modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-13 06:28:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-13 06:25:04
card
stringlengths
11
1.01M
kanishka/smolm-mlm-bpe-unmask-seed_111
kanishka
2023-09-16T18:09:09Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "dataset:AO-CHILDES", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-16T04:18:06Z
--- base_model: models/smolm-mlm/config.json tags: - generated_from_trainer datasets: - AO-CHILDES metrics: - accuracy widget: - text: Do you like your <mask> ? - text: Look here . What is that <mask> ? - text: Where is <mask> ? model-index: - name: smolm-mlm-bpe-unmask-seed_111 results: [] pipeline_tag: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-mlm-bpe-unmask-seed_111 This model is a fine-tuned version of [models/smolm-mlm/config.json](https://huggingface.co/models/smolm-mlm/config.json) on 5M words of American-English child-directed input. It achieves the following results on the evaluation set: - Loss: 2.6956 - Accuracy: 0.4492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 512 - seed: 111 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 24000 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.5129 | 1.0 | 11938 | 3.4627 | 0.3523 | | 3.319 | 2.0 | 23876 | 3.3322 | 0.3641 | | 3.1577 | 3.0 | 35814 | 3.1841 | 0.3810 | | 3.0357 | 4.0 | 47752 | 3.0588 | 0.3982 | | 2.9606 | 5.0 | 59690 | 2.9535 | 0.4109 | | 2.87 | 6.0 | 71628 | 2.8745 | 0.4221 | | 2.7817 | 7.0 | 83566 | 2.8351 | 0.4284 | | 2.7388 | 8.0 | 95504 | 2.7536 | 0.4417 | | 2.6618 | 9.0 | 107442 | 2.7308 | 0.4424 | | 2.6258 | 10.0 | 119380 | 2.6880 | 0.4522 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Shishir1807/M2_llama
Shishir1807
2023-09-16T18:08:22Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T18:06:54Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/M2_llama", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/M2_llama", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/M2_llama", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/M2_llama" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep5_ckpt
ys7yoo
2023-09-16T18:06:16Z
95
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:klue/roberta-large", "base_model:finetune:klue/roberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T17:44:29Z
--- base_model: klue/roberta-large tags: - generated_from_trainer datasets: - klue model-index: - name: sts_roberta_large_lr1e-05_wd1e-03_ep5_ckpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sts_roberta_large_lr1e-05_wd1e-03_ep5_ckpt This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3718 - Mse: 0.3718 - Mae: 0.4467 - R2: 0.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 1.4636 | 1.0 | 183 | 0.6353 | 0.6353 | 0.5960 | 0.7091 | | 0.1439 | 2.0 | 366 | 0.4268 | 0.4268 | 0.4874 | 0.8046 | | 0.1016 | 3.0 | 549 | 0.4241 | 0.4241 | 0.4769 | 0.8058 | | 0.0796 | 4.0 | 732 | 0.4218 | 0.4218 | 0.4811 | 0.8069 | | 0.0651 | 5.0 | 915 | 0.3718 | 0.3718 | 0.4467 | 0.8298 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
CyberHarem/laura_stuart_toarumajutsunoindex
CyberHarem
2023-09-16T18:02:37Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/laura_stuart_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-09-16T17:50:22Z
--- license: mit datasets: - CyberHarem/laura_stuart_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of laura_stuart_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5100, you need to download `5100/laura_stuart_toarumajutsunoindex.pt` as the embedding and `5100/laura_stuart_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5100**, with the score of 0.774. The trigger words are: 1. `laura_stuart_toarumajutsunoindex` 2. `blonde_hair, long_hair, blue_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **5100** | **0.774** | [**Download**](5100/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.726 | [Download](4760/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.739 | [Download](4420/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.694 | [Download](4080/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.626 | [Download](3740/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.680 | [Download](3400/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.744 | [Download](3060/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.741 | [Download](2720/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.562 | [Download](2380/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.455 | [Download](2040/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.588 | [Download](1700/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.487 | [Download](1360/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.522 | [Download](1020/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.275 | [Download](680/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.186 | [Download](340/laura_stuart_toarumajutsunoindex.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
VictorGil75/workshops-setfit-model_V2
VictorGil75
2023-09-16T17:44:01Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-16T17:43:07Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # VictorGil75/workshops-setfit-model_V2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("VictorGil75/workshops-setfit-model_V2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
andreipb/roberta-poetry-religion-crpo
andreipb
2023-09-16T17:31:51Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-13T15:18:08Z
--- license: mit language: - en pipeline_tag: fill-mask library_name: transformers widget: - text: "This morning, the CEO was <mask>." example_title: "Example 1" - text: "Yesterday, all the students were <mask> in the park." example_title: "Example 2" - text: "All the children seemed <mask>." example_title: "Example 3" - text: "I opened the door and found a <mask> behind it." example_title: "Example 4" - text: "We went to see the <mask> movie." example_title: "Example 5" --- # roberta-poetry-religion-crpo This model is based on the [RoBERTa base model](https://huggingface.co/roberta-base) (125M parameters) fine-tuned for 20 epochs on a poetry dataset of 38 MB. This dataset was extracted from the [Gutenberg Poetry Corpus](https://github.com/aparrish/gutenberg-poetry-corpus) using an automatic classifier for poems in relation with the topic of **religion and spirituality**. The model replaces a masked word, indicated by the `<mask>` tag, with a word associated with **religion and spirituality**, while preserving fluency. Caution: the topic (here, **religion and spirituality**) only biases the choice of words with respect to the base model, but do not expect to find only words strongly associated to this topic. This model was trained by [Teo Ferrari](https://www.linkedin.com/in/teo-ferrari-0a4009176/) as part of his Bachelor thesis at [HEIG-VD](https://gaps.heig-vd.ch/public/diplome/rapports.php?id=6763), supervised by [Andrei Popescu-Belis](http://iict-space.heig-vd.ch/apu/). The model is described in "[GPoeT: a Language Model Trained for Rhyme Generation on Synthetic Data](https://aclanthology.org/2023.latechclfl-1.2/)" and is used in the [CR-PO](https://github.com/heig-iict-ida/crpo) system for [interactive poem generation](https://aclanthology.org/2022.lrec-1.377), along with several other models for specific topics or emotions.
IlyaGusev/saiga2_7b_lora
IlyaGusev
2023-09-16T16:53:55Z
0
31
null
[ "conversational", "ru", "dataset:IlyaGusev/ru_turbo_alpaca", "dataset:IlyaGusev/ru_turbo_saiga", "dataset:IlyaGusev/ru_sharegpt_cleaned", "dataset:IlyaGusev/oasst1_ru_main_branch", "dataset:IlyaGusev/ru_turbo_alpaca_evol_instruct", "dataset:lksy/ru_instruct_gpt4", "license:cc-by-4.0", "region:us" ]
text-generation
2023-07-21T08:16:20Z
--- datasets: - IlyaGusev/ru_turbo_alpaca - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/ru_turbo_alpaca_evol_instruct - lksy/ru_instruct_gpt4 language: - ru pipeline_tag: conversational license: cc-by-4.0 --- # Saiga2 7B, Russian LLaMA2-based chatbot Based on [LLaMA-2 7B HF](https://huggingface.co/meta-llama/Llama-2-7b-hf). This is an adapter-only version. Llama.cpp version: [link](https://huggingface.co/IlyaGusev/saiga2_7b_ggml). Colab: [link](https://colab.research.google.com/drive/1Iw2TROpW0EjagyckyP-I-OWhLnLr7v2k). Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct). **WARNING 1**: Run with the development version of `transformers` and `peft`! **WARNING 2**: Avoid using V100 (in Colab, for example). Outputs are much worse in this case. **WARNING 3**: You can use the [Llama-2-7B-fp16](https://huggingface.co/TheBloke/Llama-2-7B-fp16) base model instead. ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig MODEL_NAME = "IlyaGusev/saiga2_7b_lora" DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n" DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." class Conversation: def __init__( self, message_template=DEFAULT_MESSAGE_TEMPLATE, system_prompt=DEFAULT_SYSTEM_PROMPT, start_token_id=1, bot_token_id=9225 ): self.message_template = message_template self.start_token_id = start_token_id self.bot_token_id = bot_token_id self.messages = [{ "role": "system", "content": system_prompt }] def get_start_token_id(self): return self.start_token_id def get_bot_token_id(self): return self.bot_token_id def add_user_message(self, message): self.messages.append({ "role": "user", "content": message }) def add_bot_message(self, message): self.messages.append({ "role": "bot", "content": message }) def get_prompt(self, tokenizer): final_text = "" for message in self.messages: message_text = self.message_template.format(**message) final_text += message_text final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) return final_text.strip() def generate(model, tokenizer, prompt, generation_config): data = tokenizer(prompt, return_tensors="pt") data = {k: v.to(model.device) for k, v in data.items()} output_ids = model.generate( **data, generation_config=generation_config )[0] output_ids = output_ids[len(data["input_ids"][0]):] output = tokenizer.decode(output_ids, skip_special_tokens=True) return output.strip() config = PeftConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto" ) model = PeftModel.from_pretrained( model, MODEL_NAME, torch_dtype=torch.float16 ) model.eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) generation_config = GenerationConfig.from_pretrained(MODEL_NAME) print(generation_config) inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"] for inp in inputs: conversation = Conversation() conversation.add_user_message(inp) prompt = conversation.get_prompt(tokenizer) output = generate(model, tokenizer, prompt, generation_config) print(inp) print(output) print() print("==============================") print() ``` Examples: ``` User: Почему трава зеленая? Saiga: Зеленый цвет травы связан с наличием хлорофилла в её клетках. Хлорофилл - это пигмент, который обеспечивает защиту от ультрафиолетового излучения солнца. В процессе фотосинтеза растения используют энергию света для создания кислорода и органических веществ, таких как сахара. Ультрафиолетовое излучение может повредить хлорофиллы, поэтому они окрашиваются в зеленый цвет, чтобы предотвратить их повреждение. ``` ``` User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч Saiga: Жила-была девочка по имени Таня. Она была очень активной и любила играть в футбол со своими друзьями. Однажды она купила новый мяч, который был еще более красивым и качественным, чем все остальные. Он был настолько же красочен, что казалось, будто он сам играет! Однако, когда Танечка начала играть с ним, то заметила, что мяч не так уж и легкий, как она думала. Вместо того чтобы лететь высоко вверх, он падал на землю, и Таня чувствовала себя очень грустной. Но она решила, что это просто ее плохая игровая форма, и продолжила играть. Но уже через несколько минут после того, как Таня бросала мяч в воздух, он завис над головой и начал медленно кружить вокруг. Таня стала беспокойна и испуганна - что случилось? Как ее мяч стал таким тяжелым? В этот момент, Таня услышала шум из ближайшего парка. Она поспешно отправилась туда, чтобы узнать, что происходит. Когда она подошла к парку, она увидела маленького мальчика, который сидел на дереве и плевал на свой мяч. "Что ты делаешь?" - спросила Таня. Мальчик повернулся к ней и показал ей свой мяч. "Этот мяч мне нравится больше всего", - говорил он. "Я хочу, чтобы он был такой же, как твой". Таня поняла, что её мяч перестал быть для нее только игровым предметом, но и символом дружбы и общения. Она решила вернуться домой и взять его с собой. Когда они пришли домой, Таня дала своему другу мяч и объяснила ему, что теперь их два мяча будут лучше вместе, чем один. Именно так, благодаря дружбе и сотрудничеству, Таня и ее новый друг стали лучшими командами. Их мячи стали играть вместе, и каждый из них становился еще лучше и быстрее благодаря друг другу. Итак, Таня научилась, что настоящая дружба - это не только общительность и веселость, но и помощь и поддержка друг друга в трудных ситуациях. Благодаря своей новому другу, Таня научилась ценить своих товарищей и находить радость в том, что можно учиться у других людей. ``` v2: - context extended to 4096 - wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/ktxsy0v2) - saiga2_7b_v2 vs saiga2_7b: 85-23-68 v1: - dataset code revision 7712a061d993f61c49b1e2d992e893c48acb3a87 - wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/innzu7g8) - 7 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_turbo_alpaca_evol_instruct (iteration 1/2), ru_instruct_gpt4 - Datasets merging script: [create_chat_set.py](https://github.com/IlyaGusev/rulm/blob/e4238fd9a196405b566a2d5838ab44b7a0f4dc31/self_instruct/src/data_processing/create_chat_set.py) - saiga7b_v5 vs saiga2_7b: 78-8-90
ridwansukri/emotion_classification_v1
ridwansukri
2023-09-16T16:52:04Z
6
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-16T15:03:53Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification_v1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification_v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1905 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0278 | 0.2437 | | No log | 2.0 | 20 | 1.8875 | 0.3875 | | No log | 3.0 | 30 | 1.6890 | 0.4313 | | No log | 4.0 | 40 | 1.5484 | 0.5 | | No log | 5.0 | 50 | 1.4799 | 0.5125 | | No log | 6.0 | 60 | 1.4148 | 0.5375 | | No log | 7.0 | 70 | 1.3529 | 0.5375 | | No log | 8.0 | 80 | 1.3120 | 0.5312 | | No log | 9.0 | 90 | 1.2790 | 0.5813 | | No log | 10.0 | 100 | 1.2498 | 0.575 | | No log | 11.0 | 110 | 1.2610 | 0.525 | | No log | 12.0 | 120 | 1.1896 | 0.5938 | | No log | 13.0 | 130 | 1.2251 | 0.5312 | | No log | 14.0 | 140 | 1.2019 | 0.575 | | No log | 15.0 | 150 | 1.1797 | 0.5563 | | No log | 16.0 | 160 | 1.2484 | 0.5437 | | No log | 17.0 | 170 | 1.1766 | 0.5875 | | No log | 18.0 | 180 | 1.2401 | 0.4938 | | No log | 19.0 | 190 | 1.1977 | 0.5312 | | No log | 20.0 | 200 | 1.1839 | 0.5875 | | No log | 21.0 | 210 | 1.2028 | 0.5687 | | No log | 22.0 | 220 | 1.2048 | 0.5625 | | No log | 23.0 | 230 | 1.2637 | 0.5375 | | No log | 24.0 | 240 | 1.2371 | 0.5375 | | No log | 25.0 | 250 | 1.2777 | 0.5687 | | No log | 26.0 | 260 | 1.2544 | 0.525 | | No log | 27.0 | 270 | 1.2104 | 0.5625 | | No log | 28.0 | 280 | 1.1372 | 0.5938 | | No log | 29.0 | 290 | 1.2405 | 0.575 | | No log | 30.0 | 300 | 1.1624 | 0.6062 | | No log | 31.0 | 310 | 1.2376 | 0.5875 | | No log | 32.0 | 320 | 1.1794 | 0.5875 | | No log | 33.0 | 330 | 1.2156 | 0.5563 | | No log | 34.0 | 340 | 1.1725 | 0.55 | | No log | 35.0 | 350 | 1.2394 | 0.55 | | No log | 36.0 | 360 | 1.1886 | 0.5938 | | No log | 37.0 | 370 | 1.1760 | 0.6188 | | No log | 38.0 | 380 | 1.2757 | 0.525 | | No log | 39.0 | 390 | 1.1703 | 0.6062 | | No log | 40.0 | 400 | 1.2734 | 0.575 | | No log | 41.0 | 410 | 1.2265 | 0.5563 | | No log | 42.0 | 420 | 1.2651 | 0.5687 | | No log | 43.0 | 430 | 1.2419 | 0.5813 | | No log | 44.0 | 440 | 1.1871 | 0.6 | | No log | 45.0 | 450 | 1.2542 | 0.575 | | No log | 46.0 | 460 | 1.1910 | 0.5813 | | No log | 47.0 | 470 | 1.1990 | 0.6 | | No log | 48.0 | 480 | 1.2097 | 0.5813 | | No log | 49.0 | 490 | 1.2226 | 0.5875 | | 0.699 | 50.0 | 500 | 1.2793 | 0.5375 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
117jahfar/my-cats-new
117jahfar
2023-09-16T16:42:49Z
1
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T16:29:48Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-cats-new Dreambooth model trained by 117jahfar following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: MESCOE223 Sample pictures of this concept: ![0](https://huggingface.co/117jahfar/my-cats-new/resolve/main/sample_images/_752942be-d83f-454f-aa02-b41b33587f33.jpeg) ![1](https://huggingface.co/117jahfar/my-cats-new/resolve/main/sample_images/_7c48c337-45e1-47fe-aed5-4ea50ca1b793.jpeg) ![2](https://huggingface.co/117jahfar/my-cats-new/resolve/main/sample_images/_45a551e4-4713-4cb1-bb1f-61afb6f70499.jpeg) ![3](https://huggingface.co/117jahfar/my-cats-new/resolve/main/sample_images/_5dbca548-e84a-42a1-88e3-02196dbd8d00.jpeg)
alexeynoskov/rl_course_vizdoom_health_gathering_supreme
alexeynoskov
2023-09-16T16:39:56Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T16:39:51Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.32 +/- 3.27 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r alexeynoskov/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Unstoppable0/modexla
Unstoppable0
2023-09-16T16:39:54Z
0
0
null
[ "arxiv:2211.06679", "region:us" ]
null
2023-09-16T16:08:11Z
# Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. ![](screenshot.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a `(tuxedo:1.21)` - alternative syntax - select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with `--allow-code` to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A separate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's dimension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for: - [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) - [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. - [Intel CPUs, Intel GPUs (both integrated and discrete)](https://github.com/openvinotoolkit/stable-diffusion-webui/wiki/Installation-on-Intel-Silicon) (external wiki page) Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Installation on Windows 10/11 with NVidia-GPUs using release package 1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract it's contents. 2. Run `update.bat`. 3. Run `run.bat`. > For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) ### Automatic Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0 # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. Navigate to the directory you would like the webui to be installed and execute the following command: ```bash wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh ``` 3. Run `webui.sh`. 4. Check `webui-user.sh` for options. ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). ## Contributing Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) [crawlable wiki](https://github-wiki-see.page/m/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - LyCORIS - KohakuBlueleaf - Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
cgijoe/ppo-LunarLander-v2
cgijoe
2023-09-16T16:34:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-05T20:39:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -658.36 +/- 50.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/vento_of_the_front_toarumajutsunoindex
CyberHarem
2023-09-16T16:33:53Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/vento_of_the_front_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-09-16T16:22:55Z
--- license: mit datasets: - CyberHarem/vento_of_the_front_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of vento_of_the_front_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4420, you need to download `4420/vento_of_the_front_toarumajutsunoindex.pt` as the embedding and `4420/vento_of_the_front_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4420**, with the score of 0.967. The trigger words are: 1. `vento_of_the_front_toarumajutsunoindex` 2. `blonde_hair, piercing, blue_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.844 | [Download](5100/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.960 | [Download](4760/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | **4420** | **0.967** | [**Download**](4420/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.916 | [Download](4080/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.902 | [Download](3740/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.889 | [Download](3400/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.767 | [Download](3060/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.830 | [Download](2720/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.846 | [Download](2380/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.760 | [Download](2040/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.782 | [Download](1700/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.684 | [Download](1360/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.610 | [Download](1020/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.469 | [Download](680/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.441 | [Download](340/vento_of_the_front_toarumajutsunoindex.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
winglian/omega-3b
winglian
2023-09-16T16:32:13Z
31
3
transformers
[ "transformers", "pytorch", "mixformer-sequential", "text-generation", "custom_code", "en", "dataset:nampdn-ai/tiny-textbooks", "dataset:nampdn-ai/tiny-lessons", "autotrain_compatible", "region:us" ]
text-generation
2023-09-15T07:40:11Z
--- datasets: - nampdn-ai/tiny-textbooks - nampdn-ai/tiny-lessons language: - en --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # Omega 2.6B This model is derived from phi 1.3B using layer stacking techniques to double the number of hidden layers in the model. The model was then trained for 1 epoch on data from tiny-textbooks and tiny-lessons. # Training https://wandb.ai/wing-lian/phi-2x-pt-tiny
ygaci/Taxi-v3
ygaci
2023-09-16T16:07:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T15:40:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ygaci/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
elenaThevalley/mobilenet_v2_1.0_224-finetuned-32bs-0.01lr
elenaThevalley
2023-09-16T16:05:57Z
194
0
transformers
[ "transformers", "pytorch", "mobilenet_v2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/mobilenet_v2_1.0_224", "base_model:finetune:google/mobilenet_v2_1.0_224", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-15T15:48:51Z
--- license: other base_model: google/mobilenet_v2_1.0_224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilenet_v2_1.0_224-finetuned-32bs-0.01lr results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9206560874783305 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilenet_v2_1.0_224-finetuned-32bs-0.01lr This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2230 - Accuracy: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 53 | 0.3603 | 0.8745 | | No log | 1.99 | 107 | 0.2323 | 0.9183 | | No log | 2.96 | 159 | 0.2230 | 0.9207 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
SuperSecureHuman/t5_base_trails
SuperSecureHuman
2023-09-16T15:52:29Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-16T14:54:35Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - opus_books model-index: - name: t5_base_trails results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_base_trails This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the opus_books dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
InexperiencedMe/a2c-PandaReachDense-v3
InexperiencedMe
2023-09-16T15:48:07Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T15:42:41Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ctrltokyo/phi-1_5-finetuned-gsm8k
ctrltokyo
2023-09-16T15:46:17Z
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-09-16T15:42:32Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
huygdng/wav2vec2-large-xls-r-300m-tw-trans-colab-2
huygdng
2023-09-16T15:41:58Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-16T14:28:08Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-tw-trans-colab-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tw-trans-colab-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 100 ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
byoussef/whisper-large-v2-Ko
byoussef
2023-09-16T15:31:52Z
233
20
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ko", "dataset:Bingsu/zeroth-korean", "base_model:openai/whisper-large-v2", "base_model:finetune:openai/whisper-large-v2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-10T07:11:45Z
--- language: - ko license: apache-2.0 tags: - generated_from_trainer datasets: - Bingsu/zeroth-korean metrics: - wer pipeline_tag: automatic-speech-recognition base_model: openai/whisper-large-v2 model-index: - name: whisper-large-v2-Ko results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Bingsu/zeroth-korean type: Bingsu/zeroth-korean metrics: - type: wer value: 2.9 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ko_kr split: test metrics: - type: wer value: 20.66 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v2-Ko This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Wer: **2.9** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ***** train metrics ***** epoch = 50.0 train_loss = 0.0234 train_runtime = 16:20:18.00 train_samples = 22262 train_samples_per_second = 19.042 train_steps_per_second = 0.085 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - total_train_batch_size: 224 - total_eval_batch_size: 112 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0299 | 10.0 | 1000 | 0.0745 | 0.0447 | | 0.0085 | 20.0 | 2000 | 0.0608 | 0.0353 | | 0.0036 | 30.0 | 3000 | 0.0593 | 0.0302 | | 0.0013 | 40.0 | 4000 | 0.0609 | 0.0282 | | 0.0008 | 50.0 | 5000 | 0.0617 | 0.0290 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
salim4n/dqn-SpaceInvadersNoFrameskip-v4
salim4n
2023-09-16T15:29:24Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T15:28:53Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 385.00 +/- 136.99 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga salim4n -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga salim4n -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga salim4n ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Norah-K/PDPL_CAMeLBERT
Norah-K
2023-09-16T15:28:59Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain", "unk", "dataset:NorahNasser/autotrain-data-camel_pdpl", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T15:25:01Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - NorahNasser/autotrain-data-camel_pdpl co2_eq_emissions: emissions: 0.04275306009908754 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 89564143964 - CO2 Emissions (in grams): 0.0428 ## Validation Metrics - Loss: 0.293 - Accuracy: 0.929 - Macro F1: 0.926 - Micro F1: 0.929 - Weighted F1: 0.929 - Macro Precision: 0.936 - Micro Precision: 0.929 - Weighted Precision: 0.930 - Macro Recall: 0.918 - Micro Recall: 0.929 - Weighted Recall: 0.929 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/NorahNasser/autotrain-camel_pdpl-89564143964 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("NorahNasser/autotrain-camel_pdpl-89564143964", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("NorahNasser/autotrain-camel_pdpl-89564143964", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/finn-token
sd-concepts-library
2023-09-16T15:16:11Z
0
0
null
[ "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
null
2023-09-16T15:16:10Z
--- license: mit base_model: runwayml/stable-diffusion-v1-5 --- ### finn-token on Stable Diffusion This is the `<finn-token>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<finn-token> 0](https://huggingface.co/sd-concepts-library/finn-token/resolve/main/concept_images/t2.png) ![<finn-token> 1](https://huggingface.co/sd-concepts-library/finn-token/resolve/main/concept_images/t1.png) ![<finn-token> 2](https://huggingface.co/sd-concepts-library/finn-token/resolve/main/concept_images/t4.png) ![<finn-token> 3](https://huggingface.co/sd-concepts-library/finn-token/resolve/main/concept_images/t5.png) ![<finn-token> 4](https://huggingface.co/sd-concepts-library/finn-token/resolve/main/concept_images/t3.png)
anyuanay/my_awesome_model
anyuanay
2023-09-16T15:14:44Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T14:57:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 157 | 0.0004 | 1.0 | | No log | 2.0 | 314 | 0.0002 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
DaunIDebil/Zelensky-RVC2.0
DaunIDebil
2023-09-16T15:11:22Z
0
0
null
[ "region:us" ]
null
2023-09-16T15:07:23Z
model is not mine. i found it somewhere on the internet in may.
kanishka/smolm-mlm-bpe-unmask-seed_222
kanishka
2023-09-16T15:09:48Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-16T06:21:18Z
--- base_model: models/smolm-mlm/config.json tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-mlm-bpe-unmask-seed_222 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-mlm-bpe-unmask-seed_222 This model is a fine-tuned version of [models/smolm-mlm/config.json](https://huggingface.co/models/smolm-mlm/config.json) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7005 - Accuracy: 0.4481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 512 - seed: 222 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 24000 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.5334 | 1.0 | 11938 | 3.4896 | 0.3463 | | 3.3402 | 2.0 | 23876 | 3.3814 | 0.3590 | | 3.1641 | 3.0 | 35814 | 3.1702 | 0.3844 | | 3.0325 | 4.0 | 47752 | 3.0475 | 0.4019 | | 2.951 | 5.0 | 59690 | 2.9666 | 0.4095 | | 2.8583 | 6.0 | 71628 | 2.8908 | 0.4201 | | 2.7872 | 7.0 | 83566 | 2.8299 | 0.4310 | | 2.7348 | 8.0 | 95504 | 2.7900 | 0.4335 | | 2.6584 | 9.0 | 107442 | 2.7272 | 0.4443 | | 2.6462 | 10.0 | 119380 | 2.6962 | 0.4501 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
kanishka/smolm-mlm-bpe-unmask-seed_444
kanishka
2023-09-16T15:09:41Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-16T10:25:20Z
--- base_model: models/smolm-mlm/config.json tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-mlm-bpe-unmask-seed_444 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-mlm-bpe-unmask-seed_444 This model is a fine-tuned version of [models/smolm-mlm/config.json](https://huggingface.co/models/smolm-mlm/config.json) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7042 - Accuracy: 0.4475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 512 - seed: 444 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 24000 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.5523 | 1.0 | 11938 | 3.4904 | 0.3512 | | 3.3151 | 2.0 | 23876 | 3.3192 | 0.3678 | | 3.1526 | 3.0 | 35814 | 3.1545 | 0.3894 | | 3.0031 | 4.0 | 47752 | 3.0706 | 0.3971 | | 2.9668 | 5.0 | 59690 | 2.9606 | 0.4121 | | 2.8548 | 6.0 | 71628 | 2.8717 | 0.4244 | | 2.7686 | 7.0 | 83566 | 2.8147 | 0.4311 | | 2.7195 | 8.0 | 95504 | 2.7657 | 0.4389 | | 2.6659 | 9.0 | 107442 | 2.7103 | 0.4483 | | 2.6254 | 10.0 | 119380 | 2.6990 | 0.4510 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
AliBagherz/result
AliBagherz
2023-09-16T15:03:20Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:pquad", "base_model:HooshvareLab/bert-fa-base-uncased", "base_model:finetune:HooshvareLab/bert-fa-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-16T14:56:38Z
--- license: apache-2.0 base_model: HooshvareLab/bert-fa-base-uncased tags: - generated_from_trainer datasets: - pquad model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased](https://huggingface.co/HooshvareLab/bert-fa-base-uncased) on the pquad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 4.3084 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
QMB15/mythomax-L2-13B-4.625bit-exl2
QMB15
2023-09-16T14:51:14Z
5
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-16T14:35:16Z
--- license: other language: - en --- This is an exllama V2 quantization of https://huggingface.co/Gryphe/MythoMax-L2-13b Uses a target bpw of 4.625. Includes measurement.json for convenience of quantizing to other sizes. Calibration data: https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-v1/test/0000.parquet An improved, potentially even perfected variant of MythoMix, my [MythoLogic-L2](https://huggingface.co/Gryphe/MythoLogic-L2-13b) and [Huginn](https://huggingface.co/The-Face-Of-Goonery/Huginn-13b-FP16) merge using a highly experimental tensor type merge technique. The main difference with MythoMix is that I allowed more of Huginn to intermingle with the single tensors located at the front and end of a model, resulting in increased coherency across the entire structure. The script and the acccompanying templates I used to produce both can [be found here](https://github.com/Gryphe/BlockMerge_Gradient/tree/main/YAML). This model is proficient at both roleplaying and storywriting due to its unique nature. Quantized models are available from TheBloke: [GGML](https://huggingface.co/TheBloke/MythoMax-L2-13B-GGML) - [GPTQ](https://huggingface.co/TheBloke/MythoMax-L2-13B-GPTQ) (You're the best!) ## Model details The idea behind this merge is that each layer is composed of several tensors, which are in turn responsible for specific functions. Using MythoLogic-L2's robust understanding as its input and Huginn's extensive writing capability as its output seems to have resulted in a model that exceeds at both, confirming my theory. (More details to be released at a later time) This type of merge is incapable of being illustrated, as each of its 363 tensors had an unique ratio applied to it. As with my prior merges, gradients were part of these ratios to further finetune its behaviour. ## Prompt Format This model primarily uses Alpaca formatting, so for optimal model performance, use: ``` <System prompt/Character Card> ### Instruction: Your instruction or question here. For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only. ### Response: ``` --- license: other ---
ygaci/ppo-Huggy
ygaci
2023-09-16T14:26:15Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-16T14:26:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ygaci/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/tsukuyomi_komoe_toarumajutsunoindex
CyberHarem
2023-09-16T14:20:13Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/tsukuyomi_komoe_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-16T07:41:46Z
--- license: mit datasets: - CyberHarem/tsukuyomi_komoe_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of tsukuyomi_komoe_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6380, you need to download `6380/tsukuyomi_komoe_toarumajutsunoindex.pt` as the embedding and `6380/tsukuyomi_komoe_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6380**, with the score of 0.879. The trigger words are: 1. `tsukuyomi_komoe_toarumajutsunoindex` 2. `short_hair, pink_hair, pink_eyes, open_mouth` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | pattern_17 | pattern_18 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8700 | 0.831 | [Download](8700/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-8700](8700/previews/pattern_1.png) | ![pattern_2-8700](8700/previews/pattern_2.png) | ![pattern_3-8700](8700/previews/pattern_3.png) | ![pattern_4-8700](8700/previews/pattern_4.png) | ![pattern_5-8700](8700/previews/pattern_5.png) | ![pattern_6-8700](8700/previews/pattern_6.png) | ![pattern_7-8700](8700/previews/pattern_7.png) | ![pattern_8-8700](8700/previews/pattern_8.png) | ![pattern_9-8700](8700/previews/pattern_9.png) | ![pattern_10-8700](8700/previews/pattern_10.png) | ![pattern_11-8700](8700/previews/pattern_11.png) | ![pattern_12-8700](8700/previews/pattern_12.png) | ![pattern_13-8700](8700/previews/pattern_13.png) | ![pattern_14-8700](8700/previews/pattern_14.png) | ![pattern_15-8700](8700/previews/pattern_15.png) | ![pattern_16-8700](8700/previews/pattern_16.png) | ![pattern_17-8700](8700/previews/pattern_17.png) | ![pattern_18-8700](8700/previews/pattern_18.png) | ![bikini-8700](8700/previews/bikini.png) | [<NSFW, click to see>](8700/previews/bondage.png) | ![free-8700](8700/previews/free.png) | ![maid-8700](8700/previews/maid.png) | ![miko-8700](8700/previews/miko.png) | [<NSFW, click to see>](8700/previews/nude.png) | [<NSFW, click to see>](8700/previews/nude2.png) | ![suit-8700](8700/previews/suit.png) | ![yukata-8700](8700/previews/yukata.png) | | 8120 | 0.855 | [Download](8120/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-8120](8120/previews/pattern_1.png) | ![pattern_2-8120](8120/previews/pattern_2.png) | ![pattern_3-8120](8120/previews/pattern_3.png) | ![pattern_4-8120](8120/previews/pattern_4.png) | ![pattern_5-8120](8120/previews/pattern_5.png) | ![pattern_6-8120](8120/previews/pattern_6.png) | ![pattern_7-8120](8120/previews/pattern_7.png) | ![pattern_8-8120](8120/previews/pattern_8.png) | ![pattern_9-8120](8120/previews/pattern_9.png) | ![pattern_10-8120](8120/previews/pattern_10.png) | ![pattern_11-8120](8120/previews/pattern_11.png) | ![pattern_12-8120](8120/previews/pattern_12.png) | ![pattern_13-8120](8120/previews/pattern_13.png) | ![pattern_14-8120](8120/previews/pattern_14.png) | ![pattern_15-8120](8120/previews/pattern_15.png) | ![pattern_16-8120](8120/previews/pattern_16.png) | ![pattern_17-8120](8120/previews/pattern_17.png) | ![pattern_18-8120](8120/previews/pattern_18.png) | ![bikini-8120](8120/previews/bikini.png) | [<NSFW, click to see>](8120/previews/bondage.png) | ![free-8120](8120/previews/free.png) | ![maid-8120](8120/previews/maid.png) | ![miko-8120](8120/previews/miko.png) | [<NSFW, click to see>](8120/previews/nude.png) | [<NSFW, click to see>](8120/previews/nude2.png) | ![suit-8120](8120/previews/suit.png) | ![yukata-8120](8120/previews/yukata.png) | | 7540 | 0.873 | [Download](7540/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-7540](7540/previews/pattern_1.png) | ![pattern_2-7540](7540/previews/pattern_2.png) | ![pattern_3-7540](7540/previews/pattern_3.png) | ![pattern_4-7540](7540/previews/pattern_4.png) | ![pattern_5-7540](7540/previews/pattern_5.png) | ![pattern_6-7540](7540/previews/pattern_6.png) | ![pattern_7-7540](7540/previews/pattern_7.png) | ![pattern_8-7540](7540/previews/pattern_8.png) | ![pattern_9-7540](7540/previews/pattern_9.png) | ![pattern_10-7540](7540/previews/pattern_10.png) | ![pattern_11-7540](7540/previews/pattern_11.png) | ![pattern_12-7540](7540/previews/pattern_12.png) | ![pattern_13-7540](7540/previews/pattern_13.png) | ![pattern_14-7540](7540/previews/pattern_14.png) | ![pattern_15-7540](7540/previews/pattern_15.png) | ![pattern_16-7540](7540/previews/pattern_16.png) | ![pattern_17-7540](7540/previews/pattern_17.png) | ![pattern_18-7540](7540/previews/pattern_18.png) | ![bikini-7540](7540/previews/bikini.png) | [<NSFW, click to see>](7540/previews/bondage.png) | ![free-7540](7540/previews/free.png) | ![maid-7540](7540/previews/maid.png) | ![miko-7540](7540/previews/miko.png) | [<NSFW, click to see>](7540/previews/nude.png) | [<NSFW, click to see>](7540/previews/nude2.png) | ![suit-7540](7540/previews/suit.png) | ![yukata-7540](7540/previews/yukata.png) | | 6960 | 0.868 | [Download](6960/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-6960](6960/previews/pattern_1.png) | ![pattern_2-6960](6960/previews/pattern_2.png) | ![pattern_3-6960](6960/previews/pattern_3.png) | ![pattern_4-6960](6960/previews/pattern_4.png) | ![pattern_5-6960](6960/previews/pattern_5.png) | ![pattern_6-6960](6960/previews/pattern_6.png) | ![pattern_7-6960](6960/previews/pattern_7.png) | ![pattern_8-6960](6960/previews/pattern_8.png) | ![pattern_9-6960](6960/previews/pattern_9.png) | ![pattern_10-6960](6960/previews/pattern_10.png) | ![pattern_11-6960](6960/previews/pattern_11.png) | ![pattern_12-6960](6960/previews/pattern_12.png) | ![pattern_13-6960](6960/previews/pattern_13.png) | ![pattern_14-6960](6960/previews/pattern_14.png) | ![pattern_15-6960](6960/previews/pattern_15.png) | ![pattern_16-6960](6960/previews/pattern_16.png) | ![pattern_17-6960](6960/previews/pattern_17.png) | ![pattern_18-6960](6960/previews/pattern_18.png) | ![bikini-6960](6960/previews/bikini.png) | [<NSFW, click to see>](6960/previews/bondage.png) | ![free-6960](6960/previews/free.png) | ![maid-6960](6960/previews/maid.png) | ![miko-6960](6960/previews/miko.png) | [<NSFW, click to see>](6960/previews/nude.png) | [<NSFW, click to see>](6960/previews/nude2.png) | ![suit-6960](6960/previews/suit.png) | ![yukata-6960](6960/previews/yukata.png) | | **6380** | **0.879** | [**Download**](6380/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-6380](6380/previews/pattern_1.png) | ![pattern_2-6380](6380/previews/pattern_2.png) | ![pattern_3-6380](6380/previews/pattern_3.png) | ![pattern_4-6380](6380/previews/pattern_4.png) | ![pattern_5-6380](6380/previews/pattern_5.png) | ![pattern_6-6380](6380/previews/pattern_6.png) | ![pattern_7-6380](6380/previews/pattern_7.png) | ![pattern_8-6380](6380/previews/pattern_8.png) | ![pattern_9-6380](6380/previews/pattern_9.png) | ![pattern_10-6380](6380/previews/pattern_10.png) | ![pattern_11-6380](6380/previews/pattern_11.png) | ![pattern_12-6380](6380/previews/pattern_12.png) | ![pattern_13-6380](6380/previews/pattern_13.png) | ![pattern_14-6380](6380/previews/pattern_14.png) | ![pattern_15-6380](6380/previews/pattern_15.png) | ![pattern_16-6380](6380/previews/pattern_16.png) | ![pattern_17-6380](6380/previews/pattern_17.png) | ![pattern_18-6380](6380/previews/pattern_18.png) | ![bikini-6380](6380/previews/bikini.png) | [<NSFW, click to see>](6380/previews/bondage.png) | ![free-6380](6380/previews/free.png) | ![maid-6380](6380/previews/maid.png) | ![miko-6380](6380/previews/miko.png) | [<NSFW, click to see>](6380/previews/nude.png) | [<NSFW, click to see>](6380/previews/nude2.png) | ![suit-6380](6380/previews/suit.png) | ![yukata-6380](6380/previews/yukata.png) | | 5800 | 0.838 | [Download](5800/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-5800](5800/previews/pattern_1.png) | ![pattern_2-5800](5800/previews/pattern_2.png) | ![pattern_3-5800](5800/previews/pattern_3.png) | ![pattern_4-5800](5800/previews/pattern_4.png) | ![pattern_5-5800](5800/previews/pattern_5.png) | ![pattern_6-5800](5800/previews/pattern_6.png) | ![pattern_7-5800](5800/previews/pattern_7.png) | ![pattern_8-5800](5800/previews/pattern_8.png) | ![pattern_9-5800](5800/previews/pattern_9.png) | ![pattern_10-5800](5800/previews/pattern_10.png) | ![pattern_11-5800](5800/previews/pattern_11.png) | ![pattern_12-5800](5800/previews/pattern_12.png) | ![pattern_13-5800](5800/previews/pattern_13.png) | ![pattern_14-5800](5800/previews/pattern_14.png) | ![pattern_15-5800](5800/previews/pattern_15.png) | ![pattern_16-5800](5800/previews/pattern_16.png) | ![pattern_17-5800](5800/previews/pattern_17.png) | ![pattern_18-5800](5800/previews/pattern_18.png) | ![bikini-5800](5800/previews/bikini.png) | [<NSFW, click to see>](5800/previews/bondage.png) | ![free-5800](5800/previews/free.png) | ![maid-5800](5800/previews/maid.png) | ![miko-5800](5800/previews/miko.png) | [<NSFW, click to see>](5800/previews/nude.png) | [<NSFW, click to see>](5800/previews/nude2.png) | ![suit-5800](5800/previews/suit.png) | ![yukata-5800](5800/previews/yukata.png) | | 5220 | 0.720 | [Download](5220/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-5220](5220/previews/pattern_1.png) | ![pattern_2-5220](5220/previews/pattern_2.png) | ![pattern_3-5220](5220/previews/pattern_3.png) | ![pattern_4-5220](5220/previews/pattern_4.png) | ![pattern_5-5220](5220/previews/pattern_5.png) | ![pattern_6-5220](5220/previews/pattern_6.png) | ![pattern_7-5220](5220/previews/pattern_7.png) | ![pattern_8-5220](5220/previews/pattern_8.png) | ![pattern_9-5220](5220/previews/pattern_9.png) | ![pattern_10-5220](5220/previews/pattern_10.png) | ![pattern_11-5220](5220/previews/pattern_11.png) | ![pattern_12-5220](5220/previews/pattern_12.png) | ![pattern_13-5220](5220/previews/pattern_13.png) | ![pattern_14-5220](5220/previews/pattern_14.png) | ![pattern_15-5220](5220/previews/pattern_15.png) | ![pattern_16-5220](5220/previews/pattern_16.png) | ![pattern_17-5220](5220/previews/pattern_17.png) | ![pattern_18-5220](5220/previews/pattern_18.png) | ![bikini-5220](5220/previews/bikini.png) | [<NSFW, click to see>](5220/previews/bondage.png) | ![free-5220](5220/previews/free.png) | ![maid-5220](5220/previews/maid.png) | ![miko-5220](5220/previews/miko.png) | [<NSFW, click to see>](5220/previews/nude.png) | [<NSFW, click to see>](5220/previews/nude2.png) | ![suit-5220](5220/previews/suit.png) | ![yukata-5220](5220/previews/yukata.png) | | 4640 | 0.811 | [Download](4640/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-4640](4640/previews/pattern_1.png) | ![pattern_2-4640](4640/previews/pattern_2.png) | ![pattern_3-4640](4640/previews/pattern_3.png) | ![pattern_4-4640](4640/previews/pattern_4.png) | ![pattern_5-4640](4640/previews/pattern_5.png) | ![pattern_6-4640](4640/previews/pattern_6.png) | ![pattern_7-4640](4640/previews/pattern_7.png) | ![pattern_8-4640](4640/previews/pattern_8.png) | ![pattern_9-4640](4640/previews/pattern_9.png) | ![pattern_10-4640](4640/previews/pattern_10.png) | ![pattern_11-4640](4640/previews/pattern_11.png) | ![pattern_12-4640](4640/previews/pattern_12.png) | ![pattern_13-4640](4640/previews/pattern_13.png) | ![pattern_14-4640](4640/previews/pattern_14.png) | ![pattern_15-4640](4640/previews/pattern_15.png) | ![pattern_16-4640](4640/previews/pattern_16.png) | ![pattern_17-4640](4640/previews/pattern_17.png) | ![pattern_18-4640](4640/previews/pattern_18.png) | ![bikini-4640](4640/previews/bikini.png) | [<NSFW, click to see>](4640/previews/bondage.png) | ![free-4640](4640/previews/free.png) | ![maid-4640](4640/previews/maid.png) | ![miko-4640](4640/previews/miko.png) | [<NSFW, click to see>](4640/previews/nude.png) | [<NSFW, click to see>](4640/previews/nude2.png) | ![suit-4640](4640/previews/suit.png) | ![yukata-4640](4640/previews/yukata.png) | | 4060 | 0.696 | [Download](4060/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-4060](4060/previews/pattern_1.png) | ![pattern_2-4060](4060/previews/pattern_2.png) | ![pattern_3-4060](4060/previews/pattern_3.png) | ![pattern_4-4060](4060/previews/pattern_4.png) | ![pattern_5-4060](4060/previews/pattern_5.png) | ![pattern_6-4060](4060/previews/pattern_6.png) | ![pattern_7-4060](4060/previews/pattern_7.png) | ![pattern_8-4060](4060/previews/pattern_8.png) | ![pattern_9-4060](4060/previews/pattern_9.png) | ![pattern_10-4060](4060/previews/pattern_10.png) | ![pattern_11-4060](4060/previews/pattern_11.png) | ![pattern_12-4060](4060/previews/pattern_12.png) | ![pattern_13-4060](4060/previews/pattern_13.png) | ![pattern_14-4060](4060/previews/pattern_14.png) | ![pattern_15-4060](4060/previews/pattern_15.png) | ![pattern_16-4060](4060/previews/pattern_16.png) | ![pattern_17-4060](4060/previews/pattern_17.png) | ![pattern_18-4060](4060/previews/pattern_18.png) | ![bikini-4060](4060/previews/bikini.png) | [<NSFW, click to see>](4060/previews/bondage.png) | ![free-4060](4060/previews/free.png) | ![maid-4060](4060/previews/maid.png) | ![miko-4060](4060/previews/miko.png) | [<NSFW, click to see>](4060/previews/nude.png) | [<NSFW, click to see>](4060/previews/nude2.png) | ![suit-4060](4060/previews/suit.png) | ![yukata-4060](4060/previews/yukata.png) | | 3480 | 0.703 | [Download](3480/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-3480](3480/previews/pattern_1.png) | ![pattern_2-3480](3480/previews/pattern_2.png) | ![pattern_3-3480](3480/previews/pattern_3.png) | ![pattern_4-3480](3480/previews/pattern_4.png) | ![pattern_5-3480](3480/previews/pattern_5.png) | ![pattern_6-3480](3480/previews/pattern_6.png) | ![pattern_7-3480](3480/previews/pattern_7.png) | ![pattern_8-3480](3480/previews/pattern_8.png) | ![pattern_9-3480](3480/previews/pattern_9.png) | ![pattern_10-3480](3480/previews/pattern_10.png) | ![pattern_11-3480](3480/previews/pattern_11.png) | ![pattern_12-3480](3480/previews/pattern_12.png) | ![pattern_13-3480](3480/previews/pattern_13.png) | ![pattern_14-3480](3480/previews/pattern_14.png) | ![pattern_15-3480](3480/previews/pattern_15.png) | ![pattern_16-3480](3480/previews/pattern_16.png) | ![pattern_17-3480](3480/previews/pattern_17.png) | ![pattern_18-3480](3480/previews/pattern_18.png) | ![bikini-3480](3480/previews/bikini.png) | [<NSFW, click to see>](3480/previews/bondage.png) | ![free-3480](3480/previews/free.png) | ![maid-3480](3480/previews/maid.png) | ![miko-3480](3480/previews/miko.png) | [<NSFW, click to see>](3480/previews/nude.png) | [<NSFW, click to see>](3480/previews/nude2.png) | ![suit-3480](3480/previews/suit.png) | ![yukata-3480](3480/previews/yukata.png) | | 2900 | 0.612 | [Download](2900/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-2900](2900/previews/pattern_1.png) | ![pattern_2-2900](2900/previews/pattern_2.png) | ![pattern_3-2900](2900/previews/pattern_3.png) | ![pattern_4-2900](2900/previews/pattern_4.png) | ![pattern_5-2900](2900/previews/pattern_5.png) | ![pattern_6-2900](2900/previews/pattern_6.png) | ![pattern_7-2900](2900/previews/pattern_7.png) | ![pattern_8-2900](2900/previews/pattern_8.png) | ![pattern_9-2900](2900/previews/pattern_9.png) | ![pattern_10-2900](2900/previews/pattern_10.png) | ![pattern_11-2900](2900/previews/pattern_11.png) | ![pattern_12-2900](2900/previews/pattern_12.png) | ![pattern_13-2900](2900/previews/pattern_13.png) | ![pattern_14-2900](2900/previews/pattern_14.png) | ![pattern_15-2900](2900/previews/pattern_15.png) | ![pattern_16-2900](2900/previews/pattern_16.png) | ![pattern_17-2900](2900/previews/pattern_17.png) | ![pattern_18-2900](2900/previews/pattern_18.png) | ![bikini-2900](2900/previews/bikini.png) | [<NSFW, click to see>](2900/previews/bondage.png) | ![free-2900](2900/previews/free.png) | ![maid-2900](2900/previews/maid.png) | ![miko-2900](2900/previews/miko.png) | [<NSFW, click to see>](2900/previews/nude.png) | [<NSFW, click to see>](2900/previews/nude2.png) | ![suit-2900](2900/previews/suit.png) | ![yukata-2900](2900/previews/yukata.png) | | 2320 | 0.400 | [Download](2320/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-2320](2320/previews/pattern_1.png) | ![pattern_2-2320](2320/previews/pattern_2.png) | ![pattern_3-2320](2320/previews/pattern_3.png) | ![pattern_4-2320](2320/previews/pattern_4.png) | ![pattern_5-2320](2320/previews/pattern_5.png) | ![pattern_6-2320](2320/previews/pattern_6.png) | ![pattern_7-2320](2320/previews/pattern_7.png) | ![pattern_8-2320](2320/previews/pattern_8.png) | ![pattern_9-2320](2320/previews/pattern_9.png) | ![pattern_10-2320](2320/previews/pattern_10.png) | ![pattern_11-2320](2320/previews/pattern_11.png) | ![pattern_12-2320](2320/previews/pattern_12.png) | ![pattern_13-2320](2320/previews/pattern_13.png) | ![pattern_14-2320](2320/previews/pattern_14.png) | ![pattern_15-2320](2320/previews/pattern_15.png) | ![pattern_16-2320](2320/previews/pattern_16.png) | ![pattern_17-2320](2320/previews/pattern_17.png) | ![pattern_18-2320](2320/previews/pattern_18.png) | ![bikini-2320](2320/previews/bikini.png) | [<NSFW, click to see>](2320/previews/bondage.png) | ![free-2320](2320/previews/free.png) | ![maid-2320](2320/previews/maid.png) | ![miko-2320](2320/previews/miko.png) | [<NSFW, click to see>](2320/previews/nude.png) | [<NSFW, click to see>](2320/previews/nude2.png) | ![suit-2320](2320/previews/suit.png) | ![yukata-2320](2320/previews/yukata.png) | | 1740 | 0.439 | [Download](1740/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-1740](1740/previews/pattern_1.png) | ![pattern_2-1740](1740/previews/pattern_2.png) | ![pattern_3-1740](1740/previews/pattern_3.png) | ![pattern_4-1740](1740/previews/pattern_4.png) | ![pattern_5-1740](1740/previews/pattern_5.png) | ![pattern_6-1740](1740/previews/pattern_6.png) | ![pattern_7-1740](1740/previews/pattern_7.png) | ![pattern_8-1740](1740/previews/pattern_8.png) | ![pattern_9-1740](1740/previews/pattern_9.png) | ![pattern_10-1740](1740/previews/pattern_10.png) | ![pattern_11-1740](1740/previews/pattern_11.png) | ![pattern_12-1740](1740/previews/pattern_12.png) | ![pattern_13-1740](1740/previews/pattern_13.png) | ![pattern_14-1740](1740/previews/pattern_14.png) | ![pattern_15-1740](1740/previews/pattern_15.png) | ![pattern_16-1740](1740/previews/pattern_16.png) | ![pattern_17-1740](1740/previews/pattern_17.png) | ![pattern_18-1740](1740/previews/pattern_18.png) | ![bikini-1740](1740/previews/bikini.png) | [<NSFW, click to see>](1740/previews/bondage.png) | ![free-1740](1740/previews/free.png) | ![maid-1740](1740/previews/maid.png) | ![miko-1740](1740/previews/miko.png) | [<NSFW, click to see>](1740/previews/nude.png) | [<NSFW, click to see>](1740/previews/nude2.png) | ![suit-1740](1740/previews/suit.png) | ![yukata-1740](1740/previews/yukata.png) | | 1160 | 0.190 | [Download](1160/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-1160](1160/previews/pattern_1.png) | ![pattern_2-1160](1160/previews/pattern_2.png) | ![pattern_3-1160](1160/previews/pattern_3.png) | ![pattern_4-1160](1160/previews/pattern_4.png) | ![pattern_5-1160](1160/previews/pattern_5.png) | ![pattern_6-1160](1160/previews/pattern_6.png) | ![pattern_7-1160](1160/previews/pattern_7.png) | ![pattern_8-1160](1160/previews/pattern_8.png) | ![pattern_9-1160](1160/previews/pattern_9.png) | ![pattern_10-1160](1160/previews/pattern_10.png) | ![pattern_11-1160](1160/previews/pattern_11.png) | ![pattern_12-1160](1160/previews/pattern_12.png) | ![pattern_13-1160](1160/previews/pattern_13.png) | ![pattern_14-1160](1160/previews/pattern_14.png) | ![pattern_15-1160](1160/previews/pattern_15.png) | ![pattern_16-1160](1160/previews/pattern_16.png) | ![pattern_17-1160](1160/previews/pattern_17.png) | ![pattern_18-1160](1160/previews/pattern_18.png) | ![bikini-1160](1160/previews/bikini.png) | [<NSFW, click to see>](1160/previews/bondage.png) | ![free-1160](1160/previews/free.png) | ![maid-1160](1160/previews/maid.png) | ![miko-1160](1160/previews/miko.png) | [<NSFW, click to see>](1160/previews/nude.png) | [<NSFW, click to see>](1160/previews/nude2.png) | ![suit-1160](1160/previews/suit.png) | ![yukata-1160](1160/previews/yukata.png) | | 580 | 0.091 | [Download](580/tsukuyomi_komoe_toarumajutsunoindex.zip) | ![pattern_1-580](580/previews/pattern_1.png) | ![pattern_2-580](580/previews/pattern_2.png) | ![pattern_3-580](580/previews/pattern_3.png) | ![pattern_4-580](580/previews/pattern_4.png) | ![pattern_5-580](580/previews/pattern_5.png) | ![pattern_6-580](580/previews/pattern_6.png) | ![pattern_7-580](580/previews/pattern_7.png) | ![pattern_8-580](580/previews/pattern_8.png) | ![pattern_9-580](580/previews/pattern_9.png) | ![pattern_10-580](580/previews/pattern_10.png) | ![pattern_11-580](580/previews/pattern_11.png) | ![pattern_12-580](580/previews/pattern_12.png) | ![pattern_13-580](580/previews/pattern_13.png) | ![pattern_14-580](580/previews/pattern_14.png) | ![pattern_15-580](580/previews/pattern_15.png) | ![pattern_16-580](580/previews/pattern_16.png) | ![pattern_17-580](580/previews/pattern_17.png) | ![pattern_18-580](580/previews/pattern_18.png) | ![bikini-580](580/previews/bikini.png) | [<NSFW, click to see>](580/previews/bondage.png) | ![free-580](580/previews/free.png) | ![maid-580](580/previews/maid.png) | ![miko-580](580/previews/miko.png) | [<NSFW, click to see>](580/previews/nude.png) | [<NSFW, click to see>](580/previews/nude2.png) | ![suit-580](580/previews/suit.png) | ![yukata-580](580/previews/yukata.png) |
LarryAIDraw/Horikita
LarryAIDraw
2023-09-16T14:05:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-16T13:53:44Z
--- license: creativeml-openrail-m --- https://civitai.com/models/143817/suzune-horikita-or-you-zitsu
LarryAIDraw/Iinomiko-v2-000010
LarryAIDraw
2023-09-16T14:00:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-16T13:57:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/146080/iino-miko-kaguya-sama-wa-kokurasetailove-is-war
venkataravuri/my_awesome_swag_model
venkataravuri
2023-09-16T13:48:26Z
103
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "endpoints_compatible", "region:us" ]
multiple-choice
2023-06-16T04:18:49Z
--- tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: my_awesome_swag_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_swag_model This model was trained from scratch on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.1711 - Accuracy: 0.746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8738 | 1.0 | 625 | 0.6888 | 0.728 | | 0.431 | 2.0 | 1250 | 0.7642 | 0.736 | | 0.1891 | 3.0 | 1875 | 1.1711 | 0.746 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
espiusedwards/flant5-large-lora
espiusedwards
2023-09-16T13:46:52Z
23
0
peft
[ "peft", "region:us" ]
null
2023-09-01T11:45:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
loduis/test-distilroberta-base-mrpc-glue
loduis
2023-09-16T13:46:40Z
114
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T12:16:45Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-distilroberta-base-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8259803921568627 - name: F1 type: f1 value: 0.8794567062818336 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-distilroberta-base-mrpc-glue This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6306 - Accuracy: 0.8260 - F1: 0.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5489 | 1.09 | 500 | 0.5670 | 0.8064 | 0.8699 | | 0.393 | 2.18 | 1000 | 0.6306 | 0.8260 | 0.8795 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
fetiska/pyramid_raider
fetiska
2023-09-16T13:44:24Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-16T13:44:16Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: fetiska/pyramid_raider 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/ninomiya_asuka_idolmastercinderellagirls
CyberHarem
2023-09-16T13:38:49Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/ninomiya_asuka_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T13:23:12Z
--- license: mit datasets: - CyberHarem/ninomiya_asuka_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of ninomiya_asuka_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4800, you need to download `4800/ninomiya_asuka_idolmastercinderellagirls.pt` as the embedding and `4800/ninomiya_asuka_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4800**, with the score of 0.979. The trigger words are: 1. `ninomiya_asuka_idolmastercinderellagirls` 2. `multicolored_hair, two-tone_hair, long_hair, purple_eyes, orange_hair, hair_between_eyes, smile, bangs, brown_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7200 | 0.961 | [Download](7200/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![bikini-7200](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6720 | 0.952 | [Download](6720/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-6720](6720/previews/pattern_1.png) | ![pattern_2-6720](6720/previews/pattern_2.png) | ![pattern_3-6720](6720/previews/pattern_3.png) | ![pattern_4-6720](6720/previews/pattern_4.png) | ![pattern_5-6720](6720/previews/pattern_5.png) | ![pattern_6-6720](6720/previews/pattern_6.png) | ![pattern_7-6720](6720/previews/pattern_7.png) | ![pattern_8-6720](6720/previews/pattern_8.png) | ![pattern_9-6720](6720/previews/pattern_9.png) | ![pattern_10-6720](6720/previews/pattern_10.png) | ![bikini-6720](6720/previews/bikini.png) | [<NSFW, click to see>](6720/previews/bondage.png) | ![free-6720](6720/previews/free.png) | ![maid-6720](6720/previews/maid.png) | ![miko-6720](6720/previews/miko.png) | [<NSFW, click to see>](6720/previews/nude.png) | [<NSFW, click to see>](6720/previews/nude2.png) | ![suit-6720](6720/previews/suit.png) | ![yukata-6720](6720/previews/yukata.png) | | 6240 | 0.971 | [Download](6240/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![bikini-6240](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5760 | 0.963 | [Download](5760/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-5760](5760/previews/pattern_1.png) | ![pattern_2-5760](5760/previews/pattern_2.png) | ![pattern_3-5760](5760/previews/pattern_3.png) | ![pattern_4-5760](5760/previews/pattern_4.png) | ![pattern_5-5760](5760/previews/pattern_5.png) | ![pattern_6-5760](5760/previews/pattern_6.png) | ![pattern_7-5760](5760/previews/pattern_7.png) | ![pattern_8-5760](5760/previews/pattern_8.png) | ![pattern_9-5760](5760/previews/pattern_9.png) | ![pattern_10-5760](5760/previews/pattern_10.png) | ![bikini-5760](5760/previews/bikini.png) | [<NSFW, click to see>](5760/previews/bondage.png) | ![free-5760](5760/previews/free.png) | ![maid-5760](5760/previews/maid.png) | ![miko-5760](5760/previews/miko.png) | [<NSFW, click to see>](5760/previews/nude.png) | [<NSFW, click to see>](5760/previews/nude2.png) | ![suit-5760](5760/previews/suit.png) | ![yukata-5760](5760/previews/yukata.png) | | 5280 | 0.956 | [Download](5280/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-5280](5280/previews/pattern_1.png) | ![pattern_2-5280](5280/previews/pattern_2.png) | ![pattern_3-5280](5280/previews/pattern_3.png) | ![pattern_4-5280](5280/previews/pattern_4.png) | ![pattern_5-5280](5280/previews/pattern_5.png) | ![pattern_6-5280](5280/previews/pattern_6.png) | ![pattern_7-5280](5280/previews/pattern_7.png) | ![pattern_8-5280](5280/previews/pattern_8.png) | ![pattern_9-5280](5280/previews/pattern_9.png) | ![pattern_10-5280](5280/previews/pattern_10.png) | ![bikini-5280](5280/previews/bikini.png) | [<NSFW, click to see>](5280/previews/bondage.png) | ![free-5280](5280/previews/free.png) | ![maid-5280](5280/previews/maid.png) | ![miko-5280](5280/previews/miko.png) | [<NSFW, click to see>](5280/previews/nude.png) | [<NSFW, click to see>](5280/previews/nude2.png) | ![suit-5280](5280/previews/suit.png) | ![yukata-5280](5280/previews/yukata.png) | | **4800** | **0.979** | [**Download**](4800/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4320 | 0.979 | [Download](4320/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![bikini-4320](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3840 | 0.952 | [Download](3840/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-3840](3840/previews/pattern_1.png) | ![pattern_2-3840](3840/previews/pattern_2.png) | ![pattern_3-3840](3840/previews/pattern_3.png) | ![pattern_4-3840](3840/previews/pattern_4.png) | ![pattern_5-3840](3840/previews/pattern_5.png) | ![pattern_6-3840](3840/previews/pattern_6.png) | ![pattern_7-3840](3840/previews/pattern_7.png) | ![pattern_8-3840](3840/previews/pattern_8.png) | ![pattern_9-3840](3840/previews/pattern_9.png) | ![pattern_10-3840](3840/previews/pattern_10.png) | ![bikini-3840](3840/previews/bikini.png) | [<NSFW, click to see>](3840/previews/bondage.png) | ![free-3840](3840/previews/free.png) | ![maid-3840](3840/previews/maid.png) | ![miko-3840](3840/previews/miko.png) | [<NSFW, click to see>](3840/previews/nude.png) | [<NSFW, click to see>](3840/previews/nude2.png) | ![suit-3840](3840/previews/suit.png) | ![yukata-3840](3840/previews/yukata.png) | | 3360 | 0.969 | [Download](3360/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-3360](3360/previews/pattern_1.png) | ![pattern_2-3360](3360/previews/pattern_2.png) | ![pattern_3-3360](3360/previews/pattern_3.png) | ![pattern_4-3360](3360/previews/pattern_4.png) | ![pattern_5-3360](3360/previews/pattern_5.png) | ![pattern_6-3360](3360/previews/pattern_6.png) | ![pattern_7-3360](3360/previews/pattern_7.png) | ![pattern_8-3360](3360/previews/pattern_8.png) | ![pattern_9-3360](3360/previews/pattern_9.png) | ![pattern_10-3360](3360/previews/pattern_10.png) | ![bikini-3360](3360/previews/bikini.png) | [<NSFW, click to see>](3360/previews/bondage.png) | ![free-3360](3360/previews/free.png) | ![maid-3360](3360/previews/maid.png) | ![miko-3360](3360/previews/miko.png) | [<NSFW, click to see>](3360/previews/nude.png) | [<NSFW, click to see>](3360/previews/nude2.png) | ![suit-3360](3360/previews/suit.png) | ![yukata-3360](3360/previews/yukata.png) | | 2880 | 0.926 | [Download](2880/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-2880](2880/previews/pattern_1.png) | ![pattern_2-2880](2880/previews/pattern_2.png) | ![pattern_3-2880](2880/previews/pattern_3.png) | ![pattern_4-2880](2880/previews/pattern_4.png) | ![pattern_5-2880](2880/previews/pattern_5.png) | ![pattern_6-2880](2880/previews/pattern_6.png) | ![pattern_7-2880](2880/previews/pattern_7.png) | ![pattern_8-2880](2880/previews/pattern_8.png) | ![pattern_9-2880](2880/previews/pattern_9.png) | ![pattern_10-2880](2880/previews/pattern_10.png) | ![bikini-2880](2880/previews/bikini.png) | [<NSFW, click to see>](2880/previews/bondage.png) | ![free-2880](2880/previews/free.png) | ![maid-2880](2880/previews/maid.png) | ![miko-2880](2880/previews/miko.png) | [<NSFW, click to see>](2880/previews/nude.png) | [<NSFW, click to see>](2880/previews/nude2.png) | ![suit-2880](2880/previews/suit.png) | ![yukata-2880](2880/previews/yukata.png) | | 2400 | 0.941 | [Download](2400/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1920 | 0.980 | [Download](1920/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-1920](1920/previews/pattern_1.png) | ![pattern_2-1920](1920/previews/pattern_2.png) | ![pattern_3-1920](1920/previews/pattern_3.png) | ![pattern_4-1920](1920/previews/pattern_4.png) | ![pattern_5-1920](1920/previews/pattern_5.png) | ![pattern_6-1920](1920/previews/pattern_6.png) | ![pattern_7-1920](1920/previews/pattern_7.png) | ![pattern_8-1920](1920/previews/pattern_8.png) | ![pattern_9-1920](1920/previews/pattern_9.png) | ![pattern_10-1920](1920/previews/pattern_10.png) | ![bikini-1920](1920/previews/bikini.png) | [<NSFW, click to see>](1920/previews/bondage.png) | ![free-1920](1920/previews/free.png) | ![maid-1920](1920/previews/maid.png) | ![miko-1920](1920/previews/miko.png) | [<NSFW, click to see>](1920/previews/nude.png) | [<NSFW, click to see>](1920/previews/nude2.png) | ![suit-1920](1920/previews/suit.png) | ![yukata-1920](1920/previews/yukata.png) | | 1440 | 0.911 | [Download](1440/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-1440](1440/previews/pattern_1.png) | ![pattern_2-1440](1440/previews/pattern_2.png) | ![pattern_3-1440](1440/previews/pattern_3.png) | ![pattern_4-1440](1440/previews/pattern_4.png) | ![pattern_5-1440](1440/previews/pattern_5.png) | ![pattern_6-1440](1440/previews/pattern_6.png) | ![pattern_7-1440](1440/previews/pattern_7.png) | ![pattern_8-1440](1440/previews/pattern_8.png) | ![pattern_9-1440](1440/previews/pattern_9.png) | ![pattern_10-1440](1440/previews/pattern_10.png) | ![bikini-1440](1440/previews/bikini.png) | [<NSFW, click to see>](1440/previews/bondage.png) | ![free-1440](1440/previews/free.png) | ![maid-1440](1440/previews/maid.png) | ![miko-1440](1440/previews/miko.png) | [<NSFW, click to see>](1440/previews/nude.png) | [<NSFW, click to see>](1440/previews/nude2.png) | ![suit-1440](1440/previews/suit.png) | ![yukata-1440](1440/previews/yukata.png) | | 960 | 0.890 | [Download](960/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-960](960/previews/pattern_1.png) | ![pattern_2-960](960/previews/pattern_2.png) | ![pattern_3-960](960/previews/pattern_3.png) | ![pattern_4-960](960/previews/pattern_4.png) | ![pattern_5-960](960/previews/pattern_5.png) | ![pattern_6-960](960/previews/pattern_6.png) | ![pattern_7-960](960/previews/pattern_7.png) | ![pattern_8-960](960/previews/pattern_8.png) | ![pattern_9-960](960/previews/pattern_9.png) | ![pattern_10-960](960/previews/pattern_10.png) | ![bikini-960](960/previews/bikini.png) | [<NSFW, click to see>](960/previews/bondage.png) | ![free-960](960/previews/free.png) | ![maid-960](960/previews/maid.png) | ![miko-960](960/previews/miko.png) | [<NSFW, click to see>](960/previews/nude.png) | [<NSFW, click to see>](960/previews/nude2.png) | ![suit-960](960/previews/suit.png) | ![yukata-960](960/previews/yukata.png) | | 480 | 0.980 | [Download](480/ninomiya_asuka_idolmastercinderellagirls.zip) | ![pattern_1-480](480/previews/pattern_1.png) | ![pattern_2-480](480/previews/pattern_2.png) | ![pattern_3-480](480/previews/pattern_3.png) | ![pattern_4-480](480/previews/pattern_4.png) | ![pattern_5-480](480/previews/pattern_5.png) | ![pattern_6-480](480/previews/pattern_6.png) | ![pattern_7-480](480/previews/pattern_7.png) | ![pattern_8-480](480/previews/pattern_8.png) | ![pattern_9-480](480/previews/pattern_9.png) | ![pattern_10-480](480/previews/pattern_10.png) | ![bikini-480](480/previews/bikini.png) | [<NSFW, click to see>](480/previews/bondage.png) | ![free-480](480/previews/free.png) | ![maid-480](480/previews/maid.png) | ![miko-480](480/previews/miko.png) | [<NSFW, click to see>](480/previews/nude.png) | [<NSFW, click to see>](480/previews/nude2.png) | ![suit-480](480/previews/suit.png) | ![yukata-480](480/previews/yukata.png) |
LarryAIDraw/haruna_ba
LarryAIDraw
2023-09-16T13:30:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-16T13:30:10Z
--- license: creativeml-openrail-m ---
CyberHarem/takitsubo_rikou_toarumajutsunoindex
CyberHarem
2023-09-16T13:08:35Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/takitsubo_rikou_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T23:44:24Z
--- license: mit datasets: - CyberHarem/takitsubo_rikou_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of takitsubo_rikou_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4080, you need to download `4080/takitsubo_rikou_toarumajutsunoindex.pt` as the embedding and `4080/takitsubo_rikou_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4080**, with the score of 0.948. The trigger words are: 1. `takitsubo_rikou_toarumajutsunoindex` 2. `short_hair, black_hair, brown_eyes, brown_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.921 | [Download](5100/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.939 | [Download](4760/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.937 | [Download](4420/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | **4080** | **0.948** | [**Download**](4080/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.945 | [Download](3740/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.799 | [Download](3400/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.924 | [Download](3060/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.941 | [Download](2720/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.914 | [Download](2380/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.939 | [Download](2040/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.856 | [Download](1700/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.838 | [Download](1360/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.810 | [Download](1020/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.757 | [Download](680/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.501 | [Download](340/takitsubo_rikou_toarumajutsunoindex.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
jeffsabarman/image_classification
jeffsabarman
2023-09-16T13:01:32Z
217
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-16T13:00:54Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.60625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1918 - Accuracy: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.6651 | 0.3187 | | No log | 2.0 | 40 | 1.3900 | 0.475 | | No log | 3.0 | 60 | 1.2950 | 0.4875 | | No log | 4.0 | 80 | 1.2170 | 0.5813 | | No log | 5.0 | 100 | 1.1709 | 0.5687 | | No log | 6.0 | 120 | 1.2711 | 0.525 | | No log | 7.0 | 140 | 1.1324 | 0.575 | | No log | 8.0 | 160 | 1.2349 | 0.5437 | | No log | 9.0 | 180 | 1.3844 | 0.5312 | | No log | 10.0 | 200 | 1.2460 | 0.55 | | No log | 11.0 | 220 | 1.2182 | 0.6125 | | No log | 12.0 | 240 | 1.3365 | 0.5563 | | No log | 13.0 | 260 | 1.2137 | 0.6125 | | No log | 14.0 | 280 | 1.3335 | 0.575 | | No log | 15.0 | 300 | 1.1078 | 0.625 | | No log | 16.0 | 320 | 1.2962 | 0.6 | | No log | 17.0 | 340 | 1.2558 | 0.6125 | | No log | 18.0 | 360 | 1.3949 | 0.55 | | No log | 19.0 | 380 | 1.3807 | 0.5687 | | No log | 20.0 | 400 | 1.2734 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bongo2112/sdxl-db-mbosso-headshot
bongo2112
2023-09-16T12:58:56Z
3
3
diffusers
[ "diffusers", "tensorboard", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-16T12:56:52Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of mshededembosso man tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
upro/blip
upro
2023-09-16T12:37:39Z
101
2
transformers
[ "transformers", "pytorch", "tf", "blip", "image-text-to-text", "image-captioning", "image-to-text", "arxiv:2201.12086", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
image-to-text
2023-09-16T12:37:39Z
--- pipeline_tag: image-to-text tags: - image-captioning languages: - en license: bsd-3-clause --- # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation Model card for image captioning pretrained on COCO dataset - base architecture (with ViT large backbone). | ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) | |:--:| | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>| ## TL;DR Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract: *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.* ## Usage You can use this model for conditional and un-conditional image captioning ### Using the Pytorch model #### Running the model on CPU <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> #### Running the model on GPU ##### In full precision <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ##### In half precision (`float16`) <details> <summary> Click to expand </summary> ```python import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # >>> a photography of a woman and her dog # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> a woman sitting on the beach with her dog ``` </details> ## BibTex and citation info ``` @misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
huba-buba/speecht5_tts_voxpopuli_nl
huba-buba
2023-09-16T12:36:11Z
79
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "test model", "generated_from_trainer", "nl", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-16T09:06:39Z
--- language: - nl license: mit base_model: microsoft/speecht5_tts tags: - test model - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5151 | 8.58 | 1000 | 0.4713 | | 0.4916 | 17.17 | 2000 | 0.4599 | | 0.4863 | 25.75 | 3000 | 0.4551 | | 0.4896 | 34.33 | 4000 | 0.4546 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/totoki_airi_idolmastercinderellagirls
CyberHarem
2023-09-16T12:33:26Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/totoki_airi_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T12:17:54Z
--- license: mit datasets: - CyberHarem/totoki_airi_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of totoki_airi_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6480, you need to download `6480/totoki_airi_idolmastercinderellagirls.pt` as the embedding and `6480/totoki_airi_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6480**, with the score of 0.864. The trigger words are: 1. `totoki_airi_idolmastercinderellagirls` 2. `brown_hair, brown_eyes, twintails, blush, breasts, large_breasts, smile, open_mouth, bangs, cleavage, jewelry, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8100 | 0.805 | [Download](8100/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-8100](8100/previews/pattern_1.png) | ![pattern_2-8100](8100/previews/pattern_2.png) | ![pattern_3-8100](8100/previews/pattern_3.png) | ![pattern_4-8100](8100/previews/pattern_4.png) | ![pattern_5-8100](8100/previews/pattern_5.png) | ![pattern_6-8100](8100/previews/pattern_6.png) | ![bikini-8100](8100/previews/bikini.png) | [<NSFW, click to see>](8100/previews/bondage.png) | ![free-8100](8100/previews/free.png) | ![maid-8100](8100/previews/maid.png) | ![miko-8100](8100/previews/miko.png) | [<NSFW, click to see>](8100/previews/nude.png) | [<NSFW, click to see>](8100/previews/nude2.png) | ![suit-8100](8100/previews/suit.png) | ![yukata-8100](8100/previews/yukata.png) | | 7560 | 0.815 | [Download](7560/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-7560](7560/previews/pattern_1.png) | ![pattern_2-7560](7560/previews/pattern_2.png) | ![pattern_3-7560](7560/previews/pattern_3.png) | ![pattern_4-7560](7560/previews/pattern_4.png) | ![pattern_5-7560](7560/previews/pattern_5.png) | ![pattern_6-7560](7560/previews/pattern_6.png) | ![bikini-7560](7560/previews/bikini.png) | [<NSFW, click to see>](7560/previews/bondage.png) | ![free-7560](7560/previews/free.png) | ![maid-7560](7560/previews/maid.png) | ![miko-7560](7560/previews/miko.png) | [<NSFW, click to see>](7560/previews/nude.png) | [<NSFW, click to see>](7560/previews/nude2.png) | ![suit-7560](7560/previews/suit.png) | ![yukata-7560](7560/previews/yukata.png) | | 7020 | 0.812 | [Download](7020/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | ![pattern_2-7020](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | ![bikini-7020](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | ![free-7020](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | **6480** | **0.864** | [**Download**](6480/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-6480](6480/previews/pattern_1.png) | ![pattern_2-6480](6480/previews/pattern_2.png) | ![pattern_3-6480](6480/previews/pattern_3.png) | ![pattern_4-6480](6480/previews/pattern_4.png) | ![pattern_5-6480](6480/previews/pattern_5.png) | ![pattern_6-6480](6480/previews/pattern_6.png) | ![bikini-6480](6480/previews/bikini.png) | [<NSFW, click to see>](6480/previews/bondage.png) | ![free-6480](6480/previews/free.png) | ![maid-6480](6480/previews/maid.png) | ![miko-6480](6480/previews/miko.png) | [<NSFW, click to see>](6480/previews/nude.png) | [<NSFW, click to see>](6480/previews/nude2.png) | ![suit-6480](6480/previews/suit.png) | ![yukata-6480](6480/previews/yukata.png) | | 5940 | 0.785 | [Download](5940/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | ![bikini-5940](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | ![free-5940](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5400 | 0.822 | [Download](5400/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![bikini-5400](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4860 | 0.840 | [Download](4860/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-4860](4860/previews/pattern_1.png) | ![pattern_2-4860](4860/previews/pattern_2.png) | ![pattern_3-4860](4860/previews/pattern_3.png) | ![pattern_4-4860](4860/previews/pattern_4.png) | ![pattern_5-4860](4860/previews/pattern_5.png) | ![pattern_6-4860](4860/previews/pattern_6.png) | ![bikini-4860](4860/previews/bikini.png) | [<NSFW, click to see>](4860/previews/bondage.png) | ![free-4860](4860/previews/free.png) | ![maid-4860](4860/previews/maid.png) | ![miko-4860](4860/previews/miko.png) | [<NSFW, click to see>](4860/previews/nude.png) | [<NSFW, click to see>](4860/previews/nude2.png) | ![suit-4860](4860/previews/suit.png) | ![yukata-4860](4860/previews/yukata.png) | | 4320 | 0.813 | [Download](4320/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![bikini-4320](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3780 | 0.749 | [Download](3780/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-3780](3780/previews/pattern_1.png) | ![pattern_2-3780](3780/previews/pattern_2.png) | ![pattern_3-3780](3780/previews/pattern_3.png) | ![pattern_4-3780](3780/previews/pattern_4.png) | ![pattern_5-3780](3780/previews/pattern_5.png) | ![pattern_6-3780](3780/previews/pattern_6.png) | ![bikini-3780](3780/previews/bikini.png) | [<NSFW, click to see>](3780/previews/bondage.png) | ![free-3780](3780/previews/free.png) | ![maid-3780](3780/previews/maid.png) | ![miko-3780](3780/previews/miko.png) | [<NSFW, click to see>](3780/previews/nude.png) | [<NSFW, click to see>](3780/previews/nude2.png) | ![suit-3780](3780/previews/suit.png) | ![yukata-3780](3780/previews/yukata.png) | | 3240 | 0.657 | [Download](3240/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-3240](3240/previews/pattern_1.png) | ![pattern_2-3240](3240/previews/pattern_2.png) | ![pattern_3-3240](3240/previews/pattern_3.png) | ![pattern_4-3240](3240/previews/pattern_4.png) | ![pattern_5-3240](3240/previews/pattern_5.png) | ![pattern_6-3240](3240/previews/pattern_6.png) | ![bikini-3240](3240/previews/bikini.png) | [<NSFW, click to see>](3240/previews/bondage.png) | ![free-3240](3240/previews/free.png) | ![maid-3240](3240/previews/maid.png) | ![miko-3240](3240/previews/miko.png) | [<NSFW, click to see>](3240/previews/nude.png) | [<NSFW, click to see>](3240/previews/nude2.png) | ![suit-3240](3240/previews/suit.png) | ![yukata-3240](3240/previews/yukata.png) | | 2700 | 0.662 | [Download](2700/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-2700](2700/previews/pattern_1.png) | ![pattern_2-2700](2700/previews/pattern_2.png) | ![pattern_3-2700](2700/previews/pattern_3.png) | ![pattern_4-2700](2700/previews/pattern_4.png) | ![pattern_5-2700](2700/previews/pattern_5.png) | ![pattern_6-2700](2700/previews/pattern_6.png) | ![bikini-2700](2700/previews/bikini.png) | [<NSFW, click to see>](2700/previews/bondage.png) | ![free-2700](2700/previews/free.png) | ![maid-2700](2700/previews/maid.png) | ![miko-2700](2700/previews/miko.png) | [<NSFW, click to see>](2700/previews/nude.png) | [<NSFW, click to see>](2700/previews/nude2.png) | ![suit-2700](2700/previews/suit.png) | ![yukata-2700](2700/previews/yukata.png) | | 2160 | 0.689 | [Download](2160/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-2160](2160/previews/pattern_1.png) | ![pattern_2-2160](2160/previews/pattern_2.png) | ![pattern_3-2160](2160/previews/pattern_3.png) | ![pattern_4-2160](2160/previews/pattern_4.png) | ![pattern_5-2160](2160/previews/pattern_5.png) | ![pattern_6-2160](2160/previews/pattern_6.png) | ![bikini-2160](2160/previews/bikini.png) | [<NSFW, click to see>](2160/previews/bondage.png) | ![free-2160](2160/previews/free.png) | ![maid-2160](2160/previews/maid.png) | ![miko-2160](2160/previews/miko.png) | [<NSFW, click to see>](2160/previews/nude.png) | [<NSFW, click to see>](2160/previews/nude2.png) | ![suit-2160](2160/previews/suit.png) | ![yukata-2160](2160/previews/yukata.png) | | 1620 | 0.643 | [Download](1620/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-1620](1620/previews/pattern_1.png) | ![pattern_2-1620](1620/previews/pattern_2.png) | ![pattern_3-1620](1620/previews/pattern_3.png) | ![pattern_4-1620](1620/previews/pattern_4.png) | ![pattern_5-1620](1620/previews/pattern_5.png) | ![pattern_6-1620](1620/previews/pattern_6.png) | ![bikini-1620](1620/previews/bikini.png) | [<NSFW, click to see>](1620/previews/bondage.png) | ![free-1620](1620/previews/free.png) | ![maid-1620](1620/previews/maid.png) | ![miko-1620](1620/previews/miko.png) | [<NSFW, click to see>](1620/previews/nude.png) | [<NSFW, click to see>](1620/previews/nude2.png) | ![suit-1620](1620/previews/suit.png) | ![yukata-1620](1620/previews/yukata.png) | | 1080 | 0.650 | [Download](1080/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-1080](1080/previews/pattern_1.png) | ![pattern_2-1080](1080/previews/pattern_2.png) | ![pattern_3-1080](1080/previews/pattern_3.png) | ![pattern_4-1080](1080/previews/pattern_4.png) | ![pattern_5-1080](1080/previews/pattern_5.png) | ![pattern_6-1080](1080/previews/pattern_6.png) | ![bikini-1080](1080/previews/bikini.png) | [<NSFW, click to see>](1080/previews/bondage.png) | ![free-1080](1080/previews/free.png) | ![maid-1080](1080/previews/maid.png) | ![miko-1080](1080/previews/miko.png) | [<NSFW, click to see>](1080/previews/nude.png) | [<NSFW, click to see>](1080/previews/nude2.png) | ![suit-1080](1080/previews/suit.png) | ![yukata-1080](1080/previews/yukata.png) | | 540 | 0.246 | [Download](540/totoki_airi_idolmastercinderellagirls.zip) | ![pattern_1-540](540/previews/pattern_1.png) | ![pattern_2-540](540/previews/pattern_2.png) | ![pattern_3-540](540/previews/pattern_3.png) | ![pattern_4-540](540/previews/pattern_4.png) | ![pattern_5-540](540/previews/pattern_5.png) | ![pattern_6-540](540/previews/pattern_6.png) | ![bikini-540](540/previews/bikini.png) | [<NSFW, click to see>](540/previews/bondage.png) | ![free-540](540/previews/free.png) | ![maid-540](540/previews/maid.png) | ![miko-540](540/previews/miko.png) | [<NSFW, click to see>](540/previews/nude.png) | [<NSFW, click to see>](540/previews/nude2.png) | ![suit-540](540/previews/suit.png) | ![yukata-540](540/previews/yukata.png) |
AlienKevin/whisper-small-jyutping-without-tones-full
AlienKevin
2023-09-16T12:29:11Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-16T12:27:24Z
--- language: - yue license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Jyutping without Tones Full Version results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Jyutping without Tones Full Version This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0473 - Wer: 4.5089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 2400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0895 | 0.18 | 800 | 0.0864 | 8.1065 | | 0.0622 | 0.35 | 1600 | 0.0576 | 5.4563 | | 0.0555 | 0.53 | 2400 | 0.0473 | 4.5089 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
DomArruda/LunarLanderV2
DomArruda
2023-09-16T12:08:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T12:06:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.13 +/- 20.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yumjunstar/trocr-small-printedkorean-deleteunusedchar_denoise
yumjunstar
2023-09-16T11:52:36Z
2
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-30T17:15:10Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: trocr-small-printedkorean-deleteunusedchar_denoise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trocr-small-printedkorean-deleteunusedchar_denoise This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8528 - Cer: 0.3241 - Wer: 0.3436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 0.9789 | 0.11 | 1000 | 1.5260 | 0.2830 | 0.2979 | | 1.0254 | 0.21 | 2000 | 1.5167 | 0.2827 | 0.2991 | | 1.0925 | 0.32 | 3000 | 1.5093 | 0.2879 | 0.3036 | | 1.0925 | 0.43 | 4000 | 1.4969 | 0.2872 | 0.3037 | | 1.0883 | 0.53 | 5000 | 1.4893 | 0.2848 | 0.2998 | | 1.0411 | 0.64 | 6000 | 1.4839 | 0.2832 | 0.2994 | | 1.1372 | 0.75 | 7000 | 1.4771 | 0.2841 | 0.2993 | | 1.1086 | 0.85 | 8000 | 1.4772 | 0.2838 | 0.3010 | | 1.1658 | 0.96 | 9000 | 1.4725 | 0.2843 | 0.3013 | | 0.9649 | 1.07 | 10000 | 1.5067 | 0.2825 | 0.2978 | | 0.891 | 1.17 | 11000 | 1.5058 | 0.2846 | 0.2993 | | 1.0862 | 1.28 | 12000 | 1.4938 | 0.2873 | 0.3001 | | 1.0845 | 1.39 | 13000 | 1.4923 | 0.2867 | 0.3030 | | 1.0306 | 1.49 | 14000 | 1.4905 | 0.2833 | 0.2976 | | 0.9651 | 1.6 | 15000 | 1.4948 | 0.2835 | 0.2986 | | 1.1189 | 1.71 | 16000 | 1.4811 | 0.2856 | 0.3018 | | 1.0727 | 1.82 | 17000 | 1.4763 | 0.2864 | 0.3010 | | 1.0587 | 1.92 | 18000 | 1.4782 | 0.2830 | 0.2994 | | 0.9599 | 2.03 | 19000 | 1.5071 | 0.2866 | 0.3011 | | 1.0625 | 2.14 | 20000 | 1.5029 | 0.2837 | 0.2991 | | 1.1031 | 2.24 | 21000 | 1.5084 | 0.2880 | 0.3037 | | 0.9586 | 2.35 | 22000 | 1.5068 | 0.2842 | 0.2967 | | 1.0012 | 2.46 | 23000 | 1.4990 | 0.2861 | 0.3017 | | 1.0871 | 2.56 | 24000 | 1.4905 | 0.2848 | 0.2989 | | 0.9501 | 2.67 | 25000 | 1.4848 | 0.2835 | 0.2985 | | 0.9761 | 2.78 | 26000 | 1.4860 | 0.2819 | 0.2983 | | 1.0241 | 2.88 | 27000 | 1.4728 | 0.2813 | 0.2949 | | 1.065 | 2.99 | 28000 | 1.4826 | 0.2829 | 0.2976 | | 1.0412 | 3.1 | 29000 | 1.5160 | 0.2879 | 0.3022 | | 0.9972 | 3.2 | 30000 | 1.5105 | 0.2867 | 0.3009 | | 0.9758 | 3.31 | 31000 | 1.5037 | 0.2827 | 0.2962 | | 0.9521 | 3.42 | 32000 | 1.4986 | 0.2824 | 0.2975 | | 1.0124 | 3.52 | 33000 | 1.4959 | 0.2870 | 0.3022 | | 0.9437 | 3.63 | 34000 | 1.4936 | 0.2837 | 0.2985 | | 0.9977 | 3.74 | 35000 | 1.4901 | 0.2827 | 0.2976 | | 1.045 | 3.84 | 36000 | 1.4896 | 0.2836 | 0.2995 | | 1.0193 | 3.95 | 37000 | 1.4796 | 0.2853 | 0.2968 | | 0.9276 | 4.06 | 38000 | 1.5135 | 0.2836 | 0.2974 | | 0.9583 | 4.16 | 39000 | 1.5174 | 0.2825 | 0.2956 | | 1.0952 | 4.27 | 40000 | 1.5143 | 0.2889 | 0.3026 | | 1.0029 | 4.38 | 41000 | 1.5124 | 0.2835 | 0.2986 | | 1.0129 | 4.48 | 42000 | 1.5062 | 0.2858 | 0.3006 | | 1.012 | 4.59 | 43000 | 1.5096 | 0.2845 | 0.2997 | | 0.9478 | 4.7 | 44000 | 1.5008 | 0.2853 | 0.3002 | | 1.0272 | 4.8 | 45000 | 1.5012 | 0.2825 | 0.2958 | | 1.0532 | 4.91 | 46000 | 1.4957 | 0.2832 | 0.2974 | | 0.921 | 5.02 | 47000 | 1.5206 | 0.2871 | 0.3009 | | 0.9246 | 5.12 | 48000 | 1.5259 | 0.2832 | 0.2983 | | 0.9689 | 5.23 | 49000 | 1.5274 | 0.2842 | 0.2985 | | 1.127 | 5.34 | 50000 | 1.5186 | 0.2874 | 0.2997 | | 0.9616 | 5.45 | 51000 | 1.5200 | 0.2839 | 0.2971 | | 0.9833 | 5.55 | 52000 | 1.5142 | 0.2853 | 0.2980 | | 0.9113 | 5.66 | 53000 | 1.5172 | 0.2828 | 0.2972 | | 0.9753 | 5.77 | 54000 | 1.5032 | 0.2829 | 0.2944 | | 0.9159 | 5.87 | 55000 | 1.4970 | 0.2850 | 0.2987 | | 1.0663 | 5.98 | 56000 | 1.4979 | 0.2850 | 0.2985 | | 0.966 | 6.09 | 57000 | 1.5263 | 0.2862 | 0.2976 | | 0.9234 | 6.19 | 58000 | 1.5342 | 0.2824 | 0.2955 | | 0.9234 | 6.3 | 59000 | 1.5327 | 0.2838 | 0.2968 | | 0.972 | 6.41 | 60000 | 1.5291 | 0.2849 | 0.2983 | | 1.0319 | 6.51 | 61000 | 1.5329 | 0.2836 | 0.2963 | | 0.9746 | 6.62 | 62000 | 1.5222 | 0.2838 | 0.2972 | | 1.0719 | 6.73 | 63000 | 1.5249 | 0.2848 | 0.2967 | | 1.0695 | 6.83 | 64000 | 1.5183 | 0.2882 | 0.3013 | | 1.0271 | 6.94 | 65000 | 1.5119 | 0.2859 | 0.2982 | | 1.0119 | 7.05 | 66000 | 1.5410 | 0.2881 | 0.3014 | | 0.9341 | 7.15 | 67000 | 1.5489 | 0.2871 | 0.2995 | | 0.9544 | 7.26 | 68000 | 1.5443 | 0.2836 | 0.2974 | | 1.0198 | 7.37 | 69000 | 1.5401 | 0.2844 | 0.2983 | | 0.9269 | 7.47 | 70000 | 1.5384 | 0.2823 | 0.2948 | | 0.9767 | 7.58 | 71000 | 1.5375 | 0.2853 | 0.2987 | | 0.9861 | 7.69 | 72000 | 1.5282 | 0.2872 | 0.2991 | | 1.0539 | 7.79 | 73000 | 1.5244 | 0.2854 | 0.2974 | | 0.8879 | 7.9 | 74000 | 1.5305 | 0.2851 | 0.2989 | | 0.8739 | 8.01 | 75000 | 1.5454 | 0.2868 | 0.2998 | | 1.0469 | 8.11 | 76000 | 1.5533 | 0.2908 | 0.3033 | | 0.9449 | 8.22 | 77000 | 1.5586 | 0.2886 | 0.3007 | | 0.987 | 8.33 | 78000 | 1.5478 | 0.2900 | 0.3029 | | 0.9088 | 8.43 | 79000 | 1.5541 | 0.2848 | 0.2976 | | 0.8866 | 8.54 | 80000 | 1.5456 | 0.2868 | 0.2986 | | 1.0161 | 8.65 | 81000 | 1.5494 | 0.2889 | 0.3002 | | 0.982 | 8.76 | 82000 | 1.5388 | 0.2842 | 0.2976 | | 0.956 | 8.86 | 83000 | 1.5377 | 0.2875 | 0.3010 | | 0.9267 | 8.97 | 84000 | 1.5415 | 0.2870 | 0.2982 | | 0.8889 | 9.08 | 85000 | 1.5729 | 0.2855 | 0.2983 | | 0.9518 | 9.18 | 86000 | 1.5719 | 0.2899 | 0.3030 | | 0.9469 | 9.29 | 87000 | 1.5661 | 0.2887 | 0.3020 | | 0.9614 | 9.4 | 88000 | 1.5661 | 0.2938 | 0.3075 | | 0.9073 | 9.5 | 89000 | 1.5620 | 0.2889 | 0.3021 | | 0.9808 | 9.61 | 90000 | 1.5706 | 0.2884 | 0.3006 | | 0.93 | 9.72 | 91000 | 1.5614 | 0.2923 | 0.3056 | | 0.969 | 9.82 | 92000 | 1.5585 | 0.2891 | 0.3022 | | 0.912 | 9.93 | 93000 | 1.5562 | 0.2890 | 0.3002 | | 0.9301 | 10.04 | 94000 | 1.5802 | 0.2910 | 0.3052 | | 0.9265 | 10.14 | 95000 | 1.5834 | 0.2902 | 0.3030 | | 0.874 | 10.25 | 96000 | 1.5792 | 0.2898 | 0.3025 | | 0.877 | 10.36 | 97000 | 1.5813 | 0.2892 | 0.3009 | | 0.9479 | 10.46 | 98000 | 1.5716 | 0.2859 | 0.2991 | | 1.1058 | 10.57 | 99000 | 1.5676 | 0.2964 | 0.3088 | | 0.8595 | 10.68 | 100000 | 1.5734 | 0.2865 | 0.2999 | | 0.924 | 10.78 | 101000 | 1.5721 | 0.2911 | 0.3024 | | 0.9618 | 10.89 | 102000 | 1.5665 | 0.2885 | 0.3017 | | 0.958 | 11.0 | 103000 | 1.5662 | 0.2870 | 0.2998 | | 0.8141 | 11.1 | 104000 | 1.5915 | 0.2927 | 0.3041 | | 0.9141 | 11.21 | 105000 | 1.5912 | 0.2952 | 0.3076 | | 0.8718 | 11.32 | 106000 | 1.5941 | 0.2897 | 0.3034 | | 0.9337 | 11.42 | 107000 | 1.5873 | 0.2927 | 0.3041 | | 0.9101 | 11.53 | 108000 | 1.5901 | 0.2931 | 0.3064 | | 0.9166 | 11.64 | 109000 | 1.5813 | 0.2885 | 0.3021 | | 0.9369 | 11.74 | 110000 | 1.5768 | 0.2924 | 0.3037 | | 1.0187 | 11.85 | 111000 | 1.5823 | 0.2884 | 0.2998 | | 0.8388 | 11.96 | 112000 | 1.5763 | 0.2915 | 0.3041 | | 0.9172 | 12.06 | 113000 | 1.6043 | 0.2923 | 0.3055 | | 0.8312 | 12.17 | 114000 | 1.6103 | 0.2950 | 0.3100 | | 0.8414 | 12.28 | 115000 | 1.6086 | 0.2913 | 0.3030 | | 0.8941 | 12.39 | 116000 | 1.6057 | 0.2960 | 0.3072 | | 0.9055 | 12.49 | 117000 | 1.6044 | 0.2905 | 0.3032 | | 0.9492 | 12.6 | 118000 | 1.6020 | 0.2905 | 0.3030 | | 0.9831 | 12.71 | 119000 | 1.6003 | 0.2906 | 0.3030 | | 0.779 | 12.81 | 120000 | 1.6006 | 0.2892 | 0.3029 | | 0.9086 | 12.92 | 121000 | 1.5959 | 0.2914 | 0.3038 | | 0.866 | 13.03 | 122000 | 1.6154 | 0.2893 | 0.3045 | | 0.7936 | 13.13 | 123000 | 1.6200 | 0.2951 | 0.3088 | | 0.8693 | 13.24 | 124000 | 1.6229 | 0.2934 | 0.3075 | | 0.8463 | 13.35 | 125000 | 1.6211 | 0.2957 | 0.3092 | | 0.8946 | 13.45 | 126000 | 1.6192 | 0.2957 | 0.3095 | | 0.8616 | 13.56 | 127000 | 1.6124 | 0.2928 | 0.3045 | | 0.88 | 13.67 | 128000 | 1.6147 | 0.2940 | 0.3068 | | 0.938 | 13.77 | 129000 | 1.6067 | 0.2904 | 0.3055 | | 0.8949 | 13.88 | 130000 | 1.6065 | 0.2922 | 0.3061 | | 0.8911 | 13.99 | 131000 | 1.5997 | 0.2896 | 0.3034 | | 0.813 | 14.09 | 132000 | 1.6342 | 0.2915 | 0.3042 | | 0.8077 | 14.2 | 133000 | 1.6314 | 0.2926 | 0.3053 | | 0.8068 | 14.31 | 134000 | 1.6316 | 0.2973 | 0.3106 | | 0.828 | 14.41 | 135000 | 1.6379 | 0.2899 | 0.3032 | | 0.9271 | 14.52 | 136000 | 1.6351 | 0.2958 | 0.3095 | | 0.8314 | 14.63 | 137000 | 1.6294 | 0.2984 | 0.3127 | | 0.8468 | 14.73 | 138000 | 1.6318 | 0.2951 | 0.3091 | | 0.8859 | 14.84 | 139000 | 1.6307 | 0.2944 | 0.3068 | | 0.9133 | 14.95 | 140000 | 1.6172 | 0.2945 | 0.3071 | | 0.8673 | 15.05 | 141000 | 1.6481 | 0.3022 | 0.3164 | | 0.7975 | 15.16 | 142000 | 1.6517 | 0.2966 | 0.3091 | | 0.7824 | 15.27 | 143000 | 1.6588 | 0.2982 | 0.3107 | | 0.741 | 15.37 | 144000 | 1.6534 | 0.2936 | 0.3079 | | 0.8285 | 15.48 | 145000 | 1.6464 | 0.2970 | 0.3112 | | 0.8817 | 15.59 | 146000 | 1.6431 | 0.2955 | 0.3096 | | 0.807 | 15.7 | 147000 | 1.6395 | 0.3005 | 0.3141 | | 0.8341 | 15.8 | 148000 | 1.6407 | 0.2956 | 0.3087 | | 0.8734 | 15.91 | 149000 | 1.6349 | 0.3031 | 0.3158 | | 0.7333 | 16.02 | 150000 | 1.6556 | 0.2980 | 0.3123 | | 0.7652 | 16.12 | 151000 | 1.6663 | 0.3046 | 0.3191 | | 0.8292 | 16.23 | 152000 | 1.6680 | 0.3017 | 0.3165 | | 0.9419 | 16.34 | 153000 | 1.6651 | 0.3053 | 0.3195 | | 0.8787 | 16.44 | 154000 | 1.6635 | 0.3008 | 0.3156 | | 0.9263 | 16.55 | 155000 | 1.6578 | 0.2975 | 0.3100 | | 0.8244 | 16.66 | 156000 | 1.6601 | 0.2990 | 0.3135 | | 0.8557 | 16.76 | 157000 | 1.6579 | 0.2949 | 0.3081 | | 0.8749 | 16.87 | 158000 | 1.6500 | 0.2986 | 0.3121 | | 0.7865 | 16.98 | 159000 | 1.6466 | 0.3024 | 0.3166 | | 0.7753 | 17.08 | 160000 | 1.6764 | 0.3046 | 0.3185 | | 0.8026 | 17.19 | 161000 | 1.6789 | 0.2995 | 0.3133 | | 0.8223 | 17.3 | 162000 | 1.6821 | 0.3026 | 0.3177 | | 0.7264 | 17.4 | 163000 | 1.6750 | 0.3035 | 0.3166 | | 0.8394 | 17.51 | 164000 | 1.6716 | 0.3001 | 0.3139 | | 0.7711 | 17.62 | 165000 | 1.6698 | 0.3027 | 0.3162 | | 0.8279 | 17.72 | 166000 | 1.6672 | 0.2968 | 0.3133 | | 0.8186 | 17.83 | 167000 | 1.6714 | 0.2980 | 0.3123 | | 0.819 | 17.94 | 168000 | 1.6609 | 0.2991 | 0.3139 | | 0.7633 | 18.04 | 169000 | 1.6941 | 0.3046 | 0.3181 | | 0.8339 | 18.15 | 170000 | 1.6916 | 0.3154 | 0.3305 | | 0.7452 | 18.26 | 171000 | 1.6963 | 0.3085 | 0.3235 | | 0.8282 | 18.36 | 172000 | 1.7003 | 0.3079 | 0.3220 | | 0.789 | 18.47 | 173000 | 1.6979 | 0.3037 | 0.3187 | | 0.8215 | 18.58 | 174000 | 1.6940 | 0.3154 | 0.3297 | | 0.7891 | 18.68 | 175000 | 1.6897 | 0.3040 | 0.3193 | | 0.8306 | 18.79 | 176000 | 1.6898 | 0.3045 | 0.3195 | | 0.8575 | 18.9 | 177000 | 1.6850 | 0.2985 | 0.3142 | | 0.784 | 19.0 | 178000 | 1.7042 | 0.3013 | 0.3170 | | 0.7566 | 19.11 | 179000 | 1.7094 | 0.3057 | 0.3223 | | 0.7863 | 19.22 | 180000 | 1.7119 | 0.3039 | 0.3223 | | 0.8157 | 19.33 | 181000 | 1.7098 | 0.3116 | 0.3266 | | 0.8782 | 19.43 | 182000 | 1.7091 | 0.3061 | 0.3232 | | 0.7863 | 19.54 | 183000 | 1.7071 | 0.3033 | 0.3185 | | 0.8008 | 19.65 | 184000 | 1.7084 | 0.3077 | 0.3254 | | 0.7919 | 19.75 | 185000 | 1.6996 | 0.3028 | 0.3204 | | 0.8435 | 19.86 | 186000 | 1.7012 | 0.3058 | 0.3204 | | 0.87 | 19.97 | 187000 | 1.7021 | 0.3046 | 0.3201 | | 0.6902 | 20.07 | 188000 | 1.7367 | 0.2996 | 0.3160 | | 0.7449 | 20.18 | 189000 | 1.7309 | 0.3119 | 0.3293 | | 0.8253 | 20.29 | 190000 | 1.7297 | 0.3095 | 0.3254 | | 0.7288 | 20.39 | 191000 | 1.7273 | 0.3050 | 0.3220 | | 0.776 | 20.5 | 192000 | 1.7294 | 0.3049 | 0.3228 | | 0.7632 | 20.61 | 193000 | 1.7238 | 0.3179 | 0.3349 | | 0.7496 | 20.71 | 194000 | 1.7257 | 0.3107 | 0.3253 | | 0.8491 | 20.82 | 195000 | 1.7209 | 0.3088 | 0.3253 | | 0.7668 | 20.93 | 196000 | 1.7177 | 0.3080 | 0.3238 | | 0.6755 | 21.03 | 197000 | 1.7415 | 0.3087 | 0.3258 | | 0.6846 | 21.14 | 198000 | 1.7406 | 0.3059 | 0.3218 | | 0.7551 | 21.25 | 199000 | 1.7416 | 0.3167 | 0.3319 | | 0.7083 | 21.35 | 200000 | 1.7429 | 0.3120 | 0.3267 | | 0.7631 | 21.46 | 201000 | 1.7434 | 0.3074 | 0.3240 | | 0.7814 | 21.57 | 202000 | 1.7408 | 0.3069 | 0.3247 | | 0.7646 | 21.67 | 203000 | 1.7395 | 0.3109 | 0.3292 | | 0.7329 | 21.78 | 204000 | 1.7373 | 0.3149 | 0.3331 | | 0.7393 | 21.89 | 205000 | 1.7377 | 0.3077 | 0.3242 | | 0.766 | 21.99 | 206000 | 1.7351 | 0.3097 | 0.3259 | | 0.696 | 22.1 | 207000 | 1.7593 | 0.3116 | 0.3266 | | 0.8049 | 22.21 | 208000 | 1.7660 | 0.3153 | 0.3340 | | 0.8011 | 22.31 | 209000 | 1.7611 | 0.3164 | 0.3331 | | 0.7884 | 22.42 | 210000 | 1.7613 | 0.3127 | 0.3298 | | 0.7607 | 22.53 | 211000 | 1.7633 | 0.3120 | 0.3300 | | 0.7159 | 22.64 | 212000 | 1.7603 | 0.3080 | 0.3258 | | 0.6687 | 22.74 | 213000 | 1.7571 | 0.3120 | 0.3297 | | 0.7331 | 22.85 | 214000 | 1.7529 | 0.3060 | 0.3227 | | 0.8109 | 22.96 | 215000 | 1.7582 | 0.3157 | 0.3331 | | 0.7407 | 23.06 | 216000 | 1.7757 | 0.3191 | 0.3347 | | 0.69 | 23.17 | 217000 | 1.7770 | 0.3162 | 0.3343 | | 0.6752 | 23.28 | 218000 | 1.7762 | 0.3255 | 0.3437 | | 0.7192 | 23.38 | 219000 | 1.7751 | 0.3161 | 0.3337 | | 0.742 | 23.49 | 220000 | 1.7782 | 0.3136 | 0.3319 | | 0.7184 | 23.6 | 221000 | 1.7771 | 0.3225 | 0.3398 | | 0.7296 | 23.7 | 222000 | 1.7796 | 0.3287 | 0.3452 | | 0.7527 | 23.81 | 223000 | 1.7722 | 0.3172 | 0.3335 | | 0.7093 | 23.92 | 224000 | 1.7713 | 0.3128 | 0.3306 | | 0.6691 | 24.02 | 225000 | 1.7913 | 0.3197 | 0.3362 | | 0.6767 | 24.13 | 226000 | 1.7907 | 0.3153 | 0.3339 | | 0.7133 | 24.24 | 227000 | 1.7925 | 0.3252 | 0.3436 | | 0.7094 | 24.34 | 228000 | 1.7910 | 0.3197 | 0.3372 | | 0.7848 | 24.45 | 229000 | 1.7918 | 0.3263 | 0.3437 | | 0.7146 | 24.56 | 230000 | 1.7903 | 0.3202 | 0.3375 | | 0.6932 | 24.66 | 231000 | 1.7895 | 0.3183 | 0.3345 | | 0.6632 | 24.77 | 232000 | 1.7895 | 0.3193 | 0.3355 | | 0.7587 | 24.88 | 233000 | 1.7894 | 0.3215 | 0.3387 | | 0.7197 | 24.98 | 234000 | 1.7863 | 0.3192 | 0.3378 | | 0.7759 | 25.09 | 235000 | 1.8054 | 0.3178 | 0.3371 | | 0.6729 | 25.2 | 236000 | 1.8069 | 0.3165 | 0.3335 | | 0.6144 | 25.3 | 237000 | 1.8059 | 0.3143 | 0.3317 | | 0.6838 | 25.41 | 238000 | 1.8077 | 0.3183 | 0.3362 | | 0.6925 | 25.52 | 239000 | 1.8017 | 0.3271 | 0.3432 | | 0.7301 | 25.62 | 240000 | 1.8035 | 0.3206 | 0.3375 | | 0.7169 | 25.73 | 241000 | 1.8043 | 0.3198 | 0.3370 | | 0.6717 | 25.84 | 242000 | 1.8042 | 0.3215 | 0.3364 | | 0.7113 | 25.94 | 243000 | 1.8048 | 0.3164 | 0.3329 | | 0.6544 | 26.05 | 244000 | 1.8186 | 0.3225 | 0.3375 | | 0.6664 | 26.16 | 245000 | 1.8216 | 0.3237 | 0.3403 | | 0.7131 | 26.27 | 246000 | 1.8234 | 0.3201 | 0.3389 | | 0.6202 | 26.37 | 247000 | 1.8222 | 0.3193 | 0.3355 | | 0.7311 | 26.48 | 248000 | 1.8173 | 0.3221 | 0.3383 | | 0.6377 | 26.59 | 249000 | 1.8200 | 0.3178 | 0.3356 | | 0.6931 | 26.69 | 250000 | 1.8190 | 0.3251 | 0.3409 | | 0.6402 | 26.8 | 251000 | 1.8198 | 0.3209 | 0.3385 | | 0.6492 | 26.91 | 252000 | 1.8188 | 0.3209 | 0.3390 | | 0.6544 | 27.01 | 253000 | 1.8279 | 0.3212 | 0.3380 | | 0.641 | 27.12 | 254000 | 1.8321 | 0.3221 | 0.3405 | | 0.6474 | 27.23 | 255000 | 1.8335 | 0.3230 | 0.3407 | | 0.6556 | 27.33 | 256000 | 1.8346 | 0.3216 | 0.3395 | | 0.6917 | 27.44 | 257000 | 1.8332 | 0.3250 | 0.3422 | | 0.6741 | 27.55 | 258000 | 1.8344 | 0.3228 | 0.3399 | | 0.6758 | 27.65 | 259000 | 1.8338 | 0.3182 | 0.3362 | | 0.6579 | 27.76 | 260000 | 1.8353 | 0.3194 | 0.3383 | | 0.6836 | 27.87 | 261000 | 1.8334 | 0.3235 | 0.3405 | | 0.6936 | 27.97 | 262000 | 1.8335 | 0.3192 | 0.3391 | | 0.6588 | 28.08 | 263000 | 1.8444 | 0.3197 | 0.3386 | | 0.6477 | 28.19 | 264000 | 1.8432 | 0.3189 | 0.3403 | | 0.6531 | 28.29 | 265000 | 1.8460 | 0.3243 | 0.3422 | | 0.6467 | 28.4 | 266000 | 1.8448 | 0.3208 | 0.3390 | | 0.6592 | 28.51 | 267000 | 1.8446 | 0.3234 | 0.3391 | | 0.5774 | 28.61 | 268000 | 1.8462 | 0.3261 | 0.3446 | | 0.6444 | 28.72 | 269000 | 1.8468 | 0.3222 | 0.3401 | | 0.6853 | 28.83 | 270000 | 1.8459 | 0.3224 | 0.3398 | | 0.6406 | 28.93 | 271000 | 1.8448 | 0.3185 | 0.3362 | | 0.705 | 29.04 | 272000 | 1.8535 | 0.3243 | 0.3426 | | 0.6171 | 29.15 | 273000 | 1.8535 | 0.3210 | 0.3398 | | 0.651 | 29.25 | 274000 | 1.8536 | 0.3263 | 0.3459 | | 0.6771 | 29.36 | 275000 | 1.8533 | 0.3238 | 0.3426 | | 0.6554 | 29.47 | 276000 | 1.8536 | 0.3225 | 0.3421 | | 0.6585 | 29.58 | 277000 | 1.8523 | 0.3212 | 0.3410 | | 0.5784 | 29.68 | 278000 | 1.8531 | 0.3187 | 0.3379 | | 0.6542 | 29.79 | 279000 | 1.8530 | 0.3242 | 0.3430 | | 0.6015 | 29.9 | 280000 | 1.8528 | 0.3241 | 0.3436 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu116 - Datasets 2.14.4 - Tokenizers 0.13.3
him009/bloomz_fine_tuned_marketing_email
him009
2023-09-16T11:45:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-16T11:45:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bongo2112/sdxl-db-harmonize-headshot
bongo2112
2023-09-16T11:43:38Z
3
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-16T11:41:34Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of kondeharmo man tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
dariadaria/reviews_classifier
dariadaria
2023-09-16T11:43:10Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T02:59:44Z
SENTIMENT_LABELS = { 'NEGATIVE': 0, 'POSITIVE': 1, 'NEUTRAL': 2, } num_classes = 3 --- language: - en thumbnail: "url to a thumbnail used in social sharing" tags: - sentiment analysis license: commercial use disallowed datasets: - dariadaria/disneyland_reviews metrics: confusion matrix | | pred:0(NEG)| pred:1(POS)| pred:2(NEU)| | ------------ | --------- | ----------- | ----------- | | true:0(NEG) | 793| 188| 171| | true:1(POS) | 227 | 920| 260| | true:2(NEU) | 115 | 203| 5087| ---
CyberHarem/fukiyose_seiri_toarumajutsunoindex
CyberHarem
2023-09-16T11:40:55Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/fukiyose_seiri_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T22:22:23Z
--- license: mit datasets: - CyberHarem/fukiyose_seiri_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of fukiyose_seiri_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5100, you need to download `5100/fukiyose_seiri_toarumajutsunoindex.pt` as the embedding and `5100/fukiyose_seiri_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5100**, with the score of 0.907. The trigger words are: 1. `fukiyose_seiri_toarumajutsunoindex` 2. `black_hair, long_hair, brown_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **5100** | **0.907** | [**Download**](5100/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![pattern_7-5100](5100/previews/pattern_7.png) | ![pattern_8-5100](5100/previews/pattern_8.png) | ![pattern_9-5100](5100/previews/pattern_9.png) | ![pattern_10-5100](5100/previews/pattern_10.png) | ![pattern_11-5100](5100/previews/pattern_11.png) | [<NSFW, click to see>](5100/previews/pattern_12.png) | [<NSFW, click to see>](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.847 | [Download](4760/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![pattern_7-4760](4760/previews/pattern_7.png) | ![pattern_8-4760](4760/previews/pattern_8.png) | ![pattern_9-4760](4760/previews/pattern_9.png) | ![pattern_10-4760](4760/previews/pattern_10.png) | ![pattern_11-4760](4760/previews/pattern_11.png) | [<NSFW, click to see>](4760/previews/pattern_12.png) | [<NSFW, click to see>](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.862 | [Download](4420/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![pattern_7-4420](4420/previews/pattern_7.png) | ![pattern_8-4420](4420/previews/pattern_8.png) | ![pattern_9-4420](4420/previews/pattern_9.png) | ![pattern_10-4420](4420/previews/pattern_10.png) | ![pattern_11-4420](4420/previews/pattern_11.png) | [<NSFW, click to see>](4420/previews/pattern_12.png) | [<NSFW, click to see>](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.839 | [Download](4080/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![pattern_7-4080](4080/previews/pattern_7.png) | ![pattern_8-4080](4080/previews/pattern_8.png) | ![pattern_9-4080](4080/previews/pattern_9.png) | ![pattern_10-4080](4080/previews/pattern_10.png) | ![pattern_11-4080](4080/previews/pattern_11.png) | [<NSFW, click to see>](4080/previews/pattern_12.png) | [<NSFW, click to see>](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.820 | [Download](3740/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![pattern_7-3740](3740/previews/pattern_7.png) | ![pattern_8-3740](3740/previews/pattern_8.png) | ![pattern_9-3740](3740/previews/pattern_9.png) | ![pattern_10-3740](3740/previews/pattern_10.png) | ![pattern_11-3740](3740/previews/pattern_11.png) | [<NSFW, click to see>](3740/previews/pattern_12.png) | [<NSFW, click to see>](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.875 | [Download](3400/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![pattern_7-3400](3400/previews/pattern_7.png) | ![pattern_8-3400](3400/previews/pattern_8.png) | ![pattern_9-3400](3400/previews/pattern_9.png) | ![pattern_10-3400](3400/previews/pattern_10.png) | ![pattern_11-3400](3400/previews/pattern_11.png) | [<NSFW, click to see>](3400/previews/pattern_12.png) | [<NSFW, click to see>](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.831 | [Download](3060/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![pattern_7-3060](3060/previews/pattern_7.png) | ![pattern_8-3060](3060/previews/pattern_8.png) | ![pattern_9-3060](3060/previews/pattern_9.png) | ![pattern_10-3060](3060/previews/pattern_10.png) | ![pattern_11-3060](3060/previews/pattern_11.png) | [<NSFW, click to see>](3060/previews/pattern_12.png) | [<NSFW, click to see>](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.790 | [Download](2720/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![pattern_7-2720](2720/previews/pattern_7.png) | ![pattern_8-2720](2720/previews/pattern_8.png) | ![pattern_9-2720](2720/previews/pattern_9.png) | ![pattern_10-2720](2720/previews/pattern_10.png) | ![pattern_11-2720](2720/previews/pattern_11.png) | [<NSFW, click to see>](2720/previews/pattern_12.png) | [<NSFW, click to see>](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.777 | [Download](2380/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![pattern_7-2380](2380/previews/pattern_7.png) | ![pattern_8-2380](2380/previews/pattern_8.png) | ![pattern_9-2380](2380/previews/pattern_9.png) | ![pattern_10-2380](2380/previews/pattern_10.png) | ![pattern_11-2380](2380/previews/pattern_11.png) | [<NSFW, click to see>](2380/previews/pattern_12.png) | [<NSFW, click to see>](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.789 | [Download](2040/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![pattern_7-2040](2040/previews/pattern_7.png) | ![pattern_8-2040](2040/previews/pattern_8.png) | ![pattern_9-2040](2040/previews/pattern_9.png) | ![pattern_10-2040](2040/previews/pattern_10.png) | ![pattern_11-2040](2040/previews/pattern_11.png) | [<NSFW, click to see>](2040/previews/pattern_12.png) | [<NSFW, click to see>](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.810 | [Download](1700/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![pattern_7-1700](1700/previews/pattern_7.png) | ![pattern_8-1700](1700/previews/pattern_8.png) | ![pattern_9-1700](1700/previews/pattern_9.png) | ![pattern_10-1700](1700/previews/pattern_10.png) | ![pattern_11-1700](1700/previews/pattern_11.png) | [<NSFW, click to see>](1700/previews/pattern_12.png) | [<NSFW, click to see>](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.756 | [Download](1360/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![pattern_7-1360](1360/previews/pattern_7.png) | ![pattern_8-1360](1360/previews/pattern_8.png) | ![pattern_9-1360](1360/previews/pattern_9.png) | ![pattern_10-1360](1360/previews/pattern_10.png) | ![pattern_11-1360](1360/previews/pattern_11.png) | [<NSFW, click to see>](1360/previews/pattern_12.png) | [<NSFW, click to see>](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.770 | [Download](1020/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![pattern_7-1020](1020/previews/pattern_7.png) | ![pattern_8-1020](1020/previews/pattern_8.png) | ![pattern_9-1020](1020/previews/pattern_9.png) | ![pattern_10-1020](1020/previews/pattern_10.png) | ![pattern_11-1020](1020/previews/pattern_11.png) | [<NSFW, click to see>](1020/previews/pattern_12.png) | [<NSFW, click to see>](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.670 | [Download](680/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![pattern_7-680](680/previews/pattern_7.png) | ![pattern_8-680](680/previews/pattern_8.png) | ![pattern_9-680](680/previews/pattern_9.png) | ![pattern_10-680](680/previews/pattern_10.png) | ![pattern_11-680](680/previews/pattern_11.png) | [<NSFW, click to see>](680/previews/pattern_12.png) | [<NSFW, click to see>](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.689 | [Download](340/fukiyose_seiri_toarumajutsunoindex.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![pattern_7-340](340/previews/pattern_7.png) | ![pattern_8-340](340/previews/pattern_8.png) | ![pattern_9-340](340/previews/pattern_9.png) | ![pattern_10-340](340/previews/pattern_10.png) | ![pattern_11-340](340/previews/pattern_11.png) | [<NSFW, click to see>](340/previews/pattern_12.png) | [<NSFW, click to see>](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
raffel-22/emotion_classification_2
raffel-22
2023-09-16T11:35:36Z
217
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-16T11:19:27Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification_2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.51875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification_2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3274 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9337 | 0.3563 | | No log | 2.0 | 40 | 1.7116 | 0.3375 | | No log | 3.0 | 60 | 1.5755 | 0.4562 | | No log | 4.0 | 80 | 1.4939 | 0.45 | | No log | 5.0 | 100 | 1.4377 | 0.5062 | | No log | 6.0 | 120 | 1.4363 | 0.4562 | | No log | 7.0 | 140 | 1.3615 | 0.5125 | | No log | 8.0 | 160 | 1.3021 | 0.5375 | | No log | 9.0 | 180 | 1.3307 | 0.525 | | No log | 10.0 | 200 | 1.3085 | 0.4938 | | No log | 11.0 | 220 | 1.2798 | 0.5813 | | No log | 12.0 | 240 | 1.2707 | 0.525 | | No log | 13.0 | 260 | 1.2339 | 0.55 | | No log | 14.0 | 280 | 1.3053 | 0.5437 | | No log | 15.0 | 300 | 1.3038 | 0.4938 | | No log | 16.0 | 320 | 1.3088 | 0.5375 | | No log | 17.0 | 340 | 1.3336 | 0.5312 | | No log | 18.0 | 360 | 1.3053 | 0.5 | | No log | 19.0 | 380 | 1.2206 | 0.5687 | | No log | 20.0 | 400 | 1.2598 | 0.5312 | | No log | 21.0 | 420 | 1.3332 | 0.5125 | | No log | 22.0 | 440 | 1.3388 | 0.5312 | | No log | 23.0 | 460 | 1.3129 | 0.5563 | | No log | 24.0 | 480 | 1.3632 | 0.5062 | | 0.9153 | 25.0 | 500 | 1.4166 | 0.4688 | | 0.9153 | 26.0 | 520 | 1.4094 | 0.5 | | 0.9153 | 27.0 | 540 | 1.4294 | 0.475 | | 0.9153 | 28.0 | 560 | 1.4937 | 0.475 | | 0.9153 | 29.0 | 580 | 1.3897 | 0.4938 | | 0.9153 | 30.0 | 600 | 1.4565 | 0.475 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/sakuma_mayu_idolmastercinderellagirls
CyberHarem
2023-09-16T11:23:00Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/sakuma_mayu_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T11:07:34Z
--- license: mit datasets: - CyberHarem/sakuma_mayu_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of sakuma_mayu_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7500, you need to download `7500/sakuma_mayu_idolmastercinderellagirls.pt` as the embedding and `7500/sakuma_mayu_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7500**, with the score of 0.963. The trigger words are: 1. `sakuma_mayu_idolmastercinderellagirls` 2. `brown_hair, blush, blue_eyes, smile, hairband, ribbon, bangs, heart, jewelry, short_hair, bow, earrings, breasts` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **7500** | **0.963** | [**Download**](7500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-7500](7500/previews/pattern_1.png) | ![pattern_2-7500](7500/previews/pattern_2.png) | ![pattern_3-7500](7500/previews/pattern_3.png) | ![pattern_4-7500](7500/previews/pattern_4.png) | ![pattern_5-7500](7500/previews/pattern_5.png) | ![pattern_6-7500](7500/previews/pattern_6.png) | [<NSFW, click to see>](7500/previews/pattern_7.png) | ![pattern_8-7500](7500/previews/pattern_8.png) | [<NSFW, click to see>](7500/previews/bikini.png) | [<NSFW, click to see>](7500/previews/bondage.png) | ![free-7500](7500/previews/free.png) | ![maid-7500](7500/previews/maid.png) | ![miko-7500](7500/previews/miko.png) | [<NSFW, click to see>](7500/previews/nude.png) | [<NSFW, click to see>](7500/previews/nude2.png) | ![suit-7500](7500/previews/suit.png) | ![yukata-7500](7500/previews/yukata.png) | | 7000 | 0.961 | [Download](7000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-7000](7000/previews/pattern_1.png) | ![pattern_2-7000](7000/previews/pattern_2.png) | ![pattern_3-7000](7000/previews/pattern_3.png) | ![pattern_4-7000](7000/previews/pattern_4.png) | ![pattern_5-7000](7000/previews/pattern_5.png) | ![pattern_6-7000](7000/previews/pattern_6.png) | [<NSFW, click to see>](7000/previews/pattern_7.png) | ![pattern_8-7000](7000/previews/pattern_8.png) | [<NSFW, click to see>](7000/previews/bikini.png) | [<NSFW, click to see>](7000/previews/bondage.png) | ![free-7000](7000/previews/free.png) | ![maid-7000](7000/previews/maid.png) | ![miko-7000](7000/previews/miko.png) | [<NSFW, click to see>](7000/previews/nude.png) | [<NSFW, click to see>](7000/previews/nude2.png) | ![suit-7000](7000/previews/suit.png) | ![yukata-7000](7000/previews/yukata.png) | | 6500 | 0.958 | [Download](6500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-6500](6500/previews/pattern_1.png) | ![pattern_2-6500](6500/previews/pattern_2.png) | ![pattern_3-6500](6500/previews/pattern_3.png) | ![pattern_4-6500](6500/previews/pattern_4.png) | ![pattern_5-6500](6500/previews/pattern_5.png) | ![pattern_6-6500](6500/previews/pattern_6.png) | [<NSFW, click to see>](6500/previews/pattern_7.png) | ![pattern_8-6500](6500/previews/pattern_8.png) | [<NSFW, click to see>](6500/previews/bikini.png) | [<NSFW, click to see>](6500/previews/bondage.png) | ![free-6500](6500/previews/free.png) | ![maid-6500](6500/previews/maid.png) | ![miko-6500](6500/previews/miko.png) | [<NSFW, click to see>](6500/previews/nude.png) | [<NSFW, click to see>](6500/previews/nude2.png) | ![suit-6500](6500/previews/suit.png) | ![yukata-6500](6500/previews/yukata.png) | | 6000 | 0.939 | [Download](6000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | [<NSFW, click to see>](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | [<NSFW, click to see>](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5500 | 0.930 | [Download](5500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-5500](5500/previews/pattern_1.png) | ![pattern_2-5500](5500/previews/pattern_2.png) | ![pattern_3-5500](5500/previews/pattern_3.png) | ![pattern_4-5500](5500/previews/pattern_4.png) | ![pattern_5-5500](5500/previews/pattern_5.png) | ![pattern_6-5500](5500/previews/pattern_6.png) | [<NSFW, click to see>](5500/previews/pattern_7.png) | ![pattern_8-5500](5500/previews/pattern_8.png) | [<NSFW, click to see>](5500/previews/bikini.png) | [<NSFW, click to see>](5500/previews/bondage.png) | ![free-5500](5500/previews/free.png) | ![maid-5500](5500/previews/maid.png) | ![miko-5500](5500/previews/miko.png) | [<NSFW, click to see>](5500/previews/nude.png) | [<NSFW, click to see>](5500/previews/nude2.png) | ![suit-5500](5500/previews/suit.png) | ![yukata-5500](5500/previews/yukata.png) | | 5000 | 0.948 | [Download](5000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-5000](5000/previews/pattern_1.png) | ![pattern_2-5000](5000/previews/pattern_2.png) | ![pattern_3-5000](5000/previews/pattern_3.png) | ![pattern_4-5000](5000/previews/pattern_4.png) | ![pattern_5-5000](5000/previews/pattern_5.png) | ![pattern_6-5000](5000/previews/pattern_6.png) | [<NSFW, click to see>](5000/previews/pattern_7.png) | ![pattern_8-5000](5000/previews/pattern_8.png) | [<NSFW, click to see>](5000/previews/bikini.png) | [<NSFW, click to see>](5000/previews/bondage.png) | ![free-5000](5000/previews/free.png) | ![maid-5000](5000/previews/maid.png) | ![miko-5000](5000/previews/miko.png) | [<NSFW, click to see>](5000/previews/nude.png) | [<NSFW, click to see>](5000/previews/nude2.png) | ![suit-5000](5000/previews/suit.png) | ![yukata-5000](5000/previews/yukata.png) | | 4500 | 0.933 | [Download](4500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-4500](4500/previews/pattern_1.png) | ![pattern_2-4500](4500/previews/pattern_2.png) | ![pattern_3-4500](4500/previews/pattern_3.png) | ![pattern_4-4500](4500/previews/pattern_4.png) | ![pattern_5-4500](4500/previews/pattern_5.png) | ![pattern_6-4500](4500/previews/pattern_6.png) | [<NSFW, click to see>](4500/previews/pattern_7.png) | ![pattern_8-4500](4500/previews/pattern_8.png) | [<NSFW, click to see>](4500/previews/bikini.png) | [<NSFW, click to see>](4500/previews/bondage.png) | ![free-4500](4500/previews/free.png) | ![maid-4500](4500/previews/maid.png) | ![miko-4500](4500/previews/miko.png) | [<NSFW, click to see>](4500/previews/nude.png) | [<NSFW, click to see>](4500/previews/nude2.png) | ![suit-4500](4500/previews/suit.png) | ![yukata-4500](4500/previews/yukata.png) | | 4000 | 0.952 | [Download](4000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![pattern_5-4000](4000/previews/pattern_5.png) | ![pattern_6-4000](4000/previews/pattern_6.png) | [<NSFW, click to see>](4000/previews/pattern_7.png) | ![pattern_8-4000](4000/previews/pattern_8.png) | [<NSFW, click to see>](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3500 | 0.936 | [Download](3500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-3500](3500/previews/pattern_1.png) | ![pattern_2-3500](3500/previews/pattern_2.png) | ![pattern_3-3500](3500/previews/pattern_3.png) | ![pattern_4-3500](3500/previews/pattern_4.png) | ![pattern_5-3500](3500/previews/pattern_5.png) | ![pattern_6-3500](3500/previews/pattern_6.png) | [<NSFW, click to see>](3500/previews/pattern_7.png) | ![pattern_8-3500](3500/previews/pattern_8.png) | [<NSFW, click to see>](3500/previews/bikini.png) | [<NSFW, click to see>](3500/previews/bondage.png) | ![free-3500](3500/previews/free.png) | ![maid-3500](3500/previews/maid.png) | ![miko-3500](3500/previews/miko.png) | [<NSFW, click to see>](3500/previews/nude.png) | [<NSFW, click to see>](3500/previews/nude2.png) | ![suit-3500](3500/previews/suit.png) | ![yukata-3500](3500/previews/yukata.png) | | 3000 | 0.925 | [Download](3000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | [<NSFW, click to see>](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | [<NSFW, click to see>](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2500 | 0.930 | [Download](2500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-2500](2500/previews/pattern_1.png) | ![pattern_2-2500](2500/previews/pattern_2.png) | ![pattern_3-2500](2500/previews/pattern_3.png) | ![pattern_4-2500](2500/previews/pattern_4.png) | ![pattern_5-2500](2500/previews/pattern_5.png) | ![pattern_6-2500](2500/previews/pattern_6.png) | [<NSFW, click to see>](2500/previews/pattern_7.png) | ![pattern_8-2500](2500/previews/pattern_8.png) | [<NSFW, click to see>](2500/previews/bikini.png) | [<NSFW, click to see>](2500/previews/bondage.png) | ![free-2500](2500/previews/free.png) | ![maid-2500](2500/previews/maid.png) | ![miko-2500](2500/previews/miko.png) | [<NSFW, click to see>](2500/previews/nude.png) | [<NSFW, click to see>](2500/previews/nude2.png) | ![suit-2500](2500/previews/suit.png) | ![yukata-2500](2500/previews/yukata.png) | | 2000 | 0.889 | [Download](2000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![pattern_5-2000](2000/previews/pattern_5.png) | ![pattern_6-2000](2000/previews/pattern_6.png) | [<NSFW, click to see>](2000/previews/pattern_7.png) | ![pattern_8-2000](2000/previews/pattern_8.png) | [<NSFW, click to see>](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1500 | 0.865 | [Download](1500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![pattern_4-1500](1500/previews/pattern_4.png) | ![pattern_5-1500](1500/previews/pattern_5.png) | ![pattern_6-1500](1500/previews/pattern_6.png) | [<NSFW, click to see>](1500/previews/pattern_7.png) | ![pattern_8-1500](1500/previews/pattern_8.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/bondage.png) | ![free-1500](1500/previews/free.png) | ![maid-1500](1500/previews/maid.png) | ![miko-1500](1500/previews/miko.png) | [<NSFW, click to see>](1500/previews/nude.png) | [<NSFW, click to see>](1500/previews/nude2.png) | ![suit-1500](1500/previews/suit.png) | ![yukata-1500](1500/previews/yukata.png) | | 1000 | 0.873 | [Download](1000/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![pattern_4-1000](1000/previews/pattern_4.png) | ![pattern_5-1000](1000/previews/pattern_5.png) | ![pattern_6-1000](1000/previews/pattern_6.png) | [<NSFW, click to see>](1000/previews/pattern_7.png) | ![pattern_8-1000](1000/previews/pattern_8.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/bondage.png) | ![free-1000](1000/previews/free.png) | ![maid-1000](1000/previews/maid.png) | ![miko-1000](1000/previews/miko.png) | [<NSFW, click to see>](1000/previews/nude.png) | [<NSFW, click to see>](1000/previews/nude2.png) | ![suit-1000](1000/previews/suit.png) | ![yukata-1000](1000/previews/yukata.png) | | 500 | 0.882 | [Download](500/sakuma_mayu_idolmastercinderellagirls.zip) | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![pattern_4-500](500/previews/pattern_4.png) | ![pattern_5-500](500/previews/pattern_5.png) | ![pattern_6-500](500/previews/pattern_6.png) | [<NSFW, click to see>](500/previews/pattern_7.png) | ![pattern_8-500](500/previews/pattern_8.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/bondage.png) | ![free-500](500/previews/free.png) | ![maid-500](500/previews/maid.png) | ![miko-500](500/previews/miko.png) | [<NSFW, click to see>](500/previews/nude.png) | [<NSFW, click to see>](500/previews/nude2.png) | ![suit-500](500/previews/suit.png) | ![yukata-500](500/previews/yukata.png) |
samkas125/bert-large-legal-sentence-classification
samkas125
2023-09-16T11:20:32Z
202
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T07:37:20Z
--- license: mit --- # bert-large-legal-sentence-classification ## Model Description **bert-large-legal-sentence-classification** is a finetuned `bert-large-cased` model that is ready to use for legal sentence classification into rhetorical roles. It was fine-tuned using a repository of [analyzed disability-claim decisions](https://github.com/vernrwalker/VetClaims-JSON/) issued by the Board of Veterans' Appeals ("BVA") of the U.S. Department of Veterans Affairs. ### How to use #### With HuggingFace pipeline ```python from transformers import AutoTokenizer, BertForSequenceClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("samkas125/bert-large-legal-sentence-classification") model = BertForSequenceClassification.from_pretrained('samkas125/bert-large-legal-sentence-classification') nlp = pipeline("text-classification", model=model, tokenizer=tokenizer) example = "The Veteran did not have a psychiatric disorder in service that was unrelated to the use of drugs." results = nlp(example) print(results) ``` #### Without HuggingFace pipeline ```python from transformers import AutoTokenizer, BertForSequenceClassification from torch import softmax, argmax tokenizer = AutoTokenizer.from_pretrained("samkas125/bert-large-legal-sentence-classification") model = BertForSequenceClassification.from_pretrained('samkas125/bert-large-legal-sentence-classification') sentence = "The Veteran did not have a psychiatric disorder in service that was unrelated to the use of drugs." encoded_input = tokenizer(sentence, return_tensors='pt') output = model(**encoded_input) logits = output.logits probs = softmax(logits, dim=1) predicted_class = argmax(probs, dim=1).item() print(predicted_class) ``` Check the `config.json` file to map the index of a class to its name. ### Limitations and bias This model is limited by the size of its training set of 6153 sentences. Additionally, it was only trained on disability claim decisions issued by the U.S. Department of Veterans Affairs. It may not generalize well to non-legal sentences, or sentences from other types of cases within the legal domain. ## Training data A repository of [analyzed disability-claim decisions](https://github.com/vernrwalker/VetClaims-JSON/) issued by the Board of Veterans' Appeals ("BVA") of the U.S. Department of Veterans Affairs was used to finetune the `bert-large-cased` model for sequence classification. It consisted of 6153 sentences from 50 cases. The sentences were classified by the Research Laboratory for Law, Logic and Technology (LLT Lab) at the Maurice A. Deane School of Law at Hofstra University, in New York. The analysis consists of classifying sentences in those decisions according to their rhetorical role (as defined within the same repository).
CDS-GROUP/graph-classification
CDS-GROUP
2023-09-16T11:16:29Z
38
0
transformers
[ "transformers", "pytorch", "graphormer", "generated_from_trainer", "base_model:clefourrier/graphormer-base-pcqm4mv2", "base_model:finetune:clefourrier/graphormer-base-pcqm4mv2", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-09-16T11:16:17Z
--- license: mit base_model: clefourrier/graphormer-base-pcqm4mv2 tags: - generated_from_trainer model-index: - name: graph-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # graph-classification This model is a fine-tuned version of [clefourrier/graphormer-base-pcqm4mv2](https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 1280 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.13.3
judy93536/distilroberta-pr200k-ep20
judy93536
2023-09-16T11:08:22Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-15T12:50:35Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-pr200k-ep20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-pr200k-ep20 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.19 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.8844 | 1.0 | 5480 | 1.6711 | | 1.6262 | 2.0 | 10960 | 1.4794 | | 1.5005 | 3.0 | 16440 | 1.3796 | | 1.4432 | 4.0 | 21920 | 1.3313 | | 1.3904 | 5.0 | 27400 | 1.2843 | | 1.3378 | 6.0 | 32880 | 1.2441 | | 1.3057 | 7.0 | 38360 | 1.2149 | | 1.2781 | 8.0 | 43840 | 1.1927 | | 1.2497 | 9.0 | 49320 | 1.1780 | | 1.2219 | 10.0 | 54800 | 1.1626 | | 1.2068 | 11.0 | 60280 | 1.1500 | | 1.1832 | 12.0 | 65760 | 1.1368 | | 1.1789 | 13.0 | 71240 | 1.1230 | | 1.1571 | 14.0 | 76720 | 1.1135 | | 1.1439 | 15.0 | 82200 | 1.1020 | | 1.1419 | 16.0 | 87680 | 1.0954 | | 1.1247 | 17.0 | 93160 | 1.0893 | | 1.1159 | 18.0 | 98640 | 1.0806 | | 1.1119 | 19.0 | 104120 | 1.0776 | | 1.0978 | 20.0 | 109600 | 1.0740 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/uiharu_kazari_toarumajutsunoindex
CyberHarem
2023-09-16T10:53:02Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/uiharu_kazari_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T21:30:58Z
--- license: mit datasets: - CyberHarem/uiharu_kazari_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of uiharu_kazari_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4080, you need to download `4080/uiharu_kazari_toarumajutsunoindex.pt` as the embedding and `4080/uiharu_kazari_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4080**, with the score of 0.974. The trigger words are: 1. `uiharu_kazari_toarumajutsunoindex` 2. `short_hair, black_hair, hair_ornament, flower, hair_flower, head_wreath, serafuku, brown_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.955 | [Download](5100/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.946 | [Download](4760/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.969 | [Download](4420/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | **4080** | **0.974** | [**Download**](4080/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.858 | [Download](3740/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.886 | [Download](3400/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.865 | [Download](3060/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.895 | [Download](2720/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.924 | [Download](2380/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.929 | [Download](2040/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.843 | [Download](1700/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.806 | [Download](1360/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.795 | [Download](1020/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.694 | [Download](680/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.614 | [Download](340/uiharu_kazari_toarumajutsunoindex.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
MUmairAB/python-code-generator
MUmairAB
2023-09-16T10:20:02Z
78
1
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T10:23:04Z
--- license: mit tags: - generated_from_keras_callback base_model: gpt2 model-index: - name: MUmairAB/python-code-generator results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MUmairAB/python-code-generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4439 - Validation Loss: 2.6055 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 20785, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4439 | 2.6055 | 0 | | 2.4438 | 2.6055 | 1 | | 2.4439 | 2.6055 | 2 | | 2.4437 | 2.6055 | 3 | | 2.4439 | 2.6055 | 4 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
CyberHarem/ogata_chieri_idolmastercinderellagirls
CyberHarem
2023-09-16T10:15:40Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/ogata_chieri_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T09:58:20Z
--- license: mit datasets: - CyberHarem/ogata_chieri_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of ogata_chieri_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6240, you need to download `6240/ogata_chieri_idolmastercinderellagirls.pt` as the embedding and `6240/ogata_chieri_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6240**, with the score of 0.916. The trigger words are: 1. `ogata_chieri_idolmastercinderellagirls` 2. `brown_hair, twintails, brown_eyes, blush, smile, bangs, open_mouth, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7800 | 0.903 | [Download](7800/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | ![pattern_2-7800](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | [<NSFW, click to see>](7800/previews/pattern_11.png) | [<NSFW, click to see>](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7280 | 0.889 | [Download](7280/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-7280](7280/previews/pattern_1.png) | ![pattern_2-7280](7280/previews/pattern_2.png) | ![pattern_3-7280](7280/previews/pattern_3.png) | ![pattern_4-7280](7280/previews/pattern_4.png) | ![pattern_5-7280](7280/previews/pattern_5.png) | ![pattern_6-7280](7280/previews/pattern_6.png) | ![pattern_7-7280](7280/previews/pattern_7.png) | ![pattern_8-7280](7280/previews/pattern_8.png) | ![pattern_9-7280](7280/previews/pattern_9.png) | ![pattern_10-7280](7280/previews/pattern_10.png) | [<NSFW, click to see>](7280/previews/pattern_11.png) | [<NSFW, click to see>](7280/previews/bikini.png) | [<NSFW, click to see>](7280/previews/bondage.png) | ![free-7280](7280/previews/free.png) | ![maid-7280](7280/previews/maid.png) | ![miko-7280](7280/previews/miko.png) | [<NSFW, click to see>](7280/previews/nude.png) | [<NSFW, click to see>](7280/previews/nude2.png) | ![suit-7280](7280/previews/suit.png) | ![yukata-7280](7280/previews/yukata.png) | | 6760 | 0.884 | [Download](6760/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-6760](6760/previews/pattern_1.png) | ![pattern_2-6760](6760/previews/pattern_2.png) | ![pattern_3-6760](6760/previews/pattern_3.png) | ![pattern_4-6760](6760/previews/pattern_4.png) | ![pattern_5-6760](6760/previews/pattern_5.png) | ![pattern_6-6760](6760/previews/pattern_6.png) | ![pattern_7-6760](6760/previews/pattern_7.png) | ![pattern_8-6760](6760/previews/pattern_8.png) | ![pattern_9-6760](6760/previews/pattern_9.png) | ![pattern_10-6760](6760/previews/pattern_10.png) | [<NSFW, click to see>](6760/previews/pattern_11.png) | [<NSFW, click to see>](6760/previews/bikini.png) | [<NSFW, click to see>](6760/previews/bondage.png) | ![free-6760](6760/previews/free.png) | ![maid-6760](6760/previews/maid.png) | ![miko-6760](6760/previews/miko.png) | [<NSFW, click to see>](6760/previews/nude.png) | [<NSFW, click to see>](6760/previews/nude2.png) | ![suit-6760](6760/previews/suit.png) | ![yukata-6760](6760/previews/yukata.png) | | **6240** | **0.916** | [**Download**](6240/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | [<NSFW, click to see>](6240/previews/pattern_11.png) | [<NSFW, click to see>](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5720 | 0.900 | [Download](5720/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-5720](5720/previews/pattern_1.png) | ![pattern_2-5720](5720/previews/pattern_2.png) | ![pattern_3-5720](5720/previews/pattern_3.png) | ![pattern_4-5720](5720/previews/pattern_4.png) | ![pattern_5-5720](5720/previews/pattern_5.png) | ![pattern_6-5720](5720/previews/pattern_6.png) | ![pattern_7-5720](5720/previews/pattern_7.png) | ![pattern_8-5720](5720/previews/pattern_8.png) | ![pattern_9-5720](5720/previews/pattern_9.png) | ![pattern_10-5720](5720/previews/pattern_10.png) | [<NSFW, click to see>](5720/previews/pattern_11.png) | [<NSFW, click to see>](5720/previews/bikini.png) | [<NSFW, click to see>](5720/previews/bondage.png) | ![free-5720](5720/previews/free.png) | ![maid-5720](5720/previews/maid.png) | ![miko-5720](5720/previews/miko.png) | [<NSFW, click to see>](5720/previews/nude.png) | [<NSFW, click to see>](5720/previews/nude2.png) | ![suit-5720](5720/previews/suit.png) | ![yukata-5720](5720/previews/yukata.png) | | 5200 | 0.907 | [Download](5200/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-5200](5200/previews/pattern_1.png) | ![pattern_2-5200](5200/previews/pattern_2.png) | ![pattern_3-5200](5200/previews/pattern_3.png) | ![pattern_4-5200](5200/previews/pattern_4.png) | ![pattern_5-5200](5200/previews/pattern_5.png) | ![pattern_6-5200](5200/previews/pattern_6.png) | ![pattern_7-5200](5200/previews/pattern_7.png) | ![pattern_8-5200](5200/previews/pattern_8.png) | ![pattern_9-5200](5200/previews/pattern_9.png) | ![pattern_10-5200](5200/previews/pattern_10.png) | [<NSFW, click to see>](5200/previews/pattern_11.png) | [<NSFW, click to see>](5200/previews/bikini.png) | [<NSFW, click to see>](5200/previews/bondage.png) | ![free-5200](5200/previews/free.png) | ![maid-5200](5200/previews/maid.png) | ![miko-5200](5200/previews/miko.png) | [<NSFW, click to see>](5200/previews/nude.png) | [<NSFW, click to see>](5200/previews/nude2.png) | ![suit-5200](5200/previews/suit.png) | ![yukata-5200](5200/previews/yukata.png) | | 4680 | 0.883 | [Download](4680/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-4680](4680/previews/pattern_1.png) | ![pattern_2-4680](4680/previews/pattern_2.png) | ![pattern_3-4680](4680/previews/pattern_3.png) | ![pattern_4-4680](4680/previews/pattern_4.png) | ![pattern_5-4680](4680/previews/pattern_5.png) | ![pattern_6-4680](4680/previews/pattern_6.png) | ![pattern_7-4680](4680/previews/pattern_7.png) | ![pattern_8-4680](4680/previews/pattern_8.png) | ![pattern_9-4680](4680/previews/pattern_9.png) | ![pattern_10-4680](4680/previews/pattern_10.png) | [<NSFW, click to see>](4680/previews/pattern_11.png) | [<NSFW, click to see>](4680/previews/bikini.png) | [<NSFW, click to see>](4680/previews/bondage.png) | ![free-4680](4680/previews/free.png) | ![maid-4680](4680/previews/maid.png) | ![miko-4680](4680/previews/miko.png) | [<NSFW, click to see>](4680/previews/nude.png) | [<NSFW, click to see>](4680/previews/nude2.png) | ![suit-4680](4680/previews/suit.png) | ![yukata-4680](4680/previews/yukata.png) | | 4160 | 0.914 | [Download](4160/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-4160](4160/previews/pattern_1.png) | ![pattern_2-4160](4160/previews/pattern_2.png) | ![pattern_3-4160](4160/previews/pattern_3.png) | ![pattern_4-4160](4160/previews/pattern_4.png) | ![pattern_5-4160](4160/previews/pattern_5.png) | ![pattern_6-4160](4160/previews/pattern_6.png) | ![pattern_7-4160](4160/previews/pattern_7.png) | ![pattern_8-4160](4160/previews/pattern_8.png) | ![pattern_9-4160](4160/previews/pattern_9.png) | ![pattern_10-4160](4160/previews/pattern_10.png) | [<NSFW, click to see>](4160/previews/pattern_11.png) | [<NSFW, click to see>](4160/previews/bikini.png) | [<NSFW, click to see>](4160/previews/bondage.png) | ![free-4160](4160/previews/free.png) | ![maid-4160](4160/previews/maid.png) | ![miko-4160](4160/previews/miko.png) | [<NSFW, click to see>](4160/previews/nude.png) | [<NSFW, click to see>](4160/previews/nude2.png) | ![suit-4160](4160/previews/suit.png) | ![yukata-4160](4160/previews/yukata.png) | | 3640 | 0.841 | [Download](3640/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-3640](3640/previews/pattern_1.png) | ![pattern_2-3640](3640/previews/pattern_2.png) | ![pattern_3-3640](3640/previews/pattern_3.png) | ![pattern_4-3640](3640/previews/pattern_4.png) | ![pattern_5-3640](3640/previews/pattern_5.png) | ![pattern_6-3640](3640/previews/pattern_6.png) | ![pattern_7-3640](3640/previews/pattern_7.png) | ![pattern_8-3640](3640/previews/pattern_8.png) | ![pattern_9-3640](3640/previews/pattern_9.png) | ![pattern_10-3640](3640/previews/pattern_10.png) | [<NSFW, click to see>](3640/previews/pattern_11.png) | [<NSFW, click to see>](3640/previews/bikini.png) | [<NSFW, click to see>](3640/previews/bondage.png) | ![free-3640](3640/previews/free.png) | ![maid-3640](3640/previews/maid.png) | ![miko-3640](3640/previews/miko.png) | [<NSFW, click to see>](3640/previews/nude.png) | [<NSFW, click to see>](3640/previews/nude2.png) | ![suit-3640](3640/previews/suit.png) | ![yukata-3640](3640/previews/yukata.png) | | 3120 | 0.872 | [Download](3120/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-3120](3120/previews/pattern_1.png) | ![pattern_2-3120](3120/previews/pattern_2.png) | ![pattern_3-3120](3120/previews/pattern_3.png) | ![pattern_4-3120](3120/previews/pattern_4.png) | ![pattern_5-3120](3120/previews/pattern_5.png) | ![pattern_6-3120](3120/previews/pattern_6.png) | ![pattern_7-3120](3120/previews/pattern_7.png) | ![pattern_8-3120](3120/previews/pattern_8.png) | ![pattern_9-3120](3120/previews/pattern_9.png) | ![pattern_10-3120](3120/previews/pattern_10.png) | [<NSFW, click to see>](3120/previews/pattern_11.png) | [<NSFW, click to see>](3120/previews/bikini.png) | [<NSFW, click to see>](3120/previews/bondage.png) | ![free-3120](3120/previews/free.png) | ![maid-3120](3120/previews/maid.png) | ![miko-3120](3120/previews/miko.png) | [<NSFW, click to see>](3120/previews/nude.png) | [<NSFW, click to see>](3120/previews/nude2.png) | ![suit-3120](3120/previews/suit.png) | ![yukata-3120](3120/previews/yukata.png) | | 2600 | 0.834 | [Download](2600/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-2600](2600/previews/pattern_1.png) | ![pattern_2-2600](2600/previews/pattern_2.png) | ![pattern_3-2600](2600/previews/pattern_3.png) | ![pattern_4-2600](2600/previews/pattern_4.png) | ![pattern_5-2600](2600/previews/pattern_5.png) | ![pattern_6-2600](2600/previews/pattern_6.png) | ![pattern_7-2600](2600/previews/pattern_7.png) | ![pattern_8-2600](2600/previews/pattern_8.png) | ![pattern_9-2600](2600/previews/pattern_9.png) | ![pattern_10-2600](2600/previews/pattern_10.png) | [<NSFW, click to see>](2600/previews/pattern_11.png) | [<NSFW, click to see>](2600/previews/bikini.png) | [<NSFW, click to see>](2600/previews/bondage.png) | ![free-2600](2600/previews/free.png) | ![maid-2600](2600/previews/maid.png) | ![miko-2600](2600/previews/miko.png) | [<NSFW, click to see>](2600/previews/nude.png) | [<NSFW, click to see>](2600/previews/nude2.png) | ![suit-2600](2600/previews/suit.png) | ![yukata-2600](2600/previews/yukata.png) | | 2080 | 0.823 | [Download](2080/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-2080](2080/previews/pattern_1.png) | ![pattern_2-2080](2080/previews/pattern_2.png) | ![pattern_3-2080](2080/previews/pattern_3.png) | ![pattern_4-2080](2080/previews/pattern_4.png) | ![pattern_5-2080](2080/previews/pattern_5.png) | ![pattern_6-2080](2080/previews/pattern_6.png) | ![pattern_7-2080](2080/previews/pattern_7.png) | ![pattern_8-2080](2080/previews/pattern_8.png) | ![pattern_9-2080](2080/previews/pattern_9.png) | ![pattern_10-2080](2080/previews/pattern_10.png) | [<NSFW, click to see>](2080/previews/pattern_11.png) | [<NSFW, click to see>](2080/previews/bikini.png) | [<NSFW, click to see>](2080/previews/bondage.png) | ![free-2080](2080/previews/free.png) | ![maid-2080](2080/previews/maid.png) | ![miko-2080](2080/previews/miko.png) | [<NSFW, click to see>](2080/previews/nude.png) | [<NSFW, click to see>](2080/previews/nude2.png) | ![suit-2080](2080/previews/suit.png) | ![yukata-2080](2080/previews/yukata.png) | | 1560 | 0.746 | [Download](1560/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-1560](1560/previews/pattern_1.png) | ![pattern_2-1560](1560/previews/pattern_2.png) | ![pattern_3-1560](1560/previews/pattern_3.png) | ![pattern_4-1560](1560/previews/pattern_4.png) | ![pattern_5-1560](1560/previews/pattern_5.png) | ![pattern_6-1560](1560/previews/pattern_6.png) | ![pattern_7-1560](1560/previews/pattern_7.png) | ![pattern_8-1560](1560/previews/pattern_8.png) | ![pattern_9-1560](1560/previews/pattern_9.png) | ![pattern_10-1560](1560/previews/pattern_10.png) | [<NSFW, click to see>](1560/previews/pattern_11.png) | [<NSFW, click to see>](1560/previews/bikini.png) | [<NSFW, click to see>](1560/previews/bondage.png) | ![free-1560](1560/previews/free.png) | ![maid-1560](1560/previews/maid.png) | ![miko-1560](1560/previews/miko.png) | [<NSFW, click to see>](1560/previews/nude.png) | [<NSFW, click to see>](1560/previews/nude2.png) | ![suit-1560](1560/previews/suit.png) | ![yukata-1560](1560/previews/yukata.png) | | 1040 | 0.617 | [Download](1040/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-1040](1040/previews/pattern_1.png) | ![pattern_2-1040](1040/previews/pattern_2.png) | ![pattern_3-1040](1040/previews/pattern_3.png) | ![pattern_4-1040](1040/previews/pattern_4.png) | ![pattern_5-1040](1040/previews/pattern_5.png) | ![pattern_6-1040](1040/previews/pattern_6.png) | ![pattern_7-1040](1040/previews/pattern_7.png) | ![pattern_8-1040](1040/previews/pattern_8.png) | ![pattern_9-1040](1040/previews/pattern_9.png) | ![pattern_10-1040](1040/previews/pattern_10.png) | [<NSFW, click to see>](1040/previews/pattern_11.png) | [<NSFW, click to see>](1040/previews/bikini.png) | [<NSFW, click to see>](1040/previews/bondage.png) | ![free-1040](1040/previews/free.png) | ![maid-1040](1040/previews/maid.png) | ![miko-1040](1040/previews/miko.png) | [<NSFW, click to see>](1040/previews/nude.png) | [<NSFW, click to see>](1040/previews/nude2.png) | ![suit-1040](1040/previews/suit.png) | ![yukata-1040](1040/previews/yukata.png) | | 520 | 0.411 | [Download](520/ogata_chieri_idolmastercinderellagirls.zip) | ![pattern_1-520](520/previews/pattern_1.png) | ![pattern_2-520](520/previews/pattern_2.png) | ![pattern_3-520](520/previews/pattern_3.png) | ![pattern_4-520](520/previews/pattern_4.png) | ![pattern_5-520](520/previews/pattern_5.png) | ![pattern_6-520](520/previews/pattern_6.png) | ![pattern_7-520](520/previews/pattern_7.png) | ![pattern_8-520](520/previews/pattern_8.png) | ![pattern_9-520](520/previews/pattern_9.png) | ![pattern_10-520](520/previews/pattern_10.png) | [<NSFW, click to see>](520/previews/pattern_11.png) | [<NSFW, click to see>](520/previews/bikini.png) | [<NSFW, click to see>](520/previews/bondage.png) | ![free-520](520/previews/free.png) | ![maid-520](520/previews/maid.png) | ![miko-520](520/previews/miko.png) | [<NSFW, click to see>](520/previews/nude.png) | [<NSFW, click to see>](520/previews/nude2.png) | ![suit-520](520/previews/suit.png) | ![yukata-520](520/previews/yukata.png) |
facebook/dinov2-small-imagenet1k-1-layer
facebook
2023-09-16T10:14:58Z
5,029
1
transformers
[ "transformers", "pytorch", "safetensors", "dinov2", "image-classification", "dino", "vision", "dataset:imagenet-1k", "arxiv:2304.07193", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-14T19:57:42Z
--- license: apache-2.0 tags: - dino - vision datasets: - imagenet-1k --- # Vision Transformer (small-sized model) trained using DINOv2 Vision Transformer (ViT) model trained using the DINOv2 method. It was introduced in the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion. Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the model for classifying an image among one of the [1000 ImageNet labels](https://huggingface.co/datasets/huggingface/label-files/blob/main/imagenet-1k-id2label.json). See the [model hub](https://huggingface.co/models?search=facebook/dinov2) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ### BibTeX entry and citation info ```bibtex misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
facebook/dinov2-giant-imagenet1k-1-layer
facebook
2023-09-16T10:14:37Z
6,734
3
transformers
[ "transformers", "pytorch", "safetensors", "dinov2", "image-classification", "dino", "vision", "dataset:imagenet-1k", "arxiv:2304.07193", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-14T20:18:41Z
--- license: apache-2.0 tags: - dino - vision datasets: - imagenet-1k --- # Vision Transformer (giant-sized model) trained using DINOv2 Vision Transformer (ViT) model trained using the DINOv2 method. It was introduced in the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion. Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the model for classifying an image among one of the [1000 ImageNet labels](https://huggingface.co/datasets/huggingface/label-files/blob/main/imagenet-1k-id2label.json). See the [model hub](https://huggingface.co/models?search=facebook/dinov2) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ### BibTeX entry and citation info ```bibtex misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
CyberHarem/index_toarumajutsunoindex
CyberHarem
2023-09-16T10:10:24Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/index_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T19:18:09Z
--- license: mit datasets: - CyberHarem/index_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of index_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 11700, you need to download `11700/index_toarumajutsunoindex.pt` as the embedding and `11700/index_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 11700**, with the score of 0.916. The trigger words are: 1. `index_toarumajutsunoindex` 2. `long_hair, habit, nun, safety_pin, robe, green_eyes, grey_hair, blue_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | pattern_17 | pattern_18 | pattern_19 | pattern_20 | pattern_21 | pattern_22 | pattern_23 | pattern_24 | pattern_25 | pattern_26 | pattern_27 | pattern_28 | pattern_29 | pattern_30 | pattern_31 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:----------|:----------|:----------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|:-------------------------------------------|:---------------------------------------------------|:---------------------------------------|:---------------------------------------|:---------------------------------------|:------------------------------------------------|:-------------------------------------------------|:---------------------------------------|:-------------------------------------------| | **11700** | **0.916** | [**Download**](11700/index_toarumajutsunoindex.zip) | ![pattern_1-11700](11700/previews/pattern_1.png) | [<NSFW, click to see>](11700/previews/pattern_2.png) | ![pattern_3-11700](11700/previews/pattern_3.png) | ![pattern_4-11700](11700/previews/pattern_4.png) | ![pattern_5-11700](11700/previews/pattern_5.png) | ![pattern_6-11700](11700/previews/pattern_6.png) | ![pattern_7-11700](11700/previews/pattern_7.png) | ![pattern_8-11700](11700/previews/pattern_8.png) | ![pattern_9-11700](11700/previews/pattern_9.png) | ![pattern_10-11700](11700/previews/pattern_10.png) | ![pattern_11-11700](11700/previews/pattern_11.png) | ![pattern_12-11700](11700/previews/pattern_12.png) | ![pattern_13-11700](11700/previews/pattern_13.png) | ![pattern_14-11700](11700/previews/pattern_14.png) | ![pattern_15-11700](11700/previews/pattern_15.png) | ![pattern_16-11700](11700/previews/pattern_16.png) | ![pattern_17-11700](11700/previews/pattern_17.png) | ![pattern_18-11700](11700/previews/pattern_18.png) | ![pattern_19-11700](11700/previews/pattern_19.png) | ![pattern_20-11700](11700/previews/pattern_20.png) | ![pattern_21-11700](11700/previews/pattern_21.png) | ![pattern_22-11700](11700/previews/pattern_22.png) | ![pattern_23-11700](11700/previews/pattern_23.png) | ![pattern_24-11700](11700/previews/pattern_24.png) | ![pattern_25-11700](11700/previews/pattern_25.png) | ![pattern_26-11700](11700/previews/pattern_26.png) | ![pattern_27-11700](11700/previews/pattern_27.png) | ![pattern_28-11700](11700/previews/pattern_28.png) | ![pattern_29-11700](11700/previews/pattern_29.png) | ![pattern_30-11700](11700/previews/pattern_30.png) | ![pattern_31-11700](11700/previews/pattern_31.png) | ![bikini-11700](11700/previews/bikini.png) | [<NSFW, click to see>](11700/previews/bondage.png) | ![free-11700](11700/previews/free.png) | ![maid-11700](11700/previews/maid.png) | ![miko-11700](11700/previews/miko.png) | [<NSFW, click to see>](11700/previews/nude.png) | [<NSFW, click to see>](11700/previews/nude2.png) | ![suit-11700](11700/previews/suit.png) | ![yukata-11700](11700/previews/yukata.png) | | 10920 | 0.909 | [Download](10920/index_toarumajutsunoindex.zip) | ![pattern_1-10920](10920/previews/pattern_1.png) | [<NSFW, click to see>](10920/previews/pattern_2.png) | ![pattern_3-10920](10920/previews/pattern_3.png) | ![pattern_4-10920](10920/previews/pattern_4.png) | ![pattern_5-10920](10920/previews/pattern_5.png) | ![pattern_6-10920](10920/previews/pattern_6.png) | ![pattern_7-10920](10920/previews/pattern_7.png) | ![pattern_8-10920](10920/previews/pattern_8.png) | ![pattern_9-10920](10920/previews/pattern_9.png) | ![pattern_10-10920](10920/previews/pattern_10.png) | ![pattern_11-10920](10920/previews/pattern_11.png) | ![pattern_12-10920](10920/previews/pattern_12.png) | ![pattern_13-10920](10920/previews/pattern_13.png) | ![pattern_14-10920](10920/previews/pattern_14.png) | ![pattern_15-10920](10920/previews/pattern_15.png) | ![pattern_16-10920](10920/previews/pattern_16.png) | ![pattern_17-10920](10920/previews/pattern_17.png) | ![pattern_18-10920](10920/previews/pattern_18.png) | ![pattern_19-10920](10920/previews/pattern_19.png) | ![pattern_20-10920](10920/previews/pattern_20.png) | ![pattern_21-10920](10920/previews/pattern_21.png) | ![pattern_22-10920](10920/previews/pattern_22.png) | ![pattern_23-10920](10920/previews/pattern_23.png) | ![pattern_24-10920](10920/previews/pattern_24.png) | ![pattern_25-10920](10920/previews/pattern_25.png) | ![pattern_26-10920](10920/previews/pattern_26.png) | ![pattern_27-10920](10920/previews/pattern_27.png) | ![pattern_28-10920](10920/previews/pattern_28.png) | ![pattern_29-10920](10920/previews/pattern_29.png) | ![pattern_30-10920](10920/previews/pattern_30.png) | ![pattern_31-10920](10920/previews/pattern_31.png) | ![bikini-10920](10920/previews/bikini.png) | [<NSFW, click to see>](10920/previews/bondage.png) | ![free-10920](10920/previews/free.png) | ![maid-10920](10920/previews/maid.png) | ![miko-10920](10920/previews/miko.png) | [<NSFW, click to see>](10920/previews/nude.png) | [<NSFW, click to see>](10920/previews/nude2.png) | ![suit-10920](10920/previews/suit.png) | ![yukata-10920](10920/previews/yukata.png) | | 10140 | 0.842 | [Download](10140/index_toarumajutsunoindex.zip) | ![pattern_1-10140](10140/previews/pattern_1.png) | [<NSFW, click to see>](10140/previews/pattern_2.png) | ![pattern_3-10140](10140/previews/pattern_3.png) | ![pattern_4-10140](10140/previews/pattern_4.png) | ![pattern_5-10140](10140/previews/pattern_5.png) | ![pattern_6-10140](10140/previews/pattern_6.png) | ![pattern_7-10140](10140/previews/pattern_7.png) | ![pattern_8-10140](10140/previews/pattern_8.png) | ![pattern_9-10140](10140/previews/pattern_9.png) | ![pattern_10-10140](10140/previews/pattern_10.png) | ![pattern_11-10140](10140/previews/pattern_11.png) | ![pattern_12-10140](10140/previews/pattern_12.png) | ![pattern_13-10140](10140/previews/pattern_13.png) | ![pattern_14-10140](10140/previews/pattern_14.png) | ![pattern_15-10140](10140/previews/pattern_15.png) | ![pattern_16-10140](10140/previews/pattern_16.png) | ![pattern_17-10140](10140/previews/pattern_17.png) | ![pattern_18-10140](10140/previews/pattern_18.png) | ![pattern_19-10140](10140/previews/pattern_19.png) | ![pattern_20-10140](10140/previews/pattern_20.png) | ![pattern_21-10140](10140/previews/pattern_21.png) | ![pattern_22-10140](10140/previews/pattern_22.png) | ![pattern_23-10140](10140/previews/pattern_23.png) | ![pattern_24-10140](10140/previews/pattern_24.png) | ![pattern_25-10140](10140/previews/pattern_25.png) | ![pattern_26-10140](10140/previews/pattern_26.png) | ![pattern_27-10140](10140/previews/pattern_27.png) | ![pattern_28-10140](10140/previews/pattern_28.png) | ![pattern_29-10140](10140/previews/pattern_29.png) | ![pattern_30-10140](10140/previews/pattern_30.png) | ![pattern_31-10140](10140/previews/pattern_31.png) | ![bikini-10140](10140/previews/bikini.png) | [<NSFW, click to see>](10140/previews/bondage.png) | ![free-10140](10140/previews/free.png) | ![maid-10140](10140/previews/maid.png) | ![miko-10140](10140/previews/miko.png) | [<NSFW, click to see>](10140/previews/nude.png) | [<NSFW, click to see>](10140/previews/nude2.png) | ![suit-10140](10140/previews/suit.png) | ![yukata-10140](10140/previews/yukata.png) | | 9360 | 0.906 | [Download](9360/index_toarumajutsunoindex.zip) | ![pattern_1-9360](9360/previews/pattern_1.png) | [<NSFW, click to see>](9360/previews/pattern_2.png) | ![pattern_3-9360](9360/previews/pattern_3.png) | ![pattern_4-9360](9360/previews/pattern_4.png) | ![pattern_5-9360](9360/previews/pattern_5.png) | ![pattern_6-9360](9360/previews/pattern_6.png) | ![pattern_7-9360](9360/previews/pattern_7.png) | ![pattern_8-9360](9360/previews/pattern_8.png) | ![pattern_9-9360](9360/previews/pattern_9.png) | ![pattern_10-9360](9360/previews/pattern_10.png) | ![pattern_11-9360](9360/previews/pattern_11.png) | ![pattern_12-9360](9360/previews/pattern_12.png) | ![pattern_13-9360](9360/previews/pattern_13.png) | ![pattern_14-9360](9360/previews/pattern_14.png) | ![pattern_15-9360](9360/previews/pattern_15.png) | ![pattern_16-9360](9360/previews/pattern_16.png) | ![pattern_17-9360](9360/previews/pattern_17.png) | ![pattern_18-9360](9360/previews/pattern_18.png) | ![pattern_19-9360](9360/previews/pattern_19.png) | ![pattern_20-9360](9360/previews/pattern_20.png) | ![pattern_21-9360](9360/previews/pattern_21.png) | ![pattern_22-9360](9360/previews/pattern_22.png) | ![pattern_23-9360](9360/previews/pattern_23.png) | ![pattern_24-9360](9360/previews/pattern_24.png) | ![pattern_25-9360](9360/previews/pattern_25.png) | ![pattern_26-9360](9360/previews/pattern_26.png) | ![pattern_27-9360](9360/previews/pattern_27.png) | ![pattern_28-9360](9360/previews/pattern_28.png) | ![pattern_29-9360](9360/previews/pattern_29.png) | ![pattern_30-9360](9360/previews/pattern_30.png) | ![pattern_31-9360](9360/previews/pattern_31.png) | ![bikini-9360](9360/previews/bikini.png) | [<NSFW, click to see>](9360/previews/bondage.png) | ![free-9360](9360/previews/free.png) | ![maid-9360](9360/previews/maid.png) | ![miko-9360](9360/previews/miko.png) | [<NSFW, click to see>](9360/previews/nude.png) | [<NSFW, click to see>](9360/previews/nude2.png) | ![suit-9360](9360/previews/suit.png) | ![yukata-9360](9360/previews/yukata.png) | | 8580 | 0.896 | [Download](8580/index_toarumajutsunoindex.zip) | ![pattern_1-8580](8580/previews/pattern_1.png) | [<NSFW, click to see>](8580/previews/pattern_2.png) | ![pattern_3-8580](8580/previews/pattern_3.png) | ![pattern_4-8580](8580/previews/pattern_4.png) | ![pattern_5-8580](8580/previews/pattern_5.png) | ![pattern_6-8580](8580/previews/pattern_6.png) | ![pattern_7-8580](8580/previews/pattern_7.png) | ![pattern_8-8580](8580/previews/pattern_8.png) | ![pattern_9-8580](8580/previews/pattern_9.png) | ![pattern_10-8580](8580/previews/pattern_10.png) | ![pattern_11-8580](8580/previews/pattern_11.png) | ![pattern_12-8580](8580/previews/pattern_12.png) | ![pattern_13-8580](8580/previews/pattern_13.png) | ![pattern_14-8580](8580/previews/pattern_14.png) | ![pattern_15-8580](8580/previews/pattern_15.png) | ![pattern_16-8580](8580/previews/pattern_16.png) | ![pattern_17-8580](8580/previews/pattern_17.png) | ![pattern_18-8580](8580/previews/pattern_18.png) | ![pattern_19-8580](8580/previews/pattern_19.png) | ![pattern_20-8580](8580/previews/pattern_20.png) | ![pattern_21-8580](8580/previews/pattern_21.png) | ![pattern_22-8580](8580/previews/pattern_22.png) | ![pattern_23-8580](8580/previews/pattern_23.png) | ![pattern_24-8580](8580/previews/pattern_24.png) | ![pattern_25-8580](8580/previews/pattern_25.png) | ![pattern_26-8580](8580/previews/pattern_26.png) | ![pattern_27-8580](8580/previews/pattern_27.png) | ![pattern_28-8580](8580/previews/pattern_28.png) | ![pattern_29-8580](8580/previews/pattern_29.png) | ![pattern_30-8580](8580/previews/pattern_30.png) | ![pattern_31-8580](8580/previews/pattern_31.png) | ![bikini-8580](8580/previews/bikini.png) | [<NSFW, click to see>](8580/previews/bondage.png) | ![free-8580](8580/previews/free.png) | ![maid-8580](8580/previews/maid.png) | ![miko-8580](8580/previews/miko.png) | [<NSFW, click to see>](8580/previews/nude.png) | [<NSFW, click to see>](8580/previews/nude2.png) | ![suit-8580](8580/previews/suit.png) | ![yukata-8580](8580/previews/yukata.png) | | 7800 | 0.829 | [Download](7800/index_toarumajutsunoindex.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | [<NSFW, click to see>](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | ![pattern_11-7800](7800/previews/pattern_11.png) | ![pattern_12-7800](7800/previews/pattern_12.png) | ![pattern_13-7800](7800/previews/pattern_13.png) | ![pattern_14-7800](7800/previews/pattern_14.png) | ![pattern_15-7800](7800/previews/pattern_15.png) | ![pattern_16-7800](7800/previews/pattern_16.png) | ![pattern_17-7800](7800/previews/pattern_17.png) | ![pattern_18-7800](7800/previews/pattern_18.png) | ![pattern_19-7800](7800/previews/pattern_19.png) | ![pattern_20-7800](7800/previews/pattern_20.png) | ![pattern_21-7800](7800/previews/pattern_21.png) | ![pattern_22-7800](7800/previews/pattern_22.png) | ![pattern_23-7800](7800/previews/pattern_23.png) | ![pattern_24-7800](7800/previews/pattern_24.png) | ![pattern_25-7800](7800/previews/pattern_25.png) | ![pattern_26-7800](7800/previews/pattern_26.png) | ![pattern_27-7800](7800/previews/pattern_27.png) | ![pattern_28-7800](7800/previews/pattern_28.png) | ![pattern_29-7800](7800/previews/pattern_29.png) | ![pattern_30-7800](7800/previews/pattern_30.png) | ![pattern_31-7800](7800/previews/pattern_31.png) | ![bikini-7800](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7020 | 0.820 | [Download](7020/index_toarumajutsunoindex.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | [<NSFW, click to see>](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | ![pattern_7-7020](7020/previews/pattern_7.png) | ![pattern_8-7020](7020/previews/pattern_8.png) | ![pattern_9-7020](7020/previews/pattern_9.png) | ![pattern_10-7020](7020/previews/pattern_10.png) | ![pattern_11-7020](7020/previews/pattern_11.png) | ![pattern_12-7020](7020/previews/pattern_12.png) | ![pattern_13-7020](7020/previews/pattern_13.png) | ![pattern_14-7020](7020/previews/pattern_14.png) | ![pattern_15-7020](7020/previews/pattern_15.png) | ![pattern_16-7020](7020/previews/pattern_16.png) | ![pattern_17-7020](7020/previews/pattern_17.png) | ![pattern_18-7020](7020/previews/pattern_18.png) | ![pattern_19-7020](7020/previews/pattern_19.png) | ![pattern_20-7020](7020/previews/pattern_20.png) | ![pattern_21-7020](7020/previews/pattern_21.png) | ![pattern_22-7020](7020/previews/pattern_22.png) | ![pattern_23-7020](7020/previews/pattern_23.png) | ![pattern_24-7020](7020/previews/pattern_24.png) | ![pattern_25-7020](7020/previews/pattern_25.png) | ![pattern_26-7020](7020/previews/pattern_26.png) | ![pattern_27-7020](7020/previews/pattern_27.png) | ![pattern_28-7020](7020/previews/pattern_28.png) | ![pattern_29-7020](7020/previews/pattern_29.png) | ![pattern_30-7020](7020/previews/pattern_30.png) | ![pattern_31-7020](7020/previews/pattern_31.png) | ![bikini-7020](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | ![free-7020](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | 6240 | 0.800 | [Download](6240/index_toarumajutsunoindex.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | [<NSFW, click to see>](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![pattern_11-6240](6240/previews/pattern_11.png) | ![pattern_12-6240](6240/previews/pattern_12.png) | ![pattern_13-6240](6240/previews/pattern_13.png) | ![pattern_14-6240](6240/previews/pattern_14.png) | ![pattern_15-6240](6240/previews/pattern_15.png) | ![pattern_16-6240](6240/previews/pattern_16.png) | ![pattern_17-6240](6240/previews/pattern_17.png) | ![pattern_18-6240](6240/previews/pattern_18.png) | ![pattern_19-6240](6240/previews/pattern_19.png) | ![pattern_20-6240](6240/previews/pattern_20.png) | ![pattern_21-6240](6240/previews/pattern_21.png) | ![pattern_22-6240](6240/previews/pattern_22.png) | ![pattern_23-6240](6240/previews/pattern_23.png) | ![pattern_24-6240](6240/previews/pattern_24.png) | ![pattern_25-6240](6240/previews/pattern_25.png) | ![pattern_26-6240](6240/previews/pattern_26.png) | ![pattern_27-6240](6240/previews/pattern_27.png) | ![pattern_28-6240](6240/previews/pattern_28.png) | ![pattern_29-6240](6240/previews/pattern_29.png) | ![pattern_30-6240](6240/previews/pattern_30.png) | ![pattern_31-6240](6240/previews/pattern_31.png) | ![bikini-6240](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5460 | 0.823 | [Download](5460/index_toarumajutsunoindex.zip) | ![pattern_1-5460](5460/previews/pattern_1.png) | [<NSFW, click to see>](5460/previews/pattern_2.png) | ![pattern_3-5460](5460/previews/pattern_3.png) | ![pattern_4-5460](5460/previews/pattern_4.png) | ![pattern_5-5460](5460/previews/pattern_5.png) | ![pattern_6-5460](5460/previews/pattern_6.png) | ![pattern_7-5460](5460/previews/pattern_7.png) | ![pattern_8-5460](5460/previews/pattern_8.png) | ![pattern_9-5460](5460/previews/pattern_9.png) | ![pattern_10-5460](5460/previews/pattern_10.png) | ![pattern_11-5460](5460/previews/pattern_11.png) | ![pattern_12-5460](5460/previews/pattern_12.png) | ![pattern_13-5460](5460/previews/pattern_13.png) | ![pattern_14-5460](5460/previews/pattern_14.png) | ![pattern_15-5460](5460/previews/pattern_15.png) | ![pattern_16-5460](5460/previews/pattern_16.png) | ![pattern_17-5460](5460/previews/pattern_17.png) | ![pattern_18-5460](5460/previews/pattern_18.png) | ![pattern_19-5460](5460/previews/pattern_19.png) | ![pattern_20-5460](5460/previews/pattern_20.png) | ![pattern_21-5460](5460/previews/pattern_21.png) | ![pattern_22-5460](5460/previews/pattern_22.png) | ![pattern_23-5460](5460/previews/pattern_23.png) | ![pattern_24-5460](5460/previews/pattern_24.png) | ![pattern_25-5460](5460/previews/pattern_25.png) | ![pattern_26-5460](5460/previews/pattern_26.png) | ![pattern_27-5460](5460/previews/pattern_27.png) | ![pattern_28-5460](5460/previews/pattern_28.png) | ![pattern_29-5460](5460/previews/pattern_29.png) | ![pattern_30-5460](5460/previews/pattern_30.png) | ![pattern_31-5460](5460/previews/pattern_31.png) | ![bikini-5460](5460/previews/bikini.png) | [<NSFW, click to see>](5460/previews/bondage.png) | ![free-5460](5460/previews/free.png) | ![maid-5460](5460/previews/maid.png) | ![miko-5460](5460/previews/miko.png) | [<NSFW, click to see>](5460/previews/nude.png) | [<NSFW, click to see>](5460/previews/nude2.png) | ![suit-5460](5460/previews/suit.png) | ![yukata-5460](5460/previews/yukata.png) | | 4680 | 0.848 | [Download](4680/index_toarumajutsunoindex.zip) | ![pattern_1-4680](4680/previews/pattern_1.png) | [<NSFW, click to see>](4680/previews/pattern_2.png) | ![pattern_3-4680](4680/previews/pattern_3.png) | ![pattern_4-4680](4680/previews/pattern_4.png) | ![pattern_5-4680](4680/previews/pattern_5.png) | ![pattern_6-4680](4680/previews/pattern_6.png) | ![pattern_7-4680](4680/previews/pattern_7.png) | ![pattern_8-4680](4680/previews/pattern_8.png) | ![pattern_9-4680](4680/previews/pattern_9.png) | ![pattern_10-4680](4680/previews/pattern_10.png) | ![pattern_11-4680](4680/previews/pattern_11.png) | ![pattern_12-4680](4680/previews/pattern_12.png) | ![pattern_13-4680](4680/previews/pattern_13.png) | ![pattern_14-4680](4680/previews/pattern_14.png) | ![pattern_15-4680](4680/previews/pattern_15.png) | ![pattern_16-4680](4680/previews/pattern_16.png) | ![pattern_17-4680](4680/previews/pattern_17.png) | ![pattern_18-4680](4680/previews/pattern_18.png) | ![pattern_19-4680](4680/previews/pattern_19.png) | ![pattern_20-4680](4680/previews/pattern_20.png) | ![pattern_21-4680](4680/previews/pattern_21.png) | ![pattern_22-4680](4680/previews/pattern_22.png) | ![pattern_23-4680](4680/previews/pattern_23.png) | ![pattern_24-4680](4680/previews/pattern_24.png) | ![pattern_25-4680](4680/previews/pattern_25.png) | ![pattern_26-4680](4680/previews/pattern_26.png) | ![pattern_27-4680](4680/previews/pattern_27.png) | ![pattern_28-4680](4680/previews/pattern_28.png) | ![pattern_29-4680](4680/previews/pattern_29.png) | ![pattern_30-4680](4680/previews/pattern_30.png) | ![pattern_31-4680](4680/previews/pattern_31.png) | ![bikini-4680](4680/previews/bikini.png) | [<NSFW, click to see>](4680/previews/bondage.png) | ![free-4680](4680/previews/free.png) | ![maid-4680](4680/previews/maid.png) | ![miko-4680](4680/previews/miko.png) | [<NSFW, click to see>](4680/previews/nude.png) | [<NSFW, click to see>](4680/previews/nude2.png) | ![suit-4680](4680/previews/suit.png) | ![yukata-4680](4680/previews/yukata.png) | | 3900 | 0.847 | [Download](3900/index_toarumajutsunoindex.zip) | ![pattern_1-3900](3900/previews/pattern_1.png) | [<NSFW, click to see>](3900/previews/pattern_2.png) | ![pattern_3-3900](3900/previews/pattern_3.png) | ![pattern_4-3900](3900/previews/pattern_4.png) | ![pattern_5-3900](3900/previews/pattern_5.png) | ![pattern_6-3900](3900/previews/pattern_6.png) | ![pattern_7-3900](3900/previews/pattern_7.png) | ![pattern_8-3900](3900/previews/pattern_8.png) | ![pattern_9-3900](3900/previews/pattern_9.png) | ![pattern_10-3900](3900/previews/pattern_10.png) | ![pattern_11-3900](3900/previews/pattern_11.png) | ![pattern_12-3900](3900/previews/pattern_12.png) | ![pattern_13-3900](3900/previews/pattern_13.png) | ![pattern_14-3900](3900/previews/pattern_14.png) | ![pattern_15-3900](3900/previews/pattern_15.png) | ![pattern_16-3900](3900/previews/pattern_16.png) | ![pattern_17-3900](3900/previews/pattern_17.png) | ![pattern_18-3900](3900/previews/pattern_18.png) | ![pattern_19-3900](3900/previews/pattern_19.png) | ![pattern_20-3900](3900/previews/pattern_20.png) | ![pattern_21-3900](3900/previews/pattern_21.png) | ![pattern_22-3900](3900/previews/pattern_22.png) | ![pattern_23-3900](3900/previews/pattern_23.png) | ![pattern_24-3900](3900/previews/pattern_24.png) | ![pattern_25-3900](3900/previews/pattern_25.png) | ![pattern_26-3900](3900/previews/pattern_26.png) | ![pattern_27-3900](3900/previews/pattern_27.png) | ![pattern_28-3900](3900/previews/pattern_28.png) | ![pattern_29-3900](3900/previews/pattern_29.png) | ![pattern_30-3900](3900/previews/pattern_30.png) | ![pattern_31-3900](3900/previews/pattern_31.png) | ![bikini-3900](3900/previews/bikini.png) | [<NSFW, click to see>](3900/previews/bondage.png) | ![free-3900](3900/previews/free.png) | ![maid-3900](3900/previews/maid.png) | ![miko-3900](3900/previews/miko.png) | [<NSFW, click to see>](3900/previews/nude.png) | [<NSFW, click to see>](3900/previews/nude2.png) | ![suit-3900](3900/previews/suit.png) | ![yukata-3900](3900/previews/yukata.png) | | 3120 | 0.755 | [Download](3120/index_toarumajutsunoindex.zip) | ![pattern_1-3120](3120/previews/pattern_1.png) | [<NSFW, click to see>](3120/previews/pattern_2.png) | ![pattern_3-3120](3120/previews/pattern_3.png) | ![pattern_4-3120](3120/previews/pattern_4.png) | ![pattern_5-3120](3120/previews/pattern_5.png) | ![pattern_6-3120](3120/previews/pattern_6.png) | ![pattern_7-3120](3120/previews/pattern_7.png) | ![pattern_8-3120](3120/previews/pattern_8.png) | ![pattern_9-3120](3120/previews/pattern_9.png) | ![pattern_10-3120](3120/previews/pattern_10.png) | ![pattern_11-3120](3120/previews/pattern_11.png) | ![pattern_12-3120](3120/previews/pattern_12.png) | ![pattern_13-3120](3120/previews/pattern_13.png) | ![pattern_14-3120](3120/previews/pattern_14.png) | ![pattern_15-3120](3120/previews/pattern_15.png) | ![pattern_16-3120](3120/previews/pattern_16.png) | ![pattern_17-3120](3120/previews/pattern_17.png) | ![pattern_18-3120](3120/previews/pattern_18.png) | ![pattern_19-3120](3120/previews/pattern_19.png) | ![pattern_20-3120](3120/previews/pattern_20.png) | ![pattern_21-3120](3120/previews/pattern_21.png) | ![pattern_22-3120](3120/previews/pattern_22.png) | ![pattern_23-3120](3120/previews/pattern_23.png) | ![pattern_24-3120](3120/previews/pattern_24.png) | ![pattern_25-3120](3120/previews/pattern_25.png) | ![pattern_26-3120](3120/previews/pattern_26.png) | ![pattern_27-3120](3120/previews/pattern_27.png) | ![pattern_28-3120](3120/previews/pattern_28.png) | ![pattern_29-3120](3120/previews/pattern_29.png) | ![pattern_30-3120](3120/previews/pattern_30.png) | ![pattern_31-3120](3120/previews/pattern_31.png) | ![bikini-3120](3120/previews/bikini.png) | [<NSFW, click to see>](3120/previews/bondage.png) | ![free-3120](3120/previews/free.png) | ![maid-3120](3120/previews/maid.png) | ![miko-3120](3120/previews/miko.png) | [<NSFW, click to see>](3120/previews/nude.png) | [<NSFW, click to see>](3120/previews/nude2.png) | ![suit-3120](3120/previews/suit.png) | ![yukata-3120](3120/previews/yukata.png) | | 2340 | 0.826 | [Download](2340/index_toarumajutsunoindex.zip) | ![pattern_1-2340](2340/previews/pattern_1.png) | [<NSFW, click to see>](2340/previews/pattern_2.png) | ![pattern_3-2340](2340/previews/pattern_3.png) | ![pattern_4-2340](2340/previews/pattern_4.png) | ![pattern_5-2340](2340/previews/pattern_5.png) | ![pattern_6-2340](2340/previews/pattern_6.png) | ![pattern_7-2340](2340/previews/pattern_7.png) | ![pattern_8-2340](2340/previews/pattern_8.png) | ![pattern_9-2340](2340/previews/pattern_9.png) | ![pattern_10-2340](2340/previews/pattern_10.png) | ![pattern_11-2340](2340/previews/pattern_11.png) | ![pattern_12-2340](2340/previews/pattern_12.png) | ![pattern_13-2340](2340/previews/pattern_13.png) | ![pattern_14-2340](2340/previews/pattern_14.png) | ![pattern_15-2340](2340/previews/pattern_15.png) | ![pattern_16-2340](2340/previews/pattern_16.png) | ![pattern_17-2340](2340/previews/pattern_17.png) | ![pattern_18-2340](2340/previews/pattern_18.png) | ![pattern_19-2340](2340/previews/pattern_19.png) | ![pattern_20-2340](2340/previews/pattern_20.png) | ![pattern_21-2340](2340/previews/pattern_21.png) | ![pattern_22-2340](2340/previews/pattern_22.png) | ![pattern_23-2340](2340/previews/pattern_23.png) | ![pattern_24-2340](2340/previews/pattern_24.png) | ![pattern_25-2340](2340/previews/pattern_25.png) | ![pattern_26-2340](2340/previews/pattern_26.png) | ![pattern_27-2340](2340/previews/pattern_27.png) | ![pattern_28-2340](2340/previews/pattern_28.png) | ![pattern_29-2340](2340/previews/pattern_29.png) | ![pattern_30-2340](2340/previews/pattern_30.png) | ![pattern_31-2340](2340/previews/pattern_31.png) | ![bikini-2340](2340/previews/bikini.png) | [<NSFW, click to see>](2340/previews/bondage.png) | ![free-2340](2340/previews/free.png) | ![maid-2340](2340/previews/maid.png) | ![miko-2340](2340/previews/miko.png) | [<NSFW, click to see>](2340/previews/nude.png) | [<NSFW, click to see>](2340/previews/nude2.png) | ![suit-2340](2340/previews/suit.png) | ![yukata-2340](2340/previews/yukata.png) | | 1560 | 0.806 | [Download](1560/index_toarumajutsunoindex.zip) | ![pattern_1-1560](1560/previews/pattern_1.png) | [<NSFW, click to see>](1560/previews/pattern_2.png) | ![pattern_3-1560](1560/previews/pattern_3.png) | ![pattern_4-1560](1560/previews/pattern_4.png) | ![pattern_5-1560](1560/previews/pattern_5.png) | ![pattern_6-1560](1560/previews/pattern_6.png) | ![pattern_7-1560](1560/previews/pattern_7.png) | ![pattern_8-1560](1560/previews/pattern_8.png) | ![pattern_9-1560](1560/previews/pattern_9.png) | ![pattern_10-1560](1560/previews/pattern_10.png) | ![pattern_11-1560](1560/previews/pattern_11.png) | ![pattern_12-1560](1560/previews/pattern_12.png) | ![pattern_13-1560](1560/previews/pattern_13.png) | ![pattern_14-1560](1560/previews/pattern_14.png) | ![pattern_15-1560](1560/previews/pattern_15.png) | ![pattern_16-1560](1560/previews/pattern_16.png) | ![pattern_17-1560](1560/previews/pattern_17.png) | ![pattern_18-1560](1560/previews/pattern_18.png) | ![pattern_19-1560](1560/previews/pattern_19.png) | ![pattern_20-1560](1560/previews/pattern_20.png) | ![pattern_21-1560](1560/previews/pattern_21.png) | ![pattern_22-1560](1560/previews/pattern_22.png) | ![pattern_23-1560](1560/previews/pattern_23.png) | ![pattern_24-1560](1560/previews/pattern_24.png) | ![pattern_25-1560](1560/previews/pattern_25.png) | ![pattern_26-1560](1560/previews/pattern_26.png) | ![pattern_27-1560](1560/previews/pattern_27.png) | ![pattern_28-1560](1560/previews/pattern_28.png) | ![pattern_29-1560](1560/previews/pattern_29.png) | ![pattern_30-1560](1560/previews/pattern_30.png) | ![pattern_31-1560](1560/previews/pattern_31.png) | ![bikini-1560](1560/previews/bikini.png) | [<NSFW, click to see>](1560/previews/bondage.png) | ![free-1560](1560/previews/free.png) | ![maid-1560](1560/previews/maid.png) | ![miko-1560](1560/previews/miko.png) | [<NSFW, click to see>](1560/previews/nude.png) | [<NSFW, click to see>](1560/previews/nude2.png) | ![suit-1560](1560/previews/suit.png) | ![yukata-1560](1560/previews/yukata.png) | | 780 | 0.579 | [Download](780/index_toarumajutsunoindex.zip) | ![pattern_1-780](780/previews/pattern_1.png) | [<NSFW, click to see>](780/previews/pattern_2.png) | ![pattern_3-780](780/previews/pattern_3.png) | ![pattern_4-780](780/previews/pattern_4.png) | ![pattern_5-780](780/previews/pattern_5.png) | ![pattern_6-780](780/previews/pattern_6.png) | ![pattern_7-780](780/previews/pattern_7.png) | ![pattern_8-780](780/previews/pattern_8.png) | ![pattern_9-780](780/previews/pattern_9.png) | ![pattern_10-780](780/previews/pattern_10.png) | ![pattern_11-780](780/previews/pattern_11.png) | ![pattern_12-780](780/previews/pattern_12.png) | ![pattern_13-780](780/previews/pattern_13.png) | ![pattern_14-780](780/previews/pattern_14.png) | ![pattern_15-780](780/previews/pattern_15.png) | ![pattern_16-780](780/previews/pattern_16.png) | ![pattern_17-780](780/previews/pattern_17.png) | ![pattern_18-780](780/previews/pattern_18.png) | ![pattern_19-780](780/previews/pattern_19.png) | ![pattern_20-780](780/previews/pattern_20.png) | ![pattern_21-780](780/previews/pattern_21.png) | ![pattern_22-780](780/previews/pattern_22.png) | ![pattern_23-780](780/previews/pattern_23.png) | ![pattern_24-780](780/previews/pattern_24.png) | ![pattern_25-780](780/previews/pattern_25.png) | ![pattern_26-780](780/previews/pattern_26.png) | ![pattern_27-780](780/previews/pattern_27.png) | ![pattern_28-780](780/previews/pattern_28.png) | ![pattern_29-780](780/previews/pattern_29.png) | ![pattern_30-780](780/previews/pattern_30.png) | ![pattern_31-780](780/previews/pattern_31.png) | ![bikini-780](780/previews/bikini.png) | [<NSFW, click to see>](780/previews/bondage.png) | ![free-780](780/previews/free.png) | ![maid-780](780/previews/maid.png) | ![miko-780](780/previews/miko.png) | [<NSFW, click to see>](780/previews/nude.png) | [<NSFW, click to see>](780/previews/nude2.png) | ![suit-780](780/previews/suit.png) | ![yukata-780](780/previews/yukata.png) |
paras1/dog-images-in-different-backgrounds
paras1
2023-09-16T09:41:58Z
4
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T09:36:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Dog-images-in-different-backgrounds Dreambooth model trained by paras1 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: NCU86 Sample pictures of this concept: ![0](https://huggingface.co/paras1/dog-images-in-different-backgrounds/resolve/main/sample_images/00000-4191498419.png)
Shishir1807/CT_M2
Shishir1807
2023-09-16T09:41:37Z
164
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T09:41:01Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/CT_M2", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/CT_M2", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/CT_M2", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/CT_M2" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
ceviriyap/bert_5
ceviriyap
2023-09-16T09:33:52Z
46
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-09-16T09:26:17Z
--- tags: - generated_from_keras_callback model-index: - name: bert_5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert_5 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.7984 - Validation Loss: 8.7049 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4283 | 8.6635 | 0 | | 7.9611 | 8.5577 | 1 | | 7.8389 | 8.6501 | 2 | | 7.7437 | 8.6738 | 3 | | 7.7984 | 8.7049 | 4 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.10.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Shishir1807/CT_M6
Shishir1807
2023-09-16T09:30:25Z
168
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T09:29:49Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/CT_M6", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/CT_M6", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/CT_M6", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/CT_M6" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Shishir1807/CT_M5
Shishir1807
2023-09-16T09:26:26Z
165
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T09:25:51Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/CT_M5", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/CT_M5", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/CT_M5", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/CT_M5" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
c-g/ppo-Huggy
c-g
2023-09-16T09:21:02Z
18
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-16T09:20:43Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: c-g/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/ootsuki_yui_idolmastercinderellagirls
CyberHarem
2023-09-16T09:05:06Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/ootsuki_yui_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T08:43:01Z
--- license: mit datasets: - CyberHarem/ootsuki_yui_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of ootsuki_yui_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6760, you need to download `6760/ootsuki_yui_idolmastercinderellagirls.pt` as the embedding and `6760/ootsuki_yui_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6760**, with the score of 0.945. The trigger words are: 1. `ootsuki_yui_idolmastercinderellagirls` 2. `blonde_hair, long_hair, blue_eyes, smile, blush, bangs, breasts, open_mouth, wavy_hair, collarbone, jewelry, teeth, large_breasts, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7800 | 0.937 | [Download](7800/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | ![pattern_2-7800](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | ![pattern_11-7800](7800/previews/pattern_11.png) | ![pattern_12-7800](7800/previews/pattern_12.png) | ![pattern_13-7800](7800/previews/pattern_13.png) | ![pattern_14-7800](7800/previews/pattern_14.png) | [<NSFW, click to see>](7800/previews/pattern_15.png) | ![bikini-7800](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7280 | 0.943 | [Download](7280/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-7280](7280/previews/pattern_1.png) | ![pattern_2-7280](7280/previews/pattern_2.png) | ![pattern_3-7280](7280/previews/pattern_3.png) | ![pattern_4-7280](7280/previews/pattern_4.png) | ![pattern_5-7280](7280/previews/pattern_5.png) | ![pattern_6-7280](7280/previews/pattern_6.png) | ![pattern_7-7280](7280/previews/pattern_7.png) | ![pattern_8-7280](7280/previews/pattern_8.png) | ![pattern_9-7280](7280/previews/pattern_9.png) | ![pattern_10-7280](7280/previews/pattern_10.png) | ![pattern_11-7280](7280/previews/pattern_11.png) | ![pattern_12-7280](7280/previews/pattern_12.png) | ![pattern_13-7280](7280/previews/pattern_13.png) | ![pattern_14-7280](7280/previews/pattern_14.png) | [<NSFW, click to see>](7280/previews/pattern_15.png) | ![bikini-7280](7280/previews/bikini.png) | [<NSFW, click to see>](7280/previews/bondage.png) | ![free-7280](7280/previews/free.png) | ![maid-7280](7280/previews/maid.png) | ![miko-7280](7280/previews/miko.png) | [<NSFW, click to see>](7280/previews/nude.png) | [<NSFW, click to see>](7280/previews/nude2.png) | ![suit-7280](7280/previews/suit.png) | ![yukata-7280](7280/previews/yukata.png) | | **6760** | **0.945** | [**Download**](6760/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-6760](6760/previews/pattern_1.png) | ![pattern_2-6760](6760/previews/pattern_2.png) | ![pattern_3-6760](6760/previews/pattern_3.png) | ![pattern_4-6760](6760/previews/pattern_4.png) | ![pattern_5-6760](6760/previews/pattern_5.png) | ![pattern_6-6760](6760/previews/pattern_6.png) | ![pattern_7-6760](6760/previews/pattern_7.png) | ![pattern_8-6760](6760/previews/pattern_8.png) | ![pattern_9-6760](6760/previews/pattern_9.png) | ![pattern_10-6760](6760/previews/pattern_10.png) | ![pattern_11-6760](6760/previews/pattern_11.png) | ![pattern_12-6760](6760/previews/pattern_12.png) | ![pattern_13-6760](6760/previews/pattern_13.png) | ![pattern_14-6760](6760/previews/pattern_14.png) | [<NSFW, click to see>](6760/previews/pattern_15.png) | ![bikini-6760](6760/previews/bikini.png) | [<NSFW, click to see>](6760/previews/bondage.png) | ![free-6760](6760/previews/free.png) | ![maid-6760](6760/previews/maid.png) | ![miko-6760](6760/previews/miko.png) | [<NSFW, click to see>](6760/previews/nude.png) | [<NSFW, click to see>](6760/previews/nude2.png) | ![suit-6760](6760/previews/suit.png) | ![yukata-6760](6760/previews/yukata.png) | | 6240 | 0.884 | [Download](6240/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![pattern_11-6240](6240/previews/pattern_11.png) | ![pattern_12-6240](6240/previews/pattern_12.png) | ![pattern_13-6240](6240/previews/pattern_13.png) | ![pattern_14-6240](6240/previews/pattern_14.png) | [<NSFW, click to see>](6240/previews/pattern_15.png) | ![bikini-6240](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5720 | 0.892 | [Download](5720/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-5720](5720/previews/pattern_1.png) | ![pattern_2-5720](5720/previews/pattern_2.png) | ![pattern_3-5720](5720/previews/pattern_3.png) | ![pattern_4-5720](5720/previews/pattern_4.png) | ![pattern_5-5720](5720/previews/pattern_5.png) | ![pattern_6-5720](5720/previews/pattern_6.png) | ![pattern_7-5720](5720/previews/pattern_7.png) | ![pattern_8-5720](5720/previews/pattern_8.png) | ![pattern_9-5720](5720/previews/pattern_9.png) | ![pattern_10-5720](5720/previews/pattern_10.png) | ![pattern_11-5720](5720/previews/pattern_11.png) | ![pattern_12-5720](5720/previews/pattern_12.png) | ![pattern_13-5720](5720/previews/pattern_13.png) | ![pattern_14-5720](5720/previews/pattern_14.png) | [<NSFW, click to see>](5720/previews/pattern_15.png) | ![bikini-5720](5720/previews/bikini.png) | [<NSFW, click to see>](5720/previews/bondage.png) | ![free-5720](5720/previews/free.png) | ![maid-5720](5720/previews/maid.png) | ![miko-5720](5720/previews/miko.png) | [<NSFW, click to see>](5720/previews/nude.png) | [<NSFW, click to see>](5720/previews/nude2.png) | ![suit-5720](5720/previews/suit.png) | ![yukata-5720](5720/previews/yukata.png) | | 5200 | 0.911 | [Download](5200/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-5200](5200/previews/pattern_1.png) | ![pattern_2-5200](5200/previews/pattern_2.png) | ![pattern_3-5200](5200/previews/pattern_3.png) | ![pattern_4-5200](5200/previews/pattern_4.png) | ![pattern_5-5200](5200/previews/pattern_5.png) | ![pattern_6-5200](5200/previews/pattern_6.png) | ![pattern_7-5200](5200/previews/pattern_7.png) | ![pattern_8-5200](5200/previews/pattern_8.png) | ![pattern_9-5200](5200/previews/pattern_9.png) | ![pattern_10-5200](5200/previews/pattern_10.png) | ![pattern_11-5200](5200/previews/pattern_11.png) | ![pattern_12-5200](5200/previews/pattern_12.png) | ![pattern_13-5200](5200/previews/pattern_13.png) | ![pattern_14-5200](5200/previews/pattern_14.png) | [<NSFW, click to see>](5200/previews/pattern_15.png) | ![bikini-5200](5200/previews/bikini.png) | [<NSFW, click to see>](5200/previews/bondage.png) | ![free-5200](5200/previews/free.png) | ![maid-5200](5200/previews/maid.png) | ![miko-5200](5200/previews/miko.png) | [<NSFW, click to see>](5200/previews/nude.png) | [<NSFW, click to see>](5200/previews/nude2.png) | ![suit-5200](5200/previews/suit.png) | ![yukata-5200](5200/previews/yukata.png) | | 4680 | 0.902 | [Download](4680/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-4680](4680/previews/pattern_1.png) | ![pattern_2-4680](4680/previews/pattern_2.png) | ![pattern_3-4680](4680/previews/pattern_3.png) | ![pattern_4-4680](4680/previews/pattern_4.png) | ![pattern_5-4680](4680/previews/pattern_5.png) | ![pattern_6-4680](4680/previews/pattern_6.png) | ![pattern_7-4680](4680/previews/pattern_7.png) | ![pattern_8-4680](4680/previews/pattern_8.png) | ![pattern_9-4680](4680/previews/pattern_9.png) | ![pattern_10-4680](4680/previews/pattern_10.png) | ![pattern_11-4680](4680/previews/pattern_11.png) | ![pattern_12-4680](4680/previews/pattern_12.png) | ![pattern_13-4680](4680/previews/pattern_13.png) | ![pattern_14-4680](4680/previews/pattern_14.png) | [<NSFW, click to see>](4680/previews/pattern_15.png) | ![bikini-4680](4680/previews/bikini.png) | [<NSFW, click to see>](4680/previews/bondage.png) | ![free-4680](4680/previews/free.png) | ![maid-4680](4680/previews/maid.png) | ![miko-4680](4680/previews/miko.png) | [<NSFW, click to see>](4680/previews/nude.png) | [<NSFW, click to see>](4680/previews/nude2.png) | ![suit-4680](4680/previews/suit.png) | ![yukata-4680](4680/previews/yukata.png) | | 4160 | 0.833 | [Download](4160/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-4160](4160/previews/pattern_1.png) | ![pattern_2-4160](4160/previews/pattern_2.png) | ![pattern_3-4160](4160/previews/pattern_3.png) | ![pattern_4-4160](4160/previews/pattern_4.png) | ![pattern_5-4160](4160/previews/pattern_5.png) | ![pattern_6-4160](4160/previews/pattern_6.png) | ![pattern_7-4160](4160/previews/pattern_7.png) | ![pattern_8-4160](4160/previews/pattern_8.png) | ![pattern_9-4160](4160/previews/pattern_9.png) | ![pattern_10-4160](4160/previews/pattern_10.png) | ![pattern_11-4160](4160/previews/pattern_11.png) | ![pattern_12-4160](4160/previews/pattern_12.png) | ![pattern_13-4160](4160/previews/pattern_13.png) | ![pattern_14-4160](4160/previews/pattern_14.png) | [<NSFW, click to see>](4160/previews/pattern_15.png) | ![bikini-4160](4160/previews/bikini.png) | [<NSFW, click to see>](4160/previews/bondage.png) | ![free-4160](4160/previews/free.png) | ![maid-4160](4160/previews/maid.png) | ![miko-4160](4160/previews/miko.png) | [<NSFW, click to see>](4160/previews/nude.png) | [<NSFW, click to see>](4160/previews/nude2.png) | ![suit-4160](4160/previews/suit.png) | ![yukata-4160](4160/previews/yukata.png) | | 3640 | 0.885 | [Download](3640/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-3640](3640/previews/pattern_1.png) | ![pattern_2-3640](3640/previews/pattern_2.png) | ![pattern_3-3640](3640/previews/pattern_3.png) | ![pattern_4-3640](3640/previews/pattern_4.png) | ![pattern_5-3640](3640/previews/pattern_5.png) | ![pattern_6-3640](3640/previews/pattern_6.png) | ![pattern_7-3640](3640/previews/pattern_7.png) | ![pattern_8-3640](3640/previews/pattern_8.png) | ![pattern_9-3640](3640/previews/pattern_9.png) | ![pattern_10-3640](3640/previews/pattern_10.png) | ![pattern_11-3640](3640/previews/pattern_11.png) | ![pattern_12-3640](3640/previews/pattern_12.png) | ![pattern_13-3640](3640/previews/pattern_13.png) | ![pattern_14-3640](3640/previews/pattern_14.png) | [<NSFW, click to see>](3640/previews/pattern_15.png) | ![bikini-3640](3640/previews/bikini.png) | [<NSFW, click to see>](3640/previews/bondage.png) | ![free-3640](3640/previews/free.png) | ![maid-3640](3640/previews/maid.png) | ![miko-3640](3640/previews/miko.png) | [<NSFW, click to see>](3640/previews/nude.png) | [<NSFW, click to see>](3640/previews/nude2.png) | ![suit-3640](3640/previews/suit.png) | ![yukata-3640](3640/previews/yukata.png) | | 3120 | 0.882 | [Download](3120/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-3120](3120/previews/pattern_1.png) | ![pattern_2-3120](3120/previews/pattern_2.png) | ![pattern_3-3120](3120/previews/pattern_3.png) | ![pattern_4-3120](3120/previews/pattern_4.png) | ![pattern_5-3120](3120/previews/pattern_5.png) | ![pattern_6-3120](3120/previews/pattern_6.png) | ![pattern_7-3120](3120/previews/pattern_7.png) | ![pattern_8-3120](3120/previews/pattern_8.png) | ![pattern_9-3120](3120/previews/pattern_9.png) | ![pattern_10-3120](3120/previews/pattern_10.png) | ![pattern_11-3120](3120/previews/pattern_11.png) | ![pattern_12-3120](3120/previews/pattern_12.png) | ![pattern_13-3120](3120/previews/pattern_13.png) | ![pattern_14-3120](3120/previews/pattern_14.png) | [<NSFW, click to see>](3120/previews/pattern_15.png) | ![bikini-3120](3120/previews/bikini.png) | [<NSFW, click to see>](3120/previews/bondage.png) | ![free-3120](3120/previews/free.png) | ![maid-3120](3120/previews/maid.png) | ![miko-3120](3120/previews/miko.png) | [<NSFW, click to see>](3120/previews/nude.png) | [<NSFW, click to see>](3120/previews/nude2.png) | ![suit-3120](3120/previews/suit.png) | ![yukata-3120](3120/previews/yukata.png) | | 2600 | 0.902 | [Download](2600/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-2600](2600/previews/pattern_1.png) | ![pattern_2-2600](2600/previews/pattern_2.png) | ![pattern_3-2600](2600/previews/pattern_3.png) | ![pattern_4-2600](2600/previews/pattern_4.png) | ![pattern_5-2600](2600/previews/pattern_5.png) | ![pattern_6-2600](2600/previews/pattern_6.png) | ![pattern_7-2600](2600/previews/pattern_7.png) | ![pattern_8-2600](2600/previews/pattern_8.png) | ![pattern_9-2600](2600/previews/pattern_9.png) | ![pattern_10-2600](2600/previews/pattern_10.png) | ![pattern_11-2600](2600/previews/pattern_11.png) | ![pattern_12-2600](2600/previews/pattern_12.png) | ![pattern_13-2600](2600/previews/pattern_13.png) | ![pattern_14-2600](2600/previews/pattern_14.png) | [<NSFW, click to see>](2600/previews/pattern_15.png) | ![bikini-2600](2600/previews/bikini.png) | [<NSFW, click to see>](2600/previews/bondage.png) | ![free-2600](2600/previews/free.png) | ![maid-2600](2600/previews/maid.png) | ![miko-2600](2600/previews/miko.png) | [<NSFW, click to see>](2600/previews/nude.png) | [<NSFW, click to see>](2600/previews/nude2.png) | ![suit-2600](2600/previews/suit.png) | ![yukata-2600](2600/previews/yukata.png) | | 2080 | 0.899 | [Download](2080/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-2080](2080/previews/pattern_1.png) | ![pattern_2-2080](2080/previews/pattern_2.png) | ![pattern_3-2080](2080/previews/pattern_3.png) | ![pattern_4-2080](2080/previews/pattern_4.png) | ![pattern_5-2080](2080/previews/pattern_5.png) | ![pattern_6-2080](2080/previews/pattern_6.png) | ![pattern_7-2080](2080/previews/pattern_7.png) | ![pattern_8-2080](2080/previews/pattern_8.png) | ![pattern_9-2080](2080/previews/pattern_9.png) | ![pattern_10-2080](2080/previews/pattern_10.png) | ![pattern_11-2080](2080/previews/pattern_11.png) | ![pattern_12-2080](2080/previews/pattern_12.png) | ![pattern_13-2080](2080/previews/pattern_13.png) | ![pattern_14-2080](2080/previews/pattern_14.png) | [<NSFW, click to see>](2080/previews/pattern_15.png) | ![bikini-2080](2080/previews/bikini.png) | [<NSFW, click to see>](2080/previews/bondage.png) | ![free-2080](2080/previews/free.png) | ![maid-2080](2080/previews/maid.png) | ![miko-2080](2080/previews/miko.png) | [<NSFW, click to see>](2080/previews/nude.png) | [<NSFW, click to see>](2080/previews/nude2.png) | ![suit-2080](2080/previews/suit.png) | ![yukata-2080](2080/previews/yukata.png) | | 1560 | 0.901 | [Download](1560/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-1560](1560/previews/pattern_1.png) | ![pattern_2-1560](1560/previews/pattern_2.png) | ![pattern_3-1560](1560/previews/pattern_3.png) | ![pattern_4-1560](1560/previews/pattern_4.png) | ![pattern_5-1560](1560/previews/pattern_5.png) | ![pattern_6-1560](1560/previews/pattern_6.png) | ![pattern_7-1560](1560/previews/pattern_7.png) | ![pattern_8-1560](1560/previews/pattern_8.png) | ![pattern_9-1560](1560/previews/pattern_9.png) | ![pattern_10-1560](1560/previews/pattern_10.png) | ![pattern_11-1560](1560/previews/pattern_11.png) | ![pattern_12-1560](1560/previews/pattern_12.png) | ![pattern_13-1560](1560/previews/pattern_13.png) | ![pattern_14-1560](1560/previews/pattern_14.png) | [<NSFW, click to see>](1560/previews/pattern_15.png) | ![bikini-1560](1560/previews/bikini.png) | [<NSFW, click to see>](1560/previews/bondage.png) | ![free-1560](1560/previews/free.png) | ![maid-1560](1560/previews/maid.png) | ![miko-1560](1560/previews/miko.png) | [<NSFW, click to see>](1560/previews/nude.png) | [<NSFW, click to see>](1560/previews/nude2.png) | ![suit-1560](1560/previews/suit.png) | ![yukata-1560](1560/previews/yukata.png) | | 1040 | 0.895 | [Download](1040/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-1040](1040/previews/pattern_1.png) | ![pattern_2-1040](1040/previews/pattern_2.png) | ![pattern_3-1040](1040/previews/pattern_3.png) | ![pattern_4-1040](1040/previews/pattern_4.png) | ![pattern_5-1040](1040/previews/pattern_5.png) | ![pattern_6-1040](1040/previews/pattern_6.png) | ![pattern_7-1040](1040/previews/pattern_7.png) | ![pattern_8-1040](1040/previews/pattern_8.png) | ![pattern_9-1040](1040/previews/pattern_9.png) | ![pattern_10-1040](1040/previews/pattern_10.png) | ![pattern_11-1040](1040/previews/pattern_11.png) | ![pattern_12-1040](1040/previews/pattern_12.png) | ![pattern_13-1040](1040/previews/pattern_13.png) | ![pattern_14-1040](1040/previews/pattern_14.png) | [<NSFW, click to see>](1040/previews/pattern_15.png) | ![bikini-1040](1040/previews/bikini.png) | [<NSFW, click to see>](1040/previews/bondage.png) | ![free-1040](1040/previews/free.png) | ![maid-1040](1040/previews/maid.png) | ![miko-1040](1040/previews/miko.png) | [<NSFW, click to see>](1040/previews/nude.png) | [<NSFW, click to see>](1040/previews/nude2.png) | ![suit-1040](1040/previews/suit.png) | ![yukata-1040](1040/previews/yukata.png) | | 520 | 0.778 | [Download](520/ootsuki_yui_idolmastercinderellagirls.zip) | ![pattern_1-520](520/previews/pattern_1.png) | ![pattern_2-520](520/previews/pattern_2.png) | ![pattern_3-520](520/previews/pattern_3.png) | ![pattern_4-520](520/previews/pattern_4.png) | ![pattern_5-520](520/previews/pattern_5.png) | ![pattern_6-520](520/previews/pattern_6.png) | ![pattern_7-520](520/previews/pattern_7.png) | ![pattern_8-520](520/previews/pattern_8.png) | ![pattern_9-520](520/previews/pattern_9.png) | ![pattern_10-520](520/previews/pattern_10.png) | ![pattern_11-520](520/previews/pattern_11.png) | ![pattern_12-520](520/previews/pattern_12.png) | ![pattern_13-520](520/previews/pattern_13.png) | ![pattern_14-520](520/previews/pattern_14.png) | [<NSFW, click to see>](520/previews/pattern_15.png) | ![bikini-520](520/previews/bikini.png) | [<NSFW, click to see>](520/previews/bondage.png) | ![free-520](520/previews/free.png) | ![maid-520](520/previews/maid.png) | ![miko-520](520/previews/miko.png) | [<NSFW, click to see>](520/previews/nude.png) | [<NSFW, click to see>](520/previews/nude2.png) | ![suit-520](520/previews/suit.png) | ![yukata-520](520/previews/yukata.png) |
Doctor-Shotgun/CalliopeDS-L2-13B-exl2
Doctor-Shotgun
2023-09-16T09:04:14Z
10
2
transformers
[ "transformers", "llama", "text-generation", "llama-2", "en", "license:agpl-3.0", "autotrain_compatible", "region:us" ]
text-generation
2023-09-16T02:43:51Z
--- inference: false language: - en pipeline_tag: text-generation tags: - llama - llama-2 license: agpl-3.0 --- # CalliopeDS-L2-13B-exl2 Exllama v2 quant of [Doctor-Shotgun/CalliopeDS-L2-13B](https://huggingface.co/Doctor-Shotgun/CalliopeDS-L2-13B) Branches: - main: 4 decoder bits per weight, 6 head bits - ideal for 12gb GPUs, or 16gb GPUs with NTK extended context or CFG - 6.0bpw-h6: 6 decoder bits per weight, 6 head bits - ideal for 16gb GPUs, or 24gb GPUs with NTK extended context or CFG - 8bit-32g-h8: all tensors 8bit 32g, 8 head bits - experimental quant, this is with exllamav2 monkeypatched to quantize all tensors to 8bit 32g - similar in size to old GPTQ 8bit no groupsize, recommend 24gb GPU - maxbpw-h8: ???bpw, 8 head bits - experimental quant, this is the maximum optimized mixed quant size that the current version of exllamav2 produces - somewhat larger than 6.0bpw but not as large as 8bit, recommend 24gb GPU
Shishir1807/CT_M4
Shishir1807
2023-09-16T09:01:56Z
164
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T09:01:16Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/CT_M4", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/CT_M4", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/CT_M4", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/CT_M4" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
kishanmurthy/bloom-3b-finetuned-squad-v2
kishanmurthy
2023-09-16T08:47:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-16T06:55:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
CyberHarem/shirai_kuroko_toarumajutsunoindex
CyberHarem
2023-09-16T08:36:42Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/shirai_kuroko_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T18:41:30Z
--- license: mit datasets: - CyberHarem/shirai_kuroko_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of shirai_kuroko_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7200, you need to download `7200/shirai_kuroko_toarumajutsunoindex.pt` as the embedding and `7200/shirai_kuroko_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7200**, with the score of 0.932. The trigger words are: 1. `shirai_kuroko_toarumajutsunoindex` 2. `twintails, brown_hair, long_hair, bow, hair_bow, brown_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **7200** | **0.932** | [**Download**](7200/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![pattern_11-7200](7200/previews/pattern_11.png) | ![bikini-7200](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6720 | 0.857 | [Download](6720/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-6720](6720/previews/pattern_1.png) | ![pattern_2-6720](6720/previews/pattern_2.png) | ![pattern_3-6720](6720/previews/pattern_3.png) | ![pattern_4-6720](6720/previews/pattern_4.png) | ![pattern_5-6720](6720/previews/pattern_5.png) | ![pattern_6-6720](6720/previews/pattern_6.png) | ![pattern_7-6720](6720/previews/pattern_7.png) | ![pattern_8-6720](6720/previews/pattern_8.png) | ![pattern_9-6720](6720/previews/pattern_9.png) | ![pattern_10-6720](6720/previews/pattern_10.png) | ![pattern_11-6720](6720/previews/pattern_11.png) | ![bikini-6720](6720/previews/bikini.png) | [<NSFW, click to see>](6720/previews/bondage.png) | ![free-6720](6720/previews/free.png) | ![maid-6720](6720/previews/maid.png) | ![miko-6720](6720/previews/miko.png) | [<NSFW, click to see>](6720/previews/nude.png) | [<NSFW, click to see>](6720/previews/nude2.png) | ![suit-6720](6720/previews/suit.png) | ![yukata-6720](6720/previews/yukata.png) | | 6240 | 0.879 | [Download](6240/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![pattern_11-6240](6240/previews/pattern_11.png) | ![bikini-6240](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5760 | 0.890 | [Download](5760/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-5760](5760/previews/pattern_1.png) | ![pattern_2-5760](5760/previews/pattern_2.png) | ![pattern_3-5760](5760/previews/pattern_3.png) | ![pattern_4-5760](5760/previews/pattern_4.png) | ![pattern_5-5760](5760/previews/pattern_5.png) | ![pattern_6-5760](5760/previews/pattern_6.png) | ![pattern_7-5760](5760/previews/pattern_7.png) | ![pattern_8-5760](5760/previews/pattern_8.png) | ![pattern_9-5760](5760/previews/pattern_9.png) | ![pattern_10-5760](5760/previews/pattern_10.png) | ![pattern_11-5760](5760/previews/pattern_11.png) | ![bikini-5760](5760/previews/bikini.png) | [<NSFW, click to see>](5760/previews/bondage.png) | ![free-5760](5760/previews/free.png) | ![maid-5760](5760/previews/maid.png) | ![miko-5760](5760/previews/miko.png) | [<NSFW, click to see>](5760/previews/nude.png) | [<NSFW, click to see>](5760/previews/nude2.png) | ![suit-5760](5760/previews/suit.png) | ![yukata-5760](5760/previews/yukata.png) | | 5280 | 0.851 | [Download](5280/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-5280](5280/previews/pattern_1.png) | ![pattern_2-5280](5280/previews/pattern_2.png) | ![pattern_3-5280](5280/previews/pattern_3.png) | ![pattern_4-5280](5280/previews/pattern_4.png) | ![pattern_5-5280](5280/previews/pattern_5.png) | ![pattern_6-5280](5280/previews/pattern_6.png) | ![pattern_7-5280](5280/previews/pattern_7.png) | ![pattern_8-5280](5280/previews/pattern_8.png) | ![pattern_9-5280](5280/previews/pattern_9.png) | ![pattern_10-5280](5280/previews/pattern_10.png) | ![pattern_11-5280](5280/previews/pattern_11.png) | ![bikini-5280](5280/previews/bikini.png) | [<NSFW, click to see>](5280/previews/bondage.png) | ![free-5280](5280/previews/free.png) | ![maid-5280](5280/previews/maid.png) | ![miko-5280](5280/previews/miko.png) | [<NSFW, click to see>](5280/previews/nude.png) | [<NSFW, click to see>](5280/previews/nude2.png) | ![suit-5280](5280/previews/suit.png) | ![yukata-5280](5280/previews/yukata.png) | | 4800 | 0.904 | [Download](4800/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![pattern_11-4800](4800/previews/pattern_11.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4320 | 0.884 | [Download](4320/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![pattern_11-4320](4320/previews/pattern_11.png) | ![bikini-4320](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3840 | 0.869 | [Download](3840/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-3840](3840/previews/pattern_1.png) | ![pattern_2-3840](3840/previews/pattern_2.png) | ![pattern_3-3840](3840/previews/pattern_3.png) | ![pattern_4-3840](3840/previews/pattern_4.png) | ![pattern_5-3840](3840/previews/pattern_5.png) | ![pattern_6-3840](3840/previews/pattern_6.png) | ![pattern_7-3840](3840/previews/pattern_7.png) | ![pattern_8-3840](3840/previews/pattern_8.png) | ![pattern_9-3840](3840/previews/pattern_9.png) | ![pattern_10-3840](3840/previews/pattern_10.png) | ![pattern_11-3840](3840/previews/pattern_11.png) | ![bikini-3840](3840/previews/bikini.png) | [<NSFW, click to see>](3840/previews/bondage.png) | ![free-3840](3840/previews/free.png) | ![maid-3840](3840/previews/maid.png) | ![miko-3840](3840/previews/miko.png) | [<NSFW, click to see>](3840/previews/nude.png) | [<NSFW, click to see>](3840/previews/nude2.png) | ![suit-3840](3840/previews/suit.png) | ![yukata-3840](3840/previews/yukata.png) | | 3360 | 0.890 | [Download](3360/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-3360](3360/previews/pattern_1.png) | ![pattern_2-3360](3360/previews/pattern_2.png) | ![pattern_3-3360](3360/previews/pattern_3.png) | ![pattern_4-3360](3360/previews/pattern_4.png) | ![pattern_5-3360](3360/previews/pattern_5.png) | ![pattern_6-3360](3360/previews/pattern_6.png) | ![pattern_7-3360](3360/previews/pattern_7.png) | ![pattern_8-3360](3360/previews/pattern_8.png) | ![pattern_9-3360](3360/previews/pattern_9.png) | ![pattern_10-3360](3360/previews/pattern_10.png) | ![pattern_11-3360](3360/previews/pattern_11.png) | ![bikini-3360](3360/previews/bikini.png) | [<NSFW, click to see>](3360/previews/bondage.png) | ![free-3360](3360/previews/free.png) | ![maid-3360](3360/previews/maid.png) | ![miko-3360](3360/previews/miko.png) | [<NSFW, click to see>](3360/previews/nude.png) | [<NSFW, click to see>](3360/previews/nude2.png) | ![suit-3360](3360/previews/suit.png) | ![yukata-3360](3360/previews/yukata.png) | | 2880 | 0.854 | [Download](2880/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-2880](2880/previews/pattern_1.png) | ![pattern_2-2880](2880/previews/pattern_2.png) | ![pattern_3-2880](2880/previews/pattern_3.png) | ![pattern_4-2880](2880/previews/pattern_4.png) | ![pattern_5-2880](2880/previews/pattern_5.png) | ![pattern_6-2880](2880/previews/pattern_6.png) | ![pattern_7-2880](2880/previews/pattern_7.png) | ![pattern_8-2880](2880/previews/pattern_8.png) | ![pattern_9-2880](2880/previews/pattern_9.png) | ![pattern_10-2880](2880/previews/pattern_10.png) | ![pattern_11-2880](2880/previews/pattern_11.png) | ![bikini-2880](2880/previews/bikini.png) | [<NSFW, click to see>](2880/previews/bondage.png) | ![free-2880](2880/previews/free.png) | ![maid-2880](2880/previews/maid.png) | ![miko-2880](2880/previews/miko.png) | [<NSFW, click to see>](2880/previews/nude.png) | [<NSFW, click to see>](2880/previews/nude2.png) | ![suit-2880](2880/previews/suit.png) | ![yukata-2880](2880/previews/yukata.png) | | 2400 | 0.881 | [Download](2400/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![pattern_11-2400](2400/previews/pattern_11.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1920 | 0.757 | [Download](1920/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-1920](1920/previews/pattern_1.png) | ![pattern_2-1920](1920/previews/pattern_2.png) | ![pattern_3-1920](1920/previews/pattern_3.png) | ![pattern_4-1920](1920/previews/pattern_4.png) | ![pattern_5-1920](1920/previews/pattern_5.png) | ![pattern_6-1920](1920/previews/pattern_6.png) | ![pattern_7-1920](1920/previews/pattern_7.png) | ![pattern_8-1920](1920/previews/pattern_8.png) | ![pattern_9-1920](1920/previews/pattern_9.png) | ![pattern_10-1920](1920/previews/pattern_10.png) | ![pattern_11-1920](1920/previews/pattern_11.png) | ![bikini-1920](1920/previews/bikini.png) | [<NSFW, click to see>](1920/previews/bondage.png) | ![free-1920](1920/previews/free.png) | ![maid-1920](1920/previews/maid.png) | ![miko-1920](1920/previews/miko.png) | [<NSFW, click to see>](1920/previews/nude.png) | [<NSFW, click to see>](1920/previews/nude2.png) | ![suit-1920](1920/previews/suit.png) | ![yukata-1920](1920/previews/yukata.png) | | 1440 | 0.790 | [Download](1440/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-1440](1440/previews/pattern_1.png) | ![pattern_2-1440](1440/previews/pattern_2.png) | ![pattern_3-1440](1440/previews/pattern_3.png) | ![pattern_4-1440](1440/previews/pattern_4.png) | ![pattern_5-1440](1440/previews/pattern_5.png) | ![pattern_6-1440](1440/previews/pattern_6.png) | ![pattern_7-1440](1440/previews/pattern_7.png) | ![pattern_8-1440](1440/previews/pattern_8.png) | ![pattern_9-1440](1440/previews/pattern_9.png) | ![pattern_10-1440](1440/previews/pattern_10.png) | ![pattern_11-1440](1440/previews/pattern_11.png) | ![bikini-1440](1440/previews/bikini.png) | [<NSFW, click to see>](1440/previews/bondage.png) | ![free-1440](1440/previews/free.png) | ![maid-1440](1440/previews/maid.png) | ![miko-1440](1440/previews/miko.png) | [<NSFW, click to see>](1440/previews/nude.png) | [<NSFW, click to see>](1440/previews/nude2.png) | ![suit-1440](1440/previews/suit.png) | ![yukata-1440](1440/previews/yukata.png) | | 960 | 0.569 | [Download](960/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-960](960/previews/pattern_1.png) | ![pattern_2-960](960/previews/pattern_2.png) | ![pattern_3-960](960/previews/pattern_3.png) | ![pattern_4-960](960/previews/pattern_4.png) | ![pattern_5-960](960/previews/pattern_5.png) | ![pattern_6-960](960/previews/pattern_6.png) | ![pattern_7-960](960/previews/pattern_7.png) | ![pattern_8-960](960/previews/pattern_8.png) | ![pattern_9-960](960/previews/pattern_9.png) | ![pattern_10-960](960/previews/pattern_10.png) | ![pattern_11-960](960/previews/pattern_11.png) | ![bikini-960](960/previews/bikini.png) | [<NSFW, click to see>](960/previews/bondage.png) | ![free-960](960/previews/free.png) | ![maid-960](960/previews/maid.png) | ![miko-960](960/previews/miko.png) | [<NSFW, click to see>](960/previews/nude.png) | [<NSFW, click to see>](960/previews/nude2.png) | ![suit-960](960/previews/suit.png) | ![yukata-960](960/previews/yukata.png) | | 480 | 0.451 | [Download](480/shirai_kuroko_toarumajutsunoindex.zip) | ![pattern_1-480](480/previews/pattern_1.png) | ![pattern_2-480](480/previews/pattern_2.png) | ![pattern_3-480](480/previews/pattern_3.png) | ![pattern_4-480](480/previews/pattern_4.png) | ![pattern_5-480](480/previews/pattern_5.png) | ![pattern_6-480](480/previews/pattern_6.png) | ![pattern_7-480](480/previews/pattern_7.png) | ![pattern_8-480](480/previews/pattern_8.png) | ![pattern_9-480](480/previews/pattern_9.png) | ![pattern_10-480](480/previews/pattern_10.png) | ![pattern_11-480](480/previews/pattern_11.png) | ![bikini-480](480/previews/bikini.png) | [<NSFW, click to see>](480/previews/bondage.png) | ![free-480](480/previews/free.png) | ![maid-480](480/previews/maid.png) | ![miko-480](480/previews/miko.png) | [<NSFW, click to see>](480/previews/nude.png) | [<NSFW, click to see>](480/previews/nude2.png) | ![suit-480](480/previews/suit.png) | ![yukata-480](480/previews/yukata.png) |
mhasnanr/image_classification
mhasnanr
2023-09-16T08:27:57Z
216
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-16T08:27:17Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2966 - Accuracy: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4307 | 0.475 | | No log | 2.0 | 80 | 1.3231 | 0.5125 | | No log | 3.0 | 120 | 1.3044 | 0.5437 | | No log | 4.0 | 160 | 1.3204 | 0.525 | | No log | 5.0 | 200 | 1.2457 | 0.5875 | | No log | 6.0 | 240 | 1.3604 | 0.5125 | | No log | 7.0 | 280 | 1.2296 | 0.5813 | | No log | 8.0 | 320 | 1.3598 | 0.525 | | No log | 9.0 | 360 | 1.3343 | 0.5188 | | No log | 10.0 | 400 | 1.4003 | 0.5625 | | No log | 11.0 | 440 | 1.3580 | 0.5563 | | No log | 12.0 | 480 | 1.3214 | 0.5687 | | 0.4908 | 13.0 | 520 | 1.3713 | 0.5312 | | 0.4908 | 14.0 | 560 | 1.3820 | 0.55 | | 0.4908 | 15.0 | 600 | 1.3384 | 0.5813 | | 0.4908 | 16.0 | 640 | 1.4905 | 0.5375 | | 0.4908 | 17.0 | 680 | 1.3985 | 0.5687 | | 0.4908 | 18.0 | 720 | 1.4733 | 0.5312 | | 0.4908 | 19.0 | 760 | 1.3403 | 0.5813 | | 0.4908 | 20.0 | 800 | 1.3991 | 0.5563 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
pralaypati/stable-diffusion-fine-tuned
pralaypati
2023-09-16T08:25:10Z
30
0
diffusers
[ "diffusers", "safetensors", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T06:52:18Z
--- license: apache-2.0 --- A sample fine-tuned version of a pre-trained stable diffusion model. Model has been fine-tuned on two subjects and the corresponding prompts.
aapoorv75/whisper-large-v2-hindi-for-yes-no-100steps
aapoorv75
2023-09-16T07:43:41Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-16T07:43:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Henok21/test_trainer
Henok21
2023-09-16T07:38:40Z
30
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-28T15:44:30Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7351 - eval_accuracy: 0.7076 - eval_runtime: 63.312 - eval_samples_per_second: 31.605 - eval_steps_per_second: 1.99 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
minhbui/viettel_v1_mix_100k
minhbui
2023-09-16T07:19:29Z
4
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "vi", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-16T03:51:46Z
--- license: llama2 language: - vi - en --- Our model finetune qlora on 100k samples (50k dolphins data + 43k webglm data + 10k squad paraphrases answer). All the data is translated into Vietnamese.
om-ashish-soni/pos-ner-tagging-v4
om-ashish-soni
2023-09-16T07:16:33Z
104
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:om-ashish-soni/pos-ner-tagging-v3", "base_model:finetune:om-ashish-soni/pos-ner-tagging-v3", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-16T06:15:47Z
--- license: apache-2.0 base_model: om-ashish-soni/pos-ner-tagging-v3 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: pos-ner-tagging-v4 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9242642437694764 - name: Recall type: recall value: 0.9264290339671514 - name: F1 type: f1 value: 0.9244306954134476 - name: Accuracy type: accuracy value: 0.9264290339671514 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos-ner-tagging-v4 This model is a fine-tuned version of [om-ashish-soni/pos-ner-tagging-v3](https://huggingface.co/om-ashish-soni/pos-ner-tagging-v3) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.6642 - Precision: 0.9243 - Recall: 0.9264 - F1: 0.9244 - Accuracy: 0.9264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.98 | 54 | 0.6425 | 0.9254 | 0.9272 | 0.9250 | 0.9272 | | No log | 1.99 | 109 | 0.6624 | 0.9239 | 0.9261 | 0.9240 | 0.9261 | | No log | 2.99 | 164 | 0.6593 | 0.9245 | 0.9267 | 0.9245 | 0.9267 | | No log | 3.99 | 219 | 0.6608 | 0.9251 | 0.9270 | 0.9250 | 0.9270 | | No log | 4.99 | 274 | 0.6698 | 0.9246 | 0.9269 | 0.9245 | 0.9269 | | No log | 6.0 | 329 | 0.6648 | 0.9246 | 0.9264 | 0.9244 | 0.9264 | | No log | 7.0 | 384 | 0.6651 | 0.9244 | 0.9266 | 0.9245 | 0.9266 | | No log | 7.87 | 432 | 0.6642 | 0.9243 | 0.9264 | 0.9244 | 0.9264 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ngeg2015/bert-base-banking77-pt2
ngeg2015
2023-09-16T07:13:58Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:banking77", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T06:46:28Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - banking77 metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: test[0:10] args: default metrics: - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 2.0297 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 4 | 3.0563 | 0.8889 | | No log | 2.0 | 8 | 2.3672 | 1.0 | | No log | 3.0 | 12 | 2.0297 | 1.0 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
cedricsarigumba/llama2-qlora-finetunined-french
cedricsarigumba
2023-09-16T07:12:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-16T07:12:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
espnet/eason_gigaspeech_train_asr2_e_branchformer12_lr_raw_wavlm_large_21_km1000
espnet
2023-09-16T06:51:40Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:gigaspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-09-16T06:42:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - gigaspeech license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/eason_gigaspeech_train_asr2_e_branchformer12_lr_raw_wavlm_large_21_km1000` This model was trained by yichenl5 using gigaspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 6296b27ed648631ce3aa63182d9b3b8230b5e34e pip install -e . cd egs2/gigaspeech/asr2 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/eason_gigaspeech_train_asr2_e_branchformer12_lr_raw_wavlm_large_21_km1000 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Sep 9 03:24:28 EDT 2023` - python version: `3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0]` - espnet version: `espnet 202308` - pytorch version: `pytorch 1.13.1+cu117` - Git hash: `83e687f3b41310a000f4a5b65857734709752bf6` - Commit date: `Tue Aug 15 18:31:02 2023 -0400` ## exp/asr_train_discrete_asr_e_branchformer1_e12_lr_raw_wavlm_large_21_km1000_bpe_rm6000_bpe_ts3000 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/test|19930|392325|89.0|6.9|4.1|1.9|12.9|73.4| |decode_ctc0.3_asr_model_valid.acc.best/test|19930|392325|88.8|6.8|4.3|1.9|13.1|74.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/test|19930|2056231|95.1|1.5|3.4|1.5|6.4|73.4| |decode_ctc0.3_asr_model_valid.acc.best/test|19930|2056231|94.9|1.5|3.6|1.5|6.6|74.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/test|19930|527751|88.8|5.5|5.7|1.7|13.0|73.4| |decode_ctc0.3_asr_model_valid.acc.best/test|19930|527751|88.5|5.5|6.0|1.7|13.2|74.5| ## exp/asr_train_discrete_asr_e_branchformer1_e12_lr_raw_wavlm_large_21_km1000_bpe_rm6000_bpe_ts3000/decode_ctc0.3_asr_model_valid.acc.best ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|129240|89.4|6.2|4.4|2.3|12.9|79.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|673778|95.4|1.3|3.3|1.8|6.4|79.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|170948|89.2|5.0|5.7|1.9|12.7|79.5| ## exp/asr_train_discrete_asr_e_branchformer1_e12_lr_raw_wavlm_large_21_km1000_bpe_rm6000_bpe_ts3000/decode_ctc0.3_asr_model_valid.acc.ave ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|129240|89.5|6.3|4.2|2.4|12.9|78.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|673778|95.5|1.3|3.2|1.9|6.3|78.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |org/dev|5715|170948|89.5|5.1|5.5|2.0|12.5|78.8| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_discrete_asr_e_branchformer1_e12_lr.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/asr_train_discrete_asr_e_branchformer1_e12_lr_raw_wavlm_large_21_km1000_bpe_rm6000_bpe_ts3000 ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 1 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38805 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 1000 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 50000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe6000_bpe3000/train/text_shape.bpe - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe6000_bpe3000/train/src_text_shape.bpe valid_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe6000_bpe3000/valid/text_shape.bpe - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe6000_bpe3000/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 150 - 150 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/raw/train/text.ts.en - text - text - - dump/raw/train/text.rm.wavlm_large_21_km1000 - src_text - text valid_data_path_and_name_and_type: - - dump/raw/dev/text.ts.en - text - text - - dump/raw/dev/text.rm.wavlm_large_21_km1000 - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - S - ▁THE - ▁TO - ▁A - ▁OF - ▁AND - '''' - ▁THAT - ▁IN - ▁I - ▁YOU - T - ▁IT - ED - ▁IS - ING - D - ▁WAS - ▁WE - ▁FOR - RE - ▁THIS - ▁BE - ▁ON - ▁WITH - ▁HAVE - ▁SO - ▁HE - LY - Y - M - N - ▁NOT - ▁ARE - ▁THEY - ER - ▁LIKE - ▁AS - E - ▁AT - ▁KNOW - ▁WHAT - ▁DO - ▁CAN - R - ▁ME - ▁ABOUT - ▁ALL - ▁HIS - ▁HAD - '-' - ▁ONE - ▁OR - ▁FROM - ▁MY - ▁THERE - ▁BUT - ▁AN - ▁JUST - ▁YOUR - ▁BY - ▁OUT - ▁IF - ▁S - ▁UP - ▁WERE - ▁PEOPLE - ▁HER - ▁THINK - AL - ▁WOULD - LL - ▁SHE - O - VE - ▁WHO - L - ▁MORE - ▁THEIR - ▁OUR - LE - ▁WHEN - ▁THEM - IN - ▁WILL - ▁WHICH - ▁VERY - C - ▁SOME - P - ▁TIME - ▁GET - ▁NO - ▁BEEN - ES - ▁HAS - A - ▁GOING - G - ▁HIM - ▁REALLY - ▁RE - ▁HOW - ▁DON - ▁GO - ▁C - ▁NOW - ▁BECAUSE - ▁THEN - OR - ▁INTO - RI - ▁THESE - ▁OTHER - ▁SEE - ▁RIGHT - ▁SAID - W - ▁HERE - B - ▁US - ▁WAY - ▁WANT - ▁TWO - ▁COULD - ATION - ▁OVER - ▁SAY - TH - ▁AH - IL - ▁WHERE - ▁BACK - K - ▁ALSO - ▁KIND - ▁THOSE - CK - ▁THINGS - ▁MAKE - ION - CH - LI - F - ▁DE - AR - ▁MUCH - ▁E - ▁WELL - ▁GOOD - I - ▁DID - ▁WORK - ERS - ▁FIRST - ▁THAN - ▁LITTLE - CE - AN - ▁LOT - ▁NEW - ▁MAN - ▁EVEN - ▁DOWN - ▁UN - ▁ANY - U - ▁GOT - ▁SOMETHING - ▁F - IC - LO - ▁THING - ▁GREAT - ▁TAKE - ITY - ABLE - ▁SHOULD - NE - TER - ▁COME - IT - ENT - LA - ▁ONLY - 'ON' - ▁ACTUALLY - MENT - ▁LOOK - RY - ▁BEING - ▁NEED - ▁THROUGH - ▁MOST - RO - ▁PART - KE - RA - ▁WORLD - EL - ▁MANY - H - IVE - ▁CO - ▁LIFE - ▁YEARS - ▁UM - ▁DAY - DE - ▁MEAN - ATE - ▁YEAH - ▁SHOW - ▁BEFORE - TE - EN - UR - ▁THREE - ET - ▁OWN - ▁MA - ▁DIFFERENT - IST - ▁MIGHT - US - ▁MADE - EST - ▁LET - ▁PO - Z - IR - ▁AGAIN - ▁B - ▁PLACE - ▁LOVE - ▁AFTER - ▁POINT - ▁USE - OL - ▁HELP - NESS - ▁CON - ▁NEVER - ▁LONG - ▁OFF - ▁STILL - ▁END - ▁MAY - ▁PUT - ▁PRO - X - ▁SAME - ▁EVERY - ▁LA - ▁RA - ▁DIS - ▁BA - SH - AT - NA - ▁TOO - ▁G - ANT - UL - ▁THOUGHT - TI - ▁GIVE - ▁LAST - MA - ▁DOING - AGE - ▁OLD - TA - ▁AROUND - ▁CAME - ▁SORT - ME - IES - ▁BO - ▁P - IS - ▁O - ▁FIND - ▁WHY - ▁TALK - AS - ▁FIVE - ▁TELL - ▁EX - ▁GRA - VI - TIC - IA - ▁YEAR - ▁AM - ▁PRE - ▁ALWAYS - ▁FEEL - ▁DIDN - ▁CA - ▁D - ▁MO - ▁FOUR - ▁QUESTION - ▁BIT - ▁ANOTHER - ATED - ▁SUCH - ANCE - ▁THOUSAND - ▁TA - ▁UNDER - ▁HIGH - ▁WENT - ▁DOES - ▁HAND - '000' - ▁IDEA - ▁HOME - ▁LI - ▁HUNDRED - ▁NAME - FUL - ▁NEXT - ▁START - ENCE - ID - ▁VI - ▁COURSE - TO - UM - ▁SCHOOL - TED - ▁HOUSE - ▁NUMBER - MP - GE - PH - CI - IAN - ▁FOUND - OUS - ▁CALL - ▁CALLED - ▁BU - V - ▁AWAY - ▁CHANGE - VER - ▁DONE - ▁OPEN - ▁BIG - ▁PERSON - ▁HARD - ▁FAR - AD - ▁K - ▁SURE - ▁TWENTY - ▁BETTER - ▁TEN - ▁MAR - ▁CAR - ▁SET - ARY - ▁HEAD - ▁DI - PE - ▁HA - ▁GONNA - ▁FACT - MO - CO - ▁RO - ▁ST - LESS - ▁SYSTEM - ▁MEN - ▁ABLE - IM - ▁EN - ▁LO - ▁IMPORTANT - ▁MUST - ▁APP - TING - ▁TODAY - ▁DA - ▁KEEP - ▁FEW - ▁LE - ▁WAR - ▁EACH - ▁STATE - ▁SIDE - ▁PI - ▁MIND - IE - ▁GA - ▁BETWEEN - ▁EVER - ▁SP - ▁CARE - ▁PER - MAN - MB - ▁REAL - ▁BOTH - TON - ▁HUMAN - ▁MONEY - ▁UPON - INE - AM - ▁MOMENT - ▁WHOLE - MIN - ▁BELIEVE - BA - ▁HO - ▁PLAY - ▁DATA - ▁CONS - ▁BOOK - ▁REASON - 'NO' - PA - CA - ISH - ▁GOD - ▁BEST - ▁DR - ▁HAVING - ▁T - UT - ▁WITHOUT - ▁YOUNG - ▁COMP - ▁LOOKING - ▁SECOND - ▁CASE - ATING - NI - ▁FACE - ▁NE - ▁WEEK - LED - ▁SE - ▁LEFT - ▁TOGETHER - _ - ▁MR - WARD - ▁PUBLIC - ▁READ - ▁BUSINESS - LING - ▁ANYTHING - ▁ONCE - SON - NG - ▁HEALTH - TY - ▁ENOUGH - ▁TI - ▁EXAMPLE - ▁USED - ▁STORY - ▁DOESN - ▁CLOSE - PO - ▁LIVE - ▁TH - ▁QUITE - ▁TALKING - ▁AGAINST - ▁NIGHT - ▁UNDERSTAND - ▁POWER - ▁ANSWER - ▁HOPE - ▁MAYBE - ▁COUNTRY - ▁LARGE - ▁GETTING - TION - ▁THANK - ▁COM - ▁NA - ▁TRYING - ISM - NT - ▁TURN - ▁STA - ▁EXPERIENCE - ▁WHILE - MI - HA - ▁SAW - ▁SIX - ▁SMALL - ▁SHA - ▁FE - ▁FA - PP - RING - ▁HIMSELF - ▁EVERYTHING - ▁LAW - ▁ROOM - LES - ▁HI - ▁U - ▁SA - GG - ▁DU - CU - UN - ▁WATER - ▁SAYS - ▁NOTHING - BO - ▁LIGHT - ▁IMP - ▁SENSE - AK - ▁TOOK - ▁VA - ▁BECOME - ▁WHITE - ▁SUPPORT - ▁STARTED - ▁COMING - FF - ▁PE - ▁W - UP - ▁PROBABLY - ▁FAMILY - ▁ORDER - ▁AL - ▁PRETTY - ▁FORM - ▁BI - PI - ▁TOLD - ▁LINE - ▁SAYING - ▁BLACK - VA - ▁PROCESS - OM - IAL - ▁SEEN - HO - OP - UND - ▁TRY - ▁THOUGH - OW - ▁GROUP - ▁HEAR - ▁PERCENT - GO - LU - ▁MATTER - TEN - RU - ▁GOVERNMENT - ▁WANTED - ▁WORKING - END - ▁ASK - ▁BRING - ▁JE - ▁HEARD - VING - ▁RI - ▁FULL - DI - ▁PRESENT - ▁VIDEO - ▁STE - ▁EM - ▁MAKING - ▁HEART - ▁TRA - CY - BER - ▁ALREADY - '0' - BE - TU - ▁PROBLEM - RON - ▁JOB - ▁YET - ▁RUN - ACH - ▁REMEMBER - ▁PROGRAM - ▁PA - ▁AMERICAN - ▁WALK - ▁WORD - ▁INFORMATION - ▁JU - ▁CHILDREN - ENS - ▁KNEW - ▁SOUND - DO - ▁REPORT - ▁ALMOST - ▁EYES - ▁PAY - ▁YES - ▁ELSE - ▁CLASS - ▁ASKED - ▁OFTEN - ▁LESS - ▁STUFF - ISE - CON - ▁JA - ▁CITY - ▁CHA - ▁COMMUNITY - ▁STEP - ▁WOMEN - ▁MI - ▁FATHER - ATIONS - OT - ▁FREE - HE - ▁LOOKED - WA - ▁PRESIDENT - ▁DAYS - ▁PLAN - ▁REST - ▁WA - ▁WI - ▁TEST - ARD - ▁OH - ▁CHE - IONS - ▁FRIEND - TOR - IG - ▁DEAL - ▁MEANS - ▁WHETHER - ▁SU - CHE - ▁BAD - ▁JO - CTION - LAND - ▁LEVEL - BU - ▁MYSELF - LIC - ▁CAUSE - ▁SEVEN - ▁THIRTY - ▁SPEAK - ▁HALF - ICAL - ▁SIGN - ▁EL - RS - ▁DOOR - ▁SOMEONE - ▁SOCIAL - ROW - ▁MOTHER - ▁ACT - ▁SUB - ▁MISS - ▁GIRL - ▁CHILD - ▁FLA - ▁MU - ▁RESEARCH - ▁LAND - ▁EIGHT - ▁WORDS - ▁AGO - ▁SHALL - ▁QUESTIONS - PER - ▁SINCE - ▁TRUE - MIT - ▁BODY - ▁LEAST - ▁ACROSS - ▁R - ▁MOVE - ▁INTERESTING - LIGHT - ▁BAR - ▁FELT - ATOR - IBLE - TLE - ▁RU - '1' - ▁TRANS - RATION - BI - ▁WITHIN - LINE - ▁HAPPENED - ▁WOMAN - ▁PASS - MON - URE - ▁DEEP - ▁USING - ▁HU - ▁LATER - ▁VOICE - ▁CONSIDER - ▁STATES - ▁COMPANY - ▁STUDENTS - AP - ▁MON - ▁VIEW - ▁ART - FA - ▁LEAVE - ▁HISTORY - ▁PAST - IP - ▁TIMES - ▁DEC - UGH - AG - ▁AB - ▁DOLLARS - ▁OKAY - ▁THINKING - NING - ▁SHORT - KING - AC - ▁PAGE - RAN - ▁ARM - ▁TEAM - ▁FIRE - ▁AIR - ▁CERTAIN - ▁PROVIDE - ▁UNTIL - QUI - ▁AREA - ▁COMES - ▁COURT - RIC - NY - ▁SPACE - ▁PROJECT - ▁BUILDING - ▁PU - ▁BRAIN - ▁BOY - ▁GAME - AIN - ITIES - ▁Z - ▁ALONG - ▁CONTROL - LAR - ▁HAPPEN - ▁DEVELOP - IZED - ▁SHARE - ▁DEATH - WE - ▁HOLD - ▁MARKET - ▁DURING - ▁TYPE - THE - ▁STRONG - ▁LU - ▁MORNING - SHIP - ▁WON - IV - ▁GENERAL - ▁SC - ▁SOON - ▁THEMSELVES - BB - PORT - ▁HAR - VO - ECT - NDER - '6' - ▁SCIENCE - DA - UD - ▁FIGURE - PS - ▁FUTURE - ▁POSSIBLE - ▁PRI - ▁SOMETIMES - ▁FALL - ONE - ▁VE - ▁POST - UAL - ▁GU - ▁FIFTY - WAY - '3' - ▁WATCH - ▁YOURSELF - ▁FI - ▁MILLION - ▁CLEAR - ATIVE - DER - EP - ▁RECORD - ▁GEN - ▁PRODUCT - ▁AGE - SIDE - ▁COVER - ▁ADD - ▁HANDS - ▁GAVE - OS - ▁RATHER - '4' - ITION - '5' - ▁GOES - ▁EARLY - '7' - ▁STAY - DING - ▁EXPECT - ▁LEAD - ▁LEARN - ITE - ▁WIN - ▁PIECE - ▁COUPLE - ▁TU - PING - '2' - CING - GER - GU - ▁FRONT - ▁CONVERSATION - ▁JOHN - ▁CREATE - ▁FORCE - ▁GIVEN - ▁EVERYONE - GRA - ▁RESULT - '9' - ▁FOOD - ▁M - ▁FRIENDS - '8' - PED - ▁RED - DIC - ▁BEHIND - ▁FO - ▁TERMS - ▁WHATEVER - VAL - ▁GUYS - ATH - ▁LANGUAGE - ▁LISTEN - ▁BASICALLY - ▁FEELING - ▁PARTICULAR - ▁TRI - ▁MUSIC - ▁BREAK - ▁TAKING - ▁VALUE - ▁WRONG - ▁INTER - ZE - ▁CHAR - ▁BUILD - ▁PLEASE - CC - ▁KI - ▁WRITE - ▁STAR - ▁BOARD - ▁EITHER - LIN - ▁DIFFICULT - UNT - ▁GONE - ▁SEEMED - ▁DESIGN - ALLY - ▁OP - IZE - ▁NI - OLD - ▁KING - ▁TURNED - DY - ▁AGREE - ▁STOP - ▁PERSONAL - LER - ▁PRA - ▁COMMON - MENTS - IOUS - ▁UNIVERSITY - ▁EVERYBODY - ▁OB - ▁CUT - ▁CLO - ▁FORWARD - ▁ITSELF - ▁BROUGHT - ▁COR - ▁TAKEN - ▁SAL - ▁GUESS - ▁SERVICE - MOR - ▁SUPER - CIOUS - QU - ▁NINE - ▁BEGAN - ▁FAIR - NER - ▁WASN - ▁FEAR - ▁FOCUS - ▁NATIONAL - ▁COST - TURE - ▁SELF - ▁EXACTLY - ▁EXIST - RN - ▁TOP - STER - ▁SOMEBODY - ▁MAKES - ▁TABLE - ▁LIVING - ▁SUR - ▁BECAME - ELL - GA - ▁SINGLE - ▁ENTIRE - ▁EFFECT - ▁LEG - ▁AMONG - ▁MIN - FI - ▁MET - ▁UNITED - ▁SUN - ▁MIS - STR - ▁STUDY - ▁KIDS - ▁SHI - ▁QUA - ▁CHECK - ▁WAYS - RATE - ▁FORTY - ▁DRIVE - ▁EARTH - ▁JOIN - ▁GUY - ▁COUNT - ▁TRUMP - COM - ▁FIGHT - ▁SEA - CENT - ▁LETTER - ▁GE - ▁CE - ▁INDIVIDUAL - ▁FAST - ▁ALLOW - FE - ▁POLITICAL - ▁INTEREST - ▁SEEMS - FOR - ▁RAN - ▁WONDER - HI - ▁DARK - ▁NEAR - ▁SEND - ▁OFFER - ▁ISSUE - ▁CONF - CTOR - ▁L - ▁HIT - RAL - ▁CERTAINLY - ▁V - ▁SOUTH - ▁WISH - ▁LOW - ▁EAT - ▁NICE - ▁WO - ▁MONTHS - DAY - ▁PICK - ▁LAY - BLE - ▁STAND - OUR - ▁CHARACTER - FULLY - ▁ACCESS - ▁SCO - ▁DECISION - ▁KEY - TRA - IGN - ▁GROUND - ▁OFFICE - ▁EASY - ▁ACCOUNT - ▁HAPPY - ▁PICTURE - ▁REMAIN - ▁CUR - EE - RIES - ▁REP - ▁FUN - ▁CHURCH - ▁MODEL - ▁LIVES - ▁MEDIA - ▁LATE - ▁CLA - ▁KNOWN - ▁STREET - EA - ▁KA - ▁CANNOT - ▁CONCERN - ▁PERFECT - ▁SAT - WI - FORM - ▁LOST - TRO - ▁REQUIRE - ▁VOTE - ▁PAPER - ▁BUY - NED - ▁FIELD - ISTIC - ▁BEAUTIFUL - ▁CAP - ▁SPECIAL - ▁SON - ▁RULE - ▁REF - ▁NATURE - ▁GENE - ▁PORT - ▁DRAW - ▁GROW - ▁MINUTES - OK - ▁EDUCATION - ▁YORK - ▁PAT - ▁KE - ▁SITUATION - ▁WH - ▁WALL - ▁APPEAR - GING - ▁ACTION - ▁BRA - TIME - OME - ▁MAIN - ▁POSITION - ▁ISN - HU - ▁PEN - ANG - ▁SLEEP - ▁DIFFERENCE - ▁PROTECT - ▁FOLLOW - QUE - ▁J - ▁RELATIONSHIP - ▁NINETEEN - ▁MRS - ▁DEAD - ▁SERVE - ▁RISK - ▁DOCTOR - ▁HOURS - ▁PERHAPS - ABILITY - ▁POOR - EX - DEN - MEN - ▁CONTENT - ▁LEARNING - ▁TALKED - ▁OUTSIDE - ▁SENT - ▁LIST - ▁FINE - ▁READY - ▁GRI - CRA - ▁PAIN - ▁ROUND - ▁EXPLAIN - ▁SIMPLE - ▁DISCOVER - ▁REG - ▁OBJECT - ▁HOUR - ▁SEVERAL - ▁AMERICA - ▁LORD - ▁TRUTH - ▁CRU - ▁WAIT - ▁STRANGE - ▁MIDDLE - GED - ▁SPEND - IO - ▁HUGE - ▁COLLEGE - ▁SEEM - ▁COLOR - ▁AMOUNT - ▁CONTINUE - VEN - UTE - ▁HAPPENS - ▁SIR - AB - THER - ▁CU - ISTS - ▁INCLUDE - ▁FLO - ▁GI - ▁LONGER - EV - ▁APPROACH - ▁DIE - ▁NATURAL - ▁ROAD - ▁BRI - ▁WRITING - ▁ATTENTION - ▁RETURN - ▁SHIP - ▁TECHNOLOGY - ▁SECRET - ▁INSIDE - DUC - ▁VISIT - ▁ALONE - ▁BROTHER - ▁COULDN - ▁REPRESENT - ▁LINK - FT - ILY - USE - ▁PLA - ▁LAUGH - IFIED - ▁TE - ▁WIFE - ▁TEACH - ▁PRACTICE - ▁FRA - ▁NEWS - ▁MEETING - ▁TOWARDS - ▁PARTY - IFY - ▁BLOOD - ▁TOWN - ▁RUNNING - ▁ENVIRONMENT - ▁PATIENT - ROOM - ▁LOCAL - ▁CURRENT - ▁CHANCE - ▁COOL - ▁SPOKE - ▁BASED - ▁MEET - ▁THIRD - ▁SAFE - NIGHT - ▁NOTICE - SA - ▁FEET - ▁CONDITION - ▁NORTH - ▁TEMP - ▁ENERGY - ▁SUGGEST - ▁GREEN - ▁PERIOD - HAN - ▁HAPPENING - ▁RICH - ▁SOCIETY - ▁SAVE - ▁TREE - ▁BUR - ▁CENTER - ▁POLICE - ▁SUBJECT - JU - ▁PULL - ▁QUICKLY - OLOGY - IANS - RK - ▁TRIED - ▁BANK - ▁FUND - ▁OTHERS - ▁GLO - ▁TRUST - ▁CHALLENGE - ▁ENTER - ▁WINDOW - ▁BILL - ▁EPISODE - ▁TOUCH - ▁SOURCE - IGHT - ▁SEEING - ▁IMAGE - ▁VO - ▁HERSELF - ▁MARK - ▁RATE - ▁DISC - ▁AFFECT - TAN - ▁ADDRESS - ▁COMPANIES - ▁ISSUES - ▁PAR - ▁WOULDN - BY - ▁INCREASE - ▁PARENTS - ▁HOWEVER - ▁NOR - AND - ▁EVIDENCE - ▁MONTH - ▁CODE - ▁FAN - ▁COMMENT - ▁WORTH - ▁MASTER - ▁VER - ▁CHI - ▁SEARCH - ▁NU - ▁RESPECT - ▁ESPECIALLY - ▁WORKED - ▁EMPLOY - PL - ▁BEGIN - J - ▁WROTE - ▁BLA - ▁CELL - ▁DREAM - ▁MOR - ▁LADY - NCE - ▁CONNECT - ▁WORKS - PLE - ▁ANIMAL - ▁CULTURE - PRESS - ▁AUSTRALIA - LAN - ▁NON - LEY - ▁TEND - ▁IMAGINE - ▁CLICK - ▁ATTACK - ▁DEF - CL - ▁EYE - ▁DOG - ▁OPPORTUNITY - ▁SAN - ▁PARA - ▁FILL - ▁FACEBOOK - ▁DEVELOPMENT - GUE - ▁HY - ENCY - ▁APPLICATION - ▁SERIOUS - ▁ABSOLUTELY - ▁REALIZE - ▁BREATH - ▁TEACHER - ▁PUSH - ▁SIT - ▁REACH - ▁GOLD - ▁STOOD - ▁DEAR - ▁ENGAGE - ▁PHONE - ▁MACHINE - ▁SIXTY - ▁SIMPLY - OSE - ▁FURTHER - ▁BUILT - ▁BEGINNING - ▁KILL - ▁MOVEMENT - ▁INSTEAD - ▁PROBLEMS - ▁CHANGED - ▁TAX - ▁FIT - PART - ABLY - ▁WOOD - ▁IMPACT - ▁BOOKS - ▁COMPLETELY - ▁MEMBERS - ▁DOUBT - GEN - ▁ENGLISH - ▁SOFTWARE - ▁TREAT - ▁CAT - ▁STORIES - ▁DESCRIBE - ▁POLICY - ▁FOOT - ▁NATION - ▁CENTURY - ▁SELL - ▁FLOW - ▁MESSAGE - ▁ACCEPT - ▁ENJOY - ▁LEARNED - ▁FIFTEEN - ▁TRAVEL - ▁CROSS - ▁HAVEN - GI - HER - PRO - ▁PASSED - ▁SUCCESS - ▁PURPOSE - ▁ROCK - SHED - ▁WELCOME - ▁WRITTEN - ▁KEPT - ▁TEA - EY - ▁TROUBLE - ▁EFFORT - ▁N - ▁HORSE - ▁BENEFIT - ▁KNOWLEDGE - KER - ▁MAJOR - ▁FUNCTION - ▁PODCAST - ULATE - ▁CIVIL - ▁PRODUCE - ▁ANTI - LEN - ▁OK - ▁DRUG - ▁LY - ▁ROLE - ▁AMAZING - ▁LIMIT - ▁REC - ▁MENTIONED - ▁DIV - ▁HELD - ▁DISEASE - ▁AUTHOR - ▁WEBSITE - ▁TERM - ▁SONG - ▁HAIR - ▁AHEAD - ▁PATH - ENED - NU - ▁MEASURE - ▁LISTENING - ▁INTERESTED - EG - ▁WANNA - ▁TEXT - ▁WIDE - '00' - ▁STORE - ▁CLOUD - ▁SURPRISE - KI - ▁LOOKS - ▁MINE - ▁NEEDS - ▁INTERVIEW - ▁SIMILAR - ▁BROAD - ▁DECIDED - ▁ABOVE - ▁READING - ▁INDEED - ▁SERVICES - ▁CHAIR - ▁MOVING - ▁BLUE - ▁BEYOND - ▁SUFFER - OUT - ▁ECONOMIC - ▁SPIRIT - ▁THROW - ILE - ▁AVAILABLE - ▁NINETY - ▁DEPEND - PLACE - ▁WEEKS - ▁GIVING - ▁DAUGHTER - ▁SI - ▁CASES - ▁SITE - ▁BOX - ▁JUSTICE - ▁PRESS - ▁LOG - ▁CLAIM - ▁PUR - ▁SCAR - ▁REGARD - MATIC - RIGHT - ▁NEEDED - ▁DEPARTMENT - ▁WATCHING - ▁CHARGE - ▁WHOM - HAM - ▁PARK - ▁LED - ▁ROB - ▁OBVIOUSLY - ▁FINALLY - ▁ANYONE - DU - AU - ▁COMMAND - ▁SITTING - ▁RECOMMEND - ▁WIND - ▁FAIL - SET - ▁PROFESSOR - ▁NETWORK - ▁Y - ▁TRAIN - ▁FAITH - ▁INVOLVED - ▁EAR - BEL - '01' - ▁DOCUMENT - ▁DEN - ▁MOVIE - ▁PARTNER - ▁RIVER - ▁ONLINE - ▁PRICE - ▁BRE - ▁EQUAL - ▁WONDERFUL - ▁STAFF - ▁TWELVE - ▁RID - ▁QUICK - ULATION - ▁WILD - ▁MIL - ▁INDUSTRY - ▁PRIVATE - ▁RESPONSE - GAN - ▁RACE - ▁SPECIFIC - ▁SCREEN - ▁LEADER - ▁PHYSICAL - ▁MATERIAL - ▁THANKS - ▁TER - IF - ▁NORMAL - ▁ORGAN - ▁AUDIENCE - ▁STUDENT - ▁MINUTE - ▁FEATURE - ▁SEVENTY - ▁DETAIL - ▁CREATED - ▁PRISON - IZATION - ▁SOUL - ▁FISH - ▁WEST - ICALLY - POINT - ▁DEV - ▁COLD - ▁DEFINITELY - IER - ▁OFFICER - ▁EVENING - ▁MENTAL - ▁CORRECT - ▁COUNTRIES - ▁POPULATION - ▁USUALLY - ▁HOL - ▁EXTRA - ▁FLU - ▁UNDERSTANDING - IUM - ▁PEACE - ▁FELLOW - ▁CRY - ▁SPI - ▁GERMAN - ▁STAGE - ▁STANDARD - ▁CHOICE - ▁OPTION - LK - ▁IMPROVE - ▁SPEAKING - ▁STRAIGHT - ▁HIGHER - ▁CONTAIN - ▁STRA - ▁JUDGE - ▁SISTER - ▁AWARE - ▁POTENTIAL - ▁TRADE - ▁TRE - ▁CLEAN - ▁YE - ▁WHOSE - ▁ROLL - LIKE - ▁MC - ▁KID - ▁PROPER - ▁DEGREE - ▁FIX - ▁GOOGLE - WIN - ▁H - ▁FINISH - ▁MAD - ▁REACT - ▁TRACK - HOOD - ▁PHIL - ▁COMPUTER - ▁EARLIER - ▁HOST - ▁DIRECTION - ▁ORIGINAL - ▁FILM - ▁WEAR - ▁SAM - ▁MOVED - IDE - QUA - ▁LOWER - BRA - EF - ▁MODERN - ▁BEN - ▁PUBLISH - ▁SORRY - HOLD - ▁FOLLOWING - ▁PARTICULARLY - ▁DELIVER - ▁PLANT - ▁HOSPITAL - ▁SUDDENLY - ▁ORGANIZATION - KA - ▁MID - ▁EIGHTY - ▁SPENT - UC - KIN - ▁HAT - ▁HUSBAND - IZING - ▁HALL - ▁BASE - ▁BEAR - NEY - ▁BURN - ▁EMAIL - ▁HUM - ▁CARD - ▁COLLECT - ▁PROMISE - UG - ▁DRESS - ▁CHRISTIAN - ▁BALL - ▁SKILL - ▁DROP - ▁INVEST - ▁GUN - ▁PLATFORM - ▁ROMAN - ▁FELL - ▁ASKING - ▁COMPLETE - ▁MEANING - WORK - ▁SECURITY - ▁AFRICA - ▁HILL - ▁OURSELVES - ▁GAR - ▁CAMPAIGN - ▁SUPPOSED - ▁STO - ▁LIVED - ▁INSTANCE - ▁AUTO - ▁GOAL - ▁SELECT - ▁ELECT - ▁LOSE - ▁PAN - ▁TRAINING - ▁CAST - HEN - ULAR - ▁ELEMENT - ▁HEARING - ▁PAL - ▁REVIEW - ▁DRINK - ▁RESOURCES - ▁PH - ▁EXCEPT - ▁OPINION - ▁THEREFORE - ▁GRAND - ▁INFLUENCE - ANE - ▁ROSE - ▁PUTTING - ▁BRO - ▁TILL - ▁SMILE - ▁ABILITY - ▁DAR - ▁EFFECTIVE - ▁ATTEMPT - ▁HONEST - ▁INCLUDING - ▁VARIOUS - ▁MOTION - ▁CARRY - ▁SIZE - ▁QUIET - ▁FINAL - ▁SHOT - ▁REV - ISON - ▁RECEIVED - ▁SUCCESSFUL - ▁BLOCK - ▁COUNCIL - IFICATION - ▁CHO - ▁QUE - ▁SEAT - ▁MICRO - ▁RELEASE - ▁POWERFUL - ▁SAND - ▁SERIES - ▁FACTOR - ▁POD - ▁GLAD - ▁TELLING - TERN - ▁REGION - ▁USER - ▁CHIEF - ▁MANNER - ▁PROVE - ▁ADVANCE - ▁SPOT - ICE - ▁LEGAL - ▁CHOOSE - ▁ARMY - ▁FEDERAL - ▁PAINT - ▁FUR - ▁FORGET - ▁THREAT - ▁SCENE - ▁DIED - UB - ▁DISTRICT - ▁BIRD - ▁JACK - ▁AFRAID - ▁ALLOWED - ▁DIRECT - ▁PREVENT - ▁SUM - ▁DESIRE - ▁FLOOR - ▁REFLECT - ▁EAST - ▁PIN - ▁REMARK - ▁JOURNAL - ▁STRENGTH - ▁FRENCH - ▁CHINA - ▁HOT - ▁BORN - ▁ISLAND - ▁PACK - ▁MEMBER - ▁ANNE - ▁TRIAL - ▁PROGRESS - ▁ANYBODY - ▁MEMORY - ▁GROWING - ▁ARGUMENT - ▁BABY - ▁FILE - ▁CAPITAL - ▁BRU - ISED - ▁STARTING - ▁CRIME - ▁SPREAD - OLOGICAL - ▁HONOR - ▁FINDING - AH - LUM - ▁RUSSIA - ▁FOLKS - ▁DEMAND - ▁PRINCE - ▁GENERATION - ▁BRAND - ▁COL - ▁MEDICAL - ▁INTERNET - ▁SUPPOSE - ▁SIGNIFICANT - ▁IMMEDIATELY - ▁MILITARY - ▁CONSTANT - ▁STRUCTURE - ▁TREATMENT - ▁BATTLE - ▁SIGHT - ▁DISCUSSION - ▁ESTABLISH - ▁RELIGION - ▁CAREER - ▁SWEET - ▁ACTUAL - ▁SPEECH - ▁COOK - ▁BUNCH - ▁NONE - ▁DAVID - ▁BOW - ▁GREW - ▁RESPOND - ▁RECOGNIZE - ▁DAILY - ▁SHAPE - ▁FORMER - ▁REALITY - IFF - ▁DIRECTOR - ▁POP - POSITION - ▁OFFICIAL - ▁STUDIES - ▁GLOBAL - ▁SPEC - ▁GRO - ▁BOTTOM - ▁CUSTOMER - ▁ZO - ▁QUALITY - ▁CAMP - ▁ENGINEER - ▁VERSION - ▁LOCK - ▁PREPARE - ▁COMPLEX - ▁ELECTION - ▁CONGRESS - ▁SIM - ▁POSITIVE - ▁SOFT - ACT - ▁FAMILIES - ▁TUR - ▁BELOW - ▁PROPERTY - ▁OCCASION - ▁RECENTLY - ▁CANCER - ▁SEPARATE - ▁FLY - ▁FINANCIAL - ▁RELIGIOUS - ▁PLAYING - ▁MORAL - ▁SLOW - ▁FOLLOWED - ▁STANDING - ▁SCALE - ▁SUMMER - ▁QUI - ▁PAID - ▁DISCUSS - ▁INTERNATIONAL - ▁FINGER - WELL - ▁GRANT - ▁SCIENTIST - ▁METHOD - ▁MAP - ▁REFER - ▁MILES - ▁ECONOMY - ▁CONNECTION - ▁MASS - ▁MOUNTAIN - ▁TRO - SCRIPT - ▁PREVIOUS - ▁EIGHTEEN - ▁REACHED - ▁SEX - ▁SOLUTION - ▁DECADE - ▁EXCITED - ▁BROWN - ▁GUIDE - ▁EXPRESS - ▁LIE - ▁RADIO - ▁VISION - ▁EXPERT - BAR - ▁THY - ▁SICK - ▁STONE - ▁ARTIST - ▁LITERALLY - ▁ATTEND - ▁SMART - ▁ENGINEERING - ▁NECESSARY - ▁COLON - ▁SEASON - ▁PRINT - ▁POPULAR - ▁EXPERIMENT - ▁X - ▁BACKGROUND - ▁ADDED - ▁CORNER - ▁WORSE - ▁SAD - ▁DEBATE - ▁FOUNDATION - ▁SLAVE - ▁RISE - ▁WARM - ▁PETER - ▁ZERO - ▁MISTAKE - ▁DISTANCE - BOARD - ▁HOR - ▁NECESSARILY - CAR - ▁REQUEST - ▁VAN - ▁JUMP - ▁STATEMENT - SPEC - ▁FRAME - ▁PERFORM - ▁MOM - ▁ESSENTIALLY - LIES - ▁THROUGHOUT - ▁JOY - ▁MODE - ▁BRIEF - ▁STREAM - ▁HANG - ▁CONCEPT - ▁SCA - ▁STICK - ZA - ▁QUOTE - ▁REPEAT - ▁THOU - ▁ER - ▁WAITING - ▁MIX - ▁DAN - ▁DATE - ▁SHUT - ▁PLANET - ▁STOPPED - ▁SHOP - ▁HUNG - ▁CAPTAIN - ▁CLEARLY - ▁BRIGHT - ▁INDIAN - ▁RETURNED - ▁ARTICLE - ▁ARCH - ▁CHANNEL - ▁GAIN - ▁QUEEN - ▁CONTINUED - ▁MOUTH - ▁NOBODY - ▁CRIED - ▁HATE - ▁ELEVEN - ▁SLIDE - ▁PLEASURE - ▁NEARLY - GAR - ▁RANGE - ▁MAG - ▁FAVORITE - CUR - ▁DETERMINE - ▁DIRECTLY - ▁BIRTH - ▁GARDEN - ▁CREDIT - ▁GATHER - ▁CRO - ▁LOSS - ▁PERSPECTIVE - ▁BRITISH - ▁EUROPE - ▁POLITICS - ▁HURT - ▁HEAVY - ▁ - ▁REGULAR - ▁WAVE - ▁KILLED - ▁EDGE - ▁REMOVE - ▁ADVANTAGE - ▁FRANK - ▁TOTALLY - ▁YA - ▁MURDER - ▁OPERATION - ▁PASSION - ▁HUNT - ▁BULL - ▁HABIT - PEN - ▁SPEED - ▁GUARD - ▁BOUND - ▁DEVICE - ▁CATCH - ▁BOAT - ▁CAUGHT - ▁CITIZEN - ▁WRITER - ▁EASILY - ▁LABOR - ▁SHIFT - ▁SPIRITUAL - ▁FUCK - ▁INTERACT - ▁SPRING - ▁CENTRAL - ▁CRAZY - ▁STATION - ▁TARGET - MMER - ▁BARR - ▁COMMITTEE - ▁WASHINGTON - ▁LIFT - ▁INTRODUCE - ▁WORRY - ▁PROFESSIONAL - ▁COUNTY - ▁COMMUNITIES - ▁MARCH - ▁NATIVE - ▁EVA - ▁MULTI - ▁BROKEN - ▁CONDUCT - ▁SETTING - ATORY - ▁ANYWAY - ▁ASSOCIATE - ▁ENGLAND - ▁PERFORMANCE - ▁BIGGEST - ▁SUIT - ▁TOPIC - ▁CROWD - ▁SAFETY - ▁GENERALLY - ▁REPUBLICAN - ▁STRESS - ▁CONTACT - ▁DECIDE - ▁DUE - ▁CONTEXT - ▁TASK - ▁MATCH - ▁HEAVEN - ▁RAISED - ▁BASIC - ICI - ▁SLOWLY - ▁TITLE - ▁RECEIVE - JA - ▁PRINCIPLE - ▁MINISTER - ▁PLAIN - ▁APPRECIATE - HOUSE - ▁SKY - ▁REMIND - ▁CONTRACT - ▁PRODUCTION - ▁USEFUL - ▁THUS - ▁LUCK - ▁STRUGGLE - ▁MARRIED - ▁JOURNEY - ▁HARM - ▁SOLDIER - VERSE - ▁TERRIBLE - ▁FRESH - ▁WEIGHT - ▁GLASS - ▁BUTTON - POSE - ▁UNIT - ▁BLOW - ▁CLIENT - ▁ENCOURAGE - ▁ASPECT - ▁REPLIED - ▁INSTANT - ▁ACCORDING - ▁PRESSURE - ▁AFTERNOON - ▁BILLION - ▁SOMEWHERE - ▁LONDON - ▁GROWTH - ▁EXERCISE - ▁DINNER - ▁EDIT - XI - ▁FREEDOM - ▁RELATIVE - ▁ACHIEVE - ▁LENGTH - ▁SQUARE - ▁POSSESS - ▁STOCK - ▁ESCAPE - ▁ULTIMATE - ▁AUSTRALIAN - ▁AVOID - ▁MANAGEMENT - ▁SILENCE - ▁EXTREMELY - ▁SYN - ▁MULTIPLE - ▁ACTIVE - ▁SECTION - ▁YOUTUBE - ▁VIOLENCE - ▁OIL - ▁PROTEST - ▁RECOVER - ▁RAIN - ▁BEHAVIOR - ▁RECENT - ▁DESTROY - ▁PATTERN - ▁RELATED - ▁REDUCE - ▁ALTHOUGH - ▁WEIRD - ▁BUDGET - ▁GUEST - ▁EASIER - ▁ADVICE - ▁UNION - ▁CRITICAL - ▁SHOOT - ▁CARRIED - ▁COMMISSION - ▁PRODUCED - ▁PROUD - ▁LACK - ▁LAWYER - ▁CHRIST - ▁LIBRARY - ▁BAND - ▁FUNNY - ▁EVENTUALLY - ▁ADMIT - ▁PHOTO - ▁MOON - ▁SURFACE - ▁DIGITAL - ▁OUGHT - 'OFF' - ▁EARN - '02' - ▁TRIP - ▁SOLVE - ▁PRIOR - ▁BIGGER - ▁BALANCE - ▁TOTAL - ▁COMPARE - CEPTION - ▁DRAG - ▁ADULT - ▁FAMILIAR - ARIES - ▁QUARTER - ▁MISSION - ▁IMPOSSIBLE - ▁CHANGING - ITUDE - ▁DANGER - ▁FIRM - ▁PARENT - ▁SEXUAL - ▁AVERAGE - ▁SCIENTIFIC - ▁JIM - ▁MENTION - ▁RAISE - ▁LESSON - ▁FOREIGN - ▁ISRAEL - ▁SKIN - ▁PRESENCE - ▁ADMINISTRATION - ▁MAINTAIN - ▁BEAUTY - ▁KNEE - ▁ANNOUNCE - ▁PREFER - ▁CAMERA - ▁BROKE - ▁COPY - ▁FAMOUS - ▁SEEK - ▁CREATING - ▁DOUBLE - ▁LOAD - ▁OBSERVE - ▁GIFT - ▁MARRIAGE - ▁CRISIS - ▁WESTERN - ▁CLIMATE - ▁GEORGE - ▁CRITIC - ▁TECH - ▁ELECTRIC - ▁SPECIES - ▁ROW - ▁ATTRACT - ▁SIXTEEN - ▁EMOTION - ▁COMMUNICATION - ▁DIG - CRIB - ▁INSTRUCT - ▁CALIFORNIA - ▁INFRASTRUCTURE - ▁SENTENCE - ▁PAUL - ▁TV - ▁TYPICAL - ▁CITIES - ▁STYLE - ▁FOURTEEN - ▁GATE - ▁BELONG - ▁PREDICT - ▁DELIGHT - ▁OCCUR - ▁WAL - ▁VILLAGE - ▁ARGUE - ▁PLUS - ▁AFFAIR - ▁INVENT - ▁TRADITION - ▁WEALTH - ▁ABUSE - ▁EXPRESSION - ▁SNOW - ▁ENEMY - ▁MILL - ▁TASTE - ▁SURVEY - ▁PROCEED - ▁MANAGER - ▁CONSTRUCT - ▁COLLECTION - ▁JESUS - HEAD - ▁RELATION - ▁SUDDEN - ▁DISTINCT - ▁JAMES - ▁CURIOUS - ▁ANYMORE - ▁PHILOSOPHY - ▁CRIMINAL - ▁UNDERSTOOD - JO - ▁REVOLUTION - ▁BELIEF - ▁INTELLIGENCE - ▁AFFORD - IBILITY - ▁FAVOR - ▁BECOMING - ▁RAPID - ▁DANGEROUS - ▁SAIL - ▁TRICK - ▁EPI - ▁OCEAN - ▁TRULY - UNG - ▁SOMEHOW - ▁TAUGHT - ▁CONSEQUENCE - OLOGIST - ▁BASIS - ▁CREATURE - ▁UNIQUE - ▁ALIVE - UFF - ▁WILLIAM - ▁DATABASE - ▁FOOL - ▁VICTIM - ▁FUNDAMENTAL - ▁DETECT - ▁PANEL - ▁FEMALE - ▁INCOME - ▁TRADITIONAL - BLING - CAST - ▁SHOCK - ▁WITNESS - ▁DANCE - ▁SHARP - ▁INCREASING - ▁CLUB - ▁MAJORITY - ▁AUTHORITY - ▁ANCIENT - ▁CHOSE - ▁CANDIDATE - ▁CLINIC - ▁COAST - ▁LAUNCH - BOOK - ▁ANGEL - ▁LOUD - '03' - ▁LAID - ▁TECHNICAL - ▁THIRTEEN - ▁ADDITIONAL - ▁NOVEL - ▁EMOTIONAL - ▁VOL - ▁COMFORT - ▁UPDATE - ▁DEFINE - ▁TRANSFORM - ▁UNIVERSE - ▁DAMAGE - ▁COMPLAIN - ▁ASSUME - ▁CUSTOM - ▁WORST - ▁SENIOR - ▁CONFERENCE - ▁INCREDIBLE - ▁RUSH - ▁MAGIC - ▁POSSIBLY - ▁VIRUS - WOOD - ▁COLLEAGUE - ▁TWITTER - ▁EDITOR - ▁CONFLICT - ▁PLANNING - ▁FRANCE - ▁EVIL - ▁GENTLEMAN - ▁ROUGH - ▁LEAVING - ▁BORDER - ▁SESSION - ▁YO - ▁STRUCK - ▁ARCHITECT - ▁SILENT - ▁CAMPUS - ▁BLIND - ▁WEAPON - ▁ADOPT - ▁POCKET - ▁BRIDGE - ▁SEVENTEEN - ENCIES - ▁TERROR - ▁CIRCLE - ▁SPECIFICALLY - ▁ADDITION - ▁INVITE - ▁WOUND - ▁ROBERT - ▁WINTER - ▁CONSTITUTION - ▁GOVERNOR - ▁ACTIVITY - ▁EXTEND - ▁COMFORTABLE - ▁INDEPENDENT - ▁NEGATIVE - ▁CREATIVE - ▁DREW - ▁IDENTIFY - ▁LOCATION - ▁CHINESE - ▁SERVANT - ▁INITIAL - ▁SHADOW - ▁VISUAL - ▁MEDICINE - ▁DEFEND - ▁FASHION - ▁FAILURE - ▁SWITCH - ▁APPEAL - ▁THICK - ▁UNCLE - ▁OPPOSITE - ▁ACCIDENT - ▁MASSIVE - ▁ANGRY - ▁IMPLEMENT - ▁UNFORTUNATE - ▁ARAB - ▁DIVIDE - ▁DUTY - ▁SHOUT - ▁CULTURAL - ▁DEBT - ▁DESCRIPTION - ▁SCHOLAR - ▁NEITHER - ▁STRETCH - ▁ANYWHERE - ▁SUCCEED - ▁CAPACITY - ▁EMPIRE - ▁GRADUATE - ▁VAST - ▁PRACTICAL - ▁INTENTION - ▁STRATEGY - ▁APPEARANCE - ▁EUROPEAN - ▁TINY - ▁FRUIT - ▁COLUMN - ▁UTTER - ▁PHOTOGRAPH - ▁PROFIT - ▁DISAPPEAR - ▁DRIVING - ▁OTHERWISE - ▁OUTCOME - ▁SOMEWHAT - ▁HOTEL - ▁CONSUMER - ▁COMPLICATED - ▁STORM - MARK - ▁YARD - ▁ROOT - ▁AWFUL - ▁EXPLORE - ▁CAPTURE - ▁EVERYWHERE - ▁NARROW - ▁VALLEY - ▁MICHAEL - ▁INTERPRET - ▁OPPORTUNITIES - ▁HISTORICAL - ▁EXCITING - ▁SUPPLY - ▁ENGINE - ▁INVESTIGATION - ▁REVEAL - ▁TRAFFIC - ▁PAUSE - ▁DROPPED - ▁EXPAND - ▁RUB - ▁DEPLOY - ▁EXTENT - ▁SLIP - ▁INVESTMENT - ▁AWESOME - ▁EXECUTIVE - ▁ASSOCIATION - ▁INCREDIBLY - ▁LEADERSHIP - ▁FALSE - ▁POEM - ▁WEATHER - ▁COMPONENT - ▁SUSTAIN - ▁WISE - ▁NEWSPAPER - ▁ODD - ▁TIGHT - ▁ANXIETY - ▁GLANCE - DOWN - ▁APPROPRIATE - ▁YELLOW - ▁HAPPINESS - ▁ACCOMPLISH - ▁CONVINCE - ▁NEURO - ▁SENATE - ▁RESPONSIBILITY - ▁TWICE - ▁DISPLAY - ▁FREQUENT - ▁WHEEL - ▁WORRIED - ▁PRIMARY - ▁ENORMOUS - ▁YESTERDAY - ▁REFERENCE - ▁CONFIDENCE - ▁CHEAP - ▁BOUGHT - ▁STRIKE - ▁SUBSCRIBE - ▁COMMERCIAL - ▁NPR - ▁EXTRAORDINARY - DDLE - ▁KITCHEN - ▁DEMOCRATIC - ▁VERSUS - ▁EXACT - ▁BREAD - ▁COUNSEL - ▁SUNDAY - ▁KINGDOM - '0000005' - ▁SECURE - ▁COFFEE - ▁ROYAL - ▁VIRTUAL - ▁SMITH - ▁INTERNAL - ▁INDIA - ▁TROOPS - ▁CHAPTER - ▁Q - ▁ACADEMIC - ▁EXPENSIVE - ▁BODIES - ▁SMOKE - ▁CHRISTMAS - ▁COMPANION - ▁INSTITUTE - ▁SURVIVE - ▁NEIGHBORHOOD - ▁MUSLIM - ▁IDENTITY - ▁UNIVERSAL - ▁RESIDENT - ▁CATHOLIC - ▁AMAZON - ▁RESPONSIBLE - ▁IMPORTANCE - ▁TIRED - ▁OBVIOUS - ▁DISORDER - ▁DEPRESSION - ▁ANALYSIS - ▁EXTREME - ▁DONALD - ▁KNOCK - ▁SUSPECT - ▁HOUSING - ▁EMPTY - ▁OPPOSED - ▁MONITOR - POWER - ▁SEVERE - ▁SILVER - ▁COURAGE - ▁TRAUMA - ▁FAVOUR - ▁SHORE - ▁FAULT - ▁SOUTHERN - ▁INSTRUMENT - ▁INVOLVE - ▁SUFFICIENT - ▁ANXIOUS - ▁ARREST - ▁INSTAGRAM - ▁SMELL - ▁SCHEDULE - VILLE - ▁WRAP - ▁URGE - ▁DOZEN - ▁BRANCH - ▁FOREVER - RIDGE - ▁WHISPER - ▁BREAST - ▁SUGAR - ▁PHILOSOPHER - ▁MOBILE - ▁PLEASANT - ▁APPROVE - ▁ENTERTAIN - ▁FACULTY - ▁SHOE - ▁PURCHASE - ▁TECHNIQUE - ▁SCRIPT - ▁AUDIO - ▁COMMITTED - ▁ACKNOWLEDGE - CLOCK - ▁SYMPTOM - ▁ADAPT - ▁DIVISION - Q - ▁BOND - ▁EGYPT - ▁EVOLUTION - ▁NURSE - ▁EXCHANGE - ▁INSTALL - ▁PHRASE - ▁COLOUR - ▁STUCK - ▁INSURANCE - ▁DESERVE - ▁VARIETY - ▁GREEK - ▁STUDIO - ▁DESERT - ▁SENATOR - ▁HIDDEN - ▁LIBERAL - ▁ACTIVITIES - ▁WHENEVER - ▁RESOLUTION - ▁ERROR - ▁AGENCY - ▁DYING - ▁TELEVISION - ▁VOLUME - ▁ILLNESS - ▁NERVOUS - ▁NEIGHBOR - ▁MUSEUM - ▁NORTHERN - ▁SHRI - ▁DEMOCRACY - ▁LADIES - ▁JEWISH - ▁CONFIRM - ▁IMAGINATION - ▁PSYCHO - ▁POLICIES - ▁PRIVILEGE - ▁STRIP - ▁VIOLENT - ▁NUCLEAR - FIELD - ▁FORTUNE - ▁ENCOUNTER - ▁INCIDENT - ▁MAGAZINE - ▁SUPREME - ▁FANTASTIC - ▁CRACK - ▁CONFESS - ▁BEHAVIOUR - ▁OBAMA - ▁ESTATE - ▁EAGER - ▁TALENT - ▁JUDGMENT - ▁INTELLECTUAL - ▁OVERALL - ▁COMMUNICATE - ▁EXPLANATION - ▁FORGIVE - ▁COUSIN - ▁POSSIBILITY - ▁ORIGIN - ▁ALTERNATIVE - ▁AFTERWARDS - ▁CONSISTENT - ▁VALUABLE - ▁RANDOM - ▁LITERATURE - ▁RESTAURANT - ▁SLATE - ▁RESOLVE - ▁CABIN - ▁OCCURRED - ▁OBTAIN - ▁CHAMBER - ▁DEFINITION - ▁LUNCH - ▁EXCUSE - ▁SWORD - ▁EMERGE - ▁CONCLUSION - ▁HONOUR - ▁TREMENDOUS - ▁UNUSUAL - ▁TRANSFER - ▁SNAP - TOWN - BURG - ▁DEFENSE - ▁DELAY - ▁FIFTH - ▁DISTINGUISH - ▁REMOTE - ▁SYMBOL - ▁HENRY - ▁PERCEIVE - ▁ATTITUDE - ▁CORRUPT - ▁CLIMB - ▁ORDINARY - ▁THERAPY - ▁THREW - ▁LECTURE - ▁ENFORCE - ▁CONSERVATIVE - ▁FRIDAY - ▁THOMAS - ▁DOLLAR - FLOW - ▁ESSENTIAL - ▁WISDOM - ▁NARRATIVE - ▁ADJUST - ▁BOTTLE - ▁APARTMENT - OGRAPHIC - ▁CONVENTION - ▁CYCLE - ▁PLENTY - ▁REJECT - ▁ATTORNEY - ▁STATUS - ▁MARTIN - ▁EXCELLENT - ▁LOUIS - ▁LATTER - ▁PRINCIPAL - ▁AUGUST - ▁CHEMICAL - ▁FAINT - ▁DOMESTIC - ▁OPERATE - ▁CHRIS - ▁BREAKFAST - ▁RELIEF - ▁IMPRESSION - ▁AWAKE - ▁DISTURB - ▁COVID - ▁GOVERN - ▁KUBERNETES - ▁CONFIDENT - ▁EVIDENT - ▁ESTIMATE - ▁KOREA - ▁ACCURATE - ▁CONTRIBUTE - ▁RESOURCE - ▁PROPOSED - ▁APPLIED - ▁DYNAMIC - ▁DISAGREE - ▁EMERGENCY - ▁CANADA - ▁CARBON - ▁ALCOHOL - ▁PROVIDING - ▁PANDEMIC - ▁FLEE - ▁VIRTUE - ▁TEETH - ▁AGENDA - ▁CONCLUDE - ▁SHOOK - ▁KRISTA - ▁ELIZABETH - ▁SMOOTH - ▁INDICATE - ▁BLANK - ▁COMPETITION - ▁TECHNOLOGIES - ▁MECHANISM - ▁TREND - IZZ - ▁STORAGE - ▁VEHICLE - ▁FASCINATING - ▁COMBINE - ▁TRUCK - ▁CELEBRATE - ▁ENTERPRISE - ▁RESERVE - ▁VESSEL - ▁RECALL - ▁BRILLIANT - ▁GRATEFUL - ▁VOLUNTEER - ▁PROFILE - ▁ADVISE - ▁CRASH - ▁RESTRICT - ▁DESPERATE - ▁STUPID - ▁PLEA - ▁PROFOUND - ▁SPONSOR - ▁MYSTERY - ▁GHOST - ▁ENSURE - ▁PURSUE - ▁TWENTIETH - ▁REGIME - ▁LANDSCAPE - ▁TEXAS - ▁ENTREPRENEUR - ▁RABBI - ▁WORSHIP - ▁ADVENTURE - ▁PRETEND - ▁SURPRISING - ▁HORRIBLE - ▁PROMOTE - ▁CONVERT - ▁EFFICIENT - ▁ASSISTANCE - ▁ABSOLUTE - ▁REVENUE - ▁CORRESPOND - ▁PRESERVE - ▁INTENSE - ▁CEASE - ▁SCHEME - ▁OBSERVATION - ▁MUSCLE - ▁PHASE - ▁EXHIBIT - ▁SPARK - FRIEND - ▁DEPTH - ▁SACRIFICE - ▁TRANSACTION - ▁EMPEROR - OGRAPHY - ▁BENEATH - ▁STUDIED - ▁SYDNEY - ▁REGISTER - ▁SLASH - ▁EXCEL - ▁CHICKEN - ▁RELATE - ▁PROPOSAL - ▁INNOVATION - ▁PARLIAMENT - ▁OPERATING - ▁INTERVENTION - ▁CHICAGO - ▁DROVE - ▁TIPPETT - ▁DEFEAT - ▁EXCLAIMED - ▁RADICAL - ▁MAXIM - ▁TEMPERATURE - ▁CROWN - ▁SUICIDE - ▁SCREAM - '0000001' - ▁EVOLVE - ▁ENEMIES - ▁TWEET - ▁VICTORIA - ▁COMBINATION - ▁PROVISION - ▁ABANDON - ▁EXAMINE - ▁POVERTY - ▁AMENDMENT - ▁WEBINAR - ▁FLIP - ▁EASTERN - ▁INTERRUPT - ▁DESPITE - ▁DANIEL - ▁PRECISE - ▁STRUGGLING - ▁CLUSTER - ▁SIGH - ▁ALGORITHM - ▁DESCEND - ▁PALACE - ▁EQUIPMENT - ▁RACIAL - ▁FORMULA - ▁IMMEDIATE - ▁EXPOSED - ▁DISASTER - ▁BRITAIN - ▁NEIGHBOUR - ▁SWIFT - ▁LIBERTY - ▁ADVOCATE - ▁MIRROR - ▁PARTICIPATE - ▁SYRIA - ▁EDUCATE - ▁DISCIPLINE - ▁SPANISH - ▁MANIFEST - ▁FOUGHT - ▁RELEVANT - ▁PLUG - ▁VACCINE - ▁DISTRESS - ▁COOPER - ▁PROPHET - ▁ALTOGETHER - ▁SUBSTANCE - ▁HORROR - <sos/eos> src_token_list: - <blank> - <unk> - 並 - 倶 - 乿 - 亃 - 俣 - 东 - 凗 - 傖 - 佬 - 儈 - 亜 - 傈 - 举 - 僤 - 係 - 伢 - 僗 - 冉 - 乌 - 偶 - 串 - 佁 - 三 - 依 - 侴 - 倕 - 僮 - 丢 - 冽 - 冚 - 伔 - 倒 - 仠 - 乔 - 亲 - 佨一 - 倸 - 侽 - 儻 - 俅 - 倣 - 兌 - 俬 - 佛 - 倾 - 佹 - 兙其会 - 之 - 丒 - 侻 - 再 - 俹倌 - 亞 - 侀 - 习 - 信 - 僈 - 乧乒 - 侦 - 傄 - 儥 - 傗 - 儣 - 丱 - 乥 - 俢 - 傠 - 傹 - 亭 - 亢 - 亪 - 义 - 亯 - 伜 - 傋 - 储 - 下 - 侵 - 仔 - 儏 - 冎 - 伱 - 乬 - 仨 - 亁 - 価佯 - 冥 - 冇 - 倢 - 买 - 侥 - 俾 - 光 - 侾 - 僲倊 - 儼仰 - 俎 - 亀 - 与 - 僜 - 儲 - 倇 - 伅 - 內 - 佨丳 - 倃 - 傕 - 凇 - 倈 - 偐 - 亗 - 冡 - 偿 - 乍 - 作 - 仁 - 么兗 - 倌 - 冓 - 债 - 世 - 傘 - 九 - 冸 - 俖 - 傉 - 伃 - 儼 - 倖便 - 儖伂 - 丛 - 仸 - 丸 - 乾关 - 丩 - 儕 - 关 - 亹 - 一 - 乧 - 偞 - 仛仳 - 仰 - 俈 - 低俙乬 - 侎 - 其会 - 傲 - 侨 - 倆 - 儑 - 丙 - 倫 - 享 - 侞 - 兯 - 伋 - 乶 - 乒 - 侙 - 丳 - 儖 - 仝 - 事 - 乄 - 万 - 么 - 儏債 - 乾 - 傆 - 兤 - 仮僿 - 仮 - 伂 - 冦乜仱从 - 乵 - 倐 - 兟 - 凡 - 個 - 仙 - 丼 - 仦 - 冡估 - 仛 - 亵兓 - 仝兗 - 乡 - 僿 - 偷丰 - 乪 - 兇 - 僞 - 伜仠 - 傧 - 僄傟 - 亻 - 允 - 个 - 兘 - 僢 - 丶偫 - 冔伾乭 - 來 - 偡 - 傶 - 侠倆 - 倠 - 兄 - 倗 - 俦 - 俲 - 俼 - 凋丰 - 件 - 冪 - 俩义 - 俩 - 僵 - 佨 - 儳 - 乯 - 亢傲 - 兊七 - 亱 - 傦 - 偻 - 僶 - 倴儝 - 僄 - 偅 - 件乑 - 兊 - 乡亸 - 傍 - 儉 - 丝丛 - 儐 - 侕 - 偷 - 了 - 业 - 儛 - 兙其 - 倬 - 丶 - 伆 - 僼五冕 - 估 - 儍 - 伊 - 冶 - 内 - 僲伂 - 佊伮 - 僥 - 保 - 佽 - 偷佯 - 伣 - 亴 - 冤 - 仫 - 个儕 - 丂 - 俜 - 偻倯 - 俹 - 乑 - 丝 - 佻 - 井 - 伲 - 偫 - 以傀 - 仍 - 兗佄 - 侠 - 僖 - 俕仏僙 - 僑 - ▁儢佃 - 冣 - 傢偏 - 乼 - 代 - 傑 - 僲 - 俟乮佶 - 兣 - 丌 - 佇不 - 侈 - 伐 - 儞 - 凈 - 偳 - 丑 - 养 - 侖 - 倊 - 偠 - 任償仄 - 丬 - 乥冡 - 么兗佄 - 偘丆 - 儝 - 伬 - 凉 - 七 - 俿僀仸 - 冶乬 - 乆 - 偳価佯 - 佺儛 - 便 - 佩 - 乘 - 偩 - 兎 - 克与 - 倽 - 冥佽 - 党 - 冟 - 丩于仑争 - 凙上 - 侥了 - 価 - 丅 - 丣 - 佛伱 - 僦仃 - 偊 - 介凤令 - 仒倭伧 - 佑 - 冬 - 佥与 - 兗 - 亸 - 八 - 俿僀 - 丟 - 冨 - 丿 - 个佽 - 京偍凒兘 - 冊 - 冔儓伾乭 - 亵 - 不 - 侯凉乼 - 丆 - 侅 - 傐 - ▁儢佃僖 - 具伀 - 冥儕 - 修俋 - 儬 - 丟佗 - 凙 - 偬八 - 仝兗佄 - 从 - 丰 - 僵仑争 - 儍偵 - 伙 - 冡倬 - 佄 - 侤 - 仕 - 価丰 - 佇 - 兄兡 - 今 - 健 - 乶丁 - 侄 - 侉僃 - 仍七 - 仙仦 - 书 - 先 - 俄 - 丵乩 - 俪仄 - 丙伋俈 - 们倜兿傳 - 儰 - 儺 - 丙乖 - 企 - 其 - 俟侮久佶 - 偦丌 - 乖 - 乪俲 - 僴乞 - 冠乮佶 - 伊丅 - 亣 - 両 - 乖伋俈 - 俏 - 丞兵佡八 - 俤 - 侉 - 伖 - 倧 - 傶侻 - ▁儢偖丨俞佣 - 亮俓俅 - 侯 - 保倈 - ▁侒佃僖 - 偳丰 - 倽丂 - 伴丐 - 仆 - 偹 - 世兌 - 侯凉 - 乃 - 乚 - 三乔 - 兡 - 佺俄 - 冡估亸 - 例 - 仴偗凔仸 - 僨乷 - 伡 - 低俙 - 倯 - 傲乼 - 僾 - 兯丬 - 冣俋 - 儓伾乭 - 佑伃 - 亷 - 儔 - 僲儖伂 - 偘 - ▁儢佃僖伅 - 傥 - 丞兵佡偬八 - 僞佇不 - 凚 - 冁 - 亩 - 凎儛 - 侺 - 侺何佖傯 - 且 - 凓付 - 乓 - 仒 - 伊亘 - 儯亲 - 乘亞 - 傭丛 - 俔 - 僲儖 - 僵仑 - 亩允 - 僓 - 伮 - 伭 - 仄 - 亏伛 - 亮丏俅 - 任 - 佣 - 佦冪 - 冴 - 仌仸 - 伅俏 - 冞 - 佦 - 冸儉 - 側 - 偐亪 - 决 - 修冣俋 - 上 - 佥 - 俋 - 乇 - 什 - 侩 - 仒仼 - 们 - 丠乃佣 - 仍傦 - ▁侒僰 - 伬丗 - 仟 - 倉 - 冘 - 佨丳丼 - 介侶 - 仴 - ▁侒佃 - 伃傧 - 佔 - 内僜 - 丯 - 冭 - 介凤 - 凊 - 写 - 偬 - 俰 - 倴 - 偦 - 偪 - 偟 - 冐 - 仳 - 伤 - 丟傴 - 乍什 - 俯 - 僞佻 - 俌 - 佤丛 - 偰 - 傎 - 俪 - 倹 - 僞佇 - 倖 - 亏 - 儯 - 仔俖 - 儜 - 丶偫傄 - 伤傴 - 倝 - 丏 - 伔倔個 - 偎 - 令 - 僖伅 - 凋 - 丯佦 - 伋俈 - 凉乼 - 儬亹 - 俘 - 介凤價 - 冹 - 下伃傧 - 乆仫 - 侑予 - 乥冡估 - 兾 - 侙倈 - 冧 - 佌侀 - 俟侮乮佶 - 傉佯 - 产 - 儈侴 - 俜侑予 - 予 - 低 - 儕佁 - 両儝 - 俢丁 - 仞 - 他 - 偂 - 冋 - 乻 - 仙偹 - 兤侵 - 俞 - 丕丄 - 冨丿 - 们养 - 佺 - 伄 - 冼 - 冹丸 - 二 - 伤佗 - 凎 - 侃 - 倦侐億 - 佊 - 兌冡 - 儘傑 - 偊仰 - 仡侦 - 亻乯 - 倪 - 凓付亴 - 仙倪 - 傴 - 京偍凒 - 內先 - 佯 - 儉冼 - 乴偵 - 丁 - 億 - 业冊 - 俌傜 - 仼 - 凋傉 - 份 - 倦 - 凙俬 - 养义 - 偦丌儻 - 僇倰 - 仝享 - 僸 - 倔個 - 享俬 - 侺何傾 - 傺 - 佻凊 - 伴乹冿 - 亱乙 - 傡 - 伙佄 - 买佑 - 乚傀 - 丙乖俈 - 俻乴偵 - 仨仁 - 乮 - 兌乥 - 俊 - 元 - 俏丒 - 偷丰佯 - 丶傄 - 亚 - 储兯 - 冇九 - 侜 - 俤伉 - 佩丐 - 仸义 - 仏僙 - 兑儿仡侦 - 伟 - 俓 - 僇倰俯 - 兄俢 - 买侠 - 俾先 - 乥估 - 伴 - 净 - 俏伆 - 偀 - 兡侾 - 偽 - 兀 - 倀 - ▁丈 - 倉伨 - 伕 - 佦丢 - 僒伛 - 倔 - 仡 - 兊內 - 乤 - 们养义 - 亓 - 以 - 允傑 - 傚 - 凋価佯 - 凋傉佯 - 僯 - 丧 - 俖凡 - 佮仁 - 儖倊 - 乖俈 - 兟倢 - 冹佔 - 僇 - 乢 - 傟 - 仂 - 丒伆 - 伅丒 - 克 - 估亸 - 侈侨 - 傋乶 - 侑 - 丑俜 - 伍 - 俉 - 仉 - 個之 - 凐 - 佈 - 乥倬 - 丩于争 - 侯倀 - 倮儐 - 冦侔仱从 - 債 - 偪从 - 亘 - 冘儬仆 - 倥 - 儰仫 - 偆 - 侃儓伾乭 - 仰亃 - 兏侧丷 - 伵 - 僵于仑争 - 伊俼 - 冘上 - 兏仿侧丷 - 凄 - 儾 - 井冬 - 儓伾 - 丧侭乽伥 - 凓 - 互 - 佮 - 丳丼 - 僶傴 - 俠 - 兓 - 亯伱 - 傫俍丫仟 - 偏 - 仩 - 偊件 - 仢 - 丕人 - 乽 - 伙井 - 乥倬伙 - 佗 - 乙 - 丙乖倫 - 俔伹乫交 - 凋丰佯 - 伓他 - 僜上 - 兡凊 - 丒俏 - 僦 - 仰举 - 侭乽伥 - 东伆 - 倚丛 - 克俷 - 乱 - 丙倫 - 儯儲 - 伊丅冧 - 倭伧 - 佩乹冿 - 僵僼五冕 - 仐侫 - 佻侕 - 冑 - 偩伌付亴 - 兙习 - 仧 - ▁儢偖丨俞 - 冁以傀 - 仔保 - 侪 - 偐世 - 伴丐冿 - 乜仱从 - 亮 - 凁 - 丕 - 俤僘 - 们倜 - 丞兵佡 - 净亠侀 - 丠乃伍 - 侜仛仳 - 六 - 丩于仑 - 共乎 - 凝俻乴偵 - 偵 - 侤仮僿 - 冎丌 - 允丿 - 丧侭乤亂 - 傹俣 - 侁 - 佂 - 丞兵 - 亢僞 - 伨 - 亡 - 再储 - 丠 - 净亠 - 偗 - 凁丯俦 - 冪丢 - 兡俢 - 偩伌付 - 代冼 - 內俾 - 傯 - 冠侮久佶 - 九僑 - 丢偡 - 修丵乩 - 亯佛 - 佦冪伊亘 - 乔傑 - 仭 - 僓与 - 乑俣 - 凚世 - 低俙乙 - 乳 - 傜 - 丗 - 丙乖伋俈 - 亮丏 - 伄伃 - 冭倿 - 俜侑 - 兇佔 - 傐倘且 - 伊亘俼 - 佧 - 俿 - 乏 - 丿傑 - 丟儘傑 - 僑仏僙 - 乵倿 - 俔伹僒伛 - 僃 - 乊 - 仁之 - 伦 - 僀 - 今侧丷 - 儺亥 - 凞 - 亢佻 - 僦侫 - 丧乽伥 - 儊 - 丽 - 乯亻 - 伴丐傆 - 倍 - 侭 - 倬伙 - 乑亃 - 偅乌 - 僶佗 - 仕仳 - 伭关 - 侕且 - 丬兯 - 专 - 佢 - 侉凣儐 - 伏 - 兛 - 储再 - 僶伤傴 - 倗丑 - 像 - 乲 - 之凙上 - 俉偡 - 介 - 伆俾 - 俜侑予俉 - 伩 - 俕仏 - ▁儢僰 - 佶 - 何佖傯 - 伻内僜 - 么佄 - 僳 - 儅 - 亅伲 - 京 - 丧侭乤亂伥 - 儮 - 免儝 - ▁丈僰 - 儷兿傳 - 但 - 偅偵 - 丒儉 - 侺佖傯 - 佌 - 俓俅 - 修冣 - 乖倫 - 件乑亃 - 俵 - 亵兓儓伾乭 - 倣仮僿 - 偳丰佯 - 侦乥 - 侭乤亂 - 儼仰举 - 乲偡 - 僞佻凊 - 主亖 - 倧世 - 冃 - 債僮 - 侺何佖 - 冿 - 俬傲 - 伹僒伛 - 像侵冘上 - 伝 - 们乪俲 - 伶 - 亩代 - 倰 - 仌 - 偷傉 - 伣侙 - 俼伶 - 仔保倈 - 伓他倀 - 佺儛俄 - 俤僁 - 仙倪佟 - 亍佦冪 - 傼偘丆 - 亭再 - 傿 - 乯侻 - 俔乫交 - 丙伋 - 今仿丷 - 冑关凙上 - 僦仃伜 - 乃亯 - 並丒 - 侐 - 丵 - 傥乀侼伝 - 丠乃 - 儹 - 偳価 - 儘 - 乖伋 - 偞俯 - 世乥 - 俊俀 - 下傧 - ▁丈偖 - 俊偌 - 佸 - 倹伤 - 凖 - 偪仭 - 冔儓伾 - 偻仮僿 - 伔係 - 何傾 - 亀丐 - 亿 - 伱俾 - 俜业 - 中 - 允僑 - 亹三 - 享上 - ▁儢偖 - 亢乼 - 兏仿丷 - 偀亟 - 乹丐 - 偍 - 伖佐 - 佨倇 - 亻佤丛 - 兙侎 - 僜享 - 伆侃 - 亀傲 - 丧乽亂 - 什俎 - 儀 - 儩 - 仠儕 - 傖伆 - 倈冔伾乭 - 伛 - 償仄 - 丅冧 - 內丂 - 丬兯丬 - 乷 - 于仑争 - 冢 - 冓传侶 - 侽僈 - 伒伲 - 伔倔個之 - 克与乥 - 丕乏令 - 仺 - 乮佶 - 傩 - 冠侮乮佶 - 乯乿佤丛 - 倣俖 - 亮俓 - 冦侔伺仭 - 亳 - 僶伤 - 侻佤丛 - 偐关 - 兌亵兓 - 亵兓冔伾乭 - 冔伾 - 丕乏丄 - 侽七 - 來丗 - 俖俪仄 - 儼佁 - ▁侒僰倐 - 僱 - 兇凁丯俦 - ▁侒佃僖伅 - 丞兵佡偫 - 仁买 - 亠 - 儼例 - 侭乽 - 乽伥 - 偣 - 伀 - 偷傉佯 - 休 - 仝佄 - 亀乹冿 - 僥仕 - 乿佤丛 - 冉亩 - 传侶 - 临伏 - 僨 - 伓 - 乥冡倬 - 倉仂 - 世伃 - 倹仍 - 傗伱 - 亡側 - 傹傈 - 乚以傀 - 佈养 - 共乎凞 - 偡侻 - 傶东 - 儥亪 - 冈伲 - 傫俍丫 - 偀偲亇 - 傹凗 - 丅傭丛 - 临 - 伺 - 下乽傧 - 倶佤丛 - 仐侫丣 - 侼 - 乥凇 - 倈儓伾乭 - 仂伨 - 亍佦 - 儡 - 儏人 - 冨丿傑 - 乂冷偢亴 - 儘丿 - 俹倌乔 - 佈养义 - 兇凁丯 - 僕 - 凙上亢 - 俟侮久佶僤 - 傀 - 侧丷 - 倀凉 - ▁丈佃 - 冡亸 - 倉仂伨 - 僅 - 丩伹僒伛 - 之凙 - 倇作 - 之侥 - 乽亂 - 偍倀 - 伱伆 - 儼仰亃 - 乿伆 - 乱仂 - 凈优乱仂伨 - 乻俉 - 偅乒 - 偟儝 - 伴乹丐 - 儶 - 侴丱 - 倃七 - 偌 - 丠乃伍冸 - 世僥 - 佐 - 傦冇 - 凣 - 侜书 - 冀倏 - 乥估亸 - ▁儢僰倐 - 儲亲 - 乂侩 - 侖乃亯 - 佮仁之 - 主亖乗 - 佘 - 僞佻侕 - 傁 - 冹兇佔 - 俽 - 兯丬兯 - 侵冘 - 冧倚丛 - 倐丱 - 倝仩 - 凂 - 件乑俣 - 儏丕丄 - ▁侒偖 - 佅伃 - 冥乘 - 佧乷 - 六偍 - 侨俖 - 仃 - 俓仢 - 乘俎 - 像仝享 - 佦傶 - 僤仨 - 伬仗 - 书伩 - 俖傢偏 - 倦侐億僮 - 倔個之 - 京偍 - 倣仮 - 侕倝 - 倘且冁以傀 - 临伏丆 - 与乥 - 兣佟 - 仰俣 - 俎冣俋 - 丕人儐伈 - 仩僛 - 仢傟 - 京丮凒兘 - 傫仲俍丫仟 - 个佁 - 丟佗九 - 伧 - 乻俉偡 - 俊偌俧倱俷 - 儏倮儐 - 俬亀傲 - 亍 - 俥俙 - 侳 - 冔僝伯 - 僫 - 偻僿 - 两 - 乡佁 - 儏僮 - 亦 - 修 - 僦仃仠 - 乓亟 - 冝 - 享亢 - 乿傭丛 - 仝俬 - 伹乫交 - 倰俯 - 仓 - 丣伮 - 兡傯 - 兄凊 - 儉伇亼倿 - 凣儐 - 凕 - 倹佗 - 傋丁 - 偙 - 冕 - 乁 - 侦伃 - 共 - 下伃 - 俻 - 云 - 並俏 - 仒倭伧儝 - 伥 - 儉偩 - 僎 - 侵冘上 - 冨九 - 乹冿 - 僝伯 - 丨 - 先企 - 儘僑 - 冊倃 - 冇允 - 儻侯 - 丕人儐 - 偠冁 - 件什 - 介传侶 - 万冚 - 丑业 - 儣俣 - 几 - 俕 - 倃再 - 丙侜 - 件乑举 - 冔 - 乥倬伙佄 - 傫丗 - 兵 - 傃 - 凔 - 佅 - 再储再 - ▁儢偖並丨俞佣 - 僶伤佗 - 俕僙 - 侺何傾兟俋 - 傐倘 - 丟佗儘 - 俁 - 况 - 僤兀 - 冡乡亸 - 准 - 働 - 俊偌俧倱与 - 介传乏令 - 儏債僮 - 万佛 - 冩 - 仍內 - 作俣 - 冦乜仱 - 冚万 - 亱乻 - 傫仲俍丫 - 乿丒 - 俬僞 - 亨 - 仠么兗 - 介偤共乎 - 乹 - 丕人傡 - 侟 - 佲 - 乑举 - 冔儓乭 - 亢傲乼 - 侾侼伝 - 凅 - 偄 - 偗凔仸 - 倘且 - 僵凡 - 丏俅 - 亀丐冿 - 冸伆 - 俾先企 - 乚仩 - 儏丄 - 俵倚丛 - 傐倘且冁以傀 - 佾亳 - 儛俄 - 兑儿 - 僥仕仳 - 仯倞 - 侧 - 傲傆 - 並伱 - 仦凊 - 僺 - 任償 - 侧傃佲 - 儺亥伜 - 乀侼佀伝 - 伶丠乃佣 - 亪偫傄 - 儺众 - 伊亘俼伶 - 俏伅 - 乘亞債 - 丒伅 - 俬丸 - 三俕仏僙 - 凇丁 - 丕乏 - 乀侼伝 - 傶丅 - 傂 - 倹伤佗 - 再伱 - 倃侽 - 丨俞佣 - 仴偗 - 佦丢伊亘 - ▁儢偖丨俞伍 - 今仿侧丷 - 侓 - 伈 - 俞伍 - 他倀 - 僇倰兟倢 - 兇凁 - 佟 - 亭丢 - ▁儢偖乿丨俞佣 - 侧傃 - 偫傄 - 俪偌仄 - 侫 - 兟俋 - 偀偲亇享 - 侢佸准 - 倘 - 偊乘 - 儿 - 侴儈 - 倒冽 - 六偍凒兘 - 丙乖侜 - 亠侀 - 丕共乎 - 冓传侶令 - 凋佯 - 仠么 - 倣仔 - 凊仰 - 冡倬伙 - 俘倖便 - 冓传乏令 - 偡亻 - 僇俯倢 - 凚世僥 - 兌亵 - 佡 - 兊傦 - 冩乛 - 兯丬兯丬 - 侕且伕 - 冀倏侜倓伩 - 乎 - 冩乛俲 - 佞 - 冒 - 乤伥 - 六偍凒 - 偻倯偹 - 俍 - 偬仆 - 倘倝 - 偊例 - 偔 - 侖乃 - 凁丯 - 乄企 - 些 - 倢三 - 倬伙佄 - 乥乡亸 - 倒亁 - 僇俯 - 丯俦 - 伏丆 - 企乓 - 偡乯 - 五冕 - 俟 - 乥冡估亸 - 傣 - 众 - 侭乤亂伥 - 但五冕 - 兌业 - 佦冪丢 - 冡凇 - 件亃 - 侈仡 - 倘且伕 - 但冱五冕 - 凉兄 - 儒 - 净亠内 - 儲偡 - 傔 - 冉伆 - 丧傧 - 伵伜 - 俖丼 - 丧侭乤伥 - 乯侻佤丛 - 侺何傾兟冣 - 並亩 - 仝上 - 丞兵佡偬 - 公 - 乡仫 - 侳侣 - 亀何佖傯 - 亻丛 - 侃偀 - 仒仼倭伧儝 - 乓偀 - 俞佣 - 倁 - 伋傄 - 佄佩乹冿 - 倸亭 - 交 - 伔倔 - 佝 - 儃 - 偃儁 - 乿俏 - 件佁 - 乃佣 - 儆 - 儏人傡 - 乼三 - 儺些 - 京偍倀 - 佷俅 - 丕傡 - 僵于争 - 俊偌仄 - 倐伅 - 丮倀 - 儓乭 - 倶伱 - 傐倘且伕 - 並伆 - 冢兤 - 內先企 - 们傩亣 - 俧 - 介偤侓 - 俬亀 - 俀 - 兀偘丆 - 丧乽亂伥 - 仨僗 - 偸個之 - 冓凤價 - 冨傑 - 兞儾 - 供 - 仙偹佟乲 - 仿 - 亲佛 - 佥俷 - 伜傋 - 俌傜亊乨偁 - 俒借 - 傋乶丁 - 俼侖 - 傐倘倝 - 乽傧 - 乆仫三 - 东伱 - 乀侼佀 - 侻乯 - 傛 - 凥 - 併 - ▁侒佃並僖 - 儖伂乔 - 仚丹伲 - 丧乽 - 侌 - 伕以傀 - 倓伩 - 伐侵 - 例亞 - 丑俜业 - 凑 - 倹仍傦 - 伙井冬 - 佚 - 冦侔伺 - 兙 - 冟僾 - 俜侑予俉偡 - 佥与乥 - 偳価丰 - 丣亍俉 - 倀凉乼 - 乯侻乿佤丛 - 于仑 - 儗 - 佪 - 傄串 - 丙俈 - 偠伕 - 俹倌习 - 丼俣 - 像仝上 - 冓传凤令 - 伔偂 - 伽他 - 亻丝丛 - 倪佟 - 偸 - 侯倀凉乼 - 乖侜 - 儎亳 - 六偍倀 - 佩丐冿 - 僑事 - 仜 - 丢傶 - 冓凤 - 僞兡俢 - 丙乖伋 - 倿 - 丨俞 - 偤侓 - 他倀凉 - 乹傆 - 丒亩 - 亼倿 - 僤佮仁 - 俔償乫交 - 丙侜书 - 偀为 - 久 - 佋 - 傜亊仈偁 - 代丿 - 冒仔冋 - 並傭丛 - 償 - 凗伱 - 儷 - 傹亃 - 偧 - 倹伤傴 - 亢傲僸 - 僦侫丣 - 偯 - 佽俎 - ▁侒佃僖並 - 仠冥 - 价冄 - 冓凤令 - 依乄 - 侉凣 - 僈九 - 傢 - 乜仱 - 丠乃佣冸 - 佬偶 - 仧俩 - 偓 - 兤倗 - 傼兀 - 冓偤共乎 - 代允 - 俔僒伛 - 伪 - 乢侀 - 冪伊亘 - 乀 - 佷 - 仴偗凔 - 乯並佤丛 - 儇 - 乕佸准 - 例什 - 佒 - 傶傖 - 偀你 - 京丮凒 - 偶亁 - 丌儻 - 凡三 - 伴乹丐冿 - 侚 - 么兗井冬 - 僢偬仆 - 倉儺 - 兵佡八 - 傜乮 - 倶傭丛 - 伒 - 冓偤侓 - 儆儝 - ▁儢偖俞 - 僞不 - 凧亳 - 傹伱 - 僚 - 乶优 - 侭亂 - 冒冋 - 丱俾 - 亥 - 僼俺 - 僥亸 - 俟便 - 兺 - 侭傧 - 仞偬八 - 乹丐傆 - 亪偫 - 住 - 乍俎 - 丕人共乎 - 侕乚 - 傐倦侐億 - 佑侦 - 乇傜亊仈偁 - 丌佊 - 伸 - 侥了伋傄 - 丠乃亯 - 丶债 - 仏 - 偰亠侀 - 冈 - 僀仸 - 侕伕 - 傭 - 侲 - 乍什俎 - 儬乚亹 - 亼 - 凍俙乬 - 兿 - 偌仄 - 傥侼伝 - 伣侙倈 - 丼傹 - 倦億 - 侀侨 - 侍 - 丰佯 - 倽丂佄 - 仩佝 - 乁仁之 - 儩倉 - 俨 - 僣 - 佇侾 - ▁偖 - 兄兡俢 - 串偊 - 偰亳 - 俊俀凅 - 儩倉仂 - 乱仂伨 - 侥债 - 佛傹 - 侻乯乿佤丛 - 僪 - 儬仆 - 仩佝俩 - ▁儢佃乿僖 - 俜乆 - 凍俙 - 儼伋 - 俄儓伾乭 - 丑俜侑予 - 冥乑 - 儕举 - 仙倪佟乲 - 俑 - 冸俾 - 兞 - 乶倉 - 伪乜仱 - 万侴 - 偠冁兾 - 傖伱 - 佨丼 - 侻乿佤丛 - 偿侵 - 儩乱 - 侯倀凉 - 伌 - 万冚万 - 俢倉 - 傌 - 乍亞 - 凔仸 - 儯俉 - 事仔 - 且伕 - 享亢傲 - 僃倛 - 冨僑 - 传 - 佄伴丐冿 - 兙傺 - 俯倢 - 冗俶 - 乿伱 - 丞两佡 - 兣佟乲 - 亮俓仢 - 乥僥 - 作亃 - 亰 - 佑俜侑予 - 丞两佡偬八 - 伆俤伉 - 亖 - 偻仮 - 佤 - 亢傲傆 - 冥佁 - 冑关凙 - 傿亴 - 例侉 - 僲倊串 - 仡佑 - 仒仼倭伧 - 侉僃僊 - 丢乯 - 僑仏 - 冓丕丄 - 偠乚 - 乣 - 冧傭丛 - ▁丈僰倐 - 亍佦丢 - 佗九 - 俭 - 伜冥 - 亪伃傧 - 丐 - 丂佄 - 亊乨偁 - 伴傲 - 乥乡 - 俖佁 - 伖佐乤亂伥 - 侨丳 - 侥了傄 - 倀兄 - 僊 - 偣养 - 佴 - 冓传令 - 儩倉仂伨 - 伬丗丫 - 偳倊 - 举于仑争 - 伃估 - 凁丯佦 - 俟乮 - 凎俄 - 冚丱 - 决与 - 偾 - 伳侣 - 仌仁 - 凓伌付亴 - 内僜上 - 丟儘 - 丿两 - 冑关 - 傥乀佀伝 - 兟冣 - 儏丕令 - 侽再 - 儏乏令 - 凎儛冔伾乭 - 介價 - 六偍仳 - ▁丈偖丨俞佣 - 冇丿 - 个佽什 - 会 - 仙偹佟 - 俚 - 偾仸 - 储兯储 - 丁儺 - 偡光 - 傕买 - 冓传凤 - 侭乤伥 - 俵丛 - 侸 - 乾兤 - 伔偂倗 - 冠佶 - 俏丱 - 冹兇 - 佫 - 侤仮 - 僼俺冕 - ▁儢佃僖乿 - 傒 - 伱佛 - 冓僃 - 乔仚丹伲 - 亞債 - 佖傯 - 亊 - 儛冔伾乭 - 低俙亱乙 - 冘仆 - 丼乑 - 乘俎債 - 凎儛俄 - 乕 - 亍冪 - 丒倽丂 - 冶乙 - 偷倊 - 偳僲倊 - 俜业冊 - 冥佽什 - 他倀兄 - 儘丿傑 - 亪丶傄 - 侚仃 - 佛伆 - 僞兡 - 倽仗伵伜 - 今侧傃佲 - 凝 - 偀傻 - 侑党 - 儕亃 - 俟久佶 - 俓仢傟 - 侮 - 伖乽伥 - 丒代 - 僵于仑 - 傅 - 俸 - 之俖 - 僇倰俯倢 - 乥冡倬伙 - 伦倖便 - 介偤 - 先企侃 - 俜侑党 - 倶伆 - 並亻 - 债八 - ▁侒偖丨俞佣 - 今侧傃 - 亵企 - 丞两 - 倅 - 冦乜仱偪从 - 乽亂伥 - 俀凅 - 乵冭 - 丨俞伍 - 丧侭乽 - 傪亶 - 乚以 - 兟冣俋 - 侼伝 - 乂冷偢 - 农 - 僢丮 - 兕 - 伹 - 偘伏丆 - 亪丶偫 - 傄佈 - 九丿 - 冥什 - 冧俵丛 - 偹佟 - 们倜兿 - 俖作 - 专他 - 並侴 - 傫俍仟 - 亍俉 - 乯佤丛 - 件乑傈 - 俨仁 - 丩于 - 倶丒 - 伬丗仟 - 丧乽傧 - 傼偘 - 乴 - 凙享 - 冁傀 - 傪儡 - 儂 - 亜侦 - 儓僝伯 - 六偍凉乼 - 册 - 冬佩乹冿 - 偬偫 - 亽 - 偸個 - 乘俤 - 净亠侀儻 - 倴儝僄 - 偍凉乼 - 伶侖 - 乱伨 - 侴丝丛 - 兯储 - 仩催 - 佦凗 - 但冱仉 - 写冶 - 但冱五仉 - 克俷丑 - 乔偎 - 例侉僃 - 兰偘丆 - 全 - 俕儀僙 - 偰亠 - 侨倇 - 亀乹丐 - 僁 - 傼 - 乑傈 - 傲僸 - 你 - 侹 - 儼仰俣 - 偍倀凉乼 - 件乘 - 偊件乑 - 任傢偏 - 丞两佡八 - 儓 - 僫关 - 侘 - 冦乜仱从倌 - 业冊倃 - 净侀 - 乊冶 - 傥乀侼佀伝 - 僑亷 - 仒倭僷 - 丅乿傭丛 - 他凉 - 傻 - 亄 - 乸 - 俴 - 傳 - 冠侮久佶僤 - 丼亃 - 僢丮凒兘 - 來傫俍丫仟 - 介侶令 - 亚丌仡侦 - 丿偩 - 伃儰 - 佊丣伮 - 倚 - 凒 - 侣 - 佭 - 乳仮僿 - 傥儖伝 - 働侥了 - 冽万 - 僲儖倊 - 乹丐冿 - 亊仈 - 冉伱 - 侉僃僮 - 亻並 - 傥侼佀 - 凎佺俄 - 冼亼倿 - 企侃 - 丌佊伮 - 僔仁 - 偰侀 - 冠傜佶 - 儩乱仂 - 乇亊仈偁 - 俟傜佶 - 內僈 - 倧世兌 - 乶优乱仂伨 - 丷 - 仲 - 價 - 丽义 - 亘俼 - 傩亣 - 傄俥俙 - 僘 - 佬僗 - 俖仛仳 - 儀僙 - 亲储 - 儺促余 - 偗凔 - 丩仑争 - 偡傶 - 丮 - 享僞 - 並丝丛 - 倜 - 丯冪 - 侵凙上 - 仒倭 - 侺何傾兟冣俋 - 侙企 - 冼伇俸 - 傹伢 - 们傩 - 僡冶 - 冠 - 仲俍 - 乔中 - 了伋傄 - 乓偲亇 - 傫丗仟 - 乃伍 - 傗凗 - 侮乮佶 - 僴乞倌 - 乥亸 - 仈偁 - 亩冼 - 伆侃儓伾乭 - 俄冔伾乭 - 兡凊乑 - 亭丢亭 - 个佽俎 - 僢丮倀 - 亱乻俉 - 佸准 - 冁以 - 儺俛 - 僜凙上 - 僦侫伜 - 僞兡凊 - 关凙 - 倸作 - 傶乿 - 供伶供 - 三习 - 冦侔 - 亟 - 仔俖冋 - 俷 - 凙亢 - 储冽 - 儻侯倀 - 僤仨仁 - 僢丮凒 - 优乱仂伨 - 仴偗凔儑 - 佨倆 - 乀佀伝 - 凤 - 傪亶他 - 举丕丄 - 们乪 - 侥伋傄 - 俤佭亴 - 凗冸 - 傪促余 - 侎偊 - 儺亿 - 偅乔 - 丒俾 - 例俎 - 今兏仿丷 - 俌傜亊仈偁 - 偘亴 - 丣亍 - 僇倰兟 - 倩 - 儩乱仂伨 - 为 - 侥了伋 - 万侴万 - 六偍兘 - 僧 - 丁促余 - 亰伃 - 冩严侍伃 - 侜伩 - 兌冡估 - 丣乻 - 佑俜 - 伓他凉乼 - 俾倉 - 冚万冚 - 仅亠 - 争 - 亗俲 - 伓他凉 - ▁儢偖俞佣 - 伖乤亂 - 临亜 - 仨仁之 - 佧乷儷 - 丧佐乤亂伥 - 丟佗冨 - 伌付 - 儗仁 - 仫三 - 儓伾凈 - 兖 - 佹傠 - 俊冬 - 佈倜 - 于争 - 俊俀仄 - 倣佨丳 - 伃估亸 - 仗 - 偶佬 - 債冰伲 - 仨仁买 - 仩僛伃 - 亭万 - 供丠乃佣 - 儷兿 - 儑乬 - 僵冱五冕 - 冞世 - 俜予 - 下偫傄 - 冼伇俸倗丑 - 件俣 - 偂倗 - 係儥 - 今兏仿侧丷 - 丒倽 - 乥儰 - 兾傽偪僥 - 冥佽俎 - 冽倒 - 京偍倀凉乼 - 偯丌 - 佄佩丐冿 - 供伶 - 丣乻俉 - 亃債 - 乤佀 - 便乒 - 低俙亱 - 侉僃倛 - 伐丙 - 傞 - 了伋 - 举冣俋 - 位凔 - 冔僝伯俹倌 - 凚世乥僥 - 傐且 - 亗侽 - 倢侤 - 傑中 - 亪丶 - 僨乷儷 - 儷丽 - 俤僘儼 - 佩丐傆 - 偌俧倱与 - 傐倘伕 - 倹仍七 - 傥侼佀伝 - 乣偘丆侦 - 伳 - ▁儢佃並僖 - 億僮 - 冥亞 - 伊丅並俵丛 - 俜六偍凒兘 - 乻儯俉 - 伊亘供 - 伤傦 - 偹佟乲 - 侺何佖傾 - 光冉 - 傜佶 - 俏傖 - 佦冪伊亘供 - 以僮 - 典佰 - 亮俅 - 侬 - 兾乺伺仭 - 傹儈 - 俱 - 冠久佶 - 侃主亖乗 - 仍傦冇 - 佦丢伊丅 - 儷仸 - 侺佖 - 並佤丛 - 冦乜 - 凘 - 丑业冊 - 偻倯偹党 - 倘伕 - 亊仈偁 - 冽冚 - 上亢 - 亃冣俋 - 傦九 - 偎兌 - 五 - 儥係儥 - 儷丽兿傳 - 他倀凉乼 - 仮僿丼 - 僯倀 - 俙 - 傥儖倊 - 乀乤佀伝 - 侭乽亂 - 保倈冔伾乭 - 九冼 - 伊俼伶 - 兪 - 仠偠 - 仐 - 串仝 - 伬傫俍丫仟 - 仧俩义 - 凄丙 - 傷 - 俎債 - 侴万 - 並乯 - 僥了 - 仯倞凔 - 倯偹 - 侃僝伯 - 傱 - 万儈 - 佁僼五冕 - 倉儺亥伜 - 专他倀 - 冎俹倌 - 僒 - 偋 - 侶 - 亩儉 - 信偊 - 六仛仳 - 兇凁丯乲 - 侻傶 - 傥乀侼佀 - ▁侒僰儈倐 - 亳侈 - 侜书伩 - 僤仨仁买 - 下丶 - 仅 - 儬八 - 事一 - 仗伵伜 - 仚丹 - 偊乑 - 兆仸 - 介传侶令 - 冏 - 僰倐 - 像享 - 冰伲 - 伊丅冧並俵丛 - 俘冶 - 伇亼倿 - 凙上亢傲 - 僈先 - 光侞 - 佛傖 - 促余 - 伬丗仗 - 並倐 - 丅並 - 们倜偅 - 仰冓 - 井亀 - 亵兓儓伾 - 侢 - ▁侒偖丨 - 再凗 - 儼仰冓 - 僳僜 - 僌 - 僬 - 佺儛乓 - 凜 - 僵于 - 东佤丛 - 仗伵 - 僃僊 - 冡估亞 - 仓兌 - 凋儖 - 伤儘傑 - 倒丱 - 儯儲亲 - 俬亢傲 - 僞兡傯 - 偬债 - 伌付亴 - 侥儬 - 冀倏倓伩 - 乿亩 - 僷 - 亍儯 - 儬倝亹 - 僨乷儷兿傳 - 伖乤亂伥 - 凘儝 - 乗 - 傼临偘丆 - 冣丵乩 - 佹偶 - 偝侇儝 - 丅冧傭丛 - 么兗佄冬 - 买侠倆 - 僲倊伂 - 丽兿傳 - 个傉 - 侐億 - 偃儁伃 - 倵 - 俏丒伆 - 傖佤丛 - 兇凁丯佦 - 冠乮 - 丧侭 - 乥儰仫 - 也僀 - 伴乹傆 - 儫 - 仐侫伜 - 儓伾偊 - 准亱 - 丼傈 - 侾侼佀 - 儛乓 - 僖伅俏 - 僞侙 - 傼临伏 - 儰亞 - 临偘伏丆 - 儈丱 - 僤佮仁之 - 倡 - 乲傶 - 傹东 - 侥伋 - 佾 - 佩乹傆 - 举丕乏令 - 伓他倀兄 - 俜冊 - ▁儢佃乿 - 仔冋 - 俥 - 伷 - 凜亠 - 俜僥 - 亢僇倰 - 倓 - 凌 - 倭亄 - 僗偶 - 俇 - 儥倣 - 丵乩仝 - 儼亃 - 僤偐 - 亙 - 傪儹 - 仰傈 - 侖伶侖 - 兞侣 - 凋儖倊 - 亍儯亲 - 儩仂 - 俣儏 - 免 - 乹亡 - 再並 - 倈侃 - 串仝享 - 冇內 - 丅並傭丛 - 偼個之 - 举債 - 储俼 - 倞 - 乜 - 允冼 - 兊佗 - 傗冉 - 儃倖便 - 僵但 - 伟偪 - 侾伖 - 俤傡 - 乯並 - 下丶傄 - 亸佁 - 佗儘 - 佩乹丐冿 - 個买 - ▁儢偖丨 - 冁仩 - 佊丣亍 - 偠兾 - 伱傗 - 儮仸 - 伉 - 亀丐傆 - 丯佦丢 - 亣偻倯 - 傘丱 - 侃傻 - 亪丶偫傄 - 俆 - 仦俢 - 丠乃伍佣 - 俗 - 傇 - 亵冔伾乭 - 仛仳兘 - 児伲 - 侔伺仭 - 傹傖 - 僑傍 - 侼佀 - 乔凓伌付亴 - 僿丼 - 凍 - 乔互 - 冘儬 - 三乵 - 僶伤儘 - 俊凅 - 佄佩乹丐 - 借俒借 - 倸偡 - 世僥仕 - 丸兇丸 - 冼伇亼倿 - 僖俏 - 偮 - 佧乷儷兿傳 - 傶並 - 俊俀俧倱俷 - 俕仏僙亵兓 - 乚傀僮 - 佩傲 - 伪乜仱从 - 准亱乙 - 伻内僜俊偌俧倱俷 - 丕丄侂 - 倎 - 佁凡 - 伅丒俏 - 凁丯乲 - 儚 - 乣偘丆 - 伶供伶 - 佛冚 - 亀何傾 - 东俏 - 佦傖 - 佩乹 - 倃亭 - 傃佲 - 俵並俵丛 - 俘冶乬 - 丝佤丛 - 丧乤亂 - 世乥僥 - 侾佀 - 再傖 - 伅俏丒 - 亝 - 傖儉 - 丕令 - 伆企 - 仒倭僷俩 - 儩仂伨 - 亡側俓仢傟 - 俥俙乬 - 伬仲俍丫仟 - 傥乀乤佀伝 - 串个 - 乞 - 何佖 - 仒倭亄 - 兄佇 - 侗侣 - 亓乲 - 侾乀侼伝 - 凤價 - 偀伎 - 仹 - 冭倿乥 - 冲 - 儥仝享 - 倪佟乲 - 储万 - 兯侞 - 倮 - 傖冸 - 僜上亢傲 - 僴儊 - 僞凊 - 偌俧倱俷 - 亀乹傆 - 冠乮佶僤 - 侕且冁以傀 - 佩乹丐 - 佔凁 - 儻侯凉乼 - 儖僶 - 伓他倀凉 - 仠么兗佄 - 买之 - 佨丳伙 - 偳儖 - 傫丗仗 - 俽儝 - 佦凗伊亘 - 倐並 - 侮久佶 - 兛個 - 三侅 - 冡倬伙佄 - 偐买 - 乓主乗 - 乹傆信 - 傶倶 - 儻侯凉 - 偤 - 元侘 - 侑予俉 - 僞倰俯 - 亵乄 - 借 - 于 - 侽內 - 佽修俋 - 兏仿侧 - 具伀之 - 俬傲乼 - 亭偡 - 儏丕乏令 - 侖並侖 - 亪债 - 侭亂伥 - 傋乶倉 - 偽俻乴偵僴乞 - 倝傄 - 伿 - 企冔伾乭 - 乀佐 - 兌儖 - 兵佡 - 傫丗丫 - 倣丳 - 伤儘 - 僬仸 - 乇傜 - 偻偬 - 侃偀亟 - 凚世兌 - 儨 - 下偫 - 佧俻 - 兜 - 僑仏僙乥 - 今侧 - 俊俀偌俧倱俷 - 僗乬 - 倕僈 - 佌侀丙 - 儕俣 - 俟侮久乮佶 - 仛仳丸 - 冥乘亞 - 僝伯俹倌 - 乧乒习 - 來丗丫 - 兟僒伛 - 代偩 - 冊予 - 儏丕 - 乏令 - 儸 - 冻僀 - 凉伣 - 仿侧丷 - 倒偶 - 丿其会 - 倇俣 - 冎伜 - 伟偪僥 - 偷丰乔 - 冉佤丛 - 丶亞傄 - 侠倇 - 个儕佁 - 儶俓俅 - 丧乤亂伥 - 兕侣 - 傐倝 - 兏 - 乛 - 亿倣 - 像仝 - 件举 - 丬亯 - 僗乶 - 佄佩乹丐冿 - 儶俓 - 仁偳 - 僦侫佊伮 - 俔償 - 仿丷 - 佀 - 冤冕 - ▁儢偖丨俞佣俏 - 凋価丰 - 倃傹 - 写冶乬 - 兲 - 佁倢 - 傗傖 - 俤儒 - 偼個 - 俜业乆 - 兾傽 - 佄乹丐 - 亗兊 - 兰 - 冱 - 偱 - 也仸 - 以傀僮 - 佛侴 - 俼伶侖 - 偳佯 - 偽俻乴偵 - 亻並佤丛 - 佬係 - 冓偤侓儐 - 兇凁丯乲俦 - 値 - 仍亲 - 侠倇作 - 僭儝 - ▁侒僰倐儈 - 凣儐兩侀 - 傏 - 倰俯倢 - 儎 - 傥乀佀 - 倗丑俜业冊 - 伎 - 侣丆 - 倆亭 - 僼冕 - 俺 - 佛儈 - 俿仸 - 仃仠 - 伺仭 - 九僑仏僙 - 倽仗伵 - 伖乽亂 - 亶 - 促乐余 - 俏並 - 兤倗丑 - 儶俓仢 - 倿兌 - 倁倿 - 么兗佄佩乹冿 - 凓伌付 - 侈侨倆 - 僓俷 - 冡乡 - 伇倁亼倿 - 僜俊偌仄 - 偳儖倊 - 僜享上 - 冖伲 - 僥作 - 佘乬 - 佈倜兿傳 - 倘乚 - 佽亞 - 俎冣 - 任俔償仄 - 乡亸佁 - 傷凖 - 俐 - 冰 - 佺儛冔伾乭 - 乆仫仦 - 冑兤 - 兌僥 - 兌凇 - 偝侇 - 侨倆 - 俔乫 - 倦冁億 - 井冬佩 - 傆儥 - 仐仃 - 俙乬 - 冓偤侓伨 - 仱 - 俕仏僙乥 - 世儖倊 - 乘俤僘 - 佽修丵乩 - 业乆 - 乊冶乬 - 丢亭 - 伴乹丐傆 - 傹並 - 伃冡 - 佻兡 - 侕且乚 - 代偩伌付亴 - 乓为 - 傦傗 - 乀乤佀 - 俌亊仈偁 - 僞僇 - 冓侶 - 伖佐乤亂 - 丢丅 - 但僼五冕 - 冁傀僮 - 俏亩 - 丩凡 - 亢僇 - 兌业冊 - 侾乽 - 佛凗 - 亻儈 - 万儈万 - 償乫交 - 俖俪 - 供並供 - 丒冸 - 伅侴 - 储並 - 傲三 - 僞兡侾 - 儐偺 - 傖丒 - 兮 - 佦伊亘 - 俎債僮 - 侺何傾傯 - 丑乥 - 冻僀仸 - 优儩乱仂伨 - 僦侫佊 - 丩但 - 凂亳 - 丫仟 - 儏人儐伈 - 偎世 - 丧侭亂伥 - 仐侫佊伮 - 兇仆 - 乥冡亸 - 乣临伏仡 - 佊伮兊七 - 偷価佯 - 傶冉 - 串个儕 - 乨偁 - 偀伎俩义 - 京偍兘 - 凊亃 - 乓偲亇享 - 丧侭亂 - 仝兗井冬 - 丼佁 - 了傄 - 优倉伨 - 凊乑 - 丧侭乽亂 - 倉儺亥 - 业冡 - 佄伴丐傆 - 僼五 - 丑俜业冊 - 伤九 - 乑凗 - 亃丕丄 - 丐冿 - 兵佡偬八 - 俤信 - 介传令 - 儥关 - 像侵 - 僪個之 - 伋兣 - 伕傀 - 倬倘 - 伽 - 兑 - 冹兇丸 - 倨 - 储亯 - ▁儢偖倶丨俞佣 - 偩伌 - 倶亩 - 偂世 - 亂伥 - 冎丌儻 - 俤儒伜 - 俿僀亜 - 仍佗 - 但俺 - 冣僎 - 亯佛伱 - 代僑 - 伳侣侈侨 - 储兯丬 - 凙上僞 - 佬乌 - 例俎僃 - 僉 - 伖侼伝 - 仒仼兔乷 - 丁仂 - ▁丈佃僖 - 儴 - 冬佩乹丐冿 - 乓主亖乗 - 偒 - 傶凗 - 亮丏俓俅 - 偪估 - 个儕举 - 倇倫 - 倀乼 - 仒倭僷俩义 - 伙兗 - 傫俍仗 - 亃倢 - 侃亟 - 仙仦凊 - 丒丱 - 乇傜亊仈偁伜 - 傾 - 亥伜 - 介偤侓伨 - 享俬傲 - 冇僈 - 乔働 - 倭 - 偀俁 - 俎僃 - 丟佗丿 - 俭乬 - 俀凅交几 - 丆侦 - 倉儺众 - 傜亊仈偁伜 - 傭倚丛 - 倣僿 - 乓你 - 儬乚 - 亍佦冪丢 - 冦乜仱仭 - 仒伧 - 兯丬兯丬兯丬 - 伓倀 - 儱 - 关亪 - 伇 - 來傫俍丫 - 光乿佤丛 - 伻内僜俊偌俧倱与 - 凑俩义 - 乘俎債僮 - 冽兯 - 乔傌 - 丐傆 - 凊俣 - 兇丸 - ▁儢佃並 - 亷乥 - 介凤册 - 丧侭傧 - 乯倶佤丛 - 主乗 - 乓停 - 儘僑亷 - 僈七 - 倽仗 - 侾侼佀伝 - ▁儢偖僖 - 事冒 - 俘倖便串 - 丑兌 - 丟傴冇 - 兯丬亯 - 值 - 俌傜亊仈偁伜 - 侉僃兠 - 儕丩 - 丄 - 僗乒 - 侯凉傲 - 亞俤僘 - 冶俰 - 們 - 伃僥 - 仮傉 - 兄俢丁 - 他凉乼 - 佁僵 - 儭 - 乁仁 - 介偤侓儐 - 习偊 - 僉倖便儳 - 倝仩佝 - 倃內 - 伒僗 - 俾先俎 - 储再储 - 亐 - 兘佻 - 儠 - 例俎侉僃 - 儁 - 傓 - 凇倉 - 侈侨作 - 儉偩伌付亴 - 侥了倫 - 亓丯俦 - 冶乙乬 - 乓亖 - 侔仱从 - 冸儉冼 - 侭乤 - 俔乫交僱 - 七再 - 侵侠 - 仼倭 - 凁丯乲俦 - 倘且冁 - 傖傶 - ▁侒偖丨俞 - ▁侒偖俞 - 僸僢 - 凅交 - 伃乽傧 - 兢 - 偡储 - 俖冋 - 儷丽义 - 兒 - 兌儰仫 - 冣乩 - 乊佰 - 倠侵 - 僦仐侫 - ▁儢佃乿僖伅 - 倖便乒 - 俊俀凅亐伜 - 偊仰举 - 乯乿 - 僜俖 - 仠兗 - 冣儆儝 - 乻亍 - 丣乻俉偡 - 乿侻佤丛 - 亾冶 - 佮仁偳 - 丸倹 - 僇倰倢 - 偧仁 - 偦丌侨 - 伱儉 - 倹仍佗 - 伶丠 - 俏倽丂 - 仒倭亄儝 - 伇亼 - 乼乔 - 乘俤儒伜 - 俣倢 - 冩丛 - 亍佦冪伊亘 - 僮伔 - 冓偤 - 乻亭 - 來丗仗 - 乿伅 - 仅亠内僜上 - 兌兓 - 冭兌 - 儬倫 - 乚仆 - 兄兡凊 - 亂 - 具 - ▁儢佃並僖伅 - 俟乮佶僤 - 乥冡凇 - 伾 - 倘且乚 - 儈伆 - 佹偶佹 - 乓偀偲亇 - 冘作 - 佽俎冣俋 - 优倉 - 今仿侧 - 俈佞 - 冋仳 - 僤兀偘丆 - 再凗再 - 倴儝俅 - 乻儯 - 傪 - 乧乒乔 - 倊伂 - 侃主亖 - ▁侒 - 佽什 - 兌儰 - 僥倇 - 保倈儓伾乭 - 人 - 伴乹 - 兾僮 - 佳侣 - 儼举 - 倸亁 - 亱乻俉偡 - 丠乃佣亯 - 两佡偬八 - 仇凧亳 - 仑 - 仠佽 - 儏人儐 - 冘上亢 - 亩俾 - 乖俣 - 兾傽偪 - 冧俵倚丛 - 俐丶偫佒 - 仐侫佊 - 今兏乱侧丷 - 佄佩乹傆 - 仮僿乍 - ▁儢偖俞僖 - 傶乯 - 侅仔 - 倅僲伸 - 侺何 - ▁儢偖丨乿俞佣 - 乶优乱仂 - 俻乴 - 九偩 - 冹佔兇佔 - 仙偹佦 - 兡侾乽 - 冦侔仱 - 倦侐億僤 - 京凒兘 - 两佡八 - 伙丂 - 世乥僥仕 - 傋优乱仂伨 - 保俣倈 - 僴乞俹 - 佚倣 - 凒兘 - 凝俻乴 - 佰 - 偪僥 - 冬佩丐冿 - 倢伐 - 俧倱俷 - 亀乹丐冿 - 傥倊 - 傑中之 - 偎世兌 - 云与 - 凉冿 - 丽傳 - 停 - 丬兯丬兯丬 - 佌亠侀 - 凚兤 - 伭丙乖倫 - 仼亦 - 优 - 况倣 - 乓傻 - 偗凔儑 - 傧云 - 党儯 - 倶俏 - 且冁以傀 - 伦冶俰 - ▁儢偖丨乿 - 並冸 - 係关 - 凚关 - 仠么佄 - 仕俬 - 侽倃 - 兏仿 - 俤伉倣 - 兙会 - 僢偬 - 冒仔 - 倮共乎凞 - 俤僘儼仰 - 亞俤 - 事冒仔冋 - 侺何傾兟僒伛 - 伇冭倿 - 估亞 - 侨作 - ▁儢偖乿丨俞伍 - 丁伨 - 僵冱俺 - 僙 - 之凙俬 - 傥儖 - 儬倝 - 冪傈 - 僄傟亍 - 丟傴冨 - 储傖 - 乻儯儲 - 僅偘丆 - 伋兣佟 - 侠俖 - 冟丛 - 傸 - 偀兮 - 乙乬 - 兗井 - 侔 - 临偘丆 - 凗傗 - 伤佗儘 - 伽他倀 - 乯傖佤丛 - 儺况 - 仩佝亝偅 - 价冄儬亹 - 偆侣 - 冹兇凁丯俦 - 冃临伏丆 - 亯冉 - 侎乘 - ▁儢佃僖乿伅 - 僵冱値 - 佦丢伊 - 侎乘俤冰 - 丙乖书 - 亢僇倰俯 - 凈优 - 僃兠 - 兀偘 - 儥仝 - 乓俁 - 冑兤侵冘上 - 侎件 - 乯乿侻佤丛 - 健任傢偏 - 僴 - 冓人儐伈 - 供伶供伶 - 倈主亖 - 仅亠侀 - 乿俵丛 - 传侶令 - 侜仛 - 兑儿侦 - 严 - 业冊予 - 净亠儻 - 儉丿 - 俤佭 - 偊仰亃 - 乆仦 - 仩儐 - 仝享俬 - 传凤令 - 僤仌仸 - 乇傜便 - 么俊 - 储佛 - 冐乘 - 侐傀 - 佛並 - 乖书 - 冣儆 - 僲伂乔 - 兇凁亓乲 - 儰仫倢 - 儏債僤 - 偘亜 - 丐亡 - 仐侫俹倌 - 兩 - 冓凣儐 - 傫仲 - 下债 - 偶佬偶 - 侁乧 - 买冘 - 亍冪丢 - 伊亘供伶 - 丁儺亥 - 仠倘且 - 伳侣丆 - 俤僮 - 冓伹僒伛 - 佺儛企 - 允偩 - 倍侣 - 儲乲 - 乯光 - 侉僃伡 - 侠倆亭 - 倠侠倆 - 净亠内僜 - 乓仾 - 侞伅 - 侕倝仩佝 - 假 - 亢傲三 - 儉冼亼倿 - 冟並冟 - 丑僥 - 儳个 - 亞傄 - 俖俪傢偏 - 亀何佖 - 党佦冪 - 侹仁 - 丣亍俉偡 - 乖举俈 - 养亣 - 凕俓俅 - 儏乏丄 - 倜兿傳 - 俤倡 - 偍倀兄 - 伡倣 - 侾乽伥 - 儥偷丰 - 僲冤 - 冓丕令 - 傼临伏丆 - 侖乿侖 - 佋侣 - 乘儏 - 例举 - 伊丅俵 - 丙侜书伩 - 僶伤儘傑 - 享井 - 举僵仑争 - 伬丗丫仟 - 僞侙倈 - 乲偡侻 - 倾乼 - 丟佗儘傑 - 乖侜书 - 傹倶 - 伶丠乃伍 - 僓与乥 - 修丵 - 丢亻 - 倗丑俜 - 儏人共乎 - 儷亣 - 侴伆 - 亁丛 - 井佩 - 乖伋兣 - 仙偹乲 - 仛兘 - 伫僀 - 凋丰侤 - 乘俤儒 - 乿侻 - 冀倏倓 - 俪偏 - 価丰佯 - 仴偗儑 - 伔僪 - 倱 - 丩于乏争 - 兴伲 - 亃債僮 - 俎倮儐 - 仝兗佄冬 - 偶伢 - 光並佤丛 - 丿两佡偬八 - 侙倈冔伾乭 - 偳僲 - 东侻 - 兺個之凙上 - 俵冧 - 冩严乛 - 个儕亃 - 何傾兟冣 - 僭 - 井冬佩乹冿 - 丣亍佦冪 - 儼仰傈 - 佦东 - 亀乹 - 乤佀伝 - 俊偌俧倱 - 亪了 - 乯亻並佤丛 - 冓丕乏令 - 凈乶 - 但冱冕 - ▁丈偖俞 - 冓于仑争 - 俔伹 - 兑儿仡 - 俊偌俧仵与 - 仍佗九 - 伱內 - 兌亵兓儓伾乭 - 倫俯 - 伊丅冧乿傭丛 - 倘倝仩 - 傛亪 - 上亢傲 - 僧丌 - 侦儖 - 像侵冘 - 偝倴儝 - 亾 - 人傡 - 仲丫 - 仒仼僭儝 - 冎係 - 佦傈伊亘 - 但値 - 僢丮倀兘 - 偗儑 - 丅傭 - 偡丢 - 兑儿侀侦 - 亭亻 - 儷丽兿 - 傍僙 - 丮倀兘 - 丞兵佡债 - 亵兓伾乭 - 偦丌内 - 仹伲佑 - 冼冭倿 - 信仝 - 働侥 - 偻倯僿 - 代冼伇俸倗丑 - 儈万 - 儺促乐余 - 僩 - 凗伆 - 伃凇 - 伣倈 - 但仑 - 凎佺儛 - 仗俽 - 兯亯 - 兤世 - 僤乣 - 佻凊仰 - 乀侼 - 侔仱 - 佨丳侄 - 串傐 - 仮俖 - 儬倝傄 - 俣儏債 - 佔亓 - 偹党 - 俟佶 - ▁儢佃僰 - 冔僝伯倌 - ▁儢偖丨倶 - 偿倣 - 么兗侺何傾 - 傅冶俰 - 伆儉 - 也僀仸 - 俴丌 - ▁儢偖俞伍 - 偻任傢偏 - 倢偣 - 伽倀 - 冦侔仱仭 - 僑价冄 - 倛 - 冃临伏 - 俉丢 - 僝 - 乘亞俤僘 - 乶优倉 - 侸乴偵侚仃 - 予俉 - 侎偊亞 - 价冄亹 - 亓丯 - 凉乼乔 - 做 - 儺佴 - 仲丫仟 - 佑俜侑 - 來傫仲俍丫仟 - 佀伝 - 乾关亪 - 储侻 - 丁儺亥伜 - 佹亁 - 丙乖俣 - 侥了俣 - 乴偵侚 - 儖儊 - 体 - 儼冓 - 傫仲俍 - 东傶 - 倒伢 - 乽乂冷偢亴 - 傄佈养 - 仒仼倭僷 - 仮倯 - 公仮僿 - 儏伉 - 准冶 - 儏俤僘 - 伱倽丂 - 乯侻並佤丛 - 冬佩 - 仧义 - 侥倫 - 催凔 - 傦冨 - 佖 - 償冗俶享 - 义么兗 - 傐倘冁以傀 - 作仛仳 - 併俩 - 偀亟侀 - 偗凔儷 - 僰 - 俈三 - 倹伤儘 - 偍凒兘 - 儶俓仢傟 - 伦冶 - 兵佡偫 - 丟佗僑 - 伅丒伆 - 传凤 - 乫交 - 倲 - 俾仼 - 丿偎 - 傋优 - 伶侖伶侖 - 倬倘倝 - 凍俙乙 - 凈今仿丷 - 佑丑 - 兣佟乲偡 - 傪儹仮僿 - 丧侭佐乤亂伥 - 儮仁 - 伬傫俍丫 - 伇亼倿兌 - 佺俄乓 - 下丶偫 - 冦侔伺仭侑予 - 但冱俺冕 - 优倉仂伨 - 亞債僮 - 井冬佩乹丐冿 - 侃儓伾 - 关凙上 - 乵冭倿 - 亮丏俅僜 - 伕以 - 丶俄休 - 兌乡 - 乔乁 - 僄傟依 - 代冼亼倿 - 佚兤 - 专他凉 - 倒傠 - 伃亸 - 俖俪偏 - 倬伙兗 - 倮共乎 - 俏乿 - 儛企 - 伖乽亂伥 - 傶俼 - 亵侼 - 僛 - 侥儬亹 - 丕丄侂侥了 - 侕乚仩佝 - 住僲冤 - 亅 - 侨倇作 - 乖作 - 僤儮 - 佹丛 - 凕俅 - 冺倖便儳 - 亄儝 - 乯亻佤丛 - 企乓偀 - 冒俖冋 - 仞八 - 傐偠 - 俏东 - 乇傜亊乨偁 - 僆 - 乔亷 - 冔伾凈 - 从倌 - 佺俄冔伾乭 - 俪傢偏 - 也 - 侃偀偲亇 - 僉仁倖便 - 偤共乎 - 串儞 - 乀佀 - 儺亥伜仠 - 仝享亢 - 俞俏 - 丙债 - 偠乚兾 - 僦侫俹倌 - 傰 - 伞 - 何 - 亻乯並佤丛 - 冪傶 - 优乱仂 - 僻 - 僈內 - 凝俻 - 丙侜倫 - 傺儖伂 - 侺傾 - 么兗井 - 佸倖便 - 伻 - 信俟乮佶 - 丑俜侑 - 举債僮 - 何佖傾 - 俏冉 - 儯乲 - 佳 - 偡傖 - 傐倘且冁 - 伶丠乃 - 僇傾 - 减 - 亓乲偡 - 侕且冁 - ▁侒僰並倐 - 乓兮 - 伓他兄 - 偀傻俩 - 佥俷丑 - 僐 - 侾侼 - 俪亏 - 傦傈允 - 伆伉 - 乥业 - 偀伞俅 - 倗侠 - 九伇亼倿 - 仐侫丣亍 - 侳侣丆 - 冬佩乹丐 - 俤儒俹倌 - 兤侵侠 - 倭僷俩 - 介凤令俨 - 仅亠内僜 - 冼伇亼俸 - 侳侣侀 - 亊乨 - 僶佗九 - 供丠 - 倀伣 - 僉倖便 - 仙偹佟乲偡 - 傥乀 - 凋価 - 兏乱侧丷 - 傫丗丫仟 - 伟偪儰 - 冓人儐 - 僥仕俬 - 仙倪佟乲俦 - 仭从 - 仞偬 - 兣佟佦 - 儥兤 - 不俣 - 傪促乐余 - 侃偀傻 - 佩何佖 - 兏侧 - 乤亂 - 佨一丳 - 俬亢 - 兦 - 供丠乃伍 - 俫 - 伊丅乿傭丛 - 亻乿佤丛 - 俏俾 - 偝 - 傪傂 - 亲七 - 侯倀兄 - 兡俢丁 - 冇允傑 - 俥俙乙 - 久佶 - 傝 - 冔伾偊 - 倕伱 - 伻内僜俊俀俧倱俷 - 傷凔 - 侲丌 - 俟便佶 - 傄俥俙乬 - 傜便 - 兝 - 丸凁丯 - 傫仲丫仟 - 亍佦丢伊亘 - 俢倉伨 - 儈丝丛 - 儲亻 - 京偍倀凉 - 偶佹 - 丗仗 - 个佽俎冣俋 - 儸俓俅 - 丂井冬 - 倐俏 - 佷僗 - 僪個 - 偻傉 - 亍儯俉 - 俎償乫交 - 僦仃伜仠 - 伡丙 - 丿习 - 兯丬兯丬兯 - 件亞 - 倦億僮 - 六偍倀凉乼 - 凔儷 - 件乑凗 - 仝兗侺何傾 - 仈 - 俖仛 - 侻乯佤丛 - 克俷丑俜 - 兘倹 - 丮凒 - 偩丏 - 俖仙 - 亭储 - 仒仼亦 - 係兤 - 偀仾 - 介偤侓儐儇 - 俉偡侻 - 偂個世 - 冊倃七 - 佟乲 - 儍偅偵 - 侺冬 - 偻偬仆 - 傥乀乤佀 - 凋凡 - 倐侴 - 乻予 - 佗冨 - 写儑 - 偍倀凉 - 丧佐乤亂 - 再佛 - 侨丳丼 - 倏 - 仝兗佄佩乹冿 - 伊丅冧並傭丛 - 俾企 - 冪伊 - 产他倀 - 俣債 - 乿冸 - 儉僑 - 偐之 - 冹佔凁 - 兏仿侧丷僫 - 仔丳 - 什俎冣俋 - 兗井冬 - 內丂佄 - 俪偌 - 傚与 - 低俙便 - 丁傪亶他 - 傍乥估 - 倹仍內 - 世乥儰仫 - 侺何傾兟 - 佇不兟 - 俌傜亊 - 倸侴 - 儙 - 丁傪促余 - 佪伃僥 - 傖俏 - 亩代冼 - 伭之 - 傤 - 仐侫丣亍俉 - 儡俩 - 倹傴 - 傊 - 乥乆仫 - 世乥儰 - 侻傭丛 - 份倣 - 下侭傧 - 亞冣俋 - 军 - 傏倗 - 伔仨 - 佨丳一 - 倶冸 - 佦冪伊亘俼 - 傗乿 - 俉佦 - 偛 - 乯傖 - 侕冁 - 例俈 - 亮係 - 償乫 - 伖侼佀伝 - 俢倉仂伨 - 凢 - 僟個 - 京偍倀兘 - 俼並伶 - 件傈 - 倫俯倢 - 仚做 - 伣侙企 - 倣価 - 伐丙乖 - 仲俍丫仟 - 伴何佖傯 - 兇佔亓 - 兌冡凇 - 僞僇倰俯 - 債僤 - 入 - 仹伲 - 兊七內 - 兆 - 六偍凉 - 冡估什 - 僻丌 - 兰偘 - 冴俓仢 - 伓他倀凉乼 - 佃 - 伊丅俵並俵丛 - 井侺何傾 - 伔兛 - 兄兡傯 - 僃僮 - 傉凡 - 兯傖丬 - 京凒 - 八凊 - 偊例什 - 俟侮乮久佶 - 冬伴丐冿 - 倗丑俜业 - 伾乭 - 丁亥 - 伻内 - 偊乘亞 - 伬仗伵伜 - 伋亹 - 儬亹三 - 仃伜 - 伫 - 凎佺 - 僢丮兘 - 供伶丠乃佣 - 再丬 - 佐乤亂伥 - 产他 - 串儳 - 冩亗 - 乖冓俈 - 介佞 - 冘乖 - 傐倘且乚 - 乿丒伆 - 丬兯丬兯 - 伟偪从 - 侰 - 亵兓儓乭 - 僼五冕偊 - 俸倗丑 - 儩倉伨 - 備 - ▁儢偖並丨俞伍 - 伬傫仲俍丫仟 - 作傈 - 倭伧儝 - 伇俸倗丑 - 像仝享亢 - 儛冔儓伾乭 - 俜僥作 - 乓偀兮 - 丙乖侜书 - 傌偎 - 傶光 - 举丕 - 亻丝 - 冘上冹 - 仾伃 - 世儰仫 - 之儬 - 亶他 - 偊乘俎債 - 仇亳 - 亻傭丛 - 並俵丛 - 介传凤令 - 偻任 - 任傢 - 俜业侑予 - 兲仁之 - 凡侤 - 佺俄儓伾乭 - 仼倭伧 - 倌习 - 乵兌 - 傶伊俼 - 世儖 - 丟儘丿 - 丟儘僑 - 丞两佡偫 - 兠 - 兾乺偪从 - 亱乙亍 - 倉儺促余 - 佇不俣 - 佊伮兊 - 侠佨倆 - 伇俸 - 僶佗儘 - 侐傀僮 - ▁儢僰並倐 - 僒儐 - 丼伢 - 侠俖作 - 丁儺众 - 仾 - 傈內 - 偻倯偹佟 - 佛丒 - 冲亪俄休 - 些乷 - 偉 - 光丛 - 们倜兿傳俉 - 佹亁佹 - 伣主亖 - 乾係关 - 先侃 - 兗佄佩乹冿 - 介偤侓儇 - 両儝僄 - 再万 - 仅侀 - 俱佰 - 仔丼 - 亃丕乏令 - 佊仡 - 倉傪促余 - 僐亳 - 兎個 - 倝傀 - 偊亞 - 佨一丼 - 冦仱 - 乇便 - 偹仍 - 丝並丝丛 - 丞 - 亻傖 - 傐倘且冁以 - 举伹僒伛 - 丠乃佣伱 - 典 - 侪倊 - 亷僙 - 佛冉 - 冢兤倗 - 凑俩 - 乲俦傶 - 兯並丬 - 伙俬 - 侱儝 - 僔 - 乴偅 - 乘亞俤 - 偲亇享 - 偑凔 - 何傾兟俋 - 僜上亢 - 仙佟 - 儏俤伉 - ▁儢佃倶僖伅 - 丽兿 - 仝兗井 - 乖俈三 - 偡侻乯 - ▁儢偖丨僖 - 丅倶傭丛 - 俞僖 - 两佡 - 冯仃 - 丣亍佦 - 凧 - 丩于偝侇儝 - 允偩伌付亴 - 丩伹乫交 - 兘凁丯 - 僵于乏争 - 佄佩丐傆 - ▁儢偖乿丨俞佣东 - 冓偤侓儐儇 - 优乱伨 - 俛 - 個倗 - 丙侜伩 - 先俎 - 侖乃伍 - 儹仮僿 - 伇倁 - 僸他倀 - 凂亠侀 - 僇不 - 佑俜侑予俉 - 再傖再 - 乄倈 - 傐倘乚 - 亡俓仢傟 - ▁儢佃僖倶 - 倹三 - 丱丂 - 乥冡倬伙佄 - 偍凉 - 侙倈儓伾乭 - 丢再 - 傋乶乱 - 偹佦 - 乼兙其会 - 乿丅傭丛 - 佛並伱 - 侯偌仄 - 凚兤世 - 农偘丆侦 - 俷丑 - 冷偢亴 - 佩凅交几 - 伻内僜俊俀偌俧倱俷 - 冬伴 - 亏僒伛 - 儼俣 - 俊偌侪 - 专他凉乼 - 傩亣京偍凒兘 - 俜冊倃 - 傪儡俩 - 傄俥 - 俾儩乱仂伨 - 供並丠乃佣 - 仙偹仍 - 休养 - 偀停 - 佄佩乹 - 偲亇 - 冑关凙俬 - 伣乼 - 僵冱俺仉 - 丱僈 - 亁冚 - 內佛 - 兏侧傃佲 - 乪俲乻俉 - 冴俅 - 他享 - 冔儓 - 偲亇仝 - 东儉 - 亵乄企 - 优倉仂 - 仰冓传侶 - 侚侫 - 传價 - 丧侭乽亂伥 - 俖伙 - 伤傴冇 - 傦冇九 - 俾儩倉 - 伖乽 - 偗凔乴偵 - 丅冧並傭丛 - 傅冶 - 侖兯 - 乓亖乗 - 侜倓伩 - 伬仗伵 - 兯冉丬 - 傐偫億 - 于仑乏争 - 冓传 - 儷义 - 僢偻倯 - 俜侑予佦 - 低俙乙乬 - 乶乱 - 儏丄侂 - 亅伲仢 - 倝亹 - 併俩义 - 僵冱 - 亯冸 - 佬亗 - 傩亣偍 - 俵乿俵丛 - 丯乲 - 冹僇倰俯 - 冹兇佔凁丯俦 - 丙乖伋兣 - 儘傑中 - 六仛 - 傫仲丫 - 丧侭佐 - 傗允 - 佄佩乹丐傆 - 冹兇凁 - ▁儢佃倶僖 - ▁儢佃乿伅 - 代儉 - 亴仠 - 偮佰 - 僝伯倌 - 仇 - 僧儻 - 偀伎俩 - 兏仿丷僫 - 京偍凉乼 - 伱倽 - 乪俲亍 - 冼专 - 偪估亸 - 乔凑 - 仍九 - 再並再 - 侅仔保 - 亭亲 - 仛仳冹佔 - 乑东 - 佻凊亃 - 侴亻 - 仭冊 - 來丗仟 - 偻倯党 - 僑仏僙兌 - 亊仈偁伜 - 倳儿 - 偬偫八 - 世伃僥 - 僾丛 - 侾乽亂 - ▁儢偖丨並俞佣 - 冥儕佁 - 决与僥仕 - 仪 - 傮 - 傴冇 - 仝兗俬 - 冡倬伙兗 - 亓乲俦 - 举丕共乎 - 乻亍俉 - 伊丅乿俵丛 - 俲乻 - 传乏令 - 先什 - 傶伊 - 傖冸儉 - 典佰乬 - 例侉僃僊 - 乯东佤丛 - 侪僲倊 - 冦侔仱偪从 - 僑俑 - 但冱俺仉 - ▁丈偖丨俞伍 - 偅偵乔 - 京丮倀 - 俕傍 - 仗俽儝 - 丑俜侑予俉 - ▁儢佃丨 - 倝仩僛伃 - 偶倸 - 冑关之凙 - 佊丣伮亍 - 乖亃俈 - 偑凔仸 - 俾儩乱仂 - 侉倛 - 傶丅乿傭丛 - 凙上僇倰 - 偀俁乸 - 丩冣俋 - 傕仢 - 俬佩傲 - 伤佗九 - 伴何佖 - 偊例俎 - 依丂 - 个儕俣 - 偍兘 - 冥佽俎冣俋 - 佋侣侀侨 - 冹佩 - 佨侄 - 乆乄 - 倘且冁以 - 乳他倀 - 侥了亃 - 互典佰 - 円 - 亚丌 - 冼倁倿 - 侭乽乂冷偢亴 - 僵但五冕 - 丙乖俈三 - 代伇亼倿 - 仔伙 - 僖伅丒 - 偄仧 - 冁以僮 - 冐丶 - 倷 - 冼倁亼倿 - 佪伃 - 兏侧丷僫 - 侔伺 - 俢倉仂 - 丁亥伜 - 儤 - 乄傹 - 俶 - 俊偌俀 - 俾倉仂 - 仒儊 - 儦 - 僃偋 - 亯傗 - 么兗佄伴丐 - 償乫交僱 - 俥低俙 - 冘上冹兇 - 乿俵倚丛 - 凈优乱仂 - 偀停儻 - 业六偍凒兘 - 俜冊予 - 冠侮久乮佶 - 佨一丁 - 儉冼伇亼倿 - 乓偀为 - 侓伨 - 債佭偘亴 - 丠伍 - 促 - ▁侒佃僰 - 僠 - 偽俻乴偵侚侫 - ▁儢偖丨乿丨俞佣 - 俾先什 - 仔俖伙 - 冎丌佊 - 乺伺 - 俏倽 - 冓人 - 仲仗 - 儼仰冓传侶 - 僴乞俹倌 - 凜亠侀 - 傦冨九 - 偧仁侥了 - 倹佗九 - 僖丒 - 价冄儬 - 傄俥俙乙 - 佇侾侼伝 - 凅亐 - 佄乹傆 - 专他倀凉 - 优倉乱仂伨 - 丗仟 - 业乆仫 - 僂 - 仒仼倭両儝 - 儉偩伌付 - 丠乃伍冸儉 - 僇偞俯 - 亳佊伮 - 冲丶俄休 - 僤佮 - 亏冮 - 亍俉偡 - 俀凅亐 - 乿乯佤丛 - 冴俓仢傟 - 伔僪個之 - 傌仁 - 俔償乫交僱 - 冉俏 - 俧仵俷 - 傼临偘伏丆 - 凈今仿侧丷 - 倕丱 - 僞僇倰 - 傗凗允 - 兾乺 - 侻乯並佤丛 - 乓主亖 - 乯侻倶佤丛 - 共乮乎 - 俺冕 - 乻儯亲 - 傍伃估亸 - 井侺 - 兎仞 - 俈侶 - 伭丙倫 - 傶东傶 - 兼 - 傐倘乚以傀 - 仚 - 冸儉伇亼倿 - 井冬佩乹丐 - 乀乤伝 - 企偀 - 僖倐 - 凚世乥 - 但冱 - 倴儝儻 - 伤冇 - 丟傴冨丿傑 - 乢亠 - 伊丅並冧俵丛 - 党佦 - 伇冭倿兌 - 偂倗丑 - 乒习 - 侥了亹 - 倆再 - 什俎債僮 - 亻侴 - ▁侒僰僖 - 仒仼倭亄儝 - 下亞傄 - 佦丢伊丅冧 - 亩伆 - 侖倶侖 - 俄乓 - 俼乿伶 - 似 - 仯倞儑 - 伋兣佟乲 - 僞伣侙 - 予俉偡 - 傦冇允 - 丯冪伊亘 - 习仝兗 - 偣养义 - 俜倸 - 僜享亢傲 - ▁儢 - 俤儒伜仠 - 傖亩 - 仆佟 - 兡凊傯 - 亖乗 - 偐亪丶 - 仆佟乲 - 傐倦億 - 偧仁买 - 丱偩 - 伶侖乃 - 冡估仰 - 乩 - ▁儢佃伅 - 倘冁 - 冔儓伾偊 - 儩乱倉仂伨 - 凝俻乴偵乌 - 佋侣丆 - 冓丕共乎 - 丁傪亶他倀 - 优乱 - 乶优倉伨 - 佅伃傧 - 儛冔 - 一丁 - 佌亠 - 兘佔 - 侾佀伝 - 偩付 - 俈伪乜仱从 - 儛俄儓伾乭 - 僥仕上 - 优乱倉伨 - 丞两佡偬 - 主你 - 丕人丄 - 偅丟佗 - 儑乙 - 冹兇凁丯 - 傐倦侐億僮 - 冴俓 - 冥乘什 - ▁侒佃倶僖 - 倸俉 - 冃偘丆 - 亓丯乲俦 - 俜业侑 - 偍倀乼 - 予佦冪 - 偎仁 - 以共乎凞 - 凋倊 - 僢丮倀凉 - 偀乸 - 作仙倪佟 - 丅傭乿傭丛 - 亓仍七 - 侉僃僊倣 - ▁儢佃僖並伅 - 侽傦 - 主亖倣 - 倭亄儝 - 伬俍丫仟 - 傜乮亊仈偁 - 偅丟 - 侽傹 - 偬偞 - 伮兊 - 世兌儰仫 - 侷儖僠仃 - 償冗俶 - 乔偎兌 - 佅世伃 - 丒傘 - 例冓僃 - 佊俹倌 - 侈偻倯 - 俉冪 - 佦凗伊丅 - 伓倀兄 - 俛仔 - 俰僿 - 他倀伣 - 儍偵仐侫 - 侃主乗 - 丝儈丝丛 - 凉乼三 - 企儓伾乭 - 凁亓乲 - 互倷乬 - 净亠侈 - 侯俬 - 侦儖伂 - 兇亓 - 僥仕亢傲 - 丸凁 - 侴乯 - 侉僃倛俓 - 乯並亻佤丛 - 任俪仄 - 俟傜 - 侃偀俁 - 丙乖举俈 - 傗凗傗 - 偽俻乴偵侚 - 凈优倉伨 - 像侵凙上 - 乶倉伨 - 亏儍 - 佽修 - 仰佁 - 侤仮倯 - 俢儩乱仂伨 - 介凤公 - 乔傑中 - 傪亶他凉乼 - 儥兤侵 - 偹佟乲偡 - 倬兗 - 僓与僥 - 伱傘 - 凅亐伜 - 丵乩仝兗 - 兀临偘丆 - 僞倰 - 例俎凣儐 - 亩丱 - 倈冔儓伾乭 - 僪個之凙 - 代冼伇亼倿 - 亍冪伊亘 - 乔俱佰 - 傽 - 亢佻凊 - 偍仳 - 仺佸 - 偟儝僄 - 偦丌侈侨 - 倘冁以傀 - 京偍倀兄 - 丩僼五冕 - 凎儛俄儓伾乭 - 仦不 - 倹伤傦 - 串侪 - 佊仠 - 丳一 - 亀乹丐傆 - 乶倉仂 - 倈儓伾 - 兌僥仕 - 俊俀凅交几 - 伦冶乬 - 俔償乫 - 再储再储 - 仙偹佟佦 - 傩亣偍倀 - 偉丌 - 仒仼倭 - 冹兇佔凁丯 - 仺倖便亊仈偁 - 傐倘乚傀 - 侎偊乘 - 允丿傑 - ▁丈严 - 仩亝偅 - 偩亰伃 - 偍凒 - 冦乜伺仭 - 乶优乱 - 偂倗佑 - 冉儉 - 俟侮乮 - 倍偘丆 - 兇亓乲 - 儽 - 傉丰 - 京偍凒兘凁丯 - 儕丩于仑争 - 举丕令 - 傫俍 - 佺儛俄儓伾乭 - 俜六 - 偊仰俣 - 伔僪個之凙 - 丳伙 - 僴俹倌 - 俤冰 - 兑儿侀 - 偬八凊 - 僤农 - 偳儖伂 - 傅冶俰仫 - 俜予俉 - 冹兇冹佔 - 代偩伌付 - 亏儍偵 - 丨丠俞佣 - 僜享俬 - 兇凁亓 - 傗冇允 - 冦乜侔伺仭 - ▁丈偖丨 - 俼伶並伶 - 下丶偫傄 - 伬仲俍丫 - 俽乧乒 - 伖侼佀 - 允僑仏僙 - 俔亏伛 - 不傹 - 亱俰 - 佣丒 - ▁丈偖丨俞 - 仫仦 - 仼倭伧儝 - 儯亭 - 儯俉偡 - 倘乚仩 - 侉僃偋 - 催 - 兎丶偫 - 伙佄伴丐 - 僦侫丣亍 - 亯丬亯 - 兽儝 - 乍什亃 - 傫 - 僼値 - 佔凁丯 - 俢乱 - 乸仔冋 - 僞兡凊乑 - ▁儢偖丨俞佣丒 - 云俷 - 主亖乗倣 - 冨儘 - 偲 - 亍俉冪 - 信倏 - 僧丌儻 - 乥乡佁 - ▁儢偖丨並 - 僻丌儻 - 俌亊乨偁 - 傒世伃 - 佦傶东 - 並乯佤丛 - 冈伲俅 - 並丠乃 - 冥乘俎債 - 典佰冶乬 - 俏侴 - 伔偂個 - 俌乎 - 伊亘供乿供 - 傍乥冡估 - 俬乼 - 佻侕伕 - 倹仍傦冇 - 偽俻乴 - 乯並侻佤丛 - 佇不傹 - 倬伙俬 - 付 - 冲儛休 - 僼五仉 - 亱俰倯 - 供並丠乃伍 - 侑予俉偡 - 侻丛 - 伪乜仱从倌 - 侃偲亇享 - 伶並伶 - 么俊凅 - 伇冭俸 - 冻 - 东冸儉 - 伎俩 - 儏倮 - 例亃 - 伊丅俵丛 - 凝俻乴乌 - 債僤佮仁 - 亻並丝丛 - 互倷 - 冦乜仱仭从 - 凣儐仪 - 僯仳 - 侜倫 - 业冊倃七 - 傒伃 - 侷 - 俏东伆 - 乻俉亭 - 侃亖 - 伔偂倗丑 - 党仍 - 乖侜书伩 - 亓佟乲 - 儌俅 - 俀凅交 - 冲俄休 - 仾儁伃 - 儲並儲 - 個侠 - 专他倀兄 - 冑关之凙上 - 傷儑 - 仵与 - 傦冨丿 - 像仝享俬 - 佁但 - 丅並俵丛 - ▁儢偖乿俞佣 - 仅亠侈侨冘上 - 乾关価佯 - 凡仐侫 - 健侵 - 僜儬 - 主 - 冼亼 - 儞乖 - 傕俲 - 僞佇不兟 - 侪儖 - 伔兛個 - 冪伊亘供 - 产僢丮凒兘 - 倅伸 - 倠侵侠倆 - 侖乃佣 - 丽亣 - 俣冣俋 - 傗亩允 - 两佡偫 - 侴万侴 - 凖义 - 傺僲伂 - 冔僝伯俹倌乔 - 僣丌 - 倗丑业 - 俫儿 - 僑傑 - 仒倭伧儼 - 倃乄 - 儳傉佯仐侫 - 于乏争 - 像仝享上 - 俾儩 - 丿冩乛俲 - 价 - 克俷俜侑予 - 兊佗九 - 丒代冼 - 俊凅亐伜 - 倬倘且 - 凤令 - 偐係偐 - 仍七內 - 俀偏 - 丒冸儉 - 借俒借临伏 - 亍儯儲 - 仅亠侈冘上 - 俟久佶僤 - 伿仱从 - 倁倿乥 - 假俓 - 凙上僇倰俯 - 凙俊偌仄 - 伶乿伶 - 兣仍 - 侅仔保倈 - 乛俲 - 修冣乩 - 俊偏 - 丕人儐偱 - 僓佨一 - 伙佄佩乹冿 - 傽偪 - 伱允 - 乖兣 - 冶乙俰 - 侈侨冘 - 冡倬亸 - 伬俍丫 - 倦俎億 - 倘乚以傀 - 兊傦冇 - 偈 - 僠仃 - 伤儘丿 - 丮凒兘 - 冥乘俎 - 凖俩 - 偠侐 - 侞乿侞 - 儖僶佗 - 儃伲 - 京偍丮凒兘 - 俬佻凊 - 冹佩佔 - 丟佗儘僑 - 僃僊倣 - 僲伂习 - 僶仍傦 - 凛凔 - ▁儢偖並丨俞 - 倗佑丑 - 僞佇不俣 - 乹丐亡 - 侂 - 冣俋儎亳 - 兺個之凙 - 侈冘上 - 侾乀乤佀伝 - 側俓仢傟 - 偠侐兾 - 凙上僇 - 內先什 - 乘亞俤儒伜 - 冀倏例倓 - 俬傲傆 - 亇 - 侐兾 - 俜六偍凒 - 亢僇倰兟倢 - 俜冡 - 佑俜侑党 - 儸俅 - 凙儬 - 冔僝伯俹 - 业侑 - 傢偏亓 - 侖丬 - 仠倘倝 - 冡倬倘且 - 僑亷僙 - 乳他 - 俾儩倉仂 - 儞儼 - 凔儑 - 俕仏僙亵兓儓伾乭 - 凃 - 傐倘乚仩 - 主你与 - 佛伱伆 - 兛世 - 倗丑业冊 - 偶佹偶 - 乵僲伂 - 仞债 - 偩其会 - 俢侧丷 - 亵兓主亖 - 偼之 - 倇傢偏 - 冼伇亼倿兌 - 儊両儝 - 僞伣 - 佐乽乤亂 - 乔仚做 - 侫佊伮 - 俌亊仈偁伜 - 仍佗冨 - 僤乊佰 - 克俷与 - 佩伴丐 - 佦俣伊亘 - 偌俧仵俷 - 但冱俺 - 伓倀凉 - 們俅侦 - 举伹乫交 - 傶丅傭丛 - 仮僿伙 - 傪亶他倀兄 - 丿偄 - 傕亱乙 - 冣俋傮伲佑 - 凜亠侈侨 - 予亭 - 佺乄 - 伊亘俼供 - 僳亪 - 俨世 - 伖乤伥 - 佸准亱乙 - 価凡 - 來傴 - 佤傭丛 - 儏債伉 - 佄佩伴丐冿 - 丅並冧丛 - 俊俀俧倱与 - 伇倁倿 - 冀倏侜倓 - 供伶丠 - 侯享 - 來丗乳 - 允伇亼倿 - 倃亭再 - 修冣儆儝 - 伬丗併 - 俢丁促余 - 丟傴儘 - 乾係乾 - 侸乴侚仃 - 冔僝伯來 - 仠儕佁 - 仩佝俩义 - 冠傜 - 儾丙乖 - 傼临伏丆偻 - ▁丈偖俞佣 - 俑儻 - 偎兌亵兓 - 兓冔伾乭 - 偦儻 - 債僮冰伲 - 冓凣 - 儜冶乬 - 丠乃佣东 - 侭乽亂伥 - 儺俭 - 傫丗俍丫 - 乖侜伩 - 修俋儎亳 - 凊傹 - 乎凞 - 儓僝伯俹倌 - ▁儢偖乿丨俞 - 乊冶俰 - 仙倪佟乲偡 - 倖傜便 - 个佽修俋 - 乔偄 - 佦伊亘供 - 僑亷乥 - 侠佨丳 - 伟世偪 - 儷丽傳 - 丟傴儘傑 - 偀伞 - 仰冓凤令 - 乔仓 - 傫丫 - 兇凁丯俦丢 - 优仂伨 - 伬俍仟 - 侖伶 - 佽修冣 - 俖凡三 - 兵佡偬 - 亁丝丛 - 侃偲亇 - 像凙上 - 伮倃 - 丞兵佡偫三 - 们倜丽 - 傪傂亶 - 亓佟 - 俿亜 - 健任 - 乘亞俤儒 - 傜亊乨偁 - 党仍七 - 佄乹冿 - 僜儬亹 - 倵侵 - 倉伨倧世 - 信个儕 - 伵伜仠 - 偑 - 乶丁儺 - 例亞僃 - 亵俄 - 冽倒冽 - 乓伎俩义 - 侞丛 - 丿冩乛 - 兿傳 - 们倜兿义 - 傪亶他倀 - 伫准亱俰 - 偣串 - 儕傹 - 公倣 - 乚仩僛伃 - 儦亪 - 兺個买 - 乔俐 - 偡亻乯 - 亍佦凗 - 共乮乎凞 - 例僃 - 仙佟乲 - 为個 - 今仿侧傃佲 - 乘俎倮儐 - 倿乥 - 冯 - 丩但五冕 - 偘伏 - 僲仫 - 佹亦 - 仙倪仦 - 侈侨乖 - 伶侖伶 - 丿偩伌付亴 - 儓伾偊仰 - 倍侣丆 - 凑义 - 丞兵佡八凊 - 冼伇俸倗丑俜业乆 - 井亀冬 - 凓亰伃 - ▁儢偖丨俞俏 - 冘儬亹 - 业冊党 - 僷俩 - 侩丌 - 介传凤 - 们傩亣京偍凒兘 - 冹兇佔凁 - 兎亪偫 - 井侺何佖傯 - 冹兇佔亓 - 凁亓丯 - 丁儺促余 - 举于仑 - 偼 - 僵但冱五仉 - 伹僒 - 俪偏仄 - 们倜丽兿傳 - 乐余 - 債侬 - 偭 - 介凤佞 - 儬倫俯 - 倉儺亿 - 冡亸佁 - 侾乤亂 - 乔俚 - 丿两佡 - 俜仭 - 兲仁 - 乖亃兣 - 偂個倗 - 偠倝 - 丂佄伴丐 - 傴冨儘傑 - 偷儖伂 - 丞兵偬八 - 偽俻 - 冠久佶僤 - 俏冸 - 冭与 - 乃伍冸 - 伔偂個倗 - 傒亪伃 - 傦凗允 - 供並供伶 - 仝享上 - 冣俋乩 - 三俕仏僙乥 - 冗俶享 - 傗伱傗 - 亯傖亯 - 买冘上 - ▁儢偖佃 - 偿侵侠 - 典佰倖便 - 倸予 - 丟佗儘丿 - 俖丩凡 - 乫冗仜 - 儘僑傑 - ▁侒僰倐並 - 专倀 - 侾侭乽伥 - 伬丗仗伵伜 - 冡估乍什 - 倹傦 - 侾乽亂伥 - 但冱値仉 - 冩乛俲兊 - 偀乗 - 兾僒伛偟丌 - 凈优乱伨 - 个佽亞 - 侎偊例 - 兙其亗 - 亢丐 - 兾僒偟 - 丹伲 - 冓偤侓儇 - 伓倀凉乼 - 么俊俀凅交几 - 凜侀 - 俜业六偍凒兘 - 偑仸 - 傸冶乬 - 亮亜 - 井冬佩丐冿 - 介侓 - 丟傴冨丿 - 例亞侉僃 - 亱佑 - 凤佞 - 丠乃伍亯 - 乻予俉 - 儺亥俹倌 - 仇凧 - 佟乲偡 - 侃偀你 - 乀佐乤佀伝 - 冦 - 伖佐乤佀伝 - 佈养亣 - 伎俩义 - 仓世乥 - 冧丛 - 伊亘俼並伶 - 傕仢傟 - 仢乙 - 像侵冘上冹兇 - 俄休养 - 俉亭 - 乴乌 - 兾僒伛偟 - 俖仕 - 丯佦冪 - 任傢仄 - 傪亶他倀凉 - 債入 - 丅俵丛 - 仢俅 - 佲伜 - 俾乮佶 - 倽丂冬 - 傒伃傧 - 使伃儰 - 丕人令 - 凎俄冔伾乭 - 僵冱五仉 - 偞俯倢 - 傭佤丛 - 僡 - 儋 - 倬亸 - 低俙亱乻 - 僋仁 - 凤册 - 冭俸 - 伬丗仗伽 - 俰仫 - 冚万冚万冚 - 來傫俍仟 - 伆侃伾乭 - 兡侾乽亂 - 佦冪伊 - 佄伴傲 - 准冶乙 - 偯伜 - 冤兵 - 乍什俎債 - 冼侅 - 兏侧傃 - 估亸乑 - 井冬亀冬 - 亩允傑 - 兣佟亲 - 亮俓亜 - 丞兵佡偬偫 - 亚丌侦 - 伬俍仗 - 修冣儆 - 傪亶倀兄 - 偊例侉僃 - 冹佔兇佔亓 - 侮久佶僤 - 冹佔亓 - 俵倶俵丛 - 侤仮傉 - 佚倣仮僿 - 偖 - 兔乷 - 丩但冱五冕 - 傪俭 - 倉儺俛 - 伪侔仱 - 丅冧乿傭丛 - 偷伂 - 六偍倀乼 - 僵但冱五冕 - 亱乻亍俉 - 傪俭乬 - 償冗俶仝享 - 决乥僥仕 - 傅冶俰僿 - 万並万 - 僃似 - 侢佸 - 丣亍佦丢 - 俌傜佶 - 側俓仢 - 傫仲俍仗 - 冘儬仆乚仆 - 佐乤亂 - 六偍倀兄 - 供丠乃伍冸 - 侎乘亞債冰伲 - 使 - 冘上冹佔 - 仲俍丫 - 倘且伕冁以傀 - 亓丯乲 - 丩但冱俺仉 - 俏佛 - 儺佴俩 - 兾僒偟儝 - 冡乡佁 - 份個 - 丧侭佐乤亂 - 乳仮 - 储兯储兯 - 佈偅 - 乣偘 - 乵倁倿 - 侐億僮 - 偰亠侈 - 侠倯 - 丙乖亃俈 - 儳偷丰仐侫 - 伱僈 - ▁丈严侍伃 - 么兗佄佩丐冿 - 位 - 儨关 - 冞世乥 - 仍七储 - 丒允 - 傐倘冁以 - 仒仼倭両 - 倾丐 - 僥佁凡 - 兾伿 - 児伲俅 - 丁仂伨 - 俼並俼 - 凕俓 - 並亻丝丛 - 么兗佄伴丐冿 - 佋侣侈侨 - 仰冓传凤令 - 儃個倖便 - 伹俀乫交 - 傫丫仟 - 介凤令俨仁 - 侢佸倖便 - 凁佦 - 僼俺凎儛 - 傦冇丿 - 僲佯 - 倭僷 - 乔凓伌付 - 仴偑凔仸 - 侥儬倫 - 仐仃伜 - 児 - 傶侻傶 - 伮兊七 - 丂冬 - 傤亪 - 保傈倈 - 伬仲仗 - 乾亪丶偫 - 俊偌俧侪 - 侴佤丛 - 侧丷僫 - 伇亼僲伂 - 偳丰冤 - 僨乷儷兿 - 侻乯倶佤丛 - 偽俻乴僴乞 - 亨内 - 井冬伴丐冿 - 佛乿伱 - 互佰 - 临偘伏 - 凁亓丯乲 - 儏人儐伈仁 - 偯丌佊 - 买侠倇作 - 个儕丩于仑争 - 偸之 - 侯凉冿 - 俜侑乆 - 佸准亱 - 仵俷 - 偻债 - 僑冒仔冋 - 乓伞俅 - 俊俀俧仵俷 - 兡侾乽伥 - 伳侣侀侨 - 偊什 - 侃偀偲亇享 - 僵冱俺冕 - 俼乿俼 - 儉亼倿 - 儻侯倀凉 - 串仝上 - 儒丌 - 世兌僥 - 侈侨倇作 - 凤公 - 严侍 - 僤仨仁之 - 仹伲侦 - ▁丈佃僖伅 - 亻乯佤丛 - 儬八凊 - 偂倗侦 - 偦丌侈 - 下伃乽傧 - 伇倁倿兌 - 休养义 - 乔働侥了 - 冠侮乮久佶 - 偩凓付 - 冎係冎 - 傓世 - 侼佀伝 - 侓儐 - 冀 - ▁丈偖丨並 - 偽俻乴侚 - 丕冝 - 伄伃傧 - 俈册 - 丅並冧傭丛 - 乴偅偵 - 仴偗凔儷仸 - 僶伤傦 - 仝兗侺何佖傯 - 俘冶俰 - 儥仝上 - 偾仸丙乖 - 仈偁伜 - 佺企 - 偀亟亴 - 仮倯僿 - 但冱値 - 仰冓传侶令 - 伹亏伛 - 仒仼兔 - 乤亂伥 - 亚丌仡 - 伇冭 - 专他倀凉乼 - 乓主你 - ▁丈偖俞伍 - 优乱倉仂伨 - 乖俣俈 - 但冱俺凎儛 - 传凤價 - 儐偟丌 - 冬佩伴丐冿 - 倠侵侠 - 伊亘供並供伶 - 例俎僃倛 - 佅亪伃 - 儏丕乏丄 - 侭傧云 - 俌傜乎 - 丙乖丼 - 乥倬伙兗 - 介凤傒伃 - 冩乛亗 - 伓他凉兄 - 今乱侧丷 - 党儯儲 - 仍七傦 - 们倜兿傳亍俉 - 俏儉 - 僑产僢丮 - 侑冊予 - 克俷丑俜侑予 - 仩佝凎 - 偀偲 - 偹佟佦 - 侘亩 - 丟佗冨丿 - 佛傖伱 - 俄休 - 亩允偩 - 冹兇凁丯乲 - 僵于偝侇儝 - 伬傫俍仟 - ▁侒佃乿僖 - 但偝侇儝 - 兇凁亓乲偡 - 侾乀乤佀 - 僴乞偿 - 佃僖 - 冦乜仱侦 - 倽丂伴丐亡 - 俖俪偌仄 - 凙上亢僇倰俯 - 介凤佂 - 僼値冕 - 件乘俎債 - 不兟僼五冕 - 來傫丗丫 - 冣俋傮伲 - 偞俯仦 - 冔僝伯俹倌习 - 佣俏 - 侵倇作 - 冼倁倿兌 - 低俙便乒 - 仗伽 - 仼倭僷 - 倅僲倊伸 - 僉仁倖便儳 - 儏債佭 - 仛仳冹兇佔 - 偀兮個侠 - 佇侾侼佀 - 丣亍冪 - 仨仁偳 - 丯俦丢 - 仒仼僭 - 冥儕傹 - 凙俊偏 - 偰亠内 - 乭 - 倽仲仗 - 仩儐僛 - 侥了举傄 - 偽俻偵 - 仧偅 - 丁儺亿 - 俖佁凡 - 们养偅 - 冹佔凁丯 - 両倴儝 - 倲亪 - 冦乜仱偪 - 冡估亸乑 - 仫佯 - 今仿丷僫 - 井侺冬 - 偪儰 - ▁儢佃乿僖伅东 - 傭乿傭丛 - 凇乱 - 俼並俼伶 - 亓乲儲 - 俈佞与 - 偩亰 - 丙乖侜书伩 - 但俺冕 - 傥僲倊 - 冴仢 - 凈优倉仂伨 - 六偍倀凉 - 僯倀兄 - 冥佽什俎 - 六僯 - 冥佽修丵乩 - 保亃倈 - 侻並佤丛 - 准冶乬 - 偐亪债 - 仯倞仸义 - 佢仁 - 仨傌 - 併义 - 倍凔 - 乄什 - 乓乗 - 儸俓 - 傗伱允 - 例俎僃僮 - 京丮 - 佥克俷 - 俾仼亦 - 伔偸個之 - 偑儑 - 像仝俬 - 伭关丙倫 - 偤侓伨 - 侩侵冘上 - 伇冭倿乥 - 偽俻乴偵侚仃 - 伶丠乃伍冸 - 冘上冹兇佔 - 伬仲丫仟 - 倽丫 - 伬丗俍仟 - 伹乫 - 凚世兌僥 - 僼 - 乔倷 - 倈主亖乗 - ▁丈乛 - ▁儢佃僖伅俏 - 仒僷 - 仔俖冋仳 - 侵冘上冹兇 - 丿冩严乛 - 值亪 - 兹 - 亿况 - 傶乿侻 - 亼僲伂 - 代丿傑 - 亘供 - 冦侔伺仭冊 - 儀倗丑 - 冟乿冟 - 乔中之 - 企乓偲亇 - 僃住 - 仿侧 - 侷僲倊僠仃 - 乖书伩 - 俺凎 - 冈伲佑 - 乓偀亟 - 丩冱俺 - 儩倉乱仂伨 - 专倀凉 - 什俎債 - ▁侒偖俞佣 - 兑儿仡佑 - 乶丁伨 - 伪乜 - 伊丅並冧倚丛 - 乂 - 乻俉丢偡 - 仐俹倌 - 傥儖佀 - 么兗佄佩乹丐 - ▁儢佃乿僖伅俏 - 儶僗 - 俢丁傪促余 - 凍俙亱乙 - 乯佤 - 传佞 - 偶亁偶 - 冶俰仫 - 侏 - 傥佀伝 - 亯乿伱 - 傷凖俩义 - 仒亄 - 倘倝仩佝 - 債伉 - 伬仲俍仗 - 储傖储 - 倸俉偡 - 六偍仳兘 - 仑争 - 伴冿 - 佋侣侀 - 俾仼倭伧儝 - 丟傴冨儘傑 - 僇倰俯兟倢 - 俒借俒借临伏 - 冘俊偏 - 伆侃亟 - 丮兘 - 么俊俀凅公 - 冹佔凁丯俦 - 侇 - 伕傀僮 - 亞俤儒伜 - 允僑亷 - 侾侭乤伥 - 偞倢三 - 凚关世 - 伆儺 - 丕侂 - 僳凙 - 供乿供 - 傪亶倀凉 - 佧乷儷兿 - 体個 - 伯 - 儞乖俈 - 佺俄主亖 - 偊例俎僃 - 乐 - 仒仼乱仼 - 偐兤买 - 仺佸准 - 僖俏伅 - 亡側仢 - 偕 - 冼伇 - 丣亍儯俉 - 介侶佞 - 伔偂世 - 伊亘並供 - 假俓俅 - 俢仂伨 - 丫 - 兇凁亓乲俦 - 亯冉亯 - 佄佩傲 - 介传乏 - 冓凤令俨 - 倜兿 - 供丠乃 - 僦侫仃 - 優 - 俥低俙乙 - 伀之 - 冩严丛 - 傐倘乚以 - 伦冶俰仫 - 伟侀偪 - 仨佮仨仁 - 伔偂個世 - 俵冧俵丛 - 专倀凉乼 - 俄休倜兿傳 - 伊丅傭丛 - 丿伌付亴 - 俾侮久佶 - 僮倄 - 凛 - 僞佻凊仰 - 債冰 - 倅倊伸 - 仙偹仍七 - 僦俹倌 - 乓伎 - 儿仡侦 - 僑价冄儬 - 体之凙 - 仙偹佟亲 - 偓丶傄冯 - 仨係仨 - 偌俧倱 - 丶侐傄 - 仒仼倭僭儝 - 倘乚仩佝 - 冷偢 - 俜业冊予 - 俆关凙 - 兽 - 再並伱 - 倖乮便 - 侾乽乂冷偢亴 - 价冄倝亹 - 像侵享 - 冬佩乹丐傆 - 傋优乱仂 - 俢丁伨 - 傐倘倝仩 - 你兤倗丑 - 冹兇佔凁亓乲 - 僨乷儷亣 - 儉伇亼 - 京偍凉 - 冨僑傑 - 僵冱俺凎儛 - 倱俷 - 亅僗 - 傍伃估 - 佾侀 - 再冉再 - 俜侑党佦 - 儷偅 - 住僲倊冤 - 仴偗凔儷 - 丁傪儹 - 偈亠 - 伫僀仸 - 倉傪亶他 - 乻儯俉偡 - 仙倪佟佦 - 儹仮 - 冼倁倿乥 - ▁儢佃东僖伅 - 丞兵佡偬八凊 - 伶丠乃亯 - 兴伲乧佈 - 他倀乼 - 俊俀凅交 - 兾乺偪仭六偍 - 俧倱与 - 侫丣亍 - 丞兵佡债八 - 代僑事 - 冦侔仱偪 - 云与僥 - 侪儖倊 - 佛倶伱 - 伇倁倿乥 - 來丗俍丫 - 儏人丄 - 今侧丷僫 - 凙俬亀傲 - 伤傦冇 - 丗丫 - 俥低俙乬 - 写冶乙 - 仒僷俩 - 冦乜仱偪仭 - 佦丢伊亘供 - 傩亣偍凒兘 - 傪儡俩义 - 井佩乹丐 - 冮 - 伴乹傆信 - 亻儈丝丛 - 丁傪亶 - 俼倶伶 - 伽他倀兄 - 侊 - 侓倻 - 儮仌仸 - 严乛 - 件乑举丕丄 - 兔 - ▁儢偖乿丨 - 乖侜仛仳 - 丟儘丿傑 - 僑价冄儬亹 - ▁儢偖丨乿俞伍 - 丹 - 侸乴侚 - 儬八不 - 丙乖书伩 - 亵兓你 - 俢优乱仂伨 - 仦凊乑 - 凇倉仂 - 丩仑 - 万乃 - 伆俤僘 - 伽他倀凉 - 僤侗 - 伬丫 - 冨僑亷 - 乍什俎冣俋 - 兯凗丬 - 侾乀佀 - 倜丽 - 侟倣 - 儯亲七 - 偾僀仸 - 俵並俵倚丛 - 兯东丬 - 仱从 - 倦侐 - 伖乀乤佀伝 - 伊丅並冧傭丛 - 倰兟倢 - 伊丅乿冧傭丛 - 乻儯亭 - 伶並丠乃佣 - ▁儢偖乿俞伍 - 伊亘供倶供 - 侭乽云 - 三冭倿乥 - 冣儆乧乒 - 伦佸 - 们倜养义 - 俏並亩 - 伖亂 - 傝全 - 伫准冶俰 - 佑俜侑予俉偡 - 凇倉仂伨 - 伊丅冧乿俵丛 - 例侉僃倛 - 亻並亻佤丛 - 偞俯倢三 - 仩佝亝 - 具伀仁之 - 丁傪亶他凉 - 俏冉亩 - 儉伇倁倿 - 僥仕俬傲 - 償乫冗俶 - 儞伋俈 - 俕儀 - 侃伾乭 - 兇凁乲 - 僞佇不傹 - 例僃僊 - 俟傜乮佶 - 侗 - 偂世兌 - 充 - 俊偌凅 - 俊偌俀俧倱俷 - 偗凔乴 - 偌俧仵与 - 代丿偩 - 乓仾伃 - 仒仼倭僷俩义 - 倨之儬 - 住倊冤 - 僦侫丣亍俉 - ▁侒偖僖 - 倽丂乹亡 - 倉儺俛仔 - 俥低俙亱 - 伔僪個之凙上 - 傣世僥 - 僔儑 - 侽七再 - 俊俀凅傇 - 乶优乱伨 - 乫 - 侕乚仩僛伃 - 兀傿 - 仒仼交 - 倳 - 例冓凣儐 - 供伶丠乃伍 - 例俎僃僊 - 俻偵 - 修俋傮伲 - 儉倁倿 - 佼 - 儵 - 冲亪 - 冓凤册 - 俜业侑党 - 乢侀侨 - 乶优倉仂 - 償冗俶仝 - 俜侑予佦冪 - 傥佀 - 佚兤倗 - 冼伇俸倗丑俜乆 - 储並储 - 俾仼倭伧 - 今仿侧丷僫 - 兤倗丑俜业 - 僤倲仁 - 冓人共乎 - 丅冧俵丛 - 冖 - 修俋乩 - 公倣仮僿 - 但五仉 - 傗並傗 - 傗傖允 - 兴 - 傼临伏丆偻倯 - 乀佐侼佀伝 - 乺 - 佐乤乽伥 - 伖乀侼伝 - 佛冉伱 - 亾冶乬 - 俢乱仂伨 - 僑儀僙乥 - 処 - 伊亘供丠乃佣 - 偧仁之侥了 - 个儕傹 - 乯倶侻佤丛 - 丁儺俛 - 丿偎兌 - ▁侒僰倐侴 - 侗侣丆 - 仐侫丣亍佦 - 傊僲倊僠仃 - 傐倘倝傀 - 僵五冕 - 冼伇倁俸 - 冻仸 - 凢仁 - 伟伺偪仭 - 傦傈冇 - 俊俀凅几 - 乶丁儺亥 - 兯倶丬 - 兾伿伺仭 - 兾伿伺 - 亍佦冪伊亘俼 - 儛俄休 - 侥了亃傄 - 俊仄 - 冴俓俅 - 丄侂 - 俖俪偏仄 - 偯丌佊伮 - 伟伺仭 - 冶俰僿 - 俳 - 乓偀兮個买侠 - 佺儛主亖 - 傫丗俍仟 - 亻並傭丛 - 凈今兏仿侧丷 - 么佄伴丐 - 但冱俺凎 - 假俓仢 - 僼五偊 - 俗丶偫佈 - 代冼伇亼倿兌 - ▁丈偖並俞 - 冷 - 丁傪亶倀 - 兺個 - 伊亘俼供伶 - 做伲 - ▁儢偖並俞佣 - 冘凒 - 亯东亯 - 丧乤伥 - 伊亘伶供 - 傗並伱 - ▁丈偖並丨俞佣 - 冦侔偪从 - 僑产伓 - 丟儘僑亷 - 冦乜从 - 丕人侓儐 - 侾乤亂伥 - 兖伃儰 - 侾乽乂侩 - 侃亖乗 - 二偘准 - 侮久乮佶 - 儲丢儲 - 俑丌 - 们傩倜亣 - 仝兗佄佩丐冿 - 人儐伈 - 丅冧並俵丛 - 偳価丰佯 - 伦佸准 - 俵倚 - 伬丗仗伵 - 佥俷与 - 允傑中 - 丕人儐伈仁之 - 伽倀凉 - 倂 - 冾 - 仯 - 倄 - 佉 - 丘 - 儧 - 冫 - 僟 - 偨 - 乨 - 偢 - 冂 - 儌 - 凟 - 偃 - 偺 - 俒 - 佱 - 僋 - 倻 - 偁 - 冺 - 候 - 冗 - 仵 - 僽 - 侱 - 冄 - ▁ - 兂 - 丈 - 侒 - 余 - 儢 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram3000_ts_en/bpe.model src_bpemodel: data/token_list/src_bpe_unigram6000_rm_wavlm_large_21_km1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null tokenizer_encode_conf: null src_tokenizer_encode_conf: enable_sampling: true alpha: 0.4 nbest_size: -1 frontend: embed frontend_conf: embed_dim: 512 positional_dropout_rate: 0.1 specaug: specaug specaug_conf: apply_time_warp: false time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: false freq_mask_width_range: - 0 - 10 num_freq_mask: 0 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv1d2 layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 layer_drop_rate: 0.0 model: discrete_asr model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false share_decoder_input_output_embed: false share_encoder_decoder_input_embed: false required: - output_dir - src_token_list - token_list version: '202308' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
flatmoon102/image_classification
flatmoon102
2023-09-16T06:46:36Z
221
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-16T06:29:33Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.45625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4303 - Accuracy: 0.4562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4403 | 0.45 | | No log | 2.0 | 80 | 1.4300 | 0.4313 | | No log | 3.0 | 120 | 1.3902 | 0.5 | | No log | 4.0 | 160 | 1.3475 | 0.4688 | | No log | 5.0 | 200 | 1.3698 | 0.4938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ceviriyap/bert_4
ceviriyap
2023-09-16T06:33:15Z
47
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-09-16T05:18:30Z
--- tags: - generated_from_keras_callback model-index: - name: bert_4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert_4 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 9.1922 | 0 | | nan | 1 | | nan | 2 | | nan | 3 | | nan | 4 | | nan | 5 | | nan | 6 | | nan | 7 | | nan | 8 | | nan | 9 | | nan | 10 | | nan | 11 | | nan | 12 | | nan | 13 | | nan | 14 | | nan | 15 | | nan | 16 | | nan | 17 | | nan | 18 | | nan | 19 | | nan | 20 | | nan | 21 | | nan | 22 | | nan | 23 | | nan | 24 | | nan | 25 | | nan | 26 | | nan | 27 | | nan | 28 | | nan | 29 | | nan | 30 | | nan | 31 | | nan | 32 | | nan | 33 | | nan | 34 | | nan | 35 | | nan | 36 | | nan | 37 | | nan | 38 | | nan | 39 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.10.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Sandra26/vit-model
Sandra26
2023-09-16T06:30:25Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-13T20:09:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0468 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1624 | 3.85 | 500 | 0.0468 | 0.9925 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
shantanudave/shantanuimagessept10
shantanudave
2023-09-16T06:23:42Z
1
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-16T06:18:49Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sdaveshantanu tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
VictorGil75/Modelo_Clasificacion_Taller_NoTaller
VictorGil75
2023-09-16T06:21:37Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T06:21:28Z
# Modelo_Clasificacion_Taller_NoTaller Modelo de clasificación para identificar si una revisión pertenece a un Taller o no. Este modelo fue entrenado para clasificar reseñas en la categoría 'Taller' o 'No Taller'.
tensor-diffusion/chilloutmix-NI
tensor-diffusion
2023-09-16T06:18:07Z
352
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "DiffusionPipeline", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T05:57:17Z
--- license: openrail++ pipeline_tag: text-to-image tags: - stable-diffusion - text-to-image - diffusers - DiffusionPipeline library_name: diffusers ---
CyberHarem/itsuwa_toarumajutsunoindex
CyberHarem
2023-09-16T06:07:04Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/itsuwa_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T21:57:11Z
--- license: mit datasets: - CyberHarem/itsuwa_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of itsuwa_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5760, you need to download `5760/itsuwa_toarumajutsunoindex.pt` as the embedding and `5760/itsuwa_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5760**, with the score of 0.930. The trigger words are: 1. `itsuwa_toarumajutsunoindex` 2. `brown_eyes, brown_hair, short_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7200 | 0.917 | [Download](7200/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![pattern_11-7200](7200/previews/pattern_11.png) | ![pattern_12-7200](7200/previews/pattern_12.png) | ![pattern_13-7200](7200/previews/pattern_13.png) | ![pattern_14-7200](7200/previews/pattern_14.png) | ![pattern_15-7200](7200/previews/pattern_15.png) | [<NSFW, click to see>](7200/previews/pattern_16.png) | [<NSFW, click to see>](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6720 | 0.905 | [Download](6720/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-6720](6720/previews/pattern_1.png) | ![pattern_2-6720](6720/previews/pattern_2.png) | ![pattern_3-6720](6720/previews/pattern_3.png) | ![pattern_4-6720](6720/previews/pattern_4.png) | ![pattern_5-6720](6720/previews/pattern_5.png) | ![pattern_6-6720](6720/previews/pattern_6.png) | ![pattern_7-6720](6720/previews/pattern_7.png) | ![pattern_8-6720](6720/previews/pattern_8.png) | ![pattern_9-6720](6720/previews/pattern_9.png) | ![pattern_10-6720](6720/previews/pattern_10.png) | ![pattern_11-6720](6720/previews/pattern_11.png) | ![pattern_12-6720](6720/previews/pattern_12.png) | ![pattern_13-6720](6720/previews/pattern_13.png) | ![pattern_14-6720](6720/previews/pattern_14.png) | ![pattern_15-6720](6720/previews/pattern_15.png) | [<NSFW, click to see>](6720/previews/pattern_16.png) | [<NSFW, click to see>](6720/previews/bikini.png) | [<NSFW, click to see>](6720/previews/bondage.png) | ![free-6720](6720/previews/free.png) | ![maid-6720](6720/previews/maid.png) | ![miko-6720](6720/previews/miko.png) | [<NSFW, click to see>](6720/previews/nude.png) | [<NSFW, click to see>](6720/previews/nude2.png) | ![suit-6720](6720/previews/suit.png) | ![yukata-6720](6720/previews/yukata.png) | | 6240 | 0.914 | [Download](6240/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![pattern_11-6240](6240/previews/pattern_11.png) | ![pattern_12-6240](6240/previews/pattern_12.png) | ![pattern_13-6240](6240/previews/pattern_13.png) | ![pattern_14-6240](6240/previews/pattern_14.png) | ![pattern_15-6240](6240/previews/pattern_15.png) | [<NSFW, click to see>](6240/previews/pattern_16.png) | [<NSFW, click to see>](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | **5760** | **0.930** | [**Download**](5760/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-5760](5760/previews/pattern_1.png) | ![pattern_2-5760](5760/previews/pattern_2.png) | ![pattern_3-5760](5760/previews/pattern_3.png) | ![pattern_4-5760](5760/previews/pattern_4.png) | ![pattern_5-5760](5760/previews/pattern_5.png) | ![pattern_6-5760](5760/previews/pattern_6.png) | ![pattern_7-5760](5760/previews/pattern_7.png) | ![pattern_8-5760](5760/previews/pattern_8.png) | ![pattern_9-5760](5760/previews/pattern_9.png) | ![pattern_10-5760](5760/previews/pattern_10.png) | ![pattern_11-5760](5760/previews/pattern_11.png) | ![pattern_12-5760](5760/previews/pattern_12.png) | ![pattern_13-5760](5760/previews/pattern_13.png) | ![pattern_14-5760](5760/previews/pattern_14.png) | ![pattern_15-5760](5760/previews/pattern_15.png) | [<NSFW, click to see>](5760/previews/pattern_16.png) | [<NSFW, click to see>](5760/previews/bikini.png) | [<NSFW, click to see>](5760/previews/bondage.png) | ![free-5760](5760/previews/free.png) | ![maid-5760](5760/previews/maid.png) | ![miko-5760](5760/previews/miko.png) | [<NSFW, click to see>](5760/previews/nude.png) | [<NSFW, click to see>](5760/previews/nude2.png) | ![suit-5760](5760/previews/suit.png) | ![yukata-5760](5760/previews/yukata.png) | | 5280 | 0.912 | [Download](5280/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-5280](5280/previews/pattern_1.png) | ![pattern_2-5280](5280/previews/pattern_2.png) | ![pattern_3-5280](5280/previews/pattern_3.png) | ![pattern_4-5280](5280/previews/pattern_4.png) | ![pattern_5-5280](5280/previews/pattern_5.png) | ![pattern_6-5280](5280/previews/pattern_6.png) | ![pattern_7-5280](5280/previews/pattern_7.png) | ![pattern_8-5280](5280/previews/pattern_8.png) | ![pattern_9-5280](5280/previews/pattern_9.png) | ![pattern_10-5280](5280/previews/pattern_10.png) | ![pattern_11-5280](5280/previews/pattern_11.png) | ![pattern_12-5280](5280/previews/pattern_12.png) | ![pattern_13-5280](5280/previews/pattern_13.png) | ![pattern_14-5280](5280/previews/pattern_14.png) | ![pattern_15-5280](5280/previews/pattern_15.png) | [<NSFW, click to see>](5280/previews/pattern_16.png) | [<NSFW, click to see>](5280/previews/bikini.png) | [<NSFW, click to see>](5280/previews/bondage.png) | ![free-5280](5280/previews/free.png) | ![maid-5280](5280/previews/maid.png) | ![miko-5280](5280/previews/miko.png) | [<NSFW, click to see>](5280/previews/nude.png) | [<NSFW, click to see>](5280/previews/nude2.png) | ![suit-5280](5280/previews/suit.png) | ![yukata-5280](5280/previews/yukata.png) | | 4800 | 0.829 | [Download](4800/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![pattern_11-4800](4800/previews/pattern_11.png) | ![pattern_12-4800](4800/previews/pattern_12.png) | ![pattern_13-4800](4800/previews/pattern_13.png) | ![pattern_14-4800](4800/previews/pattern_14.png) | ![pattern_15-4800](4800/previews/pattern_15.png) | [<NSFW, click to see>](4800/previews/pattern_16.png) | [<NSFW, click to see>](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4320 | 0.868 | [Download](4320/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![pattern_11-4320](4320/previews/pattern_11.png) | ![pattern_12-4320](4320/previews/pattern_12.png) | ![pattern_13-4320](4320/previews/pattern_13.png) | ![pattern_14-4320](4320/previews/pattern_14.png) | ![pattern_15-4320](4320/previews/pattern_15.png) | [<NSFW, click to see>](4320/previews/pattern_16.png) | [<NSFW, click to see>](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3840 | 0.834 | [Download](3840/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-3840](3840/previews/pattern_1.png) | ![pattern_2-3840](3840/previews/pattern_2.png) | ![pattern_3-3840](3840/previews/pattern_3.png) | ![pattern_4-3840](3840/previews/pattern_4.png) | ![pattern_5-3840](3840/previews/pattern_5.png) | ![pattern_6-3840](3840/previews/pattern_6.png) | ![pattern_7-3840](3840/previews/pattern_7.png) | ![pattern_8-3840](3840/previews/pattern_8.png) | ![pattern_9-3840](3840/previews/pattern_9.png) | ![pattern_10-3840](3840/previews/pattern_10.png) | ![pattern_11-3840](3840/previews/pattern_11.png) | ![pattern_12-3840](3840/previews/pattern_12.png) | ![pattern_13-3840](3840/previews/pattern_13.png) | ![pattern_14-3840](3840/previews/pattern_14.png) | ![pattern_15-3840](3840/previews/pattern_15.png) | [<NSFW, click to see>](3840/previews/pattern_16.png) | [<NSFW, click to see>](3840/previews/bikini.png) | [<NSFW, click to see>](3840/previews/bondage.png) | ![free-3840](3840/previews/free.png) | ![maid-3840](3840/previews/maid.png) | ![miko-3840](3840/previews/miko.png) | [<NSFW, click to see>](3840/previews/nude.png) | [<NSFW, click to see>](3840/previews/nude2.png) | ![suit-3840](3840/previews/suit.png) | ![yukata-3840](3840/previews/yukata.png) | | 3360 | 0.821 | [Download](3360/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-3360](3360/previews/pattern_1.png) | ![pattern_2-3360](3360/previews/pattern_2.png) | ![pattern_3-3360](3360/previews/pattern_3.png) | ![pattern_4-3360](3360/previews/pattern_4.png) | ![pattern_5-3360](3360/previews/pattern_5.png) | ![pattern_6-3360](3360/previews/pattern_6.png) | ![pattern_7-3360](3360/previews/pattern_7.png) | ![pattern_8-3360](3360/previews/pattern_8.png) | ![pattern_9-3360](3360/previews/pattern_9.png) | ![pattern_10-3360](3360/previews/pattern_10.png) | ![pattern_11-3360](3360/previews/pattern_11.png) | ![pattern_12-3360](3360/previews/pattern_12.png) | ![pattern_13-3360](3360/previews/pattern_13.png) | ![pattern_14-3360](3360/previews/pattern_14.png) | ![pattern_15-3360](3360/previews/pattern_15.png) | [<NSFW, click to see>](3360/previews/pattern_16.png) | [<NSFW, click to see>](3360/previews/bikini.png) | [<NSFW, click to see>](3360/previews/bondage.png) | ![free-3360](3360/previews/free.png) | ![maid-3360](3360/previews/maid.png) | ![miko-3360](3360/previews/miko.png) | [<NSFW, click to see>](3360/previews/nude.png) | [<NSFW, click to see>](3360/previews/nude2.png) | ![suit-3360](3360/previews/suit.png) | ![yukata-3360](3360/previews/yukata.png) | | 2880 | 0.685 | [Download](2880/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-2880](2880/previews/pattern_1.png) | ![pattern_2-2880](2880/previews/pattern_2.png) | ![pattern_3-2880](2880/previews/pattern_3.png) | ![pattern_4-2880](2880/previews/pattern_4.png) | ![pattern_5-2880](2880/previews/pattern_5.png) | ![pattern_6-2880](2880/previews/pattern_6.png) | ![pattern_7-2880](2880/previews/pattern_7.png) | ![pattern_8-2880](2880/previews/pattern_8.png) | ![pattern_9-2880](2880/previews/pattern_9.png) | ![pattern_10-2880](2880/previews/pattern_10.png) | ![pattern_11-2880](2880/previews/pattern_11.png) | ![pattern_12-2880](2880/previews/pattern_12.png) | ![pattern_13-2880](2880/previews/pattern_13.png) | ![pattern_14-2880](2880/previews/pattern_14.png) | ![pattern_15-2880](2880/previews/pattern_15.png) | [<NSFW, click to see>](2880/previews/pattern_16.png) | [<NSFW, click to see>](2880/previews/bikini.png) | [<NSFW, click to see>](2880/previews/bondage.png) | ![free-2880](2880/previews/free.png) | ![maid-2880](2880/previews/maid.png) | ![miko-2880](2880/previews/miko.png) | [<NSFW, click to see>](2880/previews/nude.png) | [<NSFW, click to see>](2880/previews/nude2.png) | ![suit-2880](2880/previews/suit.png) | ![yukata-2880](2880/previews/yukata.png) | | 2400 | 0.798 | [Download](2400/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![pattern_11-2400](2400/previews/pattern_11.png) | ![pattern_12-2400](2400/previews/pattern_12.png) | ![pattern_13-2400](2400/previews/pattern_13.png) | ![pattern_14-2400](2400/previews/pattern_14.png) | ![pattern_15-2400](2400/previews/pattern_15.png) | [<NSFW, click to see>](2400/previews/pattern_16.png) | [<NSFW, click to see>](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1920 | 0.723 | [Download](1920/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-1920](1920/previews/pattern_1.png) | ![pattern_2-1920](1920/previews/pattern_2.png) | ![pattern_3-1920](1920/previews/pattern_3.png) | ![pattern_4-1920](1920/previews/pattern_4.png) | ![pattern_5-1920](1920/previews/pattern_5.png) | ![pattern_6-1920](1920/previews/pattern_6.png) | ![pattern_7-1920](1920/previews/pattern_7.png) | ![pattern_8-1920](1920/previews/pattern_8.png) | ![pattern_9-1920](1920/previews/pattern_9.png) | ![pattern_10-1920](1920/previews/pattern_10.png) | ![pattern_11-1920](1920/previews/pattern_11.png) | ![pattern_12-1920](1920/previews/pattern_12.png) | ![pattern_13-1920](1920/previews/pattern_13.png) | ![pattern_14-1920](1920/previews/pattern_14.png) | ![pattern_15-1920](1920/previews/pattern_15.png) | [<NSFW, click to see>](1920/previews/pattern_16.png) | [<NSFW, click to see>](1920/previews/bikini.png) | [<NSFW, click to see>](1920/previews/bondage.png) | ![free-1920](1920/previews/free.png) | ![maid-1920](1920/previews/maid.png) | ![miko-1920](1920/previews/miko.png) | [<NSFW, click to see>](1920/previews/nude.png) | [<NSFW, click to see>](1920/previews/nude2.png) | ![suit-1920](1920/previews/suit.png) | ![yukata-1920](1920/previews/yukata.png) | | 1440 | 0.823 | [Download](1440/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-1440](1440/previews/pattern_1.png) | ![pattern_2-1440](1440/previews/pattern_2.png) | ![pattern_3-1440](1440/previews/pattern_3.png) | ![pattern_4-1440](1440/previews/pattern_4.png) | ![pattern_5-1440](1440/previews/pattern_5.png) | ![pattern_6-1440](1440/previews/pattern_6.png) | ![pattern_7-1440](1440/previews/pattern_7.png) | ![pattern_8-1440](1440/previews/pattern_8.png) | ![pattern_9-1440](1440/previews/pattern_9.png) | ![pattern_10-1440](1440/previews/pattern_10.png) | ![pattern_11-1440](1440/previews/pattern_11.png) | ![pattern_12-1440](1440/previews/pattern_12.png) | ![pattern_13-1440](1440/previews/pattern_13.png) | ![pattern_14-1440](1440/previews/pattern_14.png) | ![pattern_15-1440](1440/previews/pattern_15.png) | [<NSFW, click to see>](1440/previews/pattern_16.png) | [<NSFW, click to see>](1440/previews/bikini.png) | [<NSFW, click to see>](1440/previews/bondage.png) | ![free-1440](1440/previews/free.png) | ![maid-1440](1440/previews/maid.png) | ![miko-1440](1440/previews/miko.png) | [<NSFW, click to see>](1440/previews/nude.png) | [<NSFW, click to see>](1440/previews/nude2.png) | ![suit-1440](1440/previews/suit.png) | ![yukata-1440](1440/previews/yukata.png) | | 960 | 0.544 | [Download](960/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-960](960/previews/pattern_1.png) | ![pattern_2-960](960/previews/pattern_2.png) | ![pattern_3-960](960/previews/pattern_3.png) | ![pattern_4-960](960/previews/pattern_4.png) | ![pattern_5-960](960/previews/pattern_5.png) | ![pattern_6-960](960/previews/pattern_6.png) | ![pattern_7-960](960/previews/pattern_7.png) | ![pattern_8-960](960/previews/pattern_8.png) | ![pattern_9-960](960/previews/pattern_9.png) | ![pattern_10-960](960/previews/pattern_10.png) | ![pattern_11-960](960/previews/pattern_11.png) | ![pattern_12-960](960/previews/pattern_12.png) | ![pattern_13-960](960/previews/pattern_13.png) | ![pattern_14-960](960/previews/pattern_14.png) | ![pattern_15-960](960/previews/pattern_15.png) | [<NSFW, click to see>](960/previews/pattern_16.png) | [<NSFW, click to see>](960/previews/bikini.png) | [<NSFW, click to see>](960/previews/bondage.png) | ![free-960](960/previews/free.png) | ![maid-960](960/previews/maid.png) | ![miko-960](960/previews/miko.png) | [<NSFW, click to see>](960/previews/nude.png) | [<NSFW, click to see>](960/previews/nude2.png) | ![suit-960](960/previews/suit.png) | ![yukata-960](960/previews/yukata.png) | | 480 | 0.322 | [Download](480/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-480](480/previews/pattern_1.png) | ![pattern_2-480](480/previews/pattern_2.png) | ![pattern_3-480](480/previews/pattern_3.png) | ![pattern_4-480](480/previews/pattern_4.png) | ![pattern_5-480](480/previews/pattern_5.png) | ![pattern_6-480](480/previews/pattern_6.png) | ![pattern_7-480](480/previews/pattern_7.png) | ![pattern_8-480](480/previews/pattern_8.png) | ![pattern_9-480](480/previews/pattern_9.png) | ![pattern_10-480](480/previews/pattern_10.png) | ![pattern_11-480](480/previews/pattern_11.png) | ![pattern_12-480](480/previews/pattern_12.png) | ![pattern_13-480](480/previews/pattern_13.png) | ![pattern_14-480](480/previews/pattern_14.png) | ![pattern_15-480](480/previews/pattern_15.png) | [<NSFW, click to see>](480/previews/pattern_16.png) | [<NSFW, click to see>](480/previews/bikini.png) | [<NSFW, click to see>](480/previews/bondage.png) | ![free-480](480/previews/free.png) | ![maid-480](480/previews/maid.png) | ![miko-480](480/previews/miko.png) | [<NSFW, click to see>](480/previews/nude.png) | [<NSFW, click to see>](480/previews/nude2.png) | ![suit-480](480/previews/suit.png) | ![yukata-480](480/previews/yukata.png) |
MouseTrap/StyleGen-Loopster-DL
MouseTrap
2023-09-16T05:57:46Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:riffusion/riffusion-model-v1", "base_model:adapter:riffusion/riffusion-model-v1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-16T05:50:05Z
--- license: creativeml-openrail-m base_model: riffusion/riffusion-model-v1 instance_prompt: Loopster style tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MouseTrap/StyleGen-Looper These are LoRA adaption weights for riffusion/riffusion-model-v1. The weights were trained on Loopster style using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
codecompletedeployment/st-codesearch-distilroberta-base
codecompletedeployment
2023-09-16T05:14:13Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "dataset:code_search_net", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-15T20:48:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - code_search_net --- # flax-sentence-embeddings/st-codesearch-distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on the [code_search_net](https://huggingface.co/datasets/code_search_net) dataset and can be used to search program code given text. ## Usage: ```python from sentence_transformers import SentenceTransformer, util #This list the defines the different programm codes code = ["""def sort_list(x): return sorted(x)""", """def count_above_threshold(elements, threshold=0): counter = 0 for e in elements: if e > threshold: counter += 1 return counter""", """def find_min_max(elements): min_ele = 99999 max_ele = -99999 for e in elements: if e < min_ele: min_ele = e if e > max_ele: max_ele = e return min_ele, max_ele"""] model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base") # Encode our code into the vector space code_emb = model.encode(code, convert_to_tensor=True) # Interactive demo: Enter queries, and the method returns the best function from the # 3 functions we defined while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, code_emb)[0] top_hit = hits[0] print("Cossim: {:.2f}".format(top_hit['score'])) print(code[top_hit['corpus_id']]) print("\n\n") ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Training The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. It is some preliminary model. It was neither tested nor was the trained quite sophisticated The model was trained with the parameters: **DataLoader**: `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 5371 with parameters: ``` {'batch_size': 256} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20, 'similarity_fct': 'dot_score'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "warmupconstant", "steps_per_epoch": 10000, "warmup_steps": 500, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ceviriyap/bert_3
ceviriyap
2023-09-16T05:06:01Z
46
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-09-16T04:58:25Z
--- tags: - generated_from_keras_callback model-index: - name: bert_3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert_3 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.0851 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 8.8352 | 0 | | 6.8732 | 1 | | 6.6390 | 2 | | 6.3008 | 3 | | 6.5051 | 4 | | 6.3542 | 5 | | 6.2322 | 6 | | 6.2831 | 7 | | 6.3018 | 8 | | 6.2346 | 9 | | 6.1593 | 10 | | 6.1451 | 11 | | 6.1091 | 12 | | 6.1909 | 13 | | 6.1473 | 14 | | 6.0694 | 15 | | 5.9517 | 16 | | 6.1890 | 17 | | 6.1535 | 18 | | 6.0851 | 19 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.10.0 - Datasets 2.12.0 - Tokenizers 0.13.3
dislikename/sd-class-butterflies-32
dislikename
2023-09-16T04:47:58Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-09-16T04:47:52Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('dislikename/sd-class-butterflies-32') image = pipeline().images[0] image ```
brenth82/timmer
brenth82
2023-09-16T04:47:16Z
0
0
tensorflowtts
[ "tensorflowtts", "audio-to-audio", "license:artistic-2.0", "region:us" ]
audio-to-audio
2023-09-16T04:22:09Z
--- pipeline_tag: audio-to-audio license: artistic-2.0 library_name: tensorflowtts ---
nightdude/config_8113572
nightdude
2023-09-16T04:35:17Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-16T04:33:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/koshimizu_sachiko_idolmastercinderellagirls
CyberHarem
2023-09-16T04:10:40Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/koshimizu_sachiko_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-16T03:54:52Z
--- license: mit datasets: - CyberHarem/koshimizu_sachiko_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of koshimizu_sachiko_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7000, you need to download `7000/koshimizu_sachiko_idolmastercinderellagirls.pt` as the embedding and `7000/koshimizu_sachiko_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7000**, with the score of 0.992. The trigger words are: 1. `koshimizu_sachiko_idolmastercinderellagirls` 2. `purple_hair, short_hair, brown_eyes, smile, blush, hair_ornament, open_mouth, hairclip` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7500 | 0.969 | [Download](7500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-7500](7500/previews/pattern_1.png) | ![pattern_2-7500](7500/previews/pattern_2.png) | ![pattern_3-7500](7500/previews/pattern_3.png) | ![pattern_4-7500](7500/previews/pattern_4.png) | ![pattern_5-7500](7500/previews/pattern_5.png) | ![pattern_6-7500](7500/previews/pattern_6.png) | ![pattern_7-7500](7500/previews/pattern_7.png) | ![pattern_8-7500](7500/previews/pattern_8.png) | ![pattern_9-7500](7500/previews/pattern_9.png) | ![pattern_10-7500](7500/previews/pattern_10.png) | ![pattern_11-7500](7500/previews/pattern_11.png) | [<NSFW, click to see>](7500/previews/bikini.png) | [<NSFW, click to see>](7500/previews/bondage.png) | ![free-7500](7500/previews/free.png) | ![maid-7500](7500/previews/maid.png) | ![miko-7500](7500/previews/miko.png) | [<NSFW, click to see>](7500/previews/nude.png) | [<NSFW, click to see>](7500/previews/nude2.png) | ![suit-7500](7500/previews/suit.png) | ![yukata-7500](7500/previews/yukata.png) | | **7000** | **0.992** | [**Download**](7000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-7000](7000/previews/pattern_1.png) | ![pattern_2-7000](7000/previews/pattern_2.png) | ![pattern_3-7000](7000/previews/pattern_3.png) | ![pattern_4-7000](7000/previews/pattern_4.png) | ![pattern_5-7000](7000/previews/pattern_5.png) | ![pattern_6-7000](7000/previews/pattern_6.png) | ![pattern_7-7000](7000/previews/pattern_7.png) | ![pattern_8-7000](7000/previews/pattern_8.png) | ![pattern_9-7000](7000/previews/pattern_9.png) | ![pattern_10-7000](7000/previews/pattern_10.png) | ![pattern_11-7000](7000/previews/pattern_11.png) | [<NSFW, click to see>](7000/previews/bikini.png) | [<NSFW, click to see>](7000/previews/bondage.png) | ![free-7000](7000/previews/free.png) | ![maid-7000](7000/previews/maid.png) | ![miko-7000](7000/previews/miko.png) | [<NSFW, click to see>](7000/previews/nude.png) | [<NSFW, click to see>](7000/previews/nude2.png) | ![suit-7000](7000/previews/suit.png) | ![yukata-7000](7000/previews/yukata.png) | | 6500 | 0.990 | [Download](6500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-6500](6500/previews/pattern_1.png) | ![pattern_2-6500](6500/previews/pattern_2.png) | ![pattern_3-6500](6500/previews/pattern_3.png) | ![pattern_4-6500](6500/previews/pattern_4.png) | ![pattern_5-6500](6500/previews/pattern_5.png) | ![pattern_6-6500](6500/previews/pattern_6.png) | ![pattern_7-6500](6500/previews/pattern_7.png) | ![pattern_8-6500](6500/previews/pattern_8.png) | ![pattern_9-6500](6500/previews/pattern_9.png) | ![pattern_10-6500](6500/previews/pattern_10.png) | ![pattern_11-6500](6500/previews/pattern_11.png) | [<NSFW, click to see>](6500/previews/bikini.png) | [<NSFW, click to see>](6500/previews/bondage.png) | ![free-6500](6500/previews/free.png) | ![maid-6500](6500/previews/maid.png) | ![miko-6500](6500/previews/miko.png) | [<NSFW, click to see>](6500/previews/nude.png) | [<NSFW, click to see>](6500/previews/nude2.png) | ![suit-6500](6500/previews/suit.png) | ![yukata-6500](6500/previews/yukata.png) | | 6000 | 0.947 | [Download](6000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![pattern_10-6000](6000/previews/pattern_10.png) | ![pattern_11-6000](6000/previews/pattern_11.png) | [<NSFW, click to see>](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5500 | 0.992 | [Download](5500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-5500](5500/previews/pattern_1.png) | ![pattern_2-5500](5500/previews/pattern_2.png) | ![pattern_3-5500](5500/previews/pattern_3.png) | ![pattern_4-5500](5500/previews/pattern_4.png) | ![pattern_5-5500](5500/previews/pattern_5.png) | ![pattern_6-5500](5500/previews/pattern_6.png) | ![pattern_7-5500](5500/previews/pattern_7.png) | ![pattern_8-5500](5500/previews/pattern_8.png) | ![pattern_9-5500](5500/previews/pattern_9.png) | ![pattern_10-5500](5500/previews/pattern_10.png) | ![pattern_11-5500](5500/previews/pattern_11.png) | [<NSFW, click to see>](5500/previews/bikini.png) | [<NSFW, click to see>](5500/previews/bondage.png) | ![free-5500](5500/previews/free.png) | ![maid-5500](5500/previews/maid.png) | ![miko-5500](5500/previews/miko.png) | [<NSFW, click to see>](5500/previews/nude.png) | [<NSFW, click to see>](5500/previews/nude2.png) | ![suit-5500](5500/previews/suit.png) | ![yukata-5500](5500/previews/yukata.png) | | 5000 | 0.992 | [Download](5000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-5000](5000/previews/pattern_1.png) | ![pattern_2-5000](5000/previews/pattern_2.png) | ![pattern_3-5000](5000/previews/pattern_3.png) | ![pattern_4-5000](5000/previews/pattern_4.png) | ![pattern_5-5000](5000/previews/pattern_5.png) | ![pattern_6-5000](5000/previews/pattern_6.png) | ![pattern_7-5000](5000/previews/pattern_7.png) | ![pattern_8-5000](5000/previews/pattern_8.png) | ![pattern_9-5000](5000/previews/pattern_9.png) | ![pattern_10-5000](5000/previews/pattern_10.png) | ![pattern_11-5000](5000/previews/pattern_11.png) | [<NSFW, click to see>](5000/previews/bikini.png) | [<NSFW, click to see>](5000/previews/bondage.png) | ![free-5000](5000/previews/free.png) | ![maid-5000](5000/previews/maid.png) | ![miko-5000](5000/previews/miko.png) | [<NSFW, click to see>](5000/previews/nude.png) | [<NSFW, click to see>](5000/previews/nude2.png) | ![suit-5000](5000/previews/suit.png) | ![yukata-5000](5000/previews/yukata.png) | | 4500 | 0.992 | [Download](4500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-4500](4500/previews/pattern_1.png) | ![pattern_2-4500](4500/previews/pattern_2.png) | ![pattern_3-4500](4500/previews/pattern_3.png) | ![pattern_4-4500](4500/previews/pattern_4.png) | ![pattern_5-4500](4500/previews/pattern_5.png) | ![pattern_6-4500](4500/previews/pattern_6.png) | ![pattern_7-4500](4500/previews/pattern_7.png) | ![pattern_8-4500](4500/previews/pattern_8.png) | ![pattern_9-4500](4500/previews/pattern_9.png) | ![pattern_10-4500](4500/previews/pattern_10.png) | ![pattern_11-4500](4500/previews/pattern_11.png) | [<NSFW, click to see>](4500/previews/bikini.png) | [<NSFW, click to see>](4500/previews/bondage.png) | ![free-4500](4500/previews/free.png) | ![maid-4500](4500/previews/maid.png) | ![miko-4500](4500/previews/miko.png) | [<NSFW, click to see>](4500/previews/nude.png) | [<NSFW, click to see>](4500/previews/nude2.png) | ![suit-4500](4500/previews/suit.png) | ![yukata-4500](4500/previews/yukata.png) | | 4000 | 0.965 | [Download](4000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![pattern_5-4000](4000/previews/pattern_5.png) | ![pattern_6-4000](4000/previews/pattern_6.png) | ![pattern_7-4000](4000/previews/pattern_7.png) | ![pattern_8-4000](4000/previews/pattern_8.png) | ![pattern_9-4000](4000/previews/pattern_9.png) | ![pattern_10-4000](4000/previews/pattern_10.png) | ![pattern_11-4000](4000/previews/pattern_11.png) | [<NSFW, click to see>](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3500 | 0.950 | [Download](3500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-3500](3500/previews/pattern_1.png) | ![pattern_2-3500](3500/previews/pattern_2.png) | ![pattern_3-3500](3500/previews/pattern_3.png) | ![pattern_4-3500](3500/previews/pattern_4.png) | ![pattern_5-3500](3500/previews/pattern_5.png) | ![pattern_6-3500](3500/previews/pattern_6.png) | ![pattern_7-3500](3500/previews/pattern_7.png) | ![pattern_8-3500](3500/previews/pattern_8.png) | ![pattern_9-3500](3500/previews/pattern_9.png) | ![pattern_10-3500](3500/previews/pattern_10.png) | ![pattern_11-3500](3500/previews/pattern_11.png) | [<NSFW, click to see>](3500/previews/bikini.png) | [<NSFW, click to see>](3500/previews/bondage.png) | ![free-3500](3500/previews/free.png) | ![maid-3500](3500/previews/maid.png) | ![miko-3500](3500/previews/miko.png) | [<NSFW, click to see>](3500/previews/nude.png) | [<NSFW, click to see>](3500/previews/nude2.png) | ![suit-3500](3500/previews/suit.png) | ![yukata-3500](3500/previews/yukata.png) | | 3000 | 0.991 | [Download](3000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | ![pattern_9-3000](3000/previews/pattern_9.png) | ![pattern_10-3000](3000/previews/pattern_10.png) | ![pattern_11-3000](3000/previews/pattern_11.png) | [<NSFW, click to see>](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2500 | 0.968 | [Download](2500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-2500](2500/previews/pattern_1.png) | ![pattern_2-2500](2500/previews/pattern_2.png) | ![pattern_3-2500](2500/previews/pattern_3.png) | ![pattern_4-2500](2500/previews/pattern_4.png) | ![pattern_5-2500](2500/previews/pattern_5.png) | ![pattern_6-2500](2500/previews/pattern_6.png) | ![pattern_7-2500](2500/previews/pattern_7.png) | ![pattern_8-2500](2500/previews/pattern_8.png) | ![pattern_9-2500](2500/previews/pattern_9.png) | ![pattern_10-2500](2500/previews/pattern_10.png) | ![pattern_11-2500](2500/previews/pattern_11.png) | [<NSFW, click to see>](2500/previews/bikini.png) | [<NSFW, click to see>](2500/previews/bondage.png) | ![free-2500](2500/previews/free.png) | ![maid-2500](2500/previews/maid.png) | ![miko-2500](2500/previews/miko.png) | [<NSFW, click to see>](2500/previews/nude.png) | [<NSFW, click to see>](2500/previews/nude2.png) | ![suit-2500](2500/previews/suit.png) | ![yukata-2500](2500/previews/yukata.png) | | 2000 | 0.964 | [Download](2000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![pattern_5-2000](2000/previews/pattern_5.png) | ![pattern_6-2000](2000/previews/pattern_6.png) | ![pattern_7-2000](2000/previews/pattern_7.png) | ![pattern_8-2000](2000/previews/pattern_8.png) | ![pattern_9-2000](2000/previews/pattern_9.png) | ![pattern_10-2000](2000/previews/pattern_10.png) | ![pattern_11-2000](2000/previews/pattern_11.png) | [<NSFW, click to see>](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1500 | 0.953 | [Download](1500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![pattern_4-1500](1500/previews/pattern_4.png) | ![pattern_5-1500](1500/previews/pattern_5.png) | ![pattern_6-1500](1500/previews/pattern_6.png) | ![pattern_7-1500](1500/previews/pattern_7.png) | ![pattern_8-1500](1500/previews/pattern_8.png) | ![pattern_9-1500](1500/previews/pattern_9.png) | ![pattern_10-1500](1500/previews/pattern_10.png) | ![pattern_11-1500](1500/previews/pattern_11.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/bondage.png) | ![free-1500](1500/previews/free.png) | ![maid-1500](1500/previews/maid.png) | ![miko-1500](1500/previews/miko.png) | [<NSFW, click to see>](1500/previews/nude.png) | [<NSFW, click to see>](1500/previews/nude2.png) | ![suit-1500](1500/previews/suit.png) | ![yukata-1500](1500/previews/yukata.png) | | 1000 | 0.801 | [Download](1000/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![pattern_4-1000](1000/previews/pattern_4.png) | ![pattern_5-1000](1000/previews/pattern_5.png) | ![pattern_6-1000](1000/previews/pattern_6.png) | ![pattern_7-1000](1000/previews/pattern_7.png) | ![pattern_8-1000](1000/previews/pattern_8.png) | ![pattern_9-1000](1000/previews/pattern_9.png) | ![pattern_10-1000](1000/previews/pattern_10.png) | ![pattern_11-1000](1000/previews/pattern_11.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/bondage.png) | ![free-1000](1000/previews/free.png) | ![maid-1000](1000/previews/maid.png) | ![miko-1000](1000/previews/miko.png) | [<NSFW, click to see>](1000/previews/nude.png) | [<NSFW, click to see>](1000/previews/nude2.png) | ![suit-1000](1000/previews/suit.png) | ![yukata-1000](1000/previews/yukata.png) | | 500 | 0.581 | [Download](500/koshimizu_sachiko_idolmastercinderellagirls.zip) | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![pattern_4-500](500/previews/pattern_4.png) | ![pattern_5-500](500/previews/pattern_5.png) | ![pattern_6-500](500/previews/pattern_6.png) | ![pattern_7-500](500/previews/pattern_7.png) | ![pattern_8-500](500/previews/pattern_8.png) | ![pattern_9-500](500/previews/pattern_9.png) | ![pattern_10-500](500/previews/pattern_10.png) | ![pattern_11-500](500/previews/pattern_11.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/bondage.png) | ![free-500](500/previews/free.png) | ![maid-500](500/previews/maid.png) | ![miko-500](500/previews/miko.png) | [<NSFW, click to see>](500/previews/nude.png) | [<NSFW, click to see>](500/previews/nude2.png) | ![suit-500](500/previews/suit.png) | ![yukata-500](500/previews/yukata.png) |
Bomml/Llama-2-70B-chat-w4-g128-awq
Bomml
2023-09-16T03:09:15Z
0
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "awq", "text-generation", "en", "arxiv:2307.09288", "license:other", "region:us" ]
text-generation
2023-09-16T02:50:36Z
--- inference: false language: - en license: other model_creator: Meta Llama 2 model_link: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf model_name: Llama 2 70B Chat model_type: llama pipeline_tag: text-generation quantized_by: Bomml.ai tags: - facebook - meta - pytorch - llama - llama-2 - awq --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/lnPZ6Nr.png" alt="Bomml.ai" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.6em; margin-bottom: 0em;"><a href="https://bomml.ai">Support: Bomml.ai</a></p> </div> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama 2 70B Chat - W4 G128 AWQ - Model creator: [Meta Llama 2](https://huggingface.co/meta-llama) - Original model: [Llama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) <!-- description start --> ## Description This repo contains AWQ 4bit model files for [Meta Llama 2's Llama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf). <!-- prompt-template start --> ## Prompt template: Llama-2-Chat ``` [INST] <<SYS>> You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>> {prompt}[/INST] ``` <!-- prompt-template end --> # Original model card: Meta Llama 2's Llama 2 70B Chat # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 70B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
TinyLlama/TinyLlama-1.1B-step-50K-105b
TinyLlama
2023-09-16T03:06:11Z
14,406
132
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-01T08:59:02Z
--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata language: - en --- <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. <div align="center"> <img src="./TinyLlama_logo.png" width="300"/> </div> We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is an intermediate checkpoint with 50K steps and 105B tokens. #### Releases Schedule We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison. | Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm | |------------|-------------------------------------------------|--------|------|---------------------| | Baseline | [StableLM-Alpha-3B](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)| 800B | -- | 38.31 | | Baseline | [Pythia-1B-intermediate-step-50k-105b](https://huggingface.co/EleutherAI/pythia-1b/tree/step50000) | 105B | 50k | 42.04 | | Baseline | [Pythia-1B](https://huggingface.co/EleutherAI/pythia-1b) | 300B | 143k | 47.16 | | 2023-09-04 | [TinyLlama-1.1B-intermediate-step-50k-105b](https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b) | 105B | 50k | 43.50 | | 2023-09-16 | -- | 500B | -- | -- | | 2023-10-01 | -- | 1T | -- | -- | | 2023-10-16 | -- | 1.5T | -- | -- | | 2023-10-31 | -- | 2T | -- | -- | | 2023-11-15 | -- | 2.5T | -- | -- | | 2023-12-01 | -- | 3T | -- | -- | #### How to use You will need the transformers>=4.31 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ``` from transformers import AutoTokenizer import transformers import torch model = "PY007/TinyLlama-1.1B-step-50K-105b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.', do_sample=True, top_k=10, num_return_sequences=1, repetition_penalty=1.5, eos_token_id=tokenizer.eos_token_id, max_length=500, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```