modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
sd-concepts-library/towerplace
sd-concepts-library
2022-09-20T03:35:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T01:37:57Z
--- license: mit --- ### TowerPlace on Stable Diffusion This is the `<TowerPlace>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<TowerPlace> 0](https://huggingface.co/sd-concepts-library/towerplace/resolve/main/concept_images/0.jpeg) ![<TowerPlace> 1](https://huggingface.co/sd-concepts-library/towerplace/resolve/main/concept_images/1.jpeg) ![<TowerPlace> 2](https://huggingface.co/sd-concepts-library/towerplace/resolve/main/concept_images/2.jpeg) ![<TowerPlace> 3](https://huggingface.co/sd-concepts-library/towerplace/resolve/main/concept_images/3.jpeg) ![<TowerPlace> 4](https://huggingface.co/sd-concepts-library/towerplace/resolve/main/concept_images/4.jpeg)
Ricardmc99/q-Taxi-v3
Ricardmc99
2022-09-20T02:54:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T02:54:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Ricardmc99/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ricardmc99/q-FrozenLake-v1-4x4-noSlippery
Ricardmc99
2022-09-20T02:45:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T02:45:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Ricardmc99/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
rram12/q-FrozenLake-v1-4x4-noSlippery
rram12
2022-09-20T02:26:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T02:26:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rram12/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
weirdguitarist/wav2vec2-base-stac-local
weirdguitarist
2022-09-20T01:58:36Z
19
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-13T10:27:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-stac-local results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-stac-local This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9746 - Wer: 0.7828 - Cer: 0.3202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.0603 | 1.0 | 2369 | 2.1282 | 0.9517 | 0.5485 | | 1.6155 | 2.0 | 4738 | 1.6196 | 0.9060 | 0.4565 | | 1.3462 | 3.0 | 7107 | 1.4331 | 0.8379 | 0.3983 | | 1.1819 | 4.0 | 9476 | 1.3872 | 0.8233 | 0.3717 | | 1.0189 | 5.0 | 11845 | 1.4066 | 0.8328 | 0.3660 | | 0.9026 | 6.0 | 14214 | 1.3502 | 0.8198 | 0.3508 | | 0.777 | 7.0 | 16583 | 1.3016 | 0.7922 | 0.3433 | | 0.7109 | 8.0 | 18952 | 1.2662 | 0.8302 | 0.3510 | | 0.6766 | 9.0 | 21321 | 1.4321 | 0.8103 | 0.3368 | | 0.6078 | 10.0 | 23690 | 1.3592 | 0.7871 | 0.3360 | | 0.5958 | 11.0 | 26059 | 1.4389 | 0.7819 | 0.3397 | | 0.5094 | 12.0 | 28428 | 1.3391 | 0.8017 | 0.3239 | | 0.4567 | 13.0 | 30797 | 1.4718 | 0.8026 | 0.3347 | | 0.4448 | 14.0 | 33166 | 1.7450 | 0.8043 | 0.3424 | | 0.3976 | 15.0 | 35535 | 1.4581 | 0.7888 | 0.3283 | | 0.3449 | 16.0 | 37904 | 1.5688 | 0.8078 | 0.3397 | | 0.3046 | 17.0 | 40273 | 1.8630 | 0.8060 | 0.3448 | | 0.2983 | 18.0 | 42642 | 1.8400 | 0.8190 | 0.3425 | | 0.2728 | 19.0 | 45011 | 1.6726 | 0.8034 | 0.3280 | | 0.2579 | 20.0 | 47380 | 1.6661 | 0.8138 | 0.3249 | | 0.2169 | 21.0 | 49749 | 1.7389 | 0.8138 | 0.3277 | | 0.2498 | 22.0 | 52118 | 1.7205 | 0.7948 | 0.3207 | | 0.1831 | 23.0 | 54487 | 1.8641 | 0.8103 | 0.3229 | | 0.1927 | 24.0 | 56856 | 1.8724 | 0.7784 | 0.3251 | | 0.1649 | 25.0 | 59225 | 1.9187 | 0.7974 | 0.3277 | | 0.1594 | 26.0 | 61594 | 1.9022 | 0.7828 | 0.3220 | | 0.1338 | 27.0 | 63963 | 1.9303 | 0.7862 | 0.3212 | | 0.1441 | 28.0 | 66332 | 1.9528 | 0.7845 | 0.3207 | | 0.129 | 29.0 | 68701 | 1.9676 | 0.7819 | 0.3212 | | 0.1169 | 30.0 | 71070 | 1.9746 | 0.7828 | 0.3202 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
rram12/ppo-lunarlander
rram12
2022-09-20T00:53:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T00:52:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.68 +/- 20.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/wojaks-now
sd-concepts-library
2022-09-20T00:19:17Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-20T00:19:10Z
--- license: mit --- ### wojaks-now on Stable Diffusion This is the `<red-wojak>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<red-wojak> 0](https://huggingface.co/sd-concepts-library/wojaks-now/resolve/main/concept_images/0.jpeg) ![<red-wojak> 1](https://huggingface.co/sd-concepts-library/wojaks-now/resolve/main/concept_images/1.jpeg) ![<red-wojak> 2](https://huggingface.co/sd-concepts-library/wojaks-now/resolve/main/concept_images/2.jpeg)
sd-concepts-library/shiny-polyman
sd-concepts-library
2022-09-19T23:57:20Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T23:57:09Z
--- license: mit --- ### Shiny polyman on Stable Diffusion This is the `<shiny-polyman>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<shiny-polyman> 0](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/0.jpeg) ![<shiny-polyman> 1](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/4.jpeg) ![<shiny-polyman> 2](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/1.jpeg) ![<shiny-polyman> 3](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/3.jpeg) ![<shiny-polyman> 4](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/2.jpeg)
SandraB/mt5-small-mlsum_training_sample
SandraB
2022-09-19T23:36:24Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-09-19T13:17:26Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-small-mlsum_training_sample results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum config: de split: train args: de metrics: - name: Rouge1 type: rouge value: 28.2078 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-mlsum_training_sample This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.9727 - Rouge1: 28.2078 - Rouge2: 19.0712 - Rougel: 26.2267 - Rougelsum: 26.9462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.3193 | 1.0 | 6875 | 2.1352 | 25.8941 | 17.4672 | 24.2858 | 24.924 | | 1.2413 | 2.0 | 13750 | 2.0528 | 26.6221 | 18.1166 | 24.8233 | 25.5111 | | 1.1844 | 3.0 | 20625 | 1.9783 | 27.0518 | 18.3457 | 25.2288 | 25.8919 | | 1.0403 | 4.0 | 27500 | 1.9487 | 27.8154 | 18.9701 | 25.9435 | 26.6578 | | 0.9582 | 5.0 | 34375 | 1.9374 | 27.6863 | 18.7723 | 25.7667 | 26.4694 | | 0.8992 | 6.0 | 41250 | 1.9353 | 27.8959 | 18.919 | 26.0434 | 26.7262 | | 0.8109 | 7.0 | 48125 | 1.9492 | 28.0644 | 18.8873 | 26.0628 | 26.757 | | 0.7705 | 8.0 | 55000 | 1.9727 | 28.2078 | 19.0712 | 26.2267 | 26.9462 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Isaacp/xlm-roberta-base-finetuned-panx-de-fr
Isaacp
2022-09-19T23:18:16Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T21:55:15Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - F1: 0.8599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2897 | 1.0 | 715 | 0.1759 | 0.8369 | | 0.1462 | 2.0 | 1430 | 0.1587 | 0.8506 | | 0.0931 | 3.0 | 2145 | 0.1637 | 0.8599 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/kawaii-colors
sd-concepts-library
2022-09-19T23:08:01Z
0
26
null
[ "license:mit", "region:us" ]
null
2022-09-15T20:07:40Z
--- license: mit --- ### Kawaii Colors on Stable Diffusion This is the `<kawaii-colors-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kawaii-colors-style 0](https://huggingface.co/sd-concepts-library/kawaii-colors/resolve/main/concept_images/0.jpeg) ![<kawaii-colors-style 1](https://huggingface.co/sd-concepts-library/kawaii-colors/resolve/main/concept_images/3.jpeg) ![<kawaii-colors-style 2](https://huggingface.co/sd-concepts-library/kawaii-colors/resolve/main/concept_images/1.jpeg) ![<kawaii-colors-style 3](https://huggingface.co/sd-concepts-library/kawaii-colors/resolve/main/concept_images/2.jpeg) ![<kawaii-colors-style 4](https://huggingface.co/sd-concepts-library/kawaii-colors/resolve/main/concept_images/4.jpeg)
sd-concepts-library/overprettified
sd-concepts-library
2022-09-19T22:12:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T22:12:02Z
--- license: mit --- ### overprettified on Stable Diffusion This is the `<overprettified>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<overprettified> 0](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/10.jpeg) ![<overprettified> 1](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/9.jpeg) ![<overprettified> 2](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/6.jpeg) ![<overprettified> 3](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/5.jpeg) ![<overprettified> 4](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/11.jpeg) ![<overprettified> 5](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/0.jpeg) ![<overprettified> 6](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/12.jpeg) ![<overprettified> 7](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/7.jpeg) ![<overprettified> 8](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/4.jpeg) ![<overprettified> 9](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/8.jpeg) ![<overprettified> 10](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/1.jpeg) ![<overprettified> 11](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/3.jpeg) ![<overprettified> 12](https://huggingface.co/sd-concepts-library/overprettified/resolve/main/concept_images/2.jpeg)
Isaacp/xlm-roberta-base-finetuned-panx-de
Isaacp
2022-09-19T21:44:18Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T21:21:23Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.861006932605978 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1397 - F1: 0.8610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2663 | 1.0 | 525 | 0.1628 | 0.8273 | | 0.1338 | 2.0 | 1050 | 0.1457 | 0.8396 | | 0.0844 | 3.0 | 1575 | 0.1397 | 0.8610 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated
research-backup
2022-09-19T21:43:02Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-17T04:16:44Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8758333333333334 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6978609625668449 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7002967359050445 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8171206225680934 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.954 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7017543859649122 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6782407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9228567123700467 - name: F1 (macro) type: f1_macro value: 0.9181948193231166 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.862206572769953 - name: F1 (macro) type: f1_macro value: 0.709511061556657 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6782231852654388 - name: F1 (macro) type: f1_macro value: 0.6681046248112636 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9577797871600473 - name: F1 (macro) type: f1_macro value: 0.8797850563531711 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9034785333751175 - name: F1 (macro) type: f1_macro value: 0.9016285634954788 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6978609625668449 - Accuracy on SAT: 0.7002967359050445 - Accuracy on BATS: 0.8171206225680934 - Accuracy on U2: 0.7017543859649122 - Accuracy on U4: 0.6782407407407407 - Accuracy on Google: 0.954 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9228567123700467 - Micro F1 score on CogALexV: 0.862206572769953 - Micro F1 score on EVALution: 0.6782231852654388 - Micro F1 score on K&H+N: 0.9577797871600473 - Micro F1 score on ROOT09: 0.9034785333751175 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8758333333333334 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated
research-backup
2022-09-19T21:31:09Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-15T21:58:57Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8490079365079365 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6256684491978609 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6379821958456974 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7354085603112841 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.882 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6403508771929824 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6273148148148148 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.926020792526744 - name: F1 (macro) type: f1_macro value: 0.9203622322435366 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8514084507042253 - name: F1 (macro) type: f1_macro value: 0.6818973595530592 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6868905742145178 - name: F1 (macro) type: f1_macro value: 0.6727836285482613 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.955762676497183 - name: F1 (macro) type: f1_macro value: 0.8743237384020923 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.898464431212786 - name: F1 (macro) type: f1_macro value: 0.8965223263877973 --- # relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6256684491978609 - Accuracy on SAT: 0.6379821958456974 - Accuracy on BATS: 0.7354085603112841 - Accuracy on U2: 0.6403508771929824 - Accuracy on U4: 0.6273148148148148 - Accuracy on Google: 0.882 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.926020792526744 - Micro F1 score on CogALexV: 0.8514084507042253 - Micro F1 score on EVALution: 0.6868905742145178 - Micro F1 score on K&H+N: 0.955762676497183 - Micro F1 score on ROOT09: 0.898464431212786 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8490079365079365 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated
research-backup
2022-09-19T21:20:17Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-14T23:37:25Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.888095238095238 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6283422459893048 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.629080118694362 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7959977765425236 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.92 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5701754385964912 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6134259259259259 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9172819044749133 - name: F1 (macro) type: f1_macro value: 0.9134777544987239 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8516431924882629 - name: F1 (macro) type: f1_macro value: 0.6909836328773065 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6738894907908992 - name: F1 (macro) type: f1_macro value: 0.6623942225782876 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9517284551714544 - name: F1 (macro) type: f1_macro value: 0.8593035416288995 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9000313381385145 - name: F1 (macro) type: f1_macro value: 0.8976663712913519 --- # relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6283422459893048 - Accuracy on SAT: 0.629080118694362 - Accuracy on BATS: 0.7959977765425236 - Accuracy on U2: 0.5701754385964912 - Accuracy on U4: 0.6134259259259259 - Accuracy on Google: 0.92 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9172819044749133 - Micro F1 score on CogALexV: 0.8516431924882629 - Micro F1 score on EVALution: 0.6738894907908992 - Micro F1 score on K&H+N: 0.9517284551714544 - Micro F1 score on ROOT09: 0.9000313381385145 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.888095238095238 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated
research-backup
2022-09-19T21:08:47Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-14T00:41:39Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.840515873015873 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6818181818181818 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.685459940652819 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8076709282934964 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.94 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6388888888888888 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9281301792978756 - name: F1 (macro) type: f1_macro value: 0.9254620165261186 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8856807511737088 - name: F1 (macro) type: f1_macro value: 0.7505936116426153 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7210184182015169 - name: F1 (macro) type: f1_macro value: 0.707381518416115 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9625791194268624 - name: F1 (macro) type: f1_macro value: 0.8830231594217628 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9207145095581323 - name: F1 (macro) type: f1_macro value: 0.9189981669115016 --- # relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6818181818181818 - Accuracy on SAT: 0.685459940652819 - Accuracy on BATS: 0.8076709282934964 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6388888888888888 - Accuracy on Google: 0.94 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9281301792978756 - Micro F1 score on CogALexV: 0.8856807511737088 - Micro F1 score on EVALution: 0.7210184182015169 - Micro F1 score on K&H+N: 0.9625791194268624 - Micro F1 score on ROOT09: 0.9207145095581323 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.840515873015873 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 25 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated
research-backup
2022-09-19T21:04:57Z
95
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-13T17:13:38Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7792857142857142 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.553475935828877 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5578635014836796 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6909394107837687 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.836 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5043859649122807 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5254629629629629 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9249660991411782 - name: F1 (macro) type: f1_macro value: 0.9197953117418775 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8671361502347418 - name: F1 (macro) type: f1_macro value: 0.7069093285623891 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6917659804983749 - name: F1 (macro) type: f1_macro value: 0.6801085174277005 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9645962300897266 - name: F1 (macro) type: f1_macro value: 0.9019275591441719 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8968975242870574 - name: F1 (macro) type: f1_macro value: 0.8958380600988481 --- # relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.553475935828877 - Accuracy on SAT: 0.5578635014836796 - Accuracy on BATS: 0.6909394107837687 - Accuracy on U2: 0.5043859649122807 - Accuracy on U4: 0.5254629629629629 - Accuracy on Google: 0.836 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9249660991411782 - Micro F1 score on CogALexV: 0.8671361502347418 - Micro F1 score on EVALution: 0.6917659804983749 - Micro F1 score on K&H+N: 0.9645962300897266 - Micro F1 score on ROOT09: 0.8968975242870574 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7792857142857142 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/joe-mad
sd-concepts-library
2022-09-19T20:51:56Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-19T20:51:52Z
--- license: mit --- ### Joe Mad on Stable Diffusion This is the `<joe-mad>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<joe-mad> 0](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/3.jpeg) ![<joe-mad> 1](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/0.jpeg) ![<joe-mad> 2](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/1.jpeg) ![<joe-mad> 3](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/2.jpeg)
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated
research-backup
2022-09-19T20:49:24Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-11T19:39:08Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7637698412698413 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5133689839572193 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.516320474777448 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5958866036687048 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.748 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5231481481481481 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025161970769926 - name: F1 (macro) type: f1_macro value: 0.8979165451427438 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8328638497652581 - name: F1 (macro) type: f1_macro value: 0.6469572777603673 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6630552546045504 - name: F1 (macro) type: f1_macro value: 0.6493250582245075 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9562495652778744 - name: F1 (macro) type: f1_macro value: 0.8695137253747418 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8906298965841429 - name: F1 (macro) type: f1_macro value: 0.8885946595123109 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5133689839572193 - Accuracy on SAT: 0.516320474777448 - Accuracy on BATS: 0.5958866036687048 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.5231481481481481 - Accuracy on Google: 0.748 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9025161970769926 - Micro F1 score on CogALexV: 0.8328638497652581 - Micro F1 score on EVALution: 0.6630552546045504 - Micro F1 score on K&H+N: 0.9562495652778744 - Micro F1 score on ROOT09: 0.8906298965841429 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7637698412698413 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated
research-backup
2022-09-19T20:37:42Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-10T17:17:52Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8167460317460318 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.516042780748663 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5281899109792285 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.632017787659811 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.724 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4342105263157895 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5069444444444444 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9034202199789061 - name: F1 (macro) type: f1_macro value: 0.893273397921436 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8342723004694835 - name: F1 (macro) type: f1_macro value: 0.6453699846432566 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6581798483206934 - name: F1 (macro) type: f1_macro value: 0.640639393261134 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9604228976838005 - name: F1 (macro) type: f1_macro value: 0.8814339609725079 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8909432779692886 - name: F1 (macro) type: f1_macro value: 0.8914692333897629 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.516042780748663 - Accuracy on SAT: 0.5281899109792285 - Accuracy on BATS: 0.632017787659811 - Accuracy on U2: 0.4342105263157895 - Accuracy on U4: 0.5069444444444444 - Accuracy on Google: 0.724 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9034202199789061 - Micro F1 score on CogALexV: 0.8342723004694835 - Micro F1 score on EVALution: 0.6581798483206934 - Micro F1 score on K&H+N: 0.9604228976838005 - Micro F1 score on ROOT09: 0.8909432779692886 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8167460317460318 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated
research-backup
2022-09-19T20:34:07Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-10T08:32:21Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7367857142857143 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3342245989304813 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33827893175074186 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3968871595330739 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.592 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3201754385964912 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3125 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9022148561096881 - name: F1 (macro) type: f1_macro value: 0.8962429050248129 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8049295774647888 - name: F1 (macro) type: f1_macro value: 0.6122481358269966 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.652762730227519 - name: F1 (macro) type: f1_macro value: 0.6101323743101166 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9603533421437018 - name: F1 (macro) type: f1_macro value: 0.8709644325592566 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8874960827326857 - name: F1 (macro) type: f1_macro value: 0.8864394662565577 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3342245989304813 - Accuracy on SAT: 0.33827893175074186 - Accuracy on BATS: 0.3968871595330739 - Accuracy on U2: 0.3201754385964912 - Accuracy on U4: 0.3125 - Accuracy on Google: 0.592 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9022148561096881 - Micro F1 score on CogALexV: 0.8049295774647888 - Micro F1 score on EVALution: 0.652762730227519 - Micro F1 score on K&H+N: 0.9603533421437018 - Micro F1 score on ROOT09: 0.8874960827326857 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7367857142857143 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 1 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated
research-backup
2022-09-19T20:14:34Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-07T21:38:26Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8544444444444445 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6524064171122995 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6498516320474778 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7509727626459144 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.902 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6271929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.625 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9246647581738737 - name: F1 (macro) type: f1_macro value: 0.9201116139693363 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8826291079812206 - name: F1 (macro) type: f1_macro value: 0.74506786895136 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7172264355362946 - name: F1 (macro) type: f1_macro value: 0.703292242462215 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9616748974055783 - name: F1 (macro) type: f1_macro value: 0.8934154139843127 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9094327796928863 - name: F1 (macro) type: f1_macro value: 0.906471425124189 --- # relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6524064171122995 - Accuracy on SAT: 0.6498516320474778 - Accuracy on BATS: 0.7509727626459144 - Accuracy on U2: 0.6271929824561403 - Accuracy on U4: 0.625 - Accuracy on Google: 0.902 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9246647581738737 - Micro F1 score on CogALexV: 0.8826291079812206 - Micro F1 score on EVALution: 0.7172264355362946 - Micro F1 score on K&H+N: 0.9616748974055783 - Micro F1 score on ROOT09: 0.9094327796928863 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8544444444444445 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated
research-backup
2022-09-19T20:10:10Z
102
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-07T10:51:00Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.5911706349206349 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3235294117647059 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.314540059347181 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4118954974986103 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34649122807017546 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3125 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8142232936567726 - name: F1 (macro) type: f1_macro value: 0.7823150685401111 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7779342723004695 - name: F1 (macro) type: f1_macro value: 0.4495225434483775 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5357529794149513 - name: F1 (macro) type: f1_macro value: 0.45418166183928343 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8190164846630034 - name: F1 (macro) type: f1_macro value: 0.6465234410767566 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8834221247257913 - name: F1 (macro) type: f1_macro value: 0.8771202456083294 --- # relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3235294117647059 - Accuracy on SAT: 0.314540059347181 - Accuracy on BATS: 0.4118954974986103 - Accuracy on U2: 0.34649122807017546 - Accuracy on U4: 0.3125 - Accuracy on Google: 0.43 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8142232936567726 - Micro F1 score on CogALexV: 0.7779342723004695 - Micro F1 score on EVALution: 0.5357529794149513 - Micro F1 score on K&H+N: 0.8190164846630034 - Micro F1 score on ROOT09: 0.8834221247257913 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.5911706349206349 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 24 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated
research-backup
2022-09-19T19:55:10Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-09T12:51:44Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8295436507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5828877005347594 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6023738872403561 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6170094496942746 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.842 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5219298245614035 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5347222222222222 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9127617899653457 - name: F1 (macro) type: f1_macro value: 0.9077484042036353 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523474178403756 - name: F1 (macro) type: f1_macro value: 0.6871561847645433 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.676056338028169 - name: F1 (macro) type: f1_macro value: 0.6699220665498732 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9604228976838005 - name: F1 (macro) type: f1_macro value: 0.8725502582807458 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8865559385772485 - name: F1 (macro) type: f1_macro value: 0.8814062245146053 --- # relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5828877005347594 - Accuracy on SAT: 0.6023738872403561 - Accuracy on BATS: 0.6170094496942746 - Accuracy on U2: 0.5219298245614035 - Accuracy on U4: 0.5347222222222222 - Accuracy on Google: 0.842 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9127617899653457 - Micro F1 score on CogALexV: 0.8523474178403756 - Micro F1 score on EVALution: 0.676056338028169 - Micro F1 score on K&H+N: 0.9604228976838005 - Micro F1 score on ROOT09: 0.8865559385772485 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8295436507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-loob
research-backup
2022-09-19T19:51:19Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-30T14:20:05Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9032142857142857 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5721925133689839 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5667655786350149 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7776542523624236 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.872 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5833333333333334 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6203703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9202953141479584 - name: F1 (macro) type: f1_macro value: 0.9155901755002147 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8467136150234742 - name: F1 (macro) type: f1_macro value: 0.6838421887453545 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6836403033586133 - name: F1 (macro) type: f1_macro value: 0.6705678270928033 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9625095638867636 - name: F1 (macro) type: f1_macro value: 0.8774656452359669 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9009714822939517 - name: F1 (macro) type: f1_macro value: 0.8985547104456186 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5721925133689839 - Accuracy on SAT: 0.5667655786350149 - Accuracy on BATS: 0.7776542523624236 - Accuracy on U2: 0.5833333333333334 - Accuracy on U4: 0.6203703703703703 - Accuracy on Google: 0.872 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9202953141479584 - Micro F1 score on CogALexV: 0.8467136150234742 - Micro F1 score on EVALution: 0.6836403033586133 - Micro F1 score on K&H+N: 0.9625095638867636 - Micro F1 score on ROOT09: 0.9009714822939517 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9032142857142857 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-loob
research-backup
2022-09-19T19:47:44Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-30T06:57:12Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8871031746031746 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6871657754010695 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6913946587537092 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8148971650917176 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.958 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6359649122807017 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6458333333333334 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9153231881874341 - name: F1 (macro) type: f1_macro value: 0.909786964934943 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8577464788732394 - name: F1 (macro) type: f1_macro value: 0.6952254602767576 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6847237269772481 - name: F1 (macro) type: f1_macro value: 0.6742659270266346 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9634137859080476 - name: F1 (macro) type: f1_macro value: 0.8926357349234371 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9106863052334692 - name: F1 (macro) type: f1_macro value: 0.9093125585829993 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6871657754010695 - Accuracy on SAT: 0.6913946587537092 - Accuracy on BATS: 0.8148971650917176 - Accuracy on U2: 0.6359649122807017 - Accuracy on U4: 0.6458333333333334 - Accuracy on Google: 0.958 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9153231881874341 - Micro F1 score on CogALexV: 0.8577464788732394 - Micro F1 score on EVALution: 0.6847237269772481 - Micro F1 score on K&H+N: 0.9634137859080476 - Micro F1 score on ROOT09: 0.9106863052334692 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8871031746031746 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-e-loob
research-backup
2022-09-19T19:33:04Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-29T01:31:32Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-e-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9121031746031746 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5909090909090909 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5875370919881305 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7670928293496387 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.912 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5570175438596491 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5879629629629629 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9207473255989151 - name: F1 (macro) type: f1_macro value: 0.9149001350257856 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8481220657276995 - name: F1 (macro) type: f1_macro value: 0.6824179529207882 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6798483206933911 - name: F1 (macro) type: f1_macro value: 0.6735513654805187 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9589622313417264 - name: F1 (macro) type: f1_macro value: 0.872950103232891 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.895017235976183 - name: F1 (macro) type: f1_macro value: 0.8900982680408713 --- # relbert/roberta-large-semeval2012-average-prompt-e-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5909090909090909 - Accuracy on SAT: 0.5875370919881305 - Accuracy on BATS: 0.7670928293496387 - Accuracy on U2: 0.5570175438596491 - Accuracy on U4: 0.5879629629629629 - Accuracy on Google: 0.912 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9207473255989151 - Micro F1 score on CogALexV: 0.8481220657276995 - Micro F1 score on EVALution: 0.6798483206933911 - Micro F1 score on K&H+N: 0.9589622313417264 - Micro F1 score on ROOT09: 0.895017235976183 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9121031746031746 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-d-loob
research-backup
2022-09-19T19:29:19Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-28T18:08:47Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-d-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8432936507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7032085561497327 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7091988130563798 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8182323513062812 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.962 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6342592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9154738586710863 - name: F1 (macro) type: f1_macro value: 0.9105308478206379 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8652582159624412 - name: F1 (macro) type: f1_macro value: 0.7157465075284571 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6841820151679306 - name: F1 (macro) type: f1_macro value: 0.6652440461492628 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9582666759407387 - name: F1 (macro) type: f1_macro value: 0.8705160523996387 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9078658727671576 - name: F1 (macro) type: f1_macro value: 0.9051927463291504 --- # relbert/roberta-large-semeval2012-average-prompt-d-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7032085561497327 - Accuracy on SAT: 0.7091988130563798 - Accuracy on BATS: 0.8182323513062812 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6342592592592593 - Accuracy on Google: 0.962 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9154738586710863 - Micro F1 score on CogALexV: 0.8652582159624412 - Micro F1 score on EVALution: 0.6841820151679306 - Micro F1 score on K&H+N: 0.9582666759407387 - Micro F1 score on ROOT09: 0.9078658727671576 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8432936507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-a-loob
research-backup
2022-09-19T19:18:16Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-27T20:04:16Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-a-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8641666666666666 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6443850267379679 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6468842729970327 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7137298499166204 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.898 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.543859649122807 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5833333333333334 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9153231881874341 - name: F1 (macro) type: f1_macro value: 0.910194305368961 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.854225352112676 - name: F1 (macro) type: f1_macro value: 0.6939611644499436 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6603466955579632 - name: F1 (macro) type: f1_macro value: 0.6449027403702262 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9617444529456771 - name: F1 (macro) type: f1_macro value: 0.8891323512830197 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.902851770604826 - name: F1 (macro) type: f1_macro value: 0.9021609534307928 --- # relbert/roberta-large-semeval2012-average-prompt-a-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6443850267379679 - Accuracy on SAT: 0.6468842729970327 - Accuracy on BATS: 0.7137298499166204 - Accuracy on U2: 0.543859649122807 - Accuracy on U4: 0.5833333333333334 - Accuracy on Google: 0.898 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9153231881874341 - Micro F1 score on CogALexV: 0.854225352112676 - Micro F1 score on EVALution: 0.6603466955579632 - Micro F1 score on K&H+N: 0.9617444529456771 - Micro F1 score on ROOT09: 0.902851770604826 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8641666666666666 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-a-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-e-loob
research-backup
2022-09-19T19:14:37Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-27T12:42:28Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-e-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8682936507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6176470588235294 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6231454005934718 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7570872707059477 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.874 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6008771929824561 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6226851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9311435889709206 - name: F1 (macro) type: f1_macro value: 0.9268380061574883 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8744131455399061 - name: F1 (macro) type: f1_macro value: 0.7267491613759859 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7053087757313109 - name: F1 (macro) type: f1_macro value: 0.694918491135901 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9652222299506156 - name: F1 (macro) type: f1_macro value: 0.8967485289493923 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8965841429019116 - name: F1 (macro) type: f1_macro value: 0.8952392246946669 --- # relbert/roberta-large-semeval2012-mask-prompt-e-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6176470588235294 - Accuracy on SAT: 0.6231454005934718 - Accuracy on BATS: 0.7570872707059477 - Accuracy on U2: 0.6008771929824561 - Accuracy on U4: 0.6226851851851852 - Accuracy on Google: 0.874 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9311435889709206 - Micro F1 score on CogALexV: 0.8744131455399061 - Micro F1 score on EVALution: 0.7053087757313109 - Micro F1 score on K&H+N: 0.9652222299506156 - Micro F1 score on ROOT09: 0.8965841429019116 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8682936507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-e-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-a-loob
research-backup
2022-09-19T18:59:55Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-26T06:59:38Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-a-loob results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9060317460317461 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6550802139037433 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.655786350148368 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8043357420789328 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.95 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.631578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6412037037037037 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9245140876902215 - name: F1 (macro) type: f1_macro value: 0.9208294548760101 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8814553990610329 - name: F1 (macro) type: f1_macro value: 0.7355497663400952 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7128927410617552 - name: F1 (macro) type: f1_macro value: 0.7065924774146382 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9646657856298254 - name: F1 (macro) type: f1_macro value: 0.8945677578632619 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9081792541523034 - name: F1 (macro) type: f1_macro value: 0.906414518159255 --- # relbert/roberta-large-semeval2012-mask-prompt-a-loob RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6550802139037433 - Accuracy on SAT: 0.655786350148368 - Accuracy on BATS: 0.8043357420789328 - Accuracy on U2: 0.631578947368421 - Accuracy on U4: 0.6412037037037037 - Accuracy on Google: 0.95 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9245140876902215 - Micro F1 score on CogALexV: 0.8814553990610329 - Micro F1 score on EVALution: 0.7128927410617552 - Micro F1 score on K&H+N: 0.9646657856298254 - Micro F1 score on ROOT09: 0.9081792541523034 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9060317460317461 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-loob") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/ikea-fabler
sd-concepts-library
2022-09-19T18:58:11Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T18:58:07Z
--- license: mit --- ### ikea-fabler on Stable Diffusion This is the `<ikea-fabler>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ikea-fabler> 0](https://huggingface.co/sd-concepts-library/ikea-fabler/resolve/main/concept_images/3.jpeg) ![<ikea-fabler> 1](https://huggingface.co/sd-concepts-library/ikea-fabler/resolve/main/concept_images/0.jpeg) ![<ikea-fabler> 2](https://huggingface.co/sd-concepts-library/ikea-fabler/resolve/main/concept_images/1.jpeg) ![<ikea-fabler> 3](https://huggingface.co/sd-concepts-library/ikea-fabler/resolve/main/concept_images/2.jpeg) ![<ikea-fabler> 4](https://huggingface.co/sd-concepts-library/ikea-fabler/resolve/main/concept_images/4.jpeg)
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce
research-backup
2022-09-19T18:56:16Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-20T14:24:21Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.911547619047619 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5935828877005348 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6023738872403561 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7498610339077265 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.868 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.618421052631579 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6365740740740741 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9190899502787404 - name: F1 (macro) type: f1_macro value: 0.9137760457433256 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.854225352112676 - name: F1 (macro) type: f1_macro value: 0.6960792498811619 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6738894907908992 - name: F1 (macro) type: f1_macro value: 0.6683142084374337 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9637615636085414 - name: F1 (macro) type: f1_macro value: 0.890107974704234 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9053588216859918 - name: F1 (macro) type: f1_macro value: 0.9023263285944801 --- # relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5935828877005348 - Accuracy on SAT: 0.6023738872403561 - Accuracy on BATS: 0.7498610339077265 - Accuracy on U2: 0.618421052631579 - Accuracy on U4: 0.6365740740740741 - Accuracy on Google: 0.868 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9190899502787404 - Micro F1 score on CogALexV: 0.854225352112676 - Micro F1 score on EVALution: 0.6738894907908992 - Micro F1 score on K&H+N: 0.9637615636085414 - Micro F1 score on ROOT09: 0.9053588216859918 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.911547619047619 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce
research-backup
2022-09-19T18:49:11Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-20T04:15:11Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8667460317460317 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6283422459893048 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6320474777448071 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7726514730405781 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.92 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.631578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6365740740740741 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9218020189844809 - name: F1 (macro) type: f1_macro value: 0.9177802775241372 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8694835680751174 - name: F1 (macro) type: f1_macro value: 0.7143050763634161 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6852654387865655 - name: F1 (macro) type: f1_macro value: 0.6719168721915184 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9568755651387633 - name: F1 (macro) type: f1_macro value: 0.8813368476884477 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.911939830774052 - name: F1 (macro) type: f1_macro value: 0.9100147353897433 --- # relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6283422459893048 - Accuracy on SAT: 0.6320474777448071 - Accuracy on BATS: 0.7726514730405781 - Accuracy on U2: 0.631578947368421 - Accuracy on U4: 0.6365740740740741 - Accuracy on Google: 0.92 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9218020189844809 - Micro F1 score on CogALexV: 0.8694835680751174 - Micro F1 score on EVALution: 0.6852654387865655 - Micro F1 score on K&H+N: 0.9568755651387633 - Micro F1 score on ROOT09: 0.911939830774052 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8667460317460317 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-c-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
adil-o/dqn-SpaceInvadersNoFrameskip-v4
adil-o
2022-09-19T18:46:41Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-19T18:46:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 425.50 +/- 151.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga adil-o -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga adil-o ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 3), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce
research-backup
2022-09-19T18:45:31Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-19T23:10:39Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8426984126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5989304812834224 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.599406528189911 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7570872707059477 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.9 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5175438596491229 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6203703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9142684948018682 - name: F1 (macro) type: f1_macro value: 0.9110348384096337 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523474178403756 - name: F1 (macro) type: f1_macro value: 0.6846296909617913 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6728060671722643 - name: F1 (macro) type: f1_macro value: 0.6659943041357158 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9463031230437504 - name: F1 (macro) type: f1_macro value: 0.8467358173655017 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8968975242870574 - name: F1 (macro) type: f1_macro value: 0.8954832383340866 --- # relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5989304812834224 - Accuracy on SAT: 0.599406528189911 - Accuracy on BATS: 0.7570872707059477 - Accuracy on U2: 0.5175438596491229 - Accuracy on U4: 0.6203703703703703 - Accuracy on Google: 0.9 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9142684948018682 - Micro F1 score on CogALexV: 0.8523474178403756 - Micro F1 score on EVALution: 0.6728060671722643 - Micro F1 score on K&H+N: 0.9463031230437504 - Micro F1 score on ROOT09: 0.8968975242870574 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8426984126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 28 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce
research-backup
2022-09-19T18:41:57Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-19T18:06:50Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8451190476190477 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6096256684491979 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6142433234421365 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7504168982768205 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.902 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5701754385964912 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6342592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9174325749585657 - name: F1 (macro) type: f1_macro value: 0.9147052349582953 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8525821596244132 - name: F1 (macro) type: f1_macro value: 0.6857226427858921 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6771397616468039 - name: F1 (macro) type: f1_macro value: 0.6712704719484096 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9540933435348126 - name: F1 (macro) type: f1_macro value: 0.8681826742269192 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9106863052334692 - name: F1 (macro) type: f1_macro value: 0.9083078769735016 --- # relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6096256684491979 - Accuracy on SAT: 0.6142433234421365 - Accuracy on BATS: 0.7504168982768205 - Accuracy on U2: 0.5701754385964912 - Accuracy on U4: 0.6342592592592593 - Accuracy on Google: 0.902 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9174325749585657 - Micro F1 score on CogALexV: 0.8525821596244132 - Micro F1 score on EVALution: 0.6771397616468039 - Micro F1 score on K&H+N: 0.9540933435348126 - Micro F1 score on ROOT09: 0.9106863052334692 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8451190476190477 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-prompt-e-nce
research-backup
2022-09-19T18:38:22Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-19T13:03:12Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8316269841269841 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6096256684491979 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6053412462908012 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.754863813229572 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.886 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5570175438596491 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6273148148148148 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9255687810757872 - name: F1 (macro) type: f1_macro value: 0.9223987715298315 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8396713615023474 - name: F1 (macro) type: f1_macro value: 0.6696257351833762 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6803900325027086 - name: F1 (macro) type: f1_macro value: 0.6668423343702814 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9586840091813313 - name: F1 (macro) type: f1_macro value: 0.876302193283041 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9019116264493889 - name: F1 (macro) type: f1_macro value: 0.9004696301895015 --- # relbert/roberta-large-semeval2012-v2-average-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6096256684491979 - Accuracy on SAT: 0.6053412462908012 - Accuracy on BATS: 0.754863813229572 - Accuracy on U2: 0.5570175438596491 - Accuracy on U4: 0.6273148148148148 - Accuracy on Google: 0.886 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9255687810757872 - Micro F1 score on CogALexV: 0.8396713615023474 - Micro F1 score on EVALution: 0.6803900325027086 - Micro F1 score on K&H+N: 0.9586840091813313 - Micro F1 score on ROOT09: 0.9019116264493889 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8316269841269841 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-prompt-d-nce
research-backup
2022-09-19T18:34:49Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-19T07:58:25Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-prompt-d-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8500793650793651 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6871657754010695 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.685459940652819 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7715397443023903 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.93 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.631578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6527777777777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9205966551152629 - name: F1 (macro) type: f1_macro value: 0.9178786648785846 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8643192488262911 - name: F1 (macro) type: f1_macro value: 0.7176774180702856 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6814734561213435 - name: F1 (macro) type: f1_macro value: 0.6668276311830647 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9590317868818251 - name: F1 (macro) type: f1_macro value: 0.865524335026249 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8968975242870574 - name: F1 (macro) type: f1_macro value: 0.8920343126786042 --- # relbert/roberta-large-semeval2012-v2-average-prompt-d-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-d-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6871657754010695 - Accuracy on SAT: 0.685459940652819 - Accuracy on BATS: 0.7715397443023903 - Accuracy on U2: 0.631578947368421 - Accuracy on U4: 0.6527777777777778 - Accuracy on Google: 0.93 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-d-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9205966551152629 - Micro F1 score on CogALexV: 0.8643192488262911 - Micro F1 score on EVALution: 0.6814734561213435 - Micro F1 score on K&H+N: 0.9590317868818251 - Micro F1 score on ROOT09: 0.8968975242870574 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-d-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8500793650793651 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-d-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-d-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-prompt-c-nce
research-backup
2022-09-19T18:31:18Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-19T02:53:49Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-prompt-c-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8846428571428572 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6818181818181818 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6735905044510386 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.811561978877154 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.924 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.631578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6504629629629629 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.924815428657526 - name: F1 (macro) type: f1_macro value: 0.9212115289556371 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8720657276995305 - name: F1 (macro) type: f1_macro value: 0.7245215538948597 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6841820151679306 - name: F1 (macro) type: f1_macro value: 0.6787204202080052 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9559713431174793 - name: F1 (macro) type: f1_macro value: 0.8722517438133693 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9088060169225948 - name: F1 (macro) type: f1_macro value: 0.9066857579930224 --- # relbert/roberta-large-semeval2012-v2-average-prompt-c-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6818181818181818 - Accuracy on SAT: 0.6735905044510386 - Accuracy on BATS: 0.811561978877154 - Accuracy on U2: 0.631578947368421 - Accuracy on U4: 0.6504629629629629 - Accuracy on Google: 0.924 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.924815428657526 - Micro F1 score on CogALexV: 0.8720657276995305 - Micro F1 score on EVALution: 0.6841820151679306 - Micro F1 score on K&H+N: 0.9559713431174793 - Micro F1 score on ROOT09: 0.9088060169225948 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8846428571428572 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-c-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-average-prompt-a-nce
research-backup
2022-09-19T18:24:10Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T16:46:29Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-average-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8308333333333333 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6390374331550802 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6409495548961425 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7570872707059477 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.93 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.618421052631579 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6388888888888888 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9154738586710863 - name: F1 (macro) type: f1_macro value: 0.9102917119981933 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.852112676056338 - name: F1 (macro) type: f1_macro value: 0.6892409688901546 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6852654387865655 - name: F1 (macro) type: f1_macro value: 0.6726667668087644 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9533282325937261 - name: F1 (macro) type: f1_macro value: 0.862481874668915 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9078658727671576 - name: F1 (macro) type: f1_macro value: 0.9075386153074033 --- # relbert/roberta-large-semeval2012-v2-average-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6390374331550802 - Accuracy on SAT: 0.6409495548961425 - Accuracy on BATS: 0.7570872707059477 - Accuracy on U2: 0.618421052631579 - Accuracy on U4: 0.6388888888888888 - Accuracy on Google: 0.93 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9154738586710863 - Micro F1 score on CogALexV: 0.852112676056338 - Micro F1 score on EVALution: 0.6852654387865655 - Micro F1 score on K&H+N: 0.9533282325937261 - Micro F1 score on ROOT09: 0.9078658727671576 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8308333333333333 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-mask-prompt-e-nce
research-backup
2022-09-19T18:20:37Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T11:42:44Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8457142857142858 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6096256684491979 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6112759643916914 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7576431350750417 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.878 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5964912280701754 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6087962962962963 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9264728039777008 - name: F1 (macro) type: f1_macro value: 0.9231888761944194 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8720657276995305 - name: F1 (macro) type: f1_macro value: 0.7203249423895846 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7074756229685807 - name: F1 (macro) type: f1_macro value: 0.7003587066174993 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9625095638867636 - name: F1 (macro) type: f1_macro value: 0.8943198093953978 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9022250078345346 - name: F1 (macro) type: f1_macro value: 0.9008228707899653 --- # relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6096256684491979 - Accuracy on SAT: 0.6112759643916914 - Accuracy on BATS: 0.7576431350750417 - Accuracy on U2: 0.5964912280701754 - Accuracy on U4: 0.6087962962962963 - Accuracy on Google: 0.878 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9264728039777008 - Micro F1 score on CogALexV: 0.8720657276995305 - Micro F1 score on EVALution: 0.7074756229685807 - Micro F1 score on K&H+N: 0.9625095638867636 - Micro F1 score on ROOT09: 0.9022250078345346 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8457142857142858 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/grisstyle
sd-concepts-library
2022-09-19T18:17:52Z
0
9
null
[ "license:mit", "region:us" ]
null
2022-09-19T18:17:47Z
--- license: mit --- ### GrisStyle on Stable Diffusion This is the `<gris>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<gris> 0](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/24.jpeg) ![<gris> 1](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/3.jpeg) ![<gris> 2](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/6.jpeg) ![<gris> 3](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/0.jpeg) ![<gris> 4](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/19.jpeg) ![<gris> 5](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/26.jpeg) ![<gris> 6](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/17.jpeg) ![<gris> 7](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/22.jpeg) ![<gris> 8](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/7.jpeg) ![<gris> 9](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/25.jpeg) ![<gris> 10](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/28.jpeg) ![<gris> 11](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/5.jpeg) ![<gris> 12](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/8.jpeg) ![<gris> 13](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/14.jpeg) ![<gris> 14](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/15.jpeg) ![<gris> 15](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/9.jpeg) ![<gris> 16](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/16.jpeg) ![<gris> 17](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/27.jpeg) ![<gris> 18](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/13.jpeg) ![<gris> 19](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/20.jpeg) ![<gris> 20](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/12.jpeg) ![<gris> 21](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/1.jpeg) ![<gris> 22](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/10.jpeg) ![<gris> 23](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/2.jpeg) ![<gris> 24](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/23.jpeg) ![<gris> 25](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/18.jpeg) ![<gris> 26](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/11.jpeg) ![<gris> 27](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/21.jpeg) ![<gris> 28](https://huggingface.co/sd-concepts-library/grisstyle/resolve/main/concept_images/4.jpeg)
sd-concepts-library/crested-gecko
sd-concepts-library
2022-09-19T18:17:08Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T18:17:04Z
--- license: mit --- ### crested gecko on Stable Diffusion This is the `<crested-gecko>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<crested-gecko> 0](https://huggingface.co/sd-concepts-library/crested-gecko/resolve/main/concept_images/3.jpeg) ![<crested-gecko> 1](https://huggingface.co/sd-concepts-library/crested-gecko/resolve/main/concept_images/0.jpeg) ![<crested-gecko> 2](https://huggingface.co/sd-concepts-library/crested-gecko/resolve/main/concept_images/1.jpeg) ![<crested-gecko> 3](https://huggingface.co/sd-concepts-library/crested-gecko/resolve/main/concept_images/2.jpeg) ![<crested-gecko> 4](https://huggingface.co/sd-concepts-library/crested-gecko/resolve/main/concept_images/4.jpeg)
research-backup/roberta-large-semeval2012-v2-mask-prompt-d-nce
research-backup
2022-09-19T18:17:02Z
97
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T06:38:11Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8847619047619047 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6925133689839572 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6913946587537092 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7871039466370205 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.938 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6403508771929824 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6504629629629629 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9242127467229169 - name: F1 (macro) type: f1_macro value: 0.9194459817003556 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8776995305164319 - name: F1 (macro) type: f1_macro value: 0.7319038272561456 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7215601300108341 - name: F1 (macro) type: f1_macro value: 0.7132048463591607 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9652222299506156 - name: F1 (macro) type: f1_macro value: 0.8926432179055038 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9147602632403635 - name: F1 (macro) type: f1_macro value: 0.9123157220224268 --- # relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6925133689839572 - Accuracy on SAT: 0.6913946587537092 - Accuracy on BATS: 0.7871039466370205 - Accuracy on U2: 0.6403508771929824 - Accuracy on U4: 0.6504629629629629 - Accuracy on Google: 0.938 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9242127467229169 - Micro F1 score on CogALexV: 0.8776995305164319 - Micro F1 score on EVALution: 0.7215601300108341 - Micro F1 score on K&H+N: 0.9652222299506156 - Micro F1 score on ROOT09: 0.9147602632403635 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8847619047619047 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 28 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-d-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-v2-mask-prompt-b-nce
research-backup
2022-09-19T18:09:52Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-17T20:31:16Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8893650793650794 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5909090909090909 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5934718100890207 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7626459143968871 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.892 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5526315789473685 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6064814814814815 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9249660991411782 - name: F1 (macro) type: f1_macro value: 0.9227342891403616 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8685446009389672 - name: F1 (macro) type: f1_macro value: 0.7221315620076061 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6895991332611051 - name: F1 (macro) type: f1_macro value: 0.6823504904547306 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9632051192877513 - name: F1 (macro) type: f1_macro value: 0.8871487887884136 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9015982450642431 - name: F1 (macro) type: f1_macro value: 0.9009961240438994 --- # relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5909090909090909 - Accuracy on SAT: 0.5934718100890207 - Accuracy on BATS: 0.7626459143968871 - Accuracy on U2: 0.5526315789473685 - Accuracy on U4: 0.6064814814814815 - Accuracy on Google: 0.892 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9249660991411782 - Micro F1 score on CogALexV: 0.8685446009389672 - Micro F1 score on EVALution: 0.6895991332611051 - Micro F1 score on K&H+N: 0.9632051192877513 - Micro F1 score on ROOT09: 0.9015982450642431 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8893650793650794 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 27 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
AlexanderD/test_cats
AlexanderD
2022-09-19T18:08:02Z
0
0
keras
[ "keras", "region:us" ]
null
2022-09-19T17:11:54Z
--- thumbnail: "url to a thumbnail used in social sharing" library_name: keras tags: - keras widget: - src: https://huggingface.co/datasets/test_cats/cifar1.jpg example_title: Tiger ---
research-backup/roberta-large-semeval2012-v2-mask-prompt-a-nce
research-backup
2022-09-19T18:06:14Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v2", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-17T15:27:11Z
--- datasets: - relbert/semeval2012_relational_similarity_v2 model-index: - name: relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8338095238095238 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7165775401069518 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7181008902077152 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7626459143968871 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.946 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6359649122807017 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6435185185185185 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9264728039777008 - name: F1 (macro) type: f1_macro value: 0.9236796530968624 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8760563380281691 - name: F1 (macro) type: f1_macro value: 0.7316819468333253 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7085590465872156 - name: F1 (macro) type: f1_macro value: 0.6972629880144019 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9585448981011337 - name: F1 (macro) type: f1_macro value: 0.8754227812726614 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9088060169225948 - name: F1 (macro) type: f1_macro value: 0.9075082674855798 --- # relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7165775401069518 - Accuracy on SAT: 0.7181008902077152 - Accuracy on BATS: 0.7626459143968871 - Accuracy on U2: 0.6359649122807017 - Accuracy on U4: 0.6435185185185185 - Accuracy on Google: 0.946 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9264728039777008 - Micro F1 score on CogALexV: 0.8760563380281691 - Micro F1 score on EVALution: 0.7085590465872156 - Micro F1 score on K&H+N: 0.9585448981011337 - Micro F1 score on ROOT09: 0.9088060169225948 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8338095238095238 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v2 - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/depthmap-style
sd-concepts-library
2022-09-19T17:59:18Z
0
15
null
[ "license:mit", "region:us" ]
null
2022-09-19T17:59:14Z
--- license: mit --- ### Depthmap Style on Stable Diffusion This is the `<depthmap>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<depthmap> 0](https://huggingface.co/sd-concepts-library/depthmap-style/resolve/main/concept_images/3.jpeg) ![<depthmap> 1](https://huggingface.co/sd-concepts-library/depthmap-style/resolve/main/concept_images/0.jpeg) ![<depthmap> 2](https://huggingface.co/sd-concepts-library/depthmap-style/resolve/main/concept_images/1.jpeg) ![<depthmap> 3](https://huggingface.co/sd-concepts-library/depthmap-style/resolve/main/concept_images/2.jpeg) ![<depthmap> 4](https://huggingface.co/sd-concepts-library/depthmap-style/resolve/main/concept_images/4.jpeg)
huggingtweets/chriscantino
huggingtweets
2022-09-19T17:50:31Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-19T17:49:30Z
--- language: en thumbnail: http://www.huggingtweets.com/chriscantino/1663609825906/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1554673291570212864/RWwZGZ1E_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cantino.eth</div> <div style="text-align: center; font-size: 14px;">@chriscantino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cantino.eth. | Data | cantino.eth | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 38 | | Short tweets | 666 | | Tweets kept | 2546 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3owatwcf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chriscantino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b5rm6g9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b5rm6g9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chriscantino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/f-22
sd-concepts-library
2022-09-19T17:46:19Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T17:46:12Z
--- license: mit --- ### F-22 on Stable Diffusion This is the `<f-22>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<f-22> 0](https://huggingface.co/sd-concepts-library/f-22/resolve/main/concept_images/3.jpeg) ![<f-22> 1](https://huggingface.co/sd-concepts-library/f-22/resolve/main/concept_images/0.jpeg) ![<f-22> 2](https://huggingface.co/sd-concepts-library/f-22/resolve/main/concept_images/1.jpeg) ![<f-22> 3](https://huggingface.co/sd-concepts-library/f-22/resolve/main/concept_images/2.jpeg) ![<f-22> 4](https://huggingface.co/sd-concepts-library/f-22/resolve/main/concept_images/4.jpeg)
research-backup/roberta-large-semeval2012-mask-prompt-c-triplet
research-backup
2022-09-19T17:00:24Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-24T13:34:08Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-c-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7999801587301587 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4999999999999999 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.516320474777448 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6842690383546415 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.866 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5138888888888888 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9273768268796143 - name: F1 (macro) type: f1_macro value: 0.9225150711749914 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8720657276995305 - name: F1 (macro) type: f1_macro value: 0.7091947759445287 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7215601300108341 - name: F1 (macro) type: f1_macro value: 0.70570510560382 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9681435626347639 - name: F1 (macro) type: f1_macro value: 0.9054090342043304 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9185208398621121 - name: F1 (macro) type: f1_macro value: 0.917840745705091 --- # relbert/roberta-large-semeval2012-mask-prompt-c-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4999999999999999 - Accuracy on SAT: 0.516320474777448 - Accuracy on BATS: 0.6842690383546415 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.5138888888888888 - Accuracy on Google: 0.866 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9273768268796143 - Micro F1 score on CogALexV: 0.8720657276995305 - Micro F1 score on EVALution: 0.7215601300108341 - Micro F1 score on K&H+N: 0.9681435626347639 - Micro F1 score on ROOT09: 0.9185208398621121 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7999801587301587 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: semeval2012 - n_sample: 10 - custom_template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-d-triplet
research-backup
2022-09-19T16:47:34Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-24T10:45:27Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-prompt-d-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8641666666666666 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6737967914438503 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6795252225519288 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7859922178988327 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.938 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6550925925925926 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9252674401084827 - name: F1 (macro) type: f1_macro value: 0.9199095894826357 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8692488262910798 - name: F1 (macro) type: f1_macro value: 0.7160574925535569 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7009750812567714 - name: F1 (macro) type: f1_macro value: 0.6878313451654309 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9683522292550601 - name: F1 (macro) type: f1_macro value: 0.8957380868540458 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9009714822939517 - name: F1 (macro) type: f1_macro value: 0.9036194719551146 --- # relbert/roberta-large-semeval2012-average-prompt-d-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6737967914438503 - Accuracy on SAT: 0.6795252225519288 - Accuracy on BATS: 0.7859922178988327 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6550925925925926 - Accuracy on Google: 0.938 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9252674401084827 - Micro F1 score on CogALexV: 0.8692488262910798 - Micro F1 score on EVALution: 0.7009750812567714 - Micro F1 score on K&H+N: 0.9683522292550601 - Micro F1 score on ROOT09: 0.9009714822939517 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8641666666666666 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: semeval2012 - n_sample: 10 - custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
clboetticher-school/xlm-roberta-base-finetuned-panx-fr
clboetticher-school
2022-09-19T16:46:23Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-19T16:27:36Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9213082901554404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1117 - F1: 0.9213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.2832 | 0.8091 | | 0.2735 | 2.0 | 382 | 0.1570 | 0.8943 | | 0.1769 | 3.0 | 573 | 0.1117 | 0.9213 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
research-backup/roberta-large-semeval2012-average-prompt-c-triplet
research-backup
2022-09-19T16:43:19Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-24T10:43:59Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-prompt-c-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8742857142857143 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5748663101604278 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5786350148367952 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.820455808782657 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.918 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6140350877192983 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6319444444444444 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.924815428657526 - name: F1 (macro) type: f1_macro value: 0.9202612346118308 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8718309859154929 - name: F1 (macro) type: f1_macro value: 0.7152177972947781 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.704225352112676 - name: F1 (macro) type: f1_macro value: 0.6846186699994758 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9667524518327885 - name: F1 (macro) type: f1_macro value: 0.8963571819720165 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9015982450642431 - name: F1 (macro) type: f1_macro value: 0.8974114781326906 --- # relbert/roberta-large-semeval2012-average-prompt-c-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5748663101604278 - Accuracy on SAT: 0.5786350148367952 - Accuracy on BATS: 0.820455808782657 - Accuracy on U2: 0.6140350877192983 - Accuracy on U4: 0.6319444444444444 - Accuracy on Google: 0.918 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.924815428657526 - Micro F1 score on CogALexV: 0.8718309859154929 - Micro F1 score on EVALution: 0.704225352112676 - Micro F1 score on K&H+N: 0.9667524518327885 - Micro F1 score on ROOT09: 0.9015982450642431 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8742857142857143 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: semeval2012 - n_sample: 10 - custom_template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-b-triplet
research-backup
2022-09-19T16:39:47Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-24T10:42:35Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-prompt-b-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.815952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5748663101604278 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5756676557863502 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7809894385769872 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.87 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5570175438596491 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5763888888888888 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9156245291547386 - name: F1 (macro) type: f1_macro value: 0.9123138480377561 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8652582159624412 - name: F1 (macro) type: f1_macro value: 0.7098768153077847 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6765980498374865 - name: F1 (macro) type: f1_macro value: 0.667723188418867 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9621617861862697 - name: F1 (macro) type: f1_macro value: 0.8800726259971795 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8925101848950172 - name: F1 (macro) type: f1_macro value: 0.8890641447568232 --- # relbert/roberta-large-semeval2012-average-prompt-b-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5748663101604278 - Accuracy on SAT: 0.5756676557863502 - Accuracy on BATS: 0.7809894385769872 - Accuracy on U2: 0.5570175438596491 - Accuracy on U4: 0.5763888888888888 - Accuracy on Google: 0.87 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9156245291547386 - Micro F1 score on CogALexV: 0.8652582159624412 - Micro F1 score on EVALution: 0.6765980498374865 - Micro F1 score on K&H+N: 0.9621617861862697 - Micro F1 score on ROOT09: 0.8925101848950172 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.815952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: semeval2012 - n_sample: 10 - custom_template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-e-triplet
research-backup
2022-09-19T16:31:56Z
96
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T18:25:55Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-prompt-e-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9255952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.550802139037433 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5548961424332344 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.754863813229572 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.872 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.631578947368421 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5740740740740741 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9031188790116016 - name: F1 (macro) type: f1_macro value: 0.896130708234777 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8692488262910798 - name: F1 (macro) type: f1_macro value: 0.7176923678524982 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6933911159263272 - name: F1 (macro) type: f1_macro value: 0.6793569940444139 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9611184530847882 - name: F1 (macro) type: f1_macro value: 0.8913615954101612 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9088060169225948 - name: F1 (macro) type: f1_macro value: 0.9076649125882928 --- # relbert/roberta-large-semeval2012-average-prompt-e-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.550802139037433 - Accuracy on SAT: 0.5548961424332344 - Accuracy on BATS: 0.754863813229572 - Accuracy on U2: 0.631578947368421 - Accuracy on U4: 0.5740740740740741 - Accuracy on Google: 0.872 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9031188790116016 - Micro F1 score on CogALexV: 0.8692488262910798 - Micro F1 score on EVALution: 0.6933911159263272 - Micro F1 score on K&H+N: 0.9611184530847882 - Micro F1 score on ROOT09: 0.9088060169225948 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9255952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: semeval2012 - n_sample: 10 - custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-triplet
research-backup
2022-09-19T16:23:34Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T16:52:00Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.815952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6951871658 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.706231454 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7882156754 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.924 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6622807018 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6527777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9153231881874341 - name: F1 (macro) type: f1_macro value: 0.9098445625290479 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8725352112676056 - name: F1 (macro) type: f1_macro value: 0.7174660438773314 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6944745395449621 - name: F1 (macro) type: f1_macro value: 0.688951875758847 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9689782291159491 - name: F1 (macro) type: f1_macro value: 0.90395779327521 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9050454403008461 - name: F1 (macro) type: f1_macro value: 0.9062415320017446 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6951871658 - Accuracy on SAT: 0.706231454 - Accuracy on BATS: 0.7882156754 - Accuracy on U2: 0.6622807018 - Accuracy on U4: 0.6527777778 - Accuracy on Google: 0.924 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9153231881874341 - Micro F1 score on CogALexV: 0.8725352112676056 - Micro F1 score on EVALution: 0.6944745395449621 - Micro F1 score on K&H+N: 0.9689782291159491 - Micro F1 score on ROOT09: 0.9050454403008461 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.815952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: semeval2012 - n_sample: 10 - custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-triplet
research-backup
2022-09-19T16:19:14Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:semeval2012", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T16:49:45Z
--- datasets: - semeval2012 model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8449404761904762 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5401069519 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5400593472 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7954419122 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.912 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6228070175 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.625 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9285821907488323 - name: F1 (macro) type: f1_macro value: 0.9238353183237691 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8795774647887324 - name: F1 (macro) type: f1_macro value: 0.7380564609392272 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6776814734561214 - name: F1 (macro) type: f1_macro value: 0.6542229601159605 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9683522292550601 - name: F1 (macro) type: f1_macro value: 0.897601966442876 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9088060169225948 - name: F1 (macro) type: f1_macro value: 0.909285139662564 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [semeval2012](https://huggingface.co/datasets/semeval2012). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5401069519 - Accuracy on SAT: 0.5400593472 - Accuracy on BATS: 0.7954419122 - Accuracy on U2: 0.6228070175 - Accuracy on U4: 0.625 - Accuracy on Google: 0.912 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9285821907488323 - Micro F1 score on CogALexV: 0.8795774647887324 - Micro F1 score on EVALution: 0.6776814734561214 - Micro F1 score on K&H+N: 0.9683522292550601 - Micro F1 score on ROOT09: 0.9088060169225948 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8449404761904762 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: semeval2012 - n_sample: 10 - custom_template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - template: None - softmax_loss: True - in_batch_negative: True - parent_contrast: True - mse_margin: 1 - epoch: 1 - lr_warmup: 10 - batch: 64 - lr: 2e-05 - lr_decay: False - weight_decay: 0 - optimizer: adam - momentum: 0.9 - fp16: False - random_seed: 0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
clboetticher-school/xlm-roberta-base-finetuned-panx-de-fr
clboetticher-school
2022-09-19T16:15:42Z
134
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-19T15:49:33Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/singsing-doll
sd-concepts-library
2022-09-19T16:14:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T16:14:06Z
--- license: mit --- ### Singsing doll on Stable Diffusion This is the `<singsing>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<singsing> 0](https://huggingface.co/sd-concepts-library/singsing-doll/resolve/main/concept_images/3.jpeg) ![<singsing> 1](https://huggingface.co/sd-concepts-library/singsing-doll/resolve/main/concept_images/0.jpeg) ![<singsing> 2](https://huggingface.co/sd-concepts-library/singsing-doll/resolve/main/concept_images/1.jpeg) ![<singsing> 3](https://huggingface.co/sd-concepts-library/singsing-doll/resolve/main/concept_images/2.jpeg)
surya07/swin-tiny-patch4-window7-224-finetuned-eurosat
surya07
2022-09-19T16:11:19Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-19T14:33:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4066 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.57 | 1 | 0.7569 | 0.5417 | | No log | 1.57 | 2 | 0.5000 | 0.8333 | | No log | 2.57 | 3 | 0.4066 | 0.875 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
research-backup/roberta-large-semeval2012-average-prompt-e-nce
research-backup
2022-09-19T16:02:37Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-24T20:44:09Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.848452380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6016042780748663 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6023738872403561 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7476375764313508 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.86 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5482456140350878 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6111111111111112 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9193912912460449 - name: F1 (macro) type: f1_macro value: 0.9171163163754675 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8481220657276995 - name: F1 (macro) type: f1_macro value: 0.6734502135237685 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.685807150595883 - name: F1 (macro) type: f1_macro value: 0.679750083279063 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.962092230646171 - name: F1 (macro) type: f1_macro value: 0.8868721386428041 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.898464431212786 - name: F1 (macro) type: f1_macro value: 0.8953388906170653 --- # relbert/roberta-large-semeval2012-average-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6016042780748663 - Accuracy on SAT: 0.6023738872403561 - Accuracy on BATS: 0.7476375764313508 - Accuracy on U2: 0.5482456140350878 - Accuracy on U4: 0.6111111111111112 - Accuracy on Google: 0.86 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9193912912460449 - Micro F1 score on CogALexV: 0.8481220657276995 - Micro F1 score on EVALution: 0.685807150595883 - Micro F1 score on K&H+N: 0.962092230646171 - Micro F1 score on ROOT09: 0.898464431212786 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.848452380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-nce
research-backup
2022-09-19T15:54:08Z
112
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:59:39Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8173412698412699 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6122994652406417 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6142433234421365 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7865480822679266 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.93 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5394736842105263 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6018518518518519 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9174325749585657 - name: F1 (macro) type: f1_macro value: 0.9108478749677724 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.855868544600939 - name: F1 (macro) type: f1_macro value: 0.6923047005195835 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6836403033586133 - name: F1 (macro) type: f1_macro value: 0.667310500013795 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9517284551714544 - name: F1 (macro) type: f1_macro value: 0.8530904199464412 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9019116264493889 - name: F1 (macro) type: f1_macro value: 0.8996556790705655 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6122994652406417 - Accuracy on SAT: 0.6142433234421365 - Accuracy on BATS: 0.7865480822679266 - Accuracy on U2: 0.5394736842105263 - Accuracy on U4: 0.6018518518518519 - Accuracy on Google: 0.93 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9174325749585657 - Micro F1 score on CogALexV: 0.855868544600939 - Micro F1 score on EVALution: 0.6836403033586133 - Micro F1 score on K&H+N: 0.9517284551714544 - Micro F1 score on ROOT09: 0.9019116264493889 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8173412698412699 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-nce
research-backup
2022-09-19T15:49:51Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:57:35Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.866547619047619 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7112299465240641 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7062314540059347 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.782657031684269 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.936 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6754385964912281 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6921296296296297 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9124604489980412 - name: F1 (macro) type: f1_macro value: 0.9071904229357174 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8607981220657277 - name: F1 (macro) type: f1_macro value: 0.7021043673336924 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6863488624052004 - name: F1 (macro) type: f1_macro value: 0.6714181204599561 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9499895666689852 - name: F1 (macro) type: f1_macro value: 0.8482944164556818 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9075524913820119 - name: F1 (macro) type: f1_macro value: 0.9080337875282686 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7112299465240641 - Accuracy on SAT: 0.7062314540059347 - Accuracy on BATS: 0.782657031684269 - Accuracy on U2: 0.6754385964912281 - Accuracy on U4: 0.6921296296296297 - Accuracy on Google: 0.936 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9124604489980412 - Micro F1 score on CogALexV: 0.8607981220657277 - Micro F1 score on EVALution: 0.6863488624052004 - Micro F1 score on K&H+N: 0.9499895666689852 - Micro F1 score on ROOT09: 0.9075524913820119 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.866547619047619 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-nce
research-backup
2022-09-19T15:45:33Z
114
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:55:31Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8909722222222223 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6925133689839572 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6913946587537092 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8037798777098388 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.968 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6885964912280702 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6898148148148148 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9273768268796143 - name: F1 (macro) type: f1_macro value: 0.9211786019752478 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8615023474178404 - name: F1 (macro) type: f1_macro value: 0.7077498583524542 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6917659804983749 - name: F1 (macro) type: f1_macro value: 0.6746361055952557 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9573624539194547 - name: F1 (macro) type: f1_macro value: 0.8730312566461178 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9031651519899718 - name: F1 (macro) type: f1_macro value: 0.9025725245537483 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6925133689839572 - Accuracy on SAT: 0.6913946587537092 - Accuracy on BATS: 0.8037798777098388 - Accuracy on U2: 0.6885964912280702 - Accuracy on U4: 0.6898148148148148 - Accuracy on Google: 0.968 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9273768268796143 - Micro F1 score on CogALexV: 0.8615023474178404 - Micro F1 score on EVALution: 0.6917659804983749 - Micro F1 score on K&H+N: 0.9573624539194547 - Micro F1 score on ROOT09: 0.9031651519899718 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8909722222222223 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-c-nce
research-backup
2022-09-19T15:41:13Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:53:26Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-c-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.866547619047619 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6577540106951871 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.655786350148368 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8132295719844358 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.956 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.618421052631579 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6782407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9202953141479584 - name: F1 (macro) type: f1_macro value: 0.9141904094450748 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8737089201877934 - name: F1 (macro) type: f1_macro value: 0.7234367902362755 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6895991332611051 - name: F1 (macro) type: f1_macro value: 0.6754056888161498 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.960283786603603 - name: F1 (macro) type: f1_macro value: 0.8772846038877066 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9204011281729865 - name: F1 (macro) type: f1_macro value: 0.9178047382633787 --- # relbert/roberta-large-semeval2012-average-prompt-c-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6577540106951871 - Accuracy on SAT: 0.655786350148368 - Accuracy on BATS: 0.8132295719844358 - Accuracy on U2: 0.618421052631579 - Accuracy on U4: 0.6782407407407407 - Accuracy on Google: 0.956 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9202953141479584 - Micro F1 score on CogALexV: 0.8737089201877934 - Micro F1 score on EVALution: 0.6895991332611051 - Micro F1 score on K&H+N: 0.960283786603603 - Micro F1 score on ROOT09: 0.9204011281729865 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.866547619047619 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-b-nce
research-backup
2022-09-19T15:36:58Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:51:01Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9023809523809524 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6096256684491979 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6083086053412463 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7854363535297387 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.93 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5833333333333334 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5995370370370371 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9174325749585657 - name: F1 (macro) type: f1_macro value: 0.9129994415974204 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8603286384976526 - name: F1 (macro) type: f1_macro value: 0.698172861434558 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6679306608884074 - name: F1 (macro) type: f1_macro value: 0.6495733078766703 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9611184530847882 - name: F1 (macro) type: f1_macro value: 0.8867329071712199 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9012848636790974 - name: F1 (macro) type: f1_macro value: 0.9017314335034342 --- # relbert/roberta-large-semeval2012-average-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6096256684491979 - Accuracy on SAT: 0.6083086053412463 - Accuracy on BATS: 0.7854363535297387 - Accuracy on U2: 0.5833333333333334 - Accuracy on U4: 0.5995370370370371 - Accuracy on Google: 0.93 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9174325749585657 - Micro F1 score on CogALexV: 0.8603286384976526 - Micro F1 score on EVALution: 0.6679306608884074 - Micro F1 score on K&H+N: 0.9611184530847882 - Micro F1 score on ROOT09: 0.9012848636790974 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9023809523809524 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 23 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-average-prompt-a-nce
research-backup
2022-09-19T15:32:33Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:47:57Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8719047619047618 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6925133689839572 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6913946587537092 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7776542523624236 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.936 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9153231881874341 - name: F1 (macro) type: f1_macro value: 0.9116885342042641 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8509389671361502 - name: F1 (macro) type: f1_macro value: 0.6788929400995221 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6771397616468039 - name: F1 (macro) type: f1_macro value: 0.6568153884216413 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9575015649996522 - name: F1 (macro) type: f1_macro value: 0.8657248723477102 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025383892196804 - name: F1 (macro) type: f1_macro value: 0.899796204657101 --- # relbert/roberta-large-semeval2012-average-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6925133689839572 - Accuracy on SAT: 0.6913946587537092 - Accuracy on BATS: 0.7776542523624236 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6666666666666666 - Accuracy on Google: 0.936 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9153231881874341 - Micro F1 score on CogALexV: 0.8509389671361502 - Micro F1 score on EVALution: 0.6771397616468039 - Micro F1 score on K&H+N: 0.9575015649996522 - Micro F1 score on ROOT09: 0.9025383892196804 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8719047619047618 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 29 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-semeval2012-mask-prompt-e-nce
research-backup
2022-09-19T15:28:19Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:43:51Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8230555555555555 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6122994652406417 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6172106824925816 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7787659811006115 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.924 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6096491228070176 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6203703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9328009642910954 - name: F1 (macro) type: f1_macro value: 0.9275146998553098 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8734741784037559 - name: F1 (macro) type: f1_macro value: 0.7242617350118036 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7004333694474539 - name: F1 (macro) type: f1_macro value: 0.6937902608558703 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9617444529456771 - name: F1 (macro) type: f1_macro value: 0.8874628760316924 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9081792541523034 - name: F1 (macro) type: f1_macro value: 0.9066592810364282 --- # relbert/roberta-large-semeval2012-mask-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6122994652406417 - Accuracy on SAT: 0.6172106824925816 - Accuracy on BATS: 0.7787659811006115 - Accuracy on U2: 0.6096491228070176 - Accuracy on U4: 0.6203703703703703 - Accuracy on Google: 0.924 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9328009642910954 - Micro F1 score on CogALexV: 0.8734741784037559 - Micro F1 score on EVALution: 0.7004333694474539 - Micro F1 score on K&H+N: 0.9617444529456771 - Micro F1 score on ROOT09: 0.9081792541523034 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8230555555555555 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 23 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/jos-de-kat
sd-concepts-library
2022-09-19T15:13:36Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T15:13:30Z
--- license: mit --- ### Jos de Kat on Stable Diffusion This is the `<kat-jos>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<kat-jos> 0](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/3.jpeg) ![<kat-jos> 1](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/0.jpeg) ![<kat-jos> 2](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/5.jpeg) ![<kat-jos> 3](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/1.jpeg) ![<kat-jos> 4](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/2.jpeg) ![<kat-jos> 5](https://huggingface.co/sd-concepts-library/jos-de-kat/resolve/main/concept_images/4.jpeg)
research-backup/roberta-large-semeval2012-mask-prompt-a-nce
research-backup
2022-09-19T15:07:54Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-22T10:37:07Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8680952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7112299465240641 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7091988130563798 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7537520844913841 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.95 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6622807017543859 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9245140876902215 - name: F1 (macro) type: f1_macro value: 0.9217193105874872 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8809859154929578 - name: F1 (macro) type: f1_macro value: 0.7387527642398365 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7134344528710725 - name: F1 (macro) type: f1_macro value: 0.6978567457746659 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.955484454336788 - name: F1 (macro) type: f1_macro value: 0.8778253752250313 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.909746161078032 - name: F1 (macro) type: f1_macro value: 0.9088078445136086 --- # relbert/roberta-large-semeval2012-mask-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7112299465240641 - Accuracy on SAT: 0.7091988130563798 - Accuracy on BATS: 0.7537520844913841 - Accuracy on U2: 0.6622807017543859 - Accuracy on U4: 0.6666666666666666 - Accuracy on Google: 0.95 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9245140876902215 - Micro F1 score on CogALexV: 0.8809859154929578 - Micro F1 score on EVALution: 0.7134344528710725 - Micro F1 score on K&H+N: 0.955484454336788 - Micro F1 score on ROOT09: 0.909746161078032 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8680952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 23 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
matemato/dqn-SpaceInvadersNoFrameskip-v4
matemato
2022-09-19T14:54:42Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-19T14:54:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 512.00 +/- 131.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga matemato -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga matemato ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CoreyMorris/testpyramidsrnd
CoreyMorris
2022-09-19T14:50:13Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-19T14:47:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: CoreyMorris/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sd-concepts-library/black-and-white-design
sd-concepts-library
2022-09-19T13:27:24Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-19T13:27:11Z
--- license: mit --- ### black and white design on Stable Diffusion This is the `<PM_style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<PM_style> 0](https://huggingface.co/sd-concepts-library/black-and-white-design/resolve/main/concept_images/3.jpeg) ![<PM_style> 1](https://huggingface.co/sd-concepts-library/black-and-white-design/resolve/main/concept_images/0.jpeg) ![<PM_style> 2](https://huggingface.co/sd-concepts-library/black-and-white-design/resolve/main/concept_images/1.jpeg) ![<PM_style> 3](https://huggingface.co/sd-concepts-library/black-and-white-design/resolve/main/concept_images/2.jpeg)
gokuls/bert-uncased-massive-intent-classification
gokuls
2022-09-19T12:24:20Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-19T11:43:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8853910477127398 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8396 - Accuracy: 0.8854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4984 | 1.0 | 720 | 0.6402 | 0.8495 | | 0.4376 | 2.0 | 1440 | 0.5394 | 0.8731 | | 0.2318 | 3.0 | 2160 | 0.5903 | 0.8760 | | 0.1414 | 4.0 | 2880 | 0.6221 | 0.8805 | | 0.087 | 5.0 | 3600 | 0.7072 | 0.8819 | | 0.0622 | 6.0 | 4320 | 0.7121 | 0.8819 | | 0.036 | 7.0 | 5040 | 0.7750 | 0.8805 | | 0.0234 | 8.0 | 5760 | 0.7767 | 0.8834 | | 0.0157 | 9.0 | 6480 | 0.8243 | 0.8805 | | 0.0122 | 10.0 | 7200 | 0.8198 | 0.8839 | | 0.0092 | 11.0 | 7920 | 0.8105 | 0.8849 | | 0.0047 | 12.0 | 8640 | 0.8561 | 0.8844 | | 0.0038 | 13.0 | 9360 | 0.8367 | 0.8815 | | 0.0029 | 14.0 | 10080 | 0.8396 | 0.8854 | | 0.0014 | 15.0 | 10800 | 0.8410 | 0.8849 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
KoboldAI/OPT-13B-Nerys-v2
KoboldAI
2022-09-19T11:15:55Z
4,494
12
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "arxiv:2205.01068", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-19T07:52:07Z
--- language: en license: other commercial: no --- # OPT 13B - Nerys ## Model Description OPT 13B-Nerys is a finetune created using Facebook's OPT model. ## Training data The training data contains around 2500 ebooks in various genres (the "Pike" dataset), a CYOA dataset called "CYS" and 50 Asian "Light Novels" (the "Manga-v1" dataset). Most parts of the dataset have been prepended using the following text: `[Genre: <genre1>, <genre2>]` This dataset has been cleaned in the same way as fairseq-dense-13B-Nerys-v2 ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/OPT-13B-Nerys-v2') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### License OPT-6B is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
chintagunta85/electramed-small-ADE-DRUG-DOSAGE-ner
chintagunta85
2022-09-19T10:48:04Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:ade_drug_dosage_ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-19T10:46:52Z
--- tags: - generated_from_trainer datasets: - ade_drug_dosage_ner metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-ADE-DRUG-DOSAGE-ner results: - task: name: Token Classification type: token-classification dataset: name: ade_drug_dosage_ner type: ade_drug_dosage_ner config: ade split: train args: ade metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.8697318007662835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-ADE-DRUG-DOSAGE-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_dosage_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.6064 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.4165 | 1.0 | 14 | 1.3965 | 0.0255 | 0.0636 | 0.0365 | 0.7471 | | 1.2063 | 2.0 | 28 | 1.1702 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.9527 | 3.0 | 42 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.8238 | 4.0 | 56 | 0.7775 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.7452 | 5.0 | 70 | 0.6945 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.6386 | 6.0 | 84 | 0.6519 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.6742 | 7.0 | 98 | 0.6294 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.6669 | 8.0 | 112 | 0.6162 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.6595 | 9.0 | 126 | 0.6090 | 0.0 | 0.0 | 0.0 | 0.8697 | | 0.6122 | 10.0 | 140 | 0.6064 | 0.0 | 0.0 | 0.0 | 0.8697 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
balabis/layoutlmv3-finetuned-invoice
balabis
2022-09-19T10:36:11Z
80
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:invoices", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-19T10:16:08Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - invoices metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice results: - task: name: Token Classification type: token-classification dataset: name: invoices type: invoices config: sroie split: train args: sroie metrics: - name: Precision type: precision value: 0.975 - name: Recall type: recall value: 0.975 - name: F1 type: f1 value: 0.975 - name: Accuracy type: accuracy value: 0.975 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoices dataset. It achieves the following results on the evaluation set: - Loss: 0.2299 - Precision: 0.975 - Recall: 0.975 - F1: 0.975 - Accuracy: 0.975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:-----:|:--------:| | No log | 14.29 | 100 | 0.1616 | 0.975 | 0.975 | 0.975 | 0.975 | | No log | 28.57 | 200 | 0.1909 | 0.975 | 0.975 | 0.975 | 0.975 | | No log | 42.86 | 300 | 0.2046 | 0.975 | 0.975 | 0.975 | 0.975 | | No log | 57.14 | 400 | 0.2134 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.1239 | 71.43 | 500 | 0.2299 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.1239 | 85.71 | 600 | 0.2309 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.1239 | 100.0 | 700 | 0.2342 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.1239 | 114.29 | 800 | 0.2407 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.1239 | 128.57 | 900 | 0.2428 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0007 | 142.86 | 1000 | 0.2449 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0007 | 157.14 | 1100 | 0.2465 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0007 | 171.43 | 1200 | 0.2488 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0007 | 185.71 | 1300 | 0.2515 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0007 | 200.0 | 1400 | 0.2525 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0004 | 214.29 | 1500 | 0.2540 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0004 | 228.57 | 1600 | 0.2557 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0004 | 242.86 | 1700 | 0.2564 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0004 | 257.14 | 1800 | 0.2570 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0004 | 271.43 | 1900 | 0.2573 | 0.975 | 0.975 | 0.975 | 0.975 | | 0.0003 | 285.71 | 2000 | 0.2574 | 0.975 | 0.975 | 0.975 | 0.975 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/rilakkuma
sd-concepts-library
2022-09-19T09:50:01Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-19T09:49:57Z
--- license: mit --- ### rilakkuma on Stable Diffusion This is the `<rilakkuma>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<rilakkuma> 0](https://huggingface.co/sd-concepts-library/rilakkuma/resolve/main/concept_images/0.jpeg) ![<rilakkuma> 1](https://huggingface.co/sd-concepts-library/rilakkuma/resolve/main/concept_images/1.jpeg) ![<rilakkuma> 2](https://huggingface.co/sd-concepts-library/rilakkuma/resolve/main/concept_images/2.jpeg)
IIIT-L/xlm-roberta-large-finetuned-ours-DS
IIIT-L
2022-09-19T09:45:19Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-19T09:24:03Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-large-finetuned-ours-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-ours-DS This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9568 - Accuracy: 0.71 - Precision: 0.6689 - Recall: 0.6607 - F1: 0.6637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6820964947491663e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9953 | 1.99 | 199 | 0.7955 | 0.66 | 0.7533 | 0.5971 | 0.5352 | | 0.6638 | 3.98 | 398 | 0.8043 | 0.735 | 0.7068 | 0.6782 | 0.6846 | | 0.3457 | 5.97 | 597 | 0.9568 | 0.71 | 0.6689 | 0.6607 | 0.6637 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
CAiRE/wav2vec2-large-xlsr-53-cantonese
CAiRE
2022-09-19T07:50:42Z
388
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "yue", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-09T07:23:48Z
--- language: - yue datasets: - common_voice metrics: - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2-Large-XLSR-53-Cantonese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-HK type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: [18.55%] --- # Wav2Vec2-Large-XLSR-53-Cantonese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice Corpus 8.0](https://commonvoice.mozilla.org/en/datasets). When using this model, make sure that your speech input is sampled at 16kHz. The Common Voice's validated `train` and `dev` were used for training. The script used for training can be found at [https://github.com/holylovenia/wav2vec2-pretraining](https://github.com/holylovenia/wav2vec2-pretraining). ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the zh-HK test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "zh-HK", split="test") wer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: CER: 18.55 % ## Citation If you use our code/model, please cite us: ``` @inproceedings{lovenia2022ascend, title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation}, author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)}, year={2022} } ```
KoboldAI/OPT-2.7B-Erebus
KoboldAI
2022-09-19T07:38:12Z
5,758
39
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "arxiv:2205.01068", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-09-19T06:41:21Z
--- language: en license: other commercial: no inference: false --- # OPT 2.7B - Erebus ## Model description This is the second generation of the original Shinen made by Mr. Seeker. The full dataset consists of 6 different sources, all surrounding the "Adult" theme. The name "Erebus" comes from the greek mythology, also named "darkness". This is in line with Shin'en, or "deep abyss". For inquiries, please contact the KoboldAI community. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The data can be divided in 6 different datasets: - Literotica (everything with 4.5/5 or higher) - Sexstories (everything with 90 or higher) - Dataset-G (private dataset of X-rated stories) - Doc's Lab (all stories) - Pike Dataset (novels with "adult" rating) - SoFurry (collection of various animals) The dataset uses `[Genre: <comma-separated list of genres>]` for tagging. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/OPT-2.7B-Erebus') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ## Limitations and biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). **Warning: This model has a very strong NSFW bias!** ### License OPT-6.7B is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
KoboldAI/OPT-2.7B-Nerys-v2
KoboldAI
2022-09-19T07:19:35Z
1,490
6
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "arxiv:2205.01068", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-19T06:50:39Z
--- language: en license: other commercial: no --- # OPT 2.7B - Nerys ## Model Description OPT 2.7B-Nerys is a finetune created using Facebook's OPT model. ## Training data The training data contains around 2500 ebooks in various genres (the "Pike" dataset), a CYOA dataset called "CYS" and 50 Asian "Light Novels" (the "Manga-v1" dataset). Most parts of the dataset have been prepended using the following text: `[Genre: <genre1>, <genre2>]` This dataset has been cleaned in the same way as fairseq-dense-13B-Nerys-v2 ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/OPT-2.7B-Nerys-v2') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### License OPT-6B is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sd-concepts-library/tudisco
sd-concepts-library
2022-09-19T06:46:30Z
0
11
null
[ "license:mit", "region:us" ]
null
2022-09-19T06:46:23Z
--- license: mit --- ### tudisco on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/tudisco/resolve/main/concept_images/3.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/tudisco/resolve/main/concept_images/0.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/tudisco/resolve/main/concept_images/1.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/tudisco/resolve/main/concept_images/2.jpeg)
sd-concepts-library/zk
sd-concepts-library
2022-09-19T06:40:35Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-19T06:40:28Z
--- license: mit --- ### zk on Stable Diffusion This is the `zk` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![zk 0](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/3.jpeg) ![zk 1](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/6.jpeg) ![zk 2](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/0.jpeg) ![zk 3](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/7.jpeg) ![zk 4](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/5.jpeg) ![zk 5](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/8.jpeg) ![zk 6](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/1.jpeg) ![zk 7](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/2.jpeg) ![zk 8](https://huggingface.co/sd-concepts-library/zk/resolve/main/concept_images/4.jpeg)
LTP/base2
LTP
2022-09-19T06:36:21Z
125
7
transformers
[ "transformers", "pytorch", "arxiv:2009.11616", "endpoints_compatible", "region:us" ]
null
2022-08-14T04:36:19Z
![CODE SIZE](https://img.shields.io/github/languages/code-size/HIT-SCIR/ltp) ![CONTRIBUTORS](https://img.shields.io/github/contributors/HIT-SCIR/ltp) ![LAST COMMIT](https://img.shields.io/github/last-commit/HIT-SCIR/ltp) | Language | version | | ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Python](python/interface/README.md) | [![LTP](https://img.shields.io/pypi/v/ltp?label=LTP)](https://pypi.org/project/ltp) [![LTP-Core](https://img.shields.io/pypi/v/ltp-core?label=LTP-Core)](https://pypi.org/project/ltp-core) [![LTP-Extension](https://img.shields.io/pypi/v/ltp-extension?label=LTP-Extension)](https://pypi.org/project/ltp-extension) | | [Rust](rust/ltp/README.md) | [![LTP](https://img.shields.io/crates/v/ltp?label=LTP)](https://crates.io/crates/ltp) | # LTP 4 LTP(Language Technology Platform) 提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。 ## 引用 如果您在工作中使用了 LTP,您可以引用这篇论文 ```bibtex @article{che2020n, title={N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models}, author={Che, Wanxiang and Feng, Yunlong and Qin, Libo and Liu, Ting}, journal={arXiv preprint arXiv:2009.11616}, year={2020} } ``` **参考书:** 由哈工大社会计算与信息检索研究中心(HIT-SCIR)的多位学者共同编著的《[自然语言处理:基于预训练模型的方法](https://item.jd.com/13344628.html) 》(作者:车万翔、郭江、崔一鸣;主审:刘挺)一书现已正式出版,该书重点介绍了新的基于预训练模型的自然语言处理技术,包括基础知识、预训练词向量和预训练模型三大部分,可供广大LTP用户学习参考。 ### 更新说明 - 4.2.0 - \[结构性变化\] 将 LTP 拆分成 2 个部分,维护和训练更方便,结构更清晰 - \[Legacy 模型\] 针对广大用户对于**推理速度**的需求,使用 Rust 重写了基于感知机的算法,准确率与 LTP3 版本相当,速度则是 LTP v3 的 **3.55** 倍,开启多线程更可获得 **17.17** 倍的速度提升,但目前仅支持分词、词性、命名实体三大任务 - \[深度学习模型\] 即基于 PyTorch 实现的深度学习模型,支持全部的6大任务(分词/词性/命名实体/语义角色/依存句法/语义依存) - \[其他改进\] 改进了模型训练方法 - \[共同\] 提供了训练脚本和训练样例,使得用户能够更方便地使用私有的数据,自行训练个性化的模型 - \[深度学习模型\] 采用 hydra 对训练过程进行配置,方便广大用户修改模型训练参数以及对 LTP 进行扩展(比如使用其他包中的 Module) - \[其他变化\] 分词、依存句法分析 (Eisner) 和 语义依存分析 (Eisner) 任务的解码算法使用 Rust 实现,速度更快 - \[新特性\] 模型上传至 [Huggingface Hub](https://huggingface.co/LTP),支持自动下载,下载速度更快,并且支持用户自行上传自己训练的模型供LTP进行推理使用 - \[破坏性变更\] 改用 Pipeline API 进行推理,方便后续进行更深入的性能优化(如SDP和SDPG很大一部分是重叠的,重用可以加快推理速度),使用说明参见[Github快速使用部分](https://github.com/hit-scir/ltp) - 4.1.0 - 提供了自定义分词等功能 - 修复了一些bug - 4.0.0 - 基于Pytorch 开发,原生 Python 接口 - 可根据需要自由选择不同速度和指标的模型 - 分词、词性、命名实体、依存句法、语义角色、语义依存6大任务 ## 快速使用 ### [Python](python/interface/README.md) ```bash pip install -U ltp ltp-core ltp-extension -i https://pypi.org/simple # 安装 ltp ``` **注:** 如果遇到任何错误,请尝试使用上述命令重新安装 ltp,如果依然报错,请在 Github issues 中反馈。 ```python import torch from ltp import LTP ltp = LTP("LTP/small") # 默认加载 Small 模型 # 将模型移动到 GPU 上 if torch.cuda.is_available(): # ltp.cuda() ltp.to("cuda") output = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner", "srl", "dep", "sdp"]) # 使用字典格式作为返回结果 print(output.cws) # print(output[0]) / print(output['cws']) # 也可以使用下标访问 print(output.pos) print(output.sdp) # 使用感知机算法实现的分词、词性和命名实体识别,速度比较快,但是精度略低 ltp = LTP("LTP/legacy") # cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "ner"]).to_tuple() # error: NER 需要 词性标注任务的结果 cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner"]).to_tuple() # to tuple 可以自动转换为元组格式 # 使用元组格式作为返回结果 print(cws, pos, ner) ``` **[详细说明](python/interface/docs/quickstart.rst)** ### [Rust](rust/ltp/README.md) ```rust use std::fs::File; use itertools::multizip; use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format, Codec}; fn main() -> Result<(), Box<dyn std::error::Error>> { let file = File::open("data/legacy-models/cws_model.bin")?; let cws: CWSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/pos_model.bin")?; let pos: POSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/ner_model.bin")?; let ner: NERModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let words = cws.predict("他叫汤姆去拿外衣。")?; let pos = pos.predict(&words)?; let ner = ner.predict((&words, &pos))?; for (w, p, n) in multizip((words, pos, ner)) { println!("{}/{}/{}", w, p, n); } Ok(()) } ``` ## 模型性能以及下载地址 | 深度学习模型 | 分词 | 词性 | 命名实体 | 语义角色 | 依存句法 | 语义依存 | 速度(句/S) | | :---------------------------------------: | :---: | :---: | :---: | :---: | :---: | :---: | :-----: | | [Base](https://huggingface.co/LTP/base) | 98.7 | 98.5 | 95.4 | 80.6 | 89.5 | 75.2 | 39.12 | | [Base1](https://huggingface.co/LTP/base1) | 99.22 | 98.73 | 96.39 | 79.28 | 89.57 | 76.57 | --.-- | | [Base2](https://huggingface.co/LTP/base2) | 99.18 | 98.69 | 95.97 | 79.49 | 90.19 | 76.62 | --.-- | | [Small](https://huggingface.co/LTP/small) | 98.4 | 98.2 | 94.3 | 78.4 | 88.3 | 74.7 | 43.13 | | [Tiny](https://huggingface.co/LTP/tiny) | 96.8 | 97.1 | 91.6 | 70.9 | 83.8 | 70.1 | 53.22 | | 感知机算法 | 分词 | 词性 | 命名实体 | 速度(句/s) | 备注 | | :-----------------------------------------: | :---: | :---: | :---: | :------: | :------------------------: | | [Legacy](https://huggingface.co/LTP/legacy) | 97.93 | 98.41 | 94.28 | 21581.48 | [性能详情](rust/ltp/README.md) | **注:感知机算法速度为开启16线程速度** ## 构建 Wheel 包 ```shell script make bdist ``` ## 其他语言绑定 **感知机算法** - [Rust](rust/ltp) - [C/C++](rust/ltp-cffi) **深度学习算法** - [Rust](https://github.com/HIT-SCIR/libltp/tree/master/ltp-rs) - [C++](https://github.com/HIT-SCIR/libltp/tree/master/ltp-cpp) - [Java](https://github.com/HIT-SCIR/libltp/tree/master/ltp-java) ## 作者信息 - 冯云龙 \<\<[[email protected]](mailto:[email protected])>> ## 开源协议 1. 语言技术平台面向国内外大学、中科院各研究所以及个人研究者免费开放源代码,但如上述机构和个人将该平台用于商业目的(如企业合作项目等)则需要付费。 2. 除上述机构以外的企事业单位,如申请使用该平台,需付费。 3. 凡涉及付费问题,请发邮件到 [email protected] 洽商。 4. 如果您在 LTP 基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了哈工大社会计算与信息检索研究中心研制的语言技术平台(LTP)”. 同时,发信给[email protected],说明发表论文或申报成果的题目、出处等。
LTP/base1
LTP
2022-09-19T06:36:16Z
6,604
5
transformers
[ "transformers", "pytorch", "arxiv:2009.11616", "endpoints_compatible", "region:us" ]
null
2022-08-14T04:35:09Z
![CODE SIZE](https://img.shields.io/github/languages/code-size/HIT-SCIR/ltp) ![CONTRIBUTORS](https://img.shields.io/github/contributors/HIT-SCIR/ltp) ![LAST COMMIT](https://img.shields.io/github/last-commit/HIT-SCIR/ltp) | Language | version | | ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Python](python/interface/README.md) | [![LTP](https://img.shields.io/pypi/v/ltp?label=LTP)](https://pypi.org/project/ltp) [![LTP-Core](https://img.shields.io/pypi/v/ltp-core?label=LTP-Core)](https://pypi.org/project/ltp-core) [![LTP-Extension](https://img.shields.io/pypi/v/ltp-extension?label=LTP-Extension)](https://pypi.org/project/ltp-extension) | | [Rust](rust/ltp/README.md) | [![LTP](https://img.shields.io/crates/v/ltp?label=LTP)](https://crates.io/crates/ltp) | # LTP 4 LTP(Language Technology Platform) 提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。 ## 引用 如果您在工作中使用了 LTP,您可以引用这篇论文 ```bibtex @article{che2020n, title={N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models}, author={Che, Wanxiang and Feng, Yunlong and Qin, Libo and Liu, Ting}, journal={arXiv preprint arXiv:2009.11616}, year={2020} } ``` **参考书:** 由哈工大社会计算与信息检索研究中心(HIT-SCIR)的多位学者共同编著的《[自然语言处理:基于预训练模型的方法](https://item.jd.com/13344628.html) 》(作者:车万翔、郭江、崔一鸣;主审:刘挺)一书现已正式出版,该书重点介绍了新的基于预训练模型的自然语言处理技术,包括基础知识、预训练词向量和预训练模型三大部分,可供广大LTP用户学习参考。 ### 更新说明 - 4.2.0 - \[结构性变化\] 将 LTP 拆分成 2 个部分,维护和训练更方便,结构更清晰 - \[Legacy 模型\] 针对广大用户对于**推理速度**的需求,使用 Rust 重写了基于感知机的算法,准确率与 LTP3 版本相当,速度则是 LTP v3 的 **3.55** 倍,开启多线程更可获得 **17.17** 倍的速度提升,但目前仅支持分词、词性、命名实体三大任务 - \[深度学习模型\] 即基于 PyTorch 实现的深度学习模型,支持全部的6大任务(分词/词性/命名实体/语义角色/依存句法/语义依存) - \[其他改进\] 改进了模型训练方法 - \[共同\] 提供了训练脚本和训练样例,使得用户能够更方便地使用私有的数据,自行训练个性化的模型 - \[深度学习模型\] 采用 hydra 对训练过程进行配置,方便广大用户修改模型训练参数以及对 LTP 进行扩展(比如使用其他包中的 Module) - \[其他变化\] 分词、依存句法分析 (Eisner) 和 语义依存分析 (Eisner) 任务的解码算法使用 Rust 实现,速度更快 - \[新特性\] 模型上传至 [Huggingface Hub](https://huggingface.co/LTP),支持自动下载,下载速度更快,并且支持用户自行上传自己训练的模型供LTP进行推理使用 - \[破坏性变更\] 改用 Pipeline API 进行推理,方便后续进行更深入的性能优化(如SDP和SDPG很大一部分是重叠的,重用可以加快推理速度),使用说明参见[Github快速使用部分](https://github.com/hit-scir/ltp) - 4.1.0 - 提供了自定义分词等功能 - 修复了一些bug - 4.0.0 - 基于Pytorch 开发,原生 Python 接口 - 可根据需要自由选择不同速度和指标的模型 - 分词、词性、命名实体、依存句法、语义角色、语义依存6大任务 ## 快速使用 ### [Python](python/interface/README.md) ```bash pip install -U ltp ltp-core ltp-extension -i https://pypi.org/simple # 安装 ltp ``` **注:** 如果遇到任何错误,请尝试使用上述命令重新安装 ltp,如果依然报错,请在 Github issues 中反馈。 ```python import torch from ltp import LTP ltp = LTP("LTP/small") # 默认加载 Small 模型 # 将模型移动到 GPU 上 if torch.cuda.is_available(): # ltp.cuda() ltp.to("cuda") output = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner", "srl", "dep", "sdp"]) # 使用字典格式作为返回结果 print(output.cws) # print(output[0]) / print(output['cws']) # 也可以使用下标访问 print(output.pos) print(output.sdp) # 使用感知机算法实现的分词、词性和命名实体识别,速度比较快,但是精度略低 ltp = LTP("LTP/legacy") # cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "ner"]).to_tuple() # error: NER 需要 词性标注任务的结果 cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner"]).to_tuple() # to tuple 可以自动转换为元组格式 # 使用元组格式作为返回结果 print(cws, pos, ner) ``` **[详细说明](python/interface/docs/quickstart.rst)** ### [Rust](rust/ltp/README.md) ```rust use std::fs::File; use itertools::multizip; use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format, Codec}; fn main() -> Result<(), Box<dyn std::error::Error>> { let file = File::open("data/legacy-models/cws_model.bin")?; let cws: CWSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/pos_model.bin")?; let pos: POSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/ner_model.bin")?; let ner: NERModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let words = cws.predict("他叫汤姆去拿外衣。")?; let pos = pos.predict(&words)?; let ner = ner.predict((&words, &pos))?; for (w, p, n) in multizip((words, pos, ner)) { println!("{}/{}/{}", w, p, n); } Ok(()) } ``` ## 模型性能以及下载地址 | 深度学习模型 | 分词 | 词性 | 命名实体 | 语义角色 | 依存句法 | 语义依存 | 速度(句/S) | | :---------------------------------------: | :---: | :---: | :---: | :---: | :---: | :---: | :-----: | | [Base](https://huggingface.co/LTP/base) | 98.7 | 98.5 | 95.4 | 80.6 | 89.5 | 75.2 | 39.12 | | [Base1](https://huggingface.co/LTP/base1) | 99.22 | 98.73 | 96.39 | 79.28 | 89.57 | 76.57 | --.-- | | [Base2](https://huggingface.co/LTP/base2) | 99.18 | 98.69 | 95.97 | 79.49 | 90.19 | 76.62 | --.-- | | [Small](https://huggingface.co/LTP/small) | 98.4 | 98.2 | 94.3 | 78.4 | 88.3 | 74.7 | 43.13 | | [Tiny](https://huggingface.co/LTP/tiny) | 96.8 | 97.1 | 91.6 | 70.9 | 83.8 | 70.1 | 53.22 | | 感知机算法 | 分词 | 词性 | 命名实体 | 速度(句/s) | 备注 | | :-----------------------------------------: | :---: | :---: | :---: | :------: | :------------------------: | | [Legacy](https://huggingface.co/LTP/legacy) | 97.93 | 98.41 | 94.28 | 21581.48 | [性能详情](rust/ltp/README.md) | **注:感知机算法速度为开启16线程速度** ## 构建 Wheel 包 ```shell script make bdist ``` ## 其他语言绑定 **感知机算法** - [Rust](rust/ltp) - [C/C++](rust/ltp-cffi) **深度学习算法** - [Rust](https://github.com/HIT-SCIR/libltp/tree/master/ltp-rs) - [C++](https://github.com/HIT-SCIR/libltp/tree/master/ltp-cpp) - [Java](https://github.com/HIT-SCIR/libltp/tree/master/ltp-java) ## 作者信息 - 冯云龙 \<\<[[email protected]](mailto:[email protected])>> ## 开源协议 1. 语言技术平台面向国内外大学、中科院各研究所以及个人研究者免费开放源代码,但如上述机构和个人将该平台用于商业目的(如企业合作项目等)则需要付费。 2. 除上述机构以外的企事业单位,如申请使用该平台,需付费。 3. 凡涉及付费问题,请发邮件到 [email protected] 洽商。 4. 如果您在 LTP 基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了哈工大社会计算与信息检索研究中心研制的语言技术平台(LTP)”. 同时,发信给[email protected],说明发表论文或申报成果的题目、出处等。
LTP/legacy
LTP
2022-09-19T06:35:53Z
207
4
transformers
[ "transformers", "arxiv:2009.11616", "endpoints_compatible", "region:us" ]
null
2022-08-14T05:05:24Z
![CODE SIZE](https://img.shields.io/github/languages/code-size/HIT-SCIR/ltp) ![CONTRIBUTORS](https://img.shields.io/github/contributors/HIT-SCIR/ltp) ![LAST COMMIT](https://img.shields.io/github/last-commit/HIT-SCIR/ltp) | Language | version | | ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Python](python/interface/README.md) | [![LTP](https://img.shields.io/pypi/v/ltp?label=LTP)](https://pypi.org/project/ltp) [![LTP-Core](https://img.shields.io/pypi/v/ltp-core?label=LTP-Core)](https://pypi.org/project/ltp-core) [![LTP-Extension](https://img.shields.io/pypi/v/ltp-extension?label=LTP-Extension)](https://pypi.org/project/ltp-extension) | | [Rust](rust/ltp/README.md) | [![LTP](https://img.shields.io/crates/v/ltp?label=LTP)](https://crates.io/crates/ltp) | # LTP 4 LTP(Language Technology Platform) 提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。 ## 引用 如果您在工作中使用了 LTP,您可以引用这篇论文 ```bibtex @article{che2020n, title={N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models}, author={Che, Wanxiang and Feng, Yunlong and Qin, Libo and Liu, Ting}, journal={arXiv preprint arXiv:2009.11616}, year={2020} } ``` **参考书:** 由哈工大社会计算与信息检索研究中心(HIT-SCIR)的多位学者共同编著的《[自然语言处理:基于预训练模型的方法](https://item.jd.com/13344628.html) 》(作者:车万翔、郭江、崔一鸣;主审:刘挺)一书现已正式出版,该书重点介绍了新的基于预训练模型的自然语言处理技术,包括基础知识、预训练词向量和预训练模型三大部分,可供广大LTP用户学习参考。 ### 更新说明 - 4.2.0 - \[结构性变化\] 将 LTP 拆分成 2 个部分,维护和训练更方便,结构更清晰 - \[Legacy 模型\] 针对广大用户对于**推理速度**的需求,使用 Rust 重写了基于感知机的算法,准确率与 LTP3 版本相当,速度则是 LTP v3 的 **3.55** 倍,开启多线程更可获得 **17.17** 倍的速度提升,但目前仅支持分词、词性、命名实体三大任务 - \[深度学习模型\] 即基于 PyTorch 实现的深度学习模型,支持全部的6大任务(分词/词性/命名实体/语义角色/依存句法/语义依存) - \[其他改进\] 改进了模型训练方法 - \[共同\] 提供了训练脚本和训练样例,使得用户能够更方便地使用私有的数据,自行训练个性化的模型 - \[深度学习模型\] 采用 hydra 对训练过程进行配置,方便广大用户修改模型训练参数以及对 LTP 进行扩展(比如使用其他包中的 Module) - \[其他变化\] 分词、依存句法分析 (Eisner) 和 语义依存分析 (Eisner) 任务的解码算法使用 Rust 实现,速度更快 - \[新特性\] 模型上传至 [Huggingface Hub](https://huggingface.co/LTP),支持自动下载,下载速度更快,并且支持用户自行上传自己训练的模型供LTP进行推理使用 - \[破坏性变更\] 改用 Pipeline API 进行推理,方便后续进行更深入的性能优化(如SDP和SDPG很大一部分是重叠的,重用可以加快推理速度),使用说明参见[Github快速使用部分](https://github.com/hit-scir/ltp) - 4.1.0 - 提供了自定义分词等功能 - 修复了一些bug - 4.0.0 - 基于Pytorch 开发,原生 Python 接口 - 可根据需要自由选择不同速度和指标的模型 - 分词、词性、命名实体、依存句法、语义角色、语义依存6大任务 ## 快速使用 ### [Python](python/interface/README.md) ```bash pip install -U ltp ltp-core ltp-extension -i https://pypi.org/simple # 安装 ltp ``` **注:** 如果遇到任何错误,请尝试使用上述命令重新安装 ltp,如果依然报错,请在 Github issues 中反馈。 ```python import torch from ltp import LTP ltp = LTP("LTP/small") # 默认加载 Small 模型 # 将模型移动到 GPU 上 if torch.cuda.is_available(): # ltp.cuda() ltp.to("cuda") output = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner", "srl", "dep", "sdp"]) # 使用字典格式作为返回结果 print(output.cws) # print(output[0]) / print(output['cws']) # 也可以使用下标访问 print(output.pos) print(output.sdp) # 使用感知机算法实现的分词、词性和命名实体识别,速度比较快,但是精度略低 ltp = LTP("LTP/legacy") # cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "ner"]).to_tuple() # error: NER 需要 词性标注任务的结果 cws, pos, ner = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner"]).to_tuple() # to tuple 可以自动转换为元组格式 # 使用元组格式作为返回结果 print(cws, pos, ner) ``` **[详细说明](python/interface/docs/quickstart.rst)** ### [Rust](rust/ltp/README.md) ```rust use std::fs::File; use itertools::multizip; use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format, Codec}; fn main() -> Result<(), Box<dyn std::error::Error>> { let file = File::open("data/legacy-models/cws_model.bin")?; let cws: CWSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/pos_model.bin")?; let pos: POSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/ner_model.bin")?; let ner: NERModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let words = cws.predict("他叫汤姆去拿外衣。")?; let pos = pos.predict(&words)?; let ner = ner.predict((&words, &pos))?; for (w, p, n) in multizip((words, pos, ner)) { println!("{}/{}/{}", w, p, n); } Ok(()) } ``` ## 模型性能以及下载地址 | 深度学习模型 | 分词 | 词性 | 命名实体 | 语义角色 | 依存句法 | 语义依存 | 速度(句/S) | | :---------------------------------------: | :---: | :---: | :---: | :---: | :---: | :---: | :-----: | | [Base](https://huggingface.co/LTP/base) | 98.7 | 98.5 | 95.4 | 80.6 | 89.5 | 75.2 | 39.12 | | [Base1](https://huggingface.co/LTP/base1) | 99.22 | 98.73 | 96.39 | 79.28 | 89.57 | 76.57 | --.-- | | [Base2](https://huggingface.co/LTP/base2) | 99.18 | 98.69 | 95.97 | 79.49 | 90.19 | 76.62 | --.-- | | [Small](https://huggingface.co/LTP/small) | 98.4 | 98.2 | 94.3 | 78.4 | 88.3 | 74.7 | 43.13 | | [Tiny](https://huggingface.co/LTP/tiny) | 96.8 | 97.1 | 91.6 | 70.9 | 83.8 | 70.1 | 53.22 | | 感知机算法 | 分词 | 词性 | 命名实体 | 速度(句/s) | 备注 | | :-----------------------------------------: | :---: | :---: | :---: | :------: | :------------------------: | | [Legacy](https://huggingface.co/LTP/legacy) | 97.93 | 98.41 | 94.28 | 21581.48 | [性能详情](rust/ltp/README.md) | **注:感知机算法速度为开启16线程速度** ## 构建 Wheel 包 ```shell script make bdist ``` ## 其他语言绑定 **感知机算法** - [Rust](rust/ltp) - [C/C++](rust/ltp-cffi) **深度学习算法** - [Rust](https://github.com/HIT-SCIR/libltp/tree/master/ltp-rs) - [C++](https://github.com/HIT-SCIR/libltp/tree/master/ltp-cpp) - [Java](https://github.com/HIT-SCIR/libltp/tree/master/ltp-java) ## 作者信息 - 冯云龙 \<\<[[email protected]](mailto:[email protected])>> ## 开源协议 1. 语言技术平台面向国内外大学、中科院各研究所以及个人研究者免费开放源代码,但如上述机构和个人将该平台用于商业目的(如企业合作项目等)则需要付费。 2. 除上述机构以外的企事业单位,如申请使用该平台,需付费。 3. 凡涉及付费问题,请发邮件到 [email protected] 洽商。 4. 如果您在 LTP 基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了哈工大社会计算与信息检索研究中心研制的语言技术平台(LTP)”. 同时,发信给[email protected],说明发表论文或申报成果的题目、出处等。
sd-concepts-library/mu-sadr
sd-concepts-library
2022-09-19T04:43:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-19T04:43:03Z
--- license: mit --- ### mu-sadr on Stable Diffusion This is the `<783463b>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<783463b> 0](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/3.jpeg) ![<783463b> 1](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/6.jpeg) ![<783463b> 2](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/0.jpeg) ![<783463b> 3](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/7.jpeg) ![<783463b> 4](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/5.jpeg) ![<783463b> 5](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/8.jpeg) ![<783463b> 6](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/1.jpeg) ![<783463b> 7](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/2.jpeg) ![<783463b> 8](https://huggingface.co/sd-concepts-library/mu-sadr/resolve/main/concept_images/4.jpeg)
nguyenthanhasia/BERT-LARD
nguyenthanhasia
2022-09-19T02:51:22Z
105
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-19T02:42:46Z
This is BERT-LARD Pretrained Model
gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2
gary109
2022-09-19T01:39:28Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T03:02:43Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2 This model is a fine-tuned version of [gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-2](https://huggingface.co/gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING4 dataset. It achieves the following results on the evaluation set: - Loss: 0.2311 - Wer: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9329 | 1.0 | 72 | 0.4334 | 0.1349 | | 0.7631 | 2.0 | 144 | 0.3390 | 0.1318 | | 0.7575 | 3.0 | 216 | 0.3182 | 0.1441 | | 0.667 | 4.0 | 288 | 0.2995 | 0.1288 | | 0.6474 | 5.0 | 360 | 0.3211 | 0.1574 | | 0.6094 | 6.0 | 432 | 0.2944 | 0.1530 | | 0.5586 | 7.0 | 504 | 0.3446 | 0.1809 | | 0.5728 | 8.0 | 576 | 0.2682 | 0.1246 | | 0.575 | 9.0 | 648 | 0.2610 | 0.1244 | | 0.5882 | 10.0 | 720 | 0.2463 | 0.1199 | | 0.5367 | 11.0 | 792 | 0.2542 | 0.1093 | | 0.5261 | 12.0 | 864 | 0.2523 | 0.1131 | | 0.5091 | 13.0 | 936 | 0.2491 | 0.1175 | | 0.5323 | 14.0 | 1008 | 0.2535 | 0.1208 | | 0.5478 | 15.0 | 1080 | 0.2542 | 0.1204 | | 0.4775 | 16.0 | 1152 | 0.2476 | 0.1138 | | 0.4922 | 17.0 | 1224 | 0.2535 | 0.1162 | | 0.4893 | 18.0 | 1296 | 0.2501 | 0.1143 | | 0.4672 | 19.0 | 1368 | 0.2703 | 0.1162 | | 0.4764 | 20.0 | 1440 | 0.2632 | 0.1253 | | 0.4716 | 21.0 | 1512 | 0.2534 | 0.1097 | | 0.4733 | 22.0 | 1584 | 0.2496 | 0.1086 | | 0.4577 | 23.0 | 1656 | 0.2637 | 0.1225 | | 0.4714 | 24.0 | 1728 | 0.2489 | 0.1102 | | 0.4615 | 25.0 | 1800 | 0.2399 | 0.1020 | | 0.4636 | 26.0 | 1872 | 0.2311 | 0.1042 | | 0.4564 | 27.0 | 1944 | 0.2413 | 0.1042 | | 0.4452 | 28.0 | 2016 | 0.2436 | 0.1037 | | 0.4336 | 29.0 | 2088 | 0.2484 | 0.1070 | | 0.4628 | 30.0 | 2160 | 0.2385 | 0.1005 | | 0.4475 | 31.0 | 2232 | 0.2446 | 0.1075 | | 0.4264 | 32.0 | 2304 | 0.2548 | 0.1068 | | 0.4417 | 33.0 | 2376 | 0.2442 | 0.1046 | | 0.4165 | 34.0 | 2448 | 0.2458 | 0.1045 | | 0.4398 | 35.0 | 2520 | 0.2475 | 0.0979 | | 0.4334 | 36.0 | 2592 | 0.2375 | 0.1027 | | 0.4279 | 37.0 | 2664 | 0.2462 | 0.1053 | | 0.4213 | 38.0 | 2736 | 0.2402 | 0.1028 | | 0.4394 | 39.0 | 2808 | 0.2385 | 0.1020 | | 0.4415 | 40.0 | 2880 | 0.2428 | 0.1021 | | 0.4173 | 41.0 | 2952 | 0.2356 | 0.1016 | | 0.4006 | 42.0 | 3024 | 0.2461 | 0.1007 | | 0.4055 | 43.0 | 3096 | 0.2412 | 0.0998 | | 0.4163 | 44.0 | 3168 | 0.2378 | 0.0976 | | 0.4143 | 45.0 | 3240 | 0.2471 | 0.0996 | | 0.4132 | 46.0 | 3312 | 0.2457 | 0.1004 | | 0.3991 | 47.0 | 3384 | 0.2350 | 0.1019 | | 0.4014 | 48.0 | 3456 | 0.2400 | 0.1025 | | 0.416 | 49.0 | 3528 | 0.2370 | 0.1010 | | 0.4067 | 50.0 | 3600 | 0.2444 | 0.1010 | | 0.3876 | 51.0 | 3672 | 0.2491 | 0.1057 | | 0.3964 | 52.0 | 3744 | 0.2451 | 0.1075 | | 0.3903 | 53.0 | 3816 | 0.2395 | 0.1003 | | 0.4036 | 54.0 | 3888 | 0.2446 | 0.1016 | | 0.3936 | 55.0 | 3960 | 0.2520 | 0.0997 | | 0.4094 | 56.0 | 4032 | 0.2401 | 0.0992 | | 0.3977 | 57.0 | 4104 | 0.2498 | 0.1019 | | 0.3942 | 58.0 | 4176 | 0.2496 | 0.0989 | | 0.4052 | 59.0 | 4248 | 0.2507 | 0.1021 | | 0.3995 | 60.0 | 4320 | 0.2382 | 0.0999 | | 0.407 | 61.0 | 4392 | 0.2517 | 0.1037 | | 0.4067 | 62.0 | 4464 | 0.2430 | 0.1034 | | 0.3887 | 63.0 | 4536 | 0.2415 | 0.0974 | | 0.3837 | 64.0 | 4608 | 0.2435 | 0.0991 | | 0.3954 | 65.0 | 4680 | 0.2384 | 0.0985 | | 0.3726 | 66.0 | 4752 | 0.2550 | 0.1009 | | 0.3659 | 67.0 | 4824 | 0.2523 | 0.0967 | | 0.376 | 68.0 | 4896 | 0.2571 | 0.0973 | | 0.3759 | 69.0 | 4968 | 0.2528 | 0.0981 | | 0.3862 | 70.0 | 5040 | 0.2496 | 0.0976 | | 0.367 | 71.0 | 5112 | 0.2465 | 0.0942 | | 0.3688 | 72.0 | 5184 | 0.2505 | 0.0968 | | 0.3817 | 73.0 | 5256 | 0.2525 | 0.0973 | | 0.3675 | 74.0 | 5328 | 0.2441 | 0.0964 | | 0.3727 | 75.0 | 5400 | 0.2440 | 0.0973 | | 0.371 | 76.0 | 5472 | 0.2510 | 0.0971 | | 0.3761 | 77.0 | 5544 | 0.2398 | 0.0961 | | 0.358 | 78.0 | 5616 | 0.2485 | 0.0956 | | 0.3521 | 79.0 | 5688 | 0.2438 | 0.0955 | | 0.3722 | 80.0 | 5760 | 0.2422 | 0.0967 | | 0.3663 | 81.0 | 5832 | 0.2463 | 0.0949 | | 0.3716 | 82.0 | 5904 | 0.2467 | 0.0965 | | 0.361 | 83.0 | 5976 | 0.2458 | 0.0957 | | 0.3626 | 84.0 | 6048 | 0.2501 | 0.0942 | | 0.3755 | 85.0 | 6120 | 0.2486 | 0.0943 | | 0.3693 | 86.0 | 6192 | 0.2497 | 0.0947 | | 0.3548 | 87.0 | 6264 | 0.2515 | 0.0958 | | 0.3583 | 88.0 | 6336 | 0.2433 | 0.0937 | | 0.3678 | 89.0 | 6408 | 0.2456 | 0.0933 | | 0.3718 | 90.0 | 6480 | 0.2443 | 0.0937 | | 0.3614 | 91.0 | 6552 | 0.2457 | 0.0957 | | 0.3541 | 92.0 | 6624 | 0.2450 | 0.0953 | | 0.3671 | 93.0 | 6696 | 0.2469 | 0.0944 | | 0.3503 | 94.0 | 6768 | 0.2459 | 0.0956 | | 0.3692 | 95.0 | 6840 | 0.2461 | 0.0944 | | 0.362 | 96.0 | 6912 | 0.2430 | 0.0945 | | 0.3431 | 97.0 | 6984 | 0.2454 | 0.0952 | | 0.3597 | 98.0 | 7056 | 0.2454 | 0.0940 | | 0.354 | 99.0 | 7128 | 0.2448 | 0.0939 | | 0.3597 | 100.0 | 7200 | 0.2449 | 0.0943 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
sd-concepts-library/rcrumb-portraits-style
sd-concepts-library
2022-09-19T00:13:10Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-19T00:12:56Z
--- license: mit --- ### rcrumb portraits style on Stable Diffusion This is the `<rcrumb-portraits>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<rcrumb-portraits> 0](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/3.jpeg) ![<rcrumb-portraits> 1](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/6.jpeg) ![<rcrumb-portraits> 2](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/0.jpeg) ![<rcrumb-portraits> 3](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/7.jpeg) ![<rcrumb-portraits> 4](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/5.jpeg) ![<rcrumb-portraits> 5](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/8.jpeg) ![<rcrumb-portraits> 6](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/9.jpeg) ![<rcrumb-portraits> 7](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/1.jpeg) ![<rcrumb-portraits> 8](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/2.jpeg) ![<rcrumb-portraits> 9](https://huggingface.co/sd-concepts-library/rcrumb-portraits-style/resolve/main/concept_images/4.jpeg)
Naimul/banglabert-finetuned-squad
Naimul
2022-09-18T23:07:28Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad_bn", "endpoints_compatible", "region:us" ]
question-answering
2022-09-18T21:07:39Z
--- tags: - generated_from_trainer datasets: - squad_bn model-index: - name: banglabert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # banglabert-finetuned-squad This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the squad_bn dataset. It achieves the following results on the evaluation set: - Loss: 1.4421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3649 | 1.0 | 7397 | 1.4421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/model2-bart-reverse
theojolliffe
2022-09-18T23:04:39Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-18T22:15:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: model2-bart-reverse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model2-bart-reverse This model is a fine-tuned version of [theojolliffe/model-2-bart-reverse-raw](https://huggingface.co/theojolliffe/model-2-bart-reverse-raw) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5768 - Rouge1: 50.0024 - Rouge2: 44.5149 - Rougel: 50.408 - Rougelsum: 50.0015 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 160 | 0.5107 | 54.2246 | 50.7271 | 51.1954 | 54.4944 | 20.0 | | No log | 2.0 | 320 | 0.5895 | 48.1317 | 43.4207 | 48.6594 | 48.4308 | 20.0 | | No log | 3.0 | 480 | 0.5833 | 51.7747 | 46.8312 | 52.47 | 52.1239 | 20.0 | | 0.4286 | 4.0 | 640 | 0.5768 | 50.0024 | 44.5149 | 50.408 | 50.0015 | 20.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/vietstoneking
sd-concepts-library
2022-09-18T22:54:46Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-18T22:54:32Z
--- license: mit --- ### vietstoneking on Stable Diffusion This is the `<vietstoneking>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<vietstoneking> 0](https://huggingface.co/sd-concepts-library/vietstoneking/resolve/main/concept_images/3.jpeg) ![<vietstoneking> 1](https://huggingface.co/sd-concepts-library/vietstoneking/resolve/main/concept_images/0.jpeg) ![<vietstoneking> 2](https://huggingface.co/sd-concepts-library/vietstoneking/resolve/main/concept_images/1.jpeg) ![<vietstoneking> 3](https://huggingface.co/sd-concepts-library/vietstoneking/resolve/main/concept_images/2.jpeg) ![<vietstoneking> 4](https://huggingface.co/sd-concepts-library/vietstoneking/resolve/main/concept_images/4.jpeg)
Ravneet/ddpm-butterflies-128
Ravneet
2022-09-18T20:52:17Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-18T19:37:59Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Ravneet/ddpm-butterflies-128/tensorboard?#scalars)
DrishtiSharma/LayoutLMv3-Finetuned-CORD_100
DrishtiSharma
2022-09-18T19:38:50Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-18T18:35:30Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: LayoutLMv3-Finetuned-CORD_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9524870081662955 - name: Recall type: recall value: 0.9603293413173652 - name: F1 type: f1 value: 0.9563920983973164 - name: Accuracy type: accuracy value: 0.9647707979626485 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LayoutLMv3-Finetuned-CORD_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1948 - Precision: 0.9525 - Recall: 0.9603 - F1: 0.9564 - Accuracy: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9568 | 0.7298 | 0.7844 | 0.7561 | 0.7992 | | 1.3271 | 3.12 | 500 | 0.5239 | 0.8398 | 0.8713 | 0.8553 | 0.8858 | | 1.3271 | 4.69 | 750 | 0.3586 | 0.8945 | 0.9207 | 0.9074 | 0.9300 | | 0.3495 | 6.25 | 1000 | 0.2716 | 0.9298 | 0.9416 | 0.9357 | 0.9410 | | 0.3495 | 7.81 | 1250 | 0.2331 | 0.9198 | 0.9356 | 0.9276 | 0.9474 | | 0.1725 | 9.38 | 1500 | 0.2134 | 0.9379 | 0.9499 | 0.9438 | 0.9529 | | 0.1725 | 10.94 | 1750 | 0.2079 | 0.9401 | 0.9513 | 0.9457 | 0.9605 | | 0.1116 | 12.5 | 2000 | 0.1992 | 0.9554 | 0.9618 | 0.9586 | 0.9656 | | 0.1116 | 14.06 | 2250 | 0.1941 | 0.9517 | 0.9588 | 0.9553 | 0.9631 | | 0.0762 | 15.62 | 2500 | 0.1966 | 0.9503 | 0.9588 | 0.9545 | 0.9639 | | 0.0762 | 17.19 | 2750 | 0.1951 | 0.9510 | 0.9588 | 0.9549 | 0.9626 | | 0.0636 | 18.75 | 3000 | 0.1948 | 0.9525 | 0.9603 | 0.9564 | 0.9648 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
theodotus/DialoGPT-uk
theodotus
2022-09-18T19:08:01Z
0
1
generic
[ "generic", "text2text-generation", "uk", "license:mit", "region:us" ]
text2text-generation
2022-09-18T13:55:21Z
--- language: - uk tags: - text2text-generation library_name: generic license: mit --- # Attribution OPT-175B is licensed under the [OPT-175B license](https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md), Copyright (c) Meta Platforms, Inc. All Rights Reserved.