licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
7789
""" change(validation_options::ValidationOptions) Allows to change `validation_options` in a GUI. """ function Common.change(data::ValidationOptions) @qmlfunction( get_data, get_options, set_options, save_options, unit_test ) path_qml = string(@__DIR__,"/gui/ValidationOptions.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir) exec() return nothing end function get_urls_validation_main2(url_inputs::String,url_labels::String,validation_data::ValidationData) if !isdir(url_inputs) @error string(url_inputs," does not exist.") return nothing end if problem_type()==:classification || problem_type()==:segmentation if !isdir(url_labels) @error string(url_labels," does not exist.") return nothing end else if !isfile(url_labels) @error string(url_labels," does not exist.") return nothing end end validation_urls = validation_data.Urls validation_urls.url_inputs = url_inputs validation_urls.url_labels = url_labels validation_data.PlotData.use_labels = true get_urls_validation_main(model_data,validation_urls,validation_data) return nothing end """ get_urls_validation(url_inputs::String,url_labels::String) Gets URLs to all files present in both folders (or a folder and a file) specified by `url_inputs` and `url_labels` for validation. URLs are automatically saved to `EasyMLValidation.validation_data`. """ get_urls_validation(url_inputs,url_labels) = get_urls_validation_main2(url_inputs,url_labels,validation_data) function get_urls_validation_main2(url_inputs::String,validation_data) if !isdir(url_inputs) @error string(url_inputs," does not exist.") return nothing end validation_urls = validation_data.Urls validation_urls.url_inputs = url_inputs validation_data.PlotData.use_labels = false get_urls_validation_main(model_data,validation_urls,validation_data) return nothing end """ get_urls_validation(url_inputs::String) Gets URLs to all files present in a folders specified by `url_inputs` for validation. URLs are automatically saved to `EasyMLValidation.validation_data`. """ get_urls_validation(url_inputs) = get_urls_validation_main2(url_inputs,validation_data) function get_urls_validation_main2(validation_data::ValidationData) validation_urls = validation_data.Urls validation_urls.url_inputs = "" validation_urls.url_labels = "" dir = pwd() @info "Select a directory with input data." path = get_folder(dir) if !isempty(path) validation_urls.url_inputs = path @info string(validation_urls.url_inputs, " was selected.") else @error "Input data directory URL is empty. Aborted" return nothing end if problem_type()==:classification elseif problem_type()==:regression @info "Select a file with label data if labels are available." name_filters = ["*.csv","*.xlsx"] path = get_file(dir,name_filters) if !isempty(path) validation_urls.url_labels = path @info string(validation_urls.url_labels, " was selected.") else @warn "Label data URL is empty. Continuing without labels." end elseif problem_type()==:segmentation @info "Select a directory with label data if labels are available." path = get_folder(dir) if !isempty(path) validation_urls.url_labels = path @info string(validation_urls.url_labels, " was selected.") else @warn "Label data directory URL is empty. Continuing without labels." end end if validation_urls.url_labels!="" && problem_type()!=:classification validation_data.PlotData.use_labels = true else validation_data.PlotData.use_labels = false end get_urls_validation_main(model_data,validation_urls,validation_data) return nothing end """ get_urls_validation() Opens a folder/file dialog or dialogs to choose folders or folder and a file containing inputs and labels. Folder/file dialog for labels can be skipped if there are no labels available. URLs are automatically saved to `EasyMLValidation.validation_data`. """ get_urls_validation() = get_urls_validation_main2(validation_data) """ validate() Opens a GUI where validation progress and results can be observed. """ function validate() if model_data.model isa Chain{Tuple{}} @error "Model is empty." return nothing elseif isempty(model_data.classes) @error "Classes are empty." return nothing end if isempty(validation_data.Urls.input_urls) @error "No input urls. Run 'get_urls_validation'." return nothing end empty_channel(:validation_start) empty_channel(:validation_progress) empty_channel(:validation_modifiers) t = validate_main2(model_data,validation_data,options,channels) # Launches GUI @qmlfunction( # Handle classes num_classes, get_class_field, # Data handling get_problem_type, get_input_type, get_options, get_progress, put_channel, get_image_size, get_image_validation, get_data, # Other yield, unit_test ) f1 = CxxWrap.@safe_cfunction(display_original_image_validation, Cvoid,(Array{UInt32,1}, Int32, Int32)) f2 = CxxWrap.@safe_cfunction(display_label_image_validation, Cvoid,(Array{UInt32,1}, Int32, Int32)) path_qml = string(@__DIR__,"/gui/ValidationPlot.qml") gui_dir = string("file:///",replace(@__DIR__, "\\" => "/"),"/gui/") text = add_templates(path_qml) loadqml(QByteArray(text), gui_dir = gui_dir, display_original_image_validation = f1, display_label_image_validation = f2 ) exec() state,error = check_task(t) if state==:error @warn string("Validation aborted due to the following error: ",error) end # Clean up validation_data.PlotData.original_image = Array{RGB{N0f8},2}(undef,0,0) validation_data.PlotData.label_image = Array{RGB{N0f8},2}(undef,0,0) # Return results if input_type()==:image if problem_type()==:classification return validation_image_classification_results elseif problem_type()==:regression return validation_image_regression_results else # problem_type()==:segmentation return validation_image_segmentation_results end end end """ remove_validation_data() Removes all validation data except for result. """ function remove_validation_data() fields = fieldnames(ValidationUrls) for field in fields val = getproperty(validation_data.Urls, field) if val isa Array empty!(val) elseif val isa String setproperty!(validation_data.Urls, field, "") end end end """ remove_validation_results() Removes validation results. """ function remove_validation_results() data = validation_data.ImageClassificationResults fields = fieldnames(ValidationImageClassificationResults) for field in fields empty!(getfield(data, field)) end data = validation_data.ImageRegressionResults fields = fieldnames(ValidationImageRegressionResults) for field in fields empty!(getfield(data, field)) end data = validation_data.ImageSegmentationResults fields = fieldnames(ValidationImageSegmentationResults) for field in fields empty!(getfield(data, field)) end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
17502
#---Geting urls------------------------------------------------------------ function get_urls_validation_main(model_data::ModelData, validation_urls::ValidationUrls,validation_data::ValidationData) url_inputs = validation_urls.url_inputs url_labels = validation_urls.url_labels if input_type()==:image allowed_ext = ["png","jpg","jpeg"] end if problem_type()==:classification input_urls,dirs = get_urls1(url_inputs,allowed_ext) labels = map(class -> class.name,model_data.classes) if issubset(dirs,labels) validation_data.PlotData.use_labels = true labels_int = map((label,l) -> repeat([findfirst(label.==labels)],l),dirs,length.(input_urls)) validation_urls.labels_classification = reduce(vcat,labels_int) end elseif problem_type()==:regression input_urls_raw,_,filenames_inputs_raw = get_urls1(url_inputs,allowed_ext) input_urls = input_urls_raw[1] filenames_inputs = filenames_inputs_raw[1] if validation_data.PlotData.use_labels==true input_urls_copy = copy(input_urls) filenames_inputs_copy = copy(filenames_inputs) filenames_labels,loaded_labels = load_regression_data(validation_urls.url_labels) intersect_regression_data!(input_urls_copy,filenames_inputs_copy, loaded_labels,filenames_labels) if isempty(loaded_labels) validation_data.PlotData.use_labels = false @warn string("No file names in ",url_labels ," correspond to file names in ", url_inputs," . Files were loaded without labels.") else validation_urls.labels_regression = loaded_labels input_urls = input_urls_copy end end else # problem_type()==:segmentation if validation_data.PlotData.use_labels==true input_urls,label_urls,_,_,_ = get_urls2(url_inputs,url_labels,allowed_ext) validation_urls.label_urls = reduce(vcat,label_urls) else input_urls,_ = get_urls1(url_inputs,allowed_ext) end end validation_urls.input_urls = reduce(vcat,input_urls) return nothing end #---Data preparation------------------------------------------------------------ function prepare_validation_data(classes::Vector{ImageClassificationClass}, norm_func::Function,model_data::ModelData,ind::Int64,validation_data::ValidationData) local data_input_raw original_image = load_image(validation_data.Urls.input_urls[ind]) if size(original_image)!=model_data.input_size[1:2] original_image = fix_image_size(model_data,original_image) end if :grayscale in model_data.input_properties data_input_raw = image_to_gray_float(original_image) else data_input_raw = image_to_color_float(original_image) end norm_func(data_input_raw) data_input = data_input_raw[:,:,:,:] if validation_data.PlotData.use_labels num = length(classes) labels_temp = Vector{Float32}(undef,num) fill!(labels_temp,0) label_int = validation_data.Urls.labels_classification[ind] labels_temp[label_int] = 1 labels = reshape(labels_temp,:,1) else labels = Array{Float32,2}(undef,0,0) end return data_input,labels,original_image end function prepare_validation_data(classes::Vector{ImageRegressionClass}, norm_func::Function,model_data::ModelData,ind::Int64,validation_data::ValidationData) local data_input_raw original_image = load_image(validation_data.Urls.input_urls[ind]) if size(original_image)!=model_data.input_size[1:2] original_image = fix_image_size(model_data,original_image) end if :grayscale in model_data.input_properties data_input_raw = image_to_gray_float(original_image) else data_input_raw = image_to_color_float(original_image) end norm_func(data_input_raw) data_input = data_input_raw[:,:,:,:] if validation_data.PlotData.use_labels labels = reshape(validation_data.Urls.labels_regression[ind],:,1) else labels = Array{Float32,2}(undef,0,0) end return data_input,labels,original_image end function prepare_validation_data(classes::Vector{ImageSegmentationClass}, norm_func::Function,model_data::ModelData,ind::Int64,validation_data::ValidationData) local data_input_raw inds,labels_color,labels_incl,border,border_thickness = get_class_data(classes) original_image = load_image(validation_data.Urls.input_urls[ind]) if :grayscale in model_data.input_properties data_input_raw = image_to_gray_float(original_image) else data_input_raw = image_to_color_float(original_image) end norm_func(data_input_raw) data_input = data_input_raw[:,:,:,:] if validation_data.PlotData.use_labels label = load_image(validation_data.Urls.label_urls[ind]) label_bool = label_to_bool(label,inds,labels_color, labels_incl,border,border_thickness) data_label = convert(Array{Float32,3},label_bool)[:,:,:,:] else data_label = Array{Float32,4}(undef,1,1,1,1) end return data_input,data_label,original_image end #---Validation output processing--------------------------------------------- function get_error_image(predicted_bool_feat::BitArray{2},truth::BitArray{2}) correct = predicted_bool_feat .& truth false_pos = copy(predicted_bool_feat) false_pos[truth] .= false false_neg = copy(truth) false_neg[predicted_bool_feat] .= false s = (3,size(predicted_bool_feat)...) error_bool = BitArray{3}(undef,s) error_bool[1,:,:] .= false_pos error_bool[2,:,:] .= false_pos error_bool[1,:,:] = error_bool[1,:,:] .| false_neg error_bool[2,:,:] = error_bool[2,:,:] .| correct return error_bool end function compute(predicted_bool::BitArray{3}, label_bool::BitArray{3},labels_color::Vector{Vector{N0f8}}, num_feat::Int64,use_labels::Bool) num = size(predicted_bool,3) predicted_data = Vector{Tuple{BitArray{2},Vector{N0f8}}}(undef,num) target_data = Vector{Tuple{BitArray{2},Vector{N0f8}}}(undef,num) error_data = Vector{Tuple{BitArray{3},Vector{N0f8}}}(undef,num) color_error = ones(N0f8,3) for i = 1:num color = labels_color[i] predicted_bool_feat = predicted_bool[:,:,i] predicted_data[i] = (predicted_bool_feat,color) if validation_data.PlotData.use_labels if i>num_feat target_bool = label_bool[:,:,i-num_feat] else target_bool = label_bool[:,:,i] end target_data[i] = (target_bool,color) error_bool = get_error_image(predicted_bool_feat,target_bool) error_data[i] = (error_bool,color_error) end end return predicted_data,target_data,error_data end function output_images(predicted_bool::BitArray{3},label_bool::BitArray{3}, classes::Vector{<:AbstractClass},use_labels::Bool) class_inds,labels_color, _ ,border = get_class_data(classes) labels_color = labels_color[class_inds] labels_color_uint = convert(Vector{Vector{N0f8}},labels_color/255) inds_border = findall(border) border_colors = labels_color_uint[findall(border)] labels_color_uint = vcat(labels_color_uint,border_colors,border_colors) array_size = size(predicted_bool) num_feat = array_size[3] num_border = sum(border) if num_border>0 border_bool = apply_border_data(predicted_bool,classes) predicted_bool = cat(predicted_bool,border_bool,dims=Val(3)) end for i=1:num_border min_area = classes[inds_border[i]].min_area ind = num_feat + i if min_area>1 temp_array = predicted_bool[:,:,ind] areaopen!(temp_array,min_area) predicted_bool[:,:,ind] .= temp_array end end predicted_data,target_data,error_data = compute(predicted_bool,label_bool, labels_color_uint,num_feat,use_labels) return predicted_data,target_data,error_data end function process_output(predicted::AbstractArray{Float32,2},label::AbstractArray{Float32,2}, original_image::Array{RGB{N0f8},2},other_data::NTuple{2, Float32},classes::Vector{ImageClassificationClass}, validation_data::ValidationData,channels::Channels) class_names = map(x-> x.name,classes) predicted_vec = Iterators.flatten(predicted) predicted_int = findfirst(predicted_vec .== maximum(predicted_vec)) predicted_string = class_names[predicted_int] if validation_data.PlotData.use_labels label_vec = Iterators.flatten(label) label_int = findfirst(label_vec .== maximum(label_vec)) label_string = class_names[label_int] else label_string = "" end # Return data validation_results = validation_data.ImageClassificationResults push!(validation_results.original_images,original_image) push!(validation_results.predicted_labels,predicted_string) push!(validation_results.target_labels,label_string) push!(validation_results.accuracy,other_data[1]) push!(validation_results.loss,other_data[2]) # Update progress put!(channels.validation_progress,other_data) return nothing end function process_output(predicted::AbstractArray{Float32,2},label::AbstractArray{Float32,2}, original_image::Array{RGB{N0f8},2},other_data::NTuple{2, Float32},classes::Vector{ImageRegressionClass}, validation_data::ValidationData,channels::Channels) # Return data validation_results = validation_data.ImageRegressionResults push!(validation_results.original_images,original_image) push!(validation_results.predicted_labels,predicted[:]) push!(validation_results.target_labels,label[:]) push!(validation_results.accuracy,other_data[1]) push!(validation_results.loss,other_data[2]) # Update progress put!(channels.validation_progress,other_data) return nothing end function process_output(predicted::AbstractArray{Float32,4},data_label::AbstractArray{Float32,4}, original_image::Array{RGB{N0f8},2},other_data::NTuple{2, Float32},classes::Vector{ImageSegmentationClass}, validation_data::ValidationData,channels::Channels) predicted_bool = predicted[:,:,:].>0.5 label_bool = data_label[:,:,:].>0.5 # Get output data predicted_data,target_data,error_data = output_images(predicted_bool,label_bool,classes,validation_data.PlotData.use_labels) # Return data validation_results = validation_data.ImageSegmentationResults push!(validation_results.original_images,original_image) push!(validation_results.predicted_data,predicted_data) push!(validation_results.target_data,target_data) push!(validation_results.error_data,error_data) push!(validation_results.accuracy,other_data[1]) push!(validation_results.loss,other_data[2]) # Update progress put!(channels.validation_progress,other_data) return nothing end #---Image handling for QML-------------------------------------------------------- function bitarray_to_image(array_bool::BitArray{2},color::Vector{Normed{UInt8,8}}) s = size(array_bool) array = zeros(RGB{N0f8},s...) colorRGB = colorview(RGB,permutedims(color[:,:,:],(1,2,3)))[1] array[array_bool] .= colorRGB return collect(array) end function bitarray_to_image(array_bool::BitArray{3},color::Vector{Normed{UInt8,8}}) s = size(array_bool)[2:3] array_vec = Vector{Array{RGB{N0f8},2}}(undef,0) for i in 1:3 array_temp = zeros(RGB{N0f8},s...) color_temp = zeros(Normed{UInt8,8},3) color_temp[i] = color[i] colorRGB = colorview(RGB,permutedims(color_temp[:,:,:],(1,2,3)))[1] array_temp[array_bool[i,:,:]] .= colorRGB push!(array_vec,array_temp) end array = sum(array_vec) return collect(array) end # Saves image to the main image storage and returns its size function get_image_validation(fields,inds) fields = fix_QML_types(fields) inds = fix_QML_types(inds) image_data = Common.get_data_main(validation_data,fields,inds) if image_data isa Array{RGB{N0f8},2} image = image_data else image = bitarray_to_image(image_data...) end final_field = fields[end] if final_field=="original_images" validation_data.PlotData.original_image = image elseif any(final_field.==("predicted_data","target_data","error_data")) validation_data.PlotData.label_image = image end return [size(image)...] end function get_image_size(fields,inds) fields = fix_QML_types(fields) inds = fix_QML_types(inds) image_data = get_data(fields,inds) if image_data isa Array{RGB{N0f8},2} return [size(image_data)...] else return [size(image_data[1])...] end end function display_original_image_validation(buffer::Array{UInt32, 1},width::Int32,height::Int32) buffer = reshape(buffer, convert(Int64,width), convert(Int64,height)) buffer = reinterpret(ARGB32, buffer) image = validation_data.PlotData.original_image s = size(image) if size(buffer)==reverse(size(image)) || (s[1]==s[2] && size(buffer)==size(image)) buffer .= transpose(image) elseif size(buffer)==s buffer .= image end return end function display_label_image_validation(buffer::Array{UInt32, 1},width::Int32,height::Int32) buffer = reshape(buffer, convert(Int64,width), convert(Int64,height)) buffer = reinterpret(ARGB32, buffer) image = validation_data.PlotData.label_image if size(buffer)==reverse(size(image)) buffer .= transpose(image) end return end #---------------------------------------------------------------------------------- function get_weights(classes::Vector{<:AbstractClass},validation_options::ValidationOptions) if validation_options.Accuracy.weight_accuracy if problem_type()==:classification return map(class -> class.weight,classes) elseif problem_type()==:regression return Vector{Float32}(undef,0) else # problem_type()==:segmentation true_classes_bool = (!).(map(class -> class.overlap, classes)) classes = classes = classes[true_classes_bool] weights = map(class -> class.weight,classes) borders_bool = map(class -> class.BorderClass.enabled, classes) border_weights = weights[borders_bool] append!(weights,border_weights) return weights end else return Vector{Float32}(undef,0) end end function check_abort_signal(channel::Channel) if isready(channel) value = fetch(channel)[1] if value==0 return true else return false end else return false end end function validate_inner(model::AbstractModel,norm_func::Function,classes::Vector{<:AbstractClass},model_data::ModelData, accuracy::Function,loss::Function,num::Int64,validation_data::ValidationData,num_slices_val::Int64, offset_val::Int64,use_GPU::Bool,channels::Channels) for i = 1:num if check_abort_signal(channels.validation_modifiers) #return nothing end input_data,label,other = prepare_validation_data(classes,norm_func,model_data,i,validation_data) predicted = forward(model,input_data,num_slices=num_slices_val,offset=offset_val,use_GPU=use_GPU) if validation_data.PlotData.use_labels accuracy_val = accuracy(predicted,label) loss_val = loss(predicted,label) other_data = (accuracy_val,loss_val) else other_data = (0.f0,0.f0) end process_output(predicted,label,other,other_data,classes,validation_data,channels) end return nothing end # Main validation function function validate_main(model_data::ModelData,validation_data::ValidationData, options::Options,channels::Channels) # Initialisation remove_validation_results() num = length(validation_data.Urls.input_urls) put!(channels.validation_start,num) classes = model_data.classes model = model_data.model loss = model_data.loss ws = get_weights(classes,options.ValidationOptions) accuracy = get_accuracy_func(ws,options.ValidationOptions) use_GPU = false if options.GlobalOptions.HardwareResources.allow_GPU if has_cuda() use_GPU = true else @warn "No CUDA capable device was detected. Using CPU instead." end end normalization = model_data.normalization norm_func(x) = model_data.normalization.f(x,normalization.args...) if problem_type()==:segmentation num_slices_val = options.GlobalOptions.HardwareResources.num_slices offset_val = options.GlobalOptions.HardwareResources.offset else num_slices_val = 1 offset_val = 0 end # Validation starts validate_inner(model,norm_func,classes,model_data,accuracy,loss,num,validation_data, num_slices_val,offset_val,use_GPU,channels) return nothing end function validate_main2(model_data::ModelData,validation_data::ValidationData, options::Options,channels::Channels) t = Threads.@spawn validate_main(model_data,validation_data,options,channels) push!(validation_data.tasks,t) return t end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2460
using EasyML, Test EasyML.Common.unit_test.state = true examples_dir = joinpath(@__DIR__,"examples") models_dir = joinpath(@__DIR__,"models") #---Testing modules------------------------------------------ @info "Common" include("modules/common/runtests.jl") @info "Classes" include("modules/classes/runtests.jl") @info "Design" include("modules/design/runtests.jl") @info "Data preparation" include("modules/datapreparation/runtests.jl") @info "Training" include("modules/training/runtests.jl") @info "Validation" include("modules/validation/runtests.jl") @info "Application" include("modules/application/runtests.jl") #---Testing module glue------------------------------------------ @testset "Module glue" begin cd(@__DIR__) @test begin training_options.Testing.data_preparation_mode = :auto training_options.Testing.test_data_fraction = 0.2 load_model("models/classification.model") get_urls_training("examples/classification/test") get_urls_testing() prepare_training_data() prepare_testing_data() true end @test begin load_model("models/regression.model") get_urls_training("examples/regression/test","examples/regression/test.csv") get_urls_testing() prepare_training_data() prepare_testing_data() true end @test begin training_options.Testing.test_data_fraction = 0.5 training_options.Hyperparameters.batch_size = 4 load_model("models/segmentation.model") get_urls_training("examples/segmentation/images", "examples/segmentation/labels") get_urls_testing() prepare_training_data() prepare_testing_data() true end @test begin remove_training_data() get_urls_testing() load_model("models/classification.model") push!(EasyML.unit_test.urls,"examples/classification/test") get_urls_training() get_urls_testing("examples/classification/test") load_model("models/regression.model") get_urls_testing("examples/regression/test","examples/regression/test.csv") training_options.Testing.data_preparation_mode = :manual push!(EasyML.unit_test.urls,"examples/regression/test") push!(EasyML.unit_test.urls,"examples/regression/test.csv") get_urls_testing() model_data.input_size = (0,0,0) prepare_training_data() true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1164
using EasyML.Application cd(@__DIR__) global_options.HardwareResources.num_slices = 1 #---Main functionality----------------------------------------------- @info "Options" change(application_options) change_output_options() @info "Classification" load_model(joinpath(models_dir,"classification.model")) change_output_options() url_input = joinpath(examples_dir,"classification/test") get_urls_application(url_input) apply() @info "Regression" load_model(joinpath(models_dir,"regression.model")) change_output_options() url_input = joinpath(examples_dir,"regression/test") get_urls_application(url_input) apply() @info "Segmentation" load_model(joinpath(models_dir,"segmentation.model")) change_output_options() url_input = joinpath(examples_dir,"segmentation/images") get_urls_application(url_input) apply() model_data.output_options = Application.ImageClassificationOutputOptions[] change_output_options() remove_application_data() rm("Output data",recursive=true) rm("options.bson") #---Other QML------------------------------------------------------- push!(EasyML.unit_test.urls,joinpath(examples_dir,"classification/test")) get_urls_application()
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1150
using EasyML.Classes import EasyML.Classes cd(@__DIR__) #---Main functionality------------------------------------------ @testset "Change classes" begin @test begin change_classes(); true end @test begin load_model(joinpath(models_dir,"classification.model")) change_classes() true end @test begin load_model(joinpath(models_dir,"regression.model")) change_classes() true end @test begin load_model(joinpath(models_dir,"segmentation.model")) change_classes() true end end #---Other QML----------------------------------------------------- @testset "Other QML" begin @test begin Classes.set_problem_type(0) Classes.get_problem_type() Classes.set_problem_type(1) Classes.get_problem_type() Classes.set_problem_type(2) Classes.get_problem_type() Classes.get_input_type() true end end #---Other-------------------------------------------------------- @testset "Other" begin @test begin Classes.get_class_data(model_data.classes) true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
8144
import EasyML.Common, QML using EasyML.Common, Parameters, Flux, Test, DelimitedFiles, BSON cd(@__DIR__) #---Main functionality----------------------------------------------------- @testset "Model loading/saving " begin @test begin set_savepath("models/test.model"); true end @test begin set_savepath("model"); true end model_data.classes = repeat([ImageSegmentationClass()],2) url = "models/test.model" @test begin save_model(url); true end @test begin load_model(url); true end @test begin load_model("models/old_test.model"); true end @test begin load_model("models/broken_property.model"); true end rm("models/test.model") @test begin try url = "models/test2.model" load_model(url) catch e e isa ErrorException end end Common.all_data_urls.model_name = "" push!(Common.unit_test.urls,"models/test.model") @test begin save_model(); true end push!(Common.unit_test.urls,"models/test.model") @test begin load_model(); true end rm("models/test.model") @test begin try push!(Common.unit_test.urls,"models/test2.model") load_model() catch e e isa ErrorException end end end @testset "Options loading/saving" begin mutable struct OptionsBusted GlobalOptions::Bool end options_busted = OptionsBusted(true) @test begin save_options() dict_busted = Dict() BSON.@save("options.bson",dict_busted) true end @test begin load_options() load_options() rm("options.bson") load_options() rm("options.bson") true end end @testset verbose = true "QML interaction " begin mutable struct Data2 a::Symbol b::Vector{Symbol} c::Vector{Vector{Symbol}} end mutable struct Data Data2::Data2 end data = Data(Data2(:a,[:b],[[:c]])) @testset "Type conversion" begin propmap = QML.QQmlPropertyMap() propmap["string"] = "some string" propmap["integer"] = zero(Int64) propmap["float"] = zero(Float64) propmap["list"] = [1,2,3,4] @test fix_QML_types(propmap["string"])=="some string" @test fix_QML_types(propmap["integer"])==zero(Int64) @test fix_QML_types(propmap["float"])==zero(Float64) @test fix_QML_types(propmap["list"])==[1,2,3,4] @test fix_QML_types((1,2))==(1,2) end @testset "Get data" begin import EasyML.Common.get_data_main @test get_data_main(data,["Data2","a"],[])=="a" @test get_data_main(data,["Data2","b"],[1])=="b" @test get_data_main(data,["Data2","c"],[1,1])=="c" @test get_data(["TrainingData","warnings"])==String[] @test get_options(["GlobalOptions","Graphics","scaling_factor"])==1.0 @test get_options(["ApplicationOptions","image_type"])=="png" end @testset "Set data" begin import EasyML.Common.set_data_main @test begin set_data_main(data,["Data2","a"],("c")) data.Data2.a == :c end @test begin set_data_main(data,["Data2","b"],([1],"d")) data.Data2.b[1] == :d end @test begin set_data_main(data,["Data2","c"],([1,1],"e")) data.Data2.c[1][1] == :e end @test begin set_data(["TrainingData","warnings"],[]) true end @test begin set_options(["GlobalOptions","Graphics","scaling_factor"],1.0) true end @test begin set_options(["ApplicationOptions","image_type"],"PNG") true end end @testset "Get file/folder" begin @test begin push!(Common.unit_test.urls,"test") out = get_folder() out == "test" end @test begin push!(Common.unit_test.urls,"test") out = get_file() out == "test" end end @testset "Channels" begin struct Channels a::Channel b::Channel end channels = Channels(Channel{Int64}(1),Channel{Tuple{Int64,Float64}}(1)) @test begin import EasyML.Common.check_progress_main check_progress_main(channels,"a") put!(channels.a,1) check_progress_main(channels,"a") check_progress("data_preparation_progress") true end @test begin import EasyML.Common.get_progress_main get_progress_main(channels,"a") get_progress_main(channels,"a") put!(channels.b,(1,1.0)) get_progress_main(channels,"b") get_progress_main(channels,"b") put!(channels.a,1) get_progress_main(channels,:a) get_progress_main(channels,:a) put!(channels.b,(1,1.0)) get_progress_main(channels,:b) get_progress_main(channels,:b) get_progress(:data_preparation_progress) true end @test begin import EasyML.Common.empty_channel_main put!(channels.a,1) empty_channel_main(channels,"a") put!(channels.a,1) empty_channel_main(channels,:a) empty_channel(:data_preparation_progress) true end @test begin import EasyML.Common.put_channel_main put_channel_main(channels,"b",[0.0,1.0]) put_channel("data_preparation_progress",1) true end end end @testset "Set property" begin @test begin model_data.input_properties = [:grayscale] try model_data.input_properties = [:a] catch true end try model_data.problem_type = :a catch true end end @test begin obj = Common.Application.OutputVolume() obj.binning = :auto obj.normalization = :none obj.value = 10 true end @test begin obj = Common.application_options obj.apply_by = :file obj.data_type= :csv obj.image_type = :png obj.savepath = "" true end @test begin try obj = Common.application_options obj.apply_by = :esgsg catch true end end end @testset "Padding " begin @test begin if EasyML.has_cuda() collect(EasyML.Application.pad(EasyML.CuArray(ones(Float32,5,5,1,1)),(2,2),EasyML.Application.same))==ones(Float32,7,7,1,1) else EasyML.Application.pad(ones(Float32,5,5,1,1),(2,2),EasyML.Application.same)==ones(Float32,7,7,1,1) end end @test begin EasyML.Application.pad(ones(Float32,5,5,1,1),(2,2),ones)==ones(Float32,7,7,1,1) end @test begin EasyML.Application.pad(ones(Float32,5,5),(2,2),EasyML.Application.same)==ones(Float32,7,7) end @test begin EasyML.Application.pad(ones(Float32,5,5),(2,2),ones)==ones(Float32,7,7) end end @testset "Other " begin @test begin f1() = true t1 = Task(f1) check_task(t1) schedule(t1) sleep(2) check_task(t1) f2() = 1/[] t2 = Task(f2) schedule(t2) sleep(2) check_task(t2) true end @test begin writedlm("test.qml", ["","import", "import", "import","",""]) url = "test.qml" Common.add_templates(url) Common.add_templates(url) rm("test.qml") true end @test begin problem_type(); true end @test begin input_type(); true end @test begin change(global_options) rm("options.bson") true end @test begin Common.max_num_threads() Common.num_threads() true end @test begin EasyML.none([]); true end @test begin conn(8) true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
5146
using EasyML.DataPreparation import EasyML.DataPreparation cd(@__DIR__) #---Main functionality---------------------------------------------------- data_preparation_options.Images.BackgroundCropping.enabled = true @testset "Opening options" begin @test begin change(data_preparation_options); true end rm("options.bson") end for i = 1:2 if i==1 model_data.input_properties = [:grayscale] DataPreparation.image_preparation_options.mirroring = true DataPreparation.image_preparation_options.num_angles = 2 else model_data.input_properties = Symbol[] DataPreparation.image_preparation_options.mirroring = false DataPreparation.image_preparation_options.num_angles = 1 end @testset "Classification" begin @test begin load_model(joinpath(models_dir,"classification.model")) change_classes() true end @test begin url_input = joinpath(examples_dir,"classification/test") get_urls(url_input) true end @test begin results = prepare_data(); true end end @testset "Regression" begin @test begin load_model(joinpath(models_dir,"regression.model")) change_classes() true end @test begin url_input = joinpath(examples_dir,"regression/test") url_label = joinpath(examples_dir,"regression/test.csv") get_urls(url_input,url_label) true end @test begin results = prepare_data(); true end end @testset "Segmentatation" begin @test begin load_model(joinpath(models_dir,"segmentation.model")) change_classes() true end @test begin url_input = joinpath(examples_dir,"segmentation/images") url_label = joinpath(examples_dir,"segmentation/labels") get_urls(url_input,url_label) true end @test begin results = prepare_data(); true end end end @info "Handling errors" @testset "Handling errors" begin @test begin empty!(model_data.classes) prepare_data() true end @test begin model_data.problem_type = :classification DataPreparation.preparation_data.ClassificationData = DataPreparation.ClassificationData() prepare_data() load_model(joinpath(models_dir,"classification.model")) url_input = string(examples_dir,"\\classification\\") get_urls(url_input) push!(DataPreparation.unit_test.urls,string(examples_dir,"/classification/test")) get_urls() true end @test begin model_data.problem_type = :regression DataPreparation.preparation_data.RegressionData = DataPreparation.RegressionData() prepare_data() load_model(joinpath(models_dir,"regression.model")) url_input = joinpath(examples_dir,"regression/") url_label = joinpath(examples_dir,"regression/test.csv") get_urls(url_input,url_label) push!(DataPreparation.unit_test.urls, joinpath(examples_dir,"regression/test"),joinpath(examples_dir,"regression/test.csv")) get_urls() true end @test begin model_data.problem_type = :segmentation DataPreparation.preparation_data.SegmentationData = DataPreparation.SegmentationData() prepare_data() load_model(joinpath(models_dir,"segmentation.model")) url_input = joinpath(examples_dir,"segmentation/") url_label = joinpath(examples_dir,"segmentation/labels") get_urls(url_input,url_label) push!(DataPreparation.unit_test.urls, joinpath(examples_dir,"segmentation/images"),joinpath(examples_dir,"segmentation/labels")) get_urls() true end @test begin model_data.problem_type = :classification url_input = string(examples_dir,"/") get_urls(url_input) url_input = "examples2/" get_urls(url_input) true end @test begin model_data.problem_type = :segmentation url_input = string(examples_dir,"/") url_label = string(examples_dir,"/") get_urls(url_input,url_label) url_input = "examples2/" url_label = "examples2/" get_urls(url_input,url_label) get_urls(url_input) true end @test begin push!(DataPreparation.unit_test.urls, "") load_model() true end end #---Other QML---------------------------------------- @testset "Other QML" begin @test begin DataPreparation.set_options(["DataPreparationOptions","Images","num_angles"],1) true end empty!(model_data.input_properties) @test begin DataPreparation.set_model_data("input_properties","grayscale") DataPreparation.get_model_data("input_properties","grayscale")==true end @test begin DataPreparation.rm_model_data("input_properties","grayscale") DataPreparation.get_model_data("input_properties","grayscale")==false end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1469
using EasyML.Design import EasyML.Design cd(@__DIR__) #---Main functionality---------------------------------------------------- @testset "Main functionality" begin set_savepath("models/test.model") # Empty model @test begin design_model(); true end # All layers test model @test begin load_model("models/all_test.model") design_model() true end # Flatten error model @test begin load_model("models/flatten_error_test.model") design_model() true end # No output error model @test begin load_model("models/no_output_error_test.model") design_model() true end # Losses @test begin load_model("models/minimal_test.model") losses = 0:13 for i = 1:length(losses) model_data.layers_info[end].loss = losses[i] design_model() end true end end #---Other QML---------------------------------------------------------- @testset "Other QML" begin @test begin Design.set_problem_type(0) Design.get_problem_type() Design.set_problem_type(1) Design.get_problem_type() Design.set_problem_type(2) Design.get_problem_type() Design.get_input_type() true end @test begin fields = ["DesignOptions","width"] value = 340 Design.set_options(fields,value) true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1984
@info "Classification test" #---Init-------------------------------------------------------------------- model_data.problem_type = :classification classes = ImageClassificationClass[] for i=1:10 push!(classes,ImageClassificationClass(string(i),1)) end model_data.classes = classes #---Training test----------------------------------------------------------- @testset "Input: Vector | Testing: Auto | Weights: Auto | Accuracy: Weight" begin @test begin Training.training_options.Testing.data_preparation_mode = :auto Training.training_options.Accuracy.accuracy_mode = :auto Training.training_options.Accuracy.weight_accuracy = true data_input = map(_ -> rand(Float32,25),1:200) data_labels = map(_ -> Int32(rand(1:10)),1:200) set_training_data(data_input,data_labels) set_testing_data() model_data.model = Flux.Chain(Flux.Dense(25, 10)) train() true end end @testset "Input: Array | Testing: Manual | Weights: Manual | Accuracy: Regular" begin @test begin Training.training_options.Testing.data_preparation_mode = :manual Training.training_options.Accuracy.accuracy_mode = :manual Training.training_options.Accuracy.weight_accuracy = false data_input = map(_ -> rand(Float32,5,5,1),1:200) data_labels = map(_ -> Int32(rand(1:10)),1:200) set_training_data(data_input,data_labels) data_input = map(_ -> rand(Float32,5,5,1),1:20) data_labels = map(_ -> Int32(rand(1:10)),1:20) set_testing_data(data_input,data_labels) set_weights(ones(10)) model_data.model = Flux.Chain(x->Flux.flatten(x),Flux.Dense(25, 10)) train() true end end #---Clean up test----------------------------------------------------------- @testset "Clean up" begin @test begin remove_training_data() remove_testing_data() remove_training_results() true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
2778
@info "Regression test" #---Init test-------------------------------------------------------------- model_data.problem_type = :regression #---Training test----------------------------------------------------------- function vector_vector(mode::Symbol) Training.training_options.Testing.data_preparation_mode = mode data_input = map(_ -> rand(Float32,25),1:200) data_labels = map(_ -> rand(Float32,5),1:200) set_training_data(data_input,data_labels) if mode==:Auto set_testing_data() else data_input = map(_ -> rand(Float32,25),1:20) data_labels = map(_ -> rand(Float32,5),1:20) set_testing_data(data_input,data_labels) end return nothing end function array_vector(mode::Symbol) data_input = map(_ -> rand(Float32,5,5,1),1:200) data_labels = map(_ -> rand(Float32,5),1:200) set_training_data(data_input,data_labels) if mode==:Auto set_testing_data() else data_input = map(_ -> rand(Float32,5,5,1),1:20) data_labels = map(_ -> rand(Float32,5),1:20) set_testing_data(data_input,data_labels) end return nothing end function array_array(mode::Symbol) data_input = map(_ -> rand(Float32,5,5,1),1:1000) data_labels = map(_ -> rand(Float32,5,5,1),1:1000) set_training_data(data_input,data_labels) if mode==:Auto set_testing_data() else data_input = map(_ -> rand(Float32,5,5,1),1:10) data_labels = map(_ -> rand(Float32,5,5,1),1:10) set_testing_data(data_input,data_labels) end return nothing end Training.training_options.Accuracy.weight_accuracy = false Training.training_options.Accuracy.accuracy_mode = :auto @testset "Input: Vector | Output: Vector" begin model_data.model = Flux.Chain(Flux.Dense(25, 5)) @test begin vector_vector(:auto) train() true end @test begin vector_vector(:manual) train() true end end @testset "Input: Array | Output: Vector" begin model_data.model = Flux.Chain(x->Flux.flatten(x),Flux.Dense(25, 5)) @test begin array_vector(:auto) train() true end @test begin array_vector(:manual) train() true end end @testset "Input: Array | Output: Array" begin model_data.model = Flux.Chain(Flux.Conv((1,1), 1 => 1)) @test begin array_array(:auto) train() true end @test begin array_array(:manual) train() true end end #---Clean up test----------------------------------------------------------- @testset "Clean up" begin @test begin remove_training_data() remove_testing_data() remove_training_results() true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1156
using EasyML.Training import EasyML.Training cd(@__DIR__) training_options.Testing.test_data_fraction = 0.1 model_data.normalization.f = EasyML.none model_data.normalization.args = () set_savepath("models/test.model") change(training_options) #---CPU----------------------------------------------------------- @info "CPU tests started" global_options.HardwareResources.allow_GPU = false include("classification.jl") include("regression.jl") include("segmentation.jl") #---GPU------------------------------------------------------------ @info "GPU tests started" global_options.HardwareResources.allow_GPU = true include("classification.jl") include("regression.jl") include("segmentation.jl") #---Other--------------------------------------------------------- Training.get_weights(model_data,Training.training_data.RegressionData) load_model(joinpath(models_dir,"segmentation.model")) Training.training_data.SegmentationData.Data.data_labels = [BitArray(undef,10,10,3)] Training.get_weights(model_data,Training.training_data.SegmentationData) #----------------------------------------------------------------- rm("models/",recursive=true)
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
1459
@info "Segmentation test" #---Init test-------------------------------------------------------------- model_data.problem_type = :segmentation #---Training test----------------------------------------------------------- function array_array(mode::Symbol) data_input = map(_ -> rand(Float32,5,5,1),1:200) data_labels = map(_ -> BitArray{3}(undef,5,5,3),1:200) set_training_data(data_input,data_labels) if mode==:auto set_testing_data() else data_input = map(_ -> rand(Float32,5,5,1),1:20) data_labels = map(_ -> BitArray{3}(undef,5,5,3),1:20) set_testing_data(data_input,data_labels) end return nothing end @testset "Input: Array | Output: Array" begin Training.training_options.Accuracy.weight_accuracy = false Training.training_options.Accuracy.accuracy_mode = :auto model_data.model = Flux.Chain(Flux.Conv((1,1), 1 => 3)) @test begin array_array(:auto) train() true end Training.training_options.Accuracy.weight_accuracy = true Training.training_options.Accuracy.accuracy_mode = :manual set_weights(ones(3)) @test begin array_array(:manual) train() true end end #---Clean up test----------------------------------------------------------- @testset "Clean up" begin @test begin remove_training_data() remove_testing_data() remove_training_results() true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
code
4486
using EasyML.Validation import EasyML.Validation cd(@__DIR__) global_options.HardwareResources.num_slices = 3 global_options.HardwareResources.offset = 80 #---Main functionality--------------------------------------------------------- @testset "Options" begin @test begin change(global_options); true end @test begin change(validation_options); true end end rm("options.bson") validation_options.Accuracy.weight_accuracy = true global_options.HardwareResources.allow_GPU = true @testset "Classfication" begin load_model(joinpath(models_dir,"classification.model")) @test begin change_classes() true end @test begin url_data = "examples/with labels/classification/test" get_urls_validation(url_data) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end @testset "Regression" begin load_model(joinpath(models_dir,"regression.model")) @test begin change_classes() true end @test begin url_input = "examples/with labels/regression/test" url_labels = "examples/with labels/regression/test.csv" get_urls_validation(url_input,url_labels) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end @testset "Segmentation" begin load_model(joinpath(models_dir,"segmentation.model")) @test begin change_classes() true end @test begin url_input = "examples/with labels/segmentation/images" url_labels = "examples/with labels/segmentation/labels" get_urls_validation(url_input,url_labels) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end validation_options.Accuracy.weight_accuracy = false global_options.HardwareResources.allow_GPU = false @testset "Classfication" begin load_model(joinpath(models_dir,"classification.model")) @test begin change_classes() true end @test begin url_data = "examples/without labels/classification/test" get_urls_validation(url_data) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end @testset "Regression" begin load_model(joinpath(models_dir,"regression.model")) @test begin change_classes() true end @test begin url_input = "examples/without labels/regression/test" get_urls_validation(url_input) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end @testset "Segmentation" begin load_model(joinpath(models_dir,"segmentation.model")) @test begin change_classes() true end @test begin url_input = "examples/without labels/segmentation/images" get_urls_validation(url_input) true end @test begin results = validate() remove_validation_data() remove_validation_results() true end end #---Other QML--------------------------------------------------------- @testset "Other QML" begin @test begin Validation.set_options(["GlobalOptions","Graphics","scaling_factor"],1); true end @test begin model_data.problem_type = :classification push!(Validation.unit_test.urls, "examples/with labels/classification/test") get_urls_validation() model_data.problem_type = :regression push!(Validation.unit_test.urls, "examples/with labels/regression/test","examples/with labels/regression/test.csv") get_urls_validation() model_data.problem_type = :segmentation push!(Validation.unit_test.urls, "examples/with labels/segmentation/images","examples/with labels/segmentation/labels") get_urls_validation() true end end #---Other------------------------------------------------------------ @testset "Other" begin @test begin Validation.conn(8); true end @test begin remove_validation_data() validate() empty!(model_data.classes) validate() model_data.model = Flux.Chain() validate() true end end
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
2870
<p align="center"> <img width=200px src=https://raw.githubusercontent.com/OML-NPA/EasyML.jl/main/docs/src/assets/logo.png></img> </p> <h1 align="center">EasyML.jl</h1> [![docs stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://oml-npa.github.io/EasyML.jl/stable/) [![docs dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://oml-npa.github.io/EasyML.jl/dev/) [![CI main](https://github.com/OML-NPA/EasyML.jl/actions/workflows/CI-main.yml/badge.svg)](https://github.com/OML-NPA/EasyM.jl/actions/workflows/CI-main.yml) [![CI dev](https://github.com/OML-NPA/EasyML.jl/actions/workflows/CI-dev.yml/badge.svg)](https://github.com/OML-NPA/EasyM.jl/actions/workflows/CI-dev.yml) [![codecov](https://codecov.io/gh/OML-NPA/EasyML.jl/branch/main/graph/badge.svg?token=BTAK4ZYPGG)](https://codecov.io/gh/OML-NPA/EasyML.jl) This package allows to use machine learning in Julia through a graphical user interface. NB! This is a beta version. Bugs and breaking changes should be expected. ## Features It is possible to: - Design a neural network - Train a neural network - Validate a neural network - Apply a neural network to new data Classification, regression and segmentation on images are currently supported. [Flux.jl](https://github.com/FluxML/Flux.jl) machine learning library is used under the hood. <img src="https://github.com/OML-NPA/EasyML.jl/blob/dev/docs/src/assets/images/design_model.png" height="190"> <img src="https://github.com/OML-NPA/EasyML.jl/blob/dev/docs/src/assets/images/train.png" height="190"> <img src="https://github.com/OML-NPA/EasyML.jl/blob/dev/docs/src/assets/images/validate2.png" height="190"> ## Installation Run `] add EasyML` in REPL. If fonts do not look correct then install [this](https://github.com/OML-NPA/EasyML.jl/raw/main/src/fonts/font.otf) and [this](https://github.com/OML-NPA/EasyML.jl/raw/main/src/fonts/font_bold.otf) font. ## Quick guide EasyML is easy enough to figure out by yourself! Just run the following lines. ### Add the package ```julia using EasyML ``` ### Set up ```julia change(global_options) ``` ### Design ```julia change_classes() design_model() ``` ### Train ```julia change(data_preparation_options) change(training_options) get_urls_training() get_urls_testing() prepare_training_data() prepare_testing_data() results = train() remove_training_data() remove_testing_data() remove_training_results() ``` ### Validate ```julia change(validation_options) get_urls_validation() results = validate() remove_validation_data() remove_validation_results() ``` ### Apply ```julia change(application_options) change_output_options() get_urls_application() apply() remove_application_data() ``` ### On reopening ```julia load_model() load_options() ``` ## Development A plan for the project can be seen [here](https://github.com/OML-NPA/EasyML.jl/projects/2).
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
11488
## Model data A struct named `model_data` is exported and holds all information about your model. ```julia mutable struct ModelData model::AbstractModel # any of the supported models (currently only Flux.jl model). normalization::Normalization # a Normalization struct, which describes how to normalize input data loss::Function # holds loss that is used during training and validation. input_size::Union{NTuple{2,Int64},NTuple{3,Int64}} # model input size. output_size::Union{NTuple{2,Int64},NTuple{3,Int64}} # model output size. input_type::Symbol # type of input data (:image). problem_type::Symbol # type of ML problem (:classification, :regression or :segmentation). classes::Vector{<:AbstractClass} # hold information about classes that a neural network outputs and what should be done with them. output_options::Vector{<:AbstractOutputOptions} # hold information about output options for each class for application of the model. layers_info::Vector{AbstractLayerInfo} # contains information for visualisation of layers. end ``` `classes` and `output_options` type depends on a type of a problem. ```julia mutable struct ImageClassificationClass<:AbstractClass name::String # name of a class. weight::Float32 # weight of a class used for weighted accuracy calculation. end mutable struct ImageRegressionClass<:AbstractClass name::String # name of a class. end mutable struct ImageSegmentationClass<:AbstractClass name::String # name of a class. It is just for your convenience. weight::Float32 # weight of a class used for weighted accuracy calculation. color::Vector{Float64} # RGB color of a class, which should correspond to its color on your images. Uses 0-255 range. parents::Vector{String} # up to two parents can be specified by their name. Objects from a child are added to its parent. overlap::Bool # specifies that a class is an overlap of two classes and should be just added to specified parents. min_area::Int64 # minimum area of an object. BorderClass::BorderClass # allows to train a neural network to recognize borders and, therefore, better separate objects during post-processing. end mutable struct BorderClass enabled::Bool thickness::Int64 # border thickness in pixels. end ``` `ImageClassificationOutputOptions` and `ImageRegressionOutputOptions` are currently empty. New functionality can be added on request. ```julia mutable struct ImageSegmentationOutputOptions<:AbstractOutputOptions Mask::OutputMask # holds output mask options. Area::OutputArea # holds area of objects options. Volume::OutputVolume # holds volume of objects options. end mutable struct OutputMask mask::Bool # exports a mask after applying all processing except for border data. mask_border::Bool # exports a mask with class borders if a class has border detection enabled. mask_applied_border::Bool # exports a mask processed using border data. end mutable struct OutputArea area_distribution::Bool # exports area distribution of detected objects as a histogram. obj_area::Bool # exports area of each detected object. obj_area_sum::Bool # exports sum of all areas for each class. binning::Symbol # specifies a binning method (:auto, :number_of_bins, :bin_width). value::Float64 # number of bins or bin width depending on a previous settings. normalisation::Symbol # normalisation type for a histogram (:none, :pdf, :density, :probability). end mutable struct OutputVolume volume_distribution::Bool # exports volume distribution of detected objects as a histogram. obj_volume::Bool # exports volume of each detected object. obj_volume_sum::Bool # exports sum of all volumes for each class. binning::Symbol # specifies a binning method (:auto, :number_of_bins, :bin_width). value::Float64 # number of bins or bin width depending on a previous settings. normalisation::Symbol # normalisation type for a histogram (:none, :pdf, :density, :probability). ``` Example code for a segmentation problem. ```julia class1 = ImageSegmentationClass(name = "Cell", weight = 1, color = [0,255,0], min_area = 5, BorderClass=BorderClass(true,5)) class2 = ImageSegmentationClass(name = "Vacuole", weight = 1, color = [255,0,0], parents = ["Cell",""], min_area = 5) class_output_options1 = ImageSegmentationOutputOptions() class_output_options2 = ImageSegmentationOutputOptions() settings.problem_type = :segmentation classes = [class1,class2] output_options = [class_output_options1,class_output_options2] model_data.classes = classes model_data.OutputOptions = output_options ``` ## Options All options are located in `EasyML.options`. ```julia mutable struct Options GlobalOptions::GlobalOptions DesignOptions::DesignOptions DataPreparationOptions::DataPreparationOptions TrainingOptions::TrainingOptions ValidationOptions::ValidationOptions = validation_options ApplicationOptions::ApplicationOptions end ``` ### Global options ```julia mutable struct GlobalOptions Graphics::Graphics HardwareResources::HardwareResources end ``` Can be accessed as `EasyML.global_options`. ```julia mutable struct HardwareResources allow_GPU::Bool # allows to use a GPU if a compatible one is installed. num_threads::Int64 # a number of CPU threads that will be used. num_slices::Int64 # allows to process images during validation and application that otherwise cause an out of memory error by slicing them into multiple parts. Used only for segmentation. offset::Int64 # offsets each slice by a given number of pixels to allow for an absence of a seam. end ``` ```julia mutable struct Graphics scaling_factor::Float64 # scales GUI by a given factor. end ``` ### Design options ```julia mutable struct DesignOptions width::Float64 # width of layers height::Float64 # height of layers min_dist_x::Float64 # minimum horizontal distance between layers min_dist_y::Float64 # minimum vertical distance between layers end ``` Can be accessed as `EasyML.design_options`. ### Training options ```julia mutable struct TrainingOptions Accuracy::AccuracyOptions Testing::TestingOptions Hyperparameters::HyperparametersOptions end ``` Can be accessed as `EasyML.training_options`. ```julia mutable struct AccuracyOptions weight_accuracy::Bool # uses weight accuracy where applicable. accuracy_mode::Symbol # either :auto or :manual. :manual allows to specify weights manually for each class. end ``` ```julia mutable struct TestingOptions test_data_fraction::Float64 # a fraction of data from training data to be used for testing if data preparation mode is set to :Auto. num_tests::Float64 # a number of tests to be done each epoch at equal intervals. data_preparation_mode::Symbol # Either :Auto or :Manual. Auto takes a specified fraction of training data to be used for testing. Manual allows to use other data as testing data. end ``` ```julia mutable struct HyperparametersOptions optimiser::Symbol # an optimiser that should be used during training. ADAM usually works well for all cases. optimiser_params::Vector{Float64} # parameters specific for each optimiser. Default ones can be found in EasyML.training_options_data learning_rate::Float64 # pecifies how fast a model should train. Lower values - more stable, but slower. Higher values - less stable, but faster. Should be decreased as training progresses. epochs::Int64 # a number of rounds for which a model should be trained. batch_size::Int64 # a number of data that should be batched together during training. end ``` ### Data preparation options ```julia struct DataPreparationOptions Images::ImagePreparationOptions = image_preparation_options end ``` Can be accessed as `data_preparation_options`. ```julia @with_kw mutable struct ImagePreparationOptions grayscale::Bool = false # converts images to grayscale for training, validation and application. mirroring::Bool = false # augments data by producing horizontally mirrored images. num_angles::Int64 = 1 # augments data by rotating images using a specified number of angles. 1 means no rotation, only an angle of 0. min_fr_pix::Float64 = 0.0 # if supplied images are bigger than a model's input size, then an image is broken into chunks with a correct size. This option specifies the minimum number of labeled pixels for these chunks to be kept. BackgroundCropping::BackgroundCroppingOptions = background_cropping_options # crops image to removed uniformly black backgorund. end ``` ```julia @with_kw mutable struct BackgroundCroppingOptions enabled::Bool = false threshold::Float64 = 0.3 # creates a mask from values less than threshold. closing_value::Int64 = 1 # value for morphological closing which is used to smooth the mask. end ``` ### Validation options ```julia mutable struct ValidationOptions Accuracy::AccuracyOptions = accuracy_options end ``` Can be accessed as `validation_options` ```julia mutable struct AccuracyOptions weight_accuracy::Bool # uses weight accuracy where applicable. accuracy_mode::Symbol # either :auto or :manual. :manual allows to specify weights manually for each class. end ``` ### Application options ```julia mutable struct ApplicationOptions savepath::String # specifies where results are saved. apply_by::Symbol # either :file or :folder. If :folder is chosen, then results of files in the same folder are combined. data_type::Symbol # output data type (:csv,:xlsx,:json,:bson). image_type::Symbol # output image type (:png,:tiff,:json,:bson). scaling::Float64 # multiplies results by a specified factor end ``` Can be accessed as `application_options`. ## A custom loop A custom loop can be written using `forward`. Example code for a segmentation problem. ```julia model = model_data.model data = [ones(Float32,160,160,3,1)] # vector with your data goes here results = Vector{BitArray{3}}(undef,0) for i = 1:length(data) output_raw = forward(model,data[i]) output_bool = output_raw[:,:,:].>0.5 output = apply_border_data(output_bool,model_data.classes) # can be removed if your model does not detect borders push!(results,output) end ``` ```@docs EasyML.forward ``` ```@docs EasyML.apply_border_data ``` ## Custom training data Example code for a classification problem. ```julia model_data.problem_type = :classification # :regression, or :segmentation model_data.model = your_model set_training_data(your_input,your_labels) set_testing_data(your_test_input,your_test_labels) training_options.Accuracy.accuracy_mode==:manual set_weights(your_weights) train() ``` ```@docs EasyML.set_training_data ``` ```@docs EasyML.set_testing_data ``` ```@docs EasyML.set_weights ```
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
1092
## Setting up ```@docs change(global_options::EasyML.GlobalOptions) ``` ```@docs load_options ``` ```@docs save_options ``` ```@docs save_model ``` ```@docs load_model ``` ## Design ```@docs change_classes() ``` ```@docs design_model() ``` ## Training ```@docs change(application_options::EasyML.DataPreparationOptions) ``` ```@docs change(training_options::EasyML.TrainingOptions) ``` ```@docs get_urls_training ``` ```@docs get_urls_testing ``` ```@docs prepare_training_data ``` ```@docs prepare_testing_data ``` ```@docs train ``` ```@docs remove_training_data ``` ```@docs remove_testing_data ``` ```@docs remove_training_results ``` ## Validation ```@docs change(application_options::EasyML.ValidationOptions) ``` ```@docs get_urls_validation ``` ```@docs validate ``` ```@docs remove_validation_data ``` ```@docs remove_validation_results ``` ## Application ```@docs change(application_options::EasyML.ApplicationOptions) ``` ```@docs change_output_options() ``` ```@docs get_urls_application ``` ```@docs apply ``` ```@docs remove_application_data ```
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
8301
## Global options ```@raw html <img src="./assets/images/global_options1.png" width = 520em> <p><par class="definition">GUI scaling</par> - scales GUI by a given factor.</p> ``` ```@raw html <img src="./assets/images/global_options2.png" width = 520em> <p><par class="definition">Allow GPU</par> - allows to use a GPU if a compatible one is installed.</p> <p><par class="definition">Number of threads</par> - a number of CPU threads that will be used.</p> <p><par class="definition">Number of slices</par> - allows to process images during validation and application that otherwise cause an out of memory error by slicing them into multiple parts. Used only for segmentation.</p> <p><par class="definition">Offset</par> - offsets each slice by a given number of pixels to allow for an absence of a seam. </p> ``` ## Adding classes ```@raw html <img src="./assets/images/change_classes.png" width = 450em> ``` ```@raw html <style> .definition{ color: rgb(231,76, 60); font-weight: bold; } </style> <p><par class="definition">Name</par> - name of a class. It is just for your convenience.</p> <p><par class="definition">Weight</par> - used for weight accuracy during training and validation. Calculated automatically during data preparation based on the frequency of classes. Can be also specified manually.</p> <p><par class="definition">Parent</par> - adds a class to the specified parent.</p> <p><par class="definition">Parent 2</par> - appears if the first parent is specified. Adds a class to the specified parent.</p> <p><par class="definition">Color (RGB)</par> - RGB color of a class, which should correspond to its color on your images. Uses 0-255 range.</p> <p><par class="definition">Overlap of classes</par> - specifies that a class is an overlap of two classes and should be just added to specified parents.</p> <p><par class="definition">Minimum area</par> - removes objects that have area smaller than specified.</p> <p><par class="definition">Generate border class</par> - prepares labels with object borders during data preparation and uses them for training.</p> <p><par class="definition">Border thickness</par> - specifies thickness of a border in pixels.</p> ``` ## Output options ```@raw html <img src="./assets/images/change_output_options1.png" width = 600em> <p><par class="definition">Output mask</par> - exports a mask after applying all processing except for border data.</p> <p><par class="definition">Border mask</par> - exports a mask with class borders if a class has border detection enabled.</p> <p><par class="definition">Applied border mask</par> - exports a mask also processed using border data.</p> ``` ```@raw html <img src="./assets/images/change_output_options2.png" width = 640em> <p><par class="definition">Area distribution</par> - exports area distribution of detected objects as a histogram.</p> <p><par class="definition">Area of objects</par> - exports area of each detected object.</p> <p><par class="definition">Sum of areas of objects</par> - exports sum of all areas for each class.</p> <p><par class="definition">Binning method</par> - specifies a binning method: automatic, number of bins or bin width.</p> <p><par class="definition">Value</par> - number of bins or bin width depending on previous settings.</p> <p><par class="definition">Normalisation</par> - normalisation type for a histogram: pdf, density, probability or none.</p> ``` ```@raw html <img src="./assets/images/change_output_options3.png" width = 640em> ``` All is the same as for area. ## Model design ![](./assets/images/design_model.png) ```@raw html <style> .column1 { float: left; } .column2 { padding: 0.40em 0em 0em 2.8em; } .filler { float: left; width: 100%; height: 100px margin-bottom: 10em; } row::after{ content: ""; clear: both; display: table; } </style> <div class="row"> <div class="column1"> <div> <img src="./assets/images/icons/saveIcon.png" width = 34em> </div> <div> <img src="./assets/images/icons/optionsIcon.png" width = 34em> </div> <div> <img src="./assets/images/icons/arrangeIcon.png" width = 34em> </div> </div class="column1"> <div class="column2"> <p>- saves your model</p> <p>- opens options for changing visual aspects</p> <p>- arranges layers according to made connections</p> </div class="column2"> </div class="row"> <div class="filler"></div class="filler"> ``` ## Data preparation options ```@raw html <img src="./assets/images/data_preparation_options.png" width = 520em> <p><par class="definition">Convert to grayscale</par> - converts images to grayscale for training, validation and application.</p> <p><par class="definition">Crop background</par> - crops uniformly dark areas. Finds the last column from left and right and row from bottom and top to be uniformly dark.</p> <p><par class="definition">Threshold</par> - creates a mask from values less than threshold.</p> <p><par class="definition">Morphological closing value</par> - value for morphological closing which is used to smooth the mask.</p> <p><par class="definition">Minimum fraction of labeled pixels</par> - if supplied images are bigger than a model's input size, then an image is broken into chunks with a correct size. This option specifies the minimum number of labeled pixels for these chunks to be kept.</p> <p><par class="definition">Mirroring</par> - augments data by producing horizontally mirrored images.</p> <p><par class="definition">Rotation</par> - augments data by rotating images using a specified number of angles. 1 means no rotation, only an angle of 0.</p> ``` ## Training options ```@raw html <img src="./assets/images/training_options1.png" width = 520em> <p><par class="definition">Weight accuracy</par> - uses weight accuracy where applicable.</p> <p><par class="definition">Mode</par> - either auto or manual. manual allows to specify weights manually for each class.</p> ``` ```@raw html <img src="./assets/images/training_options2.png" width = 520em> <p><par class="definition">Data preparation mode</par> - either auto or manual. auto takes a specified fraction of training data to be used for testing. Manual allows to use other data as testing data.</p> <p><par class="definition">Test data fraction</par> - a fraction of data from training data to be used for testing if data preparation mode is Auto.</p> <p><par class="definition">Number of test</par> - a number of tests to be done each epoch at equal intervals.</p> ``` ```@raw html <img src="./assets/images/training_options3.png" width = 520em> <p><par class="definition">Optimiser</par> - an optimiser that should be used during training. ADAM usually works well for all cases.</p> <p>Next are parameters specific for each optimiser.</p> <p><par class="definition">Learning rate</par> - specifies how fast a model should train. Lower values - more stable, but slower. Higher values - less stable, but faster. Should be decreased as training progresses.</p> <p><par class="definition">Batch size</par> - a number of images that should be batched together during training.</p> <p><par class="definition">Number of epochs</par> - a number of rounds for which a model should be trained.</p> ``` ## Validation options ```@raw html <img src="./assets/images/validation_options.png" width = 520em> <p><par class="definition">Weight accuracy</par> - uses weight accuracy where applicable.</p> ``` ## Application options ```@raw html <img src="./assets/images/application_options.png" width = 520em> <p><par class="definition">Save path</par> - a folder where output data should be saved.</p> <p><par class="definition">Analyse by</par> - either file or folder. Used for segmentation. Analysis by file treats every image independently. Analysis by folder combines data for images in the same folder.</p> <p><par class="definition">Output data type</par> - a format in which data should be saved.</p> <p><par class="definition">Output image type</par>Output image type - a format in which images should be saved.</p> <p><par class="definition">Scaling</par> - used for segmentation. Converts pixels to a unit of measurement of your choice.</p> ```
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
253
If you encounter any issues with training, validation or application, then check first corresponding `EasyML.training_data.tasks`, `EasyML.validation_data.tasks` and `EasyML.application_data.tasks`. Failed tasks and their errors will be there.
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
1331
## Package features This package allows to use machine learning in Julia through a graphical user interface. It is possible to: - Design a neural network - Train a neural network - Validate a neural network - Apply a neural network to new data Classification, regression and segmentation on images are currently supported. [Flux.jl](https://github.com/FluxML/Flux.jl) machine learning library is used under the hood. ```@raw html <style> .column1 { float: left; width: 34%; padding: 0.25%; } .column2 { float: left; width: 32.5%; padding: 0.25%; } .column3 { float: left; width: 32.75%; padding: 0.25%; } .filler { float: left; width: 100%; margin-bottom: 0.6em; } row::after{ content: ""; clear: both; display: table; } </style> <div class="row"> <div class="column1"> <img src="./assets/images/design_model.png"> </div> <div class="column2"> <img src="./assets/images/train.png"> </div> <div class="column3"> <img src="./assets/images/validate1.png"> </div> </div> <div class="filler"> </div> ``` ## Installation Run `] add EasyML` in REPL. If fonts do not look correct then install [this](https://github.com/OML-NPA/EasyML.jl/raw/main/src/fonts/font.otf) and [this](https://github.com/OML-NPA/EasyML.jl/raw/main/src/fonts/font_bold.otf) font.
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.2.0
baa418970a2eb1b5e82efcc75573343e78cf6e20
docs
824
EasyML is easy enough to figure out by yourself! Just run the following lines. ## Add the package ```julia using EasyML ``` ## Set up ```julia change(global_options) ``` ## Design ```julia change_classes() change_output_options() design_model() ``` ## Train ```julia change(data_preparation_options) change(training_options) get_urls_training() get_urls_testing() prepare_training_data() prepare_testing_data() results = train() remove_training_data() remove_testing_data() remove_training_results() ``` ## Validate ```julia change(validation_options) get_urls_validation() results = validate() remove_validation_data() remove_validation_results() ``` ## Apply ```julia change(application_options) get_urls_application() apply() remove_application_data() ``` ## On reopening ```julia load_model() load_options() ```
EasyML
https://github.com/OML-NPA/EasyML.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
655
using Documenter, ManifoldLearning makedocs( modules = [ManifoldLearning], doctest = false, clean = true, sitename = "ManifoldLearning.jl", pages = [ "Home" => "index.md", "Methods" => [ "Isomap" => "isomap.md", "Locally Linear Embedding" => "lle.md", "Hessian Eigenmaps" => "hlle.md", "Laplacian Eigenmaps" => "lem.md", "Local Tangent Space Alignment" => "ltsa.md", "Diffusion maps" => "diffmap.md", "t-SNE" => "tsne.md", ], "Misc" => [ "Interface" => "interface.md", # "Nearest Neighbors" => "knn.md", "Datasets" => "datasets.md", ], ] ) deploydocs(repo = "github.com/wildart/ManifoldLearning.jl.git")
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
737
using ManifoldLearning include("nearestneighbors.jl") X, L = ManifoldLearning.swiss_roll(;segments=5) # Use default distance matrix based method to find nearest neighbors Y1 = predict(fit(Isomap, X, k=10)) # Use NearestNeighbors package to find nearest neighbors Y2 = predict(fit(Isomap, X, nntype=KDTree, k=10)) # Use FLANN package to find nearest neighbors Y3 = predict(fit(Isomap, X, nntype=FLANNTree, k=8)) using Plots plot( scatter3d(X[1,:], X[2,:], X[3,:], zcolor=L, m=2, leg=:none, camera=(10,10), title="Swiss Roll"), scatter(Y1[1,:], Y1[2,:], c=L, m=2, title="Distance Matrix"), scatter(Y2[1,:], Y2[2,:], c=L, m=2, title="NearestNeighbors"), scatter(Y3[1,:], Y3[2,:], c=L, m=2, title="FLANN") , leg=false)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
2856
# Additional wrappers for calculations of nearest neighbors using ManifoldLearning using LinearAlgebra: norm import Base: show, size import StatsAPI: fit import ManifoldLearning: knn, inrange # Wrapper around NearestNeighbors functionality using NearestNeighbors: NearestNeighbors struct KDTree <: ManifoldLearning.AbstractNearestNeighbors fitted::AbstractMatrix tree::NearestNeighbors.KDTree end show(io::IO, NN::KDTree) = print(io, "KDTree") size(NN::KDTree) = (length(NN.fitted.data[1]), length(NN.fitted.data)) fit(::Type{KDTree}, X::AbstractMatrix{T}) where {T<:Real} = KDTree(X, NearestNeighbors.KDTree(X)) function knn(NN::KDTree, X::AbstractVecOrMat{T}, k::Integer; self::Bool=false, weights::Bool=true, kwargs...) where {T<:Real} m, n = size(X) @assert n > k "Number of observations must be more then $(k)" A, D = NearestNeighbors.knn(NN.tree, X, k, true) return A, D end function inrange(NN::KDTree, X::AbstractVecOrMat{T}, r::Real; weights::Bool=false, kwargs...) where {T<:Real} m, n = size(X) A = NearestNeighbors.inrange(NN.tree, X, r) W = Vector{Vector{T}}(undef, (weights ? n : 0)) if weights for (i, ii) in enumerate(A) W[i] = T[] if length(ii) > 0 for v in eachcol(NN.fitted[:, ii]) d = norm(X[:,i] - v) push!(W[i], d) end end end end return A, W end # Wrapper around FLANN functionality using FLANN: FLANN struct FLANNTree{T <: Real} <: ManifoldLearning.AbstractNearestNeighbors d::Int index::FLANN.FLANNIndex{T} end show(io::IO, NN::FLANNTree) = print(io, "FLANNTree") size(NN::FLANNTree) = (NN.d, length(NN.index)) function fit(::Type{FLANNTree}, X::AbstractMatrix{T}) where {T<:Real} params = FLANN.FLANNParameters() idx = FLANN.flann(X, params) FLANNTree(size(X,1), idx) end function knn(NN::FLANNTree, X::AbstractVecOrMat{T}, k::Integer; self::Bool=false, weights::Bool=false, kwargs...) where {T<:Real} m, n = size(X) E, D = FLANN.knn(NN.index, X, k+1) idxs = (1:k).+(!self) A = Vector{Vector{Int}}(undef, n) W = Vector{Vector{T}}(undef, (weights ? n : 0)) for (i,(es, ds)) in enumerate(zip(eachcol(E), eachcol(D))) A[i] = es[idxs] if weights W[i] = sqrt.(ds[idxs]) end end return A, W end function inrange(NN::FLANNTree, X::AbstractVecOrMat{T}, r::Real; weights::Bool=false, kwargs...) where {T<:Real} m, n = size(X) A = Vector{Vector{Int}}(undef, n) W = Vector{Vector{T}}(undef, (weights ? n : 0)) for (i, x) in enumerate(eachcol(X)) E, D = FLANN.inrange(NN.index, x, r) A[i] = E if weights W[i] = D end end return A, W end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
2118
module ManifoldLearning using LinearAlgebra using SparseArrays: AbstractSparseMatrix, SparseMatrixCSC, spzeros, spdiagm, findnz, dropzeros!, nonzeros, sparse using StatsAPI: pairwise using Statistics: mean using MultivariateStats: NonlinearDimensionalityReduction, KernelPCA, dmat2gram, gram2dmat, transform!, projection, symmetrize!, PCA using Graphs: nv, add_edge!, connected_components, dijkstra_shortest_paths, induced_subgraph, SimpleGraph using Random: AbstractRNG, default_rng import StatsAPI: fit, predict, pairwise, pairwise! import Base: show, summary, size import LinearAlgebra: eigvals import Graphs: vertices, neighbors import SparseArrays: sparse export # Transformation types Isomap, # Type: Isomap model HLLE, # Type: Hessian Eigenmaps model LLE, # Type: Locally Linear Embedding model LTSA, # Type: Local Tangent Space Alignment model LEM, # Type: Laplacian Eigenmaps model DiffMap, # Type: Diffusion maps model TSNE, # Type: t-Distributed Stochastic Neighborhood Embedding ## common interface outdim, # the output dimension of the transformation fit, # perform the manifold learning predict, # transform the data using a given model eigvals, # eigenvalues from the spectral analysis neighbors, # the number of nearest neighbors used for aproximate local subspace vertices # vertices of largest connected component include("interface.jl") include("utils.jl") include("nearestneighbors.jl") include("isomap.jl") include("hlle.jl") include("lle.jl") include("ltsa.jl") include("lem.jl") include("diffmaps.jl") include("tsne.jl") # deprecated functions @deprecate transform(m) predict(m) @deprecate transform(m, x) predict(m, x) @deprecate outdim(m) size(m)[2] end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
3554
# Diffusion maps # -------------- # Diffusion maps, # Coifman, R. & Lafon, S., Applied and Computational Harmonic Analysis, Elsevier, 2006, 21, 5-30 """ DiffMap{T <: Real} <: AbstractDimensionalityReduction The `DiffMap` type represents diffusion maps model constructed for `T` type data. """ struct DiffMap{T <: Real} <: NonlinearDimensionalityReduction d::Number t::Int α::Real ɛ::Real λ::AbstractVector{T} K::AbstractMatrix{T} proj::Projection{T} end ## properties size(R::DiffMap) = (R.d, size(R.proj, 1)) eigvals(R::DiffMap) = R.λ ## custom """Returns the kernel matrix of the diffusion maps model `R`""" kernel(R::DiffMap) = R.K ## show function summary(io::IO, R::DiffMap) id, od = size(R) print(io, "Diffusion Maps(indim = $id, outdim = $od, t = $(R.t), α = $(R.α), ɛ = $(R.ɛ))") end function show(io::IO, R::DiffMap) summary(io, R) io = IOContext(io, :limit=>true) println(io) println(io, "Kernel: ") Base.print_matrix(io, R.K, "[", ",","]") println(io) println(io, "Embedding:") Base.print_matrix(io, transform(R), "[", ",","]") end ## interface functions """ fit(DiffMap, data; maxoutdim=2, t=1, α=0.0, ɛ=1.0) Fit a isometric mapping model to `data`. # Arguments * `data::Matrix`: a ``d \\times n``matrix of observations. Each column of `data` is an observation, `d` is a number of features, `n` is a number of observations. # Keyword arguments * `kernel::Union{Nothing, Function}`: the kernel function. It maps two input vectors (observations) to a scalar (a metric of their similarity). by default, a Gaussian kernel. If `kernel` set to `nothing`, we assume `data` is instead the ``n \\times n`` precomputed Gram matrix. * `ɛ::Real=1.0`: the Gaussian kernel variance (the scale parameter). It's ignored if the custom `kernel` is passed. * `maxoutdim::Int=2`: the dimension of the reduced space. * `t::Int=1`: the number of transitions * `α::Real=0.0`: a normalization parameter # Examples ```julia X = rand(3, 100) # toy data matrix, 100 observations # default kernel M = fit(DiffMap, X) # construct diffusion map model R = transform(M) # perform dimensionality reduction # custom kernel kernel = (x, y) -> x' * y # linear kernel M = fit(DiffMap, X, kernel=kernel) # precomputed Gram matrix kernel = (x, y) -> x' * y # linear kernel K = ManifoldLearning.pairwise(kernel, eachcol(X), symmetric=true) M = fit(DiffMap, K, kernel=nothing) ``` """ function fit(::Type{DiffMap}, X::AbstractMatrix{T}; ɛ::Real=1.0, kernel::Union{Nothing, Function}=(x, y) -> exp(-sum((x .- y) .^ 2) / convert(T, ɛ)), maxoutdim::Int=2, t::Int=1, α::Real=0.0) where {T<:Real} if isa(kernel, Function) # compute Gram matrix L = pairwise(kernel, eachcol(X), symmetric=true) d = size(X,1) else # X is the pre-computed Gram matrix L = deepcopy(X) # deep copy needed b/c of procedure for α > 0 d = NaN @assert issymmetric(L) end # Calculate Laplacian & normalize it if α > 0 normalize!(L, α=α, norm=:sym) # Lᵅ = D⁻ᵅ*L*D⁻ᵅ normalize!(L, α=α, norm=:rw) # M =(Dᵅ)⁻¹*Lᵅ end # Eigendecomposition & reduction λ, V = decompose(L, maxoutdim; rev=true, skipfirst=false) Y = (λ .^ t) .* V' return DiffMap{T}(d, t, α, ɛ, λ, L, Y) end """ predict(R::DiffMap) Transforms the data fitted to the diffusion map model `R` into a reduced space representation. """ predict(R::DiffMap) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
3106
# Hessian Eigenmaps (HLLE) # --------------------------- # Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, # D. Donoho and C. Grimes, Proc Natl Acad Sci U S A. 2003 May 13; 100(10): 5591–5596 import Combinatorics: combinations """ HLLE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction The `HLLE` type represents a Hessian eigenmaps model constructed for `T` type data with a help of the `NN` nearest neighbor algorithm. """ struct HLLE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction d::Int k::Real λ::AbstractVector{T} proj::Projection{T} nearestneighbors::NN component::AbstractVector{Int} end ## properties size(R::HLLE) = (R.d, size(R.proj, 1)) eigvals(R::HLLE) = R.λ neighbors(R::HLLE) = R.k vertices(R::HLLE) = R.component ## show function summary(io::IO, R::HLLE) id, od = size(R) msg = isinteger(R.k) ? "neighbors" : "epsilon" print(io, "HLLE{$(R.nearestneighbors)}(indim = $id, outdim = $od, $msg = $(R.k))") end ## interface functions """ fit(HLLE, data; k=12, maxoutdim=2, nntype=BruteForce) Fit a Hessian eigenmaps model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `k`: a number of nearest neighbors for construction of local subspace representation * `maxoutdim`: a dimension of the reduced space. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) # Examples ```julia M = fit(HLLE, rand(3,100)) # construct Hessian eigenmaps model R = predict(M) # perform dimensionality reduction ``` """ function fit(::Type{HLLE}, X::AbstractMatrix{T}; k::Real=12, maxoutdim::Int=2, nntype=BruteForce) where {T<:Real} # Construct NN graph d, n = size(X) NN = fit(nntype, X) A = adjacency_matrix(NN, X, k) G, C = largest_component(SimpleGraph(A)) # Obtain tangent coordinates and develop Hessian estimator hs = (maxoutdim*(maxoutdim+1)) >> 1 W = spzeros(T, hs*n, n) for i=1:n II, _ = findnz(A[:,C[i]]) # re-center points in neighborhood VX = view(X, :, II) μ = mean(VX, dims=2) N = VX .- μ # calculate tangent coordinates tc = svd(N).V[:,1:maxoutdim] # Develop Hessian estimator l = length(II) Yi = [ones(T, l) tc zeros(T, l, hs)] for ii=1:maxoutdim Yi[:,maxoutdim+ii+1] = tc[:,ii].^2 end yi = 2*(1+maxoutdim) for (ii,jj) in combinations(1:maxoutdim, 2) Yi[:, yi] = tc[:, ii] .* tc[:, jj] yi += 1 end F = qr(Yi) H = transpose(F.Q[:,(end-(hs-1)):end]) W[(1:hs).+(i-1)*hs, II] = H end # decomposition λ, V = decompose(transpose(W)*W, maxoutdim) return HLLE{nntype, T}(d, k, λ, transpose(V) .* convert(T, sqrt(n)), NN, C) end """ predict(R::HLLE) Transforms the data fitted to the Hessian eigenmaps model `R` into a reduced space representation. """ predict(R::HLLE) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
2020
## Interface const Projection{T <: Real} = AbstractMatrix{T} """ vertices(R::NonlinearDimensionalityReduction) Returns vertices of largest connected component in the model `R`. """ vertices(R::NonlinearDimensionalityReduction) = Int[] """ neighbors(R::NonlinearDimensionalityReduction) Returns the number of nearest neighbors used for aproximate local subspace """ neighbors(R::NonlinearDimensionalityReduction) = 0 """ fit(NonlinearDimensionalityReduction, X) Perform model fitting given the data `X` """ fit(::Type{NonlinearDimensionalityReduction}, X::AbstractMatrix; kwargs...) = throw("Model fitting is not implemented") """ predict(R::NonlinearDimensionalityReduction) Returns a reduced space representation of the data given the model `R` inform of the projection matrix (of size ``(d, n)``), where `d` is a dimension of the reduced space and `n` in the number of the observations. Each column of the projection matrix corresponds to an observation in projected reduced space. """ predict(R::NonlinearDimensionalityReduction) = throw("Data transformation is not implemented") """ size(R::NonlinearDimensionalityReduction) Returns a tuple of the input and reduced space dimensions for the model `R` """ size(R::NonlinearDimensionalityReduction) = (0,0) """ eigvals(R::NonlinearDimensionalityReduction) Returns eignevalues of the reduced space reporesentation for the model `R` """ eigvals(R::NonlinearDimensionalityReduction) = Float64[] # Auxiliary functions show(io::IO, ::MIME"text/plain", R::T) where {T<:NonlinearDimensionalityReduction} = summary(io, R) function show(io::IO, R::T) where {T<:NonlinearDimensionalityReduction} summary(io, R) io = IOContext(io, :limit=>true) println(io) println(io, "connected component: ") Base.show_vector(io, vertices(R)) println(io) println(io, "eigenvalues: ") Base.show_vector(io, eigvals(R)) println(io) println(io, "projection:") Base.print_matrix(io, transform(R), "[", ",","]") end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
2978
# Isomap # ------ # A Global Geometric Framework for Nonlinear Dimensionality Reduction, # J. B. Tenenbaum, V. de Silva and J. C. Langford, Science 290 (5500): 2319-2323, 22 December 2000 """ Isomap{NN <: AbstractNearestNeighbors} <: AbstractDimensionalityReduction The `Isomap` type represents an isometric mapping model constructed with a help of the `NN` nearest neighbor algorithm. """ struct Isomap{NN <: AbstractNearestNeighbors} <: NonlinearDimensionalityReduction d::Int k::Real model::KernelPCA nearestneighbors::NN component::AbstractVector{Int} end ## properties size(R::Isomap) = (R.d, size(R.model)[2]) eigvals(R::Isomap) = eigvals(R.model) neighbors(R::Isomap) = R.k vertices(R::Isomap) = R.component ## show function summary(io::IO, R::Isomap) id, od = size(R) msg = isinteger(R.k) ? "neighbors" : "epsilon" print(io, "Isomap{$(R.nearestneighbors)}(indim = $id, outdim = $od, $msg = $(R.k))") end ## interface functions """ fit(Isomap, data; k=12, maxoutdim=2, nntype=BruteForce) Fit an isometric mapping model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `k`: a number of nearest neighbors for construction of local subspace representation * `maxoutdim`: a dimension of the reduced space. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) # Examples ```julia M = fit(Isomap, rand(3,100)) # construct Isomap model R = predict(M) # perform dimensionality reduction ``` """ function fit(::Type{Isomap}, X::AbstractMatrix{T}; k::Real=12, maxoutdim::Int=2, nntype=BruteForce) where {T<:Real} # Construct NN graph d, n = size(X) NN = fit(nntype, X) A = adjacency_matrix(NN, X, k) G, C = largest_component(SimpleGraph(A)) # Compute shortest path for every point n = length(C) DD = zeros(T, n, n) for i in 1:n dj = dijkstra_shortest_paths(G, i, A) DD[i,:] .= dj.dists end broadcast!(x->-x*x/2, DD, DD) #symmetrize!(DD) # error in MvStats DD = (DD+DD')/2 M = fit(KernelPCA, DD, kernel=nothing, maxoutdim=maxoutdim) return Isomap{nntype}(d, k, M, NN, C) end """ predict(R::Isomap) Transforms the data fitted to the Isomap model `R` into a reduced space representation. """ predict(R::Isomap) = predict(R.model) """ predict(R::Isomap, X::AbstractVecOrMat) Returns a transformed out-of-sample data `X` given the Isomap model `R` into a reduced space representation. """ function predict(R::Isomap, X::AbstractVecOrMat{T}) where {T<:Real} n = size(X,2) E, W = adjacency_list(R.nearestneighbors, X, R.k, self = true, weights=true) D = gram2dmat(R.model.X) G = zeros(size(R.model.X,2), n) for i in 1:n G[:,i] = minimum(D[:,E[i]] .+ W[i]', dims=2) end broadcast!(x->-x*x/2, G, G) transform!(R.model.center, G) return projection(R.model)'*G end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
2983
# Laplacian Eigenmaps # ------------------- # Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, # M. Belkin, P. Niyogi, Neural Computation, June 2003; 15 (6):1373-1396 """ LEM{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction The `LEM` type represents a Laplacian eigenmaps model constructed for `T` type data with a help of the `NN` nearest neighbor algorithm. """ struct LEM{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction d::Int k::Real λ::AbstractVector{T} ɛ::T proj::Projection{T} nearestneighbors::NN component::AbstractVector{Int} end ## properties size(R::LEM) = (R.d, size(R.proj, 1)) eigvals(R::LEM) = R.λ neighbors(R::LEM) = R.k vertices(R::LEM) = R.component ## show function summary(io::IO, R::LEM) id, od = size(R) msg = isinteger(R.k) ? "neighbors" : "epsilon" print(io, "LEM{$(R.nearestneighbors)}(indim = $id, outdim = $od, $msg = $(R.k))") end ## interface functions """ fit(LEM, data; k=12, maxoutdim=2, ɛ=1.0, nntype=BruteForce) Fit a Laplacian eigenmaps model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `k`: a number of nearest neighbors for construction of local subspace representation * `maxoutdim`: a dimension of the reduced space. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) * `ɛ`: a Gaussian kernel variance (the scale parameter) * `laplacian`: a form of the Laplacian matrix used for spectral decomposition * `:unnorm`: an unnormalized Laplacian * `:sym`: a symmetrically normalized Laplacian * `:rw`: a random walk normalized Laplacian # Examples ```julia M = fit(LEM, rand(3,100)) # construct Laplacian eigenmaps model R = predict(M) # perform dimensionality reduction ``` """ function fit(::Type{LEM}, X::AbstractMatrix{T}; k::Real=12, maxoutdim::Int=2, ɛ::Real=1, laplacian::Symbol=:unnorm, nntype=BruteForce) where {T<:Real} # Construct NN graph d, n = size(X) NN = fit(nntype, X) A = adjacency_matrix(NN, X, k) G, C = largest_component(SimpleGraph(A)) # Compute weights of heat kernel W = A[C,C] I, J, V = findnz(W) @inbounds for (i,j,v) in zip(I,J,V) W[i,j] = exp(-v*v/ε) end L, D = Laplacian(W) λ, V = if laplacian == :unnorm decompose(L, collect(D), maxoutdim) elseif laplacian == :sym normalize!(L, D, α=1/2, norm=laplacian) decompose(L, maxoutdim) elseif laplacian == :rw normalize!(L, D, α=1, norm=laplacian) decompose(L, maxoutdim) else throw(ArgumentError("Unkown Laplacian type: $laplacian")) end return LEM{nntype, T}(d, k, λ, ɛ, transpose(V), NN, C) end """ predict(R::LEM) Transforms the data fitted to the Laplacian eigenmaps model `R` into a reduced space representation. """ predict(R::LEM) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
3560
# Locally Linear Embedding (LLE) # ------------------------ # Nonlinear dimensionality reduction by locally linear embedding, # Roweis, S. & Saul, L., Science 290:2323 (2000) """ LLE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction The `LLE` type represents a locally linear embedding model constructed for `T` type data constructed with a help of the `NN` nearest neighbor algorithm. """ struct LLE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction d::Int k::Real λ::AbstractVector{T} proj::Projection{T} nearestneighbors::NN component::AbstractVector{Int} end ## properties size(R::LLE) = (R.d, size(R.proj, 1)) eigvals(R::LLE) = R.λ neighbors(R::LLE) = R.k vertices(R::LLE) = R.component ## show function summary(io::IO, R::LLE) id, od = size(R) msg = isinteger(R.k) ? "neighbors" : "epsilon" print(io, "LLE{$(R.nearestneighbors)}(indim = $id, outdim = $od, $msg = $(R.k))") end ## interface functions """ fit(LLE, data; k=12, maxoutdim=2, nntype=BruteForce, tol=1e-5) Fit a locally linear embedding model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `k`: a number of nearest neighbors for construction of local subspace representation * `maxoutdim`: a dimension of the reduced space. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) * `tol`: an algorithm regularization tolerance # Examples ```julia M = fit(LLE, rand(3,100)) # construct LLE model R = transform(M) # perform dimensionality reduction ``` """ function fit(::Type{LLE}, X::AbstractMatrix{T}; k::Int=12, maxoutdim::Int=2, nntype=BruteForce, tol::Real=1e-5) where {T<:Real} # Construct NN graph d, n = size(X) NN = fit(nntype, X) E, _ = adjacency_list(NN, X, k) _, C = largest_component(SimpleGraph(n, E)) # Correct indexes of neighbors if more then one connected component fixindex = length(C) < n if fixindex n = length(C) R = Dict(zip(C, collect(1:n))) end if k > d @warn("k > $d: regularization will be used") else tol = 0 end # Reconstruct weights and compute embedding: M = spdiagm(0 => fill(one(T), n)) #W = spzeros(T, n, n) O = fill(one(T), k, 1) for i in C NI = E[i] # neighbor's indexes # fix indexes for connected components NIfix, NIcc, j = if fixindex # fix index JJ = [i for i in NI if i ∈ C] # select points that are in CC KK = [R[i] for i in JJ if haskey(R, i)] # convert NI to CC index JJ, KK, R[i] else NI, NI, i end l = length(NIfix) l == 0 && continue # skip # centering neighborhood of point xᵢ zᵢ = view(X, :, NIfix) .- view(X, :, i) # calculate weights: wᵢ = (Gᵢ + αI)⁻¹1 G = zᵢ'zᵢ w = (G + tol * I) \ fill(one(T), l, 1) |> vec w ./= sum(w) # M = (I - w)'(I - w) = I - w'I - Iw + w'w M[NIcc,j] .-= w M[j,NIcc] .-= w M[NIcc,NIcc] .+= w*w' #W[NI, i] .= w end #@assert all(sum(W, dims=1).-1 .< tol) "Weights are not normalized" #M = (I-W)*(I-W)' λ, V = decompose(M, maxoutdim) return LLE{nntype, T}(d, k, λ, transpose(V) .* convert(T, sqrt(n)), NN, C) end """ predict(R::LLE) Transforms the data fitted to the LLE model `R` into a reduced space representation. """ predict(R::LLE) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
3319
# Local Tangent Space Alignment (LTSA) # --------------------------- # Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment, # Zhang, Zhenyue; Hongyuan Zha (2004), SIAM Journal on Scientific Computing 26 (1): 313–338. # doi:10.1137/s1064827502419154. """ LTSA{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction The `LTSA` type represents a local tangent space alignment model constructed for `T` type data with a help of the `NN` nearest neighbor algorithm. """ struct LTSA{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction d::Int k::Real λ::AbstractVector{T} proj::Projection{T} nearestneighbors::NN component::AbstractVector{Int} end ## properties size(R::LTSA) = (R.d, size(R.proj, 1)) eigvals(R::LTSA) = R.λ neighbors(R::LTSA) = R.k vertices(R::LTSA) = R.component ## show function summary(io::IO, R::LTSA) id, od = size(R) msg = isinteger(R.k) ? "neighbors" : "epsilon" print(io, "LTSA{$(R.nearestneighbors)}(indim = $id, outdim = $od, neighbors = $(R.k))") end ## interface functions """ fit(LTSA, data; k=12, maxoutdim=2, nntype=BruteForce) Fit a local tangent space alignment model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `k`: a number of nearest neighbors for construction of local subspace representation * `maxoutdim`: a dimension of the reduced space. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) # Examples ```julia M = fit(LTSA, rand(3,100)) # construct LTSA model R = transform(M) # perform dimensionality reduction ``` """ function fit(::Type{LTSA}, X::AbstractMatrix{T}; k::Real=12, maxoutdim::Int=2, nntype=BruteForce) where {T<:Real} # Construct NN graph d, n = size(X) NN = fit(nntype, X) E, _ = adjacency_list(NN, X, k) _, C = largest_component(SimpleGraph(n, E)) # Correct indexes of neighbors if more then one connected component fixindex = length(C) < n if fixindex n = length(C) R = Dict(zip(C, collect(1:n))) end B = spzeros(T,n,n) for i in C NI = E[i] # neighbor's indexes # fix indexes for connected components NIfix, NIcc = if fixindex # fix index JJ = [i for i in NI if i ∈ C] # select points that are in CC KK = [R[i] for i in JJ if haskey(R, i)] # convert NI to CC index JJ, KK else NI, NI end l = length(NIfix) l == 0 && continue # skip # re-center points in neighborhood VX = view(X, :, NIfix) μ = mean(VX, dims=2) δ_x = VX .- μ # Compute orthogonal basis H of θ' θ_t = view(svd(δ_x).V, :, 1:maxoutdim) # Construct alignment matrix S = ones(l)./sqrt(l) G = hcat(S, θ_t) B[NIcc, NIcc] .+= Diagonal(fill(one(T), l)) .- G*transpose(G) end # Align global coordinates λ, V = decompose(B, maxoutdim) return LTSA{nntype, T}(d, k, λ, transpose(V), NN, C) end """ predict(R::LTSA) Transforms the data fitted to the local tangent space alignment model `R` into a reduced space representation. """ predict(R::LTSA) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
4637
""" AbstractNearestNeighbors Abstract type for nearest neighbor plug-in implementations. """ abstract type AbstractNearestNeighbors end """ size(NN::AbstractNearestNeighbors) Returns the size of the fitted data. """ function size(NN::AbstractNearestNeighbors) end """ knn(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer; kwargs...) -> (I,D) Returns `(k, n)`-matrices of point indexes and distances of `k` nearest neighbors for points in the `(m,n)`-matrix `X` given the `NN` object. """ function knn(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer; kwargs...) where T<:Real end """ inrange(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, r::Real; kwargs...) -> (I,D) Returns collections of point indexes and distances in radius `r` of points in the `(m,n)`-matrix `X` given the `NN` object. """ function inrange(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, r::Real; kwargs...) where T<:Real end """ adjacency_list(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Real; kwargs...) -> (A, W) Perform construction of an adjacency list `A` with corresponding weights `W` from the points in `X` given the `NN` object. - If `k` is a positive integer, then `k` nearest neighbors are use for construction. - If `k` is a real number, then radius `k` neighborhood is used for construction. """ function adjacency_list(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer; weights::Bool=false, kwargs...) where T<:Real A, W = knn(NN, X, k; weights=weights, kwargs...) return A, W end function adjacency_list(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Real; weights::Bool=false, kwargs...) where T<:Real A, W = inrange(NN, X, k; weights=weights, kwargs...) return A, W end """ adjacency_matrix(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Real; kwargs...) -> A Perform construction of a weighted adjacency distance matrix `A` from the points in `X` given the `NN` object. - If `k` is a positive integer, then `k` nearest neighbors are use for construction. - If `k` is a real number, then radius `k` neighborhood is used for construction. """ function adjacency_matrix(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer; symmetric::Bool=true, kwargs...) where T<:Real n = size(NN)[2] m = length(eachcol(X)) @assert n >=m "Cannot construc matrix for more then $n fitted points" E, W = knn(NN, X, k; weights=true, kwargs...) return sparse(E, W, n, symmetric=symmetric) end function adjacency_matrix(NN::AbstractNearestNeighbors, X::AbstractVecOrMat{T}, r::Real; symmetric::Bool=true, kwargs...) where T<:Real n = size(NN)[2] m = length(eachcol(X)) @assert n >=m "Cannot construc matrix for more then $n fitted points" E, W = inrange(NN, X, r; weights=true, kwargs...) return sparse(E, W, n, symmetric=symmetric) end # Implementation """ BruteForce Calculate nearest neighborhoods using pairwise distance matrix. """ struct BruteForce{T<:Real} <: AbstractNearestNeighbors fitted::AbstractMatrix{T} end show(io::IO, NN::BruteForce) = print(io, "BruteForce") size(NN::BruteForce) = size(NN.fitted) fit(::Type{BruteForce}, X::AbstractMatrix{T}) where {T<:Real} = BruteForce(X) function knn(NN::BruteForce{T}, X::AbstractVecOrMat{T}, k::Integer; self::Bool=false, weights::Bool=true, kwargs...) where T<:Real l = size(NN)[2] @assert l > k "Number of fitted observations must be at least $(k)" # construct distance matrix D = pairwise((x,y)->norm(x-y), eachcol(NN.fitted), eachcol(X)) idxs = (1:k).+(!self) n = size(X,2) A = Vector{Vector{Int}}(undef, n) W = Vector{Vector{T}}(undef, (weights ? n : 0)) @inbounds for (j, ds) in enumerate(eachcol(D)) kidxs = sortperm(ds)[idxs] A[j] = kidxs if weights W[j] = D[kidxs, j] end end return A, W end function inrange(NN::BruteForce{T}, X::AbstractVecOrMat{T}, r::Real; self::Bool=false, weights::Bool=false, kwargs...) where T<:Real # construct distance matrix D = pairwise((x,y)->norm(x-y), eachcol(NN.fitted), eachcol(X)) n = size(X,2) A = Vector{Vector{Int}}(undef, n) W = Vector{Vector{T}}(undef, (weights ? n : 0)) @inbounds for (j, ds) in enumerate(eachcol(D)) kidxs = self ? findall(0 .<= ds .<= r) : findall(0 .< ds .<= r) A[j] = kidxs if weights W[j] = D[kidxs, j] end end return A, W end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
6739
# t-Distributed Stochastic Neighborhood Embedding (t-SNE) # ------------------------------------------------------- # Visualizing Data using t-SNE # L. van der Maaten, G. Hinton, Journal of Machine Learning Research 9 (2008) 2579-2605 """ TSNE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction The `TSNE` type represents a t-SNE model constructed for `T` type data with a help of the `NN` nearest neighbor algorithm. """ struct TSNE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReduction d::Int p::Real β::AbstractVector{T} proj::Projection{T} nearestneighbors::NN end ## properties size(R::TSNE) = (R.d, size(R.proj, 1)) neighbors(R::TSNE) = R.p ## show function summary(io::IO, R::TSNE) id, od = size(R) print(io, "t-SNE{$(R.nearestneighbors)}(indim = $id, outdim = $od, perplexity = $(R.p))") end ## auxiliary function perplexities(D::AbstractMatrix{T}, p::Real=30; maxiter::Integer=50, tol::Real=1e-7) where {T<:Real} k, n = size(D) P = zeros(T, size(D)) βs = zeros(T, n) Ĥ = log(p) # desired entropy for (i, Dᵢ) in enumerate(eachcol(D)) Pᵢ = @view P[:,i] β = 1 # precision β = 1/σ² βmax, βmin = Inf, 0 ΔH = 0 for j in 1:maxiter Pᵢ .= exp.(-β.*Dᵢ) div∑Pᵢ = 1/sum(Pᵢ) H = -log(div∑Pᵢ) + β*(Dᵢ'Pᵢ)*div∑Pᵢ Pᵢ .*= div∑Pᵢ ΔH = H - Ĥ (abs(ΔH) < tol || β < eps()) && break if ΔH > 0 βmin, β = β, isinf(βmax) ? β*2 : (β + βmax)/2 else βmax, β = β, (β + βmin)/2 end end #abs(ΔH) > tol && println("P[$i]: perplexity error is above tolerance: $ΔH") βs[i] = β end P, βs end function optimize!(Y::AbstractMatrix{T}, P::AbstractMatrix{T}, r::Integer=1; η::Real=200, exaggeration::Real=12, tol::Real=1e-7, mingain::Real=0.01, maxiter::Integer=100, exploreiter::Integer=250) where {T<:Real} m, n = size(Y) Q = zeros(T, (n*(n-1))>>1) L = zeros(T, n, n) ∑Lᵢ = zeros(T, n) ∇C = zeros(T, m, n) U = zeros(T, m, n) G = fill!(similar(Y), 1) ∑P = max(sum(P), eps(T)) P .*= exaggeration/∑P α = 0.5 # early exaggeration stage momentum minerr = curerr = Inf minitr = 0 for itr in 1:maxiter # Student t-distribution: 1/(1+t²/r)^(r+1)/2 #@time pairwise!((x,y)->1+sum(abs2, x-y)/r, Q, eachcol(Y), skipdiagonal=true) h = 1 @inbounds for i in 1:n, j in (i+1):n s = 0 @simd for l in 1:m s += abs2(Y[l,i]-Y[l,j]) end Q[h] = 1+s/r h += 1 end Q .^= -(r+1)/2 ∑Q = 2*sum(Q) # KL[P||Q] #@time curerr = 2*(P'*log.(P./Q)) # ∂C/∂Y = (2(r+1)/r)∑ⱼ (pᵢⱼ - qᵢⱼ)(yᵢ-yⱼ)/(1+||yᵢ-yⱼ||²)ʳ #A = unpack((compact(P).-Q./∑Q).*Q, skipdiagonal=true) |> collect k = 1 fill!(∑Lᵢ, 0) @inbounds for i in 1:n ∑Lⱼ = 0 for j in (i+1):n Qᵢⱼ = Q[k] l = (P[i,j] - Qᵢⱼ ./ ∑Q)*Qᵢⱼ L[i, j] = l ∑Lᵢ[j] += l ∑Lⱼ += l k +=1 end ∑Lᵢ[i] += ∑Lⱼ L[i,i] = -∑Lᵢ[i] #ΔY = Y .- view(Y, :, i) #∇C[:, i] .= ΔY*A[:, i] end BLAS.symm!('R', 'U', T(-2(r+1)/r), L, Y, zero(T), ∇C) # update embedding #@. U = α*U - η*G*∇C #@. Y += U @inbounds for (y, u, g, c) in zip(eachcol(Y), eachcol(U), eachcol(G), eachcol(∇C)) @. g = ifelse(u*c>0, max(g*0.8, mingain), g+0.2) @. u = α*u - η*g*c y .+= u end # switch off exploration stage if exploreiter > 0 && itr >= min(maxiter, exploreiter) P .*= 1/exaggeration α = 0.8 # late stage momentum exploreiter = 0 end # convergence check gnorm = norm(∇C) gnorm < tol && break #println("$itr: ||∇C||=$gnorm, min-gain: $(minimum(G))") end end ## interface functions """ fit(TSNE, data; p=30, maxoutdim=2, kwargs...) Fit a t-SNE model to `data`. # Arguments * `data`: a matrix of observations. Each column of `data` is an observation. # Keyword arguments * `p`: a perplexity parameter (*defaut* `30`). * `maxoutdim`: a dimension of the reduced space (*defaut* `2`). * `maxiter`: a total number of iterations for the search algorithm (*defaut* `800`). * `exploreiter`: a number of iterations for the exploration stage of the search algorithm (*defaut* `200`). * `tol`: a tolerance threshold (*default* `1e-7`). * `exaggeration`: a tightness control parameter between the original and the reduced space (*defaut* `12`). * `initialize`: an initialization parameter for the embedding (*defaut* `:pca`). * `rng`: a random number generator object for initialization of the initial embedding. * `nntype`: a nearest neighbor construction class (derived from `AbstractNearestNeighbors`) # Examples ```julia M = fit(TSNE, rand(3,100)) # construct t-SNE model R = predict(M) # perform dimensionality reduction ``` """ function fit(::Type{TSNE}, X::AbstractMatrix{T}; p::Real=30, maxoutdim::Integer=2, maxiter::Integer=800, exploreiter::Integer=200, exaggeration::Real=12, tol::Real=1e-7, initialize::Symbol=:pca, rng::AbstractRNG=default_rng(), nntype=BruteForce) where {T<:Real} d, n = size(X) k = min(n-1, round(Int, 3p)) # Construct NN graph NN = fit(nntype, X) # form distance matrix D = adjacency_matrix(NN, X, k, symmetric=false) D .^= 2 # sq. dists I, J, V = findnz(D) Ds = reshape(V, k, :) # calculate perplexities & corresponding conditional probabilities matrix P Px, βs = perplexities(Ds, p, tol=tol) P = sparse(I, J, reshape(Px,:)) P .+= P' # symmetrize P ./= max(sum(P), eps(T)) # form initial embedding and optimize it Y = if initialize == :pca predict(fit(PCA, X, maxoutdim=maxoutdim), X) elseif initialize == :random randn(rng, T, maxoutdim, n).*T(1e-4) else error("Uknown initialization method: $initialize") end dof = max(maxoutdim-1, 1) optimize!(Y, P, dof; maxiter=maxiter, exploreiter=exploreiter, tol=tol, exaggeration=exaggeration, η=max(n/exaggeration/4, 50)) return TSNE{nntype, T}(d, p, βs, Y, NN) end """ predict(R::TSNE) Transforms the data fitted to the t-SNE model `R` into a reduced space representation. """ predict(R::TSNE) = R.proj
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
8004
""" knn(points::AbstractMatrix, k) -> distances, indices Performs a lookup of the `k` nearest neigbours for each point in the `points` dataset to the dataset itself, and returns distances to and indices of the neigbours. *Note: Inefficient implementation that uses distance matrix. Not recomended for large datasets.* """ function knn(X::AbstractMatrix{T}, k::Int=12) where T<:Real m, n = size(X) @assert n > k "Number of observations must be more then $(k)" r = Array{T}(undef, (n, n)) d = Array{T}(undef, k, n) e = Array{Int}(undef, k, n) mul!(r, transpose(X), X) sa2 = sum(X.^2, dims=1) @inbounds for j = 1 : n @inbounds for i = 1 : j-1 r[i,j] = r[j,i] end r[j,j] = 0 @inbounds for i = j+1 : n v = sa2[i] + sa2[j] - 2 * r[i,j] r[i,j] = isnan(v) ? NaN : sqrt(max(v, 0.)) end e[:, j] = sortperm(r[:,j])[2:k+1] d[:, j] = r[e[:, j],j] end return (d, e) end """ adjacency_matrix(A, W) Returns a weighted adjacency matrix constructed from an adjacency list `A` and weights `W`. """ function adjacency_matrix(A::AbstractArray{S}, W::AbstractArray{Q}) where {T<:Real, S<:AbstractArray{<:Integer}, Q<:AbstractArray{T}} @assert length(A) == length(W) "Weights and edge matrix must be of the same size" n = length(A) M = spzeros(T, n, n) @inbounds for (j, (ii, ws)) in enumerate(zip(A, W)) M[ii, j] = ws M[j, ii] = ws end return M end """ Laplacian(A) Construct Laplacian matrix `L` from the adjacency matrix `A`, s.t. ``L = D - A`` where ``D_{i,i} = \\sum_j A_{ji}``. """ function Laplacian(A::AbstractMatrix) D = Diagonal(vec(sum(A, dims=1))) return D - A, D end """ normalize!(L, [D; α=1, norm=:sym]) Performs in-place normalization of the Laplacian `L` using the degree matrix `D`, if provided, raised in a power `α`. The `norm` parameter specifies normalization type: - `:sym`: Laplacian `L` is symmetrically normalized, s.t. ``L_{sym} = D^{-\\alpha} L D^{-\\alpha}``. - `:rw`: Laplacian `L` is random walk normalized, s.t. ``L_{rw} = D^{-\\alpha} L``. where ``D`` is a diagonal matrix, s.t. ``D_{i,i} = \\sum_j L_{ji}``. """ function normalize!(L::AbstractMatrix, D=Diagonal(vec(sum(L, dims=1))); α::Real=1.0, norm=:rw) D⁻¹ = Diagonal(1 ./ diag(D).^α) if norm == :sym rmul!(lmul!(D⁻¹, L),D⁻¹) elseif norm == :rw lmul!(D⁻¹, L) else error("Uknown normalization: $norm") end end "Crate a graph with largest connected component of adjacency matrix `W`" function largest_component(G) CC = connected_components(G) if length(CC) > 1 @warn "Found $(length(CC)) connected components. Largest component is selected." C = CC[argmax(map(length, CC))] G = first(induced_subgraph(G, C)) else C = first(CC) end return G, C end """ swiss_roll(n::Int, noise::Real=0.03, segments=1) Generate a swiss roll dataset of `n` points with point coordinate `noise` variance, and partitioned on number of `segments`. """ function swiss_roll(n::Int = 1000, noise::Real=0.03; segments=1, hlims=(-10.0,10.0), rng::AbstractRNG=default_rng()) t = (3 * pi / 2) * (1 .+ 2 * rand(rng, n, 1)) height = (hlims[2]-hlims[1]) * rand(rng, n, 1) .+ hlims[1] X = [t .* cos.(t) height t .* sin.(t)] X .+= noise * randn(rng, n, 3) mn,mx = extrema(t) labels = segments == 0 ? t : round.(Int, (t.-mn)./(mx-mn).*(segments-1)) return collect(transpose(X)), labels end """ spirals(n::Int, noise::Real=0.03, segments=1) Generate a spirals dataset of `n` points with point coordinate `noise` variance. """ function spirals(n::Int = 1000, noise::Real=0.03; segments=1, rng::AbstractRNG=default_rng()) t = collect(1:n) / n * 2π height = 30 * rand(rng, n, 1) X = [cos.(t).*(.5cos.(6t).+1) sin.(t).*(.4cos.(6t).+1) 0.4sin.(6t)] + noise * randn(n, 3) labels = segments == 0 ? t : vec(rem.(sum([round.(Int, t / 2) round.(Int, height / 12)], dims=2), 2)) return collect(transpose(X)), labels end """ scurve(n::Int, noise::Real=0.03, segments=1) Generate an S curve dataset of `n` points with point coordinate `noise` variance. """ function scurve(n::Int = 1000, noise::Real=0.03; segments=1, rng::AbstractRNG=default_rng()) t = 3π*(rand(rng, n) .- 0.5) x = sin.(t) y = 2rand(rng, n) z = sign.(t) .* (cos.(t) .- 1) height = 30 * rand(rng, n, 1) X = [x y z] + noise * randn(n, 3) mn,mx = extrema(t) labels = segments == 0 ? t : round.(Int, (t.-mn)./(mx-mn).*(segments-1)) return collect(transpose(X)), labels end """ pairwise!(f, dest, x; skipdiagonal=false) Stores in a vector `dest`, that is a packed upper triangular matrix representation, holding the result of applying `f` to all possible pairs of entries in iterators `x`. """ function pairwise!(f, dest::AbstractVector{T}, x; skipdiagonal=false) where {T<:Real} # check sizes n = length(x) l = length(dest) nelem = (n*(n+(skipdiagonal ? -1 : 1)))>>1 l < nelem && throw(ArgumentError("Not enough elements in `dest`. Must be at least $nelem")) k = 1 @inbounds for (i, xi) in enumerate(x), (j, yj) in enumerate(x) (i > j || (skipdiagonal && i == j )) && continue dest[k] = f(xi, yj) k+=1 end return dest end """ unpack(v [; skipdiagonal=false]) Return a symmetric matrix from from packed upper triangular matrix, stored as vector `v`, """ function unpack(v::AbstractVector{T}; skipdiagonal=false) where {T} l = length(v) nelem = (sqrt(8l+1)+1)/2 !isinteger(nelem) && throw(ArgumentError("Incorrect input size")) n = Int(nelem)-!skipdiagonal A = zeros(T, n, n) k=1 for i in 1:(n-skipdiagonal), j in (i+skipdiagonal):n A[i,j] = v[k] k+=1 end return Symmetric(A) end """ compact(A) Return a packed upper triangular part of the symmetric matrix `A` as a vector. """ function compact(S::AbstractMatrix{T}) where {T} n = size(S,1) C = zeros(T, (n*(n-1))>>1) compact!(C, S) end function compact!(C::AbstractVector{T}, S::AbstractMatrix{T}) where {T} n = size(S,1) k = 1 for i in 1:n-1 for j in i+1:n C[k] = S[i,j] k+=1 end end return C end """ sparse(E, W, n) Construct a sparse weighted adjacency `(n,n)`-matrix from the adjacency list `E` and weights `W`. """ function sparse(E::AbstractVector{TI}, W::AbstractVector{TV}, n::Integer; symmetric::Bool=true) where {TI<:AbstractVector{<:Integer}, TV<:AbstractVector{<:Real}} # check sizes k, l = length(E), length(W) k != l && throw(ArgumentError("Incorrect input size")) # construct sp matrix A = spzeros(eltype(eltype(W)), n, n) @inbounds for (j,(es, ds)) in enumerate(zip(E, W)) A[es, j] .= ds if symmetric A[j, es] .= ds end end return A end "Perform spectral decomposition for Ax=λI" function decompose(M::AbstractMatrix{<:Real}, d::Int; rev=false, skipfirst=true) W = isa(M, AbstractSparseMatrix) ? Symmetric(Matrix(M)) : Symmetric(M) F = eigen!(W) rng = 1:d idx = sortperm(F.values, rev=rev)[skipfirst ? rng.+1 : rng] return F.values[idx], F.vectors[:,idx] end "Perform spectral decomposition for Ax=λB" function decompose(A::AbstractMatrix{<:Real}, B::AbstractMatrix{<:Real}, d::Int; rev=false) AA = isa(A, AbstractSparseMatrix) ? Symmetric(Matrix(A)) : Symmetric(A) BB = isa(B, AbstractSparseMatrix) ? Symmetric(Matrix(B)) : Symmetric(B) F = eigen(AA, BB) idx = sortperm(F.values, rev=rev)[2:d+1] return F.values[idx], F.vectors[:,idx] end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
code
5438
using ManifoldLearning using Test using Statistics using StableRNGs rng = StableRNG(83743871) @testset "Nearest Neighbors" begin # setup parameters k = 12 X, _ = ManifoldLearning.swiss_roll(100, rng=rng) DD, EE = ManifoldLearning.knn(X,k) @test_throws AssertionError ManifoldLearning.knn(zeros(3,10), k) NN = fit(ManifoldLearning.BruteForce, X) A = ManifoldLearning.adjacency_matrix(NN, X, k) @test size(X,2) == size(A,2) @test A ≈ ManifoldLearning.adjacency_matrix(collect(eachcol(EE)), collect(eachcol(DD))) E, W = ManifoldLearning.adjacency_list(NN, X, k, weights=true) @test size(X,2) == length(W) && length(W[1]) == k @test size(X,2) == length(E) && length(E[1]) == k @test hcat(E...) == EE @test hcat(W...) ≈ DD @test A ≈ ManifoldLearning.adjacency_matrix(E, W) A = ManifoldLearning.adjacency_matrix(NN, X[:,1:k+1], k) @test size(X,2) == size(A,2) @test sum(A[k+2:end,k+2:end]) == 0 A = ManifoldLearning.adjacency_matrix(NN, X, k/7) @test size(X,2) == size(A,2) @test maximum(A) <= k/7 E, W = ManifoldLearning.adjacency_list(NN, X, k/7, weights=true) @test size(X,2) == length(W) @test size(X,2) == length(E) @test maximum(Iterators.flatten(W)) <= k/7 @test_throws AssertionError ManifoldLearning.adjacency_matrix(NN, X, 101) @test_throws AssertionError ManifoldLearning.adjacency_list(NN, X, 101) n = 5 ker = (x,y)->x'y D = ManifoldLearning.pairwise(ker, eachcol(X[:,1:n])) d = zeros(10) @test_throws ArgumentError ManifoldLearning.pairwise!(ker, d, eachcol(X)) ManifoldLearning.pairwise!(ker, d, eachcol(X[:,1:n]), skipdiagonal=true) @testset for i in 1:n, j in i+1:n k = n*(i-1) - (i*(i+1))>>1 + j @test D[i,j] ≈ d[k] end S = ManifoldLearning.unpack(d, skipdiagonal=true) @test iszero(D-S-D.*[i==j ? 1.0 : 0.0 for i in 1:n, j in 1:n]) d = zeros(15) ManifoldLearning.pairwise!(ker, d, eachcol(X[:,1:n]), skipdiagonal=false) @testset for i in 1:n, j in i:n k = -((i-2n)*(i-1))>>1 + j @test D[i,j] ≈ d[k] end S = ManifoldLearning.unpack(d, skipdiagonal=false) @test iszero(D-S) end @testset "Laplacian" begin A = [0 1 0; 1 0 1; 0 1 0.0] L, D = ManifoldLearning.Laplacian(A) @test [D[i,i] for i in 1:3] == [1, 2, 1] @test D-L == A Lsym = ManifoldLearning.normalize!(copy(L), D; α=1/2, norm=:sym) @test Lsym ≈ [1 -√.5 0; -√.5 1 -√.5; 0 -√.5 1] Lrw = ManifoldLearning.normalize!(copy(L), D; α=1, norm=:rw) @test Lrw ≈ [1 -1 0; -0.5 1 -0.5; 0 -1 1] end @testset "Manifold Learning" begin # setup parameters k = 12 n = 50 d = 2 X, L = ManifoldLearning.swiss_roll(n; rng=rng) # test algorithms @testset for algorithm in [Isomap, LEM, LLE, HLLE, LTSA, DiffMap, TSNE] #print("$algorithm ") for (k, T) in zip([5, 12], [Float32, Float64]) X = convert(Matrix{T}, X) # construct KW parameters kwargs = [:maxoutdim=>d] if algorithm === DiffMap push!(kwargs, :t => k) elseif algorithm === TSNE push!(kwargs, :p => k) else push!(kwargs, :k => k) end # call transformation M = fit(algorithm, X; kwargs...) Y = predict(M) # basic test @test size(M) == (3, d) if k == 5 && (algorithm === LLE || algorithm === LTSA) @test size(Y, 2) < n else @test size(Y, 2) == n end @test size(Y,1) == d @test eltype(Y) === T @test size(M) == (3, d) @test length(split(sprint(show, M), '\n')) > 1 # additional options if algorithm !== DiffMap && algorithm !== TSNE @test neighbors(M) == k @test length(vertices(M)) > 1 end if algorithm !== TSNE @test length(eigvals(M)) == d end if algorithm === LEM @testset for L in [:sym, :rw] Y = fit(algorithm, X; laplacian=L, kwargs...) |> predict @test size(Y, 2) == n @test eltype(Y) === T end end if algorithm === DiffMap # test if we provide pre-computed Gram matrix kernel = (x, y) -> exp(-sum((x .- y) .^ 2)) # default kernel custom_K = ManifoldLearning.pairwise(kernel, eachcol(X), symmetric=true) M_custom_K = fit(algorithm, custom_K; kernel=nothing, kwargs...) @test isnan(size(M_custom_K)[1]) @test predict(M_custom_K) ≈ Y @testset for α in [0, 0.5, 1.0], ε in [1.0, Inf] Y = predict(fit(DiffMap, X, α=α, ε=ε)) @test all(.!isnan.(Y)) @test size(Y, 2) == size(X, 2) @test eltype(Y) === T end end end end end @testset "OOS" begin n = 200 k = 5 d = 10 ϵ = 0.01 X, _ = ManifoldLearning.swiss_roll(n ;rng=rng) M = fit(Isomap, X; k=k, maxoutdim=d) @test all(sum(abs2, predict(M) .- predict(M,X), dims=1) .< eps()) XX = X + ϵ*randn(rng, size(X)) @test sqrt(mean((predict(M) - predict(M,XX)).^2)) < 2ϵ end
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
2645
# ManifoldLearning *A Julia package for manifold learning and nonlinear dimensionality reduction.* | **Documentation** | **Build Status** | |:----------------------------------------------------------------------------:|:-----------------------------------------------------------------:| | [![][docs-stable-img]][docs-stable-url] [![][docs-dev-img]][docs-dev-url] | [![][CI-img]][CI-url] [![][coveralls-img]][coveralls-url] | ## Methods - Isomap - Diffusion maps - Locally Linear Embedding (LLE) - Hessian Eigenmaps (HLLE) - Laplacian Eigenmaps (LEM) - Local tangent space alignment (LTSA) - t-Distributed Stochastic Neighborhood Embedding (t-SNE) ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ``` pkg> add ManifoldLearning ``` ## Examples A simple example of using the *Isomap* reduction method. ```julia julia> X, _ = ManifoldLearning.swiss_roll(); julia> X 3×1000 Array{Float64,2}: -3.19512 3.51939 -0.0390153 … -9.46166 3.44159 29.1222 9.99283 2.25296 25.1417 28.8007 -10.1861 6.59074 -11.037 -1.04484 13.4034 julia> M = fit(Isomap, X) Isomap(outdim = 2, neighbors = 12) julia> Y = transform(M) 2×1000 Array{Float64,2}: 11.0033 -13.069 16.7116 … -3.26095 25.7771 18.4133 -6.2693 10.6698 20.0646 -24.8973 ``` ## Performance Most of the methods use *k*-nearest neighbors method for constructing local subspace representation. By default, neighbors are computed from a *distance matrix* of a dataset. This is not an efficient method, especially, for large datasets. Consider using a custom *k*-nearest neighbors function, e.g. from [NearestNeighbors.jl](https://github.com/KristofferC/NearestNeighbors.jl) or [FLANN.jl](https://github.com/wildart/FLANN.jl). See example of custom `knn` function [here](misc/nearestneighbors.jl). [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://wildart.github.io/ManifoldLearning.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://wildart.github.io/ManifoldLearning.jl/dev [CI-img]: https://github.com/wildart/ManifoldLearning.jl/actions/workflows/CI.yml/badge.svg [CI-url]: https://github.com/wildart/ManifoldLearning.jl/actions/workflows/CI.yml [coveralls-img]: https://coveralls.io/repos/github/wildart/ManifoldLearning.jl/badge.svg?branch=master [coveralls-url]: https://coveralls.io/r/wildart/ManifoldLearning.jl?branch=master
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
816
# Datasets ```@setup EG using Plots, ManifoldLearning gr(fmt=:svg) ``` The __ManifoldLearning__ package provides an implementation of synthetic test datasets: ```@docs ManifoldLearning.swiss_roll ``` ```@example EG X, L = ManifoldLearning.swiss_roll(segments=5); #hide scatter3d(X[1,:], X[2,:], X[3,:], c=L.+2, palette=cgrad(:default), ms=2.5, leg=:none, camera=(10,10)) #hide ``` ```@docs ManifoldLearning.spirals ``` ```@example EG X, L = ManifoldLearning.spirals(segments=5); #hide scatter3d(X[1,:], X[2,:], X[3,:], c=L.+2, palette=cgrad(:default), ms=2.5, leg=:none, camera=(10,10)) #hide ``` ```@docs ManifoldLearning.scurve ``` ```@example EG X, L = ManifoldLearning.scurve(segments=5); #hide scatter3d(X[1,:], X[2,:], X[3,:], c=L.+2, palette=cgrad(:default), ms=2.5, leg=:none, camera=(10,10)) #hide ```
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
829
# Diffusion maps [Diffusion maps](http://en.wikipedia.org/wiki/Diffusion_map) leverages the relationship between heat diffusion and a random walk; an analogy is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose nodes were sampled from the manifold [^1]. This package defines a [`DiffMap`](@ref) type to represent a diffusion map results, and provides a set of methods to access its properties. ```@docs DiffMap fit(::Type{DiffMap}, X::AbstractArray{T,2}) where {T<:Real} predict(R::DiffMap) ManifoldLearning.kernel(R::DiffMap) ``` ## References [^1]: Coifman, R. & Lafon, S. "Diffusion maps". Applied and Computational Harmonic Analysis, Elsevier, 2006, 21, 5-30. DOI:[10.1073/pnas.0500334102](http://dx.doi.org/doi:10.1073/pnas.0500334102)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
860
# Hessian Eigenmaps The Hessian Eigenmaps (Hessian LLE, HLLE) method adapts the weights in [`LLE`](@ref) to minimize the [Hessian](http://en.wikipedia.org/wiki/Hessian_matrix) operator. Like [`LLE`](@ref), it requires careful setting of the nearest neighbor parameter. The main advantage of Hessian LLE is the only method designed for non-convex data sets [^1]. This package defines a [`HLLE`](@ref) type to represent a Hessian LLE results, and provides a set of methods to access its properties. ```@docs HLLE fit(::Type{HLLE}, X::AbstractArray{T,2}) where {T<:Real} predict(R::HLLE) ``` # References [^1]: Donoho, D. and Grimes, C. "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data", Proc. Natl. Acad. Sci. USA. 2003 May 13; 100(10): 5591–5596. DOI:[10.1073/pnas.1031596100](http://dx.doi.org/doi:10.1073/pnas.1031596100)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
1592
# ManifoldLearning.jl The package __ManifoldLearning__ aims to provide a library for manifold learning and non-linear dimensionality reduction. It provides set of nonlinear dimensionality reduction methods, such as [`Isomap`](@ref), [`LLE`](@ref), [`LTSA`](@ref), and etc. ## Getting started To install the package just type ```julia ] add ManifoldLearning ``` ```@setup EG using Plots gr(fmt=:svg) ``` The following example shows how to apply [`Isomap`](@ref) dimensionality reduction method to the build-in S curve dataset. ```@example EG using ManifoldLearning X, L = ManifoldLearning.scurve(segments=5); scatter3d(X[1,:], X[2,:], X[3,:], c=L,palette=cgrad(:default),ms=2.5,leg=:none,camera=(10,10)) ``` Now, we perform dimensionality reduction procedure and plot the resulting dataset: ```@example EG Y = predict(fit(Isomap, X)) scatter(Y[1,:], Y[2,:], c=L, palette=cgrad(:default), ms=2.5, leg=:none) ``` Following dimensionality reduction methods are implemented in this package: | Methods | Description | |:--------|:------------| |[`Isomap`](@ref)| Isometric mapping | |[`LLE`](@ref)| Locally Linear Embedding | |[`HLLE`](@ref)| Hessian Eigenmaps | |[`LEM`](@ref)| Laplacian Eigenmaps | |[`LTSA`](@ref)| Local Tangent Space Alignment | |[`DiffMap`](@ref)| Diffusion maps | |[`TSNE`](@ref)| t-Distributed Stochastic Neighborhood Embedding | **Notes:** All methods implemented in this package adopt the column-major convention of JuliaStats: in a data matrix, each column corresponds to a sample/observation, while each row corresponds to a feature (variable or attribute).
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
2586
# Programming interface The interface of manifold learning methods in this packages is partially adopted from the packages [StatsAPI](https://github.com/JuliaStats/StatsAPI.jl), [MultivariateStats.jl](https://github.com/JuliaStats/MultivariateStats.jl) and [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl). You can implement additional dimensionality reduction algorithms by implementing the following interface. ## Dimensionality Reduction The following functions are currently available from the interface. `NonlinearDimensionalityReduction` is an abstract type required for all implemented algorithms models. ```@docs ManifoldLearning.NonlinearDimensionalityReduction ``` For performing the data dimensionality reduction procedure, a model of the data is constructed by calling [`fit`](@ref) method, and the transformation of the data given the model is done by [`predict`](@ref) method. ```@docs fit(::Type{ManifoldLearning.NonlinearDimensionalityReduction}, X::AbstractMatrix) predict(R::ManifoldLearning.NonlinearDimensionalityReduction) ``` There are auxiliary methods that allow to inspect properties of the constructed model. ```@docs size(R::ManifoldLearning.NonlinearDimensionalityReduction) eigvals(R::ManifoldLearning.NonlinearDimensionalityReduction) vertices(R::ManifoldLearning.NonlinearDimensionalityReduction) neighbors(R::ManifoldLearning.NonlinearDimensionalityReduction) ``` ## Nearest Neighbors An additional interface is available for creating an implementation of a nearest neighbors algorithm, which is commonly used for dimensionality reduction methods. Use `AbstractNearestNeighbors` abstract type to derive a type for a new implementation. ```@docs ManifoldLearning.AbstractNearestNeighbors ``` The above interface requires implementation of the following methods: ```@docs ManifoldLearning.knn(NN::ManifoldLearning.AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer) where T<:Real ManifoldLearning.inrange(NN::ManifoldLearning.AbstractNearestNeighbors, X::AbstractVecOrMat{T}, r::Real) where T<:Real ``` Following auxiliary methods available for any implementation of `AbstractNearestNeighbors`-derived type: ```@docs ManifoldLearning.adjacency_list(NN::ManifoldLearning.AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer) where T<:Real ManifoldLearning.adjacency_matrix(NN::ManifoldLearning.AbstractNearestNeighbors, X::AbstractVecOrMat{T}, k::Integer) where T<:Real ``` The default implementation uses inefficient ``O(n^2)`` algorithm for nearest neighbors calculations. ```@docs ManifoldLearning.BruteForce ```
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
741
# Isomap [Isomap](http://en.wikipedia.org/wiki/Isomap) is a method for low-dimensional embedding. *Isomap* is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points[^1]. This package defines a [`Isomap`](@ref) type to represent a Isomap calculation results, and provides a set of methods to access its properties. ```@docs Isomap fit(::Type{Isomap}, X::AbstractArray{T,2}) where {T<:Real} predict(R::Isomap) predict(R::Isomap, X::Union{AbstractArray{T,1}, AbstractArray{T,2}}) where T<:Real ``` ## References [^1]: Tenenbaum, J. B., de Silva, V. and Langford, J. C. "A Global Geometric Framework for Nonlinear Dimensionality Reduction". Science 290 (5500): 2319-2323, 22 December 2000.
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
964
# Laplacian Eigenmaps [Laplacian Eigenmaps](https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Laplacian_eigenmaps) (LEM) method uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. The algorithm provides a computationally efficient approach to non-linear dimensionality reduction that has locally preserving properties [^1]. This package defines a [`LEM`](@ref) type to represent a Laplacian eigenmaps results, and provides a set of methods to access its properties. ```@docs LEM fit(::Type{LEM}, X::AbstractArray{T,2}) where {T<:Real} predict(R::LEM) ``` ## References [^1]: Belkin, M. and Niyogi, P. "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation". Neural Computation, June 2003; 15 (6):1373-1396. DOI:[10.1162/089976603321780317](http://dx.doi.org/doi:10.1162/089976603321780317)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
793
# Locally Linear Embedding [Locally Linear Embedding](http://en.wikipedia.org/wiki/Locally_linear_embedding#Locally-linear_embedding>) (LLE) technique builds a single global coordinate system of lower dimensionality. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds [^1]. This package defines a [`LLE`](@ref) type to represent a LLE results, and provides a set of methods to access its properties. ```@docs LLE fit(::Type{LLE}, X::AbstractArray{T,2}) where {T<:Real} predict(R::LLE) ``` ## References [^1]: Roweis, S. & Saul, L. "Nonlinear dimensionality reduction by locally linear embedding", Science 290:2323 (2000). DOI:[10.1126/science.290.5500.2323] (http://dx.doi.org/doi:10.1126/science.290.5500.2323)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
895
# Local Tangent Space Alignment [Local tangent space alignment](http://en.wikipedia.org/wiki/Local_tangent_space_alignment) (LTSA) is a method for manifold learning, which can efficiently learn a nonlinear embedding into low-dimensional coordinates from high-dimensional data, and can also reconstruct high-dimensional coordinates from embedding coordinates [^1]. This package defines a [`LTSA`](@ref) type to represent a local tangent space alignment results, and provides a set of methods to access its properties. ```@docs LTSA fit(::Type{LTSA}, X::AbstractArray{T,2}) where {T<:Real} predict(R::LTSA) ``` ## References [^1]: Zhang, Zhenyue; Hongyuan Zha. "Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment". SIAM Journal on Scientific Computing 26 (1): 313–338, 2004. DOI:[10.1137/s1064827502419154](http://dx.doi.org/doi:10.1137/s1064827502419154)
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.9.0
4c5564c707899c3b6bc6d324b05e43eb7f277f2b
docs
1161
# t-Distributed Stochastic Neighborhood Embedding The [`t`-Distributed Stochastic Neighborhood Embedding (t-SNE)](https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding) is a statistical dimensionality reduction methods, based on the original SNE[^1] method with t-distributed variant[^2]. The method constructs a probability distribution over pairwise distances in the data original space, and then optimizes a similar probability distribution of the pairwise distances of low-dimensional embedding of the data by minimizing the [Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) between two distributions. This package defines a [`TSNE`](@ref) type to represent a t-SNE model, and provides a set of methods to access its properties. ```@docs TSNE fit(::Type{TSNE}, X::AbstractArray{T,2}) where {T<:Real} predict(R::TSNE) ``` # References [^1]: Hinton, G. E., & Roweis, S. (2002). Stochastic neighbor embedding. Advances in neural information processing systems, 15. [^2]: Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
ManifoldLearning
https://github.com/wildart/ManifoldLearning.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
2120
using BenchmarkTools, ConstrainedSystems Ns, Nc = 1000, 100 A,B2,B1t,C,rhs1v,rhs2v,solex = ConstrainedSystems.basic_linalg_problem(Ns=Ns,Nc=Nc); Δt = 1.0e-2 prob1, xexact, yexact = ConstrainedSystems.basic_constrained_problem(tmax=3Δt) prob2, xexact, yexact = ConstrainedSystems.cartesian_pendulum_problem(tmax=3Δt) BenchmarkTools.DEFAULT_PARAMETERS.gcsample = true SUITE = BenchmarkGroup() SUITE["saddle setup"] = BenchmarkGroup() SUITE["saddle solve"] = BenchmarkGroup() rhs = SaddleVector(rhs1v,rhs2v) sol = similar(rhs) SUITE["saddle setup"]["basic problem"] = @benchmarkable ConstrainedSystems.SaddleSystem(A,B2,B1t,C,rhs) As = ConstrainedSystems.SaddleSystem(A,B2,B1t,C,rhs) SUITE["saddle solve"]["basic problem"] = @benchmarkable sol .= As\rhs SUITE["timemarch setup"] = BenchmarkGroup() SUITE["timemarch basic problem"] = BenchmarkGroup() SUITE["timemarch pendulum problem"] = BenchmarkGroup() SUITE["timemarch setup"]["IFHEEuler"] = @benchmarkable ConstrainedSystems.init(prob2, IFHEEuler(),dt=Δt) SUITE["timemarch setup"]["LiskaIFHERK"] = @benchmarkable ConstrainedSystems.init(prob2, LiskaIFHERK(),dt=Δt) integrator11 = ConstrainedSystems.init(prob1, IFHEEuler(),dt=Δt) integrator12 = ConstrainedSystems.init(prob1, LiskaIFHERK(),dt=Δt) integrator21 = ConstrainedSystems.init(prob2, IFHEEuler(),dt=Δt) integrator22 = ConstrainedSystems.init(prob2, LiskaIFHERK(),dt=Δt) #SUITE["basic problem"]["LiskaIFHERK"] = @benchmarkable solve(prob1, LiskaIFHERK(),dt=Δt) #SUITE["basic problem"]["IFHEEuler"] = @benchmarkable solve(prob1, IFHEEuler(),dt=Δt) #SUITE["pendulum problem"]["LiskaIFHERK"] = @benchmarkable solve(prob2, LiskaIFHERK(),dt=Δt) #SUITE["pendulum problem"]["IFHEEuler"] = @benchmarkable solve(prob2, IFHEEuler(),dt=Δt) SUITE["timemarch basic problem"]["IFHEEuler"] = @benchmarkable step!(integrator11,Δt) SUITE["timemarch basic problem"]["LiskaIFHERK"] = @benchmarkable step!(integrator12,Δt) SUITE["timemarch pendulum problem"]["IFHEEuler"] = @benchmarkable step!(integrator21,Δt) SUITE["timemarch pendulum problem"]["LiskaIFHERK"] = @benchmarkable step!(integrator22,Δt) run(SUITE)
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
989
using Documenter, ConstrainedSystems makedocs( sitename = "ConstrainedSystems.jl", doctest = true, clean = true, pages = [ "Home" => "index.md", "Manual" => ["manual/saddlesystems.md", "manual/timemarching.md", "manual/methods.md" ] #"Internals" => [ "internals/properties.md"] ], #format = Documenter.HTML(assets = ["assets/custom.css"]) format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", mathengine = MathJax(Dict( :TeX => Dict( :equationNumbers => Dict(:autoNumber => "AMS"), :Macros => Dict() ) )) ), #assets = ["assets/custom.css"], #strict = true ) #if "DOCUMENTER_KEY" in keys(ENV) deploydocs( repo = "github.com/JuliaIBPM/ConstrainedSystems.jl.git", target = "build", deps = nothing, make = nothing #versions = "v^" ) #end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
1427
module ConstrainedSystems using LinearMaps #using KrylovKit using RecursiveArrayTools #using IterativeSolvers #using UnPack using Reexport @reexport using OrdinaryDiffEq import OrdinaryDiffEq: OrdinaryDiffEqAlgorithm, alg_order, alg_cache, OrdinaryDiffEqMutableCache, OrdinaryDiffEqConstantCache, initialize!, perform_step!, @muladd, @unpack, constvalue, full_cache, @.. import OrdinaryDiffEq.DiffEqBase: AbstractDiffEqLinearOperator, DEFAULT_UPDATE_FUNC, has_exp, AbstractODEFunction, isinplace, numargs import LinearMaps: LinearMap, FunctionMap import RecursiveArrayTools: recursivecopy, recursivecopy!, recursive_mean using LinearAlgebra import LinearAlgebra: ldiv!, mul!, *, \, I import Base: size, eltype, *, /, +, - export SaddleSystem, SaddleVector, state, constraint, aux_state, linear_map export constraint_from_state! export solvector, mainvector export SchurSolverType, Direct, CG, GMRES, Iterative include("vectors.jl") include("saddlepoint/saddlesystems.jl") include("saddlepoint/linearmaps.jl") include("saddlepoint/arithmetic.jl") include("saddlepoint/testproblems.jl") include("timemarching/types.jl") include("timemarching/misc_utils.jl") include("timemarching/timesaddlesystems.jl") include("timemarching/algorithms.jl") include("timemarching/testproblems.jl") end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
2455
### Right-hand side and solution vectors const SaddleVector = ArrayPartition """ SaddleVector(u,f) Construct a vector of a state part `u` and constraint part `f` of a saddle-point vector, to be associated with a [`SaddleSystem`](@ref). """ function SaddleVector end """ solvector([;state=][,constraint=][,aux_state=]) Build a solution vector for a constrained system. This takes three optional keyword arguments: `state`, `constraint`, and `aux_state`. If only a state is supplied, then the constraint is set to an empty vector and the system is assumed to correspond to an unconstrained system. (`aux_state` is ignored in this situation.) """ solvector(;state=nothing,constraint=nothing,aux_state=nothing) = _solvector(state,constraint,aux_state) _solvector(::Nothing,::Nothing,::Nothing) = nothing _solvector(s,::Nothing,::Nothing) = ArrayPartition(s,_empty(s)) _solvector(s,::Nothing,aux) = ArrayPartition(s,_empty(s)) _solvector(s,c,::Nothing) = ArrayPartition(s,c) #_solvector(s,c,aux) = ArrayPartition(_solvector(s,c,nothing),aux) _solvector(s,c,aux) = ArrayPartition(s,c,aux) mainvector(u) = u mainvector(u::ArrayPartition) = ArrayPartition(u.x[1],u.x[2]) _empty(s) = Vector{eltype(s)}() """ state(x::SaddleVector) Provide the state part of the given saddle vector `x` """ state(u::ArrayPartition) = mainvector(u).x[1] state(u) = u """ constraint(x::SaddleVector) Provide the constraint part of the given saddle vector `x` """ constraint(u::ArrayPartition) = mainvector(u).x[2] constraint(u) = eltype(u)[] """ aux_state(x) Provide the auxiliary state part of the given vector `x` """ aux_state(u) = nothing # Array{eltype(u)}(undef,0,0) aux_state(u::ArrayPartition{T,Tuple{F1,F2,F3}}) where {T,F1,F2,F3} = u.x[3] for f in (:state,:constraint,:aux_state) @eval $f(a::AbstractArray{T}) where {T<:ArrayPartition} = map($f,a) end #SaddleVector(u::TU,f::TF) where {TU,TF} = ArrayPartition(u,f) """ r1vector([;state_r1=][,aux_r1=]) Build a vector of the `r1` functions for the state ODEs and auxiliary state ODEs. """ r1vector(;state_r1=nothing,aux_r1=nothing) = _r1vector(state_r1,aux_r1) _r1vector(::Nothing,::Nothing) = nothing _r1vector(s,::Nothing) = s _r1vector(::Nothing,a) = nothing _r1vector(s,a) = ArrayPartition((s,a)) hasaux(r1) = false hasaux(r1::ArrayPartition) = true state_r1(r1) = r1 state_r1(r1::ArrayPartition) = r1.x[1] aux_r1(r1) = nothing aux_r1(r1::ArrayPartition) = r1.x[2]
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
5803
### ARITHMETIC OPERATIONS function mul!(output::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}},sys::SaddleSystem{T,Ns,Nc}, input::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}}) where {T,Ns,Nc} @unpack A, B₂, B₁ᵀ, C = sys u,f = input r₁,r₂ = output length(u) == length(r₁) == Ns || error("Incompatible number of elements") length(f) == length(r₂) == Nc || error("Incompatible number of elements") r₁ .= A*u .+ B₁ᵀ*f r₂ .= B₂*u .+ C*f return output end function mul!(sol::Tuple{TU,TF},sys::SaddleSystem,rhs::Tuple{TU,TF}) where {TU,TF} u, f = sol r₁, r₂ = rhs return mul!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function mul!(sol::ArrayPartition,sys::SaddleSystem,rhs::ArrayPartition) u, f = sol.x r₁, r₂ = rhs.x return mul!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function (*)(sys::SaddleSystem,input::Tuple) u, f = input output = (similar(u),similar(f)) mul!(output,sys,input) return output end # Routine for accepting vector inputs, parsing it into Ns and Nc parts function mul!(sol::AbstractVector{T},sys::SaddleSystem{T,Ns,Nc},rhs::AbstractVector{T}) where {T,Ns,Nc} mul!(_split_vector(sol,Ns,Nc),sys,_split_vector(rhs,Ns,Nc)) return sol end function (*)(sys::SaddleSystem{T},rhs::Union{AbstractVector{T},AbstractVectorOfArray{T},ArrayPartition{T}}) where {T} output = similar(rhs) mul!(output,sys,rhs) return output end ## Multiplying tuples of saddle point systems function mul!(sol,sys::Tuple{T1,T2},rhs) where {T1<:SaddleSystem,T2<:SaddleSystem} for (i,sysi) in enumerate(sys) mul!(sol[i],sysi,rhs[i]) end sol end #= function mul!(sol,sys::ArrayPartition{T},rhs) where {T<:SaddleSystem} for (i,sysi) in enumerate(sys.x) mul!(sol.x[i],sysi,rhs.x[i]) end sol end =# function (*)(sys::Tuple{T1,T2},rhs) where {T1<:SaddleSystem,T2<:SaddleSystem} sol = deepcopy.(rhs) mul!(sol,sys,rhs) return sol end #### Left division #### function ldiv!(sol::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}},sys::SaddleSystem{T,Ns,Nc}, rhs::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}}) where {T,Ns,Nc} @unpack A⁻¹, B₂, B₁ᵀ, B₂A⁻¹r₁, P, S⁻¹, _f_buf, _u_buf, A⁻¹B₁ᵀf = sys N = Ns+Nc u,f = sol r₁,r₂ = rhs length(u) == length(r₁) == Ns || error("Incompatible number of elements") length(f) == length(r₂) == Nc || error("Incompatible number of elements") mul!(u,A⁻¹,r₁) B₂A⁻¹r₁ .= B₂*u _f_buf .= r₂ _f_buf .-= B₂A⁻¹r₁ if Nc > 0 f .= S⁻¹*_f_buf f .= P*f end _u_buf .= B₁ᵀ*f mul!(A⁻¹B₁ᵀf,A⁻¹,_u_buf) u .-= A⁻¹B₁ᵀf return sol end function ldiv!(sol::Tuple{TU,TF},sys::SaddleSystem,rhs::Tuple{TU,TF}) where {TU,TF} u, f = sol r₁, r₂ = rhs return ldiv!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function ldiv!(sol::ArrayPartition,sys::SaddleSystem,rhs::ArrayPartition) u, f = sol.x r₁, r₂ = rhs.x return ldiv!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function (\)(sys::SaddleSystem,rhs::Tuple) u, f = rhs sol = (similar(u),similar(f)) ldiv!(sol,sys,rhs) return sol end # Routine for accepting vector inputs, parsing it into Ns and Nc parts function ldiv!(sol::AbstractVector{T},sys::SaddleSystem{T,Ns,Nc},rhs::AbstractVector{T}) where {T,Ns,Nc} ldiv!(_split_vector(sol,Ns,Nc),sys,_split_vector(rhs,Ns,Nc)) return sol end function (\)(sys::SaddleSystem{T},rhs::Union{AbstractVector{T},AbstractVectorOfArray{T},ArrayPartition{T}}) where {T} sol = similar(rhs) ldiv!(sol,sys,rhs) return sol end ## Solving tuples of saddle point systems function ldiv!(sol,sys::Tuple{T1,T2},rhs) where {T1<:SaddleSystem,T2<:SaddleSystem} for (i,sysi) in enumerate(sys) ldiv!(sol[i],sysi,rhs[i]) end sol end #= function ldiv!(sol,sys::ArrayPartition{T},rhs) where {M,T<:SaddleSystem} for (i,sysi) in enumerate(sys.x) ldiv!(sol.x[i],sysi,rhs.x[i]) end sol end =# function (\)(sys::Tuple{T1,T2},rhs) where {T1<:SaddleSystem,T2<:SaddleSystem} sol = deepcopy.(rhs) ldiv!(sol,sys,rhs) return sol end # For getting the constraint part from the state part, when there is a C matrix function constraint_from_state!(sol::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}},sys::SaddleSystem{T,Ns,Nc}, rhs::Union{Tuple{AbstractVector{T},AbstractVector{T}},AbstractVectorOfArray{T}}) where {T,Ns,Nc} @unpack B₂, C, C⁻¹ = sys u,f = sol r₁,r₂ = rhs length(u) == length(r₁) == Ns || error("Incompatible number of elements") length(f) == length(r₂) == Nc || error("Incompatible number of elements") _isinvertible(C) || error("C operator cannot be inverted") f .= C⁻¹*(r₂ .- B₂*u) return sol end function constraint_from_state!(sol::Tuple{TU,TF},sys::SaddleSystem,rhs::Tuple{TU,TF}) where {TU,TF} u, f = sol r₁, r₂ = rhs return constraint_from_state!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function constraint_from_state!(sol::ArrayPartition,sys::SaddleSystem,rhs::ArrayPartition) u, f = sol.x r₁, r₂ = rhs.x return constraint_from_state!((_unwrap_vec(u),_unwrap_vec(f)),sys,(_unwrap_vec(r₁),_unwrap_vec(r₂))) end function constraint_from_state!(sol::AbstractVector{T},sys::SaddleSystem{T,Ns,Nc},rhs::AbstractVector{T}) where {T,Ns,Nc} constraint_from_state!(_split_vector(sol,Ns,Nc),sys,_split_vector(rhs,Ns,Nc)) return sol end # vector -> tuple _split_vector(x,Ns,Nc) = view(x,1:Ns), view(x,Ns+1:Ns+Nc)
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
5597
### LINEAR MAP CONSTRUCTION #= If a function is already in-place, then `linear_map` will preserve this, so, e.g, f_lm = linear_map(f,input,output) mul!(output_vec,f_lm,input_vec) will produce the same effect as f(output,input), but on vectors =# # for a given function of function-like object A, which acts upon data of type `input` # and returns data of type `output` # return a LinearMap that acts upon a vector form of u linear_map(A,input,output;eltype=Float64) = _linear_map(A,input,output,eltype,Val(length(input)),Val(length(output))) linear_map(A,input;eltype=Float64) = _linear_map(A,input,eltype,Val(length(input))) linear_map(A::AbstractMatrix{T},input::AbstractVector{T};eltype=Float64) where {T} = LinearMap{eltype}(A) linear_map(A::SaddleSystem{T,Ns,Nc},::Any;eltype=Float64) where {T,Ns,Nc} = LinearMap{T}(x->A*x,Ns+Nc) linear_map(A::UniformScaling,input;eltype=Float64) = LinearMap{eltype}(x->A*x,length(input)) function linear_inverse_map(A,input;eltype=Float64) hasmethod(\,Tuple{typeof(A),typeof(input)}) || error("No such backslash operator exists") return LinearMap{eltype}(_create_vec_backslash(A,input),length(input)) end function linear_inverse_map!(A,input;eltype=Float64) hasmethod(ldiv!,Tuple{typeof(input),typeof(A),typeof(input)}) || error("No such ldiv! operator exists") return LinearMap{eltype}(_create_vec_backslash!(A,input),length(input)) end linear_inverse_map(A::SaddleSystem{T,Ns,Nc},::Any;eltype=Float64) where {T,Ns,Nc} = LinearMap{T}(x->A\x,Ns+Nc) # Square operators. input of zero length _linear_map(A,input,eltype,::Val{0}) = LinearMap{eltype}(x -> (),0,0) # Square operators. input of non-zero length _linear_map(A,input,eltype,::Val{M}) where {M} = LinearMap{eltype}(_create_fcn(A,input),length(input)) # input and output have zero lengths _linear_map(A,input,output,eltype,::Val{0},::Val{0}) = LinearMap{eltype}(x -> (),0,0) # input is 0 length, output is not _linear_map(A,input,output,eltype,::Val{0},::Val{M}) where {M} = LinearMap{eltype}(x -> _unwrap_vec(zero(output)),length(output),0) # output is 0 length, input is not _linear_map(A,input,output,eltype,::Val{N},::Val{0}) where {N} = LinearMap{eltype}(x -> (),0,length(input)) # non-zero lengths of input and output _linear_map(A,input,output,eltype,::Val{N},::Val{M}) where {N,M} = LinearMap{eltype}(_create_fcn(A,output,input),length(output),length(input)) ismultiplicative(A,input) = hasmethod(*,Tuple{typeof(A),typeof(input)}) # Create a function for operator A that can act upon an input of type AbstractVector # and return an output of type AbstractVector. It should wrap the input vector # in the input data type associated with A and it should then unwrap its # output back into vector form #=function _create_fcn(A,output,input) # if A has an associated * operation, then use this if _ismultiplicative(A,input) fcn = _create_vec_multiplication(A,input) # or if A is a function or function-like object, then use this elseif hasmethod(A,Tuple{typeof(input)}) fcn = _create_vec_function(A,input) # or just quit else error("No function exists for this operator to act upon this type of data") end return fcn end =# _create_fcn(A,input) = _create_fcn(A,nothing,input) _create_fcn(A,output,input) = _create_fcn(A,output,input,Val(ismultiplicative(A,input))) _create_fcn(A,output,input,::Val{true}) = _create_vec_multiplication(A,input) _create_fcn(A,output,input,::Val{false}) = _create_fcn_function(A,output,input) _create_fcn_function(A,output,input) = _create_fcn_function(A,output,input,Val(isinplace(A,2))) # out of place function _create_fcn_function(A,output,input,::Val{false}) hasmethod(A,Tuple{typeof(input)}) || error("No function exists for this operator to act upon this type of data") _create_vec_function(A,input) end function _create_fcn_function(A,output,input,::Val{true}) hasmethod(A,Tuple{typeof(output),typeof(input)}) || error("No function exists for this operator to act upon this type of data") _create_vec_function!(A,output,input) end # In each of these, u, outp, inp only provide the templates/sizes for the wrapping. @inline _create_vec_multiplication(A,u::TU) where {TU} = (x -> _unwrap_vec(A*_wrap_vec(x,u))) @inline _create_vec_function(A,u::TU) where {TU} = (x -> _unwrap_vec(A(_wrap_vec(x,u)))) @inline _create_vec_function!(A,outp::TO,inp::TI) where {TO,TI} = ((y,x) -> (_outpwrap = _wrap_vec(y,outp); A(_outpwrap,_wrap_vec(x,inp)))) @inline _create_vec_backslash(A,u::TU) where {TU} = (x -> _unwrap_vec(A\_wrap_vec(x,u))) @inline _create_vec_backslash!(A,u::TU) where {TU} = (y,x) -> (_ywrap = _wrap_vec(y,u); ldiv!(_ywrap,A,_wrap_vec(x,u)); y) @inline _create_vec_backslash!(A::UniformScaling,u::TU) where {TU} = (y,x) -> (_wrap_vec(y,u) .= A\_wrap_vec(x,u)) @inline _create_vec_backslash!(A::AbstractMatrix,u::TU) where {TU} = (Afact = factorize(A); (y,x) -> (_ywrap = _wrap_vec(y,u); _ywrap .= Afact\_wrap_vec(x,u))) #### WRAPPERS #### # wrap the vector x in type u, unless u is already a subtype of AbstractVector, # in which case it just keeps it as is. _wrap_vec(x::AbstractVector{T},u::TU) where {T,TU} = TU(reshape(x,size(u)...)) #_wrap_vec(x::AbstractVector{T},u::AbstractVector{U}) where {T,U} = x _wrap_vec(x::Vector{T},u::Vector{T}) where {T} = x # if the vector x is simply a reshaped form of type u, then just get the # parent of x _wrap_vec(x::Base.ReshapedArray,u::TU) where {TU} = parent(x) #### UNWRAPPERS #### # Usually vec suffices _unwrap_vec(x) = vec(x) _unwrap_vec(x::Tuple) = x
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
9070
### SaddleSystem ### using IterativeSolvers abstract type SchurSolverType end struct SaddleSystem{T,Ns,Nc,TU,TF,TS<:SchurSolverType} A :: LinearMap{T} B₂ :: LinearMap{T} B₁ᵀ :: LinearMap{T} C :: LinearMap{T} A⁻¹ :: LinearMap{T} C⁻¹ :: LinearMap{T} A⁻¹B₁ᵀf :: Vector{T} B₂A⁻¹r₁ :: Vector{T} _f_buf :: Vector{T} _u_buf :: Vector{T} P :: LinearMap{T} S :: LinearMap{T} S⁻¹ :: LinearMap{T} end # Constructors """ SaddleSystem Construct a saddle-point system operator from the constituent operator blocks. The resulting object can be used with `*` and `\\` to multiply and solve. The saddle-point problem has the form `` \\begin{bmatrix}A & B_1^T \\\\ B_2 & C \\end{bmatrix} \\begin{pmatrix} u \\\\ f \\end{pmatrix} = \\begin{pmatrix} r_1 \\\\ r_2 \\end{pmatrix} `` ### Constructors `SaddleSystem(A::AbstractMatrix,B₂::AbstractMatrix,B₁ᵀ::AbstractMatrix,C::AbstractMatrix[,eltype=Float64])`. Blocks are given as matrices. Must have consistent sizes to stack appropriately. If this is called with `SaddleSystem(A,B₂,B₁ᵀ)`, it sets `C` to zero automatically. `SaddleSystem(A,B₂,B₁ᵀ,C,u,f[,eltype=Float64])`. Operators `A`, `B₂`, `B₁ᵀ`, `C` are given in various forms, including matrices, functions, and function-like objects. `u` and `f` are examples of the data types in the corresponding solution and right-hand side vectors. Guidelines: * The entries `A` and `B₂` must be able to act upon `u` (either by multiplication or as a function) and `B₁ᵀ` and `C` must be able to act on `f` (also, either by multiplication or as a function). * `A` and `B₁ᵀ` should return data of type `u`, and `B₂` and `C` should return data of type `f`. * `A` must be invertible and be outfitted with operators `\` and `ldiv!`. * Both `u` and `f` must be subtypes of `AbstractArray`: they must be equipped with `size` and `vec` functions and with a constructor of the form `T(data)` where `T` is the data type of `u` or `f` and `data` is the wrapped data array. If called as `SaddleSystem(A,B₂,B₁ᵀ,u,f)`, the `C` block is omitted and assumed to be zero. If called with `SaddleSystem(A,u)`, this is equivalent to calling `SaddleSystem(A,nothing,nothing,u,[])`, then this reverts to the unconstrained system described by operator `A`. The list of vectors `u` and `f` in any of these constructors can be bundled together as a [`SaddleVector`](@ref), e.g. `SaddleSystem(A,B₂,B₁ᵀ,SaddleVector(u,f))`. An optional keyword argument `solver=` can be used to specify the type of solution for the Schur complement system. By default, this is set to `Direct`, and the Schur complement matrix is formed, factorized, and stored. This can be changed to a variety of iterative solvers, e.g. `BiCGStabl`, `CG`, `GMRES`, in which case an iterative solver from [`IterativeSolvers.jl`](https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl) is used. """ function SaddleSystem(A::LinearMap{T},B₂::LinearMap{T},B₁ᵀ::LinearMap{T},C::LinearMap{T}, A⁻¹::LinearMap{T},P::LinearMap{T},TU,TF;solver::Type{TS}=Direct,kwargs...) where {T,TS<:SchurSolverType} ns, nc = _check_sizes(A,B₂,B₁ᵀ,C,P) S = C - B₂*A⁻¹*B₁ᵀ S⁻¹ = _inverse_function(S,solver,kwargs...) C⁻¹ = _inverse_function(C,solver,kwargs...) return SaddleSystem{T,ns,nc,TU,TF,solver}(A,B₂,B₁ᵀ,C,A⁻¹,C⁻¹,zeros(T,ns),zeros(T,nc),zeros(T,nc),zeros(T,ns),P,S,S⁻¹) end ##### Solver functions ##### abstract type Direct <: SchurSolverType end function _inverse_function(S::LinearMap{T},::Type{Direct},kwargs...) where {T} Sfact = factorize(Matrix(S)) M, N = size(S) return LinearMap{T}(x -> Sfact\x,M) end #= abstract type Iterative <: SchurSolverType end function _inverse_function(S::LinearMap{T},::Type{Iterative},kwargs...) where {T} M, N = size(S) return LinearMap{T}(x -> (prob = LinearProblem(S,x); sol = solve(prob); sol.u) ,M) end =# macro createsolver(stype) sroutine = Symbol(lowercase(string(stype)),"!") return esc(quote export $stype abstract type $stype <: SchurSolverType end function _inverse_function(S::LinearMap{T},::Type{$stype},kwargs...) where {T} M, N = size(S) return LinearMap{T}(x -> (y = deepcopy(x); $sroutine(y,S,x;kwargs...); return y),M) end end) end @createsolver CG @createsolver BiCGStabl @createsolver GMRES @createsolver MINRES @createsolver IDRS ########### ### OTHER CONSTRUCTORS ### Matrix operators function SaddleSystem(A::AbstractMatrix{T},B₂::AbstractMatrix{T},B₁ᵀ::AbstractMatrix{T}, C::AbstractMatrix{T};solver::Type{TS}=Direct,filter=I,kwargs...) where {T,TS<:SchurSolverType} Afact = factorize(A) Ainv = LinearMap{T}((y,x) -> y .= Afact\x,size(A,1)) return SaddleSystem(LinearMap{T}(A),LinearMap{T}(B₂),LinearMap{T}(B₁ᵀ), LinearMap{T}(C),Ainv,linear_map(filter,zeros(T,size(C,1)),eltype=T), Vector{T},Vector{T};solver=solver,kwargs...) end # For cases in which C is zero, no need to pass along the argument SaddleSystem(A::AbstractMatrix{T},B₂::AbstractMatrix{T},B₁ᵀ::AbstractMatrix{T};solver::Type{TS}=Direct,filter=I,kwargs...) where {T,TS<:SchurSolverType} = SaddleSystem(A,B₂,B₁ᵀ,zeros(T,size(B₂,1),size(B₁ᵀ,2));solver=solver,filter=filter,kwargs...) ### Operators are functions or function-like operators # This version should take in functions or function-like objects that act upon given # data types u and f. Should transform them into operators that act on abstract vectors # of the same size # There should already be an \ operator associated with A # NOTE: should change default value of eltype to eltype(u) function SaddleSystem(A,B₂,B₁ᵀ,C,u::TU,f::TF;eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TU,TF,TS<:SchurSolverType} return SaddleSystem(linear_map(A,u,eltype=eltype),linear_map(B₂,u,f,eltype=eltype), linear_map(B₁ᵀ,f,u,eltype=eltype), linear_map(C,f,eltype=eltype), linear_inverse_map!(A,u,eltype=eltype), linear_map(filter,f,eltype=eltype),TU,TF;solver=solver,kwargs...) end # No C operator provided, so set it to zero SaddleSystem(A,B₂,B₁ᵀ,u::TU,f::TF; eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TU,TF,TS<:SchurSolverType} = SaddleSystem(A,B₂,B₁ᵀ,C_zero(f,eltype),u,f;eltype=eltype,filter=filter,solver=solver,kwargs...) # Unconstrained system SaddleSystem(A,u::TU;eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TU,TS<:SchurSolverType} = SaddleSystem(A,nothing,nothing,u,Type{eltype}[];eltype=eltype,filter=filter,solver=solver,kwargs...) ### For handling ArrayPartition arguments for the solution/rhs SaddleSystem(A,B₂,B₁ᵀ,C,v::ArrayPartition; eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TS<:SchurSolverType} = SaddleSystem(A,B₂,B₁ᵀ,C,v.x[1],v.x[2];eltype=eltype,filter=filter,solver=solver,kwargs...) # No C operator SaddleSystem(A,B₂,B₁ᵀ,v::ArrayPartition; eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TS<:SchurSolverType} = SaddleSystem(A,B₂,B₁ᵀ,v.x[1],v.x[2];eltype=eltype,filter=filter,solver=solver,kwargs...) # Unconstrained system SaddleSystem(A,v::ArrayPartition; eltype=Float64,filter=I,solver::Type{TS}=Direct,kwargs...) where {TS<:SchurSolverType} = SaddleSystem(A,v.x[1];eltype=eltype,filter=filter,solver=solver,kwargs...) ### AUXILIARY ROUTINES function Base.show(io::IO, S::SaddleSystem{T,Ns,Nc,TU,TF,TS}) where {T,Ns,Nc,TU,TF,TS<:SchurSolverType} println(io, "Saddle system with $Ns states and $Nc constraints and") println(io, " State vector of type $TU") println(io, " Constraint vector of type $TF") println(io, " Elements of type $T") println(io, "using a $TS solver") end """ Base.size(::SaddleSystem) Report the size of a [`SaddleSystem`](@ref). """ size(::SaddleSystem{T,Ns,Nc}) where {T,Ns,Nc} = (Ns+Nc,Ns+Nc) """ Base.eltype(::SaddleSystem) Report the element type of a [`SaddleSystem`](@ref). """ eltype(::SaddleSystem{T,Ns,Nc}) where {T,Ns,Nc} = T C_zero(f,eltype) = zeros(eltype,length(f),length(f)) _isinvertible(f::LinearMap) = !iszero(f.lmap) function _isinvertible(f::FunctionMap{T}) where {T} length(f) == 0 && return false M, N = size(f) return !iszero(f*rand(T,N)) end function _check_sizes(A,B₂,B₁ᵀ,C,P) mA, nA = size(A) mB1, nB1 = size(B₁ᵀ) mB2, nB2 = size(B₂) mC, nC = size(C) mP, nP = size(P) # check compatibility of sizes mA == nA || error("A is not square") mA == mB1 || error("Incompatible number of rows in A and B₁ᵀ") nA == nB2 || error("Incompatible number of columns in A and B₂") mC == mB2 || error("Incompatible number of rows in C and B₂") nC == nB1 || error("Incompatible number of columns in C and B₁ᵀ") mP == nP == mC || error("Filter has incompatible dimensions") ns = nA nc = nB1 return ns, nc end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
367
function basic_linalg_problem(;Ns=1000,Nc=100) A = Diagonal(2*ones(Ns)) C = Diagonal(ones(Nc)) B2 = zeros(Nc,Ns) for j in 1:min(Nc,Ns) B2[j,j] = 1.0 end B1t = B2' rhs1v = ones(Ns) rhs2v = 2*ones(Nc) Abig = [A B1t;B2 C] rhsbig = [rhs1v;rhs2v] solex = similar(rhsbig) solex .= Abig\rhsbig; return A,B2,B1t,C,rhs1v,rhs2v, solex end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
27239
## Definitions of algorithms ## stats_field(integrator) = integrator.stats # WrayHERK is scheme C in Liska and Colonius (JCP 2016) # BraseyHairerHERK is scheme B in Liska and Colonius (JCP 2016) # LiskaIFHERK is scheme A in Liska and Colonius (JCP 2016) # IFHEEuler is an Euler method with integrating factor # HETrapezoidalAB2 is a Crank-Nicolson/2nd-order Adams Bashforth method for (Alg,Order) in [(:WrayHERK,3),(:BraseyHairerHERK,3),(:LiskaIFHERK,2),(:IFHEEuler,1),(:HETrapezoidalAB2,2)] @eval struct $Alg{solverType} <: ConstrainedOrdinaryDiffEqAlgorithm maxiter :: Int tol :: Float64 end @eval $Alg(;saddlesolver=Direct,maxiter=4,tol=eps(Float64)) = $Alg{saddlesolver}(maxiter,tol) @eval export $Alg @eval alg_order(alg::$Alg) = $Order end # LiskaIFHERK @cache struct LiskaIFHERKCache{sc,ni,solverType,uType,rateType,expType1,expType2,saddleType,pType,TabType} <: ConstrainedODEMutableCache{sc,solverType} u::uType uprev::uType # qi k1::rateType # w1 k2::rateType # w2 k3::rateType # w3 utmp::uType # cache udiff::uType dutmp::rateType # cache for rates fsalfirst::rateType Hhalfdt::expType1 Hzero::expType2 S::saddleType ptmp::pType k::rateType tab::TabType end struct LiskaIFHERKConstantCache{sc,ni,solverType,T,T2} <: ConstrainedODEConstantCache{sc,solverType} ã11::T ã21::T ã22::T ã31::T ã32::T ã33::T c̃1::T2 c̃2::T2 c̃3::T2 function LiskaIFHERKConstantCache{sc,ni,solverType}(T, T2) where {sc,ni,solverType} ã11 = T(1//2) ã21 = T(√3/3) ã22 = T((3-√3)/3) ã31 = T((3+√3)/6) ã32 = T(-√3/3) ã33 = T((3+√3)/6) c̃1 = T2(1//2) c̃2 = T2(1.0) c̃3 = T2(1.0) new{sc,ni,solverType,T,T2}(ã11,ã21,ã22,ã31,ã32,ã33,c̃1,c̃2,c̃3) end end LiskaIFHERKCache{sc,ni,solverType}(u,uprev,k1,k2,k3,utmp,udiff,dutmp,fsalfirst, Hhalfdt,Hzero,S,ptmp,k,tab) where {sc,ni,solverType} = LiskaIFHERKCache{sc,ni,solverType,typeof(u),typeof(k1),typeof(Hhalfdt),typeof(Hzero), typeof(S),typeof(ptmp),typeof(tab)}(u,uprev,k1,k2,k3,utmp,udiff,dutmp,fsalfirst, Hhalfdt,Hzero,S,ptmp,k,tab) function alg_cache(alg::LiskaIFHERK{solverType},u,rate_prototype,uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol,p,calck,::Val{true}) where {solverType} u isa ArrayPartition || error("u must be of type ArrayPartition") y, z = state(u), constraint(u) utmp, udiff = (zero(u) for i in 1:2) k1, k2, k3, dutmp, fsalfirst, k = (zero(rate_prototype) for i in 1:6) sc = isstatic(f) ni = needs_iteration(f,u,p,rate_prototype) tab = LiskaIFHERKConstantCache{sc,ni,solverType}(constvalue(uBottomEltypeNoUnits), constvalue(tTypeNoUnits)) @unpack ã11,ã22,ã33 = tab L = _fetch_ode_L(f) Hhalfdt = exp(L,-dt/2,y) Hzero = exp(L,zero(dt),y) S = [] push!(S,SaddleSystem(Hhalfdt,f,p,p,dutmp,solverType;cfact=1.0/(ã11*dt))) push!(S,SaddleSystem(Hhalfdt,f,p,p,dutmp,solverType;cfact=1.0/(ã22*dt))) push!(S,SaddleSystem(Hzero,f,p,p,dutmp,solverType;cfact=1.0/(ã33*dt))) LiskaIFHERKCache{sc,ni,solverType}(u,uprev,k1,k2,k3,utmp,udiff,dutmp,fsalfirst, Hhalfdt,Hzero,S,deepcopy(p),k,tab) end function alg_cache(alg::LiskaIFHERK{solverType},u,rate_prototype, uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol, p,calck,::Val{false}) where {solverType} LiskaIFHERKConstantCache{isstatic(f), needs_iteration(f,u,p,rate_prototype), solverType}(constvalue(uBottomEltypeNoUnits), constvalue(tTypeNoUnits)) end # IFHEEuler @cache struct IFHEEulerCache{sc,ni,solverType,uType,rateType,expType,saddleType,pType} <: ConstrainedODEMutableCache{sc,solverType} u::uType uprev::uType # qi k1::rateType # w1 utmp::uType # cache udiff::uType dutmp::rateType # cache for rates fsalfirst::rateType Hdt::expType S::saddleType ptmp::pType k::rateType end struct IFHEEulerConstantCache{sc,ni,solverType} <: ConstrainedODEConstantCache{sc,solverType} end IFHEEulerCache{sc,ni,solverType}(u,uprev,k1,utmp,udiff,dutmp,fsalfirst, Hdt,S,ptmp,k) where {sc,ni,solverType} = IFHEEulerCache{sc,ni,solverType,typeof(u),typeof(k1),typeof(Hdt), typeof(S),typeof(ptmp)}(u,uprev,k1,utmp,udiff,dutmp,fsalfirst, Hdt,S,ptmp,k) function alg_cache(alg::IFHEEuler{solverType},u,rate_prototype,uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol,p,calck,::Val{true}) where {solverType} u isa ArrayPartition || error("u must be of type ArrayPartition") y, z = state(u), constraint(u) utmp, udiff = (zero(u) for i in 1:2) k1, dutmp, fsalfirst, k = (zero(rate_prototype) for i in 1:4) sc = isstatic(f) ni = needs_iteration(f,u,p,rate_prototype) Hdt = exp(_fetch_ode_L(f),-dt,y) S = [] push!(S,SaddleSystem(Hdt,f,p,p,dutmp,solverType;cfact=1.0/dt)) IFHEEulerCache{sc,ni,solverType}(u,uprev,k1,utmp,udiff,dutmp,fsalfirst, Hdt,S,deepcopy(p),k) end function alg_cache(alg::IFHEEuler{solverType},u,rate_prototype, uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol, p,calck,::Val{false}) where {solverType} IFHEEulerConstantCache{isstatic(f),needs_iteration(f,u,p,rate_prototype),solverType}() end # Half-explicit trapezoidal-Adams/Bashforth 2 (HETrapezoidalAB2) @cache struct HETrapezoidalAB2Cache{sc,ni,solverType,uType,rateType,implicitType,saddleType,pType,TabType} <: ConstrainedODEMutableCache{sc,solverType} u::uType uprev::uType ki::rateType ke::rateType utmp::uType # cache udiff::uType dutmp::rateType # cache for rates fsalfirst::rateType A::implicitType S::saddleType ptmp::pType k::rateType tab::TabType end struct HETrapezoidalAB2ConstantCache{sc,ni,solverType,T} <: ConstrainedODEConstantCache{sc,solverType} α̃1::T α̃2::T β̃1::T β̃2::T function HETrapezoidalAB2ConstantCache{sc,ni,solverType}(T) where {sc,ni,solverType} α̃1 = T(1//2) α̃2 = T(1//2) β̃1 = T(3//2) β̃2 = T(-1//2) new{sc,ni,solverType,T}(α̃1,α̃2,β̃1,β̃2) end end HETrapezoidalAB2Cache{sc,ni,solverType}(u,uprev,ki,ke,utmp,udiff,dutmp,fsalfirst, A,S,ptmp,k,tab) where {sc,ni,solverType} = HETrapezoidalAB2Cache{sc,ni,solverType,typeof(u),typeof(ki),typeof(A), typeof(S),typeof(ptmp),typeof(tab)}(u,uprev,ki,ke,utmp,udiff,dutmp,fsalfirst,A,S,ptmp,k,tab) function alg_cache(alg::HETrapezoidalAB2{solverType},u,rate_prototype,uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol,p,calck,::Val{true}) where {solverType} u isa ArrayPartition || error("u must be of type ArrayPartition") y, z = state(u), constraint(u) utmp, udiff = (zero(u) for i in 1:2) ki, ke, dutmp, fsalfirst, k = (zero(rate_prototype) for i in 1:5) sc = isstatic(f) ni = needs_iteration(f,u,p,rate_prototype) tab = HETrapezoidalAB2ConstantCache{sc,ni,solverType}(constvalue(uBottomEltypeNoUnits)) @unpack α̃1 = tab A = implicit_operator(_fetch_ode_L(f),α̃1*dt) S = [] push!(S,SaddleSystem(A,f,p,p,dutmp,solverType;cfact=1.0/(α̃1*dt))) push!(S,SaddleSystem(A,f,p,p,dutmp,solverType;cfact=1.0/dt)) HETrapezoidalAB2Cache{sc,ni,solverType}(u,uprev,ki,ke,utmp,udiff,dutmp,fsalfirst, A,S,deepcopy(p),k,tab) end function alg_cache(alg::HETrapezoidalAB2{solverType},u,rate_prototype, uEltypeNoUnits,uBottomEltypeNoUnits, tTypeNoUnits,uprev,uprev2,f,t,dt,reltol, p,calck,::Val{false}) where {solverType} HETrapezoidalAB2ConstantCache{isstatic(f),needs_iteration(f,u,p,rate_prototype),solverType}(constvalue(uBottomEltypeNoUnits)) end ####### function initialize!(integrator,cache::LiskaIFHERKCache) @unpack k,fsalfirst = cache integrator.fsalfirst = fsalfirst integrator.fsallast = k integrator.kshortsize = 2 resize!(integrator.k, integrator.kshortsize) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.f.odef(integrator.fsalfirst, integrator.uprev, integrator.p, integrator.t) # Pre-start fsal integrator.f.param_update_func(integrator.p,integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 end @muladd function perform_step!(integrator,cache::LiskaIFHERKCache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,u,f,p,alg,opts = integrator @unpack internalnorm = opts @unpack maxiter, tol = alg @unpack k1,k2,k3,utmp,udiff,dutmp,fsalfirst,Hhalfdt,Hzero,S,ptmp,k = cache @unpack ã11,ã21,ã22,ã31,ã32,ã33,c̃1,c̃2,c̃3 = cache.tab @unpack param_update_func = f init_err = float(1) init_iter = ni ? 1 : maxiter # aliases to the state and constraint parts ytmp, ztmp, xtmp = state(utmp), constraint(utmp), aux_state(utmp) yprev = state(uprev) y, z, x = state(u), constraint(u), aux_state(u) pold_ptr = p pnew_ptr = ptmp ttmp = t @.. u = uprev ## Stage 1 _ode_full_rhs!(k1,f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k1 *= dt*ã11 @.. utmp = uprev + k1 ttmp = t + dt*c̃1 @.. u = utmp # if applicable, update p, construct new saddle system here, using Hhalfdt # and solve system. Solve iteratively if saddle operators depend on # constrained part of the state. err, numiter = init_err, init_iter while err > tol && numiter <= maxiter udiff .= u param_update_func(pnew_ptr,u,pold_ptr,ttmp) S[1] = SaddleSystem(S[1],Hhalfdt,f,pnew_ptr,pold_ptr,cache) _constraint_r2!(utmp,f,u,pnew_ptr,ttmp) # only updates the z part ldiv!(mainvector(u),S[1],mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) end zero_vec!(xtmp) B1_times_z!(utmp,S[1]) pold_ptr = ptmp pnew_ptr = p ldiv!(yprev,Hhalfdt,yprev) ldiv!(state(k1),Hhalfdt,state(k1)) @.. k1 = (k1-utmp)/(dt*ã11) # r1(y,t) - B1T*z ## Stage 2 _ode_full_rhs!(k2,f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k2 *= dt*ã22 @.. utmp = uprev + k2 + dt*ã21*k1 ttmp = t + dt*c̃2 @.. u = utmp # if applicable, update p, construct new saddle system here, using Hhalfdt err, numiter = init_err, init_iter while err > tol && numiter <= maxiter udiff .= u param_update_func(pnew_ptr,u,pold_ptr,ttmp) S[2] = SaddleSystem(S[2],Hhalfdt,f,pnew_ptr,pold_ptr,cache) _constraint_r2!(utmp,f,u,pnew_ptr,ttmp) ldiv!(mainvector(u),S[2],mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) end zero_vec!(xtmp) B1_times_z!(utmp,S[2]) pold_ptr = p pnew_ptr = ptmp ldiv!(yprev,Hhalfdt,yprev) ldiv!(state(k1),Hhalfdt,state(k1)) ldiv!(state(k2),Hhalfdt,state(k2)) @.. k2 = (k2-utmp)/(dt*ã22) ## Stage 3 _ode_full_rhs!(k3,f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k3 *= dt*ã33 @.. utmp = uprev + k3 + dt*ã32*k2 + dt*ã31*k1 ttmp = t + dt @.. u = utmp # if applicable, update p, construct new saddle system here, using Hzero (identity) err, numiter = init_err, init_iter while err > tol && numiter <= maxiter udiff .= u param_update_func(pnew_ptr,u,pold_ptr,ttmp) S[3] = SaddleSystem(S[3],Hzero,f,pnew_ptr,pold_ptr,cache) _constraint_r2!(utmp,f,u,pnew_ptr,t+dt) ldiv!(mainvector(u),S[3],mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) #println("error = ",err) end @.. z /= (dt*ã33) # Final steps param_update_func(p,u,ptmp,t+dt) f.odef(integrator.fsallast, u, p, t+dt) stats_field(integrator).nf += 1 return nothing end function initialize!(integrator,cache::LiskaIFHERKConstantCache) integrator.kshortsize = 2 integrator.k = typeof(integrator.k)(undef, integrator.kshortsize) integrator.fsalfirst = integrator.f.odef(integrator.uprev, integrator.p, integrator.t) # Pre-start fsal integrator.p = integrator.f.param_update_func(integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 # Avoid undefined entries if k is an array of arrays integrator.fsallast = zero(integrator.fsalfirst) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast end @muladd function perform_step!(integrator,cache::LiskaIFHERKConstantCache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,f,p,opts,alg = integrator @unpack internalnorm = opts @unpack maxiter, tol = alg @unpack ã11,ã21,ã22,ã31,ã32,ã33,c̃1,c̃2,c̃3 = cache @unpack param_update_func = f init_err = float(1) init_iter = ni ? 1 : maxiter # set up some cache variables yprev = state(uprev) udiff = deepcopy(uprev) ducache = deepcopy(uprev) ptmp = deepcopy(p) L = _fetch_ode_L(f) Hhalfdt = exp(L,-dt/2,state(uprev)) Hzero = exp(L,zero(dt),state(uprev)) pold_ptr = p ## Stage 1 ttmp = t k1 = _ode_full_rhs(f,uprev,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k1 *= dt*ã11 utmp = @.. uprev + k1 ttmp = t + dt*c̃1 # if applicable, update p, construct new saddle system here, using Hhalfdt # and solve system. Solve iteratively if saddle operators depend on # constrained part of the state. err, numiter = init_err, init_iter u = deepcopy(utmp) while err > tol && numiter <= maxiter udiff .= u ptmp = param_update_func(u,pold_ptr,ttmp) pnew_ptr = ptmp S = SaddleSystem(Hhalfdt,f,pnew_ptr,pold_ptr,ducache,solverType;cfact=1.0/(ã11*dt)) constraint(utmp) .= constraint(_constraint_r2(f,u,pnew_ptr,ttmp)) ldiv!(mainvector(u),S,mainvector(utmp)) B1_times_z!(ducache,S) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) end zero_vec!(aux_state(utmp)) state(utmp) .= state(ducache) pold_ptr = ptmp ldiv!(yprev,Hhalfdt,yprev) ldiv!(state(k1),Hhalfdt,state(k1)) @.. k1 = (k1-utmp)/(dt*ã11) # r1(y,t) - B1T*z ## Stage 2 k2 = _ode_full_rhs(f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k2 *= dt*ã22 @.. utmp = uprev + k2 + dt*ã21*k1 ttmp = t + dt*c̃2 # if applicable, update p, construct new saddle system here, using Hhalfdt err, numiter = init_err, init_iter u .= utmp while err > tol && numiter <= maxiter udiff .= u ptmp = param_update_func(u,pold_ptr,ttmp) S = SaddleSystem(Hhalfdt,f,ptmp,pold_ptr,ducache,solverType;cfact=1.0/(ã22*dt)) constraint(utmp) .= constraint(_constraint_r2(f,u,ptmp,ttmp)) ldiv!(mainvector(u),S,mainvector(utmp)) B1_times_z!(ducache,S) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) end zero_vec!(aux_state(utmp)) state(utmp) .= state(ducache) pold_ptr = ptmp ldiv!(yprev,Hhalfdt,yprev) ldiv!(state(k1),Hhalfdt,state(k1)) ldiv!(state(k2),Hhalfdt,state(k2)) @.. k2 = (k2-utmp)/(dt*ã22) ## Stage 3 k3 = _ode_full_rhs(f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k3 *= dt*ã33 @.. utmp = uprev + k3 + dt*ã32*k2 + dt*ã31*k1 ttmp = t + dt # if applicable, update p, construct new saddle system here, using Hzero (identity) err, numiter = init_err, init_iter u .= utmp while err > tol && numiter <= maxiter udiff .= u ptmp = param_update_func(u,pold_ptr,ttmp) S = SaddleSystem(Hzero,f,ptmp,pold_ptr,ducache,solverType;cfact=1.0/(ã33*dt)) constraint(utmp) .= constraint(_constraint_r2(f,u,ptmp,ttmp)) ldiv!(mainvector(u),S,mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) #println("error = ",err) end z = constraint(u) @.. z /= (dt*ã33) # Final steps integrator.p = param_update_func(u,ptmp,t+dt) k = f.odef(u, integrator.p, t+dt) stats_field(integrator).nf += 1 integrator.fsallast = k integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.u = u return nothing end #### function initialize!(integrator,cache::IFHEEulerCache) @unpack k,fsalfirst = cache integrator.fsalfirst = fsalfirst integrator.fsallast = k integrator.kshortsize = 2 resize!(integrator.k, integrator.kshortsize) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.f.odef(integrator.fsalfirst, integrator.uprev, integrator.p, integrator.t) # Pre-start fsal integrator.f.param_update_func(integrator.p,integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 end @muladd function perform_step!(integrator,cache::IFHEEulerCache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,u,f,p,opts,alg = integrator @unpack internalnorm = opts @unpack k1,utmp,udiff,dutmp,fsalfirst,Hdt,S,ptmp,k = cache @unpack maxiter, tol = alg @unpack param_update_func = f init_err = float(1) #init_iter = ni ? 1 : maxiter init_iter = maxiter # First-order method does not need iteration # aliases to the state and constraint parts ytmp, ztmp = state(utmp), constraint(utmp) z = constraint(u) pold_ptr = p pnew_ptr = ptmp ttmp = t u .= uprev _ode_full_rhs!(k1,f,u,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. k1 *= dt @.. utmp = uprev + k1 ttmp = t + dt # if applicable, update p, construct new saddle system here, using Hdt err, numiter = init_err, init_iter u .= utmp while err > tol && numiter <= maxiter udiff .= u param_update_func(pnew_ptr,u,pold_ptr,ttmp) S[1] = SaddleSystem(S[1],Hdt,f,pnew_ptr,pold_ptr,cache) _constraint_r2!(utmp,f,u,pnew_ptr,t+dt) ldiv!(mainvector(u),S[1],mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) #println("numiter = ",numiter, ", error = ",err) end @.. z /= dt # Final steps param_update_func(p,u,pold_ptr,t) f.odef(integrator.fsallast, u, p, t+dt) stats_field(integrator).nf += 1 return nothing end function initialize!(integrator,cache::IFHEEulerConstantCache) integrator.kshortsize = 2 integrator.k = typeof(integrator.k)(undef, integrator.kshortsize) integrator.fsalfirst = integrator.f.odef(integrator.uprev, integrator.p, integrator.t) # Pre-start fsal integrator.p = integrator.f.param_update_func(integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 # Avoid undefined entries if k is an array of arrays integrator.fsallast = zero(integrator.fsalfirst) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast end @muladd function perform_step!(integrator,cache::IFHEEulerConstantCache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,f,p,opts,alg = integrator @unpack internalnorm = opts @unpack maxiter, tol = alg @unpack param_update_func = f init_err = float(1) #init_iter = ni ? 1 : maxiter init_iter = maxiter # First-order method does not need iteration # set up some cache variables udiff = deepcopy(uprev) ducache = deepcopy(uprev) ptmp = deepcopy(p) L = _fetch_ode_L(f) Hdt = exp(L,-dt,state(uprev)) pold_ptr = p pnew_ptr = ptmp k1 = _ode_full_rhs(f,uprev,pold_ptr,t) stats_field(integrator).nf += 1 @.. k1 *= dt utmp = @.. uprev + k1 # if applicable, update p, construct new saddle system here, using Hdt err, numiter = init_err, init_iter u = deepcopy(utmp) while err > tol && numiter <= maxiter udiff .= u pnew_ptr = param_update_func(u,pold_ptr,t+dt) S = SaddleSystem(Hdt,f,pnew_ptr,pold_ptr,ducache,solverType;cfact=1.0/dt) constraint(utmp) .= constraint(_constraint_r2(f,u,pnew_ptr,t+dt)) ldiv!(mainvector(u),S,mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,t+dt) #println("error = ",err) end z = constraint(u) @.. z /= dt # Final steps integrator.p = param_update_func(u,pold_ptr,t) k = f.odef(u, integrator.p, t+dt) stats_field(integrator).nf += 1 integrator.fsallast = k integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.u = u end #### Half-explicit Trapezoidal/Adams-Bashforth 2 (HETrapezoidalAB2) #### function initialize!(integrator,cache::HETrapezoidalAB2Cache) @unpack ki,k,fsalfirst = cache integrator.fsalfirst = fsalfirst integrator.fsallast = k integrator.kshortsize = 2 resize!(integrator.k, integrator.kshortsize) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.f.odef(integrator.fsalfirst, integrator.uprev, integrator.p, integrator.t) # Pre-start fsal #_ode_implicit_rhs!(ki,integrator.f,integrator.uprev,integrator.p,integrator.t) integrator.f.param_update_func(integrator.p,integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 end @muladd function perform_step!(integrator,cache::HETrapezoidalAB2Cache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,u,f,p,opts,alg = integrator @unpack internalnorm = opts @unpack ki,ke,utmp,udiff,dutmp,fsalfirst,S,ptmp,k,tab,A = cache @unpack α̃1,α̃2,β̃1,β̃2 = tab @unpack maxiter, tol = alg @unpack param_update_func = f init_err = float(1) #init_iter = ni ? 1 : maxiter init_iter = maxiter cnt = integrator.iter # aliases to the state and constraint parts ytmp, ztmp = state(utmp), constraint(utmp) z = constraint(u) pold_ptr = p pnew_ptr = ptmp ttmp = t u .= uprev if cnt == 1 # Use Euler step to replace AB2, but still use trapezoidal for implicit part @.. utmp = uprev # If C is not empty, then find the initial constraint to go along # with the initial state if _isinvertible(S[1].C) _constraint_r2!(utmp,f,utmp,pold_ptr,ttmp) constraint_from_state!(mainvector(utmp),S[1],mainvector(utmp)) @.. ztmp /= (α̃1*dt) end # Calculate the initial ki (time level 0) _ode_implicit_rhs!(ki,f,utmp,pold_ptr,ttmp) # Calculate the initial ke (time level 0) _ode_r1!(ke,f,utmp,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. utmp += dt*ke else @.. utmp = uprev + β̃2*dt*ke _ode_r1!(ke,f,uprev,pold_ptr,ttmp) stats_field(integrator).nf += 1 @.. utmp += β̃1*dt*ke # utmp now corresponds to y* and x* end ttmp = t + dt # if applicable, update p, construct new saddle system here err, numiter = init_err, init_iter _ode_r1imp!(dutmp,f,utmp,pold_ptr,ttmp) @.. u = utmp @.. utmp += α̃2*dt*ki + α̃1*dt*dutmp while err > tol && numiter <= maxiter udiff .= u param_update_func(pnew_ptr,u,pold_ptr,ttmp) S[1] = SaddleSystem(S[1],A,f,pnew_ptr,pnew_ptr,cache) _constraint_r2!(utmp,f,u,pnew_ptr,t+dt) ldiv!(mainvector(u),S[1],mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,ttmp) #println("numiter = ",numiter, ", error = ",err) end @.. z /= (α̃1*dt) # Final steps param_update_func(p,u,pold_ptr,t+dt) _ode_implicit_rhs!(ki,f,u,p,t+dt) f.odef(integrator.fsallast, u, p, t+dt) stats_field(integrator).nf += 1 return nothing end function initialize!(integrator,cache::HETrapezoidalAB2ConstantCache) integrator.kshortsize = 2 integrator.k = typeof(integrator.k)(undef, integrator.kshortsize) integrator.fsalfirst = integrator.f.odef(integrator.uprev, integrator.p, integrator.t) # Pre-start fsal integrator.p = integrator.f.param_update_func(integrator.uprev,integrator.p,integrator.t) stats_field(integrator).nf += 1 # Avoid undefined entries if k is an array of arrays integrator.fsallast = zero(integrator.fsalfirst) integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast end @muladd function perform_step!(integrator,cache::HETrapezoidalAB2ConstantCache{sc,ni,solverType},repeat_step=false) where {sc,ni,solverType} @unpack t,dt,uprev,uprev2,f,p,opts,alg = integrator @unpack internalnorm = opts @unpack maxiter, tol = alg @unpack α̃1,α̃2,β̃1,β̃2 = cache @unpack param_update_func = f init_err = float(1) #init_iter = ni ? 1 : maxiter init_iter = maxiter cnt = integrator.iter # set up some cache variables udiff = deepcopy(uprev) ducache = deepcopy(uprev) ptmp = deepcopy(p) L = _fetch_ode_L(f) A = implicit_operator(_fetch_ode_L(f),α̃1*dt) pold_ptr = p pnew_ptr = ptmp if cnt == 1 utmp = uprev S = SaddleSystem(A,f,pold_ptr,pold_ptr,ducache,solverType;cfact=1.0/(α̃1*dt)) if _isinvertible(S.C) constraint(utmp) .= constraint(_constraint_r2(f,utmp,pold_ptr,t)) constraint_from_state!(mainvector(utmp),S,mainvector(utmp)) ztmp = constraint(utmp) @.. ztmp /= (α̃1*dt) end # Calculate the initial ki (time level 0) ki = _ode_implicit_rhs(f,utmp,pold_ptr,t) ke = _ode_r1(f,uprev,pold_ptr,t) stats_field(integrator).nf += 1 @.. utmp = utmp + dt*ke else ke = _ode_r1(f,uprev2,pold_ptr,t-dt) #ke at step n-1 ki = _ode_implicit_rhs(f,uprev,pold_ptr,t) utmp = uprev + β̃2*dt*ke ke = _ode_r1(f,uprev,pold_ptr,t) stats_field(integrator).nf += 1 @.. utmp = utmp + β̃1*dt*ke # utmp now corresponds to y* and x* end @.. uprev2 = uprev ducache .= _ode_r1imp(f,utmp,pold_ptr,t+dt) # if applicable, update p, construct new saddle system here, using Hdt err, numiter = init_err, init_iter u = deepcopy(utmp) @.. utmp = utmp + α̃2*dt*ki + α̃1*dt*ducache while err > tol && numiter <= maxiter udiff .= u pnew_ptr = param_update_func(u,pold_ptr,t+dt) S = SaddleSystem(A,f,pnew_ptr,pnew_ptr,ducache,solverType;cfact=1.0/(α̃1*dt)) constraint(utmp) .= constraint(_constraint_r2(f,u,pnew_ptr,t+dt)) ldiv!(mainvector(u),S,mainvector(utmp)) @.. udiff -= u numiter += 1 err = internalnorm(udiff,t+dt) #println("error = ",err) end z = constraint(u) @.. z /= (α̃1*dt) # Final steps integrator.p = param_update_func(u,pold_ptr,t) k = f.odef(u, integrator.p, t+dt) stats_field(integrator).nf += 1 integrator.fsallast = k integrator.k[1] = integrator.fsalfirst integrator.k[2] = integrator.fsallast integrator.u = u end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
3614
#= This is pirated from https://github.com/SciML/OrdinaryDiffEq.jl/blob/0e38705ac4ace80a51961d689ff64bea6b3bce73/src/misc_utils.jl#L20 because for some reason it is not working by importing it =# macro cache(expr) name = expr.args[2].args[1].args[1] fields = [x for x in expr.args[3].args if typeof(x)!=LineNumberNode] cache_vars = Expr[] jac_vars = Pair{Symbol,Expr}[] for x in fields if x.args[2] == :uType || x.args[2] == :rateType || x.args[2] == :kType || x.args[2] == :uNoUnitsType push!(cache_vars,:(c.$(x.args[1]))) elseif x.args[2] == :DiffCacheType push!(cache_vars,:(c.$(x.args[1]).du)) push!(cache_vars,:(c.$(x.args[1]).dual_du)) end end quote $expr $(esc(:full_cache))(c::$name) = tuple($(cache_vars...)) end end # Need to allow UNITLESS_ABS2 to work on empty vectors # Should add this into DiffEqBase #@inline UNITLESS_ABS2(x::AbstractArray) = (isempty(x) && return sum(UNITLESS_ABS2,zero(eltype(x))); sum(UNITLESS_ABS2, x)) # A workaround that avoids redefinition import OrdinaryDiffEq.DiffEqBase: UNITLESS_ABS2, ODE_DEFAULT_NORM, recursive_length @inline MY_UNITLESS_ABS2(x::Number) = abs2(x) @inline MY_UNITLESS_ABS2(x::AbstractArray) = (isempty(x) && return sum(MY_UNITLESS_ABS2,zero(eltype(x))); sum(MY_UNITLESS_ABS2, x)) @inline MY_UNITLESS_ABS2(x::ArrayPartition) = sum(MY_UNITLESS_ABS2, x.x) @inline ODE_DEFAULT_NORM(u::ArrayPartition,t) = sqrt(MY_UNITLESS_ABS2(u)/recursive_length(u)) @inline _l2norm(u) = sqrt(recursive_mean(map(x -> float(x).^2,u))) zero_vec!(::Nothing) = nothing zero_vec!(u) = fill!(u,0.0) function zero_vec!(u::ArrayPartition) for x in u.x fill!(x,0.0) end return nothing end function recursivecopy!(dest :: T, src :: T) where {T} fields = fieldnames(T) for f in fields tmp = getfield(dest,f) #tmp .= getfield(src,f) recursivecopy!(tmp,getfield(src,f)) end dest end function recursivecopy!(dest :: AbstractArray{T}, src :: AbstractArray{T}) where {T} for i in eachindex(src) recursivecopy!(dest[i],src[i]) end return dest end # Seed the state vector with two sets of random values, apply the constraint operator on a needs_iteration(f::ConstrainedODEFunction{iip},u,p,rate_prototype) where {iip} = _needs_iteration(f,u,p,rate_prototype,Val(iip)) function _needs_iteration(f,u,p,rate_prototype,::Val{true}) pseed = deepcopy(p) u_target, useed = (zero(u) for i in 1:2) yseed = state(useed) y_target = state(u_target) fill!(y_target,1.0) dutmp, dudiff = (zero(rate_prototype) for i in 1:2) dzdiff = constraint(dudiff) yseed .= randn(size(yseed)) f.param_update_func(pseed,useed,p,0.0) _constraint_neg_B2!(dutmp,f,u_target,pseed,0.0) dudiff .= dutmp yseed .= randn(size(yseed)) f.param_update_func(pseed,useed,p,0.0) _constraint_neg_B2!(dutmp,f,u_target,pseed,0.0) dudiff .-= dutmp !(_l2norm(dzdiff) == 0.0) end function _needs_iteration(f,u,p,rate_prototype,::Val{false}) pseed = deepcopy(p) u_target, useed = (zero(u) for i in 1:2) yseed = state(useed) y_target = state(u_target) fill!(y_target,1.0) dutmp, dudiff = (zero(rate_prototype) for i in 1:2) dzdiff = constraint(dudiff) yseed .= randn(size(yseed)) pseed = f.param_update_func(useed,p,0.0) dutmp = _constraint_neg_B2(f,u_target,pseed,0.0) dudiff .= dutmp yseed .= randn(size(yseed)) pseed = f.param_update_func(useed,p,0.0) dutmp = _constraint_neg_B2(f,u_target,pseed,0.0) dudiff .-= dutmp !(_l2norm(dzdiff) == 0.0) end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
9543
struct ProblemParams{P,BT1,BT2} params :: P B₁ᵀ :: BT1 B₂ :: BT2 end function basic_unconstrained_problem(;tmax=1.0,iip=true) ns = 1 y0 = 1.0 α = 1.02 p = α ode_rhs!(dy,y,x,p,t) = dy .= p*y ode_rhs(y,x,p,t) = p*y y₀ = ones(Float64,ns) u₀ = solvector(state=y₀) if iip f = ConstrainedODEFunction(ode_rhs!,_func_cache=u₀) else f = ConstrainedODEFunction(ode_rhs) end tspan = (0.0,1.0) prob = ODEProblem(f,u₀,tspan,p) xexact(t) = exp(α*t) return prob, xexact end function basic_unconstrained_if_problem(;tmax=1.0,iip=true) ns = 1 y0 = 1.0 α = 1.02 p = α ode_rhs!(dy,y,x,p,t) = fill!(dy,0.0) ode_rhs(y,x,p,t) = zero(y) L = α*I y₀ = ones(Float64,ns) u₀ = solvector(state=y₀) if iip f = ConstrainedODEFunction(ode_rhs!,L,_func_cache=u₀) else f = ConstrainedODEFunction(ode_rhs,L) end tspan = (0.0,1.0) prob = ODEProblem(f,u₀,tspan,p) xexact(t) = exp(α*t) return prob, xexact end function basic_constrained_problem(;tmax=1.0,iip=true) U0 = 1.0 g = 1.0 α = 0.5 ω = 5 y₀ = Float64[0,0,U0,0] z₀ = Float64[0] params = [U0,g,α,ω]; p₀ = ProblemParams(params,Array{Float64}(undef,4,1),Array{Float64}(undef,1,4)); u₀ = solvector(state=y₀,constraint=z₀) du = deepcopy(u₀) function ode_rhs!(dy::Vector{Float64},y::Vector{Float64},x,p,t) dy .= 0.0 dy[1] = y[3] dy[2] = y[4] dy[4] = -(y[1]-p.params[1]*t)*p.params[2] return dy end ode_rhs(y::Vector{Float64},x,p,t) = ode_rhs!(deepcopy(y₀),y,x,p,t) constraint_rhs!(dz::Vector{Float64},x,p,t) = dz .= Float64[p.params[1]] constraint_rhs(x,p,t) = constraint_rhs!(deepcopy(z₀),x,p,t) function op_constraint_force!(dy::Vector{Float64},z::Vector{Float64},x,p) @unpack B₁ᵀ = p dy .= B₁ᵀ*z end op_constraint_force(z::Vector{Float64},x,p) = op_constraint_force!(deepcopy(y₀),z,x,p) function constraint_op!(dz::Vector{Float64},y::Vector{Float64},x,p) @unpack B₂ = p dz .= B₂*y end constraint_op(y::Vector{Float64},x,p) = constraint_op!(deepcopy(z₀),y,x,p) function update_p!(q,u,p,t) y, z = state(u), constraint(u) @unpack B₁ᵀ, B₂ = q B₁ᵀ .= 0 B₂ .= 0 B₁ᵀ[3,1] = 1/(1+q.params[3]*sin(q.params[4]*t)) B₂[1,3] = 1/(1+q.params[3]*sin(q.params[4]*t)) return q end update_p(u,p,t) = update_p!(deepcopy(p),u,p,t) if iip f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!,op_constraint_force!, constraint_op!,_func_cache=deepcopy(du), param_update_func=update_p!) else f = ConstrainedODEFunction(ode_rhs,constraint_rhs,op_constraint_force, constraint_op,param_update_func=update_p) end tspan = (0.0,tmax) p = deepcopy(p₀) prob = ODEProblem(f,u₀,tspan,p) yexact(t) = g*α*U0/ω*(-0.5*t^2 - cos(ω*t)/ω^2 + 1/ω^2) xexact(t) = U0*(t - α*cos(ω*t)/ω+α/ω) return prob, xexact, yexact end function cartesian_pendulum_problem(;tmax=1.0,iip=true) θ₀ = π/2 l = 1.0 g = 1.0 y₀ = Float64[l*sin(θ₀),-l*cos(θ₀),0,0] z₀ = Float64[0.0, 0.0] u₀ = solvector(state=y₀,constraint=z₀) du = deepcopy(u₀) params = [l,g] p₀ = ProblemParams(params,Array{Float64}(undef,4,2),Array{Float64}(undef,2,4)) function pendulum_rhs!(dy::Vector{Float64},y::Vector{Float64},x,p,t) dy .= 0.0 dy[1] = y[3] dy[2] = y[4] dy[4] = -p.params[2] return dy end pendulum_rhs(y::Vector{Float64},x,p,t) = pendulum_rhs!(zero(y),y,x,p,t) length_constraint_rhs!(dz::Vector{Float64},x,p,t) = dz .= [0.0,p.params[1]^2] length_constraint_rhs(x,p,t) = length_constraint_rhs!(zero(z₀),x,p,t) function length_constraint_force!(dy::Vector{Float64},z::Vector{Float64},x,p) @unpack B₁ᵀ = p dy .= B₁ᵀ*z end length_constraint_force(z::Vector{Float64},x,p) = length_constraint_force!(zero(y₀),z,x,p) function length_constraint_op!(dz::Vector{Float64},y::Vector{Float64},x,p) @unpack B₂ = p dz .= B₂*y end length_constraint_op(y::Vector{Float64},x,p) = length_constraint_op!(zero(z₀),y,x,p) function update_p!(q,u,p,t) y, z = state(u), constraint(u) @unpack B₁ᵀ, B₂ = q fill!(B₁ᵀ,0.0) fill!(B₂,0.0) B₁ᵀ[3,1] = y[1]; B₁ᵀ[4,1] = y[2]; B₁ᵀ[1,2] = y[1]; B₁ᵀ[2,2] = y[2] B₂[1,3] = y[1]; B₂[1,4] = y[2]; B₂[2,1] = y[1]; B₂[2,2] = y[2] return q end update_p(u,p,t) = update_p!(deepcopy(p),u,p,t) if iip f = ConstrainedODEFunction(pendulum_rhs!,length_constraint_rhs!,length_constraint_force!, length_constraint_op!, _func_cache=deepcopy(du),param_update_func=update_p!) else f = ConstrainedODEFunction(pendulum_rhs,length_constraint_rhs,length_constraint_force, length_constraint_op,param_update_func=update_p) end tspan = (0.0,tmax) p = deepcopy(p₀) prob = ODEProblem(f,u₀,tspan,p) # Get superconverged solution from the basic # problem expressed in theta function pendulum_theta(u,p,t) du = similar(u) du[1] = u[2] du[2] = -p^2*sin(u[1]) du end u0 = [π/2,0.0] pex = g/l # squared frequency tspan = (0.0,10.0) probex = ODEProblem(pendulum_theta,u0,tspan,pex) solex = solve(probex, Tsit5(), reltol=1e-16, abstol=1e-16); xexact(t) = sin(solex(t,idxs=1)) yexact(t) = -cos(solex(t,idxs=1)) return prob, xexact, yexact end function partitioned_problem(;tmax=1.0,iip=true) ω = 1.0 βu = -0.2 βv = -0.5 par = [ω,βu,βv] U₀ = Float64[0,1] X₀ = Float64[1,0] Z₀ = Float64[0] u₀ = solvector(state=X₀,constraint=Z₀,aux_state=U₀) du = deepcopy(u₀) B₂ = Array{Float64}(undef,1,2) B₁ᵀ = Array{Float64}(undef,2,1) p₀ = ProblemParams(par,B₁ᵀ,B₂) L = Diagonal([βu,βv]) function X_rhs!(dy,y,x,p,t) fill!(dy,0.0) return dy end X_rhs(y,x,p,t) = X_rhs!(deepcopy(X₀),y,x,p,t) function U_rhs!(dy,u,p,t) fill!(dy,0.0) ω = p.params[1] dy[1] = -ω*cos(ω*t) dy[2] = -ω*sin(ω*t) return dy end U_rhs(u,p,t) = U_rhs!(deepcopy(U₀),u,p,t) ode_rhs! = ArrayPartition((X_rhs!,U_rhs!)) ode_rhs = ArrayPartition((X_rhs,U_rhs)) constraint_rhs!(dz,x,p,t) = dz .= Float64[0] constraint_rhs(x,p,t) = constraint_rhs!(deepcopy(Z₀),x,p,t) function op_constraint_force!(dy,z,x,p) @unpack B₁ᵀ = p dy .= B₁ᵀ*z return dy end op_constraint_force(z,x,p) = op_constraint_force!(deepcopy(X₀),z,x,p) function constraint_op!(dz,y,x,p) @unpack B₂ = p dz .= B₂*y end constraint_op(y,x,p) = constraint_op!(deepcopy(Z₀),y,x,p) function update_p!(q,u,p,t) x = aux_state(u) @unpack B₁ᵀ, B₂ = q B₁ᵀ[1,1] = x[1] B₁ᵀ[2,1] = x[2] B₂[1,1] = x[1] B₂[1,2] = x[2] return q end update_p(u,p,t) = update_p!(deepcopy(p),u,p,t) if iip f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!,op_constraint_force!, constraint_op!,L,_func_cache=deepcopy(du), param_update_func=update_p!) else f = ConstrainedODEFunction(ode_rhs,constraint_rhs,op_constraint_force, constraint_op,L,param_update_func=update_p) end tspan = (0.0,tmax) p = deepcopy(p₀) update_p!(p,u₀,p,0.0) prob = ODEProblem(f,u₀,tspan,p) # function fex(du,u,p,t) # UV = u.x[1] # xy = u.x[2] # ω = p[1] # βu = p[2] # βv = p[3] # du[1] = -ω*cos(ω*t) # du[2] = -ω*sin(ω*t) # Usq = u[1]^2+u[2]^2 # du[3] = (βu-u[1]/Usq*(du[1]+βu*u[1]))*u[3] - u[1]/Usq*(du[2]+βv*u[2])*u[4] # du[4] = -u[2]/Usq*(du[1]+βu*u[1])*u[3] + (βv-u[2]/Usq*(du[2]+βv*u[2]))*u[4] # return nothing # end # # tspan = (0.0,tmax) # u₀ex = SaddleVector(U₀,X₀) # # probex = ODEProblem(fex,u₀ex,tspan,par) # solex = solve(probex, Tsit5(), reltol=1e-16, abstol=1e-16) # xexact(t) = solex(t,idxs=3) # yexact(t) = solex(t,idxs=4) fex(t) = exp(0.5*(βu+βv)*t)*exp(0.25/ω*sin(2ω*t)*(βu-βv)) xexact(t) = cos(ω*t)*fex(t) yexact(t) = sin(ω*t)*fex(t) return prob, xexact, yexact end function basic_constrained_if_problem_with_cmatrix(;tmax=1.0,iip=true) y0 = 1 y₀ = Float64[y0] z₀ = Float64[0] u₀ = solvector(state=y₀,constraint=z₀) du = deepcopy(u₀) α = -1.0 B1T = 1.0 B2 = 1.0 β = 1.2 r2 = 1.0 p = [α,B1T,B2,β,r2] L = α*I(1) ode_rhs!(dy,y,x,p,t) = fill!(dy,0.0) ode_rhs(y,x,p,t) = zero(y) constraint_rhs!(dz,x,p,t) = fill!(dz,p[5]) constraint_rhs(x,p,t) = p[5]*ones(1) function op_constraint_force!(dy::Vector{Float64},z::Vector{Float64},x,p) dy .= p[2]*z end op_constraint_force(z::Vector{Float64},x,p) = op_constraint_force!(deepcopy(y₀),z,x,p) function constraint_op!(dz::Vector{Float64},y::Vector{Float64},x,p) dz .= p[3]*y end constraint_op(y::Vector{Float64},x,p) = constraint_op!(deepcopy(z₀),y,x,p) function constraint_reg!(dz::Vector{Float64},z::Vector{Float64},x,p) dz .= p[4]*z end constraint_reg(z::Vector{Float64},x,p) = constraint_reg!(deepcopy(z₀),z,x,p) if iip f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!,op_constraint_force!, constraint_op!,L,constraint_reg!,_func_cache=deepcopy(du)) else f = ConstrainedODEFunction(ode_rhs,constraint_rhs,op_constraint_force, constraint_op,L,constraint_reg) end tspan = (0.0,tmax) prob = ODEProblem(f,u₀,tspan,p) xexact(t) = exp((α+1/β)*t)*y0 + r2/β/(α+1/β)*(1 - exp((α+1/β)*t)) yexact(t) = (r2 - xexact(t))/β return prob, xexact, yexact end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
2815
# called directly by alg_cache for iip algorithms and indirectly by non-sc algorithms function SaddleSystem(A,f::ConstrainedODEFunction{true},p,pold,ducache,solver;cfact=1.0) nully, nullz = state(ducache), constraint(ducache) du_aux = aux_state(ducache) @inline B₁ᵀ(z) = (zero_vec!(ducache); _ode_neg_B1!(ducache,f,solvector(state=nully,constraint=z,aux_state=du_aux),pold,0.0); state(ducache) .*= -1.0; return state(ducache)) @inline B₂(y) = (zero_vec!(ducache); _constraint_neg_B2!(ducache,f,solvector(state=y,constraint=nullz,aux_state=du_aux),p,0.0); constraint(ducache) .*= -1.0; return constraint(ducache)) @inline C(z) = (zero_vec!(ducache); _constraint_neg_C!(ducache,f,solvector(state=nully,constraint=z,aux_state=du_aux),p,0.0); constraint(ducache) .*= -cfact; return constraint(ducache)) SaddleSystem(A,B₂,B₁ᵀ,C,mainvector(ducache),solver=solver) end # called directly by oop algorithms function SaddleSystem(A,f::ConstrainedODEFunction{false},p,pold,ducache,solver;cfact=1.0) nully, nullz = state(ducache), constraint(ducache) du_aux = aux_state(ducache) @inline B₁ᵀ(z) = (zero_vec!(ducache); ducache .= _ode_neg_B1(f,solvector(state=nully,constraint=z,aux_state=du_aux),pold,0.0); state(ducache) .*= -1.0; return state(ducache)) @inline B₂(y) = (zero_vec!(ducache); ducache .= _constraint_neg_B2(f,solvector(state=y,constraint=nullz,aux_state=du_aux),p,0.0); constraint(ducache) .*= -1.0; return constraint(ducache)) @inline C(z) = (zero_vec!(ducache); ducache .= _constraint_neg_C(f,solvector(state=nully,constraint=z,aux_state=du_aux),p,0.0); constraint(ducache) .*= -cfact; return constraint(ducache)) SaddleSystem(A,B₂,B₁ᵀ,C,mainvector(ducache),solver=solver) end # this version is called by in-place algorithms @inline SaddleSystem(S::SaddleSystem,A,f::ConstrainedODEFunction,p,pold, cache::ConstrainedODEMutableCache{sc,solverType}) where {sc,solverType} = SaddleSystem(S,A,f,p,pold,cache.dutmp,solverType,Val(sc)) # non-static constraints @inline SaddleSystem(S::SaddleSystem,A,f::ConstrainedODEFunction,p,pold,ducache,solver, ::Val{false}) = SaddleSystem(A,f,p,pold,ducache,solver) # static constraints @inline SaddleSystem(S::SaddleSystem,A,f::ConstrainedODEFunction,p,pold,ducache,solver, ::Val{true}) = S function B1_times_z!(u,S::SaddleSystem) state(u) .= typeof(state(u))(S.A⁻¹B₁ᵀf) return u end function B1_times_z(u,S::SaddleSystem) out = zero(u) state(out) .= typeof(state(u))(S.A⁻¹B₁ᵀf) return out end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
14924
export DiffEqLinearOperator, ConstrainedODEFunction DEFAULT_PARAM_UPDATE_FUNC(q,u,p,t) = q DEFAULT_PARAM_UPDATE_FUNC(u,p,t) = p ### Abstract algorithms ### abstract type ConstrainedOrdinaryDiffEqAlgorithm <: OrdinaryDiffEq.OrdinaryDiffEqAlgorithm end ### Abstract caches ### # The sc parameter specifies whether it contains static constraint operators or not # If false, then it expects that the state vector contains a component for updating the opertors abstract type ConstrainedODEMutableCache{sc,solverType} <: OrdinaryDiffEqMutableCache end abstract type ConstrainedODEConstantCache{sc,solverType} <: OrdinaryDiffEqConstantCache end #### Operator and function types #### mutable struct DiffEqLinearOperator{T,aType} <: AbstractDiffEqLinearOperator{T} L :: aType DiffEqLinearOperator(L::aType; update_func=DEFAULT_PARAM_UPDATE_FUNC, dtype=Float64) where {aType} = new{dtype,aType}(L) end (f::DiffEqLinearOperator)(du,u,p,t) = (dy = state(du); mul!(dy,f.L,state(u))) (f::DiffEqLinearOperator)(u,p,t) = (du = deepcopy(u); zero_vec!(du); dy = state(du); mul!(dy,f.L,state(u)); return du) import Base: exp exp(f::DiffEqLinearOperator,args...) = exp(f.L,args...) exp(f::ArrayPartition,t,x::ArrayPartition) = ArrayPartition((exp(Li,t,xi) for (Li,xi) in zip(f.L.x,x.x))...) exp(f::ODEFunction,args...) = exp(f.f,args...) has_exp(::DiffEqLinearOperator) = true exp(L::AbstractMatrix,t,x) = exp(factorize(L)*t) exp(L::UniformScaling,t,x) = exp(Diagonal(L,length(x))*t) implicit_operator(L::AbstractMatrix,a::Real) = I - a*L implicit_operator(L::UniformScaling,a::Real) = I - a*L implicit_operator(f::DiffEqLinearOperator,args...) = implicit_operator(f.L,args...) implicit_operator(f::ODEFunction,args...) = implicit_operator(f.f,args...) #= ConstrainedODEFunction A function of this type should be able to take arguments (du,u,p,t) (for in-place) or (u,p,t) for out-of-place, and distribute the parts of u and du as needed to the component functions. u and du will both be of type ArrayPartition, with two parts: state(u) and constraint(u). In some cases we wish to solve a separate (unconstrained) system, e.g., to update the constraint operators B1 and B2. This update is done via the parameters, using param_update_func. In this case, u and du are ArrayPartition with the first part corresponding to the constrained system (and of ArrayPartition type) and the second part is for the unconstrained system. We supply `r1` as an ArrayPartition of the component functions (in the same order). The arguments of each component function of `r1` should only take in and return their own parts of this state. In the future we can expand this to take in multiple (coupled) systems of this form, as in FSI problems. In these cases, the component functions should be supplied as ArrayPartition's of the functions for each system. Each of the component functions of each system should be able to take in the *full* state and/or constraint and return the *full* state/constraint, as appropriate, in order to enable coupling of the systems. =# """ ConstrainedODEFunction(r1,r2,B1,B2[,L][,C]) This specifies the functions and operators that comprise an ODE problem with the form `` \\dfrac{dy}{dt} = Ly - B_1 z + r_1(y,t) `` `` B_2 y + C z = r_2(x,t) `` where ``y`` is the state, ``z`` is a constraint force, and ``x`` is an auxiliary state describing the constraints. The optional linear operator `L` defaults to zeros. The `B1` and `B2` functions must be of the respective in-place forms `B1(dy,z,x,p)` (to compute the action of `B1` on `z`) and `B2(dz,y,x,p)` (to compute the action of `B2` on `y`). The function `r1` must of the in-place form `r1(dy,y,x,p,t)`, and `r2` must be in the in-place form `r2(dz,x,p,t)`. The `C` function can be omitted, but if it is included, then it must be of the form `C(dz,z,x,p)` (to compute the action of `C` on `z`). Alternatively, one can supply out-of-place forms, respectively, as `B1(z,x,p)`, `B2(y,x,p)`, `C(z,x,p)`, `r1(y,x,p,t)` and `r2(x,p,t)`. An optional keyword argument `param_update_func` can be used to set a function that updates problem parameters with the current solution. This function must take the in-place form `f(q,u,p,t)` or out of place form `f(u,p,t)` to create some `q` based on `u`, where `y = state(u)`, `z = constraint(u)` and `x = aux_state(u)`. (Note that `q` might enter the function simply as `p`, to be mutated.) This function can be used to update `B1`, `B2`, and `C`, for example. We can also include another (unconstrained) set of equations to the set above in order to update `x`: `` \\dfrac{dx}{dt} = r_{1x}(u,p,t) `` In this case, the right-hand side has access to the entire `u` vector. We would pass the pair of `r1` functions as an `ArrayPartition`. """ struct ConstrainedODEFunction{iip,static,F1,F2,TMM,C,Ta,Tt,TJ,JVP,VJP,JP,SP,TW,TWt,TPJ,S,TCV,PF} <: AbstractODEFunction{iip} odef :: F1 conf :: F2 mass_matrix::TMM cache::C analytic::Ta tgrad::Tt jac::TJ jvp::JVP vjp::VJP jac_prototype::JP sparsity::SP Wfact::TW Wfact_t::TWt paramjac::TPJ syms::S colorvec::TCV param_update_func :: PF end function ConstrainedODEFunction(r1,r2,B1,B2,L=DiffEqLinearOperator(0*I),C=nothing; r1imp=nothing, param_update_func = DEFAULT_PARAM_UPDATE_FUNC, mass_matrix=I,_func_cache=nothing, analytic=nothing, tgrad = nothing, jac = nothing, jvp=nothing, vjp=nothing, jac_prototype = nothing, sparsity=jac_prototype, Wfact = nothing, Wfact_t = nothing, paramjac = nothing, syms = nothing, colorvec = nothing) allempty(r2,B1,B2) || noneempty(r2,B1,B2) || error("Inconsistent null operators") unconstrained = allempty(r2,B1,B2) allinplace(r1,r2,B1,B2,r1imp) || alloutofplace(r1,r2,B1,B2,r1imp) || error("Inconsistent function signatures") iip = allinplace(r1,r2,B1,B2,r1imp) static = param_update_func == DEFAULT_PARAM_UPDATE_FUNC ? true : false L_local = (L isa DiffEqLinearOperator) ? L : DiffEqLinearOperator(L) local_cache = deepcopy(_func_cache) zero_vec!(local_cache) odef_imp_nl = SplitFunction(_complete_B1(B1,Val(iip)), _complete_r1imp(r1imp,Val(iip));_func_cache=deepcopy(local_cache)) odef_imp = SplitFunction(L_local,odef_imp_nl;_func_cache=deepcopy(local_cache)) odef = SplitFunction(_complete_r1(r1,Val(iip),_func_cache=deepcopy(local_cache)), odef_imp ;_func_cache=deepcopy(local_cache)) conf_lhs = SplitFunction(_complete_B2(B2,Val(iip)),_complete_C(C,Val(iip));_func_cache=deepcopy(local_cache)) conf = SplitFunction(_complete_r2(r2,Val(iip)),conf_lhs;_func_cache=deepcopy(local_cache)) ConstrainedODEFunction{iip,static,typeof(odef), typeof(conf),typeof(mass_matrix),typeof(local_cache), typeof(analytic),typeof(tgrad),typeof(jac),typeof(jvp),typeof(vjp), typeof(jac_prototype),typeof(sparsity), typeof(Wfact),typeof(Wfact_t),typeof(paramjac),typeof(syms), typeof(colorvec),typeof(param_update_func)}(odef,conf,mass_matrix,local_cache, analytic,tgrad,jac,jvp,vjp,jac_prototype, sparsity,Wfact,Wfact_t,paramjac,syms,colorvec,param_update_func) end # For unconstrained systems ConstrainedODEFunction(r1,L=DiffEqLinearOperator(0*I);kwargs...) = ConstrainedODEFunction(r1,nothing,nothing,nothing,L,nothing;kwargs...) function Base.show(io::IO, m::MIME"text/plain",f::ConstrainedODEFunction{iip,static}) where {iip,static} iips = iip ? "in-place" : "out-of-place" statics = static ? "static" : "variable" println(io,"Constrained ODE function of $iips type and $statics constraints") end # Here is where we define the structure of the function @inline _fetch_ode_r1(f::ConstrainedODEFunction) = f.odef.f1 @inline _fetch_ode_implicit_rhs(f::ConstrainedODEFunction) = f.odef.f2 @inline _fetch_ode_L(f::ConstrainedODEFunction) = _fetch_ode_implicit_rhs(f).f.f1 @inline _fetch_ode_neg_B1(f::ConstrainedODEFunction) = _fetch_ode_implicit_rhs(f).f.f2.f.f1 @inline _fetch_ode_r1imp(f::ConstrainedODEFunction) = _fetch_ode_implicit_rhs(f).f.f2.f.f2 @inline _fetch_constraint_r2(f::ConstrainedODEFunction) = f.conf.f1 @inline _fetch_constraint_neg_B2(f::ConstrainedODEFunction) = f.conf.f2.f.f1 @inline _fetch_constraint_neg_C(f::ConstrainedODEFunction) = f.conf.f2.f.f2 for fcn in (:_ode_L,:_ode_r1,:_ode_r1imp,:_ode_neg_B1,:_constraint_neg_B2,:_constraint_neg_C,:_constraint_r2,:_ode_implicit_rhs) fetchfcn = Symbol("_fetch",string(fcn)) iipfcn = Symbol(string(fcn),"!") @eval $iipfcn(du,f::ConstrainedODEFunction,u,p,t) = $fetchfcn(f)(du,u,p,t) @eval $fcn(f::ConstrainedODEFunction,u,p,t) = $fetchfcn(f)(u,p,t) end function _ode_full_rhs!(du,f::ConstrainedODEFunction,u,p,t) @unpack odef = f @unpack cache = odef zero_vec!(cache) zero_vec!(du) _ode_r1!(cache,f,u,p,t) _ode_r1imp!(du,f,u,p,t) @.. du += cache return du end function _ode_full_rhs(f::ConstrainedODEFunction,u,p,t) return _ode_r1(f,u,p,t) + _ode_r1imp(f,u,p,t) end allempty(::Nothing,::Nothing,::Nothing) = true allempty(r2,B1,B2) = false noneempty(r2,B1,B2) = !(isnothing(r2) || isnothing(B1) || isnothing(B2)) allinplace(r1,r2,B1,B2) = _isinplace_r1(r1) && _isinplace_r2(r2) && _isinplace_B1(B1) && _isinplace_B2(B2) alloutofplace(r1,r2,B1,B2) = _isoop_r1(r1) && _isoop_r2(r2) && _isoop_B1(B1) && _isoop_B2(B2) allinplace(r1,r2,B1,B2,r1imp) = allinplace(r1,r2,B1,B2) && _isinplace_r1imp(r1imp) allinplace(r1,r2,B1,B2,::Nothing) = allinplace(r1,r2,B1,B2) alloutofplace(r1,r2,B1,B2,r1imp) = alloutofplace(r1,r2,B1,B2) && _isoop_r1imp(r1imp) alloutofplace(r1,r2,B1,B2,::Nothing) = alloutofplace(r1,r2,B1,B2) allinplace(r1,::Nothing,::Nothing,::Nothing) = _isinplace_r1(r1) alloutofplace(r1,::Nothing,::Nothing,::Nothing) = _isoop_r1(r1) for (f,nv,nvaux) in ((:r1,5,4),(:r2,4,0),(:r1imp,4,0),(:B1,4,0),(:B2,4,0),(:C,4,0)) iipfcn = Symbol("_isinplace_",string(f)) oopfcn = Symbol("_isoop_",string(f)) completefcn = Symbol("_complete_",string(f)) @eval $iipfcn(fcn) = isinplace(fcn,$nv) @eval $iipfcn(fcn::ArrayPartition) = $iipfcn(fcn.x[1]) && isinplace(fcn.x[2],$nvaux) @eval $oopfcn(fcn) = first(numargs(fcn)) == $(nv-1) @eval $oopfcn(fcn::ArrayPartition) = $oopfcn(fcn.x[1]) && first(numargs(fcn.x[2])) == $(nvaux-1) @eval $completefcn(fcn,::Val{iip};_func_cache=nothing) where {iip} = $completefcn(fcn,Val(iip),_func_cache) @eval $completefcn(::Nothing,::Val{false},_func_cache) = (u,p,t) -> zero(u) end _complete_r1(r1,::Val{true},_func_cache) = (du,u,p,t) -> (dy = state(du); y = state(u); x = aux_state(u); r1(dy,y,x,p,t)) _complete_r1(r1,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); y = state(u); x = aux_state(u); state(du) .= r1(y,x,p,t); return du) _complete_r1(r1::ArrayPartition,::Val{true},_func_cache) = SplitFunction((du,u,p,t) ->(dy = state(du); dx = aux_state(du); zero_vec!(dx); y = state(u); x = aux_state(u); state_r1(r1)(dy,y,x,p,t)), (du,u,p,t) ->(dy = state(du); dx = aux_state(du); zero_vec!(dy); aux_r1(r1)(dx,u,p,t)); _func_cache=deepcopy(_func_cache)) _complete_r1(r1::ArrayPartition,::Val{false},_func_cache) = SplitFunction((u,p,t) -> (du = deepcopy(u); zero_vec!(du); y = state(u); x = aux_state(u); state(du) .= state_r1(r1)(y,x,p,t); return du), (u,p,t) -> (du = deepcopy(u); zero_vec!(du); aux_state(du) .= aux_r1(r1)(u,p,t); return du)) _complete_r1imp(r1imp,::Val{true},_func_cache) = (du,u,p,t) -> (dy = state(du); x = aux_state(u); r1imp(dy,x,p,t)) _complete_r1imp(r1imp,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); x = aux_state(u); state(du) .= r1imp(x,p,t); return du) _complete_r1imp(::Nothing,::Val{true},_func_cache) = (du,u,p,t) -> zero_vec!(du) _complete_r2(r2,::Val{true},_func_cache) = (du,u,p,t) -> (dz = constraint(du); x = aux_state(u); r2(dz,x,p,t)) _complete_r2(::Nothing,::Val{true},_func_cache) = (du,u,p,t) -> zero_vec!(constraint(du)) _complete_r2(r2,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); x = aux_state(u); constraint(du) .= r2(x,p,t); return du) _complete_B1(B1,::Val{true},_func_cache) = (du,u,p,t) -> (dy = state(du); dx = aux_state(du); zero_vec!(dx); z = constraint(u); x = aux_state(u); B1(dy,z,x,p); dy .*= -1.0) _complete_B1(::Nothing,::Val{true},_func_cache) = (du,u,p,t) -> (zero_vec!(aux_state(du)); zero_vec!(state(du))) _complete_B1(B1,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); z = constraint(u); x = aux_state(u); state(du) .= -B1(z,x,p); return du) _complete_B2(B2,::Val{true},_func_cache) = (du,u,p,t) -> (dz = constraint(du); y = state(u); x = aux_state(u); B2(dz,y,x,p); dz .*= -1.0) _complete_B2(::Nothing,::Val{true},_func_cache) = (du,u,p,t) -> zero_vec!(constraint(du)) _complete_B2(B2,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); y = state(u); x = aux_state(u); constraint(du) .= -B2(y,x,p); return du) _complete_C(C,::Val{true},_func_cache) = (du,u,p,t) -> (dz = constraint(du); z = constraint(u); x = aux_state(u); C(dz,z,x,p); dz .*= -1.0) _complete_C(::Nothing,::Val{true},_func_cache) = (du,u,p,t) -> zero_vec!(constraint(du)) _complete_C(C,::Val{false},_func_cache) = (u,p,t) -> (du = deepcopy(u); zero_vec!(du); z = constraint(u); x = aux_state(u); constraint(du) .= -C(z,x,p); return du) function (f::ConstrainedODEFunction)(du,u,p,t) zero_vec!(f.cache) zero_vec!(du) f.odef(f.cache,u,p,t) f.conf(du,u,p,t) du .+= f.cache end (f::ConstrainedODEFunction)(u,p,t) = f.odef(u,p,t) + f.conf(u,p,t) @inline isstatic(f::ConstrainedODEFunction) = f.param_update_func == DEFAULT_PARAM_UPDATE_FUNC ? true : false
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
8145
using DiffEqDevTools import DiffEqDevTools: recursive_mean import ConstrainedSystems: @unpack, _l2norm dts = 1 ./ 2 .^(9:-1:5) testTol = 0.2 const TOL = 1e-13 @inline compute_l2err(sol,t,sol_analytic) = _l2norm(sol-sol_analytic.(t)) function compute_error(solutions,idx,sol_analytic) l2err = [compute_l2err(_sol[idx,:],_sol.t,sol_analytic) for _sol in solutions] error = Dict(:l2 => l2err) end function compute𝒪est(solutions,idx,sol_analytic) #l2err = [compute_l2err(_sol[idx,:],_sol.t,sol_analytic) for _sol in solutions] #error = Dict(:l2 => l2err) error = compute_error(solutions,idx,sol_analytic) 𝒪est = Dict((DiffEqDevTools.calc𝒪estimates(p) for p = pairs(error))) end @testset "Convergence test" begin ### In place ### # Unconstrained prob, xexact = ConstrainedSystems.basic_unconstrained_problem(iip=true) # For now, do this quick and dirty until we figure out how to separate # state from constraint in sol structure solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 3 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol # Unconstrained problem with only an integrating factor. Should achieve machine # precision prob, xexact = ConstrainedSystems.basic_unconstrained_if_problem(iip=true) # For now, do this quick and dirty until we figure out how to separate # state from constraint in sol structure solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] error1 = compute_error(solutions1,1,xexact) error2 = compute_error(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) # IF methods should be exact @test all(error1[:l2] .< TOL) @test all(error2[:l2] .< TOL) @test 𝒪est3[:l2][1] ≈ 2 atol=testTol # Constrained prob, xexact, yexact = ConstrainedSystems.basic_constrained_problem(iip=true) # For now, do this quick and dirty until we figure out how to separate # state from constraint in sol structure solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.cartesian_pendulum_problem(iip=true) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.partitioned_problem(iip=true) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.basic_constrained_if_problem_with_cmatrix(iip=true) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 1 atol=testTol # IFHERK only 1st order convergent on this problem @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol ### out of place ### # Unconstrained prob, xexact = ConstrainedSystems.basic_unconstrained_problem(iip=false) # For now, do this quick and dirty until we figure out how to separate # state from constraint in sol structure solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 3 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol # Unconstrained problem with only an integrating factor. Should achieve machine # precision prob, xexact = ConstrainedSystems.basic_unconstrained_if_problem(iip=false) # For now, do this quick and dirty until we figure out how to separate # state from constraint in sol structure solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] error1 = compute_error(solutions1,1,xexact) error2 = compute_error(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) # IF methods should be exact @test all(error1[:l2] .< TOL) @test all(error2[:l2] .< TOL) @test 𝒪est3[:l2][1] ≈ 2 atol=testTol # Constrained prob, xexact, yexact = ConstrainedSystems.basic_constrained_problem(iip=false) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.cartesian_pendulum_problem(iip=false) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.partitioned_problem(iip=false) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 2 atol=testTol @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol prob, xexact, yexact = ConstrainedSystems.basic_constrained_if_problem_with_cmatrix(iip=false) solutions1 = [solve(prob,LiskaIFHERK();dt=dts[i]) for i=1:length(dts)] solutions2 = [solve(prob,IFHEEuler();dt=dts[i]) for i=1:length(dts)] solutions3 = [solve(prob,HETrapezoidalAB2();dt=dts[i]) for i=1:length(dts)] 𝒪est1 = compute𝒪est(solutions1,1,xexact) 𝒪est2 = compute𝒪est(solutions2,1,xexact) 𝒪est3 = compute𝒪est(solutions3,1,xexact) @test 𝒪est1[:l2][1] ≈ 1 atol=testTol # IFHERK only 1st order convergent on this problem @test 𝒪est2[:l2][1] ≈ 1 atol=testTol @test 𝒪est3[:l2][1] ≈ 2 atol=testTol end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
1956
using ConstrainedSystems using Test using CartesianGrids using LinearAlgebra using Literate import ConstrainedSystems: recursivecopy!, needs_iteration, ArrayPartition const GROUP = get(ENV, "GROUP", "All") ENV["GKSwstype"] = "nul" # removes GKS warnings during plotting macro mysafetestset(args...) name, expr = args quote ex = quote name_str = $$(QuoteNode(name)) expr_str = $$(QuoteNode(expr)) mod = gensym(name_str) ex2 = quote @eval module $mod using Test @testset $name_str $expr_str end nothing end eval(ex2) end eval(ex) end end notebookdir = "../examples" docdir = "../docs/src/manual" litdir = "./literate" if GROUP == "All" || GROUP == "Utils" include("utils.jl") end if GROUP == "All" || GROUP == "Types" include("types.jl") end if GROUP == "All" || GROUP == "Saddle" include("saddle.jl") end if GROUP == "All" || GROUP == "Convergence" include("algconvergence.jl") end if GROUP == "All" || GROUP == "Literate" for (root, dirs, files) in walkdir(litdir) for file in files global file_str = "$file" global body = :(begin include(joinpath($root,$file)) end) #endswith(file,".jl") && startswith(file,"saddle") && @mysafetestset file_str body endswith(file,".jl") && @mysafetestset file_str body end end end if GROUP == "Notebooks" for (root, dirs, files) in walkdir(litdir) for file in files #endswith(file,".jl") && startswith(file,"saddle") && Literate.notebook(joinpath(root, file),notebookdir) endswith(file,".jl") && Literate.notebook(joinpath(root, file),notebookdir) end end end if GROUP == "Documentation" for (root, dirs, files) in walkdir(litdir) for file in files endswith(file,".jl") && Literate.markdown(joinpath(root, file),docdir) end end end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
6700
@testset "Saddle-Point Systems" begin @testset "Matrix tests" begin A1 = Float64[1 2; 2 1] B2 = Float64[2 3;-1 -1] B1 = B2' C = Matrix{Float64}(undef,2,2) C .= [5 -2; 3 -4]; A = SaddleSystem(A1,B2,B1,C) # test inputs and outputs as tuples rhs = ([1.0,2.0],[3.0,4.0]) sol = (zeros(2),zeros(2)) ldiv!(sol,A,rhs) @test norm((A*sol)[1]-rhs[1]) < 1e-14 @test norm((A*sol)[2]-rhs[2]) < 1e-14 sol2 = A\rhs @test norm((A*sol2)[1]-rhs[1]) < 1e-14 @test norm((A*sol2)[2]-rhs[2]) < 1e-14 sol3 = deepcopy(sol) sol3[2] .= 0.0 constraint_from_state!(sol3,A,rhs) @test sol2[1] ≈ sol3[1] && sol2[2] ≈ sol3[2] # test inputs and outputs as vectors rhs1, rhs2 = rhs rhsvec = [rhs1;rhs2] solvec = similar(rhsvec) solvec = A\rhsvec @test norm(A*solvec-rhsvec) < 1e-14 solvec2 = deepcopy(solvec) solvec2[3:4] .= 0.0 constraint_from_state!(solvec2,A,rhsvec) @test solvec2 ≈ solvec # test with the other constructor Aother = SaddleSystem(A1,B2,B1,C,zeros(Float64,2),zeros(Float64,2)) sol_other = Aother\rhs @test norm((Aother*sol_other)[1]-rhs[1]) < 1e-14 @test norm((Aother*sol_other)[2]-rhs[2]) < 1e-14 # Test with SaddleVector rhs = SaddleVector(rhs1,rhs2) As = SaddleSystem(A1,B2,B1,C,rhs) sol = As\rhs @test norm(state(As*sol)-state(rhs)) < 1e-14 @test norm(constraint(As*sol)-constraint(rhs)) < 1e-14 end nx = 130; ny = 130 Lx = 2.0 dx = Lx/(nx-2) w = Nodes(Dual,(nx,ny)) q = Edges(Primal,w) L = plan_laplacian(size(w),with_inverse=true) n = 128 θ = range(0,stop=2π,length=n+1) R = 0.5 xb = 1.0 .+ R*cos.(θ[1:n]) yb = 1.0 .+ R*sin.(θ[1:n]) ds = (2π/n)*R X = VectorData(xb,yb) f = ScalarData(X) E = Regularize(X,dx;issymmetric=true) Hmat,Emat = RegularizationMatrix(E,f,w) @testset "Construction of linear maps" begin u = similar(w) wvec = vec(w) w .= rand(size(w)...) uvec = zeros(length(w)) Lop = ConstrainedSystems.linear_map(L,w) u = L*w uvec = Lop*wvec @test ConstrainedSystems._wrap_vec(uvec,u) == u Linv = ConstrainedSystems.linear_inverse_map(L,w) yvec = Linv*wvec y = L\w @test ConstrainedSystems._wrap_vec(yvec,y) == y # point-wise operators fvec = vec(f) f[10] = 1.0 Hop = ConstrainedSystems.linear_map(Hmat,f,w); y = Hmat*f yvec = Hop*fvec @test ConstrainedSystems._wrap_vec(yvec,y) == y Eop = ConstrainedSystems.linear_map(Emat,w,f) g = Emat*w gvec = Eop*vec(w) @test ConstrainedSystems._wrap_vec(gvec,g) == g # Test in-place function wrapping my_ip_fcn!(outp::Vector,inp::Vector) = outp .= 2.0*inp inp = rand(1000) outp = zero(inp) my_ip_fcn!(outp,inp) my_ip_lm! = ConstrainedSystems._create_vec_function!(my_ip_fcn!,outp,inp) outp2 = zero(inp) my_ip_lm!(outp2,inp) @test outp2 == outp curl_lm! = ConstrainedSystems._create_vec_function!(CartesianGrids.curl!,q,w) CartesianGrids.curl!(q,w) uvec .= wvec qvec = zeros(length(q)) curl_lm!(qvec,uvec) @test ConstrainedSystems._wrap_vec(qvec,q) == q curl_lm! = ConstrainedSystems.linear_map(CartesianGrids.curl!,w,q) mul!(qvec,curl_lm!,uvec) @test ConstrainedSystems._wrap_vec(qvec,q) == q end ψb = ScalarData(X) w = Nodes(Dual,(nx,ny)) ψb .= -(xb .- 1) f .= ones(Float64,n)*ds ψ = Nodes(Dual,w) nada = empty(f) @testset "Field operators" begin rhs = SaddleVector(w,ψb) A = SaddleSystem(L,Emat,Hmat,rhs) A.S*vec(f) A.S⁻¹*vec(f) sol = deepcopy(rhs) ldiv!(sol,A,rhs) sol2 = A\rhs @test state(sol2) == state(sol) @test constraint(sol2) == constraint(sol) rhs2 = A*sol2 @test norm(constraint(rhs2)-ψb) < 1e-14 fex = -2*cos.(θ[1:n]) @test norm(constraint(sol)-fex*ds) < 0.02 @test ψ[nx,65] ≈ -ψ[1,65] @test ψ[65,ny] ≈ ψ[65,1] sol3 = deepcopy(sol2) constraint(sol3) .= 0.0 @test_throws ErrorException constraint_from_state!(sol3,A,rhs) end fv = VectorData(X) q = Edges(Primal,w) Hvmat,Evmat = RegularizationMatrix(E,fv,q) @testset "Vector force data" begin B₁ᵀ(f) = curl(Hvmat*f) B₂(w) = -(Evmat*(curl(L\w))) rhsv = SaddleVector(w,fv) A = SaddleSystem(I,B₂,B₁ᵀ,rhsv) sol = A\rhsv @test state(sol) == zero(w) && constraint(sol) == zero(fv) end Ẽ = Regularize(X,dx;weights=ds,filter=true) H̃mat = RegularizationMatrix(Ẽ,ψb,w) Ẽmat = InterpolationMatrix(Ẽ,w,ψb) Pmat = Ẽmat*H̃mat @testset "Filtering" begin rhs = SaddleVector(w,ψb) Afilt = SaddleSystem(L,Emat,Hmat,rhs,filter=Pmat) sol = Afilt\rhs fex = -2*cos.(θ[1:n]) @test norm(constraint(sol)-fex*ds) < 0.01 end @testset "Reduction to unconstrained system" begin op = linear_map(nothing,nada) @test size(op) == (0,0) @test op*nada == () op = linear_map(nothing,w,nada) @test size(op) == (0,length(w)) @test op*vec(w) == () op = linear_map(nothing,nada,w) @test size(op) == (length(w),0) @test op*nada == vec(zero(w)) rhsnc = SaddleVector(w,nada) Anc = SaddleSystem(L,rhsnc) sol = Anc\rhsnc ψ = state(sol) fnull = constraint(sol) @test ψ == L\w @test fnull == nada q.u .= 3; rhsqnc = SaddleVector(q,nada) Aqnc = SaddleSystem(I,rhsqnc) sol = Aqnc\rhsqnc q2 = state(sol) fnull = constraint(sol) @test all(q2.u .== 3.0) && all(q2.v .== 0.0) end @testset "Tuple of saddle point systems" begin rhs = SaddleVector(w,ψb) A = SaddleSystem(L,Emat,Hmat,rhs) sol = A\rhs ψ = state(sol) f = constraint(sol) rhsnc = SaddleVector(w,nada) Anc = SaddleSystem(L,rhsnc) sys = (A,Anc) sol1, sol2 = sys\(rhs,rhsnc) @test state(sol1) == ψ && constraint(sol1) == f && state(sol2) == zero(w) && constraint(sol2) == nada newrhs1,newrhs2 = sys*(sol1,sol2) @test newrhs1 == A*sol1 && newrhs2 == Anc*sol2 end @testset "Recursive saddle point with vectors" begin A1 = Float64[1 2; 2 1] B21 = Float64[2 3] B11 = B21' C1 = Matrix{Float64}(undef,1,1) C1.= 5 B22 = Float64[-1 -1 3] B12 = Float64[-1 -1 -2]' C2 = Matrix{Float64}(undef,1,1) C2.= -4 rhs11 = [1.0,2.0] rhs12 = Vector{Float64}(undef,1) rhs12 .= 3.0 #rhs1 = (rhs11,rhs12) rhs1 = [rhs11;rhs12] rhs2 = Vector{Float64}(undef,1) rhs2 .= 4.0 rhs = (rhs1,rhs2) A = SaddleSystem(A1,B21,B11,C1) Abig = SaddleSystem(A,B22,B12,C2,rhs1,rhs2) sol = Abig\rhs out = Abig*sol @test norm(out[1]-rhs1) < 1e-14 end end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
8672
ns = 5 nc = 3 na = 2 y = randn(ns) z = randn(nc) x = randn(na) struct MyType{T} <: AbstractVector{T} data :: Vector{T} end Base.similar(A::MyType{T}) where {T} = MyType{T}(similar(A.data)) Base.similar(A::MyType{T},::Type{S}) where {T,S} = MyType(similar(A.data,S)) Base.size(A::MyType) = size(A.data) Base.getindex(A::MyType, i::Int) = getindex(A.data,i) Base.setindex!(A::MyType, v, i::Int) = setindex!(A.data,v,i) Base.IndexStyle(::MyType) = IndexLinear() Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.ArrayStyle{MyType}() function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{MyType}},::Type{T}) where {T} similar(find_mt(bc),T) end function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{MyType}}) similar(find_mt(bc)) end find_mt(bc::Base.Broadcast.Broadcasted) = find_mt(bc.args) find_mt(args::Tuple) = find_mt(find_mt(args[1]), Base.tail(args)) find_mt(x) = x find_mt(::Tuple{}) = nothing find_mt(a::MyType, rest) = a find_mt(::Any, rest) = find_mt(rest) @testset "Solution structure" begin u = solvector(state=y,constraint=z) @test state(u) === y && constraint(u) === z @test mainvector(u) === ArrayPartition(y,z) u = solvector(state=y,constraint=z,aux_state=x) @test state(u) === y @test constraint(u) === z @test aux_state(u) === x u = solvector(state=y) @test state(u) === y @test constraint(u) == empty(y) @test aux_state(u) == nothing @test mainvector(u) == ArrayPartition(y,empty(y)) e = ConstrainedSystems._empty(y) @test isempty(e) u2 = solvector(state=MyType(zero(y)),constraint=zero(z),aux_state=zero(x)) u2p = u2 .+ 1 @test typeof(state(u2p)) <: MyType @test typeof(constraint(u2p)) <: typeof(z) @test typeof(aux_state(u2p)) <: typeof(x) @test state(u2p) == MyType(fill(1.0,size(y))) @test constraint(u2p) == fill(1.0,size(z)) @test aux_state(u2p) == fill(1.0,size(x)) u2m = u2p .* 2 @test typeof(state(u2m)) <: MyType @test state(u2m) == MyType(fill(2.0,size(y))) @test constraint(u2m) == fill(2.0,size(z)) @test aux_state(u2m) == fill(2.0,size(x)) u2m = similar(u2p) u2m .= u2p .* 2 .- 3 .+ u2p ./ 2 @test state(u2m) == MyType(fill(-0.5,size(y))) @test constraint(u2m) == fill(-0.5,size(z)) @test aux_state(u2m) == fill(-0.5,size(x)) end struct MyType1{F} x :: F end struct MyType2{F} x :: F end @testset "Solution structure with user type" begin a = MyType1(x) b = MyType2(y) @test isempty(ConstrainedSystems._empty(a)) u = solvector(state=a) u = solvector(state=a,constraint=b) u = solvector(state=a,constraint=b,aux_state=a) end @testset "Function structure" begin u = solvector(state=y,constraint=z,aux_state=x) du = similar(u) fill!(du,0.0) function state_r1!(dy,y,x,p,t) fill!(dy,1.0) end function aux_r1!(dy,u,p,t) fill!(dy,2.0) end r1! = ArrayPartition((state_r1!,aux_r1!)) r1_c! = ConstrainedSystems._complete_r1(r1!,Val(true),_func_cache=du) r1_c!(du,u,nothing,0.0) @test state(du) == fill(1.0,length(y)) @test constraint(du) == fill(0.0,length(z)) @test aux_state(du) == fill(2.0,length(x)) function r2!(dz,x,p,t) fill!(dz,3.0) end fill!(du,0.0) r2_c! = ConstrainedSystems._complete_r2(r2!,Val(true),_func_cache=du) r2_c!(du,u,nothing,0.0) @test state(du) == fill(0.0,length(y)) @test constraint(du) == fill(3.0,length(z)) @test aux_state(du) == fill(0.0,length(x)) B1 = ones(Float64,length(y),length(z)) B2 = ones(Float64,length(z),length(y)) function B1!(dy,z,x,p) dy .= p[1]*z end function B2!(dz,y,x,p) dz .= p[2]*y end fill!(du,0.0) fill!(u,1.0) p = [B1,B2] B1_c! = ConstrainedSystems._complete_B1(B1!,Val(true),_func_cache=du) B1_c!(du,u,p,0.0) @test state(du) == fill(-float(length(z)),length(y)) @test constraint(du) == fill(0.0,length(z)) @test aux_state(du) == fill(0.0,length(x)) fill!(du,0.0) fill!(u,1.0) p = [B1,B2] B2_c! = ConstrainedSystems._complete_B2(B2!,Val(true),_func_cache=du) B2_c!(du,u,p,0.0) @test state(du) == fill(0.0,length(y)) @test constraint(du) == fill(-float(length(y)),length(z)) @test aux_state(du) == fill(0.0,length(x)) end @testset "ConstrainedODEFunction constrained" begin ns = 5 nc = 2 na = 3 y = ones(Float64,ns) z = ones(Float64,nc) x = ones(Float64,na) B1 = Array{Float64}(undef,ns,nc) B2 = Array{Float64}(undef,nc,ns) C = zeros(nc,nc) B1 .= 1:ns B2 .= transpose(B1) p = [B1,B2,C] ode_rhs!(dy,y,x,p,t) = dy .= 1.01*y constraint_force!(dy,z,x,p) = dy .= p[1]*z constraint_rhs!(dz,x,p,t) = dz .= 1.0 constraint_op!(dz,y,x,p) = dz .= p[2]*y constraint_reg!(dz,z,x,p) = dz .= p[3]*z u₀ = solvector(state=y,constraint=z) du = zero(u₀) f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!, constraint_force!,constraint_op!,_func_cache=u₀) f(du,u₀,p,0.0) @test state(du) == 1.01*y .- B1*z @test constraint(du) == 1.0 .- B2*y ode_rhs(y,x,p,t) = 1.01*y constraint_force(z,x,p) = p[1]*z constraint_rhs(x,p,t) = fill(1.0,nc) constraint_op(y,x,p) = p[2]*y constraint_reg(z,x,p) = p[3]*z f = ConstrainedODEFunction(ode_rhs,constraint_rhs, constraint_force,constraint_op) du = f(u₀,p,0.0) @test state(du) == 1.01*y .- B1*z @test constraint(du) == 1.0 .- B2*y L = 2*I f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!, constraint_force!,constraint_op!,L,_func_cache=u₀) f(du,u₀,p,0.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y atol=1e-12 @test state(du) ≈ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 @test constraint(du) ≈ 1.0 .- B2*y atol=1e-12 @test constraint(du) ≈ [-14.0, -14.0] atol=1e-12 f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!, constraint_force!,constraint_op!,L,constraint_reg!,_func_cache=u₀) f(du,u₀,p,0.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y atol=1e-12 @test state(du) ≈ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 @test constraint(du) ≈ 1.0 .- B2*y .- C*z atol=1e-12 @test constraint(du) ≈ [-14.0, -14.0] atol=1e-12 f = ConstrainedODEFunction(ode_rhs,constraint_rhs, constraint_force,constraint_op,L) du = f(u₀,p,0.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y atol=1e-12 @test state(du) ≈ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 @test constraint(du) ≈ 1.0 .- B2*y atol=1e-12 @test constraint(du) ≈ [-14.0, -14.0] atol=1e-12 f = ConstrainedODEFunction(ode_rhs,constraint_rhs, constraint_force,constraint_op,L,constraint_reg) du = f(u₀,p,0.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y atol=1e-12 @test state(du) ≈ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 @test constraint(du) ≈ 1.0 .- B2*y .- C*z atol=1e-12 @test constraint(du) ≈ [-14.0, -14.0] atol=1e-12 r1_implicit!(dy,x,p,t) = dy .= 1.0 .+ 0.5*t r1_implicit(x,p,t) = 1.0 + 0.5*t f = ConstrainedODEFunction(ode_rhs!,constraint_rhs!, constraint_force!,constraint_op!,L,constraint_reg!,r1imp=r1_implicit!,_func_cache=u₀) f(du,u₀,p,1.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y .+ 1.5 atol=1e-12 @test state(du) ≈ 1.5 .+ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 f = ConstrainedODEFunction(ode_rhs,constraint_rhs, constraint_force,constraint_op,L,constraint_reg,r1imp=r1_implicit) du = f(u₀,p,1.0) @test state(du) ≈ 1.01*y .- B1*z .+ L*y .+ 1.5 atol=1e-12 @test state(du) ≈ 1.5 .+ [1.01,-0.99,-2.99,-4.99,-6.99] atol=1e-12 end @testset "ConstrainedODEFunction unconstrained" begin ns = 5 y = ones(Float64,ns) ode_rhs!(dy,y,x,p,t) = dy .= 1.01*y ode_rhs(y,x,p,t) = 1.01*y L = 2*I p = [] u₀ = solvector(state=y) du = zero(u₀) f = ConstrainedODEFunction(ode_rhs!,L,_func_cache=u₀) f(du,u₀,p,0.0) @test state(du) == 1.01*y .+ L*y @test state(du) ≈ fill(3.01,ns) atol=1e-12 @test constraint(du) == empty(y) # Test that unconstrained systems create a saddle system that works properly # Should only invert the upper left operator u = deepcopy(u₀) S = SaddleSystem(2*I,f,p,p,deepcopy(du),Direct) u .= S\u₀ @test state(u) ≈ fill(0.5,ns) atol=1e-12 @test constraint(u) == empty(y) f = ConstrainedODEFunction(ode_rhs,L) du = f(u₀,p,0.0) @test state(du) == 1.01*y .+ L*y @test state(du) ≈ fill(3.01,ns) atol=1e-12 @test constraint(du) == empty(y) # Test that unconstrained systems create a saddle system that works properly # Should only invert the upper left operator u = deepcopy(u₀) S = SaddleSystem(2*I,f,p,p,deepcopy(du),Direct) u .= S\u₀ @test state(u) ≈ fill(0.5,ns) atol=1e-12 @test constraint(u) == empty(y) end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
1185
const MAXMEM = 100 @testset "Iteration test" begin Δt = 1e-2 prob1, _, _ = ConstrainedSystems.basic_constrained_problem() integrator = ConstrainedSystems.init(prob1, LiskaIFHERK(),dt=Δt) @test needs_iteration(integrator.f,integrator.u,integrator.p,integrator.u) == false prob2, _, _ = ConstrainedSystems.cartesian_pendulum_problem() integrator = ConstrainedSystems.init(prob2, LiskaIFHERK(),dt=Δt) @test needs_iteration(integrator.f,integrator.u,integrator.p,integrator.u) == true end @testset "Recursive copy" begin struct MyStruct{T} a :: T end n = 1000 a = rand(n,n) z = similar(a) s1 = MyStruct(a) s2 = MyStruct(z) recursivecopy!(s2,s1) @test s2.a == s1.a @test !(s2.a === s1.a) @test @allocated(recursivecopy!(s2,s1)) < MAXMEM ss1 = MyStruct(s1) ss2 = MyStruct(MyStruct(z)) recursivecopy!(ss2,ss1) @test ss2.a.a == ss1.a.a @test !(ss2.a.a === ss1.a.a) @test @allocated(recursivecopy!(s2,s1)) < MAXMEM t1 = [s1,s1] t2 = [MyStruct(z),MyStruct(z)] recursivecopy!(t2,t1) @test t2[1].a == t1[1].a @test t2[2].a == t1[2].a @test !(t2[1].a === t1[1].a) @test @allocated(recursivecopy!(s2,s1)) < MAXMEM end
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
6209
# # Saddle point systems #md # ```@meta #md # CurrentModule = ConstrainedSystems #md # ``` #= ```math \def\ddt#1{\frac{\mathrm{d}#1}{\mathrm{d}t}} \renewcommand{\vec}{\boldsymbol} \newcommand{\uvec}[1]{\vec{\hat{#1}}} \newcommand{\utangent}{\uvec{\tau}} \newcommand{\unormal}{\uvec{n}} \renewcommand{\d}{\,\mathrm{d}} ``` =# #= Saddle systems comprise an important part of solving mechanics problems with constraints. In such problems, there is an underlying system to solve, and the addition of constraints requires that the system is subjected to additional forces (constraint forces, or Lagrange multipliers) that enforce these constraints in the system. Examples of such constrained systems are the divergence-free velocity constraint in incompressible flow (for which pressure is the associated Lagrange multiplier field), the no-slip and/or no-flow-through condition in general fluid systems adjacent to impenetrable bodies, and joint constraints in rigid-body mechanics. A general saddle-point system has the form $$\left[ \begin{array}{cc} A & B_1^T \\ B_2 & C\end{array}\right] \left(\begin{array}{c}u\\f \end{array}\right) = \left(\begin{array}{c}r_1\\r_2 \end{array}\right)$$ We are primarily interested in cases when the operator $A$ is symmetric and positive semi-definite, which is fairly typical. It is also fairly common for $B_1 = B_2$, so that the whole system is symmetric. [ConstrainedSystems.jl](https://github.com/JuliaIBPM/ConstrainedSystems.jl) allows us to solve such systems for $u$ and $f$ in a fairly easy way. We need only to provide rules for how to evaluate the actions of the various operators in the system. Let us use an example to show how this can be done. =# using ConstrainedSystems using CartesianGrids using Plots #= ## Translating cylinder in potential flow In irrotational, incompressible flow, the streamfunction $\psi$ satisfies Laplace's equation, $$\nabla^2 \psi = 0$$ On the surface of an impenetrable body, the streamfunction must obey the constraint $$\psi = \psi_b$$ where $\psi_b$ is the streamfunction associated with the body's motion. Let us suppose the body is moving vertically with velocity 1. Then $\psi_b = -x$ for all points inside or on the surface of the body. Thus, the streamfunction field outside this body is governed by Laplace's equation subject to the constraint. Let us solve this problem on a staggered grid, using the tools discussed in [CartesianGrids](https://juliaibpm.github.io/CartesianGrids.jl/latest/), including the regularization and interpolation methods to immerse the body shape on the grid. Then our saddle-point system has the form $$\left[ \begin{array}{cc} L & R \\ E & 0\end{array}\right] \left(\begin{array}{c}\psi\\f \end{array}\right) = \left(\begin{array}{c}0\\\psi_b \end{array}\right)$$ where $L$ is the discrete Laplacian, $R$ is the regularization operator, and $E$ is the interpolation operator. Physically, $f$ isn't really a force here, but rather, represents the strengths of distributed singularities on the surface. In fact, this strength represents the jump in normal derivative of $\psi$ across the surface. Since this normal derivative is equivalent to the tangential velocity, $f$ is the strength of the bound vortex sheet on the surface. This will be useful to know when we check the value of $f$ obtained in our solution. First, let us set up the body, centered at $(1,1)$ and of radius $1/2$. We will also initialize a data structure for the force: =# n = 128; θ = range(0,stop=2π,length=n+1); xb = 1.0 .+ 0.5*cos.(θ[1:n]); yb = 1.0 .+ 0.5*sin.(θ[1:n]); X = VectorData(xb,yb); ψb = ScalarData(X); f = similar(ψb); #= Now let's set up a grid of size $102\times 102$ (including the usual layer of ghost cells) and physical dimensions $2\times 2$. =# nx = 102; ny = 102; Lx = 2.0; dx = Lx/(nx-2); w = Nodes(Dual,(nx,ny)); ψ = similar(w); #= We need to set up the operators now. First, the Laplacian: =# L = plan_laplacian(size(w),with_inverse=true) #= Note that we have made sure that this operator has an inverse. It is important that this operator, which represents the `A` matrix in our saddle system, comes with an associated backslash `\\` operation to carry out the inverse. Now we need to set up the regularization `R` and interpolation `E` operators. =# regop = Regularize(X,dx;issymmetric=true) Rmat, Emat = RegularizationMatrix(regop,ψb,w); #= Now we are ready to set up the system. The solution and right-hand side vectors are set up using `SaddleVector`. =# rhs = SaddleVector(w,ψb) sol = SaddleVector(ψ,f) #= and the saddle system is then set up with the three operators; the $C$ operator is presumed to be zero when it is not provided. =# A = SaddleSystem(L,Emat,Rmat,rhs) #= Note that all of the operators we have provided are either matrices (like `Emat` and `Rmat`) or functions or function-like operators (like `L`). The `SaddleSystem` constructor allows either. However, the order is important: we must supply $A$, $B_2$, $B_1^T$, and possibly $C$, in that order. Let's solve the system. We need to set the right-hand side. We will set `ψb`, but this will also change `rhs`, since that vector is pointing to the same object. =# ψb .= -(xb.-1); #= The right-hand side of the Laplace equation is zero. The right-hand side of the constraint is the specified streamfunction on the body. Note that we have subtracted the circle center from the $x$ positions on the body. The reason for this will be discussed in a moment. We solve the system with the convenient shorthand of the backslash: =# sol .= A\rhs # hide @time sol .= A\rhs #= Just to point out how fast it can be, we have also timed it. It's pretty fast. We can obtain the state vector and the constraint vector from `sol` using some convenience functions `state(sol)` and `constraint(sol)`. Now, let's plot the solution in physical space. We'll plot the body shape for reference, also. =# xg, yg = coordinates(w,dx=dx) plot(xg,yg,state(sol),xlim=(-Inf,Inf),ylim=(-Inf,Inf)) plot!(xb,yb,fillcolor=:black,fillrange=0,fillalpha=0.25,linecolor=:black) #= The solution shows the streamlines for a circle in vertical motion, as expected. All of the streamlines inside the circle are vertical. =#
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
code
9030
# # Time marching #md # ```@meta #md # CurrentModule = ConstrainedSystems #md # ``` #= ```math \def\ddt#1{\frac{\mathrm{d}#1}{\mathrm{d}t}} \renewcommand{\vec}{\boldsymbol} \newcommand{\uvec}[1]{\vec{\hat{#1}}} \newcommand{\utangent}{\uvec{\tau}} \newcommand{\unormal}{\uvec{n}} \renewcommand{\d}{\,\mathrm{d}} ``` =# #= [ConstrainedSystems.jl](https://github.com/JuliaIBPM/ConstrainedSystems.jl) is equipped with tools for solving systems of equations of the general form of half-explicit differential-algebraic equations, $$\ddt y = L y - B_1^T(y,t) z + r_1(y,t), \quad B_2(y,t) y + C(y,t) z = r_2(t), \quad y(0) = y_0$$ where $z$ is the Lagrange multiplier for enforcing the constraints on $y$. Note that the constraint operators may depend on the state and on time. The linear operator $L$ may be a matrix or a scalar, but is generally independent of time. (The method of integrating factors can deal with time-dependent $L$, but we don't encounter such systems in the constrained systems context so we won't discuss them.) Our objective is to solve for $y(t)$ and $z(t)$. =# using ConstrainedSystems using CartesianGrids using Plots #= ## Constrained integrating factor systems Let's demonstrate this on the example of heat diffusion from a circular ring whose temperature is held constant. In this case, $L$ is the discrete Laplace operator times the heat diffusivity, $r_1$ is zero (in the absence of volumetric heating sources), and $r_2$ is the temperature of the ring. The operators $B_1^T$ and $B_2$ will be the regularization and interpolation operators between discrete point-wise data on the ring and the field data. We will also include a $C$ operator that slightly regularizes the constraint. The ring will have radius $1/2$ and fixed temperature $1$, and the heat diffusivity is $1$. (In other words, the problem has been non-dimensionalized by the diameter of the circle, the dimensional ring temperature, and the dimensional diffusivity.) First, we will construct a field to accept the temperature on =# nx = 129; ny = 129; Lx = 2.0; Δx = Lx/(nx-2); w₀ = Nodes(Dual,(nx,ny)); # field initial condition #= Now set up a ring of points on the circle at center $(1,1)$. =# n = 128; θ = range(0,stop=2π,length=n+1); R = 0.5; xb = 1.0 .+ R*cos.(θ); yb = 1.0 .+ R*sin.(θ); X = VectorData(xb[1:n],yb[1:n]); z = ScalarData(X); # to be used as the Lagrange multiplier #= Together, `w₀` and `z` comprise the initial solution vector: =# u₀ = solvector(state=w₀,constraint=z) #= Now set up the operators. We first set up the linear operator, a Laplacian endowed with its inverse: =# L = plan_laplacian(w₀,with_inverse=true) #= Now the right-hand side operators for the ODEs and constraints. Both must take a standard form: $r_1$ must accept arguments `w₀`, `p` (parameters not used in this problem), and `t`; $r_2$ must accept arguments `p` and `t`. We will implement these in in-place form to make it more efficient. $r_1$ will return rate-of-change data of the same type as `w₀` and $r_2$ will return data `dz` of the same type as `z` =# diffusion_rhs!(dw::Nodes,w::Nodes,x,p,t) = fill!(dw,0.0) # this is r1 boundary_constraint_rhs!(dz::ScalarData,x,p,t) = fill!(dz,1.0) # this is r2, and sets uniformly to 1 #= Construct the regularization and interpolation operators in their usual symmetric form, and then set up routines that will provide these operators inside the integrator: =# reg = Regularize(X,Δx;issymmetric=true) Hmat, Emat = RegularizationMatrix(reg,z,w₀) boundary_constraint_force!(dw::Nodes,z::ScalarData,x,p) = dw .= Hmat*z # This is B1T boundary_constraint_op!(dz::ScalarData,y::Nodes,x,p) = dz .= Emat*y; # This is B2 #= Construct a constraint regularization operator (the $C$ operator) =# boundary_constraint_reg!(dz::ScalarData,z::ScalarData,x,p) = dz .= -0.1*z; # This is C #= Note that these last two functions are also in-place, and return data of the same respective types as $r_1$ and $r_2$. All of these are assembled into a single `ConstrainedODEFunction`: =# f = ConstrainedODEFunction(diffusion_rhs!,boundary_constraint_rhs!,boundary_constraint_force!, boundary_constraint_op!,L,boundary_constraint_reg!,_func_cache=u₀) #= With the last argument, we supplied a cache variable to enable evaluation of this function. Now set up the problem, using the same basic notation as in [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl). =# tspan = (0.0,20.0) prob = ODEProblem(f,u₀,tspan) #= Now solve it. We will set the time-step size to a large value ($1.0$) for demonstration purposes. The method remains stable for any choice. =# Δt = 1.0 sol = solve(prob,IFHEEuler(),dt=Δt); #= Now let's plot it =# xg, yg = coordinates(w₀,dx=Δx); plot(xg,yg,state(sol.u[end])) plot!(xb,yb,linecolor=:black,linewidth=1.5) #= From a side view, we can see that it enforces the boundary condition: =# plot(xg,state(sol.u[end])[65,:],xlabel="x",ylabel="u(x,1)") #= The Lagrange multiplier distribution is nearly uniform =# plot(constraint(sol.u[end]),ylim=(-0.5,0)) #= ## Systems with variable constraints In some cases, the constraint operators may vary with the state vector. A good example of this is a swinging pendulum, with its equations expressed in Cartesian coordinates. The constraint we wish to enforce is that the length of the pendulum is constant: $x^2+y^2 = l^2$. Though not mathematically necessary, it also helps to enforce a tangency condition, $xu + yv = 0$, where $u$ and $v$ are the rates of change of $x$ and $y$. Note that this is simply the derivative of the first constraint. (If expressed in cylindrical coordinates, the constraint is enforced automatically, simply by expressing the equations for $\theta$.) The governing equations are $$\ddt x = u - x \mu ,\, \ddt y = v - y \mu , \, \ddt u = -x \lambda , \, \ddt v = -g - y\lambda$$ with Lagrange multipliers $\mu$ and $\lambda$, and the constraints are $$x^2+y^2 = l^2,\, xu + yu = 0$$ These are equivalently expressed as $$\left[ \begin{array}{cccc} x & y & 0 & 0\end{array}\right]\left[ \begin{array}{c} x \\ y \\ u \\ v \end{array}\right] = l^2$$ and $$\left[ \begin{array}{cccc} 0 & 0 & x & y\end{array}\right]\left[ \begin{array}{c} x \\ y \\ u \\ v \end{array}\right] = 0$$ The operators $B_1^T$ and $B_2$ are thus $$B_1^T = \left[ \begin{array}{cc} x & 0 \\ y & 0 \\ 0 & x \\ 0 & y \end{array}\right]$$ and $$B_2 = \left[ \begin{array}{cccc} x & y & 0 & 0 \\ 0 & 0 & x & y \end{array}\right]$$ That is, the operators are dependent on the state. In this package, we handle this by providing a parameter that can be dynamically updated. We will get to that later. First, let's set up the physical parameters =# l = 1.0 g = 1.0 params = [l,g] #= and initial condition: =# θ₀ = π/2 y₀ = Float64[l*sin(θ₀),-l*cos(θ₀),0,0] z₀ = Float64[0.0, 0.0] # Lagrange multipliers u₀ = solvector(state=y₀,constraint=z₀) #= Now, we will set up the basic form of the constraint operators and assemble these with the other parameters with the help of a type we'll define here: =# struct ProblemParams{P,BT1,BT2} params :: P B₁ᵀ :: BT1 B₂ :: BT2 end B1T = zeros(4,2) # set to zeros for now B2 = zeros(2,4) # set to zeros for now p₀ = ProblemParams(params,B1T,B2); #= We will now define the operators of the problem, all in in-place form: =# function pendulum_rhs!(dy::Vector{Float64},y::Vector{Float64},x,p,t) dy[1] = y[3] dy[2] = y[4] dy[3] = 0.0 dy[4] = -p.params[2] return dy end # r1 function length_constraint_rhs!(dz::Vector{Float64},x,p,t) dz[1] = p.params[1]^2 dz[2] = 0.0 return dz end # r2 # The B1 function. This returns B1*z. It uses an existing B1 supplied by p. function length_constraint_force!(dy::Vector{Float64},z::Vector{Float64},x,p) dy .= p.B₁ᵀ*z end # The B2 function. This returns B2*y. It uses an existing B2 supplied by p. function length_constraint_op!(dz::Vector{Float64},y::Vector{Float64},x,p) dz .= p.B₂*y end #= Now, we need to provide a means of updating the parameter structure with the current state of the system. This is done in-place, just as for the other operators: =# function update_p!(q,u,p,t) y = state(u) fill!(q.B₁ᵀ,0.0) fill!(q.B₂,0.0) q.B₁ᵀ[1,1] = y[1]; q.B₁ᵀ[2,1] = y[2]; q.B₁ᵀ[3,2] = y[1]; q.B₁ᵀ[4,2] = y[2] q.B₂[1,1] = y[1]; q.B₂[1,2] = y[2]; q.B₂[2,3] = y[1]; q.B₂[2,4] = y[2] return q end #= Finally, assemble all of them together: =# f = ConstrainedODEFunction(pendulum_rhs!,length_constraint_rhs!,length_constraint_force!, length_constraint_op!, _func_cache=deepcopy(u₀),param_update_func=update_p!) #= Now solve the system =# tspan = (0.0,10.0) prob = ODEProblem(f,u₀,tspan,p₀) Δt = 1e-2 sol = solve(prob,LiskaIFHERK(),dt=Δt); #= Plot the solution =# plot(sol.t,sol[1,:],label="x",xlabel="t") plot!(sol.t,sol[2,:],label="y") #= and here is the trajectory =# plot(sol[1,:],sol[2,:],ratio=1,legend=:false,title="Trajectory",xlabel="x",ylabel="y")
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
docs
2193
# ConstrainedSystems.jl _Tools for solving constrained dynamical systems_ | Documentation | Build Status | |:---:|:---:| | [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaIBPM.github.io/ConstrainedSystems.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaIBPM.github.io/ConstrainedSystems.jl/dev) | [![Build Status](https://github.com/JuliaIBPM/ConstrainedSystems.jl/workflows/CI/badge.svg)](https://github.com/JuliaIBPM/ConstrainedSystems.jl/actions) [![Coverage](https://codecov.io/gh/JuliaIBPM/ConstrainedSystems.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaIBPM/ConstrainedSystems.jl) | This package contains several tools for solving and advancing (large-scale) dynamical systems with constraints. These systems generically have the form dy/dt = L y - B<sub>1</sub><sup>T</sup> z + r<sub>1</sub>(y,t) B<sub>2</sub> y + C z = r<sub>2</sub>(y,t) y(0) = y<sub>0</sub> where y is a state vector, L is a linear operator with an associated matrix exponential (integrating factor), and z is a constraint force vector (i.e., Lagrange multipliers). Some of the key components of this package are * Tools for solving linear algebra problems with constraints and associated Lagrange multipliers, known generically as *saddle point systems*. The sizes of these systems might be large. * Time integrators that can incorporate these constraints, such as half-explicit Runge-Kutta (HERK) and integrating factor Runge-Kutta (IFRK), or their combination (IF-HERK). These extend the tools in the [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl) package, and utilize the same basic syntax for setting up a problem and solving it. * Allowance for variable constraint operators B<sub>1</sub><sup>T</sup> and B<sub>2</sub>, through the use of a variable parameter argument and an associated parameter update function. * The ability to add an auxiliary (unconstrained) system of equations that the constraint operators B<sub>1</sub><sup>T</sup> and B<sub>2</sub> depend upon. The package is agnostic to the type of systems, and might arise from, e.g., fluid dynamics or rigid-body mechanics.
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
docs
2218
# ConstrainedSystems.jl *tools for solving constrained dynamical systems* ```math \def\ddt#1{\frac{\mathrm{d}#1}{\mathrm{d}t}} \renewcommand{\vec}{\boldsymbol} \newcommand{\uvec}[1]{\vec{\hat{#1}}} \newcommand{\utangent}{\uvec{\tau}} \newcommand{\unormal}{\uvec{n}} \renewcommand{\d}{\,\mathrm{d}} ``` This package contains several tools for solving and advancing (large-scale) dynamical systems with constraints. These systems generically have the form $$\ddt{y} = L u - B_{1}^{T} z + r_{1}(y,t), \quad B_{2} y = r_{2}(t), \quad y(0) = y_{0}$$ where $y$ is a state vector, $L$ is a linear operator with an associated matrix exponential (integrating factor), and $z$ is a constraint force vector (i.e., Lagrange multipliers). Systems of this type might arise from, e.g., incompressible fluid dynamics, rigid-body mechanics, or couplings of such systems. Some of the key components of this package are * Tools for solving linear algebra problems with constraints and associated Lagrange multipliers, known generically as *saddle point systems*. The sizes of these systems might be large. * Time integrators that can incorporate these constraints, such as half-explicit Runge-Kutta (HERK) and integrating factor Runge-Kutta (IFRK), or their combination (IF-HERK). These extend the tools in the [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl) package, and utilize the same basic syntax for setting up a problem and solving it. * Allowance for variable constraint operators $B_1^T$ and $B_2$, through the use of a variable parameter argument and an associated parameter update function. * The ability to add an auxiliary (unconstrained) system of equations and state that the constraint operators $B_1^T$ and $B_2$ and the right-hand side $r_2$ depend upon. ## Installation This package works on Julia `1.6` and above and is registered in the general Julia registry. To install from the REPL, type e.g., ```julia ] add ConstrainedSystems ``` Then, in any version, type ```julia julia> using ConstrainedSystems ``` The plots in this documentation are generated using [Plots.jl](http://docs.juliaplots.org/latest/). You might want to install that, too, to follow the examples.
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
docs
153
# Index ```@meta DocTestSetup = quote using ConstrainedSystems end ``` ```@autodocs Modules = [ConstrainedSystems] Order = [:type, :function] ```
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
docs
6661
```@meta EditURL = "../../../test/literate/saddlesystems.jl" ``` # Saddle point systems ```@meta CurrentModule = ConstrainedSystems ``` ```math \def\ddt#1{\frac{\mathrm{d}#1}{\mathrm{d}t}} \renewcommand{\vec}{\boldsymbol} \newcommand{\uvec}[1]{\vec{\hat{#1}}} \newcommand{\utangent}{\uvec{\tau}} \newcommand{\unormal}{\uvec{n}} \renewcommand{\d}{\,\mathrm{d}} ``` Saddle systems comprise an important part of solving mechanics problems with constraints. In such problems, there is an underlying system to solve, and the addition of constraints requires that the system is subjected to additional forces (constraint forces, or Lagrange multipliers) that enforce these constraints in the system. Examples of such constrained systems are the divergence-free velocity constraint in incompressible flow (for which pressure is the associated Lagrange multiplier field), the no-slip and/or no-flow-through condition in general fluid systems adjacent to impenetrable bodies, and joint constraints in rigid-body mechanics. A general saddle-point system has the form $$\left[ \begin{array}{cc} A & B_1^T \\ B_2 & C\end{array}\right] \left(\begin{array}{c}u\\f \end{array}\right) = \left(\begin{array}{c}r_1\\r_2 \end{array}\right)$$ We are primarily interested in cases when the operator $A$ is symmetric and positive semi-definite, which is fairly typical. It is also fairly common for $B_1 = B_2$, so that the whole system is symmetric. [ConstrainedSystems.jl](https://github.com/JuliaIBPM/ConstrainedSystems.jl) allows us to solve such systems for $u$ and $f$ in a fairly easy way. We need only to provide rules for how to evaluate the actions of the various operators in the system. Let us use an example to show how this can be done. ````@example saddlesystems using ConstrainedSystems using CartesianGrids using Plots ```` ## Translating cylinder in potential flow In irrotational, incompressible flow, the streamfunction $\psi$ satisfies Laplace's equation, $$\nabla^2 \psi = 0$$ On the surface of an impenetrable body, the streamfunction must obey the constraint $$\psi = \psi_b$$ where $\psi_b$ is the streamfunction associated with the body's motion. Let us suppose the body is moving vertically with velocity 1. Then $\psi_b = -x$ for all points inside or on the surface of the body. Thus, the streamfunction field outside this body is governed by Laplace's equation subject to the constraint. Let us solve this problem on a staggered grid, using the tools discussed in [CartesianGrids](https://juliaibpm.github.io/CartesianGrids.jl/latest/), including the regularization and interpolation methods to immerse the body shape on the grid. Then our saddle-point system has the form $$\left[ \begin{array}{cc} L & R \\ E & 0\end{array}\right] \left(\begin{array}{c}\psi\\f \end{array}\right) = \left(\begin{array}{c}0\\\psi_b \end{array}\right)$$ where $L$ is the discrete Laplacian, $R$ is the regularization operator, and $E$ is the interpolation operator. Physically, $f$ isn't really a force here, but rather, represents the strengths of distributed singularities on the surface. In fact, this strength represents the jump in normal derivative of $\psi$ across the surface. Since this normal derivative is equivalent to the tangential velocity, $f$ is the strength of the bound vortex sheet on the surface. This will be useful to know when we check the value of $f$ obtained in our solution. First, let us set up the body, centered at $(1,1)$ and of radius $1/2$. We will also initialize a data structure for the force: ````@example saddlesystems n = 128; θ = range(0,stop=2π,length=n+1); xb = 1.0 .+ 0.5*cos.(θ[1:n]); yb = 1.0 .+ 0.5*sin.(θ[1:n]); X = VectorData(xb,yb); ψb = ScalarData(X); f = similar(ψb); nothing #hide ```` Now let's set up a grid of size $102\times 102$ (including the usual layer of ghost cells) and physical dimensions $2\times 2$. ````@example saddlesystems nx = 102; ny = 102; Lx = 2.0; dx = Lx/(nx-2); w = Nodes(Dual,(nx,ny)); ψ = similar(w); nothing #hide ```` We need to set up the operators now. First, the Laplacian: ````@example saddlesystems L = plan_laplacian(size(w),with_inverse=true) ```` Note that we have made sure that this operator has an inverse. It is important that this operator, which represents the `A` matrix in our saddle system, comes with an associated backslash `\\` operation to carry out the inverse. Now we need to set up the regularization `R` and interpolation `E` operators. ````@example saddlesystems regop = Regularize(X,dx;issymmetric=true) Rmat, Emat = RegularizationMatrix(regop,ψb,w); nothing #hide ```` Now we are ready to set up the system. The solution and right-hand side vectors are set up using `SaddleVector`. ````@example saddlesystems rhs = SaddleVector(w,ψb) sol = SaddleVector(ψ,f) ```` and the saddle system is then set up with the three operators; the $C$ operator is presumed to be zero when it is not provided. ````@example saddlesystems A = SaddleSystem(L,Emat,Rmat,rhs) ```` Note that all of the operators we have provided are either matrices (like `Emat` and `Rmat`) or functions or function-like operators (like `L`). The `SaddleSystem` constructor allows either. However, the order is important: we must supply $A$, $B_2$, $B_1^T$, and possibly $C$, in that order. Let's solve the system. We need to set the right-hand side. We will set `ψb`, but this will also change `rhs`, since that vector is pointing to the same object. ````@example saddlesystems ψb .= -(xb.-1); nothing #hide ```` The right-hand side of the Laplace equation is zero. The right-hand side of the constraint is the specified streamfunction on the body. Note that we have subtracted the circle center from the $x$ positions on the body. The reason for this will be discussed in a moment. We solve the system with the convenient shorthand of the backslash: ````@example saddlesystems sol .= A\rhs # hide @time sol .= A\rhs ```` Just to point out how fast it can be, we have also timed it. It's pretty fast. We can obtain the state vector and the constraint vector from `sol` using some convenience functions `state(sol)` and `constraint(sol)`. Now, let's plot the solution in physical space. We'll plot the body shape for reference, also. ````@example saddlesystems xg, yg = coordinates(w,dx=dx) plot(xg,yg,state(sol),xlim=(-Inf,Inf),ylim=(-Inf,Inf)) plot!(xb,yb,fillcolor=:black,fillrange=0,fillalpha=0.25,linecolor=:black) ```` The solution shows the streamlines for a circle in vertical motion, as expected. All of the streamlines inside the circle are vertical. --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.3.8
33a01817b0e32c1b43a50db7e43181d9c31bf801
docs
9917
```@meta EditURL = "../../../test/literate/timemarching.jl" ``` # Time marching ```@meta CurrentModule = ConstrainedSystems ``` ```math \def\ddt#1{\frac{\mathrm{d}#1}{\mathrm{d}t}} \renewcommand{\vec}{\boldsymbol} \newcommand{\uvec}[1]{\vec{\hat{#1}}} \newcommand{\utangent}{\uvec{\tau}} \newcommand{\unormal}{\uvec{n}} \renewcommand{\d}{\,\mathrm{d}} ``` [ConstrainedSystems.jl](https://github.com/JuliaIBPM/ConstrainedSystems.jl) is equipped with tools for solving systems of equations of the general form of half-explicit differential-algebraic equations, $$\ddt y = L y - B_1^T(y,t) z + r_1(y,t), \quad B_2(y,t) y + C(y,t) z = r_2(t), \quad y(0) = y_0$$ where $z$ is the Lagrange multiplier for enforcing the constraints on $y$. Note that the constraint operators may depend on the state and on time. The linear operator $L$ may be a matrix or a scalar, but is generally independent of time. (The method of integrating factors can deal with time-dependent $L$, but we don't encounter such systems in the constrained systems context so we won't discuss them.) Our objective is to solve for $y(t)$ and $z(t)$. ````@example timemarching using ConstrainedSystems using CartesianGrids using Plots ```` ## Constrained integrating factor systems Let's demonstrate this on the example of heat diffusion from a circular ring whose temperature is held constant. In this case, $L$ is the discrete Laplace operator times the heat diffusivity, $r_1$ is zero (in the absence of volumetric heating sources), and $r_2$ is the temperature of the ring. The operators $B_1^T$ and $B_2$ will be the regularization and interpolation operators between discrete point-wise data on the ring and the field data. We will also include a $C$ operator that slightly regularizes the constraint. The ring will have radius $1/2$ and fixed temperature $1$, and the heat diffusivity is $1$. (In other words, the problem has been non-dimensionalized by the diameter of the circle, the dimensional ring temperature, and the dimensional diffusivity.) First, we will construct a field to accept the temperature on ````@example timemarching nx = 129; ny = 129; Lx = 2.0; Δx = Lx/(nx-2); w₀ = Nodes(Dual,(nx,ny)); # field initial condition nothing #hide ```` Now set up a ring of points on the circle at center $(1,1)$. ````@example timemarching n = 128; θ = range(0,stop=2π,length=n+1); R = 0.5; xb = 1.0 .+ R*cos.(θ); yb = 1.0 .+ R*sin.(θ); X = VectorData(xb[1:n],yb[1:n]); z = ScalarData(X); # to be used as the Lagrange multiplier nothing #hide ```` Together, `w₀` and `z` comprise the initial solution vector: ````@example timemarching u₀ = solvector(state=w₀,constraint=z) ```` Now set up the operators. We first set up the linear operator, a Laplacian endowed with its inverse: ````@example timemarching L = plan_laplacian(w₀,with_inverse=true) ```` Now the right-hand side operators for the ODEs and constraints. Both must take a standard form: $r_1$ must accept arguments `w₀`, `p` (parameters not used in this problem), and `t`; $r_2$ must accept arguments `p` and `t`. We will implement these in in-place form to make it more efficient. $r_1$ will return rate-of-change data of the same type as `w₀` and $r_2$ will return data `dz` of the same type as `z` ````@example timemarching diffusion_rhs!(dw::Nodes,w::Nodes,x,p,t) = fill!(dw,0.0) # this is r1 boundary_constraint_rhs!(dz::ScalarData,x,p,t) = fill!(dz,1.0) # this is r2, and sets uniformly to 1 ```` Construct the regularization and interpolation operators in their usual symmetric form, and then set up routines that will provide these operators inside the integrator: ````@example timemarching reg = Regularize(X,Δx;issymmetric=true) Hmat, Emat = RegularizationMatrix(reg,z,w₀) boundary_constraint_force!(dw::Nodes,z::ScalarData,x,p) = dw .= Hmat*z # This is B1T boundary_constraint_op!(dz::ScalarData,y::Nodes,x,p) = dz .= Emat*y; # This is B2 nothing #hide ```` Construct a constraint regularization operator (the $C$ operator) ````@example timemarching boundary_constraint_reg!(dz::ScalarData,z::ScalarData,x,p) = dz .= -0.1*z; # This is C nothing #hide ```` Note that these last two functions are also in-place, and return data of the same respective types as $r_1$ and $r_2$. All of these are assembled into a single `ConstrainedODEFunction`: ````@example timemarching f = ConstrainedODEFunction(diffusion_rhs!,boundary_constraint_rhs!,boundary_constraint_force!, boundary_constraint_op!,L,boundary_constraint_reg!,_func_cache=u₀) ```` With the last argument, we supplied a cache variable to enable evaluation of this function. Now set up the problem, using the same basic notation as in [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl). ````@example timemarching tspan = (0.0,20.0) prob = ODEProblem(f,u₀,tspan) ```` Now solve it. We will set the time-step size to a large value ($1.0$) for demonstration purposes. The method remains stable for any choice. ````@example timemarching Δt = 1.0 sol = solve(prob,IFHEEuler(),dt=Δt); nothing #hide ```` Now let's plot it ````@example timemarching xg, yg = coordinates(w₀,dx=Δx); plot(xg,yg,state(sol.u[end])) plot!(xb,yb,linecolor=:black,linewidth=1.5) ```` From a side view, we can see that it enforces the boundary condition: ````@example timemarching plot(xg,state(sol.u[end])[65,:],xlabel="x",ylabel="u(x,1)") ```` The Lagrange multiplier distribution is nearly uniform ````@example timemarching plot(constraint(sol.u[end]),ylim=(-0.5,0)) ```` ## Systems with variable constraints In some cases, the constraint operators may vary with the state vector. A good example of this is a swinging pendulum, with its equations expressed in Cartesian coordinates. The constraint we wish to enforce is that the length of the pendulum is constant: $x^2+y^2 = l^2$. Though not mathematically necessary, it also helps to enforce a tangency condition, $xu + yv = 0$, where $u$ and $v$ are the rates of change of $x$ and $y$. Note that this is simply the derivative of the first constraint. (If expressed in cylindrical coordinates, the constraint is enforced automatically, simply by expressing the equations for $\theta$.) The governing equations are $$\ddt x = u - x \mu ,\, \ddt y = v - y \mu , \, \ddt u = -x \lambda , \, \ddt v = -g - y\lambda$$ with Lagrange multipliers $\mu$ and $\lambda$, and the constraints are $$x^2+y^2 = l^2,\, xu + yu = 0$$ These are equivalently expressed as $$\left[ \begin{array}{cccc} x & y & 0 & 0\end{array}\right]\left[ \begin{array}{c} x \\ y \\ u \\ v \end{array}\right] = l^2$$ and $$\left[ \begin{array}{cccc} 0 & 0 & x & y\end{array}\right]\left[ \begin{array}{c} x \\ y \\ u \\ v \end{array}\right] = 0$$ The operators $B_1^T$ and $B_2$ are thus $$B_1^T = \left[ \begin{array}{cc} x & 0 \\ y & 0 \\ 0 & x \\ 0 & y \end{array}\right]$$ and $$B_2 = \left[ \begin{array}{cccc} x & y & 0 & 0 \\ 0 & 0 & x & y \end{array}\right]$$ That is, the operators are dependent on the state. In this package, we handle this by providing a parameter that can be dynamically updated. We will get to that later. First, let's set up the physical parameters ````@example timemarching l = 1.0 g = 1.0 params = [l,g] ```` and initial condition: ````@example timemarching θ₀ = π/2 y₀ = Float64[l*sin(θ₀),-l*cos(θ₀),0,0] z₀ = Float64[0.0, 0.0] # Lagrange multipliers u₀ = solvector(state=y₀,constraint=z₀) ```` Now, we will set up the basic form of the constraint operators and assemble these with the other parameters with the help of a type we'll define here: ````@example timemarching struct ProblemParams{P,BT1,BT2} params :: P B₁ᵀ :: BT1 B₂ :: BT2 end B1T = zeros(4,2) # set to zeros for now B2 = zeros(2,4) # set to zeros for now p₀ = ProblemParams(params,B1T,B2); nothing #hide ```` We will now define the operators of the problem, all in in-place form: ````@example timemarching function pendulum_rhs!(dy::Vector{Float64},y::Vector{Float64},x,p,t) dy[1] = y[3] dy[2] = y[4] dy[3] = 0.0 dy[4] = -p.params[2] return dy end # r1 function length_constraint_rhs!(dz::Vector{Float64},x,p,t) dz[1] = p.params[1]^2 dz[2] = 0.0 return dz end # r2 ```` The B1 function. This returns B1*z. It uses an existing B1 supplied by p. ````@example timemarching function length_constraint_force!(dy::Vector{Float64},z::Vector{Float64},x,p) dy .= p.B₁ᵀ*z end ```` The B2 function. This returns B2*y. It uses an existing B2 supplied by p. ````@example timemarching function length_constraint_op!(dz::Vector{Float64},y::Vector{Float64},x,p) dz .= p.B₂*y end ```` Now, we need to provide a means of updating the parameter structure with the current state of the system. This is done in-place, just as for the other operators: ````@example timemarching function update_p!(q,u,p,t) y = state(u) fill!(q.B₁ᵀ,0.0) fill!(q.B₂,0.0) q.B₁ᵀ[1,1] = y[1]; q.B₁ᵀ[2,1] = y[2]; q.B₁ᵀ[3,2] = y[1]; q.B₁ᵀ[4,2] = y[2] q.B₂[1,1] = y[1]; q.B₂[1,2] = y[2]; q.B₂[2,3] = y[1]; q.B₂[2,4] = y[2] return q end ```` Finally, assemble all of them together: ````@example timemarching f = ConstrainedODEFunction(pendulum_rhs!,length_constraint_rhs!,length_constraint_force!, length_constraint_op!, _func_cache=deepcopy(u₀),param_update_func=update_p!) ```` Now solve the system ````@example timemarching tspan = (0.0,10.0) prob = ODEProblem(f,u₀,tspan,p₀) Δt = 1e-2 sol = solve(prob,LiskaIFHERK(),dt=Δt); nothing #hide ```` Plot the solution ````@example timemarching plot(sol.t,sol[1,:],label="x",xlabel="t") plot!(sol.t,sol[2,:],label="y") ```` and here is the trajectory ````@example timemarching plot(sol[1,:],sol[2,:],ratio=1,legend=:false,title="Trajectory",xlabel="x",ylabel="y") ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
ConstrainedSystems
https://github.com/JuliaIBPM/ConstrainedSystems.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
797
using TemplateMatching using Documenter DocMeta.setdocmeta!(TemplateMatching, :DocTestSetup, :(using TemplateMatching); recursive=true) makedocs(; modules=[TemplateMatching], authors="mleseach <[email protected]>", repo="https://github.com/mleseach/TemplateMatching.jl/blob/{commit}{path}#{line}", sitename="TemplateMatching.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://mleseach.github.io/TemplateMatching.jl", edit_link="master", assets=String[], ), checkdocs=:exports, pages=[ "Get started" => "index.md", "Reference" => "reference.md" ], ) deploydocs(; repo="github.com/mleseach/TemplateMatching.jl", devbranch="master", )
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
3686
using Statistics: mean import Base.sum """ biased_cumsum!(B, A, bias; dims) Equivalent to `cumsum!(B, A .+ bias, dims=dims)`. """ function biased_cumsum!(B, A, bias; dims) result = accumulate!(B, A, dims=dims, init=0) do a, b a + b + bias end return result end """ integral_array!(output, array, bias) Compute the integral array. """ function integral_array!( output::AbstractArray{T,N}, array::AbstractArray{T,N}, bias::T ) where {T,N} biased_cumsum!(output, array, bias, dims=1) for d in 2:N cumsum!(output, output, dims=d) end return output end """ IntegralArray(integral, bias) IntegralArray(array) IntegralArray(f, array) Structure that represents an [integral array](https://en.wikipedia.org/wiki/Summed-area_table). # Arguments - `integral`: the already computed integral array. - `bias`: the bias associated to computed integral array. - `array`: the input array from which the integral image will be computed. - `f`: a function to apply to each element of `array` before computing the integral. Integral arrays allow fast summation queries over rectangular subregions using [`sum(::IntegralArray, x, h)`](@ref). """ struct IntegralArray{T,A<:AbstractArray{T}} integral::A bias::T function IntegralArray(integral::AbstractArray{T,N}, bias::T) where {T,N} @assert N < 64 "array with more than 64 dims are not yet supported" return new{T,typeof(integral)}(integral, bias) end function IntegralArray(array::AbstractArray{T}) where T bias = -mean(array) integral = integral_array!(similar(array), array, bias) return IntegralArray(integral, bias) end function IntegralArray(f, array::AbstractArray{T}) where T new_array = broadcast(f, array) bias = -mean(new_array) integral = integral_array!(new_array, new_array, bias) return IntegralArray(integral, bias) end end """ sum(integral, x, h) Calculate the sum of values within a rectangle defined by its top-left corner `x` and dimensions `h` in an [`IntegralArray`](@ref). # Examples ```jldoctest using TemplateMatching: IntegralArray sum(IntegralArray([1. 2. 3.; 4. 5. 6.; 7. 8. 9.]), (2, 1), (2, 2)) # output 24.0 ``` """ @inline function sum(integral::IntegralArray{T}, x, h) where T d = ndims(integral.integral) x = Tuple(x) h = Tuple(h) result = 0 # TODO: optimize this loop # - make sure the compiler can unroll the loop and infer value of most variables # ie: `i`, `n` and `sign` are comptime known # maybe write a macro # we can replace this by Iterators.product(ntuple(_ -> 0:1, d)...) # but this confuse the compiler and is much slower for i in 0:(2^d - 1) # index = x .+ h .* int_to_tuple(i) .- 1 int_to_tuple(i, d) index = broadcast( muladd, h, int_to_tuple(i, d), x .- 1, ) # if we are in the border just skip if any(==(0), index) continue end # n = (sum(int_to_tuple(i)) + d) % 2 n = (count_ones(i) + d) & 1 sign = if n == 0 1 else -1 end result += sign * integral.integral[index...] end result -= integral.bias * prod(h) return result end """ int_to_tuple(n, d) Transform the `d`` lower bits of `n` into a tuple # Examples ```jldoctest using TemplateMatching: int_to_tuple int_to_tuple(0b0111011, 4) # output (1, 1, 0, 1) ``` """ function int_to_tuple(n, d) return ntuple(i -> (n >> (i-1)) & 1, d) end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
9973
module TemplateMatching export match_template, match_template!, SquareDiff, NormalizedSquareDiff, CrossCorrelation, NormalizedCrossCorrelation, CorrelationCoeff, NormalizedCorrelationCoeff include("IntegralArray.jl") @doc raw""" Base type for specifying the algorithm used in template matching operations. `Algorithm` serves as an abstract base type for all template matching algorithms within the package. It is meant to be subclassed by specific algorithm implementations. """ abstract type Algorithm end @doc raw""" Algorithm that calculate the squared difference between the source and the template. This method is used to find how much each part of the source array differs from the template by squaring the difference between corresponding values. It is straightforward and works well when the brightness of the images does not vary much. Lower values indicate a better match. # Formula ``R_i = \sum_j (S_{i+j} - T_j)^2`` See also [`NormalizedSquareDiff`](@ref) """ struct SquareDiff <: Algorithm end @doc raw""" Normalized algorithm for computing the squared difference between the source and the template. This method extends the [`SquareDiff`](@ref) algorithm by normalizing the squared differences. It is more robust against variations in brightness and contrast between the source and template images. Lower values indicate a better match. # Formula ``R_i = \frac{\sum_j (S_{i+j} - T_j)^2}{\sqrt{\sum_j S_{i+j}^2 \cdot \sum_j T_j^2}}`` See also [`SquareDiff`](@ref) """ struct NormalizedSquareDiff <: Algorithm end @doc raw""" Algorithm that calculates the cross-correlation between the source and the template. This method computes the similarity between the source and template by multiplying their corresponding elements and summing up the results. This approach inherently favors the brighter regions of the source image over the darker ones since the product of higher intensity values will naturally be greater. Higher values indicate a better match. # Formula ``R_i = \sum_j (S_{i+j} \cdot T_j)`` See also [`NormalizedCrossCorrelation`](@ref) """ struct CrossCorrelation <: Algorithm end @doc raw""" Normalized algorithm for computing the cross-correlation between the source and the template. This method improves upon the [`CrossCorrelation`](@ref) by normalizing the results. It calculates the similarity by multiplying corresponding elements, summing up those products, and then dividing by the product of their norms. This reduces the bias toward brighter areas, providing a more balanced measurement of similarity. Higher values indicate a better match. # Formula ``R_i = \frac{\sum_j (S_{i+j} \cdot T_j)}{\sqrt{\sum_j S_{i+j}^2 \cdot \sum_j T_j^2}}`` See also [`CrossCorrelation`](@ref) """ struct NormalizedCrossCorrelation <: Algorithm end @doc raw""" Algorithm that measures the correlation coefficient between the source and the template. This method quantifies the degree to which the source and template match by computing their correlation coefficient. It offers a balance between capturing the structural similarity and adjusting for brightness variations, making it less biased towards the brighter parts in comparison to simple cross-correlation methods. A higher value indicates a better match. # Formula `` R_i = \frac{ \sum_j ((S_{i+j} - \bar{S}_i) \cdot (T_j - \bar{T})) }{ \sqrt{\sum_j (S_{i+j} - \bar{S}_i)^2 \cdot \sum_j (T_j - \bar{T})^2} } `` Where ``\bar{S}_i`` is the mean of the source values within the region considered for matching and ``\bar{T}`` is the mean of the template values. See also [`NormalizedCorrelationCoeff`](@ref) """ struct CorrelationCoeff <: Algorithm end @doc raw""" Normalized algorithm for computing the correlation coefficient between the source and the template. This method extends the [`CorrelationCoeff`](@ref) by applying additional normalization steps, aiming to further minimize the influence of the absolute brightness levels and enhance the robustness of matching. It calculates the normalized correlation coefficient, providing a standardized measure. A higher value indicates a better match. # Formula `` R_i = \frac{ \sum_j ((S_{i+j} - \bar{S}_i) \cdot (T_j - \bar{T})) }{ \sqrt{\sum_j (S_{i+j} - \bar{S}_i)^2} \cdot \sqrt{\sum_j (T_j - \bar{T})^2} } `` Where ``\bar{S}_i`` is the mean of the source values within the region considered for matching and ``\bar{T}`` is the mean of the template values. See also [`CorrelationCoeff`](@ref) """ struct NormalizedCorrelationCoeff <: Algorithm end include("square_diff.jl") include("cross_correlation.jl") include("correlation_coeff.jl") @doc raw""" match_template(source, template, alg::Algorithm) Performs template matching between the source image and template using a specified algorithm. Compare a template to a source image using the algorithm specified by the `alg` parameter. It is designed to work with arrays of more than two dimensions, making it suitable for multidimensional arrays or sets of images. The function slides the template over the source array in all possible positions, computing a similarity metric at each position. # Arguments - `source`: Source array to search within. - `template`: Template array to search for. - `alg::Algorithm`: Algorithm to use for calculating the similarity metric. The dimensions of the `source` array should be greater than or equal to the dimensions of the `template` array. If the `source` is of size `(S_1, S_2, ...)` and `template` is `(T_1, T_2, ...)`, then the size of the resultant match array will be `(S_1-T_1+1, S_2-T_2+1, ...)`, representing the similarity metric for each possible position of the template over the source. The algorithm for matching is chosen by passing an instance of one of the following structs as the `alg` parameter: [`SquareDiff`](@ref), [`NormalizedSquareDiff`](@ref), [`CrossCorrelation`](@ref), [`NormalizedCrossCorrelation`](@ref), [`CorrelationCoeff`](@ref), or [`NormalizedCorrelationCoeff`](@ref). # Returns Return an array of the same number of dimensions as the input arrays, containing the calculated similarity metric at each position of the template over the source image. # Examples ```julia source = rand(100, 100) template = rand(10, 10) result = match_template(source, template, CrossCorrelation()) ``` ```jldoctest source = rand(100, 100) template = source[10:15, 20:30] result = match_template(source, template, SquareDiff()) argmin(result) # output CartesianIndex(10, 20) ``` ```jldoctest source = rand(100, 100) template = source[10:15, 20:30] result = match_template(source, template, CorrelationCoeff()) argmax(result) # output CartesianIndex(10, 20) ``` See also [`match_template!`](@ref) for a version of this function that writes the result into a preallocated array. """ function match_template(source, template, alg::Algorithm) dest_size = Tuple(size(source) .- size(template) .+ 1) # similar doesn't work on channelview dest = Array{eltype(source)}(undef, dest_size) return match_template!(dest, source, template, alg) end @doc raw""" match_template!(dest, source, template, alg::Algorithm) Performs template matching and writes the results into a preallocated destination array. Inplace counterpart to `match_template`, designed to perform the template matching operation and store the results in a preallocated array `dest` passed by the user. This reduces memory allocations and can be more efficient when performing multiple template matching operations. It compares a template to a source image using the specified algorithm, suitable for multidimensional arrays or sets of images. See [`match_template`](@ref) for further documentation. # Arguments - `dest`: Preallocated destination array where the result will be stored. - `source`: Source array to search within. - `template`: Template array to search for. - `alg::Algorithm`: Algorithm for calculating the similarity. # Returns Return its first argument `dest` containing the calculated similarity metric at each position of the template over the source image. The dimensions of the `source` array should be greater than or equal to the dimensions of the template array. If the source is of size `(S_1, S_2, ...)` and `template` is `(T_1, T_2, ...)`, then `dest` must be preallocated with dimensions `(S_1-T_1+1, S_2-T_2+1, ...)`, representing the similarity metric for each possible position of the template over the source. The algorithm for matching is chosen by passing an instance of one of the following structs as the `alg` parameter: [`SquareDiff`](@ref), [`NormalizedSquareDiff`](@ref), [`CrossCorrelation`](@ref), [`NormalizedCrossCorrelation`](@ref), [`CorrelationCoeff`](@ref), or [`NormalizedCorrelationCoeff`](@ref). # Examples ```julia source = rand(100, 100) template = rand(10, 10) dest = Array{Float64}(undef, 91, 91) match_template!(dest, source, template, CrossCorrelation()) dest = Array{Float64}(undef, 100, 100) match_template!(dest, source, template, CrossCorrelation()) # will fail ``` See also [`match_template`](@ref) for an immutable version of this function. """ match_template!(dest, source, template, alg) function match_template!(dest, source, template, ::SquareDiff) return square_diff!(dest, source, template) end function match_template!(dest, source, template, ::NormalizedSquareDiff) return normalized_square_diff!(dest, source, template) end function match_template!(dest, source, template, ::CrossCorrelation) return cross_correlation!(dest, source, template) end function match_template!(dest, source, template, ::NormalizedCrossCorrelation) return normalized_cross_correlation!(dest, source, template) end function match_template!(dest, source, template, ::CorrelationCoeff) return correlation_coeff!(dest, source, template) end function match_template!(dest, source, template, ::NormalizedCorrelationCoeff) return normalized_correlation_coeff!(dest, source, template) end end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
1860
""" Implementation of the CorrelationCoeff method """ function correlation_coeff!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" source_integral = IntegralArray(source) template_sum = sum(template) # we use dest as temporary storage for cross_correlation cross_correlation = cross_correlation!(dest, source, template) n = length(template) h = CartesianIndex(size(template)) for i in CartesianIndices(dest) source_sum = sum(source_integral, i, h) dest[i] = cross_correlation[i] - template_sum * source_sum / n end return dest end """ Implementation of the NormalizedCorrelationCoeff method """ function normalized_correlation_coeff!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" source_integral = IntegralArray(source) source_square_integral = IntegralArray(x -> x^2, source) template_sum = sum(template) template_square_sum = sum(x -> x^2, template) # we use dest as temporary storage for cross_correlation cross_correlation = cross_correlation!(dest, source, template) n = length(template) h = CartesianIndex(size(template)) for i in CartesianIndices(dest) source_sum = sum(source_integral, i, h) source_square_sum = sum(source_square_integral, i, h) dest[i] = cross_correlation[i] - template_sum * source_sum / n dest[i] /= sqrt((template_square_sum - template_sum^2 / n) * (source_square_sum - source_sum^2 / n)) end return dest end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
1324
using ImageFiltering: imfilter!, Inner using OffsetArrays: OffsetArray """ Implementation of the CrossCorrelation method """ function cross_correlation!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" return imfilter!( dest, source, OffsetArray(template, ntuple(_ -> -1, ndims(source))), Inner(), ) end """ Implementation of the NormalizedCrossCorrelation method """ function normalized_cross_correlation!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" source_square_integral = IntegralArray(x -> x^2, source) template_square_sum = sum(v -> v^2, template) dest = cross_correlation!(dest, source, template) h = CartesianIndex(size(template)) for i in CartesianIndices(dest) source_square_sum = sum(source_square_integral, i, h) dest[i] /= sqrt(source_square_sum * template_square_sum) end return dest end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
1679
""" Implementation of the SquareDiff method """ function square_diff!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" source_square_integral = IntegralArray(x -> x^2, source) template_square_sum = sum(v -> v^2, template) # we use dest as temporary storage for cross_correlation cross_correlation = cross_correlation!(dest, source, template) h = CartesianIndex(size(template)) for i in CartesianIndices(dest) source_square_sum = sum(source_square_integral, i, h) dest[i] = template_square_sum - 2 * cross_correlation[i] + source_square_sum end return dest end """ Implementation of the NormalizedSquareDiff method """ function normalized_square_diff!(dest, source, template) @assert ndims(source) == ndims(template) "source and template should have same number of dims" dest_size = Tuple(size(source) .- size(template) .+ 1) @assert dest_size == size(dest) "size(dest) should be $(dest_size), $(size(dest)) given" source_square_integral = IntegralArray(x -> x^2, source) template_square_sum = sum(v -> v^2, template) # we use dest as temporary storage for cross_correlation cross_correlation = cross_correlation!(dest, source, template) h = CartesianIndex(size(template)) for i in CartesianIndices(dest) source_square_sum = sum(source_square_integral, i, h) dest[i] = template_square_sum - 2 * cross_correlation[i] + source_square_sum dest[i] /= sqrt(source_square_sum * template_square_sum) end return dest end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
102
using TemplateMatching using Test include("src/IntegralArray.jl") include("src/TemplateMatching.jl")
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
2738
using Test using TemplateMatching: IntegralArray, int_to_tuple, sum using Random @testset "IntegralArray" begin @testset "int_to_tuple" begin test_table() = [ # (n, d, expected result) (0b010101010, 1, (0,)), (0b010101010, 4, (0, 1, 0, 1)), (0b010101010, 3, (0, 1, 0)), (0b001010101, 4, (1, 0, 1, 0)), (0b000001111, 4, (1, 1, 1, 1)), (0b000101000, 4, (0, 0, 0, 1)), (0xf0f0f0f0f, 20, (1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1)), ] for (n, d, expected) in test_table() @test int_to_tuple(n, d) == expected end end @testset "sum" begin # test that naive_sum give the same result as sum for # various size and indices naive_sum(array, x, h) = sum(array[x:x+h-oneunit(h)]) naive_sum(f, array, x, h) = sum(f, array[x:x+h-oneunit(h)], init=0) rng = Xoshiro(0) test_table() = [ # (size, x, h) (10, 1, 10), (10, 4, 3), (10, 1, 3), (10, 7, 4), (10, 7, 0), ((10, 5), (1, 1), (10, 5)), ((10, 5), (5, 1), (5, 5)), ((10, 5), (1, 2), (2, 2)), ((10, 5), (1, 2), (2, 3)), ((10, 5), (8, 2), (2, 3)), ((10, 5), (8, 2), (2, 3)), ((10, 5), (8, 2), (2, 0)), ((10, 5), (8, 2), (0, 2)), ((10, 5), (8, 2), (0, 0)), ((7, 7, 7), (1, 1, 1), (7, 7, 7)), ((7, 7, 7), (3, 2, 5), (0, 3, 1)), ((7, 7, 7), (3, 2, 5), (1, 1, 1)), ((7, 7, 7), (3, 1, 5), (2, 0, 2)), ((7, 7, 7), (2, 1, 2), (5, 6, 5)), ((7, 7, 7), (2, 1, 2), (1, 6, 1)), ((7, 7, 7, 7), (1, 1, 1, 1), (7, 7, 7, 7)), ((7, 7, 7, 7), (1, 1, 1, 1), (7, 0, 7, 7)), ((7, 7, 7, 7), (1, 1, 1, 1), (7, 0, 0, 7)), ((7, 7, 7, 7), (1, 1, 1, 1), (0, 0, 0, 0)), ((7, 7, 7, 7), (1, 1, 1, 1), (0, 7, 7, 7)), ] for (size, x, h) in test_table() x = CartesianIndex(x) h = CartesianIndex(h) array = rand(rng, size...) integral = IntegralArray(array) @test isapprox(sum(integral, x, h), naive_sum(array, x, h), rtol=1e-5) end for f in [exp, sqrt, log, (x -> 2x)] for (size, x, h) in test_table() x = CartesianIndex(x) h = CartesianIndex(h) array = rand(rng, size...) integral = IntegralArray(f, array) @test isapprox(sum(integral, x, h), naive_sum(f, array, x, h), rtol=1e-5) end end end end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
code
7827
using Test using TemplateMatching using ImageFiltering using Statistics using Random rng = Xoshiro(0) @testset "::SquareDiff" begin function naive_square_diff(source, template) sum2(a) = sum(x -> x^2, a) result = mapwindow(source, size(template), border=Inner()) do subsection sum2(subsection .- template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, SquareDiff()) @test argmin(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_square_diff(source, template) result = match_template(source, template, SquareDiff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_square_diff(source, template) result = match_template(source, template, SquareDiff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end end @testset "::NormalizedSquareDiff" begin function naive_normalized_square_diff(source, template) sum2(a) = sum(x -> x^2, a) sum2_template = sum2(template) result = mapwindow(source, size(template), border=Inner()) do subsection sum2(subsection .- template) / sqrt(sum2(subsection) * sum2_template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, NormalizedSquareDiff()) @test argmin(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_normalized_square_diff(source, template) result = match_template(source, template, NormalizedSquareDiff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_normalized_square_diff(source, template) result = match_template(source, template, NormalizedSquareDiff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end end @testset "::CrossCorrelation" begin function naive_cross_correlation(source, template) result = mapwindow(source, size(template), border=Inner()) do subsection sum(subsection .* template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, CrossCorrelation()) @test argmax(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_cross_correlation(source, template) result = match_template(source, template, CrossCorrelation()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_cross_correlation(source, template) result = match_template(source, template, CrossCorrelation()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end end @testset "::NormalizedCrossCorrelation" begin function naive_normalized_cross_correlation(source, template) sum2(a) = sum(x -> x^2, a) sum2_template = sum2(template) result = mapwindow(source, size(template), border=Inner()) do subsection sum(subsection .* template) / sqrt(sum2(subsection) * sum2_template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, NormalizedCrossCorrelation()) @test argmax(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_normalized_cross_correlation(source, template) result = match_template(source, template, NormalizedCrossCorrelation()) @test all(isapprox.(result, naive_result, rtol=1e-5)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_normalized_cross_correlation(source, template) result = match_template(source, template, NormalizedCrossCorrelation()) @test all(isapprox.(result, naive_result, rtol=1e-5)) end end @testset "::CorrelationCoeff" begin function naive_correlation_coeff(source, template) template = template .- mean(template) result = mapwindow(source, size(template), border=Inner()) do subsection subsection = subsection .- mean(subsection) sum(subsection .* template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, CorrelationCoeff()) @test argmax(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_correlation_coeff(source, template) result = match_template(source, template, CorrelationCoeff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_correlation_coeff(source, template) result = match_template(source, template, CorrelationCoeff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end end @testset "::NormalizedCorrelationCoeff" begin function naive_normalized_correlation_coeff(source, template) sum2(a) = sum(x -> x^2, a) template = template .- mean(template) sum2_template = sum2(template) result = mapwindow(source, size(template), border=Inner()) do subsection subsection = subsection .- mean(subsection) sum(subsection .* template) / sqrt(sum2(subsection) * sum2_template) end return parent(result) end let source = rand(rng, 100, 3, 100) template = source[50:70, :, 30:35] dest = similar(source, 80, 1, 95) result = match_template!(dest, source, template, NormalizedCorrelationCoeff()) @test argmax(result) === CartesianIndex(50, 1, 30) @test dest === result end let source = rand(rng, 50, 50) template = rand(rng, 35, 25) naive_result = naive_normalized_correlation_coeff(source, template) result = match_template(source, template, NormalizedCorrelationCoeff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end let source = rand(rng, 20, 20, 20) template = rand(rng, 7, 5, 3) naive_result = naive_normalized_correlation_coeff(source, template) result = match_template(source, template, NormalizedCorrelationCoeff()) @test all(isapprox.(result, naive_result, rtol=1e-10)) end end
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
docs
3461
# TemplateMatching [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://mleseach.github.io/TemplateMatching.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://mleseach.github.io/TemplateMatching.jl/dev/) [![Build Status](https://github.com/mleseach/TemplateMatching.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/mleseach/TemplateMatching.jl/actions/workflows/CI.yml?query=branch%3Amaster) TemplateMatching is a Julia package designed to offer a native Julia implementation of template matching functionalities similar to those available in OpenCV. This package aims to provide an easy-to-use interface for image processing and computer vision applications, allowing users to leverage the high-performance capabilities of Julia for template matching operations. The package offers performance slightly below that of OpenCV but significantly better than a naive implementation. ## Features Masks are not yet supported in the current version of the package. Unlike OpenCV, TemplateMatching.jl supports n-dimensional arrays[^1]. Below is a table summarising available methods and their equivalent in opencv. | TemplateMatching.jl | Mask | OpenCV equivalent | |:--------------------------------|:-------------------:|:-----------------------| | SquareDiff | Not yet supported | `TM_SQDIFF` | | NormalizedSquareDiff | Not yet supported | `TM_SQDIFF_NORMED` | | CrossCorrelation | Not yet supported | `TM_CCORR` | | NormalizedCrossCorrelation | Not yet supported | `TM_CCORR_NORMED` | | CorrelationCoeff | Not yet supported | `TM_CCOEFF` | | NormalizedCorrelationCoeff | Not yet supported | `TM_CCOEFF_NORMED` | [^1]: Up to 64 dimensions because of an implementation detail, but this shouldn't be a problem in most cases. ## Installation To install TemplateMatching, use the Julia package manager. As it is not yet registered, use the full url of the repository. Open your Julia command-line interface and run: ```julia using Pkg Pkg.add("https://github.com/mleseach/TemplateMatching.jl") ``` ## Usage Almost everything you need is the function `match_template` and its inplace counterpart `match_template!`. Below is a quick start example on how to use the TemplateMatching package to perform template matching: ```julia using TemplateMatching using Images # Load your source image and template source = rand(1000, 1000) template = source[400:500, 100:150] # Perform template matching using square difference result = match_template(source, template, SquareDiff) # Get the best match argmin(result) # CartesianIndex(400, 100) # Perform template matching using normalized correlation coefficient result = match_template(source, template, NormalizedCorrCoeff) # Get the best match argmax(result) # CartesianIndex(400, 100) ``` ## Documentation For more detailed information on all the functions and their parameters, please refer to the full [documentation](https://mleseach.github.io/TemplateMatching.jl/stable/). ## Possible improvements - [ ] Support for template mask (planned) - [ ] Support for GPU - [ ] Improve performances - [ ] More tests and examples in documentation - [ ] Better errors ## License TemplateMatching is provided under the [MIT License](LICENSE). Feel free to use it in your projects.
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
docs
2731
```@meta CurrentModule = TemplateMatching ``` # TemplateMatching Documentation for [TemplateMatching](https://github.com/mleseach/TemplateMatching.jl). TemplateMatching is a Julia package designed to offer a native Julia implementation of template matching functionalities similar to those available in OpenCV. This package aims to provide an easy-to-use interface for image processing and computer vision applications, allowing users to leverage the high-performance capabilities of Julia for template matching operations. The package offers performance slightly below that of OpenCV but significantly better than a naive implementation. ## Features Masks are not yet supported in the current version of the package. Unlike OpenCV, TemplateMatching.jl supports n-dimensional arrays[^1]. Below is a table summarising available methods and their equivalent in opencv. | TemplateMatching.jl | Mask | OpenCV equivalent | |:--------------------------------------|:-------------------:|:-----------------------| | [`SquareDiff`](@ref) | Not yet supported | `TM_SQDIFF` | | [`NormalizedSquareDiff`](@ref) | Not yet supported | `TM_SQDIFF_NORMED` | | [`CrossCorrelation`](@ref) | Not yet supported | `TM_CCORR` | | [`NormalizedCrossCorrelation`](@ref) | Not yet supported | `TM_CCORR_NORMED` | | [`CorrelationCoeff`](@ref) | Not yet supported | `TM_CCOEFF` | | [`NormalizedCorrelationCoeff`](@ref) | Not yet supported | `TM_CCOEFF_NORMED` | [^1]: Up to 64 dimensions because of an implementation detail, but this shouldn't be a problem in most cases. ## Installation To install TemplateMatching, use the Julia package manager. As it is not yet registered, use the full url of the repository. Open your Julia command-line interface and run: ```julia using Pkg Pkg.add("https://github.com/mleseach/TemplateMatching.jl") ``` ## Usage Almost everything you need is the function [`match_template`](@ref) and its inplace counterpart [`match_template!`](@ref). Below is a quick start example on how to use the TemplateMatching package to perform template matching: ```julia using TemplateMatching using Images # Load your source image and template source = rand(1000, 1000) template = source[400:500, 100:150] # Perform template matching using square difference result = match_template(source, template, SquareDiff) # Get the best match argmin(result) # CartesianIndex(400, 100) # Perform template matching using normalized correlation coefficient result = match_template(source, template, NormalizedCorrCoeff) # Get the best match argmax(result) # CartesianIndex(400, 100) ```
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.1.2
462f5ce223ccc053ea8240fa30453b20625c7fcc
docs
215
# Functions ```@docs match_template match_template! ``` # Available algorithms ```@docs SquareDiff NormalizedSquareDiff CrossCorrelation NormalizedCrossCorrelation CorrelationCoeff NormalizedCorrelationCoeff ```
TemplateMatching
https://github.com/mleseach/TemplateMatching.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
339
using Documenter, CellularAutomata include("pages.jl") makedocs(; sitename="CellularAutomata.jl", modules=[CellularAutomata], clean=true, doctest=true, linkcheck=true, warnonly=[:missing_docs], pages=pages, ) deploydocs(; repo="github.com/MartinuzziFrancesco/CellularAutomata.jl.git", push_preview=true )
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
374
pages = [ "CellularAutomata.jl" => "index.md", "Examples" => [ "One dimensional CA" => "onedim/onedimensionca.md" "Two dimensional CA" => "twodim/twodimensionca.md" ], "API Documentation" => Any[ "General APIs" => "api/general.md" "One Dimensional CA" => "api/onedim.md" "Two Dimensial CA" => "api/twodim.md" ], ]
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
3558
module CellularAutomata abstract type AbstractRule end abstract type AbstractODRule <: AbstractRule end abstract type AbstractTDRule <: AbstractRule end abstract type AbstractCA end include("dca.jl") include("cca.jl") include("tca.jl") include("life.jl") include("measures.jl") struct CellularAutomaton{F,E} <: AbstractCA generations::Int generation_fun::F evolution::E end """ CellularAutomaton(rule::AbstractODRule, initial_conditions, generations) CellularAutomaton(rule::AbstractTDRule, initial_conditions, generations) Constructs the evolution of a cellular automaton based on a specified rule, initial conditions, and the number of generations to simulate. This function supports both one-dimensional (OD) and two-dimensional (TD) cellular automata, determined by the type of `rule` provided. # Arguments - `rule`: An instance of `AbstractODRule` for one-dimensional cellular automata or `AbstractTDRule` for two-dimensional cellular automata. Defines the evolution rule for the cellular automaton. - `initial_conditions`: An array (for OD) or a matrix (for TD) representing the initial state of the cellular automaton. - `generations`: The number of generations (or time steps) for which the automaton should be evolved. # Usage For a one-dimensional cellular automaton: ```julia rule = DCA(30) # Define or instantiate a one-dimensional rule initial_conditions = [0, 1, 0, 1, 1, 0, 1] # Initial state array generations = 50 # Number of generations to simulate automaton_od = CellularAutomaton(rule, initial_conditions, generations) ``` For a two-dimensional cellular automaton: ```julia rule = Life(((3,), (2, 3))) # Define or instantiate a two-dimensional rule initial_conditions = [ # Initial state matrix [0, 1, 0], [1, 0, 1], [0, 1, 0], ] generations = 50 # Number of generations to simulate automaton_td = CellularAutomaton(rule, initial_conditions, generations) ``` This function constructs a CellularAutomaton instance that encapsulates the entire evolution history of the cellular automaton, according to the provided rule and initial conditions over the specified number of generations. The exact nature of the evolution—whether it is for a one-dimensional or two-dimensional automaton—depends on the type of rule supplied. You can access the evolution by calling the `evolution` field of `CellularAutomaton` ```julia automaton_td.evolution ``` # Notes - The `rule` parameter determines the dimensionality of the cellular automaton. Ensure that your `initial_conditions` and `rule` are compatible in terms of dimensions. """ function CellularAutomaton(rule::AbstractODRule, initial_conditions, generations) evolution = zeros( typeof(initial_conditions[2]), generations, length(initial_conditions) ) evolution[1, :] = initial_conditions for i in 2:generations evolution[i, :] = rule(evolution[i - 1, :]) end return CellularAutomaton(generations, rule, evolution) end function CellularAutomaton(rule::AbstractTDRule, initial_conditions, generations) evolution = zeros( typeof(initial_conditions[2]), size(initial_conditions, 1), size(initial_conditions, 2), generations, ) evolution[:, :, 1] = initial_conditions for i in 2:generations evolution[:, :, i] = rule(evolution[:, :, i - 1]) end return CellularAutomaton(generations, rule, evolution) end export CellularAutomaton export DCA export CCA export TCA export Life export lempel_ziv end # module
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
2275
abstract type AbstractCCARule <: AbstractODRule end struct CCA{T<:Real} <: AbstractCCARule rule::T radius::Int end """ CCA(rule; radius=1) Create a Continuous Cellular Automaton (CCA) object. # Arguments - `rule`: A numeric code defining the evolution rule for the cellular automaton. - `radius` (optional): The radius of the neighborhood around each cell considered for its update at each step. Defaults to `1`. # Returns `CCA`: A `CCA` object initialized with the given rule and radius. # Examples ```julia cca = CCA(0.5) ``` Once created, the `CCA` object can be used to evolve a given starting array of cell states: ```julia cca = CCA(0.45; radius=1) # Initialize with rule 0.45 and default radius starting_array = [0, 1, 0, 1, 0.5, 1] # Initial state next_generation = cca(starting_array) # Evolve to next generation ``` The evolution is determined by the rule applied to the sum of the neighborhood states, normalized by their count, for each cell in the array. """ function CCA(rule::T; radius=1) where {T<:Real} return CCA(rule, radius) end function (cca::CCA)(starting_array::AbstractArray) return nextgen = evolution(starting_array, cca.rule, cca.radius) end function c_state_reader(neighborhood::AbstractArray, radius) return sum(neighborhood) / length(neighborhood) end function evolution(cell::AbstractArray, rule::T, radius::Number) where {T<:Real} neighborhood_size = radius * 2 + 1 output = zeros(length(cell)) cell = vcat( cell[(end - neighborhood_size ÷ 2 + 1):end], cell, cell[1:(neighborhood_size ÷ 2)] ) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = modf( c_state_reader(cell[i:(i + neighborhood_size - 1)], radius) + rule )[1] end return output end function evolution(cell::AbstractArray, rule::T, radius::Tuple) where {T<:Real} neighborhood_size = sum(radius) + 1 output = zeros(length(cell)) cell = vcat( cell[(end - neighborhood_size ÷ 2 + 1):end], cell, cell[1:(neighborhood_size ÷ 2)] ) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = modf( c_state_reader(cell[i:(i + neighborhood_size - 1)], radius) + rule )[1] end return output end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
3007
abstract type AbstractDCARule <: AbstractODRule end struct DCA{T<:Integer,R,P} <: AbstractDCARule rule::T ruleset::R states::Int radius::P end """ DCA(rule; states=2, radius=1) Creates a `DCA` object given a specific rule. It automatically computes the ruleset for the provided rule, number of states, and radius. # Arguments - `rule`: The rule identifier used for the cellular automaton's evolution. - `states` (optional): The number of possible states for each cell. Defaults to 2. - `radius` (optional): The neighborhood radius around each cell considered during the evolution. Defaults to 1. # Usage ```julia dca = DCA(30; states=2, radius=1) # Creates a DCA with rule 30, 2 states, and radius 1. ``` Once instantiated, the `DCA` object can evolve a given starting array of cell states through its callable interface: ```julia dca = DCA(110; states=2, radius=1) # Initialize with rule 110, 2 states, and a radius of 1 starting_array = [0, 1, 0, 1, 1, 0] # Initial state next_generation = dca(starting_array) # Evolve to the next generation ``` """ function DCA(rule::T; states::Int=2, radius=1) where {T<:Integer} ruleset = conversion(rule, states, radius) return DCA(rule, ruleset, states, radius) end function (dca::DCA)(starting_array::AbstractArray) return evolution(starting_array, dca.ruleset, dca.states, dca.radius) end function conversion(rule::T, states::Int, radius::Int) where {T<:Integer} rule_len = states^(2 * radius + 1) rule_bin = parse.(Int, split(string(rule; base=states), "")) rule_bin = vcat(zeros(typeof(rule_bin[1]), rule_len - length(rule_bin)), rule_bin) return reverse!(rule_bin) end function conversion(rule::T, states::Int, radius::Tuple) where {T<:Integer} rule_len = states^(sum(radius) + 1) rule_bin = parse.(Int, split(string(rule; base=states), "")) rule_bin = vcat(zeros(typeof(rule_bin[1]), rule_len - length(rule_bin)), rule_bin) return reverse!(rule_bin) end function state_reader(neighborhood::AbstractArray, states::Int) return parse(Int, join(convert(Array{Int}, neighborhood)); base=states) + 1 #ugly end function evolution(cell::AbstractArray, ruleset, states::Int, radius::Int) neighborhood_size = radius * 2 + 1 output = zeros(length(cell)) cell = vcat( cell[(end - neighborhood_size ÷ 2 + 1):end], cell, cell[1:(neighborhood_size ÷ 2)] ) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = ruleset[state_reader(cell[i:(i + neighborhood_size - 1)], states)] end return output end function evolution(cell::AbstractArray, ruleset, states::Int, radius::Tuple) neighborhood_size = sum(radius) + 1 output = zeros(length(cell))#da qui in poi da modificare cell = vcat(cell[(end - radius[1] + 1):end], cell, cell[1:radius[2]]) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = ruleset[state_reader(cell[i:(i + neighborhood_size - 1)], states)] end return output end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
3379
abstract type AbstractLifeRule <: AbstractTDRule end struct Life{T,A} <: AbstractLifeRule born::T survive::A radius::Int end """ Life(life_description; radius=1) Create a `Life` object to simulate a cellular automaton based on a variation of the Conway's Game of Life, using custom rules for cell birth and survival. The rules are defined using the Golly notation. # Arguments - `life_description`: A tuple of two tuples (`(b, s)`) specifying the birth (`b`) and survival (`s`) rules. + `b`: A tuple containing the numbers of neighbouring cells that cause a dead cell to become alive in the next generation. + `s`: A tuple containing the numbers of neighbouring cells that allow a live cell to remain alive in the next generation. - `radius` (optional): The radius of the neighborhood considered for determining cell fate. Defaults to 1. # Usage ```julia life = Life(((3,), (2, 3)); radius=1) # Initializes Life ``` After instantiation, the `Life` object can be used to evolve a given starting array representing the initial state of the cellular automaton: ```julia # Initialize Life with custom rules: birth if 3 neighbors, survive if 2 or 3 neighbors life = Life(((3,), (2, 3)); radius=1) # Example starting state: a 5x5 grid with a "glider" pattern starting_array = zeros(Int, 5, 5) starting_array[2, 3] = 1 starting_array[3, 4] = 1 starting_array[4, 2:4] = 1 # Compute the next generation next_generation = life(starting_array) ``` """ function Life(life_description::Tuple; radius=1) born, survive = life_description[1], life_description[2] return Life(born, survive, radius) end function (life::Life)(starting_array::AbstractMatrix) return life_evolution(starting_array, life.born, life.survive, life.radius) end function virtual_expansion(starting_array::AbstractMatrix, radius::Int) height, width = size(starting_array) nh, nw = height - radius + 1, width - radius + 1 left = vcat( starting_array[nh:end, nw:end], starting_array[:, nw:end], starting_array[1:radius, nw:end], ) right = vcat( starting_array[nh:end, 1:radius], starting_array[:, 1:radius], starting_array[1:radius, 1:radius], ) middle = vcat(starting_array[nh:end, :], starting_array, starting_array[1:radius, :]) return hcat(left, middle, right) end function life_application(state, born, survive) past_value = state[size(state, 1) ÷ 2 + 1, size(state, 2) ÷ 2 + 1] #save past cell value state[size(state, 1) ÷ 2 + 1, size(state, 2) ÷ 2 + 1] = 0 #past cell value set to zero alive = sum(state) #the sum is the number of cell alive in the neighborhood since the central value is equal to zero if past_value == 1 && alive in survive return 1 elseif past_value == 0 && alive in born return 1 else return 0 end end function life_evolution(starting_array::AbstractMatrix, born, survive, radius) height, width = size(starting_array) output = zeros(typeof(starting_array[2]), height, width) virtual_output = virtual_expansion(starting_array, radius) for i in 1:(height - radius + 1), j in 1:(width - radius + 1) output[i, j] = life_application( virtual_output[i:(i + radius + 1), j:(j + radius + 1)], born, survive ) end return output end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
762
function lempel_ziv_complexity(sequence) sub_strings = Set() n = length(sequence) ind = 1 inc = 1 while true if ind + inc > n break end sub_str = sequence[ind:(ind + inc)] if sub_str in sub_strings inc += 1 else push!(sub_strings, sub_str) ind += inc inc = 1 end end return length(sub_strings) end """ function lempel_ziv(ca::AbstractCA) Computes the lempel ziv complexity of a given Cellular Automaton. """ function lempel_ziv(ca::AbstractCA) ca_size = size(ca.evolution, 1) lz_tot = 0 for i in 1:ca_size lz_tot += lempel_ziv_complexity(ca.evolution[i, :]) end return lz_tot / ca_size end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
3112
abstract type AbstractTCARule <: AbstractDCARule end struct TCA{B,R,T} <: AbstractTCARule code::B codeset::R states::Int radius::T end """ TCA(code; states=2, radius=1) Constructs a Totalistic Cellular Automaton (TCA) with a specified code, number of states, and neighborhood radius. It automatically computes the codeset for the provided code and configuration, which is used for the automaton's evolution. # Arguments - `code`: An integer or string representing the rule code for the automaton's evolution. - `states` (optional): The number of possible states for each cell. Defaults to 2. - `radius` (optional): The neighborhood radius around each cell considered during the evolution. Defaults to 1. # Usage ```julia tca = TCA(30; states=2, radius=1) # Creates a TCA with rule code 30, 2 states, and radius 1. ``` After instantiation, the `TCA` object can be used to evolve a given starting array of cell states: ```julia # Initialize TCA with a specific code, default states, and radius tca = TCA(102; states=3, radius=1) # Example starting state: a 1D array of cells starting_array = [0, 2, 1, 0, 1, 2] # Compute the next generation next_generation = tca(starting_array) ``` """ function TCA(code; states=2, radius=1) codeset = tca_conversion(code, states, radius) return TCA(code, codeset, states, radius) end function (tca::TCA)(starting_array::AbstractArray) return nextgen = tca_evolution(starting_array, tca.codeset, tca.states, tca.radius) end function tca_conversion(code, states, radius::Number) code_len = (2 * radius + 1) * states - 2 code_bin = parse.(Int, split(string(code; base=states), "")) code_bin = vcat(zeros(typeof(code_bin[1]), code_len - length(code_bin)), code_bin) return reverse!(code_bin) end function tca_conversion(code, states, radius::Tuple) code_len = (sum(radius) + 1) * states - 2 code_bin = parse.(Int, split(string(code; base=states), "")) code_bin = vcat(zeros(typeof(code_bin[1]), code_len - length(code_bin)), code_bin) return reverse!(code_bin) end function tca_state_reader(neighborhood::AbstractArray, codeset_len) return mod1(sum(neighborhood) + 1, codeset_len) end function tca_evolution(cell::AbstractArray, codeset, states, radius::Number) neighborhood_size = radius * 2 + 1 output = zeros(length(cell)) cell = vcat( cell[(end - neighborhood_size ÷ 2 + 1):end], cell, cell[1:(neighborhood_size ÷ 2)] ) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = codeset[tca_state_reader( cell[i:(i + neighborhood_size - 1)], length(codeset) )] end return output end function tca_evolution(cell::AbstractArray, codeset, states, radius::Tuple) neighborhood_size = sum(radius) + 1 output = zeros(length(cell)) cell = vcat(cell[(end - radius[1] + 1):end], cell, cell[1:radius[2]]) for i in 1:(length(cell) - neighborhood_size + 1) output[i] = codeset[tca_state_reader( cell[i:(i + neighborhood_size - 1)], length(codeset) )] end return output end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
415
using CellularAutomata const gens = 3 blinker = [[0, 0, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 1, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 0, 0]] ca = CellularAutomaton(Life((3, (2, 3))), blinker, gens) @test ca.evolution == cat( [0 0 0 0 0; 0 0 0 0 0; 0 1 1 1 0; 0 0 0 0 0; 0 0 0 0 0], [0 0 0 0 0; 0 0 1 0 0; 0 0 1 0 0; 0 0 1 0 0; 0 0 0 0 0], [0 0 0 0 0; 0 0 0 0 0; 0 1 1 1 0; 0 0 0 0 0; 0 0 0 0 0]; dims=3, )
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
278
using CellularAutomata, Random Random.seed!(42) const radius = 1 const generations = 10 const ncells = 11 const starting_val = rand(ncells) const rule = 0.05 ca = ca = CellularAutomaton(CCA(rule), starting_val, generations) @test size(ca.evolution) == (generations, ncells)
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
571
using CellularAutomata, Random Random.seed!(42) const states = 4 const radius = 1 const generations = 10 const ncells = 11 const starting_array = rand(0:(states - 1), ncells) const rule = 107396 #testing states > 2 ca = CellularAutomaton(DCA(rule; states=states), starting_array, generations) @test size(ca.evolution) == (generations, ncells) #testing states == 2 const bstates = 2 const brule = 110 const bstarting_array = rand(Bool, ncells) bca = ca = CellularAutomaton(DCA(brule), bstarting_array, generations) @test size(bca.evolution) == (generations, ncells)
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
552
using CellularAutomata const rule0 = DCA(0) @test rule0.ruleset == [0, 0, 0, 0, 0, 0, 0, 0] #http://atlas.wolfram.com/01/01/0/ const rule1 = DCA(1) @test rule1.ruleset == [1, 0, 0, 0, 0, 0, 0, 0] #http://atlas.wolfram.com/01/01/1/ const rule2 = DCA(2) @test rule2.ruleset == [0, 1, 0, 0, 0, 0, 0, 0] #http://atlas.wolfram.com/01/01/2/ const rule3 = DCA(3) @test rule3.ruleset == [1, 1, 0, 0, 0, 0, 0, 0] #http://atlas.wolfram.com/01/01/2/ const rule30 = DCA(30) @test rule30.ruleset == [0, 1, 1, 1, 1, 0, 0, 0] #http://atlas.wolfram.com/01/01/30/
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
735
using CellularAutomata const size_space = 6 const gens = 5 glider = [[0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 1, 1, 1, 0]] space = zeros(Bool, size_space, size_space) space[1:size(glider, 1), 1:size(glider, 2)] = glider ca = CellularAutomaton(Life((3, (2, 3))), space, gens) @test ca.evolution == cat( [0 0 0 0 0 0; 0 0 1 0 0 0; 1 0 1 0 0 0; 0 1 1 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0], [0 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 1 0 0; 0 1 1 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0], [0 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 0 1 1 1 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0], [0 0 0 0 0 0; 0 0 0 0 0 0; 0 1 0 1 0 0; 0 0 1 1 0 0; 0 0 1 0 0 0; 0 0 0 0 0 0], [0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 1 0 0; 0 1 0 1 0 0; 0 0 1 1 0 0; 0 0 0 0 0 0]; dims=3, )
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
128
using CellularAutomata using Aqua: Aqua Aqua.test_all(CellularAutomata; ambiguities=false, deps_compat=(check_extras = false))
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
680
using Test using SafeTestsets @safetestset "Quality Assurance" begin include("qa.jl") end @testset "DCA" begin @safetestset "Size tests" begin include("dca_test.jl") end @safetestset "ECA ruleset tests" begin include("eca_ruleset_test.jl") end end @testset "TCA" begin @safetestset "Size tests" begin include("tca_test.jl") end end @testset "CCA" begin @safetestset "Size tests" begin include("cca_test.jl") end end @testset "Life-like" begin @safetestset "Life glider" begin include("glider_test.jl") end @safetestset "Life blinker" begin include("blinker_test.jl") end end
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
code
577
using CellularAutomata, Random Random.seed!(42) const states = 4 const radius = 1 const generations = 10 const ncells = 11 const starting_array = rand(0:(states - 1), ncells) const rule = 107396 #testing states > 2 ca = CellularAutomaton(DCA(rule; states=states), starting_array, generations) @test size(ca.evolution) == (generations, ncells) #= #testing states == 2 const bstates = 2 const brule = 110 const bstarting_array = rand(Bool, ncells) bca = ca = CellularAutomaton(DCA(brule), bstarting_array, generations) @test size(bca.evolution) == (generations, ncells) =#
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git
[ "MIT" ]
0.0.5
5ba5cdf37fb2104dd6a653b20be82b0ceb13888b
docs
11437
# CellularAutomata.jl <p align="center"> <img width="400px" src="docs/src/assets/logo.png"/> </p> | **Documentation** | **Build Status** | **Julia** | **Testing** | **DOI** | |:-----------------:|:----------------:|:---------:|:-----------:|:-------:| | [![docs][docs-img]][docs-url] | [![CI][ci-img]][ci-url] [![codecov][cc-img]][cc-url] | [![Julia][julia-img]][julia-url] [![Code Style: Blue][style-img]][style-url] | [![Aqua QA][aqua-img]][aqua-url] | [![DOI][doi-img]][doi-url] [docs-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-url]: [https://awesome-spectral-indices.github.io/SpectralIndices.jl/dev/](https://martinuzzifrancesco.github.io/CellularAutomata.jl/dev/) [ci-img]: https://github.com/MartinuzziFrancesco/CellularAutomata.jl/actions/workflows/CI.yml/badge.svg [ci-url]: https://github.com/MartinuzziFrancesco/CellularAutomata.jl/actions/workflows/CI.yml [cc-img]: https://codecov.io/gh/MartinuzziFrancesco/CellularAutomata.jl/coverage.svg?branch=master [cc-url]: https://codecov.io/gh/MartinuzziFrancesco/CellularAutomata.jl?branch=master [julia-img]: https://img.shields.io/badge/julia-v1.9+-blue.svg [julia-url]: https://julialang.org/ [style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg [style-url]: https://github.com/invenia/BlueStyle [aqua-img]: https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg [aqua-url]: https://github.com/JuliaTesting/Aqua.jl [doi-img]: https://zenodo.org/badge/244027385.svg [doi-url]: https://zenodo.org/badge/latestdoi/244027385 ## Installation CellularAutomata.jl is registered on the general registry. For the installation follow: ```julia julia> using Pkg julia> Pkg.add("CellularAutomata") ``` or, if you prefer: ```julia julia> using Pkg julia> Pkg.add("https://github.com/MartinuzziFrancesco/CellularAutomata.jl") ``` ## Discrete Cellular Automata The package offers creation of all the cellular automata described in A New Kind of Science by Wolfram, and the rules for the creation are labelled as in the book. We will recreate some of the examples that can be found in the [wolfram atlas](http://atlas.wolfram.com/TOC/TOC_200.html) both for elementary and totalistic cellular automata. ### Elementary Cellular Automata Elementary Cellular Automata (ECA) have a radius of one and can be in only two possible states. Here we show a couple of examples: [Rule 18](http://atlas.wolfram.com/01/01/18/) ```julia using CellularAutomata, Plots states = 2 radius = 1 generations = 50 ncells = 111 starting_val = zeros(Bool, ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 18 ca = CellularAutomaton(DCA(rule), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![dca18](https://user-images.githubusercontent.com/10376688/75625854-4a816b00-5bc2-11ea-8337-9132553cd38b.png) [Rule 30](http://atlas.wolfram.com/01/01/30/) ```julia using CellularAutomata, Plots states = 2 radius = 1 generations = 50 ncells = 111 starting_val = zeros(Bool, ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 30 ca = CellularAutomaton(DCA(rule), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![dca30](https://user-images.githubusercontent.com/10376688/75625882-874d6200-5bc2-11ea-904a-e6658aab8403.png) ### General Cellular Automata General Cellular Automata have the same rule of ECA but they can have a radius larger than unity and/or a number of states greater than two. Here are provided examples for every possible permutation, starting with a Cellular Automaton with 3 states. [Rule 7110222193934](https://www.wolframalpha.com/input/?i=rule+7%2C110%2C222%2C193%2C934+k%3D3&lk=3) ```julia using CellularAutomata, Plots states = 3 radius = 1 generations = 50 ncells = 111 starting_val = zeros(ncells) starting_val[Int(floor(ncells/2)+1)] = 2 rule = 7110222193934 ca = CellularAutomaton(DCA(rule,states=states,radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false, size=(ncells*10, generations*10)) ``` ![dca7110222193934](https://user-images.githubusercontent.com/10376688/137601771-3ee335ab-4334-4250-9a48-679b206009be.png) The following examples shows a Cellular Automaton with radius=2, with two only possible states: [Rule 1388968789](https://www.wolframalpha.com/input/?i=rule+1%2C388%2C968%2C789+r%3D2&lk=3) ```julia using CellularAutomata, Plots states = 2 radius = 2 generations = 30 ncells = 111 starting_val = zeros(ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 1388968789 ca = CellularAutomaton(DCA(rule,states=states,radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false, size=(ncells*10, generations*10)) ``` ![dca1388968789](https://user-images.githubusercontent.com/10376688/137601749-3ccfe90d-b847-4401-93a5-076db48b5954.png) And finally, three states with a radius equal to two: [Rule 914752986721674989234787899872473589234512347899](https://www.wolframalpha.com/input/?i=CA+k%3D3+r%3D2+rule+914752986721674989234787899872473589234512347899&lk=3) ```julia using CellularAutomata, Plots states = 3 radius = 2 generations = 30 ncells = 111 starting_val = zeros(ncells) starting_val[Int(floor(ncells/2)+1)] = 2 rule = 914752986721674989234787899872473589234512347899 ca = CellularAutomaton(DCA(rule,states=states,radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false, size=(ncells*10, generations*10)) ``` ![dca914752986721674989234787899872473589234512347899](https://user-images.githubusercontent.com/10376688/137601733-aabc0b7b-8769-474b-885a-1e9d90c62696.png) It is also possible to specify asymmetric neighborhoods, giving a tuple to the kwarg detailing the number of neighbors to considerate at the left and right of the cell: [Rule 1235](https://www.wolframalpha.com/input/?i=radius+3%2F2+rule+1235&lk=3) ```julia using CellularAutomata, Plots states = 2 radius = (2,1) generations = 30 ncells = 111 starting_val = zeros(ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 1235 ca = CellularAutomaton(DCA(rule,states=states,radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false, size=(ncells*10, generations*10)) ``` ![dca1235](https://user-images.githubusercontent.com/10376688/137601708-7f204735-eba0-4b83-8b65-cc4d0ceb0fb6.png) ### Totalistic Cellular Automata Totalistic Cellular Automata takes the sum of the neighborhood to calculate the value of the next step. [Rule 1635](http://atlas.wolfram.com/01/02/1635/) ```julia using CellularAutomata, Plots states = 3 radius = 1 generations = 50 ncells = 111 starting_val = zeros(Integer, ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 1635 ca = CellularAutomaton(TCA(rule, states=states), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![dca1635](https://user-images.githubusercontent.com/10376688/75628258-7eb35680-5bd7-11ea-81c5-b95b25f1369d.png) [Rule 107398](http://atlas.wolfram.com/01/03/107398/) ```julia using CellularAutomata, Plots states = 4 radius = 1 generations = 50 ncells = 111 starting_val = zeros(Integer, ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 107398 ca = CellularAutomaton(TCA(rule, states=states), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![dca107398](https://user-images.githubusercontent.com/10376688/75628292-cd60f080-5bd7-11ea-93c7-66277b0b6bd6.png) Here are some results for a bigger radius, using a radius of 2 as an example. [Rule 53](http://atlas.wolfram.com/01/06/Rules/53/index.html#01_06_9_53) ```julia using CellularAutomata, Plots states = 2 radius = 2 generations = 50 ncells = 111 starting_val = zeros(Integer, ncells) starting_val[Int(floor(ncells/2)+1)] = 1 rule = 53 ca = CellularAutomaton(TCA(rule, radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![dca53r2](https://user-images.githubusercontent.com/10376688/136658595-0c860395-9a0d-4df2-ac4d-2ed85bd2927c.png) ## Continuous Cellular Automata Continuous Cellular Automata work in the same way as the totalistic but with real values. The examples are taken from the already mentioned book [NKS](https://www.wolframscience.com/nks/p159--continuous-cellular-automata/). Rule 0.025 ```julia using CellularAutomata, Plots generations = 50 ncells = 111 starting_val = zeros(Float64, ncells) starting_val[Int(floor(ncells/2)+1)] = 1.0 rule = 0.025 ca = CellularAutomaton(CCA(rule), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![cca0025](https://user-images.githubusercontent.com/10376688/75628344-5f68f900-5bd8-11ea-8941-892c14036f37.png) Rule 0.2 ```julia using CellularAutomata, Plots radius = 1 generations = 50 ncells = 111 starting_val = zeros(Float64, ncells) starting_val[Int(floor(ncells/2)+1)] = 1.0 rule = 0.2 ca = CellularAutomaton(CCA(rule, radius=radius), starting_val, generations) heatmap(ca.evolution, yflip=true, c=cgrad([:white, :black]), legend = :none, axis=false, ticks=false) ``` ![cca02](https://user-images.githubusercontent.com/10376688/75628407-ed44e400-5bd8-11ea-95c4-d7a5a569923c.png) ## Game of Life This package can also reproduce Conway's Game of Life, and any variation based on it. The ```Life()``` function takes in a tuple containing the number of neighbors that will gave birth to a new cell, or that will make an existing cell survive. (For example in the Conways's Life the tuple (3, (2,3)) indicates having 3 live neighbors will give birth to an otherwise dead cell, and having either 2 or 3 lie neighbors will make an alive cell continue living.) The implementation follows the [Golly](http://golly.sourceforge.net/Help/changes.html) notation. This script reproduces the famous glider: ```julia using CellularAutomata, Plots glider = [[0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 1, 1, 1, 0]] space = zeros(Bool, 30, 30) insert = 1 space[insert:insert+size(glider, 1)-1, insert:insert+size(glider, 2)-1] = glider gens = 100 space_gliding = CellularAutomaton(Life((3, (2,3))), space, gens) anim = @animate for i = 1:gens heatmap(space_gliding.evolution[:,:,i], yflip=true, c=cgrad([:white, :black]), legend = :none, size=(1080,1080), axis=false, ticks=false) end gif(anim, "glider.gif", fps = 15) ``` ![glider](https://user-images.githubusercontent.com/10376688/137601901-97940211-f6e7-4ab1-9eee-325165000fd4.gif)
CellularAutomata
https://github.com/MartinuzziFrancesco/CellularAutomata.jl.git