp maximum 6y2 - 2.0*y1 such that y1 - y2 >= 25 cont pure x pricing y2 representative y1 bounds x >= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", rep_var_not_in_obj) function master_var_not_in_obj() # master variable not present in OF s = """ master min 3*x such that x + y >= 25 integers pures x, y bounds x, y >= 5 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", master_var_not_in_obj) function var_in_obj_with_no_duty_and_kind() # variable in OF with no duty and kind defined s = """ master min 3*x + 7w st x + w == 25 int pure x bounds 2 <= x, w <= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", var_in_obj_with_no_duty_and_kind) function var_in_constr_with_no_duty_and_kind() # variable in constraint with no duty and kind defined s = """ master minimise 3*x + 7w such that x + w - z == 25 int pure x, w bounds 2 <= x, w <= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", var_in_constr_with_no_duty_and_kind) function subprob_var_with_no_duty_and_kind() # subproblem variable with no duty and kind defined s = """ master min 3*x - w such that x + w == 25 dw_sp min y such that y >= 25 integer pure x, w bound 2 <= x, w <= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", subprob_var_with_no_duty_and_kind) function missing_duty_and_kind_section() # no duty/kind section defined s = """ master minimum 3*x - y such that x + y == 25 bounds 2 <= x, y <= 10 """ @test_throws UndefVarParserError reformfromstring(s) end register!(integration_tests, "parser", missing_duty_and_kind_section) function minimize_no_bounds() s = """ Master Minimize 2*x + 4.5*y1 Subject To x + y1 <= 10.5 SP Min y1 + y2 St - 6.3y1 + 3y2 == 5.9 Continuous pure x representative y1 pricing y2 """ env, master, subproblems, constraints, _ = reformfromstring(s) @test CL.getobjsense(master) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(master) @test names == ["x", "y1"] @test kinds == [ClMP.Continuous, ClMP.Continuous] @test duties == [ClMP.MasterPureVar, ClMP.MasterRepPricingVar] @test costs == [2.0, 4.5] @test bounds == [(-Inf, Inf), (-Inf, Inf)] constrs = get_constrs_info(master) c1 = constrs[1] # x + y1 <= 10.5 @test c1.coeffs == [("y1", 1.0), ("x", 1.0)] @test c1.duty == ClMP.MasterMixedConstr @test c1.sense == CL.Less @test c1.rhs == 10.5 sp1 = subproblems[1] @test CL.getobjsense(sp1) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(sp1) @test names == ["y2", "y1"] @test kinds == [ClMP.Continuous, ClMP.Continuous] @test duties == [ClMP.DwSpPricingVar, ClMP.DwSpPricingVar] @test costs == [1.0, 1.0] @test bounds == [(-Inf, Inf), (-Inf, Inf)] constrs = get_constrs_info(sp1) c1 = constrs[1] # - 6.3y1 + 3y2 == 5.9 @test c1.coeffs == [("y1", -6.3), ("y2", 3.0)] @test c1.duty == ClMP.DwSpPureConstr @test c1.sense == CL.Equal @test c1.rhs == 5.9 end register!(integration_tests, "parser", minimize_no_bounds) function minimize_test1() s = """ master min 2*x - 5w + y1 + y2 s.t. x - 3y1 + 8*y2 >= 20 x + w <= 9 dw_sp min 4.5*y1 - 3*z_1 + z_2 s.t. 6.3y1 + z_1 == 5 z_1 - 5*z_2 >= 4.2 dw_sp min 9*y2 + 2.2*z_3 s.t. 2*z_3 - 3y2 >= 3.8 integers pures x, w binaries representatives y1, y2 continuous pricing z_1, z_2, z_3 global_bounds 0 <= y1 <= 1 bounds 20 >= x >= 0 0 <= y1 <= 1 z_1, z_2 >= 6.2 """ env, master, subproblems, constraints, _ = reformfromstring(s) @test CL.getobjsense(master) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(master) @test names == ["w", "x", "y2", "y1"] @test kinds == [ClMP.Integ, ClMP.Integ, ClMP.Integ, ClMP.Integ] @test duties == [ClMP.MasterPureVar, ClMP.MasterPureVar, ClMP.MasterRepPricingVar, ClMP.MasterRepPricingVar] @test costs == [-5.0, 2.0, 1.0, 1.0] @test bounds == [(-Inf, Inf), (0.0, 20.0), (-Inf, Inf), (0.0, 1.0)] constrs = get_constrs_info(master) c1 = constrs[1] # x + w <= 9 @test c1.coeffs == [("w", 1.0), ("x", 1.0)] @test c1.duty == ClMP.MasterPureConstr @test c1.sense == CL.Less @test c1.rhs == 9.0 c2 = constrs[2] # x - 3y1 + 8*y2 >= 20 @test c2.coeffs == [("y2", 8.0), ("y1", -3.0), ("x", 1.0)] @test c2.duty == ClMP.MasterMixedConstr @test c2.sense == CL.Greater @test c2.rhs == 20.0 sp1 = subproblems[1] @test CL.getobjsense(sp1) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(sp1) @test names == ["y2", "z_3"] @test kinds == [ClMP.Binary, ClMP.Continuous] @test duties == [ClMP.DwSpPricingVar, ClMP.DwSpPricingVar] @test costs == [9.0, 2.2] @test bounds == [(0.0, 1.0), (-Inf, Inf)] constrs = get_constrs_info(sp1) c1 = constrs[1] # 2*z_3 - 3*y2 >= 3.8 @test c1.coeffs == [("z_3", 2.0), ("y2", -3.0)] @test c1.duty == ClMP.DwSpPureConstr @test c1.sense == CL.Greater @test c1.rhs == 3.8 sp2 = subproblems[2] @test CL.getobjsense(sp2) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(sp2) @test names == ["z_1", "z_2", "y1"] @test kinds == [ClMP.Continuous, ClMP.Continuous, ClMP.Binary] @test duties == [ClMP.DwSpPricingVar, ClMP.DwSpPricingVar, ClMP.DwSpPricingVar] @test costs == [-3.0, 1.0, 4.5] @test bounds == [(6.2, Inf), (6.2, Inf), (0.0, 1.0)] constrs = get_constrs_info(sp2) c1 = constrs[1] # 6.3y1 + z_1 == 5 @test c1.coeffs == [("y1", 6.3), ("z_1", 1.0)] @test c1.duty == ClMP.DwSpPureConstr @test c1.sense == CL.Equal @test c1.rhs == 5.0 c2 = constrs[2] # z_1 - 5*z_2 >= 4.2 @test c2.coeffs == [("z_2", -5.0), ("z_1", 1.0)] @test c2.duty == ClMP.DwSpPureConstr @test c2.sense == CL.Greater @test c2.rhs == 4.2 end register!(integration_tests, "parser", minimize_test1) function minimize_test2() s = """ master min 3*y + 2*z s.t. y + z >= 1 continuous pure y artificial z """ env, master, subproblems, constraints, _ = reformfromstring(s) names, kinds, duties, costs, bounds = get_vars_info(master) @test names == ["y", "z"] @test kinds == [ClMP.Continuous, ClMP.Continuous] @test duties == [ClMP.MasterPureVar, ClMP.MasterArtVar] @test costs == [3.0, 2.0] @test bounds == [(-Inf, Inf), (-Inf, Inf)] end register!(integration_tests, "parser", minimize_test2) function minimize_test3() # Original formulation is the following: # min # x1 + 4x2 + 2y1 + 3y2 # s.t. # x1 + x2 >= 0 # - x1 + 3x2 - y1 + 2y2 >= 2 # x1 + 3x2 + y1 + y2 >= 3 # y1 + y2 >= 0 s = """ master min x1 + 4x2 + z s.t. x1 + x2 >= 0 benders_sp min 0x1 + 0x2 + 2y1 + 3y2 + z s.t. -x1 + 3x2 + 2y1 + 3y2 >= 2 {BendTechConstr} x1 + 3x2 + y1 + y2 >= 3 {BendTechConstr} y1 + y2 >= 0 integers first_stage x1, x2 continuous second_stage_cost z second_stage y1, y2 bounds -Inf <= z <= Inf x1 >= 0 x2 >= 0 y1 >= 0 y2 >= 0 a11 >= 0 a12 >= 0 a21 >= 0 a22 >= 0 """ env, master, subproblems, constraints, _ = reformfromstring(s) @test CL.getobjsense(master) == CL.MinSense _s(n, v) = map(t -> t[2], sort!(collect(zip(n,v)); by = t -> t[1])) _s2(t) = sort!(t, by = t -> t[1]) names, kinds, duties, costs, bounds = get_vars_info(master) @test sort(names) == ["x1", "x2", "z"] @test _s(names, kinds) == [ClMP.Integ, ClMP.Integ, ClMP.Continuous] @test _s(names, duties) == [ClMP.MasterPureVar, ClMP.MasterPureVar, ClMP.MasterBendSecondStageCostVar] @test _s(names, costs) == [1.0, 4.0, 1.0] @test _s(names, bounds) == [(0, Inf), (0.0, Inf), (-Inf, Inf)] constrs = get_constrs_info(master) c1 = constrs[1] # x1 + x2 >= 0 @test c1.coeffs == [("x1", 1.0), ("x2", 1.0)] @test c1.duty == ClMP.MasterPureConstr @test c1.sense == CL.Greater @test c1.rhs == 0.0 sp1 = subproblems[1] @test CL.getobjsense(sp1) == CL.MinSense names, kinds, duties, costs, bounds = get_vars_info(sp1) @test sort(names) == ["x1", "x2", "y1", "y2", "z"] @test _s(names, kinds) == [ClMP.Integ, ClMP.Integ, ClMP.Continuous, ClMP.Continuous, ClMP.Continuous] @test _s(names, duties) == [ClMP.BendSpFirstStageRepVar, ClMP.BendSpFirstStageRepVar, ClMP.BendSpSepVar, ClMP.BendSpSepVar, ClMP.BendSpCostRepVar] @test _s(names, costs) == [1.0, 4.0, 2.0, 3.0, 1.0] @test _s(names, bounds) == [(0.0, Inf), (0.0, Inf), (0.0, Inf), (0.0, Inf), (-Inf, Inf)] @test !isnothing(sp1.duty_data.second_stage_cost_var) constrs = get_constrs_info(sp1) c1 = constrs[1] # x1 + 3x2 + y1 + y2 >= 3 @test _s2(c1.coeffs) == _s2([("x1", 1.0), ("y1", 1.0), ("x2", 3.0), ("y2", 1.0)]) @test c1.duty == ClMP.BendSpTechnologicalConstr @test c1.sense == CL.Greater @test c1.rhs == 3.0 c2 = constrs[2] # y1 + y2 >= 0 @test c2.coeffs == [("y1", 1.0), ("y2", 1.0)] @test c2.duty == ClMP.BendSpPureConstr @test c2.sense == CL.Greater @test c2.rhs == 0.0 c3 = constrs[3] # -x1 + 3x2 + 2y1 + 3y2 >= 2 @test _s2(c3.coeffs) == _s2([("x1", -1.0), ("y1", 2.0), ("x2", 3.0), ("y2", 3.0)]) @test c3.duty == ClMP.BendSpTechnologicalConstr @test c3.sense == CL.Greater @test c3.rhs == 2.0 end register!(integration_tests, "parser", minimize_test3) function columns_test() form = """ master min 100.0 local_art_of_cov_5 + 100.0 local_art_of_cov_4 + 100.0 local_art_of_cov_6 + 100.0 local_art_of_cov_7 + 100.0 local_art_of_cov_2 + 100.0 local_art_of_cov_3 + 100.0 local_art_of_cov_1 + 100.0 local_art_of_sp_lb_5 + 100.0 local_art_of_sp_ub_5 + 100.0 local_art_of_sp_lb_4 + 100.0 local_art_of_sp_ub_4 + 1000.0 global_pos_art_var + 1000.0 global_neg_art_var + 51.0 MC_30 + 38.0 MC_31 + 31.0 MC_32 + 35.0 MC_33 + 48.0 MC_34 + 13.0 MC_35 + 53.0 MC_36 + 28.0 MC_37 + 8.0 x_11 + 5.0 x_12 + 11.0 x_13 + 21.0 x_14 + 6.0 x_15 + 5.0 x_16 + 19.0 x_17 + 1.0 x_21 + 12.0 x_22 + 11.0 x_23 + 12.0 x_24 + 14.0 x_25 + 8.0 x_26 + 5.0 x_27 + 0.0 PricingSetupVar_sp_5 + 0.0 PricingSetupVar_sp_4 s.t. 1.0 x_11 + 1.0 x_21 + 1.0 local_art_of_cov_1 + 1.0 global_pos_art_var + 1.0 MC_31 + 1.0 MC_34 + 1.0 MC_35 + 1.0 MC_36 >= 1.0 1.0 x_12 + 1.0 x_22 + 1.0 local_art_of_cov_2 + 1.0 global_pos_art_var + 1.0 MC_31 + 1.0 MC_32 + 1.0 MC_33 >= 1.0 1.0 x_13 + 1.0 x_23 + 1.0 local_art_of_cov_3 + 1.0 global_pos_art_var + 1.0 MC_31 + 1.0 MC_33 + 1.0 MC_37 >= 1.0 1.0 x_14 + 1.0 x_24 + 1.0 local_art_of_cov_4 + 1.0 global_pos_art_var + 1.0 MC_30 + 1.0 MC_32 + 1.0 MC_33 + 1.0 MC_34 + 1.0 MC_35 + 1.0 MC_36 + 1.0 MC_37 >= 1.0 1.0 x_15 + 1.0 x_25 + 1.0 local_art_of_cov_5 + 1.0 global_pos_art_var + 1.0 MC_30 + 1.0 MC_31 >= 1.0 1.0 x_16 + 1.0 x_26 + 1.0 local_art_of_cov_6 + 1.0 global_pos_art_var + 1.0 MC_30 + 1.0 MC_32 + 1.0 MC_36 >= 1.0 1.0 x_17 + 1.0 x_27 + 1.0 local_art_of_cov_7 + 1.0 global_pos_art_var + 1.0 MC_30 + 1.0 MC_34 + 1.0 MC_36 + 1.0 MC_37 >= 1.0 1.0 PricingSetupVar_sp_5 + 1.0 local_art_of_sp_lb_5 + 1.0 MC_30 + 1.0 MC_32 + 1.0 MC_34 + 1.0 MC_36 >= 0.0 {MasterConvexityConstr} 1.0 PricingSetupVar_sp_5 - 1.0 local_art_of_sp_ub_5 + 1.0 MC_30 + 1.0 MC_32 + 1.0 MC_34 + 1.0 MC_36 <= 1.0 {MasterConvexityConstr} 1.0 PricingSetupVar_sp_4 + 1.0 local_art_of_sp_lb_4 + 1.0 MC_31 + 1.0 MC_33 + 1.0 MC_35 + 1.0 MC_37 >= 0.0 {MasterConvexityConstr} 1.0 PricingSetupVar_sp_4 - 1.0 local_art_of_sp_ub_4 + 1.0 MC_31 + 1.0 MC_33 + 1.0 MC_35 + 1.0 MC_37 <= 1.0 {MasterConvexityConstr} dw_sp min x_11 + x_12 + x_13 + x_14 + x_15 + x_16 + x_17 + 0.0 PricingSetupVar_sp_5 s.t. 2.0 x_11 + 3.0 x_12 + 3.0 x_13 + 1.0 x_14 + 2.0 x_15 + 1.0 x_16 + 1.0 x_17 <= 5.0 origin MC_30, MC_32, MC_34, MC_36 dw_sp min x_21 + x_22 + x_23 + x_24 + x_25 + x_26 + x_27 + 0.0 PricingSetupVar_sp_4 s.t. 5.0 x_21 + 1.0 x_22 + 1.0 x_23 + 3.0 x_24 + 1.0 x_25 + 5.0 x_26 + 4.0 x_27 <= 8.0 origin MC_31, MC_33, MC_35, MC_37 continuous columns MC_30, MC_31, MC_32, MC_33, MC_34, MC_35, MC_36, MC_37 artificial local_art_of_cov_5, local_art_of_cov_4, local_art_of_cov_6, local_art_of_cov_7, local_art_of_cov_2, local_art_of_cov_3, local_art_of_cov_1, local_art_of_sp_lb_5, local_art_of_sp_ub_5, local_art_of_sp_lb_4, local_art_of_sp_ub_4, global_pos_art_var, global_neg_art_var integer pricing_setup PricingSetupVar_sp_4, PricingSetupVar_sp_5 binary representatives x_11, x_21, x_12, x_22, x_13, x_23, x_14, x_24, x_15, x_25, x_16, x_26, x_17, x_27 bounds 0.0 <= x_11 <= 1.0 0.0 <= x_21 <= 1.0 0.0 <= x_12 <= 1.0 0.0 <= x_22 <= 1.0 0.0 <= x_13 <= 1.0 0.0 <= x_23 <= 1.0 0.0 <= x_14 <= 1.0 0.0 <= x_24 <= 1.0 0.0 <= x_15 <= 1.0 0.0 <= x_25 <= 1.0 0.0 <= x_16 <= 1.0 0.0 <= x_26 <= 1.0 0.0 <= x_17 <= 1.0 0.0 <= x_27 <= 1.0 1.0 <= PricingSetupVar_sp_4 <= 1.0 1.0 <= PricingSetupVar_sp_5 <= 1.0 local_art_of_cov_5 >= 0.0 local_art_of_cov_4 >= 0.0 local_art_of_cov_6 >= 0.0 local_art_of_cov_7 >= 0.0 local_art_of_cov_2 >= 0.0 local_art_of_cov_3 >= 0.0 local_art_of_cov_1 >= 0.0 local_art_of_sp_lb_5 >= 0.0 local_art_of_sp_ub_5 >= 0.0 local_art_of_sp_lb_4 >= 0.0 local_art_of_sp_ub_4 >= 0.0 global_pos_art_var >= 0.0 global_neg_art_var >= 0.0 """ env, master, sps, constrs, reform = Coluna.Tests.Parser.reformfromstring(form) @show master varids = Dict( Coluna.MathProg.getname(master, varid) => varid for (varid, var) in Coluna.MathProg.getvars(master) ) @test varids["MC_30"].origin_form_uid == varids["PricingSetupVar_sp_5"].assigned_form_uid @test varids["MC_31"].origin_form_uid == varids["PricingSetupVar_sp_4"].assigned_form_uid @test varids["MC_32"].origin_form_uid == varids["PricingSetupVar_sp_5"].assigned_form_uid @test varids["MC_33"].origin_form_uid == varids["PricingSetupVar_sp_4"].assigned_form_uid @test varids["MC_34"].origin_form_uid == varids["PricingSetupVar_sp_5"].assigned_form_uid @test varids["MC_35"].origin_form_uid == varids["PricingSetupVar_sp_4"].assigned_form_uid @test varids["MC_36"].origin_form_uid == varids["PricingSetupVar_sp_5"].assigned_form_uid @test varids["MC_37"].origin_form_uid == varids["PricingSetupVar_sp_4"].assigned_form_uid return end register!(integration_tests, "parser", columns_test)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
7896
# Formulation with a given nb of variables. No constraint & no cost. function build_formulation(nb_variables) env = CL.Env{ClMP.VarId}(CL.Params()) form = ClMP.create_formulation!(env, ClMP.DwSp(nothing, nothing, nothing, ClMP.Continuous)) vars = Dict( "x$i" => ClMP.setvar!(form, "x$i", ClMP.DwSpPricingVar) for i in 1:nb_variables ) fake_model = JuMP.Model() @variable(fake_model, x[i in 1:nb_variables]) for name in ["x$i" for i in 1:nb_variables] CleverDicts.add_item(env.varids, ClMP.getid(vars[name])) end return env, form, vars, x end # Specs about pricing callbacks (we consider the case of a minimization problem): # - Optimal primal <-> optimal dual (case 1) # - Unbounded primal <-> infeasible dual (case 2) # - Infeasible primal <-> unbounded dual (case 3) # - Infeasible primal <-> infeasible dual (case 4) # - heuristic solution (case 5) function cb_returns_a_dual_bound() env, form, vars, x = build_formulation(5) function callback(cbdata) CL._submit_dual_bound(cbdata, 0.5) end push!(form.optimizers, ClMP.UserOptimizer(callback)) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) == Inf @test ClA.get_ip_dual_bound(state) == 0.5 @test ClA.getterminationstatus(state) == CL.OTHER_LIMIT @test isnothing(ClA.get_best_ip_primal_sol(state)) @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_a_dual_bound) function cb_returns_an_optimal_solution() # case 1 env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -15.0 variables = [x[1].index, x[3].index] values = [1.0, 1.0] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) CL._submit_dual_bound(cbdata, cost) end push!(form.optimizers, ClMP.UserOptimizer(callback)) expected_primalsol = ClMP.PrimalSolution( form, [ClMP.getid(vars["x1"]), ClMP.getid(vars["x3"])], [1.0, 1.0], -15.0, CL.FEASIBLE_SOL ) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) == -15.0 @test ClA.get_ip_dual_bound(state) == -15.0 @test ClA.getterminationstatus(state) == ClB.OPTIMAL @test ClA.get_best_ip_primal_sol(state) == expected_primalsol @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_an_optimal_solution) function cb_returns_heuristic_solution() # case 5 env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -15.0 variables = [x[1].index, x[3].index] values = [1.0, 1.0] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) CL._submit_dual_bound(cbdata, -20) end push!(form.optimizers, ClMP.UserOptimizer(callback)) expected_primalsol = ClMP.PrimalSolution( form, [ClMP.getid(vars["x1"]), ClMP.getid(vars["x3"])], [1.0, 1.0], -15.0, CL.FEASIBLE_SOL ) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) == -15.0 @test ClA.get_ip_dual_bound(state) == -20.0 @test ClA.getterminationstatus(state) == ClB.OTHER_LIMIT @test ClA.get_best_ip_primal_sol(state) == expected_primalsol @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_heuristic_solution) function cb_returns_heuristic_solution_2() # case 5 env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -15.0 variables = [x[1].index, x[3].index] values = [1.0, 1.0] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) CL._submit_dual_bound(cbdata, -Inf) end push!(form.optimizers, ClMP.UserOptimizer(callback)) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) == -15.0 @test ClA.get_ip_dual_bound(state) == -Inf @test ClA.getterminationstatus(state) == ClB.OTHER_LIMIT @test !isnothing(ClA.get_best_ip_primal_sol(state)) @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_heuristic_solution_2) # cb returns infinite dual bound (primal infeasible) function cb_returns_infinite_dual_bound() # case 4 env, form, vars, x = build_formulation(5) function callback(cbdata) CL._submit_dual_bound(cbdata, Inf) end push!(form.optimizers, ClMP.UserOptimizer(callback)) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) === nothing @test ClA.get_ip_dual_bound(state) == Inf @test ClA.getterminationstatus(state) == ClB.INFEASIBLE @test isnothing(ClA.get_best_ip_primal_sol(state)) @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_infinite_dual_bound) function cb_returns_unbounded_primal() # case 2 env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -Inf variables = Coluna.MathProg.VarId[] values = Float64[] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) CL._submit_dual_bound(cbdata, nothing) end push!(form.optimizers, ClMP.UserOptimizer(callback)) state = ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) @test ClA.get_ip_primal_bound(state) == -Inf @test ClA.get_ip_dual_bound(state) === nothing @test ClA.getterminationstatus(state) == ClB.UNBOUNDED @test isnothing(ClA.get_best_lp_primal_sol(state)) end register!(integration_tests, "pricing_callback", cb_returns_unbounded_primal) function cb_returns_incorrect_dual_bound() env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -15.0 variables = [x[1].index, x[3].index] values = [1.0, 1.0] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) CL._submit_dual_bound(cbdata, -10) # dual bound > primal bound !!! end push!(form.optimizers, ClMP.UserOptimizer(callback)) @test_throws ClA.IncorrectPricingDualBound ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) end register!(integration_tests, "pricing_callback", cb_returns_incorrect_dual_bound) function cb_returns_solution_but_no_dual_bound() env, form, vars, x = build_formulation(5) function callback(cbdata) cost = -15.0 variables = [x[1].index, x[3].index] values = [1.0, 1.0] custom_data = nothing CL._submit_pricing_solution(env, cbdata, cost, variables, values, custom_data) end push!(form.optimizers, ClMP.UserOptimizer(callback)) @test_throws ClA.MissingPricingDualBound ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) end register!(integration_tests, "pricing_callback", cb_returns_solution_but_no_dual_bound) function cb_set_dual_bound_twice() env, form, vars, x = build_formulation(5) function callback(cbdata) CL._submit_dual_bound(cbdata, 1.0) CL._submit_dual_bound(cbdata, 2.0) end push!(form.optimizers, ClMP.UserOptimizer(callback)) @test_throws ClA.MultiplePricingDualBounds ClA.run!(ClA.UserOptimize(), env, form, ClA.OptimizationState(form)) end register!(integration_tests, "pricing_callback", cb_set_dual_bound_twice)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3188
# Test retrieval of variable bounds from pricing solver. # We optimize the formulation with a branch-and-price and set the node limit to 2. # We know the branching constraint (deterministic behavior) applied at the second node (x[1, 1] >= 1) # We retrieve the current bounds of x[1, 1] in the pricing callback and we check that the last lower bound retrieved (so in the second node) is 1. # Test breaks because branching constraints are not updated to variable bounds yet. @testset "Old - bound_callback_tests" begin data = ClD.GeneralizedAssignment.data("play2.txt") coluna = JuMP.optimizer_with_attributes( CL.Optimizer, "default_optimizer" => GLPK.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm(maxnumnodes = 2)) ) model, x, dec = ClD.GeneralizedAssignment.model_without_knp_constraints(data, coluna) # Subproblem models are created once and for all # One model for each machine # Subproblem models are created once and for all # One model for each machine sp_models = Dict{Int, Any}() for m in data.machines sp = JuMP.Model(GLPK.Optimizer) @variable(sp, y[j in data.jobs], Bin) @variable(sp, lb_y[j in data.jobs] >= 0) @variable(sp, ub_y[j in data.jobs] >= 0) @constraint(sp, knp, sum(data.weight[j,m]*y[j] for j in data.jobs) <= data.capacity[m]) @constraint(sp, lbs[j in data.jobs], y[j] + lb_y[j] >= 0) @constraint(sp, ubs[j in data.jobs], y[j] - ub_y[j] <= 0) sp_models[m] = (sp, y, lb_y, ub_y) end lb = 0.0 ub = 1.0 function my_pricing_callback(cbdata) machine_id = BD.callback_spid(cbdata, model) sp, y, lb_y, ub_y = sp_models[machine_id] red_costs = [BD.callback_reduced_cost(cbdata, x[machine_id, j]) for j in data.jobs] # Update the model ## Bounds on subproblem variables for j in data.jobs JuMP.fix(lb_y[j], BD.callback_lb(cbdata, x[machine_id, j]), force = true) JuMP.fix(ub_y[j], BD.callback_ub(cbdata, x[machine_id, j]), force = true) end if machine_id == 1 lb = BD.callback_lb(cbdata, x[1, 1]) ub = BD.callback_ub(cbdata, x[1, 1]) end ## Objective function @objective(sp, Min, sum(red_costs[j]*y[j] for j in data.jobs)) JuMP.optimize!(sp) # Retrieve the solution solcost = JuMP.objective_value(sp) solvars = JuMP.VariableRef[] solvarvals = Float64[] for j in data.jobs val = JuMP.value(y[j]) if val ≈ 1 push!(solvars, x[machine_id, j]) push!(solvarvals, 1.0) end end # Submit the solution MOI.submit( model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals ) MOI.submit(model, BD.PricingDualBound(cbdata), solcost) return end master = BD.getmaster(dec) subproblems = BD.getsubproblems(dec) BD.specify!.(subproblems, lower_multiplicity = 0, solver = my_pricing_callback) JuMP.optimize!(model) @test_broken lb == 1.0 @test ub == 1.0 end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1025
@testset "Old - optimizer with attributes" begin data = ClD.GeneralizedAssignment.data("play2.txt") println(JuMP.optimizer_with_attributes(GLPK.Optimizer)) println(GLPK.Optimizer) coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm( branchingtreefile = "playgap.dot" )), "default_optimizer" => JuMP.optimizer_with_attributes(GLPK.Optimizer, "tm_lim" => 60 * 1_100, "msg_lev" => GLPK.GLP_MSG_OFF) ) println(coluna) model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) BD.objectiveprimalbound!(model, 100) BD.objectivedualbound!(model, 0) JuMP.optimize!(model) @test JuMP.objective_value(model) ≈ 75.0 @test JuMP.termination_status(model) == MOI.OPTIMAL @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) @test MOI.get(model, MOI.NumberOfVariables()) == length(x) @test MOI.get(model, MOI.SolverName()) == "Coluna" end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3644
# @testset "Old - GAP with ad-hoc pricing callback and stages" begin # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "default_optimizer" => GLPK.Optimizer, # "params" => CL.Params( # solver = ClA.BranchCutAndPriceAlgorithm( # colgen_stages_pricing_solvers = [2, 2] # ) # ) # ) # model, x, dec = ClD.GeneralizedAssignment.model_without_knp_constraints(data, coluna) # # Subproblem models are created once and for all # # One model for each machine # # Subproblem models are created once and for all # # One model for each machine # sp_models = Dict{Int, Any}() # for m in data.machines # sp = JuMP.Model(GLPK.Optimizer) # @variable(sp, y[j in data.jobs], Bin) # @variable(sp, lb_y[j in data.jobs] >= 0) # @variable(sp, ub_y[j in data.jobs] >= 0) # @variable(sp, max_card >= 0) # this sets the maximum solution cardinality for heuristic pricing # @constraint(sp, card, sum(y[j] for j in data.jobs) <= max_card) # @constraint(sp, knp, sum(data.weight[j,m]*y[j] for j in data.jobs) <= data.capacity[m]) # @constraint(sp, lbs[j in data.jobs], y[j] + lb_y[j] >= 0) # @constraint(sp, ubs[j in data.jobs], y[j] - ub_y[j] <= 0) # sp_models[m] = (sp, y, lb_y, ub_y, max_card) # end # nb_exact_calls = 0 # function my_pricing_callback(cbdata) # # (cbdata.stage == 2) && return # machine_id = BD.callback_spid(cbdata, model) # sp, y, lb_y, ub_y, max_card = sp_models[machine_id] # red_costs = [BD.callback_reduced_cost(cbdata, x[machine_id, j]) for j in data.jobs] # # Update the model # ## Bounds on subproblem variables # for j in data.jobs # JuMP.fix(lb_y[j], BD.callback_lb(cbdata, x[machine_id, j]), force = true) # JuMP.fix(ub_y[j], BD.callback_ub(cbdata, x[machine_id, j]), force = true) # end # JuMP.fix(max_card, (cbdata.stage == 1) ? length(data.jobs) : 3, force = true) # nb_exact_calls += (cbdata.stage == 1) ? 1 : 0 # ## Objective function # @objective(sp, Min, sum(red_costs[j]*y[j] for j in data.jobs)) # JuMP.optimize!(sp) # # Retrieve the solution # solcost = JuMP.objective_value(sp) # solvars = JuMP.VariableRef[] # solvarvals = Float64[] # for j in data.jobs # val = JuMP.value(y[j]) # if val ≈ 1 # push!(solvars, x[machine_id, j]) # push!(solvarvals, 1.0) # end # end # # Submit the solution # MOI.submit( # model, BD.PricingSolution(cbdata), solcost, solvars, solvarvals # ) # return # end # master = BD.getmaster(dec) # subproblems = BD.getsubproblems(dec) # BD.specify!.(subproblems, lower_multiplicity = 0, solver = [GLPK.Optimizer, my_pricing_callback]) # JuMP.optimize!(model) # @test nb_exact_calls < 30 # WARNING: this test is necessary to properly test stage 2. # # Disabling stage 2 (uncommenting line 48) generates 40 exact # # calls, against 18 when it is enabled. These numbers may change # # a little bit with versions due to numerical errors. # @test JuMP.objective_value(model) ≈ 75.0 # @test JuMP.termination_status(model) == MOI.OPTIMAL # @test ClD.GeneralizedAssignment.print_and_check_sol(data, model, x) # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
544
# function show_functions_tests() # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # CL.Optimizer, # "default_optimizer" => GLPK.Optimizer, # "params" => CL.Params(solver = ClA.TreeSearchAlgorithm()) # ) # problem, x, dec = ClD.GeneralizedAssignment.model(data, coluna, true) # @test occursin("A JuMP Model", repr(problem)) # JuMP.optimize!(problem) # @test_nowarn Base.show(problem.moi_backend.inner.re_formulation.master.optimizers[1]) # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1379
@testset "Old - Disaggregated solution" begin I = 1:3 @axis(BinsType, [1]) w = [2, 5, 7] Q = 8 coluna = JuMP.optimizer_with_attributes( Coluna.Optimizer, "params" => Coluna.Params(solver = ClA.ColumnGeneration()), "default_optimizer" => GLPK.Optimizer ) model = BlockModel(coluna) @variable(model, x[k in BinsType, i in I], Bin) @variable(model, y[k in BinsType], Bin) @constraint(model, sp[i in I], sum(x[k, i] for k in BinsType) == 1) @constraint(model, ks[k in BinsType], sum(w[i] * x[k, i] for i in I) - y[k] * Q <= 0) @objective(model, Min, sum(y[k] for k in BinsType)) @dantzig_wolfe_decomposition(model, dec, BinsType) subproblems = BlockDecomposition.getsubproblems(dec) specify!.(subproblems, lower_multiplicity = 0, upper_multiplicity = BD.length(I)) # we use at most 3 bins JuMP.optimize!(model) for k in BinsType bins = BD.getsolutions(model, k) for bin in bins @test BD.value(bin) == 1.0 # value of the master column variable @test BD.value(bin, x[k, 1]) == BD.value(bin, x[k, 2]) # x[1,1] and x[1,2] in the same bin @test BD.value(bin, x[k, 1]) != BD.value(bin, x[k, 3]) # only x[1,3] in its bin @test BD.value(bin, x[k, 2]) != BD.value(bin, x[k, 3]) # only x[1,3] in its bin end end end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
982
# function subproblem_solvers_test() # @testset "play gap with lazy cuts" begin # data = ClD.GeneralizedAssignment.data("play2.txt") # coluna = JuMP.optimizer_with_attributes( # Coluna.Optimizer, # "params" => CL.Params(solver = ClA.BranchCutAndPriceAlgorithm(max_nb_cut_rounds = 1000)), # "default_optimizer" => GLPK.Optimizer # ) # model, x, dec = ClD.GeneralizedAssignment.model(data, coluna) # subproblems = getsubproblems(dec) # specify!(subproblems[1], lower_multiplicity=0, solver=JuMP.optimizer_with_attributes(GLPK.Optimizer, "tm_lim" => 60 * 1_100, "msg_lev" => GLPK.GLP_MSG_OFF)) # specify!(subproblems[2], lower_multiplicity=0, solver=JuMP.optimizer_with_attributes(GLPK.Optimizer, "tm_lim" => 60 * 2_200)) # optimize!(model) # @test JuMP.objective_value(model) ≈ 75.0 # @test JuMP.termination_status(model) == MOI.OPTIMAL # end # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
524
for dir in ["MustImplement", "ColunaBase", "MathProg", "ColGen", "Benders", "Branching", "Algorithm", "TreeSearch", "Presolve"] dirpath = joinpath(@__DIR__, dir) for filename in readdir(dirpath) includet(joinpath(dirpath, filename)) end end # for dir in readdir(".") # dirpath = joinpath(dir) # !isdir(dirpath) && continue # for filename in readdir(dirpath) # println("include(joinpath(\"",dirpath,"\", \"", filename,"\"))") # end # end run_unit_tests() = run_tests(unit_tests)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3040
struct Algorithm1 <: Coluna.AlgoAPI.AbstractAlgorithm a::Int b::Int end ClA.check_parameter(::Algorithm1, ::Val{:a}, value, reform) = 0 <= value <= 1 ClA.check_parameter(::Algorithm1, ::Val{:b}, value, reform) = 1 <= value <= 2 struct Algorithm2 <: Coluna.AlgoAPI.AbstractAlgorithm alg1::Algorithm1 c::String end ClA.get_child_algorithms(a::Algorithm2, reform::ClMP.Reformulation) = Dict("alg1" => (a.alg1, reform)) # We check that the parameters of the child algorithm is consistent with the expected value. ClA.check_parameter(::Algorithm2, ::Val{:alg1}, value, reform) = value.a != -1 ClA.check_parameter(::Algorithm2, ::Val{:c}, value, reform) = length(value) == 4 struct Algorithm3 <: Coluna.AlgoAPI.AbstractAlgorithm d::String e::Int end ClA.check_parameter(::Algorithm3, ::Val{:d}, value, reform) = length(value) == 3 ClA.check_parameter(::Algorithm3, ::Val{:e}, value, reform) = 5 <= value <= 8 struct Algorithm4 <: Coluna.AlgoAPI.AbstractAlgorithm alg2::Algorithm2 alg3::Algorithm3 end ClA.get_child_algorithms(a::Algorithm4, reform::ClMP.Reformulation) = Dict( "alg2" => (a.alg2, reform), "alg3" => (a.alg3, reform) ) ClA.check_parameter(::Algorithm4, ::Val{:alg2}, value, reform) = true ClA.check_parameter(::Algorithm4, ::Val{:alg3}, value, reform) = true function _check_parameters_reform() env = Coluna.Env{Coluna.MathProg.VarId}(Coluna.Params()) origform = Coluna.MathProg.create_formulation!(env, MathProg.Original()) master = Coluna.MathProg.create_formulation!(env, MathProg.DwMaster()) dw_pricing_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.DwSp}}() bend_pricing_sps = Dict{ClMP.FormId, ClMP.Formulation{ClMP.BendersSp}}() reform = ClMP.Reformulation(env, origform, master, dw_pricing_sps, bend_pricing_sps) return reform end function check_parameters_1() reform = _check_parameters_reform() alg1 = Algorithm1(1, 2) # ok, ok alg2 = Algorithm2(alg1, "3") # ok, not ok alg3 = Algorithm3("4", 5) # not ok, ok top_algo = Algorithm4(alg2, alg3) inconsistencies = ClA.check_alg_parameters(top_algo, reform) @test (:c, alg2, "3") ∈ inconsistencies @test (:d, alg3, "4") ∈ inconsistencies @test length(inconsistencies) == 2 end register!(unit_tests, "Algorithm", check_parameters_1) # we test with all checks returning false function check_parameters_2() reform = _check_parameters_reform() alg1 = Algorithm1(-1, -3) # not ok, not ok alg2 = Algorithm2(alg1, "N") # not ok, not ok alg3 = Algorithm3("N", 4) # not ok, not ok top_algo = Algorithm4(alg2, alg3) inconsistencies = ClA.check_alg_parameters(top_algo, reform) @test (:a, alg1, -1) ∈ inconsistencies @test (:b, alg1, -3) ∈ inconsistencies @test (:c, alg2, "N") ∈ inconsistencies @test (:alg1, alg2, alg1) ∈ inconsistencies @test (:d, alg3, "N") ∈ inconsistencies @test (:e, alg3, 4) ∈ inconsistencies @test length(inconsistencies) == 6 end register!(unit_tests, "Algorithm", check_parameters_2)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
2217
struct NodeAe1 <: Coluna.TreeSearch.AbstractNode id::Int depth::Int parent::Union{Nothing, NodeAe1} function NodeAe1(id::Int, parent::Union{Nothing, NodeAe1} = nothing) depth = isnothing(parent) ? 0 : parent.depth + 1 return new(id, depth, parent) end end mutable struct CustomSearchSpaceAe1 <: Coluna.TreeSearch.AbstractSearchSpace nb_branches::Int max_depth::Int max_nb_of_nodes::Int nb_nodes_generated::Int visit_order::Vector{Int} function CustomSearchSpaceAe1(nb_branches::Int, max_depth::Int, max_nb_of_nodes::Int) return new(nb_branches, max_depth, max_nb_of_nodes, 0, []) end end function Coluna.TreeSearch.new_root(space::CustomSearchSpaceAe1, input) space.nb_nodes_generated += 1 return NodeAe1(1) end Coluna.TreeSearch.stop(sp::CustomSearchSpaceAe1, _) = false struct CustomBestFirstSearch <: Coluna.TreeSearch.AbstractBestFirstSearch end Coluna.TreeSearch.get_priority(::CustomBestFirstSearch, node::NodeAe1) = -node.id function Coluna.TreeSearch.children(space::CustomSearchSpaceAe1, current, _) children = NodeAe1[] push!(space.visit_order, current.id) if current.depth != space.max_depth && space.nb_nodes_generated + space.nb_branches <= space.max_nb_of_nodes for _ in 1:space.nb_branches space.nb_nodes_generated += 1 node_id = space.nb_nodes_generated child = NodeAe1(node_id, current) push!(children, child) end end return children end Coluna.TreeSearch.tree_search_output(space::CustomSearchSpaceAe1) = space.visit_order function test_dfs() search_space = CustomSearchSpaceAe1(2, 3, 11) visit_order = Coluna.TreeSearch.tree_search(Coluna.TreeSearch.DepthFirstStrategy(), search_space, nothing, nothing) @test visit_order == [1, 3, 5, 7, 6, 4, 9, 8, 2, 11, 10] return end register!(unit_tests, "explore", test_dfs) function test_bfs() search_space = CustomSearchSpaceAe1(2, 3, 11) visit_order = Coluna.TreeSearch.tree_search(CustomBestFirstSearch(), search_space, nothing, nothing) @test visit_order == [1, 3, 5, 7, 6, 4, 9, 8, 2, 11, 10] end register!(unit_tests, "explore", test_bfs)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
14006
function formulation_for_optimizationstate(sense = Coluna.MathProg.MinSense) form = ClMP.create_formulation!(Env{ClMP.VarId}(Coluna.Params()), ClMP.Original(), obj_sense = sense) var = ClMP.setvar!(form, "var1", ClMP.OriginalVar) constr = ClMP.setconstr!(form, "constr1", ClMP.OriginalConstr) return form, var, constr end function update_solution_with_min_objective() form, var, constr = formulation_for_optimizationstate() state = ClA.OptimizationState( form, max_length_ip_primal_sols = 2.0, max_length_lp_primal_sols = 2.0, max_length_lp_dual_sols = 2.0 ) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [2.0], 2.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [1.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 1.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.update_ip_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_ip_primal_bound(state) == 2.0 ClA.update_ip_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [3.0], 3.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `primalsol` is NOT added to `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol ### ### lp primal ClA.update_lp_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 2.0 ClA.update_lp_primal_sol!( state, ClMP.PrimalSolution(form, [ClMP.getid(var)], [3.0], 3.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `primalsol` is NOT added to `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol ### ### lp dual ClA.update_lp_dual_sol!(state, dualsol) # check that `dualsol` is added to `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 1.0 ClA.update_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [0.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 0.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `dualsol` is NOT added to `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol ### end register!(unit_tests, "optimization_state", update_solution_with_min_objective) function update_solution_with_max_objective() form, var, constr = formulation_for_optimizationstate(ClMP.MaxSense) state = ClA.OptimizationState( form, max_length_ip_primal_sols = 2.0, max_length_lp_primal_sols = 2.0, max_length_lp_dual_sols = 2.0 ) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [2.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 2.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.update_ip_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_ip_primal_bound(state) == 1.0 ClA.update_ip_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [0.0], 0.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `primalsol` is NOT added to `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol ### ### lp primal ClA.update_lp_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 1.0 ClA.update_lp_primal_sol!( state, ClMP.PrimalSolution(form, [ClMP.getid(var)], [0.0], 0.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `primalsol` is NOT added to `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol ### ### lp dual ClA.update_lp_dual_sol!(state, dualsol) # check that `dualsol` is added to `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 2.0 ClA.update_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [3.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 3.0, ClB.UNKNOWN_FEASIBILITY )) # check that solution worse than `dualsol` is NOT added to `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol ### end register!(unit_tests, "optimization_state", update_solution_with_max_objective) function add_solution_with_min_objective() form, var, constr = formulation_for_optimizationstate() state = ClA.OptimizationState(form) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [2.0], 2.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [1.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 1.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.add_ip_primal_sols!( state, ClMP.PrimalSolution(form, [ClMP.getid(var)], [3.0], 3.0, ClB.UNKNOWN_FEASIBILITY), primalsol ) # check that `primalsol` is added to `state.ip_primal_sols` and worst solution is removed @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_ip_primal_bound(state) == 2.0 ### ### lp primal ClA.add_lp_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [3.0], 3.0, ClB.UNKNOWN_FEASIBILITY )) # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 3.0 ClA.add_lp_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.lp_primal_sols` and worst solution is removed @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 2.0 ### ### lp dual ClA.add_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [0.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 0.0, ClB.UNKNOWN_FEASIBILITY )) # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 0.0 ClA.add_lp_dual_sol!(state, dualsol) # check that `dualsol` is added to `state.lp_dual_sols` and worst solution is removed @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 1.0 ### end register!(unit_tests, "optimization_state", add_solution_with_min_objective) function add_solution_with_max_objective() form, var, constr = formulation_for_optimizationstate(ClMP.MaxSense) state = ClA.OptimizationState(form) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [2.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 2.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.add_ip_primal_sols!( state, ClMP.PrimalSolution(form, [ClMP.getid(var)], [0.0], 0.0, ClB.UNKNOWN_FEASIBILITY), primalsol ) # check that `primalsol` is added to `state.ip_primal_sols` and worst solution is removed @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_ip_primal_bound(state) == 1.0 ### ### lp primal ClA.add_lp_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [0.0], 0.0, ClB.UNKNOWN_FEASIBILITY )) # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 0.0 ClA.add_lp_primal_sol!(state, primalsol) # check that `primalsol` is added to `state.lp_primal_sols` and worst solution is removed @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is updated @test ClA.get_lp_primal_bound(state) == 1.0 ### ### lp dual ClA.add_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [3.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 3.0, ClB.UNKNOWN_FEASIBILITY )) # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 3.0 ClA.add_lp_dual_sol!(state, dualsol) # check that `dualsol` is added to `state.lp_dual_sols` and worst solution is removed @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is updated @test ClA.get_lp_dual_bound(state) == 2.0 ### end register!(unit_tests, "optimization_state", add_solution_with_max_objective) function set_solution_with_min_objective() form, var, constr = formulation_for_optimizationstate() state = ClA.OptimizationState( form, ip_primal_bound = 3.0, lp_primal_bound = 3.0, lp_dual_bound = -1.0 ) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [2.0], 2.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [0.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 0.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.set_ip_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_ip_primal_sol!(state, primalsol) # check that only the solution which was set last is in `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is NOT updated @test ClA.get_ip_primal_bound(state) == 3.0 ### ### lp primal ClA.set_lp_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_lp_primal_sol!(state, primalsol) # check that only the solution which was set last is in `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is NOT updated @test ClA.get_lp_primal_bound(state) == 3.0 ### ### lp dual ClA.set_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [1.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_lp_dual_sol!(state, dualsol) # check that only the solution which was set last is in `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is NOT updated @test ClA.get_lp_dual_bound(state) == -1.0 ### end register!(unit_tests, "optimization_state", set_solution_with_min_objective) function set_solution_with_max_objective() form, var, constr = formulation_for_optimizationstate(ClMP.MaxSense) state = ClA.OptimizationState( form, ip_primal_bound = -1.0, lp_primal_bound = -1.0, lp_dual_bound = 3.0 ) primalsol = ClMP.PrimalSolution(form, [ClMP.getid(var)], [0.0], 0.0, ClB.UNKNOWN_FEASIBILITY) dualsol = ClMP.DualSolution(form, [ClMP.getid(constr)], [2.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 2.0, ClB.UNKNOWN_FEASIBILITY) ### ip primal ClA.set_ip_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_ip_primal_sol!(state, primalsol) # check that only the solution which was set last is in `state.ip_primal_sols` @test length(ClA.get_ip_primal_sols(state)) == 1 @test ClA.get_ip_primal_sols(state)[1] == primalsol # check that incumbent bound is NOT updated @test ClA.get_ip_primal_bound(state) == -1.0 ### ### lp primal ClA.set_lp_primal_sol!(state, ClMP.PrimalSolution( form, [ClMP.getid(var)], [1.0], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_lp_primal_sol!(state, primalsol) # check that only the solution which was set last is in `state.lp_primal_sols` @test length(ClA.get_lp_primal_sols(state)) == 1 @test ClA.get_lp_primal_sols(state)[1] == primalsol # check that incumbent bound is NOT updated @test ClA.get_lp_primal_bound(state) == -1.0 ### ### lp dual ClA.set_lp_dual_sol!(state, ClMP.DualSolution( form, [ClMP.getid(constr)], [1.0], ClMP.VarId[], Float64[], ClMP.ActiveBound[], 1.0, ClB.UNKNOWN_FEASIBILITY )) ClA.set_lp_dual_sol!(state, dualsol) # check that only the solution which was set last is in `state.lp_dual_sols` @test length(ClA.get_lp_dual_sols(state)) == 1 @test ClA.get_lp_dual_sols(state)[1] == dualsol # check that incumbent bound is NOT updated @test ClA.get_lp_dual_bound(state) == 3.0 end register!(unit_tests, "optimization_state", set_solution_with_max_objective)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1979
# @testset "Algorithm - Presolve" begin # @testset "RemovalOfFixedVariables" begin # @test ClA._fix_var(0.99, 1.01, 0.1) # @test !ClA._fix_var(0.98, 1.1, 0.1) # @test ClA._fix_var(1.5, 1.5, 0.1) # @test_broken !ClA._infeasible_var(1.09, 0.91, 0.1) # @test ClA._infeasible_var(1.2, 0.9, 0.1) # # Create the following formulation: # # min x1 + 2x2 + 3x3 # # st. x1 >= 1 # # x2 >= 2 # # x3 >= 3 # # x1 + 2x2 + 3x3 >= 10 # env = CL.Env{ClMP.VarId}(CL.Params()) # form = ClMP.create_formulation!(env, ClMP.DwMaster()) # vars = Dict{String, ClMP.Variable}() # for i in 1:3 # x = ClMP.setvar!(form, "x$i", ClMP.OriginalVar; cost = i, lb = i) # vars["x$i"] = x # end # members = Dict{ClMP.VarId,Float64}( # ClMP.getid(vars["x1"]) => 1, # ClMP.getid(vars["x2"]) => 2, # ClMP.getid(vars["x3"]) => 3 # ) # c = ClMP.setconstr!(form, "c", ClMP.OriginalConstr; # rhs = 10, sense = ClMP.Greater, members = members # ) # DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) # @test ClMP.getcurrhs(form, c) == 10 # ClMP.setcurlb!(form, vars["x1"], 2) # ClMP.setcurub!(form, vars["x1"], 2) # @test ClMP.getcurrhs(form, c) == 10 # ClA.treat!(form, ClA.RemovalOfFixedVariables(1e-6)) # @test ClMP.getcurrhs(form, c) == 10 - 2 # ClMP.setcurlb!(form, vars["x2"], 3) # ClMP.setcurub!(form, vars["x2"], 3) # ClA.treat!(form, ClA.RemovalOfFixedVariables(1e-6)) # @test ClMP.getcurrhs(form, c) == 10 - 2 - 2*3 # ClMP.unfix!(form, vars["x1"]) # ClMP.setcurlb!(form, vars["x1"], 1) # ClA.treat!(form, ClA.RemovalOfFixedVariables(1e-6)) # @test ClMP.getcurrhs(form, c) == 10 - 2*3 # return # end # end
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1998
function unit_master_columns_record() env = CL.Env{ClMP.VarId}(CL.Params()) # Create the following formulation: # min 1*v1 + 2*v2 + 4*v3 # c1: 2*v1 + v3 >= 4 # c2: v1 + 2*v2 >= 5 # c3: v1 + v2 + v3 >= 3 form = ClMP.create_formulation!(env, ClMP.DwMaster()) vars = Dict{String,ClMP.Variable}() constrs = Dict{String,ClMP.Constraint}() rhs = [4,5,3] for i in 1:3 c = ClMP.setconstr!(form, "c$i", ClMP.MasterMixedConstr; rhs = rhs[i], sense = ClMP.Less) constrs["c$i"] = c end members = [ Dict(ClMP.getid(constrs["c1"]) => 2.0, ClMP.getid(constrs["c2"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c2"]) => 2.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c1"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), ] costs = [1,2,4] for i in 1:3 v = ClMP.setvar!(form, "v$i", ClMP.MasterCol; cost = costs[i], members = members[i], lb = 0) vars["v$i"] = v end DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) storage = ClB.getstorage(form) r1 = ClB.create_record(storage, ClA.MasterColumnsUnit) @test isempty(setdiff(r1.active_cols, ClMP.getid.(values(vars)))) # make changes on the formulation ClMP.deactivate!(form, vars["v2"]) r2 = ClB.create_record(storage, ClA.MasterColumnsUnit) v1v3 = Set{ClMP.VarId}([ClMP.getid(vars["v1"]), ClMP.getid(vars["v3"])]) @test isempty(setdiff(r2.active_cols, v1v3)) ClB.restore_from_record!(storage, r1) active_varids = filter(var_id -> iscuractive(form, var_id), keys(ClMP.getvars(form))) @test isempty(setdiff(active_varids, ClMP.getid.(values(vars)))) ClB.restore_from_record!(storage, r2) active_varids = filter(var_id -> iscuractive(form, var_id), keys(ClMP.getvars(form))) @test isempty(setdiff(active_varids, v1v3)) end register!(unit_tests, "storage_record", unit_master_columns_record)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3118
function unit_partial_solution_record() env = CL.Env{ClMP.VarId}(CL.Params()) # Create the following formulation: # min 1*v1 + 2*v2 + 4*v3 # c1: 2*v1 + v3 >= 4 # c2: v1 + 2*v2 >= 5 # c3: v1 + v2 + v3 >= 3 # 0 <= v1 <= 20 # -10 <= v2 <= 10 # -20 <= v3 <= 0 form = ClMP.create_formulation!(env, ClMP.DwMaster()) vars = Dict{String,ClMP.Variable}() constrs = Dict{String,ClMP.Constraint}() rhs = [4,5,3] for i in 1:3 c = ClMP.setconstr!(form, "c$i", ClMP.OriginalConstr; rhs = rhs[i], sense = ClMP.Less) constrs["c$i"] = c end members = [ Dict(ClMP.getid(constrs["c1"]) => 2.0, ClMP.getid(constrs["c2"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c2"]) => 2.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c1"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), ] costs = [1,2,4] ubounds = [20,10,0] lbounds = [0,-10,-20] for i in 1:3 v = ClMP.setvar!(form, "v$i", ClMP.OriginalVar; cost = costs[i], members = members[i], lb = lbounds[i], ub = ubounds[i]) vars["v$i"] = v end DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) storage = ClB.getstorage(form) r1 = ClB.create_record(storage, ClA.PartialSolutionUnit) @test isempty(r1.partial_solution) # make changes on the formulation ClMP.add_to_partial_solution!(form, vars["v1"], 5.0, true) # we propagate to bounds ClMP.add_to_partial_solution!(form, vars["v2"], -1.0, true) ClMP.add_to_partial_solution!(form, vars["v3"], -2.0, true) @test ClMP.get_value_in_partial_sol(form, vars["v1"]) == 5 @test ClMP.get_value_in_partial_sol(form, vars["v2"]) == -1 @test ClMP.get_value_in_partial_sol(form, vars["v3"]) == -2 @test ClMP.getcurlb(form, vars["v1"]) == 0 @test ClMP.getcurlb(form, vars["v2"]) == -9 @test ClMP.getcurlb(form, vars["v3"]) == -18 @test ClMP.getcurub(form, vars["v1"]) == 15 @test ClMP.getcurub(form, vars["v2"]) == 0 @test ClMP.getcurub(form, vars["v3"]) == 0 @test ClMP.in_partial_sol(form, vars["v1"]) @test ClMP.in_partial_sol(form, vars["v2"]) @test ClMP.in_partial_sol(form, vars["v3"]) r2 = ClB.create_record(storage, ClA.PartialSolutionUnit) @test isempty(setdiff(keys(r2.partial_solution), ClMP.getid.(values(vars)))) @test r2.partial_solution[ClMP.getid(vars["v1"])] == 5.0 @test r2.partial_solution[ClMP.getid(vars["v2"])] == -1.0 @test r2.partial_solution[ClMP.getid(vars["v3"])] == -2.0 ClB.restore_from_record!(storage, r1) @test !ClMP.in_partial_sol(form, vars["v1"]) @test !ClMP.in_partial_sol(form, vars["v2"]) @test !ClMP.in_partial_sol(form, vars["v3"]) ClB.restore_from_record!(storage, r2) @test ClMP.get_value_in_partial_sol(form, vars["v1"]) == 5.0 @test ClMP.get_value_in_partial_sol(form, vars["v2"]) == -1.0 @test ClMP.get_value_in_partial_sol(form, vars["v3"]) == -2.0 end register!(unit_tests, "storage_record", unit_partial_solution_record)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
3727
function unit_static_var_constr_record() function test_var_record(state, cost, lb, ub) @test state.cost == cost @test state.lb == lb @test state.ub == ub end function test_var(form, var, cost, lb, ub) @test ClMP.getcurcost(form, var) == cost @test ClMP.getcurlb(form, var) == lb @test ClMP.getcurub(form, var) == ub end function test_constr_record(state, rhs) @test state.rhs == rhs end function test_constr(form, constr, rhs) @test ClMP.getcurrhs(form, constr) == rhs end env = CL.Env{ClMP.VarId}(CL.Params()) # Create the following formulation: # min 1*v1 + 2*v2 + 4*v3 # c1: 2*v1 + v3 >= 4 # c2: v1 + 2*v2 >= 5 # c3: v1 + v2 + v3 >= 3 # 0 <= v1 <= 10 # 0 <= v2 <= 20 # 0 <= v3 <= 30 form = ClMP.create_formulation!(env, ClMP.DwMaster()) vars = Dict{String,ClMP.Variable}() constrs = Dict{String,ClMP.Constraint}() rhs = [4,5,3] for i in 1:3 c = ClMP.setconstr!(form, "c$i", ClMP.OriginalConstr; rhs = rhs[i], sense = ClMP.Less) constrs["c$i"] = c end members = [ Dict(ClMP.getid(constrs["c1"]) => 2.0, ClMP.getid(constrs["c2"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c2"]) => 2.0, ClMP.getid(constrs["c3"]) => 1.0), Dict(ClMP.getid(constrs["c1"]) => 1.0, ClMP.getid(constrs["c3"]) => 1.0), ] costs = [1,2,4] ubounds = [10,20,30] for i in 1:3 v = ClMP.setvar!(form, "v$i", ClMP.OriginalVar; cost = costs[i], members = members[i], lb = 0, ub = ubounds[i]) vars["v$i"] = v end DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) storage = ClB.getstorage(form) r1 = ClB.create_record(storage, ClA.StaticVarConstrUnit) @test isempty(setdiff(keys(r1.vars), ClMP.getid.(values(vars)))) @test isempty(setdiff(keys(r1.constrs), ClMP.getid.(values(constrs)))) test_var_record(r1.vars[ClMP.getid(vars["v1"])], 1, 0, 10) test_var_record(r1.vars[ClMP.getid(vars["v2"])], 2, 0, 20) test_var_record(r1.vars[ClMP.getid(vars["v3"])], 4, 0, 30) test_constr_record(r1.constrs[ClMP.getid(constrs["c1"])], 4) test_constr_record(r1.constrs[ClMP.getid(constrs["c2"])], 5) test_constr_record(r1.constrs[ClMP.getid(constrs["c3"])], 3) # make changes on the formulation ClMP.setcurlb!(form, vars["v1"], 5.0) ClMP.setcurub!(form, vars["v2"], 12.0) ClMP.setcurcost!(form, vars["v3"], 4.6) ClMP.setcurrhs!(form, constrs["c1"], 1.0) ClMP.deactivate!(form, constrs["c2"]) r2 = ClB.create_record(storage, ClA.StaticVarConstrUnit) @test isempty(setdiff(keys(r2.vars), ClMP.getid.(values(vars)))) @test length(r2.constrs) == 2 test_var_record(r2.vars[ClMP.getid(vars["v1"])], 1, 5, 10) test_var_record(r2.vars[ClMP.getid(vars["v2"])], 2, 0, 12) test_var_record(r2.vars[ClMP.getid(vars["v3"])], 4.6, 0, 30) test_constr_record(r2.constrs[ClMP.getid(constrs["c1"])], 1) test_constr_record(r2.constrs[ClMP.getid(constrs["c3"])], 3) ClB.restore_from_record!(storage, r1) test_var(form, vars["v1"], 1, 0, 10) test_var(form, vars["v2"], 2, 0, 20) test_var(form, vars["v3"], 4, 0, 30) test_constr(form, constrs["c1"], 4) @test ClMP.iscuractive(form, constrs["c2"]) ClB.restore_from_record!(storage, r2) test_var(form, vars["v1"], 1, 5, 10) test_var(form, vars["v2"], 2, 0, 12) test_var(form, vars["v3"], 4.6, 0, 30) test_constr(form, constrs["c1"], 1) @test !ClMP.iscuractive(form, constrs["c2"]) end register!(unit_tests, "storage_record", unit_static_var_constr_record)
Coluna
https://github.com/atoptima/Coluna.jl.git
[ "MPL-2.0" ]
0.8.1
828c61e9434b6af5f7908e42aacd17de35f08482
code
1754
function reset_parameters_after_optimize_with_moi() # Create the formulation: # Min x # s.t. x >= 1 env = Env{ClMP.VarId}(Coluna.Params()) form = ClMP.create_formulation!(env, ClMP.Original(), obj_sense = ClMP.MinSense) ClMP.setvar!(form, "x", ClMP.OriginalVar; cost = 1, lb = 1) closefillmode!(ClMP.getcoefmatrix(form)) algo1 = ClA.MoiOptimize( time_limit = 1200, silent = false, custom_parameters = Dict( "it_lim" => 60 ) ) algo2 = ClA.MoiOptimize( silent = false, custom_parameters = Dict( "mip_gap" => 0.03 ) ) optimizer = ClMP.MoiOptimizer(MOI._instantiate_and_check(GLPK.Optimizer)) get_time_lim() = MOI.get(optimizer.inner, MOI.TimeLimitSec()) get_silent() = MOI.get(optimizer.inner, MOI.Silent()) get_it_lim() = MOI.get(optimizer.inner, MOI.RawOptimizerAttribute("it_lim")) get_mip_gap() = MOI.get(optimizer.inner, MOI.RawOptimizerAttribute("mip_gap")) default_time_lim = get_time_lim() default_silent = get_silent() default_it_lim = get_it_lim() default_mip_gap = get_mip_gap() ClA.optimize_with_moi!(optimizer, form, algo1, ClA.OptimizationState(form)) @test get_time_lim() == default_time_lim @test get_silent() == default_silent @test get_it_lim() == default_it_lim @test get_mip_gap() == default_mip_gap ClA.optimize_with_moi!(optimizer, form, algo2, ClA.OptimizationState(form)) @test get_time_lim() == default_time_lim @test get_silent() == default_silent @test get_it_lim() == default_it_lim @test get_mip_gap() == default_mip_gap return end register!(unit_tests, "subsolvers", reset_parameters_after_optimize_with_moi)
Coluna
https://github.com/atoptima/Coluna.jl.git