modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-24 18:27:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
476 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-24 18:26:04
card
stringlengths
11
1.01M
tensorblock/math_gpt2_sft-GGUF
tensorblock
2025-04-21T00:34:23Z
67
0
null
[ "gguf", "maths", "gpt2", "mathgpt2", "trl", "sft", "TensorBlock", "GGUF", "text-generation", "en", "dataset:meta-math/MetaMathQA", "dataset:ArtifactAI/arxiv-math-instruct-50k", "base_model:Sharathhebbar24/math_gpt2_sft", "base_model:quantized:Sharathhebbar24/math_gpt2_sft", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-12-21T19:59:06Z
--- language: - en license: apache-2.0 tags: - maths - gpt2 - mathgpt2 - trl - sft - TensorBlock - GGUF datasets: - meta-math/MetaMathQA - ArtifactAI/arxiv-math-instruct-50k pipeline_tag: text-generation widget: - text: Which motion is formed by an incident particle? example_title: Example 1 - text: What type of diffusional modeling is used for diffusion? example_title: Example 2 base_model: Sharathhebbar24/math_gpt2_sft model-index: - name: math_gpt2_sft results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 22.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 30.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.62 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.54 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.68 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Sharathhebbar24/math_gpt2_sft - GGUF This repo contains GGUF format model files for [Sharathhebbar24/math_gpt2_sft](https://huggingface.co/Sharathhebbar24/math_gpt2_sft). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [math_gpt2_sft-Q2_K.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q2_K.gguf) | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes | | [math_gpt2_sft-Q3_K_S.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q3_K_S.gguf) | Q3_K_S | 0.090 GB | very small, high quality loss | | [math_gpt2_sft-Q3_K_M.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q3_K_M.gguf) | Q3_K_M | 0.098 GB | very small, high quality loss | | [math_gpt2_sft-Q3_K_L.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q3_K_L.gguf) | Q3_K_L | 0.102 GB | small, substantial quality loss | | [math_gpt2_sft-Q4_0.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q4_0.gguf) | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [math_gpt2_sft-Q4_K_S.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q4_K_S.gguf) | Q4_K_S | 0.107 GB | small, greater quality loss | | [math_gpt2_sft-Q4_K_M.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q4_K_M.gguf) | Q4_K_M | 0.113 GB | medium, balanced quality - recommended | | [math_gpt2_sft-Q5_0.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q5_0.gguf) | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [math_gpt2_sft-Q5_K_S.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q5_K_S.gguf) | Q5_K_S | 0.122 GB | large, low quality loss - recommended | | [math_gpt2_sft-Q5_K_M.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q5_K_M.gguf) | Q5_K_M | 0.127 GB | large, very low quality loss - recommended | | [math_gpt2_sft-Q6_K.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q6_K.gguf) | Q6_K | 0.138 GB | very large, extremely low quality loss | | [math_gpt2_sft-Q8_0.gguf](https://huggingface.co/tensorblock/math_gpt2_sft-GGUF/blob/main/math_gpt2_sft-Q8_0.gguf) | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/math_gpt2_sft-GGUF --include "math_gpt2_sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/math_gpt2_sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Truthful_DPO_MOE_19B-GGUF
tensorblock
2025-04-21T00:34:18Z
25
0
null
[ "gguf", "moe", "DPO", "RL-TUNED", "TensorBlock", "GGUF", "base_model:yunconglong/Truthful_DPO_MOE_19B", "base_model:quantized:yunconglong/Truthful_DPO_MOE_19B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T19:42:33Z
--- license: other tags: - moe - DPO - RL-TUNED - TensorBlock - GGUF base_model: yunconglong/Truthful_DPO_MOE_19B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## yunconglong/Truthful_DPO_MOE_19B - GGUF This repo contains GGUF format model files for [yunconglong/Truthful_DPO_MOE_19B](https://huggingface.co/yunconglong/Truthful_DPO_MOE_19B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Truthful_DPO_MOE_19B-Q2_K.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q2_K.gguf) | Q2_K | 7.066 GB | smallest, significant quality loss - not recommended for most purposes | | [Truthful_DPO_MOE_19B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q3_K_S.gguf) | Q3_K_S | 8.299 GB | very small, high quality loss | | [Truthful_DPO_MOE_19B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q3_K_M.gguf) | Q3_K_M | 9.227 GB | very small, high quality loss | | [Truthful_DPO_MOE_19B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q3_K_L.gguf) | Q3_K_L | 10.012 GB | small, substantial quality loss | | [Truthful_DPO_MOE_19B-Q4_0.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q4_0.gguf) | Q4_0 | 10.830 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Truthful_DPO_MOE_19B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q4_K_S.gguf) | Q4_K_S | 10.920 GB | small, greater quality loss | | [Truthful_DPO_MOE_19B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q4_K_M.gguf) | Q4_K_M | 11.583 GB | medium, balanced quality - recommended | | [Truthful_DPO_MOE_19B-Q5_0.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q5_0.gguf) | Q5_0 | 13.212 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Truthful_DPO_MOE_19B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q5_K_S.gguf) | Q5_K_S | 13.212 GB | large, low quality loss - recommended | | [Truthful_DPO_MOE_19B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q5_K_M.gguf) | Q5_K_M | 13.600 GB | large, very low quality loss - recommended | | [Truthful_DPO_MOE_19B-Q6_K.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q6_K.gguf) | Q6_K | 15.743 GB | very large, extremely low quality loss | | [Truthful_DPO_MOE_19B-Q8_0.gguf](https://huggingface.co/tensorblock/Truthful_DPO_MOE_19B-GGUF/blob/main/Truthful_DPO_MOE_19B-Q8_0.gguf) | Q8_0 | 20.390 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Truthful_DPO_MOE_19B-GGUF --include "Truthful_DPO_MOE_19B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Truthful_DPO_MOE_19B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/PiVoT-MoE-GGUF
tensorblock
2025-04-21T00:34:17Z
28
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:maywell/PiVoT-MoE", "base_model:quantized:maywell/PiVoT-MoE", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T19:38:00Z
--- license: cc-by-nc-4.0 base_model: maywell/PiVoT-MoE tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## maywell/PiVoT-MoE - GGUF This repo contains GGUF format model files for [maywell/PiVoT-MoE](https://huggingface.co/maywell/PiVoT-MoE). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` {system_prompt}{system_prompt}### Instruction: {prompt}### Response: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [PiVoT-MoE-Q2_K.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q2_K.gguf) | Q2_K | 13.189 GB | smallest, significant quality loss - not recommended for most purposes | | [PiVoT-MoE-Q3_K_S.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q3_K_S.gguf) | Q3_K_S | 15.568 GB | very small, high quality loss | | [PiVoT-MoE-Q3_K_M.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q3_K_M.gguf) | Q3_K_M | 17.288 GB | very small, high quality loss | | [PiVoT-MoE-Q3_K_L.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q3_K_L.gguf) | Q3_K_L | 18.734 GB | small, substantial quality loss | | [PiVoT-MoE-Q4_0.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q4_0.gguf) | Q4_0 | 20.345 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [PiVoT-MoE-Q4_K_S.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q4_K_S.gguf) | Q4_K_S | 20.523 GB | small, greater quality loss | | [PiVoT-MoE-Q4_K_M.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q4_K_M.gguf) | Q4_K_M | 21.824 GB | medium, balanced quality - recommended | | [PiVoT-MoE-Q5_0.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q5_0.gguf) | Q5_0 | 24.840 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [PiVoT-MoE-Q5_K_S.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q5_K_S.gguf) | Q5_K_S | 24.840 GB | large, low quality loss - recommended | | [PiVoT-MoE-Q5_K_M.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q5_K_M.gguf) | Q5_K_M | 25.603 GB | large, very low quality loss - recommended | | [PiVoT-MoE-Q6_K.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q6_K.gguf) | Q6_K | 29.617 GB | very large, extremely low quality loss | | [PiVoT-MoE-Q8_0.gguf](https://huggingface.co/tensorblock/PiVoT-MoE-GGUF/blob/main/PiVoT-MoE-Q8_0.gguf) | Q8_0 | 38.360 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/PiVoT-MoE-GGUF --include "PiVoT-MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/PiVoT-MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/open-llama-2-ko-7b-kullm-GGUF
tensorblock
2025-04-21T00:34:16Z
30
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:kimjaewon/open-llama-2-ko-7b-kullm", "base_model:quantized:kimjaewon/open-llama-2-ko-7b-kullm", "endpoints_compatible", "region:us" ]
null
2024-12-21T19:25:45Z
--- base_model: kimjaewon/open-llama-2-ko-7b-kullm tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kimjaewon/open-llama-2-ko-7b-kullm - GGUF This repo contains GGUF format model files for [kimjaewon/open-llama-2-ko-7b-kullm](https://huggingface.co/kimjaewon/open-llama-2-ko-7b-kullm). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [open-llama-2-ko-7b-kullm-Q2_K.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q2_K.gguf) | Q2_K | 2.601 GB | smallest, significant quality loss - not recommended for most purposes | | [open-llama-2-ko-7b-kullm-Q3_K_S.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss | | [open-llama-2-ko-7b-kullm-Q3_K_M.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss | | [open-llama-2-ko-7b-kullm-Q3_K_L.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss | | [open-llama-2-ko-7b-kullm-Q4_0.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [open-llama-2-ko-7b-kullm-Q4_K_S.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss | | [open-llama-2-ko-7b-kullm-Q4_K_M.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q4_K_M.gguf) | Q4_K_M | 4.163 GB | medium, balanced quality - recommended | | [open-llama-2-ko-7b-kullm-Q5_0.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q5_0.gguf) | Q5_0 | 4.741 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [open-llama-2-ko-7b-kullm-Q5_K_S.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q5_K_S.gguf) | Q5_K_S | 4.741 GB | large, low quality loss - recommended | | [open-llama-2-ko-7b-kullm-Q5_K_M.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended | | [open-llama-2-ko-7b-kullm-Q6_K.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss | | [open-llama-2-ko-7b-kullm-Q8_0.gguf](https://huggingface.co/tensorblock/open-llama-2-ko-7b-kullm-GGUF/blob/main/open-llama-2-ko-7b-kullm-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/open-llama-2-ko-7b-kullm-GGUF --include "open-llama-2-ko-7b-kullm-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/open-llama-2-ko-7b-kullm-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF
tensorblock
2025-04-21T00:34:15Z
32
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:wkshin89/mistral-7b-instruct-ko-test-v0.3", "base_model:quantized:wkshin89/mistral-7b-instruct-ko-test-v0.3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T18:58:40Z
--- base_model: wkshin89/mistral-7b-instruct-ko-test-v0.3 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## wkshin89/mistral-7b-instruct-ko-test-v0.3 - GGUF This repo contains GGUF format model files for [wkshin89/mistral-7b-instruct-ko-test-v0.3](https://huggingface.co/wkshin89/mistral-7b-instruct-ko-test-v0.3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mistral-7b-instruct-ko-test-v0.3-Q2_K.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral-7b-instruct-ko-test-v0.3-Q3_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mistral-7b-instruct-ko-test-v0.3-Q3_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mistral-7b-instruct-ko-test-v0.3-Q3_K_L.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mistral-7b-instruct-ko-test-v0.3-Q4_0.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral-7b-instruct-ko-test-v0.3-Q4_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mistral-7b-instruct-ko-test-v0.3-Q4_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mistral-7b-instruct-ko-test-v0.3-Q5_0.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral-7b-instruct-ko-test-v0.3-Q5_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mistral-7b-instruct-ko-test-v0.3-Q5_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mistral-7b-instruct-ko-test-v0.3-Q6_K.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mistral-7b-instruct-ko-test-v0.3-Q8_0.gguf](https://huggingface.co/tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF/blob/main/mistral-7b-instruct-ko-test-v0.3-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF --include "mistral-7b-instruct-ko-test-v0.3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mistral-7b-instruct-ko-test-v0.3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MarcBeagle-7B-GGUF
tensorblock
2025-04-21T00:34:07Z
44
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "flemmingmiguel/MarcMistral-7B", "leveldevai/TurdusBeagle-7B", "TensorBlock", "GGUF", "base_model:leveldevai/MarcBeagle-7B", "base_model:quantized:leveldevai/MarcBeagle-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T17:02:06Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - flemmingmiguel/MarcMistral-7B - leveldevai/TurdusBeagle-7B - TensorBlock - GGUF base_model: leveldevai/MarcBeagle-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## leveldevai/MarcBeagle-7B - GGUF This repo contains GGUF format model files for [leveldevai/MarcBeagle-7B](https://huggingface.co/leveldevai/MarcBeagle-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MarcBeagle-7B-Q2_K.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [MarcBeagle-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [MarcBeagle-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [MarcBeagle-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [MarcBeagle-7B-Q4_0.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MarcBeagle-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [MarcBeagle-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [MarcBeagle-7B-Q5_0.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MarcBeagle-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [MarcBeagle-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [MarcBeagle-7B-Q6_K.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [MarcBeagle-7B-Q8_0.gguf](https://huggingface.co/tensorblock/MarcBeagle-7B-GGUF/blob/main/MarcBeagle-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MarcBeagle-7B-GGUF --include "MarcBeagle-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MarcBeagle-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Maylin-7b-GGUF
tensorblock
2025-04-21T00:34:06Z
27
0
null
[ "gguf", "mistral", "merge", "TensorBlock", "GGUF", "text-generation", "base_model:Azazelle/Maylin-7b", "base_model:quantized:Azazelle/Maylin-7b", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-21T16:22:50Z
--- pipeline_tag: text-generation tags: - mistral - merge - TensorBlock - GGUF license: cc-by-4.0 base_model: Azazelle/Maylin-7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Azazelle/Maylin-7b - GGUF This repo contains GGUF format model files for [Azazelle/Maylin-7b](https://huggingface.co/Azazelle/Maylin-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Maylin-7b-Q2_K.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Maylin-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Maylin-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Maylin-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Maylin-7b-Q4_0.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Maylin-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Maylin-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Maylin-7b-Q5_0.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Maylin-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Maylin-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Maylin-7b-Q6_K.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Maylin-7b-Q8_0.gguf](https://huggingface.co/tensorblock/Maylin-7b-GGUF/blob/main/Maylin-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Maylin-7b-GGUF --include "Maylin-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Maylin-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF
tensorblock
2025-04-21T00:34:03Z
32
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B", "base_model:quantized:diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T12:49:21Z
--- license: cc-by-nc-4.0 base_model: diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B - GGUF This repo contains GGUF format model files for [diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B](https://huggingface.co/diffnamehard/Psyfighter2-Noromaid-ties-Capybara-13B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q2_K.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q4_0.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q5_0.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q6_K.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [Psyfighter2-Noromaid-ties-Capybara-13B-Q8_0.gguf](https://huggingface.co/tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF/blob/main/Psyfighter2-Noromaid-ties-Capybara-13B-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF --include "Psyfighter2-Noromaid-ties-Capybara-13B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Psyfighter2-Noromaid-ties-Capybara-13B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/GML-Mistral-merged-v1-GGUF
tensorblock
2025-04-21T00:33:53Z
71
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:zyh3826/GML-Mistral-merged-v1", "base_model:quantized:zyh3826/GML-Mistral-merged-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T10:23:14Z
--- license: apache-2.0 tags: - merge - TensorBlock - GGUF base_model: zyh3826/GML-Mistral-merged-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## zyh3826/GML-Mistral-merged-v1 - GGUF This repo contains GGUF format model files for [zyh3826/GML-Mistral-merged-v1](https://huggingface.co/zyh3826/GML-Mistral-merged-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [GML-Mistral-merged-v1-Q2_K.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q2_K.gguf) | Q2_K | 3.361 GB | smallest, significant quality loss - not recommended for most purposes | | [GML-Mistral-merged-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q3_K_S.gguf) | Q3_K_S | 3.915 GB | very small, high quality loss | | [GML-Mistral-merged-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q3_K_M.gguf) | Q3_K_M | 4.354 GB | very small, high quality loss | | [GML-Mistral-merged-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q3_K_L.gguf) | Q3_K_L | 4.736 GB | small, substantial quality loss | | [GML-Mistral-merged-v1-Q4_0.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q4_0.gguf) | Q4_0 | 5.091 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [GML-Mistral-merged-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q4_K_S.gguf) | Q4_K_S | 5.129 GB | small, greater quality loss | | [GML-Mistral-merged-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q4_K_M.gguf) | Q4_K_M | 5.415 GB | medium, balanced quality - recommended | | [GML-Mistral-merged-v1-Q5_0.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q5_0.gguf) | Q5_0 | 6.198 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [GML-Mistral-merged-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q5_K_S.gguf) | Q5_K_S | 6.198 GB | large, low quality loss - recommended | | [GML-Mistral-merged-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q5_K_M.gguf) | Q5_K_M | 6.365 GB | large, very low quality loss - recommended | | [GML-Mistral-merged-v1-Q6_K.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q6_K.gguf) | Q6_K | 7.374 GB | very large, extremely low quality loss | | [GML-Mistral-merged-v1-Q8_0.gguf](https://huggingface.co/tensorblock/GML-Mistral-merged-v1-GGUF/blob/main/GML-Mistral-merged-v1-Q8_0.gguf) | Q8_0 | 9.550 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/GML-Mistral-merged-v1-GGUF --include "GML-Mistral-merged-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/GML-Mistral-merged-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Kunoichi-DPO-7B-GGUF
tensorblock
2025-04-21T00:33:52Z
40
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:SanjiWatsuki/Kunoichi-DPO-7B", "base_model:quantized:SanjiWatsuki/Kunoichi-DPO-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T10:13:29Z
--- license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: SanjiWatsuki/Kunoichi-DPO-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## SanjiWatsuki/Kunoichi-DPO-7B - GGUF This repo contains GGUF format model files for [SanjiWatsuki/Kunoichi-DPO-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Kunoichi-DPO-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Kunoichi-DPO-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Kunoichi-DPO-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Kunoichi-DPO-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Kunoichi-DPO-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Kunoichi-DPO-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Kunoichi-DPO-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Kunoichi-DPO-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Kunoichi-DPO-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Kunoichi-DPO-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Kunoichi-DPO-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Kunoichi-DPO-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Kunoichi-DPO-7B-GGUF/blob/main/Kunoichi-DPO-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Kunoichi-DPO-7B-GGUF --include "Kunoichi-DPO-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Kunoichi-DPO-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/lamatama-GGUF
tensorblock
2025-04-21T00:33:50Z
112
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:kevin009/lamatama", "base_model:quantized:kevin009/lamatama", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T10:01:53Z
--- language: - en license: apache-2.0 base_model: kevin009/lamatama tags: - TensorBlock - GGUF model-index: - name: lamatama results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 36.35 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 61.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.67 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 60.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 2.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kevin009/lamatama - GGUF This repo contains GGUF format model files for [kevin009/lamatama](https://huggingface.co/kevin009/lamatama). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [lamatama-Q2_K.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | | [lamatama-Q3_K_S.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | | [lamatama-Q3_K_M.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | | [lamatama-Q3_K_L.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [lamatama-Q4_0.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [lamatama-Q4_K_S.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | | [lamatama-Q4_K_M.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | | [lamatama-Q5_0.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [lamatama-Q5_K_S.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | | [lamatama-Q5_K_M.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | | [lamatama-Q6_K.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | | [lamatama-Q8_0.gguf](https://huggingface.co/tensorblock/lamatama-GGUF/blob/main/lamatama-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/lamatama-GGUF --include "lamatama-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/lamatama-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF
tensorblock
2025-04-21T00:33:49Z
184
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:UCLA-AGI/SPIN_iter1", "base_model:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1", "base_model:quantized:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-21T09:36:16Z
--- license: mit datasets: - UCLA-AGI/SPIN_iter1 language: - en base_model: UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1 pipeline_tag: text-generation tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1 - GGUF This repo contains GGUF format model files for [UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1](https://huggingface.co/UCLA-AGI/zephyr-7b-sft-full-SPIN-iter1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zephyr-7b-sft-full-SPIN-iter1-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [zephyr-7b-sft-full-SPIN-iter1-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter1-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter1-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [zephyr-7b-sft-full-SPIN-iter1-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zephyr-7b-sft-full-SPIN-iter1-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [zephyr-7b-sft-full-SPIN-iter1-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [zephyr-7b-sft-full-SPIN-iter1-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zephyr-7b-sft-full-SPIN-iter1-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter1-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter1-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [zephyr-7b-sft-full-SPIN-iter1-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF --include "zephyr-7b-sft-full-SPIN-iter1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CodeLlama-7b-Instruct-hf-GGUF
tensorblock
2025-04-21T00:33:45Z
134
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:hobbesleland/CodeLlama-7b-Instruct-hf", "base_model:quantized:hobbesleland/CodeLlama-7b-Instruct-hf", "endpoints_compatible", "region:us" ]
null
2024-12-21T08:47:46Z
--- base_model: hobbesleland/CodeLlama-7b-Instruct-hf tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## hobbesleland/CodeLlama-7b-Instruct-hf - GGUF This repo contains GGUF format model files for [hobbesleland/CodeLlama-7b-Instruct-hf](https://huggingface.co/hobbesleland/CodeLlama-7b-Instruct-hf). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CodeLlama-7b-Instruct-hf-Q2_K.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [CodeLlama-7b-Instruct-hf-Q3_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [CodeLlama-7b-Instruct-hf-Q3_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [CodeLlama-7b-Instruct-hf-Q3_K_L.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [CodeLlama-7b-Instruct-hf-Q4_0.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CodeLlama-7b-Instruct-hf-Q4_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [CodeLlama-7b-Instruct-hf-Q4_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [CodeLlama-7b-Instruct-hf-Q5_0.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CodeLlama-7b-Instruct-hf-Q5_K_S.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [CodeLlama-7b-Instruct-hf-Q5_K_M.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [CodeLlama-7b-Instruct-hf-Q6_K.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [CodeLlama-7b-Instruct-hf-Q8_0.gguf](https://huggingface.co/tensorblock/CodeLlama-7b-Instruct-hf-GGUF/blob/main/CodeLlama-7b-Instruct-hf-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CodeLlama-7b-Instruct-hf-GGUF --include "CodeLlama-7b-Instruct-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CodeLlama-7b-Instruct-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/AIRIC-The-Mistral-GGUF
tensorblock
2025-04-21T00:33:43Z
67
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:Open-Orca/OpenOrca", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:tatsu-lab/alpaca", "dataset:garage-bAInd/Open-Platypus", "base_model:ericpolewski/AIRIC-The-Mistral", "base_model:quantized:ericpolewski/AIRIC-The-Mistral", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-21T08:38:45Z
--- license: mit datasets: - Open-Orca/OpenOrca - ise-uiuc/Magicoder-Evol-Instruct-110K - tatsu-lab/alpaca - garage-bAInd/Open-Platypus base_model: ericpolewski/AIRIC-The-Mistral tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ericpolewski/AIRIC-The-Mistral - GGUF This repo contains GGUF format model files for [ericpolewski/AIRIC-The-Mistral](https://huggingface.co/ericpolewski/AIRIC-The-Mistral). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [AIRIC-The-Mistral-Q2_K.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [AIRIC-The-Mistral-Q3_K_S.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [AIRIC-The-Mistral-Q3_K_M.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [AIRIC-The-Mistral-Q3_K_L.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [AIRIC-The-Mistral-Q4_0.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [AIRIC-The-Mistral-Q4_K_S.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [AIRIC-The-Mistral-Q4_K_M.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [AIRIC-The-Mistral-Q5_0.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [AIRIC-The-Mistral-Q5_K_S.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [AIRIC-The-Mistral-Q5_K_M.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [AIRIC-The-Mistral-Q6_K.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [AIRIC-The-Mistral-Q8_0.gguf](https://huggingface.co/tensorblock/AIRIC-The-Mistral-GGUF/blob/main/AIRIC-The-Mistral-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/AIRIC-The-Mistral-GGUF --include "AIRIC-The-Mistral-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/AIRIC-The-Mistral-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF
tensorblock
2025-04-21T00:33:41Z
85
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:UCLA-AGI/SPIN_iter2", "base_model:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2", "base_model:quantized:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-21T08:11:27Z
--- license: mit datasets: - UCLA-AGI/SPIN_iter2 language: - en pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2 - GGUF This repo contains GGUF format model files for [UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2](https://huggingface.co/UCLA-AGI/zephyr-7b-sft-full-SPIN-iter2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zephyr-7b-sft-full-SPIN-iter2-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [zephyr-7b-sft-full-SPIN-iter2-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter2-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter2-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [zephyr-7b-sft-full-SPIN-iter2-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zephyr-7b-sft-full-SPIN-iter2-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [zephyr-7b-sft-full-SPIN-iter2-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [zephyr-7b-sft-full-SPIN-iter2-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zephyr-7b-sft-full-SPIN-iter2-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter2-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter2-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [zephyr-7b-sft-full-SPIN-iter2-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF --include "zephyr-7b-sft-full-SPIN-iter2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Beyonder-4x7b-GGUF
tensorblock
2025-04-21T00:33:40Z
50
0
null
[ "gguf", "moe", "mergekit", "TensorBlock", "GGUF", "base_model:mlabonne/Beyonder-4x7b", "base_model:quantized:mlabonne/Beyonder-4x7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T07:39:05Z
--- license: apache-2.0 tags: - moe - mergekit - TensorBlock - GGUF base_model: mlabonne/Beyonder-4x7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mlabonne/Beyonder-4x7b - GGUF This repo contains GGUF format model files for [mlabonne/Beyonder-4x7b](https://huggingface.co/mlabonne/Beyonder-4x7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Beyonder-4x7b-Q2_K.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q2_K.gguf) | Q2_K | 8.843 GB | smallest, significant quality loss - not recommended for most purposes | | [Beyonder-4x7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q3_K_S.gguf) | Q3_K_S | 10.433 GB | very small, high quality loss | | [Beyonder-4x7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q3_K_M.gguf) | Q3_K_M | 11.580 GB | very small, high quality loss | | [Beyonder-4x7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q3_K_L.gguf) | Q3_K_L | 12.544 GB | small, substantial quality loss | | [Beyonder-4x7b-Q4_0.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q4_0.gguf) | Q4_0 | 13.624 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Beyonder-4x7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q4_K_S.gguf) | Q4_K_S | 13.743 GB | small, greater quality loss | | [Beyonder-4x7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q4_K_M.gguf) | Q4_K_M | 14.610 GB | medium, balanced quality - recommended | | [Beyonder-4x7b-Q5_0.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q5_0.gguf) | Q5_0 | 16.626 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Beyonder-4x7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q5_K_S.gguf) | Q5_K_S | 16.626 GB | large, low quality loss - recommended | | [Beyonder-4x7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q5_K_M.gguf) | Q5_K_M | 17.134 GB | large, very low quality loss - recommended | | [Beyonder-4x7b-Q6_K.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q6_K.gguf) | Q6_K | 19.817 GB | very large, extremely low quality loss | | [Beyonder-4x7b-Q8_0.gguf](https://huggingface.co/tensorblock/Beyonder-4x7b-GGUF/blob/main/Beyonder-4x7b-Q8_0.gguf) | Q8_0 | 25.666 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Beyonder-4x7b-GGUF --include "Beyonder-4x7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Beyonder-4x7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SuperChat-7B-GGUF
tensorblock
2025-04-21T00:33:36Z
26
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:yashmarathe/SuperChat-7B", "base_model:quantized:yashmarathe/SuperChat-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T06:07:17Z
--- license: apache-2.0 tags: - merge - TensorBlock - GGUF base_model: yashmarathe/SuperChat-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## yashmarathe/SuperChat-7B - GGUF This repo contains GGUF format model files for [yashmarathe/SuperChat-7B](https://huggingface.co/yashmarathe/SuperChat-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SuperChat-7B-Q2_K.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [SuperChat-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [SuperChat-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [SuperChat-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [SuperChat-7B-Q4_0.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SuperChat-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [SuperChat-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [SuperChat-7B-Q5_0.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SuperChat-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [SuperChat-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [SuperChat-7B-Q6_K.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [SuperChat-7B-Q8_0.gguf](https://huggingface.co/tensorblock/SuperChat-7B-GGUF/blob/main/SuperChat-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SuperChat-7B-GGUF --include "SuperChat-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SuperChat-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TeenyTinyLlama-160m-GGUF
tensorblock
2025-04-21T00:33:34Z
39
0
transformers
[ "transformers", "gguf", "text-generation-inference", "TensorBlock", "GGUF", "text-generation", "pt", "dataset:nicholasKluge/Pt-Corpus-Instruct", "base_model:nicholasKluge/TeenyTinyLlama-160m", "base_model:quantized:nicholasKluge/TeenyTinyLlama-160m", "license:apache-2.0", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-generation
2024-12-21T06:02:46Z
--- language: - pt license: apache-2.0 library_name: transformers tags: - text-generation-inference - TensorBlock - GGUF datasets: - nicholasKluge/Pt-Corpus-Instruct metrics: - perplexity pipeline_tag: text-generation widget: - text: 'A PUCRS Γ© uma universidade ' example_title: Exemplo - text: A muitos anos atrΓ‘s, em uma galΓ‘xia muito distante, vivia uma raΓ§a de example_title: Exemplo - text: Em meio a um escΓ’ndalo, a frente parlamentar pediu ao Senador Silva para example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 20 top_p: 0.2 max_new_tokens: 150 co2_eq_emissions: emissions: 5600 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-40GB base_model: nicholasKluge/TeenyTinyLlama-160m model-index: - name: TeenyTinyLlama-160m results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 19.24 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 23.09 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 22.37 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 53.97 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 0.24 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 43.97 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 36.92 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 42.63 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 11.39 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m name: Open Portuguese LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## nicholasKluge/TeenyTinyLlama-160m - GGUF This repo contains GGUF format model files for [nicholasKluge/TeenyTinyLlama-160m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-160m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TeenyTinyLlama-160m-Q2_K.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q2_K.gguf) | Q2_K | 0.071 GB | smallest, significant quality loss - not recommended for most purposes | | [TeenyTinyLlama-160m-Q3_K_S.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q3_K_S.gguf) | Q3_K_S | 0.080 GB | very small, high quality loss | | [TeenyTinyLlama-160m-Q3_K_M.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q3_K_M.gguf) | Q3_K_M | 0.086 GB | very small, high quality loss | | [TeenyTinyLlama-160m-Q3_K_L.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q3_K_L.gguf) | Q3_K_L | 0.091 GB | small, substantial quality loss | | [TeenyTinyLlama-160m-Q4_0.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q4_0.gguf) | Q4_0 | 0.099 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TeenyTinyLlama-160m-Q4_K_S.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q4_K_S.gguf) | Q4_K_S | 0.099 GB | small, greater quality loss | | [TeenyTinyLlama-160m-Q4_K_M.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q4_K_M.gguf) | Q4_K_M | 0.103 GB | medium, balanced quality - recommended | | [TeenyTinyLlama-160m-Q5_0.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q5_0.gguf) | Q5_0 | 0.116 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TeenyTinyLlama-160m-Q5_K_S.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q5_K_S.gguf) | Q5_K_S | 0.116 GB | large, low quality loss - recommended | | [TeenyTinyLlama-160m-Q5_K_M.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q5_K_M.gguf) | Q5_K_M | 0.118 GB | large, very low quality loss - recommended | | [TeenyTinyLlama-160m-Q6_K.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q6_K.gguf) | Q6_K | 0.134 GB | very large, extremely low quality loss | | [TeenyTinyLlama-160m-Q8_0.gguf](https://huggingface.co/tensorblock/TeenyTinyLlama-160m-GGUF/blob/main/TeenyTinyLlama-160m-Q8_0.gguf) | Q8_0 | 0.173 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TeenyTinyLlama-160m-GGUF --include "TeenyTinyLlama-160m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TeenyTinyLlama-160m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/tinylamma-20000-GGUF
tensorblock
2025-04-21T00:33:31Z
35
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:shitshow123/tinylamma-20000", "base_model:quantized:shitshow123/tinylamma-20000", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T05:41:11Z
--- license: apache-2.0 base_model: shitshow123/tinylamma-20000 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## shitshow123/tinylamma-20000 - GGUF This repo contains GGUF format model files for [shitshow123/tinylamma-20000](https://huggingface.co/shitshow123/tinylamma-20000). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [tinylamma-20000-Q2_K.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | | [tinylamma-20000-Q3_K_S.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | | [tinylamma-20000-Q3_K_M.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | | [tinylamma-20000-Q3_K_L.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [tinylamma-20000-Q4_0.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [tinylamma-20000-Q4_K_S.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | | [tinylamma-20000-Q4_K_M.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | | [tinylamma-20000-Q5_0.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [tinylamma-20000-Q5_K_S.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | | [tinylamma-20000-Q5_K_M.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | | [tinylamma-20000-Q6_K.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | | [tinylamma-20000-Q8_0.gguf](https://huggingface.co/tensorblock/tinylamma-20000-GGUF/blob/main/tinylamma-20000-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/tinylamma-20000-GGUF --include "tinylamma-20000-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/tinylamma-20000-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Sirius-10B-GGUF
tensorblock
2025-04-21T00:33:30Z
25
0
null
[ "gguf", "merge", "leveldevai/TurdusBeagle-7B", "FelixChao/Severus-7B", "TensorBlock", "GGUF", "base_model:FelixChao/Sirius-10B", "base_model:quantized:FelixChao/Sirius-10B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T04:33:59Z
--- license: apache-2.0 tags: - merge - leveldevai/TurdusBeagle-7B - FelixChao/Severus-7B - TensorBlock - GGUF base_model: FelixChao/Sirius-10B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## FelixChao/Sirius-10B - GGUF This repo contains GGUF format model files for [FelixChao/Sirius-10B](https://huggingface.co/FelixChao/Sirius-10B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sirius-10B-Q2_K.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Sirius-10B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Sirius-10B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Sirius-10B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Sirius-10B-Q4_0.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sirius-10B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Sirius-10B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Sirius-10B-Q5_0.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sirius-10B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Sirius-10B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Sirius-10B-Q6_K.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Sirius-10B-Q8_0.gguf](https://huggingface.co/tensorblock/Sirius-10B-GGUF/blob/main/Sirius-10B-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sirius-10B-GGUF --include "Sirius-10B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sirius-10B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF
tensorblock
2025-04-21T00:33:28Z
59
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:Intel/orca_dpo_pairs", "base_model:HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3", "base_model:quantized:HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T04:11:57Z
--- license: apache-2.0 datasets: - Intel/orca_dpo_pairs base_model: HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3 - GGUF This repo contains GGUF format model files for [HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3](https://huggingface.co/HenryJJ/dolphin-2.6-mistral-7b-dpo-orca-v3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q2_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_L.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q6_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [dolphin-2.6-mistral-7b-dpo-orca-v3-Q8_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-orca-v3-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF --include "dolphin-2.6-mistral-7b-dpo-orca-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-dpo-orca-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/agiin-11.1B-v0.0-GGUF
tensorblock
2025-04-21T00:33:27Z
27
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:mncai/agiin-11.1B-v0.0", "base_model:quantized:mncai/agiin-11.1B-v0.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T03:15:21Z
--- license: apache-2.0 language: - en base_model: mncai/agiin-11.1B-v0.0 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mncai/agiin-11.1B-v0.0 - GGUF This repo contains GGUF format model files for [mncai/agiin-11.1B-v0.0](https://huggingface.co/mncai/agiin-11.1B-v0.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [agiin-11.1B-v0.0-Q2_K.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q2_K.gguf) | Q2_K | 4.164 GB | smallest, significant quality loss - not recommended for most purposes | | [agiin-11.1B-v0.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q3_K_S.gguf) | Q3_K_S | 4.852 GB | very small, high quality loss | | [agiin-11.1B-v0.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q3_K_M.gguf) | Q3_K_M | 5.404 GB | very small, high quality loss | | [agiin-11.1B-v0.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q3_K_L.gguf) | Q3_K_L | 5.879 GB | small, substantial quality loss | | [agiin-11.1B-v0.0-Q4_0.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q4_0.gguf) | Q4_0 | 6.318 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [agiin-11.1B-v0.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q4_K_S.gguf) | Q4_K_S | 6.364 GB | small, greater quality loss | | [agiin-11.1B-v0.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q4_K_M.gguf) | Q4_K_M | 6.723 GB | medium, balanced quality - recommended | | [agiin-11.1B-v0.0-Q5_0.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q5_0.gguf) | Q5_0 | 7.697 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [agiin-11.1B-v0.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q5_K_S.gguf) | Q5_K_S | 7.697 GB | large, low quality loss - recommended | | [agiin-11.1B-v0.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q5_K_M.gguf) | Q5_K_M | 7.906 GB | large, very low quality loss - recommended | | [agiin-11.1B-v0.0-Q6_K.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q6_K.gguf) | Q6_K | 9.163 GB | very large, extremely low quality loss | | [agiin-11.1B-v0.0-Q8_0.gguf](https://huggingface.co/tensorblock/agiin-11.1B-v0.0-GGUF/blob/main/agiin-11.1B-v0.0-Q8_0.gguf) | Q8_0 | 11.868 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/agiin-11.1B-v0.0-GGUF --include "agiin-11.1B-v0.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/agiin-11.1B-v0.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/zephyr-220m-sft-full-GGUF
tensorblock
2025-04-21T00:33:25Z
11
0
null
[ "gguf", "generated_from_trainer", "TensorBlock", "GGUF", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:BEE-spoke-data/zephyr-220m-sft-full", "base_model:quantized:BEE-spoke-data/zephyr-220m-sft-full", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T03:05:23Z
--- license: apache-2.0 base_model: BEE-spoke-data/zephyr-220m-sft-full tags: - generated_from_trainer - TensorBlock - GGUF datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: zephyr-220m-sft-full results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## BEE-spoke-data/zephyr-220m-sft-full - GGUF This repo contains GGUF format model files for [BEE-spoke-data/zephyr-220m-sft-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zephyr-220m-sft-full-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q2_K.gguf) | Q2_K | 0.094 GB | smallest, significant quality loss - not recommended for most purposes | | [zephyr-220m-sft-full-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q3_K_S.gguf) | Q3_K_S | 0.107 GB | very small, high quality loss | | [zephyr-220m-sft-full-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q3_K_M.gguf) | Q3_K_M | 0.115 GB | very small, high quality loss | | [zephyr-220m-sft-full-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q3_K_L.gguf) | Q3_K_L | 0.121 GB | small, substantial quality loss | | [zephyr-220m-sft-full-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q4_0.gguf) | Q4_0 | 0.132 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zephyr-220m-sft-full-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q4_K_S.gguf) | Q4_K_S | 0.132 GB | small, greater quality loss | | [zephyr-220m-sft-full-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q4_K_M.gguf) | Q4_K_M | 0.138 GB | medium, balanced quality - recommended | | [zephyr-220m-sft-full-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q5_0.gguf) | Q5_0 | 0.155 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zephyr-220m-sft-full-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q5_K_S.gguf) | Q5_K_S | 0.155 GB | large, low quality loss - recommended | | [zephyr-220m-sft-full-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q5_K_M.gguf) | Q5_K_M | 0.158 GB | large, very low quality loss - recommended | | [zephyr-220m-sft-full-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q6_K.gguf) | Q6_K | 0.180 GB | very large, extremely low quality loss | | [zephyr-220m-sft-full-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-220m-sft-full-GGUF/blob/main/zephyr-220m-sft-full-Q8_0.gguf) | Q8_0 | 0.232 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zephyr-220m-sft-full-GGUF --include "zephyr-220m-sft-full-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zephyr-220m-sft-full-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/hepu-o4zf-ravz-7-0-GGUF
tensorblock
2025-04-21T00:33:24Z
35
0
null
[ "gguf", "autotrain", "text-generation", "TensorBlock", "GGUF", "base_model:abhishek/hepu-o4zf-ravz-7-0", "base_model:quantized:abhishek/hepu-o4zf-ravz-7-0", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-21T02:31:35Z
--- tags: - autotrain - text-generation - TensorBlock - GGUF widget: - text: 'I love AutoTrain because ' license: other base_model: abhishek/hepu-o4zf-ravz-7-0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## abhishek/hepu-o4zf-ravz-7-0 - GGUF This repo contains GGUF format model files for [abhishek/hepu-o4zf-ravz-7-0](https://huggingface.co/abhishek/hepu-o4zf-ravz-7-0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [hepu-o4zf-ravz-7-0-Q2_K.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [hepu-o4zf-ravz-7-0-Q3_K_S.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [hepu-o4zf-ravz-7-0-Q3_K_M.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [hepu-o4zf-ravz-7-0-Q3_K_L.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [hepu-o4zf-ravz-7-0-Q4_0.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [hepu-o4zf-ravz-7-0-Q4_K_S.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [hepu-o4zf-ravz-7-0-Q4_K_M.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [hepu-o4zf-ravz-7-0-Q5_0.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [hepu-o4zf-ravz-7-0-Q5_K_S.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [hepu-o4zf-ravz-7-0-Q5_K_M.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [hepu-o4zf-ravz-7-0-Q6_K.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [hepu-o4zf-ravz-7-0-Q8_0.gguf](https://huggingface.co/tensorblock/hepu-o4zf-ravz-7-0-GGUF/blob/main/hepu-o4zf-ravz-7-0-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/hepu-o4zf-ravz-7-0-GGUF --include "hepu-o4zf-ravz-7-0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/hepu-o4zf-ravz-7-0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mixtral-8x7B-v0.1-GGUF
tensorblock
2025-04-21T00:33:22Z
60
0
null
[ "gguf", "moe", "TensorBlock", "GGUF", "fr", "it", "de", "es", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:quantized:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-21T01:59:01Z
--- license: apache-2.0 language: - fr - it - de - es - en tags: - moe - TensorBlock - GGUF extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/fr/terms/">Privacy Policy</a>. base_model: mistralai/Mixtral-8x7B-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mistralai/Mixtral-8x7B-v0.1 - GGUF This repo contains GGUF format model files for [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mixtral-8x7B-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [Mixtral-8x7B-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [Mixtral-8x7B-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [Mixtral-8x7B-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [Mixtral-8x7B-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mixtral-8x7B-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [Mixtral-8x7B-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [Mixtral-8x7B-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mixtral-8x7B-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [Mixtral-8x7B-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [Mixtral-8x7B-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [Mixtral-8x7B-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Mixtral-8x7B-v0.1-GGUF/blob/main/Mixtral-8x7B-v0.1-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mixtral-8x7B-v0.1-GGUF --include "Mixtral-8x7B-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mixtral-8x7B-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Barcenas-10.7b-GGUF
tensorblock
2025-04-21T00:33:18Z
37
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "es", "base_model:Danielbrdz/Barcenas-10.7b", "base_model:quantized:Danielbrdz/Barcenas-10.7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T00:46:12Z
--- license: apache-2.0 language: - en - es tags: - TensorBlock - GGUF base_model: Danielbrdz/Barcenas-10.7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Danielbrdz/Barcenas-10.7b - GGUF This repo contains GGUF format model files for [Danielbrdz/Barcenas-10.7b](https://huggingface.co/Danielbrdz/Barcenas-10.7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Barcenas-10.7b-Q2_K.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Barcenas-10.7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Barcenas-10.7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Barcenas-10.7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Barcenas-10.7b-Q4_0.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Barcenas-10.7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Barcenas-10.7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Barcenas-10.7b-Q5_0.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Barcenas-10.7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Barcenas-10.7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Barcenas-10.7b-Q6_K.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Barcenas-10.7b-Q8_0.gguf](https://huggingface.co/tensorblock/Barcenas-10.7b-GGUF/blob/main/Barcenas-10.7b-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Barcenas-10.7b-GGUF --include "Barcenas-10.7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Barcenas-10.7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/StopCarbon-10.7B-v2-GGUF
tensorblock
2025-04-21T00:33:08Z
36
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "en", "base_model:kekmodel/StopCarbon-10.7B-v2", "base_model:quantized:kekmodel/StopCarbon-10.7B-v2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-21T00:04:07Z
--- license: cc-by-nc-4.0 language: - en tags: - merge - TensorBlock - GGUF base_model: kekmodel/StopCarbon-10.7B-v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kekmodel/StopCarbon-10.7B-v2 - GGUF This repo contains GGUF format model files for [kekmodel/StopCarbon-10.7B-v2](https://huggingface.co/kekmodel/StopCarbon-10.7B-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [StopCarbon-10.7B-v2-Q2_K.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [StopCarbon-10.7B-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [StopCarbon-10.7B-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [StopCarbon-10.7B-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [StopCarbon-10.7B-v2-Q4_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [StopCarbon-10.7B-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [StopCarbon-10.7B-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [StopCarbon-10.7B-v2-Q5_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [StopCarbon-10.7B-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [StopCarbon-10.7B-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [StopCarbon-10.7B-v2-Q6_K.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [StopCarbon-10.7B-v2-Q8_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v2-GGUF/blob/main/StopCarbon-10.7B-v2-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/StopCarbon-10.7B-v2-GGUF --include "StopCarbon-10.7B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/StopCarbon-10.7B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mhm-7b-v1.3-GGUF
tensorblock
2025-04-21T00:33:04Z
29
0
null
[ "gguf", "moe", "merge", "TensorBlock", "GGUF", "base_model:h2m/mhm-7b-v1.3", "base_model:quantized:h2m/mhm-7b-v1.3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-20T23:25:24Z
--- tags: - moe - merge - TensorBlock - GGUF license: apache-2.0 base_model: h2m/mhm-7b-v1.3 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## h2m/mhm-7b-v1.3 - GGUF This repo contains GGUF format model files for [h2m/mhm-7b-v1.3](https://huggingface.co/h2m/mhm-7b-v1.3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mhm-7b-v1.3-Q2_K.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mhm-7b-v1.3-Q3_K_S.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mhm-7b-v1.3-Q3_K_M.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mhm-7b-v1.3-Q3_K_L.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mhm-7b-v1.3-Q4_0.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mhm-7b-v1.3-Q4_K_S.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mhm-7b-v1.3-Q4_K_M.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mhm-7b-v1.3-Q5_0.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mhm-7b-v1.3-Q5_K_S.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mhm-7b-v1.3-Q5_K_M.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mhm-7b-v1.3-Q6_K.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mhm-7b-v1.3-Q8_0.gguf](https://huggingface.co/tensorblock/mhm-7b-v1.3-GGUF/blob/main/mhm-7b-v1.3-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mhm-7b-v1.3-GGUF --include "mhm-7b-v1.3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mhm-7b-v1.3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
amstf/ctmri_adallama
amstf
2025-04-21T00:33:02Z
0
0
null
[ "safetensors", "mllama", "region:us" ]
null
2025-04-20T22:49:18Z
## UNNC FYP <p>This model belongs to my 2025 UNNC FYP project and my student ID is 20412245
tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF
tensorblock
2025-04-21T00:32:59Z
27
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct", "base_model:quantized:Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-20T23:20:49Z
--- license: cc-by-nc-4.0 tags: - merge - TensorBlock - GGUF base_model: Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct model-index: - name: SauerkrautLM-UNA-SOLAR-Instruct results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.3 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct - GGUF This repo contains GGUF format model files for [Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co/Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SauerkrautLM-UNA-SOLAR-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [SauerkrautLM-UNA-SOLAR-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SauerkrautLM-UNA-SOLAR-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [SauerkrautLM-UNA-SOLAR-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [SauerkrautLM-UNA-SOLAR-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SauerkrautLM-UNA-SOLAR-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [SauerkrautLM-UNA-SOLAR-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [SauerkrautLM-UNA-SOLAR-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [SauerkrautLM-UNA-SOLAR-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF/blob/main/SauerkrautLM-UNA-SOLAR-Instruct-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF --include "SauerkrautLM-UNA-SOLAR-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SauerkrautLM-UNA-SOLAR-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuralHermes-MoE-2x7B-GGUF
tensorblock
2025-04-21T00:32:53Z
14
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "en", "base_model:ibndias/NeuralHermes-MoE-2x7B", "base_model:quantized:ibndias/NeuralHermes-MoE-2x7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-20T21:52:43Z
--- language: - en license: apache-2.0 tags: - merge - TensorBlock - GGUF base_model: ibndias/NeuralHermes-MoE-2x7B model-index: - name: NeuralHermes-MoE-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.61 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 51.86 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ibndias/NeuralHermes-MoE-2x7B - GGUF This repo contains GGUF format model files for [ibndias/NeuralHermes-MoE-2x7B](https://huggingface.co/ibndias/NeuralHermes-MoE-2x7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuralHermes-MoE-2x7B-Q2_K.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q2_K.gguf) | Q2_K | 4.761 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuralHermes-MoE-2x7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q3_K_S.gguf) | Q3_K_S | 5.588 GB | very small, high quality loss | | [NeuralHermes-MoE-2x7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q3_K_M.gguf) | Q3_K_M | 6.206 GB | very small, high quality loss | | [NeuralHermes-MoE-2x7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q3_K_L.gguf) | Q3_K_L | 6.730 GB | small, substantial quality loss | | [NeuralHermes-MoE-2x7B-Q4_0.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q4_0.gguf) | Q4_0 | 7.281 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuralHermes-MoE-2x7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q4_K_S.gguf) | Q4_K_S | 7.342 GB | small, greater quality loss | | [NeuralHermes-MoE-2x7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q4_K_M.gguf) | Q4_K_M | 7.783 GB | medium, balanced quality - recommended | | [NeuralHermes-MoE-2x7B-Q5_0.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q5_0.gguf) | Q5_0 | 8.874 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuralHermes-MoE-2x7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q5_K_S.gguf) | Q5_K_S | 8.874 GB | large, low quality loss - recommended | | [NeuralHermes-MoE-2x7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q5_K_M.gguf) | Q5_K_M | 9.133 GB | large, very low quality loss - recommended | | [NeuralHermes-MoE-2x7B-Q6_K.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q6_K.gguf) | Q6_K | 10.567 GB | very large, extremely low quality loss | | [NeuralHermes-MoE-2x7B-Q8_0.gguf](https://huggingface.co/tensorblock/NeuralHermes-MoE-2x7B-GGUF/blob/main/NeuralHermes-MoE-2x7B-Q8_0.gguf) | Q8_0 | 13.686 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuralHermes-MoE-2x7B-GGUF --include "NeuralHermes-MoE-2x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuralHermes-MoE-2x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Bald-Eagle-7B-GGUF
tensorblock
2025-04-21T00:32:52Z
57
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:cookinai/Bald-Eagle-7B", "base_model:quantized:cookinai/Bald-Eagle-7B", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T21:07:29Z
--- license: cc-by-nc-nd-4.0 tags: - TensorBlock - GGUF base_model: cookinai/Bald-Eagle-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## cookinai/Bald-Eagle-7B - GGUF This repo contains GGUF format model files for [cookinai/Bald-Eagle-7B](https://huggingface.co/cookinai/Bald-Eagle-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Bald-Eagle-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Bald-Eagle-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Bald-Eagle-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Bald-Eagle-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Bald-Eagle-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Bald-Eagle-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Bald-Eagle-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Bald-Eagle-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Bald-Eagle-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Bald-Eagle-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Bald-Eagle-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Bald-Eagle-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Bald-Eagle-7B-GGUF/blob/main/Bald-Eagle-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Bald-Eagle-7B-GGUF --include "Bald-Eagle-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Bald-Eagle-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ko-wand-136M-GGUF
tensorblock
2025-04-21T00:32:48Z
23
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "ko", "en", "base_model:instructkr/ko-wand-136M", "base_model:quantized:instructkr/ko-wand-136M", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T19:27:41Z
--- license: - apache-2.0 language: - ko - en pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: instructkr/ko-wand-136M --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## instructkr/ko-wand-136M - GGUF This repo contains GGUF format model files for [instructkr/ko-wand-136M](https://huggingface.co/instructkr/ko-wand-136M). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ko-wand-136M-Q2_K.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q2_K.gguf) | Q2_K | 0.061 GB | smallest, significant quality loss - not recommended for most purposes | | [ko-wand-136M-Q3_K_S.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q3_K_S.gguf) | Q3_K_S | 0.069 GB | very small, high quality loss | | [ko-wand-136M-Q3_K_M.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q3_K_M.gguf) | Q3_K_M | 0.073 GB | very small, high quality loss | | [ko-wand-136M-Q3_K_L.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q3_K_L.gguf) | Q3_K_L | 0.077 GB | small, substantial quality loss | | [ko-wand-136M-Q4_0.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q4_0.gguf) | Q4_0 | 0.084 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ko-wand-136M-Q4_K_S.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q4_K_S.gguf) | Q4_K_S | 0.084 GB | small, greater quality loss | | [ko-wand-136M-Q4_K_M.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q4_K_M.gguf) | Q4_K_M | 0.087 GB | medium, balanced quality - recommended | | [ko-wand-136M-Q5_0.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q5_0.gguf) | Q5_0 | 0.098 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ko-wand-136M-Q5_K_S.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q5_K_S.gguf) | Q5_K_S | 0.098 GB | large, low quality loss - recommended | | [ko-wand-136M-Q5_K_M.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q5_K_M.gguf) | Q5_K_M | 0.100 GB | large, very low quality loss - recommended | | [ko-wand-136M-Q6_K.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q6_K.gguf) | Q6_K | 0.113 GB | very large, extremely low quality loss | | [ko-wand-136M-Q8_0.gguf](https://huggingface.co/tensorblock/ko-wand-136M-GGUF/blob/main/ko-wand-136M-Q8_0.gguf) | Q8_0 | 0.146 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ko-wand-136M-GGUF --include "ko-wand-136M-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ko-wand-136M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MBX-7B-v3-GGUF
tensorblock
2025-04-21T00:32:47Z
20
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "flemmingmiguel/MBX-7B", "flemmingmiguel/MBX-7B-v3", "TensorBlock", "GGUF", "base_model:flemmingmiguel/MBX-7B-v3", "base_model:quantized:flemmingmiguel/MBX-7B-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T19:24:37Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - flemmingmiguel/MBX-7B - flemmingmiguel/MBX-7B-v3 - TensorBlock - GGUF base_model: flemmingmiguel/MBX-7B-v3 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## flemmingmiguel/MBX-7B-v3 - GGUF This repo contains GGUF format model files for [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MBX-7B-v3-Q2_K.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [MBX-7B-v3-Q3_K_S.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [MBX-7B-v3-Q3_K_M.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [MBX-7B-v3-Q3_K_L.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [MBX-7B-v3-Q4_0.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MBX-7B-v3-Q4_K_S.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [MBX-7B-v3-Q4_K_M.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [MBX-7B-v3-Q5_0.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MBX-7B-v3-Q5_K_S.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [MBX-7B-v3-Q5_K_M.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [MBX-7B-v3-Q6_K.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [MBX-7B-v3-Q8_0.gguf](https://huggingface.co/tensorblock/MBX-7B-v3-GGUF/blob/main/MBX-7B-v3-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MBX-7B-v3-GGUF --include "MBX-7B-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MBX-7B-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mistral-Passthrough-8L-10B-GGUF
tensorblock
2025-04-21T00:32:44Z
71
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "TensorBlock", "GGUF", "base_model:DeepKarkhanis/Mistral-Passthrough-8L-10B", "base_model:quantized:DeepKarkhanis/Mistral-Passthrough-8L-10B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T18:50:53Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - TensorBlock - GGUF base_model: DeepKarkhanis/Mistral-Passthrough-8L-10B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## DeepKarkhanis/Mistral-Passthrough-8L-10B - GGUF This repo contains GGUF format model files for [DeepKarkhanis/Mistral-Passthrough-8L-10B](https://huggingface.co/DeepKarkhanis/Mistral-Passthrough-8L-10B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-Passthrough-8L-10B-Q2_K.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-Passthrough-8L-10B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-Passthrough-8L-10B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-Passthrough-8L-10B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-Passthrough-8L-10B-Q4_0.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-Passthrough-8L-10B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-Passthrough-8L-10B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-Passthrough-8L-10B-Q5_0.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-Passthrough-8L-10B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-Passthrough-8L-10B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-Passthrough-8L-10B-Q6_K.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-Passthrough-8L-10B-Q8_0.gguf](https://huggingface.co/tensorblock/Mistral-Passthrough-8L-10B-GGUF/blob/main/Mistral-Passthrough-8L-10B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mistral-Passthrough-8L-10B-GGUF --include "Mistral-Passthrough-8L-10B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mistral-Passthrough-8L-10B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuralPizza-7B-V0.2-GGUF
tensorblock
2025-04-21T00:32:42Z
35
0
Transformers
[ "Transformers", "gguf", "transformers", "fine-tuned", "language-modeling", "direct-preference-optimization", "TensorBlock", "GGUF", "dataset:Intel/orca_dpo_pairs", "base_model:RatanRohith/NeuralPizza-7B-V0.2", "base_model:quantized:RatanRohith/NeuralPizza-7B-V0.2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T18:23:55Z
--- library_name: Transformers tags: - transformers - fine-tuned - language-modeling - direct-preference-optimization - TensorBlock - GGUF datasets: - Intel/orca_dpo_pairs license: apache-2.0 base_model: RatanRohith/NeuralPizza-7B-V0.2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## RatanRohith/NeuralPizza-7B-V0.2 - GGUF This repo contains GGUF format model files for [RatanRohith/NeuralPizza-7B-V0.2](https://huggingface.co/RatanRohith/NeuralPizza-7B-V0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuralPizza-7B-V0.2-Q2_K.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuralPizza-7B-V0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuralPizza-7B-V0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuralPizza-7B-V0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuralPizza-7B-V0.2-Q4_0.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuralPizza-7B-V0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuralPizza-7B-V0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuralPizza-7B-V0.2-Q5_0.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuralPizza-7B-V0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuralPizza-7B-V0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuralPizza-7B-V0.2-Q6_K.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuralPizza-7B-V0.2-Q8_0.gguf](https://huggingface.co/tensorblock/NeuralPizza-7B-V0.2-GGUF/blob/main/NeuralPizza-7B-V0.2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuralPizza-7B-V0.2-GGUF --include "NeuralPizza-7B-V0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuralPizza-7B-V0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ScaleDown-7B-slerp-v0.1-GGUF
tensorblock
2025-04-21T00:32:41Z
36
0
null
[ "gguf", "merge", "mergekit", "TensorBlock", "GGUF", "base_model:scaledown/ScaleDown-7B-slerp-v0.1", "base_model:quantized:scaledown/ScaleDown-7B-slerp-v0.1", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-20T17:56:00Z
--- license: apache-2.0 tags: - merge - mergekit - TensorBlock - GGUF base_model: scaledown/ScaleDown-7B-slerp-v0.1 model-index: - name: ScaleDown-7B-slerp-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.0 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.26 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.9 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 67.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=scaledown/ScaleDown-7B-slerp-v0.1 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## scaledown/ScaleDown-7B-slerp-v0.1 - GGUF This repo contains GGUF format model files for [scaledown/ScaleDown-7B-slerp-v0.1](https://huggingface.co/scaledown/ScaleDown-7B-slerp-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ScaleDown-7B-slerp-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [ScaleDown-7B-slerp-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [ScaleDown-7B-slerp-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [ScaleDown-7B-slerp-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [ScaleDown-7B-slerp-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ScaleDown-7B-slerp-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [ScaleDown-7B-slerp-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [ScaleDown-7B-slerp-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ScaleDown-7B-slerp-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [ScaleDown-7B-slerp-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [ScaleDown-7B-slerp-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [ScaleDown-7B-slerp-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/ScaleDown-7B-slerp-v0.1-GGUF/blob/main/ScaleDown-7B-slerp-v0.1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ScaleDown-7B-slerp-v0.1-GGUF --include "ScaleDown-7B-slerp-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ScaleDown-7B-slerp-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CarbonVillain-en-10.7B-v5-GGUF
tensorblock
2025-04-21T00:32:40Z
48
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:jeonsworld/CarbonVillain-en-10.7B-v5", "base_model:quantized:jeonsworld/CarbonVillain-en-10.7B-v5", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-20T17:26:26Z
--- license: cc-by-nc-sa-4.0 language: - en base_model: jeonsworld/CarbonVillain-en-10.7B-v5 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jeonsworld/CarbonVillain-en-10.7B-v5 - GGUF This repo contains GGUF format model files for [jeonsworld/CarbonVillain-en-10.7B-v5](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v5). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CarbonVillain-en-10.7B-v5-Q2_K.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [CarbonVillain-en-10.7B-v5-Q3_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [CarbonVillain-en-10.7B-v5-Q3_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [CarbonVillain-en-10.7B-v5-Q3_K_L.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [CarbonVillain-en-10.7B-v5-Q4_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CarbonVillain-en-10.7B-v5-Q4_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [CarbonVillain-en-10.7B-v5-Q4_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [CarbonVillain-en-10.7B-v5-Q5_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CarbonVillain-en-10.7B-v5-Q5_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [CarbonVillain-en-10.7B-v5-Q5_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [CarbonVillain-en-10.7B-v5-Q6_K.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [CarbonVillain-en-10.7B-v5-Q8_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v5-GGUF/blob/main/CarbonVillain-en-10.7B-v5-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CarbonVillain-en-10.7B-v5-GGUF --include "CarbonVillain-en-10.7B-v5-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CarbonVillain-en-10.7B-v5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LongAlign-7B-64k-base-GGUF
tensorblock
2025-04-21T00:32:39Z
39
0
transformers
[ "transformers", "gguf", "Long Context", "llama", "TensorBlock", "GGUF", "en", "zh", "base_model:THUDM/LongAlign-7B-64k-base", "base_model:quantized:THUDM/LongAlign-7B-64k-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T17:17:39Z
--- language: - en - zh library_name: transformers tags: - Long Context - llama - TensorBlock - GGUF license: apache-2.0 base_model: THUDM/LongAlign-7B-64k-base --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## THUDM/LongAlign-7B-64k-base - GGUF This repo contains GGUF format model files for [THUDM/LongAlign-7B-64k-base](https://huggingface.co/THUDM/LongAlign-7B-64k-base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LongAlign-7B-64k-base-Q2_K.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q2_K.gguf) | Q2_K | 2.534 GB | smallest, significant quality loss - not recommended for most purposes | | [LongAlign-7B-64k-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q3_K_S.gguf) | Q3_K_S | 2.950 GB | very small, high quality loss | | [LongAlign-7B-64k-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q3_K_M.gguf) | Q3_K_M | 3.299 GB | very small, high quality loss | | [LongAlign-7B-64k-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q3_K_L.gguf) | Q3_K_L | 3.598 GB | small, substantial quality loss | | [LongAlign-7B-64k-base-Q4_0.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LongAlign-7B-64k-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q4_K_S.gguf) | Q4_K_S | 3.858 GB | small, greater quality loss | | [LongAlign-7B-64k-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q4_K_M.gguf) | Q4_K_M | 4.082 GB | medium, balanced quality - recommended | | [LongAlign-7B-64k-base-Q5_0.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q5_0.gguf) | Q5_0 | 4.653 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LongAlign-7B-64k-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q5_K_S.gguf) | Q5_K_S | 4.653 GB | large, low quality loss - recommended | | [LongAlign-7B-64k-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q5_K_M.gguf) | Q5_K_M | 4.785 GB | large, very low quality loss - recommended | | [LongAlign-7B-64k-base-Q6_K.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q6_K.gguf) | Q6_K | 5.531 GB | very large, extremely low quality loss | | [LongAlign-7B-64k-base-Q8_0.gguf](https://huggingface.co/tensorblock/LongAlign-7B-64k-base-GGUF/blob/main/LongAlign-7B-64k-base-Q8_0.gguf) | Q8_0 | 7.163 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LongAlign-7B-64k-base-GGUF --include "LongAlign-7B-64k-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LongAlign-7B-64k-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF
tensorblock
2025-04-21T00:32:30Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34", "base_model:quantized:kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T14:47:53Z
--- language: - en pipeline_tag: text-generation license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34 - GGUF This repo contains GGUF format model files for [kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34](https://huggingface.co/kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q2_K.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q2_K.gguf) | Q2_K | 4.079 GB | smallest, significant quality loss - not recommended for most purposes | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_S.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_S.gguf) | Q3_K_S | 4.747 GB | very small, high quality loss | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_M.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_M.gguf) | Q3_K_M | 5.278 GB | very small, high quality loss | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_L.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q3_K_L.gguf) | Q3_K_L | 5.733 GB | small, substantial quality loss | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_0.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_0.gguf) | Q4_0 | 6.163 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_K_S.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_K_S.gguf) | Q4_K_S | 6.210 GB | small, greater quality loss | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_K_M.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q4_K_M.gguf) | Q4_K_M | 6.553 GB | medium, balanced quality - recommended | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_0.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_0.gguf) | Q5_0 | 7.497 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_K_S.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_K_S.gguf) | Q5_K_S | 7.497 GB | large, low quality loss - recommended | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_K_M.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q5_K_M.gguf) | Q5_K_M | 7.697 GB | large, very low quality loss - recommended | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q6_K.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q6_K.gguf) | Q6_K | 8.913 GB | very large, extremely low quality loss | | [WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q8_0.gguf](https://huggingface.co/tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF/blob/main/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q8_0.gguf) | Q8_0 | 11.544 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF --include "WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/FusionNet_linear-GGUF
tensorblock
2025-04-21T00:32:28Z
26
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:TomGrc/FusionNet_linear", "base_model:quantized:TomGrc/FusionNet_linear", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-20T14:42:40Z
--- language: - en license: mit tags: - merge - TensorBlock - GGUF pipeline_tag: text-generation base_model: TomGrc/FusionNet_linear model-index: - name: FusionNet_linear results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.25 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.94 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_linear name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## TomGrc/FusionNet_linear - GGUF This repo contains GGUF format model files for [TomGrc/FusionNet_linear](https://huggingface.co/TomGrc/FusionNet_linear). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [FusionNet_linear-Q2_K.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [FusionNet_linear-Q3_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [FusionNet_linear-Q3_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [FusionNet_linear-Q3_K_L.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [FusionNet_linear-Q4_0.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [FusionNet_linear-Q4_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [FusionNet_linear-Q4_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [FusionNet_linear-Q5_0.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [FusionNet_linear-Q5_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [FusionNet_linear-Q5_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [FusionNet_linear-Q6_K.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [FusionNet_linear-Q8_0.gguf](https://huggingface.co/tensorblock/FusionNet_linear-GGUF/blob/main/FusionNet_linear-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FusionNet_linear-GGUF --include "FusionNet_linear-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FusionNet_linear-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF
tensorblock
2025-04-21T00:32:26Z
39
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1", "base_model:quantized:pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T13:10:33Z
--- license: cc-by-nc-4.0 base_model: pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1 - GGUF This repo contains GGUF format model files for [pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1](https://huggingface.co/pinkyponky/SOLAR-10.7B-dpo-instruct-tuned-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF/blob/main/SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF --include "SOLAR-10.7B-dpo-instruct-tuned-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SOLAR-10.7B-dpo-instruct-tuned-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF
tensorblock
2025-04-21T00:32:19Z
36
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:ibndias/Nous-Hermes-2-MoE-2x34B", "base_model:quantized:ibndias/Nous-Hermes-2-MoE-2x34B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-20T08:55:35Z
--- license: apache-2.0 base_model: ibndias/Nous-Hermes-2-MoE-2x34B tags: - TensorBlock - GGUF model-index: - name: Nous-Hermes-2-MoE-2x34B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.73 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 76.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.08 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.52 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/Nous-Hermes-2-MoE-2x34B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ibndias/Nous-Hermes-2-MoE-2x34B - GGUF This repo contains GGUF format model files for [ibndias/Nous-Hermes-2-MoE-2x34B](https://huggingface.co/ibndias/Nous-Hermes-2-MoE-2x34B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Nous-Hermes-2-MoE-2x34B-Q2_K.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q2_K.gguf) | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes | | [Nous-Hermes-2-MoE-2x34B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q3_K_S.gguf) | Q3_K_S | 26.318 GB | very small, high quality loss | | [Nous-Hermes-2-MoE-2x34B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q3_K_M.gguf) | Q3_K_M | 29.237 GB | very small, high quality loss | | [Nous-Hermes-2-MoE-2x34B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q3_K_L.gguf) | Q3_K_L | 31.768 GB | small, substantial quality loss | | [Nous-Hermes-2-MoE-2x34B-Q4_0.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q4_0.gguf) | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Nous-Hermes-2-MoE-2x34B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q4_K_S.gguf) | Q4_K_S | 34.594 GB | small, greater quality loss | | [Nous-Hermes-2-MoE-2x34B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q4_K_M.gguf) | Q4_K_M | 36.661 GB | medium, balanced quality - recommended | | [Nous-Hermes-2-MoE-2x34B-Q5_0.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q5_0.gguf) | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Nous-Hermes-2-MoE-2x34B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q5_K_S.gguf) | Q5_K_S | 41.878 GB | large, low quality loss - recommended | | [Nous-Hermes-2-MoE-2x34B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q5_K_M.gguf) | Q5_K_M | 43.077 GB | large, very low quality loss - recommended | | [Nous-Hermes-2-MoE-2x34B-Q6_K.gguf](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q6_K.gguf) | Q6_K | 49.893 GB | very large, extremely low quality loss | | [Nous-Hermes-2-MoE-2x34B-Q8_0](https://huggingface.co/tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF/blob/main/Nous-Hermes-2-MoE-2x34B-Q8_0) | Q8_0 | 23.974 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF --include "Nous-Hermes-2-MoE-2x34B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Nous-Hermes-2-MoE-2x34B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Med_GPT2-GGUF
tensorblock
2025-04-21T00:32:17Z
126
0
null
[ "gguf", "medical", "TensorBlock", "GGUF", "text-generation", "en", "dataset:gamino/wiki_medical_terms", "base_model:Sharathhebbar24/Med_GPT2", "base_model:quantized:Sharathhebbar24/Med_GPT2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T08:17:52Z
--- license: apache-2.0 datasets: - gamino/wiki_medical_terms language: - en pipeline_tag: text-generation tags: - medical - TensorBlock - GGUF base_model: Sharathhebbar24/Med_GPT2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Sharathhebbar24/Med_GPT2 - GGUF This repo contains GGUF format model files for [Sharathhebbar24/Med_GPT2](https://huggingface.co/Sharathhebbar24/Med_GPT2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Med_GPT2-Q2_K.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q2_K.gguf) | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes | | [Med_GPT2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q3_K_S.gguf) | Q3_K_S | 0.090 GB | very small, high quality loss | | [Med_GPT2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q3_K_M.gguf) | Q3_K_M | 0.098 GB | very small, high quality loss | | [Med_GPT2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q3_K_L.gguf) | Q3_K_L | 0.102 GB | small, substantial quality loss | | [Med_GPT2-Q4_0.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q4_0.gguf) | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Med_GPT2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q4_K_S.gguf) | Q4_K_S | 0.107 GB | small, greater quality loss | | [Med_GPT2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q4_K_M.gguf) | Q4_K_M | 0.113 GB | medium, balanced quality - recommended | | [Med_GPT2-Q5_0.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q5_0.gguf) | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Med_GPT2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q5_K_S.gguf) | Q5_K_S | 0.122 GB | large, low quality loss - recommended | | [Med_GPT2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q5_K_M.gguf) | Q5_K_M | 0.127 GB | large, very low quality loss - recommended | | [Med_GPT2-Q6_K.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q6_K.gguf) | Q6_K | 0.138 GB | very large, extremely low quality loss | | [Med_GPT2-Q8_0.gguf](https://huggingface.co/tensorblock/Med_GPT2-GGUF/blob/main/Med_GPT2-Q8_0.gguf) | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Med_GPT2-GGUF --include "Med_GPT2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Med_GPT2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ToRoLaMa-7b-v1.0-GGUF
tensorblock
2025-04-21T00:32:15Z
52
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "vi", "en", "base_model:allbyai/ToRoLaMa-7b-v1.0", "base_model:quantized:allbyai/ToRoLaMa-7b-v1.0", "license:llama2", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T07:31:36Z
--- language: - vi - en license: llama2 pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: allbyai/ToRoLaMa-7b-v1.0 model-index: - name: ToRoLaMa-7b-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 51.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 73.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 45.34 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.89 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 70.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.36 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allbyai/ToRoLaMa-7b-v1.0 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## allbyai/ToRoLaMa-7b-v1.0 - GGUF This repo contains GGUF format model files for [allbyai/ToRoLaMa-7b-v1.0](https://huggingface.co/allbyai/ToRoLaMa-7b-v1.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ToRoLaMa-7b-v1.0-Q2_K.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q2_K.gguf) | Q2_K | 2.600 GB | smallest, significant quality loss - not recommended for most purposes | | [ToRoLaMa-7b-v1.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss | | [ToRoLaMa-7b-v1.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss | | [ToRoLaMa-7b-v1.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss | | [ToRoLaMa-7b-v1.0-Q4_0.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ToRoLaMa-7b-v1.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss | | [ToRoLaMa-7b-v1.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q4_K_M.gguf) | Q4_K_M | 4.162 GB | medium, balanced quality - recommended | | [ToRoLaMa-7b-v1.0-Q5_0.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q5_0.gguf) | Q5_0 | 4.740 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ToRoLaMa-7b-v1.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q5_K_S.gguf) | Q5_K_S | 4.740 GB | large, low quality loss - recommended | | [ToRoLaMa-7b-v1.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended | | [ToRoLaMa-7b-v1.0-Q6_K.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss | | [ToRoLaMa-7b-v1.0-Q8_0.gguf](https://huggingface.co/tensorblock/ToRoLaMa-7b-v1.0-GGUF/blob/main/ToRoLaMa-7b-v1.0-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ToRoLaMa-7b-v1.0-GGUF --include "ToRoLaMa-7b-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ToRoLaMa-7b-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF
tensorblock
2025-04-21T00:32:13Z
38
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:LordNoah/Alpaca_spin_gpt2_e0_se1", "base_model:quantized:LordNoah/Alpaca_spin_gpt2_e0_se1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-20T07:20:27Z
--- license: apache-2.0 base_model: LordNoah/Alpaca_spin_gpt2_e0_se1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## LordNoah/Alpaca_spin_gpt2_e0_se1 - GGUF This repo contains GGUF format model files for [LordNoah/Alpaca_spin_gpt2_e0_se1](https://huggingface.co/LordNoah/Alpaca_spin_gpt2_e0_se1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Alpaca_spin_gpt2_e0_se1-Q2_K.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q2_K.gguf) | Q2_K | 0.346 GB | smallest, significant quality loss - not recommended for most purposes | | [Alpaca_spin_gpt2_e0_se1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q3_K_S.gguf) | Q3_K_S | 0.394 GB | very small, high quality loss | | [Alpaca_spin_gpt2_e0_se1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q3_K_M.gguf) | Q3_K_M | 0.458 GB | very small, high quality loss | | [Alpaca_spin_gpt2_e0_se1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q3_K_L.gguf) | Q3_K_L | 0.494 GB | small, substantial quality loss | | [Alpaca_spin_gpt2_e0_se1-Q4_0.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q4_0.gguf) | Q4_0 | 0.497 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Alpaca_spin_gpt2_e0_se1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q4_K_S.gguf) | Q4_K_S | 0.500 GB | small, greater quality loss | | [Alpaca_spin_gpt2_e0_se1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q4_K_M.gguf) | Q4_K_M | 0.549 GB | medium, balanced quality - recommended | | [Alpaca_spin_gpt2_e0_se1-Q5_0.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q5_0.gguf) | Q5_0 | 0.593 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Alpaca_spin_gpt2_e0_se1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q5_K_S.gguf) | Q5_K_S | 0.593 GB | large, low quality loss - recommended | | [Alpaca_spin_gpt2_e0_se1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q5_K_M.gguf) | Q5_K_M | 0.632 GB | large, very low quality loss - recommended | | [Alpaca_spin_gpt2_e0_se1-Q6_K.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q6_K.gguf) | Q6_K | 0.696 GB | very large, extremely low quality loss | | [Alpaca_spin_gpt2_e0_se1-Q8_0.gguf](https://huggingface.co/tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF/blob/main/Alpaca_spin_gpt2_e0_se1-Q8_0.gguf) | Q8_0 | 0.898 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF --include "Alpaca_spin_gpt2_e0_se1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Alpaca_spin_gpt2_e0_se1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/jaskier-7b-dpo-GGUF
tensorblock
2025-04-21T00:32:03Z
29
0
null
[ "gguf", "TensorBlock", "GGUF", "conversational", "en", "dataset:Intel/orca_dpo_pairs", "base_model:bardsai/jaskier-7b-dpo", "base_model:quantized:bardsai/jaskier-7b-dpo", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T02:48:12Z
--- license: apache-2.0 language: - en datasets: - Intel/orca_dpo_pairs pipeline_tag: conversational tags: - TensorBlock - GGUF base_model: bardsai/jaskier-7b-dpo --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## bardsai/jaskier-7b-dpo - GGUF This repo contains GGUF format model files for [bardsai/jaskier-7b-dpo](https://huggingface.co/bardsai/jaskier-7b-dpo). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [jaskier-7b-dpo-Q2_K.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [jaskier-7b-dpo-Q3_K_S.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [jaskier-7b-dpo-Q3_K_M.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [jaskier-7b-dpo-Q3_K_L.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [jaskier-7b-dpo-Q4_0.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [jaskier-7b-dpo-Q4_K_S.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [jaskier-7b-dpo-Q4_K_M.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [jaskier-7b-dpo-Q5_0.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [jaskier-7b-dpo-Q5_K_S.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [jaskier-7b-dpo-Q5_K_M.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [jaskier-7b-dpo-Q6_K.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [jaskier-7b-dpo-Q8_0.gguf](https://huggingface.co/tensorblock/jaskier-7b-dpo-GGUF/blob/main/jaskier-7b-dpo-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/jaskier-7b-dpo-GGUF --include "jaskier-7b-dpo-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/jaskier-7b-dpo-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MiniCPM-2B-dpo-fp16-GGUF
tensorblock
2025-04-21T00:32:01Z
38
0
null
[ "gguf", "MiniCPM", "ModelBest", "THUNLP", "TensorBlock", "GGUF", "en", "zh", "base_model:openbmb/MiniCPM-2B-dpo-fp16", "base_model:quantized:openbmb/MiniCPM-2B-dpo-fp16", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-20T02:35:39Z
--- language: - en - zh tags: - MiniCPM - ModelBest - THUNLP - TensorBlock - GGUF base_model: openbmb/MiniCPM-2B-dpo-fp16 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## openbmb/MiniCPM-2B-dpo-fp16 - GGUF This repo contains GGUF format model files for [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` {system_prompt}<η”¨ζˆ·>{prompt}<AI> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MiniCPM-2B-dpo-fp16-Q2_K.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q2_K.gguf) | Q2_K | 1.204 GB | smallest, significant quality loss - not recommended for most purposes | | [MiniCPM-2B-dpo-fp16-Q3_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q3_K_S.gguf) | Q3_K_S | 1.355 GB | very small, high quality loss | | [MiniCPM-2B-dpo-fp16-Q3_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q3_K_M.gguf) | Q3_K_M | 1.481 GB | very small, high quality loss | | [MiniCPM-2B-dpo-fp16-Q3_K_L.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q3_K_L.gguf) | Q3_K_L | 1.564 GB | small, substantial quality loss | | [MiniCPM-2B-dpo-fp16-Q4_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q4_0.gguf) | Q4_0 | 1.609 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MiniCPM-2B-dpo-fp16-Q4_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q4_K_S.gguf) | Q4_K_S | 1.682 GB | small, greater quality loss | | [MiniCPM-2B-dpo-fp16-Q4_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q4_K_M.gguf) | Q4_K_M | 1.802 GB | medium, balanced quality - recommended | | [MiniCPM-2B-dpo-fp16-Q5_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q5_0.gguf) | Q5_0 | 1.914 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MiniCPM-2B-dpo-fp16-Q5_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q5_K_S.gguf) | Q5_K_S | 1.948 GB | large, low quality loss - recommended | | [MiniCPM-2B-dpo-fp16-Q5_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q5_K_M.gguf) | Q5_K_M | 2.045 GB | large, very low quality loss - recommended | | [MiniCPM-2B-dpo-fp16-Q6_K.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q6_K.gguf) | Q6_K | 2.367 GB | very large, extremely low quality loss | | [MiniCPM-2B-dpo-fp16-Q8_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-dpo-fp16-GGUF/blob/main/MiniCPM-2B-dpo-fp16-Q8_0.gguf) | Q8_0 | 2.899 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MiniCPM-2B-dpo-fp16-GGUF --include "MiniCPM-2B-dpo-fp16-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MiniCPM-2B-dpo-fp16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF
tensorblock
2025-04-21T00:31:58Z
54
0
null
[ "gguf", "llm", "fine-tune", "yi", "TensorBlock", "GGUF", "dataset:adamo1139/AEZAKMI_v2", "base_model:adamo1139/Yi-34B-200K-AEZAKMI-v2", "base_model:quantized:adamo1139/Yi-34B-200K-AEZAKMI-v2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-20T01:23:00Z
--- license: apache-2.0 tags: - llm - fine-tune - yi - TensorBlock - GGUF datasets: - adamo1139/AEZAKMI_v2 license_name: yi-license license_link: LICENSE base_model: adamo1139/Yi-34B-200K-AEZAKMI-v2 model-index: - name: Yi-34B-200K-AEZAKMI-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.92 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 75.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.74 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 58.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 45.55 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.28 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 4.83 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.96 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.48 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.03 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## adamo1139/Yi-34B-200K-AEZAKMI-v2 - GGUF This repo contains GGUF format model files for [adamo1139/Yi-34B-200K-AEZAKMI-v2](https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yi-34B-200K-AEZAKMI-v2-Q2_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [Yi-34B-200K-AEZAKMI-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [Yi-34B-200K-AEZAKMI-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [Yi-34B-200K-AEZAKMI-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [Yi-34B-200K-AEZAKMI-v2-Q4_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yi-34B-200K-AEZAKMI-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [Yi-34B-200K-AEZAKMI-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [Yi-34B-200K-AEZAKMI-v2-Q5_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yi-34B-200K-AEZAKMI-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [Yi-34B-200K-AEZAKMI-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [Yi-34B-200K-AEZAKMI-v2-Q6_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [Yi-34B-200K-AEZAKMI-v2-Q8_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF/blob/main/Yi-34B-200K-AEZAKMI-v2-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF --include "Yi-34B-200K-AEZAKMI-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Yi-34B-200K-AEZAKMI-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF
tensorblock
2025-04-21T00:31:57Z
75
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:UCLA-AGI/SPIN_iter3", "base_model:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3", "base_model:quantized:UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-20T01:14:17Z
--- license: mit datasets: - UCLA-AGI/SPIN_iter3 language: - en pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3 - GGUF This repo contains GGUF format model files for [UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3](https://huggingface.co/UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [zephyr-7b-sft-full-SPIN-iter3-Q2_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [zephyr-7b-sft-full-SPIN-iter3-Q3_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter3-Q3_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [zephyr-7b-sft-full-SPIN-iter3-Q3_K_L.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [zephyr-7b-sft-full-SPIN-iter3-Q4_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zephyr-7b-sft-full-SPIN-iter3-Q4_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [zephyr-7b-sft-full-SPIN-iter3-Q4_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [zephyr-7b-sft-full-SPIN-iter3-Q5_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zephyr-7b-sft-full-SPIN-iter3-Q5_K_S.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter3-Q5_K_M.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [zephyr-7b-sft-full-SPIN-iter3-Q6_K.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [zephyr-7b-sft-full-SPIN-iter3-Q8_0.gguf](https://huggingface.co/tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF/blob/main/zephyr-7b-sft-full-SPIN-iter3-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF --include "zephyr-7b-sft-full-SPIN-iter3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zephyr-7b-sft-full-SPIN-iter3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mixtral_7Bx5_MoE_30B-GGUF
tensorblock
2025-04-21T00:31:54Z
40
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:cloudyu/Mixtral_7Bx5_MoE_30B", "base_model:quantized:cloudyu/Mixtral_7Bx5_MoE_30B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-19T23:21:56Z
--- license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: cloudyu/Mixtral_7Bx5_MoE_30B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## cloudyu/Mixtral_7Bx5_MoE_30B - GGUF This repo contains GGUF format model files for [cloudyu/Mixtral_7Bx5_MoE_30B](https://huggingface.co/cloudyu/Mixtral_7Bx5_MoE_30B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mixtral_7Bx5_MoE_30B-Q2_K.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q2_K.gguf) | Q2_K | 10.884 GB | smallest, significant quality loss - not recommended for most purposes | | [Mixtral_7Bx5_MoE_30B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q3_K_S.gguf) | Q3_K_S | 12.856 GB | very small, high quality loss | | [Mixtral_7Bx5_MoE_30B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q3_K_M.gguf) | Q3_K_M | 14.267 GB | very small, high quality loss | | [Mixtral_7Bx5_MoE_30B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q3_K_L.gguf) | Q3_K_L | 15.451 GB | small, substantial quality loss | | [Mixtral_7Bx5_MoE_30B-Q4_0.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q4_0.gguf) | Q4_0 | 16.795 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mixtral_7Bx5_MoE_30B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q4_K_S.gguf) | Q4_K_S | 16.944 GB | small, greater quality loss | | [Mixtral_7Bx5_MoE_30B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q4_K_M.gguf) | Q4_K_M | 18.024 GB | medium, balanced quality - recommended | | [Mixtral_7Bx5_MoE_30B-Q5_0.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q5_0.gguf) | Q5_0 | 20.502 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mixtral_7Bx5_MoE_30B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q5_K_S.gguf) | Q5_K_S | 20.502 GB | large, low quality loss - recommended | | [Mixtral_7Bx5_MoE_30B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q5_K_M.gguf) | Q5_K_M | 21.135 GB | large, very low quality loss - recommended | | [Mixtral_7Bx5_MoE_30B-Q6_K.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q6_K.gguf) | Q6_K | 24.442 GB | very large, extremely low quality loss | | [Mixtral_7Bx5_MoE_30B-Q8_0.gguf](https://huggingface.co/tensorblock/Mixtral_7Bx5_MoE_30B-GGUF/blob/main/Mixtral_7Bx5_MoE_30B-Q8_0.gguf) | Q8_0 | 31.656 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mixtral_7Bx5_MoE_30B-GGUF --include "Mixtral_7Bx5_MoE_30B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mixtral_7Bx5_MoE_30B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF
tensorblock
2025-04-21T00:31:51Z
76
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE", "base_model:quantized:SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-19T22:30:36Z
--- license: cc-by-nc-4.0 tags: - merge - TensorBlock - GGUF base_model: SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE - GGUF This repo contains GGUF format model files for [SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE](https://huggingface.co/SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q2_K.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_S.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_M.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_L.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_0.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_K_S.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_K_M.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_0.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_K_S.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_K_M.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q6_K.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Loyal-Toppy-Bruins-Maid-7B-DARE-Q8_0.gguf](https://huggingface.co/tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF/blob/main/Loyal-Toppy-Bruins-Maid-7B-DARE-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF --include "Loyal-Toppy-Bruins-Maid-7B-DARE-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Loyal-Toppy-Bruins-Maid-7B-DARE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mozaic-7B-GGUF
tensorblock
2025-04-21T00:31:50Z
30
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:VitalContribution/Evangelion-7B", "base_model:quantized:VitalContribution/Evangelion-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-19T21:52:43Z
--- license: apache-2.0 library_name: transformers datasets: - argilla/distilabel-intel-orca-dpo-pairs pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: MozaicAI/Mozaic-7B model-index: - name: Evangelion-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.94 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## MozaicAI/Mozaic-7B - GGUF This repo contains GGUF format model files for [MozaicAI/Mozaic-7B](https://huggingface.co/MozaicAI/Mozaic-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mozaic-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mozaic-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mozaic-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mozaic-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mozaic-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mozaic-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mozaic-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mozaic-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mozaic-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mozaic-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mozaic-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mozaic-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Mozaic-7B-GGUF/blob/main/Mozaic-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mozaic-7B-GGUF --include "Mozaic-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mozaic-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MetaModelv3-GGUF
tensorblock
2025-04-21T00:31:47Z
28
0
null
[ "gguf", "MetaModelv3", "merge", "TensorBlock", "GGUF", "base_model:gagan3012/MetaModelv3", "base_model:quantized:gagan3012/MetaModelv3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-19T21:02:59Z
--- license: apache-2.0 tags: - MetaModelv3 - merge - TensorBlock - GGUF base_model: gagan3012/MetaModelv3 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## gagan3012/MetaModelv3 - GGUF This repo contains GGUF format model files for [gagan3012/MetaModelv3](https://huggingface.co/gagan3012/MetaModelv3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MetaModelv3-Q2_K.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [MetaModelv3-Q3_K_S.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [MetaModelv3-Q3_K_M.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [MetaModelv3-Q3_K_L.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [MetaModelv3-Q4_0.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MetaModelv3-Q4_K_S.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [MetaModelv3-Q4_K_M.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [MetaModelv3-Q5_0.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MetaModelv3-Q5_K_S.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [MetaModelv3-Q5_K_M.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [MetaModelv3-Q6_K.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [MetaModelv3-Q8_0.gguf](https://huggingface.co/tensorblock/MetaModelv3-GGUF/blob/main/MetaModelv3-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MetaModelv3-GGUF --include "MetaModelv3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MetaModelv3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF
tensorblock
2025-04-21T00:31:43Z
33
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:Weyaxi/openchat-3.5-1210-Seraph-Slerp", "base_model:quantized:Weyaxi/openchat-3.5-1210-Seraph-Slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-19T19:53:51Z
--- license: apache-2.0 tags: - merge - TensorBlock - GGUF base_model: Weyaxi/openchat-3.5-1210-Seraph-Slerp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Weyaxi/openchat-3.5-1210-Seraph-Slerp - GGUF This repo contains GGUF format model files for [Weyaxi/openchat-3.5-1210-Seraph-Slerp](https://huggingface.co/Weyaxi/openchat-3.5-1210-Seraph-Slerp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openchat-3.5-1210-Seraph-Slerp-Q2_K.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [openchat-3.5-1210-Seraph-Slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [openchat-3.5-1210-Seraph-Slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [openchat-3.5-1210-Seraph-Slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [openchat-3.5-1210-Seraph-Slerp-Q4_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openchat-3.5-1210-Seraph-Slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [openchat-3.5-1210-Seraph-Slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [openchat-3.5-1210-Seraph-Slerp-Q5_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openchat-3.5-1210-Seraph-Slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [openchat-3.5-1210-Seraph-Slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [openchat-3.5-1210-Seraph-Slerp-Q6_K.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [openchat-3.5-1210-Seraph-Slerp-Q8_0.gguf](https://huggingface.co/tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF/blob/main/openchat-3.5-1210-Seraph-Slerp-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF --include "openchat-3.5-1210-Seraph-Slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/openchat-3.5-1210-Seraph-Slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mistral_v1-GGUF
tensorblock
2025-04-21T00:31:42Z
43
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:vikash06/mistral_v1", "base_model:quantized:vikash06/mistral_v1", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-19T19:15:42Z
--- license: mit tags: - TensorBlock - GGUF base_model: vikash06/mistral_v1 model-index: - name: mistral_v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 47.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 67.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 48.68 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.53 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 64.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 9.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/mistral_v1 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## vikash06/mistral_v1 - GGUF This repo contains GGUF format model files for [vikash06/mistral_v1](https://huggingface.co/vikash06/mistral_v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mistral_v1-Q2_K.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral_v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mistral_v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mistral_v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mistral_v1-Q4_0.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral_v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mistral_v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mistral_v1-Q5_0.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral_v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mistral_v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mistral_v1-Q6_K.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mistral_v1-Q8_0.gguf](https://huggingface.co/tensorblock/mistral_v1-GGUF/blob/main/mistral_v1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mistral_v1-GGUF --include "mistral_v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mistral_v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/bagel-dpo-7b-v0.1-GGUF
tensorblock
2025-04-21T00:31:41Z
38
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:ai2_arc", "dataset:unalignment/spicy-3.1", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:boolq", "dataset:jondurbin/cinematika-v0.1", "dataset:drop", "dataset:lmsys/lmsys-chat-1m", "dataset:TIGER-Lab/MathInstruct", "dataset:cais/mmlu", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:spider", "dataset:squad_v2", "dataset:migtissera/Synthia-v1.3", "dataset:datasets/winogrande", "dataset:nvidia/HelpSteer", "dataset:Intel/orca_dpo_pairs", "dataset:unalignment/toxic-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:allenai/ultrafeedback_binarized_cleaned", "base_model:jondurbin/bagel-dpo-7b-v0.1", "base_model:quantized:jondurbin/bagel-dpo-7b-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-19T18:49:17Z
--- license: apache-2.0 datasets: - ai2_arc - unalignment/spicy-3.1 - codeparrot/apps - facebook/belebele - boolq - jondurbin/cinematika-v0.1 - drop - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - cais/mmlu - Muennighoff/natural-instructions - openbookqa - piqa - Vezora/Tested-22k-Python-Alpaca - cakiki/rosetta-code - Open-Orca/SlimOrca - spider - squad_v2 - migtissera/Synthia-v1.3 - datasets/winogrande - nvidia/HelpSteer - Intel/orca_dpo_pairs - unalignment/toxic-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - allenai/ultrafeedback_binarized_cleaned tags: - TensorBlock - GGUF base_model: jondurbin/bagel-dpo-7b-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jondurbin/bagel-dpo-7b-v0.1 - GGUF This repo contains GGUF format model files for [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` [INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [bagel-dpo-7b-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [bagel-dpo-7b-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [bagel-dpo-7b-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [bagel-dpo-7b-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [bagel-dpo-7b-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [bagel-dpo-7b-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [bagel-dpo-7b-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [bagel-dpo-7b-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [bagel-dpo-7b-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [bagel-dpo-7b-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [bagel-dpo-7b-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [bagel-dpo-7b-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/bagel-dpo-7b-v0.1-GGUF/blob/main/bagel-dpo-7b-v0.1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/bagel-dpo-7b-v0.1-GGUF --include "bagel-dpo-7b-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/bagel-dpo-7b-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF
tensorblock
2025-04-21T00:31:34Z
13
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:macadeliccc/SOLAR-math-2x10.7b-v0.2", "base_model:quantized:macadeliccc/SOLAR-math-2x10.7b-v0.2", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-19T12:48:17Z
--- license: cc-by-nc-4.0 base_model: macadeliccc/SOLAR-math-2x10.7b-v0.2 tags: - TensorBlock - GGUF model-index: - name: SOLAR-math-2x10.7b-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.68 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## macadeliccc/SOLAR-math-2x10.7b-v0.2 - GGUF This repo contains GGUF format model files for [macadeliccc/SOLAR-math-2x10.7b-v0.2](https://huggingface.co/macadeliccc/SOLAR-math-2x10.7b-v0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SOLAR-math-2x10.7b-v0.2-Q2_K.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q2_K.gguf) | Q2_K | 7.066 GB | smallest, significant quality loss - not recommended for most purposes | | [SOLAR-math-2x10.7b-v0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q3_K_S.gguf) | Q3_K_S | 8.299 GB | very small, high quality loss | | [SOLAR-math-2x10.7b-v0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q3_K_M.gguf) | Q3_K_M | 9.227 GB | very small, high quality loss | | [SOLAR-math-2x10.7b-v0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q3_K_L.gguf) | Q3_K_L | 10.012 GB | small, substantial quality loss | | [SOLAR-math-2x10.7b-v0.2-Q4_0.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q4_0.gguf) | Q4_0 | 10.830 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SOLAR-math-2x10.7b-v0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q4_K_S.gguf) | Q4_K_S | 10.920 GB | small, greater quality loss | | [SOLAR-math-2x10.7b-v0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q4_K_M.gguf) | Q4_K_M | 11.583 GB | medium, balanced quality - recommended | | [SOLAR-math-2x10.7b-v0.2-Q5_0.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q5_0.gguf) | Q5_0 | 13.212 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SOLAR-math-2x10.7b-v0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q5_K_S.gguf) | Q5_K_S | 13.212 GB | large, low quality loss - recommended | | [SOLAR-math-2x10.7b-v0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q5_K_M.gguf) | Q5_K_M | 13.600 GB | large, very low quality loss - recommended | | [SOLAR-math-2x10.7b-v0.2-Q6_K.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q6_K.gguf) | Q6_K | 15.743 GB | very large, extremely low quality loss | | [SOLAR-math-2x10.7b-v0.2-Q8_0.gguf](https://huggingface.co/tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF/blob/main/SOLAR-math-2x10.7b-v0.2-Q8_0.gguf) | Q8_0 | 20.390 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF --include "SOLAR-math-2x10.7b-v0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SOLAR-math-2x10.7b-v0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Tenebra_30B_Alpha01_FP16-GGUF
tensorblock
2025-04-21T00:31:33Z
17
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:SicariusSicariiStuff/Tenebra_30B_Alpha01", "base_model:quantized:SicariusSicariiStuff/Tenebra_30B_Alpha01", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-19T12:12:34Z
--- language: - en license: apache-2.0 tags: - TensorBlock - GGUF base_model: SicariusSicariiStuff/Tenebra_30B_Alpha01_FP16 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## SicariusSicariiStuff/Tenebra_30B_Alpha01_FP16 - GGUF This repo contains GGUF format model files for [SicariusSicariiStuff/Tenebra_30B_Alpha01_FP16](https://huggingface.co/SicariusSicariiStuff/Tenebra_30B_Alpha01_FP16). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Tenebra_30B_Alpha01_FP16-Q2_K.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q2_K.gguf) | Q2_K | 12.049 GB | smallest, significant quality loss - not recommended for most purposes | | [Tenebra_30B_Alpha01_FP16-Q3_K_S.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q3_K_S.gguf) | Q3_K_S | 14.064 GB | very small, high quality loss | | [Tenebra_30B_Alpha01_FP16-Q3_K_M.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q3_K_M.gguf) | Q3_K_M | 15.776 GB | very small, high quality loss | | [Tenebra_30B_Alpha01_FP16-Q3_K_L.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q3_K_L.gguf) | Q3_K_L | 17.280 GB | small, substantial quality loss | | [Tenebra_30B_Alpha01_FP16-Q4_0.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q4_0.gguf) | Q4_0 | 18.356 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Tenebra_30B_Alpha01_FP16-Q4_K_S.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q4_K_S.gguf) | Q4_K_S | 18.482 GB | small, greater quality loss | | [Tenebra_30B_Alpha01_FP16-Q4_K_M.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q4_K_M.gguf) | Q4_K_M | 19.621 GB | medium, balanced quality - recommended | | [Tenebra_30B_Alpha01_FP16-Q5_0.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q5_0.gguf) | Q5_0 | 22.395 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Tenebra_30B_Alpha01_FP16-Q5_K_S.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q5_K_S.gguf) | Q5_K_S | 22.395 GB | large, low quality loss - recommended | | [Tenebra_30B_Alpha01_FP16-Q5_K_M.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q5_K_M.gguf) | Q5_K_M | 23.047 GB | large, very low quality loss - recommended | | [Tenebra_30B_Alpha01_FP16-Q6_K.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q6_K.gguf) | Q6_K | 26.687 GB | very large, extremely low quality loss | | [Tenebra_30B_Alpha01_FP16-Q8_0.gguf](https://huggingface.co/tensorblock/Tenebra_30B_Alpha01_FP16-GGUF/blob/main/Tenebra_30B_Alpha01_FP16-Q8_0.gguf) | Q8_0 | 34.565 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Tenebra_30B_Alpha01_FP16-GGUF --include "Tenebra_30B_Alpha01_FP16-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Tenebra_30B_Alpha01_FP16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF
tensorblock
2025-04-21T00:31:32Z
52
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:luffycodes/vicuna-class-shishya-all-hal-13b-ep3", "base_model:quantized:luffycodes/vicuna-class-shishya-all-hal-13b-ep3", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-19T11:21:20Z
--- license: llama2 base_model: luffycodes/vicuna-class-shishya-all-hal-13b-ep3 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## luffycodes/vicuna-class-shishya-all-hal-13b-ep3 - GGUF This repo contains GGUF format model files for [luffycodes/vicuna-class-shishya-all-hal-13b-ep3](https://huggingface.co/luffycodes/vicuna-class-shishya-all-hal-13b-ep3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [vicuna-class-shishya-all-hal-13b-ep3-Q2_K.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [vicuna-class-shishya-all-hal-13b-ep3-Q3_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [vicuna-class-shishya-all-hal-13b-ep3-Q3_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [vicuna-class-shishya-all-hal-13b-ep3-Q3_K_L.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [vicuna-class-shishya-all-hal-13b-ep3-Q4_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [vicuna-class-shishya-all-hal-13b-ep3-Q4_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [vicuna-class-shishya-all-hal-13b-ep3-Q4_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [vicuna-class-shishya-all-hal-13b-ep3-Q5_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [vicuna-class-shishya-all-hal-13b-ep3-Q5_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [vicuna-class-shishya-all-hal-13b-ep3-Q5_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [vicuna-class-shishya-all-hal-13b-ep3-Q6_K.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [vicuna-class-shishya-all-hal-13b-ep3-Q8_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF/blob/main/vicuna-class-shishya-all-hal-13b-ep3-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF --include "vicuna-class-shishya-all-hal-13b-ep3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/vicuna-class-shishya-all-hal-13b-ep3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MistralTrix-v1-GGUF
tensorblock
2025-04-21T00:31:29Z
63
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:CultriX/MistralTrix-v1", "base_model:quantized:CultriX/MistralTrix-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-19T10:18:44Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation dtype: bfloat16 tags: - merge - TensorBlock - GGUF base_model: CultriX/MistralTrix-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## CultriX/MistralTrix-v1 - GGUF This repo contains GGUF format model files for [CultriX/MistralTrix-v1](https://huggingface.co/CultriX/MistralTrix-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MistralTrix-v1-Q2_K.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q2_K.gguf) | Q2_K | 3.361 GB | smallest, significant quality loss - not recommended for most purposes | | [MistralTrix-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q3_K_S.gguf) | Q3_K_S | 3.915 GB | very small, high quality loss | | [MistralTrix-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q3_K_M.gguf) | Q3_K_M | 4.354 GB | very small, high quality loss | | [MistralTrix-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q3_K_L.gguf) | Q3_K_L | 4.736 GB | small, substantial quality loss | | [MistralTrix-v1-Q4_0.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q4_0.gguf) | Q4_0 | 5.091 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MistralTrix-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q4_K_S.gguf) | Q4_K_S | 5.129 GB | small, greater quality loss | | [MistralTrix-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q4_K_M.gguf) | Q4_K_M | 5.415 GB | medium, balanced quality - recommended | | [MistralTrix-v1-Q5_0.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q5_0.gguf) | Q5_0 | 6.198 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MistralTrix-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q5_K_S.gguf) | Q5_K_S | 6.198 GB | large, low quality loss - recommended | | [MistralTrix-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q5_K_M.gguf) | Q5_K_M | 6.365 GB | large, very low quality loss - recommended | | [MistralTrix-v1-Q6_K.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q6_K.gguf) | Q6_K | 7.374 GB | very large, extremely low quality loss | | [MistralTrix-v1-Q8_0.gguf](https://huggingface.co/tensorblock/MistralTrix-v1-GGUF/blob/main/MistralTrix-v1-Q8_0.gguf) | Q8_0 | 9.550 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MistralTrix-v1-GGUF --include "MistralTrix-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MistralTrix-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CarbonVillain-en-10.7B-v2-GGUF
tensorblock
2025-04-21T00:31:27Z
112
0
null
[ "gguf", "merge", "slerp", "TensorBlock", "GGUF", "en", "base_model:jeonsworld/CarbonVillain-en-10.7B-v2", "base_model:quantized:jeonsworld/CarbonVillain-en-10.7B-v2", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-19T06:44:58Z
--- license: cc-by-nc-sa-4.0 language: - en tags: - merge - slerp - TensorBlock - GGUF base_model: jeonsworld/CarbonVillain-en-10.7B-v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jeonsworld/CarbonVillain-en-10.7B-v2 - GGUF This repo contains GGUF format model files for [jeonsworld/CarbonVillain-en-10.7B-v2](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CarbonVillain-en-10.7B-v2-Q2_K.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [CarbonVillain-en-10.7B-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [CarbonVillain-en-10.7B-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [CarbonVillain-en-10.7B-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [CarbonVillain-en-10.7B-v2-Q4_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CarbonVillain-en-10.7B-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [CarbonVillain-en-10.7B-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [CarbonVillain-en-10.7B-v2-Q5_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CarbonVillain-en-10.7B-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [CarbonVillain-en-10.7B-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [CarbonVillain-en-10.7B-v2-Q6_K.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [CarbonVillain-en-10.7B-v2-Q8_0.gguf](https://huggingface.co/tensorblock/CarbonVillain-en-10.7B-v2-GGUF/blob/main/CarbonVillain-en-10.7B-v2-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CarbonVillain-en-10.7B-v2-GGUF --include "CarbonVillain-en-10.7B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CarbonVillain-en-10.7B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Yi-Ko-34B-GGUF
tensorblock
2025-04-21T00:31:24Z
31
0
transformers
[ "transformers", "gguf", "pytorch", "Yi-Ko", "01-ai", "Yi", "TensorBlock", "GGUF", "text-generation", "en", "ko", "base_model:beomi/Yi-Ko-34B", "base_model:quantized:beomi/Yi-Ko-34B", "license:apache-2.0", "region:us" ]
text-generation
2024-12-19T01:18:27Z
--- extra_gated_heading: Access beomi/Yi-Ko-34B on Hugging Face extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username: checkbox ? I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model : checkbox language: - en - ko pipeline_tag: text-generation inference: false tags: - pytorch - Yi-Ko - 01-ai - Yi - TensorBlock - GGUF library_name: transformers license: apache-2.0 base_model: beomi/Yi-Ko-34B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## beomi/Yi-Ko-34B - GGUF This repo contains GGUF format model files for [beomi/Yi-Ko-34B](https://huggingface.co/beomi/Yi-Ko-34B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yi-Ko-34B-Q2_K.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q2_K.gguf) | Q2_K | 12.945 GB | smallest, significant quality loss - not recommended for most purposes | | [Yi-Ko-34B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q3_K_S.gguf) | Q3_K_S | 15.090 GB | very small, high quality loss | | [Yi-Ko-34B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q3_K_M.gguf) | Q3_K_M | 16.785 GB | very small, high quality loss | | [Yi-Ko-34B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q3_K_L.gguf) | Q3_K_L | 18.269 GB | small, substantial quality loss | | [Yi-Ko-34B-Q4_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q4_0.gguf) | Q4_0 | 19.610 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yi-Ko-34B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q4_K_S.gguf) | Q4_K_S | 19.742 GB | small, greater quality loss | | [Yi-Ko-34B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q4_K_M.gguf) | Q4_K_M | 20.802 GB | medium, balanced quality - recommended | | [Yi-Ko-34B-Q5_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q5_0.gguf) | Q5_0 | 23.864 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yi-Ko-34B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q5_K_S.gguf) | Q5_K_S | 23.864 GB | large, low quality loss - recommended | | [Yi-Ko-34B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q5_K_M.gguf) | Q5_K_M | 24.479 GB | large, very low quality loss - recommended | | [Yi-Ko-34B-Q6_K.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q6_K.gguf) | Q6_K | 28.384 GB | very large, extremely low quality loss | | [Yi-Ko-34B-Q8_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-34B-GGUF/blob/main/Yi-Ko-34B-Q8_0.gguf) | Q8_0 | 36.763 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Yi-Ko-34B-GGUF --include "Yi-Ko-34B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Yi-Ko-34B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Lonepino-11B-GGUF
tensorblock
2025-04-21T00:31:22Z
24
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:beberik/Lonepino-11B", "base_model:quantized:beberik/Lonepino-11B", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-19T01:14:04Z
--- license: cc-by-nc-4.0 tags: - merge - TensorBlock - GGUF base_model: beberik/Lonepino-11B model-index: - name: Lonepino-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.57 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.76 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.45 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## beberik/Lonepino-11B - GGUF This repo contains GGUF format model files for [beberik/Lonepino-11B](https://huggingface.co/beberik/Lonepino-11B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Lonepino-11B-Q2_K.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Lonepino-11B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Lonepino-11B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Lonepino-11B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Lonepino-11B-Q4_0.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Lonepino-11B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Lonepino-11B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Lonepino-11B-Q5_0.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Lonepino-11B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Lonepino-11B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Lonepino-11B-Q6_K.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Lonepino-11B-Q8_0.gguf](https://huggingface.co/tensorblock/Lonepino-11B-GGUF/blob/main/Lonepino-11B-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Lonepino-11B-GGUF --include "Lonepino-11B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Lonepino-11B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Phoenix-v1-8x7B-GGUF
tensorblock
2025-04-21T00:31:18Z
31
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:jan-hq/Phoenix-v1-8x7B", "base_model:quantized:jan-hq/Phoenix-v1-8x7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-18T21:09:41Z
--- license: apache-2.0 language: - en base_model: jan-hq/Phoenix-v1-8x7B tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jan-hq/Phoenix-v1-8x7B - GGUF This repo contains GGUF format model files for [jan-hq/Phoenix-v1-8x7B](https://huggingface.co/jan-hq/Phoenix-v1-8x7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Phoenix-v1-8x7B-Q2_K.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [Phoenix-v1-8x7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [Phoenix-v1-8x7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [Phoenix-v1-8x7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [Phoenix-v1-8x7B-Q4_0.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Phoenix-v1-8x7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [Phoenix-v1-8x7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [Phoenix-v1-8x7B-Q5_0.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Phoenix-v1-8x7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [Phoenix-v1-8x7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [Phoenix-v1-8x7B-Q6_K.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [Phoenix-v1-8x7B-Q8_0.gguf](https://huggingface.co/tensorblock/Phoenix-v1-8x7B-GGUF/blob/main/Phoenix-v1-8x7B-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Phoenix-v1-8x7B-GGUF --include "Phoenix-v1-8x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Phoenix-v1-8x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MiniCPM-2B-sft-bf16-GGUF
tensorblock
2025-04-21T00:31:17Z
47
0
null
[ "gguf", "MiniCPM", "ModelBest", "THUNLP", "TensorBlock", "GGUF", "en", "zh", "base_model:openbmb/MiniCPM-2B-sft-bf16", "base_model:quantized:openbmb/MiniCPM-2B-sft-bf16", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-18T20:34:18Z
--- language: - en - zh tags: - MiniCPM - ModelBest - THUNLP - TensorBlock - GGUF base_model: openbmb/MiniCPM-2B-sft-bf16 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## openbmb/MiniCPM-2B-sft-bf16 - GGUF This repo contains GGUF format model files for [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` {system_prompt}<η”¨ζˆ·>{prompt}<AI> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MiniCPM-2B-sft-bf16-Q2_K.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q2_K.gguf) | Q2_K | 1.204 GB | smallest, significant quality loss - not recommended for most purposes | | [MiniCPM-2B-sft-bf16-Q3_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q3_K_S.gguf) | Q3_K_S | 1.355 GB | very small, high quality loss | | [MiniCPM-2B-sft-bf16-Q3_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q3_K_M.gguf) | Q3_K_M | 1.481 GB | very small, high quality loss | | [MiniCPM-2B-sft-bf16-Q3_K_L.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q3_K_L.gguf) | Q3_K_L | 1.564 GB | small, substantial quality loss | | [MiniCPM-2B-sft-bf16-Q4_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q4_0.gguf) | Q4_0 | 1.609 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MiniCPM-2B-sft-bf16-Q4_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q4_K_S.gguf) | Q4_K_S | 1.682 GB | small, greater quality loss | | [MiniCPM-2B-sft-bf16-Q4_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q4_K_M.gguf) | Q4_K_M | 1.802 GB | medium, balanced quality - recommended | | [MiniCPM-2B-sft-bf16-Q5_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q5_0.gguf) | Q5_0 | 1.914 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MiniCPM-2B-sft-bf16-Q5_K_S.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q5_K_S.gguf) | Q5_K_S | 1.948 GB | large, low quality loss - recommended | | [MiniCPM-2B-sft-bf16-Q5_K_M.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q5_K_M.gguf) | Q5_K_M | 2.045 GB | large, very low quality loss - recommended | | [MiniCPM-2B-sft-bf16-Q6_K.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q6_K.gguf) | Q6_K | 2.367 GB | very large, extremely low quality loss | | [MiniCPM-2B-sft-bf16-Q8_0.gguf](https://huggingface.co/tensorblock/MiniCPM-2B-sft-bf16-GGUF/blob/main/MiniCPM-2B-sft-bf16-Q8_0.gguf) | Q8_0 | 2.899 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MiniCPM-2B-sft-bf16-GGUF --include "MiniCPM-2B-sft-bf16-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MiniCPM-2B-sft-bf16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Multilingual-mistral-GGUF
tensorblock
2025-04-21T00:31:15Z
30
0
null
[ "gguf", "moe", "mixtral", "openchat/openchat-3.5-0106", "giux78/zefiro-7b-beta-ITA-v0.1", "azale-ai/Starstreak-7b-beta", "gagan3012/Mistral_arabic_dpo", "davidkim205/komt-mistral-7b-v1", "OpenBuddy/openbuddy-zephyr-7b-v14.1", "manishiitg/open-aditi-hi-v1", "VAGOsolutions/SauerkrautLM-7b-v1-mistral", "TensorBlock", "GGUF", "base_model:gagan3012/Multilingual-mistral", "base_model:quantized:gagan3012/Multilingual-mistral", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-18T20:23:22Z
--- license: apache-2.0 tags: - moe - mixtral - openchat/openchat-3.5-0106 - giux78/zefiro-7b-beta-ITA-v0.1 - azale-ai/Starstreak-7b-beta - gagan3012/Mistral_arabic_dpo - davidkim205/komt-mistral-7b-v1 - OpenBuddy/openbuddy-zephyr-7b-v14.1 - manishiitg/open-aditi-hi-v1 - VAGOsolutions/SauerkrautLM-7b-v1-mistral - TensorBlock - GGUF base_model: gagan3012/Multilingual-mistral model-index: - name: Multilingual-mistral results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.38 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.53 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.26 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## gagan3012/Multilingual-mistral - GGUF This repo contains GGUF format model files for [gagan3012/Multilingual-mistral](https://huggingface.co/gagan3012/Multilingual-mistral). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Multilingual-mistral-Q2_K.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [Multilingual-mistral-Q3_K_S.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [Multilingual-mistral-Q3_K_M.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [Multilingual-mistral-Q3_K_L.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [Multilingual-mistral-Q4_0.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Multilingual-mistral-Q4_K_S.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [Multilingual-mistral-Q4_K_M.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [Multilingual-mistral-Q5_0.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Multilingual-mistral-Q5_K_S.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [Multilingual-mistral-Q5_K_M.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [Multilingual-mistral-Q6_K.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [Multilingual-mistral-Q8_0.gguf](https://huggingface.co/tensorblock/Multilingual-mistral-GGUF/blob/main/Multilingual-mistral-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Multilingual-mistral-GGUF --include "Multilingual-mistral-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Multilingual-mistral-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Lelantos-DPO-7B-GGUF
tensorblock
2025-04-21T00:31:08Z
36
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:SanjiWatsuki/Lelantos-DPO-7B", "base_model:quantized:SanjiWatsuki/Lelantos-DPO-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-18T15:49:32Z
--- license: cc-by-nc-4.0 base_model: SanjiWatsuki/Lelantos-DPO-7B tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## SanjiWatsuki/Lelantos-DPO-7B - GGUF This repo contains GGUF format model files for [SanjiWatsuki/Lelantos-DPO-7B](https://huggingface.co/SanjiWatsuki/Lelantos-DPO-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Lelantos-DPO-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Lelantos-DPO-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Lelantos-DPO-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Lelantos-DPO-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Lelantos-DPO-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Lelantos-DPO-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Lelantos-DPO-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Lelantos-DPO-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Lelantos-DPO-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Lelantos-DPO-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Lelantos-DPO-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Lelantos-DPO-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Lelantos-DPO-7B-GGUF/blob/main/Lelantos-DPO-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Lelantos-DPO-7B-GGUF --include "Lelantos-DPO-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Lelantos-DPO-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MDBX-7B-GGUF
tensorblock
2025-04-21T00:31:07Z
39
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "leveldevai/MarcDareBeagle-7B", "leveldevai/MarcBeagle-7B", "TensorBlock", "GGUF", "base_model:flemmingmiguel/MDBX-7B", "base_model:quantized:flemmingmiguel/MDBX-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-18T15:27:50Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - leveldevai/MarcDareBeagle-7B - leveldevai/MarcBeagle-7B - TensorBlock - GGUF base_model: flemmingmiguel/MDBX-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## flemmingmiguel/MDBX-7B - GGUF This repo contains GGUF format model files for [flemmingmiguel/MDBX-7B](https://huggingface.co/flemmingmiguel/MDBX-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MDBX-7B-Q2_K.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [MDBX-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [MDBX-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [MDBX-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [MDBX-7B-Q4_0.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MDBX-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [MDBX-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [MDBX-7B-Q5_0.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MDBX-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [MDBX-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [MDBX-7B-Q6_K.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [MDBX-7B-Q8_0.gguf](https://huggingface.co/tensorblock/MDBX-7B-GGUF/blob/main/MDBX-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MDBX-7B-GGUF --include "MDBX-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MDBX-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Argetsu-GGUF
tensorblock
2025-04-21T00:30:51Z
37
0
null
[ "gguf", "mistral", "merge", "TensorBlock", "GGUF", "text-generation", "base_model:Azazelle/Argetsu", "base_model:quantized:Azazelle/Argetsu", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-18T11:59:10Z
--- pipeline_tag: text-generation tags: - mistral - merge - TensorBlock - GGUF license: cc-by-4.0 base_model: Azazelle/Argetsu --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Azazelle/Argetsu - GGUF This repo contains GGUF format model files for [Azazelle/Argetsu](https://huggingface.co/Azazelle/Argetsu). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Argetsu-Q2_K.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Argetsu-Q3_K_S.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Argetsu-Q3_K_M.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Argetsu-Q3_K_L.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Argetsu-Q4_0.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Argetsu-Q4_K_S.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Argetsu-Q4_K_M.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Argetsu-Q5_0.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Argetsu-Q5_K_S.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Argetsu-Q5_K_M.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Argetsu-Q6_K.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Argetsu-Q8_0.gguf](https://huggingface.co/tensorblock/Argetsu-GGUF/blob/main/Argetsu-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Argetsu-GGUF --include "Argetsu-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Argetsu-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/firefly-mixtral-8x7b-GGUF
tensorblock
2025-04-21T00:30:50Z
20
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:YeungNLP/firefly-mixtral-8x7b", "base_model:quantized:YeungNLP/firefly-mixtral-8x7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-18T10:51:26Z
--- license: apache-2.0 language: - en base_model: YeungNLP/firefly-mixtral-8x7b tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## YeungNLP/firefly-mixtral-8x7b - GGUF This repo contains GGUF format model files for [YeungNLP/firefly-mixtral-8x7b](https://huggingface.co/YeungNLP/firefly-mixtral-8x7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [firefly-mixtral-8x7b-Q2_K.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes | | [firefly-mixtral-8x7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss | | [firefly-mixtral-8x7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss | | [firefly-mixtral-8x7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss | | [firefly-mixtral-8x7b-Q4_0.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [firefly-mixtral-8x7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss | | [firefly-mixtral-8x7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended | | [firefly-mixtral-8x7b-Q5_0.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [firefly-mixtral-8x7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended | | [firefly-mixtral-8x7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended | | [firefly-mixtral-8x7b-Q6_K.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss | | [firefly-mixtral-8x7b-Q8_0.gguf](https://huggingface.co/tensorblock/firefly-mixtral-8x7b-GGUF/blob/main/firefly-mixtral-8x7b-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/firefly-mixtral-8x7b-GGUF --include "firefly-mixtral-8x7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/firefly-mixtral-8x7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mediquad-4x7b-GGUF
tensorblock
2025-04-21T00:30:47Z
28
0
null
[ "gguf", "moe", "merge", "epfl-llm/meditron-7b", "chaoyi-wu/PMC_LLAMA_7B_10_epoch", "allenai/tulu-2-dpo-7b", "microsoft/Orca-2-7b", "TensorBlock", "GGUF", "base_model:Technoculture/Mediquad-4x7b", "base_model:quantized:Technoculture/Mediquad-4x7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-18T08:22:36Z
--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - chaoyi-wu/PMC_LLAMA_7B_10_epoch - allenai/tulu-2-dpo-7b - microsoft/Orca-2-7b - TensorBlock - GGUF base_model: Technoculture/Mediquad-4x7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Technoculture/Mediquad-4x7b - GGUF This repo contains GGUF format model files for [Technoculture/Mediquad-4x7b](https://huggingface.co/Technoculture/Mediquad-4x7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mediquad-4x7b-Q2_K.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q2_K.gguf) | Q2_K | 7.235 GB | smallest, significant quality loss - not recommended for most purposes | | [Mediquad-4x7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q3_K_S.gguf) | Q3_K_S | 8.530 GB | very small, high quality loss | | [Mediquad-4x7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q3_K_M.gguf) | Q3_K_M | 9.489 GB | very small, high quality loss | | [Mediquad-4x7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q3_K_L.gguf) | Q3_K_L | 10.295 GB | small, substantial quality loss | | [Mediquad-4x7b-Q4_0.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q4_0.gguf) | Q4_0 | 11.132 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mediquad-4x7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q4_K_S.gguf) | Q4_K_S | 11.231 GB | small, greater quality loss | | [Mediquad-4x7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q4_K_M.gguf) | Q4_K_M | 11.945 GB | medium, balanced quality - recommended | | [Mediquad-4x7b-Q5_0.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q5_0.gguf) | Q5_0 | 13.581 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mediquad-4x7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q5_K_S.gguf) | Q5_K_S | 13.581 GB | large, low quality loss - recommended | | [Mediquad-4x7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q5_K_M.gguf) | Q5_K_M | 14.000 GB | large, very low quality loss - recommended | | [Mediquad-4x7b-Q6_K.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q6_K.gguf) | Q6_K | 16.184 GB | very large, extremely low quality loss | | [Mediquad-4x7b-Q8_0.gguf](https://huggingface.co/tensorblock/Mediquad-4x7b-GGUF/blob/main/Mediquad-4x7b-Q8_0.gguf) | Q8_0 | 20.960 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mediquad-4x7b-GGUF --include "Mediquad-4x7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mediquad-4x7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
psresearch/Relation-extraction-Deberta-v3-large
psresearch
2025-04-21T00:30:47Z
0
0
transformers
[ "transformers", "Academic", "Scholarly", "text-classification", "en", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2025-04-20T23:47:11Z
--- license: mit language: - en metrics: - accuracy base_model: - microsoft/deberta-v3-large pipeline_tag: text-classification library_name: transformers tags: - Academic - Scholarly ---
tensorblock/megatron_1.1_MoE_2x7B-GGUF
tensorblock
2025-04-21T00:30:43Z
41
0
null
[ "gguf", "frankenmoe", "merge", "MoE", "Mixtral", "TensorBlock", "GGUF", "base_model:Eurdem/megatron_1.1_MoE_2x7B", "base_model:quantized:Eurdem/megatron_1.1_MoE_2x7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-18T06:15:54Z
--- license: apache-2.0 tags: - frankenmoe - merge - MoE - Mixtral - TensorBlock - GGUF base_model: Eurdem/megatron_1.1_MoE_2x7B model-index: - name: megatron_1.1_MoE_2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.02 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_1.1_MoE_2x7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Eurdem/megatron_1.1_MoE_2x7B - GGUF This repo contains GGUF format model files for [Eurdem/megatron_1.1_MoE_2x7B](https://huggingface.co/Eurdem/megatron_1.1_MoE_2x7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [megatron_1.1_MoE_2x7B-Q2_K.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q2_K.gguf) | Q2_K | 4.761 GB | smallest, significant quality loss - not recommended for most purposes | | [megatron_1.1_MoE_2x7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q3_K_S.gguf) | Q3_K_S | 5.588 GB | very small, high quality loss | | [megatron_1.1_MoE_2x7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q3_K_M.gguf) | Q3_K_M | 6.207 GB | very small, high quality loss | | [megatron_1.1_MoE_2x7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q3_K_L.gguf) | Q3_K_L | 6.730 GB | small, substantial quality loss | | [megatron_1.1_MoE_2x7B-Q4_0.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q4_0.gguf) | Q4_0 | 7.281 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [megatron_1.1_MoE_2x7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q4_K_S.gguf) | Q4_K_S | 7.342 GB | small, greater quality loss | | [megatron_1.1_MoE_2x7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q4_K_M.gguf) | Q4_K_M | 7.783 GB | medium, balanced quality - recommended | | [megatron_1.1_MoE_2x7B-Q5_0.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q5_0.gguf) | Q5_0 | 8.874 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [megatron_1.1_MoE_2x7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q5_K_S.gguf) | Q5_K_S | 8.874 GB | large, low quality loss - recommended | | [megatron_1.1_MoE_2x7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q5_K_M.gguf) | Q5_K_M | 9.133 GB | large, very low quality loss - recommended | | [megatron_1.1_MoE_2x7B-Q6_K.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q6_K.gguf) | Q6_K | 10.567 GB | very large, extremely low quality loss | | [megatron_1.1_MoE_2x7B-Q8_0.gguf](https://huggingface.co/tensorblock/megatron_1.1_MoE_2x7B-GGUF/blob/main/megatron_1.1_MoE_2x7B-Q8_0.gguf) | Q8_0 | 13.686 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/megatron_1.1_MoE_2x7B-GGUF --include "megatron_1.1_MoE_2x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/megatron_1.1_MoE_2x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/quantum-v0.01-GGUF
tensorblock
2025-04-21T00:30:41Z
39
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:quantumaikr/quantum-v0.01", "base_model:quantized:quantumaikr/quantum-v0.01", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-18T05:32:03Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: quantumaikr/quantum-v0.01 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## quantumaikr/quantum-v0.01 - GGUF This repo contains GGUF format model files for [quantumaikr/quantum-v0.01](https://huggingface.co/quantumaikr/quantum-v0.01). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [quantum-v0.01-Q2_K.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [quantum-v0.01-Q3_K_S.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [quantum-v0.01-Q3_K_M.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [quantum-v0.01-Q3_K_L.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [quantum-v0.01-Q4_0.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [quantum-v0.01-Q4_K_S.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [quantum-v0.01-Q4_K_M.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [quantum-v0.01-Q5_0.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [quantum-v0.01-Q5_K_S.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [quantum-v0.01-Q5_K_M.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [quantum-v0.01-Q6_K.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [quantum-v0.01-Q8_0.gguf](https://huggingface.co/tensorblock/quantum-v0.01-GGUF/blob/main/quantum-v0.01-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/quantum-v0.01-GGUF --include "quantum-v0.01-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/quantum-v0.01-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NexoNimbus-7B-GGUF
tensorblock
2025-04-21T00:30:31Z
60
0
null
[ "gguf", "merge", "abideen/DareVox-7B", "udkai/Garrulus", "TensorBlock", "GGUF", "en", "base_model:abideen/NexoNimbus-7B", "base_model:quantized:abideen/NexoNimbus-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-18T01:53:15Z
--- license: apache-2.0 tags: - merge - abideen/DareVox-7B - udkai/Garrulus - TensorBlock - GGUF language: - en base_model: abideen/NexoNimbus-7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## abideen/NexoNimbus-7B - GGUF This repo contains GGUF format model files for [abideen/NexoNimbus-7B](https://huggingface.co/abideen/NexoNimbus-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NexoNimbus-7B-Q2_K.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NexoNimbus-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NexoNimbus-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NexoNimbus-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NexoNimbus-7B-Q4_0.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NexoNimbus-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NexoNimbus-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NexoNimbus-7B-Q5_0.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NexoNimbus-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NexoNimbus-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NexoNimbus-7B-Q6_K.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NexoNimbus-7B-Q8_0.gguf](https://huggingface.co/tensorblock/NexoNimbus-7B-GGUF/blob/main/NexoNimbus-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NexoNimbus-7B-GGUF --include "NexoNimbus-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NexoNimbus-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuralMarcoro14-7B-GGUF
tensorblock
2025-04-21T00:30:24Z
50
0
null
[ "gguf", "mlabonne/Marcoro14-7B-slerp", "dpo", "rlhf", "merge", "mergekit", "lazymergekit", "TensorBlock", "GGUF", "dataset:mlabonne/chatml_dpo_pairs", "base_model:mlabonne/NeuralMarcoro14-7B", "base_model:quantized:mlabonne/NeuralMarcoro14-7B", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-17T23:57:59Z
--- license: cc-by-nc-4.0 tags: - mlabonne/Marcoro14-7B-slerp - dpo - rlhf - merge - mergekit - lazymergekit - TensorBlock - GGUF datasets: - mlabonne/chatml_dpo_pairs base_model: mlabonne/NeuralMarcoro14-7B model-index: - name: NeuralMarcoro14-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.64 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralMarcoro14-7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## mlabonne/NeuralMarcoro14-7B - GGUF This repo contains GGUF format model files for [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuralMarcoro14-7B-Q2_K.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuralMarcoro14-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuralMarcoro14-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuralMarcoro14-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuralMarcoro14-7B-Q4_0.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuralMarcoro14-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuralMarcoro14-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuralMarcoro14-7B-Q5_0.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuralMarcoro14-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuralMarcoro14-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuralMarcoro14-7B-Q6_K.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuralMarcoro14-7B-Q8_0.gguf](https://huggingface.co/tensorblock/NeuralMarcoro14-7B-GGUF/blob/main/NeuralMarcoro14-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuralMarcoro14-7B-GGUF --include "NeuralMarcoro14-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuralMarcoro14-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Yi-Ko-6B-dpo-v4-GGUF
tensorblock
2025-04-21T00:30:19Z
51
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:GAI-LLM/Yi-Ko-6B-dpo-v4", "base_model:quantized:GAI-LLM/Yi-Ko-6B-dpo-v4", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T23:11:54Z
--- license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: GAI-LLM/Yi-Ko-6B-dpo-v4 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## GAI-LLM/Yi-Ko-6B-dpo-v4 - GGUF This repo contains GGUF format model files for [GAI-LLM/Yi-Ko-6B-dpo-v4](https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yi-Ko-6B-dpo-v4-Q2_K.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q2_K.gguf) | Q2_K | 2.405 GB | smallest, significant quality loss - not recommended for most purposes | | [Yi-Ko-6B-dpo-v4-Q3_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q3_K_S.gguf) | Q3_K_S | 2.784 GB | very small, high quality loss | | [Yi-Ko-6B-dpo-v4-Q3_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q3_K_M.gguf) | Q3_K_M | 3.067 GB | very small, high quality loss | | [Yi-Ko-6B-dpo-v4-Q3_K_L.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q3_K_L.gguf) | Q3_K_L | 3.311 GB | small, substantial quality loss | | [Yi-Ko-6B-dpo-v4-Q4_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q4_0.gguf) | Q4_0 | 3.562 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yi-Ko-6B-dpo-v4-Q4_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q4_K_S.gguf) | Q4_K_S | 3.585 GB | small, greater quality loss | | [Yi-Ko-6B-dpo-v4-Q4_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q4_K_M.gguf) | Q4_K_M | 3.756 GB | medium, balanced quality - recommended | | [Yi-Ko-6B-dpo-v4-Q5_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q5_0.gguf) | Q5_0 | 4.294 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yi-Ko-6B-dpo-v4-Q5_K_S.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q5_K_S.gguf) | Q5_K_S | 4.294 GB | large, low quality loss - recommended | | [Yi-Ko-6B-dpo-v4-Q5_K_M.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q5_K_M.gguf) | Q5_K_M | 4.394 GB | large, very low quality loss - recommended | | [Yi-Ko-6B-dpo-v4-Q6_K.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q6_K.gguf) | Q6_K | 5.072 GB | very large, extremely low quality loss | | [Yi-Ko-6B-dpo-v4-Q8_0.gguf](https://huggingface.co/tensorblock/Yi-Ko-6B-dpo-v4-GGUF/blob/main/Yi-Ko-6B-dpo-v4-Q8_0.gguf) | Q8_0 | 6.568 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Yi-Ko-6B-dpo-v4-GGUF --include "Yi-Ko-6B-dpo-v4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Yi-Ko-6B-dpo-v4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
TareksTesting/Alkahest-V9.1-LLaMa-70B
TareksTesting
2025-04-21T00:30:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B", "base_model:merge:TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B", "base_model:TareksLab/Stylizer-Dark-V1-LLaMa-70B", "base_model:merge:TareksLab/Stylizer-Dark-V1-LLaMa-70B", "base_model:TareksLab/Wordsmith-V17-LLaMa-70B", "base_model:merge:TareksLab/Wordsmith-V17-LLaMa-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-20T23:58:49Z
--- base_model: - TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B - TareksLab/Stylizer-Dark-V1-LLaMa-70B - TareksLab/Wordsmith-V17-LLaMa-70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [TareksLab/Wordsmith-V17-LLaMa-70B](https://huggingface.co/TareksLab/Wordsmith-V17-LLaMa-70B) as a base. ### Models Merged The following models were included in the merge: * [TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B](https://huggingface.co/TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B) * [TareksLab/Stylizer-Dark-V1-LLaMa-70B](https://huggingface.co/TareksLab/Stylizer-Dark-V1-LLaMa-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TareksLab/Stylizer-Dark-V1-LLaMa-70B parameters: weight: 0.33 density: 0.5 - model: TareksLab/Wordsmith-V17-LLaMa-70B parameters: weight: 0.34 density: 0.5 - model: TareksLab/Dungeons-and-Dragons-V3-LLaMa-70B parameters: weight: 0.33 density: 0.5 merge_method: dare_ties base_model: TareksLab/Wordsmith-V17-LLaMa-70B parameters: normalize: false out_dtype: bfloat16 chat_template: llama3 tokenizer: source: TareksLab/Wordsmith-V17-LLaMa-70B ```
tensorblock/mistral-7b-GGUF
tensorblock
2025-04-21T00:30:04Z
50
0
transformers
[ "transformers", "gguf", "unsloth", "mistral", "mistral7b", "bnb", "TensorBlock", "GGUF", "en", "base_model:unsloth/mistral-7b", "base_model:quantized:unsloth/mistral-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T20:00:43Z
--- language: - en library_name: transformers license: apache-2.0 tags: - unsloth - transformers - mistral - mistral7b - bnb - TensorBlock - GGUF base_model: unsloth/mistral-7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## unsloth/mistral-7b - GGUF This repo contains GGUF format model files for [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mistral-7b-Q2_K.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [mistral-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [mistral-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [mistral-7b-Q4_0.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [mistral-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [mistral-7b-Q5_0.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [mistral-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [mistral-7b-Q6_K.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [mistral-7b-Q8_0.gguf](https://huggingface.co/tensorblock/mistral-7b-GGUF/blob/main/mistral-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mistral-7b-GGUF --include "mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/StopCarbon-10.7B-v1-GGUF
tensorblock
2025-04-21T00:29:59Z
47
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "en", "base_model:kekmodel/StopCarbon-10.7B-v1", "base_model:quantized:kekmodel/StopCarbon-10.7B-v1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-17T19:08:02Z
--- license: cc-by-nc-4.0 language: - en tags: - merge - TensorBlock - GGUF base_model: kekmodel/StopCarbon-10.7B-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## kekmodel/StopCarbon-10.7B-v1 - GGUF This repo contains GGUF format model files for [kekmodel/StopCarbon-10.7B-v1](https://huggingface.co/kekmodel/StopCarbon-10.7B-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [StopCarbon-10.7B-v1-Q2_K.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [StopCarbon-10.7B-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [StopCarbon-10.7B-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [StopCarbon-10.7B-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [StopCarbon-10.7B-v1-Q4_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [StopCarbon-10.7B-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [StopCarbon-10.7B-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [StopCarbon-10.7B-v1-Q5_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [StopCarbon-10.7B-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [StopCarbon-10.7B-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [StopCarbon-10.7B-v1-Q6_K.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [StopCarbon-10.7B-v1-Q8_0.gguf](https://huggingface.co/tensorblock/StopCarbon-10.7B-v1-GGUF/blob/main/StopCarbon-10.7B-v1-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/StopCarbon-10.7B-v1-GGUF --include "StopCarbon-10.7B-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/StopCarbon-10.7B-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF
tensorblock
2025-04-21T00:29:58Z
67
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/dolphin-coder", "dataset:teknium/openhermes", "dataset:ise-uiuc/Magicoder-OSS-Instruct-75K", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:LDJnr/Capybara", "base_model:cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser", "base_model:quantized:cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-17T18:49:53Z
--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - teknium/openhermes - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - LDJnr/Capybara language: - en license: apache-2.0 tags: - TensorBlock - GGUF base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser - GGUF This repo contains GGUF format model files for [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [dolphin-2.6-mistral-7b-dpo-laser-Q2_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [dolphin-2.6-mistral-7b-dpo-laser-Q3_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-dpo-laser-Q3_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-dpo-laser-Q3_K_L.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [dolphin-2.6-mistral-7b-dpo-laser-Q4_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [dolphin-2.6-mistral-7b-dpo-laser-Q4_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [dolphin-2.6-mistral-7b-dpo-laser-Q4_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [dolphin-2.6-mistral-7b-dpo-laser-Q5_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [dolphin-2.6-mistral-7b-dpo-laser-Q5_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [dolphin-2.6-mistral-7b-dpo-laser-Q5_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [dolphin-2.6-mistral-7b-dpo-laser-Q6_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [dolphin-2.6-mistral-7b-dpo-laser-Q8_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF/blob/main/dolphin-2.6-mistral-7b-dpo-laser-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF --include "dolphin-2.6-mistral-7b-dpo-laser-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-dpo-laser-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/NeuralPipe-7B-slerp-GGUF
tensorblock
2025-04-21T00:29:56Z
39
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "TensorBlock", "GGUF", "base_model:DeepKarkhanis/NeuralPipe-7B-slerp", "base_model:quantized:DeepKarkhanis/NeuralPipe-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T18:11:53Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B - TensorBlock - GGUF base_model: DeepKarkhanis/NeuralPipe-7B-slerp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## DeepKarkhanis/NeuralPipe-7B-slerp - GGUF This repo contains GGUF format model files for [DeepKarkhanis/NeuralPipe-7B-slerp](https://huggingface.co/DeepKarkhanis/NeuralPipe-7B-slerp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuralPipe-7B-slerp-Q2_K.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuralPipe-7B-slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuralPipe-7B-slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuralPipe-7B-slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuralPipe-7B-slerp-Q4_0.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuralPipe-7B-slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuralPipe-7B-slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuralPipe-7B-slerp-Q5_0.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuralPipe-7B-slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuralPipe-7B-slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuralPipe-7B-slerp-Q6_K.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuralPipe-7B-slerp-Q8_0.gguf](https://huggingface.co/tensorblock/NeuralPipe-7B-slerp-GGUF/blob/main/NeuralPipe-7B-slerp-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuralPipe-7B-slerp-GGUF --include "NeuralPipe-7B-slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuralPipe-7B-slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/FusionNet_SOLAR-GGUF
tensorblock
2025-04-21T00:29:51Z
50
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:TomGrc/FusionNet_SOLAR", "base_model:quantized:TomGrc/FusionNet_SOLAR", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-12-17T16:28:14Z
--- language: - en license: mit pipeline_tag: text-generation base_model: TomGrc/FusionNet_SOLAR tags: - TensorBlock - GGUF model-index: - name: FusionNet_SOLAR results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.4 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 69.21 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 50.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_SOLAR name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## TomGrc/FusionNet_SOLAR - GGUF This repo contains GGUF format model files for [TomGrc/FusionNet_SOLAR](https://huggingface.co/TomGrc/FusionNet_SOLAR). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [FusionNet_SOLAR-Q2_K.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q2_K.gguf) | Q2_K | 5.929 GB | smallest, significant quality loss - not recommended for most purposes | | [FusionNet_SOLAR-Q3_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q3_K_S.gguf) | Q3_K_S | 6.915 GB | very small, high quality loss | | [FusionNet_SOLAR-Q3_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q3_K_M.gguf) | Q3_K_M | 7.707 GB | very small, high quality loss | | [FusionNet_SOLAR-Q3_K_L.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q3_K_L.gguf) | Q3_K_L | 8.394 GB | small, substantial quality loss | | [FusionNet_SOLAR-Q4_0.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q4_0.gguf) | Q4_0 | 9.018 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [FusionNet_SOLAR-Q4_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q4_K_S.gguf) | Q4_K_S | 9.086 GB | small, greater quality loss | | [FusionNet_SOLAR-Q4_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q4_K_M.gguf) | Q4_K_M | 9.602 GB | medium, balanced quality - recommended | | [FusionNet_SOLAR-Q5_0.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q5_0.gguf) | Q5_0 | 10.997 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [FusionNet_SOLAR-Q5_K_S.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q5_K_S.gguf) | Q5_K_S | 10.997 GB | large, low quality loss - recommended | | [FusionNet_SOLAR-Q5_K_M.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q5_K_M.gguf) | Q5_K_M | 11.298 GB | large, very low quality loss - recommended | | [FusionNet_SOLAR-Q6_K.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q6_K.gguf) | Q6_K | 13.100 GB | very large, extremely low quality loss | | [FusionNet_SOLAR-Q8_0.gguf](https://huggingface.co/tensorblock/FusionNet_SOLAR-GGUF/blob/main/FusionNet_SOLAR-Q8_0.gguf) | Q8_0 | 16.967 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FusionNet_SOLAR-GGUF --include "FusionNet_SOLAR-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FusionNet_SOLAR-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/7Bx4_DPO_2e-GGUF
tensorblock
2025-04-21T00:29:48Z
29
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:yunconglong/7Bx4_DPO_2e", "base_model:quantized:yunconglong/7Bx4_DPO_2e", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-12-17T15:56:55Z
--- license: mit tags: - TensorBlock - GGUF base_model: yunconglong/7Bx4_DPO_2e --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## yunconglong/7Bx4_DPO_2e - GGUF This repo contains GGUF format model files for [yunconglong/7Bx4_DPO_2e](https://huggingface.co/yunconglong/7Bx4_DPO_2e). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [7Bx4_DPO_2e-Q2_K.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q2_K.gguf) | Q2_K | 8.843 GB | smallest, significant quality loss - not recommended for most purposes | | [7Bx4_DPO_2e-Q3_K_S.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q3_K_S.gguf) | Q3_K_S | 10.433 GB | very small, high quality loss | | [7Bx4_DPO_2e-Q3_K_M.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q3_K_M.gguf) | Q3_K_M | 11.580 GB | very small, high quality loss | | [7Bx4_DPO_2e-Q3_K_L.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q3_K_L.gguf) | Q3_K_L | 12.544 GB | small, substantial quality loss | | [7Bx4_DPO_2e-Q4_0.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q4_0.gguf) | Q4_0 | 13.624 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [7Bx4_DPO_2e-Q4_K_S.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q4_K_S.gguf) | Q4_K_S | 13.743 GB | small, greater quality loss | | [7Bx4_DPO_2e-Q4_K_M.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q4_K_M.gguf) | Q4_K_M | 14.610 GB | medium, balanced quality - recommended | | [7Bx4_DPO_2e-Q5_0.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q5_0.gguf) | Q5_0 | 16.626 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [7Bx4_DPO_2e-Q5_K_S.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q5_K_S.gguf) | Q5_K_S | 16.626 GB | large, low quality loss - recommended | | [7Bx4_DPO_2e-Q5_K_M.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q5_K_M.gguf) | Q5_K_M | 17.134 GB | large, very low quality loss - recommended | | [7Bx4_DPO_2e-Q6_K.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q6_K.gguf) | Q6_K | 19.817 GB | very large, extremely low quality loss | | [7Bx4_DPO_2e-Q8_0.gguf](https://huggingface.co/tensorblock/7Bx4_DPO_2e-GGUF/blob/main/7Bx4_DPO_2e-Q8_0.gguf) | Q8_0 | 25.666 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/7Bx4_DPO_2e-GGUF --include "7Bx4_DPO_2e-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/7Bx4_DPO_2e-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mistral-7B-Claim-Extractor-GGUF
tensorblock
2025-04-21T00:29:45Z
45
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:dongyru/Mistral-7B-Claim-Extractor", "base_model:quantized:dongyru/Mistral-7B-Claim-Extractor", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-17T14:54:00Z
--- license: apache-2.0 base_model: dongyru/Mistral-7B-Claim-Extractor tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## dongyru/Mistral-7B-Claim-Extractor - GGUF This repo contains GGUF format model files for [dongyru/Mistral-7B-Claim-Extractor](https://huggingface.co/dongyru/Mistral-7B-Claim-Extractor). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-Claim-Extractor-Q2_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-Claim-Extractor-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-Claim-Extractor-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-Claim-Extractor-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-Claim-Extractor-Q4_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-Claim-Extractor-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-Claim-Extractor-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-Claim-Extractor-Q5_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-Claim-Extractor-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-Claim-Extractor-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-Claim-Extractor-Q6_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-Claim-Extractor-Q8_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-Claim-Extractor-GGUF/blob/main/Mistral-7B-Claim-Extractor-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mistral-7B-Claim-Extractor-GGUF --include "Mistral-7B-Claim-Extractor-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mistral-7B-Claim-Extractor-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/dolphin-2.6-mistral-7b-GGUF
tensorblock
2025-04-21T00:29:44Z
81
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/dolphin-coder", "dataset:teknium/openhermes", "dataset:ise-uiuc/Magicoder-OSS-Instruct-75K", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:LDJnr/Capybara", "base_model:cognitivecomputations/dolphin-2.6-mistral-7b", "base_model:quantized:cognitivecomputations/dolphin-2.6-mistral-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T14:11:13Z
--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - teknium/openhermes - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - LDJnr/Capybara language: - en license: apache-2.0 tags: - TensorBlock - GGUF base_model: cognitivecomputations/dolphin-2.6-mistral-7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## cognitivecomputations/dolphin-2.6-mistral-7b - GGUF This repo contains GGUF format model files for [cognitivecomputations/dolphin-2.6-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [dolphin-2.6-mistral-7b-Q2_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [dolphin-2.6-mistral-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [dolphin-2.6-mistral-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [dolphin-2.6-mistral-7b-Q4_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [dolphin-2.6-mistral-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [dolphin-2.6-mistral-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [dolphin-2.6-mistral-7b-Q5_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [dolphin-2.6-mistral-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [dolphin-2.6-mistral-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [dolphin-2.6-mistral-7b-Q6_K.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [dolphin-2.6-mistral-7b-Q8_0.gguf](https://huggingface.co/tensorblock/dolphin-2.6-mistral-7b-GGUF/blob/main/dolphin-2.6-mistral-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-GGUF --include "dolphin-2.6-mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/dolphin-2.6-mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF
tensorblock
2025-04-21T00:29:42Z
27
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr", "base_model:quantized:vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr", "endpoints_compatible", "region:us" ]
null
2024-12-17T13:24:17Z
--- base_model: vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr - GGUF This repo contains GGUF format model files for [vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr](https://huggingface.co/vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q2_K.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q2_K.gguf) | Q2_K | 2.632 GB | smallest, significant quality loss - not recommended for most purposes | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_S.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_S.gguf) | Q3_K_S | 3.035 GB | very small, high quality loss | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_M.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_M.gguf) | Q3_K_M | 3.622 GB | very small, high quality loss | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_L.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q3_K_L.gguf) | Q3_K_L | 3.941 GB | small, substantial quality loss | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_0.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_0.gguf) | Q4_0 | 3.918 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_K_S.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_K_S.gguf) | Q4_K_S | 3.952 GB | small, greater quality loss | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_K_M.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q4_K_M.gguf) | Q4_K_M | 4.396 GB | medium, balanced quality - recommended | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_0.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_0.gguf) | Q5_0 | 4.749 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_K_S.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_K_S.gguf) | Q5_K_S | 4.749 GB | large, low quality loss - recommended | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_K_M.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q5_K_M.gguf) | Q5_K_M | 5.106 GB | large, very low quality loss - recommended | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q6_K.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q6_K.gguf) | Q6_K | 5.632 GB | very large, extremely low quality loss | | [EleutherAI_pythia-6.9b-deduped__sft__tldr-Q8_0.gguf](https://huggingface.co/tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF/blob/main/EleutherAI_pythia-6.9b-deduped__sft__tldr-Q8_0.gguf) | Q8_0 | 7.293 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF --include "EleutherAI_pythia-6.9b-deduped__sft__tldr-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/EleutherAI_pythia-6.9b-deduped__sft__tldr-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF
tensorblock
2025-04-21T00:29:37Z
208
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "fi", "base_model:OpenBuddy/openbuddy-deepseek-10b-v17.1-4k", "base_model:quantized:OpenBuddy/openbuddy-deepseek-10b-v17.1-4k", "license:other", "region:us" ]
text-generation
2024-12-17T12:19:10Z
--- language: - zh - en - fr - de - ja - ko - it - ru - fi pipeline_tag: text-generation inference: false library_name: transformers license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL base_model: OpenBuddy/openbuddy-deepseek-10b-v17.1-4k tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## OpenBuddy/openbuddy-deepseek-10b-v17.1-4k - GGUF This repo contains GGUF format model files for [OpenBuddy/openbuddy-deepseek-10b-v17.1-4k](https://huggingface.co/OpenBuddy/openbuddy-deepseek-10b-v17.1-4k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openbuddy-deepseek-10b-v17.1-4k-Q2_K.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q2_K.gguf) | Q2_K | 4.058 GB | smallest, significant quality loss - not recommended for most purposes | | [openbuddy-deepseek-10b-v17.1-4k-Q3_K_S.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q3_K_S.gguf) | Q3_K_S | 4.704 GB | very small, high quality loss | | [openbuddy-deepseek-10b-v17.1-4k-Q3_K_M.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q3_K_M.gguf) | Q3_K_M | 5.226 GB | very small, high quality loss | | [openbuddy-deepseek-10b-v17.1-4k-Q3_K_L.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q3_K_L.gguf) | Q3_K_L | 5.677 GB | small, substantial quality loss | | [openbuddy-deepseek-10b-v17.1-4k-Q4_0.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q4_0.gguf) | Q4_0 | 6.050 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openbuddy-deepseek-10b-v17.1-4k-Q4_K_S.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q4_K_S.gguf) | Q4_K_S | 6.092 GB | small, greater quality loss | | [openbuddy-deepseek-10b-v17.1-4k-Q4_K_M.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q4_K_M.gguf) | Q4_K_M | 6.432 GB | medium, balanced quality - recommended | | [openbuddy-deepseek-10b-v17.1-4k-Q5_0.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q5_0.gguf) | Q5_0 | 7.316 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openbuddy-deepseek-10b-v17.1-4k-Q5_K_S.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q5_K_S.gguf) | Q5_K_S | 7.316 GB | large, low quality loss - recommended | | [openbuddy-deepseek-10b-v17.1-4k-Q5_K_M.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q5_K_M.gguf) | Q5_K_M | 7.514 GB | large, very low quality loss - recommended | | [openbuddy-deepseek-10b-v17.1-4k-Q6_K.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q6_K.gguf) | Q6_K | 8.662 GB | very large, extremely low quality loss | | [openbuddy-deepseek-10b-v17.1-4k-Q8_0.gguf](https://huggingface.co/tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF/blob/main/openbuddy-deepseek-10b-v17.1-4k-Q8_0.gguf) | Q8_0 | 11.218 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF --include "openbuddy-deepseek-10b-v17.1-4k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/openbuddy-deepseek-10b-v17.1-4k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CatMacaroni-Slerp-GGUF
tensorblock
2025-04-21T00:29:35Z
28
0
null
[ "gguf", "merge", "TensorBlock", "GGUF", "base_model:cookinai/CatMacaroni-Slerp", "base_model:quantized:cookinai/CatMacaroni-Slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T12:03:55Z
--- license: apache-2.0 tags: - merge - TensorBlock - GGUF base_model: cookinai/CatMacaroni-Slerp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## cookinai/CatMacaroni-Slerp - GGUF This repo contains GGUF format model files for [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CatMacaroni-Slerp-Q2_K.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [CatMacaroni-Slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [CatMacaroni-Slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [CatMacaroni-Slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [CatMacaroni-Slerp-Q4_0.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CatMacaroni-Slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [CatMacaroni-Slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [CatMacaroni-Slerp-Q5_0.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CatMacaroni-Slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [CatMacaroni-Slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [CatMacaroni-Slerp-Q6_K.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [CatMacaroni-Slerp-Q8_0.gguf](https://huggingface.co/tensorblock/CatMacaroni-Slerp-GGUF/blob/main/CatMacaroni-Slerp-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CatMacaroni-Slerp-GGUF --include "CatMacaroni-Slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CatMacaroni-Slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/rizla-17-GGUF
tensorblock
2025-04-21T00:29:34Z
26
0
null
[ "gguf", "dpo", "merge", "mergekit", "TensorBlock", "GGUF", "base_model:rizla/rizla-17", "base_model:quantized:rizla/rizla-17", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-17T11:05:48Z
--- license: cc-by-nc-nd-4.0 base_model: rizla/rizla-17 tags: - dpo - merge - mergekit - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## rizla/rizla-17 - GGUF This repo contains GGUF format model files for [rizla/rizla-17](https://huggingface.co/rizla/rizla-17). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [rizla-17-Q2_K.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q2_K.gguf) | Q2_K | 5.769 GB | smallest, significant quality loss - not recommended for most purposes | | [rizla-17-Q3_K_S.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q3_K_S.gguf) | Q3_K_S | 6.774 GB | very small, high quality loss | | [rizla-17-Q3_K_M.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q3_K_M.gguf) | Q3_K_M | 7.522 GB | very small, high quality loss | | [rizla-17-Q3_K_L.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q3_K_L.gguf) | Q3_K_L | 8.166 GB | small, substantial quality loss | | [rizla-17-Q4_0.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q4_0.gguf) | Q4_0 | 8.834 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [rizla-17-Q4_K_S.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q4_K_S.gguf) | Q4_K_S | 8.895 GB | small, greater quality loss | | [rizla-17-Q4_K_M.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q4_K_M.gguf) | Q4_K_M | 9.430 GB | medium, balanced quality - recommended | | [rizla-17-Q5_0.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q5_0.gguf) | Q5_0 | 10.772 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [rizla-17-Q5_K_S.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q5_K_S.gguf) | Q5_K_S | 10.772 GB | large, low quality loss - recommended | | [rizla-17-Q5_K_M.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q5_K_M.gguf) | Q5_K_M | 11.079 GB | large, very low quality loss - recommended | | [rizla-17-Q6_K.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q6_K.gguf) | Q6_K | 12.832 GB | very large, extremely low quality loss | | [rizla-17-Q8_0.gguf](https://huggingface.co/tensorblock/rizla-17-GGUF/blob/main/rizla-17-Q8_0.gguf) | Q8_0 | 16.619 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/rizla-17-GGUF --include "rizla-17-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/rizla-17-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/EstopianMaid-13B-GGUF
tensorblock
2025-04-21T00:29:31Z
58
0
transformers
[ "transformers", "gguf", "roleplay", "text-generation-inference", "TensorBlock", "GGUF", "en", "base_model:KatyTheCutie/EstopianMaid-13B", "base_model:quantized:KatyTheCutie/EstopianMaid-13B", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-17T10:45:34Z
--- language: - en library_name: transformers tags: - roleplay - text-generation-inference - TensorBlock - GGUF license: llama2 base_model: KatyTheCutie/EstopianMaid-13B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## KatyTheCutie/EstopianMaid-13B - GGUF This repo contains GGUF format model files for [KatyTheCutie/EstopianMaid-13B](https://huggingface.co/KatyTheCutie/EstopianMaid-13B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [EstopianMaid-13B-Q2_K.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [EstopianMaid-13B-Q3_K_S.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [EstopianMaid-13B-Q3_K_M.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [EstopianMaid-13B-Q3_K_L.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [EstopianMaid-13B-Q4_0.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [EstopianMaid-13B-Q4_K_S.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [EstopianMaid-13B-Q4_K_M.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [EstopianMaid-13B-Q5_0.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [EstopianMaid-13B-Q5_K_S.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [EstopianMaid-13B-Q5_K_M.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [EstopianMaid-13B-Q6_K.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [EstopianMaid-13B-Q8_0.gguf](https://huggingface.co/tensorblock/EstopianMaid-13B-GGUF/blob/main/EstopianMaid-13B-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/EstopianMaid-13B-GGUF --include "EstopianMaid-13B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/EstopianMaid-13B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Abel-7B-002-GGUF
tensorblock
2025-04-21T00:29:26Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:GAIR/Abel-7B-002", "base_model:quantized:GAIR/Abel-7B-002", "endpoints_compatible", "region:us" ]
null
2024-12-17T09:29:10Z
--- base_model: GAIR/Abel-7B-002 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## GAIR/Abel-7B-002 - GGUF This repo contains GGUF format model files for [GAIR/Abel-7B-002](https://huggingface.co/GAIR/Abel-7B-002). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Abel-7B-002-Q2_K.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Abel-7B-002-Q3_K_S.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Abel-7B-002-Q3_K_M.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Abel-7B-002-Q3_K_L.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Abel-7B-002-Q4_0.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Abel-7B-002-Q4_K_S.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q4_K_S.gguf) | Q4_K_S | 4.141 GB | small, greater quality loss | | [Abel-7B-002-Q4_K_M.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q4_K_M.gguf) | Q4_K_M | 4.369 GB | medium, balanced quality - recommended | | [Abel-7B-002-Q5_0.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Abel-7B-002-Q5_K_S.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Abel-7B-002-Q5_K_M.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q5_K_M.gguf) | Q5_K_M | 5.132 GB | large, very low quality loss - recommended | | [Abel-7B-002-Q6_K.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Abel-7B-002-Q8_0.gguf](https://huggingface.co/tensorblock/Abel-7B-002-GGUF/blob/main/Abel-7B-002-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Abel-7B-002-GGUF --include "Abel-7B-002-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Abel-7B-002-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF
tensorblock
2025-04-21T00:29:21Z
28
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:Deathsquad10/TinyLlama-1.1B-Remix-V.2", "base_model:quantized:Deathsquad10/TinyLlama-1.1B-Remix-V.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-17T03:15:16Z
--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en tags: - TensorBlock - GGUF base_model: Deathsquad10/TinyLlama-1.1B-Remix-V.2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Deathsquad10/TinyLlama-1.1B-Remix-V.2 - GGUF This repo contains GGUF format model files for [Deathsquad10/TinyLlama-1.1B-Remix-V.2](https://huggingface.co/Deathsquad10/TinyLlama-1.1B-Remix-V.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyLlama-1.1B-Remix-V.2-Q2_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyLlama-1.1B-Remix-V.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | | [TinyLlama-1.1B-Remix-V.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | | [TinyLlama-1.1B-Remix-V.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [TinyLlama-1.1B-Remix-V.2-Q4_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyLlama-1.1B-Remix-V.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | | [TinyLlama-1.1B-Remix-V.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | | [TinyLlama-1.1B-Remix-V.2-Q5_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyLlama-1.1B-Remix-V.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | | [TinyLlama-1.1B-Remix-V.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | | [TinyLlama-1.1B-Remix-V.2-Q6_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | | [TinyLlama-1.1B-Remix-V.2-Q8_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF/blob/main/TinyLlama-1.1B-Remix-V.2-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF --include "TinyLlama-1.1B-Remix-V.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyLlama-1.1B-Remix-V.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mistral-7B-golden-GGUF
tensorblock
2025-04-21T00:29:19Z
36
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:liuda1/Mistral-7B-golden", "base_model:quantized:liuda1/Mistral-7B-golden", "license:unknown", "endpoints_compatible", "region:us" ]
null
2024-12-17T02:35:49Z
--- license: unknown base_model: liuda1/Mistral-7B-golden tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## liuda1/Mistral-7B-golden - GGUF This repo contains GGUF format model files for [liuda1/Mistral-7B-golden](https://huggingface.co/liuda1/Mistral-7B-golden). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-golden-Q2_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-golden-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-golden-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-golden-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-golden-Q4_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-golden-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-golden-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-golden-Q5_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-golden-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-golden-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-golden-Q6_K.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-golden-Q8_0.gguf](https://huggingface.co/tensorblock/Mistral-7B-golden-GGUF/blob/main/Mistral-7B-golden-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mistral-7B-golden-GGUF --include "Mistral-7B-golden-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mistral-7B-golden-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF
tensorblock
2025-04-21T00:29:14Z
18
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Yi", "TensorBlock", "GGUF", "en", "base_model:brucethemoose/Yi-34B-200K-DARE-megamerge-v8", "base_model:quantized:brucethemoose/Yi-34B-200K-DARE-megamerge-v8", "license:other", "model-index", "endpoints_compatible", "region:us" ]
null
2024-12-17T00:35:40Z
--- language: - en license: other library_name: transformers tags: - mergekit - merge - Yi - TensorBlock - GGUF license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE base_model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 model-index: - name: Yi-34B-200K-DARE-megamerge-v8 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.31 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-megamerge-v8 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## brucethemoose/Yi-34B-200K-DARE-megamerge-v8 - GGUF This repo contains GGUF format model files for [brucethemoose/Yi-34B-200K-DARE-megamerge-v8](https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yi-34B-200K-DARE-megamerge-v8-Q2_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [Yi-34B-200K-DARE-megamerge-v8-Q3_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [Yi-34B-200K-DARE-megamerge-v8-Q3_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [Yi-34B-200K-DARE-megamerge-v8-Q3_K_L.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [Yi-34B-200K-DARE-megamerge-v8-Q4_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yi-34B-200K-DARE-megamerge-v8-Q4_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [Yi-34B-200K-DARE-megamerge-v8-Q4_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [Yi-34B-200K-DARE-megamerge-v8-Q5_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yi-34B-200K-DARE-megamerge-v8-Q5_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [Yi-34B-200K-DARE-megamerge-v8-Q5_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [Yi-34B-200K-DARE-megamerge-v8-Q6_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [Yi-34B-200K-DARE-megamerge-v8-Q8_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF/blob/main/Yi-34B-200K-DARE-megamerge-v8-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF --include "Yi-34B-200K-DARE-megamerge-v8-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Yi-34B-200K-DARE-megamerge-v8-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Pallas-0.5-LASER-0.4-GGUF
tensorblock
2025-04-21T00:29:01Z
26
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:Mihaiii/Pallas-0.5-LASER-0.4", "base_model:quantized:Mihaiii/Pallas-0.5-LASER-0.4", "license:other", "region:us" ]
null
2024-12-17T00:03:34Z
--- base_model: Mihaiii/Pallas-0.5-LASER-0.4 inference: false license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE metrics: - accuracy tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Mihaiii/Pallas-0.5-LASER-0.4 - GGUF This repo contains GGUF format model files for [Mihaiii/Pallas-0.5-LASER-0.4](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Pallas-0.5-LASER-0.4-Q2_K.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [Pallas-0.5-LASER-0.4-Q3_K_S.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [Pallas-0.5-LASER-0.4-Q3_K_M.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [Pallas-0.5-LASER-0.4-Q3_K_L.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [Pallas-0.5-LASER-0.4-Q4_0.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Pallas-0.5-LASER-0.4-Q4_K_S.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [Pallas-0.5-LASER-0.4-Q4_K_M.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [Pallas-0.5-LASER-0.4-Q5_0.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Pallas-0.5-LASER-0.4-Q5_K_S.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [Pallas-0.5-LASER-0.4-Q5_K_M.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [Pallas-0.5-LASER-0.4-Q6_K.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [Pallas-0.5-LASER-0.4-Q8_0.gguf](https://huggingface.co/tensorblock/Pallas-0.5-LASER-0.4-GGUF/blob/main/Pallas-0.5-LASER-0.4-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Pallas-0.5-LASER-0.4-GGUF --include "Pallas-0.5-LASER-0.4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Pallas-0.5-LASER-0.4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF
tensorblock
2025-04-21T00:28:58Z
27
0
transformers
[ "transformers", "gguf", "text-generation-inference", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:brucethemoose/Yi-34B-200K-DARE-merge-v5", "base_model:quantized:brucethemoose/Yi-34B-200K-DARE-merge-v5", "license:other", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T22:24:49Z
--- language: - en license: other library_name: transformers tags: - text-generation-inference - merge - TensorBlock - GGUF license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE pipeline_tag: text-generation base_model: brucethemoose/Yi-34B-200K-DARE-merge-v5 model-index: - name: Yi-34B-200K-DARE-merge-v5 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.46 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v5 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## brucethemoose/Yi-34B-200K-DARE-merge-v5 - GGUF This repo contains GGUF format model files for [brucethemoose/Yi-34B-200K-DARE-merge-v5](https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v5). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yi-34B-200K-DARE-merge-v5-Q2_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [Yi-34B-200K-DARE-merge-v5-Q3_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [Yi-34B-200K-DARE-merge-v5-Q3_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [Yi-34B-200K-DARE-merge-v5-Q3_K_L.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [Yi-34B-200K-DARE-merge-v5-Q4_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yi-34B-200K-DARE-merge-v5-Q4_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [Yi-34B-200K-DARE-merge-v5-Q4_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [Yi-34B-200K-DARE-merge-v5-Q5_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yi-34B-200K-DARE-merge-v5-Q5_K_S.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [Yi-34B-200K-DARE-merge-v5-Q5_K_M.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [Yi-34B-200K-DARE-merge-v5-Q6_K.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [Yi-34B-200K-DARE-merge-v5-Q8_0.gguf](https://huggingface.co/tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF/blob/main/Yi-34B-200K-DARE-merge-v5-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF --include "Yi-34B-200K-DARE-merge-v5-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Yi-34B-200K-DARE-merge-v5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Pandora-10.7B-v1-GGUF
tensorblock
2025-04-21T00:28:52Z
14
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:jan-ai/Pandora-10.7B-v1", "base_model:quantized:jan-ai/Pandora-10.7B-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-16T20:32:04Z
--- license: apache-2.0 language: - en tags: - TensorBlock - GGUF base_model: jan-ai/Pandora-10.7B-v1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## jan-ai/Pandora-10.7B-v1 - GGUF This repo contains GGUF format model files for [jan-ai/Pandora-10.7B-v1](https://huggingface.co/jan-ai/Pandora-10.7B-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Pandora-10.7B-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q2_K.gguf) | Q2_K | 4.003 GB | smallest, significant quality loss - not recommended for most purposes | | [Pandora-10.7B-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q3_K_S.gguf) | Q3_K_S | 4.665 GB | very small, high quality loss | | [Pandora-10.7B-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q3_K_M.gguf) | Q3_K_M | 5.196 GB | very small, high quality loss | | [Pandora-10.7B-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q3_K_L.gguf) | Q3_K_L | 5.651 GB | small, substantial quality loss | | [Pandora-10.7B-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q4_0.gguf) | Q4_0 | 6.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Pandora-10.7B-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q4_K_S.gguf) | Q4_K_S | 6.119 GB | small, greater quality loss | | [Pandora-10.7B-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q4_K_M.gguf) | Q4_K_M | 6.462 GB | medium, balanced quality - recommended | | [Pandora-10.7B-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q5_0.gguf) | Q5_0 | 7.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Pandora-10.7B-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q5_K_S.gguf) | Q5_K_S | 7.397 GB | large, low quality loss - recommended | | [Pandora-10.7B-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q5_K_M.gguf) | Q5_K_M | 7.598 GB | large, very low quality loss - recommended | | [Pandora-10.7B-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q6_K.gguf) | Q6_K | 8.805 GB | very large, extremely low quality loss | | [Pandora-10.7B-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Pandora-10.7B-v1-GGUF/blob/main/Pandora-10.7B-v1-Q8_0.gguf) | Q8_0 | 11.404 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Pandora-10.7B-v1-GGUF --include "Pandora-10.7B-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Pandora-10.7B-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF
tensorblock
2025-04-21T00:28:51Z
14
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "ko", "base_model:GAI-LLM/KoSOLAR-10.7B-mixed-v13", "base_model:quantized:GAI-LLM/KoSOLAR-10.7B-mixed-v13", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-12-16T20:25:14Z
--- license: cc-by-nc-4.0 language: - ko library_name: transformers pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: GAI-LLM/KoSOLAR-10.7B-mixed-v13 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## GAI-LLM/KoSOLAR-10.7B-mixed-v13 - GGUF This repo contains GGUF format model files for [GAI-LLM/KoSOLAR-10.7B-mixed-v13](https://huggingface.co/GAI-LLM/KoSOLAR-10.7B-mixed-v13). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [KoSOLAR-10.7B-mixed-v13-Q2_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q2_K.gguf) | Q2_K | 4.079 GB | smallest, significant quality loss - not recommended for most purposes | | [KoSOLAR-10.7B-mixed-v13-Q3_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q3_K_S.gguf) | Q3_K_S | 4.747 GB | very small, high quality loss | | [KoSOLAR-10.7B-mixed-v13-Q3_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q3_K_M.gguf) | Q3_K_M | 5.278 GB | very small, high quality loss | | [KoSOLAR-10.7B-mixed-v13-Q3_K_L.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q3_K_L.gguf) | Q3_K_L | 5.733 GB | small, substantial quality loss | | [KoSOLAR-10.7B-mixed-v13-Q4_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q4_0.gguf) | Q4_0 | 6.163 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [KoSOLAR-10.7B-mixed-v13-Q4_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q4_K_S.gguf) | Q4_K_S | 6.210 GB | small, greater quality loss | | [KoSOLAR-10.7B-mixed-v13-Q4_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q4_K_M.gguf) | Q4_K_M | 6.553 GB | medium, balanced quality - recommended | | [KoSOLAR-10.7B-mixed-v13-Q5_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q5_0.gguf) | Q5_0 | 7.497 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [KoSOLAR-10.7B-mixed-v13-Q5_K_S.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q5_K_S.gguf) | Q5_K_S | 7.497 GB | large, low quality loss - recommended | | [KoSOLAR-10.7B-mixed-v13-Q5_K_M.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q5_K_M.gguf) | Q5_K_M | 7.697 GB | large, very low quality loss - recommended | | [KoSOLAR-10.7B-mixed-v13-Q6_K.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q6_K.gguf) | Q6_K | 8.913 GB | very large, extremely low quality loss | | [KoSOLAR-10.7B-mixed-v13-Q8_0.gguf](https://huggingface.co/tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF/blob/main/KoSOLAR-10.7B-mixed-v13-Q8_0.gguf) | Q8_0 | 11.544 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF --include "KoSOLAR-10.7B-mixed-v13-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/KoSOLAR-10.7B-mixed-v13-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```