modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
lizaboiarchuk/bert-tiny-oa-finetuned
lizaboiarchuk
2022-09-18T19:05:02Z
83
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-18T07:27:29Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: lizaboiarchuk/bert-tiny-oa-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lizaboiarchuk/bert-tiny-oa-finetuned This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0626 - Validation Loss: 3.7514 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -525, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6311 | 4.1088 | 0 | | 4.2579 | 3.7859 | 1 | | 4.0635 | 3.7253 | 2 | | 4.0658 | 3.6842 | 3 | | 4.0626 | 3.7514 | 4 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Tokenizers 0.12.1
sd-concepts-library/laala-character
sd-concepts-library
2022-09-18T17:07:01Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-18T17:06:58Z
--- license: mit --- ### laala-character on Stable Diffusion This is the `<laala>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<laala> 0](https://huggingface.co/sd-concepts-library/laala-character/resolve/main/concept_images/3.jpeg) ![<laala> 1](https://huggingface.co/sd-concepts-library/laala-character/resolve/main/concept_images/0.jpeg) ![<laala> 2](https://huggingface.co/sd-concepts-library/laala-character/resolve/main/concept_images/1.jpeg) ![<laala> 3](https://huggingface.co/sd-concepts-library/laala-character/resolve/main/concept_images/2.jpeg) ![<laala> 4](https://huggingface.co/sd-concepts-library/laala-character/resolve/main/concept_images/4.jpeg)
baptiste/deberta-finetuned-ner-connll-late-stop
baptiste
2022-09-18T16:28:32Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-18T15:35:43Z
--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-finetuned-ner-connll-late-stop results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: en split: train args: en metrics: - name: Precision type: precision value: 0.830192600803658 - name: Recall type: recall value: 0.8470945850417079 - name: F1 type: f1 value: 0.8385584324702589 - name: Accuracy type: accuracy value: 0.9228861596598961 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-finetuned-ner-connll-late-stop This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.5259 - Precision: 0.8302 - Recall: 0.8471 - F1: 0.8386 - Accuracy: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3408 | 1.0 | 1875 | 0.3639 | 0.7462 | 0.7887 | 0.7669 | 0.8966 | | 0.2435 | 2.0 | 3750 | 0.2933 | 0.8104 | 0.8332 | 0.8217 | 0.9178 | | 0.1822 | 3.0 | 5625 | 0.3034 | 0.8147 | 0.8388 | 0.8266 | 0.9221 | | 0.1402 | 4.0 | 7500 | 0.3667 | 0.8275 | 0.8474 | 0.8374 | 0.9235 | | 0.1013 | 5.0 | 9375 | 0.4290 | 0.8285 | 0.8448 | 0.8366 | 0.9227 | | 0.0677 | 6.0 | 11250 | 0.4914 | 0.8259 | 0.8473 | 0.8365 | 0.9231 | | 0.0439 | 7.0 | 13125 | 0.5259 | 0.8302 | 0.8471 | 0.8386 | 0.9229 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yuntian-deng/latex2im
yuntian-deng
2022-09-18T14:29:45Z
5
0
diffusers
[ "diffusers", "en", "dataset:yuntian-deng/im2latex-100k", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-12T01:31:47Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: yuntian-deng/im2latex-100k metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # latex2im ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `yuntian-deng/im2latex-100k` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/yuntian-deng/latex2im/tensorboard?#scalars)
sd-concepts-library/rail-scene
sd-concepts-library
2022-09-18T14:28:03Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-18T14:27:48Z
--- license: mit --- ### Rail Scene on Stable Diffusion This is the `<rail-pov>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<rail-pov> 0](https://huggingface.co/sd-concepts-library/rail-scene/resolve/main/concept_images/3.jpeg) ![<rail-pov> 1](https://huggingface.co/sd-concepts-library/rail-scene/resolve/main/concept_images/0.jpeg) ![<rail-pov> 2](https://huggingface.co/sd-concepts-library/rail-scene/resolve/main/concept_images/1.jpeg) ![<rail-pov> 3](https://huggingface.co/sd-concepts-library/rail-scene/resolve/main/concept_images/2.jpeg)
jayanta/aaraki-vit-base-patch16-224-in21k-finetuned-cifar10
jayanta
2022-09-18T14:16:57Z
220
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-17T11:53:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mit-b2-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8523956723338485 - task: type: image-classification name: Image Classification dataset: type: custom name: custom split: test metrics: - type: f1 value: 0.8580847578266328 name: F1 - type: precision value: 0.8587893412503379 name: Precision - type: recall value: 0.8593508500772797 name: Recall --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mit-b2-finetuned-memes This model is a fine-tuned version of [aaraki/vit-base-patch16-224-in21k-finetuned-cifar10](https://huggingface.co/aaraki/vit-base-patch16-224-in21k-finetuned-cifar10) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4137 - Accuracy: 0.8524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9727 | 0.99 | 40 | 0.8400 | 0.7334 | | 0.5305 | 1.99 | 80 | 0.5147 | 0.8284 | | 0.3124 | 2.99 | 120 | 0.4698 | 0.8145 | | 0.2263 | 3.99 | 160 | 0.3892 | 0.8563 | | 0.1453 | 4.99 | 200 | 0.3874 | 0.8570 | | 0.1255 | 5.99 | 240 | 0.4097 | 0.8470 | | 0.0989 | 6.99 | 280 | 0.3860 | 0.8570 | | 0.0755 | 7.99 | 320 | 0.4141 | 0.8539 | | 0.08 | 8.99 | 360 | 0.4049 | 0.8594 | | 0.0639 | 9.99 | 400 | 0.4137 | 0.8524 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Anoop03031988/bert_emo_classifier
Anoop03031988
2022-09-18T14:14:24Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T13:44:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: bert_emo_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_emo_classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8874 | 0.25 | 500 | 0.4256 | | 0.3255 | 0.5 | 1000 | 0.3233 | | 0.2754 | 0.75 | 1500 | 0.2736 | | 0.242 | 1.0 | 2000 | 0.2263 | | 0.1661 | 1.25 | 2500 | 0.2118 | | 0.1614 | 1.5 | 3000 | 0.1812 | | 0.1434 | 1.75 | 3500 | 0.1924 | | 0.1629 | 2.0 | 4000 | 0.1766 | | 0.1066 | 2.25 | 4500 | 0.2100 | | 0.1313 | 2.5 | 5000 | 0.1996 | | 0.1113 | 2.75 | 5500 | 0.2185 | | 0.115 | 3.0 | 6000 | 0.2406 | | 0.0697 | 3.25 | 6500 | 0.2485 | | 0.0835 | 3.5 | 7000 | 0.2391 | | 0.0637 | 3.75 | 7500 | 0.2695 | | 0.0707 | 4.0 | 8000 | 0.2652 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
LanYiU/codeparrot-ds
LanYiU
2022-09-18T13:10:45Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-18T11:27:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4802 | 0.93 | 5000 | 1.6886 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shaz/augh
Shaz
2022-09-18T12:49:50Z
0
0
null
[ "region:us" ]
null
2022-09-17T19:10:50Z
import requests API_URL = "https://api-inference.huggingface.co/models/gpt2" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Can you please let us know more details about your ", })
domenicrosati/deberta-v3-large-finetuned-paws-paraphrase-detector
domenicrosati
2022-09-18T11:58:59Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:paws", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T15:59:17Z
--- license: mit tags: - text-classification - generated_from_trainer datasets: - paws metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-paws-paraphrase-detector results: - task: name: Text Classification type: text-classification dataset: name: paws type: paws args: labeled_final metrics: - name: F1 type: f1 value: 0.9426698284279537 - name: Precision type: precision value: 0.9300853289292595 - name: Recall type: recall value: 0.9555995475113123 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-paws-paraphrase-detector Feel free to use for paraphrase detection tasks! This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the paws dataset. It achieves the following results on the evaluation set: - Loss: 0.3046 - F1: 0.9427 - Precision: 0.9301 - Recall: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.1492 | 1.0 | 6176 | 0.1650 | 0.9537 | 0.9385 | 0.9695 | | 0.1018 | 2.0 | 12352 | 0.1968 | 0.9544 | 0.9427 | 0.9664 | | 0.0482 | 3.0 | 18528 | 0.2419 | 0.9521 | 0.9388 | 0.9658 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sd-concepts-library/lizardman
sd-concepts-library
2022-09-18T11:42:28Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-18T11:42:22Z
--- license: mit --- ### Lizardman on Stable Diffusion This is the `PlaceholderTokenLizardman` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![PlaceholderTokenLizardman 0](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/3.jpeg) ![PlaceholderTokenLizardman 1](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/0.jpeg) ![PlaceholderTokenLizardman 2](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/5.jpeg) ![PlaceholderTokenLizardman 3](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/1.jpeg) ![PlaceholderTokenLizardman 4](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/2.jpeg) ![PlaceholderTokenLizardman 5](https://huggingface.co/sd-concepts-library/lizardman/resolve/main/concept_images/4.jpeg)
venkateshdas/roberta-base-squad2-ta-qna-roberta10e
venkateshdas
2022-09-18T11:00:43Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-18T10:37:07Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-ta-qna-roberta10e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-ta-qna-roberta10e This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 87 | 0.5890 | | No log | 2.0 | 174 | 0.4194 | | No log | 3.0 | 261 | 0.3104 | | No log | 4.0 | 348 | 0.3037 | | No log | 5.0 | 435 | 0.2723 | | 0.2889 | 6.0 | 522 | 0.2368 | | 0.2889 | 7.0 | 609 | 0.2974 | | 0.2889 | 8.0 | 696 | 0.2923 | | 0.2889 | 9.0 | 783 | 0.2936 | | 0.2889 | 10.0 | 870 | 0.2952 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/perpetualg00se
huggingtweets
2022-09-18T10:25:36Z
109
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-18T10:20:59Z
--- language: en thumbnail: http://www.huggingtweets.com/perpetualg00se/1663496719106/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245588692573409281/mGWMt1q7_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PerpetualG00se</div> <div style="text-align: center; font-size: 14px;">@perpetualg00se</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PerpetualG00se. | Data | PerpetualG00se | | --- | --- | | Tweets downloaded | 3166 | | Retweets | 514 | | Short tweets | 628 | | Tweets kept | 2024 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32gxsmj0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @perpetualg00se's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17rf9oo3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17rf9oo3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/perpetualg00se') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
venkateshdas/roberta-base-squad2-ta-qna-roberta3e
venkateshdas
2022-09-18T10:22:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-18T10:13:04Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-ta-qna-roberta3e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-ta-qna-roberta3e This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 87 | 0.5221 | | No log | 2.0 | 174 | 0.4408 | | No log | 3.0 | 261 | 0.4671 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
debbiesoon/prot_bert_bfd-disoDNA
debbiesoon
2022-09-18T06:50:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-18T04:33:19Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: prot_bert_bfd-disoDNA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prot_bert_bfd-disoDNA This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1323 - Precision: 0.9442 - Recall: 0.9717 - F1: 0.9578 ## Model description This is a token classification model designed to predict the intrinsically disordered regions of amino acid sequences on the level of DNA disorder annotation. ## Intended uses & limitations This model works on amino acid sequences that are spaced between characters. '0': No disorder '1': Disordered Example Inputs : D E A Q F K E C Y D T C H K E C S D K G N G F T F C E M K C D T D C S V K D V K E K L E N Y K P K N M A S E E L Q K D L E E V K V L L E K A T R K R V R D A L T A E K S K I E T E I K N K M Q Q K S Q K K A E L L D N E K P A A V V A P I T T G Y T D G I S Q I S L M D V F M K G L S K A K E G V V A A A E K T K Q G V A E A A G K T K E G V L Y V G S K T K E G V V H G V A T V A E K T K E Q V T N V G G A V V T G V T A V A Q K T V E G A G S I A A A T G F V K K D Q L G K N E E G A P Q E G I L E D M P V D P D N E A Y E M P S E E G Y Q D Y E P E A M E L V L K D A Q S A L T V S E T T F G R D F N E A L V H Q V V V A Y A A G A R Q G T R A Q K T R A E V T G S G K K P W R Q K G T G R A R S G S I K S P I W R S G G V T F A A R P Q D H S Q K V N K K M Y R G A L K S I L S E L V R Q D R L I V V E K F S V E A P K T K L L A Q K L K D M A L E D V L I I T G E L D E N L F L A A R N L H K V D V R D A T G I D P V S L I A F D K V V M T A D A V K Q V E E M L A M S D K P D M A E I E K F D K S K L K K T E T Q E K N P L P S K E T I E Q E K Q A G E S ## Training and evaluation data Training and evaluation data were retrieved from https://www.csuligroup.com/DeepDISOBind/#Materials (Accessed March 2022). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0213 | 1.0 | 61 | 0.1322 | 0.9442 | 0.9717 | 0.9578 | | 0.0212 | 2.0 | 122 | 0.1322 | 0.9442 | 0.9717 | 0.9578 | | 0.1295 | 3.0 | 183 | 0.1323 | 0.9442 | 0.9717 | 0.9578 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/dsmuses
sd-concepts-library
2022-09-18T06:37:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-18T06:37:17Z
--- license: mit --- ### DSmuses on Stable Diffusion This is the `<DSmuses>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<DSmuses> 0](https://huggingface.co/sd-concepts-library/dsmuses/resolve/main/concept_images/0.jpeg)
NeonBohdan/stt-polyglot-en
NeonBohdan
2022-09-18T06:32:07Z
0
0
null
[ "tflite", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
rosskrasner/testcatdog
rosskrasner
2022-09-18T03:56:03Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-09-14T03:29:28Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
pikodemo/ppo-LunarLander-v2
pikodemo
2022-09-18T00:11:48Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T14:59:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -553.66 +/- 175.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/valorantstyle
sd-concepts-library
2022-09-17T23:55:16Z
0
20
null
[ "license:mit", "region:us" ]
null
2022-09-17T23:55:05Z
--- license: mit --- ### valorantstyle on Stable Diffusion This is the `<valorant>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<valorant> 0](https://huggingface.co/sd-concepts-library/valorantstyle/resolve/main/concept_images/3.jpeg) ![<valorant> 1](https://huggingface.co/sd-concepts-library/valorantstyle/resolve/main/concept_images/0.jpeg) ![<valorant> 2](https://huggingface.co/sd-concepts-library/valorantstyle/resolve/main/concept_images/1.jpeg) ![<valorant> 3](https://huggingface.co/sd-concepts-library/valorantstyle/resolve/main/concept_images/2.jpeg) ![<valorant> 4](https://huggingface.co/sd-concepts-library/valorantstyle/resolve/main/concept_images/4.jpeg)
anechaev/Reinforce-U5Pixelcopter
anechaev
2022-09-17T22:11:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T22:11:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-U5Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.10 +/- 15.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Bistolero/1ep_seq_25_6b
Bistolero
2022-09-17T21:23:44Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:gem", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T21:07:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - gem model-index: - name: kapakapa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kapakapa This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the gem dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
anechaev/Reinforce-U5CartPole
anechaev
2022-09-17T20:43:09Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T20:41:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-U5CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 46.40 +/- 7.76 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
sd-concepts-library/3d-female-cyborgs
sd-concepts-library
2022-09-17T20:15:59Z
0
39
null
[ "license:mit", "region:us" ]
null
2022-09-17T20:15:45Z
--- license: mit --- ### 3d Female Cyborgs on Stable Diffusion This is the `<A female cyborg>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<A female cyborg> 0](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/3.jpeg) ![<A female cyborg> 1](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/0.jpeg) ![<A female cyborg> 2](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/1.jpeg) ![<A female cyborg> 3](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/2.jpeg) ![<A female cyborg> 4](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/4.jpeg)
tavakolih/all-MiniLM-L6-v2-pubmed-full
tavakolih
2022-09-17T19:59:09Z
1,201
9
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "dataset:pubmed", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-17T19:59:01Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - pubmed --- # tavakolih/all-MiniLM-L6-v2-pubmed-full This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('tavakolih/all-MiniLM-L6-v2-pubmed-full') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tavakolih/all-MiniLM-L6-v2-pubmed-full) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 221 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/max-foley
sd-concepts-library
2022-09-17T19:35:09Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-17T19:34:45Z
--- license: mit --- ### Max Foley on Stable Diffusion This is the `<max-foley>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<max-foley> 0](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/Screen Shot 2022-09-17 at 2.05.22 AM.png) ![<max-foley> 1](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/Screen Shot 2022-09-17 at 2.05.59 AM.png) ![<max-foley> 2](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/Screen Shot 2022-09-17 at 2.06.15 AM.png) ![<max-foley> 3](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/3 christs of ypsilanti.jpg) ![<max-foley> 4](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/apprentice magician.jpg) ![<max-foley> 5](https://huggingface.co/sd-concepts-library/max-foley/resolve/main/concept_images/mountain giant.jpg)
tkuye/skills-classifier
tkuye
2022-09-17T19:16:20Z
117
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T17:56:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: skills-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # skills-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3051 - Accuracy: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.2713 | 0.9058 | | 0.361 | 2.0 | 624 | 0.2539 | 0.9182 | | 0.361 | 3.0 | 936 | 0.2802 | 0.9238 | | 0.1532 | 4.0 | 1248 | 0.3058 | 0.9202 | | 0.0899 | 5.0 | 1560 | 0.3051 | 0.9242 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dumitrescustefan/gpt-neo-romanian-780m
dumitrescustefan
2022-09-17T18:24:19Z
260
12
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "romanian", "text generation", "causal lm", "gpt-neo", "ro", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T15:31:26Z
--- language: - ro license: mit # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses tags: - romanian - text generation - causal lm - gpt-neo --- # GPT-Neo Romanian 780M This model is a GPT-Neo transformer decoder model designed using EleutherAI's replication of the GPT-3 architecture. It was trained on a thoroughly cleaned corpus of Romanian text of about 40GB composed of Oscar, Opus, Wikipedia, literature and various other bits and pieces of text, joined together and deduplicated. It was trained for about a month, totaling 1.5M steps on a v3-32 TPU machine. ### Authors: * Dumitrescu Stefan * Mihai Ilie ### Evaluation Evaluation to be added soon, also on [https://github.com/dumitrescustefan/Romanian-Transformers](https://github.com/dumitrescustefan/Romanian-Transformers) ### Acknowledgements Thanks [TPU Research Cloud](https://sites.research.google/trc/about/) for the TPUv3 machine needed to train this model!
sd-concepts-library/mechasoulall
sd-concepts-library
2022-09-17T17:44:02Z
0
21
null
[ "license:mit", "region:us" ]
null
2022-09-17T17:43:55Z
--- license: mit --- ### mechasoulall on Stable Diffusion This is the `<mechasoulall>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<mechasoulall> 0](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/24.jpeg) ![<mechasoulall> 1](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/34.jpeg) ![<mechasoulall> 2](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/30.jpeg) ![<mechasoulall> 3](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/32.jpeg) ![<mechasoulall> 4](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/3.jpeg) ![<mechasoulall> 5](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/36.jpeg) ![<mechasoulall> 6](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/6.jpeg) ![<mechasoulall> 7](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/29.jpeg) ![<mechasoulall> 8](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/0.jpeg) ![<mechasoulall> 9](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/19.jpeg) ![<mechasoulall> 10](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/26.jpeg) ![<mechasoulall> 11](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/17.jpeg) ![<mechasoulall> 12](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/37.jpeg) ![<mechasoulall> 13](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/33.jpeg) ![<mechasoulall> 14](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/22.jpeg) ![<mechasoulall> 15](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/7.jpeg) ![<mechasoulall> 16](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/25.jpeg) ![<mechasoulall> 17](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/28.jpeg) ![<mechasoulall> 18](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/5.jpeg) ![<mechasoulall> 19](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/39.jpeg) ![<mechasoulall> 20](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/8.jpeg) ![<mechasoulall> 21](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/14.jpeg) ![<mechasoulall> 22](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/15.jpeg) ![<mechasoulall> 23](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/9.jpeg) ![<mechasoulall> 24](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/16.jpeg) ![<mechasoulall> 25](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/27.jpeg) ![<mechasoulall> 26](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/13.jpeg) ![<mechasoulall> 27](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/20.jpeg) ![<mechasoulall> 28](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/41.jpeg) ![<mechasoulall> 29](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/12.jpeg) ![<mechasoulall> 30](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/1.jpeg) ![<mechasoulall> 31](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/10.jpeg) ![<mechasoulall> 32](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/40.jpeg) ![<mechasoulall> 33](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/35.jpeg) ![<mechasoulall> 34](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/2.jpeg) ![<mechasoulall> 35](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/23.jpeg) ![<mechasoulall> 36](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/18.jpeg) ![<mechasoulall> 37](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/11.jpeg) ![<mechasoulall> 38](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/21.jpeg) ![<mechasoulall> 39](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/38.jpeg) ![<mechasoulall> 40](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/4.jpeg) ![<mechasoulall> 41](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/31.jpeg)
RICHPOOL/RICHPOOL_MINER
RICHPOOL
2022-09-17T17:42:59Z
0
0
null
[ "region:us" ]
null
2022-09-17T17:39:16Z
### 开源矿工-瑞池专业版 开源-绿色-无抽水 huggingface 下载分流 ![image](https://user-images.githubusercontent.com/98405605/190837564-41de695b-028f-42b9-a22c-24100afaaa88.png) #### 原软件源代码 https://github.com/ntminer/NtMiner #### 授权协议 The LGPL license。
sd-concepts-library/durer-style
sd-concepts-library
2022-09-17T16:36:56Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:36:49Z
--- license: mit --- ### durer style on Stable Diffusion This is the `<drr-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<drr-style> 0](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/3.jpeg) ![<drr-style> 1](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/0.jpeg) ![<drr-style> 2](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/1.jpeg) ![<drr-style> 3](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/2.jpeg) ![<drr-style> 4](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/4.jpeg)
sd-concepts-library/led-toy
sd-concepts-library
2022-09-17T16:33:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:33:50Z
--- license: mit --- ### led-toy on Stable Diffusion This is the `<led-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<led-toy> 0](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/3.jpeg) ![<led-toy> 1](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/0.jpeg) ![<led-toy> 2](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/1.jpeg) ![<led-toy> 3](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/2.jpeg)
sd-concepts-library/she-hulk-law-art
sd-concepts-library
2022-09-17T16:10:47Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:10:35Z
--- license: mit --- ### She-Hulk Law Art on Stable Diffusion This is the `<shehulk-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<shehulk-style> 0](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/3.jpeg) ![<shehulk-style> 1](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/0.jpeg) ![<shehulk-style> 2](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/1.jpeg) ![<shehulk-style> 3](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/2.jpeg) ![<shehulk-style> 4](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/4.jpeg)
theojolliffe/pegasus-model-3-x25
theojolliffe
2022-09-17T15:48:03Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T14:27:08Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-model-3-x25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-model-3-x25 This model is a fine-tuned version of [theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback](https://huggingface.co/theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5668 - Rouge1: 61.9972 - Rouge2: 48.1531 - Rougel: 48.845 - Rougelsum: 59.5019 - Gen Len: 123.0814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:--------:| | 1.144 | 1.0 | 883 | 0.5668 | 61.9972 | 48.1531 | 48.845 | 59.5019 | 123.0814 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/lxj-o4
sd-concepts-library
2022-09-17T15:14:59Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-17T15:14:54Z
--- license: mit --- ### lxj-o4 on Stable Diffusion This is the `<csp>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<csp> 0](https://huggingface.co/sd-concepts-library/lxj-o4/resolve/main/concept_images/3.jpeg) ![<csp> 1](https://huggingface.co/sd-concepts-library/lxj-o4/resolve/main/concept_images/0.jpeg) ![<csp> 2](https://huggingface.co/sd-concepts-library/lxj-o4/resolve/main/concept_images/1.jpeg) ![<csp> 3](https://huggingface.co/sd-concepts-library/lxj-o4/resolve/main/concept_images/2.jpeg) ![<csp> 4](https://huggingface.co/sd-concepts-library/lxj-o4/resolve/main/concept_images/4.jpeg)
Eksperymenty/Pong-PLE-v0
Eksperymenty
2022-09-17T14:44:18Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T14:44:08Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pong-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
sd-concepts-library/sorami-style
sd-concepts-library
2022-09-17T13:31:17Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-17T13:31:10Z
--- license: mit --- ### Sorami style on Stable Diffusion This is the `<sorami-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<sorami-style> 0](https://huggingface.co/sd-concepts-library/sorami-style/resolve/main/concept_images/0.jpeg) ![<sorami-style> 1](https://huggingface.co/sd-concepts-library/sorami-style/resolve/main/concept_images/1.jpeg) ![<sorami-style> 2](https://huggingface.co/sd-concepts-library/sorami-style/resolve/main/concept_images/2.jpeg) ![<sorami-style> 3](https://huggingface.co/sd-concepts-library/sorami-style/resolve/main/concept_images/3.jpeg) ![<sorami-style> 4](https://huggingface.co/sd-concepts-library/sorami-style/resolve/main/concept_images/4.jpeg)
test1234678/distilbert-base-uncased-distilled-clinc
test1234678
2022-09-17T12:34:43Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T07:24:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9461290322580646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2712 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2629 | 1.0 | 318 | 1.6048 | 0.7368 | | 1.2437 | 2.0 | 636 | 0.8148 | 0.8565 | | 0.6604 | 3.0 | 954 | 0.4768 | 0.9161 | | 0.4054 | 4.0 | 1272 | 0.3548 | 0.9352 | | 0.2987 | 5.0 | 1590 | 0.3084 | 0.9419 | | 0.2549 | 6.0 | 1908 | 0.2909 | 0.9435 | | 0.232 | 7.0 | 2226 | 0.2804 | 0.9458 | | 0.221 | 8.0 | 2544 | 0.2749 | 0.9458 | | 0.2145 | 9.0 | 2862 | 0.2722 | 0.9468 | | 0.2112 | 10.0 | 3180 | 0.2712 | 0.9461 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jayanta/resnet50-finetuned-memes
jayanta
2022-09-17T12:04:12Z
176
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-15T14:19:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet50-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5741885625965997 - task: type: image-classification name: Image Classification dataset: type: custom name: custom split: test metrics: - type: f1 value: 0.47811617701687364 name: F1 - type: precision value: 0.43689216537139497 name: Precision - type: recall value: 0.5695517774343122 name: Recall --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet50-finetuned-memes This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0625 - Accuracy: 0.5742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4795 | 0.99 | 40 | 1.4641 | 0.4382 | | 1.3455 | 1.99 | 80 | 1.3281 | 0.4389 | | 1.262 | 2.99 | 120 | 1.2583 | 0.4583 | | 1.1975 | 3.99 | 160 | 1.1978 | 0.4876 | | 1.1358 | 4.99 | 200 | 1.1614 | 0.5139 | | 1.1273 | 5.99 | 240 | 1.1316 | 0.5379 | | 1.0379 | 6.99 | 280 | 1.1024 | 0.5464 | | 1.041 | 7.99 | 320 | 1.0927 | 0.5580 | | 0.9952 | 8.99 | 360 | 1.0790 | 0.5541 | | 1.0146 | 9.99 | 400 | 1.0625 | 0.5742 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shamus/NLLB-600m-vie_Latn-to-eng_Latn
Shamus
2022-09-17T11:54:50Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T03:28:00Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: NLLB-600m-vie_Latn-to-eng_Latn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLLB-600m-vie_Latn-to-eng_Latn This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1189 - Bleu: 36.6767 - Gen Len: 47.504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.9294 | 2.24 | 1000 | 1.5970 | 23.6201 | 48.1 | | 1.4 | 4.47 | 2000 | 1.3216 | 28.9526 | 45.156 | | 1.2071 | 6.71 | 3000 | 1.2245 | 32.5538 | 46.576 | | 1.0893 | 8.95 | 4000 | 1.1720 | 34.265 | 46.052 | | 1.0064 | 11.19 | 5000 | 1.1497 | 34.9249 | 46.508 | | 0.9562 | 13.42 | 6000 | 1.1331 | 36.4619 | 47.244 | | 0.9183 | 15.66 | 7000 | 1.1247 | 36.4723 | 47.26 | | 0.8858 | 17.9 | 8000 | 1.1198 | 36.7058 | 47.376 | | 0.8651 | 20.13 | 9000 | 1.1201 | 36.7897 | 47.496 | | 0.8546 | 22.37 | 10000 | 1.1189 | 36.6767 | 47.504 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/arrington-jespow-lightcrypto
huggingtweets
2022-09-17T11:11:37Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-17T11:09:39Z
--- language: en thumbnail: http://www.huggingtweets.com/arrington-jespow-lightcrypto/1663413092521/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478019214212747264/LZmNClhs_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484988558024720385/WAv0tlyD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1481313178302754821/eeHGWpUF_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">light & Jesse Powell & Michael Arrington 🏴‍☠️</div> <div style="text-align: center; font-size: 14px;">@arrington-jespow-lightcrypto</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from light & Jesse Powell & Michael Arrington 🏴‍☠️. | Data | light | Jesse Powell | Michael Arrington 🏴‍☠️ | | --- | --- | --- | --- | | Tweets downloaded | 3237 | 3237 | 3243 | | Retweets | 352 | 490 | 892 | | Short tweets | 392 | 168 | 718 | | Tweets kept | 2493 | 2579 | 1633 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ozhl36a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arrington-jespow-lightcrypto's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vhxitdi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vhxitdi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/arrington-jespow-lightcrypto') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LanYiU/distilbert-base-uncased-finetuned-imdb
LanYiU
2022-09-17T11:04:50Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-17T10:55:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7 | 1.0 | 157 | 2.4988 | | 2.5821 | 2.0 | 314 | 2.4242 | | 2.541 | 3.0 | 471 | 2.4371 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.9.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
Eksperymenty/Reinforce-CartPole-v1
Eksperymenty
2022-09-17T10:09:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T10:07:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 445.10 +/- 56.96 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Hammad7/plag-col-rev-en-v2
Hammad7
2022-09-17T09:58:44Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "plagiarism", "cross-encoder", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T11:51:58Z
--- license: apache-2.0 language: - en tags: - plagiarism - cross-encoder --- ## Usage: from sentence_transformers.cross_encoder import CrossEncoder model = CrossEncoder('Hammad7/plag-col-rev-en-v2') model.predict(["duplicate first paragraph","original second paragraph"])
michael20at/dqn-SpaceInvadersNoFrameskip-v4
michael20at
2022-09-17T08:25:21Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T08:24:50Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 246.00 +/- 104.47 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga michael20at -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga michael20at ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ameerazam08/wav2vec2-xlsr-ravdess-speech-emotion-recognition-new
ameerazam08
2022-09-17T05:57:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-09-17T04:09:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xlsr-ravdess-speech-emotion-recognition-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-ravdess-speech-emotion-recognition-new This model is a fine-tuned version of [lighteternal/wav2vec2-large-xlsr-53-greek](https://huggingface.co/lighteternal/wav2vec2-large-xlsr-53-greek) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8209 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1484 | 0.42 | 10 | 1.1682 | 0.4375 | | 1.1195 | 0.83 | 20 | 1.0696 | 0.5417 | | 0.9414 | 1.25 | 30 | 1.0196 | 0.5 | | 0.8109 | 1.67 | 40 | 0.7216 | 0.6875 | | 0.724 | 2.08 | 50 | 0.7667 | 0.6875 | | 0.6081 | 2.5 | 60 | 0.7912 | 0.6458 | | 0.6073 | 2.92 | 70 | 0.8209 | 0.625 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.1.dev0 - Tokenizers 0.12.1
sd-concepts-library/armor-concept
sd-concepts-library
2022-09-17T02:19:43Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-17T02:19:30Z
--- license: mit --- ### armor-concept on Stable Diffusion This is the `<armor-concept>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<armor-concept> 0](https://huggingface.co/sd-concepts-library/armor-concept/resolve/main/concept_images/3.jpeg) ![<armor-concept> 1](https://huggingface.co/sd-concepts-library/armor-concept/resolve/main/concept_images/0.jpeg) ![<armor-concept> 2](https://huggingface.co/sd-concepts-library/armor-concept/resolve/main/concept_images/1.jpeg) ![<armor-concept> 3](https://huggingface.co/sd-concepts-library/armor-concept/resolve/main/concept_images/2.jpeg) ![<armor-concept> 4](https://huggingface.co/sd-concepts-library/armor-concept/resolve/main/concept_images/4.jpeg)
sd-concepts-library/dtv-pkmn
sd-concepts-library
2022-09-17T01:25:50Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-13T23:08:57Z
--- license: mit --- ### dtv-pkmn on Stable Diffusion This is the `<dtv-pkm2>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<dtv-pkm2ex> 292](https://i.ibb.co/X8f3Q1h/image-2022-09-16-212332924.png) `"hyperdetailed fantasy (monster) (dragon-like) character on top of a rock in the style of <dtv-pkm2> . extremely detailed, amazing artwork with depth and realistic CINEMATIC lighting, matte painting"` Here is the new concept you will be able to use as a `style`: ![<dtv-pkm2> 0](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/1.jpeg) ![<dtv-pkm2> 1](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/0.jpeg) ![<dtv-pkm2> 2](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/2.jpeg) ![<dtv-pkm2> 3](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/3.jpeg)
g30rv17ys/ddpm-geeve-drusen-1000-128
g30rv17ys
2022-09-16T22:59:42Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T20:36:25Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-drusen-1000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-drusen-1000-128/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-dme-1000-128
g30rv17ys
2022-09-16T22:45:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T20:29:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-dme-1000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-dme-1000-128/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-cnv-1000-128
g30rv17ys
2022-09-16T22:44:56Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T20:19:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1000-128/tensorboard?#scalars)
sd-concepts-library/belen
sd-concepts-library
2022-09-16T22:35:23Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-16T22:35:19Z
--- license: mit --- ### belen on Stable Diffusion This is the `<belen>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<belen> 0](https://huggingface.co/sd-concepts-library/belen/resolve/main/concept_images/3.jpeg) ![<belen> 1](https://huggingface.co/sd-concepts-library/belen/resolve/main/concept_images/0.jpeg) ![<belen> 2](https://huggingface.co/sd-concepts-library/belen/resolve/main/concept_images/1.jpeg) ![<belen> 3](https://huggingface.co/sd-concepts-library/belen/resolve/main/concept_images/2.jpeg)
sd-concepts-library/jamie-hewlett-style
sd-concepts-library
2022-09-16T22:32:42Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-16T22:32:38Z
--- license: mit --- ### Jamie Hewlett Style on Stable Diffusion This is the `<hewlett>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hewlett> 0](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/3.jpeg) ![<hewlett> 1](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/0.jpeg) ![<hewlett> 2](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/5.jpeg) ![<hewlett> 3](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/1.jpeg) ![<hewlett> 4](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/2.jpeg) ![<hewlett> 5](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/4.jpeg)
rhiga/a2c-AntBulletEnv-v0
rhiga
2022-09-16T22:26:26Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-16T22:25:06Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1742.04 +/- 217.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
davidaf3/ReverseNutrition_TFIngPort
davidaf3
2022-09-16T21:05:21Z
20
0
generic
[ "generic", "image-classification", "license:mit", "region:us" ]
image-classification
2022-08-26T17:12:04Z
--- license: mit pipeline_tag: image-classification library_name: generic ---
sd-concepts-library/lugal-ki-en
sd-concepts-library
2022-09-16T19:32:47Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-16T05:58:43Z
--- title: Lugal Ki EN emoji: 🪐 colorFrom: gray colorTo: red sdk: gradio sdk_version: 3.3 app_file: app.py pinned: false license: mit --- ### Lugal ki en on Stable Diffusion This is the `<lugal-ki-en>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<lugal-ki-en> 0](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/0.jpeg) ![<lugal-ki-en> 1](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/2.jpeg) ![<lugal-ki-en> 2](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/4.jpeg) ![<lugal-ki-en> 3](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/1.jpeg) ![<lugal-ki-en> 4](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/3.jpeg)
sd-concepts-library/harmless-ai-1
sd-concepts-library
2022-09-16T19:24:49Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T19:24:43Z
--- license: mit --- ### harmless-ai-1 on Stable Diffusion This is the `<bee-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<bee-style> 0](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/(swarm+of+bees),+The+computer+is+the+enemy+of+transhumanity,+detailed,+beautiful+masterpiece,+unreal+engine,+4k-0.024599999999999973.png) ![<bee-style> 1](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/(swarm+of+bees),+The+computer+is+the+enemy+of+transhumanity,+detailed,+beautiful+masterpiece,+unreal+engine,+4k-0.02-3024.png) ![<bee-style> 2](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/beehiveperson.png) ![<bee-style> 3](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/download-5.png) ![<bee-style> 4](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/download-11.png) ![<bee-style> 5](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/abstractbee.png) ![<bee-style> 6](https://huggingface.co/sd-concepts-library/harmless-ai-1/resolve/main/concept_images/abstractbee2.png)
sd-concepts-library/rj-palmer
sd-concepts-library
2022-09-16T19:09:00Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-16T19:08:57Z
--- license: mit --- ### RJ Palmer on Stable Diffusion This is the `<rj-palmer>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<rj-palmer> 0](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/12.jpeg) ![<rj-palmer> 1](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/0.jpeg) ![<rj-palmer> 2](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/13.jpeg) ![<rj-palmer> 3](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/15.jpeg) ![<rj-palmer> 4](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/26.jpeg) ![<rj-palmer> 5](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/2.jpeg) ![<rj-palmer> 6](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/11.jpeg) ![<rj-palmer> 7](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/23.jpeg) ![<rj-palmer> 8](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/32.jpeg) ![<rj-palmer> 9](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/8.jpeg) ![<rj-palmer> 10](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/21.jpeg) ![<rj-palmer> 11](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/6.jpeg) ![<rj-palmer> 12](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/16.jpeg) ![<rj-palmer> 13](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/30.jpeg) ![<rj-palmer> 14](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/18.jpeg) ![<rj-palmer> 15](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/22.jpeg) ![<rj-palmer> 16](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/29.jpeg) ![<rj-palmer> 17](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/4.jpeg) ![<rj-palmer> 18](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/1.jpeg) ![<rj-palmer> 19](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/3.jpeg) ![<rj-palmer> 20](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/9.jpeg) ![<rj-palmer> 21](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/14.jpeg) ![<rj-palmer> 22](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/10.jpeg) ![<rj-palmer> 23](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/7.jpeg) ![<rj-palmer> 24](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/5.jpeg) ![<rj-palmer> 25](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/27.jpeg) ![<rj-palmer> 26](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/28.jpeg) ![<rj-palmer> 27](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/17.jpeg) ![<rj-palmer> 28](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/24.jpeg) ![<rj-palmer> 29](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/19.jpeg) ![<rj-palmer> 30](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/25.jpeg) ![<rj-palmer> 31](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/20.jpeg) ![<rj-palmer> 32](https://huggingface.co/sd-concepts-library/rj-palmer/resolve/main/concept_images/31.jpeg)
sanchit-gandhi/wav2vec2-ctc-earnings22-baseline-5-gram
sanchit-gandhi
2022-09-16T18:50:03Z
70
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T18:34:22Z
Unrolled PT and FX weights of https://huggingface.co/sanchit-gandhi/flax-wav2vec2-ctc-earnings22-baseline/tree/main
MayaGalvez/bert-base-multilingual-cased-finetuned-pos
MayaGalvez
2022-09-16T18:35:53Z
104
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-16T18:16:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-pos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-pos This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1736 - Precision: 0.9499 - Recall: 0.9504 - F1: 0.9501 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7663 | 0.27 | 200 | 0.2047 | 0.9318 | 0.9312 | 0.9315 | 0.9388 | | 0.5539 | 0.53 | 400 | 0.1815 | 0.9381 | 0.9404 | 0.9392 | 0.9460 | | 0.5222 | 0.8 | 600 | 0.1787 | 0.9400 | 0.9424 | 0.9412 | 0.9468 | | 0.5084 | 1.07 | 800 | 0.1591 | 0.9470 | 0.9463 | 0.9467 | 0.9519 | | 0.4703 | 1.33 | 1000 | 0.1622 | 0.9456 | 0.9458 | 0.9457 | 0.9510 | | 0.5005 | 1.6 | 1200 | 0.1666 | 0.9470 | 0.9464 | 0.9467 | 0.9519 | | 0.4677 | 1.87 | 1400 | 0.1583 | 0.9483 | 0.9483 | 0.9483 | 0.9532 | | 0.4704 | 2.13 | 1600 | 0.1635 | 0.9472 | 0.9475 | 0.9473 | 0.9528 | | 0.4639 | 2.4 | 1800 | 0.1569 | 0.9475 | 0.9488 | 0.9482 | 0.9536 | | 0.4627 | 2.67 | 2000 | 0.1605 | 0.9474 | 0.9478 | 0.9476 | 0.9527 | | 0.4608 | 2.93 | 2200 | 0.1535 | 0.9485 | 0.9495 | 0.9490 | 0.9538 | | 0.4306 | 3.2 | 2400 | 0.1646 | 0.9489 | 0.9487 | 0.9488 | 0.9536 | | 0.4583 | 3.47 | 2600 | 0.1642 | 0.9488 | 0.9495 | 0.9491 | 0.9539 | | 0.453 | 3.73 | 2800 | 0.1646 | 0.9498 | 0.9505 | 0.9501 | 0.9554 | | 0.4347 | 4.0 | 3000 | 0.1629 | 0.9494 | 0.9504 | 0.9499 | 0.9552 | | 0.4425 | 4.27 | 3200 | 0.1738 | 0.9495 | 0.9502 | 0.9498 | 0.9550 | | 0.4335 | 4.53 | 3400 | 0.1733 | 0.9499 | 0.9506 | 0.9503 | 0.9550 | | 0.4306 | 4.8 | 3600 | 0.1736 | 0.9499 | 0.9504 | 0.9501 | 0.9551 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
philschmid/all-MiniLM-L6-v2-optimum-embeddings
philschmid
2022-09-16T14:40:25Z
8
7
generic
[ "generic", "onnx", "sentence-embeddings", "endpoints-template", "optimum", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-08-31T19:15:30Z
--- license: mit tags: - sentence-embeddings - endpoints-template - optimum library_name: generic --- # Optimized and Quantized [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) with a custom pipeline.py This repository implements a `custom` task for `sentence-embeddings` for 🤗 Inference Endpoints for accelerated inference using [🤗 Optimum](https://huggingface.co/docs/optimum/index). The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/pipeline.py). In the [how to create your own optimized and quantized model](#how-to-create-your-own-optimized-and-quantized-model) you will learn how the model was converted & optimized, it is based on the [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers) blog post. It also includes how to create your custom pipeline and test it. There is also a [notebook](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/convert.ipynb) included. To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_ ### expected Request payload ```json { "inputs": "The sky is a blue today and not gray", } ``` below is an example on how to run a request using Python and `requests`. ## Run Request ```python import json from typing import List import requests as r import base64 ENDPOINT_URL = "" HF_TOKEN = "" def predict(document_string:str=None): payload = {"inputs": document_string} response = r.post( ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload ) return response.json() prediction = predict( path_to_image="The sky is a blue today and not gray" ) ``` expected output ```python {'embeddings': [[-0.021580450236797333, 0.021715054288506508, 0.00979710929095745, -0.0005379787762649357, 0.04682469740509987, -0.013600599952042103, ... } ``` ## How to create your own optimized and quantized model Steps: [1. Convert model to ONNX](#1-convert-model-to-onnx) [2. Optimize & quantize model with Optimum](#2-optimize--quantize-model-with-optimum) [3. Create Custom Handler for Inference Endpoints](#3-create-custom-handler-for-inference-endpoints) Helpful links: * [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers) * [Create Custom Handler Endpoints](https://link-to-docs) ## Setup & Installation ```python %%writefile requirements.txt optimum[onnxruntime]==1.3.0 mkl-include mkl ``` install requirements ```python !pip install -r requirements.txt ``` ## 1. Convert model to ONNX ```python from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer from pathlib import Path model_id="sentence-transformers/all-MiniLM-L6-v2" onnx_path = Path(".") # load vanilla transformers and convert to onnx model = ORTModelForFeatureExtraction.from_pretrained(model_id, from_transformers=True) tokenizer = AutoTokenizer.from_pretrained(model_id) # save onnx checkpoint and tokenizer model.save_pretrained(onnx_path) tokenizer.save_pretrained(onnx_path) ``` ## 2. Optimize & quantize model with Optimum ```python from optimum.onnxruntime import ORTOptimizer, ORTQuantizer from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig # create ORTOptimizer and define optimization configuration optimizer = ORTOptimizer.from_pretrained(model_id, feature=model.pipeline_task) optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations # apply the optimization configuration to the model optimizer.export( onnx_model_path=onnx_path / "model.onnx", onnx_optimized_model_output_path=onnx_path / "model-optimized.onnx", optimization_config=optimization_config, ) # create ORTQuantizer and define quantization configuration dynamic_quantizer = ORTQuantizer.from_pretrained(model_id, feature=model.pipeline_task) dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False) # apply the quantization configuration to the model model_quantized_path = dynamic_quantizer.export( onnx_model_path=onnx_path / "model-optimized.onnx", onnx_quantized_model_output_path=onnx_path / "model-quantized.onnx", quantization_config=dqconfig, ) ``` ## 3. Create Custom Handler for Inference Endpoints ```python %%writefile pipeline.py from typing import Dict, List, Any from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer import torch.nn.functional as F import torch # copied from the model card def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) class PreTrainedPipeline(): def __init__(self, path=""): # load the optimized model self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model-quantized.onnx") self.tokenizer = AutoTokenizer.from_pretrained(path) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The list contains the embeddings of the inference inputs """ inputs = data.get("inputs", data) # tokenize the input encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') # run the model outputs = self.model(**encoded_inputs) # Perform pooling sentence_embeddings = mean_pooling(outputs, encoded_inputs['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # postprocess the prediction return {"embeddings": sentence_embeddings.tolist()} ``` test custom pipeline ```python from pipeline import PreTrainedPipeline # init handler my_handler = PreTrainedPipeline(path=".") # prepare sample payload request = {"inputs": "I am quite excited how this will turn out"} # test the handler %timeit my_handler(request) ``` results ``` 1.55 ms ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) ```
sd-concepts-library/seraphimmoonshadow-art
sd-concepts-library
2022-09-16T14:14:16Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T04:38:59Z
--- license: mit --- ### seraphimmoonshadow-art on Stable Diffusion This is the `<seraphimmoonshadow-art>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). AHAHAHAHHAHHAHHAHAHAH...............................................................welllllll. My own art, failing me. <img src="https://cdn.discordapp.com/attachments/1011389373775876116/1020201262244970527/kindaaaaa.png">
Dazzid/xlm-roberta-base-finetuned-panx-de
Dazzid
2022-09-16T13:24:45Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-16T13:00:23Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
dwisaji/SentimentBert
dwisaji
2022-09-16T12:09:42Z
161
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-16T12:01:39Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: SentimentBert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SentimentBert This model is a fine-tuned version of [cahya/bert-base-indonesian-522M](https://huggingface.co/cahya/bert-base-indonesian-522M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2005 - Accuracy: 0.965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 275 | 0.7807 | 0.715 | | 0.835 | 2.0 | 550 | 1.0588 | 0.635 | | 0.835 | 3.0 | 825 | 0.2764 | 0.94 | | 0.5263 | 4.0 | 1100 | 0.1913 | 0.97 | | 0.5263 | 5.0 | 1375 | 0.2005 | 0.965 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
g30rv17ys/ddpm-geeve-128
g30rv17ys
2022-09-16T10:13:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T07:46:35Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-128/tensorboard?#scalars)
huijian222/a2c-AntBulletEnv-v0
huijian222
2022-09-16T09:10:32Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-16T09:09:15Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1245.42 +/- 483.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dwisaji/Modelroberta
dwisaji
2022-09-16T09:03:17Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-16T08:46:21Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu model-index: - name: Modelroberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Modelroberta This model is a fine-tuned version of [cahya/roberta-base-indonesian-522M](https://huggingface.co/cahya/roberta-base-indonesian-522M) on the indonlu dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yogeshchandrasekharuni/parrot_paraphraser_on_T5-finetuned-xsum-v0
yogeshchandrasekharuni
2022-09-16T08:16:06Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T07:30:17Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: parrot_paraphraser_on_T5-finetuned-xsum-v0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # parrot_paraphraser_on_T5-finetuned-xsum-v0 This model is a fine-tuned version of [prithivida/parrot_paraphraser_on_T5](https://huggingface.co/prithivida/parrot_paraphraser_on_T5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Rouge1: 79.364 - Rouge2: 74.776 - Rougel: 78.997 - Rougelsum: 78.7013 - Gen Len: 18.6789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 216 | 0.5427 | 79.4586 | 74.9115 | 78.8483 | 78.6557 | 18.6972 | | No log | 2.0 | 432 | 0.4922 | 79.5229 | 74.8555 | 78.7762 | 78.5797 | 18.6881 | | 0.5974 | 3.0 | 648 | 0.4628 | 79.4743 | 74.7622 | 78.7621 | 78.5631 | 18.6881 | | 0.5974 | 4.0 | 864 | 0.4517 | 79.6842 | 75.2876 | 79.3457 | 79.0682 | 18.6881 | | 0.4292 | 5.0 | 1080 | 0.4451 | 79.6571 | 75.2248 | 79.2939 | 79.0412 | 18.6881 | | 0.4292 | 6.0 | 1296 | 0.4409 | 79.3363 | 74.6763 | 78.9595 | 78.7335 | 18.6789 | | 0.3367 | 7.0 | 1512 | 0.4398 | 79.364 | 74.776 | 78.997 | 78.7013 | 18.6789 | | 0.3367 | 8.0 | 1728 | 0.4407 | 79.364 | 74.776 | 78.997 | 78.7013 | 18.6789 | | 0.3367 | 9.0 | 1944 | 0.4413 | 79.364 | 74.776 | 78.997 | 78.7013 | 18.6789 | | 0.3012 | 10.0 | 2160 | 0.4418 | 79.364 | 74.776 | 78.997 | 78.7013 | 18.6789 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
viola77data/recycling
viola77data
2022-09-16T07:43:19Z
0
2
tf-keras
[ "tf-keras", "license:apache-2.0", "region:us" ]
null
2022-09-16T06:19:33Z
--- license: apache-2.0 --- Recycling Model trained with Keras and Tensorflow on this dataset: https://huggingface.co/datasets/viola77data/recycling-dataset
Tritkoman/autotrain-gahhaha-1478754178
Tritkoman
2022-09-16T06:11:41Z
85
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "es", "en", "dataset:Tritkoman/autotrain-data-gahhaha", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-09-16T05:42:56Z
--- tags: - autotrain - translation language: - es - en datasets: - Tritkoman/autotrain-data-gahhaha co2_eq_emissions: emissions: 39.86630127427062 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1478754178 - CO2 Emissions (in grams): 39.8663 ## Validation Metrics - Loss: 1.716 - SacreBLEU: 9.095 - Gen len: 11.146
fatimaseemab/wav2vec2-urdu
fatimaseemab
2022-09-16T05:51:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T05:09:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-urdu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/osrstiny
sd-concepts-library
2022-09-16T04:54:51Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T04:54:46Z
--- license: mit --- ### osrstiny on Stable Diffusion This is the `<osrstiny>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<osrstiny> 0](https://huggingface.co/sd-concepts-library/osrstiny/resolve/main/concept_images/0.jpeg) ![<osrstiny> 1](https://huggingface.co/sd-concepts-library/osrstiny/resolve/main/concept_images/2.jpeg) ![<osrstiny> 2](https://huggingface.co/sd-concepts-library/osrstiny/resolve/main/concept_images/1.jpeg)
SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value
SALT-NLP
2022-09-16T04:48:01Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "en", "dataset:glue", "region:us" ]
null
2022-09-16T04:47:54Z
--- tags: - bert - adapter-transformers datasets: - glue language: - en --- # Adapter `SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [glue](https://huggingface.co/datasets/glue/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
SALT-NLP/pfadapter-bert-base-uncased-sst2-combined-value
SALT-NLP
2022-09-16T04:35:45Z
2
0
adapter-transformers
[ "adapter-transformers", "bert", "en", "dataset:glue", "region:us" ]
null
2022-09-16T04:35:38Z
--- tags: - adapter-transformers - bert datasets: - glue language: - en --- # Adapter `SALT-NLP/pfadapter-bert-base-uncased-sst2-combined-value` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [glue](https://huggingface.co/datasets/glue/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("SALT-NLP/pfadapter-bert-base-uncased-sst2-combined-value", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
sd-concepts-library/david-firth-artstyle
sd-concepts-library
2022-09-16T04:31:20Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-16T04:31:14Z
--- license: mit --- ### David Firth Artstyle on Stable Diffusion This is the `<david-firth-artstyle>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<david-firth-artstyle> 0](https://huggingface.co/sd-concepts-library/david-firth-artstyle/resolve/main/concept_images/0.jpeg) ![<david-firth-artstyle> 1](https://huggingface.co/sd-concepts-library/david-firth-artstyle/resolve/main/concept_images/2.jpeg) ![<david-firth-artstyle> 2](https://huggingface.co/sd-concepts-library/david-firth-artstyle/resolve/main/concept_images/1.jpeg) ![<david-firth-artstyle> 3](https://huggingface.co/sd-concepts-library/david-firth-artstyle/resolve/main/concept_images/3.jpeg)
microsoft/layoutlmv2-base-uncased
microsoft
2022-09-16T03:40:56Z
693,838
62
transformers
[ "transformers", "pytorch", "layoutlmv2", "en", "arxiv:2012.14740", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: cc-by-nc-sa-4.0 --- # LayoutLMv2 **Multimodal (text + layout/format + image) pre-training for document AI** The documentation of this model in the Transformers library can be found [here](https://huggingface.co/docs/transformers/model_doc/layoutlmv2). [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/layoutlmv2) ## Introduction LayoutLMv2 is an improved version of LayoutLM with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. It outperforms strong baselines and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including , including FUNSD (0.7895 → 0.8420), CORD (0.9493 → 0.9601), SROIE (0.9524 → 0.9781), Kleister-NDA (0.834 → 0.852), RVL-CDIP (0.9443 → 0.9564), and DocVQA (0.7295 → 0.8672). [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, ACL 2021
HYPJUDY/layoutlmv3-large-finetuned-funsd
HYPJUDY
2022-09-16T03:18:44Z
170
4
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "arxiv:2204.08387", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-18T18:06:30Z
--- license: cc-by-nc-sa-4.0 --- # layoutlmv3-large-finetuned-funsd The model [layoutlmv3-large-finetuned-funsd](https://huggingface.co/HYPJUDY/layoutlmv3-large-finetuned-funsd) is fine-tuned on the FUNSD dataset initialized from [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large). This finetuned model achieves an F1 score of 92.15 on the test split of the FUNSD dataset. [Paper](https://arxiv.org/pdf/2204.08387.pdf) | [Code](https://aka.ms/layoutlmv3) | [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) If you find LayoutLMv3 helpful, please cite the following paper: ``` @inproceedings{huang2022layoutlmv3, author={Yupan Huang and Tengchao Lv and Lei Cui and Yutong Lu and Furu Wei}, title={LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking}, booktitle={Proceedings of the 30th ACM International Conference on Multimedia}, year={2022} } ``` ## License The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
mikedodge/t5-small-finetuned-xsum
mikedodge
2022-09-16T02:23:09Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-15T20:00:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2804 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.2804 - Rouge2: 7.7039 - Rougel: 22.2002 - Rougelsum: 22.2019 - Gen Len: 18.8238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.711 | 1.0 | 12753 | 2.4789 | 28.2804 | 7.7039 | 22.2002 | 22.2019 | 18.8238 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/hydrasuit
sd-concepts-library
2022-09-16T01:50:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T01:50:17Z
--- license: mit --- ### Hydrasuit on Stable Diffusion This is the `<hydrasuit>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hydrasuit> 0](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/0.jpeg) ![<hydrasuit> 1](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/2.jpeg) ![<hydrasuit> 2](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/1.jpeg) ![<hydrasuit> 3](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/3.jpeg)
sd-concepts-library/luinv2
sd-concepts-library
2022-09-16T01:04:43Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-16T01:04:31Z
--- license: mit --- ### luinv2 on Stable Diffusion This is the `<luin-waifu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<luin-waifu> 0](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/0.jpeg) ![<luin-waifu> 1](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/2.jpeg) ![<luin-waifu> 2](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/4.jpeg) ![<luin-waifu> 3](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/1.jpeg) ![<luin-waifu> 4](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/3.jpeg)
sd-concepts-library/furrpopasthetic
sd-concepts-library
2022-09-16T00:48:33Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-15T23:05:54Z
--- license: mit --- ### furrpopasthetic on Stable Diffusion This is the `<furpop>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). More information will be provided via my GOOGLE DOCUMENT, which you can check out HERE: https://docs.google.com/document/d/1R2UZi5G-DXiz2HcCrfAFLYJoer_JPDEoZmV7wy1tEz0/edit Here are some sample images of things I created using this model: <img src="https://cdn.discordapp.com/attachments/1011389373775876116/1020123619218698301/sofancy.png"> <img src="https://cdn.discordapp.com/attachments/1006210928548773939/1020129494490677309/allthedoggos.png"> <img src="https://cdn.discordapp.com/attachments/1011389373775876116/1020124794420740128/alltheunicorns.png"> <img src="https://cdn.discordapp.com/attachments/1006210928548773939/1020131203543744572/sosweet.png"> <img src="https://cdn.discordapp.com/attachments/1006210928548773939/1020133712119201852/fartoocute.png"> I will be providing information for the model in my Google Doc, so please just check there; thanks! These are the images that I used for the `style`: ![<furpop> 0](https://huggingface.co/sd-concepts-library/furrpopasthetic/resolve/main/concept_images/0.jpeg) ![<furpop> 1](https://huggingface.co/sd-concepts-library/furrpopasthetic/resolve/main/concept_images/2.jpeg) ![<furpop> 2](https://huggingface.co/sd-concepts-library/furrpopasthetic/resolve/main/concept_images/4.jpeg) ![<furpop> 3](https://huggingface.co/sd-concepts-library/furrpopasthetic/resolve/main/concept_images/1.jpeg) ![<furpop> 4](https://huggingface.co/sd-concepts-library/furrpopasthetic/resolve/main/concept_images/3.jpeg) And yes, this is all based on my LSP/romanticism painters, which you can still do by combining the key words outlined in my document.
sd-concepts-library/csgo-awp-texture-map
sd-concepts-library
2022-09-16T00:32:03Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-16T00:31:57Z
--- license: mit --- ### csgo_awp_texture_map on Stable Diffusion This is the `<csgo_awp_texture>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<csgo_awp_texture> 0](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/0.jpeg) ![<csgo_awp_texture> 1](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/2.jpeg) ![<csgo_awp_texture> 2](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/4.jpeg) ![<csgo_awp_texture> 3](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/1.jpeg) ![<csgo_awp_texture> 4](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/3.jpeg)
Isaacp/xlm-roberta-base-finetuned-panx-all
Isaacp
2022-09-15T23:58:43Z
101
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T23:31:10Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1757 - F1: 0.8513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2986 | 1.0 | 835 | 0.1939 | 0.8077 | | 0.1547 | 2.0 | 1670 | 0.1813 | 0.8351 | | 0.1003 | 3.0 | 2505 | 0.1757 | 0.8513 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rajistics/donut-base-sroiev2
rajistics
2022-09-15T23:44:13Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-09-15T23:08:07Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroiev2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroiev2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Isaacp/xlm-roberta-base-finetuned-panx-en
Isaacp
2022-09-15T23:30:58Z
123
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T23:10:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Isaacp/xlm-roberta-base-finetuned-panx-it
Isaacp
2022-09-15T23:10:07Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T22:48:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8245828245828245 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2401 - F1: 0.8246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8187 | 1.0 | 70 | 0.3325 | 0.7337 | | 0.2829 | 2.0 | 140 | 0.2554 | 0.8003 | | 0.1894 | 3.0 | 210 | 0.2401 | 0.8246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Isaacp/xlm-roberta-base-finetuned-panx-fr
Isaacp
2022-09-15T22:48:39Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T22:25:15Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8299296953465015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2848 - F1: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3383 | 0.7928 | | 0.2617 | 2.0 | 382 | 0.2966 | 0.8318 | | 0.1672 | 3.0 | 573 | 0.2848 | 0.8299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Mcy/bert-base-uncased-finetuned-classification_ds30
Mcy
2022-09-15T22:09:50Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T14:34:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-classification_ds30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-classification_ds30 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 41.1515 - Mse: 41.1515 - Mae: 4.7002 - R2: 0.7675 - Accuracy: 0.2685 - Msev: 0.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | Msev | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:--------:|:------:| | 10.1514 | 1.0 | 5215 | 40.1844 | 40.1844 | 4.6065 | 0.7730 | 0.2644 | 0.0249 | | 3.7754 | 2.0 | 10430 | 39.4067 | 39.4067 | 4.5926 | 0.7774 | 0.2803 | 0.0254 | | 2.2314 | 3.0 | 15645 | 44.9527 | 44.9527 | 4.8825 | 0.7460 | 0.2680 | 0.0222 | | 1.6468 | 4.0 | 20860 | 40.3435 | 40.3435 | 4.6496 | 0.7721 | 0.2702 | 0.0248 | | 1.2442 | 5.0 | 26075 | 40.8178 | 40.8178 | 4.6934 | 0.7694 | 0.2657 | 0.0245 | | 1.0992 | 6.0 | 31290 | 42.6644 | 42.6644 | 4.7802 | 0.7590 | 0.2620 | 0.0234 | | 0.9911 | 7.0 | 36505 | 40.0627 | 40.0627 | 4.6277 | 0.7737 | 0.2751 | 0.0250 | | 0.8167 | 8.0 | 41720 | 40.6918 | 40.6918 | 4.6755 | 0.7701 | 0.2693 | 0.0246 | | 0.7862 | 9.0 | 46935 | 41.9593 | 41.9593 | 4.7363 | 0.7629 | 0.2693 | 0.0238 | | 0.8136 | 10.0 | 52150 | 41.1515 | 41.1515 | 4.7002 | 0.7675 | 0.2685 | 0.0243 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/a-hat-kid
sd-concepts-library
2022-09-15T22:03:52Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-15T22:03:46Z
--- license: mit --- ### A Hat kid on Stable Diffusion This is the `<hatintime-kid>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hatintime-kid> 0](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/0.jpeg) ![<hatintime-kid> 1](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/2.jpeg) ![<hatintime-kid> 2](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/1.jpeg) ![<hatintime-kid> 3](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/3.jpeg)
sd-concepts-library/backrooms
sd-concepts-library
2022-09-15T21:32:42Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-09-15T21:32:37Z
--- license: mit --- ### Backrooms on Stable Diffusion This is the `<Backrooms>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Backrooms> 0](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/0.jpeg) ![<Backrooms> 1](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/2.jpeg) ![<Backrooms> 2](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/1.jpeg)
sd-concepts-library/naruto
sd-concepts-library
2022-09-15T20:52:17Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-15T20:52:10Z
--- license: mit --- ### Naruto on Stable Diffusion This is the `<Naruto>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<Naruto> 0](https://huggingface.co/sd-concepts-library/naruto/resolve/main/concept_images/0.jpeg) ![<Naruto> 1](https://huggingface.co/sd-concepts-library/naruto/resolve/main/concept_images/2.jpeg) ![<Naruto> 2](https://huggingface.co/sd-concepts-library/naruto/resolve/main/concept_images/4.jpeg) ![<Naruto> 3](https://huggingface.co/sd-concepts-library/naruto/resolve/main/concept_images/1.jpeg) ![<Naruto> 4](https://huggingface.co/sd-concepts-library/naruto/resolve/main/concept_images/3.jpeg)
VanessaSchenkel/pt-unicamp-handcrafted
VanessaSchenkel
2022-09-15T20:27:04Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-09-15T20:01:33Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: pt-unicamp-handcrafted results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pt-unicamp-handcrafted This model is a fine-tuned version of [VanessaSchenkel/pt-unicamp-news-t5](https://huggingface.co/VanessaSchenkel/pt-unicamp-news-t5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7061 - Bleu: 75.3691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/liqwid-aquafarmer
sd-concepts-library
2022-09-15T20:02:21Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-15T20:02:15Z
--- license: mit --- ### liqwid_aquafarmer on Stable Diffusion This is the `<aquafarmer>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<aquafarmer> 0](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/26.jpeg) ![<aquafarmer> 1](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/0.jpeg) ![<aquafarmer> 2](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/31.jpeg) ![<aquafarmer> 3](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/8.jpeg) ![<aquafarmer> 4](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/3.jpeg) ![<aquafarmer> 5](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/5.jpeg) ![<aquafarmer> 6](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/22.jpeg) ![<aquafarmer> 7](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/32.jpeg) ![<aquafarmer> 8](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/29.jpeg) ![<aquafarmer> 9](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/6.jpeg) ![<aquafarmer> 10](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/30.jpeg) ![<aquafarmer> 11](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/11.jpeg) ![<aquafarmer> 12](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/27.jpeg) ![<aquafarmer> 13](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/1.jpeg) ![<aquafarmer> 14](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/25.jpeg) ![<aquafarmer> 15](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/21.jpeg) ![<aquafarmer> 16](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/14.jpeg) ![<aquafarmer> 17](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/15.jpeg) ![<aquafarmer> 18](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/23.jpeg) ![<aquafarmer> 19](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/17.jpeg) ![<aquafarmer> 20](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/16.jpeg) ![<aquafarmer> 21](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/10.jpeg) ![<aquafarmer> 22](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/2.jpeg) ![<aquafarmer> 23](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/28.jpeg) ![<aquafarmer> 24](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/12.jpeg) ![<aquafarmer> 25](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/19.jpeg) ![<aquafarmer> 26](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/4.jpeg) ![<aquafarmer> 27](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/7.jpeg) ![<aquafarmer> 28](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/24.jpeg) ![<aquafarmer> 29](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/9.jpeg) ![<aquafarmer> 30](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/20.jpeg) ![<aquafarmer> 31](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/18.jpeg) ![<aquafarmer> 32](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/13.jpeg)
richhkust/distilbert-base-uncased-finetuned-cola
richhkust
2022-09-15T18:55:35Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T17:08:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5332198659134496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7865 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5246 | 1.0 | 535 | 0.5492 | 0.4039 | | 0.3516 | 2.0 | 1070 | 0.5242 | 0.4703 | | 0.2369 | 3.0 | 1605 | 0.5779 | 0.5203 | | 0.1719 | 4.0 | 2140 | 0.7865 | 0.5332 | | 0.1178 | 5.0 | 2675 | 0.8519 | 0.5298 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pnr-svc/named-entity-tr
pnr-svc
2022-09-15T18:05:01Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T17:49:34Z
--- license: mit widget: - text: "emanet ürün" --- tags: - generated_from_trainer datasets: - ner-tr metrics: - precision - recall - f1 - accuracy model-index: - name: named-entity-tr results: - task: name: Token Classification type: token-classification dataset: name: ner-tr type: ner-tr config: NERTR split: train args: NERTR metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.45027322404371584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # named-entity-tr This model is a fine-tuned version of [dbmdz/electra-base-turkish-cased-discriminator](https://huggingface.co/dbmdz/electra-base-turkish-cased-discriminator) on the ner-tr dataset. It achieves the following results on the evaluation set: - Loss: 2.2782 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.4503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 9 | 2.7645 | 0.0537 | 0.0777 | 0.0635 | 0.3191 | | No log | 2.0 | 18 | 2.3464 | 0.0 | 0.0 | 0.0 | 0.4503 | | No log | 3.0 | 27 | 2.2782 | 0.0 | 0.0 | 0.0 | 0.4503 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
edub0420/autotrain-graphwerk-1472254089
edub0420
2022-09-15T18:00:49Z
190
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:edub0420/autotrain-data-graphwerk", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-09-15T17:59:52Z
--- tags: - autotrain - vision - image-classification datasets: - edub0420/autotrain-data-graphwerk widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.0037659513202956607 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1472254089 - CO2 Emissions (in grams): 0.0038 ## Validation Metrics - Loss: 0.005 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
reinoudbosch/xlm-roberta-base-finetuned-panx-all
reinoudbosch
2022-09-15T17:44:39Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T17:33:33Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - F1: 0.8525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1894 | 0.8104 | | 0.1564 | 2.0 | 1670 | 0.1751 | 0.8423 | | 0.1032 | 3.0 | 2505 | 0.1739 | 0.8525 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
reinoudbosch/xlm-roberta-base-finetuned-panx-en
reinoudbosch
2022-09-15T17:33:23Z
116
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T17:25:18Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4025 - F1: 0.6778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1069 | 1.0 | 50 | 0.5201 | 0.5010 | | 0.4975 | 2.0 | 100 | 0.4503 | 0.6198 | | 0.3705 | 3.0 | 150 | 0.4025 | 0.6778 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
reinoudbosch/xlm-roberta-base-finetuned-panx-it
reinoudbosch
2022-09-15T17:25:07Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T17:16:33Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8085969180859691 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2527 - F1: 0.8086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8319 | 1.0 | 70 | 0.3179 | 0.7474 | | 0.2959 | 2.0 | 140 | 0.2695 | 0.7916 | | 0.2036 | 3.0 | 210 | 0.2527 | 0.8086 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
valadhi/swin-tiny-patch4-window7-224-finetuned-agrivision
valadhi
2022-09-15T17:21:42Z
59
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-08T14:40:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-agrivision results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9202733485193622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-agrivision This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - Accuracy: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5913 | 1.0 | 31 | 0.7046 | 0.7175 | | 0.1409 | 2.0 | 62 | 0.8423 | 0.6788 | | 0.0825 | 3.0 | 93 | 0.6224 | 0.7654 | | 0.0509 | 4.0 | 124 | 0.4379 | 0.8360 | | 0.0439 | 5.0 | 155 | 0.1706 | 0.9317 | | 0.0107 | 6.0 | 186 | 0.1914 | 0.9362 | | 0.0134 | 7.0 | 217 | 0.2491 | 0.9089 | | 0.0338 | 8.0 | 248 | 0.2119 | 0.9362 | | 0.0306 | 9.0 | 279 | 0.4502 | 0.8610 | | 0.0054 | 10.0 | 310 | 0.4990 | 0.8747 | | 0.0033 | 11.0 | 341 | 0.2746 | 0.9112 | | 0.0021 | 12.0 | 372 | 0.2501 | 0.9317 | | 0.0068 | 13.0 | 403 | 0.1883 | 0.9522 | | 0.0038 | 14.0 | 434 | 0.3672 | 0.9134 | | 0.0006 | 15.0 | 465 | 0.2275 | 0.9408 | | 0.0011 | 16.0 | 496 | 0.3349 | 0.9134 | | 0.0017 | 17.0 | 527 | 0.3329 | 0.9157 | | 0.0007 | 18.0 | 558 | 0.2508 | 0.9317 | | 0.0023 | 19.0 | 589 | 0.2338 | 0.9385 | | 0.0003 | 20.0 | 620 | 0.3193 | 0.9226 | | 0.002 | 21.0 | 651 | 0.4604 | 0.9043 | | 0.0023 | 22.0 | 682 | 0.3338 | 0.9203 | | 0.005 | 23.0 | 713 | 0.2925 | 0.9271 | | 0.0001 | 24.0 | 744 | 0.2022 | 0.9522 | | 0.0002 | 25.0 | 775 | 0.2699 | 0.9339 | | 0.0007 | 26.0 | 806 | 0.2603 | 0.9385 | | 0.0005 | 27.0 | 837 | 0.4120 | 0.9134 | | 0.0003 | 28.0 | 868 | 0.3550 | 0.9203 | | 0.0008 | 29.0 | 899 | 0.3657 | 0.9203 | | 0.0 | 30.0 | 930 | 0.3605 | 0.9203 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1