licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
2.0.0
d50c73e4abd8f7c58eb76a8884dfd531fa8dac81
docs
313
# HistoricalStdlibVersions.jl Loads historical stdlib version information into Pkg to allow Pkg to resolve stdlib versions for prior julia versions. Usage ```julia julia> import Pkg, HistoricalStdlibVersions julia> append!(empty!(Pkg.Types.STDLIBS_BY_VERSION), HistoricalStdlibVersions.STDLIBS_BY_VERSION) ```
HistoricalStdlibVersions
https://github.com/JuliaPackaging/HistoricalStdlibVersions.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
450
using Documenter, CuFluxSampler makedocs( modules = [CuFluxSampler], clean = false, format = Documenter.HTML(), sitename = "CuFluxSampler.jl", linkcheck = false, pages = ["README" => "index.md"; "Reference" => "reference.md"], strict = [:missing_docs, :cross_references], ) deploydocs( repo = "github.com/LCSB-BioCore/CuFluxSampler.jl.git", target = "build", branch = "gh-pages", push_preview = false, )
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
4776
module ACHR using ..CUDA using ..DocStringExtensions using SparseArrays import ..COBREXA import ..TeaRNG import Random """ $(TYPEDSIGNATURES) A traditional artificially-centered hit-and-run algorithm that starts with `start` points. Refer to the documentation in module AffineHR for the meaning of arguments. """ function sample( m::COBREXA.MetabolicModel, start::AbstractMatrix; iters::Int, bound_stoichiometry::Bool = false, check_stoichiometry::Bool = true, direction_noise_max::Union{Nothing,Float32} = nothing, epsilon::Float32 = 1.0f-5, seed = Random.rand(UInt32), ) # allocate base helper variables npts = size(start, 2) pts = cu(Matrix{Float32}(start)) dirs = CUDA.zeros(size(start, 1), npts) lblambdas = CUDA.zeros(size(dirs)) ublambdas = CUDA.zeros(size(dirs)) lmins = CUDA.zeros(size(dirs)) lmaxs = CUDA.zeros(size(dirs)) lmin = CUDA.zeros(1, npts) lmax = CUDA.zeros(1, npts) lws = CUDA.zeros(1, npts) oks = CUDA.zeros(Bool, 1, npts) # extract model data S = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.stoichiometry(m))) lbs, ubs = cu.(COBREXA.bounds(m)) if check_stoichiometry || bound_stoichiometry b = cu(collect(COBREXA.balance(m))) end # conditional parts/allocations if bound_stoichiometry btmp = CUDA.zeros(length(b), npts) bdirs = CUDA.zeros(size(btmp)) blblambdas = CUDA.zeros(size(btmp)) bublambdas = CUDA.zeros(size(btmp)) blmins = CUDA.zeros(size(btmp)) blmaxs = CUDA.zeros(size(btmp)) end bound_coupling = COBREXA.n_coupling_constraints(m) > 0 if bound_coupling C = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.coupling(m))) clbs, cubs = cu.(COBREXA.coupling_bounds(m)) ctmp = CUDA.zeros(size(C, 1), npts) cdirs = CUDA.zeros(size(ctmp)) clblambdas = CUDA.zeros(size(ctmp)) cublambdas = CUDA.zeros(size(ctmp)) clmins = CUDA.zeros(size(ctmp)) clmaxs = CUDA.zeros(size(ctmp)) end add_noise = !isnothing(direction_noise_max) if add_noise noise_offset = -direction_noise_max noise_scale = 2.0f0 * direction_noise_max end # swap buffer for pts newpts = CUDA.zeros(size(pts)) # run the iterations for iter = 1:iters dirs .= (sum(pts; dims = 2) ./ npts) .- pts if add_noise @cuda threads = 256 blocks = 32 TeaRNG.device_add_unif_rand!( dirs, UInt32(seed + UInt32(iter * 2)), noise_offset, noise_scale, ) end # unit-size directions dirs ./= sqrt.(sum(dirs .^ 2, dims = 1)) # compute lower and upper bounds on lambdas by variable bounds lblambdas .= (lbs .- pts) ./ dirs ublambdas .= (ubs .- pts) ./ dirs lmins .= min.(lblambdas, ublambdas) lmaxs .= max.(lblambdas, ublambdas) lmin .= maximum(ifelse.(isfinite.(lmins), lmins, -Inf32), dims = 1) lmax .= minimum(ifelse.(isfinite.(lmaxs), lmaxs, Inf32), dims = 1) if bound_stoichiometry btmp .= S * pts .- b bdirs .= S * dirs blblambdas .= (-epsilon .- btmp) ./ bdirs bublambdas .= (epsilon .- btmp) ./ bdirs blmins .= min.(blblambdas, bublambdas) blmaxs .= max.(blblambdas, bublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(blmins), blmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(blmaxs), blmaxs, Inf32), dims = 1)) end if bound_coupling ctmp .= S * pts cdirs .= S * dirs clblambdas .= (clbs .- ctmp .- epsilon) ./ cdirs cublambdas .= (cubs .- ctmp .+ epsilon) ./ cdirs clmins .= min.(clblambdas, cublambdas) clmaxs .= max.(clblambdas, cublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(clmins), clmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(clmaxs), clmaxs, Inf32), dims = 1)) end # generate random lambdas and compute new points @cuda threads = 256 blocks = 32 TeaRNG.device_fill_rand!( lws, seed + UInt32(iter * 2 + 1), ) newpts .= pts + dirs .* (lmin .+ lws .* (lmax .- lmin)) oks .= all((newpts .>= lbs) .& (newpts .<= ubs), dims = 1) if check_stoichiometry # check if the new points balance is within the equality bounds oks .&= (sum((S * newpts .- b) .^ 2, dims = 1) .< epsilon) end pts .= ifelse.(oks, newpts, pts) end collect(pts) end end # module AffineHR
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
6344
module AffineHR using ..CUDA using ..DocStringExtensions using SparseArrays import ..COBREXA import ..TeaRNG import Random function random_mix_matrix(npts, mix_points) mtx = sparse( Random.rand(1:npts, npts * mix_points), repeat(1:npts, inner = mix_points), Random.rand(npts * mix_points), npts, npts, ) mtx ./ sum(mtx, dims = 1) end function random_permute_matrix(npts) sparse(1:npts, Random.randperm(npts), 1.0, npts, npts) end """ $(TYPEDSIGNATURES) Use the affine-combination hit-and-run algorithm to generate a sample of the feasible area of `m` from the set of `start` points supplied as columns in a matrix. The run directions are generated from random affine combination of `mix_points` points (by default 3); matrices `mix_mtx` and `permute_mtx` give fine control about the mixing in the process. Preferably, this matrix is very sparse. `check_stoichiometry` allows to turn on/off the filtering of generated points based on whether they are close to the steady state (with tolerance `epsilon`). `bound_stoichiometry` additionally computes run bounds based on the steady-state region, and uses it to generate better runs. This is useful in combination with `direction_noise_max` which may add a small noise to the generated run directions, allowing the sampler to discover new directions (potentially not obvious from warmup in `start`), but easily explodes without limiting the directions. Additional bounds on run ranges are taken from model coupling constraints, if present. If you are generating a sample of the optimal model solution, it is expected that the optimum bound is already present in `m`. Returns a matrix of the same size as `start`. """ function sample( m::COBREXA.MetabolicModel, start::AbstractMatrix; iters::Int, bound_stoichiometry::Bool = false, check_stoichiometry::Bool = true, direction_noise_max::Union{Nothing,Float32} = nothing, epsilon::Float32 = 1.0f-5, seed = Random.rand(UInt32), mix_points = 3, mix_mtx = random_mix_matrix(size(start, 2), mix_points), ) # allocate base helper variables npts = size(start, 2) pts = cu(Matrix{Float32}(start)) dirs = CUDA.zeros(size(start, 1), npts) lblambdas = CUDA.zeros(size(dirs)) ublambdas = CUDA.zeros(size(dirs)) lmins = CUDA.zeros(size(dirs)) lmaxs = CUDA.zeros(size(dirs)) lmin = CUDA.zeros(1, npts) lmax = CUDA.zeros(1, npts) lws = CUDA.zeros(1, npts) oks = CUDA.zeros(Bool, 1, npts) mix = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(mix_mtx)) # extract model data S = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.stoichiometry(m))) lbs, ubs = cu.(COBREXA.bounds(m)) if check_stoichiometry || bound_stoichiometry b = cu(collect(COBREXA.balance(m))) end # conditional parts/allocations if bound_stoichiometry btmp = CUDA.zeros(length(b), npts) bdirs = CUDA.zeros(size(btmp)) blblambdas = CUDA.zeros(size(btmp)) bublambdas = CUDA.zeros(size(btmp)) blmins = CUDA.zeros(size(btmp)) blmaxs = CUDA.zeros(size(btmp)) end bound_coupling = COBREXA.n_coupling_constraints(m) > 0 if bound_coupling C = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.coupling(m))) clbs, cubs = cu.(COBREXA.coupling_bounds(m)) ctmp = CUDA.zeros(size(C, 1), npts) cdirs = CUDA.zeros(size(ctmp)) clblambdas = CUDA.zeros(size(ctmp)) cublambdas = CUDA.zeros(size(ctmp)) clmins = CUDA.zeros(size(ctmp)) clmaxs = CUDA.zeros(size(ctmp)) end add_noise = !isnothing(direction_noise_max) if add_noise noise_offset = -direction_noise_max noise_scale = 2.0f0 * direction_noise_max end # swap buffer for pts newpts = CUDA.zeros(size(pts)) # run the iterations for iter = 1:iters dirs .= (pts * mix) .- pts if add_noise @cuda threads = 256 blocks = 32 TeaRNG.device_add_unif_rand!( dirs, UInt32(seed + UInt32(iter * 2)), noise_offset, noise_scale, ) end # unit-size directions dirs ./= sqrt.(sum(dirs .^ 2, dims = 1)) # compute lower and upper bounds on lambdas by variable bounds lblambdas .= (lbs .- pts) ./ dirs ublambdas .= (ubs .- pts) ./ dirs lmins .= min.(lblambdas, ublambdas) lmaxs .= max.(lblambdas, ublambdas) lmin .= maximum(ifelse.(isfinite.(lmins), lmins, -Inf32), dims = 1) lmax .= minimum(ifelse.(isfinite.(lmaxs), lmaxs, Inf32), dims = 1) if bound_stoichiometry btmp .= S * pts .- b bdirs .= S * dirs blblambdas .= (-epsilon .- btmp) ./ bdirs bublambdas .= (epsilon .- btmp) ./ bdirs blmins .= min.(blblambdas, bublambdas) blmaxs .= max.(blblambdas, bublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(blmins), blmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(blmaxs), blmaxs, Inf32), dims = 1)) end if bound_coupling ctmp .= S * pts cdirs .= S * dirs clblambdas .= (clbs .- ctmp .- epsilon) ./ cdirs cublambdas .= (cubs .- ctmp .+ epsilon) ./ cdirs clmins .= min.(clblambdas, cublambdas) clmaxs .= max.(clblambdas, cublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(clmins), clmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(clmaxs), clmaxs, Inf32), dims = 1)) end # generate random lambdas and compute new points @cuda threads = 256 blocks = 32 TeaRNG.device_fill_rand!( lws, seed + UInt32(iter * 2 + 1), ) newpts .= pts + dirs .* (lmin .+ lws .* (lmax .- lmin)) oks .= all((newpts .>= lbs) .& (newpts .<= ubs), dims = 1) if check_stoichiometry # check if the new points balance is within the equality bounds oks .&= (sum((S * newpts .- b) .^ 2, dims = 1) .< epsilon) end newpts .= ifelse.(oks, newpts, pts) pts .= newpts * mix end collect(pts) end end # module AffineHR
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
232
""" $(README) """ module CuFluxSampler using DocStringExtensions import COBREXA import CUDA import SparseArrays include("TeaRNG.jl") include("FullAffineHR.jl") include("AffineHR.jl") include("ACHR.jl") end # module CuFluxSampler
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
5538
module FullAffineHR using ..CUDA using ..DocStringExtensions import ..COBREXA import ..TeaRNG import Random """ $(TYPEDSIGNATURES) Use the full-affine-combination hit-and-run algorithm to generate a sample of the feasible area of `m` from the `warmup` points supplied as columns in a matrix. If you are generating a sample of the optimal solution, it is expected that the optimum bound is already present in `m`. Returns a matrix of `npts` samples organized in columns. This algorithm is mostly a toy for comparing the performance. It works, but do not use it in production. """ function sample( m::COBREXA.MetabolicModel, warmup::AbstractMatrix; npts::Int = size(warmup, 2), iters::Int, bound_stoichiometry::Bool = false, check_stoichiometry::Bool = true, direction_noise_max::Union{Nothing,Float32} = nothing, epsilon::Float32 = 1.0f-5, seed = Random.rand(UInt32), ) # TODO seed and tea iters # allocate base helper variables base_points = cu(Matrix{Float32}(warmup)) ws = CUDA.zeros(size(base_points, 2), npts) dirs = CUDA.zeros(size(base_points, 1), npts) lblambdas = CUDA.zeros(size(dirs)) ublambdas = CUDA.zeros(size(dirs)) lmins = CUDA.zeros(size(dirs)) lmaxs = CUDA.zeros(size(dirs)) lmin = CUDA.zeros(1, npts) lmax = CUDA.zeros(1, npts) lws = CUDA.zeros(1, npts) oks = CUDA.zeros(Bool, 1, npts) # extract model data S = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.stoichiometry(m))) lbs, ubs = cu.(COBREXA.bounds(m)) if check_stoichiometry || bound_stoichiometry b = cu(collect(COBREXA.balance(m))) end # conditional parts/allocations if bound_stoichiometry btmp = CUDA.zeros(length(b), npts) bdirs = CUDA.zeros(size(btmp)) blblambdas = CUDA.zeros(size(btmp)) bublambdas = CUDA.zeros(size(btmp)) blmins = CUDA.zeros(size(btmp)) blmaxs = CUDA.zeros(size(btmp)) end bound_coupling = COBREXA.n_coupling_constraints(m) > 0 if bound_coupling C = CUDA.CUSPARSE.CuSparseMatrixCSR(Float32.(COBREXA.coupling(m))) clbs, cubs = cu.(COBREXA.coupling_bounds(m)) ctmp = CUDA.zeros(size(C, 1), npts) cdirs = CUDA.zeros(size(ctmp)) clblambdas = CUDA.zeros(size(ctmp)) cublambdas = CUDA.zeros(size(ctmp)) clmins = CUDA.zeros(size(ctmp)) clmaxs = CUDA.zeros(size(ctmp)) end add_noise = !isnothing(direction_noise_max) if add_noise noise_offset = -direction_noise_max noise_scale = 2.0f0 * direction_noise_max end # pre-generate first batch of the points @cuda threads = 256 blocks = 32 TeaRNG.device_fill_rand!(ws, UInt32(0)) pts = (base_points * ws) ./ sum(ws, dims = 1) # swap buffer for pts newpts = CUDA.zeros(size(pts)) # run the iterations for iter = 1:iters # make random point combinations and convert to directions @cuda threads = 256 blocks = 32 TeaRNG.device_fill_rand!( ws, UInt32(seed + UInt32(iter * 3)), ) dirs .= ((base_points * ws) ./ sum(ws, dims = 1)) .- pts if add_noise @cuda threads = 256 blocks = 32 TeaRNG.device_add_unif_rand!( dirs, UInt32(seed + UInt32(iter * 3 + 1)), noise_offset, noise_scale, ) end # unit-size directions dirs ./= sqrt.(sum(dirs .^ 2, dims = 1)) # compute lower and upper bounds on lambdas by variable bounds lblambdas .= (lbs .- pts) ./ dirs ublambdas .= (ubs .- pts) ./ dirs lmins .= min.(lblambdas, ublambdas) lmaxs .= max.(lblambdas, ublambdas) lmin .= maximum(ifelse.(isfinite.(lmins), lmins, -Inf32), dims = 1) lmax .= minimum(ifelse.(isfinite.(lmaxs), lmaxs, Inf32), dims = 1) if bound_stoichiometry btmp .= S * pts .- b bdirs .= S * dirs blblambdas .= (-epsilon .- btmp) ./ bdirs bublambdas .= (epsilon .- btmp) ./ bdirs blmins .= min.(blblambdas, bublambdas) blmaxs .= max.(blblambdas, bublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(blmins), blmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(blmaxs), blmaxs, Inf32), dims = 1)) end if bound_coupling ctmp .= S * pts cdirs .= S * dirs clblambdas .= (clbs .- ctmp .- epsilon) ./ cdirs cublambdas .= (cubs .- ctmp .+ epsilon) ./ cdirs clmins .= min.(clblambdas, cublambdas) clmaxs .= max.(clblambdas, cublambdas) lmin .= max.(lmin, maximum(ifelse.(isfinite.(clmins), clmins, -Inf32), dims = 1)) lmax .= min.(lmax, minimum(ifelse.(isfinite.(clmaxs), clmaxs, Inf32), dims = 1)) end # generate random lambdas and compute new points @cuda threads = 256 blocks = 32 TeaRNG.device_fill_rand!( lws, seed + UInt32(iter * 3 + 2), ) newpts .= pts + dirs .* (lmin .+ lws .* (lmax .- lmin)) oks .= all((newpts .>= lbs) .& (newpts .<= ubs), dims = 1) if check_stoichiometry # check if the new points balance is within the equality bounds oks .&= (sum((S * newpts .- b) .^ 2, dims = 1) .< epsilon) end pts .= ifelse.(oks, newpts, pts) end collect(pts) end end # module AffineHR
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
1724
""" Fast stateless random number generator for GPUs based on TEA cipher. """ module TeaRNG using ..CUDA using ..DocStringExtensions """ $(TYPEDSIGNATURES) Use TEA cipher algorithm to reproducibly generate a `seq`-th random number from the `stream`-th random stream. """ function tea_random(stream::UInt32, seq::UInt32) v1 = stream v2 = seq s = 0x9E3779B9 for i = 1:8 v1 = UInt32( v1 + xor( UInt32(UInt32(v2 << 4) + 0xA341316C), v2 + s, UInt32((v2 >> 5) + 0xC8013EA4), ), ) v2 = UInt32( v2 + xor( UInt32(UInt32(v1 << 4) + 0xAD90777D), v1 + s, UInt32((v1 >> 5) + 0x7E95761E), ), ) s = UInt32(s + 0x9E3779B9) end return v1 end """ $(TYPEDSIGNATURES) CUDA.jl grid-stride kernel that fills the array with random numbers generated by [`tea_random`](@ref). `seed` is used as the `stream` ID, global thread index in grid is used as the `seq`uence number. """ function device_fill_rand!(arr, seed::UInt32) index = threadIdx().x + blockDim().x * (blockIdx().x - 1) stride = gridDim().x * blockDim().x for i = index:stride:length(arr) arr[i] = Float32(tea_random(seed, UInt32(i))) / Float32(0x100000000) end return end function device_add_unif_rand!(arr, seed::UInt32, offset::Float32, scale::Float32) index = threadIdx().x + blockDim().x * (blockIdx().x - 1) stride = gridDim().x * blockDim().x for i = index:stride:length(arr) arr[i] += offset + scale * (Float32(tea_random(seed, UInt32(i))) / Float32(0x100000000)) end return end end # module TeaRng
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
554
@testset "Full-affine-combination hit-and-run" begin m = load_model(df("e_coli_core.xml")) warmup = warmup_from_variability(m, GLPK.Optimizer) sample = CuFluxSampler.AffineHR.sample( m, warmup, iters = 100, bound_stoichiometry = true, check_stoichiometry = true, direction_noise_max = 1.0f-5, epsilon = 1.0f-5, ) lbs, ubs = bounds(m) @test all(sample .>= lbs .- 1.0f-5) @test all(sample .<= ubs .+ 1.0f-5) @test all((stoichiometry(m) * sample) .^ 2 .< 1e-5) end
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
946
using Downloads using SHA function check_data_file_hash(path, expected_checksum) actual_checksum = bytes2hex(sha256(open(path))) if actual_checksum != expected_checksum @error "The downloaded data file `$path' seems to be different from the expected one. Tests will likely fail." actual_checksum expected_checksum end end function download_data_file(url, path, hash) if isfile(path) check_data_file_hash(path, hash) @info "using cached `$path'" return path end Downloads.download(url, path) check_data_file_hash(path, hash) return path end isdir("downloaded") || mkdir("downloaded") df(s) = joinpath("downloaded", s) model_paths = Dict{String,String}( "e_coli_core.xml" => download_data_file( "http://bigg.ucsd.edu/static/models/e_coli_core.xml", df("e_coli_core.xml"), "b4db506aeed0e434c1f5f1fdd35feda0dfe5d82badcfda0e9d1342335ab31116", ), )
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
176
using Test, CuFluxSampler using COBREXA using GLPK include("data_downloaded.jl") @testset "CuFluxSampler tests" begin include("FullAffHR.jl") include("xHR.jl") end
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
code
1528
@testset "General hit-and-run schemes" begin m = load_model(df("e_coli_core.xml")) start = warmup_from_variability(m, GLPK.Optimizer) start = permutedims(repeat(start', 6)[1:1024, :], (2, 1)) lbs, ubs = bounds(m) epsilon = 1.0f-5 @testset "module $(mod)" for mod in [CuFluxSampler.AffineHR, CuFluxSampler.ACHR] @testset "stoichiometry bounding $bound_stoichiometry" for bound_stoichiometry in [false, true] @testset "stoichiometry checks $check_stoichiometry" for check_stoichiometry in [false, true] @testset "direction noise $direction_noise_max" for direction_noise_max in [nothing, 1.0f-5] sample = mod.sample( m, start; iters = 10, bound_stoichiometry, check_stoichiometry, direction_noise_max, epsilon, ) @test all(sample .>= lbs .- epsilon) @test all(sample .<= ubs .+ epsilon) if bound_stoichiometry || check_stoichiometry @test all((stoichiometry(m) * sample) .^ 2 .< 1e-5) end end end end end end
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
docs
2132
# CuFluxSampler.jl | Documentation | |:---:| | [![stable documentation](https://img.shields.io/badge/docs-stable-blue)](https://lcsb-biocore.github.io/CuFluxSampler.jl/stable) [![dev documentation](https://img.shields.io/badge/docs-dev-cyan)](https://lcsb-biocore.github.io/CuFluxSampler.jl/dev) | Flux samplers for [COBREXA.jl](https://github.com/LCSB-BioCore/COBREXA.jl/), accelerated on GPUs via [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl). The repository contains the following modules with samplers: - Affine-combination-directed Hit&Run (module `CuFluxSampler.AffineHR`) - Artificially-Centered Hit&Run (module `CuFluxSampler.ACHR`) Both modules export a specific function for running the sampler atop COBREXA.jl `MetabolicModel` structure, typically called `sample`. See the code comments and documentation for details. Samplers support many options that can be turned on and off, in general: - Number of points used for mixing the new run directions in `AffineHR` may be changed by `mix_points` parameter, and you can alternatively supply your own mixing matrix in `mix_mtx`. - You can turn on/off the stoichiometry checks with `check_stoichiometry` and tune it with `epsilon` (in both `ACHR` and `AffineHR`) - You can add tolerance bounds on stoichiometry in order to expand the feasible region a little to allow randomized runs to succeed; see `check_stoichiometry` and `direction_noise_max` parameters. - You can set a seed for the GPU-generated random numbers using `seed` Running the package code and tests requires a CUDA-capable GPU. #### Acknowledgements `CuFluxSampler.jl` was developed at the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg ([uni.lu/lcsb](https://www.uni.lu/lcsb)). The development was supported by European Union's Horizon 2020 Programme under PerMedCoE project ([permedcoe.eu](https://www.permedcoe.eu/)), agreement no. 951773. <img src="docs/src/assets/unilu.svg" alt="Uni.lu logo" height="64px">   <img src="docs/src/assets/lcsb.svg" alt="LCSB logo" height="64px">   <img src="docs/src/assets/permedcoe.svg" alt="PerMedCoE logo" height="64px">
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
docs
93
# CuFluxSampler.jl ```@autodocs Modules = [CuFluxSampler] Pages = ["CuFluxSampler.jl"] ```
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "Apache-2.0" ]
0.1.0
025ad27d907e845c3563fd02211d14f4ed2e32f3
docs
565
# Reference ## Artificially centered hit-and-run sampling ```@autodocs Modules = [CuFluxSampler, CuFluxSampler.ACHR] Pages = ["ACHR.jl"] ``` ## Affine hit-and-run sampling ```@autodocs Modules = [CuFluxSampler, CuFluxSampler.AffineHR] Pages = ["AffineHR.jl"] ``` ## Full-linear-combination affine hit-and-run sampling (internal) ```@autodocs Modules = [CuFluxSampler, CuFluxSampler.FullAffineHR] Pages = ["FullAffineHR.jl"] ``` ## Internal functions ### TEA-based RNG ```@autodocs Modules = [CuFluxSampler, CuFluxSampler.TeaRNG] Pages = ["TeaRNG.jl"] ```
CuFluxSampler
https://github.com/LCSB-BioCore/CuFluxSampler.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
455
using ExoplanetsSysSim start_dir = pwd() data_dir_home = joinpath(dirname(pathof(ExoplanetsSysSim)),"..") pkg_dev_home = joinpath(dirname(pathof(ExoplanetsSysSim)),"..") cd(pkg_dev_home) #= Disabled to prevent merge conflicts println("# Pulling most recent version, just to be sure.") flush(stdout) run(`git pull`) =# # Disabled, so can create modules manually in another directory and make data a symlink # include("init_modules.jl") cd(start_dir)
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
1021
using ExoplanetsSysSim start_dir = pwd() data_dir = joinpath(dirname(pathof(ExoplanetsSysSim)),"..","data") pkg_dev_home = joinpath(dirname(pathof(ExoplanetsSysSim)),"..") cd(pkg_dev_home) if true if !isfile(".gitmodules") println("# Adding [email protected]:ExoJulia/SysSimData.git a submodule in the data directory...") flush(stdout) run(`git submodule add [email protected]:ExoJulia/SysSimData.git data`) end println("# Initializing the data submodule...") flush(stdout) run(`git submodule init`) run(`git submodule update`) cd("data") println("# Initializing data's submodules...") flush(stdout) run(`git submodule init`) println("# git lfs pull just in case binary files not downloaded already...") flush(stdout) run(`git lfs pull`) cd("..") end println("# Recursively updating submodules...") flush(stdout) run(`git submodule update --recursive`) if data_dir != joinpath(pkg_dev_home,"data") cd(pkg_dev_home) symlink(data_dir,"data") end cd(start_dir)
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
4324
## ExoplanetsSysSim/examples/dr25_gaia_fgk/abc_run.jl ## (c) 2019 Danley C. Hsu & Eric B. Ford # Script for producing DR25 FGK planet candidate occurrence rate estimates include("abc_setup.jl") #using SysSimABC using ExoplanetsSysSim using JLD using StatsBase out2txt = false # Write occurrence rates & densities to text files expandpart = true # Expand final generation for robust posteriors prior_choice = "uniform" bin_size_factor = 2.0 println("Setting up simulation...") @time abc_plan = SysSimABC.setup_abc(prior_choice = prior_choice, bin_size_factor = bin_size_factor) println("") println("Running simulation...") @time output = SysSimABC.run_abc(abc_plan) println("") println("Running simulation (part 2)...") @time abc_plan = SysSimABC.setup_abc_p2(abc_plan) @time output = SysSimABC.run_abc(abc_plan, output) #@time abc_plan = change_distance() #@time output = run_abc(abc_plan, output) println("") save(string("test-pop-out.jld"), "output", output, "ss_true", EvalSysSimModel.get_ss_obs()) if expandpart println("Expanding to large generation...") @time theta_largegen, weights_largegen = SysSimABC.run_abc_largegen(abc_plan, output, EvalSysSimModel.get_ss_obs(), output.accept_log.epsilon[end-1], npart=200) println("") save(string("test-pop-out.jld"), "output", output, "ss_true", EvalSysSimModel.get_ss_obs(), "theta_largegen", theta_largegen, "weights_largegen", weights_largegen) end if out2txt file_rate = open("rate_output.txt", "w") file_dens = open("dens_output.txt", "w") end limitP = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) limitR = get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}) const r_dim = length(limitR)-1 if expandpart weight_vec = aweights(weights_largegen) #weight_vec = aweights(fill(1.0, length(weights_largegen))) else weight_vec = aweights(output.weights) #weight_vec = aweights(fill(1.0, length(output.weights))) end for p_ind = 1:(length(limitP)-1) col_ind = (p_ind-1)*(r_dim)+1 for r_ind = 1:r_dim bin_ind = (p_ind-1)*(r_dim)+r_ind dens_denom = 1.0/log(limitP[p_ind+1]/limitP[p_ind])/log(limitR[r_ind+1]/limitR[r_ind]) if prior_choice == "dirichlet" && r_dim > 1 col_ind = (p_ind-1)*(r_dim+1)+1 bin_ind = (p_ind-1)*(r_dim+1)+r_ind+1 if expandpart quant_arr = quantile(theta_largegen[bin_ind,:].*theta_largegen[col_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:].*output.theta[col_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) end elseif prior_choice == "beta" col_lambda = bin_size_factor * 3 * log(limitP[p_ind+1]/limitP[p_ind])/log(2) if expandpart quant_arr = quantile(theta_largegen[bin_ind,:]*col_lambda, weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:]*col_lambda, weight_vec, [0.1587, 0.5, 0.8413]) end else if expandpart quant_arr = quantile(theta_largegen[bin_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) end end println("-----------------------------") println("Orbital Period (day) = ", string(limitP[p_ind:p_ind+1]), " / Planet Radius (R_earth) = ", string(limitR[r_ind:r_ind+1]/ExoplanetsSysSim.earth_radius)) println("") println("Rate = ", string(quant_arr[2], " + ", quant_arr[3]-quant_arr[2], " - ", quant_arr[2]-quant_arr[1])) println("Density = ", string(quant_arr[2]*dens_denom, " + ", (quant_arr[3]-quant_arr[2])*dens_denom, " - ", (quant_arr[2]-quant_arr[1])*dens_denom)) if out2txt write(file_rate, string(quant_arr[2], " + ", quant_arr[3]-quant_arr[2], " - ", quant_arr[2]-quant_arr[1], "\n")) write(file_dens, string(quant_arr[2]*dens_denom, " + ", (quant_arr[3]-quant_arr[2])*dens_denom, " - ", (quant_arr[2]-quant_arr[1])*dens_denom, "\n")) end end end if out2txt close(file_rate) close(file_dens) end println("-----------------------------") println("") println(EvalSysSimModel.get_ss_obs())
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
12544
## ExoplanetsSysSim/examples/dr25_gaia_fgk/abc_setup.jl ## (c) 2019 Eric B. Ford & Danley C. Hsu # Collection of functions which specific ABC simulation parameters module EvalSysSimModel export setup, get_param_vector, get_ss_obs export gen_data, calc_summary_stats, calc_distance, is_valid_uniform, is_valid_beta, is_valid_dirichlet, normalize_dirch using ExoplanetsSysSim using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_fgk", "dr25_binrates_func.jl")) sim_param_closure = SimParam() summary_stat_ref_closure = CatalogSummaryStatistics() function is_valid_uniform(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) local rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}) #const lambda = sum_kbn(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< sum(rate_tab, dims=1)') return false end return true end function is_valid_beta(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) local rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}) local bin_size_factor::Float64 = get_real(sim_param_closure, "bin_size_factor") #const lambda = sum_kbn(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< (bin_size_factor*3*[log(limitP[i+1]/limitP[i])/log(2) for i in 1:length(limitP)-1].*sum(rate_tab, dims=1)')) return false end return true end function is_valid_dirichlet(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) local rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) #const lambda = sum_kbn(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< rate_tab[1,:]) return false end return true end function normalize_dirch(param_vector::Vector{Float64}) global sim_param_closure local p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 local r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 for i in 1:p_dim param_vector[((i-1)*(r_dim+1)+2):((i-1)*(r_dim+1)+(r_dim+1))] ./= sum(param_vector[((i-1)*(r_dim+1)+2):((i-1)*(r_dim+1)+(r_dim+1))]) end update_sim_param_from_vector!(param_vector,sim_param_closure) return param_vector end function gen_data(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) cat_phys = generate_kepler_physical_catalog(sim_param_closure) #cat_phys_cut = ExoplanetsSysSim.generate_obs_targets(cat_phys, sim_param_closure) #cat_obs = ExoplanetsSysSim.observe_kepler_targets_single_obs(cat_phys_cut, sim_param_closure) cat_obs = ExoplanetsSysSim.observe_kepler_targets_sky_avg(cat_phys, sim_param_closure) return cat_obs end # TODO OPT: Eventually, could adapt ABC.jl to use distance from first pass to decide if should compute additional summary statistics function calc_summary_stats(cat::KeplerObsCatalog) global sim_param_closure sum_stat = calc_summary_stats_obs_binned_rates(cat, sim_param_closure, obs_skyavg = true) return sum_stat end function calc_distance(sum_stat_obs::CatalogSummaryStatistics,sum_stat_sim::CatalogSummaryStatistics, n::Integer = 0) global sim_param_closure dist1 = calc_distance_vector_binned(sum_stat_obs,sum_stat_sim, 1, sim_param_closure) num_available = length(dist1) num_to_use = n>0 ? min(n,num_available) : num_available return calc_scalar_distance(dist1[1:num_to_use]) end function setup(prior_choice::String, bin_size_factor::Float64) global sim_param_closure = setup_sim_param_dr25binrates() add_param_fixed(sim_param_closure,"bin_size_factor",bin_size_factor) if prior_choice == "dirichlet" sim_param_closure = set_test_param_total(sim_param_closure) add_param_fixed(sim_param_closure,"generate_num_planets",generate_num_planets_binrates_dirichlet) if (length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1) > 1 add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_binrates_dirichlet) end elseif prior_choice == "beta" sim_param_closure = set_test_param(sim_param_closure) add_param_fixed(sim_param_closure,"generate_num_planets",generate_num_planets_binrates_beta) add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_binrates_beta) elseif prior_choice == "uniform" sim_param_closure = set_test_param(sim_param_closure) else println("# Invalid prior given!") quit() end ### Use simulated planet candidate catalog data # df_star = setup_star_table_christiansen(sim_param_closure) # println("# Finished reading in stellar data") # add_param_fixed(sim_param_closure,"num_kepler_targets",1000000) # For "observed" catalog # cat_obs = simulated_read_kepler_observations(sim_param_closure) # println("# Finished setting up simulated true catalog") ### ### Use real planet candidate catalog data df_koi,usable_koi = read_koi_catalog(sim_param_closure) println("# Finished reading in KOI data") df_star = setup_star_table_dr25(sim_param_closure) println("# Finished reading in stellar data") cat_obs = setup_actual_planet_candidate_catalog(df_star, df_koi, usable_koi, sim_param_closure) println("# Finished setting up true catalog") ### global summary_stat_ref_closure = calc_summary_stats_obs_binned_rates(cat_obs,sim_param_closure, trueobs_cat = true) end get_param_vector() = make_vector_of_sim_param(sim_param_closure) get_ss_obs() = summary_stat_ref_closure function set_simparam_ss(sim_param::ExoplanetsSysSim.SimParam, ss_true::ExoplanetsSysSim.CatalogSummaryStatistics) global sim_param_closure = sim_param global summary_stat_ref_closure = ss_true end end # module EvalSysSimModel #include(joinpath(Pkg.dir("ABC"),"src/composite.jl")) module SysSimABC export setup_abc, run_abc, run_abc_largegen, setup_abc_p2 using Distributions, Random, Distributed using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing import ApproximateBayesianComputing.CompositeDistributions.CompositeDist import ApproximateBayesianComputing.TransformedBetaDistributions.LinearTransformedBeta #using Compat import ExoplanetsSysSim import ..EvalSysSimModel include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_fgk", "dr25_binrates_func.jl")) include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_fgk", "beta_proposal.jl")) function setup_abc(num_dist::Integer = 0; prior_choice::String = "uniform", bin_size_factor::Float64 = 1.5) EvalSysSimModel.setup(prior_choice, bin_size_factor) limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) limitR::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}) limitR_full::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "r_lim_full", Array{Float64,1}) local r_dim = length(limitR)-1 prior_arr = ContinuousDistribution[] ss_obs_table = EvalSysSimModel.get_ss_obs().stat["planets table"] if prior_choice == "dirichlet" weights_arr = [log(limitR[j+1]/limitR[j]) for j in 1:r_dim]/minimum([log(limitR_full[k+1]/limitR_full[k]) for k in 1:(length(limitR_full)-1)]) for i in 1:(length(limitP)-1) max_in_col = 3*log(limitP[i+1]/limitP[i])/log(2) lambda_col = Uniform(0.0, max_in_col) prior_arr = vcat(prior_arr, lambda_col) if r_dim > 1 dirch_dist = Dirichlet(weights_arr) prior_arr = vcat(prior_arr, dirch_dist) end end elseif prior_choice == "beta" for i in 1:(length(limitP)-1) for j in 1:r_dim r_ind = findfirst(x -> x == limitR[j], limitR_full) beta_dist = Beta(log(limitR[j+1]/limitR[j]), sum(log.([getindex(limitR_full, x) for x = 2:length(limitR_full) if x != r_ind+1] ./ [getindex(limitR_full, x) for x = 1:length(limitR_full)-1 if x != r_ind]))) prior_arr = vcat(prior_arr, beta_dist) end end else for i in 1:(length(limitP)-1) max_in_col = bin_size_factor*log(limitP[i+1]/limitP[i])/log(2) for j in 1:r_dim uniform_dist = Uniform(0.0, max_in_col*log(limitR[j+1]/limitR[j])/log(2)) prior_arr = vcat(prior_arr, uniform_dist) end end end param_prior = CompositeDist(prior_arr) in_parallel = nworkers() > 1 ? true : false calc_distance_ltd(sum_stat_obs::ExoplanetsSysSim.CatalogSummaryStatistics,sum_stat_sim::ExoplanetsSysSim.CatalogSummaryStatistics) = EvalSysSimModel.calc_distance(sum_stat_obs,sum_stat_sim,num_dist) global abc_plan = ABC.abc_pmc_plan_type(EvalSysSimModel.gen_data,EvalSysSimModel.calc_summary_stats, calc_distance_ltd, param_prior, make_proposal_dist=make_proposal_dist_multidim_beta, is_valid=EvalSysSimModel.is_valid_uniform, num_part=100, num_max_attempt=200, num_max_times=15, epsilon_init=9.9e99, target_epsilon=1.0e-100, in_parallel=in_parallel, adaptive_quantiles = false, epsilon_reduction_factor=0.9, tau_factor=1.5); if prior_choice == "dirichlet" && r_dim > 1 abc_plan.make_proposal_dist = make_proposal_dist_multidim_beta_dirichlet abc_plan.is_valid = EvalSysSimModel.is_valid_dirichlet abc_plan.normalize = EvalSysSimModel.normalize_dirch elseif prior_choice == "beta" abc_plan.is_valid = EvalSysSimModel.is_valid_beta end return abc_plan end function setup_abc_p2(abc_plan::ABC.abc_pmc_plan_type) abc_plan.tau_factor = 2.0 abc_plan.num_max_times = 200 ExoplanetsSysSim.add_param_fixed(EvalSysSimModel.sim_param_closure,"num_targets_sim_pass_one",10000) return abc_plan end function run_abc_largegen(abc_plan::ABC.abc_pmc_plan_type, pop::ABC.abc_population_type, ss_true::ExoplanetsSysSim.CatalogSummaryStatistics, epshist_targ::Float64; npart::Integer = 1000, num_dist::Integer = 0) abc_plan.num_max_times = 1 println("# run_abc_largegen: ",EvalSysSimModel.sim_param_closure) sampler_largegen = abc_plan.make_proposal_dist(pop, abc_plan.tau_factor) theta_largegen = Array{Float64}(undef, size(pop.theta, 1), npart) weight_largegen = Array{Float64}(undef, npart) for i in 1:npart theta_val, dist_largegen, attempts_largegen = ABC.generate_theta(abc_plan, sampler_largegen, ss_true, epshist_targ) theta_largegen[:,i] = theta_val prior_logpdf = Distributions.logpdf(abc_plan.prior,theta_val) sampler_logpdf = Distributions.logpdf(sampler_largegen, theta_val) weight_largegen[i] = exp(prior_logpdf-sampler_logpdf) end return theta_largegen, weight_largegen end function run_abc(abc_plan::ABC.abc_pmc_plan_type) #global sim_param_closure println("# run_abc: ",EvalSysSimModel.sim_param_closure) ss_true = EvalSysSimModel.get_ss_obs() #println("True catalog SS: ", ss_true) pop_out = ABC.run_abc(abc_plan,ss_true;verbose=true) end function run_abc(abc_plan::ABC.abc_pmc_plan_type, pop::ABC.abc_population_type) #global sim_param_closure dist_threshold = maximum(pop.dist) EvalSysSimModel.add_param_fixed(EvalSysSimModel.sim_param_closure,"minimum ABC dist skip pass 2",dist_threshold) println("# run_abc: ",EvalSysSimModel.sim_param_closure) ss_true = EvalSysSimModel.get_ss_obs() pop_out = ABC.run_abc(abc_plan,ss_true,pop;verbose=true) end end # module SysSimABC
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
9597
using ExoplanetsSysSim using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing using SpecialFunctions using Statistics import ApproximateBayesianComputing.CompositeDistributions.CompositeDist import ApproximateBayesianComputing.TransformedBetaDistributions.LinearTransformedBeta #import EvalSysSimModel # https://en.wikipedia.org/wiki/Trigamma_function function trigamma_x_gr_4(x::T) where T<: Real 1/x + 0.5/x^2 + 1/(6*x^3) - 1/(30*x^5) + 1/(42*x^7) - 1/(30*x^9) + 5/(66*x^11) - 691/(2730*x^13) + 7/(6*x^15) end function trigamma_x_lt_4(x::T) where T<: Real n = floor(Int64,5-x) z = x+n val = trigamma_x_gr_4(z) for i in 1:n z -= 1 val += 1/z^2 end val end function trigamma(x::T) where T<: Real x >= 4 ? trigamma_x_gr_4(x) : trigamma_x_lt_4(x) end function var_weighted(x::AbstractArray{Float64,1}, w::AbstractArray{Float64,1} ) #println("# size(x) = ",size(x), " size(w) = ", size(w)); flush(stdout) @assert(length(x)==length(w) ) sumw = sum(w) @assert( sumw > 0. ) if(sumw!= 1.0) w /= sum(w) sumw = 1.0 end sumw2 = sum(w.*w) xbar = sum(x.*w) covar = sum((x.-xbar).*(x.-xbar) .* w) * sumw/(sumw*sumw-sumw2) end function mom_alpha(x_bar::T, v_bar::T) where T<: Real x_bar * (((x_bar * (1 - x_bar)) / v_bar) - 1) end function mom_beta(x_bar::T, v_bar::T) where T<: Real (1 - x_bar) * (((x_bar * (1 - x_bar)) / v_bar) - 1) end # For algorithm, see https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2613&context=etd function fit_beta_mle(x::AbstractArray{T,1}; tol::T = 1e-6, max_it::Int64 = 10, init_guess::AbstractArray{T,1} = Array{T}(undef,0), w::AbstractArray{T,1} = Array{T}(undef,0), verbose::Bool = false ) where T<: Real lnxbar = length(w)>1 ? Statistics.mean(log.(x),AnalyticWeights(w)) : Compat.Statistics.mean(log.(x)) ln1mxbar = length(w)>1 ? Statistics.mean(log.(1.0.-x),AnalyticWeights(w)) : Compat.Statistics.mean(log.(1.0.-x)) function itterate( mle_guess::Vector{T} ) where T<:Real (alpha, beta) = (mle_guess[1], mle_guess[2]) dgab = digamma(alpha+beta) g1 = dgab - digamma(alpha) + lnxbar g2 = dgab - digamma(beta) + ln1mxbar tgab = trigamma(alpha+beta) G = [dgab-trigamma(alpha) tgab; tgab tgab-trigamma(beta)] mle_guess -= G \ [g1, g2] end local mle_new if length(init_guess) != 2 xbar = length(w)>1 ? Compat.Statistics.mean(x,AnalyticWeights(w)) : Compat.Statistics.mean(x) vbar = length(w)>1 ? Compat.Statistics.varm(x,xbar,AnalyticWeights(w)) : Compat.Statistics.varm(x,xbar) mle_new = (vbar < xbar*(1.0-xbar)) ? [mom_alpha(xbar, vbar), mom_beta(xbar,vbar)] : ones(T,2) else mle_new = init_guess end if verbose println("it = 0: ", mle_new) end if any(mle_new.<=zero(T)) println("# Warning: mean= ", xbar, " var= ",vbar," (alpha,beta)_init= ",mle_new," invalid, reinitializing to (1,1)") verbose = true mle_new = ones(T,2) end for i in 1:max_it mle_old = mle_new mle_new = itterate( mle_old ) epsilon = max(abs.(mle_old.-mle_new)) if verbose println("# it = ", i, ": ", mle_new, " max(Delta alpha, Delta beta)= ", epsilon) end if epsilon < tol break end end return mle_new end function make_beta(x::AbstractArray{T,1}, w::AbstractArray{T,1}; xmean::T = Compat.Statistics.mean(x,AnalyticWeights(w)), xvar::T = Compat.Statistics.varm(x,xmean,AnalyticWeights(w)), tau_factor::T=one(T) ) where T<:Real alpha_beta = (xvar < xmean*(1.0-xmean)) ? [mom_alpha(xmean, xvar), mom_beta(xmean,xvar)] : ones(T,2) if any(alpha_beta.<=zero(T)) alpha_beta = fit_beta_mle(x, w=w, init_guess=alpha_beta, verbose=true) end if any(alpha_beta.<=zero(T)) alpha_beta = ones(T,2) else if minimum(alpha_beta)>1.5*tau_factor && sum(alpha_beta)>=20.0*tau_factor alpha_beta ./= tau_factor end end #println("Radius relative: a= ",alpha_beta[1], " b= ",alpha_beta[2]) Beta(alpha_beta[1], alpha_beta[2]) end function make_beta_transformed(x::AbstractArray{T,1}, w::AbstractArray{T,1}; xmin::T=zero(T), xmax::T=one(T), xmean::T = Compat.Statistics.mean(x,AnalyticWeights(w)), xvar::T = Compat.Statistics.varm(x,xmean,AnalyticWeights(w)), tau_factor::T=one(T) ) where T<:Real alpha_beta = (xvar < xmean*(1.0-xmean)) ? [mom_alpha(xmean, xvar), mom_beta(xmean,xvar)] : ones(T,2) if any(alpha_beta.<=zero(T)) alpha_beta = fit_beta_mle(x, w=w, init_guess=alpha_beta, verbose=true) end if any(alpha_beta.<=zero(T)) alpha_beta = ones(T,2) else if minimum(alpha_beta)>1.5*tau_factor && sum(alpha_beta)>=20.0*tau_factor alpha_beta ./= tau_factor end end #println("Total: a= ",alpha_beta[1], " b= ",alpha_beta[2]) LinearTransformedBeta(alpha_beta[1], alpha_beta[2], xmin=xmin, xmax=xmax) end function make_proposal_dist_multidim_beta(theta::AbstractArray{Float64,2}, weights::AbstractArray{Float64,1}, tau_factor::Float64; verbose::Bool = false) global sim_param_closure local limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 theta_mean = sum(theta.*weights',dims=2) # weighted mean for parameters theta_var = ABC.var_weighted(theta'.-theta_mean',weights) # scaled, weighted covar for parameters tau_factor_indiv = fill(tau_factor,length(theta_var)) dist_arr = ContinuousDistribution[] for j in 1:p_dim max_col_rate = 3*log(limitP[j+1]/limitP[j])/log(2) col_startidx = (j-1)*r_dim+1 #tau_factor_indiv[col_startidx] = 2.0 #= println("mean= ",theta_mean) println("var= ",theta_var) println("tau= ",tau_factor_indiv) for i in 1:length(theta_mean) println("a= ",alpha(theta_mean[i],tau_factor*theta_var[i]), " b= ",beta(theta_mean[i],tau_factor*theta_var[i])) end =# dist_arr = vcat(dist_arr, ContinuousDistribution[make_beta_transformed(theta[i,:], weights, xmin=0.0, xmax=max_col_rate, xmean=theta_mean[i]/max_col_rate, xvar=theta_var[i]/max_col_rate^2, tau_factor=tau_factor_indiv[i]) for i in (col_startidx):(col_startidx+r_dim-1)]) end dist = CompositeDist(dist_arr) end function make_proposal_dist_multidim_beta(pop::abc_population_type, tau_factor::Float64; verbose::Bool = false) make_proposal_dist_multidim_beta(pop.theta, pop.weights, tau_factor, verbose=verbose) end function make_proposal_dist_multidim_beta_dirichlet(theta::AbstractArray{Float64,2}, weights::AbstractArray{Float64,1}, tau_factor::Float64; verbose::Bool = false) global sim_param_closure local limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 theta_mean = sum(theta.*weights',dims=2) # weighted mean for parameters theta_var = ABC.var_weighted(theta'.-theta_mean',weights) # scaled, weighted covar for parameters tau_factor_indiv = fill(tau_factor,length(theta_var)) dist_arr = ContinuousDistribution[] for j in 1:p_dim max_col_rate = 3*log(limitP[j+1]/limitP[j])/log(2) col_startidx = (j-1)*(r_dim+1)+1 #tau_factor_indiv[col_startidx] = 2.0 # if verbose # println("total: ",theta_mean[col_startidx]," ",theta_var[col_startidx]) # end # for i in (col_startidx+1):(col_startidx+r_dim) # mean_ratio = sum(theta[col_startidx,:].*theta[i,:].*weights) /(theta_mean[col_startidx]*theta_mean[i]) # weighted mean for parameters # var_ratio = var_weighted(vec(theta[col_startidx,:].*theta[i,:]).-(theta_mean[col_startidx]*theta_mean[i]),weights)/(2 * theta_mean[col_startidx] * theta_var[i]) # scaled, weighted covar for parameters # if verbose # println("i=",i,": ",theta_mean[i]," ",theta_var[i]," ratios: ",mean_ratio, " ",var_ratio) # end # var_ratio = var_ratio >= one(var_ratio) ? var_ratio : one(var_ratio) # tau_factor_indiv[i] = tau_factor*var_ratio # end # if verbose # flush(stdout) # end #= println("mean= ",theta_mean) println("var= ",theta_var) println("tau= ",tau_factor_indiv) for i in 1:length(theta_mean) println("a= ",alpha(theta_mean[i],tau_factor*theta_var[i]), " b= ",beta(theta_mean[i],tau_factor*theta_var[i])) end =# dist_arr = vcat(dist_arr, make_beta_transformed(theta[col_startidx,:], weights, xmin=0.0, xmax=max_col_rate, xmean=theta_mean[col_startidx]/max_col_rate, xvar=theta_var[col_startidx]/max_col_rate^2, tau_factor=tau_factor_indiv[col_startidx]), ContinuousDistribution[ make_beta(theta[i,:], weights, xmean=theta_mean[i], xvar=theta_var[i], tau_factor=tau_factor_indiv[i]) for i in (col_startidx+1):(col_startidx+r_dim)]) end dist = CompositeDist(dist_arr) end function make_proposal_dist_multidim_beta_dirichlet(pop::abc_population_type, tau_factor::Float64; verbose::Bool = false) make_proposal_dist_multidim_beta_dirichlet(pop.theta, pop.weights, tau_factor, verbose=verbose) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
50144
## ExoplanetsSysSim/examples/dr25_gaia_fgk/dr25_binrates_func.jl ## (c) 2019 Danley C. Hsu & Eric B. Ford # Collection of functions specific to estimating DR25 # planet candidate occurrence rates over a 2D period-radius grid using ExoplanetsSysSim using StatsFuns using JLD using CSV using DataFrames using Distributions ## simulation_parameters macro isdefinedlocal(var) quote try $(esc(var)) true catch err isa(err, UndefVarError) ? false : rethrow(err) end end end function setup_sim_param_dr25binrates(args::Vector{String} = String[] ) # allow this to take a list of parameter (e.g., from command line) sim_param = ExoplanetsSysSim.SimParam() add_param_fixed(sim_param,"max_tranets_in_sys",7) add_param_fixed(sim_param,"generate_star",ExoplanetsSysSim.generate_star_dumb) add_param_fixed(sim_param,"generate_planetary_system", ExoplanetsSysSim.generate_planetary_system_uncorrelated_incl) add_param_fixed(sim_param,"generate_kepler_target",ExoplanetsSysSim.generate_kepler_target_from_table) add_param_fixed(sim_param,"star_table_setup",setup_star_table_dr25) add_param_fixed(sim_param,"stellar_catalog","q1q17_dr25_gaia_fgk.jld") add_param_fixed(sim_param,"osd_file","dr25fgk_osds.jld") add_param_fixed(sim_param,"generate_num_planets",generate_num_planets_binrates_uniform) add_param_fixed(sim_param,"generate_planet_mass_from_radius",ExoplanetsSysSim.generate_planet_mass_from_radius_powerlaw) add_param_fixed(sim_param,"vetting_efficiency",ExoplanetsSysSim.vetting_efficiency_none) add_param_fixed(sim_param,"mr_power_index",2.0) add_param_fixed(sim_param,"mr_const",1.0) add_param_fixed(sim_param,"generate_period_and_sizes", generate_period_and_sizes_binrates_uniform) add_param_fixed(sim_param,"p_lim_full",[0.5, 1., 2., 4., 8., 16., 32., 64., 128., 256., 500.]) add_param_fixed(sim_param,"r_lim_full",[0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.5, 3., 4., 6., 8., 12., 16.]*ExoplanetsSysSim.earth_radius) #p_dim = length(p_lim_arr_num)-1 #r_dim = length(r_lim_arr_num)-1 #rate_tab_init = reshape(fill(1.0, p_dim*r_dim)*0.01,(r_dim,p_dim)) #add_param_fixed(sim_param, "p_lim_arr", p_lim_arr_num) #add_param_fixed(sim_param, "r_lim_arr", r_lim_arr_num*ExoplanetsSysSim.earth_radius) #add_param_active(sim_param,"obs_par", rate_tab_init) add_param_fixed(sim_param,"generate_e_omega",ExoplanetsSysSim.generate_e_omega_rayleigh) add_param_fixed(sim_param,"sigma_hk",0.03) add_param_fixed(sim_param,"sigma_incl",2.0) # degrees add_param_fixed(sim_param,"calc_target_obs_sky_ave",ExoplanetsSysSim.calc_target_obs_sky_ave) add_param_fixed(sim_param,"calc_target_obs_single_obs",ExoplanetsSysSim.calc_target_obs_single_obs) add_param_fixed(sim_param,"transit_noise_model",ExoplanetsSysSim.transit_noise_model_diagonal) return sim_param end function set_test_param(sim_param_closure::SimParam) @eval(include(joinpath(pwd(),"param.in"))) if @isdefinedlocal(stellar_catalog) @assert (typeof(stellar_catalog) == String) add_param_fixed(sim_param_closure,"stellar_catalog",stellar_catalog) end if @isdefinedlocal(koi_catalog) @assert (typeof(koi_catalog) == String) add_param_fixed(sim_param_closure,"koi_catalog",koi_catalog) end if @isdefinedlocal(num_targ_sim) @assert (typeof(num_targ_sim) == Int) add_param_fixed(sim_param_closure,"num_targets_sim_pass_one",num_targ_sim) end if @isdefinedlocal(osd_file) @assert (typeof(osd_file) == String) add_param_fixed(sim_param_closure,"osd_file",osd_file) end @assert (typeof(p_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "p_lim_arr", p_bin_lim) @assert (typeof(r_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "r_lim_arr", r_bin_lim*ExoplanetsSysSim.earth_radius) p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 n_bin = p_dim*r_dim if @isdefinedlocal(rate_init) if typeof(rate_init) <: Real @assert (rate_init >= 0.0) rate_init_list = fill(rate_init, n_bin) else rate_init_list = rate_init end @assert (ndims(rate_init_list) <= 2) if ndims(rate_init_list) == 1 @assert (length(rate_init_list) == n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) else @assert (size(rate_init_list) == (r_dim, p_dim)) rate_tab_init = rate_init_list*0.01 end add_param_active(sim_param_closure, "obs_par", rate_tab_init) else rate_init_list = fill(1.0, n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) add_param_active(sim_param_closure, "obs_par", rate_tab_init) end return sim_param_closure end function set_test_param_total(sim_param_closure::SimParam) @eval(include(joinpath(pwd(),"param.in"))) if @isdefinedlocal(stellar_catalog) @assert (typeof(stellar_catalog) == String) add_param_fixed(sim_param_closure,"stellar_catalog",stellar_catalog) end if @isdefinedlocal(koi_catalog) @assert (typeof(koi_catalog) == String) add_param_fixed(sim_param_closure,"koi_catalog",koi_catalog) end if @isdefinedlocal(num_targ_sim) @assert (typeof(num_targ_sim) == Int) add_param_fixed(sim_param_closure,"num_targets_sim_pass_one",num_targ_sim) end if @isdefinedlocal(osd_file) @assert (typeof(osd_file) == String) add_param_fixed(sim_param_closure,"osd_file",osd_file) end @assert (typeof(p_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "p_lim_arr", p_bin_lim) @assert (typeof(r_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "r_lim_arr", r_bin_lim*ExoplanetsSysSim.earth_radius) p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 n_bin = p_dim*r_dim if @isdefinedlocal(rate_init) if typeof(rate_init) <: Real @assert (rate_init >= 0.0) rate_init_list = fill(rate_init, n_bin) else rate_init_list = rate_init end @assert (ndims(rate_init_list) <= 2) if ndims(rate_init_list) == 1 @assert (length(rate_init_list) == n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) else @assert (size(rate_init_list) == (r_dim, p_dim)) rate_tab_init = rate_init_list*0.01 end if r_dim > 1 lamb_col = sum(rate_tab_init, dims=1) rate_tab_init = rate_tab_init ./ lamb_col rate_tab_init = vcat(lamb_col, rate_tab_init) end add_param_active(sim_param_closure, "obs_par", rate_tab_init) else rate_init_list = fill(1.0, n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) if r_dim > 1 lamb_col = sum(rate_tab_init, dims=1) rate_tab_init = rate_tab_init ./ lamb_col rate_tab_init = vcat(lamb_col, rate_tab_init) end add_param_active(sim_param_closure, "obs_par", rate_tab_init) end if r_dim == 1 add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_binrates_single_rp) end return sim_param_closure end ## planetary_system function draw_uniform_selfavoiding(n::Integer; lower_bound::Real=0.0, upper_bound=1.0, min_separation::Real = 0.05, return_sorted::Bool=false ) @assert(n>=1) @assert(upper_bound>lower_bound) @assert(2*min_separation*n<upper_bound-lower_bound) list = rand(n) sorted_idx = collect(1:n) segment_length = upper_bound-lower_bound list[1] = lower_bound+segment_length*list[1] # First draw is standard uniform segment_length -= min(upper_bound,list[1]+min_separation)-max(lower_bound,list[1]-min_separation) for i in 2:n segment_length -= min(upper_bound,list[i-1]+min_separation)-max(lower_bound,list[i-1]-min_separation) # Reduce length for future draws list[i] *= segment_length # Draw over reduced range based on which segments need to be excluded list[i] += lower_bound j = 1 while j<= i-1 # Checking for conflicts k = sorted_idx[j] # Going from low to high if list[i]>list[k]-min_separation # If too close, then bu list[i] += min(upper_bound,list[k]+min_separation)-max(lower_bound,list[k]-min_separation) else break end j += 1 end for k in i:-1:(j+1) # Keep larger values sorted sorted_idx[k]=sorted_idx[k-1] end sorted_idx[j] = i # Save order for this draw #segment_length -= min(upper_bound,list[i]+min_separation)-max(lower_bound,list[i]-min_separation) # Reduce length for future draws end return return_sorted ? list[sorted_idx] : list end function generate_num_planets_binrates_uniform(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(sum(rate_tab[:,i]), convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_num_planets_binrates_beta(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 local bin_size_factor::Float64 = get_real(sim_param, "bin_size_factor") sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(bin_size_factor*3*log(limitP[i+1]/limitP[i])/log(2)*sum(rate_tab[:,i]), convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_num_planets_binrates_dirichlet(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(rate_tab[1,i], convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_period_and_sizes_binrates_uniform(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_arr", Array{Float64,1}) local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == size(rate_tab, 1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) rate_tab_1d = reshape(rate_tab,length(rate_tab)) maxcuml = sum(rate_tab_1d) cuml = cumsum(rate_tab_1d/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() idx = findfirst(x -> x > rollp, cuml) i_idx = (idx-1)%size(rate_tab,1)+1 j_idx[n] = floor(Int64,(idx-1)//size(rate_tab,1))+1 Rplist[n] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end for j in 1:(length(limitP)-1) tmp_ind = findall(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist .- log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end end end end end return Plist, Rplist end function generate_period_and_sizes_binrates_beta(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_arr", Array{Float64,1}) local bin_size_factor::Float64 = get_real(sim_param, "bin_size_factor") local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == size(rate_tab, 1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) rate_tab_1d = reshape([3*log(limitP[i+1]/limitP[i])/log(2) for i in 1:length(limitP)-1]'.*rate_tab,length(rate_tab)) maxcuml = sum(rate_tab_1d) cuml = cumsum(rate_tab_1d/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() idx = findfirst(x -> x > rollp, cuml) i_idx = (idx-1)%size(rate_tab,1)+1 j_idx[n] = floor(Int64,(idx-1)//size(rate_tab,1))+1 Rplist[n] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end for j in 1:(length(limitP)-1) tmp_ind = findall(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist .- log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end end end end end return Plist, Rplist end function generate_period_and_sizes_binrates_dirichlet(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_arr", Array{Float64,1}) local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == (size(rate_tab, 1)-1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) maxcuml = sum(rate_tab[1,:]) cuml = cumsum(rate_tab[1,:]/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() j_idx[n] = findfirst(x -> x > rollp, cuml) end for j in 1:(length(limitP)-1) tmp_ind = findall(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist .- log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) rad_dist = Distributions.Categorical(rate_tab[((j-1)*(r_dim+1)+2):((j-1)*(r_dim+1)+(r_dim+1))]) # Distribution for fraction of times the next planet draw would be assigned to a given radius bin invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end i_idx = rand(rad_dist) Rplist[tmp_ind[n]] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end end end end return Plist, Rplist end ## stellar_table function setup_dr25(sim_param::SimParam; force_reread::Bool = false) #global df wf = WindowFunction.setup_window_function(sim_param) WindowFunction.setup_OSD_interp(sim_param) #read in osd files so they can be interpolated df = ExoplanetsSysSim.StellarTable.df if haskey(sim_param,"read_stellar_catalog") && !force_reread return df #return data end stellar_catalog_filename = convert(String,joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")), "data", convert(String,get(sim_param,"stellar_catalog","q1_q17_dr25_stellar.csv")) ) ) df = setup_dr25(stellar_catalog_filename) add_param_fixed(sim_param,"read_stellar_catalog",true) add_param_fixed(sim_param,"num_kepler_targets",StellarTable.num_usable_in_star_table()) if !haskey(sim_param.param,"num_targets_sim_pass_one") add_param_fixed(sim_param,"num_targets_sim_pass_one", StellarTable.num_usable_in_star_table()) end StellarTable.set_star_table(df) return df end function setup_dr25(filename::String; force_reread::Bool = false) #global df, usable df = ExoplanetsSysSim.StellarTable.df #usable = ExoplanetsSysSim.StellarTable.usable if occursin(r".jld2$",filename) try data = load(filename) df = data["stellar_catalog"] #usable::Array{Int64,1} = data["stellar_catalog_usable"] Core.typeassert(df,DataFrame) StellarTable.set_star_table(df) catch error(string("# Failed to read stellar catalog >",filename,"< in jld2 format.")) end else try df = CSV.read(filename) catch error(string("# Failed to read stellar catalog >",filename,"< in ascii format.")) end has_mass = .! (ismissing.(df[:mass]) .| ismissing.(df[:mass_err1]) .| ismissing.(df[:mass_err2])) has_radius = .! (ismissing.(df[:radius]) .| ismissing.(df[:radius_err1]) .| ismissing.(df[:radius_err2])) has_dens = .! (ismissing.(df[:dens]) .| ismissing.(df[:dens_err1]) .| ismissing.(df[:dens_err2])) has_cdpp = .! (ismissing.(df[:rrmscdpp01p5]) .| ismissing.(df[:rrmscdpp02p0]) .| ismissing.(df[:rrmscdpp02p5]) .| ismissing.(df[:rrmscdpp03p0]) .| ismissing.(df[:rrmscdpp03p5]) .| ismissing.(df[:rrmscdpp04p5]) .| ismissing.(df[:rrmscdpp05p0]) .| ismissing.(df[:rrmscdpp06p0]) .| ismissing.(df[:rrmscdpp07p5]) .| ismissing.(df[:rrmscdpp09p0]) .| ismissing.(df[:rrmscdpp10p5]) .| ismissing.(df[:rrmscdpp12p0]) .| ismissing.(df[:rrmscdpp12p5]) .| ismissing.(df[:rrmscdpp15p0])) has_ld = .! (ismissing.(df[:limbdark_coeff1]) .| ismissing.(df[:limbdark_coeff2]) .| ismissing.(df[:limbdark_coeff3]) .| ismissing.(df[:limbdark_coeff4])) has_rest = .! (ismissing.(df[:dataspan]) .| ismissing.(df[:dutycycle])) in_Q1Q12 = [] obs_gt_5q = [] for x in df[:st_quarters] subx = string(x) num_q_obs = length(matchall(r"1", subx)) push!(obs_gt_5q, num_q_obs>5) subx = ("0"^(17-length(subx)))*subx indQ = search(subx, '1') if ((indQ < 1) | (indQ > 12)) || num_q_obs<=5 push!(in_Q1Q12, false) else push!(in_Q1Q12, true) end end is_FGK = [] for x in 1:length(df[:teff]) if ((df[x,:teff] > 4000.0) & (df[x,:teff] < 7000.0) & (df[x,:logg] > 4.0)) push!(is_FGK, true) else push!(is_FGK, false) end end is_usable = has_radius .& is_FGK .& has_mass .& has_rest .& has_dens .& has_cdpp .& obs_gt_5q .& has_ld if contains(filename,"q1_q16_stellar.csv") is_usable = is_usable .& in_Q1Q12 end # See options at: http://exoplanetarchive.ipac.caltech.edu/docs/API_keplerstellar_columns.html symbols_to_keep = [ :kepid, :mass, :mass_err1, :mass_err2, :radius, :radius_err1, :radius_err2, :dens, :dens_err1, :dens_err2, :rrmscdpp01p5, :rrmscdpp02p0, :rrmscdpp02p5, :rrmscdpp03p0, :rrmscdpp03p5, :rrmscdpp04p5, :rrmscdpp05p0, :rrmscdpp06p0, :rrmscdpp07p5, :rrmscdpp09p0, :rrmscdpp10p5, :rrmscdpp12p0, :rrmscdpp12p5, :rrmscdpp15p0, :cdppslplong, :cdppslpshrt, :dataspan, :dutycycle, :limbdark_coeff1, :limbdark_coeff2, :limbdark_coeff3, :limbdark_coeff4 ] delete!(df, [~(x in symbols_to_keep) for x in names(df)]) # delete columns that we won't be using anyway usable = findall(is_usable) df = df[usable, symbols_to_keep] tmp_df = DataFrame() for col in names(df) tmp_df[col] = collect(skipmissing(df[col])) end df = tmp_df mast_df = CSV.read(convert(String,joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")), "data", "KeplerMAST_TargetProperties.csv"))) delete!(mast_df, [~(x in [:kepid, :contam]) for x in names(mast_df)]) df = join(df, mast_df, on=:kepid) StellarTable.set_star_table(df) end println("# Removing stars observed <5 quarters.") df[!,:wf_id] = map(x->ExoplanetsSysSim.WindowFunction.get_window_function_id(x,use_default_for_unknown=false),df[!,:kepid]) obs_5q = df[!,:wf_id].!=-1 df = df[obs_5q, names(df)] StellarTable.set_star_table(df) return df end setup_star_table_dr25(sim_param::SimParam; force_reread::Bool = false) = setup_dr25(sim_param, force_reread=force_reread) setup_star_table_dr25(filename::String; force_reread::Bool = false) = setup_dr25(filename, force_reread=force_reread) ## summary_statistics function calc_summary_stats_obs_binned_rates(cat_obs::KeplerObsCatalog, param::SimParam; trueobs_cat::Bool = false, obs_skyavg::Bool = false) ssd = Dict{String,Any}() cache = Dict{String,Any}() if !trueobs_cat ssd["num targets"] = get_int(param,"num_targets_sim_pass_one") else ssd["num targets"] = get_int(param,"num_kepler_targets") end max_tranets_in_sys = get_int(param,"max_tranets_in_sys") # Demo that simulation parameters can specify how to evalute models, too @assert max_tranets_in_sys >= 1 idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target)::Array{Int64,1} # Find indices of systems with at least 1 tranet = potentially detectable transiting planet # Count total number of tranets and compile indices for N-tranet systems num_tranets = 0 idx_n_tranets = Vector{Int64}[ Int64[] for m = 1:max_tranets_in_sys] for n in 1:max_tranets_in_sys-1 idx_n_tranets[n] = findall(x::KeplerTargetObs-> length(x.obs) == n, cat_obs.target[idx_tranets] ) num_tranets += n*length(idx_n_tranets[n]) end idx_n_tranets[max_tranets_in_sys] = findall(x::KeplerTargetObs-> length(x.obs) >= max_tranets_in_sys, cat_obs.target[idx_tranets] ) num_tranets += max_tranets_in_sys*length(idx_n_tranets[max_tranets_in_sys]) # WARNING: this means we need to ignore planets w/ indices > max_tranets_in_sys if ( length( findall(x::KeplerTargetObs-> length(x.obs) > max_tranets_in_sys, cat_obs.target[idx_tranets] ) ) > 0) # Make sure max_tranets_in_sys is at least big enough for observed systems warn("Observational data has more transiting planets in one systems than max_tranets_in_sys allows.") end num_tranets = convert(Int64,num_tranets) # TODO OPT: Figure out why isn't this already an Int. I may be doing something that prevents some optimizations num_sys_tranets = zeros(max_tranets_in_sys) # Since observed data, don't need to calculate probabilities. for n in 1:max_tranets_in_sys # Make histogram of N-tranet systems num_sys_tranets[n] = length(idx_n_tranets[n]) end ssd["num_sys_tranets"] = num_sys_tranets ssd["planets detected"] = num_tranets period_list = zeros(num_tranets) weight_list = zeros(num_tranets) radius_list = zeros(num_tranets) n = 1 # tranet id if !trueobs_cat for i in idx_tranets ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff4) ) flux_ratio = (1.0+ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :contam))/1.0 # WARNING: Assumes flux = 1 #Rstar = trueobs_cat ? cat_obs.target[i].star.radius : ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :radius) for j in 1:num_planets(cat_obs.target[i]) period_list[n] = cat_obs.target[i].obs[j].period if obs_skyavg weight_list[n] = min(ExoplanetsSysSim.prob_detect(cat_obs.target[i].prob_detect,j), 1.0) # CHECK WHAT THIS DOES else weight_list[n] = 1.0 end radius_ratio = ExoplanetsSysSim.ratio_from_depth(cat_obs.target[i].obs[j].depth*flux_ratio, ld) radius_list[n] = radius_ratio*ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :radius) #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*Rstar n = n+1 end end else for i in idx_tranets ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff4) ) flux_ratio = (1.0+ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :contam))/1.0 # WARNING: Assumes flux = 1 for j in 1:num_planets(cat_obs.target[i]) period_list[n] = cat_obs.target[i].obs[j].period weight_list[n] = 1.0 radius_ratio = ExoplanetsSysSim.ratio_from_depth(cat_obs.target[i].obs[j].depth*flux_ratio, ld) radius_list[n] = radius_ratio*cat_obs.target[i].star.radius #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius n = n+1 end end end #ssd["period_list"] = period_list ssd["weight_list"] = weight_list #ssd["radius_list"] = radius_list limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) np_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) np_bin_idx = 1 bin_match_list = fill(fill(0,0),(length(limitP)-1)*(length(limitRp)-1)) for i in 1:(length(limitP)-1) P_match = findall(x -> ((x > limitP[i]) && (x < limitP[i+1])), period_list) for j in 1:(length(limitRp)-1) R_match = findall(x -> ((x > limitRp[j]) && (x < limitRp[j+1])), radius_list) bin_match = intersect(P_match, R_match) bin_match_list[np_bin_idx] = bin_match np_bin[np_bin_idx] = sum(weight_list[bin_match]) np_bin_idx += 1 end end cache["bin_match_list"] = bin_match_list #ssd["planets detected"] = sum(np_bin) ssd["planets table"] = np_bin return CatalogSummaryStatistics(ssd, cache) end ## abc_distance function calc_distance_vector_binned(summary1::CatalogSummaryStatistics, summary2::CatalogSummaryStatistics, pass::Int64, sim_param::SimParam ; verbose::Bool = false) p_dim = length(get_any(sim_param, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 #rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) d = Array{Float64}(undef,0) if pass == 1 if verbose println("# Summary 1, pass 1: ",summary1) println("# Summary 2, pass 1: ",summary2) end d = zeros(3) np1 = haskey(summary1.stat,"planets table") ? summary1.stat["planets table"] : summary1.stat["expected planets table"] np2 = haskey(summary2.stat,"planets table") ? summary2.stat["planets table"] : summary2.stat["expected planets table"] np_bin = zeros(length(np1)) num_detect_sim = zeros(length(np1)) ### Bernoulli distance bin_match_list = summary2.cache["bin_match_list"] @assert length(bin_match_list) == length(np1) np2 = zeros(Int64,length(np1)) ### for n in 1:length(np1) #np_bin[n] = dist_L1_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = dist_L2_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = distance_poisson_draw(np2[n]/summary2.stat["num targets"]*summary1.stat["num targets"], convert(Int64, np1[n])) np_bin[n], num_detect_sim[n] = distance_sum_of_bernoulli_draws(floor(Int64,np1[n]),summary1.stat["num targets"], summary2.stat["weight_list"], summary2.stat["num targets"], bin_match_list[n]) #println("True # [Bin ", n,"] = ",np1[n],", Expected # [Bin ", n,"] = ",np2[n]) end #d[1] = maximum(np_bin) #d[1] = sum(np_bin) np1_ratio = np1 ./ summary1.stat["num targets"] np2_ratio = num_detect_sim ./ summary1.stat["num targets"] d[1] = distance_canberra(np1_ratio, np2_ratio)# + distance_cosine(np1_ratio, np2_ratio) #println("Total rate: ", rate_tab[1,1], " / Distance (radii): ", d[1], " / Sim. cat. ratio = ", sum(num_detect_sim[1:r_dim])/summary2.stat["num_targets"], " / Obs. cat. ratio = ", sum(np1[1:r_dim])/summary1.stat["num targets"], " / Distance (total): ", dist_L2_abs(sum(num_detect_sim[1:r_dim])/summary2.stat["num targets"], sum(np1[1:r_dim])/summary1.stat["num targets"])*r_dim) # for j in 1:p_dim # d[1] += dist_L2_abs(sum(num_detect_sim[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"], sum(np1[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"])*r_dim # end else println("# calc_distance_vector_demo doesn't know what to do for pass= ", pass) end return d end ## eval_model # function test_dr25binrates() # global sim_param_closure = setup_sim_param_dr25binrates() # cat_phys = generate_kepler_physical_catalog(sim_param_closure) # cat_obs = observe_kepler_targets_single_obs(cat_phys,sim_param_closure) # global summary_stat_ref_closure = calc_summary_stats_obs_demo(cat_obs,sim_param_closure) # global cat_phys_try_closure = generate_christiansen_catalog(sim_param_closure) # global cat_obs_try_closure = observe_kepler_targets_sky_avg(cat_phys_try_closure,sim_param_closure) # global summary_stat_try_closure = calc_summary_stats_sim_pass_one_demo(cat_obs_try_closure,cat_phys_try_closure,sim_param_closure) # summary_stat_try_closure = calc_summary_stats_sim_pass_two_demo(cat_obs_try_closure,cat_phys_try_closure,summary_stat_try_closure,sim_param_closure) # param_guess = make_vector_of_sim_param(sim_xparam_closure) # evaluate_model_scalar_ret( param_guess) # end ## inverse_detection & simple bayesian function inv_det(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") println("Inverse Detection Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = np_bin[(i-1)*(length(limitRp)-1) + j]/num_targ*100. if cnt_bin[(i-1)*(length(limitRp)-1) + j] > 0. println(rate_f, " +/- ", rate_f/sqrt(cnt_bin[(i-1)*(length(limitRp)-1) + j]), " %") else println(rate_f, " +/- N/A %") end end end println() end function simp_bayes(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") ess_bin = stellar_ess(param) println("------------------------------") println("Simple Bayesian Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = (1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j])/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])*100. up_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.8413)*100. low_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.1587)*100. println(rate_f, " + ", up_quant - rate_f, " - ", rate_f - low_quant, " %") end end println() end function inv_det_simp_bayes(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") ess_bin = stellar_ess(param) println("------------------------------") println("Inverse Detection Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = np_bin[(i-1)*(length(limitRp)-1) + j]/num_targ*100. if cnt_bin[(i-1)*(length(limitRp)-1) + j] > 0. println(rate_f, " +/- ", rate_f/sqrt(cnt_bin[(i-1)*(length(limitRp)-1) + j]), " %") else println(rate_f, " +/- N/A %") end end end println() println("Simple Bayesian Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = (1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j])/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])*100. up_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.8413)*100. low_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.1587)*100. println(rate_f, " + ", up_quant - rate_f, " - ", rate_f - low_quant, " %") end end println() end ## cnt_bin & np_bin (inverse detection & simple bayesian) function cnt_np_bin(cat_obs::KeplerObsCatalog, param::SimParam, verbose::Bool = true) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target)::Array{Int64,1} limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) np_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) cnt_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) pl_idx = 1 println("Calculating completeness for each planet...") for i in idx_tranets for j in 1:num_planets(cat_obs.target[i]) pper = cat_obs.target[i].obs[j].period prad = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius pbin = findfirst(x -> ((pper > limitP[x]) && (pper < limitP[x+1])), collect(1:(length(limitP)-1))) rbin = findfirst(x -> ((prad > limitRp[x]) && (prad < limitRp[x+1])), collect(1:(length(limitRp)-1))) if (pbin > 0 && rbin > 0) cnt_bin[(pbin-1)*(length(limitRp)-1) + rbin] += 1 pgeo = ExoplanetsSysSim.calc_transit_prob_single_planet_approx(pper, cat_obs.target[i].star.radius, cat_obs.target[i].star.mass) pdet = 0.0 for star_id in 1:num_targ ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff4) ) star = SingleStar(ExoplanetsSysSim.StellarTable.star_table(star_id,:radius),ExoplanetsSysSim.StellarTable.star_table(star_id,:mass),1.0, ld, star_id) cdpp_arr = ExoplanetsSysSim.make_cdpp_array_empty(star_id)#(1.0e-6*sqrt(1.0 / 24.0 / ExoplanetsSysSim.LC_duration)) .* [ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp01p5)*sqrt(1.5), ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp02p0)*sqrt(2.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp02p5)*sqrt(2.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p0)*sqrt(3.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p5)*sqrt(3.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp04p5)*sqrt(4.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp05p0)*sqrt(5.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp06p0)*sqrt(6.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp07p5)*sqrt(7.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp09p0)*sqrt(9.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp10p5)*sqrt(10.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p0)*sqrt(12.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p5)*sqrt(12.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp15p0)*sqrt(15.)] #cdpp = 1.0e-6 * ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp04p5) * sqrt(4.5/24.0 / ExoplanetsSysSim.LC_duration ) contam = 0.0 data_span = ExoplanetsSysSim.StellarTable.star_table(star_id, :dataspan) duty_cycle = ExoplanetsSysSim.StellarTable.star_table(star_id, :dutycycle) pl_arr = Array{Planet}(undef,1) orbit_arr = Array{Orbit}(undef,1) incl = acos(Base.rand()*star.radius*ExoplanetsSysSim.rsol_in_au/ExoplanetsSysSim.semimajor_axis(pper, star.mass)) orbit_arr[1] = Orbit(pper, 0., incl, 0., 0., Base.rand()*2.0*pi) pl_arr[1] = Planet(prad, 1.0e-6) if ExoplanetsSysSim.StellarTable.star_table_has_key(:wf_id) wf_id = ExoplanetsSysSim.StellarTable.star_table(star_id,:wf_id) else wf_id = ExoplanetsSysSim.WindowFunction.get_window_function_id(ExoplanetsSysSim.StellarTable.star_table(star_id,:kepid)) end kep_targ = KeplerTarget([PlanetarySystem(star, pl_arr, orbit_arr)], repeat(cdpp_arr, outer=[1,1]),contam,data_span,duty_cycle,wf_id) duration = ExoplanetsSysSim.calc_transit_duration(kep_targ,1,1) if duration <= 0. continue end ntr = ExoplanetsSysSim.calc_expected_num_transits(kep_targ, 1, 1, param) depth = ExoplanetsSysSim.calc_transit_depth(kep_targ,1,1) cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration_lookup_cdpp(kep_targ, duration) #cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration(kep_targ, duration) snr = ExoplanetsSysSim.calc_snr_if_transit_cdpp(kep_targ, depth, duration, cdpp, param, num_transit=ntr) pdet += ExoplanetsSysSim.calc_prob_detect_if_transit(kep_targ, snr, pper, duration, param, num_transit=ntr) end np_bin[(pbin-1)*(length(limitRp)-1) + rbin] += 1.0/pgeo/(pdet/num_targ) if verbose println("Planet ",pl_idx," => Bin ", (pbin-1)*(length(limitRp)-1) + rbin, ", C = ", 1.0/pgeo/(pdet/num_targ)) end pl_idx += 1 end end end return cnt_bin, np_bin end ## stellar catalog ess (simple bayesian) function stellar_ess(param::SimParam, verbose::Bool = true) num_realiz = 100 num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) ess_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) println(string("Stellar ESS calculation beginning...")) for star_id in 1:num_targ ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff4) ) star = SingleStar(ExoplanetsSysSim.StellarTable.star_table(star_id,:radius),ExoplanetsSysSim.StellarTable.star_table(star_id,:mass),1.0, ld, star_id) cdpp_arr = ExoplanetsSysSim.make_cdpp_array_empty(star_id)#(1.0e-6*sqrt(1.0/24.0/ExoplanetsSysSim.LC_duration)) .* [ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp01p5)*sqrt(1.5), ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp02p0)*sqrt(2.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp02p5)*sqrt(2.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p0)*sqrt(3.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p5)*sqrt(3.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp04p5)*sqrt(4.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp05p0)*sqrt(5.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp06p0)*sqrt(6.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp07p5)*sqrt(7.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp09p0)*sqrt(9.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp10p5)*sqrt(10.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p0)*sqrt(12.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p5)*sqrt(12.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp15p0)*sqrt(15.)] contam = 0.0 data_span = ExoplanetsSysSim.StellarTable.star_table(star_id, :dataspan) duty_cycle = ExoplanetsSysSim.StellarTable.star_table(star_id, :dutycycle) if ExoplanetsSysSim.StellarTable.star_table_has_key(:wf_id) wf_id = ExoplanetsSysSim.StellarTable.star_table(star_id,:wf_id) else wf_id = ExoplanetsSysSim.WindowFunction.get_window_function_id(ExoplanetsSysSim.StellarTable.star_table(star_id,:kepid)) end for i_idx in 1:(length(limitP)-1) for j_idx in 1:(length(limitRp)-1) temp_bin = 0.0 for n_test in 1:num_realiz pper = exp(Base.rand()*(log(limitP[i_idx+1])-log(limitP[i_idx]))+log(limitP[i_idx])) prad = exp(Base.rand()*(log(limitRp[j_idx+1])-log(limitRp[j_idx]))+log(limitRp[j_idx])) pgeo = ExoplanetsSysSim.calc_transit_prob_single_planet_approx(pper, star.radius, star.mass) pdet = 0.0 pl_arr = Array{Planet}(undef,1) orbit_arr = Array{Orbit}(undef,1) incl = acos(Base.rand()*star.radius*ExoplanetsSysSim.rsol_in_au/ExoplanetsSysSim.semimajor_axis(pper, star.mass)) orbit_arr[1] = Orbit(pper, 0., incl, 0., 0., Base.rand()*2.0*pi) pl_arr[1] = Planet(prad, 1.0e-6) kep_targ = KeplerTarget([PlanetarySystem(star, pl_arr, orbit_arr)], repeat(cdpp_arr, outer=[1,1]),contam,data_span,duty_cycle,wf_id) duration = ExoplanetsSysSim.calc_transit_duration(kep_targ,1,1) if duration <= 0. continue end ntr = ExoplanetsSysSim.calc_expected_num_transits(kep_targ, 1, 1, param) depth = ExoplanetsSysSim.calc_transit_depth(kep_targ,1,1) # Apply correction to snr if grazing transit size_ratio = kep_targ.sys[1].planet[1].radius/kep_targ.sys[1].star.radius b = ExoplanetsSysSim.calc_impact_parameter(kep_targ.sys[1],1) snr_correction = ExoplanetsSysSim.calc_depth_correction_for_grazing_transit(b,size_ratio) depth *= snr_correction #cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration(kep_targ, duration) cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration_lookup_cdpp(kep_targ, duration) snr = ExoplanetsSysSim.calc_snr_if_transit_cdpp(kep_targ, depth, duration, cdpp, param, num_transit=ntr) #kepid = ExoplanetsSysSim.StellarTable.star_table(kep_targ.sys[1].star.id, :kepid) #osd_duration = ExoplanetsSysSim.get_legal_durations(pper,duration) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration #osd = ExoplanetsSysSim.WindowFunction.interp_OSD_from_table(kepid, pper, osd_duration) #if osd_duration > duration #use a correcting factor if this duration is lower than the minimum searched for this period. # osd = osd*osd_duration/duration #end #snr = ExoplanetsSysSim.calc_snr_if_transit(kep_targ, depth, duration, osd, sim_param, num_transit=ntr) pdet = ExoplanetsSysSim.calc_prob_detect_if_transit(kep_targ, snr, pper, duration, param, num_transit=ntr) temp_bin += (pgeo*pdet) end ess_bin[(i_idx-1)*(length(limitRp)-1) + j_idx] += temp_bin/num_realiz end end if verbose && rem(star_id, 10^convert(Int,floor(log10(num_targ)))) == 0. println(string("Star #", star_id, " finished")) end end if verbose println("") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) println("Period limits: ", limitP[i:i+1], " / Radius limits: ", limitRp[j:j+1]/ExoplanetsSysSim.earth_radius, " / Stellar ESS = ", ess_bin[(i-1)*(length(limitRp)-1) + j]) end end end return ess_bin end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
917
## ExoplanetsSysSim/examples/hsu_etal_2018/invdet_calc.jl ## (c) 2018 Danley C. Hsu # Script for producing DR25 FGK planet candidate occurrence rate estimates # using both the inverse detection efficiency and the simple # Bayesian methods using ExoplanetsSysSim include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_fgk", "dr25_binrates_func.jl")) global sim_param_closure = setup_sim_param_dr25binrates() sim_param_closure = set_test_param(sim_param_closure) df_koi,usable_koi = read_koi_catalog(sim_param_closure) println("# Finished reading in KOI data") df_star = setup_star_table_dr25(sim_param_closure) println("# Finished reading in stellar data") cat_obs = setup_actual_planet_candidate_catalog(df_star, df_koi, usable_koi, sim_param_closure) #@time inv_det_simp_bayes(cat_obs, sim_param_closure) @time simp_bayes(cat_obs, sim_param_closure)
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
4332
## ExoplanetsSysSim/examples/dr25_gaia_m/abc_run.jl ## (c) 2019 Danley C. Hsu & Eric B. Ford # Script for producing DR25 M planet candidate occurrence rate estimates include("abc_setup.jl") #using SysSimABC using ExoplanetsSysSim using JLD using StatsBase out2txt = false # Write occurrence rates & densities to text files expandpart = false # Expand final generation for robust posteriors prior_choice = "dirichlet" bin_size_factor = 2.0 println("Setting up simulation...") @time abc_plan = SysSimABC.setup_abc(prior_choice = prior_choice, bin_size_factor = bin_size_factor) println("") println("Running simulation...") @time output = SysSimABC.run_abc(abc_plan) # println("") # println("Running simulation (part 2)...") # @time abc_plan = SysSimABC.setup_abc_p2(abc_plan) # @time output = SysSimABC.run_abc(abc_plan, output) #@time abc_plan = change_distance() #@time output = run_abc(abc_plan, output) println("") save(string("test-pop-out.jld"), "output", output, "ss_true", EvalSysSimModel.get_ss_obs()) if expandpart println("Expanding to large generation...") @time theta_largegen, weights_largegen = SysSimABC.run_abc_largegen(abc_plan, output, EvalSysSimModel.get_ss_obs(), output.accept_log.epsilon[end-1], npart=1000) println("") save(string("test-pop-out.jld"), "output", output, "ss_true", EvalSysSimModel.get_ss_obs(), "theta_largegen", theta_largegen, "weights_largegen", weights_largegen) end if out2txt file_rate = open("rate_output.txt", "w") file_dens = open("dens_output.txt", "w") end limitP = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) limitR = get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}) const r_dim = length(limitR)-1 if expandpart weight_vec = aweights(weights_largegen) #weight_vec = aweights(fill(1.0, length(weights_largegen))) else weight_vec = aweights(output.weights) #weight_vec = aweights(fill(1.0, length(output.weights))) end for p_ind = 1:(length(limitP)-1) col_ind = (p_ind-1)*(r_dim)+1 for r_ind = 1:r_dim bin_ind = (p_ind-1)*(r_dim)+r_ind dens_denom = 1.0/log(limitP[p_ind+1]/limitP[p_ind])/log(limitR[r_ind+1]/limitR[r_ind]) if prior_choice == "dirichlet" && r_dim > 1 col_ind = (p_ind-1)*(r_dim+1)+1 bin_ind = (p_ind-1)*(r_dim+1)+r_ind+1 if expandpart quant_arr = quantile(theta_largegen[bin_ind,:].*theta_largegen[col_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:].*output.theta[col_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) end elseif prior_choice == "beta" col_lambda = bin_size_factor * 3 * log(limitP[p_ind+1]/limitP[p_ind])/log(2) if expandpart quant_arr = quantile(theta_largegen[bin_ind,:]*col_lambda, weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:]*col_lambda, weight_vec, [0.1587, 0.5, 0.8413]) end else if expandpart quant_arr = quantile(theta_largegen[bin_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) else quant_arr = quantile(output.theta[bin_ind,:], weight_vec, [0.1587, 0.5, 0.8413]) end end println("-----------------------------") println("Orbital Period (day) = ", string(limitP[p_ind:p_ind+1]), " / Planet Radius (R_earth) = ", string(limitR[r_ind:r_ind+1]/ExoplanetsSysSim.earth_radius)) println("") println("Rate = ", string(quant_arr[2], " + ", quant_arr[3]-quant_arr[2], " - ", quant_arr[2]-quant_arr[1])) println("Density = ", string(quant_arr[2]*dens_denom, " + ", (quant_arr[3]-quant_arr[2])*dens_denom, " - ", (quant_arr[2]-quant_arr[1])*dens_denom)) if out2txt write(file_rate, string(quant_arr[2], " + ", quant_arr[3]-quant_arr[2], " - ", quant_arr[2]-quant_arr[1], "\n")) write(file_dens, string(quant_arr[2]*dens_denom, " + ", (quant_arr[3]-quant_arr[2])*dens_denom, " - ", (quant_arr[2]-quant_arr[1])*dens_denom, "\n")) end end end if out2txt close(file_rate) close(file_dens) end println("-----------------------------") println("") println(EvalSysSimModel.get_ss_obs())
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
12177
## ExoplanetsSysSim/examples/dr25_gaia_fgk/abc_setup.jl ## (c) 2019 Eric B. Ford & Danley C. Hsu # Collection of functions which specific ABC simulation parameters module EvalSysSimModel export setup, get_param_vector, get_ss_obs export gen_data, calc_summary_stats, calc_distance, is_valid_uniform, is_valid_beta, is_valid_dirichlet, normalize_dirch using ExoplanetsSysSim using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_m", "dr25_binrates_func.jl")) sim_param_closure = SimParam() summary_stat_ref_closure = CatalogSummaryStatistics() function is_valid_uniform(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) local rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}) #const lambda = sum_kbn(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< sum(rate_tab, dims=1)') return false end return true end function is_valid_dirichlet(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) local rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) #const lambda = sum_kbn(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< rate_tab[1,:]) return false end return true end function normalize_dirch(param_vector::Vector{Float64}) global sim_param_closure local p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 local r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 for i in 1:p_dim param_vector[((i-1)*(r_dim+1)+2):((i-1)*(r_dim+1)+(r_dim+1))] ./= sum(param_vector[((i-1)*(r_dim+1)+2):((i-1)*(r_dim+1)+(r_dim+1))]) end update_sim_param_from_vector!(param_vector,sim_param_closure) return param_vector end function is_valid_mfgk_ratio(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) limitP::Array{Float64,1} = get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}) rate_tab::Array{Float64,2} = get_any(sim_param_closure, "obs_par", Array{Float64,2})[:,1:length(limitP)] const mfgk_ratio::Float64 = get_real(sim_param, "mfgk_ratio") #const lambda = sum(rate_tab) if any(x -> x < 0., rate_tab) || any([floor(3*log(limitP[i+1]/limitP[i])/log(2)) for i in 1:length(limitP)-1] .< mfgk_ratio*sum(rate_tab, dims=1)') return false end return true end function gen_data(param_vector::Vector{Float64}) global sim_param_closure update_sim_param_from_vector!(param_vector,sim_param_closure) cat_phys = generate_kepler_physical_catalog(sim_param_closure) #cat_phys_cut = ExoplanetsSysSim.generate_obs_targets(cat_phys, sim_param_closure) #cat_obs = ExoplanetsSysSim.observe_kepler_targets_single_obs(cat_phys_cut, sim_param_closure) cat_obs = ExoplanetsSysSim.observe_kepler_targets_sky_avg(cat_phys, sim_param_closure) return cat_obs end # TODO OPT: Eventually, could adapt ABC.jl to use distance from first pass to decide if should compute additional summary statistics function calc_summary_stats(cat::KeplerObsCatalog) global sim_param_closure sum_stat = calc_summary_stats_obs_binned_rates(cat, sim_param_closure, obs_skyavg = true) return sum_stat end function calc_distance(sum_stat_obs::CatalogSummaryStatistics,sum_stat_sim::CatalogSummaryStatistics, n::Integer = 0) global sim_param_closure dist1 = calc_distance_vector_binned(sum_stat_obs,sum_stat_sim, 1, sim_param_closure) num_available = length(dist1) num_to_use = n>0 ? min(n,num_available) : num_available return calc_scalar_distance(dist1[1:num_to_use]) end function setup(prior_choice::String, bin_size_factor::Float64) global sim_param_closure = setup_sim_param_dr25binrates() add_param_fixed(sim_param_closure,"bin_size_factor",bin_size_factor) if prior_choice == "dirichlet" sim_param_closure = set_test_param_total(sim_param_closure) add_param_fixed(sim_param_closure,"generate_num_planets",generate_num_planets_binrates_dirichlet) if (length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1) > 1 add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_binrates_dirichlet) end elseif prior_choice == "beta" sim_param_closure = set_test_param(sim_param_closure) add_param_fixed(sim_param_closure,"generate_num_planets",generate_num_planets_binrates_beta) add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_binrates_beta) elseif prior_choice == "uniform" sim_param_closure = set_test_param(sim_param_closure) else println("# Invalid prior given!") quit() end ### Use simulated planet candidate catalog data # df_star = setup_star_table_christiansen(sim_param_closure) # println("# Finished reading in stellar data") # add_param_fixed(sim_param_closure,"num_kepler_targets",1000000) # For "observed" catalog # cat_obs = simulated_read_kepler_observations(sim_param_closure) # println("# Finished setting up simulated true catalog") ### ### Use real planet candidate catalog data df_koi,usable_koi = read_koi_catalog(sim_param_closure) println("# Finished reading in KOI data") df_star = setup_star_table_dr25(sim_param_closure) println("# Finished reading in stellar data") cat_obs = setup_actual_planet_candidate_catalog(df_star, df_koi, usable_koi, sim_param_closure) println("# Finished setting up true catalog") ### global summary_stat_ref_closure = calc_summary_stats_obs_binned_rates(cat_obs,sim_param_closure, trueobs_cat = true) end get_param_vector() = make_vector_of_sim_param(sim_param_closure) get_ss_obs() = summary_stat_ref_closure function set_simparam_ss(sim_param::ExoplanetsSysSim.SimParam, ss_true::ExoplanetsSysSim.CatalogSummaryStatistics) global sim_param_closure = sim_param global summary_stat_ref_closure = ss_true end end # module EvalSysSimModel #include(joinpath(Pkg.dir("ABC"),"src/composite.jl")) module SysSimABC export setup_abc, run_abc, run_abc_largegen, setup_abc_p2 using Distributions, Random, Distributed using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing import ApproximateBayesianComputing.CompositeDistributions.CompositeDist import ApproximateBayesianComputing.TransformedBetaDistributions.LinearTransformedBeta #using Compat import ExoplanetsSysSim import ..EvalSysSimModel include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_m", "dr25_binrates_func.jl")) include(joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")),"examples","dr25_gaia_m", "beta_proposal.jl")) function setup_abc(num_dist::Integer = 0; prior_choice::String = "uniform", bin_size_factor::Float64 = 1.5) EvalSysSimModel.setup(prior_choice, bin_size_factor) limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) limitR::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}) limitR_full::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "r_lim_full", Array{Float64,1}) local r_dim = length(limitR)-1 prior_arr = ContinuousDistribution[] ss_obs_table = EvalSysSimModel.get_ss_obs().stat["planets table"] if prior_choice == "ratio" prior_arr = vcat(prior_arr, Uniform(0.0, 10.0)) elseif prior_choice == "dirichlet" weights_arr = [log(limitR[j+1]/limitR[j]) for j in 1:r_dim]/minimum([log(limitR_full[k+1]/limitR_full[k]) for k in 1:(length(limitR_full)-1)]) for i in 1:(length(limitP)-1) max_in_col = 3*log(limitP[i+1]/limitP[i])/log(2) lambda_col = Uniform(0.0, max_in_col) prior_arr = vcat(prior_arr, lambda_col) if r_dim > 1 dirch_dist = Dirichlet(weights_arr) prior_arr = vcat(prior_arr, dirch_dist) end end else for i in 1:(length(limitP)-1) max_in_col = bin_size_factor*log(limitP[i+1]/limitP[i])/log(2) for j in 1:r_dim uniform_dist = Uniform(0.0, max_in_col*log(limitR[j+1]/limitR[j])/log(2)) prior_arr = vcat(prior_arr, uniform_dist) end end end param_prior = CompositeDist(prior_arr) in_parallel = nworkers() > 1 ? true : false calc_distance_ltd(sum_stat_obs::ExoplanetsSysSim.CatalogSummaryStatistics,sum_stat_sim::ExoplanetsSysSim.CatalogSummaryStatistics) = EvalSysSimModel.calc_distance(sum_stat_obs,sum_stat_sim,num_dist) global abc_plan = ABC.abc_pmc_plan_type(EvalSysSimModel.gen_data,EvalSysSimModel.calc_summary_stats, calc_distance_ltd, param_prior, make_proposal_dist=make_proposal_dist_multidim_beta, is_valid=EvalSysSimModel.is_valid_uniform, num_part=500, num_max_attempt=200, num_max_times=200, epsilon_init=9.9e99, target_epsilon=1.0e-100, in_parallel=in_parallel, adaptive_quantiles = false, epsilon_reduction_factor=0.9, tau_factor=2.0); if prior_choice == "ratio" abc_plan.make_proposal_dist = make_proposal_dist_multidim_beta_ratio abc_plan.is_valid = EvalSysSimModel.is_valid_mfgk_ratio elseif prior_choice == "dirichlet" && r_dim > 1 abc_plan.make_proposal_dist = make_proposal_dist_multidim_beta_dirichlet abc_plan.is_valid = EvalSysSimModel.is_valid_dirichlet abc_plan.normalize = EvalSysSimModel.normalize_dirch end return abc_plan end # function setup_abc_p2(abc_plan::ABC.abc_pmc_plan_type) # abc_plan.tau_factor = 2.0 # abc_plan.num_max_times = 200 # ExoplanetsSysSim.add_param_fixed(EvalSysSimModel.sim_param_closure,"num_targets_sim_pass_one",10000) # return abc_plan # end function run_abc_largegen(abc_plan::ABC.abc_pmc_plan_type, pop::ABC.abc_population_type, ss_true::ExoplanetsSysSim.CatalogSummaryStatistics, epshist_targ::Float64; npart::Integer = 1000, num_dist::Integer = 0) abc_plan.num_max_times = 1 println("# run_abc_largegen: ",EvalSysSimModel.sim_param_closure) sampler_largegen = abc_plan.make_proposal_dist(pop, abc_plan.tau_factor) theta_largegen = Array{Float64}(undef, size(pop.theta, 1), npart) weight_largegen = Array{Float64}(undef, npart) for i in 1:npart theta_val, dist_largegen, attempts_largegen = ABC.generate_theta(abc_plan, sampler_largegen, ss_true, epshist_targ) theta_largegen[:,i] = theta_val prior_logpdf = Distributions.logpdf(abc_plan.prior,theta_val) sampler_logpdf = Distributions.logpdf(sampler_largegen, theta_val) weight_largegen[i] = exp(prior_logpdf-sampler_logpdf) end return theta_largegen, weight_largegen end function run_abc(abc_plan::ABC.abc_pmc_plan_type) #global sim_param_closure println("# run_abc: ",EvalSysSimModel.sim_param_closure) ss_true = EvalSysSimModel.get_ss_obs() #println("True catalog SS: ", ss_true) pop_out = ABC.run_abc(abc_plan,ss_true;verbose=true) end function run_abc(abc_plan::ABC.abc_pmc_plan_type, pop::ABC.abc_population_type) #global sim_param_closure dist_threshold = maximum(pop.dist) EvalSysSimModel.add_param_fixed(EvalSysSimModel.sim_param_closure,"minimum ABC dist skip pass 2",dist_threshold) println("# run_abc: ",EvalSysSimModel.sim_param_closure) ss_true = EvalSysSimModel.get_ss_obs() pop_out = ABC.run_abc(abc_plan,ss_true,pop;verbose=true) end end # module SysSimABC
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
10443
using ExoplanetsSysSim using ApproximateBayesianComputing const ABC = ApproximateBayesianComputing using SpecialFunctions using Statistics import ApproximateBayesianComputing.CompositeDistributions.CompositeDist import ApproximateBayesianComputing.TransformedBetaDistributions.LinearTransformedBeta #import EvalSysSimModel # https://en.wikipedia.org/wiki/Trigamma_function function trigamma_x_gr_4(x::T) where T<: Real 1/x + 0.5/x^2 + 1/(6*x^3) - 1/(30*x^5) + 1/(42*x^7) - 1/(30*x^9) + 5/(66*x^11) - 691/(2730*x^13) + 7/(6*x^15) end function trigamma_x_lt_4(x::T) where T<: Real n = floor(Int64,5-x) z = x+n val = trigamma_x_gr_4(z) for i in 1:n z -= 1 val += 1/z^2 end val end function trigamma(x::T) where T<: Real x >= 4 ? trigamma_x_gr_4(x) : trigamma_x_lt_4(x) end function var_weighted(x::AbstractArray{Float64,1}, w::AbstractArray{Float64,1} ) #println("# size(x) = ",size(x), " size(w) = ", size(w)); flush(stdout) @assert(length(x)==length(w) ) sumw = sum(w) @assert( sumw > 0. ) if(sumw!= 1.0) w /= sum(w) sumw = 1.0 end sumw2 = sum(w.*w) xbar = sum(x.*w) covar = sum((x.-xbar).*(x.-xbar) .* w) * sumw/(sumw*sumw-sumw2) end function mom_alpha(x_bar::T, v_bar::T) where T<: Real x_bar * (((x_bar * (1 - x_bar)) / v_bar) - 1) end function mom_beta(x_bar::T, v_bar::T) where T<: Real (1 - x_bar) * (((x_bar * (1 - x_bar)) / v_bar) - 1) end # For algorithm, see https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2613&context=etd function fit_beta_mle(x::AbstractArray{T,1}; tol::T = 1e-6, max_it::Int64 = 10, init_guess::AbstractArray{T,1} = Array{T}(undef,0), w::AbstractArray{T,1} = Array{T}(undef,0), verbose::Bool = false ) where T<: Real lnxbar = length(w)>1 ? Statistics.mean(log.(x),AnalyticWeights(w)) : Compat.Statistics.mean(log.(x)) ln1mxbar = length(w)>1 ? Statistics.mean(log.(1.0.-x),AnalyticWeights(w)) : Compat.Statistics.mean(log.(1.0.-x)) function itterate( mle_guess::Vector{T} ) where T<:Real (alpha, beta) = (mle_guess[1], mle_guess[2]) dgab = digamma(alpha+beta) g1 = dgab - digamma(alpha) + lnxbar g2 = dgab - digamma(beta) + ln1mxbar tgab = trigamma(alpha+beta) G = [dgab-trigamma(alpha) tgab; tgab tgab-trigamma(beta)] mle_guess -= G \ [g1, g2] end local mle_new if length(init_guess) != 2 xbar = length(w)>1 ? Compat.Statistics.mean(x,AnalyticWeights(w)) : Compat.Statistics.mean(x) vbar = length(w)>1 ? Compat.Statistics.varm(x,xbar,AnalyticWeights(w)) : Compat.Statistics.varm(x,xbar) mle_new = (vbar < xbar*(1.0-xbar)) ? [mom_alpha(xbar, vbar), mom_beta(xbar,vbar)] : ones(T,2) else mle_new = init_guess end if verbose println("it = 0: ", mle_new) end if any(mle_new.<=zero(T)) println("# Warning: mean= ", xbar, " var= ",vbar," (alpha,beta)_init= ",mle_new," invalid, reinitializing to (1,1)") verbose = true mle_new = ones(T,2) end for i in 1:max_it mle_old = mle_new mle_new = itterate( mle_old ) epsilon = max(abs.(mle_old.-mle_new)) if verbose println("# it = ", i, ": ", mle_new, " max(Delta alpha, Delta beta)= ", epsilon) end if epsilon < tol break end end return mle_new end function make_beta(x::AbstractArray{T,1}, w::AbstractArray{T,1}; xmean::T = Compat.Statistics.mean(x,AnalyticWeights(w)), xvar::T = Compat.Statistics.varm(x,xmean,AnalyticWeights(w)), tau_factor::T=one(T) ) where T<:Real alpha_beta = (xvar < xmean*(1.0-xmean)) ? [mom_alpha(xmean, xvar), mom_beta(xmean,xvar)] : ones(T,2) if any(alpha_beta.<=zero(T)) alpha_beta = fit_beta_mle(x, w=w, init_guess=alpha_beta, verbose=true) end if any(alpha_beta.<=zero(T)) alpha_beta = ones(T,2) else if minimum(alpha_beta)>1.5*tau_factor && sum(alpha_beta)>=20.0*tau_factor alpha_beta ./= tau_factor end end #println("Radius relative: a= ",alpha_beta[1], " b= ",alpha_beta[2]) Beta(alpha_beta[1], alpha_beta[2]) end function make_beta_transformed(x::AbstractArray{T,1}, w::AbstractArray{T,1}; xmin::T=zero(T), xmax::T=one(T), xmean::T = Compat.Statistics.mean(x,AnalyticWeights(w)), xvar::T = Compat.Statistics.varm(x,xmean,AnalyticWeights(w)), tau_factor::T=one(T) ) where T<:Real alpha_beta = (xvar < xmean*(1.0-xmean)) ? [mom_alpha(xmean, xvar), mom_beta(xmean,xvar)] : ones(T,2) if any(alpha_beta.<=zero(T)) alpha_beta = fit_beta_mle(x, w=w, init_guess=alpha_beta, verbose=true) end if any(alpha_beta.<=zero(T)) alpha_beta = ones(T,2) else if minimum(alpha_beta)>1.5*tau_factor && sum(alpha_beta)>=20.0*tau_factor alpha_beta ./= tau_factor end end #println("Total: a= ",alpha_beta[1], " b= ",alpha_beta[2]) LinearTransformedBeta(alpha_beta[1], alpha_beta[2], xmin=xmin, xmax=xmax) end function make_proposal_dist_multidim_beta(theta::AbstractArray{Float64,2}, weights::AbstractArray{Float64,1}, tau_factor::Float64; verbose::Bool = false) global sim_param_closure local limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 theta_mean = sum(theta.*weights',dims=2) # weighted mean for parameters theta_var = ABC.var_weighted(theta'.-theta_mean',weights) # scaled, weighted covar for parameters tau_factor_indiv = fill(tau_factor,length(theta_var)) dist_arr = ContinuousDistribution[] for j in 1:p_dim max_col_rate = 3*log(limitP[j+1]/limitP[j])/log(2) col_startidx = (j-1)*r_dim+1 #tau_factor_indiv[col_startidx] = 2.0 #= println("mean= ",theta_mean) println("var= ",theta_var) println("tau= ",tau_factor_indiv) for i in 1:length(theta_mean) println("a= ",alpha(theta_mean[i],tau_factor*theta_var[i]), " b= ",beta(theta_mean[i],tau_factor*theta_var[i])) end =# dist_arr = vcat(dist_arr, ContinuousDistribution[make_beta_transformed(theta[i,:], weights, xmin=0.0, xmax=max_col_rate, xmean=theta_mean[i]/max_col_rate, xvar=theta_var[i]/max_col_rate^2, tau_factor=tau_factor_indiv[i]) for i in (col_startidx):(col_startidx+r_dim-1)]) end dist = CompositeDist(dist_arr) end function make_proposal_dist_multidim_beta(pop::abc_population_type, tau_factor::Float64; verbose::Bool = false) make_proposal_dist_multidim_beta(pop.theta, pop.weights, tau_factor, verbose=verbose) end function make_proposal_dist_multidim_beta_dirichlet(theta::AbstractArray{Float64,2}, weights::AbstractArray{Float64,1}, tau_factor::Float64; verbose::Bool = false) global sim_param_closure local limitP::Array{Float64,1} = get_any(EvalSysSimModel.sim_param_closure, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(EvalSysSimModel.sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 theta_mean = sum(theta.*weights',dims=2) # weighted mean for parameters theta_var = ABC.var_weighted(theta'.-theta_mean',weights) # scaled, weighted covar for parameters tau_factor_indiv = fill(tau_factor,length(theta_var)) dist_arr = ContinuousDistribution[] for j in 1:p_dim max_col_rate = 3*log(limitP[j+1]/limitP[j])/log(2) col_startidx = (j-1)*(r_dim+1)+1 #tau_factor_indiv[col_startidx] = 2.0 # if verbose # println("total: ",theta_mean[col_startidx]," ",theta_var[col_startidx]) # end # for i in (col_startidx+1):(col_startidx+r_dim) # mean_ratio = sum(theta[col_startidx,:].*theta[i,:].*weights) /(theta_mean[col_startidx]*theta_mean[i]) # weighted mean for parameters # var_ratio = var_weighted(vec(theta[col_startidx,:].*theta[i,:]).-(theta_mean[col_startidx]*theta_mean[i]),weights)/(2 * theta_mean[col_startidx] * theta_var[i]) # scaled, weighted covar for parameters # if verbose # println("i=",i,": ",theta_mean[i]," ",theta_var[i]," ratios: ",mean_ratio, " ",var_ratio) # end # var_ratio = var_ratio >= one(var_ratio) ? var_ratio : one(var_ratio) # tau_factor_indiv[i] = tau_factor*var_ratio # end # if verbose # flush(stdout) # end #= println("mean= ",theta_mean) println("var= ",theta_var) println("tau= ",tau_factor_indiv) for i in 1:length(theta_mean) println("a= ",alpha(theta_mean[i],tau_factor*theta_var[i]), " b= ",beta(theta_mean[i],tau_factor*theta_var[i])) end =# dist_arr = vcat(dist_arr, make_beta_transformed(theta[col_startidx,:], weights, xmin=0.0, xmax=max_col_rate, xmean=theta_mean[col_startidx]/max_col_rate, xvar=theta_var[col_startidx]/max_col_rate^2, tau_factor=tau_factor_indiv[col_startidx]), ContinuousDistribution[ make_beta(theta[i,:], weights, xmean=theta_mean[i], xvar=theta_var[i], tau_factor=tau_factor_indiv[i]) for i in (col_startidx+1):(col_startidx+r_dim)]) end dist = CompositeDist(dist_arr) end function make_proposal_dist_multidim_beta_dirichlet(pop::abc_population_type, tau_factor::Float64; verbose::Bool = false) make_proposal_dist_multidim_beta_dirichlet(pop.theta, pop.weights, tau_factor, verbose=verbose) end function make_proposal_dist_multidim_beta_ratio(theta::AbstractArray{Float64,2}, weights::AbstractArray{Float64,1}, tau_factor::Float64; verbose::Bool = false) global sim_param_closure theta_mean = sum(theta.*weights',dims=2) # weighted mean for parameters theta_var = ABC.var_weighted(theta'.-theta_mean',weights) # scaled, weighted covar for parameters prior_max = 15.0 dist_arr = ContinuousDistribution[make_beta_transformed(theta[1,:], weights, xmin=0.0, xmax=prior_max, xmean=theta_mean[1]/prior_max, xvar=theta_var[1]/prior_max^2, tau_factor=tau_factor)] dist = CompositeDist(dist_arr) end function make_proposal_dist_multidim_beta_ratio(pop::abc_population_type, tau_factor::Float64; verbose::Bool = false) make_proposal_dist_multidim_beta_ratio(pop.theta, pop.weights, tau_factor, verbose=verbose) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
54947
## ExoplanetsSysSim/examples/dr25_gaia_m/dr25_binrates_func.jl ## (c) 2019 Danley C. Hsu & Eric B. Ford # Collection of functions specific to estimating DR25 # planet candidate occurrence rates over a 2D period-radius grid using ExoplanetsSysSim using StatsFuns using JLD using CSV using DataFrames using Distributions ## simulation_parameters macro isdefinedlocal(var) quote try $(esc(var)) true catch err isa(err, UndefVarError) ? false : rethrow(err) end end end function setup_sim_param_dr25binrates(args::Vector{String} = String[] ) # allow this to take a list of parameter (e.g., from command line) sim_param = ExoplanetsSysSim.SimParam() add_param_fixed(sim_param,"max_tranets_in_sys",7) add_param_fixed(sim_param,"generate_star",ExoplanetsSysSim.generate_star_dumb) add_param_fixed(sim_param,"generate_planetary_system", ExoplanetsSysSim.generate_planetary_system_uncorrelated_incl) add_param_fixed(sim_param,"generate_kepler_target",ExoplanetsSysSim.generate_kepler_target_from_table) add_param_fixed(sim_param,"star_table_setup",setup_star_table_dr25) add_param_fixed(sim_param,"stellar_catalog","q1q17_dr25_gaia_m.jld") add_param_fixed(sim_param,"osd_file","dr25m_osds.jld") add_param_fixed(sim_param,"generate_num_planets",generate_num_planets_binrates_uniform) add_param_fixed(sim_param,"generate_planet_mass_from_radius",ExoplanetsSysSim.generate_planet_mass_from_radius_powerlaw) add_param_fixed(sim_param,"vetting_efficiency",ExoplanetsSysSim.vetting_efficiency_none) add_param_fixed(sim_param,"mr_power_index",2.0) add_param_fixed(sim_param,"mr_const",1.0) add_param_fixed(sim_param,"generate_period_and_sizes", generate_period_and_sizes_binrates_uniform) add_param_fixed(sim_param,"p_lim_full",[0.5, 1., 2., 4., 8., 16., 32., 64., 128., 256., 500.]) add_param_fixed(sim_param,"r_lim_full",[0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.5, 3., 4., 6., 8., 12., 16.]*ExoplanetsSysSim.earth_radius) #p_dim = length(p_lim_arr_num)-1 #r_dim = length(r_lim_arr_num)-1 #rate_tab_init = reshape(fill(1.0, p_dim*r_dim)*0.01,(r_dim,p_dim)) #add_param_fixed(sim_param, "p_lim_arr", p_lim_arr_num) #add_param_fixed(sim_param, "r_lim_arr", r_lim_arr_num*ExoplanetsSysSim.earth_radius) #add_param_active(sim_param,"obs_par", rate_tab_init) add_param_fixed(sim_param,"generate_e_omega",ExoplanetsSysSim.generate_e_omega_rayleigh) add_param_fixed(sim_param,"sigma_hk",0.03) add_param_fixed(sim_param,"sigma_incl",2.0) # degrees add_param_fixed(sim_param,"calc_target_obs_sky_ave",ExoplanetsSysSim.calc_target_obs_sky_ave) add_param_fixed(sim_param,"calc_target_obs_single_obs",ExoplanetsSysSim.calc_target_obs_single_obs) add_param_fixed(sim_param,"transit_noise_model",ExoplanetsSysSim.transit_noise_model_diagonal) return sim_param end function set_test_param(sim_param_closure::SimParam) @eval(include(joinpath(pwd(),"param.in"))) if @isdefinedlocal(stellar_catalog) @assert (typeof(stellar_catalog) == String) add_param_fixed(sim_param_closure,"stellar_catalog",stellar_catalog) end if @isdefinedlocal(koi_catalog) @assert (typeof(koi_catalog) == String) add_param_fixed(sim_param_closure,"koi_catalog",koi_catalog) end if @isdefinedlocal(num_targ_sim) @assert (typeof(num_targ_sim) == Int) add_param_fixed(sim_param_closure,"num_targets_sim_pass_one",num_targ_sim) end if @isdefinedlocal(osd_file) @assert (typeof(osd_file) == String) add_param_fixed(sim_param_closure,"osd_file",osd_file) end @assert (typeof(p_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "p_lim_arr", p_bin_lim) @assert (typeof(r_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "r_lim_arr", r_bin_lim*ExoplanetsSysSim.earth_radius) p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 n_bin = p_dim*r_dim if @isdefinedlocal(rate_init) if typeof(rate_init) <: Real @assert (rate_init >= 0.0) rate_init_list = fill(rate_init, n_bin) else rate_init_list = rate_init end @assert (ndims(rate_init_list) <= 2) if ndims(rate_init_list) == 1 @assert (length(rate_init_list) == n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) else @assert (size(rate_init_list) == (r_dim, p_dim)) rate_tab_init = rate_init_list*0.01 end add_param_active(sim_param_closure, "obs_par", rate_tab_init) else rate_init_list = fill(1.0, n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) add_param_active(sim_param_closure, "obs_par", rate_tab_init) end return sim_param_closure end function set_test_param_total(sim_param_closure::SimParam) @eval(include(joinpath(pwd(),"param.in"))) if @isdefinedlocal(stellar_catalog) @assert (typeof(stellar_catalog) == String) add_param_fixed(sim_param_closure,"stellar_catalog",stellar_catalog) end if @isdefinedlocal(koi_catalog) @assert (typeof(koi_catalog) == String) add_param_fixed(sim_param_closure,"koi_catalog",koi_catalog) end if @isdefinedlocal(num_targ_sim) @assert (typeof(num_targ_sim) == Int) add_param_fixed(sim_param_closure,"num_targets_sim_pass_one",num_targ_sim) end if @isdefinedlocal(osd_file) @assert (typeof(osd_file) == String) add_param_fixed(sim_param_closure,"osd_file",osd_file) end @assert (typeof(p_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "p_lim_arr", p_bin_lim) @assert (typeof(r_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "r_lim_arr", r_bin_lim*ExoplanetsSysSim.earth_radius) p_dim = length(get_any(sim_param_closure, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param_closure, "r_lim_arr", Array{Float64,1}))-1 n_bin = p_dim*r_dim if @isdefinedlocal(rate_init) if typeof(rate_init) <: Real @assert (rate_init >= 0.0) rate_init_list = fill(rate_init, n_bin) else rate_init_list = rate_init end @assert (ndims(rate_init_list) <= 2) if ndims(rate_init_list) == 1 @assert (length(rate_init_list) == n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) else @assert (size(rate_init_list) == (r_dim, p_dim)) rate_tab_init = rate_init_list*0.01 end if r_dim > 1 lamb_col = sum(rate_tab_init, dims=1) rate_tab_init = rate_tab_init ./ lamb_col rate_tab_init = vcat(lamb_col, rate_tab_init) end add_param_active(sim_param_closure, "obs_par", rate_tab_init) else rate_init_list = fill(1.0, n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) if r_dim > 1 lamb_col = sum(rate_tab_init, dims=1) rate_tab_init = rate_tab_init ./ lamb_col rate_tab_init = vcat(lamb_col, rate_tab_init) end add_param_active(sim_param_closure, "obs_par", rate_tab_init) end if r_dim == 1 add_param_fixed(sim_param_closure,"generate_period_and_sizes", generate_period_and_sizes_christiansen_single_rp) end return sim_param_closure end function set_test_param_ratio(sim_param_closure::SimParam) @eval(include(joinpath(pwd(),"param.in"))) if @isdefinedlocal(stellar_catalog) @assert (typeof(stellar_catalog) == String) add_param_fixed(sim_param_closure,"stellar_catalog",stellar_catalog) end if @isdefinedlocal(koi_catalog) @assert (typeof(koi_catalog) == String) add_param_fixed(sim_param_closure,"koi_catalog",koi_catalog) end if @isdefinedlocal(num_targ_sim) @assert (typeof(num_targ_sim) == Int) add_param_fixed(sim_param_closure,"num_targets_sim_pass_one",num_targ_sim) end if @isdefinedlocal(osd_file) @assert (typeof(osd_file) == String) add_param_fixed(sim_param_closure,"osd_file",osd_file) end @assert (typeof(p_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "p_lim_arr", p_bin_lim) @assert (typeof(r_bin_lim) == Array{Float64,1}) add_param_fixed(sim_param_closure, "r_lim_arr", r_bin_lim*ExoplanetsSysSim.earth_radius) p_dim = length(get_any(sim_param_closure, "p_lim_full", Array{Float64,1}))-1 r_dim = length(get_any(sim_param_closure, "r_lim_full", Array{Float64,1}))-1 n_bin = p_dim*r_dim if @isdefinedlocal(rate_init) if typeof(rate_init) <: Real @assert (rate_init >= 0.0) rate_init_list = fill(rate_init, n_bin) else rate_init_list = rate_init end @assert (ndims(rate_init_list) <= 2) if ndims(rate_init_list) == 1 @assert (length(rate_init_list) == n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) else @assert (size(rate_init_list) == (r_dim, p_dim)) rate_tab_init = rate_init_list*0.01 end add_param_fixed(sim_param_closure, "obs_par", rate_tab_init) else rate_init_list = fill(1.0, n_bin) rate_tab_init = reshape(rate_init_list*0.01, (r_dim, p_dim)) add_param_fixed(sim_param_closure, "obs_par", rate_tab_init) end return sim_param_closure end ## planetary_system function draw_uniform_selfavoiding(n::Integer; lower_bound::Real=0.0, upper_bound=1.0, min_separation::Real = 0.05, return_sorted::Bool=false ) @assert(n>=1) @assert(upper_bound>lower_bound) @assert(2*min_separation*n<upper_bound-lower_bound) list = rand(n) sorted_idx = collect(1:n) segment_length = upper_bound-lower_bound list[1] = lower_bound+segment_length*list[1] # First draw is standard uniform segment_length -= min(upper_bound,list[1]+min_separation)-max(lower_bound,list[1]-min_separation) for i in 2:n segment_length -= min(upper_bound,list[i-1]+min_separation)-max(lower_bound,list[i-1]-min_separation) # Reduce length for future draws list[i] *= segment_length # Draw over reduced range based on which segments need to be excluded list[i] += lower_bound j = 1 while j<= i-1 # Checking for conflicts k = sorted_idx[j] # Going from low to high if list[i]>list[k]-min_separation # If too close, then bu list[i] += min(upper_bound,list[k]+min_separation)-max(lower_bound,list[k]-min_separation) else break end j += 1 end for k in i:-1:(j+1) # Keep larger values sorted sorted_idx[k]=sorted_idx[k-1] end sorted_idx[j] = i # Save order for this draw #segment_length -= min(upper_bound,list[i]+min_separation)-max(lower_bound,list[i]-min_separation) # Reduce length for future draws end return return_sorted ? list[sorted_idx] : list end function generate_num_planets_binrates_uniform(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(sum(rate_tab[:,i]), convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_num_planets_binrates_dirichlet(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(rate_tab[1,i], convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_num_planets_m_fgk_ratio(s::Star, sim_param::SimParam) local max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") # TODO SCI: Is 7 planets max per system OK, even when fitting across potentially 9 period bins? #local max_tranets_per_P::Int64 = 3 # Set maximum number of planets per period range as loose stability criteria and to prevent near-crossing orbits rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) mfgk_ratio::Float64 = get_real(sim_param, "mfgk_ratio") limitP::Array{Float64,1} = get_any(sim_param, "p_lim_full", Array{Float64,1}) local p_dim = length(limitP)-1 local r_dim = length(get_any(sim_param, "r_lim_full", Array{Float64,1}))-1 sum_lambda = 0 for i in 1:p_dim sum_lambda += ExoplanetsSysSim.generate_num_planets_poisson(mfgk_ratio*sum(rate_tab[:,i]), convert(Int64, floor(3*log(limitP[i+1]/limitP[i])/log(2)))) end #println("# lambda= ", sum_lambda) return min(sum_lambda, max_tranets_in_sys) end function generate_period_and_sizes_binrates_uniform(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_arr", Array{Float64,1}) local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == size(rate_tab, 1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) rate_tab_1d = reshape(rate_tab,length(rate_tab)) maxcuml = sum(rate_tab_1d) cuml = cumsum(rate_tab_1d/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() idx = findfirst(x -> x > rollp, cuml) i_idx = (idx-1)%size(rate_tab,1)+1 j_idx[n] = floor(Int64,(idx-1)//size(rate_tab,1))+1 Rplist[n] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end for j in 1:(length(limitP)-1) tmp_ind = findall(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist .- log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end end end end end return Plist, Rplist end function generate_period_and_sizes_binrates_dirichlet(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) limitP::Array{Float64,1} = get_any(sim_param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_arr", Array{Float64,1}) local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == (size(rate_tab, 1)-1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) maxcuml = sum(rate_tab[1,:]) cuml = cumsum(rate_tab[1,:]/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() j_idx[n] = findfirst(x -> x > rollp, cuml) end for j in 1:(length(limitP)-1) tmp_ind = find(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist - log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) rad_dist = Distributions.Categorical(rate_tab[((j-1)*(r_dim+1)+2):((j-1)*(r_dim+1)+(r_dim+1))]) # Distribution for fraction of times the next planet draw would be assigned to a given radius bin invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end i_idx = rand(rad_dist) Rplist[tmp_ind[n]] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end end end end return Plist, Rplist end function generate_period_and_sizes_m_fgk_ratio(s::Star, sim_param::SimParam; num_pl::Integer = 1) rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) #mfgk_ratio::Float64 = get_real(sim_param, "mfgk_ratio") limitP::Array{Float64,1} = get_any(sim_param, "p_lim_full", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(sim_param, "r_lim_full", Array{Float64,1}) local r_dim = length(limitRp)-1 sepa_min = 0.05 # Minimum orbital separation in AU backup_sepa_factor_slightly_less_than_one = 0.95 @assert ((length(limitP)-1) == size(rate_tab, 2)) @assert ((length(limitRp)-1) == size(rate_tab, 1)) Plist = zeros(num_pl) Rplist = zeros(num_pl) rate_tab_1d = reshape(rate_tab,length(rate_tab)) maxcuml = sum(rate_tab_1d) cuml = cumsum(rate_tab_1d/maxcuml) # We assume uniform sampling in log P and log Rp within each bin j_idx = ones(Int64, num_pl) for n in 1:num_pl rollp = Base.rand() idx = findfirst(x -> x > rollp, cuml) i_idx = (idx-1)%size(rate_tab,1)+1 j_idx[n] = floor(Int64,(idx-1)//size(rate_tab,1))+1 Rplist[n] = exp(Base.rand()*(log(limitRp[i_idx+1])-log(limitRp[i_idx]))+log(limitRp[i_idx])) end for j in 1:(length(limitP)-1) tmp_ind = find(x -> x == j, j_idx) if length(tmp_ind) > 0 redraw_att = 0 invalid_config = true while invalid_config && redraw_att < 20 n_range = length(tmp_ind) loga_min = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)) loga_min_ext = log(ExoplanetsSysSim.semimajor_axis(limitP[j], s.mass)+sepa_min) # Used for determining minimum semimajor axis separation loga_max = log(ExoplanetsSysSim.semimajor_axis(limitP[j+1], s.mass)) logsepa_min = min(loga_min_ext-loga_min, (loga_max-loga_min)/n_range/2*backup_sepa_factor_slightly_less_than_one) # Prevents minimum separations too large tmp_logalist = draw_uniform_selfavoiding(n_range,min_separation=logsepa_min,lower_bound=loga_min,upper_bound=loga_max) tmp_Plist = exp.((3*tmp_logalist .- log(s.mass))/2)*ExoplanetsSysSim.day_in_year # Convert from log a (in AU) back to P (in days) invalid_config = false redraw_att += 1 for n in 1:n_range if tmp_Plist[n] < limitP[j] || tmp_Plist[n] > limitP[j+1] invalid_config = true else Plist[tmp_ind[n]] = tmp_Plist[n] end end end end end return Plist, Rplist end ## stellar_table function setup_dr25(sim_param::SimParam; force_reread::Bool = false) #global df wf = WindowFunction.setup_window_function(sim_param) WindowFunction.setup_OSD_interp(sim_param) #read in osd files so they can be interpolated df = ExoplanetsSysSim.StellarTable.df if haskey(sim_param,"read_stellar_catalog") && !force_reread return df #return data end stellar_catalog_filename = convert(String,joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")), "data", convert(String,get(sim_param,"stellar_catalog","q1_q17_dr25_stellar.csv")) ) ) df = setup_dr25(stellar_catalog_filename) add_param_fixed(sim_param,"read_stellar_catalog",true) add_param_fixed(sim_param,"num_kepler_targets",StellarTable.num_usable_in_star_table()) if !haskey(sim_param.param,"num_targets_sim_pass_one") add_param_fixed(sim_param,"num_targets_sim_pass_one", StellarTable.num_usable_in_star_table()) end StellarTable.set_star_table(df) return df end function setup_dr25(filename::String; force_reread::Bool = false) #global df, usable df = ExoplanetsSysSim.StellarTable.df #usable = ExoplanetsSysSim.StellarTable.usable if occursin(r".jld2$",filename) try data = load(filename) df = data["stellar_catalog"] #usable::Array{Int64,1} = data["stellar_catalog_usable"] Core.typeassert(df,DataFrame) StellarTable.set_star_table(df) catch error(string("# Failed to read stellar catalog >",filename,"< in jld2 format.")) end else try df = CSV.read(filename) catch error(string("# Failed to read stellar catalog >",filename,"< in ascii format.")) end has_mass = .! (ismissing.(df[:mass]) .| ismissing.(df[:mass_err1]) .| ismissing.(df[:mass_err2])) has_radius = .! (ismissing.(df[:radius]) .| ismissing.(df[:radius_err1]) .| ismissing.(df[:radius_err2])) has_dens = .! (ismissing.(df[:dens]) .| ismissing.(df[:dens_err1]) .| ismissing.(df[:dens_err2])) has_cdpp = .! (ismissing.(df[:rrmscdpp01p5]) .| ismissing.(df[:rrmscdpp02p0]) .| ismissing.(df[:rrmscdpp02p5]) .| ismissing.(df[:rrmscdpp03p0]) .| ismissing.(df[:rrmscdpp03p5]) .| ismissing.(df[:rrmscdpp04p5]) .| ismissing.(df[:rrmscdpp05p0]) .| ismissing.(df[:rrmscdpp06p0]) .| ismissing.(df[:rrmscdpp07p5]) .| ismissing.(df[:rrmscdpp09p0]) .| ismissing.(df[:rrmscdpp10p5]) .| ismissing.(df[:rrmscdpp12p0]) .| ismissing.(df[:rrmscdpp12p5]) .| ismissing.(df[:rrmscdpp15p0])) has_ld = .! (ismissing.(df[:limbdark_coeff1]) .| ismissing.(df[:limbdark_coeff2]) .| ismissing.(df[:limbdark_coeff3]) .| ismissing.(df[:limbdark_coeff4])) has_rest = .! (ismissing.(df[:dataspan]) .| ismissing.(df[:dutycycle])) in_Q1Q12 = [] obs_gt_5q = [] for x in df[:st_quarters] subx = string(x) num_q_obs = length(matchall(r"1", subx)) push!(obs_gt_5q, num_q_obs>5) subx = ("0"^(17-length(subx)))*subx indQ = search(subx, '1') if ((indQ < 1) | (indQ > 12)) || num_q_obs<=5 push!(in_Q1Q12, false) else push!(in_Q1Q12, true) end end is_FGK = [] for x in 1:length(df[:teff]) if ((df[x,:teff] > 4000.0) & (df[x,:teff] < 7000.0) & (df[x,:logg] > 4.0)) push!(is_FGK, true) else push!(is_FGK, false) end end is_usable = has_radius .& is_FGK .& has_mass .& has_rest .& has_dens .& has_cdpp .& obs_gt_5q .& has_ld if contains(filename,"q1_q16_stellar.csv") is_usable = is_usable .& in_Q1Q12 end # See options at: http://exoplanetarchive.ipac.caltech.edu/docs/API_keplerstellar_columns.html symbols_to_keep = [ :kepid, :mass, :mass_err1, :mass_err2, :radius, :radius_err1, :radius_err2, :dens, :dens_err1, :dens_err2, :rrmscdpp01p5, :rrmscdpp02p0, :rrmscdpp02p5, :rrmscdpp03p0, :rrmscdpp03p5, :rrmscdpp04p5, :rrmscdpp05p0, :rrmscdpp06p0, :rrmscdpp07p5, :rrmscdpp09p0, :rrmscdpp10p5, :rrmscdpp12p0, :rrmscdpp12p5, :rrmscdpp15p0, :cdppslplong, :cdppslpshrt, :dataspan, :dutycycle, :limbdark_coeff1, :limbdark_coeff2, :limbdark_coeff3, :limbdark_coeff4 ] delete!(df, [~(x in symbols_to_keep) for x in names(df)]) # delete columns that we won't be using anyway usable = findall(is_usable) df = df[usable, symbols_to_keep] tmp_df = DataFrame() for col in names(df) tmp_df[col] = collect(skipmissing(df[col])) end df = tmp_df mast_df = CSV.read(convert(String,joinpath(abspath(joinpath(dirname(Base.find_package("ExoplanetsSysSim")),"..")), "data", "KeplerMAST_TargetProperties.csv"))) delete!(mast_df, [~(x in [:kepid, :contam]) for x in names(mast_df)]) df = join(df, mast_df, on=:kepid) StellarTable.set_star_table(df) end println("# Removing stars observed <5 quarters.") df[!,:wf_id] = map(x->ExoplanetsSysSim.WindowFunction.get_window_function_id(x,use_default_for_unknown=false),df[!,:kepid]) obs_5q = df[!,:wf_id].!=-1 df = df[obs_5q, names(df)] StellarTable.set_star_table(df) return df end setup_star_table_dr25(sim_param::SimParam; force_reread::Bool = false) = setup_dr25(sim_param, force_reread=force_reread) setup_star_table_dr25(filename::String; force_reread::Bool = false) = setup_dr25(filename, force_reread=force_reread) ## summary_statistics function calc_summary_stats_obs_binned_rates(cat_obs::KeplerObsCatalog, param::SimParam; trueobs_cat::Bool = false, obs_skyavg::Bool = false) ssd = Dict{String,Any}() cache = Dict{String,Any}() if !trueobs_cat ssd["num targets"] = get_int(param,"num_targets_sim_pass_one") else ssd["num targets"] = get_int(param,"num_kepler_targets") end max_tranets_in_sys = get_int(param,"max_tranets_in_sys") # Demo that simulation parameters can specify how to evalute models, too @assert max_tranets_in_sys >= 1 idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target)::Array{Int64,1} # Find indices of systems with at least 1 tranet = potentially detectable transiting planet # Count total number of tranets and compile indices for N-tranet systems num_tranets = 0 idx_n_tranets = Vector{Int64}[ Int64[] for m = 1:max_tranets_in_sys] for n in 1:max_tranets_in_sys-1 idx_n_tranets[n] = findall(x::KeplerTargetObs-> length(x.obs) == n, cat_obs.target[idx_tranets] ) num_tranets += n*length(idx_n_tranets[n]) end idx_n_tranets[max_tranets_in_sys] = findall(x::KeplerTargetObs-> length(x.obs) >= max_tranets_in_sys, cat_obs.target[idx_tranets] ) num_tranets += max_tranets_in_sys*length(idx_n_tranets[max_tranets_in_sys]) # WARNING: this means we need to ignore planets w/ indices > max_tranets_in_sys if ( length( findall(x::KeplerTargetObs-> length(x.obs) > max_tranets_in_sys, cat_obs.target[idx_tranets] ) ) > 0) # Make sure max_tranets_in_sys is at least big enough for observed systems warn("Observational data has more transiting planets in one systems than max_tranets_in_sys allows.") end num_tranets = convert(Int64,num_tranets) # TODO OPT: Figure out why isn't this already an Int. I may be doing something that prevents some optimizations num_sys_tranets = zeros(max_tranets_in_sys) # Since observed data, don't need to calculate probabilities. for n in 1:max_tranets_in_sys # Make histogram of N-tranet systems num_sys_tranets[n] = length(idx_n_tranets[n]) end ssd["num_sys_tranets"] = num_sys_tranets ssd["planets detected"] = num_tranets period_list = zeros(num_tranets) weight_list = zeros(num_tranets) radius_list = zeros(num_tranets) n = 1 # tranet id if !trueobs_cat for i in idx_tranets ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff4) ) flux_ratio = (1.0+ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :contam))/1.0 # WARNING: Assumes flux = 1 #Rstar = trueobs_cat ? cat_obs.target[i].star.radius : ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :radius) for j in 1:num_planets(cat_obs.target[i]) period_list[n] = cat_obs.target[i].obs[j].period if obs_skyavg weight_list[n] = min(ExoplanetsSysSim.prob_detect(cat_obs.target[i].prob_detect,j), 1.0) # CHECK WHAT THIS DOES else weight_list[n] = 1.0 end radius_ratio = ExoplanetsSysSim.ratio_from_depth(cat_obs.target[i].obs[j].depth*flux_ratio, ld) radius_list[n] = radius_ratio*ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :radius) #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*Rstar n = n+1 end end else for i in idx_tranets ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id,:limbdark_coeff4) ) flux_ratio = (1.0+ExoplanetsSysSim.StellarTable.star_table(cat_obs.target[i].star.id, :contam))/1.0 # WARNING: Assumes flux = 1 for j in 1:num_planets(cat_obs.target[i]) period_list[n] = cat_obs.target[i].obs[j].period weight_list[n] = 1.0 radius_ratio = ExoplanetsSysSim.ratio_from_depth(cat_obs.target[i].obs[j].depth*flux_ratio, ld) radius_list[n] = radius_ratio*cat_obs.target[i].star.radius #radius_list[n] = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius n = n+1 end end end #ssd["period_list"] = period_list ssd["weight_list"] = weight_list #ssd["radius_list"] = radius_list limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) np_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) np_bin_idx = 1 bin_match_list = fill(fill(0,0),(length(limitP)-1)*(length(limitRp)-1)) for i in 1:(length(limitP)-1) P_match = findall(x -> ((x > limitP[i]) && (x < limitP[i+1])), period_list) for j in 1:(length(limitRp)-1) R_match = findall(x -> ((x > limitRp[j]) && (x < limitRp[j+1])), radius_list) bin_match = intersect(P_match, R_match) bin_match_list[np_bin_idx] = bin_match np_bin[np_bin_idx] = sum(weight_list[bin_match]) np_bin_idx += 1 end end cache["bin_match_list"] = bin_match_list #ssd["planets detected"] = sum(np_bin) ssd["planets table"] = np_bin return CatalogSummaryStatistics(ssd, cache) end ## abc_distance function calc_distance_vector_binned(summary1::CatalogSummaryStatistics, summary2::CatalogSummaryStatistics, pass::Int64, sim_param::SimParam ; verbose::Bool = false) p_dim = length(get_any(sim_param, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 #rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) d = Array{Float64}(undef,0) if pass == 1 if verbose println("# Summary 1, pass 1: ",summary1) println("# Summary 2, pass 1: ",summary2) end d = zeros(3) np1 = haskey(summary1.stat,"planets table") ? summary1.stat["planets table"] : summary1.stat["expected planets table"] np2 = haskey(summary2.stat,"planets table") ? summary2.stat["planets table"] : summary2.stat["expected planets table"] np_bin = zeros(length(np1)) num_detect_sim = zeros(length(np1)) ### Bernoulli distance bin_match_list = summary2.cache["bin_match_list"] @assert length(bin_match_list) == length(np1) np2 = zeros(Int64,length(np1)) ### for n in 1:length(np1) #np_bin[n] = dist_L1_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = dist_L2_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = distance_poisson_draw(np2[n]/summary2.stat["num targets"]*summary1.stat["num targets"], convert(Int64, np1[n])) np_bin[n], num_detect_sim[n] = distance_sum_of_bernoulli_draws(floor(Int64,np1[n]),summary1.stat["num targets"], summary2.stat["weight_list"], summary2.stat["num targets"], bin_match_list[n]) #println("True # [Bin ", n,"] = ",np1[n],", Expected # [Bin ", n,"] = ",np2[n]) end #d[1] = maximum(np_bin) #d[1] = sum(np_bin) np1_ratio = np1 ./ summary1.stat["num targets"] np2_ratio = num_detect_sim ./ summary1.stat["num targets"] d[1] = distance_canberra(np1_ratio, np2_ratio)# + distance_cosine(np1_ratio, np2_ratio) #println("Total rate: ", rate_tab[1,1], " / Distance (radii): ", d[1], " / Sim. cat. ratio = ", sum(num_detect_sim[1:r_dim])/summary2.stat["num_targets"], " / Obs. cat. ratio = ", sum(np1[1:r_dim])/summary1.stat["num targets"], " / Distance (total): ", dist_L2_abs(sum(num_detect_sim[1:r_dim])/summary2.stat["num targets"], sum(np1[1:r_dim])/summary1.stat["num targets"])*r_dim) # for j in 1:p_dim # d[1] += dist_L2_abs(sum(num_detect_sim[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"], sum(np1[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"])*r_dim # end else println("# calc_distance_vector_demo doesn't know what to do for pass= ", pass) end return d end #= function calc_distance_vector_relative_binned(summary1::CatalogSummaryStatistics, summary2::CatalogSummaryStatistics, pass::Int64, sim_param::SimParam ; verbose::Bool = false) p_dim = length(get_any(sim_param, "p_lim_arr", Array{Float64,1}))-1 r_dim = length(get_any(sim_param, "r_lim_arr", Array{Float64,1}))-1 #rate_tab::Array{Float64,2} = get_any(sim_param, "obs_par", Array{Float64,2}) d = Array{Float64}(0) if pass == 1 if verbose println("# Summary 1, pass 1: ",summary1) println("# Summary 2, pass 1: ",summary2) end d = zeros(3) np1 = haskey(summary1.stat,"planets table") ? summary1.stat["planets table"] : summary1.stat["expected planets table"] np2 = haskey(summary2.stat,"planets table") ? summary2.stat["planets table"] : summary2.stat["expected planets table"] np_bin = zeros(length(np1)) num_detect_sim = zeros(length(np1)) ### Bernoulli distance bin_match_list = summary2.cache["bin_match_list"] @assert length(bin_match_list) == length(np1) np2 = zeros(Int64,length(np1)) ### for n in 1:length(np1) #np_bin[n] = dist_L1_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = dist_L2_abs(np1[n]/summary1.stat["num targets"], np2[n]/summary2.stat["num targets"]) #np_bin[n] = distance_poisson_draw(np2[n]/summary2.stat["num targets"]*summary1.stat["num targets"], convert(Int64, np1[n])) np_bin[n], num_detect_sim[n] = distance_sum_of_bernoulli_draws(floor(Int64,np1[n]),summary1.stat["num targets"], summary2.stat["weight_list"], summary2.stat["num targets"], bin_match_list[n]) #println("True # [Bin ", n,"] = ",np1[n],", Expected # [Bin ", n,"] = ",np2[n]) end #d[1] = maximum(np_bin) d[1] = 0.0 np1_col = 0 np2_col = 0 #println("Total rate: ", rate_tab[1,1], " / Distance (radii): ", d[1], " / Sim. cat. ratio = ", sum(num_detect_sim[1:r_dim])/summary2.stat["num_targets"], " / Obs. cat. ratio = ", sum(np1[1:r_dim])/summary1.stat["num targets"], " / Distance (total): ", dist_L2_abs(sum(num_detect_sim[1:r_dim])/summary2.stat["num targets"], sum(np1[1:r_dim])/summary1.stat["num targets"])*r_dim) for j in 1:p_dim d[1] += dist_L2_abs(sum(num_detect_sim[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"], sum(np1[(j-1)*r_dim+1:(j-1)*r_dim+r_dim])/summary1.stat["num targets"])*r_dim np1_col = sum(np1[(j-1)*r_dim+1:(j-1)*r_dim+r_dim]) np2_col = sum(num_detect_sim[(j-1)*r_dim+1:(j-1)*r_dim+r_dim]) for i in 1:r_dim d[1] += dist_L2_abs(num_detect_sim[(j-1)*r_dim+i]/np2_col, np1[(j-1)*r_dim+i]/np1_col) end end else println("# calc_distance_vector_demo doesn't know what to do for pass= ", pass) end return d end =# ## eval_model # function test_dr25binrates() # global sim_param_closure = setup_sim_param_dr25binrates() # cat_phys = generate_kepler_physical_catalog(sim_param_closure) # cat_obs = observe_kepler_targets_single_obs(cat_phys,sim_param_closure) # global summary_stat_ref_closure = calc_summary_stats_obs_demo(cat_obs,sim_param_closure) # global cat_phys_try_closure = generate_christiansen_catalog(sim_param_closure) # global cat_obs_try_closure = observe_kepler_targets_sky_avg(cat_phys_try_closure,sim_param_closure) # global summary_stat_try_closure = calc_summary_stats_sim_pass_one_demo(cat_obs_try_closure,cat_phys_try_closure,sim_param_closure) # summary_stat_try_closure = calc_summary_stats_sim_pass_two_demo(cat_obs_try_closure,cat_phys_try_closure,summary_stat_try_closure,sim_param_closure) # param_guess = make_vector_of_sim_param(sim_xparam_closure) # evaluate_model_scalar_ret( param_guess) # end ## inverse_detection & simple bayesian function inv_det(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") println("Inverse Detection Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = np_bin[(i-1)*(length(limitRp)-1) + j]/num_targ*100. if cnt_bin[(i-1)*(length(limitRp)-1) + j] > 0. println(rate_f, " +/- ", rate_f/sqrt(cnt_bin[(i-1)*(length(limitRp)-1) + j]), " %") else println(rate_f, " +/- N/A %") end end end println() end function simp_bayes(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") ess_bin = stellar_ess(param) println("------------------------------") println("Simple Bayesian Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = (1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j])/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])*100. up_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.8413)*100. low_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.1587)*100. println(rate_f, " + ", up_quant - rate_f, " - ", rate_f - low_quant, " %") end end println() end function inv_det_simp_bayes(cat_obs::KeplerObsCatalog, param::SimParam) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) println("------------------------------") cnt_bin, np_bin = cnt_np_bin(cat_obs, param) println("------------------------------") ess_bin = stellar_ess(param) println("------------------------------") println("Inverse Detection Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = np_bin[(i-1)*(length(limitRp)-1) + j]/num_targ*100. if cnt_bin[(i-1)*(length(limitRp)-1) + j] > 0. println(rate_f, " +/- ", rate_f/sqrt(cnt_bin[(i-1)*(length(limitRp)-1) + j]), " %") else println(rate_f, " +/- N/A %") end end end println() println("Simple Bayesian Rates:") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) rate_f = (1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j])/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])*100. up_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.8413)*100. low_quant = quantile(Gamma(1.0+cnt_bin[(i-1)*(length(limitRp)-1) + j], 1.0/(1.0+ess_bin[(i-1)*(length(limitRp)-1) + j])), 0.1587)*100. println(rate_f, " + ", up_quant - rate_f, " - ", rate_f - low_quant, " %") end end println() end ## cnt_bin & np_bin (inverse detection & simple bayesian) function cnt_np_bin(cat_obs::KeplerObsCatalog, param::SimParam, verbose::Bool = true) num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target)::Array{Int64,1} limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) np_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) cnt_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) pl_idx = 1 println("Calculating completeness for each planet...") for i in idx_tranets for j in 1:num_planets(cat_obs.target[i]) pper = cat_obs.target[i].obs[j].period prad = sqrt(cat_obs.target[i].obs[j].depth)*cat_obs.target[i].star.radius pbin = findfirst(x -> ((pper > limitP[x]) && (pper < limitP[x+1])), collect(1:(length(limitP)-1))) rbin = findfirst(x -> ((prad > limitRp[x]) && (prad < limitRp[x+1])), collect(1:(length(limitRp)-1))) if (pbin > 0 && rbin > 0) cnt_bin[(pbin-1)*(length(limitRp)-1) + rbin] += 1 pgeo = ExoplanetsSysSim.calc_transit_prob_single_planet_approx(pper, cat_obs.target[i].star.radius, cat_obs.target[i].star.mass) pdet = 0.0 for star_id in 1:num_targ ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff4) ) star = SingleStar(ExoplanetsSysSim.StellarTable.star_table(star_id,:radius),ExoplanetsSysSim.StellarTable.star_table(star_id,:mass),1.0, ld, star_id) cdpp_arr = ExoplanetsSysSim.make_cdpp_array_empty(star_id)#(1.0e-6*sqrt(1.0 / 24.0 / ExoplanetsSysSim.LC_duration)) .* [ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp01p5)*sqrt(1.5), ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp02p0)*sqrt(2.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp02p5)*sqrt(2.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p0)*sqrt(3.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p5)*sqrt(3.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp04p5)*sqrt(4.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp05p0)*sqrt(5.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp06p0)*sqrt(6.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp07p5)*sqrt(7.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp09p0)*sqrt(9.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp10p5)*sqrt(10.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p0)*sqrt(12.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p5)*sqrt(12.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp15p0)*sqrt(15.)] #cdpp = 1.0e-6 * ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp04p5) * sqrt(4.5/24.0 / ExoplanetsSysSim.LC_duration ) contam = 0.0 data_span = ExoplanetsSysSim.StellarTable.star_table(star_id, :dataspan) duty_cycle = ExoplanetsSysSim.StellarTable.star_table(star_id, :dutycycle) pl_arr = Array{Planet}(undef,1) orbit_arr = Array{Orbit}(undef,1) incl = acos(Base.rand()*star.radius*ExoplanetsSysSim.rsol_in_au/ExoplanetsSysSim.semimajor_axis(pper, star.mass)) orbit_arr[1] = Orbit(pper, 0., incl, 0., 0., Base.rand()*2.0*pi) pl_arr[1] = Planet(prad, 1.0e-6) if ExoplanetsSysSim.StellarTable.star_table_has_key(:wf_id) wf_id = ExoplanetsSysSim.StellarTable.star_table(star_id,:wf_id) else wf_id = ExoplanetsSysSim.WindowFunction.get_window_function_id(ExoplanetsSysSim.StellarTable.star_table(star_id,:kepid)) end kep_targ = KeplerTarget([PlanetarySystem(star, pl_arr, orbit_arr)], repeat(cdpp_arr, outer=[1,1]),contam,data_span,duty_cycle,wf_id) duration = ExoplanetsSysSim.calc_transit_duration(kep_targ,1,1) if duration <= 0. continue end ntr = ExoplanetsSysSim.calc_expected_num_transits(kep_targ, 1, 1, param) depth = ExoplanetsSysSim.calc_transit_depth(kep_targ,1,1) cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration_lookup_cdpp(kep_targ, duration) #cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration(kep_targ, duration) snr = ExoplanetsSysSim.calc_snr_if_transit_cdpp(kep_targ, depth, duration, cdpp, param, num_transit=ntr) pdet += ExoplanetsSysSim.calc_prob_detect_if_transit(kep_targ, snr, pper, duration, param, num_transit=ntr) end np_bin[(pbin-1)*(length(limitRp)-1) + rbin] += 1.0/pgeo/(pdet/num_targ) if verbose println("Planet ",pl_idx," => Bin ", (pbin-1)*(length(limitRp)-1) + rbin, ", C = ", 1.0/pgeo/(pdet/num_targ)) end pl_idx += 1 end end end return cnt_bin, np_bin end ## stellar catalog ess (simple bayesian) function stellar_ess(param::SimParam, verbose::Bool = true) num_realiz = 100 num_targ = ExoplanetsSysSim.StellarTable.num_usable_in_star_table() limitP::Array{Float64,1} = get_any(param, "p_lim_arr", Array{Float64,1}) limitRp::Array{Float64,1} = get_any(param, "r_lim_arr", Array{Float64,1}) ess_bin = zeros((length(limitP)-1) * (length(limitRp)-1)) println(string("Stellar ESS calculation beginning...")) for star_id in 1:num_targ ld = ExoplanetsSysSim.LimbDarkeningParam4thOrder(ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff1), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff2), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff3), ExoplanetsSysSim.StellarTable.star_table(star_id,:limbdark_coeff4) ) star = SingleStar(ExoplanetsSysSim.StellarTable.star_table(star_id,:radius),ExoplanetsSysSim.StellarTable.star_table(star_id,:mass),1.0, ld, star_id) cdpp_arr = ExoplanetsSysSim.make_cdpp_array_empty(star_id)#(1.0e-6*sqrt(1.0/24.0/ExoplanetsSysSim.LC_duration)) .* [ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp01p5)*sqrt(1.5), ExoplanetsSysSim.StellarTable.star_table(star_id, :rrmscdpp02p0)*sqrt(2.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp02p5)*sqrt(2.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p0)*sqrt(3.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp03p5)*sqrt(3.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp04p5)*sqrt(4.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp05p0)*sqrt(5.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp06p0)*sqrt(6.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp07p5)*sqrt(7.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp09p0)*sqrt(9.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp10p5)*sqrt(10.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p0)*sqrt(12.), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp12p5)*sqrt(12.5), ExoplanetsSysSim.StellarTable.star_table(star_id,:rrmscdpp15p0)*sqrt(15.)] contam = 0.0 data_span = ExoplanetsSysSim.StellarTable.star_table(star_id, :dataspan) duty_cycle = ExoplanetsSysSim.StellarTable.star_table(star_id, :dutycycle) if ExoplanetsSysSim.StellarTable.star_table_has_key(:wf_id) wf_id = ExoplanetsSysSim.StellarTable.star_table(star_id,:wf_id) else wf_id = ExoplanetsSysSim.WindowFunction.get_window_function_id(ExoplanetsSysSim.StellarTable.star_table(star_id,:kepid)) end for i_idx in 1:(length(limitP)-1) for j_idx in 1:(length(limitRp)-1) temp_bin = 0.0 for n_test in 1:num_realiz pper = exp(Base.rand()*(log(limitP[i_idx+1])-log(limitP[i_idx]))+log(limitP[i_idx])) prad = exp(Base.rand()*(log(limitRp[j_idx+1])-log(limitRp[j_idx]))+log(limitRp[j_idx])) pgeo = ExoplanetsSysSim.calc_transit_prob_single_planet_approx(pper, star.radius, star.mass) pdet = 0.0 pl_arr = Array{Planet}(undef,1) orbit_arr = Array{Orbit}(undef,1) incl = acos(Base.rand()*star.radius*ExoplanetsSysSim.rsol_in_au/ExoplanetsSysSim.semimajor_axis(pper, star.mass)) orbit_arr[1] = Orbit(pper, 0., incl, 0., 0., Base.rand()*2.0*pi) pl_arr[1] = Planet(prad, 1.0e-6) kep_targ = KeplerTarget([PlanetarySystem(star, pl_arr, orbit_arr)], repeat(cdpp_arr, outer=[1,1]),contam,data_span,duty_cycle,wf_id) duration = ExoplanetsSysSim.calc_transit_duration(kep_targ,1,1) if duration <= 0. continue end ntr = ExoplanetsSysSim.calc_expected_num_transits(kep_targ, 1, 1, param) depth = ExoplanetsSysSim.calc_transit_depth(kep_targ,1,1) # Apply correction to snr if grazing transit size_ratio = kep_targ.sys[1].planet[1].radius/kep_targ.sys[1].star.radius b = ExoplanetsSysSim.calc_impact_parameter(kep_targ.sys[1],1) snr_correction = ExoplanetsSysSim.calc_depth_correction_for_grazing_transit(b,size_ratio) depth *= snr_correction #cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration(kep_targ, duration) cdpp = ExoplanetsSysSim.interpolate_cdpp_to_duration_lookup_cdpp(kep_targ, duration) snr = ExoplanetsSysSim.calc_snr_if_transit_cdpp(kep_targ, depth, duration, cdpp, param, num_transit=ntr) #kepid = ExoplanetsSysSim.StellarTable.star_table(kep_targ.sys[1].star.id, :kepid) #osd_duration = ExoplanetsSysSim.get_legal_durations(pper,duration) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration #osd = ExoplanetsSysSim.WindowFunction.interp_OSD_from_table(kepid, pper, osd_duration) #if osd_duration > duration #use a correcting factor if this duration is lower than the minimum searched for this period. # osd = osd*osd_duration/duration #end #snr = ExoplanetsSysSim.calc_snr_if_transit(kep_targ, depth, duration, osd, sim_param, num_transit=ntr) pdet = ExoplanetsSysSim.calc_prob_detect_if_transit(kep_targ, snr, pper, duration, param, num_transit=ntr) temp_bin += (pgeo*pdet) end ess_bin[(i_idx-1)*(length(limitRp)-1) + j_idx] += temp_bin/num_realiz end end if verbose && rem(star_id, 10^convert(Int,floor(log10(num_targ)))) == 0. println(string("Star #", star_id, " finished")) end end if verbose println("") for i in 1:(length(limitP)-1) for j in 1:(length(limitRp)-1) println("Period limits: ", limitP[i:i+1], " / Radius limits: ", limitRp[j:j+1]/ExoplanetsSysSim.earth_radius, " / Stellar ESS = ", ess_bin[(i-1)*(length(limitRp)-1) + j]) end end end return ess_bin end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
4204
## ExoplanetsSysSim/src/ExoplanetsSysSim.jl ## (c) 2015 Eric B. Ford using DataFrames # needed outside module, so JLD/JLD2 load has the type module ExoplanetsSysSim # Packages to be used # Note: Tried to keep to a minimum in core package to help with maintainability import Compat: @compat #, readstring, is_windows if VERSION < v"0.7" import Compat: UTF8String, ASCIIString end if VERSION >= v"0.5-" using Combinatorics end using Distributions using PDMats # using StatsFuns using DataFrames if VERSION < VersionNumber(0,3,20) using Docile end using CORBITS # Includes & associated exports for types, then generic functions, then demo functions include("constants.jl") #require(joinpath(Pkg.dir("ExoplanetsSysSim"), "src", "constants.jl")) export SimParam export SimulationParameters export add_param_fixed, add_param_active, set_active, set_inactive, is_active, update_param, get, get_real, get_int, get_bool, get_function, get_any, haskey, make_vector_of_sim_param, update_sim_param_from_vector!, make_vector_of_active_param_keys, get_range_for_sim_param export setup_sim_param_demo include("simulation_parameters.jl") using ExoplanetsSysSim.SimulationParameters export Orbit include("orbit.jl") export Planet include("planet.jl") export LimbDarkeningParamAbstract, LimbDarkeningParamLinear, LimbDarkeningParamQuadratic, LimbDarkeningParam4thOrder include("limb_darkening.jl") export depth_at_midpoint, ratio_from_depth export StarAbstract, Star, SingleStar, BinaryStar include("star.jl") export flux, mass export generate_stars export PlanetarySystemAbstract, PlanetarySystemSingleStar, PlanetarySystem, SystemPlane include("planetary_system.jl") export test_stability, is_period_ratio_near_resonance, calc_if_near_resonance export draw_truncated_poisson, draw_power_law, map_square_to_triangle export cdf_lognormal, invert_cdf_lognormal, cdf_power_law, invert_cdf_power_law, draw_segmented_uniform export compute_unstable_regions_periods_given_planets, compute_unstable_mutualHill_regions_periodscales_given_clusters, compute_regions_non_overlapping, compute_allowed_regions_cdf_lognormal, compute_allowed_regions_cdf_power_law export draw_lognormal_allowed_regions, draw_power_law_allowed_regions, draw_period_lognormal_allowed_regions, draw_period_lognormal_allowed_regions_Hill, draw_period_lognormal_allowed_regions_mutualHill, draw_periodscale_power_law_allowed_regions_mutualHill #include("corbits.jl") #export prob_of_transits_approx include("window_function.jl") export WindowFunction export setup_window_function, get_window_function_data, get_window_function_id, eval_window_function, setup_OSD_interp#, cdpp_vs_osd include("stellar_table.jl") export StellarTable export setup_star_table, star_table, num_usable_in_star_table, set_star_table, star_table_has_key export KeplerTarget export num_planets, generate_kepler_target_from_table, generate_kepler_target_simple include("target.jl") export KeplerTargetObs include("transit_observations.jl") export semimajor_axis, period_given_semimajor_axis #export setup_koi_table, koi_table, num_koi export KeplerPhysicalCatalog, KeplerObsCatalog include("kepler_catalog.jl") export generate_kepler_physical_catalog, observe_kepler_targets_single_obs, observe_kepler_targets_sky_avg, simulated_read_kepler_observations, setup_actual_planet_candidate_catalog, read_koi_catalog export CatalogSummaryStatistics include("summary_statistics.jl") export calc_summary_stats_obs_demo, calc_summary_stats_sim_pass_one_demo, calc_summary_stats_sim_pass_two_demo include("abc_distance.jl") export dist_L1_fractional, dist_L1_abs, dist_L2_fractional, dist_L2_abs, calc_scalar_distance, combine_scalar_distances, distance_poisson_likelihood, distance_poisson_draw, distance_sum_of_bernoulli_draws, distance_canberra, distance_cosine export calc_distance_vector_demo export TestEvalModel include("eval_model.jl") # Also includes macros to help write eval model using different variables for closures export test_eval_model using ExoplanetsSysSim.TestEvalModel export SysSimIO include("io.jl") using ExoplanetsSysSim.SysSimIO export save_sim_param, save_sim_results, load_sim_param, load_distances, load_summary_stats end # module
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
14597
## ExoplanetsSysSims/src/abc_distance.jl ## (c) 2015 Eric B. Ford dist_L1_fractional(x::Real, y::Real) = (x==y==0.0) ? 0.0 : abs( (x-y)*2/(x+y) ) dist_L1_abs(x::Real, y::Real) = abs(x-y) dist_L2_fractional(x::Real, y::Real) = (x==y==0.0) ? 0.0 : abs( (x-y)^2*2/(x^2+y^2) ) dist_L2_abs(x::Real, y::Real) = (x-y)^2 # Library of functions to convert distance vector into a scalar distance calc_scalar_distance_sum(d::Vector{Float64}) = sum(d) calc_scalar_distance_rms(d::Vector{Float64}) = sqrt(sumsq(d)) calc_scalar_distance_max(d::Vector{Float64}) = maximum(d) # How to combine two distances based on subsets of the full distance vector (should always be greater than either for two pass algorithm to work) combine_scalar_distances_sum(d1::Float64, d2::Float64) = d1+d2 combine_scalar_distances_rms(d1::Float64, d2::Float64) = sqrt(d1*d1+d2*d2) combine_scalar_distances_max(d1::Float64, d2::Float64) = max(d1,d2) # Pick which one to be used calc_scalar_distance(d::Vector{Float64}) = calc_scalar_distance_sum(d) combine_scalar_distances(d1::Float64, d2::Float64) = combine_scalar_distances_sum(d1,d2) # compute supremum of differences between empirical cdfs. # Borrowed from JuliaStats/HypothesisTests.jl function ksstats(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} n_x, n_y = length(x), length(y) sort_idx = sortperm([x; y], alg=MergeSort) pdf_diffs = [ones(n_x)/n_x; -ones(n_y)/n_y][sort_idx] cdf_diffs = cumsum(pdf_diffs) deltap = maximum(cdf_diffs) deltan = -minimum(cdf_diffs) delta = max(deltap,deltan) (n_x, n_y, deltap, deltan, delta) end # weighted version # WARNING: Function is untested function ksstats(x::AbstractVector{T}, y::AbstractVector{S}, wx::AbstractVector{T}, wy::AbstractVector{T}) where {T<:Real, S<:Real} n_x, n_y = length(x), length(y) wx .*= 1.0/sum(wx) wy .*= 1.0/sum(wy) sort_idx = sortperm([x; y], alg=MergeSort) pdf_diffs = [wx; -wy][sort_idx] cdf_diffs = cumsum(pdf_diffs) deltap = maximum(cdf_diffs) deltan = -minimum(cdf_diffs) delta = max(deltap,deltan) (n_x, n_y, deltap, deltan, delta) # should the first two values returned here be sum(wx) and sum(wy) before normalizing? For now, we ignore all but the final delta anyway. end dist_KS(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} = ksstats(x,y)[5] dist_KS(x::AbstractVector{T}, y::AbstractVector{S}, wx::AbstractVector{T}, wy::AbstractVector{T}) where {T<:Real, S<:Real} = ksstats(x,y,wx,wy)[5] ##### Function to compute the KS distance for discrete arrays (i.e. of the planet multiplicities in the systems): function ksstats_ints(x::AbstractVector{T}, y::AbstractVector{S}) where {T <: Int, S <: Int} n_x, n_y = length(x), length(y) xy_max = max(maximum(x), maximum(y)) #maximum of both x and y x_counts = [sum(x .== n) for n in 1:xy_max] y_counts = [sum(y .== n) for n in 1:xy_max] pdf_diffs = x_counts./n_x .- y_counts./n_y cdf_diffs = cumsum(pdf_diffs) deltap = maximum(cdf_diffs) deltan = -minimum(cdf_diffs) delta = max(deltap,deltan) (n_x, n_y, deltap, deltan, delta) end ##### Function to compute the 2-sample Anderson-Darling (AD) distance between two empirical CDFs (continuous distributions): function ADstats(x::AbstractVector{T}, y::AbstractVector{S}) where {T <: Real, S <: Real} #This function computes the AD distance according to A. N. Pettitt (1976) Eq. (1.2) n, m = length(x), length(y) N = n + m sort_idx = sortperm([x; y], alg=MergeSort) #array of indices that would sort the combined array M_i_diffs = [ones(n); zeros(m)][sort_idx] M_i_array = cumsum(M_i_diffs)[1:end-1] #array of M_i except for last element, i.e. from i=1 to i=N-1 i_array = 1:(N-1) #array of i from i=1 to i=N-1 AD_dist = (1/(n*m))*sum(((M_i_array*N .- n*i_array).^2)./(i_array.*(N .- i_array))) #AD distance return AD_dist end function ADstats_mod(x::AbstractVector{T}, y::AbstractVector{S}) where {T <: Real, S <: Real} #This function is the same as 'ADstats' except without the factor of 'nm/N' before the integral n, m = length(x), length(y) N = n + m sort_idx = sortperm([x; y], alg=MergeSort) #array of indices that would sort the combined array M_i_diffs = [ones(n); zeros(m)][sort_idx] M_i_array = cumsum(M_i_diffs)[1:end-1] #array of M_i except for last element, i.e. from i=1 to i=N-1 i_array = 1:(N-1) #array of i from i=1 to i=N-1 AD_dist = (N/((n*m)^2))*sum(((M_i_array*N .- n*i_array) .^2) ./(i_array .*(N .- i_array))) #AD distance return AD_dist end ##### Function to compute the Cressie-Read Power Divergence (CRPD) statistic for the distributions of observed planet multiciplities: function CRPDstats(En::AbstractVector{T}, On::AbstractVector{S}) where {T <: Int, S <: Int} #En and On must be arrays of the total numbers of systems with 1,2,3,... observed planets, in the simulated (i.e. expected) and the actual (i.e. observed Kepler) data, respectively n_max = max(length(En), length(On)) En = append!(En, zeros(n_max - length(En))) On = append!(On, zeros(n_max - length(On))) E_array = En./sum(En) #normalized numbers (fractions) of simulated systems with 1,2,3,... observed planets O_array = On./sum(On) #normalized numbers (fractions) of actual Kepler systems with 1,2,3,... observed planets rho = 0. for (i,E_i) in enumerate(E_array) if En[i] != 0 rho += O_array[i]*((O_array[i]/E_array[i])^(2/3) - 1) end end rho = (9/5)*rho return rho end # lambda: rate for Poisson process, i.e., expected value for number of events # k: number of events observed function calc_num_events_to_maximize_poisson_pdf(lambda::Real) kstar = floor(Int64,lambda) if lambda > kstar+1 kstar +=1 end return kstar end function log_prob_poisson_num_events_given_rate(lambda::Real,k::Real) k*log(lambda)-lambda-lgamma(k+1) end function delta_log_prob_poisson_num_events_given_rate(lambda::Real, k::Integer, kstar::Integer = calc_num_events_to_maximize_poisson_pdf(lambda) ) delta = (k-kstar)*log(lambda) if kstar>=k+1 delta += sum(log.((k+1):kstar)) elseif k>=kstar+1 delta -= sum(log.((kstar+1):k)) end return delta end function distance_poisson_likelihood(lambda::Real, k::Integer) kstar = calc_num_events_to_maximize_poisson_pdf(lambda) khi = round(Int64,lambda+sqrt(lambda)) delta_logprob_one_sigma_hi = delta_log_prob_poisson_num_events_given_rate(lambda,khi,kstar) delta_logp_k = delta_log_prob_poisson_num_events_given_rate(lambda,k,kstar) delta_logp_k/delta_logprob_one_sigma_hi end function distance_poisson_draw(lambda::Real, k::Integer) d = Distributions.Poisson(lambda) simulated_number_of_detections = rand(d) abs( simulated_number_of_detections -k) end """ distance_sum_of_bernoulli_draws(num_pl_obs, num_targets_obs, prob_detect_list, num_targets_sim, bin_match_list) Calculate L2 distance and the number of simulated planets detected for a binned occurrence rate where each planet's detection is drawn from a Bernoulli distribution using the planet's detection probability. # Arguments: - `num_pl_obs::Integer`: Number of planets in (true) observed catalog - `num_targets_obs::Integer`: Number of target stars in (true) observed catalog - `prob_detect_list::Vector{Float}`: Detection probabilities for planets in simulated catalog - `num_targets_sim::Integer`: Number of target stars in simulated catalog - `bin_match_list::Vector{Integer}`: List of simulated catalog planet indices associated with current occurrence rate bin # Returns: - L2 distance between provided (true) observed catalog and simulated catalog summary statistics - Number of detected simulated planets """ function distance_sum_of_bernoulli_draws(num_pl_obs::Integer, num_targets_obs::Integer, prob_detect_list::Vector{TReal}, num_targets_sim::Integer, bin_match_list::Vector{TInt}) where {TReal<:Real, TInt<:Integer} @assert(0<=num_pl_obs<=num_targets_obs) num_pl_match = length(bin_match_list) @assert(0<=length(bin_match_list)) num_detect_sim = 0 if num_pl_match >= 1 num_draws_all = min(max(1,floor(Int64, num_targets_obs/num_targets_sim)),1000) @assert(1<=num_draws_all<=1000) for i in 1:num_pl_match pl_id = bin_match_list[i] @assert(1<=pl_id<=length(prob_detect_list)) prob_detect = min(prob_detect_list[pl_id],1.0) num_detect_sim += sum(rand(Bernoulli(prob_detect),num_draws_all)) end # If number of targets observed is not a multiple of number of targets simulated, then pick a random set to make total number of draws equal (as long as there are some planets to choose from) for i in (num_pl_match*num_draws_all+1):(floor(Int64,num_pl_match*num_targets_obs/num_targets_sim)) pl_id = bin_match_list[rand(1:num_pl_match)] prob_detect = min(prob_detect_list[pl_id],1.0) num_detect_sim += rand(Bernoulli(prob_detect)) end end distance = dist_L2_abs(num_pl_obs/num_targets_obs, num_detect_sim/num_targets_obs) return distance, num_detect_sim end # compute Canberra distance. function distance_canberra_modified(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} @assert length(x) == length(y) dist_sum = 0.0 for i in 1:length(x) numer = abs(x[i]-y[i]) denom = sqrt(x[i] + y[i]) if denom == 0.0 continue else dist_sum += numer/denom end end return dist_sum end # compute original Canberra distance. function distance_canberra_orig(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} @assert length(x) == length(y) dist_sum = 0.0 for i in 1:length(x) numer = abs(x[i]-y[i]) denom = abs(x[i]) + abs(y[i]) if denom == 0.0 continue else dist_sum += numer/denom end end return dist_sum end distance_canberra(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} = distance_canberra_modified(x,y) # WARNING: Defaults to modified Canberra distance. At some point, update Danley's code to call distance_canberra_modified, so can remove this # compute Cosine distance. function distance_cosine(x::AbstractVector{T}, y::AbstractVector{S}) where {T<:Real, S<:Real} @assert length(x) == length(y) numer = 0.0 denom_1 = 0.0 denom_2 = 0.0 for i in 1:length(x) numer += x[i]*y[i] denom_1 += x[i]^2 denom_2 += y[i]^2 end return numer/(sqrt(denom_1)*sqrt(denom_2)) end function wasserstein_distance(u_values::AbstractVector{T1}, v_values::AbstractVector{T2}, p::Integer) where { T1<:Real, T2<:Real} # code adapted from SciPy.stats._cdf_distance u_sorter = issorted(u_values) ? (1:length(u_values)) : sortperm(u_values) v_sorter = issorted(v_values) ? (1:length(v_values)) : sortperm(v_values) all_values = sort(vcat(u_values,v_values),alg=MergeSort) deltas = all_values[2:end] .- all_values[1:end-1] u_cdf = map(x->searchsortedlast(u_values[u_sorter],x)/ length(u_values),all_values[1:end-1]) v_cdf = map(x->searchsortedlast(v_values[v_sorter],x)/ length(v_values),all_values[1:end-1]) if p==1 return sum(abs.(u_cdf.-v_cdf).*deltas) elseif p==2 return sqrt(sum((u_cdf.-v_cdf).^2 .* deltas)) else return pow(sum(abs.(u_cdf.-v_cdf).^p .* deltas),1/p) end end earth_mover_distance(u_values::AbstractVector{T1}, v_values::AbstractVector{T2}) where { T1<:Real, T2<:Real} = wasserstein_distance(u_values,v_values,1) # TODO USER SCI: IMPORTANT: Replace the distance function with something well thought out for your particular scientific application. See examples function calc_distance_vector_demo(summary1::CatalogSummaryStatistics, summary2::CatalogSummaryStatistics, pass::Int64, sim_param::SimParam ; verbose::Bool = false) d = Array{Float64}(undef,0) if pass == 1 if verbose println("# Summary 1, pass 1: ",summary1) println("# Summary 2, pass 1: ",summary2) end d = zeros(3) # Since observed and simulated catalogs can have different summary statistics for the number of planets, prefer detections if avaliable (e.g., after pass2), otherwise use expected (e.g., from pass 1) np1 = haskey(summary1.stat,"planets detected") ? summary1.stat["planets detected"] : summary1.stat["expected planets detected"] np2 = haskey(summary2.stat,"planets detected") ? summary2.stat["planets detected"] : summary2.stat["expected planets detected"] d[1] = dist_L1_abs(np1/summary1.stat["num targets"],np2/summary2.stat["num targets"]) # Normalize so different statistics weighted appropriately and not dominated by this one #println("np1 = ",np1,", np2 = ",np2) #println("np1 (normalized) = ",np1/summary1.stat["num targets"],", np2 (normalized) = ",np2/summary2.stat["num targets"],", d[1] = ",d[1]) #d[2] = dist_L1_abs(summary1.stat["mean log10 P"],summary2.stat["mean log10 P"]) #d[3] = dist_L1_abs(summary1.stat["mean log10 depth"],summary2.stat["mean log10 depth"]) #d[4] = dist_L1_abs(summary1.stat["std log10 P"],summary2.stat["std log10 P"]) #d[5] = dist_L1_abs(summary1.stat["std log10 depth"],summary2.stat["std log10 depth"]) #d[2] = dist_KS(summary1.stat["P list"], summary2.stat["P list"]) #d[3] = dist_KS(summary1.stat["depth list"], summary2.stat["depth list"]) # EDITS for christiansen-single-bin #d[2] = dist_KS(summary1.stat["P list"], summary2.stat["P list"],summary1.stat["weight list"],summary2.stat["weight list"]) #d[3] = dist_KS(summary1.stat["depth list"], summary2.stat["depth list"],summary1.stat["weight list"],summary2.stat["weight list"]) # END EDITS elseif pass == 2 max_tranets_in_sys = get_int(sim_param,"max_tranets_in_sys") d = zeros(max_tranets_in_sys) for n in 1:max_tranets_in_sys d[n] = n*dist_L1_abs(summary1.stat["num_sys_tranets"][n]/summary1.stat["num targets"],summary2.stat["num_sys_tranets"][n]/summary2.stat["num targets"]) end else println("# calc_distance_vector_demo doesn't know what to do for pass= ", pass) end return d end function test_abc_distance(cat_obs::KeplerObsCatalog, cat_phys::KeplerPhysicalCatalog, sim_param::SimParam) ss_pass1 = calc_summary_stats_sim_pass_one_demo(cat_obs,cat_phys,sim_param) ss_pass2 = calc_summary_stats_sim_pass_two_demo(cat_obs,cat_phys,ss_pass1,sim_param) d1 = calc_distance_vector_demo(ss_pass1,ss_pass1, 1, sim_param) d2 = calc_distance_vector_demo(ss_pass2,ss_pass2, 2, sim_param) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
2973
## ExoplanetsSysSim/src/mission_constants.jl ## (c) 2015 Eric B. Ford #module KeplerConstants const num_channels = 84 const num_modules = 42 const num_quarters = 17 # QUERY: I'm favoring leaving out quarter 0, since that was engineering data. Agree? const cdpp_durations = [1.5,2.,2.5,3.,3.5,4.5,5.,6.,7.5,9.,10.5,12.,12.5,15.] const duration_symbols = [:rrmscdpp01p5, :rrmscdpp02p0,:rrmscdpp02p5,:rrmscdpp03p0,:rrmscdpp03p5,:rrmscdpp04p5,:rrmscdpp05p0,:rrmscdpp06p0,:rrmscdpp07p5,:rrmscdpp09p0,:rrmscdpp10p5,:rrmscdpp12p0,:rrmscdpp12p5,:rrmscdpp15p0 ] const num_cdpp_timescales = 14 @assert num_cdpp_timescales == length(cdpp_durations) == length(duration_symbols) const mission_data_span = 1459.789 # maximum(ExoplanetsSysSim.StellarTable.df[:dataspan]) const mission_duty_cycle = 0.8751 # median(ExoplanetsSysSim.StellarTable.df[:dutycycle]) const kepler_exp_time_internal = 6.019802903/(24*60*60) # https://archive.stsci.edu/kepler/manuals/archive_manual.pdf const kepler_read_time_internal = 0.5189485261/(24*60*60) # https://archive.stsci.edu/kepler/manuals/archive_manual.pdf const num_exposures_per_LC = 270 const num_exposures_per_SC = 9 const LC_integration_time = kepler_exp_time_internal*num_exposures_per_LC const SC_integration_time = kepler_exp_time_internal*num_exposures_per_SC const LC_read_time = kepler_read_time_internal*num_exposures_per_LC const SC_read_time = kepler_read_time_internal*num_exposures_per_SC const LC_duration = LC_integration_time + LC_read_time const SC_duration = SC_integration_time + SC_read_time const LC_rate = 1.0/LC_duration const SC_rate = 1.0/SC_duration # export num_channels,num_modules,num_quarters,num_cdpp_timescales,mission_data_span,mission_duty_cycle # export kepler_exp_time_internal,kepler_read_time_internal,num_exposures_per_LC,num_exposures_per_SC # export LC_integration_time,SC_integration_time,LC_read_time,SC_read_time,LC_duration,SC_duration,LC_rate,SC_rate #end #using KeplerConstants # Standard conversion factors on which unit system is based const global AU_in_m_IAU2012 = 149597870700.0 const global G_in_mks_IAU2015 = 6.67384e-11 const global G_mass_sun_in_mks = 1.3271244e20 const global G_mass_earth_in_mks = 3.986004e14 const global sun_radius_in_m_IAU2015 = 6.9566e8 const global earth_radius_eq_in_m_IAU2015 = 6.3781e6 const global sun_mass_in_kg_IAU2010 = 1.988547e30 # Constants used by this code const global sun_mass = 1.0 const global earth_mass = G_mass_earth_in_mks/G_mass_sun_in_mks # about 3.0024584e-6 const global earth_radius = earth_radius_eq_in_m_IAU2015 / sun_radius_in_m_IAU2015 # about 0.0091705248 const global rsol_in_au = sun_radius_in_m_IAU2015 / AU_in_m_IAU2012 # about 0.00464913034 const global sec_in_day = 24*60*60 const global grav_const = G_in_mks_IAU2015 * sec_in_day^2 * sun_mass_in_kg_IAU2010 / AU_in_m_IAU2012^3 # about 2.9591220363e-4 in AU^3/(day^2 Msol) const global day_in_year = 365.25
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
2649
## ExoplanetsSysSim/src/eval_model.jl ## (c) 2015 Eric B. Ford # This merely demonstrates how to setup your own function to evaluate a simulated model against an observed catalog # This code need not be used for any actual calculations module TestEvalModel export test_eval_model, evaluate_model_scalar_ret using ExoplanetsSysSim sim_param_closure = SimParam() cat_phys_try_closure = KeplerPhysicalCatalog([]) cat_obs_try_closure = KeplerObsCatalog([]) summary_stat_try_closure = CatalogSummaryStatistics() summary_stat_ref_closure = CatalogSummaryStatistics() include("eval_model_macro.jl") @make_evaluate_model(sim_param_closure,cat_phys_try_closure,cat_obs_try_closure,summary_stat_try_closure,summary_stat_ref_closure) function test_eval_model() global sim_param_closure = setup_sim_param_demo() cat_phys = generate_kepler_physical_catalog(sim_param_closure) cat_obs = observe_kepler_targets_single_obs(cat_phys,sim_param_closure) global summary_stat_ref_closure = calc_summary_stats_obs_demo(cat_obs,sim_param_closure) global cat_phys_try_closure = generate_kepler_physical_catalog(sim_param_closure) global cat_obs_try_closure = observe_kepler_targets_single_obs(cat_phys_try_closure,sim_param_closure) global summary_stat_try_closure = calc_summary_stats_sim_pass_one_demo(cat_obs_try_closure,cat_phys_try_closure,sim_param_closure) summary_stat_try_closure = calc_summary_stats_sim_pass_two_demo(cat_obs_try_closure,cat_phys_try_closure,summary_stat_try_closure,sim_param_closure) param_guess = make_vector_of_sim_param(sim_param_closure) evaluate_model_scalar_ret( param_guess) end function test_eval_model_vs_sim_data() global sim_param_closure = setup_sim_param_demo() cat_phys = generate_kepler_physical_catalog(sim_param_closure) # cat_obs = observe_kepler_targets_single_obs(cat_phys,sim_param_closure) cat_obs = simulated_read_kepler_observations(sim_param_closure) global summary_stat_ref_closure = calc_summary_stats_obs_demo(cat_obs,sim_param_closure) global cat_phys_try_closure = generate_kepler_physical_catalog(sim_param_closure) global cat_obs_try_closure = observe_kepler_targets_single_obs(cat_phys_try_closure,sim_param_closure) global summary_stat_try_closure = calc_summary_stats_sim_pass_one_demo(cat_obs_try_closure,cat_phys_try_closure,sim_param_closure) summary_stat_try_closure = calc_summary_stats_sim_pass_two_demo(cat_obs_try_closure,cat_phys_try_closure,summary_stat_try_closure,sim_param_closure) param_guess = make_vector_of_sim_param(sim_param_closure) evaluate_model_scalar_ret( param_guess) end end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
2833
## ExoplanetsSysSim/src/eval_model_macro.jl ## (c) 2015 Eric B. Ford # Macro to create functions that access variables with global scope (i.e., within the current module), so they can be used inside the evaluate model functions macro make_evaluate_model(param,cat_phys,cat_obs,sum_stat,sum_stat_ref) @eval begin function evaluate_model(param_vector::Vector{Float64}) global $param update_sim_param_from_vector!(param_vector,$param) global $cat_phys = generate_kepler_physical_catalog($param) #global $cat_obs = observe_kepler_targets_sky_avg($cat_phys,$param) global $cat_obs = observe_kepler_targets_single_obs($cat_phys,$param) global $sum_stat = calc_summary_stats_sim_pass_one_demo($cat_obs,$cat_phys,$param) dist1 = calc_distance_vector_demo($sum_stat_ref,$sum_stat, 1, $param) #if haskey($param,"minimum ABC dist skip pass 2") # if calc_scalar_distance(dist1) > get($param,"minimum ABC dist skip pass 2") # return dist1 # end #end $sum_stat = calc_summary_stats_sim_pass_two_demo($cat_obs,$cat_phys,$sum_stat,$param) dist2 = calc_distance_vector_demo($sum_stat_ref,$sum_stat, 2, $param) return [dist1; dist2] end function evaluate_model_pass_one(param_vector::Vector{Float64}) global $param update_sim_param_from_vector!(param_vector,$param) global $cat_phys = generate_kepler_physical_catalog($param) #global $cat_obs = observe_kepler_targets_sky_avg($cat_phys,$param) global $cat_obs = observe_kepler_targets_single_obs($cat_phys,$param) global $sum_stat = calc_summary_stats_sim_pass_one_demo($cat_obs,$cat_phys,$param) dist1 = calc_distance_vector_demo($sum_stat_ref,$sum_stat, 1, $param) end function evaluate_model_pass_two(param_vector::Vector{Float64}) global $param global $cat_phys global $cat_obs global $sum_stat = calc_summary_stats_sim_pass_two_demo($cat_obs,$cat_phys,$sum_stat,$param) dist2 = calc_distance_vector_demo($sum_stat_ref,$sum_stat, 2, $param) end function evaluate_model_scalar_ret(param::Vector{Float64}) calc_scalar_distance(evaluate_model(param)) end function evaluate_model_pass_one_scalar_ret(param::Vector{Float64}) calc_scalar_distance(evaluate_model_pass_one(param)) end function evaluate_model_pass_two_scalar_ret(param::Vector{Float64}) calc_scalar_distance(evaluate_model_pass_two(param)) end #if module_name(current_module()) != :Main if !isequal(@__MODULE__,Module(:Main)) export evaluate_model, evaluate_model_pass_one, evaluate_model_pass_two, evaluate_model_scalar_ret, evaluate_model_pass_one_scalar_ret, evaluate_model_pass_two_scalar_ret end end end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
3944
## ExoplanetsSysSim/src/io.jl ## (c) 2015 Eric B. Ford module SysSimIO using ExoplanetsSysSim #using HDF5, JLD using FileIO, JLD2 #if VERSION >= v"0.5-" # import Compat: UTF8String, ASCIIString #end export save_sim_param, save_sim_results, load_sim_param, load_distances, load_summary_stats # Save SimParam p to JLD2 file function save_sim_param(filename::String, p::SimParam) local file try file = JLD2.jldopen(filename,"w") write_sim_param(file,p) catch println("# Problem writing parameters to jld2 file: ", filename) return false finally close(file) end return true end # Save SimParam p, list of distances, and summary statistics to JLD2 file function save_sim_results(filename::String, p::SimParam; distances::Vector{Float64}=Array{Float64}(0), summary_stats::CatalogSummaryStatistics = CatalogSummaryStatistics() ) local file try file = JLD2.jldopen(filename,"w") write_sim_param(file,p) write_sim_summary_stats(file,summary_stats) write_sim_distances(file,distances) catch println("# Problem writing data to jld2 file: ", filename) finally close(file) end end function write_sim_distances(file::JLD2.JLDFile, d::Vector{Float64} ) JLD2.write(file,"distances",d) end function write_sim_summary_stats(file::JLD2.JLDFile, ss::CatalogSummaryStatistics ) JLD2.write(file,"summary_stats",ss.stat) end function write_sim_param(file::JLD2.JLDFile, p::SimParam) sim_param_bool = Dict{String,Bool}() sim_param_int = Dict{String,Integer}() sim_param_real = Dict{String,Real}() sim_param_function = Dict{String,String}() sim_param_string = Dict{String,String}() for k in keys(p.param) #println("# k=",k,". v=",p.param[k]) if typeof(p.param[k]) <: Bool sim_param_bool[k] = p.param[k] elseif typeof(p.param[k]) <: Integer sim_param_int[k] = p.param[k] elseif typeof(p.param[k]) <: Real sim_param_real[k] = p.param[k] elseif typeof(p.param[k]) <: Function sim_param_function[k] = string(p.param[k]) elseif typeof(p.param[k]) <: AbstractString sim_param_string[k] = convert(String,p.param[k]) else warn(string("Can't store value of >",k,"< due to type ", typeof(p.param[k]))) end end JLD2.write(file,"sim_param_int",sim_param_int) JLD2.write(file,"sim_param_real",sim_param_real) JLD2.write(file,"sim_param_function",sim_param_function) JLD2.write(file,"sim_param_string",sim_param_string) JLD2.write(file,"sim_param_bool",sim_param_bool) JLD2.write(file,"sim_param_active",p.active) end # Load SimParam from JLD2 file function load_sim_param(filename::String) local jld_data try jld_data = load(filename) catch println("# Problem reading parameters from jld file: ", filename) end p = SimParam() merge!(p.active, jld_data["sim_param_active"]) merge!(p.param, jld_data["sim_param_int"]) merge!(p.param, jld_data["sim_param_string"]) merge!(p.param, jld_data["sim_param_real"]) #= merge!(p.param, jld_data["sim_param_function"]) df = jld_data["sim_param_function"] for k in keys(df) p.param[k]::Function = symbol(df[k]) end =# merge!(p.param, jld_data["sim_param_bool"]) return p end # Load list of distances from JLD2 file function load_distances(filename::String) local jld_data try jld_data = load(filename) catch println("# Problem reading distances from jld file: ", filename) end d::Array{Float64,1} = jld_data["distances"] return d end # Load summary statistics from JLD2 file function load_summary_stats(filename::String) local jld_data try jld_data = load(filename) catch println("# Problem reading parameters from jld file: ", filename) end s = CatalogSummaryStatistics() merge!(s.stat, jld_data["summary_stats"]) return s end function test_io() sim_param = setup_sim_param_demo() save_sim_param("test.jld2",sim_param) spd = load_sim_param("test.jld2") rm("test.jld2") end end # module SysSimIO
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
18163
## ExoplanetsSysSim/src/kepler_catalog.jl ## (c) 2015 Eric B. Ford #using ExoplanetsSysSim using DataFrames #using DataArrays using CSV #using JLD #using JLD2 using FileIO #if VERSION >= v"0.5-" # import Compat: UTF8String, ASCIIString #end mutable struct KeplerPhysicalCatalog target::Array{KeplerTarget,1} end #KeplerPhysicalCatalog() = KeplerPhysicalCatalog([]) mutable struct KeplerObsCatalog target::Array{KeplerTargetObs,1} end KeplerObsCatalog() = KeplerObsCatalog(KeplerTargetObs[]) """ generate_kepler_physical_catalog(sim_param) Wrapper function to create catalog of simulated Kepler targets. # Arguments: - `sim_param::SimParam`: Simulation parameter object; must have the following parameters set: - num_targets_sim_pass_one = Number of Kepler targets in simulated catalog - generate_kepler_target = Function which generates Kepler targets - (Optional) stellar_catalog = Stellar catalog filename - (Optional) star_table_setup = Function that loads stellar catalog into DataFrame # Returns: Kepler physical catalog object containing all simulated Kepler targets and associated planetary systems. """ function generate_kepler_physical_catalog(sim_param::SimParam) if haskey(sim_param,"stellar_catalog") star_tab_func = get_function(sim_param, "star_table_setup") star_tab_func(sim_param) end num_sys = get_int(sim_param,"num_targets_sim_pass_one") generate_kepler_target = get_function(sim_param,"generate_kepler_target") target_list = Array{KeplerTarget}(undef,num_sys) map!(x->generate_kepler_target(sim_param), target_list, 1:num_sys ) return KeplerPhysicalCatalog(target_list) end """ observe_kepler_targets_sky_avg(input, sim_param) Wrapper function to create catalog of simulated observations of Kepler targets using the sky averaging observation scheme (i.e. each planet's detection probability is the average detection probability over all view-angles). # Arguments: - `input::KeplerPhysicalCatalog`: Catalog object of simulated Kepler targets and associated planetary systems to be observed - `sim_param::SimParam`: Simulation parameter object; requires the following simulation parameters to be set: - calc_target_obs_sky_ave: Function name for sky averaging simulated observations # Returns: Kepler observations catalog object containing all properties observed from the Kepler targets and associated planetary systems that were detected during the simulation. """ function observe_kepler_targets_sky_avg(input::KeplerPhysicalCatalog, sim_param::SimParam ) calc_target_obs = get_function(sim_param,"calc_target_obs_sky_ave") return observe_kepler_targets(calc_target_obs, input, sim_param) end """ observe_kepler_targets_single_obs(input, sim_param) Wrapper function to create catalog of simulated observations of Kepler targets using the single observer observation scheme (i.e. each planet's detection probability is the detection probability from the Earth). # Arguments: - `input::KeplerPhysicalCatalog`: Catalog object of simulated Kepler targets and associated planetary systems to be observed - `sim_param::SimParam`: Simulation parameter object; requires the following simulation parameters to be set: - calc_target_obs_single_obs: Function name for single observer simulated observations # Returns: Kepler observations catalog object containing all properties observed from the Kepler targets and associated planetary systems that were detected during the simulation. """ function observe_kepler_targets_single_obs(input::KeplerPhysicalCatalog, sim_param::SimParam ) calc_target_obs = get_function(sim_param,"calc_target_obs_single_obs") return observe_kepler_targets(calc_target_obs, input, sim_param) end """ observe_kepler_targets(calc_target_obs, input, sim_param) Wrapper function to create catalog of simulated observations of Kepler targets. # Arguments: - `calc_target_obs::Function`: Function to use in simulating observations of Kepler targets (sky averaging vs. single observer schemes) - `input::KeplerPhysicalCatalog`: Catalog object of simulated Kepler targets and associated planetary systems to be observed - `sim_param::SimParam`: Simulation parameter object # Returns: Kepler observations catalog object containing all properties observed from the Kepler targets and associated planetary systems that were detected during the simulation. """ function observe_kepler_targets(calc_target_obs::Function, input::KeplerPhysicalCatalog, sim_param::SimParam ) #calc_target_obs = get_function(sim_param,"calc_target_obs_sky_ave") #calc_target_obs = get_function(sim_param,"calc_target_obs_single_obs") output = KeplerObsCatalog() if haskey(sim_param,"mem_kepler_target_obs") output.target = get(sim_param,"mem_kepler_target_obs",Array{KeplerTargetObs}(0) ) end num_targets_sim_pass_one = get_int(sim_param,"num_targets_sim_pass_one") if length(output.target) < num_targets_sim_pass_one output.target = Array{KeplerTargetObs}(undef,num_targets_sim_pass_one) end #output.target = Array{KeplerTargetObs}(undef,length(input.target) ) # Replaced to reduce memory allocation map!(x::KeplerTarget->calc_target_obs(x,sim_param)::KeplerTargetObs, output.target, input.target) resize!(output.target,length(input.target)) return output end # Test if this planetary system has at least one planet that transits (assuming a single observer) function select_targets_one_obs(ps::PlanetarySystemAbstract) for pl in 1:length(ps.orbit) ecc::Float64 = ps.orbit[pl].ecc incl::Float64 = ps.orbit[pl].incl a::Float64 = semimajor_axis(ps,pl) Rstar::Float64 = rsol_in_au*ps.star.radius if (Rstar > (a*(1-ecc)*(1+ecc))/(1+ecc*sin(ps.orbit[pl].omega))*cos(incl)) return true end end return false end #= function select_targets_one_obs(ps::PlanetarySystemAbstract) for pl in 1:length(ps.orbit) if does_planet_transit(ps,pl) return true end end return false end =# # Remove undetected planets from physical catalog # TODO: OPT: Maybe create array of bools for which planets to keep, rather than splicing out non-detections? function generate_obs_targets(cat_phys::KeplerPhysicalCatalog, sim_param::SimParam ) for t in 1:length(cat_phys.target) kep_targ = cat_phys.target[t] for ps in 1:length(cat_phys.target[t].sys) sys = kep_targ.sys[ps] for pl in length(sys.orbit):-1:1 # Going in reverse since removing planets from end of list first is cheaper than starting at beginning ecc::Float64 = sys.orbit[pl].ecc incl::Float64 = sys.orbit[pl].incl a::Float64 = semimajor_axis(sys,pl) Rstar::Float64 = rsol_in_au*sys.star.radius does_it_transit = does_planet_transit(sys, pl) pdet_if_tr = does_it_transit ? calc_prob_detect_if_transit_with_actual_b(kep_targ, ps, pl, sim_param) : 0. if !does_it_transit || (rand()>pdet_if_tr) splice!(cat_phys.target[t].sys[ps].orbit, pl) splice!(cat_phys.target[t].sys[ps].planet, pl) end end end end return cat_phys end # The following function is primarily left for debugging. # Create a catalog of observations of simulated Kepler targets. function simulated_read_kepler_observations(sim_param::SimParam ) println("# WARNING: Using simulated_read_kepler_observations.") # if haskey(sim_param,"stellar_catalog") # star_tab_func = get_function(sim_param, "star_table_setup") # star_tab_func(sim_param) # end num_sys = get_int(sim_param,"num_kepler_targets") generate_kepler_target = get_function(sim_param,"generate_kepler_target") target_list = Array{KeplerTarget}(undef,num_sys) map!(x->generate_kepler_target(sim_param), target_list, 1:num_sys ) cat_phys_cut = generate_obs_targets(KeplerPhysicalCatalog(target_list), sim_param) calc_target_obs = get_function(sim_param,"calc_target_obs_single_obs") output = KeplerObsCatalog() output.target = map(x::KeplerTarget->calc_target_obs(x,sim_param)::KeplerTargetObs, cat_phys_cut.target) return output end """ read_koi_catalog(sim_param, force_reread=false) Wrapper function to read Kepler Object of Interest (KOI) catalog given SimParam # Arguments: - `sim_param::SimParam`: Simulation parameter object; this function uses the following parameters from the SimParam object: - koi_catalog: String filename of Kepler Object of Interest catalog (if not provided, defaults to "q1_q17_dr25_koi.csv" - `force_reread::Bool`: Should the file be read in even if a DataFrame of the KOIs already exists in workspace? # Returns: - Dataframe of KOI objects (and their respective properties). - Vector of booleans indicating which KOIs were designated as planet candidates by the Kepler pipeline and have a valid observed radius ratio and period (necessary for detection probability calculation). """ function read_koi_catalog(sim_param::SimParam, force_reread::Bool = false) filename = convert(String,joinpath(dirname(pathof(ExoplanetsSysSim)),"..", "data", convert(String,get(sim_param,"koi_catalog","q1_q17_dr25_koi.csv")) ) ) return read_koi_catalog(filename, force_reread) end """ read_koi_catalog(filename, force_reread=false) Function to read Kepler Object of Interest (KOI) catalog given filename string. # Arguments: - `filename::String`: String filename of Kepler Object of Interest catalog - `force_reread::Bool`: Should the file be read in even if a DataFrame of the KOIs already exists in workspace? # Returns: - Dataframe of KOI objects (and their respective properties). - Vector of booleans indicating which KOIs were designated as planet candidates by the Kepler pipeline and have a valid observed radius ratio and period (necessary for detection probability calculation). """ function read_koi_catalog(filename::String, force_reread::Bool = false) local df, usable if occursin(r".jld2$",filename) && !force_reread try data = load(filename) df = data["koi_catalog"] usable = data["koi_catalog_usable"] Core.typeassert(df,DataFrame) Core.typeassert(usable,Array{Int64,1}) catch error(string("# Failed to read koi catalog >",filename,"< in jld2 format.")) end else try df = CSV.read(filename,comment="#") # Choose which KOIs to keep #is_cand = (csv_data[!,:,koi_disposition_idx] .== "CONFIRMED") | (csv_data[!,:,koi_disposition_idx] .== "CANDIDATE") is_cand = df[!,:koi_pdisposition] .== "CANDIDATE" has_radius = .!ismissing.(df[!,:koi_ror]) has_period = .!(ismissing.(df[!,:koi_period]) .| ismissing.(df[!,:koi_period_err1]) .| ismissing.(df[!,:koi_period_err2])) is_usable = .&(is_cand, has_radius, has_period) usable = findall(is_usable) # symbols_to_keep = [:kepid, :kepoi_name, :koi_pdisposition, :koi_score, :koi_ror, :koi_period, :koi_period_err1, :koi_period_err2, :koi_time0bk, :koi_time0bk_err1, :koi_time0bk_err2, :koi_depth, :koi_depth_err1, :koi_depth_err2, :koi_duration, :koi_duration_err1, :koi_duration_err2] # df = df[usable, symbols_to_keep] # tmp_df = DataFrame() # for col in names(df) # tmp_df[col] = collect(skipmissing(df[col])) # end # df = tmp_df # usable = collect(1:length(df[!,:kepid])) catch error(string("# Failed to read koi catalog >",filename,"< in ascii format.")) end end return df, usable end """ setup_actual_planet_candidate_catalog(df_star, df_koi, usable_koi, sim_param) Create (true) catalog of Kepler observations of Kepler targets # Arguments: - `df_star::DataFrame`: DataFrame containing all Kepler target stars in catalog NOTE: df_star is assumed to have fields kepid, mass and radius for all targets in the survey) - `df_koi::DataFrame`: DataFrame containing all Kepler Object of Interests (KOIs) - `usable_koi::Array{Integer}`: Array of KOI dataframe row indices corresponding to KOIs to use - `sim_param::SimParam`: Simulation parameter object # Returns: - Kepler observations catalog containing Kepler targets and associated KOIs (to be used as true catalog in comparison with simulated observations) """ function setup_actual_planet_candidate_catalog(df_star::DataFrame, df_koi::DataFrame, usable_koi::Array{Int64}, sim_param::SimParam) local target_obs, num_pl df_koi = df_koi[usable_koi,:] # Deprecated code to take a list of KepIDs and KOI names to pre-select a subset of KOIs # if haskey(sim_param, "koi_subset_csv") # koi_subset = fill(false, length(df_koi[!,:kepid])) # subset_df = readtable(convert(String,get(sim_param,"koi_subset_csv", "christiansen_kov.csv")), header=true, separator=' ') # for n in 1:length(subset_df[!,1]) # subset_colnum = 1 # subset_entry = findall(x->x==subset_df[n,1], df_koi[names(subset_df)[1]]) # # println("Initial cut: ", subset_entry) # while (length(subset_entry) > 1) & (subset_colnum < length(names(subset_df))) # subset_colnum += 1 # subsubset = findall(x->round(x*10.)==round(subset_df[n,subset_colnum]*10.), df_koi[subset_entry,names(subset_df)[subset_colnum]]) # # println("Extra cut: ", subset_df[n,subset_colnum], " / ", df_koi[subset_entry,col_idx], " = ", subsubset) # subset_entry = subset_entry[subsubset] # end # if length(subset_entry) > 1 # cand_sub = findall(x->x == "CANDIDATE",df_koi[subset_entry,:koi_pdisposition]) # subset_entry = subset_entry[cand_sub] # if length(subset_entry) > 1 # println("# Multiple planets found in final cut: ", subset_df[n,1]) # end # end # if length(subset_entry) < 1 # println("# No planets found in final cut: ", subset_df[n,:]) # end # koi_subset[subset_entry] = true # end # df_koi = df_koi[findall(koi_subset),:] # tot_plan = count(x->x, koi_subset) # end output = KeplerObsCatalog() sort!(df_star, (:kepid)) df_obs = join(df_star, df_koi, on = :kepid) #df_obs = sort!(df_obs, cols=(:kepid)) df_obs = sort!(df_obs, (:kepid)) # if haskey(sim_param, "koi_subset_csv") # tot_plan -= length(df_obs[!,:kepoi_name]) # println("# Number of planet candidates in subset file with no matching star in table: ", tot_plan) # end # Add each KOI planet candidate to Kepler target object plid = 0 for i in 1:length(df_obs[!,:kepoi_name]) if plid == 0 plid = 1 while i+plid < length(df_obs[!,:kepoi_name]) && df_obs[i+plid,:kepid] == df_obs[i,:kepid] plid += 1 end num_pl = plid target_obs = KeplerTargetObs(num_pl) #target_obs.star = ExoplanetsSysSim.StarObs(df_obs[i,:radius],df_obs[i,:mass],findfirst(df_star[!,:kepid], df_obs[i,:kepid])) star_idx = searchsortedfirst(df_star[!,:kepid],df_obs[i,:kepid]) if star_idx > length(df_star[!,:kepid]) @warn "# Couldn't find kepid " * df_star[i,:kepid] * " in df_obs." star_idx = rand(1:length(df_star[!,:kepid])) end target_obs.star = ExoplanetsSysSim.StarObs(df_obs[i,:radius],df_obs[i,:mass],star_idx) end target_obs.obs[plid] = ExoplanetsSysSim.TransitPlanetObs(df_obs[i,:koi_period],df_obs[i,:koi_time0bk],df_obs[i,:koi_depth]/1.0e6,df_obs[i,:koi_duration]) target_obs.sigma[plid] = ExoplanetsSysSim.TransitPlanetObs((abs(df_obs[i,:koi_period_err1])+abs(df_obs[i,:koi_period_err2]))/2,(abs(df_obs[i,:koi_time0bk_err1])+abs(df_obs[i,:koi_time0bk_err2]))/2,(abs(df_obs[i,:koi_depth_err1]/1.0e6)+abs(df_obs[i,:koi_depth_err2]/1.0e6))/2,(abs(df_obs[i,:koi_duration_err1])+abs(df_obs[i,:koi_duration_err2]))/2) #target_obs.prob_detect = ExoplanetsSysSim.SimulatedSystemDetectionProbs{OneObserver}( ones(num_pl), ones(num_pl,num_pl), ones(num_pl), fill(Array{Int64}(undef,0), 1) ) # Made line below to simplify calling target_obs.prob_detect = ExoplanetsSysSim.OneObserverSystemDetectionProbs(num_pl) plid -= 1 if plid == 0 push!(output.target,target_obs) end end return output end # Two functions below were just for debugging purposes # Calculate SNR of every planet in simulated catalog function calc_snr_list(cat::KeplerPhysicalCatalog, sim_param::SimParam) snrlist = Array{Float64}(undef,0) for t in 1:length(cat.target) for p in 1:length(cat.target[t].sys[1].planet) snr = calc_snr_if_transit(cat.target[t],1,p,sim_param) if snr>0.0 push!(snrlist,snr) end end end snrlist[findall(x->x>7.1,snrlist)] end # Calculate detection probability (assuming planet transits) for every planet in simulated catalog function calc_prob_detect_list(cat::KeplerPhysicalCatalog, sim_param::SimParam) pdetectlist = Array{Float64}(undef,0) for t in 1:length(cat.target) for p in 1:length(cat.target[t].sys[1].planet) #pdet = calc_prob_detect_if_transit(cat.target[t],1,p,sim_param) pdet = calc_prob_detect_if_transit_with_actual_b(cat.target[t],1,p,sim_param) if pdet>0.0 push!(pdetectlist,pdet) end end end idx = findall(x->x>0.0,pdetectlist) pdetectlist[idx] end function test_catalog_constructors(sim_param::SimParam) cat_phys = generate_kepler_physical_catalog(sim_param)::KeplerPhysicalCatalog id = findfirst( x->num_planets(x)>=1 , cat_phys.target) # fast forward to first target that has some planets @assert(length(id)>=1) semimajor_axis(cat_phys.target[id].sys[1],1) pdetlist = calc_prob_detect_list(cat_phys,sim_param) calc_target_obs_single_obs(cat_phys.target[id],sim_param) calc_target_obs_sky_ave(cat_phys.target[id],sim_param) @assert( length(cat_phys.target[id].sys[1].planet) == num_planets(cat_phys.target[id]) ) cat_obs = simulated_read_kepler_observations(sim_param) return (cat_phys, cat_obs) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
2962
## ExoplanetsSysSim/src/koi_table.jl ## (c) 2015 Eric B. Ford # Note this file is currently not used by SysSim. # This functionality is now in kepler_catalog.jl module KoiTable using ExoplanetsSysSim #using DataArrays using DataFrames using CSV export setup_koi_table, koi_table, num_koi_for_kepid df = DataFrame() usable = Array{Int64}(0) default_koi_symbols_to_keep = [ :kepoi_name, :koi_vet_stat, :koi_pdisposition, :koi_period, :koi_time0bk, :koi_duration, :koi_ingress, :koi_depth, :koi_ror, :koi_prad, :koi_srad, :koi_smass, :koi_steff, :koi_slogg, :koi_smet ] function setup(sim_param::SimParam; force_reread::Bool = false, symbols_to_keep::Vector{Symbol} = default_koi_symbols_to_keep ) global df, usable if haskey(sim_param,"read_koi_catalog") && !force_reread return df end koi_catalog = joinpath(dirname(pathof(ExoplanetsSysSim)),"..", "data", get(sim_param,"koi_catalog","q1_q17_dr25_koi.csv") ) add_param_fixed(sim_param,"read_koi_catalog",true) try #df = readtable(koi_catalog) #df = CSV.read(koi_catalog,nullable=true) df = CSV.read(koi_catalog,allowmissing=:all) catch error(string("# Failed to read koi catalog >",koi_catalog,"<.")) end has_planet = ! (isna(df[:koi_period]) | isna(df[:koi_time0bk]) | isna(df[:koi_duration]) | isna(:koi_depth) ) has_star = ! ( isna(:koi_srad) ) is_usable = has_planet & has_star delete!(df, [~(x in symbols_to_keep) for x in names(df)]) # delete columns that we won't be using anyway usable = find(is_usable) df = df[usable, symbols_to_keep] end setup_koi_table(sim_param::SimParam) = setup(sim_param::SimParam) function kepids_w_kois() unique(df[:,:kepid]) end function df_for_kepid(kepid::Integer) df[df[:kepid].==kepid,:] end function num_koi(kepid::Integer) sum(df[:kepid].==kepid) end function koi_by_kepid(kepid::Integer, plid::Integer, sym::Symbol) kepid_idx = df[:kepid].==kepid per_perm = sortperm(df[kepid_idx,:koi_period]) @assert( 1<= plid <= length(per_perm) ) df[kepid_idx,sym][per_perm[plid]] end function num_usable() global usable length(usable) end num_usable_in_koi_table() = num_usable() function idx(i::Integer) global usable @assert( 1<=i<=length(usable) ) usable[i] end function koi_table(i::Integer, sym::Symbol) global df, usable @assert( 1<=i<=length(usable) ) return df[i,sym] #return df[usable[i],sym] end function koi_table(i::Integer) global data return df[i,:] #return df[usable[i],:] end function koi_table(i::Integer, sym::Vector{Symbol}) global df, usable @assert( 1<=i<=length(usable) ) return df[i,sym] #return df[usable[i],sym] end function koi_table(i::Vector{Integer}, sym::Symbol) global df, usable return df[i,sym] #return df[usable[i],sym] end function koi_table(i::Vector{Integer}, sym::Vector{Symbol}) global df, usable return df[i,sym] #return df[usable[i],sym] end end # module KoiTable using ExoplanetsSysSim.KoiTable
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
5169
## ExoplanetsSysSim/src/limb_darkening.jl ## (c) 2018 Eric B. Ford @compat abstract type LimbDarkeningParamAbstract end struct LimbDarkeningParamLinear <: LimbDarkeningParamAbstract coeff::Tuple{Float64} # TODO SCI DETAIL: Replace with sensible limits on LD params LimbDarkeningParamLinear(_u1::Real ) = (!( (-2.5<=_u1<=2.5) )) ? error(string("Invalid quadratic limb darkening parameters: ",_u1," & ", _u2)) : new((_u1,)) end function depth_at_midpoint(radius_ratio::Float64, ld::LimbDarkeningParamLinear) c0 = 1-sum(ld.coeff) omega = c0/4+ld.coeff[1]/6 ksq = 1-radius_ratio^2 tmp0 = c0/4*ksq tmp2 = ld.coeff[1]/6*ksq^(3//2) return 1-(tmp0+tmp2)/omega end function ratio_from_depth(depth::Float64, ld::LimbDarkeningParamLinear) c0 = 1-sum(ld.coeff) omega = c0/4+ld.coeff[1]/6 xn = 1-depth y0 = (1-depth)*omega for i in 1:20 tmp0 = c0/4*xn tmp2 = ld.coeff[1]/6*xn^(3//2) fn = (tmp0+tmp2)-y0 tmp_0 = c0 tmp_2 = ld.coeff[1]*xn^(1//2) f_n = 0.25*(tmp_0+tmp_2) xn -= (fn/f_n) if (fn/f_n)/xn < 1e-8 break end end return sqrt(1-xn) end struct LimbDarkeningParamQuadratic <: LimbDarkeningParamAbstract coeff::Tuple{Float64,Float64} # TODO SCI DETAIL: Replace with sensible limits on LD params LimbDarkeningParamQuadratic(_u1::Real, _u2::Real ) = (!( (-2.5<=_u1<=2.5) && (-2.5<=_u2<=2.5) )) ? error(string("Invalid quadratic limb darkening parameters: ",_u1," & ", _u2)) : new((_u1,_u2)) end function depth_at_midpoint(radius_ratio::Float64, ld::LimbDarkeningParamQuadratic) c0 = 1-sum(ld.coeff) omega = c0/4+(ld.coeff[1]+2*ld.coeff[2])/6-ld.coeff[2]/8 ksq = 1-radius_ratio^2 tmp0 = c0/4*ksq tmp2 = (ld.coeff[1]+2*ld.coeff[2])/6*ksq^(3//2) tmp4 = -ld.coeff[2]/8*ksq^2 return 1-(tmp0+tmp2+tmp4)/omega end function ratio_from_depth(depth::Float64, ld::LimbDarkeningParamQuadratic) c0 = 1-sum(ld.coeff) omega = c0/4+(ld.coeff[1]+2*ld.coeff[2])/6-ld.coeff[2]/8 xn = 1-depth y0 = (1-depth)*omega for i in 1:20 tmp0 = c0/4*xn tmp2 = (ld.coeff[1]+2*ld.coeff[2])/6*xn^(3//2) tmp4 = -ld.coeff[2]/8*xn^2 fn = (tmp0+tmp2+tmp4)-y0 tmp_0 = c0 tmp_2 = (ld.coeff[1]+2*ld.coeff[2])*xn^(1//2) tmp_4 = -ld.coeff[2]*xn f_n = 0.25*(tmp_0+tmp_2+tmp_4) xn -= (fn/f_n) if (fn/f_n)/xn < 1e-8 break end end return sqrt(1-xn) end struct LimbDarkeningParam4thOrder <: LimbDarkeningParamAbstract coeff::Tuple{Float64,Float64,Float64,Float64} # TODO SCI DETAIL: Replace with sensible limits on LD params LimbDarkeningParam4thOrder(_c1::Real, _c2::Real, _c3::Real, _c4::Real ) = (!( (-2.5<=_c1<=2.5) && (-2.5<=_c2<=2.5) && (-2.5<=_c3<=2.5) && (-2.5<=_c4<=2.5) )) ? error(string("Invalid limb darkening parameters: ",_c1," , ", _c2, ", ",_c3," , ",_c4)) : new((_c1,_c2,_c3,_c4)) end function depth_at_midpoint(radius_ratio::Float64, ld::LimbDarkeningParam4thOrder) c0 = 1-sum(ld.coeff) omega = c0/4+sum(ld.coeff./(5:8)) ksq = 1-radius_ratio^2 tmp0 = c0/4*ksq tmp1 = ld.coeff[1]/5*ksq^(5//4) tmp2 = ld.coeff[2]/6*ksq^(3//2) tmp3 = ld.coeff[3]/7*ksq^(7//4) tmp4 = ld.coeff[4]/8*ksq^2 return 1-(tmp0+tmp1+tmp2+tmp3+tmp4)/omega end # Cite Mandel & Agol 2002 # See https://arxiv.org/pdf/astro-ph/0210099.pdf and https://faculty.washington.edu/agol/mandel_agol_errata.pdf # https://github.com/ericagol/ExoJulia/blob/master/ExoJulia/Transit/occultsmall.jl function depth_small_planet(z::T,p::T,ld::LimbDarkeningParam4thOrder) where T<:Real @assert p<=0.2 @assert sum(c)<=1 c = ld.coeff one_over_Omega_times_4 = 1/(1-c[1]/5-c[2]/3-3*c[3]/7-c[4]/2) if z == zero(z) F = p*p*one_over_Omega_times_4 elseif z <= 1-p sig1=sqrt(sqrt(1-(z-p)^2)) sig2=sqrt(sqrt(1-(z+p)^2)) ave_surface_intensity=(1-c[1]*(1+(sig2^5-sig1^5)/(5*p*z))-c[2]*(1+(sig2^6-sig1^6)/(6*p*z))-c[3]*(1+(sig2^7-sig1^7)/(7*p*z))-c[4]*(p^2+z^2)) F = p*p*ave_surface_intensity*one_over_Omega_times_4 elseif z<1+p x=1-(z-p)^2 tmp=1-c[1]*(1-0.8*x^(1//4))-c[2]*(1-2//3*sqrt(x))-c[3]*(1-4//7*x^(3//4))-c[4]*(1-0.5*x) F = tmp*(p^2*acos((z-1)/p)-(z-1)*sqrt(p^2-(z-1)^2))*one_over_Omega_times_4/pi else F = zero(T) end return 1-F end function ratio_from_depth(depth::Float64, ld::LimbDarkeningParam4thOrder) c0 = 1-sum(ld.coeff) omega = c0/4+sum(ld.coeff./(5:8)) xn = 1-depth y0 = (1-depth)*omega for i in 1:20 tmp0 = c0/4*xn tmp1 = ld.coeff[1]/5*xn^(5//4) tmp2 = ld.coeff[2]/6*xn^(3//2) tmp3 = ld.coeff[3]/7*xn^(7//4) tmp4 = ld.coeff[4]/8*xn^2 fn = (tmp0+tmp1+tmp2+tmp3+tmp4)-y0 tmp_0 = c0 tmp_1 = ld.coeff[1]*xn^(1//4) tmp_2 = ld.coeff[2]*xn^(1//2) tmp_3 = ld.coeff[3]*xn^(3//4) tmp_4 = ld.coeff[4]*xn f_n = 0.25*(tmp_0+tmp_1+tmp_2+tmp_3+tmp_4) xn -= (fn/f_n) if (fn/f_n)/xn < 1e-8 break end end return sqrt(1-xn) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
1014
## ExoplanetsSysSim/src/orbit.jl ## (c) 2015 Eric B. Ford #export Orbit struct Orbit P::Float64 # days # QUERY: Should we store P or a here? ecc::Float64 incl::Float64 # radians; inclination relative to sky of observer omega::Float64 # radians asc_node::Float64 # radians mean_anom::Float64 # radians # QUERY: Should we store t_0 or mean_anom here? end #Orbit() = Orbit(0.0,0.0,0.0,0.0,0.0,0.0) # Comment out, so don't accidentally have invalid orbits # This will only work if Orbit were mutable. Is that better or worse? Let's test and see.... function set!(o::Orbit, P::Float64, e::Float64, i::Float64, w::Float64, asc_node::Float64, M::Float64) o.P = P o.ecc = e o.incl = i o.omega = w o.asc_node = asc_node o.mean_anom = M return o end function test_orbit_constructors() #orb = Orbit() orb = Orbit(1.0, 0.03, 0.5*pi, 0.0, 0.0, pi) if !isimmutable(orb) set!(orb,1.0, 0.03, 0.5*pi, 0.0, 0.0, pi) end end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
570
## ExoplanetsSysSim/src/planet.jl ## (c) 2015 Eric B. Ford # export Planet struct Planet radius::Float64 # solar radii mass::Float64 # solar masses id::Int64 # id number (for purposes of tracking or grouping planets) end function Planet(radius::Float64, mass::Float64; id::Int64=0) pl = Planet(radius, mass, id) end #Planet() = Planet(0.0, 0.0) # Commented out, so don't accidentally have invalid Planets function test_planet_constructors(sim_param::SimParam) #blank = Planet() earth = Planet(0.0091705248,3e-6) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
56764
#using Distributions #include("constants.jl") #include("orbit.jl") #include("planet.jl") #if !@isdefined PlanetarySystemAbstract @compat abstract type PlanetarySystemAbstract end struct SystemPlane incl::Float64 # radians; relative to sky plane asc_node::Float64 # radians; relative to sky plane end struct PlanetarySystem{StarT<:StarAbstract} <: PlanetarySystemAbstract star::StarT planet::Vector{Planet} orbit::Vector{Orbit} system_plane::SystemPlane # TODO DETAIL: Setup inner constructor to enforce equal number of planets & orbits function PlanetarySystem{StarT}(s::StarT, p::AbstractVector{Planet}, o::AbstractVector{Orbit}, sp::SystemPlane) where {StarT<:StarAbstract} @assert(length(p)==length(o)) # else error(string("Number of planets must match number of orbits: Np= ",length(p)," No= ",length(o))) new(s,p,o,sp) end end const PlanetarySystemSingleStar = PlanetarySystem{SingleStar} #end function PlanetarySystem(s::StarT) where {StarT<:StarAbstract} PlanetarySystem(s,Vector{Planet}(undef,0),Vector{Orbit}(undef,0)) # Constructor for a Planetary System with no planets end function PlanetarySystem(s::StarT, p::Planet, o::Orbit) where {StarT<:StarAbstract} PlanetarySystem(s,[p],[o],SystemPlane(0.,0.)) # Constructor for a single Planet System end function PlanetarySystem(s::StarT, p::AbstractVector{Planet}, o::AbstractVector{Orbit}) where {StarT<:StarAbstract} PlanetarySystem{StarT}(s,p,o,SystemPlane(0.,0.)) # Constructor for a single Planet System end function PlanetarySystem(s::StarT, p::AbstractVector{Planet}, o::AbstractVector{Orbit}, sp::SystemPlane) where {StarT<:StarAbstract} PlanetarySystem{StarT}(s,p,o,sp) end function PlanetarySystem(ps::PlanetarySystem{StarT}, keep::AbstractVector{Int64}) where {StarT<:StarAbstract} # Why doesn't this work? PlanetarySystem{StarT}(ps.star,ps.planet[keep],ps.orbit[keep]) end function star( ps::PlanetarySystem{StarT} )::StarT where {StarT<:StarAbstract} return ps.star end function planets( ps::PlanetarySystem{StarT} )::Vector{Planet} where {StarT<:StarAbstract} return ps.planet end function orbits( ps::PlanetarySystem{StarT} )::Vector{Orbit} where {StarT<:StarAbstract} return ps.orbit end #function PlanetarySystemSingleStar(ps::PlanetarySystemSingleStar, keep::Vector{Int64}) #function PlanetarySystem{StarT<:StarAbstract}(ps::PlanetarySystem{StarT}, keep::Vector{Int64}) # PlanetarySystem(ps.star,ps.planet[keep],ps.orbit[keep]) #end flux(ps::PlanetarySystem{StarT}) where {StarT<:StarAbstract} = flux(star(ps)) #flux(ps::PlanetarySystem{Star}) = flux(ps.star) #flux(ps::PlanetarySystem{BinaryStar}) = flux(ps.star) #flux(ps::PlanetarySystem{MultipleStar}) = flux(ps.star) function num_planets(s::PlanetarySystem{StarT}) where {StarT<:StarAbstract} @assert( length(planets(s)) == length(orbits(s)) ) # TODO OPT: Deactivate inner assert's like this for speed once tested return length(planets(s)) end function calc_hill_sphere(a::Float64, mu::Float64) return a*(mu/3)^(1//3) end function calc_mutual_hill_radii(ps::PlanetarySystem{StarT}, pl1::Int64, pl2::Int64) where StarT <: StarAbstract mu = (ps.planet[pl1].mass + ps.planet[pl2].mass)/ps.star.mass a = 0.5*(ps.orbit[pl1].a + ps.orbit[pl2].a) return calc_hill_sphere(a, mu) end function test_stability_circular(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, star_mass::Float64, sim_param::SimParam) @assert length(P) == length(mass) min_num_mutual_hill_radii = get_real(sim_param, "num_mutual_hill_radii") found_instability = false order = sortperm(P) a2 = semimajor_axis(P[order[1]], mass[order[1]]+star_mass) for pl in 1:(length(P)-1) a1 = a2 # semimajor_axis(P[order[pl]], mass[order[pl]]+star_mass) a2 = semimajor_axis(P[order[pl+1]], mass[order[pl+1]]+star_mass) a = 0.5*(a1+a2) mu = (mass[order[pl]] + mass[order[pl+1]])/star_mass mutual_hill_radius = calc_hill_sphere(a, mu) if a2-a1 < min_num_mutual_hill_radii*mutual_hill_radius found_instability = true break end end # loop over neighboring planet pairs within cluster return !found_instability end function test_stability(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, star_mass::Float64, sim_param::SimParam; ecc::AbstractVector{Float64}=zeros(length(P))) @assert length(P) == length(mass) == length(ecc) min_num_mutual_hill_radii = get_real(sim_param, "num_mutual_hill_radii") found_instability = false order = sortperm(P) a2 = semimajor_axis(P[order[1]], mass[order[1]]+star_mass) for pl in 1:(length(P)-1) a1 = a2 # semimajor_axis(P[order[pl]], mass[order[pl]]+star_mass) a2 = semimajor_axis(P[order[pl+1]], mass[order[pl+1]]+star_mass) a = 0.5*(a1+a2) mu = (mass[order[pl]] + mass[order[pl+1]])/star_mass mutual_hill_radius = calc_hill_sphere(a, mu) e1 = ecc[order[pl]] e2 = ecc[order[pl+1]] if a2*(1-e2)-a1*(1+e1) < min_num_mutual_hill_radii*mutual_hill_radius found_instability = true break end end # loop over neighboring planet pairs within cluster return !found_instability end function is_period_ratio_near_resonance(period_ratio::Float64, sim_param::SimParam) resonance_width = get_real(sim_param, "resonance_width") resonance_width_factor = 1+resonance_width period_ratios_to_check = get_any(sim_param, "period_ratios_mmr", Array{Float64,1}) result = false for period_ratio_mmr in period_ratios_to_check if period_ratio_mmr <= period_ratio <= period_ratio_mmr*resonance_width_factor result = true break end end return result end function calc_if_near_resonance(P::AbstractVector{Float64}, sim_param::SimParam) @assert issorted(P) # TODO: OPT: Could remove once know it is safe result = falses(length(P)) if length(P) >= 2 for i in 1:(length(P)-1) if is_period_ratio_near_resonance(P[i+1]/P[i], sim_param) result[i] = true result[i+1] = true end # near mmr end # planets end # at least two planets return result end # Code to generate simple planetary systems. For more sophisticated algorithms, see clustered model in He et al. 2019 function generate_planet_mass_from_radius_powerlaw(r::Float64, sim_param::SimParam) mr_power_index::Float64 = get_real(sim_param,"mr_power_index") mr_const::Float64 = get_real(sim_param,"mr_const") mr_max_mass::Float64 = get_real(sim_param,"mr_max_mass") m = mr_const*earth_mass*(r/earth_radius)^mr_power_index if m > mr_max_mass m = mr_max_mass end return m end function generate_planet_mass_from_radius_powerlaw(r::Float64, s::Star, o::Orbit, sim_param::SimParam) # TODO USER SCI: This is importnat if you are using a stability criteria. In that case, this should be replacde w/ better M-R relationship. See Matthias's clustered model for example. generate_planet_mass_from_radius_powerlaw(r,sim_param) end function generate_num_planets_poisson(lambda::Real, max_planets::Integer; min_planets::Integer = 0) ##### Note: this function produces odd behaviour if lambda < min_planets due to bugs in Distributions.Truncated(); for example, Distributions.Truncated(Distributions.Poisson(lambda),min_planets,max_planets) returns only values >=2 if min_planets=1 and lambda<~0.95 if lambda < min_planets*1e-3 return min_planets end bug_fixed = false # TODO OPT: true case should work, but Danley found bug in Distributions package. Revert once fixed for speed. local n if bug_fixed # d = Distributions.Truncated(Distributions.Poisson(lambda),min_planets,max_planets) d = truncated(Distributions.Poisson(lambda),min_planets,max_planets) n = rand(d) else if min_planets == 0 min_planets = -1 end # d = Distributions.Truncated(Distributions.Poisson(lambda),min_planets,max_planets) d = truncated(Distributions.Poisson(lambda),min_planets,max_planets) n = rand(d) #= n = -1 while !(min_planets<=n<=max_planets) n = rand(Distributions.Poisson(lambda)) end =# end return n end function draw_truncated_poisson(lambda::Real; min::Integer=0, max::Integer=20, n::Integer=1) pmf = [(lambda^k*exp(-lambda))/factorial(k) for k in min:max] pmf ./= sum(pmf) cmf = zeros(Float64,length(pmf)) for i in 1:length(pmf) for j in i:-1:1 cmf[i] += pmf[j] end end result = Array{Int64}(undef,n) for i in 1:n u = rand() result[i] = findfirst(x-> x>=u,cmf) + min -1 end return result end function generate_num_planets_poisson(s::Star, sim_param::SimParam) lambda::Float64 = exp(get_real(sim_param,"log_eta_pl")) max_tranets_in_sys::Int64 = get_int(sim_param,"max_tranets_in_sys") generate_num_planets_poisson(lambda,max_tranets_in_sys) end function generate_period_and_sizes_log_normal(s::Star, sim_param::SimParam; num_pl::Integer = 1) # TODO USER SCI: User should make sure planetary properties are being drawn appropriately for their scientific purposes mu_log_r::Float64 = get_real(sim_param,"mean_log_planet_radius") sigma_log_r::Float64 = get_real(sim_param,"sigma_log_planet_radius") mu_log_P::Float64 = get_real(sim_param,"mean_log_planet_period") sigma_log_P::Float64 = get_real(sim_param,"sigma_log_planet_period") min_period::Float64 = get_real(sim_param,"min_period") max_period::Float64 = get_real(sim_param,"max_period") min_radius::Float64 = get_real(sim_param,"min_radius") max_radius::Float64 = get_real(sim_param,"max_radius") max_draws::Int64 = 100 if sigma_log_r <= 0. || sigma_log_P<=0. println("# mu_log_r= ", mu_log_r, " sigma_log_r= ", sigma_log_r, " mu_log_P= ", mu_log_P, " sigma_log_P= ", sigma_log_P) end rdist = LogNormal(mu_log_r,sigma_log_r) Pdist = LogNormal(mu_log_P,sigma_log_P) #Rlist = rand(rdist,num_pl) #Plist = rand(Pdist,num_pl) #idx_keep = find(i->(min_radius<=Rlist[i]<=max_radius) && (min_period<=Plist[i]<=max_period), 1:num_pl ) #return Plist[idx_keep], Rlist[idx_keep] # replaced because want to return exactly num_pl. Could use truncated to restore above code. Rlist = zeros(num_pl) Plist = zeros(num_pl) for i in 1:num_pl j = 0 while ! (min_radius<Rlist[i]<=max_radius) && j<max_draws Rlist[i] = rand(rdist) j+=1 end if j>=max_draws println("# Struggled to draw size for: ",mu_log_r, " ", sigma_log_r) end j = 0 while ! (min_period<Plist[i]<=max_period) && j<max_draws Plist[i] = rand(Pdist) j+=1 end if j>=max_draws println("# Struggled to draw period for: ",mu_log_P, " ", sigma_log_P) end end return Plist, Rlist end function draw_power_law(n::Real, x0::Real, x1::Real, num_pl::Integer) if n != -1 return ((x1^(n+1) - x0^(n+1)).*rand(num_pl) .+ x0^(n+1)).^(1/(n+1)) else #if n == -1 return x0*(x1/x0).^rand(num_pl) end end function draw_power_law!(out::Array, n::Real, x0::Real, x1::Real, num_pl::Integer) @assert length(out)==num_pl if n != -1 return out .= ((x1^(n+1) - x0^(n+1)).*rand(num_pl) .+ x0^(n+1)).^(1/(n+1)) else #if n == -1 return out .= x0*(x1/x0).^rand(num_pl) end end function draw_broken_power_law(n1::Real, n2::Real, x0::Real, x1::Real, xb::Real, num_pl::Integer) #x0 and x1 are the lower and upper truncation limits, and xb is the break point, i.e. x0 <= xb <= x1 (all must be positive) #n1 and n2 are the power law indices between x0 and xb, and xb and x1, respectively (can be positive or negative) @assert(x0 <= xb <= x1) @assert(num_pl >= 1) u_draws = rand(num_pl) #'num_pl' draws from the uniform distribution between 0 and 1 x_draws = zeros(num_pl) if (n1 != -1) & (n2 != -1) C1 = 1.0/(((xb^(n1+1) - x0^(n1+1))/(n1+1)) + ((xb^(n1-n2)*(x1^(n2+1) - xb^(n2+1)))/(n2+1))) #normalization constant ub = (C1*(xb^(n1+1) - x0^(n1+1)))/(n1+1) #break point in u, between 0 and 1 for (i,u) in enumerate(u_draws) if u <= ub x_draws[i] = (((n1+1)*u)/C1 + x0^(n1+1))^(1/(n1+1)) else #if u > ub x_draws[i] = (((n2+1)/(C1*xb^(n1-n2)))*(u - (C1*(xb^(n1+1) - x0^(n1+1)))/(n1+1)) + xb^(n2+1))^(1/(n2+1)) end end elseif (n1 == -1) & (n2 != -1) C1 = 1.0/(log(xb/x0) + ((xb^(-1-n2))*(x1^(n2+1)) - 1)/(n2+1)) #normalization constant ub = C1*log(xb/x0) #break point in u, between 0 and 1 for (i,u) in enumerate(u_draws) if u <= ub x_draws[i] = x0*exp(u/C1) else #if u > ub x_draws[i] = (((n2+1)/(C1*xb^(-1-n2)))*(u - C1*log(xb/x0)) + xb^(n2+1))^(1/(n2+1)) end end elseif (n1 != -1) & (n2 == -1) C1 = 1.0/(((xb^(n1+1) - x0^(n1+1))/(n1+1)) + (xb^(n1+1))*log(x1/xb)) #normalization constant ub = (C1*(xb^(n1+1) - x0^(n1+1)))/(n1+1) #break point in u, between 0 and 1 for (i,u) in enumerate(u_draws) if u <= ub x_draws[i] = (((n1+1)*u)/C1 + x0^(n1+1))^(1/(n1+1)) else #if u > ub x_draws[i] = xb*exp((1/(C1*xb^(n1+1)))*(u - (C1*(xb^(n1+1) - x0^(n1+1)))/(n1+1))) end end else #if n1 == -1 and n2 == -1 (i.e. it is a single power-law with index of -1) for (i,u) in enumerate(u_draws) x_draws[i] = x0*exp(u*log(x1/x0)) end end return x_draws end function generate_periods_power_law(s::Star, sim_param::SimParam; num_pl::Integer = 1) power_law_P::Float64 = get_real(sim_param,"power_law_P") min_period::Float64 = get_real(sim_param,"min_period") max_period::Float64 = get_real(sim_param,"max_period") Plist = draw_power_law(power_law_P,min_period,max_period, num_pl) return Plist end function generate_periods_broken_power_law(s::Star, sim_param::SimParam; num_pl::Integer = 1) power_law_P1::Float64 = get_real(sim_param,"power_law_P1") power_law_P2::Float64 = get_real(sim_param,"power_law_P2") min_period::Float64 = get_real(sim_param,"min_period") max_period::Float64 = get_real(sim_param,"max_period") break_period::Float64 = get_real(sim_param,"break_period") Plist = draw_broken_power_law(power_law_P1,power_law_P2,min_period,max_period,break_period, num_pl) return Plist end function generate_sizes_power_law(s::Star, sim_param::SimParam; num_pl::Integer = 1) power_law_r::Float64 = get_real(sim_param,"power_law_r") min_radius::Float64 = get_real(sim_param,"min_radius") max_radius::Float64 = get_real(sim_param,"max_radius") Rlist = draw_power_law(power_law_r,min_radius,max_radius, num_pl) return Rlist end function generate_sizes_broken_power_law(s::Star, sim_param::SimParam; num_pl::Integer = 1) power_law_r1::Float64 = get_real(sim_param,"power_law_r1") power_law_r2::Float64 = get_real(sim_param,"power_law_r2") min_radius::Float64 = get_real(sim_param,"min_radius") max_radius::Float64 = get_real(sim_param,"max_radius") break_radius::Float64 = get_real(sim_param,"break_radius") Rlist = draw_broken_power_law(power_law_r1,power_law_r2,min_radius,max_radius,break_radius, num_pl) return Rlist end function generate_period_and_sizes_power_law(s::Star, sim_param::SimParam; num_pl::Integer = 1) return (generate_periods_power_law(s, sim_param, num_pl=num_pl), generate_sizes_power_law(s, sim_param, num_pl=num_pl)) end using SpecialFunctions cdf_lognormal(x::Float64; μ::Float64=0., σ::Float64=1.) = 0.5*erfc(-(log(x) - μ)/(σ*sqrt(2.))) function invert_cdf_lognormal(y::Float64; μ::Float64=0., σ::Float64=1.) @assert 0<=y<=1 return exp(μ - sqrt(2.)*σ*erfcinv(2*y)) end function cdf_power_law(x::Float64; x0::Float64, x1::Float64, α::Float64) @assert x0 <= x <= x1 if α != -1 return (x^(α+1) - x0^(α+1))/(x1^(α+1) - x0^(α+1)) else # if α == -1 return log(x/x0)/log(x1/x0) end end function invert_cdf_power_law(y::Float64; x0::Float64, x1::Float64, α::Float64) @assert x0 < x1 if α != -1 return (x0^(α+1) + (x1^(α+1) - x0^(α+1))*y)^(1/(α+1)) else # if α == -1 return x0*(x1/x0)^y end end """ draw_segmented_uniform(segments) Draw a random uniform variable given segments in the interval (0,1). # Arguments: - `segments::Array{Tuple{Float64,Float64},1}`: array of segments (a,b) between 0 and 1. NOTE: all segments must be between [0,1] and be non-overlapping! # Returns: A value (float) contained in one of the given segments, drawn uniformly. """ function draw_segmented_uniform(segments::Array{Tuple{Float64,Float64},1}) # Note: "segments" must be non-overlapping n_segs = length(segments) # number of segments @assert n_segs > 0 for (i,seg) in enumerate(segments) @assert 0 <= seg[1] < seg[2] <= 1 # check that all segments are valid if i != n_segs @assert segments[i][2] < segments[i+1][1] # check to make sure there are no overlapping segments end end seg_lengths = [seg[2]-seg[1] for seg in segments] sum_lengths = sum(seg_lengths) u_draw = rand() for (i,seg) in enumerate(segments) # Map the union of the segments uniformly to the domain [0,1]: sum_l = sum(seg_lengths[1:i-1]) if sum_l <= u_draw*sum_lengths < sum_l + seg_lengths[i] return rand(Uniform(seg[1], seg[2])) end end end """ compute_unstable_regions_periods_given_planets(P, mass, insert_pl_mass, star_mass, sim_param; ecc=zeros(length(P)), insert_pl_ecc=0., use_mutualHill=true, verbose=false) Compute the unstable intervals in orbital period given the existing planets and the mass and eccentricity of the planet we are trying to insert. # Arguments: - `P::AbstractVector{Float64}`: periods of the existing planets. - `mass::AbstractVector{Float64}`: masses of the existing planets. - `insert_pl_mass::Float64`: mass of the planet we are trying to insert. - `star_mass::Float64`: mass of the star. - `sim_param::SimParam`: a SimParam object containing various simulation parameters. - `ecc::AbstractVector{Float64}=zeros(length(P))`: eccentricities of the existing planets (defaults to circular). - `insert_pl_ecc::Float64=0.`: eccentricity of the planet we are trying to insert (defaults to circular). - `use_mutualHill::Bool=true`: whether to use the minimum separation in terms of the mutual Hill radii (default) or the Hill radii (if false). - `verbose::Bool=false`: whether to print various messages. NOTE: the existing planets do not have to be sorted in period. # Returns: `P_segments_unstable::Array{Tuple{Float64,Float64},1}`: an array of segments. Inserting the planet somewhere inside one of these segments would deem the system unstable. NOTE: these segments may be overlapping! """ function compute_unstable_regions_periods_given_planets(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, insert_pl_mass::Float64, star_mass::Float64, sim_param::SimParam; ecc::AbstractVector{Float64}=zeros(length(P)), insert_pl_ecc::Float64=0., use_mutualHill::Bool=true, verbose::Bool=false) @assert length(P) == length(mass) == length(ecc) min_num_mutual_hill_radii = get_real(sim_param, "num_mutual_hill_radii") order = sortperm(P) P_segments_unstable = Array{Tuple{Float64,Float64},1}(undef,length(P)) for pl in 1:length(P) a = semimajor_axis(P[order[pl]], mass[order[pl]]+star_mass) if use_mutualHill mu = (mass[order[pl]] + insert_pl_mass)/star_mass term = (min_num_mutual_hill_radii/2.)*(mu/3.)^(1//3) a_lower = a*(1. - ecc[order[pl]] - term)/(1. + insert_pl_ecc + term) a_upper = (0 < 1-insert_pl_ecc-term) ? a*(1. + ecc[order[pl]] + term)/(1. - insert_pl_ecc - term) : Inf # 0<(1-insert_pl_ecc-term) must be true or else inequality flips sign and there are no physical solutions for a_upper else # use Hill radii mu = mass[order[pl]]/star_mass hill_radius = calc_hill_sphere(a, mu) a_lower, a_upper = a*(1. - ecc[order[pl]]) - hill_radius*min_num_mutual_hill_radii, a*(1. + ecc[order[pl]]) + hill_radius*min_num_mutual_hill_radii end a_lower = max(a_lower, 0.) # set a_lower=0 if negative @assert 0 <= a_lower < a_upper P_lower, P_upper = period_given_semimajor_axis(a_lower, insert_pl_mass+star_mass), period_given_semimajor_axis(a_upper, insert_pl_mass+star_mass) if verbose println("P_blocked: ", (P_lower, P_upper)) end P_segments_unstable[pl] = (P_lower, P_upper) end return P_segments_unstable end """ compute_unstable_mutualHill_regions_periodscales_given_clusters(pl_per_cl, P_cl, mass_cl, insert_cl_ρ, insert_cl_mass, star_mass, sim_param; ecc_cl=zeros(length(P_cl)), insert_cl_ecc=zeros(length(insert_cl_mass)), verbose=false) Compute the unstable intervals in period scale given the existing clusters and the cluster we are trying to insert, requiring that no clusters overlap. # Arguments: - `pl_per_cl::Vector{Int64}`: number of planets in each existing cluster. - `P_cl::AbstractVector{Float64}`: periods of the planets in the existing clusters. - `mass_cl::AbstractVector{Float64}`: masses of the planets in the existing clusters. - `insert_cl_ρ::AbstractVector{Float64}`: unscaled periods of the planets in the cluster we are trying to insert. - `insert_cl_mass::AbstractVector{Float64}`: masses of the planets in the cluster we are trying to insert. - `star_mass::Float64`: mass of the star. - `sim_param::SimParam`: a SimParam object containing various simulation parameters. - `ecc_cl::AbstractVector{Float64}=zeros(length(P_cl))`: eccentricities of the planets in the existing clusters (defaults to circular). - `insert_cl_ecc::AbstractVector{Float64}=zeros(length(insert_cl_mass))`: eccentricities of the planets in the cluster we are trying to insert (defaults to circular). - `verbose::Bool=false`: whether to print various messages. NOTE: the existing clusters must be grouped (and in the order implied by `pl_per_cl`), but the planets do not have to be sorted in period. # Returns: `Pc_segments_unstable_nonoverlapping::Array{Tuple{Float64,Float64},1}`: an array of (non-overlapping) segments. Inserting the cluster somewhere inside one of these segments would either deem the system unstable, or cause clusters to overlap. """ function compute_unstable_mutualHill_regions_periodscales_given_clusters(pl_per_cl::Vector{Int64}, P_cl::AbstractVector{Float64}, mass_cl::AbstractVector{Float64}, insert_cl_ρ::AbstractVector{Float64}, insert_cl_mass::AbstractVector{Float64}, star_mass::Float64, sim_param::SimParam; ecc_cl::AbstractVector{Float64}=zeros(length(P_cl)), insert_cl_ecc::AbstractVector{Float64}=zeros(length(insert_cl_mass)), verbose::Bool=false) n_cl = length(pl_per_cl) @assert all(pl_per_cl .> 0) @assert sum(pl_per_cl) == length(P_cl) == length(mass_cl) == length(ecc_cl) @assert length(insert_cl_ρ) == length(insert_cl_mass) == length(insert_cl_ecc) min_num_mutual_hill_radii = get_real(sim_param, "num_mutual_hill_radii") # Get the inner-most and outer-most planets in the cluster we are trying to insert: order_insert_cl = sortperm(insert_cl_ρ) # ρ denotes unscaled periods in this function insert_pl_in_ρ, insert_pl_in_mass, insert_pl_in_ecc = insert_cl_ρ[order_insert_cl[1]], insert_cl_mass[order_insert_cl[1]], insert_cl_ecc[order_insert_cl[1]] insert_pl_out_ρ, insert_pl_out_mass, insert_pl_out_ecc = insert_cl_ρ[order_insert_cl[end]], insert_cl_mass[order_insert_cl[end]], insert_cl_ecc[order_insert_cl[end]] max_ratio = insert_pl_out_ρ/insert_pl_in_ρ Pc_segments_unstable = Array{Tuple{Float64,Float64},1}(undef,n_cl) pl_start = 1 pl_stop = 0 for c in 1:n_cl pl_stop += pl_per_cl[c] order = (pl_start - 1) .+ sortperm(P_cl[pl_start:pl_stop]) # Compare the inner-most planet in this cluster to the outer-most planet in the cluster we are trying to fit in to calculate the lower bound for the unstable region: a_in = semimajor_axis(P_cl[order[1]], mass_cl[order[1]]+star_mass) mu = (mass_cl[order[1]] + insert_pl_out_mass)/star_mass term = (min_num_mutual_hill_radii/2.)*(mu/3.)^(1//3) a_lower = a_in*(1. - ecc_cl[order[1]] - term)/(1. + insert_pl_out_ecc + term) a_lower = max(a_lower, 0.) # set a_lower=0 if negative P_lower = period_given_semimajor_axis(a_lower, insert_pl_out_mass+star_mass) # Compare the outer-most planet in this cluster to the inner-most planet in the cluster we are trying to fit in to calculate the upper bound for the unstable region: a_out = semimajor_axis(P_cl[order[end]], mass_cl[order[end]]+star_mass) mu = (mass_cl[order[end]] + insert_pl_in_mass)/star_mass term = (min_num_mutual_hill_radii/2.)*(mu/3.)^(1//3) a_upper = (0 < 1-insert_pl_in_ecc-term) ? a_out*(1. + ecc_cl[order[end]] + term)/(1. - insert_pl_in_ecc - term) : Inf # 0<(1-insert_pl_ecc-term) must be true or else inequality flips sign and there are no physical solutions for a_upper P_upper = period_given_semimajor_axis(a_upper, insert_pl_in_mass+star_mass) # Now, convert P_lower and P_upper to bounds for the period scale (which depend on the unscaled periods of the cluster we are trying to insert): Pc_lower, Pc_upper = P_lower/insert_pl_out_ρ, P_upper/insert_pl_in_ρ # Pc_lower should decrease if insert_pl_out_ρ > 1, and likewise Pc_upper should increase if insert_pl_in_ρ < 1 if verbose println("Pc_blocked: ", (Pc_lower, Pc_upper)) end Pc_segments_unstable[c] = (Pc_lower, Pc_upper) pl_start += pl_per_cl[c] end Pc_segments_unstable = sort(Pc_segments_unstable) Pc_segments_unstable_nonoverlapping = Tuple{Float64,Float64}[] x_start, x_stop = Pc_segments_unstable[1] for i in 1:length(Pc_segments_unstable)-1 if x_stop > Pc_segments_unstable[i+1][1] # segments overlap x_stop = Pc_segments_unstable[i+1][2] else # segments do not overlap if Pc_segments_unstable[i+1][1]/x_stop > max_ratio push!(Pc_segments_unstable_nonoverlapping, (x_start, x_stop)) x_start, x_stop = Pc_segments_unstable[i+1] else # segments do not overlap, but there is not enough room between the two segments to insert the cluster x_stop = Pc_segments_unstable[i+1][2] end end end push!(Pc_segments_unstable_nonoverlapping, (x_start, x_stop)) if verbose println("Pc_blocked with no room: ", Pc_segments_unstable_nonoverlapping) end return Pc_segments_unstable_nonoverlapping end """ compute_regions_non_overlapping(segments_blocked) Compute the non-overlapping segments given an array of (potentially overlapping) segments. # Arguments: - `segments_blocked::Array{Tuple{Float64,Float64},1}`: array of potentially overlapping segments. NOTE: the input segments must be sorted in increasing order! # Returns: `segments_blocked_nonoverlapping::Array{Tuple{Float64,Float64},1}`: array of non-overlapping segments. """ function compute_regions_non_overlapping(segments_blocked::Array{Tuple{Float64,Float64},1}) # Make a list of non-overlapping segments: segments_blocked_nonoverlapping = Tuple{Float64,Float64}[] x_start, x_stop = segments_blocked[1] for i in 1:length(segments_blocked)-1 if x_stop > segments_blocked[i+1][1] # segments overlap x_stop = segments_blocked[i+1][2] else # segments do not overlap push!(segments_blocked_nonoverlapping, (x_start, x_stop)) x_start, x_stop = segments_blocked[i+1] end end push!(segments_blocked_nonoverlapping, (x_start, x_stop)) return segments_blocked_nonoverlapping end """ compute_allowed_regions_cdf_lognormal(segments_blocked; μ=0., σ=1., x_min=0., x_max=Inf, ϵ=1e-12) Compute the allowed regions in the cumulative distribution function (CDF) of a lognormal distribution, given blocked segments in the domain of the variable. # Arguments: - `segments_blocked::Array{Tuple{Float64,Float64},1}`: array of blocked segments. - `μ::Float64=0.`: mean parameter for the lognormal distribution. - `σ::Float64=1.`: standard deviation parameter for the lognormal distribution. - `x_min::Float64=0.`: minimum value of the variable. - `x_max::Float64=Inf`: maximum value of the variable. - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. NOTE: the array of blocked segments do not have to be non-overlapping; this function will first compute the non-overlapping segments. # Returns: `cdf_segments_allowed::Array{Tuple{Float64,Float64},1}`: array of (non-overlapping) segments in the CDF that are not blocked. NOTE: returns an empty array (length zero) if the entire domain between `x_min` and `x_max` is blocked! """ function compute_allowed_regions_cdf_lognormal(segments_blocked::Array{Tuple{Float64,Float64},1}; μ::Float64=0., σ::Float64=1., x_min::Float64=0., x_max::Float64=Inf, ϵ::Float64=1e-12) @assert 0 <= x_min < x_max <= Inf # Make a list of non-overlapping segments in period deemed unstable: segments_blocked_nonoverlapping = compute_regions_non_overlapping(segments_blocked) # Make a list of non-overlapping, allowed segments in the cdf: cdf_segments_allowed = Tuple{Float64,Float64}[] n_seg_max = length(segments_blocked_nonoverlapping)+1 # maximum number of allowed segments if all the unstable segments fit between x_min and x_max for i in 1:n_seg_max if i==1 && x_min < segments_blocked_nonoverlapping[i][1] cdf_start = cdf_lognormal(x_min; μ=μ, σ=σ) cdf_stop = cdf_lognormal(segments_blocked_nonoverlapping[i][1]; μ=μ, σ=σ) if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end elseif i==n_seg_max && x_max > segments_blocked_nonoverlapping[i-1][2] cdf_start = cdf_lognormal(segments_blocked_nonoverlapping[i-1][2]; μ=μ, σ=σ) cdf_stop = cdf_lognormal(x_max; μ=μ, σ=σ) if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end elseif 1 < i < n_seg_max cdf_start = cdf_lognormal(segments_blocked_nonoverlapping[i-1][2]; μ=μ, σ=σ) cdf_stop = cdf_lognormal(segments_blocked_nonoverlapping[i][1]; μ=μ, σ=σ) if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end end end return cdf_segments_allowed end """ compute_allowed_regions_cdf_power_law(segments_blocked; x0, x1, α, ϵ=1e-12) Compute the allowed regions in the cumulative distribution function (CDF) of a power-law distribution, given blocked segments in the domain of the variable. # Arguments: - `segments_blocked::Array{Tuple{Float64,Float64},1}`: array of blocked segments. - `x0::Float64`: minimum value of the variable. - `x1::Float64`: maximum value of the variable. - `α::Float64`: power-law index. - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. NOTE: the array of blocked segments do not have to be non-overlapping; this function will first compute the non-overlapping segments. # Returns: `cdf_segments_allowed::Array{Tuple{Float64,Float64},1}`: array of (non-overlapping) segments in the CDF that are not blocked. NOTE: returns an empty array (length zero) if the entire domain between `x0` and `x1` is blocked! """ function compute_allowed_regions_cdf_power_law(segments_blocked::Array{Tuple{Float64,Float64},1}; x0::Float64, x1::Float64, α::Float64, ϵ::Float64=1e-12) @assert x0 < x1 # Make a list of non-overlapping segments in period scale deemed unstable: segments_blocked_nonoverlapping = compute_regions_non_overlapping(segments_blocked) # Make a list of non-overlapping, allowed segments in the cdf: cdf_segments_allowed = Tuple{Float64,Float64}[] n_seg_max = length(segments_blocked_nonoverlapping)+1 # maximum number of allowed segments if all the unstable segments fit between x0 and x1 for i in 1:n_seg_max if i==1 && x0 < segments_blocked_nonoverlapping[i][1] cdf_start = 0. cdf_stop = cdf_power_law(segments_blocked_nonoverlapping[i][1]; x0=x0, x1=x1, α=α) if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end elseif i==n_seg_max && x1 > segments_blocked_nonoverlapping[i-1][2] cdf_start = cdf_power_law(segments_blocked_nonoverlapping[i-1][2]; x0=x0, x1=x1, α=α) cdf_stop = 1. if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end elseif 1 < i < n_seg_max cdf_start = cdf_power_law(segments_blocked_nonoverlapping[i-1][2]; x0=x0, x1=x1, α=α) cdf_stop = cdf_power_law(segments_blocked_nonoverlapping[i][1]; x0=x0, x1=x1, α=α) if cdf_stop - cdf_start > ϵ push!(cdf_segments_allowed, (cdf_start, cdf_stop)) end end end return cdf_segments_allowed end """ draw_lognormal_allowed_regions(segments_blocked; μ=0., σ=1., x_min=0., x_max=Inf, ϵ=1e-12, verbose=false) Draw a random value that is not inside a blocked region, from a lognormal distribution. # Arguments: - `segments_blocked::Array{Tuple{Float64,Float64},1}`: array of blocked segments. - `μ::Float64=0.`: mean parameter for the lognormal distribution. - `σ::Float64=1.`: standard deviation parameter for the lognormal distribution. - `x_min::Float64=0.`: minimum value of the variable. - `x_max::Float64=Inf`: maximum value of the variable. - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. - `verbose::Bool=false`: whether to print various messages. NOTE: the array of blocked segments do not have to be non-overlapping. # Returns: A value (float) drawn from the lognormal distribution, that is not inside a blocked region. NOTE: returns NaN if the entire region between `x_min` and `x_max` is blocked! """ function draw_lognormal_allowed_regions(segments_blocked::Array{Tuple{Float64,Float64},1}; μ::Float64=0., σ::Float64=1., x_min::Float64=0., x_max::Float64=Inf, ϵ::Float64=1e-12, verbose::Bool=false) cdf_segments_allowed = compute_allowed_regions_cdf_lognormal(segments_blocked; μ=μ, σ=σ, x_min=x_min, x_max=x_max, ϵ=ϵ) if length(cdf_segments_allowed) == 0 if verbose println("No allowed regions left to draw from; returning NaN.") end return NaN else y = draw_segmented_uniform(cdf_segments_allowed) return invert_cdf_lognormal(y; μ=μ, σ=σ) end end """ draw_power_law_allowed_regions(segments_blocked; x0, x1, α, ϵ=1e-12, verbose=false) Draw a random value that is not inside a blocked region, from a power-law distribution. # Arguments: - `segments_blocked::Array{Tuple{Float64,Float64},1}`: array of blocked segments. - `x0::Float64`: minimum value of the variable. - `x1::Float64`: maximum value of the variable. - `α::Float64`: power-law index. - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. - `verbose::Bool=false`: whether to print various messages. NOTE: the array of blocked segments do not have to be non-overlapping. # Returns: A value (float) drawn from the power-law distribution, that is not inside a blocked region. NOTE: returns NaN if the entire region between `x0` and `x1` is blocked! """ function draw_power_law_allowed_regions(segments_blocked::Array{Tuple{Float64,Float64},1}; x0::Float64, x1::Float64, α::Float64, ϵ::Float64=1e-12, verbose::Bool=false) cdf_segments_allowed = compute_allowed_regions_cdf_power_law(segments_blocked; x0=x0, x1=x1, α=α, ϵ=ϵ) if length(cdf_segments_allowed) == 0 if verbose println("No allowed regions left to draw from; returning NaN.") end return NaN else y = draw_segmented_uniform(cdf_segments_allowed) return invert_cdf_power_law(y; x0=x0, x1=x1, α=α) end end """ draw_period_lognormal_allowed_regions(P, mass, insert_pl_mass, star_mass, sim_param; μ=0., σ=1., x_min=0., x_max=Inf, ecc=zeros(length(P)), insert_pl_ecc=0., use_mutualHill=true, ϵ=1e-12, verbose=false) Draw a period from a lognormal distribution, that would allow the system to be stable if the planet is inserted there. # Arguments: - `P::AbstractVector{Float64}`: periods of the existing planets. - `mass::AbstractVector{Float64}`: masses of the existing planets. - `insert_pl_mass::Float64`: mass of the planet we are trying to insert. - `star_mass::Float64`: mass of the star. - `sim_param::SimParam`: a SimParam object containing various simulation parameters. - `μ::Float64=0.`: mean parameter for the lognormal distribution. - `σ::Float64=1.`: standard deviation parameter for the lognormal distribution. - `x_min::Float64=0.`: minimum value of the variable. - `x_max::Float64=Inf`: maximum value of the variable. - `ecc::AbstractVector{Float64}=zeros(length(P))`: eccentricities of the existing planets (defaults to circular). - `insert_pl_ecc::Float64=0.`: eccentricity of the planet we are trying to insert (defaults to circular). - `use_mutualHill::Bool=true`: whether to use the minimum separation in terms of the mutual Hill radii (default) or the Hill radii (if false). - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. - `verbose::Bool=false`: whether to print various messages. NOTE: the existing planets do not have to be sorted in period. # Returns: `P_draw::Float64`: period drawn from the lognormal distribution, that would allow the system to be stable if the planet is inserted there. NOTE: returns NaN if any period between `x_min` and `x_max` would make the system unstable! """ function draw_period_lognormal_allowed_regions(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, insert_pl_mass::Float64, star_mass::Float64, sim_param::SimParam; μ::Float64=0., σ::Float64=1., x_min::Float64=0., x_max::Float64=Inf, ecc::AbstractVector{Float64}=zeros(length(P)), insert_pl_ecc::Float64=0., use_mutualHill::Bool=true, ϵ::Float64=1e-12, verbose::Bool=false) @assert length(P) == length(mass) == length(ecc) @assert 0 <= insert_pl_mass < star_mass @assert all(P .> 0) @assert all(mass .>= 0) @assert all(1 .> ecc .>= 0) @assert 0 <= insert_pl_ecc < 1 if length(P) > 0 P_segments_unstable = compute_unstable_regions_periods_given_planets(P, mass, insert_pl_mass, star_mass, sim_param; ecc=ecc, insert_pl_ecc=insert_pl_ecc, use_mutualHill=use_mutualHill, verbose=verbose) P_draw = draw_lognormal_allowed_regions(P_segments_unstable; μ=μ, σ=σ, x_min=x_min, x_max=x_max, ϵ=ϵ, verbose=verbose) else P_draw = invert_cdf_lognormal(rand(Uniform(cdf_lognormal(x_min; μ=μ, σ=σ), cdf_lognormal(x_max; μ=μ, σ=σ))); μ=μ, σ=σ) end return P_draw end """ draw_period_lognormal_allowed_regions_Hill(P, mass, insert_pl_mass, star_mass, sim_param; μ=0., σ=1., x_min=0., x_max=Inf, ecc=zeros(length(P)), insert_pl_ecc=0., ϵ=1e-12, verbose=false) Draw a period that is not inside a blocked region using Hill radii, from a lognormal distribution, by calling `draw_period_lognormal_allowed_regions`. NOTE: returns NaN if any period between `x_min` and `x_max` would make the system unstable! """ draw_period_lognormal_allowed_regions_Hill(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, insert_pl_mass::Float64, star_mass::Float64, sim_param::SimParam; μ::Float64=0., σ::Float64=1., x_min::Float64=0., x_max::Float64=Inf, ecc::AbstractVector{Float64}=zeros(length(P)), insert_pl_ecc::Float64=0., ϵ::Float64=1e-12, verbose::Bool=false) = draw_period_lognormal_allowed_regions(P, mass, insert_pl_mass, star_mass, sim_param; μ=μ, σ=σ, x_min=x_min, x_max=x_max, ecc=ecc, insert_pl_ecc=insert_pl_ecc, use_mutualHill=false, ϵ=ϵ, verbose=verbose) """ draw_period_lognormal_allowed_regions_mutualHill(P, mass, insert_pl_mass, star_mass, sim_param; μ=0., σ=1., x_min=0., x_max:=Inf, ecc=zeros(length(P)), insert_pl_ecc=0., ϵ=1e-12, verbose=false) Draw a period that is not inside a blocked region using mutual Hill radii, from a lognormal distribution, by calling `draw_period_lognormal_allowed_regions`. NOTE: returns NaN if any period between `x_min` and `x_max` would make the system unstable! """ draw_period_lognormal_allowed_regions_mutualHill(P::AbstractVector{Float64}, mass::AbstractVector{Float64}, insert_pl_mass::Float64, star_mass::Float64, sim_param::SimParam; μ::Float64=0., σ::Float64=1., x_min::Float64=0., x_max::Float64=Inf, ecc::AbstractVector{Float64}=zeros(length(P)), insert_pl_ecc::Float64=0., ϵ::Float64=1e-12, verbose::Bool=false) = draw_period_lognormal_allowed_regions(P, mass, insert_pl_mass, star_mass, sim_param; μ=μ, σ=σ, x_min=x_min, x_max=x_max, ecc=ecc, insert_pl_ecc=insert_pl_ecc, use_mutualHill=true, ϵ=ϵ, verbose=verbose) """ draw_periodscale_power_law_allowed_regions_mutualHill(pl_per_cl, P_cl:, mass_cl:, insert_cl_ρ, insert_cl_mass, star_mass, sim_param; x0, x1, α, ecc_cl=zeros(length(P_cl)), insert_cl_ecc=zeros(length(insert_cl_mass)), ϵ=1e-12, verbose=false) Draw a period scale from a power-law distribution, that would allow the system to be stable if the cluster is inserted there (and cause no overlapping clusters). # Arguments: - `pl_per_cl::Vector{Int64}`: number of planets in each existing cluster. - `P_cl::AbstractVector{Float64}`: periods of the planets in the existing clusters. - `mass_cl::AbstractVector{Float64}`: masses of the planets in the existing clusters. - `insert_cl_ρ::AbstractVector{Float64}`: unscaled periods of the planets in the cluster we are trying to insert. - `insert_cl_mass::AbstractVector{Float64}`: masses of the planets in the cluster we are trying to insert. - `star_mass::Float64`: mass of the star. - `sim_param::SimParam`: a SimParam object containing various simulation parameters. - `x0::Float64`: minimum value of the variable. - `x1::Float64`: maximum value of the variable. - `α::Float64`: power-law index. - `ecc_cl::AbstractVector{Float64}=zeros(length(P_cl))`: eccentricities of the planets in the existing clusters (defaults to circular). - `insert_cl_ecc::AbstractVector{Float64}=zeros(length(insert_cl_mass))`: eccentricities of the planets in the cluster we are trying to insert (defaults to circular). - `ϵ::Float64=1e-12`: minimum segment length in CDF to be included as an allowed segment, to reduce the rate of error due to machine precision. - `verbose::Bool=false`: whether to print various messages. NOTE: the existing clusters must be grouped (and in the order implied by `pl_per_cl`), but the planets do not have to be sorted in period. # Returns: `Pc_draw::Float64`: period scale drawn from the power-law distribution, that would allow the system to be stable if the cluster is inserted there. NOTE: returns NaN if any period scale between `x0` and `x1` would make the system unstable or cause clusters to overlap! """ function draw_periodscale_power_law_allowed_regions_mutualHill(pl_per_cl::Vector{Int64}, P_cl::AbstractVector{Float64}, mass_cl::AbstractVector{Float64}, insert_cl_ρ::AbstractVector{Float64}, insert_cl_mass::AbstractVector{Float64}, star_mass::Float64, sim_param::SimParam; x0::Float64, x1::Float64, α::Float64, ecc_cl::AbstractVector{Float64}=zeros(length(P_cl)), insert_cl_ecc::AbstractVector{Float64}=zeros(length(insert_cl_mass)), ϵ::Float64=1e-12, verbose::Bool=false) @assert x0 < x1 @assert sum(pl_per_cl) == length(P_cl) == length(mass_cl) == length(ecc_cl) @assert all(P_cl .> 0) @assert all(mass_cl .> 0) @assert all(0 .<= ecc_cl .< 1) @assert length(insert_cl_ρ) == length(insert_cl_mass) == length(insert_cl_ecc) @assert all(0 .< insert_cl_ρ) @assert all(0 .< insert_cl_mass .< star_mass) @assert all(0 .<= insert_cl_ecc .< 1) if length(P_cl) > 0 Pc_segments_unstable = compute_unstable_mutualHill_regions_periodscales_given_clusters(pl_per_cl, P_cl, mass_cl, insert_cl_ρ, insert_cl_mass, star_mass, sim_param; ecc_cl=ecc_cl, insert_cl_ecc=insert_cl_ecc, verbose=verbose) Pc_draw = draw_power_law_allowed_regions(Pc_segments_unstable; x0=x0, x1=x1, α=α, ϵ=ϵ, verbose=verbose) else Pc_draw = invert_cdf_power_law(rand(); x0=x0, x1=x1, α=α) end return Pc_draw end #= # Removed now that Truncated is deprecated in favor of truncated function TruncatedUpper(d::Distributions.UnivariateDistribution, u::Float64) zero(u) < u || error("lower bound should be less than upper bound.") lcdf = zero(u) ucdf = isinf(u) ? one(u) : cdf(d, u) tp = ucdf - lcdf Distributions.Truncated{typeof(d),Distributions.value_support(typeof(d))}(d, zero(u), u, lcdf, ucdf, tp, log(tp)) end =# function generate_e_omega_rayleigh_direct(sigma_hk::Float64; max_e::Float64 = 1.0) @assert(0<max_e<=1.0) # ecc::Float64 = rand( TruncatedUpper(Rayleigh(sigma_hk),max_e) ) ecc::Float64 = rand( truncated(Rayleigh(sigma_hk),zero(sigma_hk),max_e) ) w::Float64 = 2pi*rand() return ecc, w end function generate_e_omega_rayleigh_two_gaussians(sigma_hk::Float64; max_e::Float64 = 1.0) @assert(0<max_e<=1.0) h = k = 1.0 while h*h+k*k >= max_e*max_e h = sigma_hk*randn() k = sigma_hk*randn() end ecc::Float64 = sqrt(h*h+k*k) #w::Float64 = atan2(k,h) w::Float64 = atan(k,h) return ecc, w end function generate_e_omega_rayleigh(sigma_hk::Float64; max_e::Float64 = 1.0) if max_e > sigma_hk return generate_e_omega_rayleigh_two_gaussians(sigma_hk,max_e=max_e) else return generate_e_omega_rayleigh_direct(sigma_hk,max_e=max_e) end end function generate_e_omega_rayleigh(sim_param::SimParam; max_e::Float64 = 1.0) sigma_hk::Float64 = get_real(sim_param,"sigma_hk") generate_e_omega_rayleigh(sigma_hk, max_e=max_e) end struct ParamsTriangle id_xy::Tuple{Int64,Int64} # indices of the two transformed parameters in a vector of parameters # A,B,C are vertices of the triangle for parameters (x,y), in no particular order A::Tuple{Float64,Float64} B::Tuple{Float64,Float64} C::Tuple{Float64,Float64} end """ map_square_to_triangle(r1, r2, pt) Map a point (r1, r2) in the unit square to a point P=(x,y) in the triangle defined by vertices A,B,C. If r1,r2 are uniformly drawn in [0,1], then the point P is also uniformly drawn in the triangle; see http://www.cs.princeton.edu/~funk/tog02.pdf (Section 4.2) for a reference. # Arguments: - `r1r2::Tuple{Float64,Float64}`: a point in the unit square representing two transformed parameters. - `pt::ParamsTriangle`: an object containing the indices of the two transformed parameters and vertices of the triangle defining the bounds for the two parameters. # Returns: - `P::Tuple{Float64,Float64}`: a point for the two parameters in the triangle corresponding to the point given by `r1r2` in the unit square. """ function map_square_to_triangle(r1r2::Tuple{Float64,Float64}, pt::ParamsTriangle) @assert all(0 .<= r1r2 .<= 1) r1, r2 = r1r2 P = (1. - sqrt(r1)) .* pt.A .+ (sqrt(r1)*(1. - r2)) .* pt.B .+ (sqrt(r1)*r2) .* pt.C return P end function generate_planetary_system_hardcoded_example(star::StarAbstract, sim_param::SimParam; verbose::Bool = false) # in this version we specify fixed functions that are known at compile time, allowing for additional optimizations (~0.6 second faster per Kepler catalog out of ~3.6 sec on my laptop w/ 1 core) generate_planet_mass_from_radius = generate_planet_mass_from_radius_powerlaw generate_num_planets = generate_num_planets_poisson generate_period_and_sizes = generate_period_and_sizes_log_normal generate_e_omega = generate_e_omega_rayleigh # generate_star = get_function(sim_param,"generate_star") # star::StarAbstract = generate_star(sim_param) num_pl::Int64 = generate_num_planets(star, sim_param) if( num_pl==0 ) return PlanetarySystem(star) else (Plist::Vector{Float64}, Rlist::Vector{Float64}) = generate_period_and_sizes(star, sim_param, num_pl=num_pl) idx = sortperm(Plist) # TODO OPT: Check to see if sorting is significant time sink. If so, it might could be deferred min_a_in_rstar = 2.0 min_P_orbit = day_in_year*sqrt((min_a_in_rstar*star.radius*rsol_in_au)^3 / star.mass) # minimum semi-major axis of two stellar radii idx = idx[Plist[idx] .> min_P_orbit] if( length(idx)==0 ) return PlanetarySystem(star) end pl = Array{Planet}(length(idx)) orbit = Array{Orbit}(length(idx)) a = map(i->semimajor_axis(Plist[i],star.mass),idx) max_e = ones(length(idx)) max_e_factor = 0.999 # A factor just less than 1 to prevent numerical issues with near-crossing orbits if length(a)>=2 for i in 1:length(a) if i==1 max_e[i] = max_e_factor*(1-a[i]/a[i+1])/(1+a[i]/a[i+1]) elseif i==length(a) max_e[i] = max_e_factor*(1-a[i-1]/a[i])/(1+a[i-1]/a[i]) else max_e[i] = max_e_factor*min( (1-a[i]/a[i+1])/(1+a[i]/a[i+1]), (1-a[i-1]/a[i])/(1+a[i-1]/a[i]) ) end end end for i in 1:length(idx) # if verbose println("i=",i," idx=",idx," Plist=",Plist[idx] ); end P = Plist[idx[i]] Rpl = Rlist[idx[i]] (ecc::Float64, omega::Float64) = generate_e_omega(sim_param, max_e=max_e[i]) incl::Float64 = acos(rand()) orbit[i] = Orbit(P,ecc,incl,omega,2pi*rand(),2pi*rand()) mass::Float64 = generate_planet_mass_from_radius(Rpl, star, orbit[i], sim_param) pl[i] = Planet( Rpl, mass ) end return PlanetarySystem(star,pl,orbit) end end function generate_planetary_system_empty(star::StarAbstract, sim_param::SimParam; verbose::Bool = false) return PlanetarySystem(star)::PlanetarySystem end function generate_planetary_system_uncorrelated_incl(star::StarAbstract, sim_param::SimParam; verbose::Bool = false) # load functions to use for drawing parameters generate_planet_mass_from_radius = get_function(sim_param,"generate_planet_mass_from_radius") generate_num_planets = get_function(sim_param,"generate_num_planets") generate_period_and_sizes = get_function(sim_param,"generate_period_and_sizes") generate_e_omega = get_function(sim_param,"generate_e_omega") # generate_star = get_function(sim_param,"generate_star") # star::StarAbstract = generate_star(sim_param) num_pl::Int64 = generate_num_planets(star, sim_param)::Int64 sigma_ecc::Float64 = haskey(sim_param,"sigma_hk") ? get_real(sim_param,"sigma_hk") : 0.0 if( num_pl==0 ) return PlanetarySystem(star)::PlanetarySystem else (Plist::Vector{Float64}, Rlist::Vector{Float64}) = generate_period_and_sizes(star, sim_param, num_pl=num_pl) idx = sortperm(Plist) # TODO OPT: Check to see if sorting is significant time sink. If so, it might could be deferred min_a_in_rstar = 2.0 min_P_orbit = day_in_year*sqrt((min_a_in_rstar*star.radius*rsol_in_au)^3 / star.mass) # minimum semi-major axis of two stellar radii idx = idx[Plist[idx] .> min_P_orbit] if( length(idx)==0 ) return PlanetarySystem(star) end pl = Array{Planet}(undef,length(idx)) orbit = Array{Orbit}(undef,length(idx)) a = map(i->semimajor_axis(Plist[i],star.mass),idx) max_e = ones(length(idx)) max_e_factor = 0.999 # A factor just less than 1 to prevent numerical issues with near-crossing orbits if length(a)>=2 for i in 1:length(a) if i==1 max_e[i] = max_e_factor*(1-a[i]/a[i+1])/(1+a[i]/a[i+1]) elseif i==length(a) max_e[i] = max_e_factor*(1-a[i-1]/a[i])/(1+a[i-1]/a[i]) else max_e[i] = max_e_factor*min( (1-a[i]/a[i+1])/(1+a[i]/a[i+1]), (1-a[i-1]/a[i])/(1+a[i-1]/a[i]) ) end end end for i in 1:length(idx) # if verbose println("i=",i," idx=",idx," Plist=",Plist[idx] ); end P = Plist[idx[i]] Rpl = Rlist[idx[i]] if haskey(sim_param,"sigma_hk_one") && haskey(sim_param,"sigma_hk_multi") sigma_ecc = num_pl == 1 ? get_real(sim_param,"sigma_hk_one") : get_real(sim_param,"sigma_hk_multi") end (ecc::Float64, omega::Float64) = generate_e_omega(sim_param, max_e=max_e[i]) incl::Float64 = acos(rand()) orbit[i] = Orbit(P,ecc,incl,omega,2pi*rand(),2pi*rand()) # set!(orbit[idx[i]],P,ecc,incl,omega,2pi*rand(),2pi*rand()) mass::Float64 = generate_planet_mass_from_radius(Rpl, star, orbit[i], sim_param) pl[i] = Planet( Rpl, mass ) end return PlanetarySystem(star,pl,orbit) end end # This version generates more systems roughly near a common plane, but until incorporate CORBITS data, ABC can't match input param function generate_planetary_system_simple(star::StarAbstract, sim_param::SimParam; verbose::Bool = false) # load functions to use for drawing parameters generate_planet_mass_from_radius = get_function(sim_param,"generate_planet_mass_from_radius") generate_num_planets = get_function(sim_param,"generate_num_planets") # generate_num_planets = generate_num_planets_christiansen # generate_period_and_sizes = generate_period_and_sizes_christiansen generate_period_and_sizes = get_function(sim_param,"generate_period_and_sizes") generate_e_omega = get_function(sim_param,"generate_e_omega") sigma_incl = deg2rad(get_real(sim_param,"sigma_incl")) # generate_star = get_function(sim_param,"generate_star") # star::StarAbstract = generate_star(sim_param) num_pl = generate_num_planets(star, sim_param)::Int64 sigma_ecc::Float64 = haskey(sim_param,"sigma_hk") ? get_real(sim_param,"sigma_hk") : 0.0 if( num_pl==0 ) return PlanetarySystem(star) else (Plist::Vector{Float64}, Rlist::Vector{Float64}) = generate_period_and_sizes(star, sim_param, num_pl=num_pl) idx = sortperm(Plist) # TODO OPT: Check to see if sorting is significant time sink. If so, it might could be deferred incl_sys = acos(rand()) min_a_in_rstar = 2.0 min_P_orbit = day_in_year*sqrt((min_a_in_rstar*star.radius*rsol_in_au)^3 / star.mass) # minimum semi-major axis of two stellar radii idx = idx[Plist[idx] .> min_P_orbit] if( length(idx)==0 ) return PlanetarySystem(star) end pl = Array{Planet}(undef,length(idx)) orbit = Array{Orbit}(undef,length(idx)) for i in 1:length(idx) # if verbose println("i=",i," idx=",idx," Plist=",Plist[idx] ); end P = Plist[idx[i]] Rpl = Rlist[idx[i]] if haskey(sim_param,"sigma_hk_one") && haskey(sim_param,"sigma_hk_multi") sigma_ecc = num_pl == 1 ? get_real(sim_param,"sigma_hk_one") : get_real(sim_param,"sigma_hk_multi") end (ecc, omega) = generate_e_omega(sim_param)::Tuple{Float64,Float64} incl_mut = sigma_incl*sqrt(randn()^2+randn()^2) # rand(Distributions.Rayleigh(sigma_incl)) # sigma_incl*randn() asc_node = 2pi*rand() mean_anom = 2pi*rand() #incl = incl_sys + sigma_incl*randn() incl = incl_mut!=zero(incl_mut) ? acos( cos(incl_sys)*cos(incl_mut) + sin(incl_sys)*sin(incl_mut)*cos(asc_node) ) : incl_sys orbit[i] = Orbit(P,ecc,incl,omega,asc_node,mean_anom) mass = generate_planet_mass_from_radius(Rpl, star, orbit[i], sim_param)::Float64 pl[i] = Planet( Rpl, mass ) end return PlanetarySystem(star,pl,orbit) end end function test_planetary_system_constructors(sim_param::SimParam) generate_star = get_function(sim_param,"generate_star") star = generate_star(sim_param) empty_sys = PlanetarySystem(star) earth = Planet(earth_radius,earth_mass) earth_orbit = Orbit(365.2425,0.0167,0.5*pi,0.0,0.0,0.0) solar_sys = PlanetarySystem(star, earth,earth_orbit) m = generate_planet_mass_from_radius_powerlaw(0.02,star,earth_orbit,sim_param)/earth_mass generate_planetary_system_simple(star,sim_param,verbose=true) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
1539
## ExoplanetsSysSim/src/setup.jl ## (c) 2015 Eric B. Ford if VERSION >=v"0.7.0-" using Pkg #using Libdl end # How to install ExoplanetsSysSim package # Pkg.add(PackageSpec(url="[email protected]:eford/ExoplanetsSysSim.jl.git")) #= # Is this still needed, now that we've moved to github? # If so, this would need to be updated for Julia v0.7.0 # Since bitbucket messed up capitalization of package name if ! isdir( joinpath(Pkg.devdir(),"ExoplanetsSysSim") ) symlink( joinpath(Pkg.dir(),"exoplanetssyssim"), joinpath(Pkg.dir(),"ExoplanetsSysSim") ) end =# try Pkg.add(PackageSpec(url="[email protected]:eford/ABC.jl.git")) catch warn("Attempted to install ABC.jl package, but was not successful.") warn("While most of SysSim will still work, some functionality will not be avaliable unless you install ABC correctly.") end try Pkg.add(PackageSpec(url="[email protected]:jbrakensiek/CORBITS.git")) # Compile CORBITS library and put it somewhere we can find cd(joinpath(Pkg.devdir(),"CORBITS")) run(`make lib`) cd(homedir()) if !is_windows() symlink( joinpath(Pkg.devdir(),"CORBITS","libcorbits.so"), joinpath(Pkg.devdir(),"ExoplanetsSysSim","libcorbits.so") ) else cp( joinpath(Pkg.devdir(),"CORBITS","libcorbits.so"), joinpath(Pkg.devdir(),"ExoplanetsSysSim","libcorbits.so") ) end catch warn("Attempted to install CORBITS.jl package, but was not successful.") warn("While most of SysSim will still work, some functionality will not be avaliable unless you install CORBITS correctly.") end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
12338
## ExoplanetsSysSim.jl ## (c) 2015 Eric B. Ford module SimulationParameters import Compat: @compat #, readstring import LibGit2 using Pkg using ExoplanetsSysSim export SimParam, add_param_fixed, add_param_active, update_param, set_active, set_inactive, is_active export get_any, get_real, get_int, get_bool, get_function export make_vector_of_active_param_keys, make_vector_of_sim_param, get_range_for_sim_param, update_sim_param_from_vector! export setup_sim_param_demo, test_sim_param_constructors #export preallocate_memory! const global julia_version_pair = ("version_julia",string(VERSION)) function package_version_or_head(m::Module) try repo = LibGit2.GitRepo(dirname(pathof(m))) return head = LibGit2.headname(repo) catch #return Pkg.installed()[string(m)] @warn "Can't find headname of repo for " * string(m) end end function package_version_or_head(m::String) [(name=d.name,version=d.version) for d in values(Pkg.dependencies()) if d.is_direct_dep ] end function pkg_installed() collect(skipmissing(map(d->d.is_direct_dep ? (name=d.name,version=d.version) : missing,values(Pkg.dependencies())))) end mutable struct SimParam param::Dict{String,Any} active::Dict{String,Bool} end copy(p::SimParam) = SimParam(copy(p.param),copy(p.active)) """ SimParam(p::Dict{String,Any}) Creates a SimParam object from the dictionary p, with all parameter defaulting to inactive. """ function SimParam(p::Dict{String,Any}) # By default all parameters are set as inactive (i.e., not allowed to be optimized) a = Dict{String,Bool}() for k in keys(p) a[k] = false end return SimParam(p,a) end function SimParam() #d = Dict{String,Any}([julia_version_pair, ("Pkg.installed",Pkg.installed())]) d = Dict{String,Any}([julia_version_pair, ("Pkg.installed",pkg_installed())]) return SimParam(d) end "Update SimParam() to define current state at run time, and not precompile time" function __init__() """ SimParam() Creates a nearly empty SimParam object, with just the version id and potentially other information about the code, system, runtime, etc. """ function SimParam() #d = Dict{String,Any}([ julia_version_pair, ("hostname",gethostname()), ("time",time()), ("Pkg.installed",Pkg.installed()) ]) d = Dict{String,Any}([ julia_version_pair, ("hostname",gethostname()), ("time",time()), ("Pkg.installed",pkg_installed()) ]) SimParam(d) end end """ add_param_fixed(sim::SimParam, key::String,val::Any) Adds (or overwrites) key with value val to the SimParam object, sim, and sets the parameter set to inactive. """ function add_param_fixed(sim::SimParam, key::String,val::Any) sim.param[key] = val sim.active[key] = false end """ ### add_param_active(sim::SimParam, key::String,val::Any) Adds (or overwrites) key with value val to the SimParam object, sim, and sets the parameter set to active. """ function add_param_active(sim::SimParam, key::String,val::Any) sim.param[key] = val sim.active[key] = true end """ ### update_param(sim::SimParam, key::String,val::Any) Overwrites key with value val to the SimParam object, sim """ function update_param(sim::SimParam, key::String,val::Any) @assert haskey(sim.param,key) sim.param[key] = val end """ ### set_active(sim::SimParam, key::String) Sets the key parameter to be active in sim. """ function set_active(sim::SimParam,key::String) @assert haskey(sim.param,key) sim.active[key] = true end """ ### set_active(sim::SimParam, keys::Vector{String}) Sets each of the key parameters to be active in sim. """ function set_active(sim::SimParam,keys::Vector{String}) for k in keys set_active(sim,k) end end """ ### set_inactive(sim::SimParam, key::String) Sets the key parameter to be inactive in sim. """ function set_inactive(sim::SimParam,key::String) @assert haskey(sim.param,key) sim.active[key] = false end """ ### set_inactive(sim::SimParam, keys::Vector{String}) Sets each of the key parameters to be inactive in sim. """ function set_inactive(sim::SimParam,keys::Vector{String}) for k in keys set_inactive(sim,k) end end function is_active(sim::SimParam,key::String) @assert haskey(sim.active,key) sim.active[key] end import Base.get function get(sim::SimParam, key::String, default_val::T) where T val::T = get(sim.param,key,default_val)::T return val end function get_any(sim::SimParam, key::String, default_val::Any) val = get(sim.param,key,default_val) return val end function get_real(sim::SimParam, key::String) val::Float64 = get(sim.param,key,convert(Float64,NaN) )::Float64 @assert(val!=convert(Float64,NaN)) return val end function get_int(sim::SimParam, key::String) val::Int64 = get(sim.param,key,zero(Int64)) #@assert(val!=nan(zero(Int64))) #@assert(val!=oftype(x,NaN)) return val end function get_bool(sim::SimParam, key::String) val::Bool = get(sim.param,key,false) return val end function noop() end function get_function(sim::SimParam, key::String) val::Function = Base.get(sim.param,key,noop)::Function #val = Base.get(sim.param,key,null) @assert((val!=nothing) && (val!=noop)) return val::Function end import Base.haskey haskey(sim::SimParam, key::String) = return haskey(sim.param,key) function make_vector_of_active_param_keys(sim::SimParam) sortedkeys = sort(collect(keys(sim.param))) sortedkeys_active = sortedkeys[map(k->get(sim.active,k,false),sortedkeys)] return sortedkeys_active end function make_vector_of_sim_param(sim::SimParam) param_vector = Float64[] # QUERY: Currently we make separate vectors of Ints and Floats. Does this make sense? sss = sort(collect(keys(sim.param))) for k in 1:length(sss) if(sim.active[sss[k]]==false) continue end if(length(sim.param[sss[k]])==1) if isa( sim.param[sss[k]], Real ) push!(param_vector,sim.param[sss[k]]) elseif(eltype( sim.param[sss[k]]) <: Real) append!(param_vector,vec(sim.param[sss[k]])) end elseif(eltype( sim.param[sss[k]]) <: Real) append!(param_vector, vec(sim.param[sss[k]])) else if eltype( sss[k]) <: Real append!(param_vector,sim.param[sss[k]]) end end end return param_vector end function get_range_for_sim_param(key::String, sim::SimParam) sorted_keys = sort(collect(keys(sim.param))) i = 1 for k in 1:length(sorted_keys) if(sim.active[sorted_keys[k]]==false) continue end param_len = length(sim.param[sorted_keys[k]]) if sorted_keys[k]==key return i:(i+param_len) else #println("Didn't match >",sorted_keys[k],"< and >",key,"<.") i += param_len end end println("# ERROR: Never found range for param: ",key) return 0:0 end function update_sim_param_from_vector!(param::Vector{Float64}, sim::SimParam) #println("# Input vector: ",param) sorted_keys = sort(collect(keys(sim.param))) i = 1 for k in 1:length(sorted_keys) if(sim.active[sorted_keys[k]]==false) continue end param_len = length(sim.param[sorted_keys[k]]) if param_len==1 if isa( sim.param[sorted_keys[k]], Real ) # println("# Replacing >",sorted_keys[k],"< with >",param[i],"<") sim.param[sorted_keys[k]] = param[i] i = i+1 elseif eltype( sim.param[sorted_keys[k]]) <: Real # println("# Replacing >",sim.param[sorted_keys[k]],"< with >",reshape(param[i:i+param_len-1], size(sim.param[sorted_keys[k]]),"<") sim.param[sorted_keys[k]] = reshape(param[i:i+param_len-1], size(sim.param[sorted_keys[k]])) i = i+1 end elseif param_len>1 if eltype( sim.param[sorted_keys[k]]) <: Real # println("# Replacing >",sim.param[sorted_keys[k]],"< with >",reshape(param[i:i+param_len-1], size(sim.param[sorted_keys[k]])),"<") sim.param[sorted_keys[k]] = reshape(param[i:i+param_len-1], size(sim.param[sorted_keys[k]])) i = i+param_len end else println("# Don't know what to do with empty simulation parameter: ",sorted_keys[k]) end end return sim end function preallocate_memory!(sim_param::SimParam) num_kepler_targets = get_int(sim_param,"num_kepler_targets") add_param_fixed(sim_param,"mem_kepler_target_obs", Array{KeplerTargetObs}(num_kepler_targets) ) end function setup_sim_param_demo(args::Vector{String} = Array{String}(undef,0) ) # allow this to take a list of parameter (e.g., from command line) sim_param = SimParam() add_param_fixed(sim_param,"max_tranets_in_sys",7) add_param_fixed(sim_param,"num_targets_sim_pass_one",190000) # Note this is used for the number of stars in the simulations, not necessarily related to number of Kepler targets add_param_fixed(sim_param,"num_kepler_targets",190000) # Note this is used for the number of Kepler targets for the observational catalog add_param_fixed(sim_param,"generate_star",ExoplanetsSysSim.generate_star_dumb) #add_param_fixed(sim_param,"generate_planetary_system", ExoplanetsSysSim.generate_planetary_system_simple) add_param_fixed(sim_param,"generate_planetary_system", ExoplanetsSysSim.generate_planetary_system_uncorrelated_incl) # add_param_fixed(sim_param,"generate_kepler_target",ExoplanetsSysSim.generate_kepler_target_simple) add_param_fixed(sim_param,"generate_kepler_target",ExoplanetsSysSim.generate_kepler_target_from_table) add_param_fixed(sim_param,"star_table_setup",StellarTable.setup_star_table) add_param_fixed(sim_param,"stellar_catalog","q1q17_dr25_gaia_fgk.jld2") add_param_fixed(sim_param,"generate_num_planets",ExoplanetsSysSim.generate_num_planets_poisson) add_param_active(sim_param,"log_eta_pl",log(2.0)) add_param_fixed(sim_param,"generate_planet_mass_from_radius",ExoplanetsSysSim.generate_planet_mass_from_radius_powerlaw) add_param_fixed(sim_param,"vetting_efficiency",ExoplanetsSysSim.vetting_efficiency_none) add_param_fixed(sim_param,"mr_power_index",2.0) add_param_fixed(sim_param,"mr_const",1.0) #add_param_fixed(sim_param,"generate_period_and_sizes",ExoplanetsSysSim.generate_period_and_sizes_log_normal) #add_param_active(sim_param,"mean_log_planet_radius",log(2.0*earth_radius)) #add_param_active(sim_param,"sigma_log_planet_radius",log(2.0)) #add_param_active(sim_param,"mean_log_planet_period",log(5.0)) #add_param_active(sim_param,"sigma_log_planet_period",log(2.0)) add_param_fixed(sim_param,"generate_period_and_sizes", ExoplanetsSysSim.generate_period_and_sizes_power_law) add_param_active(sim_param,"power_law_P",0.3) add_param_active(sim_param,"power_law_r",-2.44) add_param_fixed(sim_param,"min_period",1.0) add_param_fixed(sim_param,"max_period",100.0) add_param_fixed(sim_param,"min_radius",0.5*ExoplanetsSysSim.earth_radius) add_param_fixed(sim_param,"max_radius",10.0*ExoplanetsSysSim.earth_radius) add_param_fixed(sim_param,"generate_e_omega",ExoplanetsSysSim.generate_e_omega_rayleigh) add_param_fixed(sim_param,"sigma_hk",0.03) add_param_fixed(sim_param,"sigma_incl",2.0) # degrees add_param_fixed(sim_param,"calc_target_obs_sky_ave",ExoplanetsSysSim.calc_target_obs_sky_ave) add_param_fixed(sim_param,"calc_target_obs_single_obs",ExoplanetsSysSim.calc_target_obs_single_obs) add_param_fixed(sim_param,"read_target_obs",ExoplanetsSysSim.simulated_read_kepler_observations) add_param_fixed(sim_param,"transit_noise_model",ExoplanetsSysSim.transit_noise_model_fixed_noise) # add_param_fixed(sim_param,"transit_noise_model",transit_noise_model_diagonal) # add_param_fixed(sim_param,"rng_seed",1234) # If you want to be able to reproduce simulations # Do other initialization tasks belong here or elsewhere? # TODO OPT: Try to preallocate memory for each target to see if this makes a performance difference # preallocate_memory!(sim_param) return sim_param end function test_sim_param_constructors() oldval = log(2.0) sim_param = SimParam( Dict([ julia_version_pair, ("num_kepler_targets",190000), ("log_eta_pl",oldval), ("max_tranets_in_sys",7)] ) ) get(sim_param,"version_julia","") set_active(sim_param,"log_eta_pl") sp_vec = make_vector_of_sim_param(sim_param) sp_vec .+= 0.1 update_sim_param_from_vector!(sp_vec,sim_param) newval = get_real(sim_param,"log_eta_pl") isapprox(oldval+0.1,newval,atol=0.001) end end #test_sim_param_constructors()
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
2707
## ExoplanetsSysSim/src/star.jl ## (c) 2015 Eric B. Ford #using Distributions @compat abstract type StarAbstract end # TODO OPT: Check does using StarAbstract cause a significant performance hit @compat abstract type SingleStarAbstract <: StarAbstract end struct Star{LimbDarkeningT<:LimbDarkeningParamAbstract} <: SingleStarAbstract radius::Float64 mass::Float64 flux::Float64 # relevant once have multiple stars in one target ld::LimbDarkeningT id::Int64 # id for looking up properties in stellar catalog end SingleStar = Star #= function SingleStar{LimbDarkeningT}(radius, mass, flux, ld::LimbDarkeningT, id::Int64) where {LimbDarkeningT<:LimbDarkeningParamAbstract} end =# struct BinaryStar{LDT1<:LimbDarkeningParamAbstract,LDT2<:LimbDarkeningParamAbstract} <: StarAbstract primary::Star{LDT1} secondary::Star{LDT2} orbit::Orbit end struct MultipleStar <: StarAbstract # Will we want to handle triple, quad systems? component::Vector{StarAbstract} orbit::Vector{Orbit} end flux(s::Star) = s.flux # Demo of how to specify function behavior that depends on the derived type flux(s::BinaryStar) = s.primary.flux + s.secondary.flux flux(s::MultipleStar) = sum( flux, s.component) mass(s::Star) = s.mass mass(s::BinaryStar) = s.primary.mass + s.secondary.mass mass(s::MultipleStar) = sum( mass, s.component)::Float64 function generate_stars(sim_param::SimParam) generate_star = get_function(sim_param,"generate_star") num_target_stars = get_int(sim_param,"num_targets_sim_pass_one") star_list = Array{StarAbstract}(undef,num_target_stars) for i in 1:num_target_stars s = generate_star(sim_param) star_list[i] = s #star_list[i] = generate_star(sim_param) end return star_list end function generate_star_dumb(sim_param::SimParam) r = rand(Uniform(0.8,1.3))::Float64 m = rand(Normal(r,0.1))::Float64 while m<0.0 m = rand(Normal(r,0.1))::Float64 end f = rand(Normal(1.0,0.1))::Float64 while f<0.0 f = 1.0+0.1*randn() end ld = LimbDarkeningParamQuadratic(0.4603,0.2291) # ld = LimbDarkeningParam4thOrder(0.,0.,0.,0.) # Equivalent to uniform surface brightness for testing return SingleStar(r,m,f,ld,0) end function test_star_constructors(sim_param::SimParam) star_tmp = generate_star_dumb(sim_param) f1 = flux(star_tmp) f2 = flux(BinaryStar(star_tmp,star_tmp,Orbit(10.0,0.0,0.0,0.0,0.0,0.0))) f4 = flux(MultipleStar([star_tmp for i in 1:4], [Orbit(10.0,0.0,0.0,0.0,0.0,0.0) for i in 1:4]) ) # println("# Fluxes: ", f1, " ", f2, " ", f4) star_list = generate_stars(sim_param) return true end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
4735
## ExoplanetsSysSim/src/stellar_table.jl ## (c) 2015 Eric B. Ford module StellarTable using ExoplanetsSysSim #using DataArrays using DataFrames using CSV #using JLD using JLD2 using FileIO #if VERSION >= v"0.5-" # import Compat: UTF8String, ASCIIString #end export setup_star_table, star_table, num_usable_in_star_table, set_star_table, star_table_has_key df = DataFrame() function setup(sim_param::SimParam; force_reread::Bool = false) global df wf = WindowFunction.setup_window_function(sim_param) WindowFunction.setup_OSD_interp(sim_param) #read in osd files so they can be interpolated if haskey(sim_param,"read_stellar_catalog") && !force_reread return df #return data end stellar_catalog_filename = convert(String,joinpath(dirname(pathof(ExoplanetsSysSim)), "..","data", convert(String,get(sim_param,"stellar_catalog","q1_q17_dr24_stellar.csv")) ) ) df = setup(stellar_catalog_filename) add_param_fixed(sim_param,"read_stellar_catalog",true) add_param_fixed(sim_param,"num_kepler_targets",num_usable_in_star_table()) return df end function setup(filename::String; force_reread::Bool = false) global df if occursin(r".jld2$",filename) || occursin(r".jld$",filename) #if occursin(r".jld$",filename) try data = load(filename) df = data["stellar_catalog"] Core.typeassert(df,DataFrame) catch error(string("# Failed to read stellar catalog >",filename,"< in jld2 format.")) end else try #df = readtable(filename) #df = CSV.read(filename,nullable=true) df = CSV.read(filename, allowmissing=:all) catch error(string("# Failed to read stellar catalog >",filename,"< in ascii format.")) end # See options at: http://exoplanetarchive.ipac.caltech.edu/docs/API_keplerstellar_columns.html # Now we read in all CDPP's, so can interpolate to transit duration symbols_to_keep = [ :kepid, :mass, :mass_err1, :mass_err2, :radius, :radius_err1, :radius_err2, :dens, :dens_err1, :dens_err2, :rrmscdpp01p5, :rrmscdpp02p0, :rrmscdpp02p5, :rrmscdpp03p0, :rrmscdpp03p5, :rrmscdpp04p5, :rrmscdpp05p0, :rrmscdpp06p0, :rrmscdpp07p5, :rrmscdpp09p0, :rrmscdpp10p5, :rrmscdpp12p0, :rrmscdpp12p5, :rrmscdpp15p0, :cdppslplong, :cdppslpshrt, :dataspan, :dutycycle, :limbdark_coeff1, :limbdark_coeff2, :limbdark_coeff3, :limbdark_coeff4 ] delete!(df, [~(x in symbols_to_keep) for x in names(df)]) # delete columns that we won't be using anyway is_usable = [ !any(ismissing.([ df[i,j] for j in 1:size(df,2) ])) for i in 1:size(df,1) ] usable = find(is_usable) df = df[usable, symbols_to_keep] end df[!,:wf_id] = map(x->ExoplanetsSysSim.WindowFunction.get_window_function_id(x,use_default_for_unknown=false),df[!,:kepid]) obs_5q = df[!,:wf_id].!=-1 #df = df[obs_5q,keys(df.colindex)] df = df[obs_5q,names(df)] StellarTable.set_star_table(df) return df end setup_star_table(sim_param::SimParam; force_reread::Bool = false) = setup(sim_param, force_reread=force_reread) setup_star_table(filename::String) = setup(filename) function num_usable_in_star_table() global df return size(df,1) end function star_table(i::Integer, sym::Symbol) global df return df[i,sym] end function star_table(i::Integer) global df return df[i,:] end function star_table(i::Integer, sym::Vector{Symbol}) global df return df[i,sym] end function star_table(i::Vector{Integer}, sym::Symbol) global df return df[i,sym] end function star_table(i::Vector{Integer}, sym::Vector{Symbol}) global df return df[i,sym] end function set_star_table(df2::DataFrame) global df df = df2 end function star_table_has_key(s::Symbol) global df hasproperty(df,s) end end # module StellarTable # using ExoplanetsSysSim.StellarTable #= function generate_star_from_table(sim_param::SimParam, id::Integer) # WARNING: To be renamed once there's a working/tested version that uses a stellar catalog with GAIA data mu_r = StellarTable.star_table(id,:radius) sig_r1 = StellarTable.star_table(id,:radius_err1) sig_r2 = StellarTable.star_table(id,:radius_err2) z = randn() r = mu_r + (z>0) ? z*sig_r1 : z*sig_r2 m = rand(Normal(r,0.1))::Float64 while m<0.0 m = rand(Normal(r,0.1))::Float64 end f = rand(Normal(1.0,0.1))::Float64 while f<0.0 f = 1.0+0.1*randn() end ld = LimbDarkeningParam4thOrder(StellarTable.star_table(id,:limbdark_coeff1), StellarTable.star_table(id,:limbdark_coeff2), StellarTable.star_table(id,:limbdark_coeff3), StellarTable.star_table(id,:limbdark_coeff4) ) return SingleStar(r,m,f,id,ld) #return SingleStar(r,m,f,id) end =# function generate_star_from_table(sim_param::SimParam) id = rand(1:StellarTable.num_usable_in_star_table()) generate_star_from_table(sim_param, id) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
9915
# ExoplanetsSysSim/src/summary_statistics.jl ## (c) 2015 Eric B. Ford using Statistics mutable struct CatalogSummaryStatistics stat::Dict{String,Any} # For storing summary statistics cache::Dict{String,Any} # For caching data that's not a summary statistic end function CatalogSummaryStatistics() # Constructor for empty CatalogSummaryStatistics objects for creating globals to be used by closure CatalogSummaryStatistics( Dict{String,Any}(), Dict{String,Any}() ) end function calc_summary_stats_sim_pass_one_demo(cat_obs::KeplerObsCatalog, cat_phys::KeplerPhysicalCatalog, param::SimParam ) # Version for simulated data, since includes cat_phys ssd = Dict{String,Any}() cache = Dict{String,Any}() max_tranets_in_sys = get_int(param,"max_tranets_in_sys") # Demo that simulation parameters can specify how to evalute models, too @assert max_tranets_in_sys >= 1 idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target)::Array{Int64,1} # Find indices of systems with at least 1 tranet = potentially detectable transiting planet # Count total number of tranets and compile indices for N-tranet systems num_tranets = 0 idx_n_tranets = Vector{Int64}[ Int64[] for m = 1:max_tranets_in_sys] for n in 1:max_tranets_in_sys-1 idx_n_tranets[n] = findall(x::KeplerTargetObs-> length(x.obs) == n, cat_obs.target[idx_tranets] ) num_tranets += n*length(idx_n_tranets[n]) end idx_n_tranets[max_tranets_in_sys] = findall(x::KeplerTargetObs-> length(x.obs) >= max_tranets_in_sys, cat_obs.target[idx_tranets] ) num_tranets += max_tranets_in_sys*length(idx_n_tranets[max_tranets_in_sys]) # WARNING: this means we need to ignore planets w/ indices > max_tranets_in_sys num_tranets = convert(Int64,num_tranets) # TODO OPT: Figure out why isn't this already an Int. I may be doing something that prevents some optimizations cache["num_tranets"] = num_tranets cache["idx_tranets"] = idx_tranets # We can save lists of indices to summary stats for pass 2, even though we won't use these for computing a distance or probability #cache["idx_n_tranets"] = idx_n_tranets expected_num_detect = 0.0 expected_num_sys_n_tranets = zeros(max_tranets_in_sys) for i in idx_tranets for j in 1:num_planets(cat_obs.target[i]) p_tr_and_det = prob_detect(cat_obs.target[i].prob_detect,j) # WARNING: Check why not using cat_phys here? expected_num_detect += p_tr_and_det end for k in 1:max_tranets_in_sys expected_num_sys_n_tranets[k] += prob_detect_n_planets(cat_obs.target[i].prob_detect,k) # WARNING: Check why not use cat_phys here? end end ssd["expected planets detected"] = expected_num_detect ssd["num_sys_tranets"] = expected_num_sys_n_tranets ssd["num targets"] = get_int(param,"num_targets_sim_pass_one") #println("expected planets = ",expected_num_detect,", num_sys_tranets = ",expected_num_sys_n_tranets,", num targets = ",ssd["num targets"]) # Arrays to store values for each tranet period_list = zeros(num_tranets) depth_list = zeros(num_tranets) weight_list = zeros(num_tranets) tr_id = 1 # tranet id for i in idx_tranets # For each target with at least one tranet targ = cat_obs.target[i] for j in 1:min(length(targ.obs),max_tranets_in_sys) # For each tranet around that target (but truncated if too many tranets in one system) #println("# i= ",i," j= ",j," tr_id= ",tr_id) period_list[tr_id] = targ.obs[j].period depth_list[tr_id] = targ.obs[j].depth # (s,p) = targ.phys_id[j] # ptr = calc_transit_prob_single(cat_phys.target[i],s,p) # WARNING: Could access physical catalog, rather than observed catalog, but obviously that's dangerous for observations. weight_list[tr_id] = prob_detect(cat_obs.target[i].prob_detect,j) tr_id += 1 end end ssd["P list"] = period_list # We can store whole lists, e.g., if we want to compute K-S distances ssd["depth list"] = depth_list ssd["weight list"] = weight_list idx_good = Bool[ period_list[i]>0.0 && depth_list[i]>0.0 && weight_list[i]>0.0 for i in 1:length(period_list) ] log_period_list = log10.(period_list[idx_good]) log_depth_list = log10.(depth_list[idx_good]) weight_list = weight_list[idx_good] weight_sum = sum(weight_list) ssd["mean log10 P"] = mean_log_P = sum( weight_list .* log_period_list) / weight_sum # TODO TEST: Check that these four weighted mean and stddevs are working properly ssd["std log10 P"] = sum( weight_list .* (log_period_list.-mean_log_P).^2 ) / weight_sum ssd["mean log10 depth"] = mean_log_depth = sum( weight_list .* log_depth_list) / weight_sum ssd["std log10 depth"] = sum( weight_list .* (log_depth_list.-mean_log_depth).^2 ) / weight_sum return CatalogSummaryStatistics(ssd, cache) end function calc_summary_stats_obs_demo(cat_obs::KeplerObsCatalog, param::SimParam ) # Version for observed data, thus no use of cat_phys ssd = Dict{String,Any}() cache = Dict{String,Any}() max_tranets_in_sys = get_int(param,"max_tranets_in_sys") # Demo that simulation parameters can specify how to evalute models, too idx_tranets = findall(x::KeplerTargetObs-> length(x.obs) > 0, cat_obs.target) # Find indices of systems with at least 1 tranet = potentially detectable transiting planet # Count total number of tranets and compile indices for N-tranet systems num_tranets = 0 idx_n_tranets = Vector{Int64}[ [] for m = 1:max_tranets_in_sys] for n in 1:max_tranets_in_sys-1 idx_n_tranets[n] = findall(x::KeplerTargetObs-> length(x.obs) == n, cat_obs.target[idx_tranets] ) num_tranets += n*length(idx_n_tranets[n]) end idx_n_tranets[max_tranets_in_sys] = findall(x::KeplerTargetObs-> length(x.obs) >= max_tranets_in_sys, cat_obs.target[idx_tranets] ) num_tranets += max_tranets_in_sys*length(idx_n_tranets[max_tranets_in_sys]) # WARNING: this means we need to ignore planets w/ indices > max_tranets_in_sys if ( length( findall(x::KeplerTargetObs-> length(x.obs) > max_tranets_in_sys, cat_obs.target[idx_tranets] ) ) > 0) # Make sure max_tranets_in_sys is at least big enough for observed systems warn("Observational data has more transiting planets in one systems than max_tranets_in_sys allows.") end num_tranets = Int64(num_tranets) # TODO OPT: Figure out why isn't this already an Int. I may be doing something that prevents some optimizations #println("# num_tranets= ",num_tranets) # QUERY: Is there any reason to cache anything for the real observations? We only need to do this once, so might as well use one pass to simplicity. #cache["num_tranets"] = num_tranets #cache["idx_tranets"] = idx_tranets # We can save lists of indices to summary stats for pass 2, even though we won't use these for computing a distance or probability cache["idx_n_tranets"] = idx_n_tranets ssd["planets detected"] = num_tranets # WARNING: Note that we'll comparing two different things for simulated and real data during pass 1 (expected planets detected) num_sys_tranets = zeros(max_tranets_in_sys) # Since observed data, don't need to calculate probabilities. for n in 1:max_tranets_in_sys # Make histogram of N-tranet systems num_sys_tranets[n] = length(idx_n_tranets[n]) end ssd["num_sys_tranets"] = num_sys_tranets ssd["num targets"] = get_int(param,"num_kepler_targets") # Arrays to store values for each tranet period_list = zeros(num_tranets) depth_list = zeros(num_tranets) weight_list = ones(num_tranets) i = 1 # tranet id for targ in cat_obs.target[idx_tranets] # For each target with at least one tranet for j in 1:min(length(targ.obs),max_tranets_in_sys) # For each tranet around that target (but truncated if too many tranets in one system) #println("# i= ",i," j= ",j) period_list[i] = targ.obs[j].period depth_list[i] = targ.obs[j].depth #weight_list[i] = 1.0 i = i+1 end end ssd["P list"] = period_list # We can store whole lists, e.g., if we want to compute K-S distances ssd["depth list"] = depth_list ssd["weight list"] = weight_list idx_good = Bool[ period_list[i]>0.0 && depth_list[i]>0.0 for i in 1:length(period_list) ] log_period_list = log10.(period_list[idx_good]) log_depth_list = log10.(depth_list[idx_good]) ssd["mean log10 P"] = mean_log_P = mean(log_period_list) ssd["mean log10 depth"] = mean_log_depth = mean(log_depth_list) ssd["std log10 P"] = stdm(log_period_list,mean_log_P) ssd["std log10 depth"] = stdm(log_depth_list,mean_log_depth) return CatalogSummaryStatistics(ssd, cache) end # Just returns summary statistics passed, but provides a demo/hook for computing more expensive summary statistics if a model is good enouguh to be worth the extra time. function calc_summary_stats_sim_pass_two_demo(cat_obs::KeplerObsCatalog, cat_phys::KeplerPhysicalCatalog, ss::CatalogSummaryStatistics, param::SimParam ) return ss end function test_summary_statistics(cat_obs::KeplerObsCatalog, cat_phys::KeplerPhysicalCatalog, sim_param::SimParam) ss = calc_summary_stats_sim_pass_one_demo(cat_obs,cat_phys,sim_param) #println("len (ss pass 1)= ",length(collect(keys(ss1.stat)))) ss = calc_summary_stats_sim_pass_two_demo(cat_obs,cat_phys,ss,sim_param) #println("len (ss pass 1)= ",length(collect(keys(ss1.stat))), "... len (ss pass 2)= ",length(collect(keys(ss2.stat))) ) ss = calc_summary_stats_obs_demo(cat_obs,sim_param) # So tests can compare to simulated observed catalog return ss end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
7427
## ExoplanetsSysSim/src/target.jl ## (c) 2015 Eric B. Ford #using Distributions struct KeplerTarget #sys::PlanetarySystem # Make array for planetary systems aroud multiple stars in one target? sys::Vector{PlanetarySystemAbstract} cdpp::Array{Float64,2} # fractional, not ppm; 2D to allow for multiple time scales, months, quarters or seasons/spacecraft rotation angles # QUERY: Do we want a separate CDPP for SC? Or will CDPP's in different months be for LC/SC depending on this variable? # QUERY: Should this be moved to KeplerTargetObs? # QUERY: Should we not add this to target and use the star id to lookup CDPP from the stellar table? contam::Float64 # QUERY: Do we want/need this, since we're able to generate multiple stars in a single target? data_span::Float64 duty_cycle::Float64 window_function_id::Int64 # Points to the id of the window function for this target #channel::Int64 # E.g., if we cared which Kepler channel the target fell on #has_sc::Vector{Bool} # TODO OPT: Make Immutable Vector or BitArray for speed? QUERY: Should this go in KeplerTargetObs? # # QUERY: Do we want a separate CDPP for SC? Or will CDPP's in different months be for LC/SC depending on this variable? #ra::Float64 # E.g., if we cared about position on sky QUERY: Should we replace with galactic longitude and latitute? #dec::Floa64 # end num_planets(t::KeplerTarget) = sum( num_planets, t.sys) flux(t::KeplerTarget) = sum(flux,t.sys)+t.contam star_table(t::KeplerTarget, sym::Symbol) = StellarTable.star_table(t.sys[1].star.id,sym) function draw_asymmetric_normal(mu::Real, sig_plus::Real, sig_minus::Real; rn = randn() ) @assert sig_minus >= zero(sig_minus) mu + ( (stdn>=zero(stdn)) ? sig_plus*rn : sig_minus*rn ) end function make_cdpp_array_empty(star_id::Integer) cdpp_arr = Array{Float64,2}(undef,0,0) end function make_cdpp_array(star_id::Integer) star_table(id::Integer,sym::Symbol) = StellarTable.star_table(id,sym)::Float64 cdpp_arr = (1.0e-6*sqrt(1.0/24.0/LC_duration)) .* Float64[star_table(star_id, :rrmscdpp01p5)*sqrt(1.5), star_table(star_id, :rrmscdpp02p0)*sqrt(2.), star_table(star_id,:rrmscdpp02p5)*sqrt(2.5), star_table(star_id,:rrmscdpp03p0)*sqrt(3.), star_table(star_id,:rrmscdpp03p5)*sqrt(3.5), star_table(star_id,:rrmscdpp04p5)*sqrt(4.5), star_table(star_id,:rrmscdpp05p0)*sqrt(5.), star_table(star_id,:rrmscdpp06p0)*sqrt(6.), star_table(star_id,:rrmscdpp07p5)*sqrt(7.5), star_table(star_id,:rrmscdpp09p0)*sqrt(9.), star_table(star_id,:rrmscdpp10p5)*sqrt(10.5), star_table(star_id,:rrmscdpp12p0)*sqrt(12.), star_table(star_id,:rrmscdpp12p5)*sqrt(12.5), star_table(star_id,:rrmscdpp15p0)*sqrt(15.)] end function generate_kepler_target_from_table(sim_param::SimParam) # generate_star = get_function(sim_param,"generate_star") generate_planetary_system = get_function(sim_param,"generate_planetary_system") max_draws_star_properties = 20 min_star_radius = 0.5 min_star_mass = 0.5 max_star_radius = 2.0 max_star_mass = 2.0 max_star_density = 1000.0 use_star_table_sigmas = true min_frac_rad_sigma = 0.06 max_star_id = StellarTable.num_usable_in_star_table() star_table(id::Integer,sym::Symbol) = StellarTable.star_table(id,sym) @assert(1<=max_star_id) star_id = rand(1:max_star_id) mass = 0.0 dens = 0.0 radius = 0.0 #if use_star_table_sigmas if get(sim_param,"use_star_table_sigmas",false) attmpt_num = 0 while (!(min_star_radius<radius<max_star_radius)) || (!(min_star_mass<mass<max_star_mass))# || (!(0.0<dens<max_star_density)) if attmpt_num >= max_draws_star_properties star_id = rand(1:max_star_id) attmpt_num = 0 end rad_errp = max(star_table(star_id,:radius_err1), min_frac_rad_sigma*star_table(star_id,:radius)) rad_errn = max(abs(star_table(star_id,:radius_err2)), min_frac_rad_sigma*star_table(star_id,:radius)) rn = randn() radius = draw_asymmetric_normal( star_table(star_id,:radius), rad_errp, rad_errn, rn=rn) mass = draw_asymmetric_normal( star_table(star_id,:mass), star_table(star_id,:mass_err1), abs(star_table(star_id,:mass_err2)), rn=rn ) #dens = draw_asymmetric_normal( star_table(star_id,:dens), star_table(star_id,:dens_err1), abs(star_table(star_id,:dens_err2)) ) attmpt_num += 1 end # # ZAMS mass-radius relation taken from 15.1.1 of Allen's Astrophysical Quantities (2002) # if radius > 1.227 # mass = 10^((log10(radius)-0.011)/0.64) # else # mass = 10^((log10(radius)+0.02)/0.917) # end dens = (mass*sun_mass_in_kg_IAU2010*1000.)/(4//3*pi*(radius*sun_radius_in_m_IAU2015*100.)^3) # Self-consistent density (gm/cm^3) else radius = star_table(star_id,:radius) mass = star_table(star_id,:mass) #dens = star_table(star_id,:dens) dens = (mass*sun_mass_in_kg_IAU2010*1000.)/(4//3*pi*(radius*sun_radius_in_m_IAU2015*100.)^3) # Self-consistent density (gm/cm^3) end ld = LimbDarkeningParam4thOrder(star_table(star_id,:limbdark_coeff1), star_table(star_id,:limbdark_coeff2), star_table(star_id,:limbdark_coeff3), star_table(star_id,:limbdark_coeff4) ) star = SingleStar(radius,mass,1.0,ld,star_id) # TODO SCI: Allow for blends, binaries, etc. #cdpp_arr = make_cdpp_array(star_id) cdpp_arr = make_cdpp_array_empty(star_id) # Note: Now leaving this field empty out and looking up each time via interpolate_cdpp_to_duration_lookup_cdpp instead of interpolate_cdpp_to_duration_use_target_cdpp contam = star_table(star_id, :contam) data_span = star_table(star_id, :dataspan) duty_cycle = star_table(star_id, :dutycycle) if StellarTable.star_table_has_key(:wf_id) wf_id = star_table(star_id,:wf_id) else wf_id = WindowFunction.get_window_function_id(star_table(star_id,:kepid)) end # ch = rand(DiscreteUniform(1,84)) # Removed channel in favor of window function id ps = generate_planetary_system(star, sim_param) return KeplerTarget([ps],repeat(cdpp_arr, outer=[1,1]),contam,data_span,duty_cycle,wf_id) end function generate_kepler_target_simple(sim_param::SimParam) generate_star = get_function(sim_param,"generate_star") generate_planetary_system = get_function(sim_param,"generate_planetary_system") star::StarAbstract = generate_star(sim_param) mean_log_cdpp = 4.9759601617565465 # mean frmo star table stddev_log_cdpp = 0.6704860437536709 # std dev from star table rrmscdpp_5hr = exp(mean_log_cdpp+stddev_log_cdpp*randn()) cdpp_5hr = 1.0e-6 * rrmscdpp_5hr * sqrt(5.0/24.0 / LC_duration ) contam = 0.0 # rand(LogNormal(1.0e-3,1.0)) # TODO SCI: Come up with better description of Kepler targets, maybe draw from real contaminations wf_id = 0 # ch = rand(DiscreteUniform(1,84)) # Removed channel in favor of window function id ps = generate_planetary_system(star, sim_param) return KeplerTarget(PlanetarySystemAbstract[ps],fill(cdpp_5hr,num_cdpp_timescales,num_quarters),contam,mission_data_span,mission_duty_cycle,0) end function test_target(sim_param::SimParam) generate_kepler_target_simple(sim_param) StellarTable.setup_star_table(sim_param) generate_kepler_target_from_table(sim_param) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
38152
## ExoplanetsSysSim/src/transit_detection_model.jl ## (c) 2015 Eric B. Ford # Several functions below based on https://github.com/christopherburke/KeplerPORTs/blob/master/KeplerPORTs_utils.py # That follows the procedure outlined in Burke et al.(2015). # However we don't currently interpolate the mesthreshold to the relevant duration import SpecialFunctions.lgamma function real_log_choose(m::Float64, n::Float64)::Float64 lgamma(m+1)-lgamma(n+1)-lgamma(m-n+1.0) end function real_binom(k::Float64, BigM::Float64, f::Float64)::Float64 F1 = real_log_choose(BigM,k) F2 = k*log(f) F3 = (BigM-k)*log(1.0-f) x = exp(F1+F2+F3) return x end """ kepler_window_function_binomial_model(exp_num_transits_no_gaps, duty_cycle; min_transits = 3.0) Binomial window function model for use with Kepler taken from Burke et al. (2015). # Arguments: - `exp_num_transits_no_gaps::Float64`: Expected number of transits assuming no gaps in the observation - `duty_cycle::Float64`: Kepler duty cycle (i.e. fraction of observation time with usable data) - `min_transits::Float64 = 3.0`: Minimum number of observed transits required for consideration as planet candidate # Returns: Probability of detecting at least min_transits given the provided properties of the Kepler target star and planet. """ function kepler_window_function_binomial_model(exp_num_transits_no_gaps::Float64, duty_cycle::Float64; min_transits::Float64 = 3.0)::Float64 if exp_num_transits_no_gaps < min_transits return 0.0 else return max(1.0 - real_binom(min_transits,exp_num_transits_no_gaps,duty_cycle), 0.0) end end """ kepler_window_function_binomial_model(t, exp_num_transits_no_gaps, period, duration; min_transits = 3.0) Binomial window function model for use with Kepler taken from Burke et al. (2015). # Arguments: - `t::KeplerTarget`: Kepler target object - `exp_num_transits_no_gaps::Float64`: Expected number of transits assuming no gaps in the observation - `period::Float64`: Orbital period of planet (in days) - `duration::Float64`: Transit duration of planet (in days) - `min_transits::Float64 = 3.0`: Minimum number of observed transits required for consideration as planet candidate # Returns: Probability of detecting at least min_transits given the provided properties of the Kepler target star and planet. """ function kepler_window_function_binomial_model(t::KeplerTarget, exp_num_transits_no_gaps::Float64, period::Float64, duration::Float64; min_transits::Float64 = 3.0)::Float64 kepler_window_function_binomial_model(exp_num_transits_no_gaps, t.duty_cycle, min_transits=min_transits) end """ kepler_window_function_dr25_model(t, exp_num_transits_no_gaps, period, duration) Window function model for use with Kepler that were fit per target for DR25 (see KSCI-19101-002). # Arguments: - `t::KeplerTarget`: Kepler target object - `exp_num_transits_no_gaps::Float64`: Expected number of transits assuming no gaps in the observation - `period::Float64`: Orbital period of planet (in days) - `duration::Float64`: Transit duration of planet (in days) # Returns: Probability of detecting at least 3 transits given the provided properties of the Kepler target star and planet. """ function kepler_window_function_dr25_model(t::KeplerTarget, exp_num_transits_no_gaps::Float64, period::Float64, duration::Float64)::Float64 ExoplanetsSysSim.WindowFunction.eval_window_function(t.window_function_id, Duration=duration, Period=period) end # WARNING: Hard-coded function variable for computational efficiency, # replace with appropriate window function model. #kepler_window_function = kepler_window_function_binomial_model kepler_window_function = kepler_window_function_dr25_model """ frac_depth_to_tps_depth(frac_depth) Converts fractional transit depth to depth used by Kepler Transiting Planet Search (TPS) module. (See Christiansen et al. (2015)) NOTE: This assumes a linear limbdarkening coefficient of 0.6 # Arguments: - `frac_depth::Float64`: Fractional transit depth of planet at transit center. # Returns: Kepler TPS depth. """ function frac_depth_to_tps_depth(frac_depth::Float64) alp = 1.0874 bet = 1.0187 REALDEPTH2TPSSQUARE = 1.0 # WARNING: Waiting for this to be confirmed k = sqrt(frac_depth) tps_depth = min( (alp-bet*k) * frac_depth* REALDEPTH2TPSSQUARE, 1.0) # NOTE: I added the max based on common sense return tps_depth::Float64 end """ detection_efficiency_theory(mes, expected_num_transits; min_pdet_nonzero = 0.0) Detection efficiency model assuming perfect theoretical 7.1-sigma error function response. # Arguments: - `mes::Float64`: Estimated multiple event statistic (or signal-to-noise ratio) for planet - `expected_num_transits::Float64`: Expected number of planet transits (assuming no observation gaps) - `min_pdet_nonzero::Float64 = 0.0`: Minimum probability of detection (if transiting) to be treated as identifiable # Results: Probability of detection (if transiting) for planet """ function detection_efficiency_theory(mes::Float64, expected_num_transits::Float64; min_pdet_nonzero::Float64 = 0.0) muoffset = 0.0 sig = 1.0 mesthresh = 7.1 mes *= 1.003 if mes > (9.0 - mesthresh - muoffset) return 1.0 else pdet = 0.5 + 0.5*erf((mes - mesthresh - muoffset) / sqrt(2.0*sig*sig)) pdet = pdet >= min_pdet_nonzero ? pdet : 0.0 return pdet end end """ detection_efficiency_fressin2013(mes, expected_num_transits) Detection efficiency model using the linear ramp from Fressin (2013). # Arguments: - `mes::Float64`: Estimated multiple event statistic (or signal-to-noise ratio) for planet - `expected_num_transits::Float64`: Expected number of planet transits (assuming no observation gaps) # Results: Probability of detection (if transiting) for planet """ function detection_efficiency_fressin2013(mes::Float64, expected_num_transits::Float64) mesmin = 6.0 mesmax = 16.0 if mes <= mesmin return 0.0 elseif mes >= mesmax return 1.0 else return (mes - mesmin) / (mesmax - mesmin) end end """ detection_efficiency_christiansen2015(mes, expected_num_transits; mes_threshold = 7.1, min_pdet_nonzero = 0.0) Detection efficiency model using a Gamma function taken from Christiansen (2015). # Arguments: - `mes::Float64`: Estimated multiple event statistic (or signal-to-noise ratio) for planet - `expected_num_transits::Float64`: Expected number of planet transits (assuming no observation gaps) - `mes_threshold::Float64 = 7.1`: Minimum multiple event statistic value for signal to have been considered a potential planet candidate signal - `min_pdet_nonzero::Float64 = 0.0`: Minimum probability of detection (if transiting) to be treated as identifiable # Results: Probability of detection (if transiting) for planet """ function detection_efficiency_christiansen2015(mes::Float64, expected_num_transits::Float64; mes_threshold::Float64 = 7.1, min_pdet_nonzero::Float64 = 0.0) a = 4.65 # from code for detection_efficiency(...) at https://github.com/christopherburke/KeplerPORTs/blob/master/KeplerPORTs_utils.py # b = 1.05 # a = 4.35 # from arxiv abstract. Informal testing showed it didn't matter b = 0.98 mes *= 1.003 usemes = max(0.0,mes - 7.1 - (mes_threshold - 7.1)) pdet = cdf(Gamma(a,b), usemes) pdet = pdet >= min_pdet_nonzero ? pdet : 0.0 return pdet end """ detection_efficiency_dr25_simple(mes, expected_num_transits; min_pdet_nonzero = 0.0) Detection efficiency model using a Gamma function fit over a FGK sample of DR25 targets, taken from KSCI-19110-001. # Arguments: - `mes::Float64`: Estimated multiple event statistic (or signal-to-noise ratio) for planet - `expected_num_transits::Float64`: Expected number of planet transits (assuming no observation gaps) - `min_pdet_nonzero::Float64 = 0.0`: Minimum probability of detection (if transiting) to be treated as identifiable # Results: Probability of detection (if transiting) for planet """ function detection_efficiency_dr25_simple(mes::Float64, expected_num_transits::Float64; min_pdet_nonzero::Float64 = 0.0)::Float64 a = 30.87 # from pg 16 of https://exoplanetarchive.ipac.caltech.edu/docs/KSCI-19110-001.pdf b = 0.271 c = 0.940 mes *= 1.003 dist = Gamma(a,b) pdet::Float64 = c*cdf(dist, mes)::Float64 pdet = pdet >= min_pdet_nonzero ? pdet : 0.0 return pdet end """ get_param_for_detection_and_vetting_efficiency_depending_on_num_transits(num_tr) Determine appropriate parameters to use in Gamma function model for detection efficiency and vetting of Kepler planet candidates. Fit using the simulated transit injection tests on Kepler DR25 targets. # Arguments: - `num_tr::Integer`: (Expected) number of observed transits for planet # Returns: alpha, beta, and C, the three parameters to be used for the Gamma detection efficiency function """ function get_param_for_detection_and_vetting_efficiency_depending_on_num_transits(num_tr::Integer) if num_tr <= 3 return (33.3884, 0.264472, 0.699093) elseif num_tr <= 4 return (32.886, 0.269577, 0.768366) elseif num_tr <= 5 return (31.5196, 0.282741, 0.833673) elseif num_tr <= 6 return (30.9919, 0.286979, 0.859865) elseif num_tr <= 9 return (30.1906, 0.294688, 0.875042) elseif num_tr <= 18 return (31.6342, 0.279425, 0.886144) elseif num_tr <= 36 return (32.6448, 0.268898, 0.889724) else return (27.8185, 0.32432, 0.945075) end end """ detection_and_vetting_efficiency_model_v1(mes, expected_num_transits; min_pdet_nonzero = 0.0) Detection efficiency model using a Gamma function whose parameters were determined using a fit over the simulated transit injection tests of a sample of FGK DR25 targets (see Hsu et al. (2019)). # WARNING: Combined detection and vetting efficiency model - do NOT include additional vetting efficiency # Arguments: - `mes::Float64`: Estimated multiple event statistic (or signal-to-noise ratio) for planet - `expected_num_transits::Float64`: Expected number of planet transits (assuming no observation gaps) - `min_pdet_nonzero::Float64 = 0.0`: Minimum probability of detection (if transiting) to be treated as identifiable # Returns: Probability of detection (if transiting) for planet """ function detection_and_vetting_efficiency_model_v1(mes::Float64, expected_num_transits::Float64; min_pdet_nonzero::Float64 = 0.0)::Float64 mes *= 1.003 num_transit_int = convert(Int64,floor(expected_num_transits)) num_transit_int += rand() < expected_num_transits-num_transit_int ? 1 : 0 a, b, c = get_param_for_detection_and_vetting_efficiency_depending_on_num_transits(num_transit_int) dist = Gamma(a,b) pdet::Float64 = c*cdf(dist, mes)::Float64 pdet = pdet >= min_pdet_nonzero ? pdet : 0.0 return pdet end # WARNING: Hardcoded choice of transit detection efficiency here for speed and so as to not have it hardcoded in multiple places #detection_efficiency_model = detection_efficiency_christiansen2015 # detection_efficiency_model = detection_efficiency_dr25_simple detection_efficiency_model = detection_and_vetting_efficiency_model_v1 """ vetting_efficiency_none(R_p, P) Vetting efficiency model assuming all identified planet candidate signals are true positives # Arguments: - `R_p::Real`: Planet radius - `P::Real`: Planet orbital period # Returns: 1 """ function vetting_efficiency_none(R_p::Real, P::Real) return 1.0 end """ vetting_efficiency_dr25_mulders(R_p, P) Vetting efficiency model from Mulders et al. (2018) using parameters fit for Gaia DR2 stellar properties applied to Kepler DR25 targets independent of reliability score (through e-mail communication). # Arguments: - `R_p::Real`: Planet radius (in R_sol) - `P::Real`: Planet orbital period (in days) # Returns: Probability of planet with given properties to be vetted as a planet candidate. """ function vetting_efficiency_dr25_mulders(R_p::Real, P::Real) c = 0.93 a_R = -0.03 P_break = 205. a_P = 0.00 b_P = -0.24 pvet = c*(R_p/earth_radius)^a_R if P < P_break pvet *= (P/P_break)^a_P else pvet *= (P/P_break)^b_P end return pvet end """ vetting_efficiency_dr25_mulders_score_cut(R_p, P) Vetting efficiency model from Mulders et al. (2018) using parameters fit for Gaia DR2 stellar properties applied to Kepler DR25 targets selected via reliability score (arXiv 1805.08211). # Arguments: - `R_p::Real`: Planet radius (in R_sol) - `P::Real`: Planet orbital period (in days) # Returns: Probability of planet with given properties to be vetted as a planet candidate. """ function vetting_efficiency_dr25_mulders_score_cut(R_p::Real, P::Real) c = 0.63 a_R = 0.19 P_break = 53. a_P = -0.07 b_P = -0.39 pvet = c*(R_p/earth_radius)^a_R if P < P_break pvet *= (P/P_break)^a_P else pvet *= (P/P_break)^b_P end return pvet end # WARNING: Hardcoded choice of planet vetting efficiency here for speed and so as to not have it hardcoded in multiple places vetting_efficiency = vetting_efficiency_none """ interpolate_cdpp_to_duration_use_target_cdpp(t, duration) Linearly interpolated CDPP using list of provided CDPP at different transit durations stored in Kepler target object (DEPRECATED). # Arguments: - `t::KeplerTarget`: Kepler target object - `duration::Float64`: Transit duration (in days) # Results: Estimated CDPP at given transit duration for Kepler target. """ function interpolate_cdpp_to_duration_use_target_cdpp(t::KeplerTarget, duration::Float64)::Float64 duration_in_hours = duration *24.0 dur_idx = searchsortedlast(cdpp_durations,duration_in_hours) # cdpp_durations is defined in constants.jl if dur_idx <= 0 cdpp = t.cdpp[1,1] elseif dur_idx==length(cdpp_durations) && (duration_in_hours >= cdpp_durations[end]) # Should be 15 cdpp_durations. cdpp = t.cdpp[length(cdpp_durations),1] else w = ((duration_in_hours)-cdpp_durations[dur_idx]) / (cdpp_durations[dur_idx+1]-cdpp_durations[dur_idx]) cdpp = w*t.cdpp[dur_idx+1,1] + (1-w)*t.cdpp[dur_idx,1] end return cdpp end """ interpolate_cdpp_to_duration_lookup_cdpp(t, duration) Linearly interpolated CDPP using list of provided CDPP at different transit durations stored in stellar catalog dataframe. # Arguments: - `t::KeplerTarget`: Kepler target object - `duration::Float64`: Transit duration (in days) # Results: Estimated CDPP at given transit duration for Kepler target. """ function interpolate_cdpp_to_duration_lookup_cdpp(t::KeplerTarget, duration::Float64)::Float64 duration_in_hours = duration *24.0 dur_idx = searchsortedlast(cdpp_durations,duration_in_hours) # cdpp_durations is defined in constants.jl get_cdpp(i::Integer) = 1.0e-6*sqrt(cdpp_durations[i]/24.0/LC_duration)*star_table(t,duration_symbols[i]) if dur_idx <= 0 cdpp = get_cdpp(1) elseif dur_idx==length(cdpp_durations) && (duration_in_hours >= cdpp_durations[end]) # Should be 15 cdpp_durations. cdpp = get_cdpp(length(cdpp_durations)) else w = ((duration_in_hours)-cdpp_durations[dur_idx]) / (cdpp_durations[dur_idx+1]-cdpp_durations[dur_idx]) cdpp = w*get_cdpp(dur_idx+1) + (1-w)*get_cdpp(dur_idx) end return cdpp end #interpolate_cdpp_to_duration = interpolate_cdpp_to_duration_use_target_cdpp interpolate_cdpp_to_duration = interpolate_cdpp_to_duration_lookup_cdpp """ calc_snr_if_transit_cdpp(t, depth, duration, cdpp, sim_param; num_transit = 1) Calculate the expected multiple event statistic (signal-to-noise ratio) for planet around Kepler target star using CDPP. # Arguments: - `t::KeplerTarget`: Kepler target object - `depth::Float64`: (Fractional) transit depth - `duration::Float64`: Transit duration (in days) - `cdpp::Float64`: CDPP for target star given transit duration - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: (Expected) multiple event statistic (signal-to-noise ratio) """ function calc_snr_if_transit_cdpp(t::KeplerTarget, depth::Float64, duration::Float64, cdpp::Float64, sim_param::SimParam; num_transit::Float64 = 1) # depth_tps = frac_depth_to_tps_depth(depth) # TODO SCI: WARNING: Hardcoded this conversion. Remove once depth calculated using limb darkening model # snr = depth_tps*sqrt(num_transit*duration*LC_rate)/cdpp # WARNING: Assumes measurement uncertainties are uncorrelated & CDPP based on LC snr = depth*sqrt(num_transit*duration*LC_rate)/cdpp # WARNING: Assumes measurement uncertainties are uncorrelated & CDPP based on LC end """ calc_snr_if_transit(t, depth, duration, osd, sim_param; num_transit = 1) Calculate the expected multiple event statistic (signal-to-noise ratio) for planet around Kepler target star using 1-sigma depth function (OSD). # NOTE: Assumes OSD functions have already been read in for all relevant Kepler targets. # Arguments: - `t::KeplerTarget`: Kepler target object - `depth::Real`: (Fractional) transit depth - `duration::Real`: Transit duration (in days) - `osd::Real`: OSD for target star given transit duration and period - `sim_param::SimParam`: Simulation parameters - `num_transit::Real = 1`: Expected number of transits observed # Returns: (Expected) multiple event statistic (signal-to-noise ratio) """ function calc_snr_if_transit(t::KeplerTarget, depth::Real, duration::Real, osd::Real, sim_param::SimParam; num_transit::Real = 1) # depth_tps = frac_depth_to_tps_depth(depth) # WARNING: Hardcoded this conversion # snr = depth_tps/osd*1.0e6 # osd is in ppm snr = depth/osd*1.0e6 # osd is in ppm end """ calc_snr_if_transit_central(t, s, p, sim_param) Calculate the expected multiple event statistic (signal-to-noise ratio) for planet around Kepler target star using 1-sigma depth function (OSD) at transit center. # NOTE: Assumes OSD functions have already been read in for all relevant Kepler targets. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: (Expected) multiple event statistic (signal-to-noise ratio) at transit center """ function calc_snr_if_transit_central(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P depth = calc_transit_depth(t,s,p) duration_central = calc_transit_duration_eff_central(t,s,p) kepid = StellarTable.star_table(t.sys[s].star.id, :kepid) osd_duration_central = get_durations_searched_Kepler(period,duration_central) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd_central = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration_central) if osd_duration_central > duration_central #use a correcting factor if this duration is lower than the minimum searched for this period. osd_central = osd_central*osd_duration_central/duration_central end num_transit = calc_expected_num_transits(t,s,p,sim_param) calc_snr_if_transit(t,depth,duration_central,osd_central, sim_param,num_transit=num_transit) end """ calc_snr_if_transit_central_cdpp(t, s, p, sim_param) Calculate the expected multiple event statistic (signal-to-noise ratio) for planet around Kepler target star using CDPP at transit center. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: (Expected) multiple event statistic (signal-to-noise ratio) at transit center """ function calc_snr_if_transit_central_cdpp(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) depth = calc_transit_depth(t,s,p) duration_central = calc_transit_duration_eff_central(t,s,p) cdpp = interpolate_cdpp_to_duration(t, duration_central) num_transit = calc_expected_num_transits(t,s,p,sim_param) calc_snr_if_transit_cdpp(t,depth,duration_central,cdpp, sim_param,num_transit=num_transit) end """ calc_prob_detect_if_transit(t, snr, period, duration, sim_param; num_transit = 1) calc_prob_detect_if_transit(t, depth, period, duration, osd, sim_param; num_transit = 1) Calculate probability of detecting planet signal (if planet transits) using 1-sigma depth (OSD) function. # NOTE: Assumes OSD functions already read in. # Arguments: - `t::KeplerTarget`: Kepler target object - `snr::Float64`: Expected multiple event statistic (signal-to-noise ratio) - `depth::Float64`: (Fractional) transit depth - `period::Float64`: Orbital period (in days) - `duration::Float64`: Transit duration (in days) - `osd::Float64`: OSD for target star given transit duration and period - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: Probability of detecting planet (if it transits) """ function calc_prob_detect_if_transit(t::KeplerTarget, snr::Float64, period::Float64, duration::Float64, sim_param::SimParam; num_transit::Float64 = 1) min_pdet_nonzero = 1.0e-4 # TODO OPT: Consider raising threshold to prevent a plethora of planets that are very unlikely to be detected due to using 0.0 or other small value here wf = kepler_window_function(t, num_transit, period, duration) return wf*detection_efficiency_model(snr, num_transit, min_pdet_nonzero=min_pdet_nonzero) end function calc_prob_detect_if_transit(t::KeplerTarget, depth::Float64, period::Float64, duration::Float64, osd::Float64, sim_param::SimParam; num_transit::Float64 = 1) snr = calc_snr_if_transit(t,depth,duration,osd, sim_param, num_transit=num_transit) return calc_prob_detect_if_transit(t, snr, period, duration, sim_param, num_transit=num_transit) end """ calc_prob_detect_if_transit_cdpp(t, depth, period, duration, cdpp, sim_param; num_transit = 1) Calculate probability of detecting planet signal (if planet transits) using CDPP. # Arguments: - `t::KeplerTarget`: Kepler target object - `depth::Float64`: (Fractional) transit depth - `period::Float64`: Orbital period (in days) - `duration::Float64`: Transit duration (in days) - `cdpp::Float64`: CDPP for target star given transit duration - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: Probability of detecting planet (if it transits) """ function calc_prob_detect_if_transit_cdpp(t::KeplerTarget, depth::Float64, period::Float64, duration::Float64, cdpp::Float64, sim_param::SimParam; num_transit::Float64 = 1) snr = calc_snr_if_transit_cdpp(t,depth,duration,cdpp, sim_param, num_transit=num_transit) return calc_prob_detect_if_transit(t, snr, period, duration, sim_param, num_transit=num_transit) end """ calc_prob_detect_if_transit_central(t, s, p, sim_param) Calculate probability of detecting planet signal (if planet transits) at transit center using 1-sigma depth (OSD) functions. # NOTE: Assumes OSD functions already read in. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: Probability of detecting planet (if it transits) at transit center """ function calc_prob_detect_if_transit_central(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P depth = calc_transit_depth(t,s,p) duration_central = calc_transit_duration_eff_central(t,s,p) kepid = StellarTable.star_table(t.sys[s].star.id, :kepid) osd_duration_central = get_durations_searched_Kepler(period,duration_central) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd_central = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration_central) if osd_duration_central > duration_central #use a correcting factor if this duration is lower than the minimum searched for this period. osd_central = osd_central*osd_duration_central/duration_central end ntr = calc_expected_num_transits(t,s,p,sim_param) calc_prob_detect_if_transit(t,depth,period,duration_central,osd_central, sim_param, num_transit=ntr) end """ calc_prob_detect_if_transit_central_cdpp(t, s, p, sim_param) Calculate probability of detecting planet signal (if planet transits) at transit center using CDPP # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: Probability of detecting planet (if it transits) at transit center """ function calc_prob_detect_if_transit_central_cdpp(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P depth = calc_transit_depth(t,s,p) duration_central = calc_transit_duration_eff_central(t,s,p) cdpp = interpolate_cdpp_to_duration(t, duration_central) ntr = calc_expected_num_transits(t,s,p,sim_param) calc_prob_detect_if_transit_cdpp(t,depth,period,duration_central,cdpp, sim_param, num_transit=ntr) end """ calc_prob_detect_if_transit_with_actual_b(t, s, p, sim_param) Calculate probability of detecting planet signal (if planet transits) at transit center using 1-sigma depth (OSD) functions and the impact parameter of the provided orbit. # NOTE: Assumes OSD functions already read in. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: Probability of detecting planet (if it transits) given the impact parameter of the planet's orbit """ function calc_prob_detect_if_transit_with_actual_b(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P size_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius depth = calc_transit_depth(t,s,p) duration = calc_transit_duration_eff(t,s,p) b = calc_impact_parameter(t.sys[s],p) snr_correction = calc_depth_correction_for_grazing_transit(b,size_ratio) depth *= snr_correction kepid = StellarTable.star_table(t.sys[s].star.id, :kepid) osd_duration = get_durations_searched_Kepler(period,duration) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration) if osd_duration > duration #use a correcting factor if this duration is lower than the minimum searched for this period. osd = osd*osd_duration/duration end ntr = calc_expected_num_transits(t,s,p,sim_param) calc_prob_detect_if_transit(t,depth,period,duration,osd, sim_param, num_transit=ntr) end """ calc_prob_detect_if_transit_with_actual_b_cdpp(t, s, p, sim_param) Calculate probability of detecting planet signal (if planet transits) at transit center using CDPP and the impact parameter of the provided orbit. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters # Returns: Probability of detecting planet (if it transits) given the impact parameter of the planet's orbit """ function calc_prob_detect_if_transit_with_actual_b_cdpp(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P size_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius depth = calc_transit_depth(t,s,p) duration = calc_transit_duration_eff(t,s,p) b = calc_impact_parameter(t.sys[s],p) snr_correction = calc_depth_correction_for_grazing_transit(b,size_ratio) depth *= snr_correction cdpp = interpolate_cdpp_to_duration(t, duration) ntr = calc_expected_num_transits(t,s,p,sim_param) calc_prob_detect_if_transit_cdpp(t,depth,period,duration,cdpp, sim_param, num_transit=ntr) end """ calc_ave_prob_detect_if_transit_from_snr(t, snr_central, period, duration_central, size_ratio, osd_central, sim_param; num_transit = 1) Calculate probability of detecting planet signal (if planet transits) using 1-sigma depth (OSD) function and averaged over impact parameters b~U[0,1). # NOTE: Assumes OSD functions already read in. # Arguments: - `t::KeplerTarget`: Kepler target object - `snr_central::Float64`: Expected multiple event statistic (signal-to-noise ratio) at transit center - `period::Float64`: Orbital period (in days) - `duration_central::Float64`: Transit duration (in days) at transit center - `size_ratio::Float64`: Ratio of planet-to-star radii - `osd_central::Float64`: OSD for target star given transit duration at transit center and period - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: Probability of detecting planet (if it transits) averaged over impact parameter """ function calc_ave_prob_detect_if_transit_from_snr(t::KeplerTarget, snr_central::Float64, period::Float64, duration_central::Float64, size_ratio::Float64, osd_central::Float64, sim_param::SimParam; num_transit::Float64 = 1) min_pdet_nonzero = 1.0e-4 wf = kepler_window_function(t, num_transit, period, duration_central) detection_efficiency_central = detection_efficiency_model(snr_central, num_transit, min_pdet_nonzero=min_pdet_nonzero) if wf*detection_efficiency_central <= min_pdet_nonzero return 0. end # Breaking integral into two sections [0,1-b_boundary) and [1-b_boundary,1], so need at least 5 points to evaluate integral via trapezoid rule num_impact_param_low_b = 7 # Number of points to evaluate integral over [0,1-b_boundary) via trapezoid rule num_impact_param_high_b = 5 # (size_ratio<=0.05) ? 5 : 11 # Number of points to evaluate integral over [1-b_boudnary,1) via trapezoid rule. If using 2*size_ratio for bondary for small planets, then keep this odd, so one point lands on 1-size_ratio. @assert(num_impact_param_low_b >= 5) @assert(num_impact_param_high_b >= 3) num_impact_param = num_impact_param_low_b+num_impact_param_high_b-1 # One point is shared b_boundary = (size_ratio <= 0.15) ? 2*size_ratio : min(max(0.3,size_ratio),0.5) b = Array{Float64}(undef,num_impact_param) weight = Array{Float64}(undef,num_impact_param) b[1:num_impact_param_low_b] = range(0.0,stop=1-b_boundary,length=num_impact_param_low_b) b[num_impact_param_low_b:num_impact_param] .= range(1-b_boundary,stop=1.0,length=num_impact_param_high_b) weight[1:num_impact_param_low_b] .= (1-b_boundary)/(num_impact_param_low_b-1) # Points for first integral weight[1] *= 0.5 # Lower endpoint of first integral weight[num_impact_param_low_b] *= 0.5 # Upper endpoint of first integral weight[num_impact_param_low_b] += 0.5*(b_boundary)/(num_impact_param_high_b-1) # Also lower endpoint of second integral weight[(num_impact_param_low_b+1):num_impact_param] .= b_boundary/(num_impact_param_high_b-1) weight[num_impact_param] *= 0.5 # Upper endpoint of second integral @assert isapprox(sum(weight),1.0) function integrand(b::Float64)::Float64 depth_factor = calc_depth_correction_for_grazing_transit(b,size_ratio) duration_factor = calc_transit_duration_eff_factor_for_impact_parameter_b(b,size_ratio) kepid = StellarTable.star_table(t.sys[1].star.id, :kepid) osd_duration = get_durations_searched_Kepler(period,duration_central*duration_factor) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration) if osd_duration > duration_central*duration_factor #use a correcting factor if this duration is lower than the minimum searched for this period. osd = osd*osd_duration/(duration_central*duration_factor) end snr_factor = depth_factor*(osd_central/osd) detection_efficiency_model(snr_central*snr_factor, num_transit, min_pdet_nonzero=min_pdet_nonzero) end ave_detection_efficiency = sum(weight .* map(integrand,b)::Vector{Float64} ) return wf*ave_detection_efficiency end """ calc_ave_prob_detect_if_transit_from_snr_cdpp(t, snr_central, period, duration_central, size_ratio, osd_central, sim_param; num_transit = 1) Calculate probability of detecting planet signal (if planet transits) using CDPP and averaged over impact parameters b~U[0,1). # Arguments: - `t::KeplerTarget`: Kepler target object - `snr_central::Float64`: Expected multiple event statistic (signal-to-noise ratio) at transit center - `period::Float64`: Orbital period (in days) - `duration_central::Float64`: Transit duration (in days) at transit center - `size_ratio::Float64`: Ratio of planet-to-star radii - `cdpp_central::Float64`: CDPP for target star given transit duration at transit center - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: Probability of detecting planet (if it transits) averaged over impact parameter """ function calc_ave_prob_detect_if_transit_from_snr_cdpp(t::KeplerTarget, snr_central::Float64, period::Float64, duration_central::Float64, size_ratio::Float64, cdpp_central::Float64, sim_param::SimParam; num_transit::Float64 = 1) min_pdet_nonzero = 1.0e-4 wf = kepler_window_function(t, num_transit, period, duration_central) detection_efficiency_central = detection_efficiency_model(snr_central, num_transit, min_pdet_nonzero=min_pdet_nonzero) if wf*detection_efficiency_central <= min_pdet_nonzero return 0. end # Breaking integral into two sections [0,1-b_boundary) and [1-b_boundary,1], so need at least 5 points to evaluate integral via trapezoid rule num_impact_param_low_b = 7 # Number of points to evaluate integral over [0,1-b_boundary) via trapezoid rule num_impact_param_high_b = 5 # (size_ratio<=0.05) ? 5 : 11 # Number of points to evaluate integral over [1-b_boudnary,1) via trapezoid rule. If using 2*size_ratio for bondary for small planets, then keep this odd, so one point lands on 1-size_ratio. @assert(num_impact_param_low_b >= 5) @assert(num_impact_param_high_b >= 3) num_impact_param = num_impact_param_low_b+num_impact_param_high_b-1 # One point is shared b_boundary = (size_ratio <= 0.15) ? 2*size_ratio : min(max(0.3,size_ratio),0.5) b = Array{Float64}(undef,num_impact_param) weight = Array{Float64}(undef,num_impact_param) b[1:num_impact_param_low_b] = range(0.0,stop=1-b_boundary,length=num_impact_param_low_b) b[num_impact_param_low_b:num_impact_param] .= range(1-b_boundary,stop=1.0,length=num_impact_param_high_b) weight[1:num_impact_param_low_b] .= (1-b_boundary)/(num_impact_param_low_b-1) # Points for first integral weight[1] *= 0.5 # Lower endpoint of first integral weight[num_impact_param_low_b] *= 0.5 # Upper endpoint of first integral weight[num_impact_param_low_b] += 0.5*(b_boundary)/(num_impact_param_high_b-1) # Also lower endpoint of second integral weight[(num_impact_param_low_b+1):num_impact_param] .= b_boundary/(num_impact_param_high_b-1) weight[num_impact_param] *= 0.5 # Upper endpoint of second integral @assert isapprox(sum(weight),1.0) function integrand(b::Float64)::Float64 depth_factor = calc_depth_correction_for_grazing_transit(b,size_ratio) duration_factor = calc_transit_duration_eff_factor_for_impact_parameter_b(b,size_ratio) cdpp = interpolate_cdpp_to_duration(t,duration_central*duration_factor) snr_factor = depth_factor*sqrt(duration_factor)*(cdpp_central/cdpp) detection_efficiency_model(snr_central*snr_factor, num_transit, min_pdet_nonzero=min_pdet_nonzero) end ave_detection_efficiency = sum(weight .* map(integrand,b)::Vector{Float64} ) return wf*ave_detection_efficiency end """ calc_ave_prob_detect_if_transit_cdpp(t, depth, period, duration_central, size_ratio, sim_param; num_transit = 1) calc_ave_prob_detect_if_transit_cdpp(t, s, p, sim_param) Calculate probability of detecting planet signal (if planet transits) using CDPP and averaged over impact parameters b~U[0,1). # Arguments: - `t::KeplerTarget`: Kepler target object - `depth::Float64`: (Fractional) transit depth - `period::Float64`: Orbital period (in days) - `duration_central::Float64`: Transit duration (in days) at transit center - `size_ratio::Float64`: Ratio of planet-to-star radii - `s::Integer`: Star index within Kepler target - `p::Integer`: Planet index within Kepler target - `sim_param::SimParam`: Simulation parameters - `num_transit::Float64 = 1`: Expected number of transits observed # Returns: Probability of detecting planet (if it transits) averaged over impact parameter """ function calc_ave_prob_detect_if_transit_cdpp(t::KeplerTarget, depth::Float64, period::Float64, duration_central::Float64, size_ratio::Float64, sim_param::SimParam; num_transit::Float64 = 1) cdpp_central = interpolate_cdpp_to_duration(t, duration_central) snr_central = calc_snr_if_transit(t,depth,duration_central,cdpp_central, sim_param, num_transit=num_transit) return calc_ave_prob_detect_if_transit_from_snr_cdpp(t, snr_central, period, duration_central, size_ratio, cdpp_central, sim_param, num_transit=num_transit) end function calc_ave_prob_detect_if_transit_cdpp(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) size_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius depth = calc_transit_depth(t,s,p) period = t.sys[s].orbit[p].P duration_central = calc_transit_duration_eff_central(t,s,p) ntr = calc_expected_num_transits(t,s,p,sim_param) calc_ave_prob_detect_if_transit_cdpp(t,depth,period,duration_central, size_ratio, sim_param, num_transit=ntr) end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
57028
## ExoplanetsSysSim/src/transit_observations.jl ## (c) 2015 Eric B. Ford #using Distributions #include("constants.jl") #include("newPDST.jl") #includes a function to calculate if given durations match those observed by Kepler for a given period # Needed if using full noise model using LinearAlgebra using PDMats # Starting Section of Observables that are actually used struct TransitPlanetObs # ephem::ephemeris_type # For now hardcode P and t0, see transit_observation_unused.jl to reinstate period::Float64 # days t0::Float64 # days depth::Float64 # fractional duration::Float64 # days; Full-width, half-max-duration until further notice # ingress_duration::Float64 # days; QUERY: Will we want to use the ingress/egress duration for anything? end TransitPlanetObs() = TransitPlanetObs(0.0,0.0,0.0,0.0) struct StarObs radius::Float64 # in Rsol mass::Float64 # in Msol id::Int64 # row number in stellar dataframe end period(obs::TransitPlanetObs) = obs.period depth(obs::TransitPlanetObs) = obs.depth duration(obs::TransitPlanetObs) = obs.duration period_given_semimajor_axis(a::Float64, M::Float64) = sqrt((4pi^2*a^3)/(grav_const*M)) """ semimajor_axis(P, M) semimajor_axis(ps, id) Calculate semimajor axis # Arguments: - `P::Float64`: Orbital period (in days) - `M::Float64`: Planet mass (in M_sol) - `ps::PlanetarySystemAbstract`: Planetary system object - `id::Integer`: Planet/orbit index in planetary system object # Returns: Semimajor axis of planet (in AU) """ semimajor_axis(P::Float64, M::Float64) = (grav_const/(4pi^2)*M*P*P)^(1/3) function semimajor_axis(ps::PlanetarySystemAbstract, id::Integer) M = mass(ps.star) + ps.planet[id].mass # TODO SCI DETAIL: Replace with Jacobi mass? Not important unless start including TTVs, even then unlikely to matter @assert(M>0.0) @assert(ps.orbit[id].P>0.0) return semimajor_axis(ps.orbit[id].P,M) end """ calc_transit_depth(t, s, p) Calculate fractional transit depth of planet transiting host star (including limb darkening) # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Fractional transit depth at transit midpoint """ function calc_transit_depth(t::KeplerTarget, s::Integer, p::Integer) # WARNING: IMPORTANT: Assumes non-grazing transit radius_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius #b = calc_impact_parameter(t.sys[s].planet, p) # If limb darkening should know about which chord the planet takes set b to impact parameter, rather than 0.0. depth = depth_at_midpoint(radius_ratio, t.sys[s].star.ld) # Includes limb darkening depth *= flux(t.sys[s].star)/flux(t) # Flux ratio accounts for dilution end """ calc_transit_duration_central_circ_small_angle_approx(ps, pl) calc_transit_duration_central_circ_small_angle_approx(t, s, p) Calculate transit duration of planet across host star disk if it transits across the center of the stellar disk assuming a circular orbit using the small angle approximation # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ function calc_transit_duration_central_circ_small_angle_approx(ps::PlanetarySystemAbstract, pl::Integer) duration = rsol_in_au*ps.star.radius * ps.orbit[pl].P /(pi*semimajor_axis(ps,pl) ) end calc_transit_duration_central_circ_small_angle_approx(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_circ_small_angle_approx(t.sys[s],p) """ calc_transit_duration_central_circ_with_arcsin(ps, pl) calc_transit_duration_central_circ_with_arcsin(t, s, p) Calculate transit duration of planet across host star disk if it transits across the center of the stellar disk assuming a circular orbit without the small angle approximation # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ function calc_transit_duration_central_circ_with_arcsin(ps::PlanetarySystemAbstract, pl::Integer) asin_arg = rsol_in_au*ps.star.radius/semimajor_axis(ps,pl) duration = ps.orbit[pl].P/pi * (asin_arg < 1.0 ? asin(asin_arg) : 1.0) end calc_transit_duration_central_circ_with_arcsin(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_circ_with_arcsin(t.sys[s],p) """ calc_transit_duration_central_circ(ps, pl) calc_transit_duration_central_circ(t, s, p) Wrapper function to calculate transit duration of planet across host star disk if it transits across the center of the stellar disk assuming a circular orbit # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ #calc_transit_duration_central_circ(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_central_circ_small_angle_approx(ps,pl) calc_transit_duration_central_circ(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_central_circ_with_arcsin(ps,pl) calc_transit_duration_central_circ(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_circ(t.sys[s],p) """ calc_transit_duration_central_small_angle_approx(ps, pl) calc_transit_duration_central_small_angle_approx(t, s, p) Calculate transit duration of planet across host star disk if it transits across the center of the stellar disk using the small angle approximation # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ function calc_transit_duration_central_small_angle_approx(ps::PlanetarySystemAbstract, pl::Integer) ecc = ps.orbit[pl].ecc sqrt_one_minus_ecc_sq = sqrt((1+ecc)*(1-ecc)) one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) vel_fac = sqrt_one_minus_ecc_sq/one_plus_e_sin_w duration = calc_transit_duration_central_circ_small_angle_approx(ps,pl) * vel_fac end calc_transit_duration_central_small_angle_approx(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_small_angle_approx(t.sys[s],p) """ calc_transit_duration_central_winn2010(ps, pl) calc_transit_duration_central_winn2010(t, s, p) Calculate transit duration of planet across host star disk if it transits across the center of the stellar disk using the formulation from Winn (2010) # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ function calc_transit_duration_central_winn2010(ps::PlanetarySystemAbstract, pl::Integer) ecc = ps.orbit[pl].ecc sqrt_one_minus_ecc_sq = sqrt((1+ecc)*(1-ecc)) one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) vel_fac = sqrt_one_minus_ecc_sq/one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w asin_arg = rsol_in_au*ps.star.radius/(semimajor_axis(ps,pl)) # Based on Winn 2010 duration = ( asin_arg<1.0 ? asin(asin_arg) : 1.0 ) * ps.orbit[pl].P*radial_separation_over_a/(pi*sqrt_one_minus_ecc_sq) end calc_transit_duration_central_winn2010(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_winn2010(t.sys[s],p) """ calc_transit_duration_central_kipping2010(ps, pl) calc_transit_duration_central_kipping2010(t, s, p) Calculate transit duration of planet across host star disk if it transits across the center of the stellar disk using the formulation from Kipping (2010) # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ function calc_transit_duration_central_kipping2010(ps::PlanetarySystemAbstract, pl::Integer) ecc = ps.orbit[pl].ecc sqrt_one_minus_ecc_sq = sqrt((1+ecc)*(1-ecc)) one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) vel_fac = sqrt_one_minus_ecc_sq/one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w # Based on pasting cos i = 0 into Eqn 15 from Kipping 2010 asin_arg = rsol_in_au*ps.star.radius/(semimajor_axis(ps,pl)* radial_separation_over_a) duration = ps.orbit[pl].P*radial_separation_over_a^2/(pi*sqrt_one_minus_ecc_sq) * ( asin_arg<1.0 ? asin(asin_arg) : 1.0 ) end calc_transit_duration_central_kipping2010(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central_kipping2010(t.sys[s],p) """ calc_transit_duration_central(ps, pl) calc_transit_duration_central(t, s, p) Wrapper function to calculate transit duration of planet across host star disk if it transits across the center of the stellar disk # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) if planet transits across center of stellar disk """ #calc_transit_duration_central(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_central_small_angle_approx(ps,pl) #calc_transit_duration_central(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_central_winn2010(ps,pl) calc_transit_duration_central(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_central_kipping2010(ps,pl) calc_transit_duration_central(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central(t.sys[s],p) calc_transit_duration_eff_central(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_duration_central(t.sys[s],p) """ calc_transit_duration_factor_for_impact_parameter_b(b, p) Calculate scaling factor to convert central transit duration to transit duration given an orbit with impact parameter b NOTE: Used for single observations of transit duration # Arguments: - `b::Real`: Impact parameter - `p::Real`: Planet-to-star radius ratio # Returns: Transit duration scaling factor """ function calc_transit_duration_factor_for_impact_parameter_b(b::T, p::T) where T <:Real @assert(zero(b)<=b) # b = Impact Parameter @assert(zero(p)<=p<one(p)) # p = R_p/R_star if b < 1-p duration_ratio = sqrt((1-b)*(1+b)) # Approximation to (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2, which is itself an approximation else return zero(b) end end """ calc_transit_duration_eff_factor_for_impact_parameter_b(b, p) Calculate scaling factor to convert central transit duration to transit duration given an orbit with impact parameter b NOTE: Used for single observations of effective transit duration for use in SNR calculations. # Arguments: - `b::Real`: Impact parameter - `p::Real`: Planet-to-star radius ratio # Returns: Transit duration scaling factor """ function calc_transit_duration_eff_factor_for_impact_parameter_b(b::T, p::T) where T <:Real @assert(zero(b)<=b) # b = Impact Parameter @assert(zero(p)<=p<one(p)) # p = R_p/R_star if b < 1-3p # Far enough from grazing for approximation #duration_ratio = sqrt(1-b^2) # Approximation to (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2, which is itself an approximation duration_ratio = sqrt((1-b)*(1+b)) # Approximation to (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2, which is itself an approximation elseif b < 1-p # Planet is fully inscribed at mid-transit #duration_ratio = (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2 # Average of full and flat transit durations approximates to duration between center of planet being over limb of star duration_ratio = (sqrt(((1+p)+b)*((1+p)-b))+sqrt(((1-p)+b)*((1-p)-b)))/2 # Average of full and flat transit durations approximates to duration between center of planet being over limb of star elseif b < 1+p # Planet never fully inscribed by star #duration_ratio = sqrt((1+p)^2-b^2)/2 # /2 since now triangular duration_ratio = sqrt(((1+p)+b)*((1+p)-b))/2 # /2 since now triangular else # There's no transit duration_ratio = zero(b) end return duration_ratio end """ calc_effective_transit_duration_factor_for_impact_parameter_b(b, p) Calculate scaling factor to convert central transit duration to transit duration given an orbit with impact parameter b NOTE: Used for sky-averaging observations where multiple transit durations are sampled for different values of b. # Arguments: - `b::Real`: Impact parameter - `p::Real`: Planet-to-star radius ratio # Returns: Transit duration scaling factor """ function calc_effective_transit_duration_factor_for_impact_parameter_b(b::T, p::T) where T <:Real @assert(zero(b)<=b) # b = Impact Parameter @assert(zero(p)<=p<one(p)) # p = R_p/R_star if b < 1-3p # Far enough from grazing for approximation duration_ratio = sqrt((1+b)*(1-b)) # Approximation to (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2, which is itself an approximation area_ratio = one(p) elseif b < 1-p # Planet is fully inscribed at mid-transit #duration_ratio = (sqrt((1+p)^2-b^2)+sqrt((1-p)^2-b^2))/2 # Average of full and flat transit durations approximates to duration between center of planet being over limb of star duration_ratio = (sqrt(((1+p)+b)*((1+p)-b))+sqrt(((1-p)+b)*((1-p)-b)))/2 # Average of full and flat transit durations approximates to duration between center of planet being over limb of star area_ratio = one(p) elseif b < 1+p # Planet never fully inscribed by star #duration_ratio = sqrt((1+p)^2-b^2)/2 # /2 since now triangular duration_ratio = sqrt(((1+p)+b)*((1+p)-b))/2 # /2 since now triangular #area_ratio = (p^2*acos((b^2+p^2-1)/(2*b*p))+acos((b^2+1-p^2)/(2b))-0.5*sqrt((1+p-b)*(p+b-1)*(1-p+b)*(1+p+b))) / (pi*p^2) #area_ratio = (p^2*acos((b^2-(1-p)*(1+p))/(2*b*p))+acos((b^2+(1+p)*(1-p))/(2b))-0.5*sqrt((1+p-b)*(p+b-1)*(1-p+b)*(1+p+b))) / (pi*p^2) acos_arg1 = max(-1.0,min(1.0,(b^2-(1-p)*(1+p))/(2*b*p))) acos_arg2 = max(-1.0,min(1.0,(b^2+(1+p)*(1-p))/(2b))) sqrt_arg = max(0.0,(1+p-b)*(p+b-1)*(1-p+b)*(1+p+b)) area_ratio = (p^2*acos(acos_arg1)+acos(acos_arg2)-0.5*sqrt(sqrt_arg)) / (pi*p^2) else # There's no transit duration_ratio = zero(b) area_ratio = zero(p) end return duration_ratio*area_ratio end """ calc_depth_correction_for_grazing_transit(b, p) Calculate scaling factor to correct transit depth to account for grazing transits when only part of the planet disk blocks starlight at mid-transit. Source: Eqn 14 of http://mathworld.wolfram.com/Circle-CircleIntersection.html NOTE: Assumes uniform surface brightness star # Arguments: - `b::Real`: Impact parameter - `p::Real`: Planet-to-star radius ratio # Returns: Transit depth scaling factor """ function calc_depth_correction_for_grazing_transit(b::T, p::T) where T <:Real @assert(zero(b)<=b) # b = Impact Parameter @assert(zero(p)<=p<one(p)) # p = R_p/R_star if b < 1-p # Planet fully inscribed by star area_ratio = one(p) elseif b < 1+p # Planet never fully inscribed by star #area_ratio = (p^2*acos((b^2+p^2-1)/(2*b*p))+acos((b^2+1-p^2)/(2b))-0.5*sqrt((1+p-b)*(p+b-1)*(1-p+b)*(1+p+b))) / (pi*p^2) acos_arg1 = max(-1.0,min(1.0,(b^2-(1-p)*(1+p))/(2*b*p))) acos_arg2 = max(-1.0,min(1.0,(b^2+(1+p)*(1-p))/(2b))) sqrt_arg = max(0.0,(1+p-b)*(p+b-1)*(1-p+b)*(1+p+b)) area_ratio = (p^2*acos(acos_arg1)+acos(acos_arg2)-0.5*sqrt(sqrt_arg)) / (pi*p^2) else # There's no transit area_ratio = zero(p) end return area_ratio end # Transit durations to be used for observations of transit duration """ calc_transit_duration_small_angle_approx(ps, pl) calc_transit_duration_small_angle_approx(t, s, p) Calculate transit duration of planet across host star disk using the small angle approximation # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) """ function calc_transit_duration_small_angle_approx(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)-size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) duration_ratio_for_impact_parameter = calc_transit_duration_factor_for_impact_parameter_b(b,size_ratio) one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w duration = duration_central_circ * duration_ratio_for_impact_parameter * vel_fac end calc_transit_duration_small_angle_approx(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_small_angle_approx(t.sys[s],p) """ calc_transit_duration_central_winn2010(ps, pl) calc_transit_duration_central_winn2010(t, s, p) Calculate transit duration of planet across host star disk using the formulation from Winn (2010) # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) """ function calc_transit_duration_winn2010(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)-size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) arcsin_circ_central = pi/ps.orbit[pl].P*duration_central_circ one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w duration_ratio_for_impact_parameter = calc_transit_duration_factor_for_impact_parameter_b(b,size_ratio) # WARNING: This is technically an approximation. It avoids small angle for non-grazing transits, but does use a variant of the small angle approximation for nearly grazing transits. asin_arg = (arcsin_circ_central * duration_ratio_for_impact_parameter) duration = ps.orbit[pl].P/pi * radial_separation_over_a/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0) duration = duration_central_cric * radial_separation_over_a/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0)/arcsin_circ_central end calc_transit_duration_winn2010(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_winn2010(t.sys[s],p) """ calc_transit_duration_central_kipping2010(ps, pl) calc_transit_duration_central_kipping2010(t, s, p) Calculate transit duration of planet across host star disk using the formulation from Kipping (2010) # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) """ function calc_transit_duration_kipping2010(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)-size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) arcsin_circ_central = pi/ps.orbit[pl].P*duration_central_circ one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w duration_ratio_for_impact_parameter = calc_transit_duration_factor_for_impact_parameter_b(b,size_ratio) # WARNING: This is technically an approximation (see Kipping 2010 Eqn 15). It avoids small angle for non-grazing transits, but does use a variant of the small angle approximation for nearly grazing transits. asin_arg = (arcsin_circ_central * duration_ratio_for_impact_parameter/radial_separation_over_a) duration = ps.orbit[pl].P/pi * radial_separation_over_a^2/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0) #duration = duration_central_circ * radial_separation_over_a^2/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0)/arcsin_circ_central end calc_transit_duration_kipping2010(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_kipping2010(t.sys[s],p) """ calc_transit_duration(ps, pl) calc_transit_duration(t, s, p) Wrapper function to calculate transit duration of planet across host star disk # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Transit duration (in days) """ #calc_transit_duration(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_small_angle_approx(ps,pl) #calc_transit_duration(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_winn2010(ps,pl) calc_transit_duration(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_kipping2010(ps,pl) calc_transit_duration(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration(t.sys[s],p) # Effective transit durations to be used for SNR calculations """ calc_transit_duration_eff_small_angle_approx(ps, pl) calc_transit_duration_eff_small_angle_approx(t, s, p) Calculate effective transit duration of planet across host star disk using the small angle approximation NOTE: To be used for SNR calculations # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Effective transit duration (in days) """ function calc_transit_duration_eff_small_angle_approx(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)+size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) duration_ratio_for_impact_parameter = calc_transit_duration_eff_factor_for_impact_parameter_b(b,size_ratio) one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w duration = duration_central_circ * duration_ratio_for_impact_parameter * vel_fac end calc_transit_duration_eff_small_angle_approx(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_eff_small_angle_approx(t.sys[s],p) """ calc_transit_duration_eff_winn2010(ps, pl) calc_transit_duration_eff_winn2010(t, s, p) Calculate effective transit duration of planet across host star disk using the formulation from Winn (2010) NOTE: To be used for SNR calculations # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Effective transit duration (in days) """ function calc_transit_duration_eff_winn2010(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)+size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) arcsin_circ_central = pi/ps.orbit[pl].P*duration_central_circ one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w duration_ratio_for_impact_parameter = calc_transit_duration_eff_factor_for_impact_parameter_b(b,size_ratio) # WARNING: This is technically an approximation. It avoids small angle for non-grazing transits, but does use a variant of the small angle approximation for nearly and grazing transits. asin_arg = (arcsin_circ_central * duration_ratio_for_impact_parameter) duration = ps.orbit[pl].P/pi * radial_separation_over_a/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0) duration = duration_central_cric * radial_separation_over_a/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0)/arcsin_circ_central end calc_transit_duration_eff_winn2010(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_eff_winn2010(t.sys[s],p) """ calc_transit_duration_eff_kipping2010(ps, pl) calc_transit_duration_eff_kipping2010(t, s, p) Calculate effective transit duration of planet across host star disk using the formulation from Kipping (2010) NOTE: To be used for SNR calculations # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Effective transit duration (in days) """ function calc_transit_duration_eff_kipping2010(ps::PlanetarySystemAbstract, pl::Integer) a = semimajor_axis(ps,pl) @assert a>=zero(a) ecc = ps.orbit[pl].ecc @assert zero(ecc)<=ecc<=one(ecc) b = calc_impact_parameter(ps, pl) size_ratio = ps.planet[pl].radius/ps.star.radius @assert !isnan(b) @assert zero(b)<=b if b>one(b)+size_ratio return zero(b) end duration_central_circ = calc_transit_duration_central_circ(ps,pl) arcsin_circ_central = pi/ps.orbit[pl].P*duration_central_circ one_plus_e_sin_w = 1+ecc*sin(ps.orbit[pl].omega) sqrt_one_minus_e_sq = sqrt((1+ecc)*(1-ecc)) vel_fac = sqrt_one_minus_e_sq / one_plus_e_sin_w radial_separation_over_a = (1+ecc)*(1-ecc)/one_plus_e_sin_w duration_ratio_for_impact_parameter = calc_transit_duration_eff_factor_for_impact_parameter_b(b,size_ratio) # WARNING: This is technically an approximation (see Kipping 2010 Eqn 15). It avoids small angle for non-grazing transits, but does use a variant of the small angle approximation for nearly and grazing transits. asin_arg = (arcsin_circ_central * duration_ratio_for_impact_parameter/radial_separation_over_a) duration = ps.orbit[pl].P/pi * radial_separation_over_a^2/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0) #duration = duration_central_circ * radial_separation_over_a^2/sqrt_one_minus_e_sq * (asin_arg < 1.0 ? asin(asin_arg) : 1.0)/arcsin_circ_central end calc_transit_duration_eff_kipping2010(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_eff_kipping2010(t.sys[s],p) """ calc_transit_duration_eff(ps, pl) calc_transit_duration_eff(t, s, p) Wrapper function to calculate effective transit duration of planet across host star disk to be used for SNR calculations # Arguments: - `ps::PlanetarySystemAbstract`: Planetary system object - `pl::Integer`: Planet/orbit index in planetary system object - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target # Returns: Effective transit duration (in days) """ #calc_transit_duration_eff(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_eff_small_angle_approx(ps,pl) #calc_transit_duration_eff(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_eff_winn2010(ps,pl) calc_transit_duration_eff(ps::PlanetarySystemAbstract, pl::Integer) = calc_transit_duration_eff_kipping2010(ps,pl) calc_transit_duration_eff(t::KeplerTarget, s::Integer, p::Integer ) = calc_transit_duration_eff(t.sys[s],p) """ calc_transit_duration_eff(t, s, p, sim_param) Calculates (expected) number of transits observed for planet # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target - `sim_param::SimParam`: Simulation parameter object # Returns: Effective (expected) number of transits """ function calc_expected_num_transits(t::KeplerTarget, s::Integer, p::Integer, sim_param::SimParam) period = t.sys[s].orbit[p].P exp_num_transits = t.duty_cycle * t.data_span/period return exp_num_transits end """ get_durations_searched_Kepler(period, duration) Returns appropriate transit duration for use with 1-sigma depth function (or CDPP) given the range of transit durations searched by the Kepler pipeline. # Arguments: - `period::Float64`: Orbital period (in days) - `duration::Float64`: Transit duration (in days) # Returns: Valid transit duration searched by Kepler pipeline that is closest to the actual transit duration input to the function. """ #function get_legal_durations(period::Float64,duration::Float64) function get_durations_searched_Kepler(period::Float64,duration::Float64) num_dur = length(cdpp_durations) # 14 min_duration = 0.0 max_duration = 0.0 min_periods = [0.5, 0.52, 0.6517, 0.7824, 0.912, 1.178, 1.3056, 1.567, 1.952, 2.343, 2.75, 3.14, 3.257, 3.91] max_periods = [50.045, 118.626, 231.69, 400.359, 635.76, 725, 725, 725, 725, 725, 725, 725, 725, 725] i = 1 #determine what maximum and minimum durations were searched for this period while min_duration == 0.0 || max_duration == 0.0 if i > 14 @warn "No duration searched match this period and duration." period duration return (min_duration > 0.0) ? min_duration/24 : 0.0 end if period <= max_periods[i] && min_duration == 0.0 min_duration = cdpp_durations[i] end if period >= min_periods[num_dur+1-i] && max_duration == 0.0 max_duration = cdpp_durations[num_dur+1-i] end i+=1 end if duration<=max_duration/24 && duration>=min_duration/24 return duration elseif duration>=max_duration/24 return max_duration/24 elseif duration <=min_duration/24 return min_duration/24 end end include("transit_detection_model.jl") include("transit_prob_geometric.jl") const has_sc_bit_array_size = 7*8 # WARNING: Must be big enough given value of num_quarters (assumed to be <=17) mutable struct KeplerTargetObs # QUERY: Do we want to make this type depend on whether the catalog is based on simulated or real data? obs::Vector{TransitPlanetObs} sigma::Vector{TransitPlanetObs} # Simplistic approach to uncertainties for now. QUERY: Should estimated uncertainties be part of Observations type? # phys_id::Vector{Tuple{Int32,Int32}} # So we can lookup the system's properties # Commented out since Not used prob_detect::SystemDetectionProbsAbstract # QUERY: Specialize type of prob_detect depending on whether for simulated or real data? has_sc::BitArray{1} # Note: Changed from Array{Bool}. Alternatively, we could try StaticArray{Bool} so fixed size? Do we even need to keep this? star::StarObs end #KeplerTargetObs(n::Integer) = KeplerTargetObs( fill(TransitPlanetObs(),n), fill(TransitPlanetObs(),n), fill(tuple(0,0),n), ObservedSystemDetectionProbsEmpty(), fill(false,num_quarters), StarObs(0.0,0.0) ) KeplerTargetObs(n::Integer) = KeplerTargetObs( fill(TransitPlanetObs(),n), fill(TransitPlanetObs(),n), ObservedSystemDetectionProbsEmpty(), falses(has_sc_bit_array_size), StarObs(0.0,0.0,0) ) num_planets(t::KeplerTargetObs) = length(t.obs) """ calc_target_obs_sky_ave(t, sim_param) Simulate observation of Kepler target (with associated planets) and return observed quantities and detection probabilities of all planets averaging over all viewing angles. # Arguments: - `t::KeplerTarget`: Kepler target object - `sim_param::SimParam`: Simulation parameter object, must contain the following values: - max_tranets_in_sys: Maximum number of transiting planets per Kepler target - transit_noise_model: Function to use for simulating noise in the observed properties of the transiting planets # Returns: Kepler observable object containing observed properties and detection probabilities for every planet """ function calc_target_obs_sky_ave(t::KeplerTarget, sim_param::SimParam) max_tranets_in_sys = get_int(sim_param,"max_tranets_in_sys") transit_noise_model = get_function(sim_param,"transit_noise_model") min_detect_prob_to_be_included = 0.0 # get_real(sim_param,"min_detect_prob_to_be_included") num_observer_samples = 1 # get_int(sim_param,"num_viewing_geometry_samples") vetting_efficiency = get_function(sim_param,"vetting_efficiency") np = num_planets(t) obs = Array{TransitPlanetObs}(undef,np) sigma = Array{TransitPlanetObs}(undef,np) #id = Array{Tuple{Int32,Int32}}(np) #id = Array{Tuple{Int32,Int32}}(np) ns = length(t.sys) sdp_sys = Array{SystemDetectionProbsAbstract}(undef,ns) i = 1 for (s,sys) in enumerate(t.sys) pdet = zeros(num_planets(sys)) for (p,planet) in enumerate(sys.planet) if get(sim_param,"verbose",false) println("# s=",s, " p=",p," num_sys= ",length(t.sys), " num_pl= ",num_planets(sys) ) end period = sys.orbit[p].P duration_central = calc_transit_duration_central(t,s,p) size_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius depth = calc_transit_depth(t,s,p) ntr = calc_expected_num_transits(t, s, p, sim_param) # cdpp_central = interpolate_cdpp_to_duration(t, duration_central) # snr_central = calc_snr_if_transit_cdpp(t, depth, duration_central, cdpp_central, sim_param, num_transit=ntr) # pdet_ave = calc_ave_prob_detect_if_transit_from_snr_cdpp(t, snr_central, period, duration_central, size_ratio, cdpp_central, sim_param, num_transit=ntr) kepid = StellarTable.star_table(t.sys[s].star.id, :kepid) osd_duration_central = get_durations_searched_Kepler(period,duration_central) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd_central = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration_central) if osd_duration_central > duration_central #use a correcting factor if this duration is lower than the minimum searched for this period. osd_central = osd_central*osd_duration_central/duration_central end snr_central = calc_snr_if_transit(t, depth, duration_central, osd_central, sim_param, num_transit=ntr) pdet_ave = calc_ave_prob_detect_if_transit_from_snr(t, snr_central, period, duration_central, size_ratio, osd_central, sim_param, num_transit=ntr) add_to_catalog = pdet_ave > min_detect_prob_to_be_included # Include all planets with sufficient detection probability if add_to_catalog pdet_central = calc_prob_detect_if_transit(t, snr_central, period, duration_central, sim_param, num_transit=ntr) threshold_pdet_ratio = rand() hard_max_num_b_tries = 100 max_num_b_tries = min_detect_prob_to_be_included == 0. ? hard_max_num_b_tries : min(hard_max_num_b_tries,convert(Int64,1/min_detect_prob_to_be_included)) # We compute measurement noise based on a single value of b. We draw from a uniform distribution for b and then using rejection sampling to reduce probability of higher impact parameters pdet_this_b = 0.0 for j in 1:max_num_b_tries b = rand() transit_duration_factor = calc_effective_transit_duration_factor_for_impact_parameter_b(b,size_ratio) duration = duration_central * transit_duration_factor # WARNING: Technically, this duration may be slightly reduced for grazing cases to account for reduction in SNR due to planet not being completely inscribed by star at mid-transit. But this will be a smaller effect than limb-darkening for grazing transits. Also, makes a variant of the small angle approximation # cdpp = interpolate_cdpp_to_duration(t, duration) # snr = snr_central * (cdpp_central/cdpp) * sqrt(transit_duration_factor) osd_duration = get_durations_searched_Kepler(period,duration) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration) if osd_duration > duration #use a correcting factor if this duration is lower than the minimum searched for this period. osd = osd*osd_duration/duration end snr = snr_central * (osd_central/osd) pdet_this_b = calc_prob_detect_if_transit(t, snr, period, duration, sim_param, num_transit=ntr) pvet = vetting_efficiency(t.sys[s].planet[p].radius, period) if pdet_this_b >= threshold_pdet_ratio * pdet_central #println("# Adding pdet_this_b = ", pdet_this_b, " pdet_c = ", pdet_central, " snr= ",snr, " cdpp= ",cdpp, " duration= ",duration, " b=",b, " u01= ", threshold_pdet_ratio) pdet[p] = pdet_ave*pvet ##### duration_central = calc_transit_duration_central(t,s,p) transit_duration_factor = calc_effective_transit_duration_factor_for_impact_parameter_b(b,size_ratio) duration = duration_central * transit_duration_factor # WARNING: Makes a variant of the small angle approximation #### obs[i], sigma[i] = transit_noise_model(t, s, p, depth, duration, snr, ntr, b=b) i += 1 break end # if add to obs and sigma lists end # for j else # add_to_catalog # Do anything for planets that are extremely unlikely to be detected even if they were to transit? end end resize!(obs,i-1) resize!(sigma,i-1) sdp_sys[s] = calc_simulated_system_detection_probs(sys, pdet, max_tranets_in_sys=max_tranets_in_sys, min_detect_prob_to_be_included=min_detect_prob_to_be_included, num_samples=num_observer_samples) end # TODO SCI DETAIL: Combine sdp_sys to allow for target to have multiple planetary systems s1 = findfirst(x->num_planets(x)>0,sdp_sys) # WARNING IMPORTANT: For now just take first system with planets if s1 == nothing s1 = 1 end sdp_target = sdp_sys[s1] has_no_sc = falses(has_sc_bit_array_size) star_obs = StarObs( t.sys[1].star.radius, t.sys[1].star.mass, t.sys[1].star.id ) # NOTE: This sets the observed star properties to be those in the stellar catalog. If want to incorporate uncertainty in stellar properties, that would be done elsewhere when translating depths into planet radii. #return KeplerTargetObs(obs, sigma, id, sdp_target, has_no_sc, star_obs ) return KeplerTargetObs(obs, sigma, sdp_target, has_no_sc, star_obs ) end """ calc_target_obs_single_obs(t, sim_param) Simulate observation of Kepler target (with associated planets) and return observed quantities and detection probabilities of all planets assuming a single viewpoint. # Arguments: - `t::KeplerTarget`: Kepler target object - `sim_param::SimParam`: Simulation parameter object, must contain the following values: - max_tranets_in_sys: Maximum number of transiting planets per Kepler target - transit_noise_model: Function to use for simulating noise in the observed properties of the transiting planets # Returns: Kepler observable object containing observed properties and detection probabilities for every planet """ function calc_target_obs_single_obs(t::KeplerTarget, sim_param::SimParam) # max_tranets_in_sys = get_int(sim_param,"max_tranets_in_sys") transit_noise_model = get_function(sim_param,"transit_noise_model") min_detect_prob_to_be_included = 0.0 # get_real(sim_param,"min_detect_prob_to_be_included") transit_noise_model = get_function(sim_param,"transit_noise_model") np = num_planets(t) obs = Array{TransitPlanetObs}(undef,np) sigma = Array{TransitPlanetObs}(undef,np) ns = length(t.sys) sdp_sys = Array{ObservedSystemDetectionProbs}(undef,ns) i = 1 cuantos = 1000 #indicator for testing OSD interpolator. for (s,sys) in enumerate(t.sys) pdet = zeros(num_planets(sys)) for (p,planet) in enumerate(sys.planet) if get(sim_param,"verbose",false) println("# s=",s, " p=",p," num_sys= ",length(t.sys), " num_pl= ",num_planets(sys) ) end duration = calc_transit_duration_eff(t,s,p) if duration <= 0. continue end period = sys.orbit[p].P ntr = calc_expected_num_transits(t, s, p, sim_param) depth = calc_transit_depth(t,s,p) # Apply correction to snr if grazing transit size_ratio = t.sys[s].planet[p].radius/t.sys[s].star.radius b = calc_impact_parameter(t.sys[s],p) snr_correction = calc_depth_correction_for_grazing_transit(b,size_ratio) depth *= snr_correction # cdpp = interpolate_cdpp_to_duration(t, duration) # snr = calc_snr_if_transit_cdpp(t, depth, duration, cdpp, sim_param, num_transit=ntr) kepid = StellarTable.star_table(t.sys[s].star.id, :kepid) osd_duration = get_durations_searched_Kepler(period,duration) #tests if durations are included in Kepler's observations for a certain planet period. If not, returns nearest possible duration osd = WindowFunction.interp_OSD_from_table(kepid, period, osd_duration) if osd_duration > duration #use a correcting factor if this duration is lower than the minimum searched for this period. osd = osd*osd_duration/duration end snr = calc_snr_if_transit(t, depth, duration, osd, sim_param, num_transit=ntr) pdet[p] = calc_prob_detect_if_transit(t, snr, period, duration, sim_param, num_transit=ntr) if pdet[p] > min_detect_prob_to_be_included pvet = vetting_efficiency(t.sys[s].planet[p].radius, period) pdet[p] *= pvet duration = calc_transit_duration(t,s,p) obs[i], sigma[i] = transit_noise_model(t, s, p, depth, duration, snr, ntr) i += 1 end end resize!(obs,i-1) resize!(sigma,i-1) sdp_sys[s] = ObservedSystemDetectionProbs(pdet) end # TODO SCI DETAIL: Combine sdp_sys to allow for target to have multiple planetary systems s1 = findfirst(x->num_planets(x)>0,sdp_sys) # WARNING: For now just take first system with planets, assumes not two stars wht planets in one target if s1 == nothing s1 = 1 end sdp_target = sdp_sys[s1] has_no_sc = falses(3*num_quarters) star_obs = StarObs( t.sys[1].star.radius, t.sys[1].star.mass, t.sys[1].star.id ) # NOTE: This just copies star properties directly return KeplerTargetObs(obs, sigma, sdp_target, has_no_sc, star_obs ) end function test_transit_observations(sim_param::SimParam; verbose::Bool=false) # TODO TEST: Add more tests #transit_param = TransitParameter( EphemerisLinear(10.0, 0.0), TransitShape(0.01, 3.0/24.0, 0.5) ) generate_kepler_target = get_function(sim_param,"generate_kepler_target") max_it = 100000 local obs for i in 1:max_it target = generate_kepler_target(sim_param)::KeplerTarget while num_planets(target) == 0 target = generate_kepler_target(sim_param)::KeplerTarget end #calc_transit_prob_single_planet_one_obs(target,1,1) calc_transit_prob_single_planet_obs_ave(target,1,1) obs = calc_target_obs_single_obs(target,sim_param) obs = calc_target_obs_sky_ave(target,sim_param) if verbose && (num_planets(obs) > 0) println("# i= ",string(i)," np= ",num_planets(obs), " obs= ", obs ) break end end return obs end randtn() = rand(truncated(Normal(0.0,1.0),-0.999,0.999)) """ transit_noise_model_no_noise(t, s, p, depth, duration, snr, num_tr, b = 0.0) Transit noise model that assumes no additional noise introduced to observations. # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target - `depth::Float64`: (Fractional) transit depth - `duration::Float64`: Transit duration (in days) - `snr::Float64`: Expected multiple event statistic (signal-to-noise ratio) of transit - `num_tr::Float64`: Expected number of transits observed - `b::Float64 = 0.0`: Impact parameter of planet's orbit # Returns - TransitPlanetObs object containing simulated period, t0, transit depth, and transit duration - TransitPlanetObs object containing simulated uncertainties for period, t0, transit depth, and transit duration """ function transit_noise_model_no_noise(t::KeplerTarget, s::Integer, p::Integer, depth::Float64, duration::Float64, snr::Float64, num_tr::Float64; b::Float64 = 0.0) period = t.sys[s].orbit[p].P t0 = period*rand() # WARNING: Not being calculated from orbit sigma_period = 0.0 sigma_t0 = 0.0 sigma_depth = 0.0 sigma_duration = 0.0 sigma = TransitPlanetObs( sigma_period, sigma_t0, sigma_depth, sigma_duration ) obs = TransitPlanetObs( period, t0, depth,duration) return obs, sigma end """ transit_noise_model_no_noise(t, s, p, depth, duration, snr, num_tr, b = 0.0) Transit noise model that assumes fixed amounts of uncertainty on observed transit properties. Uncertainties are as follows: - Period = 10^-6 - t0 = 10^-4 - Depth = 10^-1 - Duration = 10^-2 # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target - `depth::Float64`: (Fractional) transit depth - `duration::Float64`: Transit duration (in days) - `snr::Float64`: Expected multiple event statistic (signal-to-noise ratio) of transit - `num_tr::Float64`: Expected number of transits observed - `b::Float64 = 0.0`: Impact parameter of planet's orbit # Returns - TransitPlanetObs object containing simulated period, t0, transit depth, and transit duration - TransitPlanetObs object containing simulated uncertainties for period, t0, transit depth, and transit duration """ function transit_noise_model_fixed_noise(t::KeplerTarget, s::Integer, p::Integer, depth::Float64, duration::Float64, snr::Float64, num_tr::Float64; b::Float64 = 0.0) period = t.sys[s].orbit[p].P t0 = period*rand() # WARNING: Not being calculated from orbit sigma_period = 1e-6 sigma_t0 = 1e-4 sigma_depth = 0.1 sigma_duration = 0.01 sigma = TransitPlanetObs( sigma_period, sigma_t0, sigma_depth, sigma_duration) #obs = TransitPlanetObs( period, t0, depth, duration) obs = TransitPlanetObs( period*(1.0+sigma.period*randtn()), t0*(1.0+sigma.period*randtn()), depth*(1.0+sigma.depth*randtn()),duration*(1.0+sigma.duration*randtn())) return obs, sigma end #make_matrix_pos_def_count = 0 function make_matrix_pos_def(A::Union{AbstractArray{T1,2},Symmetric{AbstractArray{T1,2}}}; verbose::Bool = false) where {T1<:Real} @assert size(A,1) == size(A,2) #global make_matrix_pos_def_count A = (typeof(A) <: Symmetric) ? A : Symmetric(A) smallest_eigval = eigvals(A,1:1)[1] if smallest_eigval > 0.0 return PDMat(A) else #make_matrix_pos_def_count += 1 ridge = 1.01 * abs(smallest_eigval) if verbose println("# Warning: Adding ridge (",ridge,") to matrix w/ eigenvalue ", smallest_eigval," (#", make_matrix_pos_def_count,").") end return PDMat(A + Diagonal(ridge*ones(size(A,1)))) end end """ transit_noise_model_diagonal(t, s, p, depth, duration, snr, num_tr, b = calc_impact_parameter(t.sys[s], p)) Transit noise model that uses the Fisher information matrix formulation assuming finite integration from Price & Rogers (2014). # Arguments: - `t::KeplerTarget`: Kepler target object - `s::Integer`: Index of star in Kepler target - `p::Integer`: Index of planet in Kepler target - `depth::Float64`: (Fractional) transit depth - `duration::Float64`: Transit duration (in days) - `snr::Float64`: Expected multiple event statistic (signal-to-noise ratio) of transit - `num_tr::Float64`: Expected number of transits observed - `b::Float64 = calc_impact_parameter(t.sys[s], p)`: Impact parameter of planet's orbit # Returns - TransitPlanetObs object containing simulated period, t0, transit depth, and transit duration - TransitPlanetObs object containing simulated uncertainties for period, t0, transit depth, and transit duration """ function transit_noise_model_diagonal(t::KeplerTarget, s::Integer, p::Integer, depth::Float64, duration::Float64, snr::Float64, num_tr::Float64; b::Float64 = calc_impact_parameter(t.sys[s],p) ) transit_noise_model_price_rogers(t, s, p, depth, duration, snr, num_tr; b=b, diagonal=true ) end function transit_noise_model_price_rogers(t::KeplerTarget, s::Integer, p::Integer, depth::Float64, duration::Float64, snr::Float64, num_tr::Float64; b::Float64 = calc_impact_parameter(t.sys[s],p), diagonal::Bool = false ) period = t.sys[s].orbit[p].P t0 = period*rand() # WARNING: Not being calculated from orbit # Use variable names from Price & Rogers one_minus_e2 = (1-t.sys[s].orbit[p].ecc)*(1+t.sys[s].orbit[p].ecc) a_semimajor_axis = semimajor_axis(t.sys[s],p) tau0 = rsol_in_au*t.sys[s].star.radius*period/(a_semimajor_axis*2pi) tau0 *= sqrt(one_minus_e2)/(1+t.sys[s].orbit[p].ecc*sin(t.sys[s].orbit[p].omega)) r = t.sys[s].planet[p].radius/t.sys[s].star.radius sqrt_one_minus_b2 = (0.0<=b<1.0) ? sqrt((1-b)*(1+b)) : 0.0 @assert(sqrt_one_minus_b2>=0.0) if(b<1) # trapezoidal transit shape T = 2*tau0*sqrt_one_minus_b2 tau = 2*tau0*r/sqrt_one_minus_b2 delta = depth else # triangular transit shape, TODO: SCI DETAIL: Could improve treatment, but so rare this should be good enough for most purposes not involving EBs @assert b<=1+r T = 2*tau0*sqrt((1+r+b)*(1+r-b)) tau = T/2 delta = depth/2 end Ttot = period I = LC_integration_time # WARNING: Assumes LC only Lambda_eff = LC_rate * num_tr # calc_expected_num_transits(t, s, p, sim_param) sigma = interpolate_cdpp_to_duration(t, duration) # Price & Rogers Eqn A8 & Table 1 # Thanks to Danley for finding typeos. tau3 = tau^3 I3 = I^3 a1 = (10*tau3+2*I^3-5*tau*I^2)/tau3 a2 = (5*tau3+I3-5*tau*tau*I)/tau3 a3 = (9*I^5*Ttot-40*tau3*I*I*Ttot+120*tau^4*I*(3*Ttot-2*tau))/tau^6 a4 = (a3*tau^5+I^4*(54*tau-35*Ttot)-12*tau*I3*(4*tau+Ttot)+360*tau^4*(tau-Ttot))/tau^5 a5 = (a2*(24T*T*(I-3*tau)-24*T*Ttot*(I-3*tau))+tau3*a4)/tau3 a6 = (3*tau*tau+T*(I-3*tau))/(tau*tau) a7 = (-60*tau^4+12*a2*tau3*T-9*I^4+8*tau*I3+40*tau3*I)/(tau^4) a8 = (2T-Ttot)/tau a9 = (-3*tau*tau*I*(-10*T*T+10*T*Ttot+I*(2*I+5*Ttot))-I^4*Ttot+8*tau*I3*Ttot)/(tau^5) a10 = ((a9+60)*tau*tau+10*(-9*T*T+9*T*Ttot+I*(3*I+Ttot))-75*tau*Ttot)/(tau*tau) a11 = (I*Ttot-3*tau*(Ttot-2*tau))/(tau*tau) a12 = (-360*tau^5-24*a2*tau3*T*(I-3*tau)+9*I^5-35*tau*I^4-12*tau*tau*I3-40*tau3*I*I+360*tau^4*I)/(tau^5) a13 = (-3*I3*(8*T*T-8*T*Ttot+3*I*Ttot)+120*tau*tau*T*I*(T-Ttot)+8*tau*I3*Ttot)/tau^5 a14 = (a13*tau*tau+40*(-3*T*T+3*T*Ttot+I*Ttot)-60*tau*Ttot)/(tau*tau) a15 = (2*I-6*tau)/tau b1 = (6*I*I-3*I*Ttot+tau*Ttot)/(I*I) b2 = (tau*T+3*I*(I-T))/(I*I) b3 = (tau3-12*T*I*I+8*I3+20*tau*I*I-8*tau*tau*I)/I3 b4 = (6*T*T-6*T*Ttot+I*(5*Ttot-4*I))/(I*I) b5 = (10*I-3*tau)/I b6 = (12*b4*I3+4*tau*(-6*T*T+6T*Ttot+I*(13*Ttot-30*I)))/I3 b7 = (b6*I^5+4*tau*tau*I*I*(12*I-11*Ttot)+tau3*I*(11*Ttot-6*I)-tau^4*Ttot)/I^5 b8 = (3T*T-3*T*Ttot+I*Ttot)/(I*I) b9 = (8*b8*I^4+20*tau*I*I*Ttot-8*tau*tau*I*Ttot+tau3*Ttot)/I^4 b10 = (-tau^4+24*T*I*I*(tau-3I)+60*I^4+52*tau*I3-44*tau*tau*I*I+11*tau3*I)/I^4 b11 = (-15*b4*I3+10*b8*tau*I*I+15*tau*tau*(2*I-Ttot))/I3 b12 = (b11*I^5+2*tau3*I*(4*Ttot-3*I)-tau^4*Ttot)/I^5 b13 = (Ttot-2*T)/I b14 = (6*I-2*tau)/I Q = snr/sqrt(num_tr) sigma_t0 = tau>=I ? sqrt(0.5*tau*T/(1-I/(3*tau)))/Q : sqrt(0.5*I*T/(1-tau/(3*I)))/Q sigma_period = sigma_t0/sqrt(num_tr) sigma_duration = tau>=I ? sigma*sqrt(abs(6*tau*a14/(delta*delta*a5)) /Lambda_eff ) : sigma*sqrt(abs(6*I*b9/(delta*delta*b7)) / Lambda_eff) sigma_depth = tau>=I ? sigma*sqrt(abs(-24*a11*a2/(tau*a5)) / Lambda_eff) : sigma*sqrt(abs(24*b1/(I*b7)) / Lambda_eff) sigma_obs = TransitPlanetObs( sigma_period, sigma_t0, sigma_depth, sigma_duration ) local obs if diagonal # Assume uncertainties uncorrelated (Diagonal) obs = TransitPlanetObs( period*(1.0+sigma_obs.period*randtn()), t0*(1.0+sigma_obs.period*randtn()), depth*(1.0+sigma_obs.depth*randtn()),duration*(1.0+sigma_obs.duration*randtn())) else # TODO WARNING TEST: Should test before using full covariance matrix cov = zeros(4,4) if tau>=I # cov[0,0] = -3*tau/(delta*delta*a15) cov[1,1] = 24*tau*a10/(delta*delta*a5) cov[1,2] = cov[2,1] = 36*a8*tau*a1/(delta*delta*a5) cov[1,3] = cov[3,1] = -12*a11*a1/(delta*a5) cov[1,4] = cov[4,1] = -12*a6*a1/(delta*a5) cov[2,2] = 6*tau*a14/(delta*delta*a5) cov[2,3] = cov[3,2] = 72*a8*a2/(delta*a5) cov[2,4] = cov[4,2] = 6*a7/(delta*a5) cov[3,3] = -24*a11*a2/(tau*a5) cov[3,4] = cov[4,3] = -24*a6*a2/(tau*a5) cov[4,4] = a12/(tau*a5) else # cov[0,0] = 3*I/(delta*delta*b14) cov[1,1] = -24*I*I*b12/(delta*delta*tau*b7) cov[1,2] = cov[2,1] = 36*I*b13*b5/(delta*delta*b7) cov[1,3] = cov[3,1] = 12*b5*b1/(delta*b7) cov[1,4] = cov[4,1] = 12*b5*b2/(delta*b7) cov[2,2] = 6*I*b9/(delta*delta*b7) cov[2,3] = cov[3,2] = 72*b13/(delta*b7) cov[2,4] = cov[4,2] = 6*b3/(delta*b7) cov[3,3] = 24*b1/(I*b7) cov[3,4] = cov[4,3] = 24*b2/(I*b7) cov[4,4] = b10/(I*b7) end cov .*= sigma*sigma/Lambda_eff cov = make_matrix_pos_def(cov) obs_dist = MvNormal(zeros(4),cov) local obs_period, obs_duration, obs_depth, sigma_period, sigma_duration, sigma_depth isvalid = false while !isvalid obs_vec = rand(obs_dist) obs_duration = duration + obs_vec[2] obs_depth = depth + obs_vec[3] if (obs_duration>0.0) && (obs_depth>0.0) isvalid = true end end # while obs = TransitPlanetObs( period*(1.0+sigma_obs.period*randn()), t0*(1.0+sigma_obs.t0*randn()), obs_depth, obs_duration) end return obs, sigma_obs end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
25252
## ExoplanetsSysSim/src/transit_prob_geometric.jl ## (c) 2015 Eric B. Ford # Transit probability expressions if treat planets separately function calc_transit_prob_single_planet_approx(P::Float64, Rstar::Float64, Mstar::Float64) return min(rsol_in_au*Rstar/semimajor_axis(P,Mstar), 1.0) end #function calc_transit_prob_single_planet_obs_ave(ps::PlanetarySystemAbstract, pl::Integer) function calc_transit_prob_single_planet_obs_ave(ps::PlanetarySystem{StarT}, pl::Integer) where {StarT<:StarAbstract} ecc::Float64 = ps.orbit[pl].ecc a::Float64 = semimajor_axis(ps,pl) Rstar::Float64 = rsol_in_au*ps.star.radius return min(Rstar/(a*(1-ecc)*(1+ecc)), 1.0) end calc_transit_prob_single_planet_obs_ave(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_prob_single_planet_obs_ave(t.sys[s], p) #= # WARNING: This knows about e and w, but still returns a fraction rather than a 0 or 1. Commented out for now, so no one uses it accidentally until we figure out why it was this way function calc_transit_prob_single_planet_one_obs(ps::PlanetarySystemAbstract, pl::Integer) where {StarT<:StarAbstract} ecc::Float64 = ps.orbit[pl].ecc a::Float64 = semimajor_axis(ps,pl) Rstar::Float64 = rsol_in_au*ps.star.radius return min(Rstar*(1+ecc*sin(ps.orbit[pl].omega))/(a*(1-ecc)*(1+ecc)), 1.0) end calc_transit_prob_single_planet_one_obs(t::KeplerTarget, s::Integer, p::Integer) = calc_transit_prob_single_planet_one_obs(t.sys[s], p) =# # WARNING: Assumes that planets with b>1 won't be detected/pass vetting #function does_planet_transit(ps::PlanetarySystemAbstract, pl::Integer) function does_planet_transit(ps::PlanetarySystem{StarT}, pl::Integer) where {StarT<:StarAbstract} ecc::Float64 = ps.orbit[pl].ecc incl::Float64 = ps.orbit[pl].incl a::Float64 = semimajor_axis(ps,pl) Rstar::Float64 = rsol_in_au*ps.star.radius if (Rstar >= (a*(1-ecc)*(1+ecc)*abs(cos(incl)))/(1+ecc*sin(ps.orbit[pl].omega))) return true else return false end end #function corbits_placeholder_obs_ave( ps::PlanetarySystemSingleStar, use_pl::Vector{Cint} ) # Might be useful for someone to test w/o CORBITS function corbits_placeholder_obs_ave( ps::PlanetarySystem{StarT}, use_pl::Vector{Cint} ) where {StarT<:StarAbstract} # Might be useful for someone to test w/o CORBITS n = num_planets(ps) prob = 1.0 for p in 1:n ptr = calc_transit_prob_single_planet_obs_ave(ps,p) prob *= (use_pl[p]==1) ? ptr : 1.0-ptr #= if(use_pl[p]==1) prob *= calc_transit_prob_single_planet_obs_ave(ps,p) else prob *= 1.0-calc_transit_prob_single_planet_obs_ave(ps,p) end =# end return prob end #function calc_impact_parameter(ps::PlanetarySystemSingleStar, pl::Integer) function calc_impact_parameter(ps::PlanetarySystem{StarT}, pl::Integer) where {StarT<:StarAbstract} one_minus_e2 = (1-ps.orbit[pl].ecc)*(1+ps.orbit[pl].ecc) a_semimajor_axis = semimajor_axis(ps,pl) b = a_semimajor_axis *cos(ps.orbit[pl].incl)/(ps.star.radius*rsol_in_au) b *= one_minus_e2/(1+ps.orbit[pl].ecc*sin(ps.orbit[pl].omega)) b = abs(b) end #function prob_combo_transits_one_obs( ps::PlanetarySystemSingleStar, use_pl::Vector{Cint} ) function prob_combo_transits_one_obs( ps::PlanetarySystem{StarT}, use_pl::Vector{Cint} ) where {StarT<:StarAbstract} n = num_planets(ps) for p in 1:n #one_minus_e2 = (1-ps.orbit[p].ecc)*(1+ps.orbit[p].ecc) #a_semimajor_axis = semimajor_axis(ps,p) #b = a_semimajor_axis *cos(ps.orbit[p].incl)/ps.star.radius #b *= one_minus_e2/(1+ps.orbit[p].ecc*sin(ps.orbit[p].omega)) b = calc_impact_parameter(ps, p) if ! ( (b<=1.0 && use_pl[p]==1) || (b> 1.0 && use_pl[p]!=1) ) return 0.0 end end return 1.0 end struct prob_combo_transits_obs_ave_workspace_type a::Vector{Cdouble} r::Vector{Cdouble} ecc::Vector{Cdouble} Omega::Vector{Cdouble} omega::Vector{Cdouble} inc::Vector{Cdouble} function prob_combo_transits_obs_ave_workspace_type(n::Integer) @assert(1<=n<=100) new( Array{Cdouble}(n), Array{Cdouble}(n), Array{Cdouble}(n), Array{Cdouble}(n), Array{Cdouble}(n), Array{Cdouble}(n) ) end end #= # Attempt to reduce memory allocations. It does that, but no noticable speed improvement, so I'm leaving it commented out for now. const global corbits_max_num_planets_per_system = 20 prob_combo_transits_obs_ave_workspace = prob_combo_transits_obs_ave_workspace_type(corbits_max_num_planets_per_system) #function prob_combo_transits_obs_ave( ps::PlanetarySystemSingleStar, use_pl::Vector{Cint}; print_orbit::Bool = false) function prob_combo_transits_obs_ave( ps::PlanetarySystem{StarT}, use_pl::Vector{Cint}; print_orbit::Bool = false) where {StarT<:StarAbstract} n = num_planets(ps) @assert(n<=corbits_max_num_planets_per_system) for i in 1:n prob_combo_transits_obs_ave_workspace.a[i] = semimajor_axis(ps,i) prob_combo_transits_obs_ave_workspace.r[i] = ps.planet[i].radius * rsol_in_au prob_combo_transits_obs_ave_workspace.ecc[i] = ps.orbit[i].ecc prob_combo_transits_obs_ave_workspace.Omega[i] = ps.orbit[i].asc_node prob_combo_transits_obs_ave_workspace.omega[i] =ps.orbit[i].omega prob_combo_transits_obs_ave_workspace.inc[i] = ps.orbit[i].incl end r_star = convert(Cdouble,ps.star.radius * rsol_in_au ) prob = prob_of_transits_approx(prob_combo_transits_obs_ave_workspace.a, r_star, prob_combo_transits_obs_ave_workspace.r, prob_combo_transits_obs_ave_workspace.ecc, prob_combo_transits_obs_ave_workspace.Omega, prob_combo_transits_obs_ave_workspace.omega, prob_combo_transits_obs_ave_workspace.inc, use_pl) #prob = prob_of_transits_approx(a, r_star, r, ecc, Omega, omega, inc, use_pl) if print_orbit println("# a = ", prob_combo_transits_obs_ave_workspace.a) println("# r_star = ", r_star) println("# r = ", prob_combo_transits_obs_ave_workspace.r) println("# ecc = ", prob_combo_transits_obs_ave_workspace.ecc) println("# Omega = ", prob_combo_transits_obs_ave_workspace.Omega) println("# omega = ", prob_combo_transits_obs_ave_workspace.omega) println("# inc = ", prob_combo_transits_obs_ave_workspace.inc) println("# use_pl = ", use_pl) println("") end return prob end =# #function prob_combo_transits_obs_ave( ps::PlanetarySystemSingleStar, use_pl::Vector{Cint}; print_orbit::Bool = false) function prob_combo_transits_obs_ave( ps::PlanetarySystem{StarT}, use_pl::Vector{Cint}; print_orbit::Bool = false) where {StarT<:StarAbstract} n = num_planets(ps) a = Cdouble[ semimajor_axis(ps,i) for i in 1:n ] r_star = convert(Cdouble,ps.star.radius * rsol_in_au ) r = Cdouble[ ps.planet[i].radius * rsol_in_au for i in 1:n ] ecc = Cdouble[ ps.orbit[i].ecc for i in 1:n ] Omega = Cdouble[ ps.orbit[i].asc_node for i in 1:n ] omega = Cdouble[ ps.orbit[i].omega for i in 1:n ] inc = Cdouble[ ps.orbit[i].incl for i in 1:n ] #use_pl = Cint[0 for i in 1:n] #for i in 1:length(combo) # use_pl[i] = 1 #end prob = prob_of_transits_approx(a, r_star, r, ecc, Omega, omega, inc, use_pl) if print_orbit println("# a = ", a) println("# r_star = ", r_star) println("# r = ", r) println("# ecc = ", ecc) println("# Omega = ", Omega) println("# omega = ", omega) println("# inc = ", inc) println("# use_pl = ", use_pl) println("") end return prob end @compat abstract type SystemDetectionProbsAbstract end @compat abstract type SystemDetectionProbsTrait end @compat abstract type SkyAveraged <: SystemDetectionProbsTrait end @compat abstract type OneObserver <: SystemDetectionProbsTrait end # Derived types will allow us to specialize depending on whether using sky-averaged values, values for actual geometry (both of which require the physical catalog), or estimates based on observed data mutable struct SimulatedSystemDetectionProbs{T<:SystemDetectionProbsTrait} <: SystemDetectionProbsAbstract # To be used for simulated systems where we can calculat everything # Inputs to CORBITS detect_planet_if_transits::Vector{Float64} # Probability of detecting each planet, averaged over all observers for each planet individually, assumes b~U[0,1); To be used in pass 1 # Outputs from CORBITS pairwise::Matrix{Float64} # detection probability (incl geometry & detection probability) for each planet (diagonal) and each planet pair (off diagonal) # TODO OPT: Make matrix symmetric to save memory? n_planets::Vector{Float64} # fraction of time would detect n planets (incl. geometry & detection probability) combo_detected::Vector{Vector{Int64}} # List of combinations of planets drawn from full joint multi-transit probability end # Removed since not really need and previous had used alised typename and function # Specialize so know whether the values are sky averaged or not #typealias SkyAveragedSystemDetectionProbs SimulatedSystemDetectionProbs{SkyAveraged} #typealias OneObserverSystemDetectionProbs SimulatedSystemDetectionProbs{OneObserver} #SkyAveragedSystemDetectionProbs = SimulatedSystemDetectionProbs{SkyAveraged} #OneObserverSystemDetectionProbs = SimulatedSystemDetectionProbs{OneObserver} function SimulatedSystemDetectionProbs(traits::Type, p::Vector{Float64}; num_samples::Integer = 1) SimulatedSystemDetectionProbs{traits}( p, zeros(length(p),length(p)), zeros(length(p)), fill(Array{Int64}(undef,0), num_samples) ) end function SimulatedSystemDetectionProbs(traits::Type, n::Integer; num_samples::Integer = 1) SimulatedSystemDetectionProbs{traits}( ones(n), zeros(n,n), zeros(n), fill(Array{Int64}(undef,0), num_samples) ) end SkyAveragedSystemDetectionProbs(p::Vector{Float64}; num_samples::Integer = 1) = SimulatedSystemDetectionProbs( SkyAveraged, p, num_samples=num_samples) SkyAveragedSystemDetectionProbs(n::Integer; num_samples::Integer = 1) = SimulatedSystemDetectionProbs(SkyAveraged, n, num_samples=num_samples) SkyAveragedSystemDetectionProbsEmpty() = SimulatedSystemDetectionProbs(SkyAveraged,0) OneObserverSystemDetectionProbs(p::Vector{Float64}; num_samples::Integer = 1) = SimulatedSystemDetectionProbs( OneObserver, p, num_samples=num_samples) OneObserverSystemDetectionProbs(n::Integer; num_samples::Integer = 1) = SimulatedSystemDetectionProbs(OneObserver, n, num_samples=num_samples) OneObserverSystemDetectionProbsEmpty() = SimulatedSystemDetectionProbs(OneObserver,0) # Functions common to various types of SystemDetectionProbs num_planets(prob::SimulatedSystemDetectionProbs{T}) where T<:SystemDetectionProbsTrait = length(prob.detect_planet_if_transits) function prob_detect_if_transits(prob::SimulatedSystemDetectionProbs{T}, pl_id::Integer) where T<:SystemDetectionProbsTrait @assert 1<=pl_id<=length(prob.detect_planet_if_transits) prob.detect_planet_if_transits[pl_id] end function prob_detect(prob::SimulatedSystemDetectionProbs{T}, pl_id::Integer) where T<:SystemDetectionProbsTrait if ! (1<=pl_id<=size(prob.pairwise,1) ) println("#ERROR: pl_id =", pl_id, " prob.pairwise= ", prob.pairwise) end @assert 1<=pl_id<=size(prob.pairwise,1) return prob.pairwise[pl_id,pl_id] end function prob_detect_both_planets(prob::SimulatedSystemDetectionProbs{T}, pl_id::Integer, ql_id::Integer) where T<:SystemDetectionProbsTrait @assert 1<=pl_id<=size(prob.pairwise,1) @assert 1<=ql_id<=size(prob.pairwise,1) prob.pairwise[pl_id,ql_id] end prob_detect_n_planets(prob::SimulatedSystemDetectionProbs{T}, n::Integer) where T<:SystemDetectionProbsTrait = 1<=n<=length(prob.n_planets) ? prob.n_planets[n] : 0.0 # Compute sky-averaged transit probabilities from a planetary system with known physical properties, assuming a single host star #function calc_simulated_system_detection_probs(ps::PlanetarySystemSingleStar, prob_det_if_tr::Vector{Float64}; num_samples::Integer = 1, max_tranets_in_sys::Integer = 10, min_detect_prob_to_be_included::Float64 = 0.0, observer_trait::Type=SkyAveraged) function calc_simulated_system_detection_probs(ps::PlanetarySystem{StarT}, prob_det_if_tr::Vector{Float64}; num_samples::Integer = 1, max_tranets_in_sys::Integer = 10, min_detect_prob_to_be_included::Float64 = 0.0, observer_trait::Type=SkyAveraged) where {StarT<:StarAbstract} @assert observer_trait <: SystemDetectionProbsTrait @assert num_planets(ps) == length(prob_det_if_tr) idx_detectable = findall(x->x>0.0,prob_det_if_tr) n = length(idx_detectable) @assert n <= max_tranets_in_sys # Make sure memory to store these #if n==0 # println("# WARNING found no detectable planets based on ",prob_det_if_tr) #end invalid_prob_flag = false #ps_detectable = PlanetarySystemSingleStar(ps,idx_detectable) #ps_detectable = PlanetarySystem(ps,idx_detectable) ps_detectable = PlanetarySystem(ps.star,ps.planet[idx_detectable],ps.orbit[idx_detectable]) combo_sample_probs = rand(num_samples) combo_cum_probs = zeros(num_samples) #sdp = SimulatedSystemDetectionProbs{observer_trait}(prob_det_if_tr[idx_detectable]) sdp = SimulatedSystemDetectionProbs(observer_trait,prob_det_if_tr[idx_detectable]) planet_should_transit = zeros(Cint,n) for p in 1:num_planets(sdp) sdp.pairwise[p,p] = 0.0 end for ntr in 1:min(n,max_tranets_in_sys) # Loop over number of planets transiting sdp.n_planets[ntr] = 0.0 for combo in combinations(1:n,ntr) # Loop over specific combinations of detectable planets prob_det_this_combo = 1.0 for p in combo # Loop over each planet in this combination of detectable planets prob_det_this_combo *= prob_det_if_tr[idx_detectable[p]] end if prob_det_this_combo < min_detect_prob_to_be_included continue end fill!(planet_should_transit,zero(Cint)) for i in 1:length(combo) planet_should_transit[combo[i]] = one(Cint) end local geo_factor::Float64 if observer_trait == SkyAveraged geo_factor = prob_combo_transits_obs_ave(ps_detectable,planet_should_transit) elseif observer_trait == OneObserver geo_factor = prob_combo_transits_one_obs(ps_detectable,planet_should_transit) else error(string("typeof(",observer_trait,") is not a valid trait.")) end prob_det_this_combo *= geo_factor # Store samples of combinations of planets detected drawn from the full joint multi-planet density for i in 1:num_samples if combo_cum_probs[i] < combo_sample_probs[i] <= combo_cum_probs[i]+prob_det_this_combo sdp.combo_detected[i] = combo end end combo_cum_probs .+= prob_det_this_combo sdp.n_planets[ntr] += prob_det_this_combo # Accumulate the probability of detecting any n planets for p in combo # Accumulate the probability of detecting each planet individually sdp.pairwise[p,p] += prob_det_this_combo end #= for pq in combinations(combo,2) # Accumulate the probability of detecting each planet pair # TODO: OPT: replace with simply calculating integers for pairs to avoid allocations of small arrays sdp.pairwise[pq[1],pq[2]] = prob_det_this_combo sdp.pairwise[pq[2],pq[1]] = prob_det_this_combo # TODO OPT: Remove if use symmetric matrix type. end =# if length(combo)>=2 for pi in 2:length(combo) # Accumulate the probability of detecting each planet pair # TODO: OPT: replace with simply calculating integers for pairs to avoid allocations of small arrays p = combo[pi] for qi in 1:(pi-1) q = combo[qi] sdp.pairwise[p,q] = prob_det_this_combo sdp.pairwise[q,p] = prob_det_this_combo # TODO OPT: Remove if use symmetric matrix type. end # qi end # pi end # if end # combo end # ntr for p in 1:n if sdp.pairwise[p,p] > 1.0 invalid_prob_flag = true println(string("Error! Invalid prob for planet ",p,": ", sdp.pairwise[p,p])) end end if invalid_prob_flag println("") for ntr in 1:min(n,max_tranets_in_sys) for combo in combinations(1:n,ntr) fill!(planet_should_transit,zero(Cint)) for i in 1:length(combo) planet_should_transit[combo[i]] = one(Cint) end if length(combo) == n geo_factor = prob_combo_transits_obs_ave(ps_detectable,planet_should_transit, print_orbit = true) else geo_factor = prob_combo_transits_obs_ave(ps_detectable,planet_should_transit) end println(string("Geo. factor of ",combo," = ",geo_factor)) end end println(string("Det. prob. = ", prob_det_if_tr[idx_detectable])) println("") #quit() end return sdp end if false # WARNING: Complicated and untested function combine_system_detection_probs(prob::Vector{SimulatedSystemDetectionProbs{T}}, s1::Integer, s2::Integer) where T # WARNING: Complicated and untested npl_s1 = min(num_planets(prob[s1]), max_tranets_in_sys) npl_s2 = min(num_planets(prob[s2]), max_tranets_in_sys) num_planets_across_systems = npl_s1 + npl_s2 prob_merged = SimulatedSystemDetectionProbs{T}(num_planets_across_systems) # Copy probabilities for detecting planets and planet pairs within one system prob_merged.detect_planet_if_transits[1:npl_s1] = prob[s1].detect_planet_if_transits prob_merged.pairwise[1:npl_s1,1:npl_s1] = prob[s1].pairwise offset = npl_s1 prob_merged.detect_planet_if_transits[offset+1:offset+npl_s2] = prob[s2].detect_planet_if_transits prob_merged.pairwise[offset+1:offset+npl_s2,offset+1:offset+npl_s2] = prob[s2].pairwise # Calculate probabilities of detecting pairs of planets in different systems, assuming uncorrelated orientations for p1 in 1:npl_s1 for p2 in 1:npl_s2 prob_detect_both = prob_detect(prob[s1],p1)*prob_detect(prob[s2],p2) idx1 = p1 idx2 = offset+p2 prob_merged.pairwise[idx1,idx2] = prob_detect_both prob_merged.pairwise[idx2,idx1] = prob_detect_both end end # Merge probabilities of detecting n_planets, assuming uncorrelated orientations p_zero_pl_s1 = 1.0-sum(prob[s1].n_planets) p_zero_pl_s2 = 1.0-sum(prob[s2].n_planets) for n in 1:min(num_planets_across_systems,max_tranets_in_sys) prob_merged.n_planets[n] = p_zero_pl_s1*prob[s2].n_planets[n] + p_zero_pl_s2*prob[s1].n_planets[n] for i in 1:n-1 prob_merged.n_planets[n] += prob[s1].n_planets[i]*prob[s2].n_planets[n-i] + prob[s1].n_planets[n-i]*prob[s2].n_planets[i] end end # Combine samples of detected planet combinations prob_merged.combo_detected = fill(Array{Int64}(undef,0), min(length(prob[s1].combo_detected), length(prob[s2].combo_detected) ) ) for i in 1:length(prob_merged.combo_detected) prob_merged.combo_detected[i] = vcat( prob[s1].combo_detected, prob[s1].combo_detected+offset ) end return prob_merged end function select_subset(prob::SimulatedSystemDetectionProbs{T}, idx::Vector{Int64}) # WARNING: Complicated and untested where {T<:SystemDetectionProbsTrait} n = length(idx) subset = SimulatedSystemDetectionProbs{T}(n) subset.detect_planet_if_transits = prob.detect_planet_if_transits[idx] subset.pairwise = ones(n,n) subset.n_planets = zeros(max(n,length(prob.n_planets))) if 1<=n<=length(subset.n_planets) subset.n_planets[n] = 1.0 end subset.combo_detected = Array{Int64,1}[collect(1:n)] return subset end # ASSUMING: Planetary systems for same target are uncorrelated # Compute sky-averaged transit probabilities from a target with known physical properties function calc_simulated_system_detection_probs(t::KeplerTarget, sim_param::SimParam ) # WARNING: Complicated and untested max_tranets_in_sys = get_int(param,"max_tranets_in_sys",10) min_detect_prob_to_be_included = get(param,"max_tranets_in_sys", 0.0) s1 = findfirst(num_planets,t.sys) if num_planets(t) == num_planets(t.sys[s1]) # Target has only one system with planets prob_det_if_tr = Float64[calc_ave_prob_detect_if_transit(t, s1, p, sim_param) for p in 1:num_planets(t.sys[s1])] return calc_simulated_system_detection_probs(t.sys[s1], prob_det_if_tr, max_tranets_in_sys=max_tranets_in_sys, min_detect_prob_to_be_included=min_detect_prob_to_be_included ) else # Target has multiple systems with planets sdp = SkyAveragedSystemDetectionProbs[ SkyAveragedSystemDetectionProbs( min(num_planets(t.sys[s]),max_tranets_in_sys) ) for s in 1:length(t.sys) ] num_planets_across_systems = 0 # Calculate detection probabilities for each system separately for s in 1:length(t.sys) prob_det_if_tr = Float64[calc_ave_prob_detect_if_transit(t, s, p, sim_param) for p in 1:num_planets(t.sys[s])] sdp[s] = calc_simulated_system_detection_probs(t.sys[s], prob_det_if_tr, max_tranets_in_sys=max_tranets_in_sys, min_detect_prob_to_be_included=min_detect_prob_to_be_included ) num_planets_across_systems += num_planets(t.sys[s]) end @assert num_planets_across_systems <= max_tranets_in_sys # Make sure memory to store these # QUERY: DETAIL: Should we relax? # Find system ids for first two systems with planets #s1, s2 = find_system_detection_probs_with_planets(::Vector{}) more_than_two_systems_with_planets = false s1 = 0 s2 = 0 for s in 1:length(t.sys) if num_planets(t.sys[s])>=1 if s1==0 s1 = s elseif s2==0 s2 = s else more_than_two_systems_with_planets = true end end end @assert (s1!=0) && (s2!=0) @assert !more_than_two_systems_with_planets sdp_merged = combine_system_detection_probs(sdp,s1,s2) # Merge SystemDetectionProbs across systems with common target return sdp_merged end end end mutable struct ObservedSystemDetectionProbs <: SystemDetectionProbsAbstract # TODO OPT: For observed systems (or simulations of observed systems) were we can't know everything. Is this even used? Or should we just compute these on the fly, rather than storing them? Do we even want to keep this? planet_transits::Vector{Float64} # Probability that each planet transits individually for one observer based on actual i, e, and omega detect_planet_if_transits::Vector{Float64} # Probability of detecting each planet given that it transits. Assumes one observer based on actual i, e and omega # snr::Vector{Float64} # Dimensionless SNR of detection for each planet QUERY: Should we store this here? end ObservedSystemDetectionProbs(p::Vector{Float64}) = ObservedSystemDetectionProbs( ones(length(p)), p ) ObservedSystemDetectionProbs(n::Integer) = ObservedSystemDetectionProbs( ones(n), zeros(n) ) ObservedSystemDetectionProbsEmpty() = ObservedSystemDetectionProbs(0) # Functions common to various types of SystemDetectionProbs num_planets(prob::ObservedSystemDetectionProbs) = length(prob.detect_planet_if_transits) prob_detect_if_transits(prob::ObservedSystemDetectionProbs, pl_id::Integer) = prob.detect_planet_if_transits[pl_id] prob_detect(prob::ObservedSystemDetectionProbs, pl_id::Integer) = prob.planet_transits[pl_id]*prob.detect_planet_if_transits[pl_id] #prob_detect_both_planets(prob::ObservedSystemDetectionProbs, pl_id::Integer, ql_id::Integer) = prob_detect(prob,pl_id) * prob_detect(prob,ql_id) # WARNING: Assumes independent. Intent is for testing CORBITS. Or should we delete? #if false function prob_detect_n_planets(prob::ObservedSystemDetectionProbs, n::Integer) # WARNING: Assumes independent. Intent is for testing CORBITS. May wnat to comment out to prevent accidental use. if n<1 || n > num_planets(prob) return 0.0 end sum_prob = 0.0 for combo in combinations(1:num_planets(prob), n) prob_this_combo = 1.0 for pl_id in combo prob_this_combo *= prob_detect(prob,pl_id) end sum_prob += prob_this_combo end return sum_prob end #= # Compute transit probabilities for a single observer from a target with known physical properties function calc_observed_system_detection_probs(targ::KeplerTarget, sim_param::SimParam) n = num_planets(targ) pdet = zeros(n) ptr = zeros(n) pl = 1 for s in 1:length(targ.sys) for p in 1:length(targ.sys[s].planet) pdet[pl] = calc_prob_detect_if_transit_with_actual_b(targ, s, p, sim_param) ptr[pl] = calc_transit_prob_single_planet_one_obs(targ, s, p) pl += 1 end end ObservedSystemDetectionProbs( ptr, pdet ) end =# # Estimate transit probabilities for a single observer from a target with known physical properties. if false # Do we actually want this for anything? function calc_observed_system_detection_probs(kto::KeplerTargetObs, sim_param::SimParam) n = num_planets(kto) pdet = ones(n) # WARNING: We assume all observed objects were detected and we don't have enough info to calcualte a detection probability. Do we want to do something different? ptr = zeros(n) for pl in 1:n ptr[pl] = calc_transit_prob_single_planet_approx(kto.obs[pl].period, kto.star.radius, kto.star.mass ) end ObservedSystemDetectionProbs( ptr, pdet ) end end
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
15269
## ExoplanetsSysSim/src/window_function.jl ## (c) 2018 Darin Ragozzine # Gather and prepare the window function data module WindowFunction import ..cdpp_durations export setup_window_function, get_window_function_data, get_window_function_id, eval_window_function #using DataArrays using DataFrames #using CSV #using JLD2 using FileIO using ExoplanetsSysSim using ExoplanetsSysSim.SimulationParameters # Object to hold window function data struct window_function_data window_func_array::Array{Float64,3} # Value of window function (window_function_id, duration_id, period_id). Maybe rename to wf_value or data? wf_durations_in_hrs::Array{Float64,1} # Boundaries for duration bins in window_func_array. Maybe rename to durations? wf_periods_in_days::Array{Float64,1} # Boundaries for periods bins in window_func_array. Maybe rename to periods? sorted_quarter_strings::Array{Int64,1} # TODO OPT: Is there a reason to keep this? Maybe rename to quarter_strings? allsortedkepids::Array{Int64,1} # value is Kepler ID. Index is same as index to window_function_id_arr window_function_id_arr::Array{Int64,1} # value is index for window_func_array. Index is same as index to allsortedkepids default_wf_id::Int64 # Index corresponding to the default window function already_warned::Array{Bool,1} # Wether we've already thrown a warning about this kepid end function window_function_data() window_function_data( Array{Float64,3}(undef,0,0,0), Array{Float64,1}(undef,0),Array{Float64,1}(undef,0), Array{Int64,1}(undef,0),Array{Int64,1}(undef,0),Array{Int64,1}(undef,0), 0, falses(0) ) end win_func_data = window_function_data() function setup(sim_param::SimParam; force_reread::Bool = false) global win_func_data if haskey(sim_param,"read_window_function") && !force_reread return win_func_data end window_function_filename = convert(String,joinpath(dirname(pathof(ExoplanetsSysSim)), "..", "data", convert(String,get(sim_param,"window_function","DR25topwinfuncs.jld2")) ) ) setup(window_function_filename) add_param_fixed(sim_param,"read_window_function",true) @assert( size(win_func_data.window_func_array,2) == length(win_func_data.wf_durations_in_hrs) ) @assert( size(win_func_data.window_func_array,3) == length(win_func_data.wf_periods_in_days) ) @assert( size(win_func_data.window_func_array,1) >= maximum(win_func_data.window_function_id_arr) ) @assert( size(win_func_data.window_func_array,1) >= win_func_data.default_wf_id ) return win_func_data end function setup(filename::String) # Reads in the window function data collected from the Kepler Completeness Products # see Darin Ragozzine's get/cleanDR25winfuncs.jl if occursin(r".jld2$",filename) try wfdata = load(filename) window_func_array = wfdata["window_func_array"] wf_durations_in_hrs = wfdata["wf_durations_in_hrs"] # TODO OPT DETAIL: Should we convert units to days here? wf_periods_in_days = wfdata["wf_periods_in_days"] sorted_quarter_strings = wfdata["sorted_quarter_strings"] allsortedkepids = wfdata["allsortedkepids"] window_function_id_arr = wfdata["window_function_id_arr"] already_warned = falses(length(allsortedkepids)) global win_func_data = window_function_data(window_func_array, wf_durations_in_hrs, wf_periods_in_days, sorted_quarter_strings, allsortedkepids, window_function_id_arr, maximum(window_function_id_arr), already_warned ) catch error(string("# Failed to read window function data > ", filename," < in jld2 format.")) end end return win_func_data end setup_window_function(sim_param::SimParam; force_reread::Bool = false) = setup(sim_param, force_reread=force_reread) setup_window_function(filename::String; force_reread::Bool = false) = setup(filename, force_reread=force_reread) function get_window_function_data()::window_function_data #global win_func_data return win_func_data end function get_window_function_id(kepid::Int64; use_default_for_unknown::Bool = true)::Int64 # takes the quarter string from the stellar catalog and determines the window function id # from DR25topwinfuncs.jld2 made by Darin Ragozzine's cleanDR25winfuncs.jl script. no_win_func_available::Int64 = -1 # hardcoding this in, should match convention in window function input file idx = searchsortedfirst(win_func_data.allsortedkepids,kepid) # all Kepler kepids are in allsortedkepids wf_id = win_func_data.window_function_id_arr[idx] if wf_id == no_win_func_available && use_default_for_unknown # if a target is observed for less than 4 quarters, then it won't have a corresponding # window function in this list, so throw a warning and use the last window_function_id # which corresponds to an "averaged" window function if !win_func_data.already_warned[idx] win_func_data.already_warned[idx] = true if sum(win_func_data.already_warned) < 20 @warn "Window function data is not avaialble for kepid $kepid, using default." end end wf_id = win_func_data.default_wf_id end # TODO SCI DETAIL IMPORTANT? This does not include TPS timeouts or MESthresholds (see DR25 Completeness Products) return wf_id end function calc_period_idx(P::Float64)::Int64 @assert(P>zero(P)) idx = searchsortedlast(win_func_data.wf_periods_in_days,P) if idx == 0 return 1 elseif idx<length(win_func_data.wf_periods_in_days) if P-win_func_data.wf_periods_in_days[idx]>win_func_data.wf_periods_in_days[idx+1]-P idx += 1 end end return idx end function calc_duration_idx(D::Float64)::Int64 # NOTE: Currently assumes we left wf data in hours, so deal with that conversion here @assert(D>=zero(D)) ##### Make sure this function is still doing the right thing if D = 0! hours_in_day = 24 idx = searchsortedlast(win_func_data.wf_durations_in_hrs,D*hours_in_day) if idx == 0 return 1 elseif idx<length(win_func_data.wf_durations_in_hrs) if D*hours_in_day-win_func_data.wf_durations_in_hrs[idx]>win_func_data.wf_durations_in_hrs[idx+1]-D*hours_in_day idx += 1 end end return idx end function eval_window_function(wf_idx::Int64=-1; Duration::Float64=0., Period::Float64=0.)::Float64 D_idx = calc_duration_idx(Duration) P_idx = calc_period_idx(Period) wf = eval_window_function(wf_idx,D_idx,P_idx) # TODO SCI DETAIL: Improve way deal with missing wf values for some durations. Interpolate? while wf<=zero(wf) && D_idx<length(win_func_data.wf_durations_in_hrs) D_idx += 1 wf = eval_window_function(wf_idx,D_idx,P_idx) end return wf end function eval_window_function(wf_idx::Int64, D_idx::Int64, P_idx::Int64)::Float64 global win_func_data #@assert(1<=wf_idx<maximum(win_func_data.window_function_id_arr)) #@assert(1<=P_idx<=length(win_func_data.wf_periods_in_days)) #@assert(1<=D_idx<=length(win_func_data.wf_durations_in_hrs)) return win_func_data.window_func_array[wf_idx,D_idx,P_idx] end #Object for storing data necessary for OSD_interpolator struct OSD_data{T1<:Real, T2<:Real} allosds::Array{T1,3} kepids::Array{Int64,1} #periods_length::Int64 #durations_length::Int64 grid::Array{Array{T2,1},1} function OSD_data(data::AbstractArray{T1,3}, kepids::AbstractArray{Int64,1}, durations::AbstractArray{T2,1}, periods::AbstractArray{T2,1} ) where {T1<:Real, T2<:Real} @assert(size(data,1)==length(kepids)) @assert(size(data,2)==length(durations)) @assert(size(data,3)==length(periods)) @assert issorted(kepids) @assert issorted(durations) @assert issorted(periods) new{T1,T2}(data, kepids, [durations,periods]) end end # Only point of this version is to provide a drop in replacement for Keir's code function OSD_data(allosds::AbstractArray{T1,3}, kepids::AbstractArray{T3,1}, periods_length::Int64, durations_length::Int64, grid::Array{Array{T2,1},1}) where {T1<:Real, T2<:Real, T3<:Real} @assert length(grid) == 2 @assert durations_length == length(grid[1]) @assert periods_length == length(grid[2]) if eltype(kepids) != Int64 kepids = round.(Int64,kepids) end @assert grid[1][1] == 1.5 # Checking that durations were passed as hours, since that's what Keir's assumed return OSD_data(allosds, kepids, grid[1] ./ 24.0 , grid[2]) # Convert durations to days, since that's units in rest of SysSim end num_stars(osd::OSD_data) = size(osd.allosds,1) num_durations(osd::OSD_data) = size(osd.allosds,2) num_periods(osd::OSD_data) = size(osd.allosds,3) function setup_OSD(sim_param::SimParam; force_reread::Bool = false) #reads in 3D table of OSD values and sets up global variables to be used in interpolation global OSD_setup if haskey(sim_param,"read_OSD_function") && !force_reread return OSD_setup end #OSD_file = load(joinpath(Pkg.dir(), "ExoplanetsSysSim", "data", convert(String,get(sim_param,"osd_file","allosds.jld")))) #OSD_file = load(joinpath(Pkg.dir(), "ExoplanetsSysSim", "data", convert(String,get(sim_param,"osd_file","allosds.jld")))) #OSD_file = load(joinpath(dirname(pathof(ExoplanetsSysSim)),"data",convert(String,get(sim_param,"osd_file","allosds.jld")))) #OSD_file = load(joinpath(dirname(pathof(ExoplanetsSysSim)),"..","data",convert(String,get(sim_param,"osd_file","dr25fgk_relaxcut_osds.jld")))) OSD_file = load(joinpath(dirname(pathof(ExoplanetsSysSim)),"..","data",convert(String,get(sim_param,"osd_file","dr25fgk_small_osds.jld2")))) allosds = OSD_file["allosds"] #table of OSDs with dimensions: kepids,durations,periods periods = OSD_file["periods"][1,:] #1000 period values corresponding to OSD values in the third dimension of the allosds table kepids = OSD_file["kepids"] #kepids corresponding to OSD values in the first dimension of the allosds table OSD_file = 0 # unload OSD file to save memory #durations = [1.5,2.,2.5,3.,3.5,4.5,5.,6.,7.5,9.,10.5,12.,12.5,15.] #14 durations corresponding to OSD values in the first dimension of theh allosds table periods_length = length(allosds[1,1,:]) durations_length = length(allosds[1,:,1]) @assert length(cdpp_durations) == durations_length grid = Array{Float64,1}[] #grid used in OSD_interpolator push!(grid, cdpp_durations) push!(grid, periods) #global compareNoise = Float64[] #testing variable used to make sure OSD_interpolator is producing reasonable snrs OSD_setup = OSD_data(allosds, kepids, periods_length, durations_length, grid) allosds = 0 # unload OSD table to save memory add_param_fixed(sim_param,"read_OSD_function",true) return OSD_setup end setup_OSD_interp(sim_param::SimParam; force_reread::Bool = false) = setup_OSD(sim_param, force_reread=force_reread) function find_index_lower_bounding_point(grid::AbstractArray{T1,1}, x::T2; verbose::Bool = false) where {T1<:Real, T2<:Real} if verbose @assert issorted(grid) @assert length(grid)>=2 println("# ", grid[1], " <= ", x, " <= ", grid[end]) @assert grid[1] <= x <= grid[end] end idx = searchsortedlast(grid,x) if idx == 0 idx = 1 #elseif idx >= length(grid) # should never happen # idx = length(grid)-1 end return idx end function interp_OSD_from_table(kepid::Int64, period::T2, duration::T3; verbose::Bool = false) where {T2<:Real, T3<:Real} @assert eltype(OSD_setup.kepids) == Int64 # otherwise would need something like kepid = convert(eltype(OSD_setup.kepids),kepid) kepid_idx = searchsortedfirst(OSD_setup.kepids, kepid) if (kepid_idx > num_stars(OSD_setup)) || (OSD_setup.kepids[kepid_idx] != kepid) # if we don't find the kepid in allosds.jld, then we make a random one kepid_idx = rand(1:size(OSD_setup.allosds,1)) if verbose println("# picked random kepid = ", OSD_setup.kepids[kepid_idx]) end end idx_duration = find_index_lower_bounding_point(OSD_setup.grid[1], duration) idx_period = find_index_lower_bounding_point(OSD_setup.grid[2], period) #z = view(OSD_setup.allosds,kepid_idx,idx_duration:(idx_duration+1),idx_period:(idx_period+1)) # use correct kepid index to extract 2D table from 3D OSD table #= value = z[1,1] * w_dur * w_per + z[2,1] * (1-w_dur) * w_per + z[1,2] * w_dur * (1-w_per) + z[2,2] * (1-w_dur) * (1-w_per) =# if idx_duration < length(OSD_setup.grid[1]) && idx_period < length(OSD_setup.grid[2]) w_dur = (duration-OSD_setup.grid[1][idx_duration]) / (OSD_setup.grid[1][idx_duration+1]-OSD_setup.grid[1][idx_duration]) w_per = (period -OSD_setup.grid[2][idx_period]) / (OSD_setup.grid[2][idx_period+1] -OSD_setup.grid[2][idx_period]) value = OSD_setup.allosds[kepid_idx,idx_duration, idx_period ] * w_dur * w_per + OSD_setup.allosds[kepid_idx,idx_duration+1,idx_period ] * (1-w_dur) * w_per + OSD_setup.allosds[kepid_idx,idx_duration, idx_period+1] * w_dur * (1-w_per) + OSD_setup.allosds[kepid_idx,idx_duration+1,idx_period+1] * (1-w_dur) * (1-w_per) elseif idx_period < length(OSD_setup.grid[2]) w_per = (period -OSD_setup.grid[2][idx_period]) / (OSD_setup.grid[2][idx_period+1] -OSD_setup.grid[2][idx_period]) value = (OSD_setup.allosds[kepid_idx,idx_duration, idx_period+1] - OSD_setup.allosds[kepid_idx,idx_duration, idx_period ]) * w_per + OSD_setup.allosds[kepid_idx,idx_duration, idx_period ] elseif idx_duration < length(OSD_setup.grid[1]) w_dur = (duration-OSD_setup.grid[1][idx_duration]) / (OSD_setup.grid[1][idx_duration+1]-OSD_setup.grid[1][idx_duration]) value = (OSD_setup.allosds[kepid_idx,idx_duration+1,idx_period ] - OSD_setup.allosds[kepid_idx,idx_duration, idx_period ]) * w_dur + OSD_setup.allosds[kepid_idx,idx_duration,idx_period ] else value = OSD_setup.allosds[kepid_idx,idx_duration, idx_period ] end end # function interp_OSD_from_table(kepid::Int64, period::Real, duration::Real) # kepid = convert(Float64,kepid) # meskep = OSD_setup.kepids #we need to find the index that this planet's kepid corresponds to in allosds.jld # kepid_index = findfirst(meskep, kepid) # if kepid_index == 0 # kepid_index = rand(1:88807) #if we don't find the kepid in allosds.jld, then we make a random one # end # olOSD = OSD_setup.allosds[kepid_index,:,:] #use correct kepid index to extract 2D table from 3D OSD table # # olOSD = convert(Array{Float64,2},olOSD) # @time lint = Lininterp(olOSD, OSD_setup.grid) #sets up linear interpolation object # osd = ApproXD.eval2D(lint, [duration*24,period])[1] #interpolates osd # return osd # end # function cdpp_vs_osd(ratio::Float64, cuantos::Int64) # #testing function that takes ratios of cdpp_snr/osd_snr and plots a histogram to make sure the results are reasonable. # global compareNoise # push!(compareNoise,ratio) # if length(compareNoise) == cuantos # PyPlot.plt[:hist](compareNoise,100) # println("MES median: ",median(compareNoise)," MES mean: ",mean(compareNoise), " Standard deviation: ",std(compareNoise)) # cuantos = 100000000 # end # return cuantos # end end # module WindowFunction
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
code
1100
using Test # write your own tests here @test 1 == 1 using DataFrames using ExoplanetsSysSim function run_constructor_tests() ExoplanetsSysSim.SimulationParameters.test_sim_param_constructors() sim_param = ExoplanetsSysSim.setup_sim_param_demo() ExoplanetsSysSim.test_orbit_constructors() ExoplanetsSysSim.test_planet_constructors(sim_param) ExoplanetsSysSim.test_star_constructors(sim_param) ExoplanetsSysSim.test_planetary_system_constructors(sim_param) ExoplanetsSysSim.test_target(sim_param) ExoplanetsSysSim.test_transit_observations(sim_param) (cat_phys, cat_obs) = ExoplanetsSysSim.test_catalog_constructors(sim_param) ExoplanetsSysSim.test_summary_statistics(cat_obs, cat_phys, sim_param) ExoplanetsSysSim.test_abc_distance(cat_obs, cat_phys, sim_param) return 0 end @test run_constructor_tests() == 0 # Just tests that the basic elements compile and run # TODO: Write tests that will be useful in diagnosing any bugs #Test CORBITS moved from ExoplanetsSysSim.test_corbits() to using CORBITS include(joinpath(dirname(pathof(CORBITS)),"..","test","runtests.jl"))
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
docs
12332
# ExoplanetsSysSim [![DOI](https://zenodo.org/badge/179777476.svg)](https://zenodo.org/badge/latestdoi/179777476) Welcome to the ExoplanetsSysSim package for generating planetary systems and simulating observations of those systems with a transit survey. Currently, SysSim focuses on NASA's Kepler mission, but we've aimed to develop a generic framework that can be applied to other surveys (e.g., K2, TESS, PLATO, LSST, etc.). ## How to install ExoplanetsSysSim: * Make sure you have julia (v1.6 or greater) installed. You can download Julia [here](https://julialang.org/downloads/). * Make sure you have a recent git and [git-lfs](https://git-lfs.github.com/) installed. If you're using ICS-ACI, then do this by running the following for each shell (or putting it in your .bashrc) ```sh export PATH=/gpfs/group/dml129/default/sw/git-lfs:$PATH module load git ``` * If you want to use ssh keys instead of https authentication (to minimize typing your github password), then: * Setup a local ssh key using ssh-keygen * Tell Github about your ssh key: Person Icon (upper right), Settings, SSH & GPG keys, New SSH Key. Enter a name in the title box and paste the contents of `cat ~/.ssh/id_rsa.pub` into the "Key" box. Add SSH Key. * Create a clone of the [SysSimData repository](https://github.com/ExoJulia/SysSimData). - If you might want to add/edit files in the SysSimData repository, then please fork your own repository on github and clone that instead of the repo in ExoJulia. Then you can create pull requests when you're ready to add/update files in the main repository. - If you plan to use existing SysSimData files, then you can just create a new copy, use `git clone`. I suggest somewhere outside of your home directory, .julia or JULIA_DEPOT_PATH. Once you've got a clone of a SysSimData repository, initialize and update the submodules. Git "should" automatically download large files via git-lfs. If not, then you can cd into the directory and run `git lfs fetch` to force it to update. For example, ```sh git clone [email protected]:ExoJulia/SysSimData.git cd SysSimData git submodule init git submodule update git lfs fetch # if the binary data files didn't download automatically ``` - If you're using ICS-ACI, then you could simply use the repo in /storage/home/ebf11/group/ebf11/kepler/SysSimData that should already be set up * Make sure that your JULIA_DEPOT_PATH (~/.julia by default) does not include an old version of CORBITS or ExopalnetsSysSim. If this is your first time using julia v1.0, then you probably don't need to do anything. Otherwise, I see two ways to do this: - One way to avoid conflicts is to move or delete the JULIA_DEPOT_PATH. But if there's _any chance_ that you might have things in your current CORBITS or ExoplanetsSysSim repots that you want to keep, then move rather than delete (or make a backup copy of those repos before deleting them). Simillarly, if there are any other packages you've been developing, make sure you have a backup copy before deleting your JULIA_DEPOT_PATH. Once you've fully cleared out the old repos, then 'Pkg.rm("CORBITS"); Pkg.rm("ExoplanetsSysSim"); Pkg.gc()' and 'rm -rf CORBITS ExoplanetsSysSim' both from the dev subdirectory of your JULIA_DEPOT_PATH (~/.julia by default). Warning: Sometimes Julia manages to keep these around despite my efforts to delete them, so I've found it's easier to rename my .julia directory and then copy any other repos in development mode back to my new .julia directory. - Another way to avoid conflicts with old versions is to sepcify a new JULIA_DEPOT_PATH. However, if you go this route, then you'll need to make sure that this environment variable is set to the desired depot in each of your future shell sessions. ```sh export JULIA_DEPOT_PATH=~/.julia_clean ``` On ICS-ACI/Roar, it's useful to set your JULIA_DEPOT_PATH to be in your work directory, as that is higher performance and has more space than your home directory. I've put this in my .bashrc, so I don't forget and get confused about what's being modified. E.g., ```sh export JULIA_DEPOT_PATH=~/work/.julia ``` * Run julia and install the ExoplanetsSysSim repo as a Julia package. - If you will only be using it as is, then you can simply add the registered repo under the ExoJulia organization. ```julia using Pkg Pkg.add("ExoplanetsSysSim") ``` - However, if you may be modifying source code in the ExoplanetsSysSim directory itself, then please fork your own version on github and develop that version instead. For example, ```julia Pkg.develop(PackageSpec(url="[email protected]:ExoJulia/ExoplanetsSysSim.jl.git")) ``` (but replacing ExoJulia with the github username associated with your fork). If you've set ExoplanetsSysSim to be under development, Julia will not automatically update it. You'll have to do a `git pull` from dev/ExoplanetsSysSim to merge in new updates. - Some MacOS users find that CORBITS does not build successfully. This does not prevent MacOS users from using SysSim in "single-observer mode" (which is the mode used for existing publications). * Create a symlink so 'data' in the ExoplanetsSysSim directory points to the SysSimData repo. - Change into the directory where you've added or developing ExoplanetSysSim (likely ${JULIA_DEPOT_PATH}/dev/ExoplanetsSysSim). - Create a symlink named data ```sh cd .julia/dev/ExoplanetsSysSim #cd ${JULIA_DEPOT_PATH}/dev/ExoplanetsSysSim # alternative if you set JULIA_DEPOT_PATH ln -s PATH_TO_SYSSIMDATA data ``` - Alternatively, you can override the default file paths to point to wherever you placed the binary input files. Although this probably require more work. * Optionally, run some tests, e.g. ```julia using ExoplanetsSysSim include(joinpath(dirname(pathof(ExoplanetsSysSim)),"..","test","runtests.jl")) ``` ## How to use SysSim for your own Projects - Install ExoplanetsSysSim (see above) - Create your own repository containing code that will call ExoplanetsSysSim - Make it a Julia project by adding dependencies, including ExoplanetsSysSim. - Make your project depend on either the registered version of ExoplanetsSysSim or the version in your development directory. Since you've already installed ExoplanetSysSim, then Julia should find and reuse the code in the dev directory rather than reinstalling it. ```julia using Pkg Pkg.activate(".") Pkg.instantiate() Pkg.add("ExoplanetsSysSim") # For the registered version of ExoplanetsSysSim # Pkg.develop("ExoplanetsSysSim") # To use your development branch of ExoplanetsSysSim. ``` - Have your project code load ExoplanetsSysSim and use it ```julia using ExoplanetsSysSim ... ``` - At the moment, you can test using 'examples/generate_catalogs.jl' from Matthias's project at https://github.com/ExoJulia/SysSimExClusters - By default, the master branch includes recent updates. There is a chance that we occasionally break something that's not part of our test set. Therefore, we've created a [stable branch](https://github.com/ExoJulia/ExoplanetsSysSim.jl/tree/stable) which users may wish to use for science results to be published. If you find something broken in the stable branch, then please check the [open issues](https://github.com/ExoJulia/ExoplanetsSysSim.jl/issues). If we're not yet aware of your problem, then notify the SysSim team via a new GitHub issue. * Write your papers and share your code as a GitHub repo - If you want to share your Manifest.toml file, then make a copy of the Manifest.toml when you're not in develop mode. Otherwise, users on other systems will get errors, since they can't access the same path with your development version. - If you'd like your code to appear as part of the [ExoJulia organization](https://github.com/ExoJulia/), then please let [Eric](https://github.com/eford) know. * Cite relevant code and associated publications - [![DOI](https://zenodo.org/badge/179777476.svg)](https://zenodo.org/badge/latestdoi/179777476) Citation for core SysSim code base. - [Hsu et al. (2018) *AJ* 155, 205.](https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.3847%2F1538-3881%2Faab9a8&v=19ae32f8): First published paper, describes basic SysSim functionality pre-1.0 version. - [Hsu et al. (2019) *AJ* 158, 3.](https://doi.org/10.3847/1538-3881/ab31ab) "Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inference": Describes improvements to model for Kepler pipeline in SysSim v1.0, please cite if using SysSim v1. - [Hsu, Ford & Terrien (2020) *MNRAS* 498, 2249-2262.](https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.2249H/abstract) "Occurrence Rates of Planets Orbiting M Stars: Applying ABC to Kepler DR25, Gaia DR2, and 2MASS Data": Describes tweaks for M stars. Please cite for occurence rates for M (and late K) stars. - [He, Ford, & Ragozzine (2019) *MNRAS* 490, 4575-4605.](https://doi.org/10.1093/mnras/stz2869) "Architectures of Exoplanetary Systems. I: A Clustered Forward Model for Exoplanetary Systems Around Kepler’s FGK Stars": Describes model for generating planetary systems, uses SysSim v1.0. Please cite if using clustered model with two populations with different inclination distributions. - [He, Ford, & Ragozzine (2020a) *AJ* 161, 16 (24pp).](https://iopscience.iop.org/article/10.3847/1538-3881/abc68b) "Architectures of Exoplanetary Systems. II: An Increase in Inner Planetary System Occurrence Toward Later Spectral Types for Kepler's FGK Dwarfs": Describes model for the fraction of stars with planets as a function of spectral type, uses SysSim v1.0, please cite if using results for how occurrence rates or architectures depend on stellar properties. - [He et al. (2020b) *AJ* 160, 276 (38pp).](https://iopscience.iop.org/article/10.3847/1538-3881/abba18) "Architectures of Exoplanetary Systems. III: Eccentricity and Mutual Inclination Distributions of AMD-stable Planetary Systems": Describes model for generating planetary systems, uses SysSim v1.1, please cite if using clustered model with one population of broader eccentricity and mutual inclination distributions based on AMD stability. - [Brakensiek & Ragozzine (2016) ApJ 821, 47.](https://doi.org/10.3847/0004-637X/821/1/47) Citation for CORBITS, please cite if you make use of averaging over viewing geometries. * Please let the SysSim team know about your publication (or other use of SysSim, e.g., proposals) via pull request.* ## The SysSim Team: ### Key Developers: * Eric Ford: Conceptual framework, Development of core codebase * Matthias He: Development and application of clustered multi-planet model * Danley Hsu: Validation of Kepler model, distance functions and application to planet occurence rates * Darin Ragozzine: Conceptual framework, Incorporating DR25 data products ### Other Contributors/Consultants: * Robert Morehead: Preliminary model development, exploratory applications of ABC and comparing distance functions. * Keir Ashby: Testing incorporation of DR 25 data products * Jessi Cisewski: Advice on statistical methodlogy * Chad Schafer: Advice on statistical methodlogy * Tom Loredo: Advice on statistical methodlogy * Robert Wolpert: Advice on statistical methodlogy ### Acknowledgements: * NASA * [Kepler Mission](https://www.nasa.gov/mission_pages/kepler/main/index.html) * [Kepler Science Team](https://www.nasa.gov/mission_pages/kepler/team/teamroster) * Kepler Multi-body & Transit Timing Variations Working Groups * Origins of Solar Systems program, award NNX14AI76G * Exoplanets Research Program, award NNX15AE21G * [The Pennsylvania State University](https://www.psu.edu/) * [Dept. of Astronomy & Astrophysics](http://science.psu.edu/astro/) * [Center for Exoplanets & Habitable Worlds](https://exoplanets.psu.edu/) * [Eberly College of Science](http://science.psu.edu/) * [Institute for Computational & Data Sciences](https://icds.psu.edu/) * [Center for Astrostatistics](https://astrostatistics.psu.edu/) * [Penn State Astrobiology Research Center](https://astrobiology.psu.edu/) * [Brigham Young University](https://www.physics.byu.edu/) * [University of Florida](https://www.ufl.edu/) * [Florida Institute of Technology](https://www.fit.edu/) * Statistical and Applied Mathematical Sciences Institute
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
docs
2591
# Examples of ExoplanetsSysSim in action ExoplanetsSysSim users are encouraged to add links to their repositories with example use cases, including simple examples, advanced tutorials, and repositories in support of scientific publications. ## Publications using ExoplanetsSysSim - [Hsu et al. (2018)](https://doi.org/10.3847/1538-3881/aab9a8) *AJ* 155, 5. "Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation": See [old repository](https://github.com/dch216/ExoplanetsSysSim.jl/tree/hsu-et-al-2018/examples/hsu_etal_2018) for code that works with Julia v0.6 (before the examples were separated from main code base). - [Hsu et al. (2019)](https://doi.org/10.3847/1538-3881/ab31ab) *AJ* 158, 3. "Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inference": See [dr25_gaia_fgk folder](https://github.com/ExoJulia/ExoplanetsSysSim.jl/tree/master/examples/dr25_gaia_fgk) of this repository. - [He et al. (2019)](https://doi.org/10.1093/mnras/stz2869) *MNRAS* 490, 4575 "Architectures of exoplanetary systems – I. A clustered forward model for exoplanetary systems around Kepler’s FGK stars": See [He_Ford_Ragozzine_2019 branch](https://github.com/ExoJulia/SysSimExClusters/tree/He_Ford_Ragozzine_2019) of [SysSimExClusters repository](https://github.com/ExoJulia/SysSimExClusters). - [Hsu et al. (2020)](https://ui.adsabs.harvard.edu/abs/2020arXiv200202573H/abstract) submitted to *MNRAS* (arXiv:2002.02573). "Occurrence Rates of Planets Orbiting M Stars: Applying ABC to Kepler DR25, Gaia DR2, and 2MASS Data": See [dr25_gaia_m folder](https://github.com/ExoJulia/ExoplanetsSysSim.jl/tree/master/examples/dr25_gaia_m) of this repository. - [He et al. (2019)](https://ui.adsabs.harvard.edu/abs/2020arXiv200304348H/abstract) submitted to *MNRAS* (arXiv:2003.04348). "Architectures of Exoplanetary Systems. II: An Intrinsic Relation between Planetary System Occurrence and Spectral Type for Kepler's FGK Dwarfs": See [He_Ford_Ragozzine_2020 branch](https://github.com/ExoJulia/SysSimExClusters/tree/He_Ford_Ragozzine_2020) of [SysSimExClusters repository](https://github.com/ExoJulia/SysSimExClusters). - [Gilbert & Fabrycky (2020)](https://ui.adsabs.harvard.edu/abs/2020arXiv200311098G/abstract) submitted to *AJ* (arXiv:2003.11098) "An information theoretic framework for classifying exoplanetary system architectures". Used posterior samples from [He et al. (2019)](https://doi.org/10.1093/mnras/stz2869). ## Simple examples & tutorials - Users are encouraged to add links here.
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
docs
1182
# Required Files: To reproduce a calculation from Hsu et al. (2019), you will need the following data files (under the 'data' sub-directory of the repository): * "DR25topwinfuncs.jld": Summary of window function data taken from the DR25 Completeness Products * "dr25fgk_osds.jld": One-sigma depth functions for the filtered catalog of Kepler planet search targets (Not part of the repository, download from: https://scholarsphere.psu.edu/resources/460cb19b-86e9-4c04-ac17-69950444437f). * "KeplerMAST_TargetProperties.csv": Summary of key properties for Kepler Targets that are not included in the other catalogs. * "q1q17_dr25_gaia_fgk.jld": Filtered DR25 stellar catalog of FGK targets (see Hsu et al. 2019 for explanation of cuts). * "q1_q17_dr25_koi.csv": DR25 KOI catalog with transit depths replaced with median depths from the MCMC posterior chains. # Running Calculation: To perform the actual calculations, you run: ``` > julia abc_run.jl ``` This defaults to computing a planet candidate occurrence rate and rate density for 5 period-radius bins spanning 0.5-1.75 R_Earth and 237-500 days. For other ranges, you'd edit the values of p_bin_lim and r_bin_lim in param.in.
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
1.2.1
7f3df18f94c685d258b46a2adadcc0c74f4b4423
docs
1048
# Required Files: To reproduce a calculation from Hsu et al. (2019), you will need the following data files (under the 'data' sub-directory of the repository): * "DR25topwinfuncs.jld": Summary of window function data taken from the DR25 Completeness Products * "dr25m_osds.jld": One-sigma depth functions for the filtered catalog of Kepler planet search targets. * "KeplerMAST_TargetProperties.csv": Summary of key properties for Kepler Targets that are not included in the other catalogs. * "q1q17_dr25_gaia_m.jld": Filtered DR25 stellar catalog of M targets (see Hsu et al. 2020 for explanation of cuts). * "q1_q17_dr25_koi.csv": DR25 KOI catalog with transit depths replaced with median depths from the MCMC posterior chains. # Running Calculation: To perform the actual calculations, you run: ``` > julia abc_run.jl ``` This defaults to computing a planet candidate occurrence rate and rate density for 7 period-radius bins spanning 0.25-4 R_Earth and 8-16 days. For other ranges, you'd edit the values of p_bin_lim and r_bin_lim in param.in.
ExoplanetsSysSim
https://github.com/ExoJulia/ExoplanetsSysSim.jl.git
[ "MIT" ]
0.1.0
be34ebffeca107c3e948740ec63239c684a20a34
code
94
module Gershgorin export gershgorin, gershgorin!, overlap, get_discs include("discs.jl") end
Gershgorin
https://github.com/v715/Gershgorin.jl.git
[ "MIT" ]
0.1.0
be34ebffeca107c3e948740ec63239c684a20a34
code
1638
using LinearAlgebra using LazySets using Plots, LaTeXStrings complex2array(x::T) where {T<:Complex} = [x.re, x.im] function get_discs(A::AbstractMatrix) centers = diag(A) |> complex |> x -> complex2array.(x) radii = A - Diagonal(A) |> x -> abs.(x) |> M -> sum(M, dims=2) |> real discs = [Ball2(c, r) for (c, r) in zip(centers, radii)] return discs end function parse_label(label::Union{String,LaTeXString}, dim::Int) if label == "" nothing else label = reshape([i == 1 ? label : nothing for i in 1:dim][:, :], (1, dim)) end return label end function gershgorin(A::AbstractMatrix; c=:blue, label="", alpha=0.2) discs = get_discs(A) label = parse_label(label, length(discs)) legend = label == "" ? false : true plot(discs, c=c, fillalpha=alpha, lw=0, aspect_ratio=1, legend=legend, label=label, xlabel="Real Axis", ylabel="Imaginary Axis") end function gershgorin!(A::AbstractMatrix; c=:blue, label="", alpha=0.2) discs = get_discs(A) label = parse_label(label, length(discs)) legend = label == "" ? false : true plot!(discs, c=c, fillalpha=alpha, lw=0, aspect_ratio=1, legend=legend, label=label, xlabel="Real Axis", ylabel="Imaginary Axis") end function overlap(A::AbstractMatrix, B::AbstractMatrix; c=:white, alpha=0.8) discs_A = get_discs(A) discs_B = get_discs(B) intersections = [discs_A[i] ∩ discs_B[j] for i in 1:length(discs_A) for j in 1:length(discs_B)] overlap = UnionSetArray(intersections) plot!(overlap, aspect_ratio=1, lw=0, c=c, fillalpha=alpha, label="Overlap", legend=true) end
Gershgorin
https://github.com/v715/Gershgorin.jl.git
[ "MIT" ]
0.1.0
be34ebffeca107c3e948740ec63239c684a20a34
code
93
using Gershgorin using Test @testset "Gershgorin.jl" begin # Write your tests here. end
Gershgorin
https://github.com/v715/Gershgorin.jl.git
[ "MIT" ]
0.1.0
be34ebffeca107c3e948740ec63239c684a20a34
docs
1713
# Gershgorin Visualize the Gershgorin discs that bound the spectrum of a square matrix (see the [Gershgorin disc theorem](https://en.wikipedia.org/wiki/Gershgorin_circle_theorem)). ## Installation ```zsh ] add https://github.com/v715/Gershgorin.jl.git ``` ## Quickstart Guide We can visualize the Gershgorin discs for a random complex matrix and its transpose. Note that a matrix and its transpose have the same eigenvalues, so these eigenvalues will lie in the intersection of the Gershgorin regions of these two matrices. ```Julia using LinearAlgebra using Plots, LaTeXStrings using Gershgorin # Make a random (5,5) real matrix M = randn(5, 5) # Plot Gershgorin's discs gershgorin(M; c=:blue, label=L"$M$") λ = eigvals(M) p1 = plot!(λ, seriestype=[:scatter], c=:black, label=L"$\lambda(M)$") # Now do the same for the transpose gershgorin(transpose(M); c=:red, label=L"$M^T$") λ = eigvals(transpose(M)) p2 = plot!(λ, seriestype=[:scatter], c=:black, label=L"$\lambda(M^T)$") # Plot the intersection between the two sets of regions gershgorin(M; c=:blue) gershgorin!(transpose(M); c=:red) overlap(M, transpose(M), c=:black, alpha=1) p3 = plot!(λ, seriestype=[:scatter], c=:black, label=L"$\lambda(M)$") plot(p1, p2, p3, link=:all, dpi=300, layout=(1,3), size=(750,350)) ``` ![`gershgorin(M)`](notebooks/demo.png "Gershgorin's discs for M and its transpose") Additionally, if you just want to get the Gershgorin discs for a matrix, you can use the `get_discs` function. ```Julia discs = get_discs(M) plot(discs, c=:blue, alpha=0.2, lw=0) plot!(eigvals(M), seriestype=[:scatter], c=:black, label=L"$\lambda(M)$", aspect_ratio=1) |> display ``` ![`get_discs(M)`](notebooks/demo1.png "Get the discs")
Gershgorin
https://github.com/v715/Gershgorin.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
6038
__precompile__() """ Module for dependent bootstrap procedures, by Colin T Bowers Implemented bootstrap methods: \n - IID - Stationary - Moving Block - Circular Block - NoOverlapBlock Implemented block length selection procedures: \n - Patton, Politis, and White (2009) Correction to Automatic Block Length Selection For The Dependent Bootstrap Accepted input dataset types: \n - Vector{<:Number} - Matrix{<:Number} (where rows are observations and columns are variables) - Vector{Vector{<:Number}} (where elements of inner vectors are observations and outer vectors are variables) - DataFrame - TimeSeries.TimeArray{T,N} (only for N = 1 and N = 2) Additional input dataset types are easily added. Please open an issue at https://github.com/colintbowers/DependentBootstrap.jl The module has only a single exported type: \n - BootInput <-- Core input type accepted by all exported functions. Typically constructed via keyword method. See ?BootInput for more detail. All exported functions exhibit the following keyword signatures: \n - exported_func(data, bootinput::BootInput) - exported_func(data ; kwargs...) Most users will be content to use the keyword argument method. In practice, this method wraps a keyword argument BootInput constructor, which is then input to the exported function BootInput method. For more detail on accepted keywords, see ?BootInput. All exported functions then use the input dataset and bootstrap methodology described in BootInput in order to return the appropriate statistics. A list of exported functions follows: \n - optblocklength <-- Estimate the optimal block length for the input dataset - dbootinds <-- Get a vector of bootstrap resampling indices - dbootdata <-- Get a vector of resampled datasets - dbootlevel1 <-- Get a vector of level 1 resampled bootstrap statistics - dboot <-- Get the level 2 bootstrap statistic - dbootlevel2 <-- Identical to dboot. Included for completeness - dbootvar <-- Wrapper on dboot that sets the level 2 statistic as the variance - dbootconf <-- Wrapper on dboot that sets the level 2 statistic as a confidence interval I use the phrases level 1 and level 2 statistics in this package in the same manner discussed in Chapter 1 of Lahiri's textbook Resampling Methods for Dependent Data. This package has an MIT license. Please see associated LICENSE.md file for more detail. """ module DependentBootstrap using StatsBase, Distributions, DataFrames, TimeSeries import Base: show export BootInput, optblocklength, dbootinds, dbootdata, dbootlevel1, dbootlevel2, dboot, dbootvar, dbootconf const NUM_RESAMPLE = 1000::Int #Default number of bootstrap resamples #----------------------------------------------------------------------------------------- # OLD CODE THAT USED Requires.jl TO LOAD DataFrames.jl and TimeSeries.jl #----------------------------------------------------------------------------------------- #In order to accommodate different types of datasets, we use the lazy loading #features offered by the Requires package here, so that the modules in which these #datasets are defined are not loaded unless they are actually needed. All functions #that reference these modules are placed here inside __init__() (which is a #requirement when using Requires package on Julia v0.7+). If you want to add a new #dataset type to DependentBootstrap, it should be as simple as adding appropriate #methods here. This module is structured so that nothing else should need to be done. #The methods that need to be added are: # num_obs(data::T)::Int <- Number of observations in dataset # num_var(data::T)::Int <- Number of variables in dataset # local_get_var(data::T, i::Int)::Vector <- Get the data associated with the ith variable and output as a Vector # local_get_index(data::T, inds::Vector{Int})::T <- Resample data using resampling indices in inds #For local_get_index, note that the output type should always match the input type of the dataset. # function __init__() # @require TimeSeries="9e3dc215-6440-5c97-bce1-76c03772f85e" begin # (num_obs(data::TimeSeries.TimeArray{T,1})::Int) where {T} = size(data, 1) # (num_obs(data::TimeSeries.TimeArray{T,2})::Int) where {T} = size(data, 1) # (num_var(data::TimeSeries.TimeArray{T,1})::Int) where {T} = 1 # (num_var(data::TimeSeries.TimeArray{T,2})::Int) where {T} = size(data, 2) # (local_get_var(data::TimeSeries.TimeArray{T,1}, i::Int)::Vector{T}) where {T} = i == 1 ? data.values[:] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") # (local_get_var(data::TimeSeries.TimeArray{T,2}, i::Int)::Vector{T}) where {T} = (1 <= i <= num_var(data)) ? data.values[:, i] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") # (local_get_index(data::TimeSeries.TimeArray{T,1}, inds::Vector{Int})::TimeSeries.TimeArray{T,1}) where {T} = TimeSeries.TimeArray(TimeSeries.timestamp(data), data.values[inds], TimeSeries.colnames(data) ; unchecked=true) # (local_get_index(data::TimeSeries.TimeArray{T,2}, inds::Vector{Int})::TimeSeries.TimeArray{T,2}) where {T} = TimeSeries.TimeArray(TimeSeries.timestamp(data), data.values[inds, :], TimeSeries.colnames(data) ; unchecked=true) # end # @require DataFrames="a93c6f00-e57d-5684-b7b6-d8193f3e46c0" begin # (num_obs(data::DataFrames.DataFrame)::Int) = size(data, 1) # (num_var(data::DataFrames.DataFrame)::Int) = size(data, 2) # (local_get_var(data::DataFrames.DataFrame, i::Int)) = (1 <= i <= num_var(data)) ? data[:, i] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") # (local_get_index(data::DataFrames.DataFrame, inds::Vector{Int})::DataFrames.DataFrame) = data[inds, :] # end # end #----------------------------------------------------------------------------------------- include("types.jl") include("blocklength.jl") include("bootinds.jl") #include("tapered.jl") include("core.jl") end # module
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
9814
""" optblocklength(data, bi::BootInput)::Float64 optblocklength(data ; kwargs...)::Float64 Provides an estimate of the optimal block-length to use with a dependent bootstrap. For multivariate datasets, optimal block length is estimated for each column of data, and then bi.fblocklengthcombine, which is a function that maps Vector{Float64} to Float64, is called to reduce the multiple estimates to a single estimates. The default value for fblocklengthcombine is median. Block length methods currently implemented include: \n - Patton, Politis, White (2009) "Correction to Automatic Block Length Selection For the Dependent Bootstrap" \n For all methods discussed above, bandwidth is estimated following Politis (2003) "Adaptive Bandwidth Choice", using the flat-top kernel suggested in that paper. """ function optblocklength(x::AbstractVector{<:Number}, blm::BLPPW2009{P2003}, bootmethod::Tbm)::Float64 where {Tbm<:BootMethod} length(x) < 3 && error("You must have at least 3 observations to estimate block length") (M, xVar, covVec) = blocklength_ma_and_cor(x) #Bandwidth method currently forced to politis (2003) kernelCovVec = blocklength_kernel_cov(covVec, M) gHat = 0.0 for k = 1:M gHat += 2 * k * kernelCovVec[k] #note, "2*" is because sum is from -M and M, but is symmetric about 0. Note, 0 term in sum vanishes since k=0 -> |k|=0 end dHat = optblocklength_blppw2009_dhat(bootmethod, xVar, kernelCovVec) #Equation 9 and 14 from Politis, White (2004) blocklength = (2 * gHat^2 * length(x) / dHat)^(1/3) blocklength = min(blocklength, ceil(min(3*sqrt(length(x)), length(x) / 3))) #Enforce upper bound on block length suggested by Patton blocklength = max(blocklength, 1.0) return blocklength end (optblocklength_blppw2009_dhat(a::BootStationary, xvar::Float64, kernelcovvec::Vector{Float64})::Float64) = 2 * (xvar + 2*sum(kernelcovvec))^2 #note, in expression (1 + 2*sum(kernelCovVec)), "2*" is because sum is from -M to M, but is symmetric around 0. "1+" is the zero term of the sum which is simply equal to unity. (optblocklength_blppw2009_dhat(a::T, xvar::Float64, kernelcovvec::Vector{Float64})::Float64) where {T<:Union{BootCircular,BootMoving,BootIID,BootNoOverlap}} = (4/3) * (xvar + 2*sum(kernelcovvec))^2 #note, in expression (1 + 2*sum(kernelCovVec)), "2*" is because sum is from -M to M, but is symmetric around 0. "1+" is the zero term of the sum which is simply equal to unity. #Block length selection method of Paparoditis, Politis (2002) "The Tapered Block Bootstrap for General Statistics From Stationary Sequences" # function optblocklength(x::AbstractVector{<:Number}, blm::BLPP2002{P2003,Tkf}, bootmethod::Tbm)::Float64 where {Tbm<:BootMethod,Tkf<:KernelFunctionMethod} # length(x) < 3 && error("You must have at least 3 observations to estimate block length") # Tbm != BootTapered && println("WARNING: Optimal parameter values in pp2002 block length procedure are unknown for bootstrap method $(bootmethod).") # (M, xVar, covVec) = blocklength_ma_and_cor(x) # kernelCovVec = blocklength_kernel_cov(covVec, M) # deltaUnknown = (xVar + 2*sum(kernelCovVec))^2 #Unknown parameter in Delta expression, section 4, Paparoditis, Politis (2002). (note, "1+" is for k=0 term in summation, "2*" is because summation is from -M to M, but is symmetric about 0) # gammaUnknown = 0.0 #Unknown parameter in Gamma expression, start of section 4 # for k = 1:M # gammaUnknown += 2 * k^2 * kernelCovVec[k] #note, "2*" is because sum is from -M and M, but is symmetric about 0. Note, 0 term in sum vanishes since k=0 -> k^2=0 # end # (gammaHat, deltaHat) = optblocklength_blpp2002_param(blm.kernelfunction, gammaUnknown, deltaUnknown) # #Equation 20 from Paraproditis, Politis (2002) # blocklength = (4 * gammaHat^2 * length(x) / deltaHat)^(1/5) # blocklength = min(blocklength, ceil(min(3*sqrt(length(x)), length(x) / 3))) #Enforce upper bound on block length suggested by Patton # blocklength = max(blocklength, 1.0) # return blocklength # end # (optblocklength_blpp2002_param(kf::KernelTrap, gu::Float64, du::Float64)::Float64) = (-5.45*gu, 1.099*du) #-5.45 = (1/2) * -10.9 = (1/2) * (w*w)''(0) / (w*w)(0) [OPTIMAL TRAP VALUES], see Paparoditis, Politis (2002), 1.099 = 2 * 0.5495 = 2 * int_{-1}^{1} ((w*w)^2(x) / (w*w)^2(0)) dx [OPTIMAL TRAP VALUES], see Paparoditis, Politis (2002) # (optblocklength_blpp2002_param(kf::KernelSmooth, gu::Float64, du::Float64)::Float64) = (-5.175*gu, 1.1312*deltaUnknown) #-5.175 = (1/2) * -10.35 = (1/2) * (w*w)''(0) / (w*w)(0) [OPTIMAL SMOOTH VALUES], see Paparoditis, Politis (2002), 1.1312 = 2 * 0.5656 = 2 * int_{-1}^{1} ((w*w)^2(x) / (w*w)^2(0)) dx [OPTIMAL SMOOTH VALUES], see Paparoditis, Politis (2002) # (optblocklength_blpp2002_param(kf::T, gu::Float64, du::Float64)::Float64) where {T} = error("Optimal parameters not known for input kernel function: $(kf)") (optblocklength(x::AbstractVector{<:Number}, bi::BootInput{Tbm,BLDummy})::Float64) where {Tbm<:BootMethod} = error("Logic fail. It should not have been possible to call this method. Please file an issue with full stacktrace.") (optblocklength(x::AbstractVector{<:Number}, bi::BootInput)::Float64) = optblocklength(x, bi.blocklengthmethod, bi.bootmethod) #Multivariate dataset wrapper (optblocklength(data, bl::Tbl, bm::Tbm, f::Tf)::Float64) where {Tbl<:BlockLengthMethod,Tbm<:BootMethod,Tf<:Function} = f([ optblocklength(local_get_var(data, i), bl, bm) for i = 1:num_var(data) ]) (optblocklength(data, bi::BootInput)::Float64) = bi.fblocklengthcombine([ optblocklength(local_get_var(data, i), bi) for i = 1:num_var(data) ]) #Keyword input wrapper (optblocklength(data ; kwargs...)::Float64) = optblocklength(data, BootInput(data ; kwargs...)) #These two functions are used by several of the block-length selection procedures function blocklength_ma_and_cor(x::AbstractVector{T})::Tuple{Int, Float64, Vector{Float64}} where {T<:Number} (M, xVar, covVec) = bandwidth_politis_2003(x) if M > 0.5 * length(x) println("WARNING: Bandwidth in parameter estimation section of blocklength forced to half total number of observations. Data may contain excessive dependence.") M = Int(round(0.5 * length(x))) end M < 2 && (M = 2) #Even though M output of bandwidth function is always greater than 2, the above check for excessively large M can result in M being reduced below 2 (admittedly only in very unusual circumstances) length(covVec) < M && append!(covVec, autocov(x, length(covVec)+1:M)) #Get any additional autocovariances that we might need return(M, xVar, covVec) end function blocklength_kernel_cov(covVec::AbstractVector{Float64}, M::Int)::Vector{Float64} length(covVec) < M && error("Error in blocklength_kernel_cov likely caused by logic fail in blocklength_ma_and_cor. Please lodge a github issue, preferably with reproducible example.") kernelCovVec = Float64[ kernel_politis_2003_flat_top(k / M) * covVec[k] for k = 1:M ] return(kernelCovVec) end #Note, the following non-exported function is called in the ForecastEval package, so if you alter the function name you will #need to adjust that package too. """ bandwidth_politis_2003(x::AbstractVector{T})::Tuple{Int, Float64, Vector{Float64}} where {T<:Number} Implements the methodology from Politis (2003) "Adaptive Bandwidth Choice" to obtain a data-driven bandwidth estimate. Return tuple is, in order, the bandwidth estimate, the variance of x, and the autocorrelations used to get the bandwidth estimate. Note, most users won't be interested in the second and third output, but sometimes this routine will be called by other functions that need these terms, so they are returned to avoid duplicate computation. """ function bandwidth_politis_2003(x::AbstractVector{T})::Tuple{Int, Float64, Vector{Float64}} where {T<:Number} length(x) < 2 && error("Input data must have at least two observations") adjustmentTerm = 1.0 #This term is used by me for debugging. It serves no statistical purpose. politis_c = 2.0 #This value is again recommended in Politis (2003) K = max(5, Int(ceil(sqrt(log(10, length(x)))))) #This value is recommended in Politis (2003) mHat = 1 corVec = Float64[] append!(corVec, autocor(x, 1:min(20, length(x)-1))) #I add autocorrelations in blocks as this is more efficient than doing it one at a time corBound = politis_c * sqrt(log(10, length(x)) / length(x)) #Note, use of log base 10 is deliberate and recommended in Politis (2003) KCounter = 0 mHatFound = false for k = 1:length(x)-2 #Add one to counter if bound is satisfied, otherwise reset counter to 0 abs(corVec[k]) < corBound ? (KCounter += 1) : (KCounter = 0) if KCounter >= K #We found K autocorrelations in a row that satisfy the bound, so break. mHat = k - K + 1 mHatFound = true break end #If we run out of autocorrelations to check, add another block of them to corVec k == length(corVec) && append!(corVec, autocor(x, length(corVec)+1:min(length(corVec)+20, length(x)-1))) end mHatFound == false && (mHat = length(x) - 1) #Bound mHat in the case where we fail to hit the break condition M = Int(ceil(adjustmentTerm * 2 * mHat)) #"2*" is a standard rule, see e.g. Politis (2003). M > length(x) - 1 && (M = length(x) - 1) #Apply upper bound to M M < 2 && (M = 2) #Apply lower bound to M xVar = ((length(x)-1) / length(x)) * var(x) #Used to scale autocorrelations to autocovariances for return argument return (M, xVar, xVar * corVec) end """ kernel_politis_2003_flat_top(x::Float64)::Float64 Implements the flat-top kernel function discussed in Politis (2003) "Adaptive Bandwidth Choice" """ function kernel_politis_2003_flat_top(x::Float64)::Float64 x_abs = abs(x) x_abs <= 0.5 && return 1.0 x_abs <= 1.0 && return (2.0 * (1 - x_abs)) return 0.0 end
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
5107
#Local function for checking a BootInput is valid for a call to dbootvecinds function check_bi_for_dbootvecinds(bi::BootInput)::Bool bi.numobs < 1 && error("Number of observations must be strictly positive") bi.numresample < 1 && error("Number of resamples must be strictly positive") bi.numobsperresample < 1 && error("Number of observations per resample must be strictly positive") bi.blocklength <= 0.0 && error("Block length must be strictly positive") isnan(bi.blocklength) && error("Block length is set to NaN") isinf(bi.blocklength) && error("Block length is infinite") return true end """ dbootinds_one(bi::BootInput)::Vector{Int} dbootinds_one(data::T; kwargs...)::Vector{Int} Returns a single resampling index that, when used to index the original dataset, will provide a single resampled dataset. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. """ (dbootinds_one(bi::BootInput{BootIID})::Vector{Int}) = rand(1:bi.numobs, bi.numobsperresample) function dbootinds_one(bi::BootInput{BootStationary})::Vector{Int} bi.blocklength <= 1.0 && return rand(1:bi.numobs, bi.numobsperresample) inds = zeros(Int, bi.numobsperresample) geo1 = Geometric(1 / bi.blocklength) (c, geodraw) = (1, 1) for n = 1:bi.numobsperresample if c == geodraw #Start a new block inds[n] = rand(1:bi.numobs) geodraw = rand(geo1) + 1 c = 1 else #Next obs in existing block inds[n-1] == bi.numobs ? (inds[n] = 1) : (inds[n] = inds[n-1] + 1) c += 1 end end return inds end function dbootinds_one(bi::BootInput{BootMoving})::Vector{Int} bl = ceil(Int, bi.blocklength) bl == 1 && return rand(1:bi.numobs, bi.numobsperresample) inds = zeros(Int, bi.numobsperresample) blockstart_ub = max(1, bi.numobs-bl+1) for n = 1:bl:bi.numobsperresample inds[n] = rand(1:blockstart_ub) #Start of block for s = n+1:min(n+bl-1, bi.numobsperresample) #Iterate through block (use of min avoids bounds error) inds[s] = inds[s-1] + 1 end end return inds end function dbootinds_one(bi::BootInput{BootCircular})::Vector{Int} bl = ceil(Int, bi.blocklength) bl == 1 && return rand(1:bi.numobs, bi.numobsperresample) inds = zeros(Int, bi.numobsperresample) for n = 1:bl:bi.numobsperresample inds[n] = rand(1:bi.numobs) #Start of block for s = n+1:min(n+bl-1, bi.numobsperresample) #Iterate through block (use of min avoids bounds error) inds[s-1] == bi.numobs ? (inds[s] = 1) : (inds[s] = inds[s-1] + 1) end end return inds end function dbootinds_one(bi::BootInput{BootNoOverlap})::Vector{Int} bl = ceil(Int, bi.blocklength) bl == 1 && return rand(1:bi.numobs, bi.numobsperresample) inds = zeros(Int, bi.numobsperresample) blockstart_ub = max(1, bi.numobs-bl+1) blockstartvalues = collect(1:bl:blockstart_ub) #Build valid set of start indices for any block length(blockstartvalues) == 1 && error("Not enough observations to perform non-overlapping block bootstrap given block length: num obs = $(bi.numobs), block length = $(bl)") (blockstartvalues[end] + bl - 1 > bi.numobs) && pop!(blockstartvalues) for n = 1:bl:bi.numobsperresample inds[n] = blockstartvalues[rand(1:length(blockstartvalues))] #Start of block for s = n+1:min(n+bl-1, bi.numobsperresample) #Iterate through block (use of min avoids bounds error) inds[s] = inds[s-1] + 1 end end return inds end #(dbootinds_one(bi::BootInput{BootTapered})::Vector{Int}) = error("Routines for the tapered block bootstrap are currently not completed. Users interested in contributing should check the package github page.") (dbootinds_one(bi::BootInput{BootDummy})::Vector{Int}) = error("Logic fail. It should not have been possible to call this method. Please file an issue with full stacktrace.") (dbootinds_one(data, bi::BootInput)::Vector{Int}) = dbootinds_one(bi) (dbootinds_one(data ; kwargs...)::Vector{Int}) = dbootinds_one(data, BootInput(data ; kwargs...)) """ dbootinds(data::T ; bi::BootInput)::Vector{Vector{Int}} dbootinds(data::T ; kwargs...)::Vector{Vector{Int}} Each inner vector of the returned Vector{Vector{Int}} provides indices that, when used to index the original dataset, will provide a single resampled dataset. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. Please use dbootinds_one if you only want to obtain a single Vector{Int} resampling index. """ (dbootinds(bi::BootInput)::Vector{Vector{Int}}) = check_bi_for_dbootvecinds(bi) ? [ dbootinds_one(bi) for n = 1:bi.numresample ] : error("Logic fail in check_bi_for_dbootvecinds. Please file an issue.") (dbootinds(data, bi::BootInput)::Vector{Vector{Int}}) = dbootinds(bi) (dbootinds(data ; kwargs...)::Vector{Vector{Int}}) = dbootinds(data, BootInput(data ; kwargs...))
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
8675
"num_obs <- Internal function used to determine the number of observations in the input dataset" (num_obs(data::AbstractVector{T})::Int) where {T} = length(data) (num_obs(data::AbstractMatrix{T})::Int) where {T} = size(data, 1) (num_obs(data::Vector{Vector{T}})::Int) where {T} = (isempty(data) || any(length.(data) .!= length(data[1]))) ? error("Input dataset is empty, or inner vectors of input dataset do not have matching length: $(length.(data))") : length(data[1]) (num_obs(data::DataFrames.DataFrame)::Int) = size(data, 1) (num_obs(data::TimeSeries.TimeArray{T,1})::Int) where {T} = size(data, 1) (num_obs(data::TimeSeries.TimeArray{T,2})::Int) where {T} = size(data, 1) "num_var <- Internal function used to determine the number of variables in the input dataset" (num_var(data::AbstractVector{T})::Int) where {T} = 1 (num_var(data::AbstractMatrix{T})::Int) where {T} = size(data, 2) (num_var(data::Vector{Vector{T}})::Int) where {T} = isempty(data) ? error("Input dataset is empty") : length(data) (num_var(data::DataFrames.DataFrame)::Int) = size(data, 2) (num_var(data::TimeSeries.TimeArray{T,1})::Int) where {T} = 1 (num_var(data::TimeSeries.TimeArray{T,2})::Int) where {T} = size(data, 2) "local_get_var <- Internal function used to get the ith variable in dataset" (local_get_var(data::AbstractVector{T}, i::Int)::Vector{T}) where {T} = i == 1 ? data[:] : error("Invalid index $(i) given data $(typeof(data))") (local_get_var(data::AbstractMatrix{T}, i::Int)::Vector{T}) where {T} = (1 <= i <= size(data,2)) ? data[:, i] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(size(data, 2))") (local_get_var(data::Vector{Vector{T}}, i::Int)::Vector{T}) where {T} = (1 <= i <= length(data)) ? data[i] : error("Invalid index $(i) given data $(typeof(data)) with outer length: $(length(data))") (local_get_var(data::DataFrames.DataFrame, i::Int)) = (1 <= i <= num_var(data)) ? data[:, i] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") (local_get_var(data::TimeSeries.TimeArray{T,1}, i::Int)::Vector{T}) where {T} = i == 1 ? values(data) : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") (local_get_var(data::TimeSeries.TimeArray{T,2}, i::Int)::Vector{T}) where {T} = (1 <= i <= num_var(data)) ? values(data)[:,i] : error("Invalid index $(i) given data $(typeof(data)) with number of columns $(num_var(data))") "local_get_index <- Internal function used to resample the dataset data using the input resampling index inds" (local_get_index(data::AbstractVector{T}, inds::Vector{Int})::Vector{T}) where {T} = data[inds] (local_get_index(data::AbstractMatrix{T}, inds::Vector{Int})::Matrix{T}) where {T} = data[inds, :] (local_get_index(data::Vector{Vector{T}}, inds::Vector{Int})::Vector{Vector{T}}) where {T} = [ y[inds] for y in data ] (local_get_index(data::DataFrames.DataFrame, inds::Vector{Int})::DataFrames.DataFrame) = data[inds, :] (local_get_index(data::TimeSeries.TimeArray{T,1}, inds::Vector{Int})::TimeSeries.TimeArray{T,1}) where {T} = TimeSeries.TimeArray(TimeSeries.timestamp(data), values(data)[inds], TimeSeries.colnames(data) ; unchecked=true) (local_get_index(data::TimeSeries.TimeArray{T,2}, inds::Vector{Int})::TimeSeries.TimeArray{T,2}) where {T} = TimeSeries.TimeArray(TimeSeries.timestamp(data), values(data)[inds, :], TimeSeries.colnames(data) ; unchecked=true) """ dbootdata_one(data::T, bi::BootInput)::T dbootdata_one(data::T; kwargs...)::T Get a single resampled dataset of the input data using the dependent boostrap methodology defined in BootInput. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. Note, the output type will always be the same as the type of the input data. """ (dbootdata_one(data::Td, bi::BootInput)::Td) where {Td} = local_get_index(data, dbootinds_one(bi)) (dbootdata_one(data::Td ; kwargs...)::Td) where {Td} = dbootdata_one(data, BootInput(data ; kwargs...)) # function dbootdata_one_infl(data_infl::Td, bi::BootInput{BootTapered})::TD where {Td} # dataout = apply_inds_to_data(data_infl, dbootinds_one(bi)) # dboot_weight!(dataout, bi) # return dataout # end # function (dbootdata_one(data::Td, bi::BootInput{BootTapered})::Td) where {Td} # return dbootdata_one_infl(apply_influence_function(data), bi, bm) # end """ dbootdata(data::T , bi::BootInput)::Vector{T} dbootdata(data::T ; kwargs...)::Vector{T} Get the resampled datasets of the input data using the dependent bootstrap methodology defined in BootInput. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. Note, this function should always have output type Vector{T}. """ (dbootdata(data::Td, bi::BootInput)::Vector{Td}) where {Td} = [ local_get_index(data, dbootinds_one(bi)) for j = 1:bi.numresample ] (dbootdata(data::Td ; kwargs...)::Vector{Td}) where {Td} = dbootdata(data, BootInput(data ; kwargs...)) # function dbootdata(data::Td, bi::BootInput{BootTapered})::Vector{Td} where {Td} # data_infl = apply_influence_function(data) # return [ dbootdata_one_infl(data_infl, bi, bm) for j = 1:bi.numresample ] # end """ dbootlevel1(data::T1, bi::BootInput) dbootlevel1(data::T1; kwargs...) Get the level 1 bootstrapped statistics associated with dataset in data, and bootstrap methodology in BootInput. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. Note, the return type is determined by bi.flevel1, which must be a function that accepts T1, ie typeof(data), as input. It may return any output type T2, as long as bi.flevel2 will accept Vector{T2} as input. For example, if data is a Vector{<:Number} then bi.flevel1 might be the function mean, which in this case will return Float64, so bi.flevel2 must be some function that can accept Vector{Float64} as input. A more complicated example: if data is Matrix{<:Number} then bi.flevel1 might be the anonymous function x->mean(x,dims=1), which in this case will return a single row Matrix{Float64}, and so bi.flevel2 must be some function that can accept Vector{Matrix{Float64}} as input. """ dbootlevel1(data, bi::BootInput) = [ bi.flevel1(dbootdata_one(data, bi)) for j = 1:bi.numresample ] dbootlevel1(data ; kwargs...) = dbootlevel1(data, BootInput(data ; kwargs...)) """ dboot(data, bi::BootInput) dboot(data ; kwargs...) Get the level 2 bootstrapped statistics associated with dataset in data, and bootstrap methodology in BootInput. A keyword method that calls the keyword constructor for BootInput is also provided. Please use ?BootInput at the REPL for more detail on feasible keywords. Note, the return type of the output will be determined by bi.flevel2, which must be a function that accepts Vector{T}, where T is the output type of bi.flevel1. For example, if data is a Vector{<:Number} and bi.flevel1 is mean, then in this case, bi.flevel1 will return Float64, and so bi.flevel2 must be some function that accepts Vector{Float64} as input (and can have any output type.) Alternatively, bi.flevel2 could be the anonymous function (x -> quantile(x, [0.025, 0.975])), in which case the input should be Vector{Float64}, and so bi.flevel1 should return Float64. Note, the output of bi.flevel2 in this case will be a 2-element Vector{Float64} with elements corresponding bootstrapped 95% confidence interval for the level1 statistic of the input dataset """ dboot(data, bi::BootInput) = bi.flevel2(dbootlevel1(data, bi)) dboot(data ; kwargs...) = dboot(data, BootInput(data ; kwargs...)) "dbootlevel2 <- Identical to the dboot function. This function is only included for naming consistency with dbootlevel1" dbootlevel2(data, bi::BootInput)= dboot(data, bi) dbootlevel2(data ; kwargs...)= dbootlevel2(data, BootInput(data ; kwargs...)) "dbootvar <- Identical to dboot but with the level 2 statistic set to variance" dbootvar(data ; kwargs...) = dboot(data, BootInput(data ; flevel2=var, kwargs...)) "dbootconf <- Identical to dboot but with the level 2 statistic set to a confidence interval with width determined by keyword alpha. Default alpha=0.05 corresponds to a 95% confidence interval." dbootconf(data ; alpha::Float64=0.05, kwargs...) = (0.0 < alpha < 0.5) ? dboot(data, BootInput(data ; flevel2=(x -> quantile(x, [alpha/2, 1-(alpha/2)])), kwargs...)) : error("Invalid alpha of $(alpha) for confidence interval. alpha must lie on the interval (0.0, 0.5)")
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
2695
#Local function used to transform data via appropriate influence functions for the case where bootstrap method is tapered block function apply_influence_function(x::Vector{T}, bi::BootInput)::Vector{Float64} where {T<:Number} if bi.flevel1 == mean x_if = x - mean(x, 1) elseif bi.flevel1 == sum x_if = length(x) * (x - mean(x)) else error("Tapered block bootstrap only implemented for a limited number of cases with known influence functions") end return(x_if) end (apply_influence_function(x::Vector{Vector{T}}, bi::BootInput)::Vector{Vector{Float64}}) where {T<:Number} = Vector{Float64}[ apply_influence_function(x[k], bi) for k = 1:length(x) ] #Local function used to weight data for the case where bootstrap method is tapered block function dboot_kernel_weights(bi::BootInput)::Vector{Float64} bL = Int(ceil(bi.blocklength)) kernelInput = Float64[ (1 / bL) * (n - 0.5) for n = 1:bL ] kernelWeight = kernel_func_pp2002(kernelInput, bi.bootmethod) normTerm = sqrt(bL) / norm(kernelWeight, 2) kernelWeight .*= normTerm return(kernelWeight) end function dboot_weight!(x::Vector{Vector{T}}, bi::BootInput)::Vector{Vector{Float64}} where {T<:Number} bL = Int(ceil(bi.blocklength)) bL <= 1 && return(x) w = dboot_kernel_weights(bm) length(w) != bL && error("Logic fail. Incorrect length output from dboot_kernel_weights function. Please file an issue.") (num_repeat, num_remain) = divrem(size(x, 1), bL) wLong = vcat(repeat(w, outer=num_repeat), w[1:num_remain]) for n = 1:length(x) x[n] = wLong .* x[n] end return(x) end #Local function for the two kernel functions proposed in Paparoditis and Politis (2002) "The tapered block bootstrap for general statistics from stationary sequences" function kernel_func_pp2002_trap(x::Float64)::Float64 p = 0.43 #Optimal value from PP (2002) x < 0 && return(0.0) x < p && return(x / p) x < 1 - p && return(1.0) x < 1 && return((1 - x) / p) return(0.0) end kernel_func_pp2002_trap(x::Vector{Float64})::Vector{Float64} = Float64[ kernel_func_pp2002_trap(x[k]) for k = 1:length(x) ] function kernel_func_pp2002_smooth(x::Float64)::Float64 p = 1.3 #Optimal value from PP (2002) (0.0 <= x <= 1.0) && return(1 - abs(2*x - 1)^p) return(0.0) end kernel_func_pp2002_smooth(x::Vector{Float64})::Vector{Float64} = Float64[ kernel_func_pp2002_smooth(x[k]) for k = 1:length(x) ] function kernel_func_pp2002(x::Vector{Float64}, bm::BootTapered)::Vector{Float64} bm.kernelfunction == :trap && return(kernel_func_pp2002_trap(x)) bm.kernelfunction == :smooth && return(kernel_func_pp2002_smooth(x)) error("Invalid kernel function of $(bm.kernelfunction)") end
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
18152
#Abstract supertypes "BootMethod <- Abstract supertype for all dependent bootstrap methods" abstract type BootMethod end "BlockLengthMethod <- Abstract supertype for all block length selection methods" abstract type BlockLengthMethod end "BandwidthMethod <- Abstract supertype for all bandwidth selection methods" abstract type BandwidthMethod end "KernelFunctionMethod <- Abstract supertype for all kernel function methods" abstract type KernelFunctionMethod end #Kernel function types "KernelDummy <- Dummy type for kernel functions" struct KernelDummy <: KernelFunctionMethod ; end struct KernelTrap <: KernelFunctionMethod ; end struct KernelSmooth <: KernelFunctionMethod ; end Base.show(io::IO, x::KernelDummy) = print(io, "Dummy kernel function method") Base.show(io::IO, x::KernelTrap) = print(io, "Trapezoidal kernel function method from Paparoditis, Politis (2002)") Base.show(io::IO, x::KernelSmooth) = print(io, "Smooth kernel function method from Paparoditis, Politis (2002)") kernel_function_dict_input = Pair{Symbol,KernelFunctionMethod}[ :dummy => KernelDummy(), :trap => KernelTrap(), :smooth => KernelSmooth() ]::Vector{Pair{Symbol,KernelFunctionMethod}} "KERNEL_FUNCTION_DICT <- Dictionary for converting string or symbol inputs into kernel function types" const KERNEL_FUNCTION_DICT = Dict{Union{Symbol,String},KernelFunctionMethod}()::Dict{Union{Symbol,String},KernelFunctionMethod} sizehint!(KERNEL_FUNCTION_DICT, 2*length(kernel_function_dict_input)) for kf in kernel_function_dict_input ; KERNEL_FUNCTION_DICT[kf[1]] = kf[2] ; end for kf in kernel_function_dict_input ; KERNEL_FUNCTION_DICT[string(kf[1])] = kf[2] ; end #Bootstrap method types "BootDummy <- Dummy type used within the module. Should never be seen by the end user" struct BootDummy <: BootMethod ; end "BootIID <- Type for using multiple dispatch to get the IID boostrap" struct BootIID <: BootMethod ; end "BootStationary <- Type for using multiple dispatch to get the stationary bootstrap" struct BootStationary <: BootMethod ; end "BootMoving <- Type for using multiple dispatch to get the moving blocks bootstrap" struct BootMoving <: BootMethod ; end "BootNoOverlap <- Type for using multiple dispatch to get the non-overlapping blocks bootstrap" struct BootNoOverlap <: BootMethod ; end "BootCircular <- Type for using multiple dispatch to get the circular blocks bootstrap" struct BootCircular <: BootMethod ; end # "BootTapered <- Type for using multiple dispatch to get the tapered block bootstrap" # struct BootTapered{Tkf<:KernelFunctionMethod} <: BootMethod # kernelfunction::Tkf # function BootTapered(kf::Tkf) where {Tkf} # new{Tkf}(kf) # end # end # BootTapered()::BootTapered = BootTapered(KernelTrap()) Base.show(io::IO, bm::BootDummy) = print(io, "Dummy bootstrap method") Base.show(io::IO, bm::BootIID) = print(io, "IID bootstrap") Base.show(io::IO, bm::BootStationary) = print(io, "Stationary bootstrap") Base.show(io::IO, bm::BootMoving) = print(io, "Moving block bootstrap") Base.show(io::IO, bm::BootNoOverlap) = print(io, "Non-overlapping block bootstrap") Base.show(io::IO, bm::BootCircular) = print(io, "Circular block bootstrap") #Base.show(io::IO, bm::BootTapered) = print(io, "Tapered block bootstrap") boot_method_dict_input = Pair{Symbol, BootMethod}[ :iid => BootIID(), :efron => BootIID(), :stationary => BootStationary(), :movingblock => BootMoving(), :moving => BootMoving(), :nonoverlappingblock => BootNoOverlap(), :nooverlap => BootNoOverlap(), :circularblock => BootCircular(), :circular => BootCircular()]::Vector{Pair{Symbol,BootMethod}} "BOOT_METHOD_DICT <- Dictionary for converting string or symbol inputs into bootstrap methods" const BOOT_METHOD_DICT = Dict{Union{Symbol,String},BootMethod}()::Dict{Union{Symbol,String},BootMethod} sizehint!(BOOT_METHOD_DICT, 2*length(boot_method_dict_input)) for bm in boot_method_dict_input ; BOOT_METHOD_DICT[bm[1]] = bm[2] ; end for bm in boot_method_dict_input ; BOOT_METHOD_DICT[string(bm[1])] = bm[2] ; end #bandwidth method types "P2003 <- Type for using multiple dispatch to get the bandwidth selection procedure of Politis (2003)" struct P2003 <: BandwidthMethod ; end Base.show(io::IO, bw::P2003) = print(io, "Bandwidth selection of Politis (2003)") bandwidth_method_dict_input = Pair{Symbol,BandwidthMethod}[ :politis2003 => P2003(), :p2003 => P2003() ]::Vector{Pair{Symbol,BandwidthMethod}} "BANDWIDTH_METHOD_DICT <- Dictionary for converting string or symbol inputs into bandwidth methods" const BANDWIDTH_METHOD_DICT = Dict{Union{Symbol,String},BandwidthMethod}()::Dict{Union{Symbol,String},BandwidthMethod} sizehint!(BANDWIDTH_METHOD_DICT, 2*length(bandwidth_method_dict_input)) for bw in bandwidth_method_dict_input ; BANDWIDTH_METHOD_DICT[bw[1]] = bw[2] ; end for bw in bandwidth_method_dict_input ; BANDWIDTH_METHOD_DICT[string(bw[1])] = bw[2] ; end #blocklength method types "BLDummy <- Dummy type for block length method" struct BLDummy <: BlockLengthMethod ; end # "BLPP2002 <- Type for using multiple dispatch to get the block length selection procedure of Paparoditis and Politis (2002)" # struct BLPP2002{Tbw<:BandwidthMethod,Tkf<:KernelFunctionMethod} <: BlockLengthMethod # bandwidthmethod::Tbw # kernelfunction::Tkf # end "BLPPW2009 <- Type for using multiple dispatch to get the block length selection procedure of Patton, Politis, and White (2009)" struct BLPPW2009{Tbw<:BandwidthMethod} <: BlockLengthMethod bandwidthmethod::Tbw end BLPPW2009()::BLPPW2009{P2003} = BLPPW2009(P2003()) # Base.show(io::IO, bl::BLPP2002) = print(io, "Block length selection of Paparoditis and Politis (2002)") Base.show(io::IO, bl::BLPPW2009) = print(io, "Block length selection of Patton, Politis, and White (2009)") blocklength_method_dict_input = Pair{Symbol,BlockLengthMethod}[ :ppw2009 => BLPPW2009(P2003())]::Vector{Pair{Symbol,BlockLengthMethod}} "BLOCKLENGTH_METHOD_DICT <- Dictionary for converting string or symbol inputs into bandwidth methods" const BLOCKLENGTH_METHOD_DICT = Dict{Union{Symbol,String},BlockLengthMethod}()::Dict{Union{Symbol,String},BlockLengthMethod} sizehint!(BLOCKLENGTH_METHOD_DICT, 2*length(blocklength_method_dict_input)) for bl in blocklength_method_dict_input ; BLOCKLENGTH_METHOD_DICT[bl[1]] = bl[2] ; end for bl in blocklength_method_dict_input ; BLOCKLENGTH_METHOD_DICT[string(bl[1])] = bl[2] ; end "bootmethod_to_blocklengthmethod <- Convert a bootstrap method to the most appropriate block length method" (bootmethod_to_blocklengthmethod(bm::T)::BLPPW2009{P2003}) where {T<:Union{BootStationary,BootMoving,BootCircular,BootNoOverlap,BootIID}} = BLPPW2009(P2003()) #(bootmethod_to_blocklengthmethod(bm::BootTapered)::BLPP2002{P2003,KernelDummy}) = BLPP2002(P2003(), KernelDummy()) """ BootInput Core type that defines all parameters needed to perform a bootstrap procedure. The vast majority of users should use the keyword argument constructor that has the method signature: BootInput(data ; kwargs...) where data is the dataset to be bootstrapped, and kwargs denotes a set of keyword arguments (defined below) that are used for every exported function in the DependentBootstrap package. The following keyword arguments and default values follow: \n - blocklength <- Block length for bootstrapping procedure. Default value is 0. Set to <= 0 to auto-estimate the optimal block length from the dataset. Float64 inputs allowed. - numresample <- Number of times to resample the input dataset. Default value is the module constant NUM_RESAMPLE, currently set to 1000. - bootmethod <- Bootstrapping methodology to use. Default value is the Symbol :stationary (for the stationary bootstrap). - blocklengthmethod <- Block length selection procedure to use if user wishes to auto-estimate the block length. Default value is the Symbol :ppw2009 (use the method described in Patton, Politis, and White (2009)). - flevel1 <- A function that converts the input dataset to the estimator that the user wishes to bootstrap. Default value is the sample mean. - flevel2 <- A function that converts a vector of estimators constructed by flevel1 into a distributional parameter. Default value is sample variance. - numobsperresample <- Number of observations to be drawn (with replacement) per resample. The default value is the number of observations in the dataset (the vast majority of users will want this default value). - fblocklengthcombine <- A function for converting a Vector{Float64} of estimated blocklengths to a single Float64 blocklength estimate. Default value is median. The constructor will attempt to convert all provided keyword arguments to appropriate types, and will notify the user via an error if a supplied keyword argument is not valid. Note that the bootmethod and blocklengthmethod keyword arguments will accept both Symbol and String inputs, and will convert them to BootMethod and BlockLengthMethod types internally. To see a list of acceptable Symbol or String values for the bootmethod and blocklengthmethod keyword arguments, use: \n - collect(keys(DependentBootstrap.BOOT_METHOD_DICT)) - collect(keys(DependentBootstrap.BLOCKLENGTH_METHOD_DICT)) respectively. A small proportion of users may need the fine-grained control that comes from constructing BootMethod and BlockLengthMethod types explicitly and then providing them to the keyword constructor. These users should use ?BootMethod and ?BlockLengthMethod at the REPL for more info. BootInput is not mutable, but the type is near instantaneous to construct, so if a user wishes to amend a BootInput it is recommended to just construct another one. A special constructor is provided to facilitate this process that has the method definition: \n - BootInput(data, bootinput::BootInput ; kwargs...) where the new BootInput draws its fields from the keyword arguments that are provided, and then the input BootInput for any keyword arguments that are not provided. Note that all exported functions in the DependentBootstrap package exhibit the method signature: \n - exported_func(data ; kwargs...) which in practice just wraps the keyword argument constructor for a BootInput, and then calls the method signature: \n - exported_func(data, bootinput::BootInput) """ struct BootInput{Tbm<:BootMethod,Tbl<:BlockLengthMethod,Tf1<:Function,Tf2<:Function,Tfc<:Function} numobs::Int blocklength::Float64 numresample::Int bootmethod::Tbm blocklengthmethod::Tbl flevel1::Tf1 flevel2::Tf2 numobsperresample::Int fblocklengthcombine::Tfc function BootInput(numobs::Int, blocklength::Float64, numresample::Int, bootmethod::Tbm, blmethod::Tbl, flevel1::Tf1, flevel2::Tf2, numobsperresample::Int, fblocklengthcombine::Tfc) where {Tbm<:BootMethod,Tbl<:BlockLengthMethod,Tf1<:Function,Tf2<:Function,Tfc<:Function} typeof(bootmethod) <: BootDummy && error("bootmethod is set to BootDummy. You should not have been able to accidentally reach this point. Please file an issue.") numobs < 2 && error("Number of observations input to BootInput must be 2 or greater: $(numobs)") (isnan(blocklength) || isinf(blocklength)) && error("Invalid blocklength: $(blocklength)") numresample < 1 && error("Number of resamples must be strictly positive: $(numresample)") numobsperresample < 1 && error("Number of observations per resample must be strictly positive: $(numobsperresample)") blocklength <= 0.0 && error("Block length must be strictly positive. BootInput outer constructors that include the dataset as the first argument will automatically estimate the block length if you do not specify it") Tbm == BootDummy && error("Do not use BootDummy as an input type. It is for internal module use only") Tbl == BLDummy && error("Do not use BLDummy as an input type. It is for internal module use only") new{Tbm,Tbl,Tf1,Tf2,Tfc}(numobs, blocklength, numresample, bootmethod, blmethod, flevel1, flevel2, numobsperresample, fblocklengthcombine) end end #BootInput empty constructor BootInput() = BootInput(2, 1.0, 1, BootIID(), BLPPW2009(), mean, var, 1, identity) #BootInput constructor that ensures blocklength is auto-detected if need be function BootInput(data, numobs::Int, blocklength::Number, numresample::Int, bootmethod::Tbm, blocklengthmethod::Tbl, flevel1::Tf1, flevel2::Tf2, numobsperresample::Int, fblocklengthcombine::Tfc) where {Tbm<:BootMethod,Tbl<:BlockLengthMethod,Tf1<:Function,Tf2<:Function,Tfc<:Function} blocklength = Float64(blocklength) Tbm <: BootIID && (blocklength = 1.0) blocklength <= 0.0 && (blocklength = optblocklength(data, blocklengthmethod, bootmethod, fblocklengthcombine)) return BootInput(numobs, blocklength, numresample, bootmethod, blocklengthmethod, flevel1, flevel2, numobsperresample, fblocklengthcombine) end #BootInput constructors that use keyword arguments function BootInput(data ; blocklength=0, numresample=NUM_RESAMPLE, bootmethod=:stationary, blocklengthmethod=:dummy, flevel1=mean, flevel2=var, numobsperresample=num_obs(data), fblocklengthcombine=median) numobs = num_obs(data) blocklength = bootinput_get_blocklength(blocklength) numresample = bootinput_get_numresample(numresample) bootmethod = bootinput_get_bootmethod(bootmethod) blocklengthmethod = bootinput_get_blocklengthmethod(blocklengthmethod, bootmethod) flevel1 = bootinput_get_flevel1(flevel1) flevel2 = bootinput_get_flevel2(flevel2) numobsperresample = bootinput_get_numobsperresample(numobsperresample) fblocklengthcombine = bootinput_get_fblocklengthcombine(fblocklengthcombine) typeof(bootmethod) <: BootIID && (blocklength = 1.0) blocklength <= 0.0 && (blocklength = optblocklength(data, blocklengthmethod, bootmethod, fblocklengthcombine)) return BootInput(numobs, blocklength, numresample, bootmethod, blocklengthmethod, flevel1, flevel2, numobsperresample, fblocklengthcombine) end #Constructor for building a new BootInput using keyword arguments where possible, and, failing that, the fields #of an existing BootInput _db_bi_dummy_f() = error("This function is designed to never be called. It is used as a default value for keyword arguments so as to check whether the user has specified them") function BootInput(data, bi::BootInput ; blocklength=-9, numresample=-9, bootmethod=:z, blocklengthmethod=:z, flevel1=_db_bi_dummy_f, flevel2=_db_bi_dummy_f, numobsperresample=-9, fblocklengthcombine=_db_bi_dummy_f) blocklength == -9 && (blocklength = bi.blocklength) numresample == -9 && (numresample = bi.numresample) bootmethod == :z && (bootmethod = bi.bootmethod) blocklengthmethod == :z && (blocklengthmethod = bi.blocklengthmethod) flevel1 == _db_bi_dummy_f && (flevel1 = bi.flevel1) flevel2 == _db_bi_dummy_f && (flevel2 = bi.flevel2) numobsperresample == -9 && (numobsperresample = bi.numobsperresample) fblocklengthcombine == _db_bi_dummy_f && (fblocklengthcombine = bi.fblocklengthcombine) return BootInput(data, blocklength=blocklength, numresample=numresample, bootmethod=bootmethod, blocklengthmethod=blocklengthmethod, flevel1=flevel1, flevel2=flevel2, numobsperresample=numobsperresample, fblocklengthcombine=fblocklengthcombine) end bootinput_get_blocklength(x::Number)::Float64 = Float64(x) bootinput_get_blocklength(x) = error("Invalid type for blocklength input. Use a subtype of Number, eg Int or Float64.") bootinput_get_numresample(x::Number)::Int = Int(x) bootinput_get_numresample(x) = error("Invalid type for numresample input. Use a subtype of Number, eg Int or Float64.") function bootinput_get_bootmethod(bootmethod::T) where {T<:Union{Symbol,String}} bm = get(BOOT_METHOD_DICT, bootmethod, BootDummy()) typeof(bm) <: BootDummy && error("No matching entry found in dictionary for bootmethod input $(bootmethod). Please use collect(keys(DependentBootstrap.BOOT_METHOD_DICT)) at the REPL to see a list of valid keyword arguments.") return bm end bootinput_get_bootmethod(x) = typeof(x) <: BootMethod ? x : error("Invalid type for bootmethod input. Use Symbol, String, or a subtype of BootMethod") function bootinput_get_blocklengthmethod(blocklengthmethod::T, bootmethod::Tbm) where {T<:Union{Symbol,String},Tbm<:BootMethod} string(blocklengthmethod) == "dummy" && return bootmethod_to_blocklengthmethod(bootmethod) blm = get(BLOCKLENGTH_METHOD_DICT, blocklengthmethod, BLDummy()) typeof(blm) <: BLDummy && error("No matching entry found in dictionary for blocklengthmethod input $(blocklengthmethod). Please use collect(keys(DependentBootstrap.BLOCKLENGTH_METHOD_DICT)) at the REPL to see a list of valid keyword arguments.") return blm end bootinput_get_blocklengthmethod(x, bootmethod) = typeof(x) <: BlockLengthMethod ? x : error("Invalid type for bootmethod input. Use Symbol, String, or a subtype of BootMethod") (bootinput_get_flevel1(f::Tf)::Tf) where {Tf<:Function} = f bootinput_get_flevel1(f) = error("Invalid type for flevel1 input. Use a subtype of Function") (bootinput_get_flevel2(f::Tf)::Tf) where {Tf<:Function} = f bootinput_get_flevel2(f) = error("Invalid type for flevel2 input. Use a subtype of Function") bootinput_get_numobsperresample(x::Number)::Int = Int(x) bootinput_get_numobsperresample(x) = error("Invalid type for numobsperresample input. Use a subtype of Number, eg Int or Float64.") (bootinput_get_fblocklengthcombine(f::Tf)::Tf) where {Tf<:Function} = f bootinput_get_fblocklengthcombine(f) = error("Invalid type for fblocklengthcombine input. Use a subtype of Function") function Base.show(io::IO, x::BootInput) println(io, "Dependent bootstrap input:") println(io, " Number of observations in dataset = $(x.numobs)") println(io, " Current block length = $(x.blocklength)") println(io, " Number of resamples = $(x.numresample)") println(io, " Bootstrap method = $(x.bootmethod)") println(io, " Block length method = $(x.blocklengthmethod)") println(io, " Level 1 statistic = $(x.flevel1)") println(io, " Level 2 statistic = $(x.flevel2)") println(io, " Number of observations per resample = $(x.numobsperresample)") println(io, " Block length combine function = $(x.fblocklengthcombine)") end
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
code
6427
using Random, Test using StatsBase using Distributions using DependentBootstrap using DataFrames, TimeSeries #Quick and dirty function for simulating AR(1) data with deterministic start point for random number generation function temp_ar(seedint::Int) #srand(seedInt) Random.seed!(seedint) N = 100 e = randn(N) x = NaN*ones(Float64,N) x[1] = 0.0 for n = 2:N x[n] = 0.8 * x[n-1] + e[n] end return x end #Get the AR(1) data x = temp_ar(1234); xmat = hcat(x, temp_ar(5678)); xvv = [ xmat[:, k] for k = 1:size(xmat,2) ] #bootstrap methods bootmethodvec = [:iid, :stationary, :moving, :circular, :nooverlap]; bootmethodtypevec = [DependentBootstrap.BootIID(), DependentBootstrap.BootStationary(), DependentBootstrap.BootMoving(), DependentBootstrap.BootCircular(), DependentBootstrap.BootNoOverlap()] blocklengthvec = [0.0, 5.0]; blocklengthmethodvec = [:ppw2009] blocklengthmethodtypevec = [DependentBootstrap.BLPPW2009()] #Test constructor @testset "BootInput constructor test" begin for kbm = 1:length(bootmethodvec) for kbl = 1:length(blocklengthvec) for kblm = 1:length(blocklengthmethodvec) bi = BootInput(x, 100, blocklengthvec[kbl], 200, bootmethodtypevec[kbm], blocklengthmethodtypevec[kblm], var, std, 300, mean) @test bi.numresample == 200 @test bi.bootmethod == bootmethodtypevec[kbm] @test bi.blocklengthmethod == blocklengthmethodtypevec[kblm] @test bi.flevel1 == var @test bi.flevel2 == std @test bi.numobsperresample == 300 @test bi.fblocklengthcombine == mean bi = BootInput(x, numresample=200, bootmethod=bootmethodvec[kbm], blocklength=blocklengthvec[kbl], blocklengthmethod=blocklengthmethodvec[kblm], flevel1=var, flevel2=std, numobsperresample=300, fblocklengthcombine=mean) @test bi.numresample == 200 @test bi.bootmethod == bootmethodtypevec[kbm] @test bi.blocklengthmethod == blocklengthmethodtypevec[kblm] @test bi.flevel1 == var @test bi.flevel2 == std @test bi.numobsperresample == 300 @test bi.fblocklengthcombine == mean end end end end bootmethodvec = Symbol[:iid, :stationary, :moving] correctblocklength1 = Vector{Float64}[Float64[1.0, 7.002404488495543, 8.015752150100226]]; correctblocklength2 = Vector{Float64}[Float64[1.0, 6.837001835299588, 7.826413377230708]]; #Test block length selection procedure @testset "Block length selection test" begin for kbm = 1:length(bootmethodvec) for kblm = 1:length(blocklengthmethodvec) bi = BootInput(xmat[:, 1], numresample=200, bootmethod=bootmethodvec[kbm], blocklengthmethod=blocklengthmethodvec[kblm]) @test isapprox(bi.blocklength, correctblocklength1[kblm][kbm]) bi = BootInput(xmat[:, 2], numresample=200, bootmethod=bootmethodvec[kbm], blocklengthmethod=blocklengthmethodvec[kblm]) @test isapprox(bi.blocklength, correctblocklength2[kblm][kbm]) bi = BootInput(xmat, numresample=200, bootmethod=bootmethodvec[kbm], blocklengthmethod=blocklengthmethodvec[kblm], fblocklengthcombine=mean) @test isapprox(bi.blocklength, mean([correctblocklength1[kblm][kbm],correctblocklength2[kblm][kbm]])) end end end #Test univariate bootstrap method bootmethodvec = [:iid, :stationary, :moving, :circular, :nooverlap]; correctbootunivariate = Float64[0.02231785457420185,0.0805280736777265,0.07755558515710691,0.07248357346968781,0.0718412998084052] correctbootunivariatebl1 = 0.021374650187840242*ones(Float64, length(bootmethodvec)) @testset "Univariate bootstrap test" begin for kbm = 1:length(bootmethodvec) Random.seed!(1234) y = dboot(x, numresample=1000, bootmethod=bootmethodvec[kbm], blocklength=5, flevel1=mean, flevel2=var) @test isapprox(y, correctbootunivariate[kbm]) end for kbm = 1:length(bootmethodvec) Random.seed!(1234) y = dboot(x, numresample=500, bootmethod=bootmethodvec[kbm], blocklength=1, flevel1=mean, flevel2=var) @test isapprox(y, correctbootunivariatebl1[kbm]) end end #Test multivariate bootstrap bootmethodvec = [:iid, :stationary, :moving, :circular, :nooverlap]; correctbootmultmatrix = Float64[0.19194008990823777,0.40101052326568176,0.5186276897440075,0.44038974430819566,0.3960765922525029] correctbootmultvv = Float64[0.1461957546031049,0.3546585480604615,0.316914521186327,0.34363235435327766,0.361937416083102] @testset "Multivariate bootstrap test" begin for kbm = 1:length(bootmethodvec) Random.seed!(1234) y = dbootvar(xmat, numresample=1000, bootmethod=bootmethodvec[kbm], blocklength=5, flevel1=x->minimum(x[:,1].*x[:,2])) @test isapprox(y, correctbootmultmatrix[kbm]) Random.seed!(1234) y = dbootconf(xvv, numresample=1000, bootmethod=bootmethodvec[kbm], blocklength=5, flevel1=flevel1=x->mean([mean(x[1]),mean(x[2])])) @test isapprox(y[2], correctbootmultvv[kbm]) end end #Test dbootdata and dbootinds @testset "Test dbootdata and dbootinds" begin a = dbootinds(x, numresample=20, blocklength=5, bootmethod=:stationary) @test length(a) == 20 a = dbootdata(x, numresample=20, blocklength=5, bootmethod=:stationary) @test length(a) == 20 end #Test exotic dataset types @testset "Exotic data types test" begin Random.seed!(1234) xdf = DataFrame(xmat) #y = dboot(xdf, bootmethod=:stationary, blocklength=5, numresample=1000, flevel1=x->mean(DataFrames.columns(x)[1])) y = dboot(xdf, bootmethod=:stationary, blocklength=5, numresample=1000, flevel1=(x->mean(x[:,1]))) @test isapprox(y, 0.0805280736777265) dtvec = [ Date(2000)+Day(n) for n = 1:size(xmat,1) ] xta1 = TimeSeries.TimeArray(dtvec, x) xta2 = TimeSeries.TimeArray(dtvec, xmat) Random.seed!(1234) y1 = dboot(xta1, bootmethod=:stationary, blocklength=5, numresample=1000, flevel1=x->mean(values(x))) Random.seed!(1234) y2 = dboot(xta2, bootmethod=:stationary, blocklength=5, numresample=1000, flevel1=x->mean(values(x))) @test isapprox(y1, 0.0805280736777265) @test isapprox(y2, 0.05077003035163576) end
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
1.1.4
b494a8c911f2492a2e9085e1b8653154503c2c62
docs
12006
DependentBootstrap.jl ===================== ## Note: Package tests may fail on Julia v1.6 or later due to an update in random number generation. I need to update the tests in this package so they don't depend on the specifics of the underlying random number generator in Julia, which I will do in due course. For now, don't worry if the tests fail, nothing of note has been changed in this package in years. [![Build Status](https://travis-ci.org/colintbowers/DependentBootstrap.jl.svg?branch=master)](https://travis-ci.org/colintbowers/DependentBootstrap.jl) A module for the Julia language that implements several varieties of the dependent statistical bootstrap as well as the corresponding block-length selection procedures. ## News This package is compatible with julia v1.0+. If you are running v0.6, you will need to use `Pkg.pin("DependentBootstrap", v"0.1.1")` at the REPL, and if you are running v0.5, use `Pkg.pin("DependentBootstrap", v"0.0.1")`. Compability with versions before v0.5 is not available. ## Main features This module allows Julia users to estimate the distribution of a test statistic using any of several varieties of the dependent bootstrap. The following bootstrap methods are implemented: * the *iid* bootstrap proposed in Efron (1979) "Bootstrap Methods: Another Look at the Jackknife", * the stationary bootstrap proposed in Politis, Romano (1994) "The Stationary Bootstrap" * the moving block bootstrap proposed in Kunsch (1989) "The jackknife and the bootstrap for general stationary observations" and (independently) Liu, Singh (1992) "Moving blocks jackknife and bootstrap capture weak dependence", * the circular block bootstrap proposed in Politis, Romano (1992) "A circular block resampling procedure for stationary data", and * the non-overlapping block bootstrap described in Lahiri (1999) *Resampling Methods for Dependent Data* (this method is not usually used and is included mainly as a curiosity). The module also implements the following block length selection procedures: * the block length selection procedure proposed in Politis, White (2004) "Automatic Block Length Selection For The Dependent Bootstrap", including the correction provided in Patton, Politis, and White (2009) Bandwidth selection for the block length procedures is implemented using the method proposed in Politis (2003) "Adaptive Bandwidth Choice". Some work has been done to implement the tapered block bootstrap of Paparoditis, Politis (2002) "The tapered block bootstrap for general statistics from stationary sequences", along with corresponding block-length selection procedures, but it is not yet complete. The module is implemented entirely in Julia. ## What this package does not include I have not included any procedures for bootstrapping confidence intervals in a linear regression framework, or other parametric models. This functionality is provided by [Bootstrap.jl](https://github.com/juliangehring/Bootstrap.jl), and work is currently under way to add bootstrap methods from this package to the `Bootstrap` API. I also have not included support for the jackknife, wild bootstrap, or subsampling procedures. I would be quite open to pull requests that add these methods to the present package, but have not had time to implement them myself. Work is ongoing to include the tapered block bootstrap, and ideally, the package will also eventually include the extended tapered block bootstrap. If you are interested in working on any of these projects, please feel free to contact me. ## How to use this package #### Installation This package should be added using `using Pkg ; Pkg.add("DependentBootstrap")`, and can then be called with `using DependentBootstrap`. The package depends on `StatsBase` and `Distributions` for some functionality, and on `DataFrames` and `TimeSeries` so that `DataFrame` and `TimeArray` datasets can be supported by this packages methods. #### Terminology In what follows, I use the terminology from Lahiri (1999) *Resampling Methods for Dependent Data* and refer to the underlying test statistic of interest as a *level 1 statistic*, and the distribution parameter of the test statistic that is of interest as a *level 2 parameter*. For example, the user might have some dataset `x` of type `T_data`, and be interested in the variance of the sample mean of `x`. In this case, the level 1 statistic is the sample mean function `mean`, and the level 2 parameter is the sample variance function `var`. I use `T_data` to refer to the type of the users dataset, `T_level1` to refer to the output type obtained by applying the level 1 statistic function to the dataset, and `T_level2` to refer to the output type obtained by applying the level 2 statistic to a `Vector{T_level1}` (i.e. a vector of resampled level 1 statistics). #### Exported functions The package exports the following functions, all of which have docstrings that can be called interactively at the REPL: * `dbootinds(...)::Vector{Vector{Int}}` -> Returns indices that can be used to index into the underlying data to obtain bootstrapped data. Note, each inner vector of the output corresponds to a single re-sample for the underlying data. * `dbootdata(...)::Vector{T_data}` -> Returns the bootstrapped data. Each element of the output vector corresponds to one re-sampled dataset, and the output vector will have length equal to `numresample` (a parameter discussed later). * `dbootlevel1(...)::Vector{T_level1}` -> Returns a vector of bootstrapped level 1 statistics, where the output vector will have length equal to `numresample`. * `dbootlevel2(...)::T_level2` -> Returns the bootstrapped distribution parameter of the level 1 statistic. * `dboot(...)::T_level2` -> Identical to dbootlevel2. Most users will want to use this function. * `dbootvar(...)::Float64` -> Identical to `dboot` but automatically sets `flevel2` to `var` (the sample variance function) * `dbootconf(...)::Vector{Float64}` -> Identical to `dboot` but automatically sets `flevel2` to the anonymous function `x -> quantile(x, [0.025, 0.975])`, so the level 2 distribution parameter is a 95% confidence interval. In addition to the usual keywords, the keyword version of this function also accepts the keyword `alpha::Float64=0.05`, which controls the width of the confidence interval. Note, `0.05` corresponds to a 95% confidence interval, `0.1` to a 90% interval, and `0.01` to a 99% interval (and so on). * `optblocklength(...)::Float64` -> Returns the optimal block length. The function `bandwidth_politis_2003{T<:Number}(x::AbstractVector{T})::Tuple{Int, Float64, Vector{Float64}}` is not exported, but the docstrings can be accessed using `?DependentBootstrap.bandwidth_politis_2003` at the REPL. This function implements the bandwidth selection procedure from Politis (2003) discussed above, and may be of independent interest to some users. All of the above functions exhibit the following two core methods: * `f(data ; kwargs...)` * `f(data, bi::BootInput)` where `data` is the users underlying dataset, `kwargs` is a collection of keyword arguments, and `bi::BootInput` is a core type exported by the module that will be discussed later (but can be safely ignored by most users). The following types for `data` are currently accepted: * `Vector{<:Number}`, * `Matrix{<:Number}` where rows are observations and columns are variables, * `Vector{Vector{<:Number}}` where each inner vector is a variable, * `DataFrame` * `TimeArray` Of the two core methods, most users will want the `kwargs` method. A list of valid keyword arguments and their default values follows: * `blocklength` <- Block length for bootstrapping procedure. The default value is `0`. Set to <= 0 to auto-estimate the optimal block length from the dataset. `Float64` inputs are allowed. * `numresample` <- Number of times to resample the input dataset. The default value is the module constant `NUM_RESAMPLE`, currently set to `1000`. * `bootmethod` <- Bootstrapping methodology to use. The default value is `:stationary` (for the stationary bootstrap). * `blocklengthmethod` <- Block length selection procedure to use if user wishes to auto-estimate the block length. Default value is `:ppw2009` (use the method described in Patton, Politis, and White (2009)). * `flevel1` <- A function that converts the input dataset to the estimator that the user wishes to bootstrap. The default value is `mean`. * `flevel2` <- A function that converts a vector of estimators constructed by `flevel1` into a distributional parameter. The default value is `var`. * `numobsperresample` <- Number of observations to be drawn (with replacement) per resample. The default value is the number of observations in the dataset (the vast majority of users will want this default value). * `fblocklengthcombine` <- A function for converting a `Vector{Float64}` of estimated blocklengths to a single `Float64` blocklength estimate, which is necessary when the input dataset is a multivariate type. The default value is `median`. A list of acceptable keyword arguments for `bootmethod` and `blocklengthmethod` follows. Note you can use either `String` or `Symbol` when specifying these arguments. For `bootmethod` we have: * `:iid` or `:efron` <- IID bootstrap * `:stationary` <- Stationary bootstrap * `:movingblock` or `:moving` <- Moving block bootstrap * `:nonoverlappingblock` or `:nooverlap` <- Nonoverlapping block bootstrap * `:circularblock` or `circular` <- Circular block bootstrap For `blocklengthmethod` we have: * `:ppw2009` <- Block length selection method of Patton, Politis, and White (2009) Acceptable arguments can also be examined interactively by examining the keys of the module dictionaries `BOOT_METHOD_DICT` and `BLOCKLENGTH_METHOD_DICT`. In practice, the keyword argument method `f(data ; kwargs...)` actually just wraps a call to `f(data, BootInput(kwargs...))` under the hood. However, most users will not need to concern themselves with this level of detail. For those who wish more fine-grained control, please use `?BootInput` at the REPL to get more information on this core module type. #### Examples Let `data::Vector{Float64}`. The variance of the sample mean of `data` can be bootstrapped using a stationary bootstrap with optimally estimated block length using `dboot(data)` or `dbootvar(data)`. A 90% confidence interval for the sample median using a circular block bootsrap with block length of 5 can be estimated using `dboot(data, blocklength=5, bootmethod=:circular, flevel1=median, flevel2=(x -> quantile(x, [0.05, 0.95])))` or `dbootconf(data, blocklength=5, bootmethod=:circular, flevel1=median, alpha=0.1)`. Moving block bootstrap indices for generating bootstrapped data with optimally estimated block length can be obtained using `dbootinds(data, bootmethod=:moving)`, or if the user wants the bootstrapped data not the indices, `dbootdata(data, bootmethod=:moving)`. If the user wants bootstrapped sample medians of `data`, then use `dbootlevel1(data, bootmethod=:moving, flevel1=median)`. If the user wants the optimal block length using the method proposed in Patton, Politis, and White (2009), use `optblocklength(data, blmethod=:ppw2009)`. Now let `data::Matrix{Float64}`. If the user wants the median optimal block length from each column of `data`, use `optblocklength(data, blmethod=:ppw2009)`. If the user wants the average optimal block length use `optblocklength(data, blmethod=:ppw2009, fblocklengthcombine=mean)`. If the user wants the median of the test statistic that is the maximum of the sample mean of each column, using a stationary bootstrap with optimal block length, then use `dboot(data, flevel1=(x -> maximum(mean(x, dims=1))), flevel2=median)`. If `data::Vector{Vector{Float64}}` instead, and the user wanted the 95% confidence interval, use `dbootconf(data, flevel1=(x -> maximum([ mean(x[k]) for k = 1:length(x) ])))`.
DependentBootstrap
https://github.com/colintbowers/DependentBootstrap.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
532
using Documenter, EasyML makedocs(modules=[EasyML], sitename = "EasyML.jl", pages = ["Home" => "index.md", "Quick guide" => "quick_guide.md", "GUI guide" => "gui_guide.md", "Functions" => "functions.md", "Advanced" => "advanced.md", "Handling issues" => "handling_issues.md"], authors = "Open Machine Learning Association", format = Documenter.HTML(prettyurls = false) ) deploydocs( repo = "github.com/OML-NPA/EasyML.jl.git", devbranch = "main" )
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2284
module EasyML # Import packages using # Interfacing QML, Qt5QuickControls2_jll, Qt5Charts_jll, CxxWrap, CUDA, # Data structuring Parameters, DataFrames, Dates, # Data import/export FileIO, ImageIO, JSON, BSON, XLSX, CSVFiles, # Data manipulation Unicode, # Image manipulation Images, ColorTypes, ImageFiltering, ImageTransformations, ImageMorphology, DSP, ImageMorphology.FeatureTransform, ImageSegmentation, # Machine learning Flux, Flux.Losses, FluxExtra, # Math functions Random, StatsBase, LinearAlgebra, Combinatorics, # Other ProgressMeter, FLoops import CUDA.CuArray, Flux.outdims, StatsBase.std CUDA.allowscalar(false) # Include functions include("modules/common/Common.jl") include("modules/classes/Classes.jl") include("modules/design/Design.jl") include("modules/datapreparation/DataPreparation.jl") include("modules/training/Training.jl") include("modules/validation/Validation.jl") include("modules/application/Application.jl") using .Common, .Classes, .Design, .DataPreparation, .Training, .Validation, .Application import .Training: TrainingOptions, TrainingData, TestingData, training_data, testing_data import .DataPreparation.preparation_data, .Validation.validation_data, .Application.application_data include("exported_functions.jl") export QML, CUDA, Flux, FluxExtra, Normalizations, NNlib, ColorTypes export Join, Split, Addition, Activation, Flatten, Identity export ImageClassificationClass, ImageRegressionClass, BorderClass, ImageSegmentationClass export model_data, global_options, data_preparation_options, training_options, validation_options, application_options, preparation_data, training_data, validation_data, application_data export set_savepath, save_options, load_options, change, save_model, load_model export change_classes, design_model, prepare_training_data, get_urls_training, get_urls_testing, prepare_testing_data, train, remove_training_data, remove_testing_data, remove_training_results, validation_results_data, get_urls_validation, validate, remove_validation_data, remove_validation_results, get_urls_application, change_output_options, apply, remove_application_data function __init__() load_options() # Needed to avoid an endless loop for Julia canvas ENV["QSG_RENDER_LOOP"] = "basic" end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
9274
function assign_urls(some_data::Union{TrainingData,TestingData},urls) if isnothing(urls) return nothing else if problem_type()==:classification some_data.ClassificationData.Urls = urls elseif problem_type()==:regression some_data.RegressionData.Urls = urls else problem_type()==:segmentation some_data.SegmentationData.Urls = urls end end end function EasyML.DataPreparation.get_urls(url_inputs::String,some_data::Union{TrainingData,TestingData}) urls = get_urls(url_inputs) assign_urls(some_data,urls) return nothing end function EasyML.DataPreparation.get_urls(url_inputs::String,url_labels::String,some_data::Union{TrainingData,TestingData}) urls = get_urls(url_inputs,url_labels) assign_urls(some_data,urls) return nothing end function EasyML.DataPreparation.get_urls(some_data::Union{TrainingData,TestingData}) urls = get_urls() assign_urls(some_data,urls) return nothing end function get_train_test_inds(num::Int64,fraction::Float64) inds = randperm(num) # Get shuffled indices ind_last_test = convert(Int64,round(fraction*num)) inds_train = inds[ind_last_test+1:end] inds_test = inds[1:ind_last_test] if isempty(inds_test) @error string("Fraction of ",fraction," from ",num, " files is 0. Increase the fraction of data used for testing to at least ",round(1/num,digits=2),".") return nothing,nothing end return inds_train,inds_test end function get_urls_testing_main(training_data::TrainingData,testing_data::TestingData,training_options::TrainingOptions) if training_options.Testing.data_preparation_mode==:manual urls = get_urls() if problem_type()==:classification testing_data.ClassificationData.Urls = urls elseif problem_type()==:regression testing_data.RegressionData.Urls = urls elseif problem_type()==:segmentation testing_data.SegmentationData.Urls = urls end else if problem_type()==:classification typed_training_data = training_data.ClassificationData typed_testing_data = testing_data.ClassificationData training_inputs = typed_training_data.Urls.input_urls testing_inputs = typed_testing_data.Urls.input_urls training_labels = typed_training_data.Urls.label_urls testing_labels = typed_testing_data.Urls.label_urls elseif problem_type()==:regression typed_training_data = training_data.RegressionData typed_testing_data = testing_data.RegressionData training_inputs = typed_training_data.Urls.input_urls testing_inputs = typed_testing_data.Urls.input_urls training_labels = typed_training_data.Urls.initial_data_labels testing_labels = typed_testing_data.Urls.initial_data_labels elseif problem_type()==:segmentation typed_training_data = training_data.SegmentationData typed_testing_data = testing_data.SegmentationData training_inputs = typed_training_data.Urls.input_urls testing_inputs = typed_testing_data.Urls.input_urls training_labels = typed_training_data.Urls.label_urls testing_labels = typed_testing_data.Urls.label_urls end if isempty(training_inputs) || isempty(training_labels) @error "Training data urls should be loaded first. Run 'get_urls_training'." return nothing end training_inputs_copy = copy(training_inputs) training_labels_copy = copy(training_labels) empty!(training_inputs) empty!(testing_inputs) empty!(training_labels) empty!(testing_labels) fraction = training_options.Testing.test_data_fraction if problem_type()==:classification nums = length.(training_inputs_copy) for i = 1:length(nums) num = nums[i] inds_train,inds_test = get_train_test_inds(num,fraction) if isnothing(inds_train) return nothing end push!(training_inputs,training_inputs_copy[i][inds_train]) push!(testing_inputs,training_inputs_copy[i][inds_test]) end append!(training_labels,training_labels_copy) append!(testing_labels,training_labels_copy) elseif problem_type()==:regression || problem_type()==:segmentation num = length(training_inputs_copy) inds_train,inds_test = get_train_test_inds(num,fraction) if isnothing(inds_train) return nothing end append!(training_inputs,training_inputs_copy[inds_train]) append!(testing_inputs,training_inputs_copy[inds_test]) append!(training_labels,training_labels_copy[inds_train]) append!(testing_labels,training_labels_copy[inds_test]) end end return nothing end """ get_urls_training(url_inputs::String,url_labels::String) Gets URLs to all files present in both folders (or a folder and a file) specified by `url_inputs` and `url_labels` for training. URLs are automatically saved to `EasyML.training_data`. """ get_urls_training(url_inputs,url_labels) = get_urls(url_inputs,url_labels,training_data) """ get_urls_testing(url_inputs::String,url_labels::String) Gets URLs to all files present in both folders (or a folder and a file) specified by `url_inputs` and `url_labels` for testing. URLs are automatically saved to `EasyML.testing_data`. """ get_urls_testing(url_inputs,url_labels) = get_urls(url_inputs,url_labels,testing_data) """ get_urls_training(url_inputs::String) Used for classification. Gets URLs to all files present in folders located at a folder specified by `url_inputs` for training. Folders should have names identical to the name of classes. URLs are automatically saved to `EasyML.training_data`. """ get_urls_training(url_inputs) = get_urls(url_inputs,training_data) """ get_urls_testing(url_inputs::String) Used for classification. Gets URLs to all files present in folders located at a folder specified by `url_inputs` for testing. Folders should have names identical to the name of classes. URLs are automatically saved to `EasyML.testing_data`. """ get_urls_testing(url_inputs) = get_urls(url_inputs,testing_data) """ get_urls_training() Opens a folder/file dialog or dialogs to choose folders or folder and a file containing inputs and labels. URLs are automatically saved to `EasyML.training_data`. """ get_urls_training() = get_urls(training_data) """ get_urls_testing() If testing data preparation in `modify(training_options)` is set to auto, then a percentage of training data also specified there is reserved for testing. If testing data preparation is set to manual, then it opens a folder/file dialog or dialogs to choose folders or a folder and a file containing inputs and labels. URLs are automatically saved to `EasyML.testing_data`. """ get_urls_testing() = get_urls_testing_main(training_data,testing_data,training_options) function EasyML.DataPreparation.prepare_data(some_data::Union{TrainingData,TestingData}) if some_data isa TrainingData println("Training data preparation:") channel_name = "Training data preparation" error_message = "No input urls. Run 'get_urls_training'." else println("Testing data preparation:") channel_name = "Testing data preparation" error_message = "No input urls. Run 'get_urls_testing'." end if any(model_data.input_size.<1) @error "All dimension sizes of 'model_data.input_size' should be a positive number." return nothing end if input_type()==:image if problem_type()==:classification if isempty(some_data.ClassificationData.Urls.input_urls) @error error_message return nothing end elseif problem_type()==:regression if isempty(some_data.RegressionData.Urls.input_urls) @error error_message return nothing end elseif problem_type()==:segmentation if isempty(some_data.SegmentationData.Urls.input_urls) @error error_message return nothing end end end results = prepare_data() if problem_type()==:classification some_data.ClassificationData.Data = results elseif problem_type()==:regression some_data.RegressionData.Data = results else # problem_type()==:segmentation some_data.SegmentationData.Data = results end return nothing end """ prepare_training_data() Prepares images and corresponding labels for training using URLs loaded previously using `get_urls_training`. Saves data to EasyML.training_data. """ prepare_training_data() = prepare_data(training_data) """ prepare_testing_data() Prepares images and corresponding labels for testing using URLs loaded previously using `get_urls_testing`. Saves data to `EasyML.testing_data`. """ prepare_testing_data() = prepare_data(testing_data)
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1064
module Application # Import packages using # Interfacing CUDA, # Data import/export FileIO, ImageIO, CSVFiles, XLSX, JSON, BSON, # Data manipulation Unicode, DataFrames, # Image manipulation Images, ColorTypes, ImageFiltering, ImageMorphology.FeatureTransform, ImageSegmentation, # Machine learning Flux, Flux.Losses, FluxExtra, # Math functions Random, StatsBase, LinearAlgebra, # Other FLoops, ProgressMeter, # EasyML ecosystem ..Common, ..Common.Classes, ..Common.Application import CUDA.CuArray, StatsBase.std import ..Classes import ..Classes: change_classes, num_classes, get_class_field, get_class_data, get_problem_type, get_input_type # Include functions include(string(common_dir(),"/common/validation_application.jl")) include(string(common_dir(),"/common/preparation_validation_application.jl")) include("output_methods.jl") include("main.jl") include("exported_functions.jl") export application_options, ApplicationOptions export change_output_options, get_urls_application, apply, remove_application_data, forward, apply_border_data end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
5106
""" change(application_options::EasyML.ApplicationOptions) Allows to change `application_options` in a GUI. """ function Common.change(application_options::ApplicationOptions) @qmlfunction( get_options, set_options, save_options, pwd, fix_slashes, unit_test ) path_qml = string(@__DIR__,"/gui/ApplicationOptions.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end """ change_output() Opens a GUI for addition or modification of output options for classes. """ function change_output_options() local output_type, num_c if isempty(model_data.classes) @error "There are no classes. Add classes using 'change_classes()'." return nothing end if problem_type()==:classification @info "Classification has no output options to change." return nothing elseif problem_type()==:regression @info "Regression has no output options to change." return nothing elseif problem_type()==:segmentation output_type = ImageSegmentationOutputOptions num_c = sum(map(x -> (!).(x.overlap),model_data.classes)) end if eltype(model_data.output_options)!=output_type || length(model_data.output_options)!=num_c model_data.output_options = output_type[] for _=1:num_c push!(model_data.output_options,output_type()) end end @qmlfunction( save_model, get_class_field, get_data, get_options, get_output, set_output, get_problem_type, num_classes, unit_test ) path_qml = string(@__DIR__,"/gui/OutputDialog.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end """ get_urls_application(url_inputs::String) Gets URLs to all files present in a folders specified by `url_inputs` for application. URLs are automatically saved to `EasyML.application_data`. """ function get_urls_application(url_inputs::String) if !isdir(url_inputs) @error string(url_inputs," does not exist.") return nothing end application_data.url_inputs = url_inputs get_urls_application_main(application_data) return nothing end """ get_urls_application() Opens a folder dialog to choose a folder containing files to which a model should be applied. URLs are automatically saved to `EasyML.application_data`. """ function get_urls_application() url_out = String[""] observe(url) = url_out[1] = url dir = pwd() @info "Select a directory with input data." application_data.url_inputs = get_folder(dir) if application_data.url_inputs=="" @error "Input data directory URL is empty." return nothing else @info string(application_data.url_inputs, " was selected.") end get_urls_application_main(application_data) return nothing end """ apply() Starts application of a model. """ function apply() println("Application:") if isempty(application_data.input_urls) @error "No input urls. Run 'get_urls_application'." return nothing end empty_channel(:application_progress) t = apply_main2(model_data,all_data,options,channels) max_value = 0 value = 0 p = Progress(0) while true if max_value!=0 temp_value = get_progress(:application_progress) if temp_value!=false value += temp_value # handle progress here next!(p) elseif value==max_value break else state,error = check_task(t) if state==:error throw(error) return nothing end sleep(0.1) end else temp_value = get_progress(:application_progress) if temp_value!=false if temp_value!=0 max_value = temp_value p.n = max_value else @error "No data to process." break end else state,error = check_task(t) if state==:error throw(error) return nothing end sleep(0.1) end end end return nothing end function remove_application_data_main(application_data) data = application_data fields = fieldnames(ApplicationData) for field in fields data_field = getfield(data, field) if data_field isa Array empty!(data_field) end end end """ remove_application_data() Removes all application data. """ remove_application_data() = remove_application_data_main(application_data)
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
25535
function fix_slashes(url) url::String = fix_QML_types(url) url = replace(url, "\\" => "/") url = string(uppercase(url[1]),url[2:end]) end # Works as fill!, but does not use a reference function fill_no_ref!(target::AbstractArray,el) for i = 1:length(target) target[i] = copy(el) end end # Allows to read class output options from GUI function get_output_main(model_data::ModelData,fields,ind) fields::Vector{String} = fix_QML_types(fields) ind::Int64 = fix_QML_types(ind) data = model_data.output_options[ind] for i = 1:length(fields) field = Symbol(fields[i]) data = getproperty(data,field) end if data isa Symbol return string(data) else return data end end get_output(fields,ind) = get_output_main(model_data,fields,ind) # Allows to write to class output options from GUI function set_output_main(model_data::ModelData,fields,ind,value) fields::Vector{String} = fix_QML_types(fields) ind::Int64 = fix_QML_types(ind) value = fix_QML_types(value) data = model_data.output_options[ind] for i = 1:length(fields)-1 field = Symbol(fields[i]) data = getproperty(data,field) end if getproperty(data, Symbol(fields[end])) isa Symbol setproperty!(data, Symbol(fields[end]), Symbol(value)) else setproperty!(data, Symbol(fields[end]), value) end return nothing end set_output(fields,ind,value) = set_output_main(model_data,fields,ind,value) # Get urls of files in a selected folder. Files are used for application. function get_urls_application_main(application_data::ApplicationData) if input_type()==:image allowed_ext = ["png","jpg","jpeg"] end input_urls,dirs = get_urls1(application_data.url_inputs,allowed_ext) application_data.input_urls = input_urls application_data.folders = dirs return nothing end function prepare_application_data(norm_func::Function,classes::Union{Vector{T1},Vector{T3}}, model_data::ModelData,urls::Vector{String}) where {T1<:ImageClassificationClass, T3<:ImageSegmentationClass} num = length(urls) data = Vector{Array{Float32,4}}(undef,length(urls)) for i = 1:num url = urls[i] image = load_image(url) if :grayscale in model_data.input_properties data_raw = image_to_gray_float(image) else data_raw = image_to_color_float(image) end norm_func(data_raw) data[i] = data_raw[:,:,:,:] end data_out = cat(data...,dims=Val(4)) return data_out end function prepare_application_data(norm_func::Function,classes::Vector{ImageRegressionClass}, model_data::ModelData,urls::Vector{String}) num = length(urls) data = Vector{Array{Float32,4}}(undef,length(urls)) for i = 1:num url = urls[i] image = load_image(url) if size(image)!=model_data.input_size[1:2] image = fix_image_size(model_data,image) end if :grayscale in model_data.input_properties data_raw = image_to_gray_float(image) else data_raw = image_to_color_float(image) end norm_func(data_raw) data[i] = data_raw[:,:,:,:] end data_out = cat(data...,dims=Val(4)) return data_out end function get_filenames(urls::Vector{Vector{String}}) num = length(urls) data = Vector{Vector{String}}(undef,num) for i = 1:num data_temp = copy(urls[i]) data_temp = map((x) -> split(x,('\\','/')), data_temp) data_temp = map(x->x[end],data_temp) data_temp = split.(data_temp,'.') data[i] = map(x->string(x[1:end-1]...),data_temp) end return data end # Batches filenames together allowing for correct naming during export function batch_urls_filenames(urls::Vector{Vector{String}},batch_size::Int64) num = length(urls) filenames = get_filenames(urls) filename_batches = Vector{Vector{Vector{String}}}(undef,num) url_batches = Vector{Vector{Vector{String}}}(undef,num) for i = 1:num urls_temp = urls[i] filenames_temp = filenames[i] len = length(urls_temp) url_batches_temp = Vector{Vector{String}}(undef,0) filename_batches_temp = Vector{Vector{String}}(undef,0) num = len - batch_size val = max(0.0,floor(num/batch_size)) finish = Int64(val*batch_size) inds = collect(0:batch_size:finish) if isempty(inds) inds = [0] end num = length(inds) for j = 1:num ind = inds[j] if j==num ind1 = ind+1 ind2 = len else ind1 = ind+1 ind2 = ind+batch_size end push!(url_batches_temp,urls_temp[ind1:ind2]) push!(filename_batches_temp,filenames_temp[ind1:ind2]) end url_batches[i] = url_batches_temp filename_batches[i] = filename_batches_temp end return url_batches,filename_batches end function get_output(norm_func::Function,classes::Vector{ImageClassificationClass},num::Int64, urls_batched::Vector{Vector{Vector{String}}},model_data::ModelData, num_slices_val::Int64,offset_val::Int64,use_GPU::Bool, data_channel::Channel{Tuple{Int64,Vector{Int64}}},channels::Channels) for k = 1:num urls_batch = urls_batched[k] num_batch = length(urls_batch) for l = 1:num_batch # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# # Get input input_data = prepare_application_data(norm_func,classes,model_data,urls_batch[l]) # Get output predicted = forward(model_data.model,input_data, num_slices=num_slices_val,offset=offset_val,use_GPU=use_GPU) _, predicted_labels4 = findmax(predicted,dims=1) predicted_labels = map(x-> x.I[1],predicted_labels4[:]) # Return result put!(data_channel,(l,predicted_labels)) end end return nothing end function get_output(norm_func::Function,classes::Vector{ImageRegressionClass},num::Int64, urls_batched::Vector{Vector{Vector{String}}},model_data::ModelData, num_slices_val::Int64,offset_val::Int64,use_GPU::Bool, data_channel::Channel{Tuple{Int64,Vector{Float32}}},channels::Channels) for k = 1:num urls_batch = urls_batched[k] num_batch = length(urls_batch) for l = 1:num_batch # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# # Get input input_data = prepare_application_data(norm_func,classes,model_data,urls_batch[l]) # Get output predicted = forward(model_data.model,input_data, num_slices=num_slices_val,offset=offset_val,use_GPU=use_GPU) predicted_labels = reshape(predicted,:) # Return result put!(data_channel,(l,predicted_labels)) end end return nothing end function get_output(norm_func::Function,classes::Vector{ImageSegmentationClass},num::Int64, urls_batched::Vector{Vector{Vector{String}}},model_data::ModelData, num_slices_val::Int64,offset_val::Int64,use_GPU::Bool, data_channel::Channel{Tuple{Int64,BitArray{4}}},channels::Channels) for k = 1:num urls_batch = urls_batched[k] num_batch = length(urls_batch) for l = 1:num_batch # Stop if asked #=if check_abort_signal(channels.application_modifiers) return end=# # Get input input_data = prepare_application_data(norm_func,classes,model_data,urls_batch[l]) # Get output predicted = forward(model_data.model,input_data, num_slices=num_slices_val,offset=offset_val,use_GPU=use_GPU) predicted_bool = predicted.>0.5 # Return result put!(data_channel,(l,predicted_bool)) end end return nothing end function run_iteration(classes::Vector{ImageSegmentationClass},output_options::Vector{ImageSegmentationOutputOptions}, savepath::String,filenames_batch::Vector{Vector{String}},num_c::Int64,num_border::Int64, labels_color::Vector{Vector{Float64}},labels_incl::Vector{Vector{Int64}},apply_border::Bool,border::Vector{Bool}, objs_area::Vector{Vector{Vector{Float64}}},objs_volume::Vector{Vector{Vector{Float64}}},img_ext_string::String, img_ext::Symbol,scaling::Float64,apply_by_file::Bool,data_taken::Threads.Atomic{Bool}, data_channel::Channel{Tuple{Int64,BitArray{4}}},channels::Channels) # Get neural network output l,predicted_bool = take!(data_channel) Threads.atomic_xchg!(data_taken, true) size_dim4 = size(predicted_bool,4) # Flatten and use border info if present masks = Vector{BitArray{3}}(undef,size_dim4) for j = 1:size_dim4 temp_mask = predicted_bool[:,:,:,j] if apply_border border_mask = apply_border_data(temp_mask,classes) temp_mask = cat(temp_mask,border_mask,dims=Val(3)) end for i=1:num_c min_area = classes[i].min_area if min_area>1 if border[i] ind = i + num_c + num_border else ind = i end temp_array = temp_mask[:,:,ind] # Fix areaopen not removing all objects less than min area for _ = 1:2 areaopen!(temp_array,min_area) end temp_mask[:,:,ind] .= temp_array end end masks[j] = temp_mask end # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# filenames = filenames_batch[l] cnt = sum(length.(filenames_batch[1:l-1])) for j = 1:length(masks) if apply_by_file cnt = cnt + 1 else cnt = 1 end filename = filenames[j] mask = masks[j] # Make and export images mask_to_img(mask,classes,output_options,labels_color,border,savepath,filename,img_ext_string,img_ext) # Make data out of masks mask_to_data(objs_area,objs_volume,cnt,mask,output_options,labels_incl,border,num_c,num_border,scaling) end put!(channels.application_progress,1) return nothing end function process_output(classes::Vector{ImageClassificationClass},output_options::Vector{ImageClassificationOutputOptions}, savepath_main::String,folders::Vector{String},filenames_batched::Vector{Vector{Vector{String}}},num::Int64, img_ext_string::String,img_ext::Symbol,data_ext_string::String,data_ext::Symbol, scaling::Float64,apply_by_file::Bool,data_channel::Channel{Tuple{Int64,Vector{Int64}}},channels::Channels) class_names = map(x -> x.name,classes) for k=1:num folder = folders[k] filenames_batch = filenames_batched[k] num_batch = length(filenames_batch) savepath = joinpath(savepath_main,folder) if !isdir(savepath) mkdir(savepath) end # Initialize accumulators labels = Vector{String}(undef,0) data_taken = Threads.Atomic{Bool}(true) for _ = 1:num_batch while true if isready(data_channel) && data_taken[]==true Threads.atomic_xchg!(data_taken, false) break else # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# sleep(0.1) end end # Get neural network output _, label_inds = take!(data_channel) Threads.atomic_xchg!(data_taken, true) for j = 1:length(label_inds) label_ind = label_inds[j] push!(labels,class_names[label_ind]) end put!(channels.application_progress,1) end # Export the result filenames = reduce(vcat,filenames_batch) df_filenames = DataFrame(Filenames=filenames) df_labels = DataFrame(Labels = labels) df = hcat(df_filenames,df_labels) name = string(folder,data_ext_string) save(df,savepath,name,data_ext) put!(channels.application_progress,1) end return nothing end function process_output(classes::Vector{ImageRegressionClass},output_options::Vector{ImageRegressionOutputOptions}, savepath_main::String,folders::Vector{String},filenames_batched::Vector{Vector{Vector{String}}},num::Int64, img_ext_string::String,img_ext::Symbol,data_ext_string::String,data_ext::Symbol, scaling::Float64,apply_by_file::Bool,data_channel::Channel{Tuple{Int64,Vector{Float32}}},channels::Channels) class_names = map(x -> x.name,classes) for k=1:num folder = folders[k] filenames_batch = filenames_batched[k] num_batch = length(filenames_batch) savepath = joinpath(savepath_main,folder) if !isdir(savepath) mkdir(savepath) end # Initialize accumulators labels_accum = Vector{Vector{Float32}}(undef,0) data_taken = Threads.Atomic{Bool}(true) for _ = 1:num_batch while true if isready(data_channel) && data_taken[]==true Threads.atomic_xchg!(data_taken, false) break else # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# sleep(0.1) end end # Get neural network output _, label = take!(data_channel) Threads.atomic_xchg!(data_taken, true) push!(labels_accum,label) put!(channels.application_progress,1) end labels_temp = reduce(vcat,labels_accum) if length(classes)==1 labels = convert(Array{Float64,2},reshape(labels_temp,:,1)) else labels = convert(Array{Float64,2},labels_temp) end # Export the result filenames = reduce(vcat,filenames_batch) df_filenames = DataFrame(Filenames=filenames) df_labels = DataFrame(labels,class_names) df = hcat(df_filenames,df_labels) name = string(folder,data_ext_string) save(df,savepath,name,data_ext) put!(channels.application_progress,1) end return nothing end function process_output(classes::Vector{ImageSegmentationClass},output_options::Vector{ImageSegmentationOutputOptions}, savepath_main::String,folders::Vector{String},filenames_batched::Vector{Vector{Vector{String}}},num::Int64, num_border::Int64,labels_color::Vector{Vector{Float64}},labels_incl::Vector{Vector{Int64}},apply_border::Bool, border::Vector{Bool},log_area_obj::Vector{Bool},log_area_obj_sum::Vector{Bool},log_area_dist::Vector{Bool}, log_volume_obj::Vector{Bool},log_volume_obj_sum::Vector{Bool},log_volume_dist::Vector{Bool},num_obj_area::Int64, num_obj_area_sum::Int64,num_dist_area::Int64,num_obj_volume::Int64,num_obj_volume_sum::Int64,num_dist_volume::Int64, img_ext_string::String,img_ext::Symbol,data_ext_string::String,data_ext::Symbol, scaling::Float64,apply_by_file::Bool,data_channel::Channel{Tuple{Int64,BitArray{4}}},channels::Channels) num_c = length(classes) num_c_adj = num_c + sum(map(x -> sum((!).(isempty.(x.parents))),classes)) for k=1:num folder = folders[k] filenames_batch = filenames_batched[k] num_batch = length(filenames_batch) savepath = joinpath(savepath_main,folder) if !isdir(savepath) mkdir(savepath) end # Initialize accumulators if apply_by_file num_init = num_batch else num_init = 1 end objs_area = Vector{Vector{Vector{Float64}}}(undef,num_init) objs_volume = Vector{Vector{Vector{Float64}}}(undef,num_init) objs_area_sum = Vector{Vector{Float64}}(undef,num_init) objs_volume_sum = Vector{Vector{Float64}}(undef,num_init) histograms_area = Vector{Vector{Histogram}}(undef,num_init) histograms_volume = Vector{Vector{Histogram}}(undef,num_init) fill_no_ref!(objs_area,Vector{Vector{Float64}}(undef,num_c_adj)) for i = 1:num_init fill_no_ref!(objs_area[i],Float64[]) end fill_no_ref!(objs_volume,Vector{Vector{Float64}}(undef,num_c_adj)) for i = 1:num_init fill_no_ref!(objs_volume[i],Float64[]) end fill_no_ref!(objs_area_sum,Vector{Float64}(undef,num_obj_area_sum)) fill_no_ref!(objs_volume_sum,Vector{Float64}(undef,num_obj_volume_sum)) fill_no_ref!(histograms_area,Vector{Histogram}(undef,num_dist_area)) fill_no_ref!(histograms_volume,Vector{Histogram}(undef,num_dist_volume)) tasks = Vector{Task}(undef,0) data_taken = Threads.Atomic{Bool}(true) for _ = 1:num_batch while true if isready(data_channel) && data_taken[]==true Threads.atomic_xchg!(data_taken, false) break else # Stop if asked #=if check_abort_signal(channels.application_modifiers) return nothing end=# sleep(0.1) end end t = Threads.@spawn run_iteration(classes,output_options,savepath,filenames_batch,num_c, num_border,labels_color,labels_incl,apply_border,border,objs_area,objs_volume,img_ext_string, img_ext,scaling,apply_by_file,data_taken,data_channel,channels) push!(tasks,t) end while length(tasks)!=num_batch sleep(1) end while !all(istaskdone.(tasks)) sleep(1) end if num_obj_area_sum>0 for i = 1:num_init cnt = 1 offset = 0 for j = 1:num_c if output_options[j].Area.obj_area_sum objs_area_sum[i][cnt] = sum(objs_area[i][j+offset]) cnt+=1 end l_parents = length(labels_incl[j]) offset += l_parents end end end if num_obj_volume_sum>0 for i = 1:num_init cnt = 1 offset = 0 for j = 1:num_c if output_options[j].Volume.obj_volume_sum objs_volume_sum[i][cnt] = sum(objs_volume[i][j]) cnt+=1 end l_parents = length(labels_incl[j]) offset += l_parents end end end data_to_histograms(histograms_area,histograms_volume,objs_area,objs_volume, output_options,num_init,num_c,labels_incl) # Export data if apply_by_file filenames = reduce(vcat,filenames_batch) else filenames = [folder] end export_histograms(histograms_area,histograms_volume,classes,num_init,num_dist_area, num_dist_volume,log_area_dist,log_volume_dist,savepath,filenames,data_ext_string,data_ext) export_objs("Objects",objs_area,objs_volume,classes,num_init,num_obj_area,num_obj_volume, log_area_obj,log_volume_obj,labels_incl,savepath,filenames,data_ext_string,data_ext) export_objs("Objects sum",objs_area_sum,objs_volume_sum,classes,num_init,num_obj_area_sum,num_obj_volume_sum, log_area_obj_sum,log_volume_obj_sum,labels_incl,savepath,filenames,data_ext_string,data_ext) put!(channels.application_progress,1) end return nothing end function get_output_info(classes::Vector{ImageClassificationClass},output_options::Vector{ImageClassificationOutputOptions}) return classes,() end function get_output_info(classes::Vector{ImageRegressionClass},output_options::Vector{ImageRegressionOutputOptions}) return classes,() end function get_output_info(classes::Vector{ImageSegmentationClass},output_options::Vector{ImageSegmentationOutputOptions}) class_inds,labels_color,labels_incl,border = get_class_data(classes) classes = classes[class_inds] labels_color = labels_color[class_inds] labels_incl = labels_incl[class_inds] num_parents = sum(length.(labels_incl)) num_border = sum(border) apply_border = num_border>0 log_area_obj = map(x->x.Area.obj_area,output_options) log_area_obj_sum = map(x->x.Area.obj_area_sum,output_options) log_area_dist = map(x->x.Area.area_distribution,output_options) log_volume_obj = map(x->x.Volume.obj_volume,output_options) log_volume_obj_sum = map(x->x.Volume.obj_volume_sum,output_options) log_volume_dist = map(x->x.Volume.volume_distribution,output_options) num_obj_area = count(log_area_obj) + num_parents num_obj_area_sum = count(log_area_obj_sum) num_dist_area = count(log_area_dist) num_obj_volume = count(log_volume_obj) + num_parents num_obj_volume_sum = count(log_volume_obj_sum) num_dist_volume = count(log_volume_dist) return classes,(num_border,labels_color,labels_incl,apply_border,border, log_area_obj,log_area_obj_sum,log_area_dist,log_volume_obj, log_volume_obj_sum,log_volume_dist,num_obj_area,num_obj_area_sum, num_dist_area,num_obj_volume,num_obj_volume_sum,num_dist_volume) end function fix_output_options(model_data) if problem_type()==:classification model_data.output_options = ImageClassificationOutputOptions[] elseif problem_type()==:regression model_data.output_options = ImageRegressionOutputOptions[] end return nothing end function get_data_ext(ext::Symbol) exts = [:csv,:xlsx,:json,:bson] ind = findfirst(exts.==ext) ext_string = [".csv",".xlsx",".json",".bson"] return ext,ext_string[ind] end function get_image_ext(ext::Symbol) exts = [:png,:tiff,:bson] ind = findfirst(exts.==ext) ext_string = [".png",".tiff",".bson"] return ext,ext_string[ind] end # Main function that performs application function apply_main(model_data::ModelData,all_data::AllData,options::Options,channels::Channels) # Initialize constants application_data = all_data.ApplicationData application_options = options.ApplicationOptions classes = model_data.classes fix_output_options(model_data) output_options = model_data.output_options use_GPU = false if options.GlobalOptions.HardwareResources.allow_GPU if has_cuda() use_GPU = true else @warn "No CUDA capable device was detected. Using CPU instead." end end scaling = application_options.scaling batch_size = 1 apply_by_file = application_options.apply_by==:file if problem_type()==:classification T = Vector{Int64} elseif problem_type()==:regression T = Vector{Float32} elseif problem_type()==:segmentation T = BitArray{4} end data_channel = Channel{Tuple{Int64,T}}(Inf) # Get file extensions img_ext,img_ext_string = get_image_ext(application_options.image_type) data_ext,data_ext_string = get_data_ext(application_options.data_type) # Get folders and names folders = application_data.folders num = length(folders) urls = application_data.input_urls urls_batched,filenames_batched = batch_urls_filenames(urls,batch_size) # Get savepath directory savepath_main = application_options.savepath if isempty(savepath_main) savepath_main = string(pwd(),"/Output data/") end # Make savepath directory if does not exist mkpath(savepath_main) # Send number of iterations put!(channels.application_progress,num+sum(length.(urls_batched))) # Output information classes,output_info = get_output_info(classes,output_options) # Prepare output if problem_type()==:segmentation num_slices_val = options.GlobalOptions.HardwareResources.num_slices offset_val = options.GlobalOptions.HardwareResources.offset else num_slices_val = 1 offset_val = 0 end normalization = model_data.normalization norm_func(x) = model_data.normalization.f(x,normalization.args...) t = Threads.@spawn get_output(norm_func,classes,num,urls_batched,model_data, num_slices_val,offset_val,use_GPU,data_channel,channels) push!(application_data.tasks,t) # Process output and save data process_output(classes,output_options,savepath_main,folders,filenames_batched,num,output_info..., img_ext_string,img_ext,data_ext_string,data_ext,scaling,apply_by_file,data_channel,channels) return nothing end function apply_main2(model_data::ModelData,all_data::AllData,options::Options,channels::Channels) t = Threads.@spawn apply_main(model_data,all_data,options,channels) push!(application_data.tasks,t) return t end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
16531
#---Histogram and objects related functions function objects_area(components_vector::Vector{Array{Int64,2}},labels_incl::Vector{Vector{Int64}}, scaling::Float64,l::Int64) components = components_vector[l] scaling = scaling^2 parent_inds = labels_incl[l] area = component_lengths(components)[2:end] areas_out = [convert(Vector{Float64},area)./scaling] if !isempty(parent_inds) num_parents = length(parent_inds) for i=1:num_parents num_components = length(area) components_parent = components_vector[parent_inds[i]] obj_parent_inds = Vector{Int64}(undef,num_components) for j=1:num_components ind_bool = components.==j obj_parent_inds[j] = maximum(components_parent[ind_bool]) end push!(areas_out,obj_parent_inds) end end return areas_out end # Makes a 3D representation of a 2D object based on optimising circularity function func2D_to_3D(objects_mask::BitArray{2}) D = Float32.(distance_transform(feature_transform((!).(objects_mask)))) w = zeros(Float32,(size(D)...,8)) inds = vcat(1:4,6:9) for i = 1:8 u = zeros(Float32,(9,1)) u[inds[i]] = 1 u = reshape(u,(3,3)) w[:,:,i] = imfilter(D,centered(u)) end pks = all(D.>=w,dims=3)[:,:] .& objects_mask mask2 = BitArray(undef,size(objects_mask)) fill!(mask2,true) mask2[pks] .= false D2 = Float32.(distance_transform(feature_transform((!).(mask2)))) D2[(!).(objects_mask)] .= 0 mask_out = sqrt.((D+D2).^2-D2.^2) return mask_out end function objects_volume(objects_mask::BitArray{2},components_vector::Vector{Array{Int64,2}}, labels_incl::Vector{Vector{Int64}},scaling::Float64,l::Int64) components = components_vector[l] volume_model = func2D_to_3D(objects_mask) scaling = scaling^3 num_components = maximum(components) parent_inds = labels_incl[l] volumes_out_temp = Vector{Float64}(undef,num_components) for i = 1:num_components logical_inds = components.==i pixels = volume_model[logical_inds] volumes_out_temp[i] = 2*sum(pixels)/scaling end volumes_out = [volumes_out_temp] if !isempty(parent_inds) num_parents = length(parent_inds) for i=1:num_parents components_parent = components_vector[parent_inds[i]] obj_parent_inds = Vector{Int64}(undef,num_components) for j=1:num_components ind_bool = components.==j obj_parent_inds[j] = maximum(components_parent[ind_bool]) end push!(volumes_out,obj_parent_inds) end end return volumes_out end function data_to_histograms(histograms_area::Vector{Vector{Histogram}}, histograms_volume::Vector{Vector{Histogram}}, objs_area::Vector{Vector{Vector{Float64}}}, objs_volume::Array{Vector{Vector{Float64}}}, output_options::Vector{ImageSegmentationOutputOptions},num_batch::Int64, num_c::Int64,labels_incl::Vector{Vector{Int64}}) for i = 1:num_batch temp_histograms_area = histograms_area[i] temp_histograms_volume = histograms_volume[i] offset = 0 for l = 1:num_c current_options = output_options[l] area_dist_cond = current_options.Area.area_distribution volume_dist_cond = current_options.Volume.volume_distribution if area_dist_cond area_options = current_options.Area area_values = objs_area[i][l+offset] if isempty(area_values) @warn "No objects to export for area." else temp_histograms_area[l] = make_histogram(area_values,area_options) end end if volume_dist_cond volume_options = current_options.Volume volume_values = objs_volume[i][l+offset] if isempty(area_values) @warn "No objects to export for volume." else temp_histograms_volume[l] = make_histogram(volume_values,volume_options) end end l_parents = length(labels_incl[l]) offset += l_parents end end return nothing end function mask_to_data(objs_area::Vector{Vector{Vector{Float64}}}, objs_volume::Vector{Vector{Vector{Float64}}},cnt::Int64,mask::BitArray{3}, output_options::Vector{ImageSegmentationOutputOptions}, labels_incl::Vector{Vector{Int64}},border::Vector{Bool},num_c::Int64, num_border::Int64,scaling::Float64) temp_objs_area = objs_area[cnt] temp_objs_volume = objs_volume[cnt] components_vector = Vector{Array{Int64,2}}(undef,num_c) for l = 1:num_c ind = l if border[l]==true ind = l + num_border + num_c end mask_current = mask[:,:,ind] components = label_components(mask_current,conn(4)) components_vector[l] = components end cnt = 1 for l = 1:num_c current_options = output_options[l] area_dist_cond = current_options.Area.area_distribution area_obj_cond = current_options.Area.obj_area area_sum_obj_cond = current_options.Area.obj_area_sum volume_dist_cond = current_options.Volume.volume_distribution volume_obj_cond = current_options.Volume.obj_volume volume_sum_obj_cond = current_options.Volume.obj_volume_sum ind = l if border[l]==true ind = l + num_border + num_c end cnt_add1 = -1 if area_dist_cond || area_obj_cond || area_sum_obj_cond area_values = objects_area(components_vector,labels_incl,scaling,l) if area_obj_cond || area_sum_obj_cond for i = 1:length(area_values) push!(temp_objs_area[cnt-1+i],area_values[i]...) cnt_add1+=1 end end end cnt_add2 = -1 if volume_dist_cond || volume_obj_cond || volume_sum_obj_cond mask_current = mask[:,:,ind] volume_values = objects_volume(mask_current,components_vector,labels_incl,scaling,l) if volume_obj_cond || volume_sum_obj_cond for i = 1:length(volume_values) push!(temp_objs_volume[cnt-1+i],volume_values[i]...) cnt_add2+=1 end end end cnt = cnt + 1 + max(cnt_add1,cnt_add2,0) end return nothing end function make_histogram(values::Vector{<:Real}, options::Union{OutputArea,OutputVolume}) if options.binning==:auto h = fit(Histogram, values) elseif options.binning==:number_of_bins maxval = maximum(values) minval = minimum(values) dif = maxval-minval step = dif/(options.value-1) bins = minval:step:maxval h = fit(Histogram, values,bins) else # options.binning==:bin_width num = round(maximum(values)/options.value) h = fit(Histogram, values, nbins=num) end h = normalize(h, mode=options.normalization) return h end function histograms_to_dataframe(df::DataFrame,histograms::Vector{Histogram}, num::Int64,offset::Int64) inds = 1:2:2*num for j = 1:num ws = histograms[j].weights numel = length(ws) edges = collect(histograms[j].edges[1]) edges = map(ind->mean([edges[ind],edges[ind+1]]),1:numel) df[1:numel,inds[j]+offset] .= edges df[1:numel,inds[j]+offset+1] .= ws end end function objs_to_dataframe(df::DataFrame,objs::Vector{Vector{Float64}}, num::Int64,offset::Int64) for j = 1:num objs_current = objs[j] numel = length(objs_current) df[1:numel,j+offset] .= objs_current end end function objs_to_dataframe(df::DataFrame,objs::Vector{Float64}, num::Int64,offset::Int64) start = offset + 1 finish = num + start -1 df[1,start:finish] .= objs end function get_dataframe_dists_names(names::Vector{String},type::String, log_dist::Vector{Bool}) names_x = String[] inds = findall(log_dist) for i in inds name_current = names[i] name_edges = string(name_current,"_",type,"_edges") name_weights = string(name_current,"_",type,"_weights") push!(names_x,name_edges,name_weights) end return names_x end function export_histograms(histograms_area::Vector{Vector{Histogram}}, histograms_volume::Vector{Vector{Histogram}},classes::Vector{ImageSegmentationClass}, num::Int64,num_dist_area::Int64,num_dist_volume::Int64,log_area_dist::Vector{Bool}, log_volume_dist::Vector{Bool},savepath::String,filenames::Vector{String}, data_ext_string::String,data_ext::Symbol) num_cols_dist = num_dist_area + num_dist_volume if num_cols_dist==0 return nothing end for i = 1:num if !isassigned(histograms_area,i) continue end num_cols_dist = num_dist_area + num_dist_volume if num_dist_area>0 num_rows_area = maximum(map(x->length(x.weights),histograms_area[i])) else num_rows_area = 0 end if num_dist_volume>0 num_rows_volume = maximum(map(x->length(x.weights),histograms_volume[i])) else num_rows_volume = 0 end num_rows = max(num_rows_area,num_rows_volume) histogram_area = histograms_area[i] histogram_volume = histograms_volume[i] rows = Vector{Union{Float64,String}}(undef,num_rows) fill!(rows,"") df_dists = DataFrame(repeat(rows,1,2*num_cols_dist), :auto) histograms_to_dataframe(df_dists,histogram_area,num_dist_area,0) offset = 2*num_dist_area histograms_to_dataframe(df_dists,histogram_volume,num_dist_volume,offset) names = map(x->x.name,classes) names_area = get_dataframe_dists_names(names,"area",log_area_dist) names_volume = get_dataframe_dists_names(names,"volume",log_volume_dist) names_all = vcat(names_area,names_volume) rename!(df_dists, Symbol.(names_all)) fname = filenames[i] name = string("Distributions ",fname,data_ext_string) save(df_dists,savepath,name,data_ext) end return nothing end function get_dataframe_objs_names(names::Vector{String},type::String, labels_incl::Vector{Vector{Int64}},log_obj::Vector{Bool}) names_x = String[] inds = findall(log_obj) for i in inds name_current = names[i] name = string(name_current,"_",type) push!(names_x,name) parents = labels_incl[i] num_parents = length(parents) for j=1:num_parents parent = names[parents[j]] name_parent_ind = string(name,"_",parent,"_index") push!(names_x,name_parent_ind) end end return names_x end function get_dataframe_objs_sum_names(names::Vector{String},type::String, log_obj::Vector{Bool}) names_x = String[] inds = findall(log_obj) for i in inds name_current = names[i] name = string(name_current,"_",type) push!(names_x,name) end return names_x end type_name = "Objects" function export_objs(type_name::String,objs_area::Vector, objs_volume::Vector,classes::Vector{ImageSegmentationClass}, num::Int64,num_obj_area::Int64,num_obj_volume::Int64,log_area_obj::Vector{Bool}, log_volume_obj::Vector{Bool},labels_incl::Vector{Vector{Int64}},savepath::String, filenames::Vector{String},data_ext_string::String,data_ext::Symbol) num_cols_obj = num_obj_area + num_obj_volume if num_cols_obj==0 return nothing end for i = 1:num if num_obj_area>0 num_rows_area = maximum(map(x->length(x),objs_area[i])) else num_rows_area = 0 end if num_obj_volume>0 num_rows_volume = maximum(map(x->length(x),objs_volume[i])) else num_rows_volume = 0 end num_rows = max(num_rows_area,num_rows_volume) obj_area = objs_area[i] obj_volume = objs_volume[i] rows = Vector{Union{Float64,String}}(undef,num_rows) fill!(rows,"") df_objs = DataFrame(repeat(rows,1,num_cols_obj), :auto) objs_to_dataframe(df_objs,obj_area,num_obj_area,0) offset = num_obj_area objs_to_dataframe(df_objs,obj_volume,num_obj_volume,offset) names = map(x->x.name,classes) if type_name=="Objects" names_area = get_dataframe_objs_names(names,"area",labels_incl,log_area_obj) names_volume = get_dataframe_objs_names(names,"volume",labels_incl,log_volume_obj) else names_area = get_dataframe_objs_sum_names(names,"area",log_area_obj) names_volume = get_dataframe_objs_sum_names(names,"volume",log_volume_obj) end names_all = vcat(names_area,names_volume) rename!(df_objs, Symbol.(names_all)) fname = filenames[i] name = string(type_name," ",fname,data_ext_string) save(df_objs,savepath,name,data_ext) end return nothing end #---Image related functions function get_save_image_info(num_dims::Int64,classes::Vector{ImageSegmentationClass}, output_options::Vector{ImageSegmentationOutputOptions},border::Vector{Bool}) num_c = length(border) num_border = sum(border) logical_inds = BitArray{1}(undef,num_dims) img_names = Vector{String}(undef,num_c+num_border*2) for i = 1:num_c class = classes[i] class_name = class.name if output_options[i].Mask.mask logical_inds[i] = true img_names[i] = class_name end if class.BorderClass.enabled if output_options[i].Mask.mask_border ind = i + num_c logical_inds[ind] = true img_names[ind] = string(class_name," (border)") end if output_options[i].Mask.mask_applied_border ind = num_c + num_border + i logical_inds[ind] = true img_names[ind] = string(class_name," (applied border)") end end end inds = findall(logical_inds) return inds,img_names end function mask_to_img(mask::BitArray{3},classes::Vector{ImageSegmentationClass}, output_options::Vector{ImageSegmentationOutputOptions}, labels_color::Vector{Vector{Float64}},border::Vector{Bool}, savepath::String,filename::String,ext::String,sym_ext::Symbol) num_dims = size(mask)[3] inds,img_names = get_save_image_info(num_dims,classes,output_options,border) if isempty(inds) return nothing end border_colors = labels_color[findall(border)] labels_color = vcat(labels_color,border_colors,border_colors) perm_labels_color64 = map(x -> permutedims(x[:,:,:]/255,[3,2,1]),labels_color) perm_labels_color = convert(Array{Array{Float32,3}},perm_labels_color64) path = joinpath(savepath,filename) if !isdir(path) mkdir(path) end for j = 1:length(inds) ind = inds[j] mask_current = mask[:,:,ind] color = perm_labels_color[ind] mask_float = convert(Array{Float32,2},mask_current) mask_dim3 = cat(mask_float,mask_float,mask_float,dims=Val(3)) mask_dim3 = mask_dim3.*color mask_dim3 = cat(mask_dim3,mask_float,dims=Val(3)) mask_dim3 = permutedims(mask_dim3,[3,1,2]) mask_RGB = colorview(RGBA,mask_dim3) img_name = img_names[ind] name = string(img_name," ",filename,ext) save(mask_RGB,path,name,sym_ext) end return nothing end function save(data,path::String,name::String,ext::Symbol) if !isdir(path) dirs = splitpath(path) start = length(dirs) - 3 for i=start:length(dirs) temp_path = join(dirs[1:i],'/') if !isdir(temp_path) mkdir(temp_path) end end end url = joinpath(path,name) if isfile(url) rm(url) end if ext==:json open(url,"w") do f JSON_pkg.print(f,data) end elseif ext==:bson BSON.@save(url,data) elseif ext==:xlsx XLSX.writetable(url, collect(DataFrames.eachcol(data)), DataFrames.names(data)) else FileIO.save(url,data) end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
247
module Classes # Import packages using # EasyML ecosystem ..Common, ..Common.Classes # Include functions include(string(common_dir(),"/common/classes_design.jl")) include("main.jl") include("exported_functions.jl") export change_classes end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
829
""" change_classes() Opens a GUI for addition or changing of classes. """ function change_classes() classes = model_data.classes if length(classes)==0 ids = [0] JindTree = -1 else ids = 1:length(classes) JindTree = 0 end @qmlfunction( # Classes get_class_field, num_classes, append_classes, reset_classes, # Problem get_problem_type, set_problem_type, # Options get_options, # Other unit_test ) path_qml = string(@__DIR__,"/gui/ClassDialog.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir, JindTree = JindTree, ids = ids) exec() return nothing end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3118
#---make_classes functions--------------------------------------- function reset_classes_main(model_data) if problem_type()==:classification model_data.classes = Vector{ImageClassificationClass}(undef,0) elseif problem_type()==:regression model_data.classes = Vector{ImageRegressionClass}(undef,0) elseif problem_type()==:segmentation model_data.classes = Vector{ImageSegmentationClass}(undef,0) end return nothing end reset_classes() = reset_classes_main(model_data::ModelData) function append_classes_main(model_data::ModelData,data) data = fix_QML_types(data) type = eltype(model_data.classes) if problem_type()==:classification class = ImageClassificationClass() class.name = data[1] elseif problem_type()==:regression class = ImageRegressionClass() class.name = data[1] elseif problem_type()==:segmentation class = ImageSegmentationClass() class.name = String(data[1]) class.color = Int64.([data[2],data[3],data[4]]) class.parents = data[5] class.overlap = Bool(data[6]) class.min_area = Int64(data[7]) class.BorderClass.enabled = Bool(data[8]) class.BorderClass.thickness = Int64(data[9]) end push!(model_data.classes,class) return nothing end append_classes(data) = append_classes_main(model_data,data) function num_classes_main(model_data::ModelData) return length(model_data.classes) end num_classes() = num_classes_main(model_data::ModelData) function get_class_main(model_data::ModelData,index,fieldname) fieldname = fix_QML_types(fieldname) index = Int64(index) if fieldname isa Vector fieldnames = Symbol.(fieldname) data = model_data.classes[index] for field in fieldnames data = getproperty(data,field) end return data else return getproperty(model_data.classes[index],Symbol(fieldname)) end end get_class_field(index,fieldname) = get_class_main(model_data,index,fieldname) function get_class_data(classes::Vector{ImageSegmentationClass}) num = length(classes) class_names = Vector{String}(undef,num) class_parents = Vector{Vector{String}}(undef,num) labels_color = Vector{Vector{Float64}}(undef,num) labels_incl = Vector{Vector{Int64}}(undef,num) for i=1:num class = classes[i] class_names[i] = classes[i].name class_parents[i] = classes[i].parents labels_color[i] = class.color end for i=1:num labels_incl[i] = findall(any.(map(x->x.==class_parents[i],class_names))) end class_inds = Vector{Int64}(undef,0) for i = 1:num if !classes[i].overlap push!(class_inds,i) end end num = length(class_inds) border = Vector{Bool}(undef,num) border_thickness = Vector{Int64}(undef,num) for i in class_inds class = classes[i] border[i] = class.BorderClass.enabled border_thickness[i] = class.BorderClass.thickness end return class_inds,labels_color,labels_incl,border,border_thickness end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2443
module Common # Include dependencies using # Interfacing QML, Qt5QuickControls2_jll, # Data structuring Parameters, Dates, # Data import/export BSON, # Image manipulation Images, ColorTypes, ImageFiltering, ImageTransformations, ImageMorphology, DSP, ImageMorphology.FeatureTransform, ImageSegmentation, # Maths Statistics, # Machine learning Flux, Flux.Losses, FluxExtra, # Other FLoops include("misc.jl") # Include modules include("data structures/Classes.jl") include("data structures/Design.jl") include("data structures/DataPreparation.jl") include("data structures/Application.jl") include("data structures/Training.jl") include("data structures/Validation.jl") using .Classes, .Design.Layers import .Design: DesignData, design_data, DesignOptions, design_options import .DataPreparation: PreparationData, preparation_data, DataPreparationOptions, data_preparation_options import .Training: TrainingData, TestingData, training_data, testing_data, TrainingOptions, training_options import .Validation: ValidationData, validation_data, ValidationOptions, validation_options import .Application: AbstractOutputOptions, ImageClassificationOutputOptions, ImageRegressionOutputOptions, ImageSegmentationOutputOptions, ApplicationData, application_data, ApplicationOptions, application_options # Include data structures and functions include("data_structures.jl") include("functions.jl") include("image_processing.jl") # Struct to Dict interconversion export struct_to_dict!, dict_to_struct!, to_struct! # Model data export model_data, ModelData, AbstractModel, set_savepath, save_model, load_model, ImageClassificationClass, ImageRegressionClass, BorderClass, ImageSegmentationClass, none # Options export change, options, Options, global_options, GlobalOptions, save_options, load_options # GUI data handling export fix_QML_types, get_data, get_options, set_data, set_options, get_file, get_folder # Channels export channels, Channels, check_progress, get_progress, empty_channel, put_channel # Other export all_data, AllData, problem_type, input_type, check_task, unit_test, common_dir, add_templates, setproperty! # Image processing export dilate!, erode!, closing!, areaopen!, outer_perim, rotate_img, conn, conn, component_intensity, segment_objects, allequal, alldim # QML functions export QML, @qmlfunction, QByteArray, loadqml, exec # Machine learning export Flux, Losses, FluxExtra, Normalizations, NNlib end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3852
#---Channels------------------------------------------------------------------ @with_kw struct Channels data_preparation_progress::Channel = Channel{Int64}(Inf) training_start_progress::Channel = Channel{NTuple{3,Int64}}(1) training_progress::Channel = Channel{Tuple{String,Float32,Float32,Int64}}(Inf) training_modifiers::Channel = Channel{Tuple{Int64,Float64}}(Inf) # 0 - abort; 1 - learning rate; 2 - epochs; 3 - number of tests validation_start::Channel{Int64} = Channel{Int64}(1) validation_progress::Channel{NTuple{2,Float32}} = Channel{NTuple{2,Float32}}(Inf) validation_modifiers::Channel{Tuple{Int64,Float64}} = Channel{Tuple{Int64,Float64}}(Inf) # 0 - abort application_progress::Channel = Channel{Int64}(Inf) end channels = Channels() #---Model data---------------------------------------------------------------- @with_kw mutable struct ModelData model::AbstractModel = Flux.Chain() normalization::Normalization = Normalization(none,()) loss::Function = Flux.Losses.mse input_size::Union{Tuple{Int64},NTuple{3,Int64}} = (0,) output_size::Union{Tuple{Int64},NTuple{3,Int64}} = (0,) problem_type::Symbol = :classification input_type::Symbol = :image input_properties::Vector{Symbol} = Vector{Symbol}(undef,0) classes::Vector{<:AbstractClass} = Vector{ImageClassificationClass}(undef,0) output_options::Vector{<:AbstractOutputOptions} = Vector{ImageClassificationOutputOptions}(undef,0) layers_info::Vector{AbstractLayerInfo} = Vector{AbstractLayerInfo}(undef,0) end model_data = ModelData() function Base.setproperty!(obj::ModelData,k::Symbol,value::Union{Symbol,Vector{Symbol}}) if k==:problem_type syms = (:classification,:regression,:segmentation) check_setfield!(obj,k,value,syms) elseif k==:input_type syms = (:image,) check_setfield!(obj,k,value,syms) elseif k==:input_properties syms = (:grayscale,) check_setfield!(obj,k,value,syms) end return nothing end #---Data------------------------------------------------------------------- @with_kw mutable struct AllDataUrls model_url::String = "" model_name::String = "" end all_data_urls = AllDataUrls() @with_kw mutable struct AllData DesignData::DesignData = design_data PreparationData::PreparationData = preparation_data TrainingData::TrainingData = training_data TestingData::TestingData = testing_data ValidationData::ValidationData = validation_data ApplicationData::ApplicationData = application_data Urls::AllDataUrls = all_data_urls end all_data = AllData() #---Options----------------------------------------------------------------- # Global options @with_kw mutable struct Graphics scaling_factor::Float64 = 1.0 end graphics = Graphics() @with_kw mutable struct HardwareResources allow_GPU::Bool = true num_threads::Int64 = Threads.nthreads() num_slices::Int64 = 1 offset::Int64 = 20 end hardware_resources = HardwareResources() @with_kw struct GlobalOptions Graphics::Graphics = graphics HardwareResources::HardwareResources = hardware_resources end global_options = GlobalOptions() # All options @with_kw struct Options GlobalOptions::GlobalOptions = global_options DesignOptions::DesignOptions = design_options DataPreparationOptions::DataPreparationOptions = data_preparation_options TrainingOptions::TrainingOptions = training_options ValidationOptions::ValidationOptions = validation_options ApplicationOptions::ApplicationOptions = application_options end options = Options() #---Testing-------------------------------------------------------------------- @with_kw mutable struct UnitTest state = false urls = String[] url_pusher = () -> popfirst!(urls) end unit_test = UnitTest() (m::UnitTest)() = m.state
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
15924
#---Model_data------------------------------------------------------ problem_type() = model_data.problem_type input_type() = model_data.input_type #---Model saving/loading-------------------------------------------- """ set_savepath(url::String) Sets a path where a model will be saved. """ function set_savepath(url::String) url_split = split(url,('\\','/','.')) if isempty(url_split) || url_split[end]!="model"|| length(url_split)<2 @error "The model name should end with a '.model' extension." return nothing end all_data.Urls.model_url = url all_data.Urls.model_name = url_split[end-1] return nothing end """ save_model(url::String) Saves a model to a specified URL. The URL can be absolute or relative. Use '.model' extension. """ function save_model(url::AbstractString) url = fix_QML_types(url) # Make folders if needed if '\\' in url || '/' in url url_split = split(url,('/','\\'))[1:end-1] url_dir = reduce((x,y) -> join([x,y],'/'),url_split) mkpath(url_dir) end # Serialize and save model dict_raw = Dict{Symbol,Any}() struct_to_dict!(dict_raw,model_data) dict = Dict{Symbol,IOBuffer}() ks = keys(dict_raw) vs = values(dict_raw) for (k,v) in zip(ks,vs) buffer = IOBuffer() d = Dict(:field => v) BSON.bson(buffer,d) dict[k] = buffer end BSON.@save(url,dict) return nothing end """ save_model() Opens a file dialog where you can select where to save a model and how it should be called. """ function save_model() name_filters = ["*.model"] if isempty(all_data_urls.model_name) all_data_urls.model_name = "new_model" end filename = string(all_data_urls.model_name,".model") url_out = String[""] observe(url) = url_out[1] = url # Launch GUI @qmlfunction(observe,unit_test) path_qml = string(@__DIR__,"/gui/UniversalSaveFileDialog.qml") text = add_templates(path_qml) loadqml(QByteArray(text),name_filters = name_filters, filename = filename) exec() if unit_test() url_out[1] = unit_test.url_pusher() end if !isempty(url_out[1]) save_model(url_out[1]) end return nothing end """ load_model(url::String) Loads a model from a specified URL. The URL can be absolute or relative. """ function load_model(url::AbstractString) url = fix_QML_types(url) if isfile(url) loaded_data = BSON.load(url)[:dict] else error(string(url, " does not exist.")) end fnames = fieldnames(ModelData) ks = collect(keys(loaded_data)) ks = intersect(ks,fnames) if loaded_data[ks[1]] isa IOBuffer for k in ks try serialized = seekstart(loaded_data[k]) deserialized = BSON.load(serialized)[:field] if deserialized isa Dict dict_to_struct!(model_data.normalization,deserialized) elseif deserialized isa NamedTuple to_struct!(model_data,k,deserialized) elseif deserialized isa Vector type = typeof(getproperty(model_data,k)) deserialized_typed = convert(type,deserialized) setproperty!(model_data,k,deserialized_typed) else setproperty!(model_data,k,deserialized) end catch e @warn string("Loading of ",k," failed.") exception=(e, catch_backtrace()) end end else # EasyML v0.1 partial compatibility dict_to_struct!(model_data,loaded_data) end all_data_urls.model_url = url url_split = split(url,('/','.')) all_data_urls.model_name = url_split[end-1] return nothing end """ load_model() Opens a file dialog where you can select a model to be loaded and loads it. """ function load_model() name_filters = ["*.model"] url_out = String[""] observe(url) = url_out[1] = url # Launch GUI @qmlfunction(observe,unit_test) path_qml = string(@__DIR__,"/gui/UniversalFileDialog.qml") text = add_templates(path_qml) loadqml(QByteArray(text),name_filters = name_filters) exec() if unit_test() url_out[1] = unit_test.url_pusher() end # Load model if !isempty(url_out[1]) load_model(url_out[1]) end return nothing end #---Options saving/loading-------------------------------------------------- """ change(global_options::GlobalOptions) Allows to change `global_options` in a GUI. """ function change(data::GlobalOptions) @qmlfunction( max_num_threads, get_options, set_options, save_options, # Other unit_test ) path_qml = string(@__DIR__,"/gui/GlobalOptions.qml") text = add_templates(path_qml) loadqml(QByteArray(text)) exec() return nothing end function save_options_main(options) dict = Dict{Symbol,Any}() struct_to_dict!(dict,options) BSON.@save("options.bson",dict) return nothing end """ save_options() Saves options to `options.bson`. Uses present working directory. It is run automatically after changing options in a GUI window. """ save_options() = save_options_main(options) function load_options_main(options) if isfile("options.bson") try data = BSON.load("options.bson") dict_to_struct!(options,data[:dict]) catch e @error string("Options were not loaded. Error: ",e) save_options() end else save_options() end return nothing end """ load_options() Loads options from your previous run which are located in `options.bson`. Uses present working directory. It is run automatically after loading the package. """ load_options() = load_options_main(options) #---GUI------------------------------------------------------------------- function QML.loadqml(text::QByteArray; kwargs...) qml_engine = init_qmlengine() ctx = root_context(QML.CxxRef(qml_engine)) for (key,value) in kwargs set_context_property(ctx, String(key), value) end component = QQmlComponent(qml_engine) QML.set_data(component, text, QUrl()) create(component, qmlcontext()) return component end #---GUI data handling----------------------------------------------------- # Convert QML types to Julia types function fix_QML_types(var) if var isa AbstractString return String(var) elseif var isa Integer return Int64(var) elseif var isa AbstractFloat return Float64(var) elseif var isa QML.QListAllocated return fix_QML_types.(QML.value.(var)) else return var end end # Allows to read data from GUI function get_data_main(data,fields,inds) fields::Vector{String} = fix_QML_types(fields) inds = fix_QML_types(inds) for i = 1:length(fields) field = Symbol(fields[i]) data = getproperty(data,field) end if !(isempty(inds)) for i = 1:length(inds) data = data[inds[i]] end end if data isa Symbol data = string(data) end return data end get_data(fields,inds=[]) = get_data_main(all_data,fields,inds) get_options(fields,inds=[]) = get_data_main(options,fields,inds) # Allows to write data from GUI function set_data_main(data,fields,args) fields::Vector{String} = fix_QML_types(fields) field_end = Symbol(fields[end]) args = fix_QML_types(args) for i = 1:length(fields)-1 field = Symbol(fields[i]) data = getproperty(data,field) end if length(args)==1 type = typeof(getproperty(data,field_end)) value = args[1] if getproperty(data,field_end) isa Symbol value = type(lowercase(value)) else value = type(value) end elseif length(args)==2 inds = args[1] value = getproperty(data,field_end) value_temp = value if !(isempty(inds)) for i = 1:(length(inds)-1) value_temp = value_temp[inds[i]] end end type = typeof(value_temp[inds[end]]) value_temp[inds[end]] = type(args[2]) end setproperty!(data, field_end, value) return nothing end set_data(fields,args...) = set_data_main(all_data,fields,args) set_options(fields,args...) = set_data_main(options,fields,args) function get_folder(dir = "") url_out = String[""] observe() = url_out[1] @qmlfunction(observe,unit_test) path_qml = string(@__DIR__,"/gui/UniversalFolderDialog.qml") text = add_templates(path_qml) loadqml(QByteArray(text),currentfolder = dir) exec() if unit_test() url_out[1] = unit_test.url_pusher() end return url_out[1] end function get_file(dir = "", name_filters = []) url_out = String[""] observe() = url_out[1] @qmlfunction(observe,unit_test) path_qml = string(@__DIR__,"/gui/UniversalFileDialog.qml") text = add_templates(path_qml) loadqml(QByteArray(text), currentfolder = dir, name_filters = name_filters) exec() if unit_test() url_out[1] = unit_test.url_pusher() end return url_out[1] end #---Handling channels--------------------------------------------------------- # Return a value from progress channels without taking the value function check_progress_main(channels,field::AbstractString) field::String = fix_QML_types(field) field_sym = Symbol(field) channel = getfield(channels,field_sym) if isready(channel) return fetch(channel) else return false end end check_progress(field) = check_progress_main(channels,field) # Return a value from progress channels by taking the value function get_progress_main(channels,field::AbstractString) field::String = fix_QML_types(field) field_sym = Symbol(field) channel = getfield(channels,field_sym) if isready(channel) value_raw = take!(channel) if value_raw isa Tuple value = [value_raw...] else value = value_raw end return value else return false end end function get_progress_main(channels,field::Symbol) channel = getfield(channels,field) if isready(channel) value_raw = take!(channel) if value_raw isa Tuple value = [value_raw...] else value = value_raw end return value else return false end end get_progress(field) = get_progress_main(channels,field) function empty_channel_main(channels,field::AbstractString) field::String = fix_QML_types(field) field_sym = Symbol(field) channel = getfield(channels,field_sym) while true if isready(channel) take!(channel) else return nothing end end end function empty_channel_main(channels,field::Symbol) channel = getproperty(channels,field) while true if isready(channel) take!(channel) else return end end end empty_channel(field) = empty_channel_main(channels,field) function put_channel_main(channels,field::AbstractString,value) field = fix_QML_types(field) value = fix_QML_types(value) field_sym = Symbol(field) channel = getfield(channels,field_sym) if value isa Vector value_raw::Vector{Float64} = fix_QML_types(value) value1 = convert(Int64,value_raw[1]) value2 = convert(Float64,value_raw[2]) value = (value1,value2) end put!(channel,value) return nothing end put_channel(field,value) = put_channel_main(channels,field,value) #---Struct related functions-------------------------------------------------- function struct_to_dict!(dict,obj) ks = fieldnames(typeof(obj)) for k in ks value = getproperty(obj,k) type = typeof(value) if occursin("EasyML",string(parentmodule(type))) && !(type<:Function) dict_current = Dict{Symbol,Any}() dict[k] = dict_current struct_to_dict!(dict_current,value) elseif value isa Vector && !isempty(value) && occursin("EasyML",string(parentmodule(eltype(type)))) types = typeof.(value) dict_vec = Vector{Dict{Symbol,Any}}(undef,0) for obj_for_vec in value dict_for_vec = Dict{Symbol,Any}() struct_to_dict!(dict_for_vec,obj_for_vec) push!(dict_vec,dict_for_vec) end data_tuple = (vector_type = string(type), types = string(types), values = dict_vec) dict[k] = data_tuple else dict[k] = value end end return nothing end function fix_type(vector_type_string::String) vector_type_string_split = split(vector_type_string,".") if length(vector_type_string_split)==1 return vector_type_string else vector_type_string = join(vector_type_string_split[[1,end]],".") vector_type_string = replace(vector_type_string, "EasyML."=>"") return vector_type_string end end function fix_type_layers_info(vector_type_string::String) vector_type_string = replace(vector_type_string, "EasyML.Common.Design.Layers."=>"") vector_type_string = replace(vector_type_string, "EasyML.Common.Application."=>"") return vector_type_string end function to_struct!(obj,sym::Symbol,value::NamedTuple) if !isempty(value) vector_type_string = fix_type(getindex(value,:vector_type)) vector_type = eval(Meta.parse(vector_type_string)) types_string = fix_type_layers_info(getindex(value,:types)) types = eval.(Meta.parse.(types_string)) vals = getindex(value,:values) struct_vec = vector_type(undef,0) for j = 1:length(types) obj_for_vec = types[j]() dict_for_vec = vals[j] dict_to_struct!(obj_for_vec,dict_for_vec) push!(struct_vec,obj_for_vec) end setproperty!(obj,sym,struct_vec) end return nothing end function dict_to_struct!(obj,dict::Dict) ks = [keys(dict)...] for i = 1:length(ks) ks_cur = ks[i] sym = Symbol(ks_cur) value = dict[ks_cur] if hasproperty(obj,sym) obj_property = getproperty(obj,sym) if value isa Dict dict_to_struct!(obj_property,value) else try setproperty!(obj,sym,value) catch e @warn string("Loading of ",string(sym)," in ",string(obj)," failed.") exception=(e, catch_backtrace()) end end end end return nothing end #---Other------------------------------------------- function findline(lines::Vector{String}) for i = 1:20 line = lines[i] if i>2 if occursin("import",line) if occursin("templates",line) return i end else return i end end end end common_dir() = string(replace(@__DIR__, "\\" => "/")) function add_templates(url::String) f = open(url, read=true) seekstart(f) lines = readlines(f) close(f) ind = findline(lines) if ind!=0 dir = string("file:///",string(common_dir(),"/gui/templates")) templates_line = string("import ",'"',dir,'"') lines[ind] = templates_line end text = join(lines,"\n") return text end function max_num_threads() return length(Sys.cpu_info()) end num_threads() = hardware_resources.num_threads function check_task(t::Task) if istaskdone(t) if t.:_isexception return :error, t.:result else return :done, nothing end else return :running, nothing end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
4435
function Images.dilate!(array::BitArray{2},num::Int64) for _ = 1:num ImageMorphology.dilate!(array) end return(array) end function erode!(array::BitArray{2},num::Int64) for _ = 1:num ImageMorphology.erode!(array) end return(array) end function closing!(array::BitArray{2},num::Int64) dilate!(array,num) erode!(array,num) return array end function outer_perim(array::BitArray{2}) array2 = copy(array) dilate!(array2,1) return xor.(array2,array) end function areaopen!(im::BitArray{2},area::Int64) im_segm = label_components(im) num = maximum(im_segm) chunk_size = convert(Int64,round(num/num_threads())) @floop ThreadedEx(basesize = chunk_size) for i=1:num mask = im_segm.==i if sum(mask)<area im[mask] .= false end end return end function replace_nan!(x) type = eltype(x) for i = eachindex(x) if isnan(x[i]) x[i] = zero(type) end end end function rotate_img(img::AbstractArray{T,3},angle_val::Float64) where T<:AbstractFloat if angle_val!=0 img_out = copy(img) for i = 1:size(img,3) slice = img[:,:,i] temp = imrotate(slice,angle_val,axes(slice)) replace_nan!(temp) img_out[:,:,i] = convert.(T,temp) end return(img_out) else return(img) end end function rotate_img(img::BitArray{3},angle_val::Float64) if angle_val!=0 img_out = copy(img) for i = 1:size(img,3) slice = img[:,:,i] temp = imrotate(slice,angle_val,axes(slice)) replace_nan!(temp) img_out[:,:,i] = temp.>0 end return(img_out) else return(img) end end function alldim(array::BitArray{2},dim::Int64) vec = BitArray(undef, size(array,dim)) if dim==1 for i=1:length(vec) vec[i] = all(array[i,:]) end elseif dim==2 for i=1:length(vec) vec[i] = all(array[:,i]) end end return vec end function conn(num::Int64) if num==4 kernel = [false true false true true true false true false] else kernel = [true true true true true true true true true] end return kernel end function component_intensity(components::Array{Int64},image::Array{Float32}) num = maximum(components) intensities = Vector{Float32}(undef,num) for i = 1:num intensities[i] = mean(image[components.==i]) end return intensities end function segment_objects(components::Array{Int64,2},objects::BitArray{2}) img_size = size(components)[1:2] initial_indices = findall(components.!=0) operations = [(0,1),(1,0),(0,-1),(-1,0),(1,-1),(-1,1),(-1,-1),(1,1)] new_components = copy(components) indices_out = initial_indices while length(indices_out)!=0 indices_in = indices_out indices_accum = Vector{Vector{CartesianIndex{2}}}(undef,0) for i = 1:4 target = repeat([operations[i]],length(indices_in)) new_indices = broadcast((x,y) -> x .+ y, Tuple.(indices_in),target) objects_values = objects[indices_in] target = repeat([(0,0)],length(new_indices)) nonzero_bool = broadcast((x,y) -> all(x .> y), new_indices,target) target = repeat([img_size],length(new_indices)) correct_size_bool = broadcast((x,y) -> all(x.<img_size), new_indices,target) remove_incorrect = nonzero_bool .& correct_size_bool .& objects_values new_indices = new_indices[remove_incorrect] values = new_components[CartesianIndex.(new_indices)] new_indices_0_bool = values.==0 new_indices_0 = map(x-> CartesianIndex(x), new_indices[new_indices_0_bool]) indices_prev = indices_in[remove_incorrect][new_indices_0_bool] prev_values = new_components[CartesianIndex.(indices_prev)] new_components[new_indices_0] .= prev_values push!(indices_accum,new_indices_0) end indices_out = reduce(vcat,indices_accum) end return new_components end function allequal(itr::Union{Array,Tuple}) return length(itr)==0 || all( ==(itr[1]), itr) end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1473
const AbstractModel = Union{Flux.Chain} function none(data) return Float32[] end @with_kw mutable struct Normalization f::Function = none args::Tuple = () end function sym_to_string(sym::Symbol) return string(":",string(sym)) end function msg_generator(value::Symbol,syms::NTuple{N,Symbol}) where N local msg_end msg_start = string(sym_to_string(value)," is not allowed. ") msg_mid = "Value should be " if N==1 msg_end = string(sym_to_string.(syms[1]),".") elseif N==2 msg_end = string(join(sym_to_string.(syms), " or "),".") else msg_end = sym_to_string(syms[1]) for i = 2:length(syms)-1 msg_end = string(msg_end,", ",sym_to_string(syms[i])) end msg_end = string(msg_end," or ",sym_to_string(syms[end]),".") end msg = string(msg_start,msg_mid,msg_end) return msg end function check_setfield!(obj,k::Symbol,value::Vector{Symbol},syms::NTuple{N,Symbol}) where N bools = map(x -> x in syms,value) if all(bools) setfield!(obj,k,value) else ind = findfirst((!).(bools)) msg = msg_generator(value[ind],syms) throw(ArgumentError(msg)) end return nothing end function check_setfield!(obj,k::Symbol,value::Symbol,syms::NTuple{N,Symbol}) where N if value in syms setfield!(obj,k,value) else msg = msg_generator(value,syms) throw(ArgumentError(msg)) end return nothing end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
541
function set_problem_type(ind) ind = fix_QML_types(ind) if ind==0 model_data.problem_type = :classification elseif ind==1 model_data.problem_type = :regression else # ind==2 model_data.problem_type = :segmentation end return nothing end function get_problem_type() if problem_type()==:classification return 0 elseif problem_type()==:regression return 1 else # problem_type()==:segmentation return 2 end end function get_input_type() return 0 end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
5626
function load_regression_data(url::String) ext_raw = split(url,".")[end] ext = Unicode.normalize(ext_raw, casefold=true) if ext=="csv" labels_info = DataFrame(CSVFiles.load(url)) else ext=="xlsx" labels_info = DataFrame(XLSX.readtable(url,1)...) end filenames_labels::Vector{String} = labels_info[:,1] labels_original_T = map(ind->Vector(labels_info[ind,2:end]),1:size(labels_info,1)) loaded_labels::Vector{Vector{Float32}} = convert(Vector{Vector{Float32}},labels_original_T) return filenames_labels,loaded_labels end function intersect_regression_data!(input_urls::Vector{String},filenames_inputs::Vector{String}, loaded_labels::Vector{Vector{Float32}},filenames_labels::Vector{String}) num = length(filenames_inputs) inds_adj = zeros(Int64,num) inds_remove = Vector{Int64}(undef,0) cnt = 1 l = length(filenames_inputs) while cnt<=l filename = filenames_inputs[cnt] ind = findfirst(x -> x==filename, filenames_labels) if isnothing(ind) deleteat!(input_urls,cnt) deleteat!(filenames_inputs,cnt) l-=1 else inds_adj[cnt] = ind cnt += 1 end end num = cnt - 1 inds_adj = inds_adj[1:num] filenames_labels_temp = filenames_labels[inds_adj] loaded_labels_temp = loaded_labels[inds_adj] r = length(filenames_labels_temp)+1:length(filenames_labels) deleteat!(filenames_labels,r) deleteat!(loaded_labels,r) filenames_labels .= filenames_labels_temp loaded_labels .= loaded_labels_temp return nothing end function intersect_inds(ar1,ar2) inds1 = Array{Int64,1}(undef, 0) inds2 = Array{Int64,1}(undef, 0) for i=1:length(ar1) inds_log = ar2.==ar1[i] if any(inds_log) push!(inds1,i) push!(inds2,findfirst(inds_log)) end end return (inds1, inds2) end function remove_ext(files::Vector{String}) filenames = copy(files) for i=1:length(files) chars = collect(files[i]) ind = findfirst(chars.=='.') filenames[i] = String(chars[1:ind-1]) end return filenames end # Get urls of files in selected folders. Requires data and labels function get_urls2(url_inputs::String,label_url::String,allowed_ext::Vector{String}) # Get a reference to url accumulators input_urls = Vector{Vector{String}}(undef,0) label_urls = Vector{Vector{String}}(undef,0) filenames = Vector{Vector{String}}(undef,0) fileindices = Vector{Vector{Int64}}(undef,0) # Empty url accumulators empty!(input_urls) empty!(label_urls) # Return if empty if isempty(url_inputs) || isempty(label_url) @error "Empty urls." return nothing,nothing,nothing end # Get directories containing our images and labels dirs_input= getdirs(url_inputs) dirs_labels = getdirs(label_url) # Keep only those present for both images and labels dirs = intersect(dirs_input,dirs_labels) # If no directories, then set empty string if length(dirs)==0 dirs = [""] end # Collect urls cnt = 0 for k = 1:length(dirs) input_urls_temp = Vector{String}(undef,0) label_urls_temp = Vector{String}(undef,0) # Get files in a directory files_input = getfiles(string(url_inputs,"/",dirs[k])) files_labels = getfiles(string(label_url,"/",dirs[k])) # Filter files files_input = filter_ext(files_input,allowed_ext) files_labels = filter_ext(files_labels,allowed_ext) # Remove extensions from files filenames_input = remove_ext(files_input) filenames_labels = remove_ext(files_labels) # Intersect file names inds1, inds2 = intersect_inds(filenames_labels, filenames_input) # Keep files present for both images and labels files_input = files_input[inds2] files_labels = files_labels[inds1] # Push urls into accumulators num = length(files_input) for l = 1:num push!(input_urls_temp,string(url_inputs,"/",files_input[l])) push!(label_urls_temp,string(label_url,"/",files_labels[l])) end push!(filenames,filenames_input[inds2]) push!(fileindices,cnt+1:num) push!(input_urls,input_urls_temp) push!(label_urls,label_urls_temp) cnt = num end return input_urls,label_urls,dirs,filenames,fileindices end # Convert images to BitArray{3} function label_to_bool(labelimg::Array{RGB{Normed{UInt8,8}},2}, class_inds::Vector{Int64}, labels_color::Vector{Vector{Float64}},labels_incl::Vector{Vector{Int64}}, border::Vector{Bool},border_num::Vector{Int64}) colors = map(x->RGB((n0f8.(./(x,255)))...),labels_color) num = length(class_inds) num_borders = sum(border) inds_borders = findall(border) label = fill!(BitArray{3}(undef, size(labelimg)..., num + num_borders),0) # Find classes based on colors for i in class_inds colors_current = [colors[i]] inds = findall(map(x->issubset(i,x),labels_incl)) if !isempty(class_inds) push!(colors_current,colors[inds]...) end bitarrays = map(x -> .==(labelimg,x)[:,:,:],colors_current) label[:,:,i] = any(cat(bitarrays...,dims=Val(3)),dims=3) end # Make classes outlining object borders for j=1:length(inds_borders) ind = inds_borders[j] border = outer_perim(label[:,:,ind]) dilate!(border,border_num[ind]) label[:,:,num+j] = border end return label end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2352
num_threads() = options.GlobalOptions.HardwareResources.num_threads # Get urls of files in selected folders. Requires only data function get_urls1(url_inputs::String,allowed_ext::Vector{String}) # Get a reference to url accumulators input_urls = Vector{Vector{String}}(undef,0) filenames = Vector{Vector{String}}(undef,0) # Empty a url accumulator empty!(input_urls) # Return if empty if isempty(url_inputs) @warn "Directory is empty." return nothing end # Get directories containing our images and labels dirs = getdirs(url_inputs) # If no directories, then set empty string if length(dirs)==0 dirs = [""] end # Collect urls for k = 1:length(dirs) input_urls_temp = Vector{String}(undef,0) dir = dirs[k] # Get files in a directory files_input = getfiles(string(url_inputs,"/",dir)) files_input = filter_ext(files_input,allowed_ext) # Push urls into an accumulator for l = 1:length(files_input) push!(input_urls_temp,string(url_inputs,"/",dir,"/",files_input[l])) end push!(filenames,files_input) push!(input_urls,input_urls_temp) end if dirs==[""] url_split = split(url_inputs,('/','\\')) dirs = [url_split[end]] end return input_urls,dirs,filenames end function getdirs(dir) return filter(x -> isdir(joinpath(dir, x)),readdir(dir)) end function getfiles(dir) return filter(x -> !isdir(joinpath(dir, x)), readdir(dir)) end function filter_ext(urls::Vector{String},allowed_ext::Vector{String}) urls_split = split.(urls,'.') ext = map(x->string(x[end]),urls_split) ext = lowercase.(ext) log_inds = map(x->x in allowed_ext,ext) urls_out = urls[log_inds] return urls_out end # Convert images to grayscale Array{Float32,2} function image_to_gray_float(image::Array{RGB{Normed{UInt8,8}},2}) img_temp = channelview(float.(Gray.(image))) return collect(reshape(img_temp,size(img_temp)...,1)) end # Convert images to RGB Array{Float32,3} function image_to_color_float(image::Array{RGB{Normed{UInt8,8}},2}) img_temp = permutedims(channelview(float.(image)),[2,3,1]) return collect(img_temp) end function load_image(url::String) img::Array{RGB{N0f8},2} = load(url) return img end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3452
#---Accuracy------------------------------------------- function accuracy_classification(predicted::A,actual::A) where {T<:Float32,A<:AbstractArray{T,2}} acc = Vector{Float32}(undef,0) for i in 1:size(predicted,2) _ , actual_ind = collect(findmax(actual[:,i])) _ , predicted_ind = collect(findmax(predicted[:,i])) if actual_ind==predicted_ind push!(acc,1) else push!(acc,0) end end return mean(acc) end function accuracy_classification_weighted(predicted::A,actual::A,ws::Vector{T}) where {T<:Float32,A<:AbstractArray{T,2}} l = size(predicted,2) acc = Vector{Float32}(undef,l) w = Vector{Float32}(undef,l) for i = 1:l _ , actual_ind = collect(findmax(actual[:,i])) _ , predicted_ind = collect(findmax(predicted[:,i])) w[i] = ws[actual_ind] if actual_ind==predicted_ind acc[i] = 1 else acc[i] = 0 end end return mean(acc,StatsBase.weights(w)) end function accuracy_regression(predicted::A,actual::A) where {T<:Float32,A<:AbstractArray{T}} err = abs.(actual .- predicted) err_relative = mean(err./actual) acc = 1/(1+err_relative) return acc end function accuracy_segmentation(predicted::A,actual::A) where {T<:Float32,A<:AbstractArray{T}} actual_bool = actual.>0 predicted_bool = predicted.>0.5 # Calculate correct and incorrect class pixels as a BitArray correct_bool = predicted_bool .& actual_bool dif_bool = xor.(predicted_bool,actual_bool) # Calculate class accuracies sum_correct = convert(Float32,sum(correct_bool)) sum_dif = convert(Float32,sum(dif_bool)) acc = sum_correct./(sum_correct.+sum_dif) if isnan(acc) return 0f0 end return acc end function calculate_sum(something_bool::AbstractArray{Bool,4}) sum_int_dim4 = collect(sum(something_bool, dims = [1,2,4])) sum_int = sum_int_dim4[:] return sum_int end # Weight accuracy using inverse frequency function accuracy_segmentation_weighted(predicted::A,actual::A,ws::Vector{T}) where {T<:Float32,A<:AbstractArray{T}} actual_bool = actual.>0 predicted_bool = predicted.>0.5 # Calculate correct and incorrect class pixels as a BitArray correct_bool = predicted_bool .& actual_bool dif_bool = xor.(predicted_bool,actual_bool) # Calculate class accuracies sum_correct_int = calculate_sum(correct_bool) sum_dif_int = calculate_sum(dif_bool) sum_correct = convert(Vector{Float32},sum_correct_int) sum_dif = convert(Vector{Float32},sum_dif_int) classes_accuracy = sum_correct./(sum_correct.+sum_dif) acc = sum(ws.*classes_accuracy) if isnan(acc) return 0f0 end return acc end # Returns an accuracy function function get_accuracy_func(weights::Vector{Float32},some_options) weight = some_options.Accuracy.weight_accuracy if problem_type()==:classification if weight return (x,y) -> accuracy_classification_weighted(x,y,weights) else return accuracy_classification end elseif problem_type()==:regression return accuracy_regression elseif problem_type()==:segmentation if weight return (x,y) -> accuracy_segmentation_weighted(x,y,weights) else return accuracy_segmentation end end end add_dim(x::Array{T, N}) where {T,N} = reshape(x, Val(N+1))
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
10332
#--- Applying a neural network # Getting a slice and its information function prepare_input_data(input_data::Union{Array{Float32,4},CuArray{Float32,4}},ind_max::Int64, max_value::Int64,offset::Int64,num_slices::Int64,ind_split::Int64,j::Int64) start_ind = 1 + (j-1)*ind_split if j==num_slices end_ind = max_value else end_ind = start_ind + ind_split-1 end correct_size = end_ind-start_ind+1 start_ind = start_ind - offset start_ind = start_ind<1 ? 1 : start_ind end_ind = end_ind + offset end_ind = end_ind>max_value ? max_value : end_ind temp_data = input_data[:,start_ind:end_ind,:,:] max_dim_size = size(temp_data,ind_max) offset_add = Int64(ceil(max_dim_size/16)*16) - max_dim_size temp_data = pad(temp_data,(0,offset_add),same) output_data = (temp_data,correct_size,offset_add) return output_data end # Makes output mask to have a correct size for stiching function fix_size(temp_predicted::Union{Array{Float32,4},CuArray{Float32,4}}, num_slices::Int64,correct_size::Int64,ind_max::Int64, offset_add::Int64,j::Int64) temp_size = size(temp_predicted,ind_max) offset_temp = (temp_size - correct_size) - offset_add if offset_temp>0 div_result = offset_add/2 offset_add1 = Int64(floor(div_result)) offset_add2 = Int64(ceil(div_result)) if j==1 temp_predicted = temp_predicted[:, (1+offset_add1):(end-offset_temp-offset_add2),:,:] elseif j==num_slices temp_predicted = temp_predicted[:, (1+offset_temp+offset_add1):(end-offset_add2),:,:] else temp = (temp_size - correct_size - offset_add)/2 offset_temp = Int64(floor(temp)) offset_temp2 = Int64(ceil(temp)) temp_predicted = temp_predicted[:, (1+offset_temp+offset_add1):(end-offset_temp2-offset_add2),:,:] end elseif offset_temp<0 throw(DomainError("offset_temp should be greater or equal to zero")) end end # Accumulates and stiches slices function accum_slices(model::Chain,input_data::T, num_slices::Int64,offset::Int64) where T<:AbstractArray{Float32,4} input_size = size(input_data) max_value = maximum(input_size) ind_max = 2 ind_split = convert(Int64,floor(max_value/num_slices)) predicted = Vector{T}(undef,0) for j = 1:num_slices temp_data,correct_size,offset_add = prepare_input_data(input_data,ind_max,max_value,offset,num_slices,ind_split,j) temp_predicted = model(temp_data) temp_predicted = fix_size(temp_predicted,num_slices,correct_size,ind_max,offset_add,j) push!(predicted,temp_predicted) end predicted_out = reduce(hcat,predicted) return predicted_out end """ forward(model::Chain, input_data::Array{Float32}; num_slices::Int64=1, offset::Int64=20, use_GPU::Bool=false) The function takes in a model and input data and returns output from that model. `num_slices` specifies in how many slices should an array be run thorugh a neural network. Allows to process images that otherwise cause an out of memory error. `offset` specifies the size of an overlap that should be taken from the left and right side of each slice to allow for an absense of a seam. `use_GPU` enables or disables GPU usage. """ function forward(model::Chain,input_data::Array{Float32}; num_slices::Int64=1,offset::Int64=20,use_GPU::Bool=false) if use_GPU input_data_gpu = CuArray(input_data) model = gpu(model) if num_slices==1 predicted = collect(model(input_data_gpu)) else predicted = collect(accum_slices(model,input_data_gpu,num_slices,offset)) end else if num_slices==1 predicted = model(input_data) else predicted = accum_slices(model,input_data,num_slices,offset) end end return predicted end """ apply_border_data(input_data::BitArray{3},classes::Vector{ImageSegmentationClass}) Used for segmentation. Uses borders of objects that a neural network detected in order to separate objects from each other. Output from a neural network should be fed after converting to BitArray. """ function apply_border_data(input_data::BitArray{3},classes::Vector{ImageSegmentationClass}) class_inds,_,_,border,border_thickness = get_class_data(classes) inds_border = findall(border) if isnothing(inds_border) return input_data end num_border = length(inds_border) num_classes = length(class_inds) data = BitArray{3}(undef,size(input_data)[1:2]...,num_border) for i = 1:num_border border_num_pixels = border_thickness[i] ind_classes = inds_border[i] ind_border = num_classes + ind_classes data_classes_bool = input_data[:,:,ind_classes] data_classes = convert(Array{Float32},data_classes_bool) data_border = input_data[:,:,ind_border] border_bool = data_border background1 = erode(data_classes_bool .& border_bool,border_num_pixels) background2 = outer_perim(border_bool) background2[data_classes_bool] .= false background2 = dilate(background2,border_num_pixels+1) background = background1 .| background2 skel = thinning(border_bool) background[skel] .= true if classes[i].BorderClass.enabled components = label_components((!).(border_bool),conn(4)) intensities = component_intensity(components,data_classes) bad_components = findall(intensities.<0.7) for i = 1:length(bad_components) components[components.==bad_components[i]] .= 0 end objects = data_classes.!=0 objects[skel] .= false segmented = segment_objects(components,objects) borders = mapwindow(x->!allequal(x), segmented, (3,3)) segmented[borders] .= 0 data[:,:,ind_classes] = segmented.>0 else data_classes_bool[background] .= false data[:,:,i] = data_classes_bool end end return data end #---Padding same(vect::Array{T},row::Int64,col::Int64) where T = repeat(vect,row,col) function repeatCUDA(vect::CuArray,row::Int64,col::Int64) if row!=1 array = reduce(vcat,repeat([vect],row,col)) else array = reduce(hcat,repeat([vect],row,col)) end return array end same(vect::CuArray{T},row::Int64,col::Int64) where T = repeatCUDA(vect,row,col) function pad(array::A,padding::NTuple{2,Int64},fun::typeof(same)) where A<:AbstractArray{<:AbstractFloat, 4} div_result = padding./2 leftpad = Int64.(floor.(div_result)) rightpad = Int64.(ceil.(div_result)) if padding[1]!=0 accum = Vector{A}(undef,0) for i=1:size(array,3) temp_array = array[:,:,i,:,:] vec1 = permutedims(temp_array[1,:,:,:,:],(2,1,3,4)) vec2 = permutedims(temp_array[end,:,:,:,:],(2,1,3,4)) temp_array = vcat(fun(vec1,leftpad[1],1),array,fun(vec2,rightpad[1],1)) push!(accum,temp_array) end array = cat(accum...,dims=Val(3)) end if padding[2]!=0 accum = Vector{A}(undef,0) for i=1:size(array,3) temp_array = array[:,:,i,:,:] vec1 = temp_array[:,1,:,:,:] vec2 = temp_array[:,end,:,:,:] temp_array = hcat(fun(vec1,1,leftpad[2]),temp_array,fun(vec2,1,rightpad[2])) push!(accum,temp_array) end array = cat(accum...,dims=Val(3)) end return array end function pad(array::A,padding::NTuple{2,Int64}, fun::Union{typeof(zeros),typeof(ones)}) where {T<:AbstractFloat,A<:AbstractArray{T, 4}} div_result = padding./2 leftpad = Int64.(floor.(div_result)) rightpad = Int64.(ceil.(div_result)) if padding[1]!=0 accum = Vector{A}(undef,0) for i=1:size(array,3) temp_array = array[:,:,i,:,:] s_ar2 = size(temp_array,2) s1 = (leftpad[1],s_ar2,1,1) s2 = (rightpad[1],s_ar2,1,1) output_array = vcat(fun(T,s1),temp_array,fun(T,s2)) push!(accum,output_array) end array = cat(accum...,dims=Val(3)) end if padding[2]!=0 accum = Vector{A}(undef,0) @info Vector{A} for i=1:size(array,3) temp_array = array[:,:,i,:,:] s_ar1 = size(temp_array,1) s1 = (s_ar1,leftpad[2],1,1) s2 = (s_ar1,rightpad[2],1,1) output_array = hcat(fun(T,s1),temp_array,fun(T,s2)) push!(accum,output_array) end array = cat(accum...,dims=Val(3)) end return array end function pad(array::A,padding::NTuple{2,Int64},fun::typeof(same)) where A<:Matrix div_result = padding./2 leftpad = Int64.(floor.(div_result)) rightpad = Int64.(ceil.(div_result)) if padding[1]!=0 vec1 = collect(array[1,:]') vec2 = collect(array[end,:]') array = vcat(fun(vec1,leftpad[1],1),array,fun(vec2,rightpad[1],1)) end if padding[2]!=0 vec1 = array[:,1] vec2 = array[:,end] array = hcat(fun(vec1,1,leftpad[2]),array,fun(vec2,1,rightpad[2])) end return array end function pad(array::A,padding::NTuple{2,Int64}, fun::Union{typeof(zeros),typeof(ones)}) where {T,A<:Matrix{T}} div_result = padding./2 leftpad = Int64.(floor.(div_result)) rightpad = Int64.(ceil.(div_result)) if padding[1]!=0 s_ar2 = size(array,2) s1 = (leftpad[1],s_ar2) s2 = (rightpad[1],s_ar2) array = vcat(fun(T,s1),array,fun(T,s2)) end if padding[2]!=0 s_ar1 = size(array,1) s1 = (s_ar1,leftpad[2]) s2 = (s_ar1,rightpad[2]) array = hcat(fun(T,s1),array,fun(T,s2)) end return array end function fix_image_size(model_data::ModelData,img::Matrix) im_size = size(img) ratio_needed = model_data.input_size[1]/model_data.input_size[2] pad_num = convert(Int64,round(im_size[1]/ratio_needed - im_size[2])) if pad_num>0 img = pad(img,(0,pad_num),zeros) else img = pad(img,(-pad_num,0),zeros) end img = imresize(img,model_data.input_size[1:2]) return img end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2810
module Application using Parameters import ..check_setfield! #---Model data---------------------------------------------------------- abstract type AbstractOutputOptions end mutable struct ImageClassificationOutputOptions<:AbstractOutputOptions end mutable struct ImageRegressionOutputOptions<:AbstractOutputOptions end @with_kw mutable struct OutputMask mask::Bool = false mask_border::Bool = false mask_applied_border::Bool = false end @with_kw mutable struct OutputArea area_distribution::Bool = false obj_area::Bool = false obj_area_sum::Bool = false binning::Symbol = :auto value::Float64 = 10 normalization::Symbol = :none end @with_kw mutable struct OutputVolume volume_distribution::Bool = false obj_volume::Bool = false obj_volume_sum::Bool = false binning::Symbol = :auto value::Float64 = 10 normalization::Symbol = :none end @with_kw mutable struct ImageSegmentationOutputOptions<:AbstractOutputOptions Mask::OutputMask = OutputMask() Area::OutputArea = OutputArea() Volume::OutputVolume = OutputVolume() end function Base.setproperty!(obj::Union{OutputArea,OutputVolume},k::Symbol,value::Symbol) if k==:binning syms = (:auto,:number_of_bins,:bin_width) check_setfield!(obj,k,value,syms) elseif k==:normalization syms = (:none,:probability,:density,:pdf) check_setfield!(obj,k,value,syms) else setfield!(obj,k,value) end return nothing end #---Data---------------------------------------------------------------- @with_kw mutable struct ApplicationData input_urls::Vector{Vector{String}} = Vector{Vector{String}}(undef,0) folders::Vector{String} = Vector{String}(undef,0) url_inputs::String = "" tasks::Vector{Task} = Vector{Task}(undef,0) end application_data = ApplicationData() #---Options---------------------------------------------------------------- @with_kw mutable struct ApplicationOptions savepath::String = "" apply_by::Symbol = :file data_type::Symbol = :csv image_type::Symbol = :png scaling::Float64 = 1 end application_options = ApplicationOptions() function Base.setproperty!(obj::ApplicationOptions,k::Symbol,value::Symbol) if k==:apply_by syms = (:file,:folder) check_setfield!(obj,k,value,syms) elseif k==:data_type syms = (:csv,:xlsx,:json,:bson) check_setfield!(obj,k,value,syms) elseif k==:image_type syms = (:png,:tiff,:json,:bson) check_setfield!(obj,k,value,syms) end return nothing end #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1047
module Classes using Parameters #---Data---------------------------------------------------------------- abstract type AbstractClass end @with_kw mutable struct ImageClassificationClass<:AbstractClass name::String = "" weight::Float32 = 1 end @with_kw mutable struct ImageRegressionClass<:AbstractClass name::String = "" end @with_kw mutable struct BorderClass enabled::Bool = false thickness::Int64 = 3 end @with_kw mutable struct ImageSegmentationClass<:AbstractClass name::String = "" weight::Float32 = 1 color::Vector{Float64} = Vector{Float64}(undef,3) parents::Vector{String} = ["",""] overlap::Bool = false min_area::Int64 = 0 BorderClass::BorderClass = BorderClass() end #---Options---------------------------------------------------------------- #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3457
module DataPreparation using Parameters #---Data---------------------------------------------------------------- @with_kw mutable struct ClassificationUrlsData input_urls::Vector{Vector{String}} = Vector{Vector{String}}(undef,0) label_urls::Vector{String} = Vector{String}(undef,0) filenames::Vector{Vector{String}} = Vector{Vector{String}}(undef,0) end @with_kw mutable struct ClassificationResultsData data_input::Union{Vector{T1},Vector{T2}} where {T1<:Array{Float32,1},T2<:Array{Float32,3}} = Vector{Array{Float32,3}}(undef,0) data_labels::Vector{Int32} = Vector{Int32}(undef,0) end @with_kw mutable struct ClassificationData Urls::ClassificationUrlsData = ClassificationUrlsData() Data::ClassificationResultsData = ClassificationResultsData() end @with_kw mutable struct RegressionUrlsData initial_data_labels::Vector{Vector{Float32}} = Vector{Vector{Float32}}(undef,0) input_urls::Vector{String} = Vector{String}(undef,0) labels_url::String = "" end @with_kw mutable struct RegressionResultsData{T1<:Array{Float32,1},T2<:Array{Float32,3}} data_input::Union{Vector{T1},Vector{T2}} = Vector{Array{Float32,3}}(undef,0) data_labels::Union{Vector{T1},Vector{T2}} = Vector{Vector{Float32}}(undef,0) end @with_kw mutable struct RegressionData Urls::RegressionUrlsData = RegressionUrlsData() Data::RegressionResultsData = RegressionResultsData() end @with_kw mutable struct SegmentationUrlsData input_urls::Vector{String} = Vector{String}(undef,0) label_urls::Vector{String} = Vector{String}(undef,0) foldernames::Vector{String} = Vector{String}(undef,0) end @with_kw mutable struct SegmentationResultsData data_input::Vector{Array{Float32,3}} = Vector{Array{Float32,3}}(undef,0) data_labels::Vector{BitArray{3}} = Vector{BitArray{3}}(undef,0) end @with_kw mutable struct SegmentationData Urls::SegmentationUrlsData = SegmentationUrlsData() Data::SegmentationResultsData = SegmentationResultsData() end @with_kw mutable struct PreparationUrls url_inputs::String = "" url_labels::String = "" end preparation_urls = PreparationUrls() @with_kw mutable struct PreparationData ClassificationData::ClassificationData = ClassificationData() RegressionData::RegressionData = RegressionData() SegmentationData::SegmentationData = SegmentationData() Urls::PreparationUrls = preparation_urls tasks::Vector{Task} = Vector{Task}(undef,0) end preparation_data = PreparationData() #---Options---------------------------------------------------------------- @with_kw mutable struct BackgroundCroppingOptions enabled::Bool = false threshold::Float64 = 0.3 closing_value::Int64 = 1 end background_cropping_options = BackgroundCroppingOptions() @with_kw mutable struct ImagePreparationOptions grayscale::Bool = false mirroring::Bool = false num_angles::Int64 = 1 min_fr_pix::Float64 = 0.0 BackgroundCropping::BackgroundCroppingOptions = background_cropping_options end image_preparation_options = ImagePreparationOptions() @with_kw struct DataPreparationOptions Images::ImagePreparationOptions = image_preparation_options end data_preparation_options = DataPreparationOptions() #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
8516
module Design using Parameters import ..Normalization, ..none #---Model data---------------------------------------------------------------- module Layers using Parameters abstract type AbstractLayerInfo end @with_kw mutable struct GenericInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) end @with_kw mutable struct InputInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) size::NTuple{3,Int64} = (0,0,0) normalization::Int64 = 0 end @with_kw mutable struct OutputInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) loss::Int64 = 0 end @with_kw mutable struct ConvInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) filters::Int64 = 0 filter_size::NTuple{2,Int64} = (0,0) stride::Int64 = 0 dilation_factor::Int64 = 0 end @with_kw mutable struct TConvInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) filters::Int64 = 0 filter_size::NTuple{2,Int64} = (0,0) stride::Int64 = 0 dilation_factor::Int64 = 0 end @with_kw mutable struct DenseInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) filters::Int64 = 0 end @with_kw mutable struct BatchNormInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) epsilon::Float64 = 0 end @with_kw mutable struct DropoutInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) probability::Float64 = 0 end @with_kw mutable struct LeakyReLUInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) scale::Float64 = 0 end @with_kw mutable struct ELUInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) alpha::Float64 = 0 end @with_kw mutable struct PoolInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) poolsize::NTuple{2,Int64} = (0,0) stride::Int64 = 0 end @with_kw mutable struct AdditionInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) inputs::Int64 = 0 end @with_kw mutable struct JoinInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) inputs::Int64 = 0 dimension::Int64 = 0 end @with_kw mutable struct SplitInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) outputs::Int64 = 0 dimension::Int64 = 0 end @with_kw mutable struct UpsampleInfo<:AbstractLayerInfo id::Int64 = 0 name::String = "" type::String = "" group::String = "" connections_up::Vector{Int64} = Vector{Int64}(undef,0) connections_down::Vector{Vector{Int64}} = Vector{Vector{Int64}}(undef,0) x::Float64 = 0 y::Float64 = 0 label_color::NTuple{3,Int64} = (0,0,0) multiplier::Int64 = 0 dimensions::Vector{Int64} = [0] end #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end #---Data---------------------------------------------------------------- using Flux, .Layers @with_kw mutable struct DesignModelData model::Flux.Chain = Flux.Chain() normalization::Normalization = Normalization(none,()) loss::Function = Flux.Losses.mse input_size::NTuple{3,Int64} = (0,0,0) output_size::NTuple{3,Int64} = (0,0,0) problem_type::Symbol = :classification input_type::Symbol = :image layers_info::Vector{AbstractLayerInfo} = Vector{AbstractLayerInfo}(undef,0) end @with_kw mutable struct DesignData ModelData::DesignModelData = DesignModelData() warnings::Vector{String} = Vector{String}(undef,0) end design_data = DesignData() #---Options---------------------------------------------------------------- @with_kw mutable struct DesignOptions width::Float64 = 340 height::Float64 = 100 min_dist_x::Float64 = 80 min_dist_y::Float64 = 40 end design_options = DesignOptions() #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3398
module Training using Parameters, Dates import ..DataPreparation: ClassificationData, RegressionData, SegmentationData #---Data---------------------------------------------------------------- @with_kw mutable struct TrainingPlotData iteration::Int64 = 0 epoch::Int64 = 0 iterations_per_epoch::Int64 = 0 starting_time::DateTime = now() max_iterations::Int64 = 0 learning_rate_changed::Bool = false end training_plot_data = TrainingPlotData() @with_kw mutable struct TrainingResultsData accuracy::Vector{Float32} = Vector{Float32}(undef,0) loss::Vector{Float32} = Vector{Float32}(undef,0) test_accuracy::Vector{Float32} = Vector{Float32}(undef,0) test_loss::Vector{Float32} = Vector{Float32}(undef,0) test_iteration::Vector{Int64} = Vector{Int64}(undef,0) end training_results_data = TrainingResultsData() @with_kw mutable struct TrainingOptionsData optimiser_params::Vector{Vector{Float64}} = [[],[0.9],[0.9],[0.9],[0.9,0.999], [0.9,0.999],[0.9,0.999],[],[0.9],[0.9,0.999],[0.9,0.999],[0.9,0.999,0]] optimiser_params_names::Vector{Vector{String}} = [[],["ρ"],["ρ"],["ρ"],["β1","β2"], ["β1","β2"],["β1","β2"],[],["ρ"],["β1","β2"],["β1","β2"],["β1","β2","Weight decay"]] allow_lr_change::Bool = true run_test::Bool = false end training_options_data = TrainingOptionsData() @with_kw mutable struct TrainingData PlotData::TrainingPlotData = training_plot_data Results::TrainingResultsData = training_results_data ClassificationData::ClassificationData = ClassificationData() RegressionData::RegressionData = RegressionData() SegmentationData::SegmentationData = SegmentationData() OptionsData::TrainingOptionsData = training_options_data weights::Vector{Float32} = Vector{Float32}(undef,0) tasks::Vector{Task} = Vector{Task}(undef,0) warnings::Vector{String} = Vector{String}(undef,0) errors::Vector{String} = Vector{String}(undef,0) end training_data = TrainingData() @with_kw mutable struct TestingData ClassificationData::ClassificationData = ClassificationData() RegressionData::RegressionData = RegressionData() SegmentationData::SegmentationData = SegmentationData() end testing_data = TestingData() #---Options---------------------------------------------------------------- @with_kw mutable struct AccuracyOptions weight_accuracy::Bool = true accuracy_mode::Symbol = :auto end accuracy_options = AccuracyOptions() @with_kw mutable struct TestingOptions data_preparation_mode::Symbol = :auto test_data_fraction::Float64 = 0.1 num_tests::Float64 = 2 end testing_options = TestingOptions() @with_kw mutable struct HyperparametersOptions optimiser::Symbol = :ADAM optimiser_params::Vector{Float64} = [0.9,0.999] learning_rate::Float64 = 1e-3 epochs::Int64 = 1 batch_size::Int64 = 10 end hyperparameters_options = HyperparametersOptions() @with_kw mutable struct TrainingOptions Accuracy::AccuracyOptions = accuracy_options Testing::TestingOptions = testing_options Hyperparameters::HyperparametersOptions = hyperparameters_options end training_options = TrainingOptions() #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
3614
module Validation using Parameters, ColorTypes, FixedPointNumbers #---Data---------------------------------------------------------------- @with_kw mutable struct ValidationImageClassificationResults original_images::Vector{Array{RGB{N0f8},2}} = Vector{Array{RGB{N0f8},2}}(undef,0) predicted_labels::Vector{String} = Vector{String}(undef,0) target_labels::Vector{String} = Vector{String}(undef,0) accuracy::Vector{Float32} = Vector{Float32}(undef,0) loss::Vector{Float32} = Vector{Float32}(undef,0) end validation_image_classification_results = ValidationImageClassificationResults() @with_kw mutable struct ValidationImageRegressionResults original_images::Vector{Array{RGB{N0f8},2}} = Vector{Array{RGB{N0f8},2}}(undef,0) predicted_labels::Vector{Vector{Float32}}= Vector{Vector{Float32}}(undef,0) target_labels::Vector{Vector{Float32}} = Vector{Vector{Float32}}(undef,0) accuracy::Vector{Float32} = Vector{Float32}(undef,0) loss::Vector{Float32} = Vector{Float32}(undef,0) end validation_image_regression_results = ValidationImageRegressionResults() @with_kw mutable struct ValidationImageSegmentationResults original_images::Vector{Array{RGB{N0f8},2}} = Vector{Array{RGB{N0f8},2}}(undef,0) predicted_data::Vector{Vector{Tuple{BitArray{2},Vector{N0f8}}}} = Vector{Vector{Tuple{BitArray{2},Vector{N0f8}}}}(undef,0) target_data::Vector{Vector{Tuple{BitArray{2},Vector{N0f8}}}} = Vector{Vector{Tuple{BitArray{2},Vector{N0f8}}}}(undef,0) error_data::Vector{Vector{Tuple{BitArray{3},Vector{N0f8}}}} = Vector{Vector{Tuple{BitArray{3},Vector{N0f8}}}}(undef,0) accuracy::Vector{Float32} = Vector{Float32}(undef,0) loss::Vector{Float32} = Vector{Float32}(undef,0) end validation_image_segmentation_results = ValidationImageSegmentationResults() @with_kw mutable struct ValidationUrls input_urls::Vector{String} = Vector{String}(undef,0) label_urls::Vector{String} = Vector{String}(undef,0) labels_classification::Vector{Int32} = Vector{Int32}(undef,0) labels_regression::Vector{Vector{Float32}} = Vector{Float32}(undef,0) url_inputs::String = "" url_labels::String = "" end validation_urls = ValidationUrls() @with_kw mutable struct ValidationPlotData original_image::Array{RGB{N0f8},2} = Array{RGB{N0f8},2}(undef,0,0) label_image::Array{RGB{N0f8},2} = Array{RGB{N0f8},2}(undef,0,0) use_labels::Bool = false end validation_plot_data = ValidationPlotData() @with_kw struct ValidationData PlotData::ValidationPlotData = validation_plot_data ImageClassificationResults::ValidationImageClassificationResults = validation_image_classification_results ImageRegressionResults::ValidationImageRegressionResults = validation_image_regression_results ImageSegmentationResults::ValidationImageSegmentationResults = validation_image_segmentation_results Urls::ValidationUrls = validation_urls tasks::Vector{Task} = Vector{Task}(undef,0) end validation_data = ValidationData() #---Options---------------------------------------------------------------- @with_kw mutable struct AccuracyOptions weight_accuracy::Bool = true accuracy_mode::Symbol = :auto end accuracy_options = AccuracyOptions() @with_kw mutable struct ValidationOptions Accuracy::AccuracyOptions = accuracy_options end validation_options = ValidationOptions() #---Export all-------------------------------------------------------------- for n in names(@__MODULE__; all=true) if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include) @eval export $n end end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
876
module DataPreparation # Import packages using # Data structuring DataFrames, # Data import/export FileIO, ImageIO, XLSX, CSVFiles, # Data manipulation Unicode, # Image manipulation Images, ColorTypes, ImageFiltering, ImageTransformations, ImageMorphology, DSP, ImageMorphology.FeatureTransform, ImageSegmentation, # Math functions StatsBase, Statistics, LinearAlgebra, Combinatorics, # Other ProgressMeter, FLoops, # EasyML ecosystem ..Common, ..Common.Classes, ..Common.DataPreparation import ..Classes import ..Classes: change_classes import ..Common.dilate! # Include functions include(string(common_dir(),"/common/preparation_validation.jl")) include(string(common_dir(),"/common/preparation_validation_application.jl")) include("main.jl") include("exported_functions.jl") export data_preparation_options, DataPreparationOptions export get_urls, prepare_data end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
8360
""" change(data_preparation_options::DataPreparationOptions) Allows to change `data_preparation_options` in a GUI. """ function Common.change(data::DataPreparationOptions) @qmlfunction( # Options get_options, set_options, save_options, # Model data set_model_data, get_model_data, rm_model_data, # Other unit_test ) path_qml = string(@__DIR__,"/gui/DataPreparationOptions.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end function get_urls(url_inputs::String,url_labels::String,preparation_data::PreparationData) url_inputs = replace(url_inputs, '\\'=>'/') url_labels = replace(url_labels, '\\'=>'/') preparation_data.Urls.url_inputs = url_inputs preparation_data.Urls.url_labels = url_labels if !isdir(url_inputs) @error string(url_inputs," does not exist.") return nothing end if problem_type()==:classification || problem_type()==:segmentation if !isdir(url_labels) @error string(url_labels," does not exist.") return nothing end elseif problem_type()==:regression if !isfile(url_labels) @error string(url_labels," does not exist.") return nothing end end urls = get_urls_main(model_data,preparation_data) return urls end """ get_urls(url_inputs::String,url_labels::String) Gets URLs to all files present in both folders (or a folder and a file) specified by `url_inputs` and `url_labels`. URLs are automatically saved to `EasyML.preparation_data`. """ get_urls(url_inputs,url_labels) = get_urls(url_inputs,url_labels,preparation_data) function get_urls(url_inputs::String,preparation_data::PreparationData) if problem_type()!=:classification @error "Label data directory URL was not given." return nothing end url_inputs = replace(url_inputs, '\\'=>'/') preparation_data.Urls.url_inputs = url_inputs if !isdir(url_inputs) @error string(url_inputs," does not exist.") return nothing end urls = get_urls_main(model_data,preparation_data) return urls end """ get_urls(url_inputs::String) Used for classification. Gets URLs to all files present in folders located at a folder specified by `url_inputs` for training. Folders should have names identical to the name of classes. URLs are automatically saved to `EasyML.preparation_data`. """ get_urls(url_inputs) = get_urls(url_inputs,preparation_data) function get_urls(preparation_data::PreparationData) dir = pwd() @info "Select a directory with input data." path = get_folder(dir) if !isempty(path) preparation_data.Urls.url_inputs = path @info string(preparation_data.Urls.url_inputs, " was selected.") else @error "Input data directory URL is empty." return nothing end if problem_type()==:classification elseif problem_type()==:regression @info "Select a file with label data." name_filters = ["*.csv","*.xlsx"] path = get_file(dir,name_filters) if !isempty(path) preparation_data.Urls.url_labels = path @info string(preparation_data.Urls.url_labels, " was selected.") else @error "Label data file URL is empty." return nothing end elseif problem_type()==:segmentation @info "Select a directory with label data." path = get_folder(dir) if !isempty(path) preparation_data.Urls.url_labels = path @info string(preparation_data.Urls.url_labels, " was selected.") else @error "Label data directory URL is empty." return nothing end end urls = get_urls_main(model_data,preparation_data) return urls end """ get_urls() Opens a folder/file dialog or dialogs to choose folders or folder and a file containing inputs and labels. URLs are automatically saved to `EasyML.preparation_data`. """ get_urls() = get_urls(preparation_data) function prepare_data(model_data::ModelData,preparation_data::PreparationData) if isempty(model_data.classes) @error "Classes are empty." return nothing end fields = [:data_input,:data_labels] for i in fields empty!(getfield(preparation_data.ClassificationData.Data,i)) empty!(getfield(preparation_data.RegressionData.Data,i)) empty!(getfield(preparation_data.SegmentationData.Data,i)) end empty_channel(:data_preparation_progress) if input_type()==:image if problem_type()==:classification empty!(preparation_data.SegmentationData.Urls.input_urls) empty!(preparation_data.SegmentationData.Urls.label_urls) empty!(preparation_data.RegressionData.Urls.input_urls) if isempty(preparation_data.ClassificationData.Urls.input_urls) @error "No input urls. Run 'get_url'." return nothing end elseif problem_type()==:regression empty!(preparation_data.ClassificationData.Urls.input_urls) empty!(preparation_data.ClassificationData.Urls.label_urls) empty!(preparation_data.SegmentationData.Urls.input_urls) empty!(preparation_data.SegmentationData.Urls.label_urls) if isempty(preparation_data.RegressionData.Urls.input_urls) @error "No input urls. Run 'get_url'." return nothing end elseif problem_type()==:segmentation empty!(preparation_data.ClassificationData.Urls.input_urls) empty!(preparation_data.ClassificationData.Urls.label_urls) empty!(preparation_data.RegressionData.Urls.input_urls) if isempty(preparation_data.SegmentationData.Urls.input_urls) @error "No input urls. Run 'get_url'." return nothing end end end t = prepare_data_main(model_data,preparation_data,channels) max_value = 0 value = 0 p = Progress(0) while true if max_value!=0 temp_value = get_progress(:data_preparation_progress) if temp_value!=false value += temp_value # handle progress here next!(p) elseif value==max_value break else state,error = check_task(t) if state==:error throw(error) return nothing end sleep(0.1) end else temp_value = get_progress(:data_preparation_progress) if temp_value!=false if temp_value!=0 max_value = temp_value p.n = max_value else @error "No data to process." break end else state,error = check_task(t) if state==:error throw(error) return nothing end sleep(0.1) end end end if problem_type()==:classification return preparation_data.ClassificationData.Data elseif problem_type()==:regression return preparation_data.RegressionData.Data else # problem_type()==:segmentation return preparation_data.SegmentationData.Data end end """ prepare_data() Prepares images and corresponding labels for training using URLs loaded previously using `get_urls`. Saves data to EasyML.PreparedDarta. """ prepare_data() = prepare_data(model_data,preparation_data) """ remove_urls() Removes urls. """ function remove_urls(preparation_data::PreparationData) if problem_type()==:classification preparation_data.ClassificationData.Urls = ClassificationUrlsData() elseif problem_type()==:regression preparation_data.RegressionData.Urls = RegressionUrlsData() else # problem_type()==:segmentation preparation_data.SegmentationData.Urls = SegmentationUrlsData() end end remove_urls() = remove_urls(preparation_data)
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
18929
#---------------------------------------------------------------- # Allows to write to data from GUI function set_model_data_main(model_data::ModelData,field,value) field_string::String = fix_QML_types(field) value_string::String = fix_QML_types(value) field = Symbol(field_string) value = Symbol(value_string) values = getproperty(model_data, field) if !(value in values) push!(values,value) end return nothing end set_model_data(field,values) = set_model_data_main(model_data,field,values) function get_model_data_main(model_data::ModelData,field,value) field_string = fix_QML_types(field) value_string = fix_QML_types(value) field = Symbol(field_string) values_string = string.(getproperty(model_data, field)) if value_string in values_string return true else return false end end get_model_data(field,value) = get_model_data_main(model_data,field,value) function rm_model_data_main(model_data::ModelData,field,value) field_string = fix_QML_types(field) value_string = fix_QML_types(value) field = Symbol(field_string) values = getproperty(model_data, field) values_string = string.(values) ind = findall(value_string.==values_string) if !isempty(ind) deleteat!(values,ind) end return nothing end rm_model_data(field,value) = rm_model_data_main(model_data,field,value) #---get_urls functions------------------------------------------------------ function get_urls_main(model_data::ModelData,preparation_data::PreparationData) if isempty(model_data.classes) @error "Classes are empty." return nothing end remove_urls() url_inputs = preparation_data.Urls.url_inputs url_labels = preparation_data.Urls.url_labels if input_type()==:image allowed_ext = ["png","jpg","jpeg"] end if problem_type()==:classification classification_data = preparation_data.ClassificationData input_urls,dirs,_ = get_urls1(url_inputs,allowed_ext) labels = map(class -> class.name,model_data.classes) dirs_raw = intersect(dirs,labels) intersection_bool = map(x-> x in labels,dirs_raw) if sum(intersection_bool)!=length(labels) inds = findall((!).(intersection_bool)) for i in inds @warn string(dirs_raw[i]," is not a name of one of the labels. The folder was ignored.") end dirs = dirs_raw[inds] input_urls = input_urls[inds] else dirs = dirs_raw input_urls = input_urls end if isempty(input_urls) @warn "The folder did not have any suitable data." else classification_data.Urls.input_urls = input_urls classification_data.Urls.label_urls = dirs return classification_data.Urls end elseif problem_type()==:regression regression_data = preparation_data.RegressionData input_urls_raw,_,filenames_inputs_raw = get_urls1(url_inputs,allowed_ext) input_urls = reduce(vcat,input_urls_raw) filenames_inputs = reduce(vcat,filenames_inputs_raw) filenames_labels,loaded_labels = load_regression_data(url_labels) intersect_regression_data!(input_urls,filenames_inputs,loaded_labels,filenames_labels) if isempty(input_urls) @warn "The folder did not have any suitable data." else regression_data.Urls.input_urls = input_urls regression_data.Urls.labels_url = url_labels regression_data.Urls.initial_data_labels = loaded_labels return regression_data.Urls end elseif problem_type()==:segmentation segmentation_data = preparation_data.SegmentationData input_urls_raw,label_urls_raw,_,_,_ = get_urls2(url_inputs,url_labels,allowed_ext) input_urls = reduce(vcat,input_urls_raw) label_urls = reduce(vcat,label_urls_raw) if isempty(input_urls) @warn "The folder did not have any suitable data." else segmentation_data.Urls.input_urls = input_urls segmentation_data.Urls.label_urls = label_urls return segmentation_data.Urls end end return nothing end #---prepare_data functions------------------------------------------------------------------- # Removes rows and columns from image sides if they are uniformly black. function crop_background(img::Array{Float32,3},label::BitArray{3}, threshold::Float64,closing_value::Int64) img_temp = mean(img,dims=3)[:,:] field = imfilter(img_temp.<threshold, Kernel.gaussian(4)).>0.5 field = closing!(field,closing_value) row_bool = (!).(alldim(field,1)) col_bool = (!).(alldim(field,2)) col1 = findfirst(col_bool) col2 = findlast(col_bool) row1 = findfirst(row_bool) row2 = findlast(row_bool) col1 = isnothing(col1) ? 1 : col1 col2 = isnothing(col2) ? size(img,1) : col2 row1 = isnothing(row1) ? 1 : row1 row2 = isnothing(row2) ? size(img,2) : row2 img = img[row1:row2,col1:col2,:] label = label[row1:row2,col1:col2,:] return img,label end function load_images(urls::Vector{String},channel::Channel) num = length(urls) imgs = Vector{Array{RGB{N0f8},2}}(undef,num) for i = 1:num imgs[i] = load_image(urls[i]) put!(channel,1) end return imgs end # Returns color for labels, whether should be combined with other # labels and whether border data should be obtained function get_class_data(classes::Vector{ImageSegmentationClass}) num = length(classes) class_names = Vector{String}(undef,num) class_parents = Vector{Vector{String}}(undef,num) labels_color = Vector{Vector{Float64}}(undef,num) labels_incl = Vector{Vector{Int64}}(undef,num) for i=1:num class = classes[i] class_names[i] = classes[i].name class_parents[i] = classes[i].parents labels_color[i] = class.color end for i=1:num labels_incl[i] = findall(any.(map(x->x.==class_parents[i],class_names))) end class_inds = Vector{Int64}(undef,0) for i = 1:num if !classes[i].overlap push!(class_inds,i) end end num = length(class_inds) border = Vector{Bool}(undef,num) border_thickness = Vector{Int64}(undef,num) for i in class_inds class = classes[i] border[i] = class.BorderClass.enabled border_thickness[i] = class.BorderClass.thickness end return class_inds,labels_color,labels_incl,border,border_thickness end # Augments images and labels using rotation and mirroring function augment(float_img::Array{Float32,3},size12::Tuple{Int64,Int64}, num_angles::Int64,mirroring_inds::Vector{Int64}) data = Vector{Array{Float32,3}}(undef,0) angles_range = range(0,stop=2*pi,length=num_angles+1) angles = collect(angles_range[1:end-1]) num = length(angles) for g = 1:num angle_val = angles[g] img2 = rotate_img(float_img,angle_val) size1_adj = size12[1]*0.9 size2_adj = size12[2]*0.9 num1 = Int64(floor(size(img2,1)/size1_adj)) num2 = Int64(floor(size(img2,2)/size2_adj)) step1 = Int64(floor(size1_adj/num1)) step2 = Int64(floor(size2_adj/num2)) num1 = max(num1-1,1) num2 = max(num2-1,1) for i = 1:num1 for j = 1:num2 ymin = (i-1)*step1+1 xmin = (j-1)*step2+1 I1 = img2[ymin:ymin+size12[1]-1,xmin:xmin+size12[2]-1,:] if std(I1)<0.01 continue else for h in mirroring_inds if h==1 I1_out = I1 else I1_out = reverse(I1, dims = 2) end data_out = I1_out if !isassigned(data_out) return nothing end push!(data,data_out) end end end end end return data end # Augments images and labels using rotation and mirroring function augment(float_img::Array{Float32,3},label::BitArray{3},size12::Tuple{Int64,Int64}, num_angles::Int64,min_fr_pix::Float64,mirroring_inds::Vector{Int64}) data = Vector{Tuple{Array{Float32,3},BitArray{3}}}(undef,0) lim = prod(size12)*min_fr_pix angles_range = range(0,stop=2*pi,length=num_angles+1) angles = collect(angles_range[1:end-1]) num = length(angles) for g = 1:num angle_val = angles[g] img2 = rotate_img(float_img,angle_val) label2 = rotate_img(label,angle_val) size1_adj = size12[1]*0.9 size2_adj = size12[2]*0.9 num1 = Int64(floor(size(img2,1)/size1_adj)) num1 = max(num1,1) num2 = Int64(floor(size(img2,2)/size2_adj)) num2 = max(num2,1) step1 = Int64(floor(size(img2,1)/num1)) step2 = Int64(floor(size(img2,2)/num2)) num1 = max(num1-1,1) num2 = max(num2-1,1) for i in 1:num1 for j in 1:num2 ymin = (i-1)*step1+1 xmin = (j-1)*step2+1 I1 = img2[ymin:ymin+size12[1]-1,xmin:xmin+size12[2]-1,:] I2 = label2[ymin:ymin+size12[1]-1,xmin:xmin+size12[2]-1,:] if std(I1)<0.01 || sum(I2)<lim continue else for h in mirroring_inds if h==1 I1_out = I1 I2_out = I2 elseif h==2 I1_out = reverse(I1, dims = 2) I2_out = reverse(I2, dims = 2) end data_out = (I1_out,I2_out) push!(data,data_out) end end end end end return data end function apply_normalization(model_data::ModelData,data::Vector{Array{Float32,N}}) where N model_data.normalization.args = (model_data.normalization.f(data)...,) end function prepare_data(model_data::ModelData,classification_data::ClassificationData, size12::Tuple{Int64,Int64},data_preparation_options::DataPreparationOptions, progress::Channel) num_angles = data_preparation_options.Images.num_angles mirroring_inds = Vector{Int64}(undef,0) if data_preparation_options.Images.mirroring append!(mirroring_inds,[1,2]) else push!(mirroring_inds,1) end input_urls = classification_data.Urls.input_urls label_urls = classification_data.Urls.label_urls labels = map(class -> class.name, model_data.classes) data_labels_initial = map((label,l) -> repeat([findfirst(label.==labels)],l),label_urls,length.(input_urls)) num = length(input_urls) # Get number of images num_all = sum(length.(input_urls)) # Return progress target value put!(progress, 2*num_all + 1) # Load images imgs = map(x -> load_images(x,progress),input_urls) # Initialize accumulators data_input = Vector{Vector{Array{Float32,3}}}(undef,num) data_label = Vector{Vector{Int32}}(undef,num) chunk_size = convert(Int64,round(num/num_threads())) @floop ThreadedEx(basesize = chunk_size) for k = 1:num current_imgs = imgs[k] num2 = length(current_imgs) label = data_labels_initial[k] data_input_temp = Vector{Vector{Array{Float32,3}}}(undef,num2) data_label_temp = Vector{Vector{Int32}}(undef,num2) for l = 1:num2 # Abort if requested #if check_abort_signal(channels.data_preparation_modifiers) # return nothing #end # Get a current image img_raw = current_imgs[l] # Convert to float if :grayscale in model_data.input_properties img = image_to_gray_float(img_raw) else img = image_to_color_float(img_raw) end # Augment images data = augment(img,size12,num_angles,mirroring_inds) data_input_temp[l] = data data_label_temp[l] = repeat([label[l]],length(data)) # Return progress put!(progress, 1) end data_input_flat_temp = reduce(vcat,data_input_temp) data_label_flat_temp = reduce(vcat,data_label_temp) data_input[k] = data_input_flat_temp data_label[k] = data_label_flat_temp end # Flatten input images and labels array data_input_flat = reduce(vcat,data_input) data_label_flat = reduce(vcat,data_label) # Normalize apply_normalization(model_data,data_input_flat) # Return results classification_data.Data.data_input = data_input_flat classification_data.Data.data_labels = data_label_flat # Return progress put!(progress, 1) return nothing end function prepare_data(model_data::ModelData,regression_data::RegressionData, size12::Tuple{Int64,Int64},data_preparation_options::DataPreparationOptions, progress::Channel) input_size = model_data.input_size num_angles = data_preparation_options.Images.num_angles mirroring_inds = Vector{Int64}(undef,0) if data_preparation_options.Images.mirroring append!(mirroring_inds,[1,2]) else push!(mirroring_inds,1) end input_urls = regression_data.Urls.input_urls initial_label_data = copy(regression_data.Urls.initial_data_labels) # Get number of images num = length(input_urls) # Return progress target value put!(progress, 2*num+1) num = length(input_urls) # Load images imgs = load_images(input_urls,progress) # Initialize accumulators data_input = Vector{Vector{Array{Float32,3}}}(undef,num) data_label = Vector{Vector{Vector{Float32}}}(undef,num) chunk_size = convert(Int64,round(num/num_threads())) @floop ThreadedEx(basesize = chunk_size) for k = 1:num # Abort if requested #if check_abort_signal(channels.data_preparation_modifiers) # return nothing #end # Get a current image img_raw = imgs[k] img_raw = imresize(img_raw,input_size[1:2]) # Get current label label = initial_label_data[k] # Convert to float if :grayscale in model_data.input_properties img = image_to_gray_float(img_raw) else img = image_to_color_float(img_raw) end # Augment images temp_input = augment(img,size12,num_angles,mirroring_inds) temp_label = repeat([label],length(temp_input)) data_input[k] = temp_input data_label[k] = temp_label # Return progress put!(progress, 1) end # Flatten input images and labels array data_input_flat = reduce(vcat,data_input) data_label_flat = reduce(vcat,data_label) # Normalize apply_normalization(model_data,data_input_flat) # Return results regression_data.Data.data_input = data_input_flat regression_data.Data.data_labels = data_label_flat # Return progress put!(progress, 1) return nothing end function prepare_data(model_data::ModelData,segmentation_data::SegmentationData, size12::Tuple{Int64,Int64},data_preparation_options::DataPreparationOptions, progress::Channel) classes = model_data.classes min_fr_pix = data_preparation_options.Images.min_fr_pix num_angles = data_preparation_options.Images.num_angles background_cropping = data_preparation_options.Images.BackgroundCropping mirroring_inds = Vector{Int64}(undef,0) if data_preparation_options.Images.mirroring append!(mirroring_inds,[1,2]) else push!(mirroring_inds,1) end input_urls = segmentation_data.Urls.input_urls label_urls = segmentation_data.Urls.label_urls # Get number of images num = length(input_urls) # Return progress target value put!(progress, 3*num+1) # Get class data class_inds,labels_color,labels_incl,border,border_thickness = get_class_data(classes) border_num = (border_thickness.-1).÷2 # Load images imgs = load_images(input_urls,progress) labels = load_images(label_urls,progress) # Initialize accumulators data_input = Vector{Vector{Array{Float32,3}}}(undef,num) data_label = Vector{Vector{Array{Float32,3}}}(undef,num) # Make input images chunk_size = convert(Int64,round(num/num_threads())) @floop ThreadedEx(basesize = chunk_size) for k = 1:num # Abort if requested #if check_abort_signal(channels.data_preparation_modifiers) # return nothing #end # Get current images img_raw = imgs[k] labelimg = labels[k] # Convert to float if :grayscale in model_data.input_properties img = image_to_gray_float(img_raw) else img = image_to_color_float(img_raw) end # Convert an image to BitArray label = label_to_bool(labelimg,class_inds,labels_color,labels_incl,border,border_num) # Crop to remove black background if background_cropping.enabled threshold = background_cropping.threshold closing_value = background_cropping.closing_value img,label = crop_background(img,label,threshold,closing_value) end # Augment images data = augment(img,label,size12,num_angles,min_fr_pix,mirroring_inds) data_input[k] = getfield.(data, 1) data_label[k] = getfield.(data, 2) # Return progress put!(progress, 1) end # Flatten input images and labels array data_input_flat = reduce(vcat,data_input) data_label_flat = reduce(vcat,data_label) # Normalize apply_normalization(model_data,data_input_flat) # Return results segmentation_data.Data.data_input = data_input_flat segmentation_data.Data.data_labels = data_label_flat # Return progress put!(progress, 1) return nothing end function prepare_data_main(model_data::ModelData, preparation_data::PreparationData,channels::Channels) # Initialize data_preparation_options = options.DataPreparationOptions size12 = model_data.input_size[1:2] if problem_type()==:classification data = preparation_data.ClassificationData elseif problem_type()==:regression data = preparation_data.RegressionData else # problem_type()==:segmentation data = preparation_data.SegmentationData end progress = channels.data_preparation_progress t = Threads.@spawn prepare_data(model_data,data,size12,data_preparation_options,progress) push!(preparation_data.tasks,t) return t end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
402
module Design # Import packages using # Machine Learning Flux, Flux.Losses, FluxExtra, FluxExtra.Normalizations, # Math functions Statistics, # EasyML ecosystem ..Common, ..Common.Design, ..Common.Layers import Flux.outputsize, ..Common.none # Include functions include(string(common_dir(),"/common/classes_design.jl")) include("main.jl") include("exported_functions.jl") export design_model end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
938
# Design """ design_model() Opens a GUI for creation of a model. """ function design_model() # Launches GUI @qmlfunction( # Handle classes model_count, model_get_layer_property, model_properties, # Model functions get_problem_type, set_problem_type, get_max_id, reset_layers, update_layers, make_model, check_model, move_model, save_model, load_model, # Model design arrange, # Data handling get_data, set_data, get_options, set_options, save_options, # Unit testing unit_test ) path_qml = string(@__DIR__,"/gui/Design.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
24863
#---Set up---------------------------------------------------------------------- model_count() = length(model_data.layers_info) function get_max_id_main(model_data::ModelData) if length(model_data.layers_info)>0 ids = map(x-> x.id, model_data.layers_info) return maximum(ids) else return 0 end end get_max_id() = get_max_id_main(model_data) model_properties(index) = string.(collect(fieldnames(typeof(model_data.layers_info[Int64(index)])))) function model_get_layer_property_main(model_data::ModelData,index,property_name) layer_info = model_data.layers_info[Int64(index)] property = getfield(layer_info,Symbol(property_name)) if typeof(property) <: Tuple return collect(property) end return property end model_get_layer_property(index,property_name) = model_get_layer_property_main(model_data,index,property_name) function reset_layers_main(design_data::DesignData) empty!(design_data.ModelData.layers_info) return nothing end reset_layers() = reset_layers_main(design_data::DesignData) #---Model import form QML---------------------------------------------------------------- function get_layer_info(layer_name::String) if layer_name=="Input" return InputInfo() elseif layer_name=="Output" return OutputInfo() elseif layer_name=="Convolution" return ConvInfo() elseif layer_name=="Transposed convolution" return TConvInfo() elseif layer_name=="Dense" return DenseInfo() elseif layer_name=="Drop-out" return DropoutInfo() elseif layer_name=="Batch normalization" return BatchNormInfo() elseif layer_name=="Leaky ReLU" return LeakyReLUInfo() elseif layer_name=="ELU" return ELUInfo() elseif layer_name=="Max pooling" || layer_name=="Average pooling" return PoolInfo() elseif layer_name=="Addition" return AdditionInfo() elseif layer_name=="Join" return JoinInfo() elseif layer_name=="Split" return SplitInfo() elseif layer_name=="Upsample" return UpsampleInfo() else return GenericInfo() end end function update_layers_main(design_data::DesignData,fields,values) layers_info = design_data.ModelData.layers_info fields = fix_QML_types(fields) values = fix_QML_types(values) layer_info = get_layer_info(values[8]) for i = 1:length(fields) value_raw = values[i] field = Symbol(fields[i]) type = typeof(getfield(layer_info,field)) if type <: Tuple eltypes = type.parameters l = length(eltypes) if layer_info isa InputInfo if length(value_raw)==2 push!(value_raw,1) end elseif length(eltypes)!=length(value_raw) if value_raw isa Array value_raw = repeat(value_raw,l) else value_raw = repeat([value_raw],l) end end value_array = map((T,x)->convert(T,x),eltypes,value_raw) value = Tuple(value_array) elseif (type<:Number) && (value_raw isa String) value = parse(type,value_raw) else value = convert(type,value_raw) end setproperty!(layer_info,field,value) end push!(layers_info,layer_info) return nothing end update_layers(fields,values) = update_layers_main(design_data::DesignData, fields,values) #---Topology constructors---------------------------------------------------------------- function topology_linear(layers_arranged::Vector,inds_arranged::Vector, layers::Vector{AbstractLayerInfo},connections::Vector{Array{Vector{Int64}}}, types::Vector{String},ind) push!(layers_arranged,layers[ind]) push!(inds_arranged,ind) ind = connections[ind] return ind end function topology_split(layers_arranged::Vector,inds_arranged::Vector, layers::Vector{AbstractLayerInfo},connections::Vector{Array{Vector{Int64}}}, connections_in::Vector{Vector{Int64}},types::Vector{String},ind) types_all = map(i -> types[i],ind) joining_types_bool = map(type -> all(type=="Join") || all(type=="Addition"),types_all) num = length(ind) par_inds = [] inds_return = [] par_layers_arranged = [] next_connections = connections[ind] unique_connections = unique(next_connections) if (length(unique_connections)!=length(ind)) && length(unique_connections)>1 ind_new = Vector{Vector}(undef, 0) joining_types_bool_new = [] con = unique_connections[1] for con in unique_connections bool_inds = map(next_con -> next_con==con,next_connections) new_cons = ind[bool_inds] push!(ind_new,new_cons) push!(joining_types_bool_new,joining_types_bool[bool_inds][1]) end ind = ind_new joining_types_bool = joining_types_bool_new num = length(ind_new) end for i = 1:num layers_temp = [] inds_temp = [] if joining_types_bool[i] && !allcmp(next_connections) push!(inds_return,ind[i]) push!(inds_temp,0) else if ind isa Vector{<:Vector} ind_temp = [ind[i]] else ind_temp = [[ind[i]]] end ind_out = get_topology_branches(layers_temp,inds_temp,layers, connections,connections_in,types,ind_temp)[1] push!(inds_return,ind_out) type = types[inds_return[i][1]] if type != "Join" && type != "Addition" return # Do not support this end end push!(par_layers_arranged,layers_temp) push!(par_inds,inds_temp) end push!(layers_arranged,par_layers_arranged) push!(inds_arranged,par_inds) return inds_return end function get_topology_branches(layers_arranged::Vector,inds_arranged::Vector, layers::Vector{AbstractLayerInfo},connections::Vector{Array{Vector{Int64}}}, connections_in::Vector{Vector{Int64}},types::Vector{String},ind) while !isempty.([ind])[1] numk = length(ind) if numk==1 if any(map(x -> x.=="Join" || x.=="Addition",types[vcat(vcat(ind...)...)])) if length(ind)==1 && length(ind[1])>1 ind = topology_split(layers_arranged,inds_arranged,layers, connections,connections_in,types,ind[1]) elseif length(ind)>1 && allcmp(ind[1]) ind_in_actual = connections_in[ind[1][1]] ind_in_arranged = vcat(vcat(inds_arranged[end]...)...) ind_0 = findfirst(ind_in_arranged.==0) if !isempty(ind_0) ind_in_arranged[ind_0] = vcat(vcat(inds_arranged[end-1]...)...) end inds_to_use = map(x -> findfirst(x.==ind_in_actual),ind_in_arranged) if inds_to_use!=1:length(inds_to_use) layers_arranged[end] = layers_arranged[end][inds_to_use] inds_arranged[end] = inds_arranged[end][inds_to_use] end ind = topology_linear(layers_arranged,inds_arranged, layers,connections,types,ind[1][1]) else return ind end else if length(ind[1])==1 ind = topology_linear(layers_arranged,inds_arranged, layers,connections,types,ind[1][1]) else ind = topology_split(layers_arranged,inds_arranged,layers, connections,connections_in,types,ind[1]) end end else if any(map(x -> x.=="Join" || x.=="Addition",types[vcat(vcat(ind...)...)])) if length(ind)>1 && allcmp(ind) ind_in_actual = connections_in[ind[1][1]] ind_in_arranged_raw = inds_arranged[end] ind_in_arranged = Vector{Int64}(undef,length(ind_in_actual)) for i = 1:length(ind_in_actual) ind_current = ind_in_arranged_raw[i] while true if ind_current isa Vector ind_current = ind_current[end] else break end end ind_in_arranged[i] = ind_current end ind_0 = findfirst(ind_in_arranged.==0) if !isnothing(ind_0) ind_in_arranged[ind_0] = vcat(vcat(inds_arranged[end-1]...)...)[1] end inds_to_use = map(x -> findfirst(x.==ind_in_actual),ind_in_arranged) if inds_to_use!=1:length(inds_to_use) layers_arranged[end] = layers_arranged[end][inds_to_use] inds_arranged[end] = inds_arranged[end][inds_to_use] end ind = topology_linear(layers_arranged,inds_arranged, layers,connections,types,ind[1][1]) elseif all(length.(ind).==1) ind = topology_split(layers_arranged,inds_arranged,layers, connections,connections_in,types,vcat(ind...)) else return end else if all(length.(ind).==1) ind = topology_split(layers_arranged,inds_arranged,layers, connections,connections_in,types,vcat(ind...)) else return ind end end end end return ind end function get_topology(model_data::DesignModelData) #layers = model_data.layers_info layers = design_data.ModelData.layers_info types = [layers[i].type for i = 1:length(layers)] ind_vec = findall(types .== "Input") if isempty(ind_vec) msg = "No input layer." @error msg push!(design_data.warnings,msg) return nothing,nothing elseif length(ind_vec)>1 msg = "More than one input layer." @error msg push!(design_data.warnings,msg) return nothing,nothing end connections = Vector{Array{Vector{Int64}}}(undef,0) connections_in = Vector{Vector{Int64}}(undef,0) for i = 1:length(layers) push!(connections,layers[i].connections_down) push!(connections_in,layers[i].connections_up) end ind = ind_vec[1] layers_arranged = [] inds_arranged = [] push!(layers_arranged,layers[ind]) push!(inds_arranged,ind) ind = connections[ind] ind = get_topology_branches(layers_arranged,inds_arranged,layers, connections,connections_in,types,ind) if isempty(inds_arranged[end]) inds_arranged = inds_arranged[1:end-1] end return layers_arranged, inds_arranged end #---Model visual representation constructors----------------------------------------------- function arrange_layer(coordinates::Array,coordinate::Array{Float64}, design_options::DesignOptions) coordinate[2] = coordinate[2] + design_options.min_dist_y + design_options.height push!(coordinates,coordinate) return coordinate end function arrange_branches(coordinates,coordinate::Vector{Float64}, design_options::DesignOptions,layers) num = layers isa AbstractLayerInfo ? 1 : length(layers) if num==1 coordinate = arrange_layer(coordinates,copy(coordinate),design_options) else max_num = ones(Int64,num) for i = 1:length(layers) temp1 = layers[i] for temp2 in temp1 if temp2 isa Vector width = length(temp2) if width>max_num[i] max_num[i] = width end end end end par_coordinates = [] x_coordinates = [] push!(x_coordinates,coordinate[1]) for i=2:num prev_layer_right = x_coordinates[end] .+ max_num[i-1]*design_options.width .+ (max_num[i-1]-1)*design_options.min_dist_x current_layer_left = prev_layer_right .+ (max_num[i]-1)*design_options.width .+ max_num[i]*design_options.min_dist_x push!(x_coordinates,current_layer_left) end x_coordinates = x_coordinates .- (mean([x_coordinates[1],x_coordinates[end]])-coordinate[1]) for i = 1:num temp_coordinates = [] temp_coordinate = [x_coordinates[i],coordinate[2]] if isempty(layers[i]) push!(temp_coordinates,[x_coordinates[i],coordinate[2]]) else for j = 1:length(layers[i]) temp_coordinate = arrange_branches(temp_coordinates,temp_coordinate, design_options,layers[i][j]) end end push!(par_coordinates,temp_coordinates) end push!(coordinates,copy(par_coordinates)) coordinate = [coordinate[1], maximum(map(x-> x[end],map(x -> x[end],par_coordinates)))] end return coordinate end function get_values!(values::Array,array::Array,cond_fun) for i=1:length(array) temp = array[i] if cond_fun(temp) get_values!(values,temp,cond_fun) else push!(values,temp) end end return nothing end function arrange_main(design_data::DesignData,design_options::DesignOptions) layers_arranged,inds_arranged = get_topology(design_data.ModelData) coordinates = [] coordinate = [layers_arranged[1].x,layers_arranged[1].y] push!(coordinates,coordinate) for i = 2:length(inds_arranged) layers = layers_arranged[i] coordinate = arrange_branches(coordinates, coordinate,design_options,layers) end coordinates_flattened = [] get_values!(coordinates_flattened,coordinates, x-> x isa Array && x[1] isa Array) inds_flattened = [] get_values!(inds_flattened,inds_arranged,x-> x isa Array) true_elements = inds_flattened.>0 coordinates_flattened = coordinates_flattened[true_elements] inds_flattened = inds_flattened[true_elements] return [coordinates_flattened,inds_flattened.-1] end arrange() = arrange_main(design_data,design_options) #---Model constructors-------------------------------------------------------------------- function getlinear(type::String, layer_info, in_size::Tuple{Int64,Int64,Int64}) if type == "Convolution" layer = Conv( layer_info.filter_size, in_size[3] => layer_info.filters, pad = SamePad(), stride = layer_info.stride, dilation = layer_info.dilation_factor ) out = outputsize(layer, (in_size...,1))[1:3] return (layer, out) elseif type == "Transposed convolution" layer = ConvTranspose( layer_info.filter_size, in_size[3] => layer_info.filters, pad = SamePad(), stride = layer_info.stride, dilation = layer_info.dilation_factor, ) out = outputsize(layer, (in_size...,1))[1:3] return (layer, out) elseif type == "Dense" layer = Dense(in_size[1], layer_info.filters) out = (layer_info.filters, in_size[2:3]...) return (layer, out) end end function getnorm(type::String, layer_info, in_size::Tuple{Int64,Int64,Int64}) if type == "Drop-out" return Dropout(layer_info.probability) elseif type == "Batch normalization" return BatchNorm(in_size[end], ϵ = Float32(layer_info.epsilon)) end end function getactivation(type::String, layer_info, in_size::Tuple{Int64,Int64,Int64}) if type == "ReLU" return Activation(relu) elseif type == "Leaky ReLU" return Activation(leakyrelu) elseif type == "ELU" return Activation(elu) elseif type == "Tanh" return Activation(tanh) elseif type == "Sigmoid" return Activation(sigmoid) end end function getpooling(type::String, layer_info, in_size::Tuple{Int64,Int64,Int64}) poolsize = layer_info.poolsize stride = layer_info.stride temp_layer = MaxPool(poolsize, stride=2) if type == "Max pooling" layer = MaxPool(poolsize, stride=stride, pad=SamePad()) elseif type == "Average pooling" layer = MeanPool(poolsize, stride=stride, pad=SamePad()) end out12 = in_size./stride out = (Int64(out12[1]),Int64(out12[2]),in_size[3]) return (layer,out) end function getresizing(type::String, layer_info, in_size) if type == "Addition" if in_size[1]==in_size[2] out = (in_size[1][1], in_size[1][2], in_size[1][3]) return (Addition(), out) else msg = string("Cannot add arrays with sizes ",in_size[1]," and ",in_size[2],".") @error msg return nothing,nothing end elseif type == "Join" dim = layer_info.dimension dims = collect(1:3) deleteat!(dims,dim) temp_size = map(x-> getindex(x,dims),in_size) if temp_size[1]==temp_size[2] new_size = Array{Int64}(undef, length(in_size)) for i = 1:length(in_size) new_size[i] = in_size[i][dim] end new_size = sum(new_size) if dim == 1 out = (new_size, in_size[1][2], in_size[1][3]) elseif dim == 2 out = (in_size[1][1], new_size, in_size[1][3]) elseif dim == 3 out = (in_size[1][1], in_size[1][2], new_size) end return (Join(dim), out) else msg = string("Cannot join arrays with sizes ",in_size[1]," and ",in_size[2],".") @error msg return nothing,nothing end elseif type == "Split" local out_size dim = layer_info.dimension nout = layer_info.outputs if dim == 1 out = (in_size[1] / nout, in_size[2:3]...) elseif dim == 2 out = (in_size[1], in_size[2] / nout, in_size[3]) elseif dim == 3 out = (in_size[1], in_size[2], in_size[3] / nout) end if ceil.(out)==out return (Split(nout, dim), Int64.(out)) else msg = string("Size should be a tuple of integers.") @error msg return nothing,nothing end elseif type == "Upsample" multiplier = layer_info.multiplier dims = layer_info.dimensions out = [in_size...] for i in dims out[i] = out[i] * multiplier end out = (out...,) return (Upsample(scale = multiplier), out) elseif type == "Flatten" out = (prod(in_size), 1, 1) return (Flatten(), out) end end function getlayer(layer, in_size) if layer.group == "linear" layer_f, out = getlinear(layer.type, layer, in_size) elseif layer.group == "norm" layer_f = getnorm(layer.type, layer, in_size) out = in_size elseif layer.group == "activation" layer_f = getactivation(layer.type, layer, in_size) out = in_size elseif layer.group == "pooling" layer_f, out = getpooling(layer.type, layer, in_size) elseif layer.group == "resizing" layer_f, out = getresizing(layer.type, layer, in_size) end return (layer_f, out) end function getbranch(layer_params,in_size) num = layer_params isa AbstractLayerInfo ? 1 : length(layer_params) if num==1 layer, in_size = getlayer(layer_params, in_size) if isnothing(layer) return nothing,nothing end else par_layers = [] par_size = [] for i = 1:num if in_size isa Array temp_size = in_size[i] else temp_size = in_size end if isempty(layer_params[i]) temp_layers = [Identity()] else temp_layers = [] for j = 1:length(layer_params[i]) layer,temp_size = getbranch(layer_params[i][j],temp_size) if isnothing(layer) return nothing,nothing end push!(temp_layers,layer) end end if length(temp_layers)>1 push!(par_layers,Chain(temp_layers...)) else push!(par_layers,temp_layers[1]) end push!(par_size,temp_size) end layer = Parallel(tuple,(par_layers...,)) in_size = par_size end return layer,in_size end function make_model_main(design_data::DesignData) model_data_design = design_data.ModelData layers_arranged,_ = get_topology(model_data_design) if isnothing(layers_arranged) msg = "Something went wrong during model topology analysis." @error msg push!(design_data.warnings, msg) return false elseif layers_arranged[end].type!="Output" msg = "No output layer." @error msg push!(design_data.warnings, msg) return false end input_layer_info = layers_arranged[1] in_size = (input_layer_info.size...,) model_data_design.input_size = in_size normalization_ind = input_layer_info.normalization + 1 model_data_design.normalization.f = get_normalization(normalization_ind) model_data_design.normalization.args = () popfirst!(layers_arranged) loss_ind = layers_arranged[end].loss + 1 model_data_design.loss = get_loss(loss_ind) pop!(layers_arranged) model_layers = [] for i = 1:length(layers_arranged) layer_params = layers_arranged[i] layer,in_size = getbranch(layer_params,in_size) if isnothing(layer) msg = "Something went wrong during Flux model creation." @error msg push!(design_data.warnings, msg) return false end push!(model_layers,layer) end model_data_design.model = Chain(model_layers...) return true end make_model() = make_model_main(design_data) function check_model_main(design_data::DesignData) model_data_design = design_data.ModelData input = zeros(Float32,model_data_design.input_size...,1) try output = model_data_design.model(input) output_size_temp = size(output) if length(output_size_temp)==2 output_size = (output_size_temp...,1) else output_size = size(output)[1:end-1] end model_data_design.output_size = output_size if problem_type()==:classification && (output_size[2]!=1 && output_size[3]!=1) @error "Use flatten before an output. Otherwise, the model will not function correctly." push!(design_data.warnings,"Use flatten before an output. Otherwise, the model will not function correctly.") return false end catch e print(e) @error e push!(design_data.warnings,"Something is wrong with your model.") return false end end check_model() = check_model_main(design_data) function move_model_main(model_data::ModelData,design_data::DesignData) model_data2 = design_data.ModelData model_data.model = deepcopy(model_data2.model) model_data.layers_info = deepcopy(model_data2.layers_info) model_data.input_size = model_data2.input_size model_data.output_size = model_data2.output_size model_data.loss = model_data2.loss design_data.ModelData = DesignModelData() end move_model() = move_model_main(model_data,design_data) #---Input normalization-------------------------------------------------------- function get_normalization(ind::Int64) normalizations = (none,norm_01!,norm_negpos1!,norm_zerocenter!,norm_zscore!) return normalizations[ind] end #---Losses--------------------------------------------------------------------- function get_loss(ind::Int64) losses = (mae,mse,msle,huber_loss,crossentropy,logitcrossentropy,binarycrossentropy, logitbinarycrossentropy,kldivergence,poisson_loss,hinge_loss,squared_hinge_loss, dice_coeff_loss,tversky_loss) return losses[ind] end #---Other---------------------------------------------------------------------- function allcmp(inds) for i = 1:length(inds) if inds[1][1] != inds[i][1] return false end end return true end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
722
module Training # Import packages using # Interfacing CUDA, Qt5Charts_jll, # Data structuring Dates, # Machine learning Flux, FluxExtra, # Math functions Random, StatsBase, LinearAlgebra, Combinatorics, Distances, # EasyML ecosystem ..Common, ..Common.Training import CUDA.CuArray, StatsBase.std import ..Common.DataPreparation: ClassificationData, RegressionData, SegmentationData # Include functions include(string(common_dir(),"/common/training_validation.jl")) include("main.jl") include("exported_functions.jl") export training_options, TrainingOptions, training_results_data export set_weights, set_training_data, set_testing_data, train, remove_training_data, remove_testing_data, remove_training_results end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
7707
""" change(training_options::TrainingOptions) Allows to change `training_options` in a GUI. """ function Common.change(data::TrainingOptions) @qmlfunction( get_data, get_options, set_options, save_options, unit_test ) path_qml = string(@__DIR__,"/gui/TrainingOptions.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end """ set_training_data(data_input::Vector,data_labels::Vector) Sets data for training. """ function set_training_data(data_input::Vector,data_labels::Vector) l_input = length(data_input) l_labels = length(data_labels) if l_labels!=l_labels err = string("Input data length does not equal label data length. ",l_input," vs ",l_labels,".") error(err) end if problem_type()==:classification training_data.ClassificationData.Data.data_input = data_input training_data.ClassificationData.Data.data_labels = data_labels elseif problem_type()==:regression training_data.RegressionData.Data.data_input = data_input training_data.RegressionData.Data.data_labels = data_labels else # Segmentation training_data.SegmentationData.Data.data_input = data_input training_data.SegmentationData.Data.data_labels = data_labels end return nothing end """ set_testing_data(data_input::Vector,data_labels::Vector) Sets data for testing. """ function set_testing_data(data_input::Vector,data_labels::Vector) l_input = length(data_input) l_labels = length(data_labels) if l_labels!=l_labels err = string("Input data length does not equal label data length. ",l_input," vs ",l_labels,".") error(err) end if problem_type()==:classification testing_data.ClassificationData.Data.data_input = data_input testing_data.ClassificationData.Data.data_labels = data_labels elseif problem_type()==:regression testing_data.RegressionData.Data.data_input = data_input testing_data.RegressionData.Data.data_labels = data_labels else # Segmentation testing_data.SegmentationData.Data.data_input = data_input testing_data.SegmentationData.Data.data_labels = data_labels end return nothing end function get_train_test_inds(num::Int64,fraction::Float64) inds = randperm(num) # Get shuffled indices ind_last_test = convert(Int64,round(fraction*num)) inds_train = inds[ind_last_test+1:end] inds_test = inds[1:ind_last_test] if isempty(inds_test) @warn string("Fraction of ",fraction," from ",num, " files is 0. Increase the fraction of data used for testing to at least ",round(1/num,digits=2),".") end return inds_train,inds_test end function set_testing_data_main(training_data::TrainingData,testing_data::TestingData,training_options::TrainingOptions) if problem_type()==:classification specific_training_data = training_data.ClassificationData.Data specific_testing_data = testing_data.ClassificationData.Data elseif problem_type()==:regression specific_training_data = training_data.RegressionData.Data specific_testing_data = testing_data.RegressionData.Data else # :segmentation specific_training_data = training_data.SegmentationData.Data specific_testing_data = testing_data.SegmentationData.Data end num = length(specific_training_data.data_input) fraction = training_options.Testing.test_data_fraction inds_train,inds_test = get_train_test_inds(num,fraction) specific_testing_data.data_input = specific_training_data.data_input[inds_test] specific_testing_data.data_labels = specific_training_data.data_labels[inds_test] specific_training_data.data_input = specific_training_data.data_input[inds_train] specific_training_data.data_labels = specific_training_data.data_labels[inds_train] return nothing end """ set_testing_data() A fraction of training data also specified in training options is set aside for testing. """ set_testing_data() = set_testing_data_main(training_data,testing_data,training_options) function set_weights_main(ws_in::Vector{<:Real},training_data::TrainingData) if isempty(ws_in) training_data.weights = Vector{Float32}(undef,0) return nothing end ws = convert(Vector{Float32},ws_in) s = sum(ws) if s==1 training_data.weights = ws else training_data.weights = ws/s end return nothing end """ set_weights(ws::Vector{<:Real}) Set weights for weight accuracy to `ws`. If `sum(ws) ≠ 1` then it is adjusted to be so. If weights are not specified then inverse frequency of labesl is used. """ set_weights(ws) = set_weights_main(ws,training_data) """ train() Opens a GUI where training progress can be observed. Training parameters such as a number of epochs, learning rate and a number of tests per epoch can be changed during training. """ function train() if problem_type()==:classification data_train = training_data.ClassificationData.Data.data_input data_test = testing_data.ClassificationData.Data.data_input elseif problem_type()==:regression data_train = training_data.RegressionData.Data.data_input data_test = testing_data.RegressionData.Data.data_input else # :segmentation data_train = training_data.SegmentationData.Data.data_input data_test = testing_data.SegmentationData.Data.data_input end if isempty(data_train) @error "No training data." return nothing end training_data.OptionsData.run_test = !isempty(data_test) empty_channel(:training_start_progress) empty_channel(:training_progress) empty_channel(:training_modifiers) t = train_main2(model_data,all_data,options,channels) # Launches GUI @qmlfunction( # Data handling set_data, get_data, get_options, get_progress, put_channel, # Training related set_training_starting_time, training_elapsed_time, # Other yield, time, unit_test ) path_qml = string(@__DIR__,"/gui/TrainingPlot.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() state,err = check_task(t) if state==:error @warn string("Training aborted due to the following error: ",err) end return training_data.Results end function remove_data(some_data::T) where T<:Union{TrainingData,TestingData} fields = [:data_input,:data_labels] for field in fields empty!(getfield(some_data.ClassificationData.Data,field)) empty!(getfield(some_data.RegressionData.Data,field)) empty!(getfield(some_data.SegmentationData.Data,field)) end fields = fieldnames(T)[4:end] for field in fields data = getfield(some_data,field) if data isa Array empty!(data) end end return nothing end """ remove_training_data() Removes all training data except for result. """ remove_training_data() = remove_data(training_data) """ remove_testing_data() Removes all testing data. """ remove_testing_data() = remove_data(testing_data) """ remove_training_results() Removes training results. """ function remove_training_results() data = training_data.Results fields = fieldnames(TrainingResultsData) for field in fields empty!(getfield(data, field)) end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
25983
# Set training starting time function time() date = string(now()) date = date[1:19] date = replace(date,"T"=>" ") return date end function set_training_starting_time_main(training_plot_data::TrainingPlotData) training_plot_data.starting_time = now() return nothing end set_training_starting_time() = set_training_starting_time_main(training_plot_data) # Calculates the time elapsed from the begining of training function training_elapsed_time_main(training_plot_data::TrainingPlotData) dif = (now() - training_plot_data.starting_time).value hours = string(Int64(floor(dif/3600000))) minutes_num = floor(dif/60000) minutes = string(Int64(minutes_num - floor(minutes_num/60)*60)) if length(minutes)<2 minutes = string("0",minutes) end seconds_num = round(dif/1000) seconds = string(Int64(seconds_num - floor(seconds_num/60)*60)) if length(seconds)<2 seconds = string("0",seconds) end return string(hours,":",minutes,":",seconds) end training_elapsed_time() = training_elapsed_time_main(training_plot_data) #--- # Creates data sets for training and testing function get_sets(norm_func::Function, typed_training_data::T,typed_testing_data::T) where T<:Union{ClassificationData,RegressionData,SegmentationData} map(x -> norm_func(x), typed_training_data.Data.data_input) map(x -> norm_func(x), typed_testing_data.Data.data_input) train_set = (typed_training_data.Data.data_input,typed_training_data.Data.data_labels) test_set = (typed_testing_data.Data.data_input,typed_testing_data.Data.data_labels) return train_set, test_set end # Creates a minibatch function make_minibatch_inds(num_data::Int64,batch_size::Int64) # Calculate final index num = num_data - batch_size val = Int64(max(0.0,floor(num/batch_size))) finish = val*batch_size # Get indices inds_start = collect(0:batch_size:finish) inds_all = collect(1:num_data) # Number of indices num = length(inds_start) return inds_start,inds_all,num end #---------------- function make_minibatch(data_input::Vector{Array{Float32,N}},data_labels::Vector{Int32}, max_labels::Int64,batch_size::Int64,inds_start::Vector{Int64}, inds_all::Vector{Int64},i::Int64) where N ind = inds_start[i] # First and last minibatch indices ind1 = ind+1 ind2 = ind+batch_size # Get inputs and labels current_inds = inds_all[ind1:ind2] l = length(current_inds) current_input = Vector{Array{Float32,N+1}}(undef,l) current_labels = Vector{Array{Float32,2}}(undef,l) for j = 1:l ind = current_inds[j] temp = zeros(Float32,max_labels) ind_temp = data_labels[ind] temp[ind_temp] = 1 current_labels[j] = add_dim(temp) current_input[j] = add_dim(data_input[ind]) end # Catenating inputs and labels ncat = (x,y)->cat(x,y, dims=Val(N+1)) current_input_cat = reduce(ncat,current_input) current_labels_cat = reduce(hcat,current_labels) # Form a minibatch return (current_input_cat,current_labels_cat) end function make_minibatch(data_input::Vector{Array{Float32,N1}},data_labels::Vector{Array{Float32,N2}}, max_labels::Int64,batch_size::Int64,inds_start::Vector{Int64}, inds_all::Vector{Int64},i::Int64) where {N1,N2} ind = inds_start[i] # First and last minibatch indices ind1 = ind+1 ind2 = ind+batch_size # Get inputs and labels current_inds = inds_all[ind1:ind2] l = length(current_inds) current_input = Vector{Array{Float32,N1+1}}(undef,l) current_labels = Vector{Array{Float32,N2+1}}(undef,l) for j = 1:l ind = current_inds[j] current_labels[j] = add_dim(data_labels[ind]) current_input[j] = add_dim(data_input[ind]) end # Catenating inputs and labels ncat1 = (x,y)->cat(x,y, dims=Val(N1+1)) ncat2 = (x,y)->cat(x,y, dims=Val(N2+1)) input_cat = reduce(ncat1,current_input) labels_cat = reduce(ncat2,current_labels) return (input_cat,labels_cat) end function make_minibatch(data_input::Vector{Array{Float32,N1}},data_labels_bool::Vector{BitArray{N2}}, max_labels::Int64,batch_size::Int64,inds_start::Vector{Int64}, inds_all::Vector{Int64},i::Int64) where {N1,N2} ind = inds_start[i] # First and last minibatch indices ind1 = ind+1 ind2 = ind+batch_size # Get inputs and labels current_inds = inds_all[ind1:ind2] l = length(current_inds) current_input = Vector{Array{Float32,N1+1}}(undef,l) current_labels = Vector{Array{Float32,N2+1}}(undef,l) for j = 1:l ind = current_inds[j] data_labels_temp = convert(Array{Float32,N2},data_labels_bool[ind]) current_labels[j] = add_dim(data_labels_temp) current_input[j] = add_dim(data_input[ind]) end # Catenating inputs and labels ncat1 = (x,y)->cat(x,y, dims=Val(N1+1)) ncat2 = (x,y)->cat(x,y, dims=Val(N2+1)) input_cat = reduce(ncat1,current_input) labels_cat = reduce(ncat2,current_labels) # Form a minibatch minibatch = (input_cat,labels_cat) return minibatch end #---------------- # Reset training related data accumulators function reset_training_data(training_data::TrainingData) training_data.warnings = String[] training_data.errors = String[] training_plot_data = training_data.PlotData training_results_data = training_data.Results training_results_data.accuracy = Float32[] training_results_data.loss = Float32[] training_results_data.test_accuracy = Float32[] training_results_data.test_loss = Float32[] training_plot_data.iteration = 0 training_plot_data.epoch = 0 training_plot_data.iterations_per_epoch = 0 training_plot_data.starting_time = now() training_plot_data.max_iterations = 0 training_plot_data.learning_rate_changed = false return nothing end function clean_up_training(training_plot_data::TrainingPlotData) training_plot_data.iteration = 0 training_plot_data.epoch = 0 training_plot_data.iterations_per_epoch = 0 training_plot_data.starting_time = now() training_plot_data.max_iterations = 0 training_plot_data.learning_rate_changed = false end #--- # Returns an optimiser with preset parameters function get_optimiser(training_options::TrainingOptions) # List of possible optimisers optimisers = (Descent,Momentum,Nesterov,RMSProp,ADAM, RADAM,AdaMax,ADAGrad,ADADelta,AMSGrad,NADAM,ADAMW) optimiser_names = (:Descent,:Momentum,:Nesterov,:RMSProp,:ADAM, :RADAM,:AdaMax,:ADAGrad,:ADADelta,:AMSGrad,:NADAM,:ADAMW) # Get optimiser index optimiser_ind = findfirst(training_options.Hyperparameters.optimiser.==optimiser_names) # Get optimiser parameters parameters_in = training_options.Hyperparameters.optimiser_params # Get learning rate learning_rate = training_options.Hyperparameters.learning_rate # Collect optimiser parameters and learning rate if length(parameters_in)==0 parameters = [learning_rate] elseif length(parameters_in)==1 parameters = [learning_rate,parameters_in[1]] elseif length(parameters_in)==2 parameters = [learning_rate,(parameters_in[1],parameters_in[2])] else parameters = [learning_rate,(parameters_in[1],parameters_in[2]),parameters_in[3]] end # Get optimiser function optimiser_func = optimisers[optimiser_ind] # Initialize optimiser with parameters optimiser = optimiser_func(parameters...) return optimiser end #---Weights--------------------------------------------------------------------- function calculate_weights(counts::Vector{Int64}) frequencies = counts./sum(counts) inv_frequencies = 1 ./frequencies weights64 = inv_frequencies./sum(inv_frequencies) weights = convert(Vector{Float32},weights64) return weights end function get_weights(model_data::ModelData,classification_data::ClassificationData) data_labels = classification_data.Data.data_labels num = length(model_data.classes) counts = zeros(Int64,num) for data in data_labels counts[data] += 1 end weights = calculate_weights(counts) return weights end function get_weights(model_data::ModelData,regression_data::RegressionData) weights = Vector{Float32}(undef,0) return weights end function get_weights(model_data::ModelData,segmentation_data::SegmentationData) data_labels = segmentation_data.Data.data_labels num = size(data_labels[1],3) counts = zeros(Int64,num) for data in data_labels counts .+= collect(Iterators.flatten(sum(data,dims = [1,2]))) end weights = calculate_weights(counts) return weights end #--- function minibatch_part(data_input,data_labels,max_labels,epochs,num,inds_start,inds_all, counter,run_test,data_input_test,data_labels_test,inds_start_test,inds_all_test,counter_test, num_test,batch_size,minibatch_channel,minibatch_test_channel,testing_mode,abort) epoch_idx = 1 iteration_local = 0 iteration_test_local = 0 # Data preparation while true # Shuffle indices inds_start_sh = shuffle!(inds_start) inds_all_sh = shuffle!(inds_all) if run_test inds_start_test_sh = shuffle!(inds_start_test) inds_all_test_sh = shuffle!(inds_all_test) end cnt = 0 while true while epoch_idx<=epochs[] numel_channel = (iteration_local-counter.iteration) if numel_channel<10 iteration_local += 1 cnt += 1 minibatch = make_minibatch(data_input,data_labels,max_labels,batch_size, inds_start_sh,inds_all_sh,cnt) put!(minibatch_channel,minibatch) break elseif run_test && testing_mode[] break else sleep(0.01) end end if run_test && testing_mode[] cnt_test = 0 while true numel_test_channel = (iteration_test_local-counter_test.iteration) if numel_test_channel<10 cnt_test += 1 iteration_test_local += 1 minibatch = make_minibatch(data_input_test,data_labels_test,max_labels,batch_size, inds_start_test_sh,inds_all_test_sh,cnt_test) put!(minibatch_test_channel,minibatch) else sleep(0.01) end if cnt_test==num_test Threads.atomic_xchg!(testing_mode, false) break end end end sleep(0.01) if abort[] return nothing end if cnt==num break end end # Update epoch counter epoch_idx += 1 end return nothing end function check_modifiers(model_data,model,model_name,accuracy_vector, loss_vector,allow_lr_change,composite,opt,i,num,epochs,max_iterations, num_tests,global_iteration_test,modifiers_channel,abort;gpu=false) while isready(modifiers_channel) modifs = take!(modifiers_channel) modif1 = modifs[1] if modif1==0 # stop Threads.atomic_xchg!(abort, true) # Save model if gpu==true model_data.model = cpu(model) else model_data.model = model end save_model(model_name) break elseif modif1==1 # learning rate if allow_lr_change if composite opt[1].eta = convert(Float64,modifs[2]) else opt.eta = convert(Float64,modifs[2]) end end elseif modif1==2 # epochs new_epochs::Int64 = convert(Int64,modifs[2]) new_max_iterations::Int64 = convert(Int64,new_epochs*num) Threads.atomic_xchg!(epochs, new_epochs) Threads.atomic_xchg!(max_iterations, new_max_iterations) resize!(accuracy_vector,max_iterations[]) resize!(loss_vector,max_iterations[]) elseif modif1==3 # number of tests num_tests::Float64 = modifs[2] frequency = num/num_tests global_iteration_test = floor(i/frequency) end end return num_tests,global_iteration_test end function teach!(model::Chain,loss::Function,opt,input_data::AbstractArray{Float32},actual::AbstractArray{Float32}) local predicted local loss_val ps = Flux.Params(Flux.params(model)) # Calculate gradient gs = gradient(ps) do predicted = model(input_data) loss_val = loss(predicted,actual) end # Update weights Flux.Optimise.update!(opt,ps,gs) return predicted,loss_val end function training_part(model_data,model,model_name,opt,accuracy,loss,T_out,move_f, accuracy_vector,loss_vector,counter,accuracy_test_vector,loss_test_vector, iteration_test_vector,counter_test,num_test,epochs,num,max_iterations, num_tests,allow_lr_change,composite,run_test,minibatch_channel, minibatch_test_channel,channels,use_GPU,testing_mode,abort) epoch_idx = 1 while epoch_idx<=epochs[] global_iteration_test = 0 for i = 1:num counter() iteration = counter.iteration # Prepare training data local minibatch_data::eltype(minibatch_channel.data) while true # Update parameters or abort if needed if isready(channels.training_modifiers) num_tests,iteration_global_counter = check_modifiers(model_data,model,model_name, accuracy_vector,loss_vector,allow_lr_change,composite,opt,i,num,epochs, max_iterations,num_tests,global_iteration_test, channels.training_modifiers,abort;gpu=use_GPU) if abort[]==true return nothing end end if isready(minibatch_channel) minibatch_data = take!(minibatch_channel) break else sleep(0.01) end end input_data = move_f(minibatch_data[1]) actual = move_f(minibatch_data[2]) # Teach the model predicted,loss_val = teach!(model,loss,opt,input_data,actual) # Calculate accuracy accuracy_val = accuracy(predicted,actual) # Return training information put!(channels.training_progress,("Training",accuracy_val,loss_val,iteration)) accuracy_vector[iteration] = accuracy_val loss_vector[iteration] = loss_val # Testing part if run_test && num_tests!=0 training_started_cond = i==1 && epoch_idx==1 num_tests_cond = i>global_iteration_test*ceil(num/num_tests) training_finished_cond = iteration==(max_iterations[]) # Test if testing frequency reached or training is done if num_tests_cond || training_started_cond || training_finished_cond global_iteration_test += 1 Threads.atomic_xchg!(testing_mode, true) # Calculate test accuracy and loss data_test = test(model,accuracy,loss,minibatch_test_channel,counter_test,num_test,move_f,abort) # Return testing information put!(channels.training_progress,("Testing",data_test...,iteration)) push!(accuracy_test_vector,data_test[1]) push!(loss_test_vector,data_test[2]) push!(iteration_test_vector,iteration) end end GC.safepoint() cleanup!(predicted) end # Update epoch counter epoch_idx += 1 # Save model model_data.model = cpu(model) save_model(model_name) end return nothing end function test(model::Chain,accuracy::Function,loss::Function,minibatch_test_channel::Channel, counter_test,num_test::Int64,move_f,abort) test_accuracy = Vector{Float32}(undef,num_test) test_loss = Vector{Float32}(undef,num_test) local minibatch_test_data::eltype(minibatch_test_channel.data) for j=1:num_test local minibatch_test_data::eltype(minibatch_test_channel) while true # Abort if needed if abort[]==true return [0.f0,0.f0] end if isready(minibatch_test_channel) minibatch_test_data = take!(minibatch_test_channel) break else sleep(0.01) end end # Update test counter counter_test() test_minibatch = move_f.(minibatch_test_data) predicted = model(test_minibatch[1]) actual = test_minibatch[2] test_accuracy[j] = accuracy(predicted,actual) test_loss[j] = loss(predicted,actual) cleanup!(predicted) end data = [mean(test_accuracy),mean(test_loss)] return data end function check_lr_change(opt,composite) if !composite allow_lr_change = hasproperty(opt, :eta) else allow_lr_change = hasproperty(opt2, :eta) end return convert(Bool,allow_lr_change) end mutable struct Counter iteration::Int Counter() = new(0) end (c::Counter)() = (c.iteration += 1) function train!(model_data::ModelData,train_set::Tuple{T1,T2},test_set::Tuple{T1,T2}, opt,accuracy::Function,loss::Function,all_data::AllData,use_GPU::Bool, num_tests::Float64,args::HyperparametersOptions,channels::Channels, tasks::Vector{Task}) where {N1,N2,T1<:Vector{Array{Float32,N1}}, T2<:Union{Array{Int32,N2},Vector{Array{Float32,N2}},Vector{BitArray{N2}}}} # Initialize constants epochs = Threads.Atomic{Int64}(args.epochs) batch_size = args.batch_size accuracy_vector = Vector{Float32}(undef,0) loss_vector = Vector{Float32}(undef,0) accuracy_test_vector = Vector{Float32}(undef,0) loss_test_vector = Vector{Float32}(undef,0) iteration_test_vector = Vector{Int64}(undef,0) max_iterations = Threads.Atomic{Int64}(0) counter = Counter() counter_test = Counter() run_test = length(test_set[1])!=0 && num_tests!=0 composite = hasproperty(opt, :os) allow_lr_change = check_lr_change(opt,composite) abort = Threads.Atomic{Bool}(false) testing_mode = Threads.Atomic{Bool}(true) model_name = string("models/",all_data.Urls.model_name,".model") # Initialize data data_input = train_set[1] data_labels = train_set[2] num_data = length(data_input) inds_start,inds_all,num = make_minibatch_inds(num_data,batch_size) data_input_test = test_set[1] data_labels_test = test_set[2] num_data_test = length(data_input_test) inds_start_test,inds_all_test,num_test = make_minibatch_inds(num_data_test,batch_size) Threads.atomic_xchg!(max_iterations, epochs[]*num) # Return epoch information resize!(accuracy_vector,max_iterations[]) resize!(loss_vector,max_iterations[]) put!(channels.training_start_progress,(epochs[],num,max_iterations[])) max_labels = length(model_data.classes) # Make channels output_N = N2+1 minibatch_channel = Channel{Tuple{Array{Float32,N1+1},Array{Float32,output_N}}}(Inf) minibatch_test_channel = Channel{Tuple{Array{Float32,N1+1},Array{Float32,output_N}}}(Inf) # Data preparation thread t = Threads.@spawn minibatch_part(data_input,data_labels,max_labels,epochs,num,inds_start, inds_all,counter,run_test,data_input_test,data_labels_test,inds_start_test, inds_all_test,counter_test,num_test,batch_size,minibatch_channel,minibatch_test_channel,testing_mode,abort) push!(tasks,t) # Training thread if use_GPU T_out = CuArray{Float32,output_N} model = Flux.gpu(model_data.model) move_f = CuArray else T_out = Array{Float32,output_N} model = model_data.model move_f = Identity() end training_part(model_data,model,model_name,opt,accuracy,loss,T_out,move_f,accuracy_vector, loss_vector,counter,accuracy_test_vector,loss_test_vector,iteration_test_vector, counter_test,num_test,epochs,num,max_iterations,num_tests,allow_lr_change,composite, run_test,minibatch_channel,minibatch_test_channel,channels,use_GPU,testing_mode,abort) # Stop data preparation thread Threads.atomic_xchg!(abort, true) # Return training information resize!(accuracy_vector,counter.iteration) resize!(loss_vector,counter.iteration) data = (accuracy_vector,loss_vector,accuracy_test_vector,loss_test_vector,iteration_test_vector) return data end function cleanup!(x::Array) return nothing end function cleanup!(x::CuArray) CUDA.unsafe_free!(x) return nothing end function get_data_struct(some_data::Union{TrainingData,TestingData}) if problem_type()==:classification data = some_data.ClassificationData elseif problem_type()==:regression data = some_data.RegressionData else # problem_type()==:segmentation data = some_data.SegmentationData end return data end function test_model(model_data,train_set,errors,use_GPU) input_data_raw = train_set[1][1] if problem_type()==:classification max_labels = length(model_data.classes) label_data = zeros(Float32,max_labels) ind = train_set[2][1] label_data[ind] = 1 else label_data = train_set[2][1] end if use_GPU model = gpu(model_data.model) input_data = CuArray(add_dim(input_data_raw)) else model = model_data.model input_data = add_dim(input_data_raw) end output = model(input_data) size_label = size(label_data) size_output = size(output)[1:end-1] if size_label!=size_output err = string("Label data has size ",size_label," while data returned by the model has size ",size_output,".") push!(errors,err) error(err) return true else model_data.input_size = size(input_data)[1:end-1] model_data.output_size = size_label return false end end # Main training function function train_main(model_data::ModelData,all_data::AllData,options::Options,channels::Channels) # Initialization GC.gc() training_data = all_data.TrainingData testing_data = all_data.TestingData training_options = options.TrainingOptions args = training_options.Hyperparameters use_GPU = false if options.GlobalOptions.HardwareResources.allow_GPU if has_cuda() use_GPU = true else warning = "No CUDA capable device was detected. Using CPU instead." @warn warning push!(training_data.warnings,warning) end end reset_training_data(training_data) # Check save directory if isempty(all_data.Urls.model_url) all_data.Urls.model_url = "models/new_model.model" all_data.Urls.model_name = "new_model" end # Preparing train and test sets typed_training_data = get_data_struct(training_data) typed_testing_data = get_data_struct(testing_data) normalization = model_data.normalization norm_func(x) = normalization.f(x,normalization.args...) train_set, test_set = get_sets(norm_func,typed_training_data,typed_testing_data) # Data testing if args.batch_size>length(train_set[1]) err = string("Input data size (",length(train_set[1]),") is smaller than the batch size (",args.batch_size,").") push!(training_data.errors,err) error(err) end # Model testing excp = test_model(model_data,train_set,training_data.errors,use_GPU) if excp return nothing end # Setting functions and parameters opt = get_optimiser(training_options) local ws::Vector{Float32} if training_options.Accuracy.weight_accuracy if training_options.Accuracy.accuracy_mode==:manual ws = training_data.weights l_ws = length(ws) l_data = size(train_set[2][1])[end] if l_ws!=l_data error = string("The number of weights is not equal to the number of channels. ",l_ws," vs ",l_data) @error error push!(training_data.errors,error) return nothing end else ws = get_weights(model_data,typed_training_data) end else ws = Vector{Float32}(undef,0) end accuracy = get_accuracy_func(ws,training_options) loss = model_data.loss num_tests = training_options.Testing.num_tests # Run training data = train!(model_data,train_set,test_set,opt,accuracy,loss, all_data,use_GPU,num_tests,args,channels,training_data.tasks) # Clean up clean_up_training(training_data.PlotData) # Return training results training_results_data = training_data.Results training_results_data.accuracy = data[1] training_results_data.loss = data[2] training_results_data.test_accuracy = data[3] training_results_data.test_loss = data[4] training_results_data.test_iteration = data[5] save_model(all_data.Urls.model_url) return nothing end function train_main2(model_data::ModelData,all_data::AllData,options::Options,channels::Channels) t = Threads.@spawn train_main(model_data,all_data,options,channels) push!(all_data.TrainingData.tasks,t) return t end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1074
module Validation # Import packages using # Interfacing CxxWrap, CUDA, # Data import/export FileIO, ImageIO, XLSX, CSVFiles, # Data manipulation Unicode, DataFrames, # Image manipulation Images, ColorTypes, # Machine learning Flux, Flux.Losses, FluxExtra, # Math functions Random, StatsBase, LinearAlgebra, # Other FLoops, # EasyML ecosystem ..Common, ..Common.Classes, ..Common.Validation import CUDA.CuArray, StatsBase.std import ..Classes import ..Classes: change_classes, num_classes, get_class_field, get_class_data, get_problem_type, get_input_type # Include functions include(string(common_dir(),"/common/training_validation.jl")) include(string(common_dir(),"/common/validation_application.jl")) include(string(common_dir(),"/common/preparation_validation.jl")) include(string(common_dir(),"/common/preparation_validation_application.jl")) include("main.jl") include("exported_functions.jl") export validation_options, ValidationOptions, validation_results_data export get_urls_validation, validate, remove_validation_data, remove_validation_results end
EasyML
https://github.com/OML-NPA/EasyML.jl.git