modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 00:42:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 00:42:16
card
stringlengths
11
1.01M
royokong/prompteol-llama-7b
royokong
2023-07-27T15:07:54Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-27T15:06:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Jonathaniu/llama2-breast-cancer-13b-knowledge-epoch-7
Jonathaniu
2023-07-27T15:03:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T15:03:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.4.0.dev0
janani4office2/results
janani4office2
2023-07-27T14:57:33Z
7
0
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "generated_from_trainer", "custom_code", "base_model:mosaicml/mpt-7b-instruct", "base_model:finetune:mosaicml/mpt-7b-instruct", "license:cc-by-sa-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T09:53:30Z
--- license: cc-by-sa-3.0 base_model: mosaicml/mpt-7b-instruct tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.0 - Tokenizers 0.12.1
Pierre-Arthur/distilbert-base-uncased-finetuned-imdb
Pierre-Arthur
2023-07-27T14:55:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-27T14:51:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7026 | 1.0 | 157 | 2.4957 | | 2.581 | 2.0 | 314 | 2.4286 | | 2.5363 | 3.0 | 471 | 2.4515 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
aayushi08/segformer-b0-scene-parse-150_pretrained
aayushi08
2023-07-27T14:52:11Z
43
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-07-27T11:52:06Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150_pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150_pretrained This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.2284 - Mean Iou: 0.0767 - Mean Accuracy: 0.1574 - Overall Accuracy: 0.5622 - Per Category Iou: [0.5148203561012767, 0.724040099091574, 0.6958825927435793, 0.38401244431532056, 0.29543194795602395, 0.29389807778274474, 0.0, 0.12126925156299818, 0.20467349613092675, 0.04878431281437682, 0.0, 0.1679011093073593, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] - Per Category Accuracy: [0.8140876905468601, 0.8295938962384349, 0.867831101268203, 0.8547256107829203, 0.39126018171899396, 0.31410348287229467, 0.0, 0.16157810162353853, 0.7849884441835724, 0.9576966932725199, nan, 0.3186048004107303, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.7729 | 1.0 | 20 | 4.8806 | 0.0109 | 0.0500 | 0.2075 | [0.0325297525314704, 0.24495480446129927, 0.5035687103968282, 0.07590179316096747, 0.0208204321411237, 0.11755765952640118, 0.0012824676676576644, 0.11501857578251874, 0.004708489128929511, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0013707195075028857, nan, 0.0, 0.0, 0.0, 0.10670559106194026, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012752466783029957, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.038409172339663206, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.039392859389085724, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0] | [0.032714193506590106, 0.2835194865505293, 0.7925572293142232, 0.09808227298140203, 0.023401493632310616, 0.13673498638383258, 0.0016606280193236715, 0.2387377403446556, 0.004989177886202722, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.003921838447777625, nan, nan, nan, nan, 0.1382100892304974, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.11718494271685762, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.038891307502539545, nan, nan, nan, nan, nan, nan, nan, 0.09062118191756158, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.6133 | 2.0 | 40 | 4.5556 | 0.0240 | 0.0928 | 0.4200 | [0.3414124883027797, 0.5189284526020218, 0.511476355875916, 0.1606769579990087, 0.2191685362703107, 0.2398429986223389, 0.015511382795680331, 0.11331394590160879, 0.15028358081340668, 0.01438743301769067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02806674579347902, 0.0, 0.0, 0.0, 0.0006765899864682003, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.02215046624619006, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03344654459539279, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.011403657777022819, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0] | [0.3974436187647117, 0.6709077053142973, 0.9814366002966801, 0.30133978188970545, 0.24257416429955417, 0.3673578265093243, 0.019345238095238096, 0.2245433220664561, 0.19344069848490406, 0.04469783352337514, nan, 0.0, 0.0, nan, 0.0, 0.07707055214723926, 0.0, nan, 0.0, 0.0013357079252003562, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.02593868716317696, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.14828150572831425, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0161886695389364, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.0018 | 3.0 | 60 | 4.0966 | 0.0381 | 0.1065 | 0.5018 | [0.4579418950126497, 0.5478506343770332, 0.6281485983096435, 0.187622528313154, 0.12857750191310263, 0.2648201387568903, 0.0, 0.17438167563464907, 0.2715138857161505, 0.007824522617422025, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0932277924362357, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0007550050195388662, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.015868077162414437, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0001977246456165967, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0] | [0.6575663269835709, 0.750747192817423, 0.9717910146320401, 0.5460234276591875, 0.14223367632950207, 0.35499976111987, 0.0, 0.37980458432611147, 0.3052202942147548, 0.0411630558722919, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0943900267141585, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0008039579468150897, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.01669394435351882, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0002089897755771333, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.7532 | 4.0 | 80 | 3.6052 | 0.0483 | 0.1219 | 0.5263 | [0.5050829619688341, 0.5167095890300885, 0.7748590774250136, 0.18315437529917458, 0.11704024897716543, 0.13685460073575936, 0.0, 0.2130983716844216, 0.29945226721356577, 0.057599769744830505, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan] | [0.8452302398736926, 0.7656999797573261, 0.96594446649813, 0.5077362468593599, 0.1259241144491055, 0.19461564187090918, 0.0, 0.3013058495410133, 0.4392310796434205, 0.7302166476624857, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.1001 | 5.0 | 100 | 3.4344 | 0.0660 | 0.1428 | 0.5519 | [0.5740286466908133, 0.5748238736928366, 0.770694415068295, 0.27976119037100783, 0.13865646665072914, 0.2115060410227592, 0.0, 0.2072166229048963, 0.2555005183734593, 0.047472124273325075, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.044365572315882874, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8366065922675107, 0.764253223943511, 0.9643113330408318, 0.7379712644065285, 0.15274929927199535, 0.28770722851273234, 0.0, 0.4467686226704346, 0.5695733519204667, 0.9087799315849487, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.04452359750667854, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.0427 | 6.0 | 120 | 3.2186 | 0.0650 | 0.1438 | 0.5559 | [0.5735339218911698, 0.6239798677665012, 0.7511513782853694, 0.2645688931826179, 0.12649460613253502, 0.24923481054964644, 0.0, 0.1969366951854885, 0.2184281686899488, 0.051422466461522716, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0623342175066313, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8391044267577821, 0.7624790131101082, 0.9706001156077415, 0.855931347124083, 0.1343328505050885, 0.33846129345627696, 0.0, 0.31312683548512216, 0.5571004072049598, 0.9165336374002281, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.06277827248441674, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.3803 | 7.0 | 140 | 3.0637 | 0.0701 | 0.1427 | 0.5502 | [0.5643446236009608, 0.6478939919910137, 0.7641745041997519, 0.26411100972559143, 0.19549661801352794, 0.1911980999487945, 0.0, 0.16826734984918662, 0.17217137814442804, 0.042858021905894904, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.003116651825467498, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8478744412265063, 0.7597745323346947, 0.9738489717178892, 0.7993762503620577, 0.20660659530841438, 0.27948178937142676, 0.0, 0.2462643837387562, 0.6370006236472358, 0.9530216647662486, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.003116651825467498, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.1859 | 8.0 | 160 | 3.0093 | 0.0584 | 0.1345 | 0.5279 | [0.5304954925773289, 0.630905617211838, 0.7114010240766968, 0.2654748809451504, 0.1130690161527166, 0.18241986166623642, 0.0, 0.1141937010923749, 0.150315689365187, 0.04692530210423179, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0008904719501335708, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7662953107416481, 0.7716819875924317, 0.9095334600839897, 0.7949439905157722, 0.12022423296149289, 0.3263500708677719, 0.0, 0.1470327478251233, 0.626215194981474, 0.9174458380843785, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0008904719501335708, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.5901 | 9.0 | 180 | 2.8961 | 0.0623 | 0.1320 | 0.5360 | [0.5195164676654499, 0.6543788786036646, 0.6849384372869802, 0.30794058237074823, 0.1333599486209231, 0.15503567223107292, 0.0, 0.08126954631008769, 0.22258699934340118, 0.04523293026052965, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8745683977147574, 0.768743823007585, 0.8957162456734151, 0.7660669419427848, 0.14452867811659362, 0.2138693803449429, 0.0, 0.15671118006686247, 0.4974503833596243, 0.9605473204104903, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.6568 | 10.0 | 200 | 2.6655 | 0.0635 | 0.1318 | 0.5376 | [0.5089110011356949, 0.5947639210280143, 0.7501099711752571, 0.2960618158114864, 0.09897355720209366, 0.13247966647434348, 0.0, 0.04938747761057435, 0.25216933229927274, 0.049225711566744525, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8569419883338412, 0.791147700075017, 0.95600637931875, 0.7128461440012933, 0.10955811809853458, 0.1700348764989728, 0.0, 0.06977152250604902, 0.6321948714186141, 0.9732041049030786, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.0827 | 11.0 | 220 | 2.5540 | 0.0664 | 0.1328 | 0.5525 | [0.5477061884254247, 0.6076672388749504, 0.6988056319090914, 0.32100561831494234, 0.0796511455145158, 0.1849044459508501, 0.0, 0.06290754292548194, 0.2377632194665419, 0.04846934405354012, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8413215248067838, 0.8561951512842191, 0.8976592914499022, 0.7920475289140964, 0.10084839820162154, 0.21502396763970505, 0.0, 0.08161097874069559, 0.5591914597013831, 0.9678449258836944, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7122 | 12.0 | 240 | 2.6093 | 0.0663 | 0.1347 | 0.5440 | [0.48626172067111173, 0.6938522126174008, 0.6745183497862148, 0.32800975475961913, 0.13442052689527517, 0.1590950988912591, 0.0, 0.03191117986488059, 0.28731424271802514, 0.055913045911087485, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8683034161065935, 0.8176626260701826, 0.8805792922856208, 0.7411102204678796, 0.1584679922496661, 0.24051247750545443, 0.0, 0.04305424724330914, 0.7284199713855974, 0.9115165336374003, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7849 | 13.0 | 260 | 2.5046 | 0.0657 | 0.1399 | 0.5480 | [0.4882436604761502, 0.6822540965256525, 0.7004956509062636, 0.3247556811491817, 0.13196717267240105, 0.11096064594061923, 0.0, 0.02708401300129288, 0.3101351020607959, 0.04951936249885834, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.858285684121115, 0.8391704671294697, 0.9035476255144893, 0.7431512155034791, 0.1509433962264151, 0.13897249693437166, 0.0, 0.041401156240187656, 0.9297112880149675, 0.9891676168757126, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.9403 | 14.0 | 280 | 2.6340 | 0.0659 | 0.1387 | 0.5293 | [0.48312476897435797, 0.6488606361658413, 0.6648547679594857, 0.3053698024726054, 0.20489118952038876, 0.12576909929926508, 0.0, 0.013371640156689207, 0.34921209139450415, 0.05279407025459233, 0.0, 0.05094082693736073, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8812484853429183, 0.765260892344697, 0.8539546901225025, 0.7465461379389318, 0.21890930980642978, 0.18750497666937396, 0.0, 0.021878059141870302, 0.8853222788803697, 0.9339794754846066, nan, 0.05281735335643691, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3078 | 15.0 | 300 | 2.5251 | 0.0644 | 0.1402 | 0.5368 | [0.5032657249511785, 0.6702271327640467, 0.6718064850372001, 0.30504826506652755, 0.1492842535787321, 0.16564926971140018, 0.0, 0.016966269440517066, 0.18991325708144624, 0.048684350697773514, nan, 0.05048798798798799, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7896420250455297, 0.8229019063835867, 0.8759932863938046, 0.8191058690395199, 0.16890836923192687, 0.20635261892249135, 0.0, 0.026375574887792984, 0.9075901537107011, 0.9379703534777651, nan, 0.051790527531767425, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1205 | 16.0 | 320 | 2.4200 | 0.0671 | 0.1408 | 0.5424 | [0.4851497985135246, 0.6844669447293905, 0.6787579124670596, 0.3294613919560565, 0.20455656925074622, 0.08834832285596292, 0.0, 0.026740147090214036, 0.2962578442229605, 0.05154904633008221, nan, 0.04160365166222124, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8799191862962226, 0.8123995308462628, 0.8699970053416348, 0.7538950672585327, 0.22818337440508663, 0.1226490213877343, 0.0, 0.038178090541364215, 0.9421475475989581, 0.9359179019384265, nan, 0.048549608522654344, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7337 | 17.0 | 340 | 2.4611 | 0.0715 | 0.1478 | 0.5546 | [0.491625569615171, 0.7171170389611052, 0.6864015302376366, 0.3032877086334042, 0.21901611424079653, 0.1455949153673077, 0.0, 0.015259275152876733, 0.3620399802217984, 0.052233755188337394, 0.0, 0.15355001924874884, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8814404418839574, 0.8366475750467368, 0.8821915327775804, 0.7332965101005678, 0.25158486803739727, 0.19115984265762107, 0.0, 0.02233058126004322, 0.9401298653655673, 0.9944127708095781, nan, 0.17918110640482607, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2253 | 18.0 | 360 | 2.5361 | 0.0683 | 0.1453 | 0.5332 | [0.4819568731474902, 0.680265368149286, 0.6843025301041807, 0.2899856590091187, 0.3087323785295647, 0.14888743830235568, 0.0, 0.024825875282443104, 0.17798215487023333, 0.06359447004608294, 0.0, 0.14556064830128054, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8169910332300767, 0.7745591264690823, 0.8805827744465106, 0.7940817879924826, 0.41321319061682876, 0.20704537129934866, 0.0, 0.03936942428104394, 0.7376279393961628, 0.9519954389965792, nan, 0.19769605955589784, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3414 | 19.0 | 380 | 2.4640 | 0.0683 | 0.1439 | 0.5352 | [0.4849713967261648, 0.7036371871576641, 0.6922972055523594, 0.3356658592901123, 0.2402872807341619, 0.1596577580552716, 0.0, 0.047547589564925385, 0.2061945641719802, 0.04166013276880456, 0.0, 0.025974025974025976, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7955566859662973, 0.7954239649444517, 0.8841519893585164, 0.7990663963302506, 0.3058748283451532, 0.21515137037567883, 0.0, 0.08368888642618348, 0.8494075351260134, 0.9996579247434435, nan, 0.026761648055448596, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.508 | 20.0 | 400 | 2.4162 | 0.0730 | 0.1498 | 0.5541 | [0.4861101723555255, 0.7257792619019059, 0.699673591241319, 0.33684785322016975, 0.2880978687290836, 0.1881996877887158, 0.0, 0.04428891975638423, 0.2535444554403875, 0.05175622381069756, 0.0, 0.1379656130528339, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8455877589313779, 0.8375540300782319, 0.8830133227475643, 0.7271667890365561, 0.33845632912583007, 0.23519341327855015, 0.0, 0.061247483422914244, 0.8928794159727063, 0.9576966932725199, nan, 0.2119111795661661, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9607 | 21.0 | 420 | 2.3918 | 0.0702 | 0.1504 | 0.5396 | [0.507695581246897, 0.6985780592300636, 0.6698981931830353, 0.3268301579730071, 0.3054300659810973, 0.21641804793868566, 0.0, 0.019582922325922552, 0.18294713323002632, 0.04517401704445434, 0.0, 0.1149816335083697, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.80723964094529, 0.8035641990450221, 0.8493826128742452, 0.7845975602362973, 0.3866325551646946, 0.2806045259821955, 0.0, 0.02860124489758224, 0.9311786932756154, 0.9948688711516533, nan, 0.14965986394557823, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.9236 | 22.0 | 440 | 2.3403 | 0.0712 | 0.1488 | 0.5518 | [0.5364709094748005, 0.7157040135965486, 0.6919605889395992, 0.3555111122884162, 0.2598097326773754, 0.2303148717750308, 0.0, 0.01760396975425331, 0.2036683013326684, 0.04360612209112998, 0.0, 0.07802606547602146, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8108484239168252, 0.8148301401507484, 0.8874809351691285, 0.9040260816263295, 0.3298218551891495, 0.28440272004841305, 0.0, 0.030272806191241387, 0.8090172053266811, 0.9924743443557583, nan, 0.08817866769349249, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9482 | 23.0 | 460 | 2.3411 | 0.0720 | 0.1514 | 0.5668 | [0.49056244853922376, 0.7266009942762334, 0.7052889865732858, 0.3548955744562617, 0.22703973358581736, 0.19574884192344205, 0.0, 0.05695680486216627, 0.23538302848330728, 0.049893043654919395, 0.0, 0.19959628089062884, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8291610779319563, 0.8825776068396423, 0.8928016770086845, 0.7743386974005941, 0.2616302037284373, 0.2183762521300145, 0.0, 0.08481557414898136, 0.8455189111852967, 0.9521094640820981, nan, 0.3141124374278013, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2529 | 24.0 | 480 | 2.3104 | 0.0725 | 0.1497 | 0.5836 | [0.5113420655011527, 0.8045573464173746, 0.6962598456991187, 0.3590822991203078, 0.27860642520466383, 0.1485592640462252, 0.0, 0.023266297678379122, 0.2656858185022889, 0.046793389845020975, 0.0, 0.1291229211186472, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8680610709735316, 0.9369812814803349, 0.9006539498150973, 0.7750998605656857, 0.33802366485449314, 0.17114965043874317, 0.0, 0.025738349864243365, 0.7962874646905609, 0.9970353477765108, nan, 0.17837889872930304, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.0998 | 25.0 | 500 | 2.4495 | 0.0716 | 0.1541 | 0.5391 | [0.43688653221954715, 0.733287497831381, 0.6921168863095847, 0.3378376929961361, 0.28901953901953903, 0.25230697522202, 0.0, 0.0300467152913023, 0.14611836498363812, 0.051168724933002056, 0.0, 0.1828301028913999, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.6452835078138309, 0.8493051999857111, 0.872507643343153, 0.8492627494830153, 0.37175266652871575, 0.4051645884095361, 0.0, 0.04359912081417041, 0.823948053853773, 0.9557582668187001, nan, 0.34838274932614555, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.5943 | 26.0 | 520 | 2.3525 | 0.0733 | 0.1537 | 0.5399 | [0.4964431098359949, 0.6897805528483147, 0.7012728391399409, 0.3524738700399841, 0.32639010699877213, 0.2303413215501499, 0.0, 0.05761208001790838, 0.1800597813262015, 0.0469448823964735, 0.0, 0.14580612004539711, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8009074745477623, 0.7669056096021719, 0.8890339789259623, 0.8123160241686145, 0.42004176150792905, 0.3254264010319622, 0.0, 0.07843408876821632, 0.8397593455372537, 0.998175598631699, nan, 0.21848928250545502, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6678 | 27.0 | 540 | 2.2825 | 0.0787 | 0.1577 | 0.5861 | [0.5126736049233109, 0.772986405128431, 0.7114639216183581, 0.38754642455125743, 0.29371878188946776, 0.2553816111517934, 0.0, 0.13962258581117482, 0.20097674111646413, 0.04935255174150135, 0.0, 0.1400173193495622, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.828335664805488, 0.9144300496540885, 0.8986586716252638, 0.7745811918602693, 0.4115013450215392, 0.30824295701750193, 0.0, 0.17471971334109085, 0.7820169485307605, 0.9834663625997719, nan, 0.23347452188422538, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1303 | 28.0 | 560 | 2.3182 | 0.0758 | 0.1610 | 0.5611 | [0.5244217877873839, 0.7196797467040382, 0.7154193001600868, 0.3697657853229992, 0.29826594815907514, 0.2688369361764598, 0.0, 0.1257064600856439, 0.16174030561725586, 0.05200386136455641, 0.0, 0.1740916271721959, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.767178310830428, 0.8255051737893094, 0.899459568629909, 0.8811642428447295, 0.3727496755017965, 0.2916328253149236, 0.0, 0.22718457361334293, 0.88686305440405, 0.9521094640820981, nan, 0.335932486202028, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.0753 | 29.0 | 580 | 2.3862 | 0.0727 | 0.1559 | 0.5459 | [0.5125531180422713, 0.6913985422892837, 0.7135806413409606, 0.354653629423774, 0.33716292636466455, 0.23221484314434854, 0.0, 0.07243706665192746, 0.19018123761937145, 0.043853324272872043, 0.0, 0.12527584076264453, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8158584896379459, 0.768236267727224, 0.9021895827674822, 0.8389904147328856, 0.4261931187569367, 0.28621820903603906, 0.0, 0.10892853844590976, 0.9439084339117356, 0.9639680729760547, nan, 0.1821653189577718, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1803 | 30.0 | 600 | 2.3013 | 0.0740 | 0.1545 | 0.5533 | [0.5097797474754986, 0.7108171722194596, 0.7005830611824793, 0.35823921708559114, 0.32186401376318347, 0.26049934774566624, 0.0, 0.05290972927345461, 0.2489013269204167, 0.04425081424655228, 0.0, 0.12392266480316795, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8224881886740842, 0.797866481704195, 0.8769717736038276, 0.8723805546387169, 0.40472920860061323, 0.3196056885321612, 0.0, 0.07988400657542342, 0.858101911295352, 0.9589509692132269, nan, 0.18778077268643306, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.7699 | 31.0 | 620 | 2.3166 | 0.0734 | 0.1549 | 0.5524 | [0.4792127260216525, 0.7026433433542578, 0.7059736466564126, 0.3817381108982241, 0.3173152259075477, 0.20516239705695122, 0.0, 0.13988002699771732, 0.18151654002499318, 0.04790945097194372, 0.0, 0.14376245178245942, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8472337862707883, 0.8057000988318787, 0.8854403888877281, 0.7193463427120311, 0.3885513271506236, 0.24379309795677861, 0.0, 0.17034225448366302, 0.92718001394035, 0.988939566704675, nan, 0.21765498652291104, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.7281 | 32.0 | 640 | 2.3447 | 0.0759 | 0.1618 | 0.5498 | [0.5100269861160145, 0.6908621861959551, 0.7038890577210998, 0.36374877913651393, 0.3435310328652262, 0.27837409064273155, 0.0, 0.1098173826075146, 0.19403438199688816, 0.04861480541801367, 0.0, 0.17298451681793914, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.807661945335576, 0.7712979721603697, 0.8791272311945901, 0.8579656062024694, 0.4408472695122181, 0.3101778860701034, 0.0, 0.1642747640420384, 0.9378553872115631, 0.9482326111744583, nan, 0.3534847901424721, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.8111 | 33.0 | 660 | 2.3018 | 0.0769 | 0.1575 | 0.5579 | [0.48684512810972097, 0.7188739727624192, 0.6881599572448257, 0.38048206300778636, 0.298146582950978, 0.24303529909110125, 0.0, 0.13649151841125362, 0.21524011803518422, 0.049986482197642026, 0.0, 0.1652892561983471, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8288227545283747, 0.8261377573498767, 0.8698437902624853, 0.757714354998417, 0.37160217460825073, 0.2746643734174191, 0.0, 0.18280046545132156, 0.9071132470009905, 0.9697833523375142, nan, 0.3112565781029393, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2645 | 34.0 | 680 | 2.2879 | 0.0764 | 0.1586 | 0.5647 | [0.523132132565937, 0.7332575089854492, 0.6917468223029607, 0.3768701209447672, 0.3189359143399452, 0.2538414921554104, 0.0, 0.11942452590998628, 0.23668586179507545, 0.04691834451901566, 0.0, 0.1351541120553075, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8254851101710573, 0.8271662637977638, 0.8724867503778144, 0.8643512936405828, 0.4140785191595026, 0.3001767712961636, 0.0, 0.1696496185885004, 0.874536850214608, 0.9565564424173318, nan, 0.24088692080605828, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3385 | 35.0 | 700 | 2.2476 | 0.0758 | 0.1573 | 0.5636 | [0.5046784645767062, 0.730853100421637, 0.6906982792843356, 0.3974850939489274, 0.3106473345049795, 0.2400536151853843, 0.0, 0.1487451411188102, 0.2111970669754061, 0.046564458308630825, 0.0, 0.1293910893957243, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8192153296493674, 0.8335992665007561, 0.8784830314299842, 0.8365856780077733, 0.3990105156229425, 0.2738044049495963, 0.0, 0.19507397351360337, 0.8833412817784951, 0.958266818700114, nan, 0.21499165704017456, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3315 | 36.0 | 720 | 2.2589 | 0.0760 | 0.1589 | 0.5651 | [0.5223323082506124, 0.7408631116141162, 0.6837550061879653, 0.3814286554522997, 0.31727334903868076, 0.27626367677228175, 0.0, 0.11901900163268142, 0.19294514689905456, 0.04649480322961883, 0.0, 0.13994002024794178, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8012409990378179, 0.8457299865445755, 0.8638092054405282, 0.8736603865092248, 0.39268985496341163, 0.30881626932938383, 0.0, 0.15820727360041373, 0.9186323782970762, 0.9599771949828962, nan, 0.23507893723527146, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2562 | 37.0 | 740 | 2.2604 | 0.0766 | 0.1562 | 0.5559 | [0.49336952101419806, 0.7146194028978202, 0.6916788345482708, 0.3836707024845504, 0.3132657940350248, 0.27580309286465676, 0.0, 0.13351638033194538, 0.1759989723129005, 0.046297154256623806, 0.0, 0.1402667526292461, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8034389014327157, 0.8187551350900799, 0.8676465467410456, 0.8196649534882154, 0.3943828890686431, 0.30688930294778083, 0.0, 0.19041022515284164, 0.8544333981437323, 0.9685290763968073, nan, 0.22339879347965602, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.67 | 38.0 | 760 | 2.2727 | 0.0739 | 0.1558 | 0.5591 | [0.4765426711244061, 0.7216823770278837, 0.6934404914710587, 0.3876700969962654, 0.30409929078014186, 0.2594024527502083, 0.0, 0.1448988355027462, 0.2239744052840704, 0.0478213699439367, 0.0, 0.14076731509378101, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8122737012340406, 0.8268656005525059, 0.8710033498387759, 0.8125046309705841, 0.40329953535619556, 0.28261908174478045, 0.0, 0.2087973993830923, 0.7961407241644961, 0.9599771949828962, nan, 0.2593697856501091, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.5761 | 39.0 | 780 | 2.2565 | 0.0749 | 0.1581 | 0.5552 | [0.49867026315457086, 0.6929315525434497, 0.6960117538985977, 0.3931985791879709, 0.3232063734899765, 0.24912395255196432, 0.0, 0.13885954321360297, 0.25672207215790005, 0.04745549809317958, 0.0, 0.14958776967762108, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8525893737657795, 0.779177730677177, 0.8759271253368991, 0.8313989909536095, 0.4212645083617073, 0.273422196741675, 0.0, 0.2039304778264162, 0.8402729373784805, 0.9563283922462942, nan, 0.2916827108201771, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6946 | 40.0 | 800 | 2.2601 | 0.0750 | 0.1576 | 0.5534 | [0.4944224623891422, 0.6888145453780341, 0.7037414414835037, 0.3911177333985678, 0.31352842930796604, 0.2932870405087212, 0.0, 0.1482581406124942, 0.21531963361966683, 0.04624139613029104, 0.0, 0.15333549531676235, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8260225884859668, 0.779637656136507, 0.892268906392551, 0.8292569565598119, 0.40610244737485657, 0.31142802541684583, 0.0, 0.19501856264199036, 0.8322022084449173, 0.9728620296465222, nan, 0.25792581183416763, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6296 | 41.0 | 820 | 2.2467 | 0.0751 | 0.1579 | 0.5549 | [0.4864490946546677, 0.7077958079871842, 0.6997543297983504, 0.38735074938756614, 0.3056326068497028, 0.2837938054384179, 0.0, 0.13901094040281914, 0.15548142780975296, 0.05017387576219512, 0.0, 0.16343096368023266, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8073908067213583, 0.8075680808754361, 0.8767872190766702, 0.8115952767468021, 0.4062529392953216, 0.3108069370789738, 0.0, 0.17413789918915423, 0.8344400014674053, 0.960775370581528, nan, 0.3281992042099859, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.8938 | 42.0 | 840 | 2.2589 | 0.0760 | 0.1583 | 0.5496 | [0.47144056301698833, 0.6844253220677846, 0.7050681830729311, 0.38940204180845894, 0.3170161841805334, 0.2829081766277303, 0.0, 0.14849037976661433, 0.19469181838122396, 0.05107984749389309, 0.0, 0.1739419420657248, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8139581198816588, 0.777559805194032, 0.8894065701411668, 0.8039297574381807, 0.4185932767734532, 0.30104470243498477, 0.0, 0.193079182135535, 0.8140430683444, 0.9608893956670468, nan, 0.3610897189064305, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 0.8033 | 43.0 | 860 | 2.2384 | 0.0757 | 0.1567 | 0.5482 | [0.47514768777939764, 0.6799096805891669, 0.7066319360377584, 0.37413968719359536, 0.3190275365914165, 0.28839185669174466, 0.0, 0.12979580141159439, 0.21690195696621556, 0.04958852948626566, 0.0, 0.1692121050969704, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8250364117563783, 0.7744668436908348, 0.8841868109674139, 0.7942299790511731, 0.4112567956507835, 0.3156084276909847, 0.0, 0.15896455551245822, 0.8172713599178253, 0.9598631698973774, nan, 0.32672314208702347, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9207 | 44.0 | 880 | 2.2248 | 0.0778 | 0.1569 | 0.5629 | [0.5048158614958531, 0.7323207951853928, 0.6968780658627216, 0.3717431595955756, 0.30453854251959295, 0.2582376063809487, 0.0, 0.1284858912594632, 0.2154746927320236, 0.04812190423775454, 0.0, 0.16130029364793158, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8147979297487049, 0.8380288398566342, 0.8731274679815306, 0.843052196932445, 0.39180571493067967, 0.2694010478875034, 0.0, 0.17241092702388208, 0.8167944532081147, 0.9571265678449259, nan, 0.3014054678475164, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9397 | 45.0 | 900 | 2.2397 | 0.0739 | 0.1556 | 0.5609 | [0.5104979289382761, 0.7335484971743466, 0.6945526654100276, 0.38850570478760144, 0.30587837075482344, 0.28333104638650364, 0.0, 0.1343887001712975, 0.17689109754822732, 0.04549396448174262, 0.0, 0.12715929031000195, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7987455640043094, 0.8382982460318406, 0.8635097396040087, 0.8525498966030568, 0.40798359638066933, 0.31239150860764736, 0.0, 0.17098871465248147, 0.8069995230932903, 0.9630558722919043, nan, 0.20927993839045053, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9628 | 46.0 | 920 | 2.2622 | 0.0746 | 0.1568 | 0.5597 | [0.5243409717367976, 0.7234668087061871, 0.6961363883642491, 0.3877068557919622, 0.3073133918770582, 0.3141209752305267, 0.0, 0.12196637124161351, 0.16876002030244194, 0.04680424142652056, 0.0, 0.14262956861751236, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7937450961102407, 0.8248353794310618, 0.86889664250047, 0.86718713162734, 0.4213209428318817, 0.34747503702642013, 0.0, 0.16318501690031584, 0.7684434498697678, 0.9628278221208666, nan, 0.2528237710178411, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.3656 | 47.0 | 940 | 2.2377 | 0.0741 | 0.1562 | 0.5470 | [0.4763894452883486, 0.6767419874917132, 0.7003469975886608, 0.3897728739192154, 0.3134054542013075, 0.2600953343490263, 0.0, 0.13592144099973935, 0.24371247768943696, 0.04822769497637688, 0.0, 0.1622893246626674, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8360331221011563, 0.7703438873078434, 0.8707770093809415, 0.8137979347555184, 0.4049173235011945, 0.2745927093784339, 0.0, 0.17819212796217285, 0.8265160130599069, 0.9637400228050171, nan, 0.3099088692080606, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 0.901 | 48.0 | 960 | 2.2366 | 0.0771 | 0.1589 | 0.5660 | [0.5126108756723662, 0.7402906082099798, 0.6984062665053278, 0.3948832465096225, 0.29967275107264923, 0.30957178465350227, 0.0, 0.14647758400448116, 0.1584974262887711, 0.048483525823995954, 0.0, 0.16160454458326798, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7955350908554303, 0.8506849763637013, 0.8702512030865874, 0.8266568770755168, 0.3875919411576591, 0.33030751835395666, 0.0, 0.1980292199996306, 0.834770167651051, 0.9625997719498289, nan, 0.2975869593120267, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.4665 | 49.0 | 980 | 2.2347 | 0.0757 | 0.1564 | 0.5550 | [0.502378498083232, 0.7047110323622909, 0.6973560251743418, 0.39012057813622936, 0.30475148618887915, 0.28088014418744367, 0.0, 0.13636174463126352, 0.19038196980247626, 0.04744125986020268, 0.0, 0.15255730337078652, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8197576068778029, 0.8051047260689917, 0.871222725974831, 0.8227096061485818, 0.39827686751067554, 0.2978198206806491, 0.0, 0.18155372084002883, 0.822443963461609, 0.9635119726339795, nan, 0.27230137337954047, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6342 | 50.0 | 1000 | 2.2284 | 0.0767 | 0.1574 | 0.5622 | [0.5148203561012767, 0.724040099091574, 0.6958825927435793, 0.38401244431532056, 0.29543194795602395, 0.29389807778274474, 0.0, 0.12126925156299818, 0.20467349613092675, 0.04878431281437682, 0.0, 0.1679011093073593, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8140876905468601, 0.8295938962384349, 0.867831101268203, 0.8547256107829203, 0.39126018171899396, 0.31410348287229467, 0.0, 0.16157810162353853, 0.7849884441835724, 0.9576966932725199, nan, 0.3186048004107303, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Hadihandrian22/vonny
Hadihandrian22
2023-07-27T14:33:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-27T14:33:26Z
--- license: creativeml-openrail-m ---
IIC/mdeberta-v3-base-meddocan
IIC
2023-07-27T14:28:46Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "biomedical", "clinical", "spanish", "mdeberta-v3-base", "token-classification", "es", "dataset:bigbio/meddocan", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-21T15:41:36Z
--- language: es tags: - biomedical - clinical - spanish - mdeberta-v3-base license: mit datasets: - "bigbio/meddocan" metrics: - f1 model-index: - name: IIC/mdeberta-v3-base-meddocan results: - task: type: token-classification dataset: name: meddocan type: bigbio/meddocan split: test metrics: - name: f1 type: f1 value: 0.974 pipeline_tag: token-classification --- # mdeberta-v3-base-meddocan This model is a finetuned version of mdeberta-v3-base for the meddocan dataset used in a benchmark in the paper TODO. The model has a F1 of 0.974 Please refer to the original publication for more information TODO LINK ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 4e-05 | | classifier dropout | 0.2 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtex TODO ```
flavioloss/gpt2-joker
flavioloss
2023-07-27T14:16:21Z
157
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "jokes", "en", "dataset:Fraser/short-jokes", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T00:05:22Z
--- license: afl-3.0 datasets: - Fraser/short-jokes language: - en library_name: transformers tags: - jokes pipeline_tag: text-generation --- Model trained to tell jokes Example Prompt: You are a comedian at a comedy club. The audience is going to ask you to tell jokes about a specific topic. Tell the joke in one output as clear as possible. Audience: Tell me a joke about dogs Comedian:
deinon-daemon/superllama-7b-dollybricks-cqa-lora
deinon-daemon
2023-07-27T14:06:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T14:05:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
reach-vb/musicgen-large-endpoint
reach-vb
2023-07-27T14:04:06Z
6
0
transformers
[ "transformers", "pytorch", "musicgen", "text-to-audio", "arxiv:2306.05284", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-27T11:46:07Z
--- inference: false tags: - musicgen license: cc-by-nc-4.0 duplicated_from: facebook/musicgen-large --- # MusicGen - Large - 3.3B MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts. It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass. By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio. MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*. Four checkpoints are released: - [small](https://huggingface.co/facebook/musicgen-small) - [medium](https://huggingface.co/facebook/musicgen-medium) - [**large** (this checkpoint)](https://huggingface.co/facebook/musicgen-large) - [melody](https://huggingface.co/facebook/musicgen-melody) ## Example Try out MusicGen yourself! * Audiocraft Colab: <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> ## 🤗 Transformers Usage You can run MusicGen locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main: ``` pip install git+https://github.com/huggingface/transformers.git ``` 2. Run the following Python code to generate text-conditional audio samples: ```py from transformers import AutoProcessor, MusicgenForConditionalGeneration processor = AutoProcessor.from_pretrained("facebook/musicgen-large") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-large") inputs = processor( text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], padding=True, return_tensors="pt", ) audio_values = model.generate(**inputs, max_new_tokens=256) ``` 3. Listen to the audio samples either in an ipynb notebook: ```py from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```py import scipy sampling_rate = model.config.audio_encoder.sampling_rate scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy()) ``` For more details on using the MusicGen model for inference using the 🤗 Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen). ## Audiocraft Usage You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write model = MusicGen.get_pretrained("large") model.set_generation_params(duration=8) # generate 8 seconds. descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MusicGen was trained between April 2023 and May 2023. **Model version:** This is the version 1 of the model. **Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. **Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation][https://arxiv.org/abs/2306.05284]. **Citation details**: ``` @misc{copet2023simple, title={Simple and Controllable Music Generation}, author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez}, year={2023}, eprint={2306.05284}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; - Adherence to the melody for melody-guided music generation. More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis More information can be found in the paper [Simple and Controllable Music Generation][arxiv], in the Experimental Setup section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** All vocals have been removed from the data source using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). The model is therefore not able to produce vocals. **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks.
SigSegev/t5-large_PREFIX_TUNING_SEQ2SEQ_v2
SigSegev
2023-07-27T13:41:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T13:41:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
xinyangli/woman_portrait
xinyangli
2023-07-27T13:32:27Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T13:07:13Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a portrait of a sks woman tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - xinyangli/woman_portrait These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a portrait of a sks woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
morenolq/bart-it-ilpost
morenolq
2023-07-27T13:27:40Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "it", "dataset:ARTeLab/ilpost", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-27T16:15:11Z
--- language: "it" license: mit datasets: - ARTeLab/ilpost tags: - bart - pytorch pipeline: - summarization --- # BART-IT - Il Post BART-IT is a sequence-to-sequence model, based on the BART architecture that is specifically tailored to the Italian language. The model is pre-trained on a [large corpus of Italian text](https://huggingface.co/datasets/gsarti/clean_mc4_it), and can be fine-tuned on a variety of tasks. ## Model description The model is a `base-`sized BART model, with a vocabulary size of 52,000 tokens. It has 140M parameters and can be used for any task that requires a sequence-to-sequence model. It is trained from scratch on a large corpus of Italian text, and can be fine-tuned on a variety of tasks. ## Pre-training The code used to pre-train BART-IT together with additional information on model parameters can be found [here](https://github.com/MorenoLaQuatra/bart-it). ## Fine-tuning The model has been fine-tuned for the abstractive summarization task on 3 different Italian datasets: - [FanPage](https://huggingface.co/datasets/ARTeLab/fanpage) - finetuned model [here](https://huggingface.co/morenolq/bart-it-fanpage) - **This model** [IlPost](https://huggingface.co/datasets/ARTeLab/ilpost) - finetuned model [here](https://huggingface.co/morenolq/bart-it-ilpost) - [WITS](https://huggingface.co/datasets/Silvia/WITS) - finetuned model [here](https://huggingface.co/morenolq/bart-it-WITS) ## Usage In order to use the model, you can use the following code: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("morenolq/bart-it-ilpost") model = AutoModelForSeq2SeqLM.from_pretrained("morenolq/bart-it-ilpost") input_ids = tokenizer.encode("Il modello BART-IT è stato pre-addestrato su un corpus di testo italiano", return_tensors="pt") outputs = model.generate(input_ids, max_length=40, num_beams=4, early_stopping=True) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` # Citation If you find this model useful for your research, please cite the following paper: ```bibtex @Article{BARTIT, AUTHOR = {La Quatra, Moreno and Cagliero, Luca}, TITLE = {BART-IT: An Efficient Sequence-to-Sequence Model for Italian Text Summarization}, JOURNAL = {Future Internet}, VOLUME = {15}, YEAR = {2023}, NUMBER = {1}, ARTICLE-NUMBER = {15}, URL = {https://www.mdpi.com/1999-5903/15/1/15}, ISSN = {1999-5903}, DOI = {10.3390/fi15010015} } ```
undrwolf/Pyramid
undrwolf
2023-07-27T13:14:28Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-27T13:10:10Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: undrwolf/Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
xinyangli/woman_photo
xinyangli
2023-07-27T13:07:00Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T12:41:48Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of a sks person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - xinyangli/woman_photo These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
aronmal/a2c-AntBulletEnv-v0
aronmal
2023-07-27T13:03:53Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T13:02:47Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1527.35 +/- 59.46 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalan/sbert_large_nlu_ru
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalan
2023-07-27T13:03:18Z
46
0
sentence-transformers
[ "sentence-transformers", "pytorch", "jax", "bert", "PyTorch", "Transformers", "ru", "region:us" ]
null
2023-07-27T09:07:35Z
--- library_name: sentence-transformers language: - ru tags: - PyTorch - Transformers --- # BERT large model (uncased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/527576/) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru") model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` # Authors - [SberDevices](https://sberdevices.ru/) Team. - Denis Antykhov: [Github](https://github.com/gaphex); - Aleksandr Abramov: [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko)
liuyt75/t5-base_prefix_tuning_sentences_66agree_15
liuyt75
2023-07-27T12:49:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T12:18:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
greg-szopinski/Reinforce-10_000s
greg-szopinski
2023-07-27T12:45:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T12:45:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-10_000s results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 464.40 +/- 106.80 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
apple/coreml-stable-diffusion-xl-base
apple
2023-07-27T12:41:14Z
22
67
null
[ "coreml", "text-to-image", "stable-diffusion", "core-ml", "arxiv:2307.01952", "arxiv:2211.01324", "arxiv:2108.01073", "arxiv:2112.10752", "license:openrail++", "region:us" ]
text-to-image
2023-07-26T14:44:27Z
--- license: openrail++ tags: - text-to-image - stable-diffusion - core-ml --- # SD-XL 1.0-base Model Card (Core ML) This model was generated by Hugging Face using [Apple’s repository](https://github.com/apple/ml-stable-diffusion) which has [ASCL](https://github.com/apple/ml-stable-diffusion/blob/main/LICENSE.md). This version contains Core ML weights with the `ORIGINAL` attention implementation, suitable for running on macOS GPUs. The Core ML weights are also distributed as a zip archive for use in the [Hugging Face demo app](https://github.com/huggingface/swift-coreml-diffusers) and other third party tools. The zip archive was created from the contents of the `original/compiled` folder in this repo. Please, refer to https://huggingface.co/blog/diffusers-coreml for details. The remaining contents of this model card were copied from the [original repo](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) ![row01](01.png) ## Model ![pipeline](pipeline.png) [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion: In a first step, the base model is used to generate (noisy) latents, which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps. Note that the base model can be used as a standalone module. Alternatively, we can use a two-stage pipeline as follows: First, the base model is used to generate latents of the desired output size. In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img") to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations. Source code is available at https://github.com/Stability-AI/generative-models . ### Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952). ### Model Sources For research purposes, we recommned our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popoular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time. [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference. - **Repository:** https://github.com/Stability-AI/generative-models - **Demo:** https://clipdrop.co/stable-diffusion ## Evaluation ![comparison](comparison.png) The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1. The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance. ### 🧨 Diffusers Make sure to upgrade diffusers to >= 0.18.0: ``` pip install diffusers --upgrade ``` In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` You can use the model then as follows ```py from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() prompt = "An astronaut riding a green horse" images = pipe(prompt=prompt).images[0] ``` When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: ```py pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) ``` If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` instead of `.to("cuda")`: ```diff - pipe.to("cuda") + pipe.enable_model_cpu_offload() ``` ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
xinyangli/person
xinyangli
2023-07-27T12:29:49Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T12:04:37Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a sks person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - xinyangli/person These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
asenella/ms_MMVAEPlus_beta_10_scale_False_seed_3
asenella
2023-07-27T12:15:36Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:15:34Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
jordyvl/rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5
jordyvl
2023-07-27T12:14:48Z
167
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T06:53:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6215 - Accuracy: 0.7963 - Brier Loss: 0.3076 - Nll: 1.6291 - F1 Micro: 0.7963 - F1 Macro: 0.7978 - Ece: 0.0919 - Aurc: 0.0682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 125 | 1.3808 | 0.541 | 0.5996 | 3.3159 | 0.541 | 0.5235 | 0.1039 | 0.2209 | | No log | 2.0 | 250 | 1.0577 | 0.6525 | 0.4662 | 2.6310 | 0.6525 | 0.6396 | 0.0871 | 0.1302 | | No log | 3.0 | 375 | 0.9165 | 0.7075 | 0.4104 | 2.2685 | 0.7075 | 0.7041 | 0.0788 | 0.1048 | | 1.3004 | 4.0 | 500 | 0.8505 | 0.7298 | 0.3804 | 2.1171 | 0.7298 | 0.7380 | 0.0622 | 0.0934 | | 1.3004 | 5.0 | 625 | 0.8063 | 0.745 | 0.3603 | 2.1178 | 0.745 | 0.7359 | 0.0588 | 0.0814 | | 1.3004 | 6.0 | 750 | 0.7441 | 0.7662 | 0.3348 | 1.9219 | 0.7663 | 0.7636 | 0.0545 | 0.0741 | | 1.3004 | 7.0 | 875 | 0.6987 | 0.7732 | 0.3193 | 1.8601 | 0.7732 | 0.7741 | 0.0509 | 0.0697 | | 0.4682 | 8.0 | 1000 | 0.7033 | 0.773 | 0.3240 | 1.8889 | 0.7730 | 0.7733 | 0.0516 | 0.0776 | | 0.4682 | 9.0 | 1125 | 0.6973 | 0.7865 | 0.3151 | 1.9589 | 0.7865 | 0.7838 | 0.0441 | 0.0760 | | 0.4682 | 10.0 | 1250 | 0.7068 | 0.7748 | 0.3252 | 2.0362 | 0.7748 | 0.7749 | 0.0515 | 0.0791 | | 0.4682 | 11.0 | 1375 | 0.6988 | 0.7768 | 0.3285 | 1.9227 | 0.7768 | 0.7801 | 0.0555 | 0.0840 | | 0.1899 | 12.0 | 1500 | 0.7048 | 0.7762 | 0.3303 | 1.9777 | 0.7762 | 0.7719 | 0.0627 | 0.0809 | | 0.1899 | 13.0 | 1625 | 0.6842 | 0.7785 | 0.3240 | 1.9360 | 0.7785 | 0.7784 | 0.0614 | 0.0808 | | 0.1899 | 14.0 | 1750 | 0.6993 | 0.7742 | 0.3319 | 1.9508 | 0.7742 | 0.7727 | 0.0731 | 0.0759 | | 0.1899 | 15.0 | 1875 | 0.6936 | 0.7742 | 0.3333 | 1.9042 | 0.7742 | 0.7760 | 0.0717 | 0.0853 | | 0.1304 | 16.0 | 2000 | 0.6818 | 0.7837 | 0.3233 | 1.9541 | 0.7837 | 0.7855 | 0.0713 | 0.0853 | | 0.1304 | 17.0 | 2125 | 0.6757 | 0.78 | 0.3255 | 1.8818 | 0.78 | 0.7829 | 0.0755 | 0.0834 | | 0.1304 | 18.0 | 2250 | 0.7018 | 0.781 | 0.3348 | 2.0078 | 0.7810 | 0.7829 | 0.0786 | 0.0876 | | 0.1304 | 19.0 | 2375 | 0.6872 | 0.7775 | 0.3340 | 1.8345 | 0.7775 | 0.7786 | 0.0864 | 0.0787 | | 0.11 | 20.0 | 2500 | 0.7054 | 0.7758 | 0.3379 | 1.9542 | 0.7758 | 0.7747 | 0.0731 | 0.0847 | | 0.11 | 21.0 | 2625 | 0.7006 | 0.782 | 0.3371 | 1.8610 | 0.782 | 0.7813 | 0.0821 | 0.0891 | | 0.11 | 22.0 | 2750 | 0.7046 | 0.775 | 0.3428 | 1.8464 | 0.775 | 0.7772 | 0.0833 | 0.0814 | | 0.11 | 23.0 | 2875 | 0.6620 | 0.789 | 0.3201 | 1.8174 | 0.7890 | 0.7908 | 0.0761 | 0.0799 | | 0.0979 | 24.0 | 3000 | 0.6886 | 0.783 | 0.3324 | 1.8706 | 0.7830 | 0.7848 | 0.0807 | 0.0773 | | 0.0979 | 25.0 | 3125 | 0.6600 | 0.7847 | 0.3236 | 1.8218 | 0.7847 | 0.7863 | 0.0833 | 0.0749 | | 0.0979 | 26.0 | 3250 | 0.6777 | 0.7798 | 0.3349 | 1.7189 | 0.7798 | 0.7812 | 0.0951 | 0.0752 | | 0.0979 | 27.0 | 3375 | 0.6554 | 0.7857 | 0.3212 | 1.7356 | 0.7857 | 0.7888 | 0.0871 | 0.0709 | | 0.087 | 28.0 | 3500 | 0.6460 | 0.7955 | 0.3140 | 1.7680 | 0.7955 | 0.7970 | 0.0761 | 0.0696 | | 0.087 | 29.0 | 3625 | 0.6371 | 0.7935 | 0.3136 | 1.6350 | 0.7935 | 0.7946 | 0.0830 | 0.0706 | | 0.087 | 30.0 | 3750 | 0.6334 | 0.7915 | 0.3127 | 1.7187 | 0.7915 | 0.7933 | 0.0857 | 0.0712 | | 0.087 | 31.0 | 3875 | 0.6293 | 0.7977 | 0.3075 | 1.7781 | 0.7977 | 0.7999 | 0.0799 | 0.0661 | | 0.0793 | 32.0 | 4000 | 0.6273 | 0.7973 | 0.3076 | 1.6439 | 0.7973 | 0.7976 | 0.0782 | 0.0695 | | 0.0793 | 33.0 | 4125 | 0.6320 | 0.7933 | 0.3123 | 1.6486 | 0.7932 | 0.7954 | 0.0899 | 0.0679 | | 0.0793 | 34.0 | 4250 | 0.6345 | 0.79 | 0.3154 | 1.6402 | 0.79 | 0.7903 | 0.0922 | 0.0675 | | 0.0793 | 35.0 | 4375 | 0.6209 | 0.793 | 0.3098 | 1.6026 | 0.793 | 0.7943 | 0.0863 | 0.0630 | | 0.0733 | 36.0 | 4500 | 0.6187 | 0.7947 | 0.3076 | 1.6282 | 0.7947 | 0.7967 | 0.0880 | 0.0666 | | 0.0733 | 37.0 | 4625 | 0.6146 | 0.7957 | 0.3051 | 1.6186 | 0.7957 | 0.7971 | 0.0885 | 0.0623 | | 0.0733 | 38.0 | 4750 | 0.6169 | 0.7983 | 0.3062 | 1.6182 | 0.7983 | 0.7996 | 0.0835 | 0.0650 | | 0.0733 | 39.0 | 4875 | 0.6180 | 0.7953 | 0.3074 | 1.6241 | 0.7953 | 0.7975 | 0.0889 | 0.0655 | | 0.0693 | 40.0 | 5000 | 0.6204 | 0.7977 | 0.3069 | 1.6048 | 0.7977 | 0.7987 | 0.0824 | 0.0659 | | 0.0693 | 41.0 | 5125 | 0.6140 | 0.7967 | 0.3055 | 1.6065 | 0.7967 | 0.7986 | 0.0911 | 0.0662 | | 0.0693 | 42.0 | 5250 | 0.6162 | 0.7957 | 0.3062 | 1.6182 | 0.7957 | 0.7971 | 0.0883 | 0.0655 | | 0.0693 | 43.0 | 5375 | 0.6169 | 0.796 | 0.3058 | 1.6212 | 0.796 | 0.7976 | 0.0879 | 0.0662 | | 0.0673 | 44.0 | 5500 | 0.6173 | 0.7973 | 0.3063 | 1.6161 | 0.7973 | 0.7990 | 0.0877 | 0.0666 | | 0.0673 | 45.0 | 5625 | 0.6193 | 0.797 | 0.3070 | 1.6151 | 0.797 | 0.7986 | 0.0881 | 0.0678 | | 0.0673 | 46.0 | 5750 | 0.6209 | 0.7963 | 0.3076 | 1.6211 | 0.7963 | 0.7979 | 0.0894 | 0.0678 | | 0.0673 | 47.0 | 5875 | 0.6211 | 0.7977 | 0.3075 | 1.6284 | 0.7977 | 0.7993 | 0.0905 | 0.0691 | | 0.0662 | 48.0 | 6000 | 0.6206 | 0.7967 | 0.3072 | 1.6289 | 0.7967 | 0.7983 | 0.0892 | 0.0673 | | 0.0662 | 49.0 | 6125 | 0.6213 | 0.7965 | 0.3075 | 1.6262 | 0.7965 | 0.7980 | 0.0886 | 0.0684 | | 0.0662 | 50.0 | 6250 | 0.6215 | 0.7963 | 0.3076 | 1.6291 | 0.7963 | 0.7978 | 0.0919 | 0.0682 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
nikbhi/spaceinvador_dqn_v1
nikbhi
2023-07-27T12:08:39Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T12:08:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 699.00 +/- 289.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikbhi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikbhi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nikbhi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
asenella/ms_MMVAEPlus_beta_5_scale_False_seed_1
asenella
2023-07-27T12:05:36Z
0
1
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:05:35Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_25_scale_False_seed_2
asenella
2023-07-27T12:05:32Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:05:30Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_10_scale_True_seed_2
asenella
2023-07-27T12:01:53Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:01:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
dhinman/Reinforce-Pixelcopter-200000
dhinman
2023-07-27T11:58:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T11:58:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-200000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 182.70 +/- 200.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
snob/TagMyBookmark-KoAlpaca-QLoRA-v1.0_ALLDATA
snob
2023-07-27T11:58:28Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-27T11:58:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
asenella/ms_MMVAEPlus_beta_5_scale_True_seed_3
asenella
2023-07-27T11:58:19Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:58:17Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_25_scale_True_seed_3
asenella
2023-07-27T11:57:42Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:57:40Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_10_scale_False_seed_2
asenella
2023-07-27T11:52:31Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:52:29Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Chat-Error/Kimiko_7B
Chat-Error
2023-07-27T11:50:53Z
0
15
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-07-26T14:59:07Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Kimiko_7B <!-- Provide a quick summary of what the model is/does. --> This is my new Kimiko models, trained with LLaMA2 for...purpose ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** nRuaif - **Model type:** Decoder only - **License:** CC BY-NC-SA - **Finetuned from model [optional]:** LLaMA2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/OpenAccess-AI-Collective/axolotl [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is trained on 3k examples of instructions dataset, high quality roleplay, for best result follow this format ``` <<HUMAN>> How to do abc <<AIBOT>> Here is how Or with system prompting for roleplay <<SYSTEM>> A's Persona: B's Persona: Scenario: Add some instruction here on how you want your RP to go. ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> All bias of this model come from LLaMA2 with an exception of NSFW bias..... ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> 3000 examples from LIMAERP, LIMA and I sample 1000 good instruction from Airboro ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Model is trained with 1 L4 from GCP costing a whooping 1.5USD #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> 3 epochs with 0.0002 lr, full 4096 ctx token, LoRA #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> It takes 8 hours to train this model with xformers enable [More Information Needed] [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** L4 with 12CPUs 48gb ram - **Hours used:** 8 - **Cloud Provider:** GCP - **Compute Region:** US - **Carbon Emitted:** 0.2KG
MheniDevs/Kinyarwanda
MheniDevs
2023-07-27T11:43:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-24T02:16:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-kinyarwanda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kinyarwanda This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3917 - Wer: 0.3246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 9.0634 | 0.12 | 400 | 3.0554 | 1.0 | | 2.8009 | 0.24 | 800 | 1.5927 | 0.9554 | | 0.9022 | 0.36 | 1200 | 0.7328 | 0.6445 | | 0.6213 | 0.48 | 1600 | 0.6138 | 0.5510 | | 0.5299 | 0.6 | 2000 | 0.6072 | 0.5223 | | 0.4999 | 0.72 | 2400 | 0.5449 | 0.4969 | | 0.4731 | 0.84 | 2800 | 0.5261 | 0.4828 | | 0.458 | 0.96 | 3200 | 0.5058 | 0.4607 | | 0.4158 | 1.09 | 3600 | 0.4892 | 0.4463 | | 0.4037 | 1.21 | 4000 | 0.4759 | 0.4429 | | 0.4021 | 1.33 | 4400 | 0.4615 | 0.4330 | | 0.3934 | 1.45 | 4800 | 0.4593 | 0.4315 | | 0.3808 | 1.57 | 5200 | 0.4736 | 0.4344 | | 0.3838 | 1.69 | 5600 | 0.4569 | 0.4249 | | 0.3726 | 1.81 | 6000 | 0.4473 | 0.4140 | | 0.3623 | 1.93 | 6400 | 0.4403 | 0.4097 | | 0.3517 | 2.05 | 6800 | 0.4389 | 0.4061 | | 0.333 | 2.17 | 7200 | 0.4383 | 0.4104 | | 0.3354 | 2.29 | 7600 | 0.4360 | 0.3955 | | 0.3257 | 2.41 | 8000 | 0.4226 | 0.3942 | | 0.3275 | 2.53 | 8400 | 0.4206 | 0.4040 | | 0.3262 | 2.65 | 8800 | 0.4172 | 0.3875 | | 0.3206 | 2.77 | 9200 | 0.4209 | 0.3877 | | 0.323 | 2.89 | 9600 | 0.4177 | 0.3825 | | 0.3099 | 3.01 | 10000 | 0.4101 | 0.3691 | | 0.3008 | 3.14 | 10400 | 0.4055 | 0.3709 | | 0.2918 | 3.26 | 10800 | 0.4085 | 0.3800 | | 0.292 | 3.38 | 11200 | 0.4089 | 0.3713 | | 0.292 | 3.5 | 11600 | 0.4092 | 0.3730 | | 0.2785 | 3.62 | 12000 | 0.4151 | 0.3687 | | 0.2941 | 3.74 | 12400 | 0.4004 | 0.3639 | | 0.2838 | 3.86 | 12800 | 0.4108 | 0.3703 | | 0.2854 | 3.98 | 13200 | 0.3911 | 0.3596 | | 0.2683 | 4.1 | 13600 | 0.3944 | 0.3575 | | 0.2647 | 4.22 | 14000 | 0.3836 | 0.3538 | | 0.2704 | 4.34 | 14400 | 0.4006 | 0.3540 | | 0.2664 | 4.46 | 14800 | 0.3974 | 0.3553 | | 0.2662 | 4.58 | 15200 | 0.3890 | 0.3470 | | 0.2615 | 4.7 | 15600 | 0.3856 | 0.3507 | | 0.2553 | 4.82 | 16000 | 0.3814 | 0.3497 | | 0.2587 | 4.94 | 16400 | 0.3837 | 0.3440 | | 0.2522 | 5.06 | 16800 | 0.3834 | 0.3486 | | 0.2451 | 5.19 | 17200 | 0.3897 | 0.3414 | | 0.2423 | 5.31 | 17600 | 0.3864 | 0.3481 | | 0.2434 | 5.43 | 18000 | 0.3808 | 0.3416 | | 0.2525 | 5.55 | 18400 | 0.3795 | 0.3408 | | 0.2427 | 5.67 | 18800 | 0.3841 | 0.3411 | | 0.2411 | 5.79 | 19200 | 0.3804 | 0.3366 | | 0.2404 | 5.91 | 19600 | 0.3800 | 0.3328 | | 0.2372 | 6.03 | 20000 | 0.3749 | 0.3335 | | 0.2244 | 6.15 | 20400 | 0.3820 | 0.3327 | | 0.2381 | 6.27 | 20800 | 0.3789 | 0.3325 | | 0.2294 | 6.39 | 21200 | 0.3867 | 0.3298 | | 0.2378 | 6.51 | 21600 | 0.3843 | 0.3281 | | 0.2312 | 6.63 | 22000 | 0.3813 | 0.3277 | | 0.2411 | 6.75 | 22400 | 0.3780 | 0.3268 | | 0.2315 | 6.87 | 22800 | 0.3790 | 0.3280 | | 0.241 | 6.99 | 23200 | 0.3776 | 0.3281 | | 0.2313 | 7.11 | 23600 | 0.3929 | 0.3283 | | 0.2423 | 7.24 | 24000 | 0.3905 | 0.3280 | | 0.2337 | 7.36 | 24400 | 0.3979 | 0.3249 | | 0.2368 | 7.48 | 24800 | 0.3980 | 0.3257 | | 0.2409 | 7.6 | 25200 | 0.3937 | 0.3229 | | 0.2416 | 7.72 | 25600 | 0.3867 | 0.3237 | | 0.2364 | 7.84 | 26000 | 0.3912 | 0.3253 | | 0.234 | 7.96 | 26400 | 0.3917 | 0.3246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
timxiaohangt/dt-ppo_eval_halfcheetah-2607_2255
timxiaohangt
2023-07-27T11:41:39Z
33
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-07-26T21:57:30Z
--- base_model: '' tags: - generated_from_trainer model-index: - name: dt-ppo_eval_halfcheetah-2607_2255 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-ppo_eval_halfcheetah-2607_2255 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1024 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
The-matt/4_law-qlora-polyglot-12.8b
The-matt
2023-07-27T11:41:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T11:41:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
asenella/ms_MMVAEPlus_beta_5_scale_True_seed_1
asenella
2023-07-27T11:41:13Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:41:11Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
rehanhaider/DBSD-1.5-9-vectors
rehanhaider
2023-07-27T11:30:54Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-27T11:11:06Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: in the style of wlat_mntn tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - rehanhaider/DBSD-1.5-9-vectors This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on in the style of wlat_mntn using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
mpterradillos/beans_vit_model
mpterradillos
2023-07-27T11:16:53Z
224
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T11:09:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: beans_vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beans_vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1356 | 3.85 | 500 | 0.0068 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
xinyangli/person-finetuned
xinyangli
2023-07-27T11:11:41Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T08:50:42Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a sks woman tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - xinyangli/person-finetuned These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a sks woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
The-matt/3_law-qlora-polyglot-12.8b
The-matt
2023-07-27T10:32:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T10:32:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
GrantC/micro-orca
GrantC
2023-07-27T10:20:16Z
5
1
peft
[ "peft", "region:us" ]
null
2023-07-26T21:13:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
kratos0619/kratos01
kratos0619
2023-07-27T10:20:10Z
0
0
null
[ "license:llama2", "region:us" ]
null
2023-07-27T10:18:54Z
--- license: llama2 --- # ⚠️ Type of model/library unknown. # Feel free to open a Pull request # for integration of the huggingface model hub # into the corresponding library =)
MYTH-Lab/BatGPT-15B-sirius
MYTH-Lab
2023-07-27T10:10:52Z
17
5
transformers
[ "transformers", "pytorch", "batgpt", "feature-extraction", "BatGPT", "MLP", "text-generation", "custom_code", "zh", "en", "arxiv:1911.02150", "arxiv:2104.09864", "arxiv:2307.00360", "region:us" ]
text-generation
2023-07-24T04:10:26Z
--- language: - zh - en tags: - BatGPT - MLP pipeline_tag: text-generation inference: false --- # BatGPT-15B-sirius Bidirectional Autoregressive Talker from Generative Pre-trained Transformer ## 介绍 (Introduction) BatGPT-15B-sirius 是上海交通大学与武汉大学<font size=1>(或武汉大学与上海交通大学,排名不分先后)</font>联合自然语言处理团队设计、预训练、对齐的系列大型语言模型 [BatGPT](https://github.com/zcli-charlie/BatGPT) 中的一个开源可商用版本。 BatGPT系列模型中还包括BatGPT-30B-orion,BatGPT-70B-alhena,以及BatGPT-140B-menkalinan。 BatGPT-15B-sirius 包含 150 亿参数,在中英文 1T 语料上进行了预训练,在权威的中文和英文 benchmark 上均取得同不错的效果。BatGPT-15B-sirius 有如下几个特点: 1. **支持长达32K的上下文**:BatGPT-15B-sirius 采用旋转位置编码RoPE,在预训练阶段采用 2048 序列长度,并且在指令微调阶段逐步扩展到了 32K 上下文。 2. **高效的预训练目标与模型架构**:BatGPT-15B-sirius 采用双向自回归预训练目标,以提高对于训练数据的运用程度,并且基于 [Multi-Query Attention](http://arxiv.org/abs/1911.02150) 技术,在保证参数规模的前提下尽可能的减少推理显存的占用,提高推理速度。 3. **商业友好的开放协议**:BatGPT-15B-sirius 的源码以及权重不仅支持自由的学术研究使用,也允许免费开源商用,助推大模型进一步帮助人类的日常生活。 BatGPT-15B-sirius is an open-source commercially available version of the series of large-scale language models [BatGPT](https://github.com/zcli-charlie/BatGPT), designed, pretrained, and aligned by the joint natural language processing teams of Shanghai Jiao Tong University and Wuhan University <font size=1>(or Wuhan University and Shanghai Jiao Tong University, in no particular order)</font>. The BatGPT series of models also include BatGPT-30B-orion, BatGPT-70B-alhena, and BatGPT-140B-menkalinan. BatGPT-15B-sirius contains 15 billion parameters and has been pretrained on 1T Chinese and English corpora. It achieves excellent performance on authoritative Chinese and English benchmarks. BatGPT-15B-sirius has the following characteristics: 1. **Supports Contexts Up to 32K Tokens**: BatGPT-15B-sirius uses rotated positional encoding (RoPE) and is pretrained with a sequence length of 2048 tokens. During fine-tuning, it gradually expands to support contexts up to 32K tokens. 2. **Efficient Pre-training Objectives and Model Architecture**: BatGPT-15B-sirius employs a bidirectional autoregressive pretraining objective to better utilize the training data. It also utilizes the [Multi-Query Attention](http://arxiv.org/abs/1911.02150) technique to reduce inference memory consumption and improve inference speed while maintaining model size. 3. **Business-friendly Open License**: The source code and weights of BatGPT-15B-sirius are not only available for academic research but also allow free and open-source commercial use, further facilitating the integration of large language models into human daily life. ## 软件依赖 ```shell pip install protobuf transformers cpm_kernels torch>=2.0 streamlit sentencepiece accelerate deepspeed ``` ## 简易使用 如下是一个使用 BatGPT-15B-sirius 进行对话的示例: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("MLP-lab/BatGPT-15B-sirius", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("MLP-lab/BatGPT-15B-sirius", torch_dtype=torch.float16, trust_remote_code=True).cuda() model = model.eval() history = [] system_prompt = None # 你也可以指定系统提示 response, history = model.chat(tokenizer, "你好", history=history, system_prompt=system_prompt) print(response) response, history = model.chat(tokenizer, "介绍一下你自己", history=history, system_prompt=system_prompt) print(response) ``` Here is an example of a conversation using BatGPT-15B-sirius: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("MLP-lab/BatGPT-15B-sirius", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("MLP-lab/BatGPT-15B-sirius", torch_dtype=torch.float16, trust_remote_code=True).cuda() model = model.eval() history = [] system_prompt = None # You can give a system prompt here. response, history = model.chat(tokenizer, "Hello", history=history, system_prompt=system_prompt) print(response) response, history = model.chat(tokenizer, "Please introduce yourself", history=history, system_prompt=system_prompt) print(response) ``` ## 模型详情 (Model Details) BatGPT-15B-sirius 具体参数和见下表: | 模型名称 | 隐含层维度 | 层数 | Query头数 | Key/Value头数 |词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长度 | |-------------------------|-------|------------|------------|------------|-----------------|--------|--------|----------------|---------| | BatGPT-15B-sirius | 5,632 | 48 | 44 | 2 | 65,536 | 15,030,081,024 | 1T | [RoPE](https://arxiv.org/abs/2104.09864) | 32K | The specific parameters of BatGPT-15B-sirius are as follows: | Model Name | Hidden Size | Num Layers | Query Heads | Key/Value Heads |Vocab Size | Total Params | Training Dats(tokens) | Position Embedding | Max Length | |-------------------------|-------|------------|------------|------------|-----------------|--------|--------|----------------|---------| | BatGPT-15B-sirius | 5,632 | 48 | 44 | 2 | 65,536 | 15,030,081,024 | 1T | [RoPE](https://arxiv.org/abs/2104.09864) | 32K | - **Developed by:** MLP Lab of Wuhan University, Shanghai Jiao Tong University - **Email**: [email protected], [email protected] - **Language(s) (NLP):** Chinese/English - **License:** The code in this project is licensed under the Apache 2.0 license, the model weights are licensed under the GNU AGPL 3.0 license. If you intend to use the models included in this project for commercial purposes or public deployment, please email to us to obtain authorization. Commercial usage information will be used for record purposes only and no fees will be charged. ## 免责声明 (Disclaimers) BatGPT-15B-sirius 模型的使用应当遵循社会的公序良俗,不能被用于任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 BatGPT-15B-sirius 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。如使用本项目所含模型及其修改版本提供服务产生误导性或有害性言论,造成不良影响,由服务提供方负责,与本项目无关。 The use of the BatGPT-15B-sirius model should adhere to societal norms and not be used for any activities that jeopardize national or social security or violate the law. Additionally, we also request users not to use the BatGPT-15B-sirius model for internet services that have not undergone appropriate security review and documentation. We hope that all users will abide by this principle to ensure that technological development occurs in a regulated and legal environment. We have done our best to ensure the compliance of the data used during the model training process. However, despite our significant efforts, unforeseen issues may still arise due to the complexity of the model and data. If misleading or harmful statements are generated through the use of the models included in this project or their modified versions while providing services, the responsibility lies with the service provider and is not associated with this project. ## 引用 如果你觉得我们的工作有帮助的话,请考虑引用我们的BatGPT论文: If you find our work helpful, please consider citing our BatGPT paper: ``` @article{li2023batgpt, title={BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained Transformer}, author={Li, Zuchao and Zhang, Shitou and Zhao, Hai and Yang, Yifei and Yang, Dongjie}, journal={arXiv preprint arXiv:2307.00360}, year={2023} } ```
Naruke/a2c-PandaReachDense-v2
Naruke
2023-07-27T09:56:47Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T08:41:20Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.91 +/- 0.29 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
smeintadmin/image_intents
smeintadmin
2023-07-27T09:51:44Z
14
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "en", "dataset:smeintadmin/image_intents", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-26T09:22:06Z
--- license: openrail datasets: - smeintadmin/image_intents language: - en library_name: transformers --- Image data intents model to help classify text into either an image intent, or not an image intent. An image intent is classified as text that is asking for an image or an image to be generated.
Vageesh1/falcon-7b-pi-ai
Vageesh1
2023-07-27T09:43:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T09:43:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
ketong3906/my_awesome_mc_model
ketong3906
2023-07-27T09:32:58Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-07-27T09:29:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: my_awesome_mc_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mc_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.6809 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 35 | 0.8543 | 0.6714 | | No log | 2.0 | 70 | 0.6696 | 0.7143 | | No log | 3.0 | 105 | 0.6809 | 0.75 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Dewa/dog_emotion_v3_resnet
Dewa
2023-07-27T09:30:46Z
241
2
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T08:53:19Z
--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dog_emotion_v3_resnet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dog_emotion_v3_resnet This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3063 - Accuracy: 0.5075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 1.3721 | 0.3475 | | No log | 2.0 | 100 | 1.3502 | 0.45 | | No log | 3.0 | 150 | 1.3292 | 0.485 | | No log | 4.0 | 200 | 1.3103 | 0.5025 | | No log | 5.0 | 250 | 1.3063 | 0.5075 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Arabic-Clip-Archive/bert-base-arabertv2-Vit-B-32
Arabic-Clip-Archive
2023-07-27T09:23:46Z
39
0
transformers
[ "transformers", "pytorch", "bert", "ar", "endpoints_compatible", "region:us" ]
null
2023-07-26T06:19:56Z
--- language: ar --- <br /> <p align="center"> <h1 align="center">Swe-CLIP 500k</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%20500k">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('pain/bert-base-arabertv2-Vit-B-32') embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta']) print(embeddings.shape) # Yields: torch.Size([2, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> Training data pairs was generated by sampling 500k sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish. All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
himanimaheshwari3/himani-text-imdb
himanimaheshwari3
2023-07-27T09:21:46Z
64
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T09:20:05Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: himanimaheshwari3/himani-text-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # himanimaheshwari3/himani-text-imdb This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.7148 - Validation Loss: 10.2666 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -947, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.7148 | 10.2666 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
Trong-Nghia/bert-large-uncased-detect-dep-v9
Trong-Nghia
2023-07-27T09:17:53Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-26T04:38:38Z
--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-detect-dep-v9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-detect-dep-v9 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5492 - Accuracy: 0.745 - F1: 0.8200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6247 | 1.0 | 1502 | 0.5405 | 0.748 | 0.8230 | | 0.5825 | 2.0 | 3004 | 0.5492 | 0.745 | 0.8200 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
chunwoolee0/circulus-kobart-en-to-ko
chunwoolee0
2023-07-27T09:15:28Z
108
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:circulus/kobart-trans-en-ko-v2", "base_model:finetune:circulus/kobart-trans-en-ko-v2", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-27T08:37:31Z
--- base_model: circulus/kobart-trans-en-ko-v2 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: circulus-kobart-en-to-ko results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ko split: train args: en-ko metrics: - name: Bleu type: bleu value: 2.6900397070648445 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # circulus-kobart-en-to-ko This model is a fine-tuned version of [circulus/kobart-trans-en-ko-v2](https://huggingface.co/circulus/kobart-trans-en-ko-v2) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.0986 - Bleu: 2.6900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
lorenpe2/distiluse-base-multilingual-cased-v2
lorenpe2
2023-07-27T09:13:27Z
1,364
0
sentence-transformers
[ "sentence-transformers", "onnx", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "multilingual", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-27T08:56:23Z
--- pipeline_tag: sentence-similarity language: multilingual license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ONNX convert of distiluse-base-multilingual-cased-v2 ## Conversion of [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model outputs `last_hidden_state` similar like original sentence-transformer implementation. ## Usage (HuggingFace Optimum) Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed: ``` python -m pip install optimum ``` You may also need following: ``` python -m pip install onnxruntime python -m pip install onnx ``` Then you can use the model like this: ```python from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks model = ORTModelForCustomTasks.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2") tokenizer = AutoTokenizer.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2") inputs = tokenizer("I love burritos!", return_tensors="pt") pred = model(**inputs) ``` You will also be able to leverage the pipeline API in transformers: ```python from transformers import pipeline onnx_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer) text = "I love burritos!" pred = onnx_extractor(text) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
NasimB/cbt-rarity-guten-fixed
NasimB
2023-07-27T09:03:33Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T06:29:45Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-rarity-guten-fixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-rarity-guten-fixed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.0985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3519 | 0.29 | 500 | 5.3468 | | 5.0333 | 0.58 | 1000 | 4.9291 | | 4.7073 | 0.87 | 1500 | 4.6889 | | 4.4427 | 1.17 | 2000 | 4.5469 | | 4.2897 | 1.46 | 2500 | 4.4291 | | 4.1828 | 1.75 | 3000 | 4.3230 | | 4.0733 | 2.04 | 3500 | 4.2457 | | 3.8847 | 2.33 | 4000 | 4.2009 | | 3.8597 | 2.62 | 4500 | 4.1478 | | 3.8231 | 2.91 | 5000 | 4.0935 | | 3.6322 | 3.21 | 5500 | 4.0913 | | 3.5786 | 3.5 | 6000 | 4.0641 | | 3.5646 | 3.79 | 6500 | 4.0290 | | 3.477 | 4.08 | 7000 | 4.0268 | | 3.3022 | 4.37 | 7500 | 4.0259 | | 3.3082 | 4.66 | 8000 | 4.0106 | | 3.2938 | 4.95 | 8500 | 3.9979 | | 3.1532 | 5.24 | 9000 | 4.0100 | | 3.1253 | 5.54 | 9500 | 4.0096 | | 3.122 | 5.83 | 10000 | 4.0085 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
lixsh6/XLM-3B5-embedding
lixsh6
2023-07-27T09:03:12Z
0
0
null
[ "mteb", "model-index", "region:us" ]
null
2023-07-26T02:57:41Z
--- tags: - mteb model-index: - name: xlm3b5_step3len260_b128g8_lr1e-5 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 66.94029850746269 - type: ap value: 28.832990644897478 - type: f1 value: 60.32686940828024 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 94.697425 - type: ap value: 92.35377895045687 - type: f1 value: 94.6945423828739 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 51.586 - type: f1 value: 49.90891720350314 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 17.781 - type: map_at_10 value: 30.854 - type: map_at_100 value: 32.344 - type: map_at_1000 value: 32.364 - type: map_at_3 value: 25.711000000000002 - type: map_at_5 value: 28.254 - type: mrr_at_1 value: 18.563 - type: mrr_at_10 value: 31.137999999999998 - type: mrr_at_100 value: 32.621 - type: mrr_at_1000 value: 32.641 - type: mrr_at_3 value: 25.984 - type: mrr_at_5 value: 28.53 - type: ndcg_at_1 value: 17.781 - type: ndcg_at_10 value: 39.206 - type: ndcg_at_100 value: 45.751 - type: ndcg_at_1000 value: 46.225 - type: ndcg_at_3 value: 28.313 - type: ndcg_at_5 value: 32.919 - type: precision_at_1 value: 17.781 - type: precision_at_10 value: 6.65 - type: precision_at_100 value: 0.9560000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 11.949 - type: precision_at_5 value: 9.417 - type: recall_at_1 value: 17.781 - type: recall_at_10 value: 66.501 - type: recall_at_100 value: 95.59 - type: recall_at_1000 value: 99.21799999999999 - type: recall_at_3 value: 35.846000000000004 - type: recall_at_5 value: 47.083999999999996 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.44154312957711 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 34.189712542346385 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.72571219134687 - type: mrr value: 76.3612979817966 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 83.62762841254953 - type: cos_sim_spearman value: 80.72111639383013 - type: euclidean_pearson value: 82.63506732956259 - type: euclidean_spearman value: 81.177753304636 - type: manhattan_pearson value: 82.5891836637346 - type: manhattan_spearman value: 81.06811225217339 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 80.34090909090908 - type: f1 value: 79.4054298683183 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.82441952130262 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.132057843418416 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 34.23 - type: map_at_10 value: 46.763 - type: map_at_100 value: 48.454 - type: map_at_1000 value: 48.58 - type: map_at_3 value: 43.167 - type: map_at_5 value: 45.214 - type: mrr_at_1 value: 42.775 - type: mrr_at_10 value: 53.190000000000005 - type: mrr_at_100 value: 53.928 - type: mrr_at_1000 value: 53.964 - type: mrr_at_3 value: 51.168 - type: mrr_at_5 value: 52.434000000000005 - type: ndcg_at_1 value: 42.775 - type: ndcg_at_10 value: 53.376999999999995 - type: ndcg_at_100 value: 58.748 - type: ndcg_at_1000 value: 60.461 - type: ndcg_at_3 value: 48.929 - type: ndcg_at_5 value: 50.99399999999999 - type: precision_at_1 value: 42.775 - type: precision_at_10 value: 10.428999999999998 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.215 - type: precision_at_3 value: 23.939 - type: precision_at_5 value: 17.082 - type: recall_at_1 value: 34.23 - type: recall_at_10 value: 64.96300000000001 - type: recall_at_100 value: 86.803 - type: recall_at_1000 value: 97.917 - type: recall_at_3 value: 51.815 - type: recall_at_5 value: 57.781000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.935 - type: map_at_10 value: 39.574999999999996 - type: map_at_100 value: 40.891 - type: map_at_1000 value: 41.043 - type: map_at_3 value: 36.248999999999995 - type: map_at_5 value: 38.157999999999994 - type: mrr_at_1 value: 36.624 - type: mrr_at_10 value: 45.241 - type: mrr_at_100 value: 46.028000000000006 - type: mrr_at_1000 value: 46.082 - type: mrr_at_3 value: 42.93 - type: mrr_at_5 value: 44.417 - type: ndcg_at_1 value: 36.624 - type: ndcg_at_10 value: 45.423 - type: ndcg_at_100 value: 49.971 - type: ndcg_at_1000 value: 52.382 - type: ndcg_at_3 value: 41.019 - type: ndcg_at_5 value: 43.254 - type: precision_at_1 value: 36.624 - type: precision_at_10 value: 8.86 - type: precision_at_100 value: 1.458 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 20.276 - type: precision_at_5 value: 14.573 - type: recall_at_1 value: 28.935 - type: recall_at_10 value: 55.745999999999995 - type: recall_at_100 value: 74.977 - type: recall_at_1000 value: 90.505 - type: recall_at_3 value: 42.575 - type: recall_at_5 value: 48.902 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.828 - type: map_at_10 value: 50.888999999999996 - type: map_at_100 value: 52.001 - type: map_at_1000 value: 52.054 - type: map_at_3 value: 47.638999999999996 - type: map_at_5 value: 49.423 - type: mrr_at_1 value: 44.765 - type: mrr_at_10 value: 54.408 - type: mrr_at_100 value: 55.116 - type: mrr_at_1000 value: 55.144000000000005 - type: mrr_at_3 value: 52.038 - type: mrr_at_5 value: 53.323 - type: ndcg_at_1 value: 44.765 - type: ndcg_at_10 value: 56.724 - type: ndcg_at_100 value: 61.058 - type: ndcg_at_1000 value: 62.125 - type: ndcg_at_3 value: 51.324000000000005 - type: ndcg_at_5 value: 53.805 - type: precision_at_1 value: 44.765 - type: precision_at_10 value: 9.248000000000001 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 23.093 - type: precision_at_5 value: 15.799 - type: recall_at_1 value: 38.828 - type: recall_at_10 value: 70.493 - type: recall_at_100 value: 89.293 - type: recall_at_1000 value: 96.872 - type: recall_at_3 value: 55.74400000000001 - type: recall_at_5 value: 61.95 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.085 - type: map_at_10 value: 30.070000000000004 - type: map_at_100 value: 31.206 - type: map_at_1000 value: 31.291999999999998 - type: map_at_3 value: 27.011000000000003 - type: map_at_5 value: 28.854999999999997 - type: mrr_at_1 value: 23.842 - type: mrr_at_10 value: 31.755 - type: mrr_at_100 value: 32.778 - type: mrr_at_1000 value: 32.845 - type: mrr_at_3 value: 28.851 - type: mrr_at_5 value: 30.574 - type: ndcg_at_1 value: 23.842 - type: ndcg_at_10 value: 35.052 - type: ndcg_at_100 value: 40.550999999999995 - type: ndcg_at_1000 value: 42.789 - type: ndcg_at_3 value: 29.096 - type: ndcg_at_5 value: 32.251000000000005 - type: precision_at_1 value: 23.842 - type: precision_at_10 value: 5.605 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 12.316 - type: precision_at_5 value: 9.13 - type: recall_at_1 value: 22.085 - type: recall_at_10 value: 48.815999999999995 - type: recall_at_100 value: 74.039 - type: recall_at_1000 value: 90.872 - type: recall_at_3 value: 33.098 - type: recall_at_5 value: 40.647 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.088999999999999 - type: map_at_10 value: 21.526 - type: map_at_100 value: 22.832 - type: map_at_1000 value: 22.958000000000002 - type: map_at_3 value: 18.747 - type: map_at_5 value: 20.396 - type: mrr_at_1 value: 17.662 - type: mrr_at_10 value: 25.513 - type: mrr_at_100 value: 26.621 - type: mrr_at_1000 value: 26.698 - type: mrr_at_3 value: 22.658 - type: mrr_at_5 value: 24.449 - type: ndcg_at_1 value: 17.662 - type: ndcg_at_10 value: 26.506999999999998 - type: ndcg_at_100 value: 32.782 - type: ndcg_at_1000 value: 35.709999999999994 - type: ndcg_at_3 value: 21.279 - type: ndcg_at_5 value: 23.998 - type: precision_at_1 value: 17.662 - type: precision_at_10 value: 5.124 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 10.323 - type: precision_at_5 value: 8.158999999999999 - type: recall_at_1 value: 14.088999999999999 - type: recall_at_10 value: 37.874 - type: recall_at_100 value: 65.34100000000001 - type: recall_at_1000 value: 86.06099999999999 - type: recall_at_3 value: 23.738999999999997 - type: recall_at_5 value: 30.359 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.75 - type: map_at_10 value: 34.156 - type: map_at_100 value: 35.638999999999996 - type: map_at_1000 value: 35.754999999999995 - type: map_at_3 value: 31.047000000000004 - type: map_at_5 value: 32.823 - type: mrr_at_1 value: 30.991000000000003 - type: mrr_at_10 value: 39.509 - type: mrr_at_100 value: 40.582 - type: mrr_at_1000 value: 40.636 - type: mrr_at_3 value: 37.103 - type: mrr_at_5 value: 38.503 - type: ndcg_at_1 value: 30.991000000000003 - type: ndcg_at_10 value: 39.719 - type: ndcg_at_100 value: 45.984 - type: ndcg_at_1000 value: 48.293 - type: ndcg_at_3 value: 34.92 - type: ndcg_at_5 value: 37.253 - type: precision_at_1 value: 30.991000000000003 - type: precision_at_10 value: 7.3340000000000005 - type: precision_at_100 value: 1.225 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 16.586000000000002 - type: precision_at_5 value: 12.127 - type: recall_at_1 value: 24.75 - type: recall_at_10 value: 51.113 - type: recall_at_100 value: 77.338 - type: recall_at_1000 value: 92.764 - type: recall_at_3 value: 37.338 - type: recall_at_5 value: 43.437 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.158 - type: map_at_10 value: 32.877 - type: map_at_100 value: 34.226 - type: map_at_1000 value: 34.35 - type: map_at_3 value: 29.43 - type: map_at_5 value: 31.319000000000003 - type: mrr_at_1 value: 29.224 - type: mrr_at_10 value: 38.080000000000005 - type: mrr_at_100 value: 39.04 - type: mrr_at_1000 value: 39.097 - type: mrr_at_3 value: 35.407 - type: mrr_at_5 value: 36.771 - type: ndcg_at_1 value: 29.224 - type: ndcg_at_10 value: 38.805 - type: ndcg_at_100 value: 44.746 - type: ndcg_at_1000 value: 47.038000000000004 - type: ndcg_at_3 value: 33.269 - type: ndcg_at_5 value: 35.611 - type: precision_at_1 value: 29.224 - type: precision_at_10 value: 7.454 - type: precision_at_100 value: 1.221 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 16.134 - type: precision_at_5 value: 11.895 - type: recall_at_1 value: 23.158 - type: recall_at_10 value: 51.487 - type: recall_at_100 value: 77.464 - type: recall_at_1000 value: 92.525 - type: recall_at_3 value: 35.478 - type: recall_at_5 value: 41.722 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.456916666666668 - type: map_at_10 value: 33.5495 - type: map_at_100 value: 34.86808333333333 - type: map_at_1000 value: 34.98908333333333 - type: map_at_3 value: 30.59158333333334 - type: map_at_5 value: 32.24916666666667 - type: mrr_at_1 value: 29.387250000000005 - type: mrr_at_10 value: 37.73958333333333 - type: mrr_at_100 value: 38.6595 - type: mrr_at_1000 value: 38.718250000000005 - type: mrr_at_3 value: 35.31658333333333 - type: mrr_at_5 value: 36.69441666666667 - type: ndcg_at_1 value: 29.387250000000005 - type: ndcg_at_10 value: 38.910333333333334 - type: ndcg_at_100 value: 44.40241666666666 - type: ndcg_at_1000 value: 46.72008333333334 - type: ndcg_at_3 value: 34.045583333333326 - type: ndcg_at_5 value: 36.33725 - type: precision_at_1 value: 29.387250000000005 - type: precision_at_10 value: 7.034666666666668 - type: precision_at_100 value: 1.1698333333333333 - type: precision_at_1000 value: 0.15599999999999997 - type: precision_at_3 value: 15.866416666666666 - type: precision_at_5 value: 11.456333333333331 - type: recall_at_1 value: 24.456916666666668 - type: recall_at_10 value: 50.47758333333333 - type: recall_at_100 value: 74.52275 - type: recall_at_1000 value: 90.7105 - type: recall_at_3 value: 36.86275 - type: recall_at_5 value: 42.76533333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.356 - type: map_at_10 value: 25.378 - type: map_at_100 value: 26.349 - type: map_at_1000 value: 26.451 - type: map_at_3 value: 23.403 - type: map_at_5 value: 24.614 - type: mrr_at_1 value: 22.086 - type: mrr_at_10 value: 28.072000000000003 - type: mrr_at_100 value: 28.887 - type: mrr_at_1000 value: 28.965999999999998 - type: mrr_at_3 value: 26.074 - type: mrr_at_5 value: 27.293 - type: ndcg_at_1 value: 22.086 - type: ndcg_at_10 value: 29.107 - type: ndcg_at_100 value: 34.0 - type: ndcg_at_1000 value: 36.793 - type: ndcg_at_3 value: 25.407999999999998 - type: ndcg_at_5 value: 27.375 - type: precision_at_1 value: 22.086 - type: precision_at_10 value: 4.678 - type: precision_at_100 value: 0.7779999999999999 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 10.992 - type: precision_at_5 value: 7.853000000000001 - type: recall_at_1 value: 19.356 - type: recall_at_10 value: 37.913999999999994 - type: recall_at_100 value: 60.507999999999996 - type: recall_at_1000 value: 81.459 - type: recall_at_3 value: 27.874 - type: recall_at_5 value: 32.688 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.008 - type: map_at_10 value: 22.431 - type: map_at_100 value: 23.61 - type: map_at_1000 value: 23.743 - type: map_at_3 value: 20.358 - type: map_at_5 value: 21.371000000000002 - type: mrr_at_1 value: 19.752 - type: mrr_at_10 value: 26.333000000000002 - type: mrr_at_100 value: 27.297 - type: mrr_at_1000 value: 27.378000000000004 - type: mrr_at_3 value: 24.358 - type: mrr_at_5 value: 25.354 - type: ndcg_at_1 value: 19.752 - type: ndcg_at_10 value: 26.712000000000003 - type: ndcg_at_100 value: 32.294 - type: ndcg_at_1000 value: 35.410000000000004 - type: ndcg_at_3 value: 22.974 - type: ndcg_at_5 value: 24.412 - type: precision_at_1 value: 19.752 - type: precision_at_10 value: 4.986 - type: precision_at_100 value: 0.924 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 10.966 - type: precision_at_5 value: 7.832 - type: recall_at_1 value: 16.008 - type: recall_at_10 value: 35.716 - type: recall_at_100 value: 60.76200000000001 - type: recall_at_1000 value: 83.204 - type: recall_at_3 value: 25.092 - type: recall_at_5 value: 28.858 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.743000000000002 - type: map_at_10 value: 34.492 - type: map_at_100 value: 35.716 - type: map_at_1000 value: 35.815999999999995 - type: map_at_3 value: 31.201 - type: map_at_5 value: 32.926 - type: mrr_at_1 value: 29.384 - type: mrr_at_10 value: 38.333 - type: mrr_at_100 value: 39.278 - type: mrr_at_1000 value: 39.330999999999996 - type: mrr_at_3 value: 35.65 - type: mrr_at_5 value: 36.947 - type: ndcg_at_1 value: 29.384 - type: ndcg_at_10 value: 40.195 - type: ndcg_at_100 value: 45.686 - type: ndcg_at_1000 value: 47.906 - type: ndcg_at_3 value: 34.477000000000004 - type: ndcg_at_5 value: 36.89 - type: precision_at_1 value: 29.384 - type: precision_at_10 value: 7.164 - type: precision_at_100 value: 1.111 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 15.983 - type: precision_at_5 value: 11.418000000000001 - type: recall_at_1 value: 24.743000000000002 - type: recall_at_10 value: 53.602000000000004 - type: recall_at_100 value: 77.266 - type: recall_at_1000 value: 92.857 - type: recall_at_3 value: 37.921 - type: recall_at_5 value: 44.124 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.531 - type: map_at_10 value: 35.933 - type: map_at_100 value: 37.913000000000004 - type: map_at_1000 value: 38.146 - type: map_at_3 value: 32.713 - type: map_at_5 value: 34.339999999999996 - type: mrr_at_1 value: 32.806000000000004 - type: mrr_at_10 value: 41.728 - type: mrr_at_100 value: 42.731 - type: mrr_at_1000 value: 42.777 - type: mrr_at_3 value: 39.065 - type: mrr_at_5 value: 40.467999999999996 - type: ndcg_at_1 value: 32.806000000000004 - type: ndcg_at_10 value: 42.254999999999995 - type: ndcg_at_100 value: 48.687999999999995 - type: ndcg_at_1000 value: 50.784 - type: ndcg_at_3 value: 37.330999999999996 - type: ndcg_at_5 value: 39.305 - type: precision_at_1 value: 32.806000000000004 - type: precision_at_10 value: 8.34 - type: precision_at_100 value: 1.7209999999999999 - type: precision_at_1000 value: 0.252 - type: precision_at_3 value: 17.589 - type: precision_at_5 value: 12.845999999999998 - type: recall_at_1 value: 26.531 - type: recall_at_10 value: 53.266000000000005 - type: recall_at_100 value: 81.49499999999999 - type: recall_at_1000 value: 94.506 - type: recall_at_3 value: 38.848 - type: recall_at_5 value: 44.263000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.77 - type: map_at_10 value: 28.504 - type: map_at_100 value: 29.580000000000002 - type: map_at_1000 value: 29.681 - type: map_at_3 value: 26.134 - type: map_at_5 value: 27.551 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 30.713 - type: mrr_at_100 value: 31.628 - type: mrr_at_1000 value: 31.701 - type: mrr_at_3 value: 28.497 - type: mrr_at_5 value: 29.799999999999997 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 33.048 - type: ndcg_at_100 value: 38.321 - type: ndcg_at_1000 value: 40.949999999999996 - type: ndcg_at_3 value: 28.521 - type: ndcg_at_5 value: 30.898999999999997 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.194 - type: precision_at_100 value: 0.86 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 12.2 - type: precision_at_5 value: 8.762 - type: recall_at_1 value: 20.77 - type: recall_at_10 value: 44.741 - type: recall_at_100 value: 68.987 - type: recall_at_1000 value: 88.984 - type: recall_at_3 value: 32.830999999999996 - type: recall_at_5 value: 38.452999999999996 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 9.646 - type: map_at_10 value: 17.432 - type: map_at_100 value: 19.347 - type: map_at_1000 value: 19.555 - type: map_at_3 value: 14.355 - type: map_at_5 value: 15.83 - type: mrr_at_1 value: 21.433 - type: mrr_at_10 value: 32.583 - type: mrr_at_100 value: 33.708 - type: mrr_at_1000 value: 33.751999999999995 - type: mrr_at_3 value: 28.979 - type: mrr_at_5 value: 30.979 - type: ndcg_at_1 value: 21.433 - type: ndcg_at_10 value: 25.025 - type: ndcg_at_100 value: 32.818999999999996 - type: ndcg_at_1000 value: 36.549 - type: ndcg_at_3 value: 19.689 - type: ndcg_at_5 value: 21.462 - type: precision_at_1 value: 21.433 - type: precision_at_10 value: 8.085 - type: precision_at_100 value: 1.6340000000000001 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 14.832 - type: precision_at_5 value: 11.530999999999999 - type: recall_at_1 value: 9.646 - type: recall_at_10 value: 31.442999999999998 - type: recall_at_100 value: 58.48 - type: recall_at_1000 value: 79.253 - type: recall_at_3 value: 18.545 - type: recall_at_5 value: 23.362 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.48 - type: map_at_10 value: 18.127 - type: map_at_100 value: 25.563999999999997 - type: map_at_1000 value: 27.386 - type: map_at_3 value: 13.189 - type: map_at_5 value: 15.417 - type: mrr_at_1 value: 63.74999999999999 - type: mrr_at_10 value: 71.34899999999999 - type: mrr_at_100 value: 71.842 - type: mrr_at_1000 value: 71.851 - type: mrr_at_3 value: 69.167 - type: mrr_at_5 value: 70.479 - type: ndcg_at_1 value: 51.87500000000001 - type: ndcg_at_10 value: 38.792 - type: ndcg_at_100 value: 43.889 - type: ndcg_at_1000 value: 51.561 - type: ndcg_at_3 value: 42.686 - type: ndcg_at_5 value: 40.722 - type: precision_at_1 value: 63.74999999999999 - type: precision_at_10 value: 30.375000000000004 - type: precision_at_100 value: 10.103 - type: precision_at_1000 value: 2.257 - type: precision_at_3 value: 45.167 - type: precision_at_5 value: 38.95 - type: recall_at_1 value: 8.48 - type: recall_at_10 value: 23.008 - type: recall_at_100 value: 48.875 - type: recall_at_1000 value: 73.402 - type: recall_at_3 value: 14.377 - type: recall_at_5 value: 17.819 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.83 - type: f1 value: 41.76842531751529 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 62.247 - type: map_at_10 value: 72.782 - type: map_at_100 value: 73.095 - type: map_at_1000 value: 73.112 - type: map_at_3 value: 70.928 - type: map_at_5 value: 72.173 - type: mrr_at_1 value: 67.372 - type: mrr_at_10 value: 77.538 - type: mrr_at_100 value: 77.741 - type: mrr_at_1000 value: 77.74600000000001 - type: mrr_at_3 value: 75.938 - type: mrr_at_5 value: 77.054 - type: ndcg_at_1 value: 67.372 - type: ndcg_at_10 value: 78.001 - type: ndcg_at_100 value: 79.295 - type: ndcg_at_1000 value: 79.648 - type: ndcg_at_3 value: 74.71 - type: ndcg_at_5 value: 76.712 - type: precision_at_1 value: 67.372 - type: precision_at_10 value: 9.844999999999999 - type: precision_at_100 value: 1.065 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 29.308 - type: precision_at_5 value: 18.731 - type: recall_at_1 value: 62.247 - type: recall_at_10 value: 89.453 - type: recall_at_100 value: 94.998 - type: recall_at_1000 value: 97.385 - type: recall_at_3 value: 80.563 - type: recall_at_5 value: 85.58099999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.587 - type: map_at_10 value: 37.316 - type: map_at_100 value: 39.542 - type: map_at_1000 value: 39.701 - type: map_at_3 value: 32.332 - type: map_at_5 value: 35.172 - type: mrr_at_1 value: 42.437999999999995 - type: mrr_at_10 value: 51.98500000000001 - type: mrr_at_100 value: 52.910999999999994 - type: mrr_at_1000 value: 52.944 - type: mrr_at_3 value: 49.691 - type: mrr_at_5 value: 51.15 - type: ndcg_at_1 value: 42.437999999999995 - type: ndcg_at_10 value: 45.016 - type: ndcg_at_100 value: 52.541000000000004 - type: ndcg_at_1000 value: 54.99699999999999 - type: ndcg_at_3 value: 41.175 - type: ndcg_at_5 value: 42.647 - type: precision_at_1 value: 42.437999999999995 - type: precision_at_10 value: 12.855 - type: precision_at_100 value: 2.049 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 27.675 - type: precision_at_5 value: 20.617 - type: recall_at_1 value: 22.587 - type: recall_at_10 value: 51.547 - type: recall_at_100 value: 78.88 - type: recall_at_1000 value: 93.741 - type: recall_at_3 value: 37.256 - type: recall_at_5 value: 44.295 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.451 - type: map_at_10 value: 48.082 - type: map_at_100 value: 49.08 - type: map_at_1000 value: 49.163000000000004 - type: map_at_3 value: 44.766 - type: map_at_5 value: 46.722 - type: mrr_at_1 value: 64.902 - type: mrr_at_10 value: 72.195 - type: mrr_at_100 value: 72.572 - type: mrr_at_1000 value: 72.589 - type: mrr_at_3 value: 70.774 - type: mrr_at_5 value: 71.611 - type: ndcg_at_1 value: 64.902 - type: ndcg_at_10 value: 57.14399999999999 - type: ndcg_at_100 value: 60.916000000000004 - type: ndcg_at_1000 value: 62.649 - type: ndcg_at_3 value: 52.09 - type: ndcg_at_5 value: 54.70399999999999 - type: precision_at_1 value: 64.902 - type: precision_at_10 value: 12.136 - type: precision_at_100 value: 1.51 - type: precision_at_1000 value: 0.174 - type: precision_at_3 value: 32.933 - type: precision_at_5 value: 21.823 - type: recall_at_1 value: 32.451 - type: recall_at_10 value: 60.682 - type: recall_at_100 value: 75.523 - type: recall_at_1000 value: 87.063 - type: recall_at_3 value: 49.399 - type: recall_at_5 value: 54.55799999999999 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.6584 - type: ap value: 85.36881978624284 - type: f1 value: 89.64170045393931 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 17.942 - type: map_at_10 value: 29.755 - type: map_at_100 value: 31.008000000000003 - type: map_at_1000 value: 31.067 - type: map_at_3 value: 25.959 - type: map_at_5 value: 28.044999999999998 - type: mrr_at_1 value: 18.467 - type: mrr_at_10 value: 30.253000000000004 - type: mrr_at_100 value: 31.461 - type: mrr_at_1000 value: 31.513 - type: mrr_at_3 value: 26.528000000000002 - type: mrr_at_5 value: 28.588 - type: ndcg_at_1 value: 18.467 - type: ndcg_at_10 value: 36.510999999999996 - type: ndcg_at_100 value: 42.748999999999995 - type: ndcg_at_1000 value: 44.188 - type: ndcg_at_3 value: 28.752 - type: ndcg_at_5 value: 32.462 - type: precision_at_1 value: 18.467 - type: precision_at_10 value: 6.006 - type: precision_at_100 value: 0.9169999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 12.55 - type: precision_at_5 value: 9.395000000000001 - type: recall_at_1 value: 17.942 - type: recall_at_10 value: 57.440000000000005 - type: recall_at_100 value: 86.66199999999999 - type: recall_at_1000 value: 97.613 - type: recall_at_3 value: 36.271 - type: recall_at_5 value: 45.167 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.76652986776104 - type: f1 value: 93.726741953801 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.79753761969903 - type: f1 value: 45.8547023848409 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.26563550773369 - type: f1 value: 67.37602000921103 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.51244115669132 - type: f1 value: 73.79891534060464 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.88016176143737 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.07643038274053 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.81344342001539 - type: mrr value: 31.82078962760685 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 4.617 - type: map_at_10 value: 11.501 - type: map_at_100 value: 14.729999999999999 - type: map_at_1000 value: 16.209 - type: map_at_3 value: 8.275 - type: map_at_5 value: 9.853000000000002 - type: mrr_at_1 value: 41.486000000000004 - type: mrr_at_10 value: 51.471999999999994 - type: mrr_at_100 value: 52.020999999999994 - type: mrr_at_1000 value: 52.066 - type: mrr_at_3 value: 49.484 - type: mrr_at_5 value: 50.660000000000004 - type: ndcg_at_1 value: 38.854 - type: ndcg_at_10 value: 31.567 - type: ndcg_at_100 value: 29.842999999999996 - type: ndcg_at_1000 value: 38.995000000000005 - type: ndcg_at_3 value: 36.785000000000004 - type: ndcg_at_5 value: 34.955000000000005 - type: precision_at_1 value: 40.867 - type: precision_at_10 value: 23.591 - type: precision_at_100 value: 7.771 - type: precision_at_1000 value: 2.11 - type: precision_at_3 value: 35.397 - type: precision_at_5 value: 30.959999999999997 - type: recall_at_1 value: 4.617 - type: recall_at_10 value: 15.609 - type: recall_at_100 value: 31.313999999999997 - type: recall_at_1000 value: 63.085 - type: recall_at_3 value: 9.746 - type: recall_at_5 value: 12.295 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 28.797 - type: map_at_10 value: 44.822 - type: map_at_100 value: 45.891999999999996 - type: map_at_1000 value: 45.919 - type: map_at_3 value: 40.237 - type: map_at_5 value: 42.913000000000004 - type: mrr_at_1 value: 32.561 - type: mrr_at_10 value: 46.982 - type: mrr_at_100 value: 47.827 - type: mrr_at_1000 value: 47.843999999999994 - type: mrr_at_3 value: 43.26 - type: mrr_at_5 value: 45.527 - type: ndcg_at_1 value: 32.532 - type: ndcg_at_10 value: 52.832 - type: ndcg_at_100 value: 57.343999999999994 - type: ndcg_at_1000 value: 57.93899999999999 - type: ndcg_at_3 value: 44.246 - type: ndcg_at_5 value: 48.698 - type: precision_at_1 value: 32.532 - type: precision_at_10 value: 9.003 - type: precision_at_100 value: 1.1480000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.605999999999998 - type: precision_at_5 value: 14.954 - type: recall_at_1 value: 28.797 - type: recall_at_10 value: 75.065 - type: recall_at_100 value: 94.6 - type: recall_at_1000 value: 98.967 - type: recall_at_3 value: 52.742 - type: recall_at_5 value: 63.012 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 69.84700000000001 - type: map_at_10 value: 83.91499999999999 - type: map_at_100 value: 84.568 - type: map_at_1000 value: 84.584 - type: map_at_3 value: 80.87299999999999 - type: map_at_5 value: 82.76299999999999 - type: mrr_at_1 value: 80.4 - type: mrr_at_10 value: 86.843 - type: mrr_at_100 value: 86.956 - type: mrr_at_1000 value: 86.957 - type: mrr_at_3 value: 85.843 - type: mrr_at_5 value: 86.521 - type: ndcg_at_1 value: 80.4 - type: ndcg_at_10 value: 87.787 - type: ndcg_at_100 value: 89.039 - type: ndcg_at_1000 value: 89.137 - type: ndcg_at_3 value: 84.76700000000001 - type: ndcg_at_5 value: 86.413 - type: precision_at_1 value: 80.4 - type: precision_at_10 value: 13.391 - type: precision_at_100 value: 1.533 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.123 - type: precision_at_5 value: 24.462 - type: recall_at_1 value: 69.84700000000001 - type: recall_at_10 value: 95.296 - type: recall_at_100 value: 99.543 - type: recall_at_1000 value: 99.98700000000001 - type: recall_at_3 value: 86.75 - type: recall_at_5 value: 91.33099999999999 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 54.24501738730203 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.28243705082983 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 3.473 - type: map_at_10 value: 8.944 - type: map_at_100 value: 11.21 - type: map_at_1000 value: 11.601 - type: map_at_3 value: 6.167 - type: map_at_5 value: 7.438000000000001 - type: mrr_at_1 value: 17.1 - type: mrr_at_10 value: 26.487 - type: mrr_at_100 value: 27.888 - type: mrr_at_1000 value: 27.961000000000002 - type: mrr_at_3 value: 23.25 - type: mrr_at_5 value: 24.91 - type: ndcg_at_1 value: 17.1 - type: ndcg_at_10 value: 15.615000000000002 - type: ndcg_at_100 value: 24.667 - type: ndcg_at_1000 value: 31.467 - type: ndcg_at_3 value: 14.035 - type: ndcg_at_5 value: 12.443 - type: precision_at_1 value: 17.1 - type: precision_at_10 value: 8.4 - type: precision_at_100 value: 2.149 - type: precision_at_1000 value: 0.378 - type: precision_at_3 value: 13.200000000000001 - type: precision_at_5 value: 11.06 - type: recall_at_1 value: 3.473 - type: recall_at_10 value: 17.087 - type: recall_at_100 value: 43.641999999999996 - type: recall_at_1000 value: 76.7 - type: recall_at_3 value: 8.037999999999998 - type: recall_at_5 value: 11.232000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.07032781899852 - type: cos_sim_spearman value: 81.86668245459153 - type: euclidean_pearson value: 83.75572948495356 - type: euclidean_spearman value: 81.88575221829207 - type: manhattan_pearson value: 83.73171218997966 - type: manhattan_spearman value: 81.85928771458329 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 80.29008828604368 - type: cos_sim_spearman value: 70.7510437896188 - type: euclidean_pearson value: 76.65867322096001 - type: euclidean_spearman value: 70.53984435296805 - type: manhattan_pearson value: 76.6398826461678 - type: manhattan_spearman value: 70.55153706770477 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.55610063096913 - type: cos_sim_spearman value: 84.36676850545378 - type: euclidean_pearson value: 82.81438612985889 - type: euclidean_spearman value: 84.182693686057 - type: manhattan_pearson value: 82.8355239074719 - type: manhattan_spearman value: 84.19280249146543 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 78.94275022740113 - type: cos_sim_spearman value: 74.50851813226338 - type: euclidean_pearson value: 77.30867917552419 - type: euclidean_spearman value: 74.55661368823343 - type: manhattan_pearson value: 77.31883134876524 - type: manhattan_spearman value: 74.58999819014154 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 85.62907185533146 - type: cos_sim_spearman value: 86.40667080261993 - type: euclidean_pearson value: 85.15184748925726 - type: euclidean_spearman value: 86.33853519247509 - type: manhattan_pearson value: 85.21542426870172 - type: manhattan_spearman value: 86.4076178438401 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.42449758804275 - type: cos_sim_spearman value: 84.7411616479609 - type: euclidean_pearson value: 83.56616729612806 - type: euclidean_spearman value: 84.44493050289694 - type: manhattan_pearson value: 83.50906591764574 - type: manhattan_spearman value: 84.39704993090794 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.84843806728331 - type: cos_sim_spearman value: 89.03139214250334 - type: euclidean_pearson value: 89.63615835813032 - type: euclidean_spearman value: 89.33022202130817 - type: manhattan_pearson value: 89.67071925715891 - type: manhattan_spearman value: 89.29339683171531 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 65.65559857216783 - type: cos_sim_spearman value: 65.86805861979079 - type: euclidean_pearson value: 66.69697475461513 - type: euclidean_spearman value: 66.07735691378713 - type: manhattan_pearson value: 66.63427637906918 - type: manhattan_spearman value: 65.95720565040364 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.06435608928308 - type: cos_sim_spearman value: 86.46139340079428 - type: euclidean_pearson value: 86.4874804471064 - type: euclidean_spearman value: 86.19390771731406 - type: manhattan_pearson value: 86.51184704840284 - type: manhattan_spearman value: 86.19094101171963 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.10723925640346 - type: mrr value: 95.62579305226365 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 56.233 - type: map_at_10 value: 64.94 - type: map_at_100 value: 65.508 - type: map_at_1000 value: 65.537 - type: map_at_3 value: 62.121 - type: map_at_5 value: 63.92400000000001 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.352 - type: mrr_at_100 value: 66.751 - type: mrr_at_1000 value: 66.777 - type: mrr_at_3 value: 64.22200000000001 - type: mrr_at_5 value: 65.656 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 69.318 - type: ndcg_at_100 value: 71.822 - type: ndcg_at_1000 value: 72.578 - type: ndcg_at_3 value: 64.532 - type: ndcg_at_5 value: 67.292 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.133 - type: precision_at_100 value: 1.05 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.889 - type: precision_at_5 value: 16.733 - type: recall_at_1 value: 56.233 - type: recall_at_10 value: 81.206 - type: recall_at_100 value: 92.80000000000001 - type: recall_at_1000 value: 98.667 - type: recall_at_3 value: 68.672 - type: recall_at_5 value: 75.378 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.56336633663366 - type: cos_sim_ap value: 86.13024319858586 - type: cos_sim_f1 value: 76.80157946692991 - type: cos_sim_precision value: 75.82846003898635 - type: cos_sim_recall value: 77.8 - type: dot_accuracy value: 99.56336633663366 - type: dot_ap value: 86.13028343072267 - type: dot_f1 value: 76.80157946692991 - type: dot_precision value: 75.82846003898635 - type: dot_recall value: 77.8 - type: euclidean_accuracy value: 99.56336633663366 - type: euclidean_ap value: 86.13029040641543 - type: euclidean_f1 value: 76.80157946692991 - type: euclidean_precision value: 75.82846003898635 - type: euclidean_recall value: 77.8 - type: manhattan_accuracy value: 99.56534653465347 - type: manhattan_ap value: 86.24817068330776 - type: manhattan_f1 value: 77.13580246913581 - type: manhattan_precision value: 76.19512195121952 - type: manhattan_recall value: 78.10000000000001 - type: max_accuracy value: 99.56534653465347 - type: max_ap value: 86.24817068330776 - type: max_f1 value: 77.13580246913581 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.69564559409538 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.23127531581388 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.845357053686975 - type: mrr value: 50.59803656311009 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.02241691876377 - type: cos_sim_spearman value: 29.017719340560923 - type: dot_pearson value: 29.59373129445045 - type: dot_spearman value: 29.616196388331968 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.157 - type: map_at_10 value: 0.9440000000000001 - type: map_at_100 value: 4.61 - type: map_at_1000 value: 11.488 - type: map_at_3 value: 0.396 - type: map_at_5 value: 0.569 - type: mrr_at_1 value: 57.99999999999999 - type: mrr_at_10 value: 71.672 - type: mrr_at_100 value: 71.707 - type: mrr_at_1000 value: 71.707 - type: mrr_at_3 value: 68.333 - type: mrr_at_5 value: 70.533 - type: ndcg_at_1 value: 54.0 - type: ndcg_at_10 value: 45.216 - type: ndcg_at_100 value: 32.623999999999995 - type: ndcg_at_1000 value: 33.006 - type: ndcg_at_3 value: 51.76500000000001 - type: ndcg_at_5 value: 47.888999999999996 - type: precision_at_1 value: 57.99999999999999 - type: precision_at_10 value: 48.0 - type: precision_at_100 value: 32.74 - type: precision_at_1000 value: 14.588000000000001 - type: precision_at_3 value: 55.333 - type: precision_at_5 value: 51.2 - type: recall_at_1 value: 0.157 - type: recall_at_10 value: 1.212 - type: recall_at_100 value: 7.868 - type: recall_at_1000 value: 31.583 - type: recall_at_3 value: 0.443 - type: recall_at_5 value: 0.6779999999999999 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.545 - type: map_at_10 value: 4.6690000000000005 - type: map_at_100 value: 8.982 - type: map_at_1000 value: 10.453999999999999 - type: map_at_3 value: 2.35 - type: map_at_5 value: 3.168 - type: mrr_at_1 value: 18.367 - type: mrr_at_10 value: 28.599999999999998 - type: mrr_at_100 value: 30.287 - type: mrr_at_1000 value: 30.339 - type: mrr_at_3 value: 24.490000000000002 - type: mrr_at_5 value: 27.040999999999997 - type: ndcg_at_1 value: 17.347 - type: ndcg_at_10 value: 13.868 - type: ndcg_at_100 value: 25.499 - type: ndcg_at_1000 value: 37.922 - type: ndcg_at_3 value: 13.746 - type: ndcg_at_5 value: 13.141 - type: precision_at_1 value: 18.367 - type: precision_at_10 value: 12.653 - type: precision_at_100 value: 5.776 - type: precision_at_1000 value: 1.3860000000000001 - type: precision_at_3 value: 13.605 - type: precision_at_5 value: 13.061 - type: recall_at_1 value: 1.545 - type: recall_at_10 value: 9.305 - type: recall_at_100 value: 38.084 - type: recall_at_1000 value: 75.897 - type: recall_at_3 value: 2.903 - type: recall_at_5 value: 4.8919999999999995 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.8454 - type: ap value: 14.744783758537974 - type: f1 value: 54.86055534008869 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 58.71250707413695 - type: f1 value: 58.76581794782603 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.314744135178934 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.13899982118377 - type: cos_sim_ap value: 68.03329474978145 - type: cos_sim_f1 value: 63.31192005710206 - type: cos_sim_precision value: 57.6473136915078 - type: cos_sim_recall value: 70.21108179419525 - type: dot_accuracy value: 84.13899982118377 - type: dot_ap value: 68.03324775052695 - type: dot_f1 value: 63.31192005710206 - type: dot_precision value: 57.6473136915078 - type: dot_recall value: 70.21108179419525 - type: euclidean_accuracy value: 84.13899982118377 - type: euclidean_ap value: 68.03331114508686 - type: euclidean_f1 value: 63.31192005710206 - type: euclidean_precision value: 57.6473136915078 - type: euclidean_recall value: 70.21108179419525 - type: manhattan_accuracy value: 84.12111819753234 - type: manhattan_ap value: 67.97378509663328 - type: manhattan_f1 value: 63.38468945594607 - type: manhattan_precision value: 58.2779991146525 - type: manhattan_recall value: 69.47229551451187 - type: max_accuracy value: 84.13899982118377 - type: max_ap value: 68.03331114508686 - type: max_f1 value: 63.38468945594607 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.68774013272791 - type: cos_sim_ap value: 83.51733662214374 - type: cos_sim_f1 value: 75.82190771045259 - type: cos_sim_precision value: 72.72341628959276 - type: cos_sim_recall value: 79.19618109023713 - type: dot_accuracy value: 87.68774013272791 - type: dot_ap value: 83.5173527754126 - type: dot_f1 value: 75.82190771045259 - type: dot_precision value: 72.72341628959276 - type: dot_recall value: 79.19618109023713 - type: euclidean_accuracy value: 87.68774013272791 - type: euclidean_ap value: 83.51734651146224 - type: euclidean_f1 value: 75.82190771045259 - type: euclidean_precision value: 72.72341628959276 - type: euclidean_recall value: 79.19618109023713 - type: manhattan_accuracy value: 87.67221640082276 - type: manhattan_ap value: 83.51179463759505 - type: manhattan_f1 value: 75.76243980738361 - type: manhattan_precision value: 71.99112590127565 - type: manhattan_recall value: 79.95072374499537 - type: max_accuracy value: 87.68774013272791 - type: max_ap value: 83.5173527754126 - type: max_f1 value: 75.82190771045259 ---
maije/llama2-qlora-finetunined-french
maije
2023-07-27T09:02:46Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-27T09:02:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
RAPHCVR/llama2-qlora-finetunined-french
RAPHCVR
2023-07-27T08:58:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T08:58:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
ketong3906/my_awesome_opus_books_model
ketong3906
2023-07-27T08:53:26Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-27T08:41:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train[:1000] args: en-fr metrics: - name: Bleu type: bleu value: 6.5252 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6364 - Bleu: 6.5252 - Gen Len: 17.395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 50 | 1.6402 | 6.3992 | 17.405 | | No log | 2.0 | 100 | 1.6364 | 6.5252 | 17.395 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Samalabama66/a2c-PandaReachDense-v2
Samalabama66
2023-07-27T08:52:24Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T09:41:51Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.58 +/- 0.16 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lixsh6/XLM-0B6-embedding
lixsh6
2023-07-27T08:43:45Z
0
1
null
[ "mteb", "model-index", "region:us" ]
null
2023-07-26T06:38:39Z
--- tags: - mteb model-index: - name: xlm_0b6_mixlang_newstep3 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 68.61194029850746 - type: ap value: 30.653298301473487 - type: f1 value: 62.25241612666261 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.38145000000002 - type: ap value: 90.31356902458496 - type: f1 value: 93.37421180090173 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 50.64400000000001 - type: f1 value: 48.975535848642295 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 18.777 - type: map_at_10 value: 32.274 - type: map_at_100 value: 33.652 - type: map_at_1000 value: 33.669 - type: map_at_3 value: 27.276 - type: map_at_5 value: 29.758000000000003 - type: mrr_at_1 value: 19.63 - type: mrr_at_10 value: 32.573 - type: mrr_at_100 value: 33.951 - type: mrr_at_1000 value: 33.967999999999996 - type: mrr_at_3 value: 27.608 - type: mrr_at_5 value: 30.047 - type: ndcg_at_1 value: 18.777 - type: ndcg_at_10 value: 40.774 - type: ndcg_at_100 value: 46.931 - type: ndcg_at_1000 value: 47.359 - type: ndcg_at_3 value: 30.213 - type: ndcg_at_5 value: 34.705999999999996 - type: precision_at_1 value: 18.777 - type: precision_at_10 value: 6.842 - type: precision_at_100 value: 0.959 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 12.921 - type: precision_at_5 value: 9.943 - type: recall_at_1 value: 18.777 - type: recall_at_10 value: 68.42099999999999 - type: recall_at_100 value: 95.946 - type: recall_at_1000 value: 99.289 - type: recall_at_3 value: 38.762 - type: recall_at_5 value: 49.716 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.53512209912995 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 38.432491784931464 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 61.11465519830743 - type: mrr value: 74.41509475442992 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.1318467537697 - type: cos_sim_spearman value: 80.25062374562512 - type: euclidean_pearson value: 81.08228995090938 - type: euclidean_spearman value: 80.25062374562512 - type: manhattan_pearson value: 80.69075497902021 - type: manhattan_spearman value: 79.63916402996817 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 78.50324675324674 - type: f1 value: 77.34014983227601 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.3047565513338 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.114800929695775 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.757 - type: map_at_10 value: 43.443 - type: map_at_100 value: 44.972 - type: map_at_1000 value: 45.092999999999996 - type: map_at_3 value: 39.566 - type: map_at_5 value: 41.628 - type: mrr_at_1 value: 39.485 - type: mrr_at_10 value: 49.597 - type: mrr_at_100 value: 50.275999999999996 - type: mrr_at_1000 value: 50.312999999999995 - type: mrr_at_3 value: 46.876 - type: mrr_at_5 value: 48.35 - type: ndcg_at_1 value: 39.485 - type: ndcg_at_10 value: 50.11600000000001 - type: ndcg_at_100 value: 55.469 - type: ndcg_at_1000 value: 57.253 - type: ndcg_at_3 value: 44.695 - type: ndcg_at_5 value: 46.963 - type: precision_at_1 value: 39.485 - type: precision_at_10 value: 9.8 - type: precision_at_100 value: 1.5789999999999997 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_3 value: 21.793000000000003 - type: precision_at_5 value: 15.651000000000002 - type: recall_at_1 value: 31.757 - type: recall_at_10 value: 62.861 - type: recall_at_100 value: 85.09 - type: recall_at_1000 value: 96.54 - type: recall_at_3 value: 46.981 - type: recall_at_5 value: 53.488 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.616 - type: map_at_10 value: 33.999 - type: map_at_100 value: 35.299 - type: map_at_1000 value: 35.44 - type: map_at_3 value: 31.283 - type: map_at_5 value: 32.71 - type: mrr_at_1 value: 30.701 - type: mrr_at_10 value: 39.115 - type: mrr_at_100 value: 39.912 - type: mrr_at_1000 value: 39.963 - type: mrr_at_3 value: 36.975 - type: mrr_at_5 value: 38.118 - type: ndcg_at_1 value: 30.701 - type: ndcg_at_10 value: 39.454 - type: ndcg_at_100 value: 44.393 - type: ndcg_at_1000 value: 46.822 - type: ndcg_at_3 value: 35.317 - type: ndcg_at_5 value: 37.066 - type: precision_at_1 value: 30.701 - type: precision_at_10 value: 7.661999999999999 - type: precision_at_100 value: 1.308 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 17.346 - type: precision_at_5 value: 12.203999999999999 - type: recall_at_1 value: 24.616 - type: recall_at_10 value: 49.681 - type: recall_at_100 value: 70.729 - type: recall_at_1000 value: 86.361 - type: recall_at_3 value: 37.677 - type: recall_at_5 value: 42.713 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 36.11 - type: map_at_10 value: 47.619 - type: map_at_100 value: 48.758 - type: map_at_1000 value: 48.818 - type: map_at_3 value: 44.354 - type: map_at_5 value: 46.192 - type: mrr_at_1 value: 41.379 - type: mrr_at_10 value: 51.075 - type: mrr_at_100 value: 51.807 - type: mrr_at_1000 value: 51.842 - type: mrr_at_3 value: 48.464 - type: mrr_at_5 value: 49.944 - type: ndcg_at_1 value: 41.379 - type: ndcg_at_10 value: 53.510999999999996 - type: ndcg_at_100 value: 57.981 - type: ndcg_at_1000 value: 59.245999999999995 - type: ndcg_at_3 value: 47.915 - type: ndcg_at_5 value: 50.586 - type: precision_at_1 value: 41.379 - type: precision_at_10 value: 8.770999999999999 - type: precision_at_100 value: 1.193 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 21.587999999999997 - type: precision_at_5 value: 14.934 - type: recall_at_1 value: 36.11 - type: recall_at_10 value: 67.539 - type: recall_at_100 value: 86.803 - type: recall_at_1000 value: 95.889 - type: recall_at_3 value: 52.312999999999995 - type: recall_at_5 value: 58.967999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.831 - type: map_at_10 value: 24.314 - type: map_at_100 value: 25.374999999999996 - type: map_at_1000 value: 25.474000000000004 - type: map_at_3 value: 21.884 - type: map_at_5 value: 23.203 - type: mrr_at_1 value: 18.079 - type: mrr_at_10 value: 25.741000000000003 - type: mrr_at_100 value: 26.728 - type: mrr_at_1000 value: 26.808 - type: mrr_at_3 value: 23.39 - type: mrr_at_5 value: 24.684 - type: ndcg_at_1 value: 18.079 - type: ndcg_at_10 value: 28.738000000000003 - type: ndcg_at_100 value: 34.408 - type: ndcg_at_1000 value: 37.129 - type: ndcg_at_3 value: 23.921999999999997 - type: ndcg_at_5 value: 26.151000000000003 - type: precision_at_1 value: 18.079 - type: precision_at_10 value: 4.768 - type: precision_at_100 value: 0.8089999999999999 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 10.508000000000001 - type: precision_at_5 value: 7.661 - type: recall_at_1 value: 16.831 - type: recall_at_10 value: 40.967 - type: recall_at_100 value: 68.059 - type: recall_at_1000 value: 88.836 - type: recall_at_3 value: 27.927999999999997 - type: recall_at_5 value: 33.201 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.937000000000001 - type: map_at_10 value: 15.146 - type: map_at_100 value: 16.29 - type: map_at_1000 value: 16.441 - type: map_at_3 value: 13.014999999999999 - type: map_at_5 value: 14.088999999999999 - type: mrr_at_1 value: 11.193999999999999 - type: mrr_at_10 value: 18.199 - type: mrr_at_100 value: 19.278000000000002 - type: mrr_at_1000 value: 19.378 - type: mrr_at_3 value: 15.878999999999998 - type: mrr_at_5 value: 17.141000000000002 - type: ndcg_at_1 value: 11.193999999999999 - type: ndcg_at_10 value: 19.286 - type: ndcg_at_100 value: 25.291999999999998 - type: ndcg_at_1000 value: 29.012999999999998 - type: ndcg_at_3 value: 15.129999999999999 - type: ndcg_at_5 value: 16.926 - type: precision_at_1 value: 11.193999999999999 - type: precision_at_10 value: 3.918 - type: precision_at_100 value: 0.803 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 7.587000000000001 - type: precision_at_5 value: 5.8709999999999996 - type: recall_at_1 value: 8.937000000000001 - type: recall_at_10 value: 28.89 - type: recall_at_100 value: 56.12200000000001 - type: recall_at_1000 value: 82.749 - type: recall_at_3 value: 17.748 - type: recall_at_5 value: 22.042 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.559 - type: map_at_10 value: 28.77 - type: map_at_100 value: 30.144 - type: map_at_1000 value: 30.270999999999997 - type: map_at_3 value: 25.456 - type: map_at_5 value: 27.351999999999997 - type: mrr_at_1 value: 24.062 - type: mrr_at_10 value: 33.409 - type: mrr_at_100 value: 34.369 - type: mrr_at_1000 value: 34.434 - type: mrr_at_3 value: 30.574 - type: mrr_at_5 value: 32.287 - type: ndcg_at_1 value: 24.062 - type: ndcg_at_10 value: 34.537 - type: ndcg_at_100 value: 40.542 - type: ndcg_at_1000 value: 43.208999999999996 - type: ndcg_at_3 value: 29.032000000000004 - type: ndcg_at_5 value: 31.838 - type: precision_at_1 value: 24.062 - type: precision_at_10 value: 6.814000000000001 - type: precision_at_100 value: 1.167 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 14.244000000000002 - type: precision_at_5 value: 10.837 - type: recall_at_1 value: 19.559 - type: recall_at_10 value: 47.175 - type: recall_at_100 value: 73.11 - type: recall_at_1000 value: 91.144 - type: recall_at_3 value: 31.895 - type: recall_at_5 value: 38.978 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.828 - type: map_at_10 value: 27.664 - type: map_at_100 value: 29.099999999999998 - type: map_at_1000 value: 29.220000000000002 - type: map_at_3 value: 24.779 - type: map_at_5 value: 26.227 - type: mrr_at_1 value: 23.744 - type: mrr_at_10 value: 32.11 - type: mrr_at_100 value: 33.152 - type: mrr_at_1000 value: 33.215 - type: mrr_at_3 value: 29.604000000000003 - type: mrr_at_5 value: 30.894 - type: ndcg_at_1 value: 23.744 - type: ndcg_at_10 value: 33.047 - type: ndcg_at_100 value: 39.354 - type: ndcg_at_1000 value: 41.967999999999996 - type: ndcg_at_3 value: 28.133999999999997 - type: ndcg_at_5 value: 30.097 - type: precision_at_1 value: 23.744 - type: precision_at_10 value: 6.381 - type: precision_at_100 value: 1.135 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 13.699 - type: precision_at_5 value: 9.932 - type: recall_at_1 value: 18.828 - type: recall_at_10 value: 44.777 - type: recall_at_100 value: 72.02499999999999 - type: recall_at_1000 value: 89.883 - type: recall_at_3 value: 30.881999999999998 - type: recall_at_5 value: 36.15 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.89466666666667 - type: map_at_10 value: 28.13191666666667 - type: map_at_100 value: 29.374083333333335 - type: map_at_1000 value: 29.501999999999995 - type: map_at_3 value: 25.450666666666667 - type: map_at_5 value: 26.862083333333338 - type: mrr_at_1 value: 23.87775 - type: mrr_at_10 value: 31.796833333333336 - type: mrr_at_100 value: 32.70425 - type: mrr_at_1000 value: 32.774 - type: mrr_at_3 value: 29.411000000000005 - type: mrr_at_5 value: 30.71525 - type: ndcg_at_1 value: 23.87775 - type: ndcg_at_10 value: 33.14725 - type: ndcg_at_100 value: 38.63300000000001 - type: ndcg_at_1000 value: 41.29166666666668 - type: ndcg_at_3 value: 28.504250000000003 - type: ndcg_at_5 value: 30.546250000000004 - type: precision_at_1 value: 23.87775 - type: precision_at_10 value: 6.143166666666667 - type: precision_at_100 value: 1.0658333333333332 - type: precision_at_1000 value: 0.1495 - type: precision_at_3 value: 13.468083333333333 - type: precision_at_5 value: 9.763416666666664 - type: recall_at_1 value: 19.89466666666667 - type: recall_at_10 value: 44.33358333333333 - type: recall_at_100 value: 68.79966666666667 - type: recall_at_1000 value: 87.5325 - type: recall_at_3 value: 31.34816666666667 - type: recall_at_5 value: 36.612833333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 11.779 - type: map_at_10 value: 16.581000000000003 - type: map_at_100 value: 17.374000000000002 - type: map_at_1000 value: 17.48 - type: map_at_3 value: 14.777000000000001 - type: map_at_5 value: 15.654000000000002 - type: mrr_at_1 value: 13.497 - type: mrr_at_10 value: 18.192 - type: mrr_at_100 value: 18.929000000000002 - type: mrr_at_1000 value: 19.014 - type: mrr_at_3 value: 16.488 - type: mrr_at_5 value: 17.285 - type: ndcg_at_1 value: 13.497 - type: ndcg_at_10 value: 19.676 - type: ndcg_at_100 value: 24.081 - type: ndcg_at_1000 value: 27.012000000000004 - type: ndcg_at_3 value: 16.179 - type: ndcg_at_5 value: 17.573 - type: precision_at_1 value: 13.497 - type: precision_at_10 value: 3.512 - type: precision_at_100 value: 0.632 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 7.362 - type: precision_at_5 value: 5.367999999999999 - type: recall_at_1 value: 11.779 - type: recall_at_10 value: 27.613 - type: recall_at_100 value: 48.829 - type: recall_at_1000 value: 71.025 - type: recall_at_3 value: 17.815 - type: recall_at_5 value: 21.279999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 11.181000000000001 - type: map_at_10 value: 16.724 - type: map_at_100 value: 17.806 - type: map_at_1000 value: 17.946 - type: map_at_3 value: 14.718 - type: map_at_5 value: 15.848 - type: mrr_at_1 value: 13.971 - type: mrr_at_10 value: 19.716 - type: mrr_at_100 value: 20.71 - type: mrr_at_1000 value: 20.804000000000002 - type: mrr_at_3 value: 17.727999999999998 - type: mrr_at_5 value: 18.862000000000002 - type: ndcg_at_1 value: 13.971 - type: ndcg_at_10 value: 20.531 - type: ndcg_at_100 value: 25.901000000000003 - type: ndcg_at_1000 value: 29.317999999999998 - type: ndcg_at_3 value: 16.828000000000003 - type: ndcg_at_5 value: 18.576 - type: precision_at_1 value: 13.971 - type: precision_at_10 value: 4.04 - type: precision_at_100 value: 0.803 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 8.305 - type: precision_at_5 value: 6.29 - type: recall_at_1 value: 11.181000000000001 - type: recall_at_10 value: 29.042 - type: recall_at_100 value: 53.342 - type: recall_at_1000 value: 78.117 - type: recall_at_3 value: 18.804000000000002 - type: recall_at_5 value: 23.22 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.046 - type: map_at_10 value: 30.702 - type: map_at_100 value: 31.961000000000002 - type: map_at_1000 value: 32.077 - type: map_at_3 value: 28.083000000000002 - type: map_at_5 value: 29.391000000000002 - type: mrr_at_1 value: 27.239 - type: mrr_at_10 value: 34.472 - type: mrr_at_100 value: 35.485 - type: mrr_at_1000 value: 35.558 - type: mrr_at_3 value: 32.245000000000005 - type: mrr_at_5 value: 33.42 - type: ndcg_at_1 value: 27.239 - type: ndcg_at_10 value: 35.453 - type: ndcg_at_100 value: 41.347 - type: ndcg_at_1000 value: 43.986 - type: ndcg_at_3 value: 30.768 - type: ndcg_at_5 value: 32.694 - type: precision_at_1 value: 27.239 - type: precision_at_10 value: 6.138 - type: precision_at_100 value: 1.014 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 13.775 - type: precision_at_5 value: 9.776 - type: recall_at_1 value: 23.046 - type: recall_at_10 value: 46.178999999999995 - type: recall_at_100 value: 72.366 - type: recall_at_1000 value: 90.713 - type: recall_at_3 value: 33.214 - type: recall_at_5 value: 38.186 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.006999999999998 - type: map_at_10 value: 30.791 - type: map_at_100 value: 32.495000000000005 - type: map_at_1000 value: 32.731 - type: map_at_3 value: 27.738000000000003 - type: map_at_5 value: 29.115000000000002 - type: mrr_at_1 value: 27.47 - type: mrr_at_10 value: 36.355 - type: mrr_at_100 value: 37.207 - type: mrr_at_1000 value: 37.262 - type: mrr_at_3 value: 33.267 - type: mrr_at_5 value: 34.918 - type: ndcg_at_1 value: 27.47 - type: ndcg_at_10 value: 37.314 - type: ndcg_at_100 value: 43.228 - type: ndcg_at_1000 value: 45.789 - type: ndcg_at_3 value: 32.178000000000004 - type: ndcg_at_5 value: 34.082 - type: precision_at_1 value: 27.47 - type: precision_at_10 value: 7.5889999999999995 - type: precision_at_100 value: 1.587 - type: precision_at_1000 value: 0.245 - type: precision_at_3 value: 15.613 - type: precision_at_5 value: 11.501999999999999 - type: recall_at_1 value: 22.006999999999998 - type: recall_at_10 value: 49.811 - type: recall_at_100 value: 76.175 - type: recall_at_1000 value: 92.432 - type: recall_at_3 value: 34.445 - type: recall_at_5 value: 39.834 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.085 - type: map_at_10 value: 21.83 - type: map_at_100 value: 22.915 - type: map_at_1000 value: 23.033 - type: map_at_3 value: 19.755 - type: map_at_5 value: 20.936 - type: mrr_at_1 value: 15.712000000000002 - type: mrr_at_10 value: 23.581 - type: mrr_at_100 value: 24.598 - type: mrr_at_1000 value: 24.697 - type: mrr_at_3 value: 21.442 - type: mrr_at_5 value: 22.68 - type: ndcg_at_1 value: 15.712000000000002 - type: ndcg_at_10 value: 26.104 - type: ndcg_at_100 value: 31.6 - type: ndcg_at_1000 value: 34.755 - type: ndcg_at_3 value: 21.953 - type: ndcg_at_5 value: 24.003 - type: precision_at_1 value: 15.712000000000002 - type: precision_at_10 value: 4.324999999999999 - type: precision_at_100 value: 0.76 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 9.797 - type: precision_at_5 value: 7.135 - type: recall_at_1 value: 14.085 - type: recall_at_10 value: 37.468 - type: recall_at_100 value: 62.946000000000005 - type: recall_at_1000 value: 86.701 - type: recall_at_3 value: 26.476 - type: recall_at_5 value: 31.294 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 8.305 - type: map_at_10 value: 14.971 - type: map_at_100 value: 16.634999999999998 - type: map_at_1000 value: 16.842 - type: map_at_3 value: 12.281 - type: map_at_5 value: 13.608 - type: mrr_at_1 value: 18.958 - type: mrr_at_10 value: 29.104000000000003 - type: mrr_at_100 value: 30.198000000000004 - type: mrr_at_1000 value: 30.264999999999997 - type: mrr_at_3 value: 25.548 - type: mrr_at_5 value: 27.805999999999997 - type: ndcg_at_1 value: 18.958 - type: ndcg_at_10 value: 21.84 - type: ndcg_at_100 value: 28.871999999999996 - type: ndcg_at_1000 value: 32.868 - type: ndcg_at_3 value: 16.991 - type: ndcg_at_5 value: 18.859 - type: precision_at_1 value: 18.958 - type: precision_at_10 value: 7.002999999999999 - type: precision_at_100 value: 1.4409999999999998 - type: precision_at_1000 value: 0.218 - type: precision_at_3 value: 12.681999999999999 - type: precision_at_5 value: 10.176 - type: recall_at_1 value: 8.305 - type: recall_at_10 value: 27.492 - type: recall_at_100 value: 52.053000000000004 - type: recall_at_1000 value: 74.52600000000001 - type: recall_at_3 value: 15.931999999999999 - type: recall_at_5 value: 20.71 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 7.928 - type: map_at_10 value: 17.128 - type: map_at_100 value: 23.657 - type: map_at_1000 value: 25.28 - type: map_at_3 value: 12.623999999999999 - type: map_at_5 value: 14.536999999999999 - type: mrr_at_1 value: 60.25 - type: mrr_at_10 value: 70.391 - type: mrr_at_100 value: 70.87 - type: mrr_at_1000 value: 70.879 - type: mrr_at_3 value: 69.125 - type: mrr_at_5 value: 69.85 - type: ndcg_at_1 value: 49.75 - type: ndcg_at_10 value: 37.473 - type: ndcg_at_100 value: 41.569 - type: ndcg_at_1000 value: 49.318 - type: ndcg_at_3 value: 42.791000000000004 - type: ndcg_at_5 value: 39.568999999999996 - type: precision_at_1 value: 60.25 - type: precision_at_10 value: 29.4 - type: precision_at_100 value: 9.468 - type: precision_at_1000 value: 2.077 - type: precision_at_3 value: 46.417 - type: precision_at_5 value: 37.95 - type: recall_at_1 value: 7.928 - type: recall_at_10 value: 22.603 - type: recall_at_100 value: 47.193000000000005 - type: recall_at_1000 value: 71.346 - type: recall_at_3 value: 14.472 - type: recall_at_5 value: 17.485999999999997 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.37 - type: f1 value: 40.27549527082307 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 40.849999999999994 - type: map_at_10 value: 54.54 - type: map_at_100 value: 55.143 - type: map_at_1000 value: 55.16799999999999 - type: map_at_3 value: 51.318 - type: map_at_5 value: 53.403999999999996 - type: mrr_at_1 value: 43.984 - type: mrr_at_10 value: 58.07600000000001 - type: mrr_at_100 value: 58.605 - type: mrr_at_1000 value: 58.620000000000005 - type: mrr_at_3 value: 54.918 - type: mrr_at_5 value: 56.974999999999994 - type: ndcg_at_1 value: 43.984 - type: ndcg_at_10 value: 61.768 - type: ndcg_at_100 value: 64.42099999999999 - type: ndcg_at_1000 value: 64.97800000000001 - type: ndcg_at_3 value: 55.533 - type: ndcg_at_5 value: 59.14 - type: precision_at_1 value: 43.984 - type: precision_at_10 value: 8.822000000000001 - type: precision_at_100 value: 1.0250000000000001 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 23.172 - type: precision_at_5 value: 15.857 - type: recall_at_1 value: 40.849999999999994 - type: recall_at_10 value: 80.663 - type: recall_at_100 value: 92.29899999999999 - type: recall_at_1000 value: 96.233 - type: recall_at_3 value: 64.031 - type: recall_at_5 value: 72.764 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 18.852 - type: map_at_10 value: 31.392999999999997 - type: map_at_100 value: 33.324999999999996 - type: map_at_1000 value: 33.5 - type: map_at_3 value: 27.249000000000002 - type: map_at_5 value: 29.401 - type: mrr_at_1 value: 38.272 - type: mrr_at_10 value: 47.076 - type: mrr_at_100 value: 47.902 - type: mrr_at_1000 value: 47.942 - type: mrr_at_3 value: 44.624 - type: mrr_at_5 value: 46.098 - type: ndcg_at_1 value: 38.272 - type: ndcg_at_10 value: 39.214 - type: ndcg_at_100 value: 46.341 - type: ndcg_at_1000 value: 49.282 - type: ndcg_at_3 value: 35.757 - type: ndcg_at_5 value: 36.669000000000004 - type: precision_at_1 value: 38.272 - type: precision_at_10 value: 11.219 - type: precision_at_100 value: 1.8599999999999999 - type: precision_at_1000 value: 0.23800000000000002 - type: precision_at_3 value: 24.331 - type: precision_at_5 value: 17.87 - type: recall_at_1 value: 18.852 - type: recall_at_10 value: 46.078 - type: recall_at_100 value: 72.898 - type: recall_at_1000 value: 90.644 - type: recall_at_3 value: 32.221 - type: recall_at_5 value: 37.894 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.714 - type: map_at_10 value: 46.743 - type: map_at_100 value: 47.64 - type: map_at_1000 value: 47.717999999999996 - type: map_at_3 value: 43.872 - type: map_at_5 value: 45.629 - type: mrr_at_1 value: 65.429 - type: mrr_at_10 value: 72.507 - type: mrr_at_100 value: 72.80799999999999 - type: mrr_at_1000 value: 72.82600000000001 - type: mrr_at_3 value: 70.98100000000001 - type: mrr_at_5 value: 71.967 - type: ndcg_at_1 value: 65.429 - type: ndcg_at_10 value: 55.84 - type: ndcg_at_100 value: 59.183 - type: ndcg_at_1000 value: 60.81100000000001 - type: ndcg_at_3 value: 51.327 - type: ndcg_at_5 value: 53.803 - type: precision_at_1 value: 65.429 - type: precision_at_10 value: 11.620999999999999 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 32.077 - type: precision_at_5 value: 21.199 - type: recall_at_1 value: 32.714 - type: recall_at_10 value: 58.103 - type: recall_at_100 value: 71.269 - type: recall_at_1000 value: 82.073 - type: recall_at_3 value: 48.116 - type: recall_at_5 value: 52.998 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.5384 - type: ap value: 84.07244605493386 - type: f1 value: 88.51724847689141 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 17.169999999999998 - type: map_at_10 value: 28.601 - type: map_at_100 value: 29.869 - type: map_at_1000 value: 29.929 - type: map_at_3 value: 24.69 - type: map_at_5 value: 26.929 - type: mrr_at_1 value: 17.622 - type: mrr_at_10 value: 29.079 - type: mrr_at_100 value: 30.301000000000002 - type: mrr_at_1000 value: 30.354 - type: mrr_at_3 value: 25.232 - type: mrr_at_5 value: 27.458 - type: ndcg_at_1 value: 17.622 - type: ndcg_at_10 value: 35.357 - type: ndcg_at_100 value: 41.623 - type: ndcg_at_1000 value: 43.119 - type: ndcg_at_3 value: 27.344 - type: ndcg_at_5 value: 31.367 - type: precision_at_1 value: 17.622 - type: precision_at_10 value: 5.891 - type: precision_at_100 value: 0.9039999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 11.91 - type: precision_at_5 value: 9.189 - type: recall_at_1 value: 17.169999999999998 - type: recall_at_10 value: 56.369 - type: recall_at_100 value: 85.649 - type: recall_at_1000 value: 97.096 - type: recall_at_3 value: 34.499 - type: recall_at_5 value: 44.194 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.4810761513908 - type: f1 value: 90.43983880684412 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 59.824441404468764 - type: f1 value: 41.140870725364245 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.23940820443846 - type: f1 value: 63.866444501622254 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.98251513113652 - type: f1 value: 72.26944666028224 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.7972586123168 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.77986542120405 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 28.827020967264875 - type: mrr value: 29.491954633310463 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.099 - type: map_at_10 value: 11.205 - type: map_at_100 value: 14.533999999999999 - type: map_at_1000 value: 16.012999999999998 - type: map_at_3 value: 8.074 - type: map_at_5 value: 9.515 - type: mrr_at_1 value: 43.034 - type: mrr_at_10 value: 50.903 - type: mrr_at_100 value: 51.62 - type: mrr_at_1000 value: 51.661 - type: mrr_at_3 value: 48.71 - type: mrr_at_5 value: 49.886 - type: ndcg_at_1 value: 39.938 - type: ndcg_at_10 value: 31.572 - type: ndcg_at_100 value: 29.652 - type: ndcg_at_1000 value: 38.971000000000004 - type: ndcg_at_3 value: 36.758 - type: ndcg_at_5 value: 34.481 - type: precision_at_1 value: 42.105 - type: precision_at_10 value: 24.056 - type: precision_at_100 value: 7.666 - type: precision_at_1000 value: 2.11 - type: precision_at_3 value: 35.088 - type: precision_at_5 value: 30.402 - type: recall_at_1 value: 5.099 - type: recall_at_10 value: 14.780999999999999 - type: recall_at_100 value: 31.653 - type: recall_at_1000 value: 63.724000000000004 - type: recall_at_3 value: 8.933 - type: recall_at_5 value: 11.413 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 25.232 - type: map_at_10 value: 39.704 - type: map_at_100 value: 40.93 - type: map_at_1000 value: 40.963 - type: map_at_3 value: 34.882999999999996 - type: map_at_5 value: 37.597 - type: mrr_at_1 value: 28.853 - type: mrr_at_10 value: 42.218 - type: mrr_at_100 value: 43.179 - type: mrr_at_1000 value: 43.202 - type: mrr_at_3 value: 38.157000000000004 - type: mrr_at_5 value: 40.483000000000004 - type: ndcg_at_1 value: 28.823999999999998 - type: ndcg_at_10 value: 47.729 - type: ndcg_at_100 value: 52.898999999999994 - type: ndcg_at_1000 value: 53.686 - type: ndcg_at_3 value: 38.548 - type: ndcg_at_5 value: 43.119 - type: precision_at_1 value: 28.823999999999998 - type: precision_at_10 value: 8.34 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 17.922 - type: precision_at_5 value: 13.331000000000001 - type: recall_at_1 value: 25.232 - type: recall_at_10 value: 69.95 - type: recall_at_100 value: 92.333 - type: recall_at_1000 value: 98.218 - type: recall_at_3 value: 45.946999999999996 - type: recall_at_5 value: 56.598000000000006 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.083 - type: map_at_10 value: 84.16 - type: map_at_100 value: 84.807 - type: map_at_1000 value: 84.822 - type: map_at_3 value: 81.181 - type: map_at_5 value: 83.094 - type: mrr_at_1 value: 80.83 - type: mrr_at_10 value: 87.173 - type: mrr_at_100 value: 87.28399999999999 - type: mrr_at_1000 value: 87.285 - type: mrr_at_3 value: 86.21 - type: mrr_at_5 value: 86.886 - type: ndcg_at_1 value: 80.85 - type: ndcg_at_10 value: 87.96199999999999 - type: ndcg_at_100 value: 89.225 - type: ndcg_at_1000 value: 89.32900000000001 - type: ndcg_at_3 value: 85.101 - type: ndcg_at_5 value: 86.74 - type: precision_at_1 value: 80.85 - type: precision_at_10 value: 13.378 - type: precision_at_100 value: 1.5310000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.269999999999996 - type: precision_at_5 value: 24.568 - type: recall_at_1 value: 70.083 - type: recall_at_10 value: 95.194 - type: recall_at_100 value: 99.51100000000001 - type: recall_at_1000 value: 99.991 - type: recall_at_3 value: 87.027 - type: recall_at_5 value: 91.604 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 49.23995527989351 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 58.81838285815132 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.463 - type: map_at_10 value: 11.387 - type: map_at_100 value: 13.621 - type: map_at_1000 value: 13.982 - type: map_at_3 value: 8.022 - type: map_at_5 value: 9.464 - type: mrr_at_1 value: 22.0 - type: mrr_at_10 value: 32.902 - type: mrr_at_100 value: 34.036 - type: mrr_at_1000 value: 34.093 - type: mrr_at_3 value: 29.317 - type: mrr_at_5 value: 31.141999999999996 - type: ndcg_at_1 value: 22.0 - type: ndcg_at_10 value: 19.483 - type: ndcg_at_100 value: 28.118 - type: ndcg_at_1000 value: 34.355999999999995 - type: ndcg_at_3 value: 18.032999999999998 - type: ndcg_at_5 value: 15.613 - type: precision_at_1 value: 22.0 - type: precision_at_10 value: 10.35 - type: precision_at_100 value: 2.282 - type: precision_at_1000 value: 0.378 - type: precision_at_3 value: 16.967 - type: precision_at_5 value: 13.719999999999999 - type: recall_at_1 value: 4.463 - type: recall_at_10 value: 20.963 - type: recall_at_100 value: 46.322 - type: recall_at_1000 value: 76.713 - type: recall_at_3 value: 10.308 - type: recall_at_5 value: 13.888 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.84563850617418 - type: cos_sim_spearman value: 79.68400149970968 - type: euclidean_pearson value: 82.75837054306935 - type: euclidean_spearman value: 79.6840247099308 - type: manhattan_pearson value: 82.73540970661433 - type: manhattan_spearman value: 79.66844192381396 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 77.81430060207765 - type: cos_sim_spearman value: 69.94012785669503 - type: euclidean_pearson value: 74.59541033717807 - type: euclidean_spearman value: 69.94010426360558 - type: manhattan_pearson value: 74.56400760328428 - type: manhattan_spearman value: 69.92806341709132 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 74.81511131302516 - type: cos_sim_spearman value: 79.62625737683277 - type: euclidean_pearson value: 77.45706601071352 - type: euclidean_spearman value: 79.62625730605384 - type: manhattan_pearson value: 77.3334919461798 - type: manhattan_spearman value: 79.46650568750321 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 73.43273002333167 - type: cos_sim_spearman value: 71.34169412319034 - type: euclidean_pearson value: 73.58628382548541 - type: euclidean_spearman value: 71.3417253984979 - type: manhattan_pearson value: 73.528660458135 - type: manhattan_spearman value: 71.29492315680972 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 79.7528032458892 - type: cos_sim_spearman value: 82.80881645241301 - type: euclidean_pearson value: 81.49065539033161 - type: euclidean_spearman value: 82.80881911292607 - type: manhattan_pearson value: 81.48964007971324 - type: manhattan_spearman value: 82.82325035979333 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 77.46090733936299 - type: cos_sim_spearman value: 82.65342321085096 - type: euclidean_pearson value: 81.6531230438912 - type: euclidean_spearman value: 82.65342321085096 - type: manhattan_pearson value: 81.6092667285348 - type: manhattan_spearman value: 82.63811888178375 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.36545028139912 - type: cos_sim_spearman value: 88.8877047117119 - type: euclidean_pearson value: 89.26155338214109 - type: euclidean_spearman value: 88.8877047117119 - type: manhattan_pearson value: 89.18322803188939 - type: manhattan_spearman value: 88.74063459127103 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.11778566972097 - type: cos_sim_spearman value: 68.4773054255333 - type: euclidean_pearson value: 69.06680343994812 - type: euclidean_spearman value: 68.4773054255333 - type: manhattan_pearson value: 68.866622017307 - type: manhattan_spearman value: 68.15156375349754 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.64200346870874 - type: cos_sim_spearman value: 86.5043271353841 - type: euclidean_pearson value: 86.36114472174944 - type: euclidean_spearman value: 86.50433264867542 - type: manhattan_pearson value: 86.29057032602698 - type: manhattan_spearman value: 86.45171993846006 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.9286721127671 - type: mrr value: 95.76535029966404 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 53.067 - type: map_at_10 value: 63.580000000000005 - type: map_at_100 value: 64.238 - type: map_at_1000 value: 64.265 - type: map_at_3 value: 60.402 - type: map_at_5 value: 62.456999999999994 - type: mrr_at_1 value: 55.667 - type: mrr_at_10 value: 64.566 - type: mrr_at_100 value: 65.054 - type: mrr_at_1000 value: 65.08 - type: mrr_at_3 value: 61.944 - type: mrr_at_5 value: 63.761 - type: ndcg_at_1 value: 55.667 - type: ndcg_at_10 value: 68.354 - type: ndcg_at_100 value: 70.94 - type: ndcg_at_1000 value: 71.759 - type: ndcg_at_3 value: 62.814 - type: ndcg_at_5 value: 66.084 - type: precision_at_1 value: 55.667 - type: precision_at_10 value: 9.232999999999999 - type: precision_at_100 value: 1.06 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 24.444 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 53.067 - type: recall_at_10 value: 81.89999999999999 - type: recall_at_100 value: 93.0 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 67.589 - type: recall_at_5 value: 75.506 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.61287128712871 - type: cos_sim_ap value: 88.21320824985605 - type: cos_sim_f1 value: 80.15451472718492 - type: cos_sim_precision value: 77.49766573295986 - type: cos_sim_recall value: 83.0 - type: dot_accuracy value: 99.61287128712871 - type: dot_ap value: 88.21329368452164 - type: dot_f1 value: 80.15451472718492 - type: dot_precision value: 77.49766573295986 - type: dot_recall value: 83.0 - type: euclidean_accuracy value: 99.61287128712871 - type: euclidean_ap value: 88.21328696557586 - type: euclidean_f1 value: 80.15451472718492 - type: euclidean_precision value: 77.49766573295986 - type: euclidean_recall value: 83.0 - type: manhattan_accuracy value: 99.61287128712871 - type: manhattan_ap value: 88.26324850748259 - type: manhattan_f1 value: 80.36839554047503 - type: manhattan_precision value: 77.9868297271872 - type: manhattan_recall value: 82.89999999999999 - type: max_accuracy value: 99.61287128712871 - type: max_ap value: 88.26324850748259 - type: max_f1 value: 80.36839554047503 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.88814718001269 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.6023610692526 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 46.52388882316049 - type: mrr value: 46.98781406501995 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 27.06710433803873 - type: cos_sim_spearman value: 30.251609255580625 - type: dot_pearson value: 27.0671067449827 - type: dot_spearman value: 30.251609255580625 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.16999999999999998 - type: map_at_10 value: 1.204 - type: map_at_100 value: 6.800000000000001 - type: map_at_1000 value: 16.753999999999998 - type: map_at_3 value: 0.441 - type: map_at_5 value: 0.692 - type: mrr_at_1 value: 64.0 - type: mrr_at_10 value: 75.5 - type: mrr_at_100 value: 75.667 - type: mrr_at_1000 value: 75.667 - type: mrr_at_3 value: 72.333 - type: mrr_at_5 value: 74.63300000000001 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 55.074 - type: ndcg_at_100 value: 43.342999999999996 - type: ndcg_at_1000 value: 40.217999999999996 - type: ndcg_at_3 value: 56.754000000000005 - type: ndcg_at_5 value: 56.267999999999994 - type: precision_at_1 value: 64.0 - type: precision_at_10 value: 57.8 - type: precision_at_100 value: 44.34 - type: precision_at_1000 value: 17.791999999999998 - type: precision_at_3 value: 59.333000000000006 - type: precision_at_5 value: 59.199999999999996 - type: recall_at_1 value: 0.16999999999999998 - type: recall_at_10 value: 1.522 - type: recall_at_100 value: 10.52 - type: recall_at_1000 value: 38.324999999999996 - type: recall_at_3 value: 0.48 - type: recall_at_5 value: 0.792 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.078 - type: map_at_10 value: 5.463 - type: map_at_100 value: 9.914000000000001 - type: map_at_1000 value: 11.285 - type: map_at_3 value: 2.467 - type: map_at_5 value: 3.277 - type: mrr_at_1 value: 12.245000000000001 - type: mrr_at_10 value: 26.708 - type: mrr_at_100 value: 28.303 - type: mrr_at_1000 value: 28.321 - type: mrr_at_3 value: 23.128999999999998 - type: mrr_at_5 value: 24.558 - type: ndcg_at_1 value: 11.224 - type: ndcg_at_10 value: 15.221000000000002 - type: ndcg_at_100 value: 26.346999999999998 - type: ndcg_at_1000 value: 37.969 - type: ndcg_at_3 value: 13.318 - type: ndcg_at_5 value: 12.576 - type: precision_at_1 value: 12.245000000000001 - type: precision_at_10 value: 15.101999999999999 - type: precision_at_100 value: 5.9799999999999995 - type: precision_at_1000 value: 1.367 - type: precision_at_3 value: 14.966 - type: precision_at_5 value: 13.469000000000001 - type: recall_at_1 value: 1.078 - type: recall_at_10 value: 11.157 - type: recall_at_100 value: 38.190000000000005 - type: recall_at_1000 value: 73.831 - type: recall_at_3 value: 3.598 - type: recall_at_5 value: 5.122999999999999 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.1582 - type: ap value: 14.92669801560963 - type: f1 value: 55.12856312799308 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 58.88511601584606 - type: f1 value: 58.85264576560652 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 46.12909899358978 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.26876080348096 - type: cos_sim_ap value: 64.7970240303098 - type: cos_sim_f1 value: 60.64945026847354 - type: cos_sim_precision value: 58.82936507936508 - type: cos_sim_recall value: 62.58575197889182 - type: dot_accuracy value: 83.26876080348096 - type: dot_ap value: 64.7970187478589 - type: dot_f1 value: 60.64945026847354 - type: dot_precision value: 58.82936507936508 - type: dot_recall value: 62.58575197889182 - type: euclidean_accuracy value: 83.26876080348096 - type: euclidean_ap value: 64.7970350594888 - type: euclidean_f1 value: 60.64945026847354 - type: euclidean_precision value: 58.82936507936508 - type: euclidean_recall value: 62.58575197889182 - type: manhattan_accuracy value: 83.22703701496096 - type: manhattan_ap value: 64.77489173378227 - type: manhattan_f1 value: 60.60833646263612 - type: manhattan_precision value: 57.65658490116694 - type: manhattan_recall value: 63.87862796833773 - type: max_accuracy value: 83.26876080348096 - type: max_ap value: 64.7970350594888 - type: max_f1 value: 60.64945026847354 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.43613924787519 - type: cos_sim_ap value: 80.48760161140632 - type: cos_sim_f1 value: 73.17976287962401 - type: cos_sim_precision value: 68.0641102059739 - type: cos_sim_recall value: 79.12688635663689 - type: dot_accuracy value: 86.43613924787519 - type: dot_ap value: 80.487599095952 - type: dot_f1 value: 73.17976287962401 - type: dot_precision value: 68.0641102059739 - type: dot_recall value: 79.12688635663689 - type: euclidean_accuracy value: 86.43613924787519 - type: euclidean_ap value: 80.48760636334994 - type: euclidean_f1 value: 73.17976287962401 - type: euclidean_precision value: 68.0641102059739 - type: euclidean_recall value: 79.12688635663689 - type: manhattan_accuracy value: 86.41673458299375 - type: manhattan_ap value: 80.47462765492928 - type: manhattan_f1 value: 73.16093396936981 - type: manhattan_precision value: 68.48183710468005 - type: manhattan_recall value: 78.5263319987681 - type: max_accuracy value: 86.43613924787519 - type: max_ap value: 80.48760636334994 - type: max_f1 value: 73.17976287962401 ---
kaikaikaikaikaikaikaikai/marian-finetuned-kftt-ja-to-en
kaikaikaikaikaikaikaikai
2023-07-27T08:28:04Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kftt", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-20T03:04:20Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kftt metrics: - bleu model-index: - name: marian-finetuned-kftt-ja-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kftt type: kftt config: en-ja split: validation args: en-ja metrics: - name: Bleu type: bleu value: 19.353560365370512 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kftt-ja-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on the kftt dataset. It achieves the following results on the evaluation set: - Loss: 1.9124 - Bleu: 19.3536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.3.2 - Tokenizers 0.13.3
bochen0909/Pixelcopter-PLE-v0
bochen0909
2023-07-27T08:27:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T02:33:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 46.00 +/- 34.32 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sm136599/chatfoodie-koalpaca-polyglot-5.8b-20step
sm136599
2023-07-27T08:18:02Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-27T08:17:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
zpdeaccount/old-bart-finetuned-pressrelease
zpdeaccount
2023-07-27T08:16:06Z
113
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-07-27T08:00:09Z
--- pipeline_tag: summarization ---
zpdeaccount/bart-finetuned-pressrelease
zpdeaccount
2023-07-27T08:15:53Z
115
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-07-27T07:57:20Z
--- pipeline_tag: summarization ---
fadliaulawi/distilbert-base-uncased-finetuned-squad-d5716d28
fadliaulawi
2023-07-27T08:13:22Z
109
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2023-07-27T08:11:14Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
jayantdocplix/blokeAI-13b
jayantdocplix
2023-07-27T08:12:16Z
28
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "medical", "en", "arxiv:2303.14070", "license:cc", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-27T07:18:38Z
--- license: cc language: - en library_name: transformers pipeline_tag: text-generation tags: - medical inference: false --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # medalpaca-13B-GGML This is GGML format quantised 4-bit, 5-bit and 8-bit GGML models of [Medalpaca 13B](https://huggingface.co/medalpaca/medalpaca-13b). This repo is the result of quantising to 4-bit, 5-bit and 8-bit GGML for CPU (+CUDA) inference using [llama.cpp](https://github.com/ggerganov/llama.cpp). ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/medalpaca-13B-GPTQ-4bit). * [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/medalpaca-13B-GGML). * [medalpaca's float32 HF format repo for GPU inference and further conversions](https://huggingface.co/medalpaca/medalpaca-13b). ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)! llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508 I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them. For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`. ## Provided files | Name | Quant method | Bits | Size | RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | `medalpaca-13B.ggmlv3.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. | `medalpaca-13B.ggmlv3.q4_1.bin` | q4_1 | 4bit | 8.14GB | 10.5GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | `medalpaca-13B.ggmlv3.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. | `medalpaca-13B.ggmlv3.q5_1.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. | `medalpaca-13B.ggmlv3.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. | ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 8 -m medalpaca-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: write a story about llamas ### Response:" ``` Change `-t 8` to the number of physical CPU cores you have. ## How to run in `text-generation-webui` GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual. Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: MedAlpaca 13b ## Table of Contents [Model Description](#model-description) - [Architecture](#architecture) - [Training Data](#trainig-data) [Model Usage](#model-usage) [Limitations](#limitations) ## Model Description ### Architecture `medalpaca-13b` is a large language model specifically fine-tuned for medical domain tasks. It is based on LLaMA (Large Language Model Meta AI) and contains 13 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. ### Training Data The training data for this project was sourced from various resources. Firstly, we used Anki flashcards to automatically generate questions, from the front of the cards and anwers from the back of the card. Secondly, we generated medical question-answer pairs from [Wikidoc](https://www.wikidoc.org/index.php/Main_Page). We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 to generate questions from the headings and using the corresponding paragraphs as answers. This dataset is still under development and we believe that approximately 70% of these question answer pairs are factual correct. Thirdly, we used StackExchange to extract question-answer pairs, taking the top-rated question from five categories: Academia, Bioinformatics, Biology, Fitness, and Health. Additionally, we used a dataset from [ChatDoctor](https://arxiv.org/abs/2303.14070) consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor. | Source | n items | |------------------------------|--------| | ChatDoc large | 200000 | | wikidoc | 67704 | | Stackexchange academia | 40865 | | Anki flashcards | 33955 | | Stackexchange biology | 27887 | | Stackexchange fitness | 9833 | | Stackexchange health | 7721 | | Wikidoc patient information | 5942 | | Stackexchange bioinformatics | 5407 | ## Model Usage To evaluate the performance of the model on a specific dataset, you can use the Hugging Face Transformers library's built-in evaluation scripts. Please refer to the evaluation guide for more information. Inference You can use the model for inference tasks like question-answering and medical dialogues using the Hugging Face Transformers library. Here's an example of how to use the model for a question-answering task: ```python from transformers import pipeline qa_pipeline = pipeline("question-answering", model="medalpaca/medalpaca-7b", tokenizer="medalpaca/medalpaca-7b") question = "What are the symptoms of diabetes?" context = "Diabetes is a metabolic disease that causes high blood sugar. The symptoms include increased thirst, frequent urination, and unexplained weight loss." answer = qa_pipeline({"question": question, "context": context}) print(answer) ``` ## Limitations The model may not perform effectively outside the scope of the medical domain. The training data primarily targets the knowledge level of medical students, which may result in limitations when addressing the needs of board-certified physicians. The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.
omarxadel/wav2vec2-large-xlsr-53-arabic-egyptian
omarxadel
2023-07-27T08:11:47Z
91
3
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "CTC", "Attention", "Transformer", "ar", "dataset:MGB-3", "dataset:egyptian-arabic-conversational-speech-corpus", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T14:17:43Z
--- language: "ar" pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - Transformer license: "cc-by-nc-4.0" datasets: - MGB-3 - egyptian-arabic-conversational-speech-corpus metrics: - wer model-index: - name: omarxadel/hubert-large-arabic-egyptian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 29.3755 - name: Validation WER type: wer value: 29.1828 --- # Wav2Vec2-XLSR-53 - with CTC fine-tuned on MGB-3 and Egyptian Arabic Conversational Speech Corpus (No LM) This model is a fine-tuned version of [Wav2Vec2-XLSR-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). We finetuned this model on the MGB-3 and Egyptian Arabic Conversational Speech Corpus datasets, acheiving WER of `29.3755%`. The performance of the model on the datasets is the following: | Valid WER | Test WER | |:---------:|:--------:| | 29.18 | 29.37 | # Acknowledgement Model fine-tuning and data processing for this work were performed as a part of a Graduation Project from Faculty of Engineering, Alexandria University, CCE Program.
Naruke/a2c-AntBulletEnv-v0
Naruke
2023-07-27T07:52:36Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T07:51:30Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1388.27 +/- 220.89 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dungmtk/GenerAd-AI
Dungmtk
2023-07-27T07:50:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T07:50:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Mimokrokodil/Dyoma
Mimokrokodil
2023-07-27T07:47:12Z
0
0
null
[ "region:us" ]
null
2023-07-27T07:30:51Z
--- language: - en tags: - DMdyoma, lora, Stable Diffusion # Маскот сети детских магазинов "Детский мир" медведь по имени Дёма info https://disk.yandex.ru/d/yPub8MjFrLCI_g
andbue/byt5-base-latin-normalize
andbue
2023-07-27T07:42:18Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "la", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-21T16:36:56Z
--- language: la tag: text2text-generation pipeline_tag: text2text-generation widget: - text: "normal: Finis uero filosophie speculatiue non est nisi perfeccio anime ." inference: parameters: max_length: 1024 license: cc-by-sa-4.0 --- This model was trained to translate Latin sentences from a medieval orthography to a more classical one. Prefix for normalization is "normal: ". More details will follow soon.
s3nh/mamba-gpt-3b-v2-GGML
s3nh
2023-07-27T07:29:36Z
0
3
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-27T07:24:35Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/CobraMamba/mamba-gpt-3b-v2). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card ## Summary We have fine-tuned the open-lama model and surpassed the original model in multiple evaluation subtasks, making it currently the best performing 3B model with comparable performance to llama-7b - Base model: [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="CobraMamba/mamba-gpt-3b", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download the mamba_gpt_pipeline.py, store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from mamba_gpt_pipeline.py import MambaGPTTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "CobraMamba/mamba-gpt-3b", use_fast=False, padding_side="left", trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( "CobraMamba/mamba-gpt-3b", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) generate_text = MambaGPTTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "CobraMamba/mamba-gpt-3b" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks. | **Task/Metric** | finetuned-GPT 3B | OpenLLaMA 3B | | ---------------------- | -------- | ------------ | | anli_r1/acc | **0.35** | 0.33 | | anli_r2/acc | **0.33** | 0.32 | | anli_r3/acc | 0.35 | 0.35 | | arc_challenge/acc | **0.35** | 0.34 | | arc_challenge/acc_norm | 0.37 | 0.37 | | arc_easy/acc | **0.71** | 0.69 | | arc_easy/acc_norm | 0.65 | 0.65 | | boolq/acc | **0.72** | 0.66 | | hellaswag/acc | **0.49** | 0.43 | | hellaswag/acc_norm | 0.66 | **0.67** | | openbookqa/acc | 0.26 | **0.27** | | openbookqa/acc_norm | 0.40 | 0.40 | | piqa/acc | **0.76** | 0.75 | | piqa/acc_norm | 0.76 | 0.76 | | record/em | 0.88 | 0.88 | | record/f1 | 0.88 | **0.89** | | rte/acc | 0.55 | **0.58** | | truthfulqa_mc/mc1 | **0.27** | 0.22 | | truthfulqa_mc/mc2 | **0.37** | 0.35 | | wic/acc | **0.49** | 0.48 | | winogrande/acc | **0.63** | 0.62 | | Average | **0.53** | 0.52 | We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Devops-hestabit/OtherHalf-pt
Devops-hestabit
2023-07-27T07:20:40Z
0
0
null
[ "license:creativeml-openrail-m", "endpoints_compatible", "region:us" ]
null
2023-05-15T10:25:29Z
--- license: creativeml-openrail-m ---
dhiruHF/falcon7b-FT-DocQA-v4
dhiruHF
2023-07-27T07:13:40Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-27T07:13:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
asenella/ms_MVTCAE_beta_10_scale_True_seed_3
asenella
2023-07-27T07:06:40Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T07:06:38Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
FinchResearch/llama2-archimedes-13b-lora
FinchResearch
2023-07-27T07:06:33Z
6
0
peft
[ "peft", "question-answering", "en", "dataset:timdettmers/openassistant-guanaco", "dataset:tatsu-lab/alpaca", "dataset:BI55/MedText", "license:mit", "region:us" ]
question-answering
2023-07-26T11:31:01Z
--- library_name: peft license: mit datasets: - timdettmers/openassistant-guanaco - tatsu-lab/alpaca - BI55/MedText language: - en pipeline_tag: question-answering --- Here is a README.md explaining how to run the Archimedes model locally: # Archimedes Model This README provides instructions for running the Archimedes conversational AI assistant locally. ## Requirements - Python 3.6+ - [Transformers](https://huggingface.co/docs/transformers/installation) - [Peft](https://github.com/hazyresearch/peft) - PyTorch - Access to the LLAMA 2 model files or a cloned public model Install requirements: ``` !pip install transformers !pip install peft !pip install torch !pip install datasets !pip install bitsandbytes ``` ## Usage ```python import transformers from peft import LoraConfig, get_peft_model import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig login() # Need access to the gated model. # Load LLAMA 2 model model_name = "meta-llama/Llama-2-13b-chat-hf" # Quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) # Load LoRA configuration lora_config = LoraConfig.from_pretrained('harpyerr/archimedes-300s-7b-chat') model = get_peft_model(model, lora_config) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token # Define prompt text = "Can you tell me who made Space-X?" prompt = "You are a helpful assistant. Please provide an informative response. \n\n" + text # Generate response device = "cuda:0" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` This loads the LLAMA 2 model, applies 4-bit quantization and LoRA optimizations, constructs a prompt, and generates a response. See the [docs](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) for more details.
FinchResearch/llama2-stable-7b-lora
FinchResearch
2023-07-27T07:05:34Z
5
3
peft
[ "peft", "question-answering", "en", "dataset:timdettmers/openassistant-guanaco", "dataset:tatsu-lab/alpaca", "dataset:BI55/MedText", "license:mit", "region:us" ]
question-answering
2023-07-26T00:10:38Z
--- library_name: peft license: mit datasets: - timdettmers/openassistant-guanaco - tatsu-lab/alpaca - BI55/MedText language: - en pipeline_tag: question-answering --- Here is a README.md explaining how to run the Archimedes model locally: # Archimedes Model This README provides instructions for running the Archimedes conversational AI assistant locally. ## Requirements - Python 3.6+ - [Transformers](https://huggingface.co/docs/transformers/installation) - [Peft](https://github.com/hazyresearch/peft) - PyTorch - Access to the LLAMA 2 model files or a cloned public model Install requirements: ``` !pip install transformers !pip install peft !pip install torch !pip install datasets !pip install bitsandbytes ``` ## Usage ```python import transformers from peft import LoraConfig, get_peft_model import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig login() # Need access to the gated model. # Load LLAMA 2 model model_name = "meta-llama/Llama-2-7b-chat-hf" # Quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) # Load LoRA configuration lora_config = LoraConfig.from_pretrained('harpyerr/archimedes-300s-7b-chat') model = get_peft_model(model, lora_config) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token # Define prompt text = "Can you tell me who made Space-X?" prompt = "You are a helpful assistant. Please provide an informative response. \n\n" + text # Generate response device = "cuda:0" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` This loads the LLAMA 2 model, applies 4-bit quantization and LoRA optimizations, constructs a prompt, and generates a response. See the [docs](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) for more details.
jaycalma/rare-puppers
jaycalma
2023-07-27T06:59:59Z
224
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T02:25:03Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### labrador ![labrador](images/labrador.jpg) #### pomeranian ![pomeranian](images/pomeranian.jpg) #### poodle ![poodle](images/poodle.jpg)
asenella/ms_MVTCAE_beta_25_scale_False_seed_2
asenella
2023-07-27T06:58:08Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T06:58:07Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MVTCAE_beta_10_scale_False_seed_3
asenella
2023-07-27T06:57:59Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T06:57:58Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
sumet/speecht5_finetuned_voxpopuli_nl
sumet
2023-07-27T06:55:05Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "nl", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-13T03:02:35Z
--- language: - nl license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: speec T5 NL - Sumet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speec T5 NL - Sumet This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Vox Populi NL dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 0.54 | 1000 | nan | | 0.0 | 1.09 | 2000 | nan | | 0.0 | 1.63 | 3000 | nan | | 0.0 | 2.18 | 4000 | nan | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
ld76/wav2vec2-base-finetuned-gtzan-2
ld76
2023-07-27T06:54:49Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-27T02:05:08Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7770 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0152 | 1.0 | 112 | 1.9017 | 0.52 | | 1.6232 | 2.0 | 225 | 1.5400 | 0.53 | | 1.2989 | 3.0 | 337 | 1.1494 | 0.65 | | 1.2035 | 4.0 | 450 | 1.1189 | 0.69 | | 0.6804 | 5.0 | 562 | 0.8873 | 0.69 | | 0.7305 | 6.0 | 675 | 0.7527 | 0.81 | | 0.4738 | 7.0 | 787 | 0.6880 | 0.78 | | 0.2824 | 8.0 | 900 | 0.7893 | 0.73 | | 0.3863 | 9.0 | 1012 | 0.5786 | 0.85 | | 0.4061 | 10.0 | 1125 | 0.7070 | 0.81 | | 0.1302 | 11.0 | 1237 | 0.5829 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
FaizanMunsaf/llama2-qlora-finetunined-french
FaizanMunsaf
2023-07-27T06:48:00Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-27T06:47:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
chunwoolee0/marian-finetuned-kde4-en-to-ko
chunwoolee0
2023-07-27T06:46:22Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-tc-big-en-ko", "base_model:finetune:Helsinki-NLP/opus-mt-tc-big-en-ko", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-27T05:47:54Z
--- license: cc-by-4.0 base_model: Helsinki-NLP/opus-mt-tc-big-en-ko tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-ko results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ko split: train args: en-ko metrics: - name: Bleu type: bleu value: 6.0084151979608835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ko This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ko](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ko) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 4.1884 - Bleu: 6.0084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
eisneim/cn-clip_vit-b-16
eisneim
2023-07-27T06:43:25Z
0
0
null
[ "onnx", "clip", "multi modal", "zero-shot-classification", "zh", "license:apache-2.0", "region:us" ]
zero-shot-classification
2023-07-27T03:58:45Z
--- license: apache-2.0 language: - zh pipeline_tag: zero-shot-classification tags: - clip - multi modal --- Chinese-CLIP Model Deployment: ONNX those Onnx file is converted using this [script](https://github.com/OFA-Sys/Chinese-CLIP/blob/master/deployment_En.md) you will likely to encounter this Error while converting: ``` Exporting the operator 'aten::unflatten' to ONNX opset version 13 is not supported. ``` so I uploaded those converted file for your convenience. 中文CLIP模型 [OFA-Sys/Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)
tomoohive/Reinforce-Pixelcopter-PLE-v0
tomoohive
2023-07-27T06:32:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T05:26:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.20 +/- 25.22 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
xianbin/ppo-SnowballTarget
xianbin
2023-07-27T06:19:44Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-27T06:19:39Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: xianbin/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
raicrits/topicChangeDetector_v1
raicrits
2023-07-27T06:18:32Z
33,763
0
transformers
[ "transformers", "pytorch", "text-classification", "it", "dataset:raicrits/newsTopicChange", "arxiv:1910.09700", "license:other", "endpoints_compatible", "region:us" ]
text-classification
2023-07-21T11:59:40Z
--- license: other language: - it pipeline_tag: text-classification widget: - text: >- Ripartire la parola d'ordine, al governo chiediamo di accelerare la campagna sui vaccini e di lavorare a un cronoprogramma delle riaperture. Dobbiamo dare una prospettiva di rinascita a tutti gli italiani, dall'opposizione ancora all'attacco del governo, gli italiani sono esausti di fare sacrifici che non portano a nulla. Sono quattro le persone indagate dalla Procura di Roma per le minacce via mail al ministro della Salute. Tra ottobre del 2020 e il gennaio del 2021 avrebbero inviato al ministro dei messaggi dal contenuto gravemente minaccioso. Al ministro la solidarietà di tutto il mondo politico e a causa della pandemia si assottigliano i redditi delle famiglie italiane. Aumenta anche la pressione fiscale. Lo rileva l'Istat. - text: >- L'Agenzia delle entrate ha dato il via oggi ai primi ordini di pagamento dei contributi a fondo perduto per lavoratori autonomi e partite IVA previsti dal decreto Sostegni. E scattata la corsa contro il tempo per far arrivare i contributi a fondo perduto previsti dal decreto sostegno a favore di aziende e professionisti. L'Agenzia delle entrate ha iniziato l'invio degli ordini di pagamento per le richieste giunte entro il 5 Aprile, una prima tranches che vale quasi due miliardi di euro. - text: >- Le terapie intensive hanno superato la soglia del 30% di riempimento. La lotta al virus e anche lotta alle fake news, prosegue la collaborazione tra ministero della Salute e Twitter quando si cercano notizie sul Covid del Social rimanda le pagine del ministero, includendo anche le ultime informazioni sui vaccini. COVID-19 è stato l'hashtag più twittato a livello globale nel 2020. La poltrona negata da Erdogan ad Ursula von der Leyen, lo avete sentito? Fa ancora discutere dentro e fuori dal Parlamento europeo: Marco Clementi. - text: >- I bambini che soffrono di autismo hanno gli stessi diritti di tutti gli altri bambini sottolinea garante per l'infanzia, occorre dunque fare rete tra famiglia, scuola, pediatri e servizi sociali. Domani mattina alle 705 su Rai Uno torna la nostra rubrica di approfondimento 7 giorni. L'anticipazione nel servizio. - text: >- Brutta avventura per il giocatore della Roma, vittima di una rapina in casa la scorsa notte, e tre uomini armati sono entrati nella sua abitazione romana e lo hanno costretto ad aprire la cassaforte rubando Rolex e gioielli. Oltre al calciatore c'era anche la moglie in casa, entrambi illesi. Parliamo ora di campionato di serie a Il posticipo di domenica vedrà di fronte l'Inter capolista ed in fuga e il Napoli che al San Paolo cerca punti. Per un posto in Champions League. metrics: - accuracy - precision - recall datasets: - raicrits/newsTopicChange --- # Model Card for raicrits/topicChangeDetector_v1 <!-- Provide a quick summary of what the model is/does. --> This model analyses the input text and provides an answer whether in the text there is a change of topic or not (resp. TOPPICCHANGE, SAMETOPIC). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Alberto Messina ([email protected]) - **Model type:** BERT for Sequence Classification - **Language(s) (NLP):** Italian - **License:** TBD - **Finetuned from model:** https://huggingface.co/xlm-roberta-base ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** N/A - **Paper [optional]:** N/A - **Demo [optional]:** N/A ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The model should be used giving as input a short paragraph of text taken from a news programme or article in Italian about which it is requested to get an answer about whether or not it contains a change of topic. The model has been trained to detect topic changes without apriori knowledge of possible points of separation (e.g., paragraphs or speaker turns). For this reason it tends to be sensitive to the amount of text supposed to belong to either of the two subsequent topics, and therefore performs better when the sought for topic change occurs approximately in the middle of the input. To reduce the impact of this issue, it is suggested to use the model on a sequence of partially overlapping pieces of text taken from the document to be analysed, and to further process the results sequence to consolidate a decision. ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> TBA ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> The model should not be used as a general purpose topic change detector, i.e. on text which is not originated from news programme transcription or siilar content. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind of topics that can be tracked for change. ## How to Get Started with the Model Use the code below to get started with the model. TBA ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> TBA ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] TBA #### Training Hyperparameters - **Training regime:** Mixed Precision ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> TBA ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> TBA #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> TBA ### Results TBA #### Summary TBA ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 2 NVIDIA A100/40Gb - **Hours used:** 2 - **Cloud Provider:** Private Infrastructure - **Carbon Emitted:** 0.22 kg CO2 eq. ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> TBA ## More Information [optional] The development of this model is partially supported by H2020 Project AI4Media - A European Excellence Centre for Media, Society and Democracy (Grant nr. 951911) - http://ai4media.eu ## Model Card Authors [optional] Alberto Messina ## Model Card Contact [email protected]
Jonathaniu/llama2-breast-cancer-13b-knowledge-epoch-5
Jonathaniu
2023-07-27T06:14:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T06:14:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.4.0.dev0
lunarlist/tts-thai-last-step
lunarlist
2023-07-27T06:13:19Z
7
2
nemo
[ "nemo", "text-to-speech", "th", "dataset:lunarlist/edited_common_voice", "license:mit", "region:us" ]
text-to-speech
2023-07-18T10:42:57Z
--- license: mit datasets: - lunarlist/edited_common_voice language: - th library_name: nemo pipeline_tag: text-to-speech --- This model is a Thai TTS model that use a voice from [Common Voice dataset](https://commonvoice.mozilla.org/) and modify the voice to not to sound like the original. > pip install nemo_toolkit['tts'] soundfile ```python from nemo.collections.tts.models import UnivNetModel from nemo.collections.tts.models import Tacotron2Model import torch import soundfile as sf model = Tacotron2Model.from_pretrained("lunarlist/tts-thai-last-step").to('cpu') vcoder_model = UnivNetModel.from_pretrained(model_name="tts_en_libritts_univnet") text='ภาษาไทย ง่าย นิด เดียว' dict_idx={k:i for i,k in enumerate(model.hparams["cfg"]['labels'])} parsed2=torch.Tensor([[66]+[dict_idx[i] for i in text if i]+[67]]).int().to("cpu") spectrogram2 = model.generate_spectrogram(tokens=parsed2) audio2 = vcoder_model.convert_spectrogram_to_audio(spec=spectrogram2) # Save the audio to disk in a file called speech.wav sf.write("speech.wav", audio2.to('cpu').detach().numpy()[0], 22050) ``` Medium: [Text-To-Speech ภาษาไทยด้วย Tacotron2](https://medium.com/@taetiyateachamatavorn/text-to-speech-%E0%B8%A0%E0%B8%B2%E0%B8%A9%E0%B8%B2%E0%B9%84%E0%B8%97%E0%B8%A2%E0%B8%94%E0%B9%89%E0%B8%A7%E0%B8%A2-tacotron2-986417b44edc)
SimonSun/llama2-7B-qlora-finetunined-french-200-epoque
SimonSun
2023-07-27T06:04:47Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-27T05:45:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
quantumaikr/llama-2-70B-guanaco-ko-lora
quantumaikr
2023-07-27T05:59:04Z
2
1
peft
[ "peft", "region:us" ]
null
2023-07-27T05:58:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
sukiee/qlora-koalpaca-polyglot-5.8b-hotissue_v3
sukiee
2023-07-27T05:58:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T13:15:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
rohn132/Q_learning_taxi_v3
rohn132
2023-07-27T05:57:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T05:54:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q_learning_taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rohn132/Q_learning_taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ketong3906/my_awesome_model_classification_w_adapter
ketong3906
2023-07-27T05:56:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-27T03:02:03Z
--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model_classification_w_adapter results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train[:300] args: plain_text metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_classification_w_adapter This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.0035 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 15 | 0.0120 | 1.0 | | No log | 2.0 | 30 | 0.0035 | 1.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
asenella/ms_JMVAE_beta_25_scale_True_seed_3
asenella
2023-07-27T05:55:07Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T05:55:05Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_JMVAE_beta_10_scale_True_seed_3
asenella
2023-07-27T05:53:47Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T05:53:45Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
liuyt75/t5-small_prefix_tuning_sentences_75agree_10
liuyt75
2023-07-27T05:52:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T18:11:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0