modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-24 18:27:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
476 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-24 18:26:04
card
stringlengths
11
1.01M
tensorblock/TinyMistral-6x248M-Instruct-GGUF
tensorblock
2025-04-21T00:28:49Z
23
0
null
[ "gguf", "moe", "TensorBlock", "GGUF", "en", "dataset:Locutusque/hercules-v1.0", "base_model:M4-ai/TinyMistral-6x248M-Instruct", "base_model:quantized:M4-ai/TinyMistral-6x248M-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T20:16:08Z
--- license: apache-2.0 datasets: - Locutusque/hercules-v1.0 language: - en base_model: M4-ai/TinyMistral-6x248M-Instruct inference: parameters: do_sample: true temperature: 0.2 top_p: 0.14 top_k: 12 max_new_tokens: 250 repetition_penalty: 1.1 widget: - text: '<|im_start|>user Write me a Python program that calculates the factorial of n. <|im_end|> <|im_start|>assistant ' - text: An emerging clinical approach to treat substance abuse disorders involves a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity to drug-paired stimuli through cue-exposure or extinction training. It is, however, - text: '<|im_start|>user How do I say hello in Spanish? <|im_end|> <|im_start|>assistant ' tags: - moe - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## M4-ai/TinyMistral-6x248M-Instruct - GGUF This repo contains GGUF format model files for [M4-ai/TinyMistral-6x248M-Instruct](https://huggingface.co/M4-ai/TinyMistral-6x248M-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyMistral-6x248M-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q2_K.gguf) | Q2_K | 0.379 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyMistral-6x248M-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.445 GB | very small, high quality loss | | [TinyMistral-6x248M-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.487 GB | very small, high quality loss | | [TinyMistral-6x248M-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.527 GB | small, substantial quality loss | | [TinyMistral-6x248M-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_0.gguf) | Q4_0 | 0.574 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyMistral-6x248M-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.577 GB | small, greater quality loss | | [TinyMistral-6x248M-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.613 GB | medium, balanced quality - recommended | | [TinyMistral-6x248M-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_0.gguf) | Q5_0 | 0.695 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyMistral-6x248M-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_K_S.gguf) | Q5_K_S | 0.695 GB | large, low quality loss - recommended | | [TinyMistral-6x248M-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_K_M.gguf) | Q5_K_M | 0.715 GB | large, very low quality loss - recommended | | [TinyMistral-6x248M-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q6_K.gguf) | Q6_K | 0.824 GB | very large, extremely low quality loss | | [TinyMistral-6x248M-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q8_0.gguf) | Q8_0 | 1.067 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-Instruct-GGUF --include "TinyMistral-6x248M-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/h2o-danube-1.8b-sft-GGUF
tensorblock
2025-04-21T00:28:44Z
23
0
transformers
[ "transformers", "gguf", "gpt", "llm", "large language model", "h2o-llmstudio", "TensorBlock", "GGUF", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "dataset:OpenAssistant/oasst2", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:meta-math/MetaMathQA", "base_model:h2oai/h2o-danube-1.8b-sft", "base_model:quantized:h2oai/h2o-danube-1.8b-sft", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-16T19:19:47Z
--- language: - en library_name: transformers license: apache-2.0 tags: - gpt - llm - large language model - h2o-llmstudio - TensorBlock - GGUF thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico datasets: - Open-Orca/OpenOrca - OpenAssistant/oasst2 - HuggingFaceH4/ultrachat_200k - meta-math/MetaMathQA widget: - messages: - role: user content: Why is drinking water so healthy? pipeline_tag: text-generation base_model: h2oai/h2o-danube-1.8b-sft --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## h2oai/h2o-danube-1.8b-sft - GGUF This repo contains GGUF format model files for [h2oai/h2o-danube-1.8b-sft](https://huggingface.co/h2oai/h2o-danube-1.8b-sft). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|>{system_prompt}</s><|prompt|>{prompt}</s><|answer|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [h2o-danube-1.8b-sft-Q2_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q2_K.gguf) | Q2_K | 0.711 GB | smallest, significant quality loss - not recommended for most purposes | | [h2o-danube-1.8b-sft-Q3_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_S.gguf) | Q3_K_S | 0.820 GB | very small, high quality loss | | [h2o-danube-1.8b-sft-Q3_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_M.gguf) | Q3_K_M | 0.905 GB | very small, high quality loss | | [h2o-danube-1.8b-sft-Q3_K_L.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_L.gguf) | Q3_K_L | 0.980 GB | small, substantial quality loss | | [h2o-danube-1.8b-sft-Q4_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_0.gguf) | Q4_0 | 1.052 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [h2o-danube-1.8b-sft-Q4_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_S.gguf) | Q4_K_S | 1.060 GB | small, greater quality loss | | [h2o-danube-1.8b-sft-Q4_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_M.gguf) | Q4_K_M | 1.112 GB | medium, balanced quality - recommended | | [h2o-danube-1.8b-sft-Q5_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_0.gguf) | Q5_0 | 1.271 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [h2o-danube-1.8b-sft-Q5_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_S.gguf) | Q5_K_S | 1.271 GB | large, low quality loss - recommended | | [h2o-danube-1.8b-sft-Q5_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_M.gguf) | Q5_K_M | 1.302 GB | large, very low quality loss - recommended | | [h2o-danube-1.8b-sft-Q6_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q6_K.gguf) | Q6_K | 1.503 GB | very large, extremely low quality loss | | [h2o-danube-1.8b-sft-Q8_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q8_0.gguf) | Q8_0 | 1.947 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --include "h2o-danube-1.8b-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Instruct_Yi-6B_Dolly15K-GGUF
tensorblock
2025-04-21T00:28:39Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:databricks/databricks-dolly-15k", "base_model:HenryJJ/Instruct_Yi-6B_Dolly15K", "base_model:quantized:HenryJJ/Instruct_Yi-6B_Dolly15K", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T18:12:08Z
--- license: apache-2.0 datasets: - databricks/databricks-dolly-15k tags: - TensorBlock - GGUF base_model: HenryJJ/Instruct_Yi-6B_Dolly15K --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## HenryJJ/Instruct_Yi-6B_Dolly15K - GGUF This repo contains GGUF format model files for [HenryJJ/Instruct_Yi-6B_Dolly15K](https://huggingface.co/HenryJJ/Instruct_Yi-6B_Dolly15K). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Instruct_Yi-6B_Dolly15K-Q2_K.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q2_K.gguf) | Q2_K | 2.337 GB | smallest, significant quality loss - not recommended for most purposes | | [Instruct_Yi-6B_Dolly15K-Q3_K_S.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q3_K_S.gguf) | Q3_K_S | 2.709 GB | very small, high quality loss | | [Instruct_Yi-6B_Dolly15K-Q3_K_M.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q3_K_M.gguf) | Q3_K_M | 2.993 GB | very small, high quality loss | | [Instruct_Yi-6B_Dolly15K-Q3_K_L.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q3_K_L.gguf) | Q3_K_L | 3.237 GB | small, substantial quality loss | | [Instruct_Yi-6B_Dolly15K-Q4_0.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q4_0.gguf) | Q4_0 | 3.479 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Instruct_Yi-6B_Dolly15K-Q4_K_S.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q4_K_S.gguf) | Q4_K_S | 3.503 GB | small, greater quality loss | | [Instruct_Yi-6B_Dolly15K-Q4_K_M.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q4_K_M.gguf) | Q4_K_M | 3.674 GB | medium, balanced quality - recommended | | [Instruct_Yi-6B_Dolly15K-Q5_0.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q5_0.gguf) | Q5_0 | 4.204 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Instruct_Yi-6B_Dolly15K-Q5_K_S.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q5_K_S.gguf) | Q5_K_S | 4.204 GB | large, low quality loss - recommended | | [Instruct_Yi-6B_Dolly15K-Q5_K_M.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q5_K_M.gguf) | Q5_K_M | 4.304 GB | large, very low quality loss - recommended | | [Instruct_Yi-6B_Dolly15K-Q6_K.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q6_K.gguf) | Q6_K | 4.974 GB | very large, extremely low quality loss | | [Instruct_Yi-6B_Dolly15K-Q8_0.gguf](https://huggingface.co/tensorblock/Instruct_Yi-6B_Dolly15K-GGUF/blob/main/Instruct_Yi-6B_Dolly15K-Q8_0.gguf) | Q8_0 | 6.442 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Instruct_Yi-6B_Dolly15K-GGUF --include "Instruct_Yi-6B_Dolly15K-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Instruct_Yi-6B_Dolly15K-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Alpaca-tuned-gpt2-GGUF
tensorblock
2025-04-21T00:28:37Z
68
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:tatsu-lab/alpaca", "base_model:LordNoah/Alpaca-tuned-gpt2", "base_model:quantized:LordNoah/Alpaca-tuned-gpt2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T17:33:41Z
--- license: apache-2.0 datasets: - tatsu-lab/alpaca language: - en base_model: LordNoah/Alpaca-tuned-gpt2 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## LordNoah/Alpaca-tuned-gpt2 - GGUF This repo contains GGUF format model files for [LordNoah/Alpaca-tuned-gpt2](https://huggingface.co/LordNoah/Alpaca-tuned-gpt2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Alpaca-tuned-gpt2-Q2_K.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q2_K.gguf) | Q2_K | 0.346 GB | smallest, significant quality loss - not recommended for most purposes | | [Alpaca-tuned-gpt2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q3_K_S.gguf) | Q3_K_S | 0.394 GB | very small, high quality loss | | [Alpaca-tuned-gpt2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q3_K_M.gguf) | Q3_K_M | 0.458 GB | very small, high quality loss | | [Alpaca-tuned-gpt2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q3_K_L.gguf) | Q3_K_L | 0.494 GB | small, substantial quality loss | | [Alpaca-tuned-gpt2-Q4_0.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q4_0.gguf) | Q4_0 | 0.497 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Alpaca-tuned-gpt2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q4_K_S.gguf) | Q4_K_S | 0.500 GB | small, greater quality loss | | [Alpaca-tuned-gpt2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q4_K_M.gguf) | Q4_K_M | 0.549 GB | medium, balanced quality - recommended | | [Alpaca-tuned-gpt2-Q5_0.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q5_0.gguf) | Q5_0 | 0.593 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Alpaca-tuned-gpt2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q5_K_S.gguf) | Q5_K_S | 0.593 GB | large, low quality loss - recommended | | [Alpaca-tuned-gpt2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q5_K_M.gguf) | Q5_K_M | 0.632 GB | large, very low quality loss - recommended | | [Alpaca-tuned-gpt2-Q6_K.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q6_K.gguf) | Q6_K | 0.696 GB | very large, extremely low quality loss | | [Alpaca-tuned-gpt2-Q8_0.gguf](https://huggingface.co/tensorblock/Alpaca-tuned-gpt2-GGUF/blob/main/Alpaca-tuned-gpt2-Q8_0.gguf) | Q8_0 | 0.898 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Alpaca-tuned-gpt2-GGUF --include "Alpaca-tuned-gpt2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Alpaca-tuned-gpt2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF
tensorblock
2025-04-21T00:28:36Z
24
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:Intel/orca_dpo_pairs", "base_model:sreeramajay/TinyLlama-1.1B-orca-v1.0", "base_model:quantized:sreeramajay/TinyLlama-1.1B-orca-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T17:32:08Z
--- license: apache-2.0 datasets: - Intel/orca_dpo_pairs language: - en base_model: sreeramajay/TinyLlama-1.1B-orca-v1.0 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## sreeramajay/TinyLlama-1.1B-orca-v1.0 - GGUF This repo contains GGUF format model files for [sreeramajay/TinyLlama-1.1B-orca-v1.0](https://huggingface.co/sreeramajay/TinyLlama-1.1B-orca-v1.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyLlama-1.1B-orca-v1.0-Q2_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyLlama-1.1B-orca-v1.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | | [TinyLlama-1.1B-orca-v1.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | | [TinyLlama-1.1B-orca-v1.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [TinyLlama-1.1B-orca-v1.0-Q4_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyLlama-1.1B-orca-v1.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | | [TinyLlama-1.1B-orca-v1.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | | [TinyLlama-1.1B-orca-v1.0-Q5_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyLlama-1.1B-orca-v1.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | | [TinyLlama-1.1B-orca-v1.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | | [TinyLlama-1.1B-orca-v1.0-Q6_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | | [TinyLlama-1.1B-orca-v1.0-Q8_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF/blob/main/TinyLlama-1.1B-orca-v1.0-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF --include "TinyLlama-1.1B-orca-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-orca-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF
tensorblock
2025-04-21T00:28:34Z
15
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31", "base_model:quantized:kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T17:24:16Z
--- language: - en pipeline_tag: text-generation license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 - GGUF This repo contains GGUF format model files for [kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31](https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q2_K.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_S.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_M.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_L.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_0.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_K_S.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_K_M.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_0.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_K_S.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_K_M.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q6_K.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q8_0.gguf](https://huggingface.co/tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF/blob/main/AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF --include "AISquare-Instruct-SOLAR-10.7b-v0.5.31-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/AISquare-Instruct-SOLAR-10.7b-v0.5.31-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/2xbagel-dpo-34b-v0.2-GGUF
tensorblock
2025-04-21T00:28:27Z
38
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:TeeZee/2xbagel-dpo-34b-v0.2", "base_model:quantized:TeeZee/2xbagel-dpo-34b-v0.2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T12:30:39Z
--- tags: - merge - TensorBlock - GGUF license: apache-2.0 base_model: TeeZee/2xbagel-dpo-34b-v0.2 model-index: - name: 2xbagel-dpo-34b-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 79.35 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 73.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.15 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.4 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 2.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/2xbagel-dpo-34b-v0.2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## TeeZee/2xbagel-dpo-34b-v0.2 - GGUF This repo contains GGUF format model files for [TeeZee/2xbagel-dpo-34b-v0.2](https://huggingface.co/TeeZee/2xbagel-dpo-34b-v0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` [INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [2xbagel-dpo-34b-v0.2-Q2_K.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q2_K.gguf) | Q2_K | 21.023 GB | smallest, significant quality loss - not recommended for most purposes | | [2xbagel-dpo-34b-v0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q3_K_S.gguf) | Q3_K_S | 24.551 GB | very small, high quality loss | | [2xbagel-dpo-34b-v0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q3_K_M.gguf) | Q3_K_M | 27.392 GB | very small, high quality loss | | [2xbagel-dpo-34b-v0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q3_K_L.gguf) | Q3_K_L | 29.849 GB | small, substantial quality loss | | [2xbagel-dpo-34b-v0.2-Q4_0.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q4_0.gguf) | Q4_0 | 32.020 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [2xbagel-dpo-34b-v0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q4_K_S.gguf) | Q4_K_S | 32.244 GB | small, greater quality loss | | [2xbagel-dpo-34b-v0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q4_K_M.gguf) | Q4_K_M | 34.007 GB | medium, balanced quality - recommended | | [2xbagel-dpo-34b-v0.2-Q5_0.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q5_0.gguf) | Q5_0 | 39.051 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [2xbagel-dpo-34b-v0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q5_K_S.gguf) | Q5_K_S | 39.051 GB | large, low quality loss - recommended | | [2xbagel-dpo-34b-v0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q5_K_M.gguf) | Q5_K_M | 40.074 GB | large, very low quality loss - recommended | | [2xbagel-dpo-34b-v0.2-Q6_K.gguf](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q6_K.gguf) | Q6_K | 46.520 GB | very large, extremely low quality loss | | [2xbagel-dpo-34b-v0.2-Q8_0](https://huggingface.co/tensorblock/2xbagel-dpo-34b-v0.2-GGUF/blob/main/2xbagel-dpo-34b-v0.2-Q8_0) | Q8_0 | 2.914 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/2xbagel-dpo-34b-v0.2-GGUF --include "2xbagel-dpo-34b-v0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/2xbagel-dpo-34b-v0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/openchat-3.5-1210-starling-slerp-GGUF
tensorblock
2025-04-21T00:28:24Z
27
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "en", "base_model:SanjiWatsuki/openchat-3.5-1210-starling-slerp", "base_model:quantized:SanjiWatsuki/openchat-3.5-1210-starling-slerp", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T11:17:46Z
--- license: cc-by-4.0 language: - en tags: - merge - TensorBlock - GGUF base_model: SanjiWatsuki/openchat-3.5-1210-starling-slerp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## SanjiWatsuki/openchat-3.5-1210-starling-slerp - GGUF This repo contains GGUF format model files for [SanjiWatsuki/openchat-3.5-1210-starling-slerp](https://huggingface.co/SanjiWatsuki/openchat-3.5-1210-starling-slerp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openchat-3.5-1210-starling-slerp-Q2_K.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [openchat-3.5-1210-starling-slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [openchat-3.5-1210-starling-slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [openchat-3.5-1210-starling-slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [openchat-3.5-1210-starling-slerp-Q4_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openchat-3.5-1210-starling-slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [openchat-3.5-1210-starling-slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [openchat-3.5-1210-starling-slerp-Q5_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openchat-3.5-1210-starling-slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [openchat-3.5-1210-starling-slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [openchat-3.5-1210-starling-slerp-Q6_K.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [openchat-3.5-1210-starling-slerp-Q8_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-starling-slerp-GGUF/blob/main/openchat-3.5-1210-starling-slerp-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/openchat-3.5-1210-starling-slerp-GGUF --include "openchat-3.5-1210-starling-slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/openchat-3.5-1210-starling-slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF
tensorblock
2025-04-21T00:28:22Z
28
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "text-generation", "en", "dataset:Locutusque/inst_mix_v2_top_100k", "base_model:Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct", "base_model:quantized:Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T11:12:42Z
--- license: apache-2.0 datasets: - Locutusque/inst_mix_v2_top_100k language: - en pipeline_tag: text-generation widget: - text: '<|USER|> Design a Neo4j database and Cypher function snippet to Display Extreme Dental hygiene: Using Mouthwash for Analysis for Beginners. Implement if/else or switch/case statements to handle different conditions related to the Consent. Provide detailed comments explaining your control flow and the reasoning behind each decision. <|ASSISTANT|> ' - text: '<|USER|> Write me a story about a magical place. <|ASSISTANT|> ' - text: '<|USER|> Write me an essay about the life of George Washington <|ASSISTANT|> ' - text: '<|USER|> Solve the following equation 2x + 10 = 20 <|ASSISTANT|> ' - text: '<|USER|> Craft me a list of some nice places to visit around the world. <|ASSISTANT|> ' - text: '<|USER|> How to manage a lazy employee: Address the employee verbally. Don''t allow an employee''s laziness or lack of enthusiasm to become a recurring issue. Tell the employee you''re hoping to speak with them about workplace expectations and performance, and schedule a time to sit down together. Question: To manage a lazy employee, it is suggested to talk to the employee. True, False, or Neither? <|ASSISTANT|> ' inference: parameters: temperature: 0.5 do_sample: true top_p: 0.5 top_k: 30 max_new_tokens: 250 repetition_penalty: 1.15 tags: - merge - TensorBlock - GGUF base_model: Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct - GGUF This repo contains GGUF format model files for [Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct](https://huggingface.co/Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.120 GB | very small, high quality loss | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.137 GB | small, substantial quality loss | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.156 GB | medium, balanced quality - recommended | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_0.gguf) | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_K_S.gguf) | Q5_K_S | 0.176 GB | large, low quality loss - recommended | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss | | [LocutusqueXFelladrin-TinyMistral248M-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF/blob/main/LocutusqueXFelladrin-TinyMistral248M-Instruct-Q8_0.gguf) | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF --include "LocutusqueXFelladrin-TinyMistral248M-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LocutusqueXFelladrin-TinyMistral248M-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF
tensorblock
2025-04-21T00:28:16Z
41
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2", "base_model:quantized:ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T10:09:23Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2 - GGUF This repo contains GGUF format model files for [ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2](https://huggingface.co/ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q2_K.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_L.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q6_K.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q8_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF/blob/main/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF --include "alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/bun_mistral_7b_v2-GGUF
tensorblock
2025-04-21T00:28:15Z
38
0
null
[ "gguf", "CoT", "TensorBlock", "GGUF", "en", "base_model:aloobun/bun_mistral_7b_v2", "base_model:quantized:aloobun/bun_mistral_7b_v2", "license:cc", "endpoints_compatible", "region:us" ]
null
2024-12-16T09:49:32Z
--- language: - en tags: - CoT - TensorBlock - GGUF license: cc base_model: aloobun/bun_mistral_7b_v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## aloobun/bun_mistral_7b_v2 - GGUF This repo contains GGUF format model files for [aloobun/bun_mistral_7b_v2](https://huggingface.co/aloobun/bun_mistral_7b_v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [bun_mistral_7b_v2-Q2_K.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [bun_mistral_7b_v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [bun_mistral_7b_v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [bun_mistral_7b_v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [bun_mistral_7b_v2-Q4_0.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [bun_mistral_7b_v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [bun_mistral_7b_v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [bun_mistral_7b_v2-Q5_0.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [bun_mistral_7b_v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [bun_mistral_7b_v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [bun_mistral_7b_v2-Q6_K.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [bun_mistral_7b_v2-Q8_0.gguf](https://huggingface.co/tensorblock/bun_mistral_7b_v2-GGUF/blob/main/bun_mistral_7b_v2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/bun_mistral_7b_v2-GGUF --include "bun_mistral_7b_v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/bun_mistral_7b_v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF
tensorblock
2025-04-21T00:28:00Z
16
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE", "base_model:quantized:AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T03:40:58Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE - GGUF This repo contains GGUF format model files for [AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE](https://huggingface.co/AIChenKai/TinyLlama-1.1B-Chat-v1.0-x2-MoE). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q2_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q2_K.gguf) | Q2_K | 0.708 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_S.gguf) | Q3_K_S | 0.827 GB | very small, high quality loss | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_M.gguf) | Q3_K_M | 0.911 GB | very small, high quality loss | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q3_K_L.gguf) | Q3_K_L | 0.984 GB | small, substantial quality loss | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_0.gguf) | Q4_0 | 1.065 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_K_S.gguf) | Q4_K_S | 1.071 GB | small, greater quality loss | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q4_K_M.gguf) | Q4_K_M | 1.126 GB | medium, balanced quality - recommended | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_0.gguf) | Q5_0 | 1.290 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_K_S.gguf) | Q5_K_S | 1.290 GB | large, low quality loss - recommended | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q5_K_M.gguf) | Q5_K_M | 1.321 GB | large, very low quality loss - recommended | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q6_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q6_K.gguf) | Q6_K | 1.528 GB | very large, extremely low quality loss | | [TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q8_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF/blob/main/TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q8_0.gguf) | Q8_0 | 1.979 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF --include "TinyLlama-1.1B-Chat-v1.0-x2-MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-Chat-v1.0-x2-MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyMistral-6x248M-GGUF
tensorblock
2025-04-21T00:27:56Z
42
0
null
[ "gguf", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "Locutusque/TinyMistral-248M-v2", "Locutusque/TinyMistral-248M-v2.5", "Locutusque/TinyMistral-248M-v2.5-Instruct", "jtatman/tinymistral-v2-pycoder-instruct-248m", "Felladrin/TinyMistral-248M-SFT-v4", "Locutusque/TinyMistral-248M-v2-Instruct", "TensorBlock", "GGUF", "dataset:nampdn-ai/mini-peS2o", "base_model:M4-ai/TinyMistral-6x248M", "base_model:quantized:M4-ai/TinyMistral-6x248M", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T03:30:59Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Locutusque/TinyMistral-248M-v2 - Locutusque/TinyMistral-248M-v2.5 - Locutusque/TinyMistral-248M-v2.5-Instruct - jtatman/tinymistral-v2-pycoder-instruct-248m - Felladrin/TinyMistral-248M-SFT-v4 - Locutusque/TinyMistral-248M-v2-Instruct - TensorBlock - GGUF base_model: M4-ai/TinyMistral-6x248M inference: parameters: do_sample: true temperature: 0.2 top_p: 0.14 top_k: 12 max_new_tokens: 250 repetition_penalty: 1.15 widget: - text: '<|im_start|>user Write me a Python program that calculates the factorial of n. <|im_end|> <|im_start|>assistant ' - text: An emerging clinical approach to treat substance abuse disorders involves a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity to drug-paired stimuli through cue-exposure or extinction training. It is, however, datasets: - nampdn-ai/mini-peS2o --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## M4-ai/TinyMistral-6x248M - GGUF This repo contains GGUF format model files for [M4-ai/TinyMistral-6x248M](https://huggingface.co/M4-ai/TinyMistral-6x248M). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyMistral-6x248M-Q2_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q2_K.gguf) | Q2_K | 0.379 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyMistral-6x248M-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_S.gguf) | Q3_K_S | 0.445 GB | very small, high quality loss | | [TinyMistral-6x248M-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_M.gguf) | Q3_K_M | 0.487 GB | very small, high quality loss | | [TinyMistral-6x248M-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_L.gguf) | Q3_K_L | 0.527 GB | small, substantial quality loss | | [TinyMistral-6x248M-Q4_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_0.gguf) | Q4_0 | 0.574 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyMistral-6x248M-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_S.gguf) | Q4_K_S | 0.577 GB | small, greater quality loss | | [TinyMistral-6x248M-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_M.gguf) | Q4_K_M | 0.613 GB | medium, balanced quality - recommended | | [TinyMistral-6x248M-Q5_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_0.gguf) | Q5_0 | 0.695 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyMistral-6x248M-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_S.gguf) | Q5_K_S | 0.695 GB | large, low quality loss - recommended | | [TinyMistral-6x248M-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_M.gguf) | Q5_K_M | 0.715 GB | large, very low quality loss - recommended | | [TinyMistral-6x248M-Q6_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q6_K.gguf) | Q6_K | 0.824 GB | very large, extremely low quality loss | | [TinyMistral-6x248M-Q8_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q8_0.gguf) | Q8_0 | 1.067 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --include "TinyMistral-6x248M-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/internlm2-1_8b-GGUF
tensorblock
2025-04-21T00:27:52Z
28
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:internlm/internlm2-1_8b", "base_model:quantized:internlm/internlm2-1_8b", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T03:20:51Z
--- pipeline_tag: text-generation license: other base_model: internlm/internlm2-1_8b tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## internlm/internlm2-1_8b - GGUF This repo contains GGUF format model files for [internlm/internlm2-1_8b](https://huggingface.co/internlm/internlm2-1_8b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [internlm2-1_8b-Q2_K.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q2_K.gguf) | Q2_K | 0.772 GB | smallest, significant quality loss - not recommended for most purposes | | [internlm2-1_8b-Q3_K_S.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q3_K_S.gguf) | Q3_K_S | 0.888 GB | very small, high quality loss | | [internlm2-1_8b-Q3_K_M.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q3_K_M.gguf) | Q3_K_M | 0.964 GB | very small, high quality loss | | [internlm2-1_8b-Q3_K_L.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q3_K_L.gguf) | Q3_K_L | 1.031 GB | small, substantial quality loss | | [internlm2-1_8b-Q4_0.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q4_0.gguf) | Q4_0 | 1.114 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [internlm2-1_8b-Q4_K_S.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q4_K_S.gguf) | Q4_K_S | 1.121 GB | small, greater quality loss | | [internlm2-1_8b-Q4_K_M.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q4_K_M.gguf) | Q4_K_M | 1.172 GB | medium, balanced quality - recommended | | [internlm2-1_8b-Q5_0.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q5_0.gguf) | Q5_0 | 1.326 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [internlm2-1_8b-Q5_K_S.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q5_K_S.gguf) | Q5_K_S | 1.326 GB | large, low quality loss - recommended | | [internlm2-1_8b-Q5_K_M.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q5_K_M.gguf) | Q5_K_M | 1.356 GB | large, very low quality loss - recommended | | [internlm2-1_8b-Q6_K.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q6_K.gguf) | Q6_K | 1.552 GB | very large, extremely low quality loss | | [internlm2-1_8b-Q8_0.gguf](https://huggingface.co/tensorblock/internlm2-1_8b-GGUF/blob/main/internlm2-1_8b-Q8_0.gguf) | Q8_0 | 2.010 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/internlm2-1_8b-GGUF --include "internlm2-1_8b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/internlm2-1_8b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF
tensorblock
2025-04-21T00:27:49Z
92
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102", "base_model:quantized:ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-16T03:02:12Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102 - GGUF This repo contains GGUF format model files for [ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102](https://huggingface.co/ewqr2130/alignment-handbook-zephyr-7b_ppo_5e7step_102). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q2_K.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_L.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_K_S.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_K_M.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q6_K.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [alignment-handbook-zephyr-7b_ppo_5e7step_102-Q8_0.gguf](https://huggingface.co/tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF/blob/main/alignment-handbook-zephyr-7b_ppo_5e7step_102-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF --include "alignment-handbook-zephyr-7b_ppo_5e7step_102-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/alignment-handbook-zephyr-7b_ppo_5e7step_102-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Swallow-13b-NVE-hf-GGUF
tensorblock
2025-04-21T00:27:44Z
97
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "ja", "base_model:tokyotech-llm/Swallow-13b-NVE-hf", "base_model:quantized:tokyotech-llm/Swallow-13b-NVE-hf", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T01:50:57Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: llama2 model_type: llama tags: - TensorBlock - GGUF base_model: tokyotech-llm/Swallow-13b-NVE-hf --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## tokyotech-llm/Swallow-13b-NVE-hf - GGUF This repo contains GGUF format model files for [tokyotech-llm/Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Swallow-13b-NVE-hf-Q2_K.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [Swallow-13b-NVE-hf-Q3_K_S.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [Swallow-13b-NVE-hf-Q3_K_M.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [Swallow-13b-NVE-hf-Q3_K_L.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [Swallow-13b-NVE-hf-Q4_0.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Swallow-13b-NVE-hf-Q4_K_S.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [Swallow-13b-NVE-hf-Q4_K_M.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [Swallow-13b-NVE-hf-Q5_0.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Swallow-13b-NVE-hf-Q5_K_S.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [Swallow-13b-NVE-hf-Q5_K_M.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [Swallow-13b-NVE-hf-Q6_K.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [Swallow-13b-NVE-hf-Q8_0.gguf](https://huggingface.co/tensorblock/Swallow-13b-NVE-hf-GGUF/blob/main/Swallow-13b-NVE-hf-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Swallow-13b-NVE-hf-GGUF --include "Swallow-13b-NVE-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Swallow-13b-NVE-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF
tensorblock
2025-04-21T00:27:43Z
101
0
null
[ "gguf", "llama2", "TensorBlock", "GGUF", "text-generation", "ko", "base_model:AIdenU/LLAMA-2-13b-ko-Y24_v2.0", "base_model:quantized:AIdenU/LLAMA-2-13b-ko-Y24_v2.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T01:28:08Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - llama2 - TensorBlock - GGUF base_model: AIdenU/LLAMA-2-13b-ko-Y24_v2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## AIdenU/LLAMA-2-13b-ko-Y24_v2.0 - GGUF This repo contains GGUF format model files for [AIdenU/LLAMA-2-13b-ko-Y24_v2.0](https://huggingface.co/AIdenU/LLAMA-2-13b-ko-Y24_v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LLAMA-2-13b-ko-Y24_v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [LLAMA-2-13b-ko-Y24_v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [LLAMA-2-13b-ko-Y24_v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [LLAMA-2-13b-ko-Y24_v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [LLAMA-2-13b-ko-Y24_v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LLAMA-2-13b-ko-Y24_v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [LLAMA-2-13b-ko-Y24_v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [LLAMA-2-13b-ko-Y24_v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LLAMA-2-13b-ko-Y24_v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [LLAMA-2-13b-ko-Y24_v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [LLAMA-2-13b-ko-Y24_v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [LLAMA-2-13b-ko-Y24_v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24_v2.0-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF --include "LLAMA-2-13b-ko-Y24_v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LLAMA-2-13b-ko-Y24_v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/WestSeverus-7B-GGUF
tensorblock
2025-04-21T00:27:42Z
91
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "senseable/WestLake-7B-v2", "FelixChao/Severus-7B", "TensorBlock", "GGUF", "base_model:FelixChao/WestSeverus-7B", "base_model:quantized:FelixChao/WestSeverus-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T00:45:54Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - senseable/WestLake-7B-v2 - FelixChao/Severus-7B - TensorBlock - GGUF base_model: FelixChao/WestSeverus-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## FelixChao/WestSeverus-7B - GGUF This repo contains GGUF format model files for [FelixChao/WestSeverus-7B](https://huggingface.co/FelixChao/WestSeverus-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [WestSeverus-7B-Q2_K.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [WestSeverus-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [WestSeverus-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [WestSeverus-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [WestSeverus-7B-Q4_0.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [WestSeverus-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [WestSeverus-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [WestSeverus-7B-Q5_0.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [WestSeverus-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [WestSeverus-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [WestSeverus-7B-Q6_K.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [WestSeverus-7B-Q8_0.gguf](https://huggingface.co/tensorblock/WestSeverus-7B-GGUF/blob/main/WestSeverus-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/WestSeverus-7B-GGUF --include "WestSeverus-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/WestSeverus-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF
tensorblock
2025-04-21T00:27:36Z
141
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:abacusai/MetaMathFewshot", "base_model:abacusai/MetaMath-bagel-34b-v0.2-c1500", "base_model:quantized:abacusai/MetaMath-bagel-34b-v0.2-c1500", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T22:42:17Z
--- license: apache-2.0 datasets: - abacusai/MetaMathFewshot tags: - TensorBlock - GGUF base_model: abacusai/MetaMath-bagel-34b-v0.2-c1500 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## abacusai/MetaMath-bagel-34b-v0.2-c1500 - GGUF This repo contains GGUF format model files for [abacusai/MetaMath-bagel-34b-v0.2-c1500](https://huggingface.co/abacusai/MetaMath-bagel-34b-v0.2-c1500). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` [INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MetaMath-bagel-34b-v0.2-c1500-Q2_K.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [MetaMath-bagel-34b-v0.2-c1500-Q3_K_S.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [MetaMath-bagel-34b-v0.2-c1500-Q3_K_M.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [MetaMath-bagel-34b-v0.2-c1500-Q3_K_L.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [MetaMath-bagel-34b-v0.2-c1500-Q4_0.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MetaMath-bagel-34b-v0.2-c1500-Q4_K_S.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [MetaMath-bagel-34b-v0.2-c1500-Q4_K_M.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [MetaMath-bagel-34b-v0.2-c1500-Q5_0.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MetaMath-bagel-34b-v0.2-c1500-Q5_K_S.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [MetaMath-bagel-34b-v0.2-c1500-Q5_K_M.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [MetaMath-bagel-34b-v0.2-c1500-Q6_K.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [MetaMath-bagel-34b-v0.2-c1500-Q8_0.gguf](https://huggingface.co/tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF/blob/main/MetaMath-bagel-34b-v0.2-c1500-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF --include "MetaMath-bagel-34b-v0.2-c1500-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TenyxChat-7B-v1-GGUF
tensorblock
2025-04-21T00:27:32Z
91
0
transformers
[ "transformers", "gguf", "tenyx-fine-tuning", "dpo", "tenyxchat", "TensorBlock", "GGUF", "en", "base_model:tenyx/TenyxChat-7B-v1", "base_model:quantized:tenyx/TenyxChat-7B-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T21:59:43Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat - TensorBlock - GGUF base_model: tenyx/TenyxChat-7B-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## tenyx/TenyxChat-7B-v1 - GGUF This repo contains GGUF format model files for [tenyx/TenyxChat-7B-v1](https://huggingface.co/tenyx/TenyxChat-7B-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s> System:{system_prompt}<|end_of_turn|> User:{prompt}<|end_of_turn|> Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TenyxChat-7B-v1-Q2_K.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [TenyxChat-7B-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [TenyxChat-7B-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [TenyxChat-7B-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [TenyxChat-7B-v1-Q4_0.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TenyxChat-7B-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [TenyxChat-7B-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [TenyxChat-7B-v1-Q5_0.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TenyxChat-7B-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [TenyxChat-7B-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [TenyxChat-7B-v1-Q6_K.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [TenyxChat-7B-v1-Q8_0.gguf](https://huggingface.co/tensorblock/TenyxChat-7B-v1-GGUF/blob/main/TenyxChat-7B-v1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TenyxChat-7B-v1-GGUF --include "TenyxChat-7B-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TenyxChat-7B-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/code-millenials-13b-GGUF
tensorblock
2025-04-21T00:27:29Z
120
0
transformers
[ "transformers", "gguf", "code", "TensorBlock", "GGUF", "base_model:budecosystem/code-millenials-13b", "base_model:quantized:budecosystem/code-millenials-13b", "license:llama2", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-15T20:50:53Z
--- license: llama2 library_name: transformers tags: - code - TensorBlock - GGUF base_model: budecosystem/code-millenials-13b model-index: - name: Code Millenials results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 0.7621 name: pass@1 verified: false --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## budecosystem/code-millenials-13b - GGUF This repo contains GGUF format model files for [budecosystem/code-millenials-13b](https://huggingface.co/budecosystem/code-millenials-13b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [code-millenials-13b-Q2_K.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q2_K.gguf) | Q2_K | 4.855 GB | smallest, significant quality loss - not recommended for most purposes | | [code-millenials-13b-Q3_K_S.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [code-millenials-13b-Q3_K_M.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [code-millenials-13b-Q3_K_L.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [code-millenials-13b-Q4_0.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [code-millenials-13b-Q4_K_S.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q4_K_S.gguf) | Q4_K_S | 7.424 GB | small, greater quality loss | | [code-millenials-13b-Q4_K_M.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [code-millenials-13b-Q5_0.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q5_0.gguf) | Q5_0 | 8.973 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [code-millenials-13b-Q5_K_S.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q5_K_S.gguf) | Q5_K_S | 8.973 GB | large, low quality loss - recommended | | [code-millenials-13b-Q5_K_M.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [code-millenials-13b-Q6_K.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q6_K.gguf) | Q6_K | 10.680 GB | very large, extremely low quality loss | | [code-millenials-13b-Q8_0.gguf](https://huggingface.co/tensorblock/code-millenials-13b-GGUF/blob/main/code-millenials-13b-Q8_0.gguf) | Q8_0 | 13.832 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/code-millenials-13b-GGUF --include "code-millenials-13b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/code-millenials-13b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/AVA-Mistral-7B-V2-GGUF
tensorblock
2025-04-21T00:27:27Z
90
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", "base_model:quantized:MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T20:08:19Z
--- base_model: MehdiHosseiniMoghadam/AVA-Mistral-7B-V2 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## MehdiHosseiniMoghadam/AVA-Mistral-7B-V2 - GGUF This repo contains GGUF format model files for [MehdiHosseiniMoghadam/AVA-Mistral-7B-V2](https://huggingface.co/MehdiHosseiniMoghadam/AVA-Mistral-7B-V2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [AVA-Mistral-7B-V2-Q2_K.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [AVA-Mistral-7B-V2-Q3_K_S.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [AVA-Mistral-7B-V2-Q3_K_M.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [AVA-Mistral-7B-V2-Q3_K_L.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [AVA-Mistral-7B-V2-Q4_0.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [AVA-Mistral-7B-V2-Q4_K_S.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [AVA-Mistral-7B-V2-Q4_K_M.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [AVA-Mistral-7B-V2-Q5_0.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [AVA-Mistral-7B-V2-Q5_K_S.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [AVA-Mistral-7B-V2-Q5_K_M.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [AVA-Mistral-7B-V2-Q6_K.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [AVA-Mistral-7B-V2-Q8_0.gguf](https://huggingface.co/tensorblock/AVA-Mistral-7B-V2-GGUF/blob/main/AVA-Mistral-7B-V2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/AVA-Mistral-7B-V2-GGUF --include "AVA-Mistral-7B-V2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/AVA-Mistral-7B-V2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF
tensorblock
2025-04-21T00:27:17Z
115
0
null
[ "gguf", "text-generation", "TensorBlock", "GGUF", "ko", "base_model:Edentns/DataVortexS-10.7B-dpo-v1.12", "base_model:quantized:Edentns/DataVortexS-10.7B-dpo-v1.12", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-15T15:43:13Z
--- tags: - text-generation - TensorBlock - GGUF license: cc-by-nc-sa-4.0 language: - ko base_model: Edentns/DataVortexS-10.7B-dpo-v1.12 pipeline_tag: text-generation --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Edentns/DataVortexS-10.7B-dpo-v1.12 - GGUF This repo contains GGUF format model files for [Edentns/DataVortexS-10.7B-dpo-v1.12](https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.12). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [DataVortexS-10.7B-dpo-v1.12-Q2_K.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [DataVortexS-10.7B-dpo-v1.12-Q3_K_S.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [DataVortexS-10.7B-dpo-v1.12-Q3_K_M.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [DataVortexS-10.7B-dpo-v1.12-Q3_K_L.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [DataVortexS-10.7B-dpo-v1.12-Q4_0.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [DataVortexS-10.7B-dpo-v1.12-Q4_K_S.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [DataVortexS-10.7B-dpo-v1.12-Q4_K_M.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [DataVortexS-10.7B-dpo-v1.12-Q5_0.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [DataVortexS-10.7B-dpo-v1.12-Q5_K_S.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [DataVortexS-10.7B-dpo-v1.12-Q5_K_M.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [DataVortexS-10.7B-dpo-v1.12-Q6_K.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [DataVortexS-10.7B-dpo-v1.12-Q8_0.gguf](https://huggingface.co/tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF/blob/main/DataVortexS-10.7B-dpo-v1.12-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF --include "DataVortexS-10.7B-dpo-v1.12-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/DataVortexS-10.7B-dpo-v1.12-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF
tensorblock
2025-04-21T00:27:15Z
112
0
null
[ "gguf", "dare", "super mario merge", "pytorch", "mixtral", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:martyn/mixtral-megamerge-dare-8x7b-v2", "base_model:quantized:martyn/mixtral-megamerge-dare-8x7b-v2", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-12-15T14:38:48Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation inference: false tags: - dare - super mario merge - pytorch - mixtral - merge - TensorBlock - GGUF base_model: martyn/mixtral-megamerge-dare-8x7b-v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## martyn/mixtral-megamerge-dare-8x7b-v2 - GGUF This repo contains GGUF format model files for [martyn/mixtral-megamerge-dare-8x7b-v2](https://huggingface.co/martyn/mixtral-megamerge-dare-8x7b-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mixtral-megamerge-dare-8x7b-v2-Q2_K.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [mixtral-megamerge-dare-8x7b-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [mixtral-megamerge-dare-8x7b-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [mixtral-megamerge-dare-8x7b-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [mixtral-megamerge-dare-8x7b-v2-Q4_0.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mixtral-megamerge-dare-8x7b-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [mixtral-megamerge-dare-8x7b-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [mixtral-megamerge-dare-8x7b-v2-Q5_0.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mixtral-megamerge-dare-8x7b-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [mixtral-megamerge-dare-8x7b-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [mixtral-megamerge-dare-8x7b-v2-Q6_K.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [mixtral-megamerge-dare-8x7b-v2-Q8_0.gguf](https://huggingface.co/tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF/blob/main/mixtral-megamerge-dare-8x7b-v2-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF --include "mixtral-megamerge-dare-8x7b-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mixtral-megamerge-dare-8x7b-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF
tensorblock
2025-04-21T00:27:11Z
123
0
null
[ "gguf", "TensorBlock", "GGUF", "zh", "en", "dataset:YeungNLP/firefly-pretrain-dataset", "base_model:zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000", "base_model:quantized:zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-15T14:05:48Z
--- license: llama2 datasets: - YeungNLP/firefly-pretrain-dataset language: - zh - en base_model: zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000 - GGUF This repo contains GGUF format model files for [zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000](https://huggingface.co/zyh3826/20231206094523-pretrain-Llama-2-13b-hf-76000). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q2_K.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q2_K.gguf) | Q2_K | 4.992 GB | smallest, significant quality loss - not recommended for most purposes | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_S.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_S.gguf) | Q3_K_S | 5.809 GB | very small, high quality loss | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_M.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_M.gguf) | Q3_K_M | 6.487 GB | very small, high quality loss | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_L.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q3_K_L.gguf) | Q3_K_L | 7.079 GB | small, substantial quality loss | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_0.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_0.gguf) | Q4_0 | 7.531 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_K_S.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_K_S.gguf) | Q4_K_S | 7.589 GB | small, greater quality loss | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_K_M.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q4_K_M.gguf) | Q4_K_M | 8.031 GB | medium, balanced quality - recommended | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_0.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_0.gguf) | Q5_0 | 9.153 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_K_S.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_K_S.gguf) | Q5_K_S | 9.153 GB | large, low quality loss - recommended | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_K_M.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q5_K_M.gguf) | Q5_K_M | 9.410 GB | large, very low quality loss - recommended | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q6_K.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q6_K.gguf) | Q6_K | 10.875 GB | very large, extremely low quality loss | | [20231206094523-pretrain-Llama-2-13b-hf-76000-Q8_0.gguf](https://huggingface.co/tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF/blob/main/20231206094523-pretrain-Llama-2-13b-hf-76000-Q8_0.gguf) | Q8_0 | 14.085 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF --include "20231206094523-pretrain-Llama-2-13b-hf-76000-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/20231206094523-pretrain-Llama-2-13b-hf-76000-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Kan-LLaMA-7B-base-GGUF
tensorblock
2025-04-21T00:27:10Z
90
0
null
[ "gguf", "TensorBlock", "GGUF", "kn", "en", "base_model:fierysurf/Kan-LLaMA-7B-base", "base_model:quantized:fierysurf/Kan-LLaMA-7B-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-15T13:38:53Z
--- license: mit language: - kn - en base_model: fierysurf/Kan-LLaMA-7B-base tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## fierysurf/Kan-LLaMA-7B-base - GGUF This repo contains GGUF format model files for [fierysurf/Kan-LLaMA-7B-base](https://huggingface.co/fierysurf/Kan-LLaMA-7B-base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Kan-LLaMA-7B-base-Q2_K.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q2_K.gguf) | Q2_K | 2.615 GB | smallest, significant quality loss - not recommended for most purposes | | [Kan-LLaMA-7B-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q3_K_S.gguf) | Q3_K_S | 3.038 GB | very small, high quality loss | | [Kan-LLaMA-7B-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q3_K_M.gguf) | Q3_K_M | 3.388 GB | very small, high quality loss | | [Kan-LLaMA-7B-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q3_K_L.gguf) | Q3_K_L | 3.687 GB | small, substantial quality loss | | [Kan-LLaMA-7B-base-Q4_0.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q4_0.gguf) | Q4_0 | 3.925 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Kan-LLaMA-7B-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q4_K_S.gguf) | Q4_K_S | 3.956 GB | small, greater quality loss | | [Kan-LLaMA-7B-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q4_K_M.gguf) | Q4_K_M | 4.180 GB | medium, balanced quality - recommended | | [Kan-LLaMA-7B-base-Q5_0.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q5_0.gguf) | Q5_0 | 4.760 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Kan-LLaMA-7B-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q5_K_S.gguf) | Q5_K_S | 4.760 GB | large, low quality loss - recommended | | [Kan-LLaMA-7B-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q5_K_M.gguf) | Q5_K_M | 4.891 GB | large, very low quality loss - recommended | | [Kan-LLaMA-7B-base-Q6_K.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q6_K.gguf) | Q6_K | 5.647 GB | very large, extremely low quality loss | | [Kan-LLaMA-7B-base-Q8_0.gguf](https://huggingface.co/tensorblock/Kan-LLaMA-7B-base-GGUF/blob/main/Kan-LLaMA-7B-base-Q8_0.gguf) | Q8_0 | 7.313 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Kan-LLaMA-7B-base-GGUF --include "Kan-LLaMA-7B-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Kan-LLaMA-7B-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/BeagleLake-7B-GGUF
tensorblock
2025-04-21T00:27:05Z
89
0
null
[ "gguf", "merge", "mergekit", "mistral", "fhai50032/RolePlayLake-7B", "mlabonne/NeuralBeagle14-7B", "TensorBlock", "GGUF", "base_model:fhai50032/BeagleLake-7B", "base_model:quantized:fhai50032/BeagleLake-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T11:17:43Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - fhai50032/RolePlayLake-7B - mlabonne/NeuralBeagle14-7B - TensorBlock - GGUF base_model: fhai50032/BeagleLake-7B model-index: - name: BeagleLake-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.39 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.92 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## fhai50032/BeagleLake-7B - GGUF This repo contains GGUF format model files for [fhai50032/BeagleLake-7B](https://huggingface.co/fhai50032/BeagleLake-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>system {system_prompt}</s> <s>user {prompt}</s> <s>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [BeagleLake-7B-Q2_K.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [BeagleLake-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [BeagleLake-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [BeagleLake-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [BeagleLake-7B-Q4_0.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [BeagleLake-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [BeagleLake-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [BeagleLake-7B-Q5_0.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [BeagleLake-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [BeagleLake-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [BeagleLake-7B-Q6_K.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [BeagleLake-7B-Q8_0.gguf](https://huggingface.co/tensorblock/BeagleLake-7B-GGUF/blob/main/BeagleLake-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/BeagleLake-7B-GGUF --include "BeagleLake-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/BeagleLake-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuralTurdusVariant1-7B-GGUF
tensorblock
2025-04-21T00:26:59Z
89
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:BarryFutureman/NeuralTurdusVariant1-7B", "base_model:quantized:BarryFutureman/NeuralTurdusVariant1-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-15T09:46:01Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - merge - TensorBlock - GGUF base_model: BarryFutureman/NeuralTurdusVariant1-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## BarryFutureman/NeuralTurdusVariant1-7B - GGUF This repo contains GGUF format model files for [BarryFutureman/NeuralTurdusVariant1-7B](https://huggingface.co/BarryFutureman/NeuralTurdusVariant1-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuralTurdusVariant1-7B-Q2_K.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuralTurdusVariant1-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuralTurdusVariant1-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuralTurdusVariant1-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuralTurdusVariant1-7B-Q4_0.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuralTurdusVariant1-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuralTurdusVariant1-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuralTurdusVariant1-7B-Q5_0.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuralTurdusVariant1-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuralTurdusVariant1-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuralTurdusVariant1-7B-Q6_K.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuralTurdusVariant1-7B-Q8_0.gguf](https://huggingface.co/tensorblock/NeuralTurdusVariant1-7B-GGUF/blob/main/NeuralTurdusVariant1-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuralTurdusVariant1-7B-GGUF --include "NeuralTurdusVariant1-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuralTurdusVariant1-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LeoScorpius-7B-Chat-DPO-GGUF
tensorblock
2025-04-21T00:26:58Z
92
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:viethq188/LeoScorpius-7B-Chat-DPO", "base_model:quantized:viethq188/LeoScorpius-7B-Chat-DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-15T09:00:13Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: viethq188/LeoScorpius-7B-Chat-DPO --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## viethq188/LeoScorpius-7B-Chat-DPO - GGUF This repo contains GGUF format model files for [viethq188/LeoScorpius-7B-Chat-DPO](https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LeoScorpius-7B-Chat-DPO-Q2_K.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [LeoScorpius-7B-Chat-DPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [LeoScorpius-7B-Chat-DPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [LeoScorpius-7B-Chat-DPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [LeoScorpius-7B-Chat-DPO-Q4_0.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LeoScorpius-7B-Chat-DPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [LeoScorpius-7B-Chat-DPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [LeoScorpius-7B-Chat-DPO-Q5_0.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LeoScorpius-7B-Chat-DPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [LeoScorpius-7B-Chat-DPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [LeoScorpius-7B-Chat-DPO-Q6_K.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [LeoScorpius-7B-Chat-DPO-Q8_0.gguf](https://huggingface.co/tensorblock/LeoScorpius-7B-Chat-DPO-GGUF/blob/main/LeoScorpius-7B-Chat-DPO-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LeoScorpius-7B-Chat-DPO-GGUF --include "LeoScorpius-7B-Chat-DPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LeoScorpius-7B-Chat-DPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Wernicke-7B-v8-GGUF
tensorblock
2025-04-21T00:26:53Z
103
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "kaitchup/Mayonnaise-4in1-022", "macadeliccc/WestLake-7B-v2-laser-truthy-dpo", "vanillaOVO/supermario_v2", "FelixChao/WestSeverus-7B-DPO-v2", "TensorBlock", "GGUF", "base_model:CultriX/Wernicke-7B-v8", "base_model:quantized:CultriX/Wernicke-7B-v8", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-15T08:15:08Z
--- tags: - merge - mergekit - lazymergekit - kaitchup/Mayonnaise-4in1-022 - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - vanillaOVO/supermario_v2 - FelixChao/WestSeverus-7B-DPO-v2 - TensorBlock - GGUF base_model: CultriX/Wernicke-7B-v8 license: apache-2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## CultriX/Wernicke-7B-v8 - GGUF This repo contains GGUF format model files for [CultriX/Wernicke-7B-v8](https://huggingface.co/CultriX/Wernicke-7B-v8). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Wernicke-7B-v8-Q2_K.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Wernicke-7B-v8-Q3_K_S.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Wernicke-7B-v8-Q3_K_M.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Wernicke-7B-v8-Q3_K_L.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Wernicke-7B-v8-Q4_0.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Wernicke-7B-v8-Q4_K_S.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Wernicke-7B-v8-Q4_K_M.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Wernicke-7B-v8-Q5_0.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Wernicke-7B-v8-Q5_K_S.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Wernicke-7B-v8-Q5_K_M.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Wernicke-7B-v8-Q6_K.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Wernicke-7B-v8-Q8_0.gguf](https://huggingface.co/tensorblock/Wernicke-7B-v8-GGUF/blob/main/Wernicke-7B-v8-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Wernicke-7B-v8-GGUF --include "Wernicke-7B-v8-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Wernicke-7B-v8-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF
tensorblock
2025-04-21T00:26:52Z
34
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:princeton-nlp/Sheared-LLaMA-2.7B-Pruned", "base_model:quantized:princeton-nlp/Sheared-LLaMA-2.7B-Pruned", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-15T08:03:31Z
--- license: llama2 tags: - TensorBlock - GGUF base_model: princeton-nlp/Sheared-LLaMA-2.7B-Pruned --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## princeton-nlp/Sheared-LLaMA-2.7B-Pruned - GGUF This repo contains GGUF format model files for [princeton-nlp/Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sheared-LLaMA-2.7B-Pruned-Q2_K.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q2_K.gguf) | Q2_K | 1.028 GB | smallest, significant quality loss - not recommended for most purposes | | [Sheared-LLaMA-2.7B-Pruned-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q3_K_S.gguf) | Q3_K_S | 1.194 GB | very small, high quality loss | | [Sheared-LLaMA-2.7B-Pruned-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q3_K_M.gguf) | Q3_K_M | 1.331 GB | very small, high quality loss | | [Sheared-LLaMA-2.7B-Pruned-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q3_K_L.gguf) | Q3_K_L | 1.448 GB | small, substantial quality loss | | [Sheared-LLaMA-2.7B-Pruned-Q4_0.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q4_0.gguf) | Q4_0 | 1.542 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sheared-LLaMA-2.7B-Pruned-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q4_K_S.gguf) | Q4_K_S | 1.554 GB | small, greater quality loss | | [Sheared-LLaMA-2.7B-Pruned-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q4_K_M.gguf) | Q4_K_M | 1.642 GB | medium, balanced quality - recommended | | [Sheared-LLaMA-2.7B-Pruned-Q5_0.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q5_0.gguf) | Q5_0 | 1.869 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sheared-LLaMA-2.7B-Pruned-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q5_K_S.gguf) | Q5_K_S | 1.869 GB | large, low quality loss - recommended | | [Sheared-LLaMA-2.7B-Pruned-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q5_K_M.gguf) | Q5_K_M | 1.921 GB | large, very low quality loss - recommended | | [Sheared-LLaMA-2.7B-Pruned-Q6_K.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q6_K.gguf) | Q6_K | 2.217 GB | very large, extremely low quality loss | | [Sheared-LLaMA-2.7B-Pruned-Q8_0.gguf](https://huggingface.co/tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF/blob/main/Sheared-LLaMA-2.7B-Pruned-Q8_0.gguf) | Q8_0 | 2.872 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF --include "Sheared-LLaMA-2.7B-Pruned-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sheared-LLaMA-2.7B-Pruned-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/zelensky-gpt2-125m-GGUF
tensorblock
2025-04-21T00:26:50Z
18
0
null
[ "gguf", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:slava-medvedev/zelensky-gpt2-125m", "base_model:quantized:slava-medvedev/zelensky-gpt2-125m", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-15T07:58:02Z
--- license: mit base_model: slava-medvedev/zelensky-gpt2-125m tags: - generated_from_trainer - TensorBlock - GGUF model-index: - name: zelensky-gpt2-125m results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## slava-medvedev/zelensky-gpt2-125m - GGUF This repo contains GGUF format model files for [slava-medvedev/zelensky-gpt2-125m](https://huggingface.co/slava-medvedev/zelensky-gpt2-125m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zelensky-gpt2-125m-Q2_K.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q2_K.gguf) | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes | | [zelensky-gpt2-125m-Q3_K_S.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q3_K_S.gguf) | Q3_K_S | 0.090 GB | very small, high quality loss | | [zelensky-gpt2-125m-Q3_K_M.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q3_K_M.gguf) | Q3_K_M | 0.098 GB | very small, high quality loss | | [zelensky-gpt2-125m-Q3_K_L.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q3_K_L.gguf) | Q3_K_L | 0.102 GB | small, substantial quality loss | | [zelensky-gpt2-125m-Q4_0.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q4_0.gguf) | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zelensky-gpt2-125m-Q4_K_S.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q4_K_S.gguf) | Q4_K_S | 0.107 GB | small, greater quality loss | | [zelensky-gpt2-125m-Q4_K_M.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q4_K_M.gguf) | Q4_K_M | 0.113 GB | medium, balanced quality - recommended | | [zelensky-gpt2-125m-Q5_0.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q5_0.gguf) | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zelensky-gpt2-125m-Q5_K_S.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q5_K_S.gguf) | Q5_K_S | 0.122 GB | large, low quality loss - recommended | | [zelensky-gpt2-125m-Q5_K_M.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q5_K_M.gguf) | Q5_K_M | 0.127 GB | large, very low quality loss - recommended | | [zelensky-gpt2-125m-Q6_K.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q6_K.gguf) | Q6_K | 0.138 GB | very large, extremely low quality loss | | [zelensky-gpt2-125m-Q8_0.gguf](https://huggingface.co/tensorblock/zelensky-gpt2-125m-GGUF/blob/main/zelensky-gpt2-125m-Q8_0.gguf) | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zelensky-gpt2-125m-GGUF --include "zelensky-gpt2-125m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zelensky-gpt2-125m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Helios-10.7B-v2-GGUF
tensorblock
2025-04-21T00:26:43Z
24
0
null
[ "gguf", "merge", "mergekit", "TensorBlock", "GGUF", "base_model:occultml/Helios-10.7B-v2", "base_model:quantized:occultml/Helios-10.7B-v2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T06:17:10Z
--- license: apache-2.0 tags: - merge - mergekit - TensorBlock - GGUF base_model: occultml/Helios-10.7B-v2 model-index: - name: Helios-10.7B-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 39.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 46.63 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 41.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.51 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 70.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=occultml/Helios-10.7B-v2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## occultml/Helios-10.7B-v2 - GGUF This repo contains GGUF format model files for [occultml/Helios-10.7B-v2](https://huggingface.co/occultml/Helios-10.7B-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Helios-10.7B-v2-Q2_K.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Helios-10.7B-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Helios-10.7B-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Helios-10.7B-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Helios-10.7B-v2-Q4_0.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Helios-10.7B-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Helios-10.7B-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Helios-10.7B-v2-Q5_0.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Helios-10.7B-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Helios-10.7B-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Helios-10.7B-v2-Q6_K.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Helios-10.7B-v2-Q8_0.gguf](https://huggingface.co/tensorblock/Helios-10.7B-v2-GGUF/blob/main/Helios-10.7B-v2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Helios-10.7B-v2-GGUF --include "Helios-10.7B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Helios-10.7B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Sina-Thor-7b-Merge-GGUF
tensorblock
2025-04-21T00:26:38Z
13
0
null
[ "gguf", "mistral", "merge", "TensorBlock", "GGUF", "text-generation", "base_model:Azazelle/Sina-Thor-7b-Merge", "base_model:quantized:Azazelle/Sina-Thor-7b-Merge", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-15T05:13:44Z
--- pipeline_tag: text-generation tags: - mistral - merge - TensorBlock - GGUF license: cc-by-4.0 base_model: Azazelle/Sina-Thor-7b-Merge --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Azazelle/Sina-Thor-7b-Merge - GGUF This repo contains GGUF format model files for [Azazelle/Sina-Thor-7b-Merge](https://huggingface.co/Azazelle/Sina-Thor-7b-Merge). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sina-Thor-7b-Merge-Q2_K.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Sina-Thor-7b-Merge-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Sina-Thor-7b-Merge-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Sina-Thor-7b-Merge-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Sina-Thor-7b-Merge-Q4_0.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sina-Thor-7b-Merge-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Sina-Thor-7b-Merge-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Sina-Thor-7b-Merge-Q5_0.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sina-Thor-7b-Merge-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Sina-Thor-7b-Merge-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Sina-Thor-7b-Merge-Q6_K.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Sina-Thor-7b-Merge-Q8_0.gguf](https://huggingface.co/tensorblock/Sina-Thor-7b-Merge-GGUF/blob/main/Sina-Thor-7b-Merge-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sina-Thor-7b-Merge-GGUF --include "Sina-Thor-7b-Merge-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sina-Thor-7b-Merge-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/typhoon-7b-instruct-02-19-2024-GGUF
tensorblock
2025-04-21T00:26:36Z
94
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:scb10x/typhoon-7b-instruct-02-19-2024", "base_model:quantized:scb10x/typhoon-7b-instruct-02-19-2024", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-15T04:59:14Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: scb10x/typhoon-7b-instruct-02-19-2024 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## scb10x/typhoon-7b-instruct-02-19-2024 - GGUF This repo contains GGUF format model files for [scb10x/typhoon-7b-instruct-02-19-2024](https://huggingface.co/scb10x/typhoon-7b-instruct-02-19-2024). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [typhoon-7b-instruct-02-19-2024-Q2_K.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q2_K.gguf) | Q2_K | 2.734 GB | smallest, significant quality loss - not recommended for most purposes | | [typhoon-7b-instruct-02-19-2024-Q3_K_S.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q3_K_S.gguf) | Q3_K_S | 3.181 GB | very small, high quality loss | | [typhoon-7b-instruct-02-19-2024-Q3_K_M.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q3_K_M.gguf) | Q3_K_M | 3.536 GB | very small, high quality loss | | [typhoon-7b-instruct-02-19-2024-Q3_K_L.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q3_K_L.gguf) | Q3_K_L | 3.839 GB | small, substantial quality loss | | [typhoon-7b-instruct-02-19-2024-Q4_0.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q4_0.gguf) | Q4_0 | 4.127 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [typhoon-7b-instruct-02-19-2024-Q4_K_S.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q4_K_S.gguf) | Q4_K_S | 4.159 GB | small, greater quality loss | | [typhoon-7b-instruct-02-19-2024-Q4_K_M.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q4_K_M.gguf) | Q4_K_M | 4.387 GB | medium, balanced quality - recommended | | [typhoon-7b-instruct-02-19-2024-Q5_0.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q5_0.gguf) | Q5_0 | 5.018 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [typhoon-7b-instruct-02-19-2024-Q5_K_S.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q5_K_S.gguf) | Q5_K_S | 5.018 GB | large, low quality loss - recommended | | [typhoon-7b-instruct-02-19-2024-Q5_K_M.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q5_K_M.gguf) | Q5_K_M | 5.151 GB | large, very low quality loss - recommended | | [typhoon-7b-instruct-02-19-2024-Q6_K.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q6_K.gguf) | Q6_K | 5.964 GB | very large, extremely low quality loss | | [typhoon-7b-instruct-02-19-2024-Q8_0.gguf](https://huggingface.co/tensorblock/typhoon-7b-instruct-02-19-2024-GGUF/blob/main/typhoon-7b-instruct-02-19-2024-Q8_0.gguf) | Q8_0 | 7.724 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/typhoon-7b-instruct-02-19-2024-GGUF --include "typhoon-7b-instruct-02-19-2024-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/typhoon-7b-instruct-02-19-2024-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Qwen2-VL-7B-Instruct-GGUF
tensorblock
2025-04-21T00:26:32Z
167
0
transformers
[ "transformers", "gguf", "multimodal", "TensorBlock", "GGUF", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2024-12-15T03:59:42Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - TensorBlock - GGUF library_name: transformers base_model: Qwen/Qwen2-VL-7B-Instruct --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Qwen/Qwen2-VL-7B-Instruct - GGUF This repo contains GGUF format model files for [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4329](https://github.com/ggerganov/llama.cpp/commit/89d604f2c87af9db657d8a27a1528bc4b7579c29). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2-VL-7B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2-VL-7B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [Qwen2-VL-7B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [Qwen2-VL-7B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [Qwen2-VL-7B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2-VL-7B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [Qwen2-VL-7B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [Qwen2-VL-7B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2-VL-7B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [Qwen2-VL-7B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [Qwen2-VL-7B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [Qwen2-VL-7B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-Instruct-GGUF/blob/main/Qwen2-VL-7B-Instruct-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen2-VL-7B-Instruct-GGUF --include "Qwen2-VL-7B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen2-VL-7B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/practice-kullmmistral-7b-GGUF
tensorblock
2025-04-21T00:26:31Z
14
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:Loyola/practice-kullmmistral-7b", "base_model:quantized:Loyola/practice-kullmmistral-7b", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T03:30:16Z
--- base_model: Loyola/practice-kullmmistral-7b tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Loyola/practice-kullmmistral-7b - GGUF This repo contains GGUF format model files for [Loyola/practice-kullmmistral-7b](https://huggingface.co/Loyola/practice-kullmmistral-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [practice-kullmmistral-7b-Q2_K.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [practice-kullmmistral-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [practice-kullmmistral-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [practice-kullmmistral-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [practice-kullmmistral-7b-Q4_0.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [practice-kullmmistral-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [practice-kullmmistral-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [practice-kullmmistral-7b-Q5_0.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [practice-kullmmistral-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [practice-kullmmistral-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [practice-kullmmistral-7b-Q6_K.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [practice-kullmmistral-7b-Q8_0.gguf](https://huggingface.co/tensorblock/practice-kullmmistral-7b-GGUF/blob/main/practice-kullmmistral-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/practice-kullmmistral-7b-GGUF --include "practice-kullmmistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/practice-kullmmistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Qwen2-VL-7B-GGUF
tensorblock
2025-04-21T00:26:28Z
165
1
transformers
[ "transformers", "gguf", "multimodal", "TensorBlock", "GGUF", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-7B", "base_model:quantized:Qwen/Qwen2-VL-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2024-12-15T03:25:42Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - TensorBlock - GGUF library_name: transformers base_model: Qwen/Qwen2-VL-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Qwen/Qwen2-VL-7B - GGUF This repo contains GGUF format model files for [Qwen/Qwen2-VL-7B](https://huggingface.co/Qwen/Qwen2-VL-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4329](https://github.com/ggerganov/llama.cpp/commit/89d604f2c87af9db657d8a27a1528bc4b7579c29). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2-VL-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2-VL-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [Qwen2-VL-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [Qwen2-VL-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [Qwen2-VL-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2-VL-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [Qwen2-VL-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [Qwen2-VL-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2-VL-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [Qwen2-VL-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [Qwen2-VL-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [Qwen2-VL-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-7B-GGUF/blob/main/Qwen2-VL-7B-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen2-VL-7B-GGUF --include "Qwen2-VL-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen2-VL-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Orca-SOLAR-4x10.7b-GGUF
tensorblock
2025-04-21T00:26:26Z
100
0
transformers
[ "transformers", "gguf", "code", "TensorBlock", "GGUF", "en", "dataset:Intel/orca_dpo_pairs", "base_model:macadeliccc/Orca-SOLAR-4x10.7b", "base_model:quantized:macadeliccc/Orca-SOLAR-4x10.7b", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-15T01:41:35Z
--- language: - en license: apache-2.0 library_name: transformers tags: - code - TensorBlock - GGUF datasets: - Intel/orca_dpo_pairs base_model: macadeliccc/Orca-SOLAR-4x10.7b model-index: - name: Orca-SOLAR-4x10.7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 67.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.54 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## macadeliccc/Orca-SOLAR-4x10.7b - GGUF This repo contains GGUF format model files for [macadeliccc/Orca-SOLAR-4x10.7b](https://huggingface.co/macadeliccc/Orca-SOLAR-4x10.7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Orca-SOLAR-4x10.7b-Q2_K.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q2_K.gguf) | Q2_K | 13.189 GB | smallest, significant quality loss - not recommended for most purposes | | [Orca-SOLAR-4x10.7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q3_K_S.gguf) | Q3_K_S | 15.568 GB | very small, high quality loss | | [Orca-SOLAR-4x10.7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q3_K_M.gguf) | Q3_K_M | 17.288 GB | very small, high quality loss | | [Orca-SOLAR-4x10.7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q3_K_L.gguf) | Q3_K_L | 18.734 GB | small, substantial quality loss | | [Orca-SOLAR-4x10.7b-Q4_0.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q4_0.gguf) | Q4_0 | 20.345 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Orca-SOLAR-4x10.7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q4_K_S.gguf) | Q4_K_S | 20.523 GB | small, greater quality loss | | [Orca-SOLAR-4x10.7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q4_K_M.gguf) | Q4_K_M | 21.824 GB | medium, balanced quality - recommended | | [Orca-SOLAR-4x10.7b-Q5_0.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q5_0.gguf) | Q5_0 | 24.840 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Orca-SOLAR-4x10.7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q5_K_S.gguf) | Q5_K_S | 24.840 GB | large, low quality loss - recommended | | [Orca-SOLAR-4x10.7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q5_K_M.gguf) | Q5_K_M | 25.603 GB | large, very low quality loss - recommended | | [Orca-SOLAR-4x10.7b-Q6_K.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q6_K.gguf) | Q6_K | 29.617 GB | very large, extremely low quality loss | | [Orca-SOLAR-4x10.7b-Q8_0.gguf](https://huggingface.co/tensorblock/Orca-SOLAR-4x10.7b-GGUF/blob/main/Orca-SOLAR-4x10.7b-Q8_0.gguf) | Q8_0 | 38.360 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Orca-SOLAR-4x10.7b-GGUF --include "Orca-SOLAR-4x10.7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Orca-SOLAR-4x10.7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Qwen2-VL-2B-Instruct-GGUF
tensorblock
2025-04-21T00:26:24Z
51
0
transformers
[ "transformers", "gguf", "multimodal", "TensorBlock", "GGUF", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2024-12-15T01:24:39Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - TensorBlock - GGUF library_name: transformers base_model: Qwen/Qwen2-VL-2B-Instruct --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Qwen/Qwen2-VL-2B-Instruct - GGUF This repo contains GGUF format model files for [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4329](https://github.com/ggerganov/llama.cpp/commit/89d604f2c87af9db657d8a27a1528bc4b7579c29). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2-VL-2B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q2_K.gguf) | Q2_K | 0.676 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2-VL-2B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.761 GB | very small, high quality loss | | [Qwen2-VL-2B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.824 GB | very small, high quality loss | | [Qwen2-VL-2B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.880 GB | small, substantial quality loss | | [Qwen2-VL-2B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q4_0.gguf) | Q4_0 | 0.935 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2-VL-2B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.940 GB | small, greater quality loss | | [Qwen2-VL-2B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.986 GB | medium, balanced quality - recommended | | [Qwen2-VL-2B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q5_0.gguf) | Q5_0 | 1.099 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2-VL-2B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q5_K_S.gguf) | Q5_K_S | 1.099 GB | large, low quality loss - recommended | | [Qwen2-VL-2B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q5_K_M.gguf) | Q5_K_M | 1.125 GB | large, very low quality loss - recommended | | [Qwen2-VL-2B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q6_K.gguf) | Q6_K | 1.273 GB | very large, extremely low quality loss | | [Qwen2-VL-2B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-Instruct-GGUF/blob/main/Qwen2-VL-2B-Instruct-Q8_0.gguf) | Q8_0 | 1.647 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen2-VL-2B-Instruct-GGUF --include "Qwen2-VL-2B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen2-VL-2B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Qwen2-VL-2B-GGUF
tensorblock
2025-04-21T00:26:21Z
25
0
transformers
[ "transformers", "gguf", "multimodal", "TensorBlock", "GGUF", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-2B", "base_model:quantized:Qwen/Qwen2-VL-2B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2024-12-15T01:17:12Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - TensorBlock - GGUF library_name: transformers base_model: Qwen/Qwen2-VL-2B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Qwen/Qwen2-VL-2B - GGUF This repo contains GGUF format model files for [Qwen/Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4329](https://github.com/ggerganov/llama.cpp/commit/89d604f2c87af9db657d8a27a1528bc4b7579c29). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2-VL-2B-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q2_K.gguf) | Q2_K | 0.676 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2-VL-2B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_S.gguf) | Q3_K_S | 0.761 GB | very small, high quality loss | | [Qwen2-VL-2B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_M.gguf) | Q3_K_M | 0.824 GB | very small, high quality loss | | [Qwen2-VL-2B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_L.gguf) | Q3_K_L | 0.880 GB | small, substantial quality loss | | [Qwen2-VL-2B-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_0.gguf) | Q4_0 | 0.935 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2-VL-2B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_K_S.gguf) | Q4_K_S | 0.940 GB | small, greater quality loss | | [Qwen2-VL-2B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_K_M.gguf) | Q4_K_M | 0.986 GB | medium, balanced quality - recommended | | [Qwen2-VL-2B-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_0.gguf) | Q5_0 | 1.099 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2-VL-2B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_K_S.gguf) | Q5_K_S | 1.099 GB | large, low quality loss - recommended | | [Qwen2-VL-2B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_K_M.gguf) | Q5_K_M | 1.125 GB | large, very low quality loss - recommended | | [Qwen2-VL-2B-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q6_K.gguf) | Q6_K | 1.273 GB | very large, extremely low quality loss | | [Qwen2-VL-2B-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q8_0.gguf) | Q8_0 | 1.647 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen2-VL-2B-GGUF --include "Qwen2-VL-2B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen2-VL-2B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CodeLlama-70b-Python-hf-GGUF
tensorblock
2025-04-21T00:26:18Z
155
0
null
[ "gguf", "llama-2", "TensorBlock", "GGUF", "text-generation", "code", "base_model:codellama/CodeLlama-70b-Python-hf", "base_model:quantized:codellama/CodeLlama-70b-Python-hf", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T22:48:55Z
--- language: - code pipeline_tag: text-generation tags: - llama-2 - TensorBlock - GGUF license: llama2 base_model: codellama/CodeLlama-70b-Python-hf --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## codellama/CodeLlama-70b-Python-hf - GGUF This repo contains GGUF format model files for [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CodeLlama-70b-Python-hf-Q2_K.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q2_K.gguf) | Q2_K | 25.463 GB | smallest, significant quality loss - not recommended for most purposes | | [CodeLlama-70b-Python-hf-Q3_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q3_K_S.gguf) | Q3_K_S | 29.919 GB | very small, high quality loss | | [CodeLlama-70b-Python-hf-Q3_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q3_K_M.gguf) | Q3_K_M | 33.275 GB | very small, high quality loss | | [CodeLlama-70b-Python-hf-Q3_K_L.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q3_K_L.gguf) | Q3_K_L | 36.148 GB | small, substantial quality loss | | [CodeLlama-70b-Python-hf-Q4_0.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q4_0.gguf) | Q4_0 | 38.872 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CodeLlama-70b-Python-hf-Q4_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q4_K_S.gguf) | Q4_K_S | 39.250 GB | small, greater quality loss | | [CodeLlama-70b-Python-hf-Q4_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q4_K_M.gguf) | Q4_K_M | 41.423 GB | medium, balanced quality - recommended | | [CodeLlama-70b-Python-hf-Q5_0.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q5_0.gguf) | Q5_0 | 47.462 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CodeLlama-70b-Python-hf-Q5_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q5_K_S.gguf) | Q5_K_S | 47.462 GB | large, low quality loss - recommended | | [CodeLlama-70b-Python-hf-Q5_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q5_K_M.gguf) | Q5_K_M | 48.754 GB | large, very low quality loss - recommended | | [CodeLlama-70b-Python-hf-Q8_0](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q8_0) | Q6_K | 73.293 GB | very large, extremely low quality loss | | [CodeLlama-70b-Python-hf-Q6_K](https://huggingface.co/tensorblock/CodeLlama-70b-Python-hf-GGUF/blob/main/CodeLlama-70b-Python-hf-Q6_K) | Q8_0 | 56.588 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CodeLlama-70b-Python-hf-GGUF --include "CodeLlama-70b-Python-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CodeLlama-70b-Python-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Llama-3-70B-GGUF
tensorblock
2025-04-21T00:26:15Z
151
0
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "TensorBlock", "GGUF", "text-generation", "en", "base_model:v2ray/Llama-3-70B", "base_model:quantized:v2ray/Llama-3-70B", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T22:46:25Z
--- language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - TensorBlock - GGUF license: other license_name: llama3 license_link: LICENSE extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\ \ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\ \ use, reproduction, distribution and modification of the Llama Materials set forth\ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\ \ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf), of\ \ the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\ \ 3\" means the foundational large language models and software and algorithms,\ \ including machine-learning model code, trained model weights, inference-enabling\ \ code, training-enabling code, fine-tuning enabling code and other elements of\ \ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\ \"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\ \ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\ we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\ \ an entity, your principal place of business is in the EEA or Switzerland) and\ \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\ \ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\ \ a non-exclusive, worldwide, non-transferable and royalty-free limited license\ \ under Meta’s intellectual property or other rights owned by Meta embodied in the\ \ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\ \ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\ \ If you distribute or make available the Llama Materials (or any derivative works\ \ thereof), or a product or service that uses any of them, including another AI\ \ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\ \ and (B) prominently display β€œBuilt with Meta Llama 3” on a related website, user\ \ interface, blogpost, about page, or product documentation. If you use the Llama\ \ Materials to create, train, fine tune, or otherwise improve an AI model, which\ \ is distributed or made available, you shall also include β€œLlama 3” at the beginning\ \ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\ \ works thereof, from a Licensee as part of an integrated end user product, then\ \ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\ \ copies of the Llama Materials that you distribute the following attribution notice\ \ within a β€œNotice” text file distributed as a part of such copies: β€œMeta Llama\ \ 3 is licensed under the Meta Llama 3 Community License, Copyright Β© Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\nv. You will not use the Llama Materials or any output or\ \ results of the Llama Materials to improve any other large language model (excluding\ \ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\ \ on the Meta Llama 3 version release date, the monthly active users of the products\ \ or services made available by or for Licensee, or Licensee’s affiliates, is greater\ \ than 700 million monthly active users in the preceding calendar month, you must\ \ request a license from Meta, which Meta may grant to you in its sole discretion,\ \ and you are not authorized to exercise any of the rights under this Agreement\ \ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\ \ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\ \ AND RESULTS THEREFROM ARE PROVIDED ON AN β€œAS IS” BASIS, WITHOUT WARRANTIES OF\ \ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\ \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\ \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\ \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\ \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\ \ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\ \ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\ \ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\ \ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\ 5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\ \ and in connection with the Llama Materials, neither Meta nor Licensee may use\ \ any name or mark owned by or associated with the other or any of its affiliates,\ \ except as required for reasonable and customary use in describing and redistributing\ \ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\ \ a license to use β€œLlama 3” (the β€œMark”) solely as required to comply with the\ \ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\ \ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\ \ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\ \ Meta, with respect to any derivative works and modifications of the Llama Materials\ \ that are made by you, as between you and Meta, you are and will be the owner of\ \ such derivative works and modifications.\nc. If you institute litigation or other\ \ proceedings against Meta or any entity (including a cross-claim or counterclaim\ \ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\ \ or any portion of any of the foregoing, constitutes infringement of intellectual\ \ property or other rights owned or licensable by you, then any licenses granted\ \ to you under this Agreement shall terminate as of the date such litigation or\ \ claim is filed or instituted. You will indemnify and hold harmless Meta from and\ \ against any claim by any third party arising out of or related to your use or\ \ distribution of the Llama Materials.\n6. Term and Termination. The term of this\ \ Agreement will commence upon your acceptance of this Agreement or access to the\ \ Llama Materials and will continue in full force and effect until terminated in\ \ accordance with the terms and conditions herein. Meta may terminate this Agreement\ \ if you are in breach of any term or condition of this Agreement. Upon termination\ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\ \ and Jurisdiction. This Agreement will be governed and construed under the laws\ \ of the State of California without regard to choice of law principles, and the\ \ UN Convention on Contracts for the International Sale of Goods does not apply\ \ to this Agreement. The courts of California shall have exclusive jurisdiction\ \ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\ \ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\ \ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\ \ Use Policy (β€œPolicy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\ #### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\ \ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 4.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\ \ or other sensitive personal or private information about individuals without rights\ \ and consents required by applicable laws\n 6. Engage in or facilitate any action\ \ or generate any content that infringes, misappropriates, or otherwise violates\ \ any third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 7. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\ \ facilitate, or assist in the planning or development of activities that present\ \ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\ \ espionage, use for materials or activities that are subject to the International\ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\ \ content intended to incite or promote violence, abuse, or any infliction of bodily\ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\ \ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\ \ or furthering defamatory content, including the creation of defamatory statements,\ \ images, or other content\n 3. Generating, promoting, or further distributing\ \ spam\n 4. Impersonating another individual without consent, authorization,\ \ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\ \ human-generated\n 6. Generating or facilitating false online engagement, including\ \ fake reviews and other means of fake online engagement\n4. Fail to appropriately\ \ disclose to end users any known dangers of your AI system\nPlease report any violation\ \ of this Policy, software β€œbug,” or other problems that could lead to a violation\ \ of this Policy through one of the following means:\n * Reporting issues with\ \ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit base_model: v2ray/Llama-3-70B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## v2ray/Llama-3-70B - GGUF This repo contains GGUF format model files for [v2ray/Llama-3-70B](https://huggingface.co/v2ray/Llama-3-70B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-70B-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q2_K.gguf) | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-70B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q3_K_S.gguf) | Q3_K_S | 30.912 GB | very small, high quality loss | | [Llama-3-70B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q3_K_M.gguf) | Q3_K_M | 34.267 GB | very small, high quality loss | | [Llama-3-70B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q3_K_L.gguf) | Q3_K_L | 37.141 GB | small, substantial quality loss | | [Llama-3-70B-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q4_0.gguf) | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-70B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q4_K_S.gguf) | Q4_K_S | 40.347 GB | small, greater quality loss | | [Llama-3-70B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q4_K_M.gguf) | Q4_K_M | 42.520 GB | medium, balanced quality - recommended | | [Llama-3-70B-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q5_0.gguf) | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-70B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q5_K_S.gguf) | Q5_K_S | 48.657 GB | large, low quality loss - recommended | | [Llama-3-70B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q5_K_M.gguf) | Q5_K_M | 49.950 GB | large, very low quality loss - recommended | | [Llama-3-70B-Q6_K](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q6_K) | Q6_K | 57.888 GB | very large, extremely low quality loss | | [Llama-3-70B-Q8_0](https://huggingface.co/tensorblock/Llama-3-70B-GGUF/blob/main/Llama-3-70B-Q8_0) | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3-70B-GGUF --include "Llama-3-70B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3-70B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/flux-7b-v0.1-GGUF
tensorblock
2025-04-21T00:26:11Z
116
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:chanwit/flux-7b-v0.1", "base_model:quantized:chanwit/flux-7b-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T21:32:08Z
--- license: apache-2.0 language: - en base_model: chanwit/flux-7b-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## chanwit/flux-7b-v0.1 - GGUF This repo contains GGUF format model files for [chanwit/flux-7b-v0.1](https://huggingface.co/chanwit/flux-7b-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [flux-7b-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [flux-7b-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [flux-7b-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [flux-7b-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [flux-7b-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [flux-7b-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [flux-7b-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [flux-7b-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [flux-7b-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [flux-7b-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [flux-7b-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [flux-7b-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/flux-7b-v0.1-GGUF/blob/main/flux-7b-v0.1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/flux-7b-v0.1-GGUF --include "flux-7b-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/flux-7b-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/DIOD-Mistral-0.2-GGUF
tensorblock
2025-04-21T00:26:02Z
89
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:asapse/DIOD-Mistral-0.2", "base_model:quantized:asapse/DIOD-Mistral-0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T20:48:48Z
--- license: apache-2.0 language: - en base_model: asapse/DIOD-Mistral-0.2 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## asapse/DIOD-Mistral-0.2 - GGUF This repo contains GGUF format model files for [asapse/DIOD-Mistral-0.2](https://huggingface.co/asapse/DIOD-Mistral-0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [DIOD-Mistral-0.2-Q2_K.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [DIOD-Mistral-0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [DIOD-Mistral-0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [DIOD-Mistral-0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [DIOD-Mistral-0.2-Q4_0.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [DIOD-Mistral-0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [DIOD-Mistral-0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [DIOD-Mistral-0.2-Q5_0.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [DIOD-Mistral-0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [DIOD-Mistral-0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [DIOD-Mistral-0.2-Q6_K.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [DIOD-Mistral-0.2-Q8_0.gguf](https://huggingface.co/tensorblock/DIOD-Mistral-0.2-GGUF/blob/main/DIOD-Mistral-0.2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/DIOD-Mistral-0.2-GGUF --include "DIOD-Mistral-0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/DIOD-Mistral-0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/llama-39m-GGUF
tensorblock
2025-04-21T00:25:58Z
15
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:Cheng98/llama-39m", "base_model:quantized:Cheng98/llama-39m", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-14T20:13:04Z
--- license: llama2 tags: - TensorBlock - GGUF base_model: Cheng98/llama-39m --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Cheng98/llama-39m - GGUF This repo contains GGUF format model files for [Cheng98/llama-39m](https://huggingface.co/Cheng98/llama-39m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-39m-Q2_K.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q2_K.gguf) | Q2_K | 0.023 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-39m-Q3_K_S.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q3_K_S.gguf) | Q3_K_S | 0.025 GB | very small, high quality loss | | [llama-39m-Q3_K_M.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q3_K_M.gguf) | Q3_K_M | 0.025 GB | very small, high quality loss | | [llama-39m-Q3_K_L.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q3_K_L.gguf) | Q3_K_L | 0.026 GB | small, substantial quality loss | | [llama-39m-Q4_0.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q4_0.gguf) | Q4_0 | 0.028 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-39m-Q4_K_S.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q4_K_S.gguf) | Q4_K_S | 0.028 GB | small, greater quality loss | | [llama-39m-Q4_K_M.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q4_K_M.gguf) | Q4_K_M | 0.028 GB | medium, balanced quality - recommended | | [llama-39m-Q5_0.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q5_0.gguf) | Q5_0 | 0.031 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-39m-Q5_K_S.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q5_K_S.gguf) | Q5_K_S | 0.031 GB | large, low quality loss - recommended | | [llama-39m-Q5_K_M.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q5_K_M.gguf) | Q5_K_M | 0.031 GB | large, very low quality loss - recommended | | [llama-39m-Q6_K.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q6_K.gguf) | Q6_K | 0.034 GB | very large, extremely low quality loss | | [llama-39m-Q8_0.gguf](https://huggingface.co/tensorblock/llama-39m-GGUF/blob/main/llama-39m-Q8_0.gguf) | Q8_0 | 0.044 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/llama-39m-GGUF --include "llama-39m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/llama-39m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF
tensorblock
2025-04-21T00:25:55Z
111
0
null
[ "gguf", "llama2", "TensorBlock", "GGUF", "text-generation", "ko", "base_model:AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0", "base_model:quantized:AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T19:04:51Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - llama2 - TensorBlock - GGUF base_model: AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0 - GGUF This repo contains GGUF format model files for [AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0](https://huggingface.co/AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [LLAMA-2-13b-ko-Y24-DPO_v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF/blob/main/LLAMA-2-13b-ko-Y24-DPO_v2.0-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF --include "LLAMA-2-13b-ko-Y24-DPO_v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LLAMA-2-13b-ko-Y24-DPO_v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Monarch-7B-GGUF
tensorblock
2025-04-21T00:25:53Z
92
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "TensorBlock", "GGUF", "base_model:mlabonne/Monarch-7B", "base_model:quantized:mlabonne/Monarch-7B", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-14T18:15:24Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - TensorBlock - GGUF base_model: mlabonne/Monarch-7B model-index: - name: Monarch-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.35 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mlabonne/Monarch-7B - GGUF This repo contains GGUF format model files for [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Monarch-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Monarch-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Monarch-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Monarch-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Monarch-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Monarch-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Monarch-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Monarch-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Monarch-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Monarch-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Monarch-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Monarch-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Monarch-7B-GGUF/blob/main/Monarch-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Monarch-7B-GGUF --include "Monarch-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Monarch-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuDist-Ro-7B-GGUF
tensorblock
2025-04-21T00:25:51Z
97
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "argilla/distilabeled-Marcoro14-7B-slerp", "mlabonne/NeuralMarcoro14-7B", "TensorBlock", "GGUF", "dataset:mlabonne/chatml_dpo_pairs", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:flemmingmiguel/NeuDist-Ro-7B", "base_model:quantized:flemmingmiguel/NeuDist-Ro-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T18:06:45Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/distilabeled-Marcoro14-7B-slerp - mlabonne/NeuralMarcoro14-7B - TensorBlock - GGUF datasets: - mlabonne/chatml_dpo_pairs - argilla/distilabel-intel-orca-dpo-pairs base_model: flemmingmiguel/NeuDist-Ro-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## flemmingmiguel/NeuDist-Ro-7B - GGUF This repo contains GGUF format model files for [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuDist-Ro-7B-Q2_K.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuDist-Ro-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuDist-Ro-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuDist-Ro-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuDist-Ro-7B-Q4_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuDist-Ro-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuDist-Ro-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuDist-Ro-7B-Q5_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuDist-Ro-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuDist-Ro-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuDist-Ro-7B-Q6_K.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuDist-Ro-7B-Q8_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuDist-Ro-7B-GGUF --include "NeuDist-Ro-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuDist-Ro-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/starcoder2-chat-GGUF
tensorblock
2025-04-21T00:25:49Z
133
0
transformers
[ "transformers", "gguf", "code", "starcoder", "bigcode", "sft", "7b", "TensorBlock", "GGUF", "text-generation", "en", "base_model:abideen/starcoder2-chat", "base_model:quantized:abideen/starcoder2-chat", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T17:07:42Z
--- license: cc-by-nc-4.0 base_model: abideen/starcoder2-chat language: - en library_name: transformers pipeline_tag: text-generation tags: - code - starcoder - bigcode - sft - 7b - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## abideen/starcoder2-chat - GGUF This repo contains GGUF format model files for [abideen/starcoder2-chat](https://huggingface.co/abideen/starcoder2-chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [starcoder2-chat-Q2_K.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q2_K.gguf) | Q2_K | 2.836 GB | smallest, significant quality loss - not recommended for most purposes | | [starcoder2-chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q3_K_S.gguf) | Q3_K_S | 3.179 GB | very small, high quality loss | | [starcoder2-chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q3_K_M.gguf) | Q3_K_M | 3.662 GB | very small, high quality loss | | [starcoder2-chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q3_K_L.gguf) | Q3_K_L | 4.074 GB | small, substantial quality loss | | [starcoder2-chat-Q4_0.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q4_0.gguf) | Q4_0 | 4.101 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [starcoder2-chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q4_K_S.gguf) | Q4_K_S | 4.145 GB | small, greater quality loss | | [starcoder2-chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q4_K_M.gguf) | Q4_K_M | 4.461 GB | medium, balanced quality - recommended | | [starcoder2-chat-Q5_0.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q5_0.gguf) | Q5_0 | 4.969 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [starcoder2-chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q5_K_S.gguf) | Q5_K_S | 4.969 GB | large, low quality loss - recommended | | [starcoder2-chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q5_K_M.gguf) | Q5_K_M | 5.155 GB | large, very low quality loss - recommended | | [starcoder2-chat-Q6_K.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q6_K.gguf) | Q6_K | 5.892 GB | very large, extremely low quality loss | | [starcoder2-chat-Q8_0.gguf](https://huggingface.co/tensorblock/starcoder2-chat-GGUF/blob/main/starcoder2-chat-Q8_0.gguf) | Q8_0 | 7.629 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/starcoder2-chat-GGUF --include "starcoder2-chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/starcoder2-chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/prometheus-8x7b-v2.0-GGUF
tensorblock
2025-04-21T00:25:46Z
112
0
transformers
[ "transformers", "gguf", "text2text-generation", "TensorBlock", "GGUF", "en", "dataset:prometheus-eval/Feedback-Collection", "dataset:prometheus-eval/Preference-Collection", "base_model:prometheus-eval/prometheus-8x7b-v2.0", "base_model:quantized:prometheus-eval/prometheus-8x7b-v2.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text2text-generation
2024-12-14T16:44:31Z
--- tags: - text2text-generation - TensorBlock - GGUF datasets: - prometheus-eval/Feedback-Collection - prometheus-eval/Preference-Collection license: apache-2.0 language: - en pipeline_tag: text2text-generation library_name: transformers metrics: - pearsonr - spearmanr - kendall-tau - accuracy base_model: prometheus-eval/prometheus-8x7b-v2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## prometheus-eval/prometheus-8x7b-v2.0 - GGUF This repo contains GGUF format model files for [prometheus-eval/prometheus-8x7b-v2.0](https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [prometheus-8x7b-v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [prometheus-8x7b-v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [prometheus-8x7b-v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [prometheus-8x7b-v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [prometheus-8x7b-v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [prometheus-8x7b-v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [prometheus-8x7b-v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [prometheus-8x7b-v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [prometheus-8x7b-v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [prometheus-8x7b-v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [prometheus-8x7b-v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [prometheus-8x7b-v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/prometheus-8x7b-v2.0-GGUF/blob/main/prometheus-8x7b-v2.0-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/prometheus-8x7b-v2.0-GGUF --include "prometheus-8x7b-v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/prometheus-8x7b-v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ChatMusician-Base-GGUF
tensorblock
2025-04-21T00:25:38Z
82
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:m-a-p/ChatMusician-Base", "base_model:quantized:m-a-p/ChatMusician-Base", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T15:11:51Z
--- license: mit language: - en metrics: - accuracy pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: m-a-p/ChatMusician-Base --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## m-a-p/ChatMusician-Base - GGUF This repo contains GGUF format model files for [m-a-p/ChatMusician-Base](https://huggingface.co/m-a-p/ChatMusician-Base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ChatMusician-Base-Q2_K.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [ChatMusician-Base-Q3_K_S.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [ChatMusician-Base-Q3_K_M.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [ChatMusician-Base-Q3_K_L.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [ChatMusician-Base-Q4_0.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ChatMusician-Base-Q4_K_S.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [ChatMusician-Base-Q4_K_M.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [ChatMusician-Base-Q5_0.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ChatMusician-Base-Q5_K_S.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [ChatMusician-Base-Q5_K_M.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [ChatMusician-Base-Q6_K.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [ChatMusician-Base-Q8_0.gguf](https://huggingface.co/tensorblock/ChatMusician-Base-GGUF/blob/main/ChatMusician-Base-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ChatMusician-Base-GGUF --include "ChatMusician-Base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ChatMusician-Base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/code_gpt2_mini_model-GGUF
tensorblock
2025-04-21T00:25:36Z
103
0
null
[ "gguf", "gpt2", "dpo", "TensorBlock", "GGUF", "text-generation", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:mlabonne/CodeLlama-2-20k", "dataset:Intel/orca_dpo_pairs", "base_model:Sharathhebbar24/code_gpt2_mini_model", "base_model:quantized:Sharathhebbar24/code_gpt2_mini_model", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T15:11:09Z
--- license: apache-2.0 datasets: - HuggingFaceH4/ultrachat_200k - mlabonne/CodeLlama-2-20k - Intel/orca_dpo_pairs language: - en pipeline_tag: text-generation tags: - gpt2 - dpo - TensorBlock - GGUF base_model: Sharathhebbar24/code_gpt2_mini_model --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Sharathhebbar24/code_gpt2_mini_model - GGUF This repo contains GGUF format model files for [Sharathhebbar24/code_gpt2_mini_model](https://huggingface.co/Sharathhebbar24/code_gpt2_mini_model). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [code_gpt2_mini_model-Q2_K.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q2_K.gguf) | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes | | [code_gpt2_mini_model-Q3_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q3_K_S.gguf) | Q3_K_S | 0.090 GB | very small, high quality loss | | [code_gpt2_mini_model-Q3_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q3_K_M.gguf) | Q3_K_M | 0.098 GB | very small, high quality loss | | [code_gpt2_mini_model-Q3_K_L.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q3_K_L.gguf) | Q3_K_L | 0.102 GB | small, substantial quality loss | | [code_gpt2_mini_model-Q4_0.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q4_0.gguf) | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [code_gpt2_mini_model-Q4_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q4_K_S.gguf) | Q4_K_S | 0.107 GB | small, greater quality loss | | [code_gpt2_mini_model-Q4_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q4_K_M.gguf) | Q4_K_M | 0.113 GB | medium, balanced quality - recommended | | [code_gpt2_mini_model-Q5_0.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q5_0.gguf) | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [code_gpt2_mini_model-Q5_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q5_K_S.gguf) | Q5_K_S | 0.122 GB | large, low quality loss - recommended | | [code_gpt2_mini_model-Q5_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q5_K_M.gguf) | Q5_K_M | 0.127 GB | large, very low quality loss - recommended | | [code_gpt2_mini_model-Q6_K.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q6_K.gguf) | Q6_K | 0.138 GB | very large, extremely low quality loss | | [code_gpt2_mini_model-Q8_0.gguf](https://huggingface.co/tensorblock/code_gpt2_mini_model-GGUF/blob/main/code_gpt2_mini_model-Q8_0.gguf) | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/code_gpt2_mini_model-GGUF --include "code_gpt2_mini_model-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/code_gpt2_mini_model-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF
tensorblock
2025-04-21T00:25:34Z
108
0
null
[ "gguf", "TensorBlock", "GGUF", "ko", "en", "base_model:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1", "base_model:quantized:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T13:58:14Z
--- license: cc-by-nc-4.0 language: - ko - en base_model: KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1 - GGUF This repo contains GGUF format model files for [KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1](https://huggingface.co/KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q2_K.gguf) | Q2_K | 4.046 GB | smallest, significant quality loss - not recommended for most purposes | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_S.gguf) | Q3_K_S | 4.711 GB | very small, high quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_M.gguf) | Q3_K_M | 5.242 GB | very small, high quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q3_K_L.gguf) | Q3_K_L | 5.697 GB | small, substantial quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_0.gguf) | Q4_0 | 6.123 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_K_S.gguf) | Q4_K_S | 6.169 GB | small, greater quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q4_K_M.gguf) | Q4_K_M | 6.513 GB | medium, balanced quality - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_0.gguf) | Q5_0 | 7.453 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_K_S.gguf) | Q5_K_S | 7.453 GB | large, low quality loss - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q5_K_M.gguf) | Q5_K_M | 7.653 GB | large, very low quality loss - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q6_K.gguf) | Q6_K | 8.866 GB | very large, extremely low quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q8_0.gguf) | Q8_0 | 11.482 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF --include "KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF
tensorblock
2025-04-21T00:25:29Z
97
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "ko", "base_model:jwkweon/CUBOX-SOLAR-DPO-v0.3", "base_model:quantized:jwkweon/CUBOX-SOLAR-DPO-v0.3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-14T12:47:36Z
--- library_name: transformers license: apache-2.0 language: - ko base_model: jwkweon/CUBOX-SOLAR-DPO-v0.3 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jwkweon/CUBOX-SOLAR-DPO-v0.3 - GGUF This repo contains GGUF format model files for [jwkweon/CUBOX-SOLAR-DPO-v0.3](https://huggingface.co/jwkweon/CUBOX-SOLAR-DPO-v0.3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CUBOX-SOLAR-DPO-v0.3-Q2_K.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [CUBOX-SOLAR-DPO-v0.3-Q3_K_S.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [CUBOX-SOLAR-DPO-v0.3-Q3_K_M.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [CUBOX-SOLAR-DPO-v0.3-Q3_K_L.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [CUBOX-SOLAR-DPO-v0.3-Q4_0.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CUBOX-SOLAR-DPO-v0.3-Q4_K_S.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [CUBOX-SOLAR-DPO-v0.3-Q4_K_M.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [CUBOX-SOLAR-DPO-v0.3-Q5_0.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CUBOX-SOLAR-DPO-v0.3-Q5_K_S.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [CUBOX-SOLAR-DPO-v0.3-Q5_K_M.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [CUBOX-SOLAR-DPO-v0.3-Q6_K.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [CUBOX-SOLAR-DPO-v0.3-Q8_0.gguf](https://huggingface.co/tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF/blob/main/CUBOX-SOLAR-DPO-v0.3-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF --include "CUBOX-SOLAR-DPO-v0.3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CUBOX-SOLAR-DPO-v0.3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF
tensorblock
2025-04-21T00:25:25Z
157
0
transformers
[ "transformers", "gguf", "llama", "llama-3", "TensorBlock", "GGUF", "ko", "en", "dataset:MarkrAI/KoCommercial-Dataset", "base_model:PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct", "base_model:quantized:PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T11:50:12Z
--- language: - ko - en license: llama3 library_name: transformers tags: - llama - llama-3 - TensorBlock - GGUF base_model: PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct datasets: - MarkrAI/KoCommercial-Dataset --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct - GGUF This repo contains GGUF format model files for [PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct](https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Waktaverse-Llama-3-KO-8B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Waktaverse-Llama-3-KO-8B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Waktaverse-Llama-3-KO-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Waktaverse-Llama-3-KO-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Waktaverse-Llama-3-KO-8B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Waktaverse-Llama-3-KO-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Waktaverse-Llama-3-KO-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Waktaverse-Llama-3-KO-8B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Waktaverse-Llama-3-KO-8B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF/blob/main/Waktaverse-Llama-3-KO-8B-Instruct-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF --include "Waktaverse-Llama-3-KO-8B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Waktaverse-Llama-3-KO-8B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/FusionNet_passthrough-GGUF
tensorblock
2025-04-21T00:25:21Z
109
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:TomGrc/FusionNet_passthrough", "base_model:quantized:TomGrc/FusionNet_passthrough", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-14T10:48:01Z
--- language: - en license: mit pipeline_tag: text-generation base_model: TomGrc/FusionNet_passthrough tags: - TensorBlock - GGUF model-index: - name: FusionNet_passthrough results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.28 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.65 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.26 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## TomGrc/FusionNet_passthrough - GGUF This repo contains GGUF format model files for [TomGrc/FusionNet_passthrough](https://huggingface.co/TomGrc/FusionNet_passthrough). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [FusionNet_passthrough-Q2_K.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q2_K.gguf) | Q2_K | 7.855 GB | smallest, significant quality loss - not recommended for most purposes | | [FusionNet_passthrough-Q3_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q3_K_S.gguf) | Q3_K_S | 9.165 GB | very small, high quality loss | | [FusionNet_passthrough-Q3_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q3_K_M.gguf) | Q3_K_M | 10.226 GB | very small, high quality loss | | [FusionNet_passthrough-Q3_K_L.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q3_K_L.gguf) | Q3_K_L | 11.137 GB | small, substantial quality loss | | [FusionNet_passthrough-Q4_0.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q4_0.gguf) | Q4_0 | 11.963 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [FusionNet_passthrough-Q4_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q4_K_S.gguf) | Q4_K_S | 12.053 GB | small, greater quality loss | | [FusionNet_passthrough-Q4_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q4_K_M.gguf) | Q4_K_M | 12.741 GB | medium, balanced quality - recommended | | [FusionNet_passthrough-Q5_0.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q5_0.gguf) | Q5_0 | 14.596 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [FusionNet_passthrough-Q5_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q5_K_S.gguf) | Q5_K_S | 14.596 GB | large, low quality loss - recommended | | [FusionNet_passthrough-Q5_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q5_K_M.gguf) | Q5_K_M | 14.997 GB | large, very low quality loss - recommended | | [FusionNet_passthrough-Q6_K.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q6_K.gguf) | Q6_K | 17.395 GB | very large, extremely low quality loss | | [FusionNet_passthrough-Q8_0.gguf](https://huggingface.co/tensorblock/FusionNet_passthrough-GGUF/blob/main/FusionNet_passthrough-Q8_0.gguf) | Q8_0 | 22.529 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FusionNet_passthrough-GGUF --include "FusionNet_passthrough-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FusionNet_passthrough-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/opencsg-starcoder2-15b-v0.1-GGUF
tensorblock
2025-04-21T00:25:16Z
120
0
transformers
[ "transformers", "gguf", "code", "TensorBlock", "GGUF", "text-generation", "dataset:bigcode/starcoderdata", "dataset:bigcode/the-stack-dedup", "base_model:opencsg/opencsg-starcoder2-15b-v0.1", "base_model:quantized:opencsg/opencsg-starcoder2-15b-v0.1", "license:bigcode-openrail-m", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T08:52:36Z
--- license: bigcode-openrail-m datasets: - bigcode/starcoderdata - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers pipeline_tag: text-generation tags: - code - TensorBlock - GGUF base_model: opencsg/opencsg-starcoder2-15b-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## opencsg/opencsg-starcoder2-15b-v0.1 - GGUF This repo contains GGUF format model files for [opencsg/opencsg-starcoder2-15b-v0.1](https://huggingface.co/opencsg/opencsg-starcoder2-15b-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [opencsg-starcoder2-15b-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q2_K.gguf) | Q2_K | 6.193 GB | smallest, significant quality loss - not recommended for most purposes | | [opencsg-starcoder2-15b-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q3_K_S.gguf) | Q3_K_S | 6.986 GB | very small, high quality loss | | [opencsg-starcoder2-15b-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q3_K_M.gguf) | Q3_K_M | 8.044 GB | very small, high quality loss | | [opencsg-starcoder2-15b-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q3_K_L.gguf) | Q3_K_L | 8.965 GB | small, substantial quality loss | | [opencsg-starcoder2-15b-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q4_0.gguf) | Q4_0 | 9.065 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [opencsg-starcoder2-15b-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q4_K_S.gguf) | Q4_K_S | 9.161 GB | small, greater quality loss | | [opencsg-starcoder2-15b-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q4_K_M.gguf) | Q4_K_M | 9.860 GB | medium, balanced quality - recommended | | [opencsg-starcoder2-15b-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q5_0.gguf) | Q5_0 | 11.022 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [opencsg-starcoder2-15b-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q5_K_S.gguf) | Q5_K_S | 11.022 GB | large, low quality loss - recommended | | [opencsg-starcoder2-15b-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q5_K_M.gguf) | Q5_K_M | 11.431 GB | large, very low quality loss - recommended | | [opencsg-starcoder2-15b-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q6_K.gguf) | Q6_K | 13.101 GB | very large, extremely low quality loss | | [opencsg-starcoder2-15b-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/opencsg-starcoder2-15b-v0.1-GGUF/blob/main/opencsg-starcoder2-15b-v0.1-Q8_0.gguf) | Q8_0 | 16.965 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/opencsg-starcoder2-15b-v0.1-GGUF --include "opencsg-starcoder2-15b-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/opencsg-starcoder2-15b-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/deepseek-math-7b-instruct-GGUF
tensorblock
2025-04-21T00:25:14Z
150
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:deepseek-ai/deepseek-math-7b-instruct", "base_model:quantized:deepseek-ai/deepseek-math-7b-instruct", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-14T08:02:10Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL base_model: deepseek-ai/deepseek-math-7b-instruct tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## deepseek-ai/deepseek-math-7b-instruct - GGUF This repo contains GGUF format model files for [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin▁of▁sentence|>{system_prompt} User: {prompt} Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [deepseek-math-7b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q2_K.gguf) | Q2_K | 2.718 GB | smallest, significant quality loss - not recommended for most purposes | | [deepseek-math-7b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q3_K_S.gguf) | Q3_K_S | 3.138 GB | very small, high quality loss | | [deepseek-math-7b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q3_K_M.gguf) | Q3_K_M | 3.461 GB | very small, high quality loss | | [deepseek-math-7b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q3_K_L.gguf) | Q3_K_L | 3.746 GB | small, substantial quality loss | | [deepseek-math-7b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q4_0.gguf) | Q4_0 | 4.000 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [deepseek-math-7b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q4_K_S.gguf) | Q4_K_S | 4.025 GB | small, greater quality loss | | [deepseek-math-7b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q4_K_M.gguf) | Q4_K_M | 4.223 GB | medium, balanced quality - recommended | | [deepseek-math-7b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q5_0.gguf) | Q5_0 | 4.811 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [deepseek-math-7b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q5_K_S.gguf) | Q5_K_S | 4.811 GB | large, low quality loss - recommended | | [deepseek-math-7b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q5_K_M.gguf) | Q5_K_M | 4.926 GB | large, very low quality loss - recommended | | [deepseek-math-7b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q6_K.gguf) | Q6_K | 5.673 GB | very large, extremely low quality loss | | [deepseek-math-7b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/deepseek-math-7b-instruct-GGUF/blob/main/deepseek-math-7b-instruct-Q8_0.gguf) | Q8_0 | 7.347 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/deepseek-math-7b-instruct-GGUF --include "deepseek-math-7b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/deepseek-math-7b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mistral-orpo-capybara-7k-GGUF
tensorblock
2025-04-21T00:24:57Z
91
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:argilla/distilabel-capybara-dpo-7k-binarized", "base_model:kaist-ai/mistral-orpo-capybara-7k", "base_model:quantized:kaist-ai/mistral-orpo-capybara-7k", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-14T04:11:22Z
--- language: - en license: mit base_model: kaist-ai/mistral-orpo-capybara-7k datasets: - argilla/distilabel-capybara-dpo-7k-binarized pipeline_tag: text-generation tags: - TensorBlock - GGUF model-index: - name: Mistral-ORPO-Capybara-7k results: - task: type: text-generation dataset: name: AlpacaEval 2 (LC) type: AlpacaEval metrics: - type: AlpacaEval 2.0 value: 15.88% name: Win Rate source: url: https://tatsu-lab.github.io/alpaca_eval/ name: self-reported - task: type: text-generation dataset: name: MT-Bench type: MT-Bench metrics: - type: MT-Bench value: 7.444 name: Score source: url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/ name: self-reported --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kaist-ai/mistral-orpo-capybara-7k - GGUF This repo contains GGUF format model files for [kaist-ai/mistral-orpo-capybara-7k](https://huggingface.co/kaist-ai/mistral-orpo-capybara-7k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mistral-orpo-capybara-7k-Q2_K.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral-orpo-capybara-7k-Q3_K_S.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mistral-orpo-capybara-7k-Q3_K_M.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mistral-orpo-capybara-7k-Q3_K_L.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mistral-orpo-capybara-7k-Q4_0.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral-orpo-capybara-7k-Q4_K_S.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mistral-orpo-capybara-7k-Q4_K_M.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mistral-orpo-capybara-7k-Q5_0.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral-orpo-capybara-7k-Q5_K_S.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mistral-orpo-capybara-7k-Q5_K_M.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mistral-orpo-capybara-7k-Q6_K.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mistral-orpo-capybara-7k-Q8_0.gguf](https://huggingface.co/tensorblock/mistral-orpo-capybara-7k-GGUF/blob/main/mistral-orpo-capybara-7k-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mistral-orpo-capybara-7k-GGUF --include "mistral-orpo-capybara-7k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mistral-orpo-capybara-7k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/llama2.c-stories42M-pruned2.4-GGUF
tensorblock
2025-04-21T00:24:55Z
29
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:nm-testing/llama2.c-stories42M-pruned2.4", "base_model:quantized:nm-testing/llama2.c-stories42M-pruned2.4", "endpoints_compatible", "region:us" ]
null
2024-12-14T03:24:24Z
--- base_model: nm-testing/llama2.c-stories42M-pruned2.4 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## nm-testing/llama2.c-stories42M-pruned2.4 - GGUF This repo contains GGUF format model files for [nm-testing/llama2.c-stories42M-pruned2.4](https://huggingface.co/nm-testing/llama2.c-stories42M-pruned2.4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama2.c-stories42M-pruned2.4-Q2_K.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q2_K.gguf) | Q2_K | 0.030 GB | smallest, significant quality loss - not recommended for most purposes | | [llama2.c-stories42M-pruned2.4-Q3_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q3_K_S.gguf) | Q3_K_S | 0.033 GB | very small, high quality loss | | [llama2.c-stories42M-pruned2.4-Q3_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q3_K_M.gguf) | Q3_K_M | 0.034 GB | very small, high quality loss | | [llama2.c-stories42M-pruned2.4-Q3_K_L.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q3_K_L.gguf) | Q3_K_L | 0.035 GB | small, substantial quality loss | | [llama2.c-stories42M-pruned2.4-Q4_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q4_0.gguf) | Q4_0 | 0.038 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama2.c-stories42M-pruned2.4-Q4_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q4_K_S.gguf) | Q4_K_S | 0.039 GB | small, greater quality loss | | [llama2.c-stories42M-pruned2.4-Q4_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q4_K_M.gguf) | Q4_K_M | 0.040 GB | medium, balanced quality - recommended | | [llama2.c-stories42M-pruned2.4-Q5_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q5_0.gguf) | Q5_0 | 0.043 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama2.c-stories42M-pruned2.4-Q5_K_S.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q5_K_S.gguf) | Q5_K_S | 0.043 GB | large, low quality loss - recommended | | [llama2.c-stories42M-pruned2.4-Q5_K_M.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q5_K_M.gguf) | Q5_K_M | 0.044 GB | large, very low quality loss - recommended | | [llama2.c-stories42M-pruned2.4-Q6_K.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q6_K.gguf) | Q6_K | 0.050 GB | very large, extremely low quality loss | | [llama2.c-stories42M-pruned2.4-Q8_0.gguf](https://huggingface.co/tensorblock/llama2.c-stories42M-pruned2.4-GGUF/blob/main/llama2.c-stories42M-pruned2.4-Q8_0.gguf) | Q8_0 | 0.062 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/llama2.c-stories42M-pruned2.4-GGUF --include "llama2.c-stories42M-pruned2.4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/llama2.c-stories42M-pruned2.4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mixtral_AI_Cyber_2.0-GGUF
tensorblock
2025-04-21T00:24:49Z
96
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "128k_Context", "chemistry", "biology", "music", "code", "medical", "text-generation-inference", "Cyber-Series", "TensorBlock", "GGUF", "text-generation", "en", "base_model:LeroyDyer/Mixtral_AI_Cyber_2.0", "base_model:quantized:LeroyDyer/Mixtral_AI_Cyber_2.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-14T03:16:09Z
--- base_model: LeroyDyer/Mixtral_AI_Cyber_2.0 library_name: transformers tags: - mergekit - merge - 128k_Context - chemistry - biology - music - code - medical - text-generation-inference - Cyber-Series - TensorBlock - GGUF previous_Merges: - rvv-karma/BASH-Coder-Mistral-7B - Locutusque/Hercules-3.1-Mistral-7B - KoboldAI/Mistral-7B-Erebus-v3 - NSFW - Locutusque/Hyperion-2.1-Mistral-7B - Severian/Nexus-IKM-Mistral-7B-Pytorch - NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-Instruct-v0.2 - Nitral-AI/ProdigyXBioMistral_7B - Nitral-AI/Infinite-Mika-7b - Nous-Yarn-Mistral-7b-128k - yanismiraoui/Yarn-Mistral-7b-128k-sharded license: apache-2.0 language: - en metrics: - accuracy - brier_score - code_eval pipeline_tag: text-generation --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## LeroyDyer/Mixtral_AI_Cyber_2.0 - GGUF This repo contains GGUF format model files for [LeroyDyer/Mixtral_AI_Cyber_2.0](https://huggingface.co/LeroyDyer/Mixtral_AI_Cyber_2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mixtral_AI_Cyber_2.0-Q2_K.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mixtral_AI_Cyber_2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mixtral_AI_Cyber_2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mixtral_AI_Cyber_2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mixtral_AI_Cyber_2.0-Q4_0.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mixtral_AI_Cyber_2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mixtral_AI_Cyber_2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mixtral_AI_Cyber_2.0-Q5_0.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mixtral_AI_Cyber_2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mixtral_AI_Cyber_2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mixtral_AI_Cyber_2.0-Q6_K.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mixtral_AI_Cyber_2.0-Q8_0.gguf](https://huggingface.co/tensorblock/Mixtral_AI_Cyber_2.0-GGUF/blob/main/Mixtral_AI_Cyber_2.0-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mixtral_AI_Cyber_2.0-GGUF --include "Mixtral_AI_Cyber_2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mixtral_AI_Cyber_2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/b1ade-1b-bf16-GGUF
tensorblock
2025-04-21T00:24:36Z
12
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "dataset:kaist-ai/CoT-Collection", "base_model:w601sxs/b1ade-1b-bf16", "base_model:quantized:w601sxs/b1ade-1b-bf16", "endpoints_compatible", "region:us" ]
null
2024-12-13T23:51:50Z
--- library_name: transformers datasets: - kaist-ai/CoT-Collection tags: - TensorBlock - GGUF base_model: w601sxs/b1ade-1b-bf16 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## w601sxs/b1ade-1b-bf16 - GGUF This repo contains GGUF format model files for [w601sxs/b1ade-1b-bf16](https://huggingface.co/w601sxs/b1ade-1b-bf16). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [b1ade-1b-bf16-Q2_K.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q2_K.gguf) | Q2_K | 0.420 GB | smallest, significant quality loss - not recommended for most purposes | | [b1ade-1b-bf16-Q3_K_S.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q3_K_S.gguf) | Q3_K_S | 0.478 GB | very small, high quality loss | | [b1ade-1b-bf16-Q3_K_M.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q3_K_M.gguf) | Q3_K_M | 0.552 GB | very small, high quality loss | | [b1ade-1b-bf16-Q3_K_L.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [b1ade-1b-bf16-Q4_0.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q4_0.gguf) | Q4_0 | 0.599 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [b1ade-1b-bf16-Q4_K_S.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q4_K_S.gguf) | Q4_K_S | 0.603 GB | small, greater quality loss | | [b1ade-1b-bf16-Q4_K_M.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q4_K_M.gguf) | Q4_K_M | 0.659 GB | medium, balanced quality - recommended | | [b1ade-1b-bf16-Q5_0.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q5_0.gguf) | Q5_0 | 0.712 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [b1ade-1b-bf16-Q5_K_S.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q5_K_S.gguf) | Q5_K_S | 0.712 GB | large, low quality loss - recommended | | [b1ade-1b-bf16-Q5_K_M.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q5_K_M.gguf) | Q5_K_M | 0.757 GB | large, very low quality loss - recommended | | [b1ade-1b-bf16-Q6_K.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q6_K.gguf) | Q6_K | 0.833 GB | very large, extremely low quality loss | | [b1ade-1b-bf16-Q8_0.gguf](https://huggingface.co/tensorblock/b1ade-1b-bf16-GGUF/blob/main/b1ade-1b-bf16-Q8_0.gguf) | Q8_0 | 1.078 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/b1ade-1b-bf16-GGUF --include "b1ade-1b-bf16-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/b1ade-1b-bf16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/spin_gpt2_medium_alpaca_e4-GGUF
tensorblock
2025-04-21T00:24:32Z
8
0
null
[ "gguf", "TensorBlock", "GGUF", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-13T23:47:40Z
--- license: mit tags: - TensorBlock - GGUF base_model: LordNoah/spin_gpt2_medium_alpaca_e4 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## LordNoah/spin_gpt2_medium_alpaca_e4 - GGUF This repo contains GGUF format model files for [LordNoah/spin_gpt2_medium_alpaca_e4](https://huggingface.co/LordNoah/spin_gpt2_medium_alpaca_e4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [spin_gpt2_medium_alpaca_e4-Q2_K.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q2_K.gguf) | Q2_K | 0.178 GB | smallest, significant quality loss - not recommended for most purposes | | [spin_gpt2_medium_alpaca_e4-Q3_K_S.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q3_K_S.gguf) | Q3_K_S | 0.201 GB | very small, high quality loss | | [spin_gpt2_medium_alpaca_e4-Q3_K_M.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q3_K_M.gguf) | Q3_K_M | 0.229 GB | very small, high quality loss | | [spin_gpt2_medium_alpaca_e4-Q3_K_L.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q3_K_L.gguf) | Q3_K_L | 0.244 GB | small, substantial quality loss | | [spin_gpt2_medium_alpaca_e4-Q4_0.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q4_0.gguf) | Q4_0 | 0.248 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [spin_gpt2_medium_alpaca_e4-Q4_K_S.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q4_K_S.gguf) | Q4_K_S | 0.250 GB | small, greater quality loss | | [spin_gpt2_medium_alpaca_e4-Q4_K_M.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q4_K_M.gguf) | Q4_K_M | 0.271 GB | medium, balanced quality - recommended | | [spin_gpt2_medium_alpaca_e4-Q5_0.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q5_0.gguf) | Q5_0 | 0.292 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [spin_gpt2_medium_alpaca_e4-Q5_K_S.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q5_K_S.gguf) | Q5_K_S | 0.292 GB | large, low quality loss - recommended | | [spin_gpt2_medium_alpaca_e4-Q5_K_M.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q5_K_M.gguf) | Q5_K_M | 0.309 GB | large, very low quality loss - recommended | | [spin_gpt2_medium_alpaca_e4-Q6_K.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q6_K.gguf) | Q6_K | 0.339 GB | very large, extremely low quality loss | | [spin_gpt2_medium_alpaca_e4-Q8_0.gguf](https://huggingface.co/tensorblock/spin_gpt2_medium_alpaca_e4-GGUF/blob/main/spin_gpt2_medium_alpaca_e4-Q8_0.gguf) | Q8_0 | 0.437 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/spin_gpt2_medium_alpaca_e4-GGUF --include "spin_gpt2_medium_alpaca_e4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/spin_gpt2_medium_alpaca_e4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-2b-openhermes-GGUF
tensorblock
2025-04-21T00:24:29Z
27
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "axolotl", "gemma", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "distillation", "TensorBlock", "GGUF", "text-generation", "en", "dataset:mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha", "base_model:abideen/gemma-2b-openhermes", "base_model:quantized:abideen/gemma-2b-openhermes", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T23:43:35Z
--- license: cc-by-nc-4.0 base_model: abideen/gemma-2b-openhermes tags: - generated_from_trainer - axolotl - gemma - instruct - finetune - chatml - gpt4 - synthetic data - distillation - TensorBlock - GGUF datasets: - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: gemma-2b-openhermes results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## abideen/gemma-2b-openhermes - GGUF This repo contains GGUF format model files for [abideen/gemma-2b-openhermes](https://huggingface.co/abideen/gemma-2b-openhermes). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-2b-openhermes-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2b-openhermes-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss | | [gemma-2b-openhermes-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss | | [gemma-2b-openhermes-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss | | [gemma-2b-openhermes-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-2b-openhermes-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss | | [gemma-2b-openhermes-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended | | [gemma-2b-openhermes-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-2b-openhermes-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended | | [gemma-2b-openhermes-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended | | [gemma-2b-openhermes-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss | | [gemma-2b-openhermes-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-2b-openhermes-GGUF/blob/main/gemma-2b-openhermes-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-2b-openhermes-GGUF --include "gemma-2b-openhermes-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-2b-openhermes-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/T3Q-ko-solar-sft-v1.0-GGUF
tensorblock
2025-04-21T00:24:23Z
102
0
null
[ "gguf", "T3Q-ko-solar-sft-v1.0", "kyujinpy/KoCommercial-NoSSL", "TensorBlock", "GGUF", "text-generation", "en", "dataset:kyujinpy/KoCommercial-NoSSL", "base_model:chlee10/T3Q-ko-solar-sft-v1.0", "base_model:quantized:chlee10/T3Q-ko-solar-sft-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T22:12:34Z
--- pipeline_tag: text-generation license: apache-2.0 language: - en tags: - T3Q-ko-solar-sft-v1.0 - kyujinpy/KoCommercial-NoSSL - TensorBlock - GGUF base_model: chlee10/T3Q-ko-solar-sft-v1.0 datasets: - kyujinpy/KoCommercial-NoSSL model-index: - name: T3Q-ko-solar-sft-v1.0 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## chlee10/T3Q-ko-solar-sft-v1.0 - GGUF This repo contains GGUF format model files for [chlee10/T3Q-ko-solar-sft-v1.0](https://huggingface.co/chlee10/T3Q-ko-solar-sft-v1.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [T3Q-ko-solar-sft-v1.0-Q2_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [T3Q-ko-solar-sft-v1.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [T3Q-ko-solar-sft-v1.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [T3Q-ko-solar-sft-v1.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [T3Q-ko-solar-sft-v1.0-Q4_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [T3Q-ko-solar-sft-v1.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [T3Q-ko-solar-sft-v1.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [T3Q-ko-solar-sft-v1.0-Q5_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [T3Q-ko-solar-sft-v1.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [T3Q-ko-solar-sft-v1.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [T3Q-ko-solar-sft-v1.0-Q6_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [T3Q-ko-solar-sft-v1.0-Q8_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v1.0-GGUF/blob/main/T3Q-ko-solar-sft-v1.0-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/T3Q-ko-solar-sft-v1.0-GGUF --include "T3Q-ko-solar-sft-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/T3Q-ko-solar-sft-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF
tensorblock
2025-04-21T00:24:20Z
38
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:Locutusque/Hercules-v3.0", "dataset:Locutusque/hyperion-v2.0", "dataset:argilla/OpenHermes2.5-dpo-binarized-alpha", "base_model:frankenmerger/MiniLlama-1.8b-Chat-v0.1", "base_model:quantized:frankenmerger/MiniLlama-1.8b-Chat-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T21:49:30Z
--- widget: - messages: - role: system content: You are a career counselor. The user will provide you with an individual looking for guidance in their professional life, and your task is to assist them in determining what careers they are most suited for based on their skills, interests, and experience. You should also conduct research into the various options available, explain the job market trends in different industries, and advice on which qualifications would be beneficial for pursuing particular fields. - role: user content: Hey friend! - role: assistant content: Hi! How may I help you? - role: user content: I am interested in developing a career in software engineering. What would you recommend me to do? - messages: - role: system content: You are a knowledgeable assistant. Help the user as much as you can. - role: user content: How to become smarter? - messages: - role: system content: You are a helpful assistant who provides concise responses. - role: user content: Hi! - role: assistant content: Hello there! How may I help you? - role: user content: I need to cook a simple dinner. What ingredients should I prepare for? - messages: - role: system content: You are a very creative assistant. User will give you a task, which you should complete with all your knowledge. - role: user content: Write the novel story of an RPG game about group of survivor post apocalyptic world. inference: parameters: max_new_tokens: 256 temperature: 0.6 top_p: 0.95 top_k: 50 repetition_penalty: 1.2 base_model: frankenmerger/MiniLlama-1.8b-Chat-v0.1 license: apache-2.0 language: - en pipeline_tag: text-generation datasets: - Locutusque/Hercules-v3.0 - Locutusque/hyperion-v2.0 - argilla/OpenHermes2.5-dpo-binarized-alpha tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## frankenmerger/MiniLlama-1.8b-Chat-v0.1 - GGUF This repo contains GGUF format model files for [frankenmerger/MiniLlama-1.8b-Chat-v0.1](https://huggingface.co/frankenmerger/MiniLlama-1.8b-Chat-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf) | Q2_K | 0.724 GB | smallest, significant quality loss - not recommended for most purposes | | [MiniLlama-1.8b-Chat-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_S.gguf) | Q3_K_S | 0.840 GB | very small, high quality loss | | [MiniLlama-1.8b-Chat-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_M.gguf) | Q3_K_M | 0.930 GB | very small, high quality loss | | [MiniLlama-1.8b-Chat-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_L.gguf) | Q3_K_L | 1.008 GB | small, substantial quality loss | | [MiniLlama-1.8b-Chat-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_0.gguf) | Q4_0 | 1.083 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MiniLlama-1.8b-Chat-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_K_S.gguf) | Q4_K_S | 1.090 GB | small, greater quality loss | | [MiniLlama-1.8b-Chat-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_K_M.gguf) | Q4_K_M | 1.145 GB | medium, balanced quality - recommended | | [MiniLlama-1.8b-Chat-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MiniLlama-1.8b-Chat-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_K_S.gguf) | Q5_K_S | 1.311 GB | large, low quality loss - recommended | | [MiniLlama-1.8b-Chat-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_K_M.gguf) | Q5_K_M | 1.343 GB | large, very low quality loss - recommended | | [MiniLlama-1.8b-Chat-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q6_K.gguf) | Q6_K | 1.554 GB | very large, extremely low quality loss | | [MiniLlama-1.8b-Chat-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q8_0.gguf) | Q8_0 | 2.012 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF --include "MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/pythia-410m-sentiment-first-ft-GGUF
tensorblock
2025-04-21T00:24:18Z
11
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:EleutherAI/pythia-410m-sentiment-first-ft", "base_model:quantized:EleutherAI/pythia-410m-sentiment-first-ft", "endpoints_compatible", "region:us" ]
null
2024-12-13T21:18:44Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: EleutherAI/pythia-410m-sentiment-first-ft --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## EleutherAI/pythia-410m-sentiment-first-ft - GGUF This repo contains GGUF format model files for [EleutherAI/pythia-410m-sentiment-first-ft](https://huggingface.co/EleutherAI/pythia-410m-sentiment-first-ft). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [pythia-410m-sentiment-first-ft-Q2_K.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q2_K.gguf) | Q2_K | 0.174 GB | smallest, significant quality loss - not recommended for most purposes | | [pythia-410m-sentiment-first-ft-Q3_K_S.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q3_K_S.gguf) | Q3_K_S | 0.197 GB | very small, high quality loss | | [pythia-410m-sentiment-first-ft-Q3_K_M.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q3_K_M.gguf) | Q3_K_M | 0.224 GB | very small, high quality loss | | [pythia-410m-sentiment-first-ft-Q3_K_L.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q3_K_L.gguf) | Q3_K_L | 0.240 GB | small, substantial quality loss | | [pythia-410m-sentiment-first-ft-Q4_0.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q4_0.gguf) | Q4_0 | 0.244 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [pythia-410m-sentiment-first-ft-Q4_K_S.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q4_K_S.gguf) | Q4_K_S | 0.246 GB | small, greater quality loss | | [pythia-410m-sentiment-first-ft-Q4_K_M.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q4_K_M.gguf) | Q4_K_M | 0.267 GB | medium, balanced quality - recommended | | [pythia-410m-sentiment-first-ft-Q5_0.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q5_0.gguf) | Q5_0 | 0.288 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [pythia-410m-sentiment-first-ft-Q5_K_S.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q5_K_S.gguf) | Q5_K_S | 0.288 GB | large, low quality loss - recommended | | [pythia-410m-sentiment-first-ft-Q5_K_M.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q5_K_M.gguf) | Q5_K_M | 0.305 GB | large, very low quality loss - recommended | | [pythia-410m-sentiment-first-ft-Q6_K.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q6_K.gguf) | Q6_K | 0.335 GB | very large, extremely low quality loss | | [pythia-410m-sentiment-first-ft-Q8_0.gguf](https://huggingface.co/tensorblock/pythia-410m-sentiment-first-ft-GGUF/blob/main/pythia-410m-sentiment-first-ft-Q8_0.gguf) | Q8_0 | 0.433 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/pythia-410m-sentiment-first-ft-GGUF --include "pythia-410m-sentiment-first-ft-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/pythia-410m-sentiment-first-ft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/stablelm-2-12b-GGUF
tensorblock
2025-04-21T00:24:16Z
150
0
null
[ "gguf", "causal-lm", "TensorBlock", "GGUF", "en", "de", "es", "fr", "it", "nl", "pt", "dataset:tiiuae/falcon-refinedweb", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:uonlp/CulturaX", "dataset:CarperAI/pilev2-dev", "dataset:bigcode/starcoderdata", "dataset:DataProvenanceInitiative/Commercially-Verified-Licenses", "base_model:stabilityai/stablelm-2-12b", "base_model:quantized:stabilityai/stablelm-2-12b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-12-13T21:10:37Z
--- language: - en - de - es - fr - it - nl - pt license: other tags: - causal-lm - TensorBlock - GGUF datasets: - tiiuae/falcon-refinedweb - togethercomputer/RedPajama-Data-1T - uonlp/CulturaX - CarperAI/pilev2-dev - bigcode/starcoderdata - DataProvenanceInitiative/Commercially-Verified-Licenses base_model: stabilityai/stablelm-2-12b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## stabilityai/stablelm-2-12b - GGUF This repo contains GGUF format model files for [stabilityai/stablelm-2-12b](https://huggingface.co/stabilityai/stablelm-2-12b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [stablelm-2-12b-Q2_K.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q2_K.gguf) | Q2_K | 4.699 GB | smallest, significant quality loss - not recommended for most purposes | | [stablelm-2-12b-Q3_K_S.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q3_K_S.gguf) | Q3_K_S | 5.424 GB | very small, high quality loss | | [stablelm-2-12b-Q3_K_M.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q3_K_M.gguf) | Q3_K_M | 5.994 GB | very small, high quality loss | | [stablelm-2-12b-Q3_K_L.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q3_K_L.gguf) | Q3_K_L | 6.492 GB | small, substantial quality loss | | [stablelm-2-12b-Q4_0.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q4_0.gguf) | Q4_0 | 6.969 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [stablelm-2-12b-Q4_K_S.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q4_K_S.gguf) | Q4_K_S | 7.016 GB | small, greater quality loss | | [stablelm-2-12b-Q4_K_M.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q4_K_M.gguf) | Q4_K_M | 7.368 GB | medium, balanced quality - recommended | | [stablelm-2-12b-Q5_0.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q5_0.gguf) | Q5_0 | 8.422 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [stablelm-2-12b-Q5_K_S.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q5_K_S.gguf) | Q5_K_S | 8.422 GB | large, low quality loss - recommended | | [stablelm-2-12b-Q5_K_M.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q5_K_M.gguf) | Q5_K_M | 8.628 GB | large, very low quality loss - recommended | | [stablelm-2-12b-Q6_K.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q6_K.gguf) | Q6_K | 9.967 GB | very large, extremely low quality loss | | [stablelm-2-12b-Q8_0.gguf](https://huggingface.co/tensorblock/stablelm-2-12b-GGUF/blob/main/stablelm-2-12b-Q8_0.gguf) | Q8_0 | 12.908 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/stablelm-2-12b-GGUF --include "stablelm-2-12b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/stablelm-2-12b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/nous-0-GGUF
tensorblock
2025-04-21T00:24:14Z
13
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:kalytm/nous-0", "base_model:quantized:kalytm/nous-0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T20:09:17Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: kalytm/nous-0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kalytm/nous-0 - GGUF This repo contains GGUF format model files for [kalytm/nous-0](https://huggingface.co/kalytm/nous-0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}<|endoftext|> <|user|> {prompt}<|endoftext|> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [nous-0-Q2_K.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q2_K.gguf) | Q2_K | 0.694 GB | smallest, significant quality loss - not recommended for most purposes | | [nous-0-Q3_K_S.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q3_K_S.gguf) | Q3_K_S | 0.792 GB | very small, high quality loss | | [nous-0-Q3_K_M.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q3_K_M.gguf) | Q3_K_M | 0.858 GB | very small, high quality loss | | [nous-0-Q3_K_L.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q3_K_L.gguf) | Q3_K_L | 0.915 GB | small, substantial quality loss | | [nous-0-Q4_0.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q4_0.gguf) | Q4_0 | 0.983 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [nous-0-Q4_K_S.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q4_K_S.gguf) | Q4_K_S | 0.989 GB | small, greater quality loss | | [nous-0-Q4_K_M.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q4_K_M.gguf) | Q4_K_M | 1.031 GB | medium, balanced quality - recommended | | [nous-0-Q5_0.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q5_0.gguf) | Q5_0 | 1.163 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [nous-0-Q5_K_S.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q5_K_S.gguf) | Q5_K_S | 1.163 GB | large, low quality loss - recommended | | [nous-0-Q5_K_M.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q5_K_M.gguf) | Q5_K_M | 1.188 GB | large, very low quality loss - recommended | | [nous-0-Q6_K.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q6_K.gguf) | Q6_K | 1.354 GB | very large, extremely low quality loss | | [nous-0-Q8_0.gguf](https://huggingface.co/tensorblock/nous-0-GGUF/blob/main/nous-0-Q8_0.gguf) | Q8_0 | 1.752 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/nous-0-GGUF --include "nous-0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/nous-0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Llama-3-13B-Instruct-v0.1-GGUF
tensorblock
2025-04-21T00:24:05Z
140
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "facebook", "meta", "pytorch", "llama", "llama-3", "TensorBlock", "GGUF", "text-generation", "en", "base_model:MaziyarPanahi/Llama-3-13B-Instruct-v0.1", "base_model:quantized:MaziyarPanahi/Llama-3-13B-Instruct-v0.1", "license:other", "region:us", "conversational" ]
text-generation
2024-12-13T19:05:54Z
--- base_model: MaziyarPanahi/Llama-3-13B-Instruct-v0.1 library_name: transformers tags: - mergekit - merge - facebook - meta - pytorch - llama - llama-3 - TensorBlock - GGUF language: - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi model_name: Llama-3-13B-Instruct-v0.1 quantized_by: MaziyarPanahi --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## MaziyarPanahi/Llama-3-13B-Instruct-v0.1 - GGUF This repo contains GGUF format model files for [MaziyarPanahi/Llama-3-13B-Instruct-v0.1](https://huggingface.co/MaziyarPanahi/Llama-3-13B-Instruct-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-13B-Instruct-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q2_K.gguf) | Q2_K | 5.105 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-13B-Instruct-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q3_K_S.gguf) | Q3_K_S | 5.914 GB | very small, high quality loss | | [Llama-3-13B-Instruct-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q3_K_M.gguf) | Q3_K_M | 6.530 GB | very small, high quality loss | | [Llama-3-13B-Instruct-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q3_K_L.gguf) | Q3_K_L | 7.065 GB | small, substantial quality loss | | [Llama-3-13B-Instruct-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q4_0.gguf) | Q4_0 | 7.606 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-13B-Instruct-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q4_K_S.gguf) | Q4_K_S | 7.660 GB | small, greater quality loss | | [Llama-3-13B-Instruct-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q4_K_M.gguf) | Q4_K_M | 8.061 GB | medium, balanced quality - recommended | | [Llama-3-13B-Instruct-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q5_0.gguf) | Q5_0 | 9.199 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-13B-Instruct-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q5_K_S.gguf) | Q5_K_S | 9.199 GB | large, low quality loss - recommended | | [Llama-3-13B-Instruct-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q5_K_M.gguf) | Q5_K_M | 9.433 GB | large, very low quality loss - recommended | | [Llama-3-13B-Instruct-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q6_K.gguf) | Q6_K | 10.891 GB | very large, extremely low quality loss | | [Llama-3-13B-Instruct-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3-13B-Instruct-v0.1-GGUF/blob/main/Llama-3-13B-Instruct-v0.1-Q8_0.gguf) | Q8_0 | 14.103 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3-13B-Instruct-v0.1-GGUF --include "Llama-3-13B-Instruct-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3-13B-Instruct-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/llama2-13b-lima-sft-dpo-GGUF
tensorblock
2025-04-21T00:24:04Z
37
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:etri-xainlp/llama2-13b-lima-sft-dpo", "base_model:quantized:etri-xainlp/llama2-13b-lima-sft-dpo", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-13T18:18:50Z
--- license: apache-2.0 base_model: etri-xainlp/llama2-13b-lima-sft-dpo tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## etri-xainlp/llama2-13b-lima-sft-dpo - GGUF This repo contains GGUF format model files for [etri-xainlp/llama2-13b-lima-sft-dpo](https://huggingface.co/etri-xainlp/llama2-13b-lima-sft-dpo). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama2-13b-lima-sft-dpo-Q2_K.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [llama2-13b-lima-sft-dpo-Q3_K_S.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [llama2-13b-lima-sft-dpo-Q3_K_M.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [llama2-13b-lima-sft-dpo-Q3_K_L.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [llama2-13b-lima-sft-dpo-Q4_0.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama2-13b-lima-sft-dpo-Q4_K_S.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [llama2-13b-lima-sft-dpo-Q4_K_M.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [llama2-13b-lima-sft-dpo-Q5_0.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama2-13b-lima-sft-dpo-Q5_K_S.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [llama2-13b-lima-sft-dpo-Q5_K_M.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [llama2-13b-lima-sft-dpo-Q6_K.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [llama2-13b-lima-sft-dpo-Q8_0.gguf](https://huggingface.co/tensorblock/llama2-13b-lima-sft-dpo-GGUF/blob/main/llama2-13b-lima-sft-dpo-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/llama2-13b-lima-sft-dpo-GGUF --include "llama2-13b-lima-sft-dpo-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/llama2-13b-lima-sft-dpo-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/prometheus-bgb-8x7b-v2.0-GGUF
tensorblock
2025-04-21T00:24:02Z
97
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:prometheus-eval/prometheus-bgb-8x7b-v2.0", "base_model:quantized:prometheus-eval/prometheus-bgb-8x7b-v2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T17:09:39Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: prometheus-eval/prometheus-bgb-8x7b-v2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## prometheus-eval/prometheus-bgb-8x7b-v2.0 - GGUF This repo contains GGUF format model files for [prometheus-eval/prometheus-bgb-8x7b-v2.0](https://huggingface.co/prometheus-eval/prometheus-bgb-8x7b-v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [prometheus-bgb-8x7b-v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [prometheus-bgb-8x7b-v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [prometheus-bgb-8x7b-v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [prometheus-bgb-8x7b-v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [prometheus-bgb-8x7b-v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [prometheus-bgb-8x7b-v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [prometheus-bgb-8x7b-v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [prometheus-bgb-8x7b-v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [prometheus-bgb-8x7b-v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [prometheus-bgb-8x7b-v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [prometheus-bgb-8x7b-v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [prometheus-bgb-8x7b-v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/prometheus-bgb-8x7b-v2.0-GGUF/blob/main/prometheus-bgb-8x7b-v2.0-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/prometheus-bgb-8x7b-v2.0-GGUF --include "prometheus-bgb-8x7b-v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/prometheus-bgb-8x7b-v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mCoT-GGUF
tensorblock
2025-04-21T00:23:59Z
30
0
null
[ "gguf", "text-generation", "TensorBlock", "GGUF", "sw", "bn", "te", "th", "ja", "zh", "ru", "es", "fr", "de", "en", "base_model:laihuiyuan/mCoT", "base_model:quantized:laihuiyuan/mCoT", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-13T14:49:50Z
--- license: apache-2.0 language: - sw - bn - te - th - ja - zh - ru - es - fr - de - en tags: - text-generation - TensorBlock - GGUF base_model: laihuiyuan/mCoT --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## laihuiyuan/mCoT - GGUF This repo contains GGUF format model files for [laihuiyuan/mCoT](https://huggingface.co/laihuiyuan/mCoT). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mCoT-Q2_K.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mCoT-Q3_K_S.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mCoT-Q3_K_M.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mCoT-Q3_K_L.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mCoT-Q4_0.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mCoT-Q4_K_S.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mCoT-Q4_K_M.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mCoT-Q5_0.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mCoT-Q5_K_S.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mCoT-Q5_K_M.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mCoT-Q6_K.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mCoT-Q8_0.gguf](https://huggingface.co/tensorblock/mCoT-GGUF/blob/main/mCoT-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mCoT-GGUF --include "mCoT-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mCoT-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/GritLM-8x7B-KTO-GGUF
tensorblock
2025-04-21T00:23:54Z
119
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "dataset:GritLM/tulu2", "base_model:GritLM/GritLM-8x7B-KTO", "base_model:quantized:GritLM/GritLM-8x7B-KTO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T14:12:47Z
--- pipeline_tag: text-generation inference: true license: apache-2.0 datasets: - GritLM/tulu2 tags: - TensorBlock - GGUF base_model: GritLM/GritLM-8x7B-KTO --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## GritLM/GritLM-8x7B-KTO - GGUF This repo contains GGUF format model files for [GritLM/GritLM-8x7B-KTO](https://huggingface.co/GritLM/GritLM-8x7B-KTO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s><|user|> {prompt} <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [GritLM-8x7B-KTO-Q2_K.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [GritLM-8x7B-KTO-Q3_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [GritLM-8x7B-KTO-Q3_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [GritLM-8x7B-KTO-Q3_K_L.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [GritLM-8x7B-KTO-Q4_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [GritLM-8x7B-KTO-Q4_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [GritLM-8x7B-KTO-Q4_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [GritLM-8x7B-KTO-Q5_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [GritLM-8x7B-KTO-Q5_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [GritLM-8x7B-KTO-Q5_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [GritLM-8x7B-KTO-Q6_K.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [GritLM-8x7B-KTO-Q8_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-KTO-GGUF/blob/main/GritLM-8x7B-KTO-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/GritLM-8x7B-KTO-GGUF --include "GritLM-8x7B-KTO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/GritLM-8x7B-KTO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Leia-Swallow-13b-GGUF
tensorblock
2025-04-21T00:23:53Z
24
0
null
[ "gguf", "TensorBlock", "GGUF", "ja", "base_model:leia-llm/Leia-Swallow-13b", "base_model:quantized:leia-llm/Leia-Swallow-13b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-13T13:34:25Z
--- license: apache-2.0 language: - ja tags: - TensorBlock - GGUF base_model: leia-llm/Leia-Swallow-13b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## leia-llm/Leia-Swallow-13b - GGUF This repo contains GGUF format model files for [leia-llm/Leia-Swallow-13b](https://huggingface.co/leia-llm/Leia-Swallow-13b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Leia-Swallow-13b-Q2_K.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q2_K.gguf) | Q2_K | 4.920 GB | smallest, significant quality loss - not recommended for most purposes | | [Leia-Swallow-13b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q3_K_S.gguf) | Q3_K_S | 5.731 GB | very small, high quality loss | | [Leia-Swallow-13b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q3_K_M.gguf) | Q3_K_M | 6.410 GB | very small, high quality loss | | [Leia-Swallow-13b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q3_K_L.gguf) | Q3_K_L | 7.001 GB | small, substantial quality loss | | [Leia-Swallow-13b-Q4_0.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q4_0.gguf) | Q4_0 | 7.445 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Leia-Swallow-13b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q4_K_S.gguf) | Q4_K_S | 7.503 GB | small, greater quality loss | | [Leia-Swallow-13b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q4_K_M.gguf) | Q4_K_M | 7.945 GB | medium, balanced quality - recommended | | [Leia-Swallow-13b-Q5_0.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q5_0.gguf) | Q5_0 | 9.059 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Leia-Swallow-13b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q5_K_S.gguf) | Q5_K_S | 9.059 GB | large, low quality loss - recommended | | [Leia-Swallow-13b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q5_K_M.gguf) | Q5_K_M | 9.316 GB | large, very low quality loss - recommended | | [Leia-Swallow-13b-Q6_K.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q6_K.gguf) | Q6_K | 10.773 GB | very large, extremely low quality loss | | [Leia-Swallow-13b-Q8_0.gguf](https://huggingface.co/tensorblock/Leia-Swallow-13b-GGUF/blob/main/Leia-Swallow-13b-Q8_0.gguf) | Q8_0 | 13.953 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Leia-Swallow-13b-GGUF --include "Leia-Swallow-13b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Leia-Swallow-13b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF
tensorblock
2025-04-21T00:23:48Z
1
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "endpoints_compatible", "region:us" ]
null
2024-12-13T13:26:42Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: Goekdeniz-Guelmez/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Goekdeniz-Guelmez/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta - GGUF This repo contains GGUF format model files for [Goekdeniz-Guelmez/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta](https://huggingface.co/Goekdeniz-Guelmez/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q2_K.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_S.gguf) | Q3_K_S | 0.121 GB | very small, high quality loss | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q3_K_L.gguf) | Q3_K_L | 0.136 GB | small, substantial quality loss | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_0.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q4_K_M.gguf) | Q4_K_M | 0.157 GB | medium, balanced quality - recommended | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_0.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_0.gguf) | Q5_0 | 0.175 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_K_S.gguf) | Q5_K_S | 0.175 GB | large, low quality loss - recommended | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q6_K.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss | | [TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q8_0.gguf](https://huggingface.co/tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF/blob/main/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q8_0.gguf) | Q8_0 | 0.263 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF --include "TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyJ.O.S.I.E.-8x220M-Chat-Checkpoint-30000-steps-Beta-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/code_gpt2-GGUF
tensorblock
2025-04-21T00:23:44Z
86
0
null
[ "gguf", "gpt2", "dpo", "code", "TensorBlock", "GGUF", "text-generation", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:mlabonne/CodeLlama-2-20k", "dataset:Intel/orca_dpo_pairs", "dataset:Sharathhebbar24/Evol-Instruct-Code-80k-v1", "dataset:Sharathhebbar24/sql-create-context", "base_model:Sharathhebbar24/code_gpt2", "base_model:quantized:Sharathhebbar24/code_gpt2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-12-13T13:20:52Z
--- language: - en license: apache-2.0 tags: - gpt2 - dpo - code - TensorBlock - GGUF datasets: - HuggingFaceH4/ultrachat_200k - mlabonne/CodeLlama-2-20k - Intel/orca_dpo_pairs - Sharathhebbar24/Evol-Instruct-Code-80k-v1 - Sharathhebbar24/sql-create-context pipeline_tag: text-generation base_model: Sharathhebbar24/code_gpt2 model-index: - name: code_gpt2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 23.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 30.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 40.6 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 49.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Sharathhebbar24/code_gpt2 - GGUF This repo contains GGUF format model files for [Sharathhebbar24/code_gpt2](https://huggingface.co/Sharathhebbar24/code_gpt2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [code_gpt2-Q2_K.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q2_K.gguf) | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes | | [code_gpt2-Q3_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q3_K_S.gguf) | Q3_K_S | 0.090 GB | very small, high quality loss | | [code_gpt2-Q3_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q3_K_M.gguf) | Q3_K_M | 0.098 GB | very small, high quality loss | | [code_gpt2-Q3_K_L.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q3_K_L.gguf) | Q3_K_L | 0.102 GB | small, substantial quality loss | | [code_gpt2-Q4_0.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q4_0.gguf) | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [code_gpt2-Q4_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q4_K_S.gguf) | Q4_K_S | 0.107 GB | small, greater quality loss | | [code_gpt2-Q4_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q4_K_M.gguf) | Q4_K_M | 0.113 GB | medium, balanced quality - recommended | | [code_gpt2-Q5_0.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q5_0.gguf) | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [code_gpt2-Q5_K_S.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q5_K_S.gguf) | Q5_K_S | 0.122 GB | large, low quality loss - recommended | | [code_gpt2-Q5_K_M.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q5_K_M.gguf) | Q5_K_M | 0.127 GB | large, very low quality loss - recommended | | [code_gpt2-Q6_K.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q6_K.gguf) | Q6_K | 0.138 GB | very large, extremely low quality loss | | [code_gpt2-Q8_0.gguf](https://huggingface.co/tensorblock/code_gpt2-GGUF/blob/main/code_gpt2-Q8_0.gguf) | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/code_gpt2-GGUF --include "code_gpt2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/code_gpt2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF
tensorblock
2025-04-21T00:23:37Z
37
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:chihoonlee10/T3Q-ko-solar-dpo-v5.0", "base_model:quantized:chihoonlee10/T3Q-ko-solar-dpo-v5.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-13T10:54:27Z
--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: chihoonlee10/T3Q-ko-solar-dpo-v5.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## chihoonlee10/T3Q-ko-solar-dpo-v5.0 - GGUF This repo contains GGUF format model files for [chihoonlee10/T3Q-ko-solar-dpo-v5.0](https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v5.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [T3Q-ko-solar-dpo-v5.0-Q2_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [T3Q-ko-solar-dpo-v5.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [T3Q-ko-solar-dpo-v5.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [T3Q-ko-solar-dpo-v5.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [T3Q-ko-solar-dpo-v5.0-Q4_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [T3Q-ko-solar-dpo-v5.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [T3Q-ko-solar-dpo-v5.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [T3Q-ko-solar-dpo-v5.0-Q5_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [T3Q-ko-solar-dpo-v5.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [T3Q-ko-solar-dpo-v5.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [T3Q-ko-solar-dpo-v5.0-Q6_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [T3Q-ko-solar-dpo-v5.0-Q8_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF/blob/main/T3Q-ko-solar-dpo-v5.0-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF --include "T3Q-ko-solar-dpo-v5.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/T3Q-ko-solar-dpo-v5.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Algae-550M-GGUF
tensorblock
2025-04-21T00:23:35Z
13
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:PhelixZhen/Algae-550M", "base_model:quantized:PhelixZhen/Algae-550M", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-13T10:46:56Z
--- license: mit language: en base_model: PhelixZhen/Algae-550M tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## PhelixZhen/Algae-550M - GGUF This repo contains GGUF format model files for [PhelixZhen/Algae-550M](https://huggingface.co/PhelixZhen/Algae-550M). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Algae-550M-Q2_K.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q2_K.gguf) | Q2_K | 0.239 GB | smallest, significant quality loss - not recommended for most purposes | | [Algae-550M-Q3_K_S.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q3_K_S.gguf) | Q3_K_S | 0.267 GB | very small, high quality loss | | [Algae-550M-Q3_K_M.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q3_K_M.gguf) | Q3_K_M | 0.296 GB | very small, high quality loss | | [Algae-550M-Q3_K_L.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q3_K_L.gguf) | Q3_K_L | 0.322 GB | small, substantial quality loss | | [Algae-550M-Q4_0.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q4_0.gguf) | Q4_0 | 0.332 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Algae-550M-Q4_K_S.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q4_K_S.gguf) | Q4_K_S | 0.335 GB | small, greater quality loss | | [Algae-550M-Q4_K_M.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q4_K_M.gguf) | Q4_K_M | 0.355 GB | medium, balanced quality - recommended | | [Algae-550M-Q5_0.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q5_0.gguf) | Q5_0 | 0.393 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Algae-550M-Q5_K_S.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q5_K_S.gguf) | Q5_K_S | 0.393 GB | large, low quality loss - recommended | | [Algae-550M-Q5_K_M.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q5_K_M.gguf) | Q5_K_M | 0.405 GB | large, very low quality loss - recommended | | [Algae-550M-Q6_K.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q6_K.gguf) | Q6_K | 0.458 GB | very large, extremely low quality loss | | [Algae-550M-Q8_0.gguf](https://huggingface.co/tensorblock/Algae-550M-GGUF/blob/main/Algae-550M-Q8_0.gguf) | Q8_0 | 0.593 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Algae-550M-GGUF --include "Algae-550M-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Algae-550M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF
tensorblock
2025-04-21T00:23:28Z
90
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "ja", "base_model:tokyotech-llm/Swallow-MS-7b-instruct-v0.1", "base_model:quantized:tokyotech-llm/Swallow-MS-7b-instruct-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T09:03:08Z
--- language: - en - ja library_name: transformers pipeline_tag: text-generation model_type: mistral license: apache-2.0 base_model: tokyotech-llm/Swallow-MS-7b-instruct-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## tokyotech-llm/Swallow-MS-7b-instruct-v0.1 - GGUF This repo contains GGUF format model files for [tokyotech-llm/Swallow-MS-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-instruct-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Swallow-MS-7b-instruct-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q2_K.gguf) | Q2_K | 2.770 GB | smallest, significant quality loss - not recommended for most purposes | | [Swallow-MS-7b-instruct-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q3_K_S.gguf) | Q3_K_S | 3.220 GB | very small, high quality loss | | [Swallow-MS-7b-instruct-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q3_K_M.gguf) | Q3_K_M | 3.575 GB | very small, high quality loss | | [Swallow-MS-7b-instruct-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q3_K_L.gguf) | Q3_K_L | 3.878 GB | small, substantial quality loss | | [Swallow-MS-7b-instruct-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q4_0.gguf) | Q4_0 | 4.170 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Swallow-MS-7b-instruct-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q4_K_S.gguf) | Q4_K_S | 4.202 GB | small, greater quality loss | | [Swallow-MS-7b-instruct-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q4_K_M.gguf) | Q4_K_M | 4.430 GB | medium, balanced quality - recommended | | [Swallow-MS-7b-instruct-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q5_0.gguf) | Q5_0 | 5.065 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Swallow-MS-7b-instruct-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q5_K_S.gguf) | Q5_K_S | 5.065 GB | large, low quality loss - recommended | | [Swallow-MS-7b-instruct-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q5_K_M.gguf) | Q5_K_M | 5.198 GB | large, very low quality loss - recommended | | [Swallow-MS-7b-instruct-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q6_K.gguf) | Q6_K | 6.015 GB | very large, extremely low quality loss | | [Swallow-MS-7b-instruct-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF/blob/main/Swallow-MS-7b-instruct-v0.1-Q8_0.gguf) | Q8_0 | 7.790 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF --include "Swallow-MS-7b-instruct-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Swallow-MS-7b-instruct-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Myrrh_solar_10.7b_2.0-GGUF
tensorblock
2025-04-21T00:23:26Z
23
0
null
[ "gguf", "TensorBlock", "GGUF", "ko", "base_model:MoaData/Myrrh_solar_10.7b_2.0", "base_model:quantized:MoaData/Myrrh_solar_10.7b_2.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-13T07:15:11Z
--- license: apache-2.0 language: - ko tags: - TensorBlock - GGUF base_model: MoaData/Myrrh_solar_10.7b_2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## MoaData/Myrrh_solar_10.7b_2.0 - GGUF This repo contains GGUF format model files for [MoaData/Myrrh_solar_10.7b_2.0](https://huggingface.co/MoaData/Myrrh_solar_10.7b_2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Myrrh_solar_10.7b_2.0-Q2_K.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Myrrh_solar_10.7b_2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Myrrh_solar_10.7b_2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Myrrh_solar_10.7b_2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Myrrh_solar_10.7b_2.0-Q4_0.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Myrrh_solar_10.7b_2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Myrrh_solar_10.7b_2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Myrrh_solar_10.7b_2.0-Q5_0.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Myrrh_solar_10.7b_2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Myrrh_solar_10.7b_2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Myrrh_solar_10.7b_2.0-Q6_K.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Myrrh_solar_10.7b_2.0-Q8_0.gguf](https://huggingface.co/tensorblock/Myrrh_solar_10.7b_2.0-GGUF/blob/main/Myrrh_solar_10.7b_2.0-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Myrrh_solar_10.7b_2.0-GGUF --include "Myrrh_solar_10.7b_2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Myrrh_solar_10.7b_2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Zamfir-7B-slerp-GGUF
tensorblock
2025-04-21T00:23:25Z
26
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "gordicaleksa/YugoGPT", "HuggingFaceH4/zephyr-7b-beta", "TensorBlock", "GGUF", "base_model:Stopwolf/Zamfir-7B-slerp", "base_model:quantized:Stopwolf/Zamfir-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T06:53:26Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - gordicaleksa/YugoGPT - HuggingFaceH4/zephyr-7b-beta - TensorBlock - GGUF base_model: Stopwolf/Zamfir-7B-slerp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Stopwolf/Zamfir-7B-slerp - GGUF This repo contains GGUF format model files for [Stopwolf/Zamfir-7B-slerp](https://huggingface.co/Stopwolf/Zamfir-7B-slerp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Zamfir-7B-slerp-Q2_K.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Zamfir-7B-slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Zamfir-7B-slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Zamfir-7B-slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Zamfir-7B-slerp-Q4_0.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Zamfir-7B-slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Zamfir-7B-slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Zamfir-7B-slerp-Q5_0.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Zamfir-7B-slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Zamfir-7B-slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Zamfir-7B-slerp-Q6_K.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Zamfir-7B-slerp-Q8_0.gguf](https://huggingface.co/tensorblock/Zamfir-7B-slerp-GGUF/blob/main/Zamfir-7B-slerp-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Zamfir-7B-slerp-GGUF --include "Zamfir-7B-slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Zamfir-7B-slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Confluence-Renegade-7B-GGUF
tensorblock
2025-04-21T00:23:23Z
26
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "TensorBlock", "GGUF", "base_model:Nekochu/Confluence-Renegade-7B", "base_model:quantized:Nekochu/Confluence-Renegade-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-13T06:15:23Z
--- license: apache-2.0 base_model: Nekochu/Confluence-Renegade-7B library_name: transformers tags: - mergekit - merge - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Nekochu/Confluence-Renegade-7B - GGUF This repo contains GGUF format model files for [Nekochu/Confluence-Renegade-7B](https://huggingface.co/Nekochu/Confluence-Renegade-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Confluence-Renegade-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Confluence-Renegade-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Confluence-Renegade-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Confluence-Renegade-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Confluence-Renegade-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Confluence-Renegade-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Confluence-Renegade-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Confluence-Renegade-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Confluence-Renegade-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Confluence-Renegade-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Confluence-Renegade-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Confluence-Renegade-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Confluence-Renegade-7B-GGUF/blob/main/Confluence-Renegade-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Confluence-Renegade-7B-GGUF --include "Confluence-Renegade-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Confluence-Renegade-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Meltemi-7B-Instruct-v1-GGUF
tensorblock
2025-04-21T00:23:22Z
27
0
null
[ "gguf", "finetuned", "TensorBlock", "GGUF", "text-generation", "el", "en", "base_model:ilsp/Meltemi-7B-Instruct-v1", "base_model:quantized:ilsp/Meltemi-7B-Instruct-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T05:32:09Z
--- license: apache-2.0 language: - el - en tags: - finetuned - TensorBlock - GGUF inference: true pipeline_tag: text-generation base_model: ilsp/Meltemi-7B-Instruct-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ilsp/Meltemi-7B-Instruct-v1 - GGUF This repo contains GGUF format model files for [ilsp/Meltemi-7B-Instruct-v1](https://huggingface.co/ilsp/Meltemi-7B-Instruct-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Meltemi-7B-Instruct-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q2_K.gguf) | Q2_K | 2.859 GB | smallest, significant quality loss - not recommended for most purposes | | [Meltemi-7B-Instruct-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q3_K_S.gguf) | Q3_K_S | 3.317 GB | very small, high quality loss | | [Meltemi-7B-Instruct-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q3_K_M.gguf) | Q3_K_M | 3.671 GB | very small, high quality loss | | [Meltemi-7B-Instruct-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q3_K_L.gguf) | Q3_K_L | 3.974 GB | small, substantial quality loss | | [Meltemi-7B-Instruct-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q4_0.gguf) | Q4_0 | 4.277 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Meltemi-7B-Instruct-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q4_K_S.gguf) | Q4_K_S | 4.308 GB | small, greater quality loss | | [Meltemi-7B-Instruct-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q4_K_M.gguf) | Q4_K_M | 4.537 GB | medium, balanced quality - recommended | | [Meltemi-7B-Instruct-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q5_0.gguf) | Q5_0 | 5.181 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Meltemi-7B-Instruct-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q5_K_S.gguf) | Q5_K_S | 5.181 GB | large, low quality loss - recommended | | [Meltemi-7B-Instruct-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q5_K_M.gguf) | Q5_K_M | 5.315 GB | large, very low quality loss - recommended | | [Meltemi-7B-Instruct-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q6_K.gguf) | Q6_K | 6.141 GB | very large, extremely low quality loss | | [Meltemi-7B-Instruct-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Meltemi-7B-Instruct-v1-GGUF/blob/main/Meltemi-7B-Instruct-v1-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Meltemi-7B-Instruct-v1-GGUF --include "Meltemi-7B-Instruct-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Meltemi-7B-Instruct-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Qwen1.5-0.4B-Chat-GGUF
tensorblock
2025-04-21T00:23:19Z
28
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:nathanrchn/Qwen1.5-0.4B-Chat", "base_model:quantized:nathanrchn/Qwen1.5-0.4B-Chat", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T05:17:37Z
--- license: other license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/blob/main/LICENSE library_name: transformers tags: - TensorBlock - GGUF base_model: nathanrchn/Qwen1.5-0.4B-Chat --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## nathanrchn/Qwen1.5-0.4B-Chat - GGUF This repo contains GGUF format model files for [nathanrchn/Qwen1.5-0.4B-Chat](https://huggingface.co/nathanrchn/Qwen1.5-0.4B-Chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen1.5-0.4B-Chat-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q2_K.gguf) | Q2_K | 0.228 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen1.5-0.4B-Chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q3_K_S.gguf) | Q3_K_S | 0.244 GB | very small, high quality loss | | [Qwen1.5-0.4B-Chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q3_K_M.gguf) | Q3_K_M | 0.258 GB | very small, high quality loss | | [Qwen1.5-0.4B-Chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q3_K_L.gguf) | Q3_K_L | 0.270 GB | small, substantial quality loss | | [Qwen1.5-0.4B-Chat-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q4_0.gguf) | Q4_0 | 0.278 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen1.5-0.4B-Chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q4_K_S.gguf) | Q4_K_S | 0.280 GB | small, greater quality loss | | [Qwen1.5-0.4B-Chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q4_K_M.gguf) | Q4_K_M | 0.289 GB | medium, balanced quality - recommended | | [Qwen1.5-0.4B-Chat-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q5_0.gguf) | Q5_0 | 0.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen1.5-0.4B-Chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q5_K_S.gguf) | Q5_K_S | 0.311 GB | large, low quality loss - recommended | | [Qwen1.5-0.4B-Chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q5_K_M.gguf) | Q5_K_M | 0.316 GB | large, very low quality loss - recommended | | [Qwen1.5-0.4B-Chat-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q6_K.gguf) | Q6_K | 0.345 GB | very large, extremely low quality loss | | [Qwen1.5-0.4B-Chat-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-0.4B-Chat-GGUF/blob/main/Qwen1.5-0.4B-Chat-Q8_0.gguf) | Q8_0 | 0.445 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen1.5-0.4B-Chat-GGUF --include "Qwen1.5-0.4B-Chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen1.5-0.4B-Chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/nous-6-GGUF
tensorblock
2025-04-21T00:22:59Z
12
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:kalytm/nous-6", "base_model:quantized:kalytm/nous-6", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T03:51:01Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: kalytm/nous-6 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kalytm/nous-6 - GGUF This repo contains GGUF format model files for [kalytm/nous-6](https://huggingface.co/kalytm/nous-6). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}<|endoftext|> <|user|> {prompt}<|endoftext|> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [nous-6-Q2_K.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q2_K.gguf) | Q2_K | 0.694 GB | smallest, significant quality loss - not recommended for most purposes | | [nous-6-Q3_K_S.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q3_K_S.gguf) | Q3_K_S | 0.792 GB | very small, high quality loss | | [nous-6-Q3_K_M.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q3_K_M.gguf) | Q3_K_M | 0.858 GB | very small, high quality loss | | [nous-6-Q3_K_L.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q3_K_L.gguf) | Q3_K_L | 0.915 GB | small, substantial quality loss | | [nous-6-Q4_0.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q4_0.gguf) | Q4_0 | 0.983 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [nous-6-Q4_K_S.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q4_K_S.gguf) | Q4_K_S | 0.989 GB | small, greater quality loss | | [nous-6-Q4_K_M.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q4_K_M.gguf) | Q4_K_M | 1.031 GB | medium, balanced quality - recommended | | [nous-6-Q5_0.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q5_0.gguf) | Q5_0 | 1.163 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [nous-6-Q5_K_S.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q5_K_S.gguf) | Q5_K_S | 1.163 GB | large, low quality loss - recommended | | [nous-6-Q5_K_M.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q5_K_M.gguf) | Q5_K_M | 1.188 GB | large, very low quality loss - recommended | | [nous-6-Q6_K.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q6_K.gguf) | Q6_K | 1.354 GB | very large, extremely low quality loss | | [nous-6-Q8_0.gguf](https://huggingface.co/tensorblock/nous-6-GGUF/blob/main/nous-6-Q8_0.gguf) | Q8_0 | 1.752 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/nous-6-GGUF --include "nous-6-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/nous-6-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/google-gemma-7b-it-dequantized-GGUF
tensorblock
2025-04-21T00:22:49Z
32
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:justinxzhao/google-gemma-7b-it-dequantized", "base_model:quantized:justinxzhao/google-gemma-7b-it-dequantized", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T02:54:00Z
--- base_model: justinxzhao/google-gemma-7b-it-dequantized tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## justinxzhao/google-gemma-7b-it-dequantized - GGUF This repo contains GGUF format model files for [justinxzhao/google-gemma-7b-it-dequantized](https://huggingface.co/justinxzhao/google-gemma-7b-it-dequantized). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [google-gemma-7b-it-dequantized-Q2_K.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q2_K.gguf) | Q2_K | 3.481 GB | smallest, significant quality loss - not recommended for most purposes | | [google-gemma-7b-it-dequantized-Q3_K_S.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q3_K_S.gguf) | Q3_K_S | 3.982 GB | very small, high quality loss | | [google-gemma-7b-it-dequantized-Q3_K_M.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q3_K_M.gguf) | Q3_K_M | 4.369 GB | very small, high quality loss | | [google-gemma-7b-it-dequantized-Q3_K_L.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q3_K_L.gguf) | Q3_K_L | 4.709 GB | small, substantial quality loss | | [google-gemma-7b-it-dequantized-Q4_0.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q4_0.gguf) | Q4_0 | 5.012 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [google-gemma-7b-it-dequantized-Q4_K_S.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q4_K_S.gguf) | Q4_K_S | 5.046 GB | small, greater quality loss | | [google-gemma-7b-it-dequantized-Q4_K_M.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q4_K_M.gguf) | Q4_K_M | 5.330 GB | medium, balanced quality - recommended | | [google-gemma-7b-it-dequantized-Q5_0.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q5_0.gguf) | Q5_0 | 5.981 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [google-gemma-7b-it-dequantized-Q5_K_S.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q5_K_S.gguf) | Q5_K_S | 5.981 GB | large, low quality loss - recommended | | [google-gemma-7b-it-dequantized-Q5_K_M.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q5_K_M.gguf) | Q5_K_M | 6.145 GB | large, very low quality loss - recommended | | [google-gemma-7b-it-dequantized-Q6_K.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q6_K.gguf) | Q6_K | 7.010 GB | very large, extremely low quality loss | | [google-gemma-7b-it-dequantized-Q8_0.gguf](https://huggingface.co/tensorblock/google-gemma-7b-it-dequantized-GGUF/blob/main/google-gemma-7b-it-dequantized-Q8_0.gguf) | Q8_0 | 9.078 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/google-gemma-7b-it-dequantized-GGUF --include "google-gemma-7b-it-dequantized-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/google-gemma-7b-it-dequantized-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF
tensorblock
2025-04-21T00:22:47Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "ko", "en", "base_model:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0", "base_model:quantized:KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-13T02:39:01Z
--- license: cc-by-nc-4.0 language: - ko - en tags: - TensorBlock - GGUF base_model: KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0 - GGUF This repo contains GGUF format model files for [KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0](https://huggingface.co/KBNIT/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q2_K.gguf) | Q2_K | 4.046 GB | smallest, significant quality loss - not recommended for most purposes | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_S.gguf) | Q3_K_S | 4.711 GB | very small, high quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_M.gguf) | Q3_K_M | 5.242 GB | very small, high quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q3_K_L.gguf) | Q3_K_L | 5.697 GB | small, substantial quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_0.gguf) | Q4_0 | 6.123 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_K_S.gguf) | Q4_K_S | 6.169 GB | small, greater quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q4_K_M.gguf) | Q4_K_M | 6.513 GB | medium, balanced quality - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_0.gguf) | Q5_0 | 7.453 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_K_S.gguf) | Q5_K_S | 7.453 GB | large, low quality loss - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q5_K_M.gguf) | Q5_K_M | 7.653 GB | large, very low quality loss - recommended | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q6_K.gguf) | Q6_K | 8.866 GB | very large, extremely low quality loss | | [KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF/blob/main/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q8_0.gguf) | Q8_0 | 11.482 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF --include "KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-QLoRA-NEFTune-kolon-v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-ko-7b-it-v0.41-GGUF
tensorblock
2025-04-21T00:22:45Z
37
0
transformers
[ "transformers", "gguf", "korean", "gemma", "pytorch", "TensorBlock", "GGUF", "text-generation", "ko", "en", "base_model:lemon-mint/gemma-ko-7b-it-v0.41", "base_model:quantized:lemon-mint/gemma-ko-7b-it-v0.41", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T01:50:11Z
--- library_name: transformers license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms language: - ko - en tags: - korean - gemma - pytorch - TensorBlock - GGUF pipeline_tag: text-generation base_model: lemon-mint/gemma-ko-7b-it-v0.41 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## lemon-mint/gemma-ko-7b-it-v0.41 - GGUF This repo contains GGUF format model files for [lemon-mint/gemma-ko-7b-it-v0.41](https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-ko-7b-it-v0.41-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q2_K.gguf) | Q2_K | 3.481 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-ko-7b-it-v0.41-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q3_K_S.gguf) | Q3_K_S | 3.982 GB | very small, high quality loss | | [gemma-ko-7b-it-v0.41-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q3_K_M.gguf) | Q3_K_M | 4.369 GB | very small, high quality loss | | [gemma-ko-7b-it-v0.41-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q3_K_L.gguf) | Q3_K_L | 4.709 GB | small, substantial quality loss | | [gemma-ko-7b-it-v0.41-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q4_0.gguf) | Q4_0 | 5.012 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-ko-7b-it-v0.41-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q4_K_S.gguf) | Q4_K_S | 5.046 GB | small, greater quality loss | | [gemma-ko-7b-it-v0.41-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q4_K_M.gguf) | Q4_K_M | 5.330 GB | medium, balanced quality - recommended | | [gemma-ko-7b-it-v0.41-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q5_0.gguf) | Q5_0 | 5.981 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-ko-7b-it-v0.41-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q5_K_S.gguf) | Q5_K_S | 5.981 GB | large, low quality loss - recommended | | [gemma-ko-7b-it-v0.41-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q5_K_M.gguf) | Q5_K_M | 6.145 GB | large, very low quality loss - recommended | | [gemma-ko-7b-it-v0.41-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q6_K.gguf) | Q6_K | 7.010 GB | very large, extremely low quality loss | | [gemma-ko-7b-it-v0.41-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-ko-7b-it-v0.41-GGUF/blob/main/gemma-ko-7b-it-v0.41-Q8_0.gguf) | Q8_0 | 9.078 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-ko-7b-it-v0.41-GGUF --include "gemma-ko-7b-it-v0.41-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-ko-7b-it-v0.41-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/T3Q-ko-solar-sft-v2.0-GGUF
tensorblock
2025-04-21T00:22:42Z
28
0
null
[ "gguf", "T3Q-ko-solar-sft-v2.0", "nlpai-lab/kullm-v2", "TensorBlock", "GGUF", "text-generation", "en", "dataset:nlpai-lab/kullm-v2", "base_model:chlee10/T3Q-ko-solar-sft-v2.0", "base_model:quantized:chlee10/T3Q-ko-solar-sft-v2.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-13T01:12:17Z
--- pipeline_tag: text-generation license: apache-2.0 language: - en tags: - T3Q-ko-solar-sft-v2.0 - nlpai-lab/kullm-v2 - TensorBlock - GGUF base_model: chlee10/T3Q-ko-solar-sft-v2.0 datasets: - nlpai-lab/kullm-v2 model-index: - name: T3Q-ko-solar-sft-v2.0 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## chlee10/T3Q-ko-solar-sft-v2.0 - GGUF This repo contains GGUF format model files for [chlee10/T3Q-ko-solar-sft-v2.0](https://huggingface.co/chlee10/T3Q-ko-solar-sft-v2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [T3Q-ko-solar-sft-v2.0-Q2_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [T3Q-ko-solar-sft-v2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [T3Q-ko-solar-sft-v2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [T3Q-ko-solar-sft-v2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [T3Q-ko-solar-sft-v2.0-Q4_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [T3Q-ko-solar-sft-v2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [T3Q-ko-solar-sft-v2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [T3Q-ko-solar-sft-v2.0-Q5_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [T3Q-ko-solar-sft-v2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [T3Q-ko-solar-sft-v2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [T3Q-ko-solar-sft-v2.0-Q6_K.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [T3Q-ko-solar-sft-v2.0-Q8_0.gguf](https://huggingface.co/tensorblock/T3Q-ko-solar-sft-v2.0-GGUF/blob/main/T3Q-ko-solar-sft-v2.0-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/T3Q-ko-solar-sft-v2.0-GGUF --include "T3Q-ko-solar-sft-v2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/T3Q-ko-solar-sft-v2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SambaLingo-Arabic-Base-70B-GGUF
tensorblock
2025-04-21T00:22:35Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "ar", "en", "dataset:uonlp/CulturaX", "base_model:sambanovasystems/SambaLingo-Arabic-Base-70B", "base_model:quantized:sambanovasystems/SambaLingo-Arabic-Base-70B", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-12T23:34:41Z
--- license: llama2 datasets: - uonlp/CulturaX language: - ar - en metrics: - chrf - accuracy - bleu tags: - TensorBlock - GGUF base_model: sambanovasystems/SambaLingo-Arabic-Base-70B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## sambanovasystems/SambaLingo-Arabic-Base-70B - GGUF This repo contains GGUF format model files for [sambanovasystems/SambaLingo-Arabic-Base-70B](https://huggingface.co/sambanovasystems/SambaLingo-Arabic-Base-70B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SambaLingo-Arabic-Base-70B-Q2_K.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q2_K.gguf) | Q2_K | 25.702 GB | smallest, significant quality loss - not recommended for most purposes | | [SambaLingo-Arabic-Base-70B-Q3_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q3_K_S.gguf) | Q3_K_S | 30.180 GB | very small, high quality loss | | [SambaLingo-Arabic-Base-70B-Q3_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q3_K_M.gguf) | Q3_K_M | 33.535 GB | very small, high quality loss | | [SambaLingo-Arabic-Base-70B-Q3_K_L.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q3_K_L.gguf) | Q3_K_L | 36.408 GB | small, substantial quality loss | | [SambaLingo-Arabic-Base-70B-Q4_0.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q4_0.gguf) | Q4_0 | 39.160 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SambaLingo-Arabic-Base-70B-Q4_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q4_K_S.gguf) | Q4_K_S | 39.538 GB | small, greater quality loss | | [SambaLingo-Arabic-Base-70B-Q4_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q4_K_M.gguf) | Q4_K_M | 41.711 GB | medium, balanced quality - recommended | | [SambaLingo-Arabic-Base-70B-Q5_0.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q5_0.gguf) | Q5_0 | 47.775 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SambaLingo-Arabic-Base-70B-Q5_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q5_K_S.gguf) | Q5_K_S | 47.775 GB | large, low quality loss - recommended | | [SambaLingo-Arabic-Base-70B-Q5_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q5_K_M.gguf) | Q5_K_M | 49.068 GB | large, very low quality loss - recommended | | [SambaLingo-Arabic-Base-70B-Q6_K](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q6_K) | Q6_K | 56.929 GB | very large, extremely low quality loss | | [SambaLingo-Arabic-Base-70B-Q8_0](https://huggingface.co/tensorblock/SambaLingo-Arabic-Base-70B-GGUF/blob/main/SambaLingo-Arabic-Base-70B-Q8_0) | Q8_0 | 73.734 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SambaLingo-Arabic-Base-70B-GGUF --include "SambaLingo-Arabic-Base-70B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SambaLingo-Arabic-Base-70B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF
tensorblock
2025-04-21T00:22:34Z
36
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "TensorBlock", "GGUF", "base_model:saishf/Fimbulvetr-Kuro-Lotus-10.7B", "base_model:quantized:saishf/Fimbulvetr-Kuro-Lotus-10.7B", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-12T22:49:07Z
--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge - TensorBlock - GGUF base_model: saishf/Fimbulvetr-Kuro-Lotus-10.7B model-index: - name: Fimbulvetr-Kuro-Lotus-10.7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.95 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## saishf/Fimbulvetr-Kuro-Lotus-10.7B - GGUF This repo contains GGUF format model files for [saishf/Fimbulvetr-Kuro-Lotus-10.7B](https://huggingface.co/saishf/Fimbulvetr-Kuro-Lotus-10.7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Fimbulvetr-Kuro-Lotus-10.7B-Q2_K.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Fimbulvetr-Kuro-Lotus-10.7B-Q4_0.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Fimbulvetr-Kuro-Lotus-10.7B-Q5_0.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Fimbulvetr-Kuro-Lotus-10.7B-Q6_K.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Fimbulvetr-Kuro-Lotus-10.7B-Q8_0.gguf](https://huggingface.co/tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF/blob/main/Fimbulvetr-Kuro-Lotus-10.7B-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF --include "Fimbulvetr-Kuro-Lotus-10.7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Fimbulvetr-Kuro-Lotus-10.7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Reyna-Mini-1.8B-v0.2-GGUF
tensorblock
2025-04-21T00:22:31Z
16
0
transformers
[ "transformers", "gguf", "chatml", "finetune", "gpt4", "synthetic data", "custom_code", "qwen2", "TensorBlock", "GGUF", "dataset:Locutusque/Hercules-v3.0", "base_model:aloobun/Reyna-Mini-1.8B-v0.2", "base_model:quantized:aloobun/Reyna-Mini-1.8B-v0.2", "license:other", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-12T22:05:20Z
--- license: other library_name: transformers tags: - chatml - finetune - gpt4 - synthetic data - custom_code - qwen2 - TensorBlock - GGUF datasets: - Locutusque/Hercules-v3.0 license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/raw/main/LICENSE base_model: aloobun/Reyna-Mini-1.8B-v0.2 model-index: - name: Reyna-Mini-1.8B-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 36.6 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 60.19 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 44.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.24 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 61.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Reyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## aloobun/Reyna-Mini-1.8B-v0.2 - GGUF This repo contains GGUF format model files for [aloobun/Reyna-Mini-1.8B-v0.2](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Reyna-Mini-1.8B-v0.2-Q2_K.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q2_K.gguf) | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes | | [Reyna-Mini-1.8B-v0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q3_K_S.gguf) | Q3_K_S | 0.954 GB | very small, high quality loss | | [Reyna-Mini-1.8B-v0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q3_K_M.gguf) | Q3_K_M | 1.016 GB | very small, high quality loss | | [Reyna-Mini-1.8B-v0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q3_K_L.gguf) | Q3_K_L | 1.056 GB | small, substantial quality loss | | [Reyna-Mini-1.8B-v0.2-Q4_0.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q4_0.gguf) | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Reyna-Mini-1.8B-v0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q4_K_S.gguf) | Q4_K_S | 1.158 GB | small, greater quality loss | | [Reyna-Mini-1.8B-v0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q4_K_M.gguf) | Q4_K_M | 1.218 GB | medium, balanced quality - recommended | | [Reyna-Mini-1.8B-v0.2-Q5_0.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Reyna-Mini-1.8B-v0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q5_K_S.gguf) | Q5_K_S | 1.328 GB | large, low quality loss - recommended | | [Reyna-Mini-1.8B-v0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q5_K_M.gguf) | Q5_K_M | 1.377 GB | large, very low quality loss - recommended | | [Reyna-Mini-1.8B-v0.2-Q6_K.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q6_K.gguf) | Q6_K | 1.579 GB | very large, extremely low quality loss | | [Reyna-Mini-1.8B-v0.2-Q8_0.gguf](https://huggingface.co/tensorblock/Reyna-Mini-1.8B-v0.2-GGUF/blob/main/Reyna-Mini-1.8B-v0.2-Q8_0.gguf) | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Reyna-Mini-1.8B-v0.2-GGUF --include "Reyna-Mini-1.8B-v0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Reyna-Mini-1.8B-v0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/FuseChat-7B-VaRM-GGUF
tensorblock
2025-04-21T00:22:23Z
131
0
transformers
[ "transformers", "gguf", "mistral", "mixtral", "solar", "model-fusion", "fusechat", "TensorBlock", "GGUF", "text-generation", "en", "dataset:FuseAI/FuseChat-Mixture", "base_model:FuseAI/FuseChat-7B-VaRM", "base_model:quantized:FuseAI/FuseChat-7B-VaRM", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-12T20:51:34Z
--- license: apache-2.0 language: - en base_model: FuseAI/FuseChat-7B-VaRM datasets: - FuseAI/FuseChat-Mixture pipeline_tag: text-generation tags: - mistral - mixtral - solar - model-fusion - fusechat - TensorBlock - GGUF library_name: transformers model-index: - name: FuseChat-7B-VaRM results: - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown value: 8.22 name: score source: url: https://huggingface.co/spaces/lmsys/mt-bench - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.88 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.25 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 45.67 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FuseAI/FuseChat-7B-VaRM name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## FuseAI/FuseChat-7B-VaRM - GGUF This repo contains GGUF format model files for [FuseAI/FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [FuseChat-7B-VaRM-Q2_K.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [FuseChat-7B-VaRM-Q3_K_S.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [FuseChat-7B-VaRM-Q3_K_M.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [FuseChat-7B-VaRM-Q3_K_L.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [FuseChat-7B-VaRM-Q4_0.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [FuseChat-7B-VaRM-Q4_K_S.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [FuseChat-7B-VaRM-Q4_K_M.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [FuseChat-7B-VaRM-Q5_0.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [FuseChat-7B-VaRM-Q5_K_S.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [FuseChat-7B-VaRM-Q5_K_M.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [FuseChat-7B-VaRM-Q6_K.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [FuseChat-7B-VaRM-Q8_0.gguf](https://huggingface.co/tensorblock/FuseChat-7B-VaRM-GGUF/blob/main/FuseChat-7B-VaRM-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FuseChat-7B-VaRM-GGUF --include "FuseChat-7B-VaRM-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FuseChat-7B-VaRM-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SambaLingo-Thai-Base-GGUF
tensorblock
2025-04-21T00:22:17Z
33
0
null
[ "gguf", "TensorBlock", "GGUF", "th", "en", "dataset:uonlp/CulturaX", "base_model:sambanovasystems/SambaLingo-Thai-Base", "base_model:quantized:sambanovasystems/SambaLingo-Thai-Base", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-12T20:09:36Z
--- license: llama2 datasets: - uonlp/CulturaX language: - th - en metrics: - chrf - accuracy - bleu base_model: sambanovasystems/SambaLingo-Thai-Base tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## sambanovasystems/SambaLingo-Thai-Base - GGUF This repo contains GGUF format model files for [sambanovasystems/SambaLingo-Thai-Base](https://huggingface.co/sambanovasystems/SambaLingo-Thai-Base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SambaLingo-Thai-Base-Q2_K.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q2_K.gguf) | Q2_K | 2.653 GB | smallest, significant quality loss - not recommended for most purposes | | [SambaLingo-Thai-Base-Q3_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q3_K_S.gguf) | Q3_K_S | 3.079 GB | very small, high quality loss | | [SambaLingo-Thai-Base-Q3_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q3_K_M.gguf) | Q3_K_M | 3.429 GB | very small, high quality loss | | [SambaLingo-Thai-Base-Q3_K_L.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q3_K_L.gguf) | Q3_K_L | 3.728 GB | small, substantial quality loss | | [SambaLingo-Thai-Base-Q4_0.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q4_0.gguf) | Q4_0 | 3.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SambaLingo-Thai-Base-Q4_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q4_K_S.gguf) | Q4_K_S | 4.001 GB | small, greater quality loss | | [SambaLingo-Thai-Base-Q4_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q4_K_M.gguf) | Q4_K_M | 4.225 GB | medium, balanced quality - recommended | | [SambaLingo-Thai-Base-Q5_0.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q5_0.gguf) | Q5_0 | 4.809 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SambaLingo-Thai-Base-Q5_K_S.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q5_K_S.gguf) | Q5_K_S | 4.809 GB | large, low quality loss - recommended | | [SambaLingo-Thai-Base-Q5_K_M.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q5_K_M.gguf) | Q5_K_M | 4.941 GB | large, very low quality loss - recommended | | [SambaLingo-Thai-Base-Q6_K.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q6_K.gguf) | Q6_K | 5.700 GB | very large, extremely low quality loss | | [SambaLingo-Thai-Base-Q8_0.gguf](https://huggingface.co/tensorblock/SambaLingo-Thai-Base-GGUF/blob/main/SambaLingo-Thai-Base-Q8_0.gguf) | Q8_0 | 7.383 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SambaLingo-Thai-Base-GGUF --include "SambaLingo-Thai-Base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SambaLingo-Thai-Base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/openchat_3.5-GGUF
tensorblock
2025-04-21T00:22:11Z
48
0
transformers
[ "transformers", "gguf", "openchat", "mistral", "C-RLFT", "TensorBlock", "GGUF", "text-generation", "dataset:openchat/openchat_sharegpt4_dataset", "dataset:imone/OpenOrca_FLAN", "dataset:LDJnr/LessWrong-Amplify-Instruct", "dataset:LDJnr/Pure-Dove", "dataset:LDJnr/Verified-Camel", "dataset:tiedong/goat", "dataset:glaiveai/glaive-code-assistant", "dataset:meta-math/MetaMathQA", "dataset:OpenAssistant/oasst_top1_2023-08-25", "dataset:TIGER-Lab/MathInstruct", "base_model:openchat/openchat_3.5", "base_model:quantized:openchat/openchat_3.5", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-12T19:05:01Z
--- license: apache-2.0 tags: - openchat - mistral - C-RLFT - TensorBlock - GGUF datasets: - openchat/openchat_sharegpt4_dataset - imone/OpenOrca_FLAN - LDJnr/LessWrong-Amplify-Instruct - LDJnr/Pure-Dove - LDJnr/Verified-Camel - tiedong/goat - glaiveai/glaive-code-assistant - meta-math/MetaMathQA - OpenAssistant/oasst_top1_2023-08-25 - TIGER-Lab/MathInstruct library_name: transformers pipeline_tag: text-generation base_model: openchat/openchat_3.5 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## openchat/openchat_3.5 - GGUF This repo contains GGUF format model files for [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openchat_3.5-Q2_K.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [openchat_3.5-Q3_K_S.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [openchat_3.5-Q3_K_M.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [openchat_3.5-Q3_K_L.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [openchat_3.5-Q4_0.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openchat_3.5-Q4_K_S.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [openchat_3.5-Q4_K_M.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [openchat_3.5-Q5_0.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openchat_3.5-Q5_K_S.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [openchat_3.5-Q5_K_M.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [openchat_3.5-Q6_K.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [openchat_3.5-Q8_0.gguf](https://huggingface.co/tensorblock/openchat_3.5-GGUF/blob/main/openchat_3.5-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/openchat_3.5-GGUF --include "openchat_3.5-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/openchat_3.5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/aanaphi2-v0.1-GGUF
tensorblock
2025-04-21T00:21:59Z
19
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:mobiuslabsgmbh/aanaphi2-v0.1", "base_model:quantized:mobiuslabsgmbh/aanaphi2-v0.1", "license:mit", "region:us", "conversational" ]
text-generation
2024-12-12T17:05:44Z
--- license: mit train: false inference: false pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: mobiuslabsgmbh/aanaphi2-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mobiuslabsgmbh/aanaphi2-v0.1 - GGUF This repo contains GGUF format model files for [mobiuslabsgmbh/aanaphi2-v0.1](https://huggingface.co/mobiuslabsgmbh/aanaphi2-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### Human: {prompt} ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [aanaphi2-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q2_K.gguf) | Q2_K | 1.110 GB | smallest, significant quality loss - not recommended for most purposes | | [aanaphi2-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q3_K_S.gguf) | Q3_K_S | 1.251 GB | very small, high quality loss | | [aanaphi2-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q3_K_M.gguf) | Q3_K_M | 1.426 GB | very small, high quality loss | | [aanaphi2-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q3_K_L.gguf) | Q3_K_L | 1.575 GB | small, substantial quality loss | | [aanaphi2-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q4_0.gguf) | Q4_0 | 1.602 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [aanaphi2-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q4_K_S.gguf) | Q4_K_S | 1.619 GB | small, greater quality loss | | [aanaphi2-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q4_K_M.gguf) | Q4_K_M | 1.738 GB | medium, balanced quality - recommended | | [aanaphi2-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q5_0.gguf) | Q5_0 | 1.933 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [aanaphi2-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q5_K_S.gguf) | Q5_K_S | 1.933 GB | large, low quality loss - recommended | | [aanaphi2-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q5_K_M.gguf) | Q5_K_M | 2.003 GB | large, very low quality loss - recommended | | [aanaphi2-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q6_K.gguf) | Q6_K | 2.285 GB | very large, extremely low quality loss | | [aanaphi2-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/aanaphi2-v0.1-GGUF/blob/main/aanaphi2-v0.1-Q8_0.gguf) | Q8_0 | 2.958 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/aanaphi2-v0.1-GGUF --include "aanaphi2-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/aanaphi2-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/KS-SOLAR-10.7B-v0.1-GGUF
tensorblock
2025-04-21T00:21:55Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:kyujinpy/Open-platypus-Commercial", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-12T16:29:22Z
--- license: cc-by-4.0 datasets: - kyujinpy/Open-platypus-Commercial language: - en tags: - TensorBlock - GGUF base_model: knlp/KS-SOLAR-10.7B-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## knlp/KS-SOLAR-10.7B-v0.1 - GGUF This repo contains GGUF format model files for [knlp/KS-SOLAR-10.7B-v0.1](https://huggingface.co/knlp/KS-SOLAR-10.7B-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [KS-SOLAR-10.7B-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [KS-SOLAR-10.7B-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [KS-SOLAR-10.7B-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [KS-SOLAR-10.7B-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [KS-SOLAR-10.7B-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [KS-SOLAR-10.7B-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [KS-SOLAR-10.7B-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [KS-SOLAR-10.7B-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [KS-SOLAR-10.7B-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [KS-SOLAR-10.7B-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [KS-SOLAR-10.7B-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [KS-SOLAR-10.7B-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/KS-SOLAR-10.7B-v0.1-GGUF/blob/main/KS-SOLAR-10.7B-v0.1-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/KS-SOLAR-10.7B-v0.1-GGUF --include "KS-SOLAR-10.7B-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/KS-SOLAR-10.7B-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Sailor-1.8B-Chat-GGUF
tensorblock
2025-04-21T00:21:47Z
19
0
null
[ "gguf", "multilingual", "sea", "sailor", "sft", "chat", "instruction", "TensorBlock", "GGUF", "en", "zh", "id", "th", "vi", "ms", "lo", "dataset:CohereForAI/aya_dataset", "dataset:CohereForAI/aya_collection", "dataset:Open-Orca/OpenOrca", "base_model:sail/Sailor-1.8B-Chat", "base_model:quantized:sail/Sailor-1.8B-Chat", "license:apache-2.0", "region:us", "conversational" ]
null
2024-12-12T15:25:54Z
--- language: - en - zh - id - th - vi - ms - lo datasets: - CohereForAI/aya_dataset - CohereForAI/aya_collection - Open-Orca/OpenOrca tags: - multilingual - sea - sailor - sft - chat - instruction - TensorBlock - GGUF widget: - text: ε¦‚δ½•εˆΆδ½œηƒ€ι±ΌοΌŸ example_title: Chinese - text: How to bake fish? example_title: English - text: Bagaimana cara memanggang ikan? example_title: Malay - text: ΰΈ§ΰΈ΄ΰΈ˜ΰΈ΅ΰΈ’ΰΉˆΰΈ²ΰΈ‡ΰΈ›ΰΈ₯ΰΈ²? example_title: Thai - text: Bagaimana membuat bakaran ikan? example_title: Indonesian - text: LΓ m thαΊΏ nΓ o để nΖ°α»›ng cΓ‘? example_title: Vietnamese license: apache-2.0 base_model: sail/Sailor-1.8B-Chat inference: false --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## sail/Sailor-1.8B-Chat - GGUF This repo contains GGUF format model files for [sail/Sailor-1.8B-Chat](https://huggingface.co/sail/Sailor-1.8B-Chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>answer ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sailor-1.8B-Chat-Q2_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q2_K.gguf) | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes | | [Sailor-1.8B-Chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q3_K_S.gguf) | Q3_K_S | 0.954 GB | very small, high quality loss | | [Sailor-1.8B-Chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q3_K_M.gguf) | Q3_K_M | 1.016 GB | very small, high quality loss | | [Sailor-1.8B-Chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q3_K_L.gguf) | Q3_K_L | 1.056 GB | small, substantial quality loss | | [Sailor-1.8B-Chat-Q4_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q4_0.gguf) | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sailor-1.8B-Chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q4_K_S.gguf) | Q4_K_S | 1.158 GB | small, greater quality loss | | [Sailor-1.8B-Chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q4_K_M.gguf) | Q4_K_M | 1.218 GB | medium, balanced quality - recommended | | [Sailor-1.8B-Chat-Q5_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sailor-1.8B-Chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q5_K_S.gguf) | Q5_K_S | 1.328 GB | large, low quality loss - recommended | | [Sailor-1.8B-Chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q5_K_M.gguf) | Q5_K_M | 1.377 GB | large, very low quality loss - recommended | | [Sailor-1.8B-Chat-Q6_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q6_K.gguf) | Q6_K | 1.579 GB | very large, extremely low quality loss | | [Sailor-1.8B-Chat-Q8_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-Chat-GGUF/blob/main/Sailor-1.8B-Chat-Q8_0.gguf) | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sailor-1.8B-Chat-GGUF --include "Sailor-1.8B-Chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sailor-1.8B-Chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```